
HAL Id: tel-04213430
https://theses.hal.science/tel-04213430

Submitted on 21 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonintrusive reduced order models
Florent Masmoudi

To cite this version:
Florent Masmoudi. Nonintrusive reduced order models. Analysis of PDEs [math.AP]. Université Paul
Sabatier - Toulouse III, 2018. English. �NNT : 2018TOU30363�. �tel-04213430�

https://theses.hal.science/tel-04213430
https://hal.archives-ouvertes.fr

2

Remerciements,

Je tiens à remercier chaleureusement mes directeurs de thèse Jean-Pierre Ray-
mond et Franck Plouraboué. Leurs conseils, connaissances et encouragements
ont été déterminants pour l’aboutissement de cette thèse. Je tiens également à
louer leur disponibilité et leur patience.

Manuel Bompard a assuré le suivi de cette thèse au sein de l’entreprise
ADAGOS et je voudrais également l’en remercier.

Merci à Madame Hélène Barucq et Monsieur Aziz Hamdouni qui ont accepté
d’évaluer ce travail.

En plus de l’apport de l’IMT, qui offre un environnement exceptionnel pour
les doctorants, ADAGOS est une structure particulièrelent favorable à la créa-
tion. Je voudrais remercier par ordre alphabétique : Houcine, Kateryna, Manuel,
Mathieu, Mohamed et Victorien. Sans oublier nos complices et colocataires de
Modartt.

Enfin, merci à Chloé de m’avoir soutenu et encouragé.

Contents

1 zROM: Reduced Order Models for Structural Analysis 9
1.1 Introduction . 9
1.2 Motivation: The industrial case . 10
1.3 Linear Elasticity . 11

1.3.1 The weak form . 13
1.3.2 The Finite Element Method 13

1.4 The parameterized system . 14
1.5 Frequency domain . 15
1.6 The eigenproblem . 17

1.6.1 A relevant toy problem . 18
1.7 Modeling x as a rational function . 19

1.7.1 An eigenelements-based rational model 20
1.7.2 A multivariate friendly rational model 20
1.7.3 About state-of-the-art methods to build rational models . . 24
1.7.4 Back to the toy problem . 26

1.8 The Reduced Order Model . 26
1.8.1 The learning data . 26
1.8.2 Structure of the Reduced Order Model 27
1.8.3 The basis functions . 27
1.8.4 Preprocessing of the learning data: Enhancing the process

using the singular value decomposition (SVD) 37
1.8.5 Identification Process . 39
1.8.6 Optimization: the Gauss-Newton method 45
1.8.7 Postprocessing: Identification of new coefficients a 46
1.8.8 Evaluate the model for a new configuration 47
1.8.9 Recovering the eigenelements 48

1.9 Numerical experiments . 49

3

4 CONTENTS

1.9.1 The industrial case . 49
1.9.2 Case with damping . 50
1.9.3 Case with no damping . 59
1.9.4 The vibrating plate . 69

1.10 From mechanics to electromagnetism 75
1.10.1 Maxwell’s equations . 75
1.10.2 Test case: The microstrip line 76

1.11 Conclusion and perspectives . 80

2 Dynamical Reduced Order Models 83
2.1 PDE model . 84

2.1.1 Boundary conditions . 84
2.1.2 Objective . 84
2.1.3 Weak form . 85

2.2 The reduced order model . 87
2.2.1 The semi-discrete ROM . 87
2.2.2 The discrete-in-time ROM . 89

2.3 Properties and constraints on the ROM 91
2.3.1 Properties of A . 91
2.3.2 Properties of M . 92
2.3.3 Invariance with respect to change of basis 94

2.4 Computational aspects . 96
2.4.1 Evaluate the model: solving the nonlinear equation 96
2.4.2 Preprocessing of the learning data 96
2.4.3 The identifcation problem in the learning process 99
2.4.4 Dealing with A nonpositive 101
2.4.5 Alternative case: no access to the mass matrix m 102

2.5 Giving flexibility to the model . 104
2.5.1 Versatility provided by the observation operator 105
2.5.2 The observation offset . 107
2.5.3 The excitation offset . 107
2.5.4 The updated learning process 109
2.5.5 The updated prediction process 110

2.6 The coronary test case . 110
2.6.1 Experimental results . 111

2.7 Modeling the pressure . 121
2.7.1 Mixed boundary conditions 121
2.7.2 Full Neumann boundary conditions 122

CONTENTS 5

2.7.3 Experimental results: back to the coronary test case 124
2.8 Conclusion and perspectives . 129

3 A contribution to sparse grids 131
3.1 How do they work? . 131

3.1.1 The one dimensional case . 132
3.1.2 Multiple Dimensions . 134
3.1.3 Error estimator . 135
3.1.4 Dimensional adaptativity . 135
3.1.5 Alternative basis functions 136

3.2 Comparison with Kriging . 137
3.2.1 Academic functions . 137
3.2.2 Functions from physical problems 139
3.2.3 Results table . 139

3.3 Enhanced dimensional adaptativity 143
3.3.1 Alternative strategies . 145
3.3.2 A more general method . 146
3.3.3 Test case: Fast Neutron Reactor 149

3.4 Prospects: application to zROM . 152
3.4.1 Preliminary results: the vibrating plate 152

A Algorithmic differentiation 159
A.1 Forward and backward mode differentiation 159
A.2 Gauss-Newton method . 160
A.3 Sequence of instructions . 161

A.3.1 Forward mode differentiation 162
A.3.2 Backward mode differentiation 163

A.4 Example . 163

6 CONTENTS

Introduction

Cette thèse a été réalisée dans le cadre de la Convention industrielle de forma-
tion par la recherche (CIFRE). Elle implique l’équipe MIP (Mathématiques pour
l’Industrie et la Physique) de l’Institut de Mathématiques de Toulouse (IMT) et
l’entreprise Adagos, à Ramonville-Saint-Agne.
Adagos est elle-même une jeune pousse de l’IMT qui a pour tutelles l’Université
Paul Sabatier et le CNRS, et fut créée fin 2011. Elle s’est spécialisée dans la créa-
tion de modèles réduits qui s’adaptent aux besoins des ingénieurs.
Le but de cette thèse est de construire des modèles réduits permettant de se
substituer à des logiciels de simulation de systèmes physiques complexes. Ces
modèles doivent être rapides à interroger.
L’état de l’art de la réduction de modèle est dominé par les méthodes intru-
sives qui nécessitent l’accès aux ressources internes d’un logiciel de simula-
tion (modèle complet). Elles peuvent ainsi nécessiter un important travail
d’intégration. Si elles permettent d’accélérer les calculs de manière significa-
tive leur dépendance au logiciel de simulation interdit de les embarquer sur
une architecture informatique plus légère.
Pour pallier à ces inconvénients nous allons introduire dans cette thèse une
gamme de modèles réduits basée sur des méthodes d’apprentissage non intru-
sives. L’apprentissage s’effectuera sur la base d’un nombre limité d’expériences
issues du modèle complet. Une fois cette étape effectuée, le modèle réduit de-
vra pouvoir être utilisé de manière autonome, sans avoir recours au modèle
complet. Cette façon de faire entièrement non intrusive doit rendre possible
un apprentissage utilisant des données mesurées plutôt que calculées.
Ce travail s’inscrit donc dans le monde des méthodes d’apprentissage. Celui-ci
est en plein essor, et les algorithmes de "machine learning" et de "deep learn-
ing", toujours plus populaires, voient leur utilisation s’étendre à des domaines
de plus en plus larges. S’il existe de nombreuses méthodes tournées vers la
classification, la modélisation de systèmes n’est pas en reste. Les réseaux de

7

8 CONTENTS

neurones, et notamment les réseaux profonds, sont très largement utilisés. Ils
sont en quelque sorte un outil tout terrain. On peut les utiliser indifféremment
en économie, en météorologie ou encore en médecine. D’après le théorème de
Kolmogorv [1], ils ont l’avantage de pouvoir apprendre toute fonction continue
à plusieurs variables. Toutefois, on verra que pour construire un modèle réduit
d’un système physique en utilisant aussi peu de données d’apprentissage que
possible, il faut incorporer dans la modélisation des propriétés physiques élé-
mentaires.
Nous allons dans ce document développer deux types de modèles réduits,
adaptées à deux classes de problèmes impliquant des physiques différentes.
Dans un premier chapitre [1], nous nous intéresserons à la mécanique
linéaire. On cherchera alors à développer un modèle réduit qui nous permette
d’apprendre la réponse harmonique d’un système en fonction de paramètres
de conception comme sa géométrie ou les propriétés de ses matériaux. Il
sera particulièrement intéressant d’observer ce qui se passe à proximité des
fréquences de résonnance, qui se déplacent quand les paramètres du système
changent. Pour cela nous modéliserons la réponse sous la forme d’une fraction
dont nous détaillerons la nature et le processus d’identification.
Dans un second chapitre [2], nous étudierons la mécanique des fluides incom-
pressibles. On considèrera un système modélisant un écoulement. Cette fois-ci
le système ne sera pas modifié. La géométrie sera fixe, la nature du fluide égale-
ment. Seules les excitations dynamiques, comme la vitesse du fluide à l’entrée
ou la pression extérieure, changeront. On cherchera à identifier par apprentis-
sage un modèle réduit dynamique permettant de prédire ce qui se passe pour
toute nouvelle excitation dynamique. Le modèle réduit étant non linéaire et
instationnaire, notre principal défi visera à définir une structure nous garantis-
sant, par construction, la stabilité du schéma numérique mis en oeuvre.
Pour ces deux types de physique évoqués, nous vérifierons qu’incorporer des
lois physiques élémentaires, caractérisant le phénomène en présence, nous
permet d’acquérir une bonne capacité de prédiction en utilisant un nombre
réduit de données d’apprentissage. On s’assurera également que les modèles
ainsi développés resteront suffisamment flexibles et généraux pour pouvoir
traiter une classe de problèmes assez large, ne nécessitant pas d’engager un
travail d’adaptation conséquent à chaque nouvelle expérience.
Enfin, dans un troisième chapitre [3], nous nous pencherons sur une prob-
lématique quelque peu différente. On s’intéressera à la méthode des Sparse
Grids, qui permet de réaliser efficacement l’approximation de fonctions qui
ont un grand nombre de variables d’entrée en utilisant un nombre modéré de

CONTENTS 9

points d’apprentissage. On introduira une stratégie permettant de les rendre
plus économes encore.

10 CONTENTS

Chapter 1

zROM: Reduced Order Models for
Structural Analysis

1.1 Introduction

Structural analysis is a major field in engineering. Figuring out what will be
the behavior of a mechanical component during its building phase is critical in
many projects. As a matter of fact, resonant frequencies of mechanical systems
can lead to safety issues or damages if they happen to be badly distributed.
Structural analysis is a strategic field in automotive, aeronautic or construction
industries for example. Let us consider a car engine. It usually goes from 0 to 4
000 revolutions per minute (rpm). And other excitations like gear shifting bring
in some higher frequencies. The engineers, in charge to design it, add some
damping. But that does not make resonant frequencies disappear. They try to
keep them far from ideal engine regime, let us say 1 500 rpm for example. Un-
fortunately when gears are shifted the resonant frequencies tend to move. That
gives an insight of the complexity of the problem. Trying to find an optimal de-
sign of the engine to guarantee its good behavior is really computationally in-
tensive. Computer simulations are usually performed using the finite elements
method (FEM) [2]. A new computation is required for every single frequency
value and every single design configuration. Exploring the space of frequencies
and design configurations to find out what could be the best design becomes
an almost impossible mission. The exploration must be refined as a slight per-
turbation of the design can result in a significant change in the behavior.
To address this problem we are going to build a Reduced Order Model (ROM) of

11

12CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

the harmonic response of a system based on a few computations for some de-
sign configurations and frequencies. The method is fully non-intrusive, it does
not require any further information from the solver. In fact it could use mea-
sured data as well. It relies on the machine learning philosophy to which we
add some simple but fundamental physical properties.
This method has been prototyped using a test case provided by Ansys that we
are going to introduce right now.

1.2 Motivation: The industrial case

This work has been initiated in partnership with the Ansys company. They pro-
vided us with a qualitative test case to create a prototype. We consider a pipe
made of steel and full of liquid (Figure 1.1). Its length may vary. This pipe is an
element of a more global system from General Electrics. The pipe is clamped at
one end. A longitudinal forced is applied to the other end.

Figure 1.1 – Geometry

Our goal is to perform an harmonic analysis for any length of the pipe within
a specified range. We call f and pL respectively the frequency and the length
parameter. Let us denote by x the vector of the longitudinal displacements at
the mesh nodes of the FEM code. Let us note that the mesh is gently morphed
when pL changes. We aim at building a reduced order model of

(f , pL) → x(f , pL), ∀(f , pL) ∈ [fmi n , fmax]× [pLmi n , pLmax], (1.2.1)

on the basis of nl learning data Xl =
[

x(f1, pL1), . . . , x(fnl , pLnl
)
]

computed via

the ANSYS Mechanical solver. This method is fully nonintrusive. That means

1.3. LINEAR ELASTICITY 13

that it does not require further information from the solver (to perform projec-
tions or any other operation). It only relies on outputs of the solver for some
(f , pL) configurations.
We will see that the structure of the proposed reduced order model is quite gen-
eral and may be used to model the solution of parameterized linear systems.
But it gets particularly interesting when the parameters lead to singularities.
That is why we are going to introduce the model in the general field of linear
elasticity.

1.3 Linear Elasticity

The equations of linear elasticity model materials as continua and define how
solid objects deform and get internally stressed depending on loading con-
ditions. The linearity assumption is legitimate if the deformations are small
enough. In the special case of metals, the yield point (the limit of elastic be-
havior) is usually far enough to get a wide range of deformations in which the
assumption remains appropriate.

Figure 1.2 – Domain

Let us have a look at the governing equations for a system with no damping
on a domainΩ

• The equation of displacement:

∇·σ+ f = ρü in Ω. (1.3.1)

• The equation linking strain and displacement:

ε= 1

2

[∇u + (∇u)T]
. (1.3.2)

14CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

• The Hooke’s law that is a constitutive equation for elastic materials:

σ= D : ε ⇐⇒ σi j = Di j klεkl (1.3.3)

In the previous equations σ is the Cauchy stress tensor, ε is the strain tensor, u
is the displacement vector, ρ is the mass density, D is the stiffness tensor, and
f is the force per unit volume.
The stiffness sensor D has the classical following symmetry properties:

Di j kl = D j i kl = Di j lk = Dkl i j (1.3.4)

When the material is homogeneous the coefficients of D are constant. And in
case it is isotropic as well, we can show that D only depends on 2 coefficients:
the Lamé parameters (λ,µ), or Young’ modulus E and Poisson’s coefficient ν

σi j = E

1+ν
(
εi j (u)+ ν

1−2ν
εl l (u)δi j

)
. (1.3.5)

The relation between (E ,ν) and (λ,µ) is

E = µ(µ+3λ)
µ+λ , ν= λ

2(µ+λ) , (1.3.6)

and

µ= E
2(1+ν) , λ= Eν

(1+ν)(1−2ν) . (1.3.7)

The boundary conditions are usually in the form{
u = 0 ⇐⇒ ui = 0 on Γ1

σ.n = τ ⇐⇒ σi j n j = τi on Γ2
(1.3.8)

This whole set of equations can be reduced to one linear second order Partial
Derivative Equation(PDE) of u

ρü − 1

2
∇· (D :

(∇u + (∇u)T))= f , (1.3.9)

with the boundary and initial conditions.

1.3. LINEAR ELASTICITY 15

1.3.1 The weak form

Let us define the space V

V = {
v = (v1, v2, v3|vi ∈ H 1(Ω); vi = 0 on Γ1

}
. (1.3.10)

For all v in V , we have
m(ü, v)+a(u, v) = l (v), (1.3.11)

where

• the bilinear form m is

m(w, v) =
∫
Ω
ρw v, (1.3.12)

where ρ is the density,

• the bilinear form a is

a(u, v) =
∫
Ω
σi jεi j (v)

=
∫
Ω

Di j klεkl (u)εi j (v)
(1.3.13)

• and the linear form l is

l (v) =
∫
Ω

fi vi +
∫
Γ2

τi vi . (1.3.14)

1.3.2 The Finite Element Method

Now we assume that Ω is meshed. V h is the finite dimension space associated
to the shape functions of the mesh. In most cases the mesh is not time depen-
dent.
Let N be the dimension of V h . We consider a basis {w1, . . . , wN } in V h . We are
going to look for an approached solution uh of 1.3.11 in the form

uh(t ,ξ) =
N∑

j=1
x j (t)w j (ξ). (1.3.15)

Let x ∈RN be the vector whose components are x j . x is solution of

M ẍ +K x = l , (1.3.16)

16CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

where
M = [

mi j
]= [

m(wi , w j)
]

, (1.3.17)

K = [
ki j

]= [
a(wi , w j)

]
, (1.3.18)

l = [li] = [l (wi)] . (1.3.19)

M ∈RN×N is called the mass matrix, which is symmetrical and positive-definite
(usually lumped into a diagonal matrix).
K ∈ RN×N is called the stiffness matrix, which is symmetrical and positive-
definite.

To this point we have not taking into account possible damping effects. They
may come from the properties of the material constituting the solid itself or
from external interactions such as energy dissipation due to interaction with a
fluid flow. To model this we add a simple time derivative term:

M ẍ +C ẋ +K x = `. (1.3.20)

C is called the matrix of the damping effects. It usually comes from a first order
spatial differential operator. But C ∈ RN×N is sometimes set empirically in the
form of a diagonal matrix.

To this point we have considered the general case of linear elasticity. But
equation 1.3.20 is actually very general in the field of mechanics. The struc-
ture of the matrices involved may change but this general equation is common
to

• linear elasticity

• plate models

• shell models

• etc.

1.4 The parameterized system

Equation 1.3.20 stands for a given design configuration. What happens when
we change the design geometry or the material properties of the system ?

1.5. FREQUENCY DOMAIN 17

Let us call p = (p1, . . . , pnp) ∈Rnp the vector that characterizes those changes.
For example, if p = (p1, p2), p1 could stand for the length of the pipe test case
1.2 and p2 could be Young’s modulus.

• In a general manner, when pk only stands for material properties, the
matrices M , C and K gently depend on pk . For example, when the density
ρ is changed, only M is affected, alternatively when Young’s modulus is
tuned, only K is modified.

• Alternatively, if pk depicts changes in the design geometry we need to
be more cautious. First we need a mesh’s structure that does not change
with pk . Second the morphing of the mesh depending on pk needs to be
smooth. In that case we can also say that M , C and K depend smoothly
on pk . In most cases we may assume that this dependency is analytic.
Depending on how the applied force is affected by the design geometry
changes, even ` may become a function of pk . If the pipe from test case
1.2 is stimulated with force at one end of the beam uniformly spread over
its surface, the magnitude per surface unit may change with the design
for example.

Taking into account the vector of parameters p is the cornerstone for further
work. Equation 1.3.20 changes into

M(p)ẍ(t)+C (p)ẋ(t)+K (p)x(t) = `(t , p). (1.4.1)

1.5 Frequency domain

Let us enter the frequency domain using the Fourier transform. We denote by
x̂(ω) and ˆ̀(ω, p) the Fourier transforms of x(t) and `(t , p) respectively.

From now on we will use indifferently the pulsation ω and the frequency f that
are related via the equality ω= 2π f .

Equation 1.4.1 becomes(−ω2M(p)+ iωC (p)+K (p)
)

x̂(ω) = ˆ̀(ω, p). (1.5.1)

For convenience, we will drop the ·̂ sign above frequency variables, as we will
mainly work in the frequency domain.

18CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Our goal being to perform an harmonic analysis, the right-hand side that is
used usually does not depend on ω, and we get

`(ω, p) = L(p). (1.5.2)

Our main objective is to build an explicit model of

(ω, p) → x(ω, p), (1.5.3)

where x(ω, p) is solution to a linear system in the form(−ω2M(p)+ iωC (p)+K (p)
)

x(ω, p) = L(p). (1.5.4)

where p = (p1, . . . , pn). The model will be implicit in the sense that it will not
come from the solution of a reduced system that approximates 1.5.4.
We want this model to be valid in a given box, i.e. for

(ω, p1, . . . , pn) ∈D =Dω×Dp (1.5.5)

where Dω and Dp are defined as follows

Dω = [ωmin,ωmax]

Dp = [
p1

min, p1
max

]×·· ·× [
pn

min, pn
max

]
.

(1.5.6)

The model will be built in a fully non-intrusive manner. It does not need to get
information about M , C or K . It does not even require to get access to L either.
It only uses a set of nl computed solutions of x at some learning configuration
points (fi , pi) ∈ D

Learning Set = Xl =
[
x(ω1, p1), ..., x(ωnl , pnl)

]
. (1.5.7)

Objective

More generally, later in this chapter, we will be interested in systems in the
form

A (ω, p)x(ω, p) = L(p), (1.5.8)

where ω represents the frequency, or even

A (λ, p)x(ω, p) = L(p). (1.5.9)

1.6. THE EIGENPROBLEM 19

where λ can be complex.

1.6 The eigenproblem

Before going into to the details of how the reduced model of x(ω, p) will be built,
we are going to study the singularities of the matrix A (λ, p), where λ ∈ C is a
complex scalar (which is more general that the real pulsation ω ∈ R). The so
called singularities are the points (λ, p) where A (λ, p) is not invertible. This
analysis is important as those singular points play a major role in the behavior
of x(ω, p).

First, let us consider the case where there is no parameter p. We call eigen-
value problem the system

A (λ)x = (−λ2M + iλC +K)x = 0. (1.6.1)

This is a quadratic eigenvalue problem. Rewriting the system, it is equivalent
to a linear eigenvalue problem whose dimension is doubled.
We look for its non trivial solutions. If (λi , xi) is a non-trivial solution to 1.6.1, we
call λi an eigenvalue or a pole, and xi the corresponding eigenvector or mode.

Now, let us introduce the more general multivariate case where we incorpo-
rate p. In the same manner we call multivariate eigenvalue problem the system

A (λ, p)x = (−λ2M(p)+ iλC (p)+K (p))x = 0. (1.6.2)

Once again the eigenelements are the non-trivial solutions.
If, for a given p, λp

i and xp
i form a non-trivial solution to 1.6.1, we call λp

i an

eigenvalue or a pole, and xp
i the corresponding eigenvector or mode, at p.

Can we express those eigenelements as regular functions of p ?
Kato’s book [3] gives us some answers at page 65:

Theorem 1 Let us consider a classical linear eigenvalue problem of type

T (p)−λIN = 0, (1.6.3)

where p is now a complex scalar and p → T (p) is an holomophic function from
D0 ∈C to CN×N . If p is restricted to a simply-connected domain D0 (for the com-
plex plan that implies there is no hole in it) containing no exceptional points
(where the total number of distinct eigenvalues changes), we can write the eigenele-
ments with respect to p as follows:

20CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

• The eigenvalue i
p →λi (p) ∈CN (1.6.4)

• and the corresponding eigenmode

p → xi (p) ∈CN (1.6.5)

that are both holomorphic functions of p.

This can be generalized to eigenvalue problems in the form A (λ, p)x = (−λ2M(p)+
iλC (p)+K (p))x.

However the properties of the eigenvalues from theorem 1 are not really con-
venient as it only works on a domain that contains no exceptional points and
that cannot even surround one of them (while still excluding it) either. This is
indeed very limiting.
Furthermore, in a general manner the behavior of the eigenvalues with respect
to p is more complicated than the one of T . For example, when p → T (p) is
only polynomial the eigenvalues are not. In a general manner, when p → T (p)
is a really gentle function, there is no reason that the behavior of the eigenval-
ues with respect to p is gentle too. We will observe that in example 1.6.1 where
p → T (p) is only linear.
On the contrary, the characteristic polynomial det(T (p)−λI) shares overall the
same properties as p → T (p). If T is continuous, or polonymial, or holomor-
phic, so will be (λ, p) → det(T (p)−λI). We will see later on that we will mainly
rely on this feature to build the reduced model.
Finally, if p is not a scalar but a vector we have no guarantee that we can extend
the theorem.

For all these reasons, we will not try to model the eigenelements themselves
as it is a really tricky job. We will see in section 1.7.3 that this will prevent us
from trying to adapt methods that are the state of the art in the case where
there is no parameter p.

1.6.1 A relevant toy problem

Let us illustrate the difficulty to parameterize the eigenelements of a parame-
terized matrix. We consider a matrix M depending on p = (µ,ν) as follows:

1.7. MODELING X AS A RATIONAL FUNCTION 21

M(µ,ν) =
[
µ ν

ν −µ
]

. (1.6.6)

We now address the usual eigenvalue problem stated as(
M(µ,ν)−λI2

)
x = 0. (1.6.7)

The eigenvalues are the roots of the characteristic polynomial

χM (λ,µ,ν) = det(M(µ,ν)−λI2) =λ2 −µ2 −ν2. (1.6.8)

As µ and ν parameterize M , it is relevant to observe the behavior of the eigen-
values when they move in the (µ,ν) plan.
The roots of polynomial 1.6.8 are λ=±√

µ2 +ν2. Figure 1.3 depicts the behav-
ior of these eigenvalues with respect to ν for µ= 0 and µ= ε> 0. The eigenval-
ues are the two branches of an hyperbola.

Figure 1.3 – Eigenvalues trajectory along ν for µ= 0 (left) and µ= 0.05 (right)

The explicit mode parameterization is difficult and unstable.

1.7 Modeling x as a rational function

Now, let us focus on the modeling of x(ω, p) which is solution to

A (ω, p)x(ω, p) = L(p). (1.7.1)

We are going to see how important it is to use a rational function as the
reduced order model of x.

22CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

1.7.1 An eigenelements-based rational model

First, let us only consider the case where there is no extra parameter p. If A and
` are holomorphic functions of ω and det(A (ω)) is not identically zero, then
x(ω) is a meromorphic function of ω, i.e. the ratio between an holomorphic
function from Dω to Cn and a holomorphic function from Dω to the field C .
An interesting representation of the behavior of x with respect to ω is:

x(ω) =
s∑

i=0

j (i)∑
j=1

Si , j`(ω)

(ω−λi) j
+H(ω)`(ω), (1.7.2)

where

• H is a n ×n matrix-valued holomorphic functions,

• λi are the eigenvalues,

• Si , j are rank j matrices.

This representation is really useful to picture how x behaves with respect
to ω, in relation with the eigenelements. But the fact that it explicitly uses the
eigenelements of A makes it unconvenient when extra parameters p are in-
troduced. However it shows how important it is that the model of x relies on
rational functions.

1.7.2 A multivariate friendly rational model

To overcome the difficulties induced by extra parameters we are going to rewrite
x in a different manner. It directly comes from Cramer’s rule. And this time, p
will not cause much difficulty. If we consider

A (ω, p)x(ω, p) = L(p), (1.7.3)

then

xi (ω, p) = det(Ai (ω, p))

det(A (ω, p))
, (1.7.4)

where Ai is the matrix formed by replacing the i th column of A by the column
vector L.
From this result, if A and L are polynomials of p, so are the numerator and the

1.7. MODELING X AS A RATIONAL FUNCTION 23

denominator. On the contrary, even in the case where p is a scalar, the eigenval-
ues of A are generally not polynomials of p even on an appropriate subspace.
More generally, when (ω, p) → A and p → L(p) are holomorphic functions
(Definition 1), both the numerator and the denominator are holomorphic. In
addition,

(ω, p) → x(ω, p) (1.7.5)

is a meromorphic function of (ω, p), as it comes from the ratio of a vector-
valued holomorphic function and scalar-valued holomorphic function (that
should not be identically zero).

Definition 1 Let D denote an open subset of Cn . Let f : D →Cn . The function f
is analytic at a point p in D if there exists an open neighborhood of p in which f
is equal to a convergent power series in the n complex variables. We define f to
be holomorphic if it is analytic at each point in its domain.

In addition, Osgood’s lemma [4] shows that, if f is a continuous function and is
holomorphic in each variable separately, then f is holomorphic as a multivari-
ate function.
The formulation 1.7.4 is also interesting as the denominator does not depend
on the right-hand side and is shared by every element of x. It is the key to catch
singularities.
We can see how the denominator of x plays a massive role in its behavior, es-
pecially when we are close to singularities of A . This is the main challenge of
building the ROM.

This is the corner stone for the creation of our reduced order model
We are going to build a reduced order model y of x in the form

y(ω, p) = α(ω, p)

β(ω, p)
≈ x(ω, p), (1.7.6)

where α is a vector-valued function and β is a scalar function. A particular at-
tention will be paid to keep α and β regular enough.
We are not going to look for the singularities (or poles) themselves (unlike the
Vector Fitting method [7]) but we rather look directly for good α and β as com-
binations of simple basis functions (1.8.2). However, that does not mean that
we will not be able to recover the eigenelements (cf. paragraph 1.8.9).

24CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

1.7.2.1 What about the infinite dimensional problem?

When we deal with systems whose size can get really large it is always mean-
ingful to have an insight into the infinite dimensional case. If good properties
are preserved in the infinite dimensional case, that usually is a good sign to
address a large dicretized problem. Here the question is the following: Is the
rational function still a good approach?
To answer that question we use the multivariate Steinberg theorem [9]. It de-
picts the generalization of the Steinberg Theorem when there are more than
one parameter that perturbs an operator.

Theorem 2 Let X be a complex Banach space. B(X) denotes the set of bounded
linear operators on X .
B(X) is a Banach algebra (with operator composition as multiplication) and we
denote its unit by I .
Let D ∈Cd be a connected open set.
Suppose that the mapping

T D → B(X)
z → T (z)

(1.7.7)

is holomorphic in D, and that T (z) is compact for all z ∈D.
Then we have the following alternative:

(i) either ∀z ∈D, I −T (z) is not invertible,

(ii) or z → [I −T (z)]−1 is meromorphic in D.

In our case, z = (ω, p) ∈D =Dω×Dp .
Let us remind equation 1.3.9 from section 1.3:

ρü − 1

2
∇· (D :

(∇u + (∇u)T))= f , (1.7.8)

To make things simpler we only consider Dirichlet boundary conditions, there-
fore

u ∈V = H 1
0 (Ω). (1.7.9)

We can now introduce parameters to the system and consider the frequency
domain

−ω2ρ(p)û − 1

2
∇· (D(p) :

(∇û + (∇û)T))= f̂ (p). (1.7.10)

1.7. MODELING X AS A RATIONAL FUNCTION 25

which is the continuous equivalent of the finite dimension problem we con-
sider in this chapter.
We assume that the mappings p → D(p) and p → ρ(p) are holomorphic, and
that D(p) is invertible for all p ∈Dp .
We set A (ω, p) such that

A (ω, p)û =−ω2ρ(p)û − 1

2
∇· (D(p) :

(∇û + (∇û)T))
= (−ω2M(p)+K (p))û

(1.7.11)

where M(p) and K (p) are linear operators in B(V ∩H 2(Ω),L2(Ω)) such that

M(p)û = ρ(p)û, (1.7.12)

and

K (p)û =−1

2
∇· (D(p) :

(∇û + (∇û)T))
. (1.7.13)

Therefore the mappings p → M(p) and p → K (p) are holomorphic. Further-
more, M(p) ∈B(V ∩H 2(Ω),L2(Ω)) is a bounded operator.
If Ω is regular enough, K (p) ∈ B(V ∩ H 2(Ω),L2(Ω)) is an isomorphism for all
p ∈Dp . In that case, from lemma 6 in [9], the mapping p → K (p)−1 is holomor-
phic as well.
For all (ω, p) ∈D, let us define G(ω, p) ∈B(V ∩H 2(Ω),V ∩H 2(Ω)) as

G(ω, p) = (
I −ω2K (p)−1M(p)

)
, ∀(ω, p) ∈D. (1.7.14)

We can now rewrite A (ω, p) as

A (ω, p) = K (p)G(ω, p), ∀(ω, p) ∈D. (1.7.15)

We are interested in
A (ω, p)−1 =G(ω, p)−1K (p)−1. (1.7.16)

We want to prove that (ω, p) →G(ω, p)−1 is meromorphic.
The restriction of M(p) to V ∩H 2(Ω) is a bounded operator in B(V ∩H 2(Ω),V ∩
H 2(Ω)).
In addition the restriction of K (p)−1 to V ∩ H 2(Ω) is a compact operator in
B(V ∩H 2(Ω),V ∩H 2(Ω)).
As a consequence (−ω2K (p)−1M(p)) is a compact operator in B(V ∩H 2(Ω),V ∩
H 2(Ω)) as the result of the composition of a bounded operator and a compact

26CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

operator .
Hence, from theorem 2, the mapping

(ω, p) →G(ω, p)−1 = (
I −ω2K (p)−1M(p)

)−1
(1.7.17)

is meromorphic.
Thus, by composition, the mapping

(ω, p) →A (ω, p)−1 (1.7.18)

is meromorphic as well.
Now, assuming that the mapping p → f̂ (p) is holomorphic, we can define x be
such that

x(ω, p) =A (ω, p)−1 f̂ (p). (1.7.19)

We can state that (ω, p) → x(ω, p) is meromorphic. Hence from Weierstrass fac-
torization theorem it can be expressed as the ratio of two holomorphic map-
pings. The numerator is an holomorphic mapping from D to V ∩ H 2(Ω) and
the denominator is an holomorphic mapping from D to the field C.

The damping operator To this point we have omitted any damping effect
C (p) so that

A (ω, p) =−ω2M(p)+ iωC (p)+K (p) (1.7.20)

In practice, this operator is generally at most a first order spatial differential
operator. That leads to the property that K −1C (p) is compact as well. Hence,
writing

A (ω, p) = K (p)

I +K (p)−1(−ω2M(p)+ iωC (p))︸ ︷︷ ︸
compact

 (1.7.21)

we can extend in a straightforward way the previous results.

1.7.3 About state-of-the-art methods to build rational models

ROMs for rational functions are quite well mastered when there is only one pa-
rameter (usually the frequency). In that case, the reference in the industry must
be the Vector Fitting method [7].

1.7. MODELING X AS A RATIONAL FUNCTION 27

1.7.3.1 Vector Fitting

The Vector Fitting method [7] is a powerful tool to address the question of mod-
eling frequency domain response of a system based on a set of computed or
measured data (for different frequency values). It is generally used to approx-
imate a scalar function depending on frequency ω in the form of a rational
function. The key feature is to set an adequate number of poles (the zeros of
the denominator) and to locate them properly. These poles are moved itera-
tively to fit learning data. This method is really efficient to achieve a transfer
function approximation.
Let us call g the targeted function

g (ω) = α0 +α1ω+α2ω
2 +·· ·+αNωN

β0 +β1ω+β2ω2 +·· ·+βNωN
(1.7.22)

The Vector Fitting method aims at approximating g by G in the form

G(ω) =
N∑

n=1

cn

ω−an
+d +hω. (1.7.23)

The method requires evaluations of g for some ω values as learning data. The
strength of the Vector Fitting Method relies on a smart way to address the pole
location problem by solving a sequence of linear systems.

This is a reliable method when the only variable is the frequency and con-
sequently the poles are scalars. When there are additional parameters p, the
unknowns and in particular the poles become functions of p. Modeling those
poles is complex and may not be a good option. We have seen through the toy
example in 1.6.1 how the behavior of the poles with respect to p can really be
complicated.
In a general manner, we have to avoid modeling the eigenelements themselves
if we want a reliable way to build a reduced order model.

1.7.3.2 Multivariate Padé approximant

Padé approximant is another way to perform a frequency domain response fit-
ting. The [m/n] Padé approximant of an holomorphic scalar function f is

g (ω) =
∑m

j=0 a jω
j

1+∑n
k=1 bkωk

, (1.7.24)

28CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

such that its first m +n Taylor series terms at 0 are the same as those of f .
The Padé approximant is likely to be closer to f than the truncated Taylor series
at x far from 0.

When extra parameters are introduced, we can use multivariate Padé approx-
imant method [8].
It is based on the calculation of successive derivatives of g at one particular
(ω0, p0). Because of that, the method is known to be unstable. In addition, it
is intrusive and needs to access the solver. Hence it cannot be generalized to
learning from measured data.

1.7.4 Back to the toy problem

Let us go back to the toy problem from 1.6.1. We are going to see that modeling
the solution itself can be much easier. In this toy problem, we now consider a
vector b ∈C2, and look for v such that

(M −λI2)v = b. (1.7.25)

The solution v = (v1, v2)T can be written

v1(λ,µ,ν) =− (µ+λ)b1 −νb2

λ2 −µ2 −ν2
, (1.7.26)

and

v2(λ,µ,ν) = (µ−λ)b2 −νb1

λ2 −µ2 −ν2
. (1.7.27)

We can observe that both the numerators and the denominator are simple poly-
nomial function much easier to fit than the stiff eigenvalues presented earlier.

1.8 The Reduced Order Model

1.8.1 The learning data

To build the reduced order model, we need learning data:

Xl =
[
x(ω1, p1), . . . , x(ωnl , pnl)

]
. (1.8.1)

The vectors x(ωk , pk) are solutions to A (ωk , pk)x(ωk , pk) = L(p) at nl learning
points (ωk , pk)1≤k≤nl in the domain of interest. We denote by nx the length of
x.

1.8. THE REDUCED ORDER MODEL 29

1.8.2 Structure of the Reduced Order Model

Based on 1.7.2 we are building a reduced order model y(ω, p) that aims at ap-
proaching x(ω, p) in a box domain. We look for y(ω, p) in the form

y(ω, p) = α(ω, p)

β(ω, p)
≈ x(ω, p), (1.8.2)

where α is a vector-valued function and β is a scalar function. Those functions
are supposed to be smooth.
In practice, the model is more precisely

y(ω, p) = α(ω, p)

β(ω, p)+1
≈ x(ω, p). (1.8.3)

where β is chosen to be orthogonal to the constant function 1 in the domain.
As a result, there is uniqueness of α and β for a given model y .

α=

 α1
...

αnx

 and β are built using a set of nb f basis functions

αi =
nb f∑
j=1

ai , j g j (ω, p), (1.8.4)

β=
nb f −1∑

j=1
b j g j+1(ω, p). (1.8.5)

where a = (ai , j) 1≤i≤nx
1≤ j≤nb f

and b = (b1, . . . ,bnb f −1).

We will see later in 1.4 that g1 = 1, and that g j , for j > 1 is L2-orthogonal to 1
over the domain of interest (therefore its average is zero).
The whole problem is then to identify a and b solutions to the following opti-
mization problem:

min
a,b

nl∑
k=1

‖ α(ωk , pk , a)

β(ωk , pk ,b)+1
−x(ωk , pk)‖2

2. (1.8.6)

1.8.3 The basis functions

To this point we have not yet mentioned the choice of the functions used to
buildα and β, i.e. the functions (g j)1≤ j≤nb f . Their shape and how we pick them

30CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

are two crucial points. We are going to describe how we proceed and what is
our motivation.
The most sensitive aspect of the model creation is to avoid that the denomina-
tor is equal to 0 where it should not be. To prevent this the denominator has to
be relatively smooth. The role of the basis functions is crucial in this respect. At
the same time the numerator needs to be smooth as well. If not, it tends to work
by itself and prevent the denominator from doing the job during the learning
phase. Which is unsuitable as getting a good denominator is the key to build a
qualitative reduced order model.
In this section we are going to study

• the benefit of choosing an appropriate number of basis functions nb f ,

• the creation of a partially ordered set of multivariate functions from the
smoothest to the sharpest,

• the selection process of the basis functions accordingly to the learning
points.

1.8.3.1 The number of basis functions

Assuming that the learning dataset Xl is a nx ×nl matrix, what number of basis
functions nb f should we pick? Because of the denominator we have nb f ×(nx +
1) unknowns and only nl ×nx equations. These nl ×nx equations can even be
almost linearly dependent (we will see in section 1.8.4 that we will project Xl in
a smaller space).
Therefore, working with nb f = nl would imply that we need to regularize. How-
ever we have found out that this is not suitable. Let us illustrate the reason with
the following cases:

• Lq norm of the model output y : This is not pertinent as (ω, p) → x(ω, p)
is not even supposed to be in Lq , q ≥ 1.

• L2 norm of the numerator α and the denominator β: We try to insure
that

∑n
i ‖αi (ω, p)‖2

2 and ‖β(ω, p)+ 1‖2
2 remain small. Let us remind that

the denominator is set in the formβ+1 whereβ is orthogonal to 1. The L2

regularization of both the numerator and the denominator leads to small
numerator and denominator. This choice causes an important issue. The
most simple case to illustrate this is when there is no damping in which
case the solution is real. The poles are real and the denominator needs to

1.8. THE REDUCED ORDER MODEL 31

cross the zero plane. But because of the regularization β gets close to −1
(the denominator then gets close to zero) when needed and goes back to
zero (denominator back to 1). The denominator never crosses zero and
is not smooth at all. The results have never been satisfactory using this
method.

• H k norm of the α and β: To ensure that the numerator and the denom-
inator are smooth we have tried to use the H k norm. The problem gets
really unstable, in the sense that depending on how strong we want the
regularization to be the results vary a lot. Many issues occur with this type
of regularization. Sometimes the denominator is lazy and let the numer-
ator do the job. Some other time the denominator is smooth in a region
and locally hectic in another region. We could try to handle norms from
Sobolev spaces W k,q with q greater than 2 in order to make sure that the
derivatives are small everywhere. But anyway the behavior of the model
in this form is highly unpredictable.

At the end we have found out that the most effective way to address the
problem is by simply taking a reduced number of naturally smooth basis func-
tions. This is called regularization by discretization. To put it simply, we sort
candidate basis functions following a smoothness criterion and we only pick
the first r ones where

r < nl
nx

nx +1
. (1.8.7)

This method has proven to be the most efficient.

1.8.3.2 Shape of the basis functions

As the domain on which we build the model is a box, we have made the choice
to build multivariate basis functions from 1D ones using tensor product. Let
us note that in this section the frequency parameter ω is treated as any other
parameter.

Shape of the 1D functions: We aim at building an orthonormal set of 1D
functions Φ = {ϕ1, . . . ,ϕm} that can naturally be sorted from the "smoothest"
to the most complicated one. Those properties will allow us to select carefully
a limited number of appropriate multivariate basis functions in section 1.8.3.3.
To match those properties, we first choose to work with Legendre polynomials.

32CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

The orhtonormality criterion is by nature satisfied and we have

deg(ϕi) = i −1. (1.8.8)

where deg gives the degree of the polynomial. That gives us a naturally sorted
set of functions from the smoothest to the most complicated. This choice was
also driven by the need to approach analytic functions (i.e. the numerators and
the denominator) with a limited number of functions.
However, in terms of fitting a function using a set of learning data points this
choice has drawbacks under certain circumstances. For example, even in the
simplest case we want to approach a function using a polynomial model (i.e.
there is no denominator), Runge’s phenomenon [26] depicts a problem of os-
cillation of the model at the edges of the interval that occurs when using upper-
most high degree polynomials to interpolate a set of equally spaced points. In
that case a solution exists and is given by taking the Chebyshev nodes as inter-
polation points. But we cannot always monitor the set of learning points. This
phenomenon still stands when we do not interpolate but rather use a polyno-
mial regression.
Carrying out experiments we have observed that polynomials are efficient in a
small domain where the model does not require a large number of basis func-
tions to be accurate. Problems come when the domain gets larger and requires
more functions. In essence we still need regular functions so that the model re-
mains global: we need to take benefit from the learning points in a large region
to predict at one point. But we do not want a learning point very faraway from a
prediction point to play a major role in the model at this very prediction point.
For this reason we choose to use splines [11], that are by the way a well known
alternative to overcome Runge’s phenomenon.

Splines are piecewise polynomials. We first tried working with cubic splines
(piecewise cubic polynomials) that are the most common ones. There were
quite efficient, but their lack of regularity made them perform less well than
polynomials in many cases (especially when the degree of the polynomials did
not need to grow too much). In order to get the best of both worlds we chose
to work with higher order splines. A k-order spline is a piecewise polynomial
of degree k whose global smoothness is C k−1 . Junctions between to pieces are
called breaks. Therefore, if there are n pieces there are n − 1 breaks. At piece

1.8. THE REDUCED ORDER MODEL 33

number j the spline formula is

Y j (x) =
k∑

i=0
c i

j xi , ∀ j ∈ {1, . . . ,n} . (1.8.9)

There are (k +1)n = kn +n unknowns. At each break the spline has to be con-
tinuous, as well as its k−1 first order derivatives. That gives us k(n−1) = kn−k
equations. Thus we need n +k additional equations so the spline is correctly
defined.

In our case the additional equations come naturally from the hierarchical or-
thonormality criterion. It works as follow:

• We choose k, the maximum degree of the standard polynomials we agree
to use.

• For i ≤ k +1 the 1D function gi in our set is the usual i th Legendre Poly-
nomial.

• Whenever i > k + 1, gi is a k-order spline with n = i − k pieces whose
breaks are equally distributed on the interval. Therefore it needs n+k = i
additional equations to be set. They come naturally from the fact that
we want gi to be orthogonal to the i − 1 preceding functions in the set
and that its norm has to be 1. In practice that means that once we get to
i = k +2 we start with a first break in the middle of the interval. Then for
every increment the number of breaks increases just by one.

Experiments have shown that k = 6 is an efficient option. In that case the 10
first basis functions are depicted in Figure 1.4.

34CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.4 – The first 10 basis functions for k=6.

This gives us a nice set of 1D functions that are well ordered from the smoothest
to most complicated in order to build a set of multivariate functions. Let us
have an insight into the 2D case.

The 2D case: We change the box domain we consider into D = [−1,1]×[−1,1]
without any loss of generality. The set of 1D functions is Φ = {ϕ1, . . . ,ϕm} as
introduced above. Then we can define the basis functions gi , j from 1.8.2 as

gi , j (x, y) =ϕi (x)×ϕ j (y). (1.8.10)

AsΦ is set of orthonormal functions∫ 1

−1
ϕi (x)ϕ j (x)d x = δi , j , (1.8.11)

1.8. THE REDUCED ORDER MODEL 35

then, it naturally leads to∫
Dp

gi , j (X)gk,l (X)d X =
∫ 1

−1

∫ 1

−1

(
ϕi (x)ϕ j (y)

)(
ϕk (x)ϕl (y)

)
d xd y

=
(∫ 1

−1
ϕi (x)ϕk (x)d x

)(∫ 1

−1
ϕ j (y)ϕl (y)d y

)
= δi , j ,k,l .

(1.8.12)

The new ND set of vectors is orthonormal as well. And it is partially ordered.

1.8.3.3 Selection of the basis functions

We need to make a choice among the available basis functions in order to build
a reliable model. From previous section we know that any mutlivariate basis
function comes from the multiplication of 1D ones.
The 1D functions are totally ordered, but alternatively comparing the smooth-
ness of the ND functions is not straightforward.
However we need to find a way to totally order them for the purpose of being
able to introduce them iteratively, one by one, during the learning process. To
do so we are going to rely on the design of experiment (i.e. the set of learning
points). We only consider the case we have been given a set of learning points
that is set once and for all. Our goal is to chose the right functions for a given
set of learning points. To illustrate the strategy we can omit the rational model
and only consider the more general and simpler case where we want to build a
simple function approximation thanks to those basis functions.
Let P = {

p1, . . . , p l
}

be the set of the nl learning points in a space of dimension
d . To make things even simpler we are now considering the particular case
where d = 2. Everything will be easily generalized to any greater value for d .
We denote by xk and yk the two coordinates of pk :

pk =
[

xk , yk
]T

. (1.8.13)

The set of 1D basis functions is Φ = {ϕ1, . . . ,ϕm}. Let us remind ourselves that
the ϕi are orthonormal and sorted according to their smoothness.
For any pair (i , j) we have

gi , j (x, y) =ϕi (x)ϕ j (y). (1.8.14)

36CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Let us denote by

mi , j =

gi , j (x1, y1)
...

gi , j (xk , yk)
...

gi , j (xn
l , yn

l)

 (1.8.15)

the vector of the evaluation of gi , j at the learning points. To pick the basis func-
tions we are going to build step by step a matrix M composed of mi , j vectors.
To initialize the process the first basis function we pick is g1,1. Hence, at first

M = (
m1,1

)
. (1.8.16)

Then we wonder if we should add first g1,2 or g2,1. To decide which is the best
candidate we test the two possible ways to make the M matrix evolve

M 1 = [
M ,m1,2

]
, (1.8.17)

and
M 2 = [

M ,m2,1
]

. (1.8.18)

We extend the notion of condition number (cond) to a rectangular matrix as the
ratio of its largest and its lowest singular value, and we compute

c1 = cond(M 1), (1.8.19)

and
c2 = cond(M 2). (1.8.20)

At that point we look for the smallest value between c1 and c2. This gives us a
notion of which basis function will least deteriorate the stability of the inverse
problem once added, according to the learning points.
If c1 < c2 we add g2,1, conversely if c2 < c1 we pick g1,2. In case of equality we
add both of them (this may happen usually because of symmetry properties in
the learning set).
Repeating this, we iterate the process and make the set of basis functions evolve.
At each step, we have to know what are the functions that are candidates to be
added. A function gi , j is candidate if and only if

• if i > 1 and j > 1, gi−1, j and gi , j−1 are already in the set

1.8. THE REDUCED ORDER MODEL 37

• if i = 1, g1, j−1 is already in the set

• if j = 1, gi−1,1 is already in the set

Once the candidates have been identified we test them individually by adding
them in the M matrix and only keep the one(s) that induce(s) the smallest con-
dition number(s).
Figures 1.5 to 1.8 show in which order the functions are added for several 2D de-
sign of experiment. In the spirit of the Sparse Grids method 3, we call levels the
complexity order of the 1D functions. Hence gi is the l evel − i 1D function. In
the same manner we say that gi , j is a function whose level is i × j . That means
that it has been built as the product of the level − i 1D function (i.e. gi) for the
first variable and the level − j 1D function (i.e. g j) for the second variable. The
corresponding added functions are marked with a blue circle and the order in
which they have been added is written nearby. In each case we add at most as
many functions as learning points (as the condition number is infinite beyond
that limit), although in practice we should stop picking functions earlier.

Figure 1.5 – Random grid

38CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.6 – Cartesian grid

Figure 1.7 – Another grid

1.8. THE REDUCED ORDER MODEL 39

Figure 1.8 – Sparse grid

We generalize this process to higher dimension numbers.

1.8.4 Preprocessing of the learning data: Enhancing the pro-
cess using the singular value decomposition (SVD)

The number of elements nx of vector x can be really large. In the industrial
test case presented in introduction 1.2 nx = 13564 for example. The most im-
portant feature to get a good model for x is to correctly set the denominator β
monitored by the coefficient vector b. Indeed, it is common to every element in
x and it has a huge role in their behavior. But we do not need to consider every
element of x to correctly identify b. We only need a few representative coeffi-
cients that depict well the field x. So we are going to preprocess the learning
data in order to make the identification of the model easier.
Let us remind the Cramer’s rule 1.7.4 in the case of a problem in the form A (ω, p)x(ω, p) =
L(p)

xi (ω, p) = det(Ai (ω, p))

det(A (ω, p))
. (1.8.21)

Let us consider a change of basis defined by a P matrix

A (ω, p)x(ω, p) = b(ω, p) ⇐⇒ Â (ω, p)x̂(ω, p) = b̂(ω, p). (1.8.22)

40CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

where Â (ω, p) = P−1A (ω, p)P , x̂(ω, p) = P−1x(ω, p) and b̂(ω, p) = P−1b(ω, p).
As the determinant is a similarity invariant, we get

x̂i (ω, p) = det(Âi (ω, p))

det(A (ω, p))
. (1.8.23)

Writing both x(ω, p) and x̂(ω, p) using the Cramer’s rule, we observe that they
share the same denominator function of (ω, p).
From this we can infer that if we manage to find a goodβ function working with
a given basis, it will still be a good one when the basis changes.
Now we can look for a nice basis to work with. One way to proceed is to perform
a singular value decomposition (SVD) on the learning data Xl . We then get
(U ,S,V) such that Xl =U SV ∗ where U is a nx ×nx unitary matrix, V is a nl ×nl

unitary matrix and S is a nx ×nl rectangular diagonal matrix with non-negative
real numbers on the diagonal. The singular values of Xl are the terms S(i , i)
sorted from the greatest to smallest. That means that the first columns of U are
the most appropriate to project Xl on a smaller space without losing too much
information. We call Ured the matrix of the first nred columns of U , and Urm the
matrix of the remaining columns

U = [
Ured Urm

]
(1.8.24)

We consider the following orthogonal projection

x̂ =U∗
redx. (1.8.25)

If we define X̂l = [x̂(ω1, p1), · · · , x̂l (ωnl , pnl)], we get

X̂l =U∗
redXl . (1.8.26)

The lines of X̂l are orthogonal, the Euclidian norm of its i th line being S(i , i).
We now want to build a model ỹ

ỹ(ω, p, a,b) = α(ω, p, a)

β(ω, p,b)+1
≈ x̂r ed (ω, p). (1.8.27)

Let us define ê the model error in the projection space as

ê(ω, p, a,b) = ‖x̂(ω, p)− ỹ(ω, p, a,b)‖2
2 (1.8.28)

1.8. THE REDUCED ORDER MODEL 41

One simple way to get a model in the original space is to define y =Ured ỹ (we
will see later that is not the only option). In that case, the model error in this
space is

e(ω, p) = ‖x(ω, p)− y‖2
2. (1.8.29)

Thus, using the fact that U is a unitary matrix, we have

e(ω, p, a,b) = ‖x(ω, p)−Ured ỹ(ω, p, a,b)‖2
2

= ‖x(ω, p)−U

(
ỹ(ω, p, a,b)

0Cnx−nred

)
‖2

2

= ê(ω, p, a,b)+‖U∗
rmx‖2

2

(1.8.30)

As U∗
rm is the matrix of the remaining columns of U , we expect that for nred large

enough the norm of the projection U∗
rmx is small.

For the purpose of primarily setting a good denominator β, this method allows
to reduce the size of the problem by projection using a convenient space. It is
more efficient and healthy than choosing nr ed elements from x randomly.
Once β is set properly we will see in 1.8.6 how we recover y , the model of the
entire field x.
Algorithm 1 sum up the preprocessing of the learning data Xl .

Algorithm 1 Preprocessing

1: procedure PREPROCESSING(Xl ,n0
b f ,nred)

2: (U ,S,V) ← svd(Xl);
3: Ured =U (: ,1 : nred);
4: X̂l ←U∗

redXl ;
5: return X̂l and Ured;
6: end procedure

The new learning data set is X̂l .

1.8.5 Identification Process

The general optimization problem is the following

min
a,b

nl∑
k=1

‖Fk (a,b)‖2
2 (1.8.31)

42CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

where the residual Fk is

Fk (a,b) = ŷ(ωk , pk , a,b)− x̂l (ωk , pk)

= α(ω, p, a)

β(ω, p,b)+1
− x̂l (ωk , pk)

(1.8.32)

with

αi (ω, p, a) =
nb f∑
j=1

ai , j g j (ω, p), (1.8.33)

and

β(ω, p,b) =
nb f −1∑

j=1
b j g j+1(ω, p). (1.8.34)

We need to find an efficient way to address this nonlinear optimization prob-
lem. In the following paragraphs, we will study two different ways to solve it
that have both strengths and weaknesses. Eventually we will define a hierarchi-
cal approach that aims at taking the best from both methods.

1.8.5.1 The linear least squares problem

We may attempt to solve a simple linear least squares problem by multiplying
the equations by the denominator β+1:

min
a,b

nl∑
k=1

‖(
ŷ(ωk , pk , a,b)− x̂l (ωk , pk)

)(
β(ωk , pk ,b)+1

)‖2
2

⇐⇒ min
a,b

nl∑
j=1

‖(
α(ωk , pk , a)− x̂l (ωk , pk)β(ωk , pk ,b)

)− x̂l (ωk , pk)‖2
2

(1.8.35)

which is indeed a linear least squares problem as α and β depends linearly on
a and b. This system is easy to solve.
But it is by nature an ill-posed problem and its solution has no guarantee to
provide a small residual for the original problem 1.8.31.

1.8.5.2 The natural nonlinear least squares problem

Alternatively, we can choose to directly solve the system under its natural form
1.8.31 using the Gauss-Newton method. However, there is a major drawback.
The function is far from being convex. The Gauss-Newton method leads to lo-
cal minima. The reason for these local minima is that when the zeros of the

1.8. THE REDUCED ORDER MODEL 43

denominator are misplaced, they may have no way to get to the right position
without increasing the cost function. This happens especially in the case their
path necessarily requires to get close to a learning point. This is particularly no-
ticeable in the case the data are real (no damping) and there is only one variable
(for example the frequency). Hence we need a way to tend towards the global
minimum. We will not do so by changing the optimization method, we will still
be using Gauss-Newton method. What we are changing is the way the problem
is posed using a hierarchical method.

1.8.5.3 The hierarchical method

Contrary to the natural nonlinear system 1.8.5.2, the quadratic least squares
system 1.8.5.1 is convex. While it is unstable and does not provide a reliable
model, it has the benefit of properly positioning the zeros of the denominator
in the first place. Thus we can start with a valuable first guess that locates a and
b in a good region for the global optimization.
We look for a continuous way to go from 1.8.5.1 to 1.8.5.2.
To do so we introduce a new residual parameterized with γ ∈ [0,1]

Fγ

k (a,b) = (
α(ωk , pk , a)− x̂l (ωk , pk)

(
β(ωk , pk ,b)+1

)) |β(ωk , pk ,b)+1|−γ
(1.8.36)

where | · | is the element-wise modulus.
Let us consider two particular cases

• For γ= 0,

F 0
k (a,b) = (

α(ωk , pk , a)− x̂l (ωk , pk)β(ωk , pk ,b)
)− x̂l (ωk , pk). (1.8.37)

Hence, we have

mina,b
∑nb f

k=1

∥∥F 0
k

∥∥2
2

⇐⇒ mina,b
∑nb f

k=1

∥∥(
α(ωk , pk , a)− x̂l (ωk , pk)β(ωk , pk ,b)

)− x̂l (ωk , pk)
∥∥2

2
(1.8.38)

which is equivalent to 1.8.5.1.

• For γ= 1, the minimization problem is

mina,b
∑nb f

k=1

∥∥F 1
k

∥∥2
2

⇐⇒ mina,b
∑nb f

k=1

∥∥(
α(ωk , pk , a)− x̂l (ωk , pk)

(
β(ωk , pk ,b)+1

)) |β(ωk , pk ,b)+1|−1
∥∥2

2 .
(1.8.39)

44CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

What is interesting here is that

‖F 1
k (a,b)‖2

2 = ‖(
α(ωk , pk , a)− x̂l (ωk , pk)

(
β(ωk , pk ,b)+1

)) |β(ωk , pk ,b)+1|−1‖2
2

= ‖(
α(ωk , pk , a)− x̂l (ωk , pk)

(
β(ωk , pk ,b)+1

))(
β(ωk , pk ,b)+1

)−1 ‖2
2

= ‖α(ωk , pk , a)

β(ωk , pk ,b
− x̂l (ωk , pk)− X̂l‖2

2

= ‖Fk (a,b)‖2
2.

(1.8.40)
Therefore it is equivalent to 1.8.5.2.

From those observations, we are going to identify a and b starting with γ = 0
(particular case where the problem is linear) and iteratively going up to γ = 1,
solving at each step the optimization problem with the Gauss-Newton method.
This is a continuation technique in the spirit of what is done in [12]. That
should allow us to progressively reach the global minimum of F .
Figure 1.9 is interesting to illustrate the interest of this hierarchical method. It
represents how ‖Fγ(a,b)‖2

2 behaves when we move away from the optimal so-
lution (aopt,bopt) in a given direction (d a,db). This movement is monitored by
a weight w so that (a,b) = (aopt,bopt)+w ∗ (d a,db). The figure illustrates more
precisely what happens in the case 1.9.4 for γ= 0, 0.5 or 1. We can see that for
γ= 1 the problem is not convex and really stiff. Although, it might look like the
minimum is the same for every value of γ, but they are not. And it matters, as
the final validation relative error is 10 times greater when we only use γ= 0 (i.e.
we solve a linear system), rising up from 0.0217 to 0.214.

Figure 1.9 – Behavior of ‖Fγ(a,b)‖2
2 (logarithm scale)

1.8. THE REDUCED ORDER MODEL 45

1.8.5.4 The identification algorithm

Considering that the data have been preprocessed with algorithm 1, we can
now introduce the full identification algorithm that aims at determining a and
b. Let us define ωset = (ω1, · · · ,ωnl) the vector of the learning frequencies, and
pset = [p1, . . . , pnl] the table of the learning parameters. To get started we need
to choose an initial number of basis functions n0

b f .

46CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Algorithm 2 zROM identification algorithm

1: procedure IDENTIFICATION(ωset, pset, X̂l ,n0
b f , tol)

2: nb f = n0
b f ;

3: γ0 = 0;

4: a0 =

0 · · · 0
...

. . .
...

0 · · · 0

 ; . The length of a0 is nr ed ×nb f

5: b0 = (0, . . . ,0); . The length of b0 is nb f

6: while nb f ≤ nl
nred

nred+1 do
7: Select the nb f first basis functions according to the method intro-

duced in 1.8.3.3 that involves ωset and pset.
8: for γ= γ0;γ≤ 1;γ= γ+0.1 do
9: (a,b,err) ← optimize(Fγ(·, ·, X̂l), a0,b0);

10: if textrmerr<tol then
11: a0 ← a;
12: b0 ← b;
13: else
14: γ0 = γ;
15: break;
16: end if
17: end for
18: if err < tol and γ0 = 1 then
19: break;
20: else
21: nb f ← nb f +1;

22: a0 ←

a0,

0
...
0

 ;

23: b0 ← [
b0,0

]
;

24: end if
25: end while
26: return a, b;
27: end procedure

1.8. THE REDUCED ORDER MODEL 47

What we call err is the following relative error:

err =
∑nb f

k=1 ‖Fγ

k (a,b)‖2
2∑nb f

k=1 ‖x̂l (ωk , pk)‖2
2

(1.8.41)

1.8.6 Optimization: the Gauss-Newton method

Here we are focusing on the optimize function called in algorithm 2. As already
mentioned, we are using the Gauss-Newton method at each step of the hierar-
chical method and proceed accordingly to Appendix A.
First, let us define the full matrix of residuals Fγ as

Fγ = (Fγ

i ,k)1≤i≤nred
1≤k≤nl

(1.8.42)

where Fγ

i ,k is the i th element of what was denoted Fγ

k earlier (i.e. the part of the

residual corresponding to the i th element of x̂l and the kth learning point).
Furthermore,

Fγ

i ,k (a,b) = Fγ

i ,k (ai ,·,b) (1.8.43)

where ai ,· is the i th line of a.
Now, we need to calculate the forward and backward mode differentials for Fγ.
To do so, let us define the following matrices:

A =

 g1(ω1, p1) . . . gnbf (ω1, p1)
...

. . .
...

g1(ωnl , pnl) . . . gnbf (ωnl , pnl)

 , (1.8.44)

and

B =

 g2(ω1, p1) . . . gnbf (ω1, p1)
...

. . .
...

g2(ωnl , pnl) . . . gnbf (ωnl , pnl)

 , (1.8.45)

For convenience, let us also denote by ai the vector ai = aT
i ,·.

1.8.6.1 Forward mode

The derivative of Fγ

i ,· in direction (d ai ,db) is given by

dFγ

i ,·(d ai ,db, ai ,b)T = (Ad ai −Xl ·Bdb) · |Bb +1|−γ

− γ

2

(
Bdb · (Bb +1)+ (Bb +1) ·Bdb)

)
· (Aai −Xl ·Bb) · |Bb +1|−γ−2.

(1.8.46)

48CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

where M ·N refers to the element-wise multiplication of M and N , and x is the
element-wise complex conjugate of x.

1.8.6.2 Backward mode

Let py be a vector of the same size than y

pai =
nr ed∑
i=1

AT
(
pyT

i ,· · |Bb +1|−γ
)

. (1.8.47)

pb =−
nred∑
i=1

B T
(
pyT

i ,· ·Xl · |Bb +1|−γ
)

−
nred∑
i=1

B T γ

2
B T

((
pyT

i ,·+pyT
i ,·

)
· (Bb +1) ·

(
Aai −Xl ·Bb

)
· |Bb +1|−γ−2

)
.

(1.8.48)

1.8.7 Postprocessing: Identification of new coefficients a

At this stage of the process, we have identified vector b that defines the denom-
inator β. The model is almost completely built. For now, we only have a model
ŷ of the reduced vector x̂. We have to build a model y of x.
We have two main alternatives:

Method 1 If we took a large enough number nr ed in a first place, we can perform an
almost inverse transform to get back to the natural space:

y(ω, p) =Ured ŷ(ω, p) (1.8.49)

which is equivalent to get a new and larger a for the model y in the form

a ←Ureda (1.8.50)

Method 2 A good alternative is to only keep β and look for new αi suited for the xi

in the natural space. As β is fixed, this gets quite easy to achieve. The
problem gets separated and linear. We look for

min
a

nb f∑
k=1

nx∑
i=1

‖Gi ,k (ωk , pk , ai ,.,b)‖2
2 (1.8.51)

1.8. THE REDUCED ORDER MODEL 49

where

Gi ,k (ωk , pk , a) = αi (ωk , pk , a)

β(ωk , pk ,b)+1
−xi (ωk , pk) (1.8.52)

The only unknown here is vector a and we can solve independently every
small linear least squares problem of the type

min
a

nb f∑
k=1

‖Gi ,k (ωk , pk , ai ,.)‖2
2, ∀i ∈ [1, . . . ,nx] (1.8.53)

Note: We can also mix those two methods and use a small nr ed while look-
ing for a good denominator, which is the complicated and non-linear part, and
then find good numerators for a large nr ed when the reduced basis from the
SVD catches most the energy. That is particularly relevant if the meshing of the
system is too refined compared to the highest frequency we work with.

Algorithm 3 zROM postprocessing

1: procedure POSTPROCESSING(ωset, pset, Xl ,nb f , a,b,Ured,method)
2: if method=1 then
3: a =Ureda;
4: else
5: for i = 1; i ≤ nx ; i = i +1 do
6: ai ,. ← argmin‖Gi ,k (ωk , pk , ai ,.)‖2

2;
7: end for
8: end if
9: return a and b;

10: end procedure

1.8.8 Evaluate the model for a new configuration

Now we can define the algorithm that evaluates the model for a new (ωnew, pnew)
configuration.

50CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Algorithm 4 zROM evaluation

1: procedure EVALUATE(ωnew, pnew, a,b)
2: αnew ←∑nb f

k=1 a(:,k)T gk (ωnew, pnew)

3: βnew ←∑nb f −1

k=1 bk gk+1(ωnew, pnew)
4: ynew ←αnew/(βnew +1)
5: return ynew

6: end procedure

1.8.9 Recovering the eigenelements

It can still be very useful to know how the singularities of A and the correspond-
ing modes behave with respect to p.

Depending on the learning data we use, we expect to build a reliable model
for ω ∈ [ωmi n ,ωmax] and p ∈ Dp . Assuming that L(p) is not orthogonal to one
or several eigenvectors for every p (which is unlikely given the fact that their
behavior with respect to p is as stiff as the eigenvalues’), and that the model is
well built (i.e. y(ω, p) is really close to x(ω, p)), what can we expect from α and
β?
In the general case, αi and β will be good approximations (up to the multipli-
cation by a constant to det(Ai (ω, p)) and det(A (ω, p)) on [ωmi n ,ωmax]×Dp . β
will even share the roots of det(A (λ, p)) that are close enough to [ωmi n ,ωmax]
(for any p ∈Dp).
However, there are particular cases to consider. They may occur when the me-
chanical system we consider has symmetry properties that are preserved when
p changes. In that case some eigenvalues of A have a multiplicity greater than
1 in a consistent manner when p moves all over Dp . In this instance we can
extend the notion of minimal polynomial to multivariate eigenvalue problems.
We call itΠ(ω, p). We can show that the induced simplification can be extended
to det Ai (ω, p), so we defineΠi (ω, p).
In that case,

xi (ω, p) = Πi (ω, p)

Π(ω, p)
, (1.8.54)

and consequently, αi and β are more likely to behave respectively like Πi and
Π.

1.9. NUMERICAL EXPERIMENTS 51

In both cases, if α and β are regular enough (and they must be by construc-
tion) we have the following properties

• The zeros of β are eigenvalues of A

• The corresponding eigenvectors are α(λi) (and its derivatives with re-
spect to λ at λi if the multiplicity of the eigenvalue is greater than 1 on
a finite number of points).

As α and β are much easier to model than eigenvalues and eigenvectors them-
selves. In a way this is an implicit way to address the eigenvalue problem for a
given range of frequencies.

1.9 Numerical experiments

It is now time to test the method using experimental test cases. In this section
we are going to consider two different geometries:

• The pipe full of fluid, already introduced in 1.2 is the first case. The only
parameter is the length. There will be two different experiments:

1 The fluid is viscous (damping),

2 The fluid is not viscous (no damping).

• The second case is a rectangular clamped vibrating plate. This time there
are two parameters: the two lengths of the rectangle. The damping is
really low. What make this case particularly interesting is that when the
plate becomes a square, the multiplicity of the poles doubles. We will see
how the ROMs deal with that.

1.9.1 The industrial case

This industrial test case is provided by Ansys and General Electric India.
We consider a pipe full of fluid of length pL . It is clamped at one end and ex-
cited with a longitudinal force at frequency f at the other end.
Figure 1.10 shows the geometry of the pipe.
Here we will more naturally refer to f instead ofω, which does not change much
as ω= 2π f .
Our goal is to predict the harmonic longitudinal displacement x long(f , pL) of

52CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

the pipe for any (f , pL) pair within a specified range.
The learning data are computations of x long(f , pL) made with Mechanical, a
solver from ANSYS.
Let us remind that the method is fully non-intrusive. We do not need further
information from the solver. Thus we have no information about Lamé’s coef-
ficient, about the thickness of the tube, about its diameter...

Figure 1.10 – Geometry

The pipe has been meshed using 13564 nodes. ANSYS Mechanical, the
solver that is used to generate the learning data, solves systems in the form

A (f , pL)x(f , pL) = L(pL) (1.9.1)

where (f , pL) is set. The size of this square system is greater than 13564×3 (3
comes from the 3 components of the displacement) as it takes into account the
fluid as well.
From this computation, we got only access to the elements of x that are related
to the longitudinal displacement. As already mentioned, we call this 13564-
long vector x long.

Two different cases are considered depending on the damping coefficient for
the material. In a first experiment it is settled to a non-zero value 1.9.2. Alter-
natively, it is equal to zero in a second experiment 1.9.3.

1.9.2 Case with damping

In this section the damping coefficient is set to a non-zero value.
We have plenty of computed data through a 25×37 grid in [fmin, fmax]×[pLmin, pLmax],where

1.9. NUMERICAL EXPERIMENTS 53

• fmin = 838Hz

• fmax = 1000Hz

• pLmin = 1m

• pLmax = 1.12m

The learning data set is made of a 4×4 sub grid as shown in Figure 1.11.

Figure 1.11 – Design of experiment

The method has been developed using the Matlab software. The learning
phase lasts less than one minute on a powerful laptop.

1.9.2.1 Preprocessing

Following section 1.8.4 we first preprocess the data using the SVD. 7 modes
from the SVD are used. The main goal at this stage is to identify a good de-
nominator.

54CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.12 – Spectrum of the SVD

We choose to keep the nred = 7 first modes. The new learning data are

X̂l =U∗
redX long

l (1.9.2)

1.9.2.2 Results for x̂

The set of functions that have been selected (according to the method from
1.8.3.3) is depicted in Figure 1.13.

Figure 1.13 – Levels of selected functions

Now, let us have a look at the 7 elements of vector x̂(f , pL).
In that case we do not really need to use as many SVD modes to identify an

1.9. NUMERICAL EXPERIMENTS 55

efficient denominator function. The magnitude of the first modes actually de-
crease really quickly, and the influence of the last ones is negligible. But they
bring some interesting patterns to look at.
Before going into the results, let us mention that the learning data (on the left
of Figures 1.14 to 1.20) are displayed using a linear interpolation in order to
make them easier to observe. At the center are the validation data (called ref-
erence), and on the right is the evaluation of the model. The upper part cor-
responds to the real part of the coefficients. Receptively, the lower part corre-
sponds to the imaginary part.

Figure 1.14 – x̂1 - SVD mode coefficient 1

56CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.15 – x̂2 - SVD mode coefficient 2

Figure 1.16 – x̂3 - SVD mode coefficient 3

1.9. NUMERICAL EXPERIMENTS 57

Figure 1.17 – x̂4 - SVD mode coefficient 4

Figure 1.18 – x̂5 - SVD mode coefficient 5

58CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.19 – x̂6 - SVD mode coefficient 6

Figure 1.20 – x̂7 - SVD mode coefficient 7

1.9. NUMERICAL EXPERIMENTS 59

1.9.2.3 Back to the natural space: results for x long

Now that we have identified the denominator function, we can build a model x̂
for every element of x long. Figure 1.21 depicts the following relative error mea-
sure

εi =

√∑nv
j=1 |x̂i (f j , pL j)−x long

i (f j , pL j)|2√∑nv
j=1 |x

long
i (f j , pL j)|2

(1.9.3)

where the set of (f j , pL j) is the validation set.

Figure 1.21 – Plot of ε, the vector of the relative errors for the elements in x long

From Figure 1.21 we can locate the element x long
i of x long for which the error

is the largest. Here it occurs at i = 3760. Figure 1.22 shows how the model
behaves for this element.

60CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.22 – Model of the element of x long for which the validation error is the
largest.

These results are satisfactory. The method makes it possible to fit well x long

using a few learning data.
It might be interesting to compare the model to a state-of-the-art function ap-
proximation technique. As the learning points form a regular grid we choose
multivariate cubic spline interpolation rather than Kriging (that is very popular
otherwise). The results may be observed in Figure 1.23 for the same element of
x long as before.

1.9. NUMERICAL EXPERIMENTS 61

Figure 1.23 – Comparison between the model and multivariate spline interpo-
lation

The multivariate spline interpolation does not perform as well as the model
even though it uses the same learning data. The denominator plays a major
role in the behavior of the function. And this will be even more noticeable with
the next case, where there is no more damping.

1.9.3 Case with no damping

Here the damping coefficient is set to zero. Thus the imaginary part of the field
is zero as there is no more phase change coming from the damping effect.
The domain is now [fmin, fmax]× [pLmin, pLmax],where

• fmin = 103Hz

• fmax = 967Hz

• pLmin = 1m

62CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

• pLmax = 1.12m

Learning and validation points that are used are displayed in figure 1.24.
Overall we have

• available data: a 289×8 points grid,

• learning data: only a 13×8 sub grid.

Figure 1.24 – Design of experiment

1.9.3.1 Preprocessing

Following section 1.8.4 we first use a preprocessing of the data using the SVD.
The singular values from the SVD are shown in Figure 1.25. They decrease quite
quickly.

1.9. NUMERICAL EXPERIMENTS 63

Figure 1.25 – Spectrum of the SVD

We choose to keep the nred = 8 first modes. The ROM building would still
have been efficient keeping a smaller number of modes but those additional
modes provide interesting graphics.
The learning data are now

X̂l =U∗
redX long

l (1.9.4)

1.9.3.2 Results for x̂

The set of functions that have been selected (according to the method from
1.8.3.3) is depicted in Figure 1.26.

Figure 1.26 – Levels of selected functions

64CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

As for the damping case, the learning data are on the left, the validation data
at the center (called reference), and the evaluation of the model on the right.
Unlike the damping case, the imaginary part is zero here. Thus only the real
parts are shown.
The main difference with previous case is that the function to be fitted is much
sharper. The poles are real and the denominator actually is equal to zero for
some (f , pL) pairs in the domain. The theoretical magnitude of the function at
these points may be infinite. However the ROM deals well with that as we can
see in Figures 1.27 to 1.34.

Figure 1.27 – x̂1 - SVD mode coefficient 1

1.9. NUMERICAL EXPERIMENTS 65

Figure 1.28 – x̂2 - SVD mode coefficient 2

Figure 1.29 – x̂3 - SVD mode coefficient 3

66CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.30 – x̂4 - SVD mode coefficient 4

Figure 1.31 – x̂5 - SVD mode coefficient 5

1.9. NUMERICAL EXPERIMENTS 67

Figure 1.32 – x̂6 - SVD mode coefficient 6

Figure 1.33 – x̂7 - SVD mode coefficient 7

68CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.34 – x̂8 - SVD mode coefficient 8

1.9.3.3 Back to the natural space: results for x long

As in the damping case, now that we have identified the denominator function,
we can build a model x̂ for every element of x long. Figure 1.35 depicts the fol-
lowing relative error measure

εi =

√∑nv
j=1 |x̂i (f j , pL j)−x long

i (f j , pL j)|2√∑nv
j=1 |x

long
i (f j , pL j)|2

(1.9.5)

where (f j , pL j) form the set of validation points.

1.9. NUMERICAL EXPERIMENTS 69

Figure 1.35 – Plot of ε, the vector of the relative errors for the elements in x long

From Figure 1.35 we can locate the element x long
i of x long for which the error

is the largest. Here it occurs at i = 3760. Figure 1.36 shows how the model
behaves for this element.

Figure 1.36 – Model of the element of x long for which the validation error is the
largest.

From these results we can deduce that the method has been very efficient at
locating the actual poles of the system without explicitly looking for them. This
is a valuable outcome that Ansys consider very promising.

70CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

1.9.3.4 The denominator

Let us have a look at the denominator on a refined grid in the domain.

Figure 1.37 – The denominator

From figure 1.37, we observe that the denominator is quite smooth. It re-
mains a simple function. It could be interesting to locate the poles. An efficient
way to visualize them is to plot the logarithm of the modulus of the denomina-
tor log10(|β+1|).

Figure 1.38 – The logarithm of the modulus of the denominator

1.9. NUMERICAL EXPERIMENTS 71

1.9.4 The vibrating plate

The previous test case was interesting because it came from an industrial ques-
tion. But there was only one parameter aside from the frequency. We would like
to test the method into a problem for which there are at least two parameters.
Because we did not have the chance to get this king of data from our part-
ners we decided to study a simple but informative example. It comes from the
file exchange platform of MathWorks and is called the Vibration of rectangular
clamped thin plate. The design is a simple rectangular plate defined by both
lenghts pL1 and pL2.
We are going to build a ROM where (f , pL1, pL2) live in a given domain.
The specific feature here is that when pL1 = pL2 eigenvalues meet because of
the symmetry (the harmonic point force whose coordinates are (x, y) is chosen
so that x = y). We want to find out how the ROM can deal with that.
Even if this is a simple test case, the computation of both learning and valida-
tion data was quite intensive. Producing data for a Cartesian grid of 97×45×45
points for respectively f , pL1 and pL2 can take almost an entire day on a pow-
erful laptop. We chose to set the damping coefficient to 0. We found out that
interesting phenomena occurred for f varying between 100 and 100.97 and pLi
between 1.14 and 1.18. It may seem to be a small domain but the lack of damp-
ing makes the behavior really stiff.
As learning data we took a 4×5×5 sub-grid.
The basis functions we chose are depicted in Figure 1.39.

Figure 1.39 – Basis functions levels

72CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

1.9.4.1 Preprocessing

Following section 1.8.4 we first preprocess the data using a SVD. This time there
are only two significant SVD modes as it can be seen in figure 1.40. Their be-
havior is still really interesting to observe.

Figure 1.40 – SVD spectrum

1.9.4.2 Results over frequencies included in the learning set

Figures 1.41 to 1.44 display the performance of the model for the 4 frequencies
that were included in the learning set. Although we are looking at frequencies
that are among the Cartesian learning grid, we are displaying some validation
data with respect to pL1 and pL2. Thee learning data are on the left (and are
linearly interpolated), the reference is at the center and the ROM is on the right.
The upper part corresponds to first coefficient from the SVD, whereas the lower
part corresponds to the second one.

1.9. NUMERICAL EXPERIMENTS 73

Figure 1.41 – f=100 Hz

Figure 1.42 – f=100.33 Hz

74CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.43 – f=100.65 Hz

Figure 1.44 – f=100.97 Hz

1.9. NUMERICAL EXPERIMENTS 75

1.9.4.3 Results over validation data

Let us now have a look at the results for some frequencies that are not in the
learning set (Figures 1.45 to 1.47). The reference is on the left and the ROM is
on the right.

Figure 1.45 – f=100.15 Hz

76CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Figure 1.46 – f=100.50 Hz

Figure 1.47 – f=100.85 Hz

1.10. FROM MECHANICS TO ELECTROMAGNETISM 77

The relative validation error for the SVD coefficients is 0.0217.

When we go back to original space, the relative validation error for the entire
field is 0.0268.

From these graphics we see that despite the limited amount of information
provided by the learning data the model is able to position really accurately the
moving poles of the system as indicated by the peaks that perfectly fit.
Actually as there is no damping the magnitude of the modes could be infinite
at the (f , pL1, pL2) triplets defining a pole. The points of the grid we used to
produce the validation data can be more or less close to those poles and these
distances define the magnitude of the peaks we see. For that reason we can
claim that the poles are well located. Plus we can observe that the point where
two different pole trajectories meet (leading to an higher order pole) does not
cause any difficulty.

1.10 From mechanics to electromagnetism

We are now switching to another kind of physics, that is electromagnetism. In
fact, equations from electromagnetism are really close to the ones of mechan-
ics that we considered in the previous section. The common principles ruling
those two physics are well exhibited in the book of Gilbert Strang [17].

1.10.1 Maxwell’s equations

Electromagnetism phenomena are modeled by Maxwell’s equations. They can
be written as follows:

∇×E =−∂B

∂t
(1.10.1)

∇×B =µ0(J+ε0
∂E

∂t
) (1.10.2)

∇·E = ρ

ε0
(1.10.3)

∇·B = 0. (1.10.4)

Where 1.10.1 is the Maxwell-Faraday equation, 1.10.2 is Ampère’s circuital law,
1.10.3 and 1.10.4 are Gauss’s laws. ε0 and µ0 are respectively the permittivity

78CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

and the permeability of free space.
We can add to these equations a continuity equation

∇· J =−∂ρ
∂t

. (1.10.5)

Those equations are linear and hyperbolic. That reminds us of the mechanics
equations.

1.10.2 Test case: The microstrip line

Ansys provided us with simulated data of a Microstrip line. Microstrip is a type
of electrical transmission line. It consists of a conducting strip separated from
a ground plane by a dielectric layer known as the substra. It is usually made us-
ing printed circuit board technology. Its role is to convey microwave-frequency
signals. It behaves to a certain extent like a waveguide.
The microstrip geometry can be seen in figure 1.48.

Figure 1.48 – Microstrip geometry

The design parameters that will play the role of p are the so called trace
width (T W in short) and dieletric thickness (DT in short).
In that case we are particularly interested in the behavior of the scattering ma-
trix S that depicts the linear relation between incoming waves and outgoing
waves in the Microstrip line. It is the same notion as the scattering matrix for
waveguides.
This matrix S is 2× 2 here and depends on the frequency f of the incoming
waves, on T W and on DT

(f ,T W,DT) → S(f ,T W,DT). (1.10.6)

1.10. FROM MECHANICS TO ELECTROMAGNETISM 79

It has to be said that f → S(f) is not meromorphic in a general manner. Depend-
ing on the domain there can be cutoff frequencies that break that property as it
is reminded in [18]. That feature could imply a change in the basis functions we
use. However, in this particular case there is no such a problem.

The design of experiment is shown in figure 1.49. 10 learning points for the
design configuration (T W , DT) are considered. Additionally, there are 30 extra
design configurations to validate. Regarding the frequency, 10 learning points
are used (equally spaced from 0 to 5GHz) and about 500 validation frequencies
are in stock for every design configuration.

Figure 1.49 – Design of experiment

As already mentioned, we are trying to model matrix S. Thus it is no longer a
field, and we will not use the singular value decomposition as a preprocessing.

80CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

1.10.2.1 Results for the geometries in the learning set

Figures 1.50 to 1.51 display the results for designs of the Microstrip Line that
are included in the learning set. One should keep in mind that only 10 fre-
quencies are available for each design configuration. They are labeled with ∗.
Thus the remaining displayed frequency points are already validation data. For
a given design configuration a first graphic shows the real part of the frequency
response of each of the four elements of S and a second one displays the corre-
sponding imaginary part.

(a) Real part (b) Imaginary part

Figure 1.50 – Learning set 1/2

(a) Real part (b) Imaginary part

Figure 1.51 – Learning set 2/2

1.10. FROM MECHANICS TO ELECTROMAGNETISM 81

1.10.2.2 Results for the geometries in the validation set

Figure 1.52 to 1.54 display the results for some designs of the Microstrip Line
that where not seen during the learning phase.

(a) Real part (b) Imaginary part

Figure 1.52 – Validation set 1/3

(a) Real part (b) Imaginary part

Figure 1.53 – Validation set 2/3

82CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

(a) Real part (b) Imaginary part

Figure 1.54 – Validation set 3/3

We can see that the ROM performs efficiently. The computed relative error
in Frobenius norm over the validation set is equal to 2%.

Note: We have noticed that we could not get better results by taking additional
learning data. The reason to this is presumably that every change in the ge-
ometry of the microstrip line implies a new mesh. That does not prevent from
building the ROM as we are interested in the scattering matrix S. But the com-
puted S is not continuous with respect to T W and DT anymore. However one
can notice that the method is nevertheless stable as this numerical noise does
not lead to completely irrelevant model. We could even assume that our model
is a way to filter and clean the computed learning data.

1.11 Conclusion and perspectives

The proposed method to build reduced order models has proven to be efficient
for the considered test cases. This method is not restricted to linear mechanics
and electromagnetism. More generally, it can be applied to parameterized lin-
ear systems that are close to singularities at some point.
However, there is still work to improve the method. Especially because it is
not easy to know if the learning set we consider is rich enough to build a re-
liable model. We need to develop a new option that allows the model to pi-
lot the learning set creation. This could be particularly useful and is some-
thing that Adagos’s potential customers ask for. We have seen in 1.8.3.3 that
it is safer to choose the basis functions according to the learning set. Actually,

1.11. CONCLUSION AND PERSPECTIVES 83

those functions should, above all, be adapted to what we want to model. We
are not changing the fact that the selection of the basis functions is made from
the learning set though. This proved to be healthy and efficient. Hence, to get
functions that are adapted to what we model we need to monitor selection of
the learning points iteratively. In this manner, the basis functions will adapt to
what they model through the appropriate selection of the learning points.
This work is in progress and relies mainly on sparse grids method 3. But it
brings a lot of additional difficulties. The main reason is that the method does
not interpolate data contrary to usual sparse grids heuristic.

84CHAPTER 1. ZROM: REDUCED ORDER MODELS FOR STRUCTURAL ANALYSIS

Chapter 2

Dynamical Reduced Order Models

Adagos has been developing tools to build reduced order models of nonlinear
dynamical systems named dynaROM. They initially focused on the field of fluid
dynamics and thermal transfer. The goal was at first to be able to learn the re-
sponse of a fluid flow under time dependent excitations (fluid velocity at the
entries, external pressure, heating, etc...). Contrary to chapter 1, the problem
here is in a general manner non-linear and it cannot be addressed in the fre-
quency space using the principle of superposition. This is a new challenge to
address in the field of reduced order models. We consider here systems de-
scribed by the Navier-Stokes equations.
State-of-the-art methods of model reduction in the field of fluid dynamics rely
on proper orthogonal decomposition (POD) [14] and on the Galerkin method
[15]. Most of the energy of the field is captured using a small number of POD
modes, then a Galerkin projection of the Navier-Stokes equations onto this
smaller space allows to speed the computations up. These methods are very
popular and can lead to very good results. They can even allow for real-time
computations. But they are usually intrusive and rely on a CFD solver.
Similarly to zROM, we want dynaROM to perform fully non-intrusive creations
of ROMs. The identification of the coefficients of the model is made by learning
from data that have usually been produced by a CFD software like Fluent from
Ansys. Learning data correspond to the fluid flow for a given time dependent
input (for example the speed of the flow at an inlet). Then dynaROM makes it
possible to predict what will the fluid flow be for new inputs in an autonomous
manner, without using a CFD software. We will see that this method should
even allow to learn from measured data.

85

86 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

2.1 PDE model

The dynaROM version we are using here aims at modeling the velocity of a fluid
flow depending on some dynamical inputs. We only consider the viscous and
incompressible case. The structure of the model is based on the Navier-Stokes
equations in a domainΩ

∂u

∂t
+ (u ·∇)u −ν∇2u +∇p = f ,

∇·u = 0
(2.1.1)

where u is the flow velocity, ν is the kinematic viscosity, p is pressure, f is the
external source and (u ·∇)u is defined by

((u ·∇)u)i =
d∑

j=1
u j
∂ui

∂x j
(2.1.2)

2.1.1 Boundary conditions

We consider problems where the boundary of the domainΓ= ∂Ω can be broken
down as follows:

• Γ0 the inner side of the object we consider,

• Γi with i ∈ (1, . . . ,nout) the inlets/outlets.

The number nout of outlets is 2 in the case of a simple pipe or more for an aorta
for example.
The following boundary conditions are prescribed on these portions of the bound-
ary:

u = 0, on Γ0,

ν
∂u

∂n
−pn + 1

2
(u ·n)u = pextn, on Γi , i ≥ 1.

(2.1.3)

2.1.2 Objective

Our goal is to build a dynamical reduced order model of this system using learn-
ing data.
The learning data are some dynamical excitations pL

ext and f L , and the corre-
sponding time dependent fluid flow uL that is solution to 2.1.1 with the bound-
ary conditions from 2.1.3.

2.1. PDE MODEL 87

The final objective is to use the reduced order model to predict what will be the
fluid flow u for new excitations pext and f .
To do so we are going to work on these equations to progressively showcase the
structure of the reduced order model we are implementing.

2.1.3 Weak form

2.1.3.1 Getting rid of the pressure

In order to build a ROM that only handles the flow velocity, let us try to get rid
of the pressure p in the equation. First we change equation 2.1.1 into its weak
form.
We choose the test functions to be in V = {

ϕ ∈ H 1(Ω); ∇·ϕ= 0, ϕ= 0 on Γ0
}
.∫

Ω

∂u

∂t
·ϕ+

∫
Ω

(u ·∇)u ·ϕ+
∫
Ω
∇p ·ϕ=

∫
Ω

f ·ϕ. (2.1.4)

Integrating by parts we get∫
Ω

∂u

∂t
·ϕ+

∫
Ω

(u ·∇)u ·ϕ+ν
∫
Ω
∇u ·∇ϕ−ν

∫
Γ

∂u

∂n
·ϕ−

∫
Ω

p∇·ϕ+
∫
Γ

p
(
ϕ ·n

)= ∫
Ω

f ·ϕ.

(2.1.5)
As ∇·ϕ= 0 we get∫

Ω

∂u

∂t
·ϕ+

∫
Ω

(u ·∇)u ·ϕ︸ ︷︷ ︸
Non-linear term

+ν
∫
Ω
∇u ·∇ϕ−ν

∫
Γ

∂u

∂n
·ϕ+

∫
Γ

p
(
ϕ ·n

)= ∫
Ω

f ·ϕ. (2.1.6)

2.1.3.2 Rewriting the quadratic term using the boundary conditions

Now, let us integrate by part the non-linear term∫
Ω

(u ·∇)u ·ϕ︸ ︷︷ ︸
NL1

=
∫
Ω

u j∂ j uiϕi

=−
∫
Ω

u j ui∂ jϕi +
∫
Γ

(u ·n)u ·ϕ

=−
∫
Ω

(u ·∇)ϕ ·u +
∫
Γ

(u ·n)u ·ϕ︸ ︷︷ ︸
NL2

.

(2.1.7)

88 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

From that result, we can choose to write the non-linear term as NL1+NL2
2

Non-linear term = 1

2

(∫
Ω

(
(u ·∇)u ·ϕ− (u ·∇)ϕ ·u

)+∫
Γ

(u ·n)u ·ϕ
)

. (2.1.8)

Hence equation 2.1.6 changes into

∫
Ω

(
∂u

∂t
·ϕ+ 1

2

(
(u ·∇)u ·ϕ− (u ·∇)ϕ ·u

)+ν∇u ·∇ϕ
)

+
∫
Γ

(
1

2
(u ·n)u ·ϕ−ν∂u

∂n
·ϕ+p

(
ϕ ·n

))= ∫
Ω

f ·ϕ.
(2.1.9)

Let us focus on the terms related to the integral on the boundary Γ

IΓ =
∫
Γ

(
(u ·n)u ·ϕ−ν∂u

∂n
·ϕ+p

(
ϕ ·n

))
. (2.1.10)

As u = 0 and ϕ= 0 on Γ0∫
Γ0

(
(u ·n)u ·ϕ−ν∂u

∂n
·ϕ+p

(
ϕ ·n

))= 0, (2.1.11)

and

IΓ =
nout∑
i=1

∫
Γi

(
(u ·n)u ·ϕ−ν∂u

∂n
·ϕ+p

(
ϕ ·n

))
. (2.1.12)

As the boundary condition on those sections is ν∂u
∂n −pn + 1

2 (u ·n)u = pextn

IΓ =−
nout∑
i=1

∫
Γi

pext
(
ϕ ·n

)
. (2.1.13)

Hence, going back to equation 2.1.9 we get

∫
Ω

(
∂u

∂t
·ϕ+ 1

2

(
(u ·∇)u ·ϕ− (u ·∇)ϕ ·u

)+ν∇u ·∇ϕ
)
=

∫
Ω

f ·ϕ+
nout∑
i=1

∫
Γi

pext
(
ϕ ·n

)
,

(2.1.14)

which is the form we will use.

2.2. THE REDUCED ORDER MODEL 89

2.1.3.3 Energy analysis of the PDE

Let us study how the energy of u evolves over time. It is a key feature for a
dynamical system.
To do so we use ϕ= u as the test function in the weak formulation of 2.1.14:∫
Ω

(
∂u

∂t
·u + 1

2
((u ·∇)u ·u − (u ·∇)u ·u)+ν∇u ·∇u

)
=

∫
Ω

f ·u +
nout∑
i=1

∫
Γi

pext (u ·n) .

(2.1.15)
That gives directly the time evolution of the energy

d

d t

∫
Ω
|u|2 =

∫
Ω

((u ·∇)u ·u − (u ·∇)u ·u)︸ ︷︷ ︸
=0

−2ν|∇u|2
+2

∫
Ω

f ·u +2
nout∑
i=1

∫
Γi

pext (u ·n) .

(2.1.16)
Hence, the non-linear term has no contribution to energy and we get

d

d t

∫
Ω
|u|2 =−2ν

∫
Ω
|∇u|2 +2

∫
Ω

f ·u +2
nout∑
i=1

∫
Γi

pext (u ·n) . (2.1.17)

and if pext = 0 and f = 0 that leads to

d

d t

∫
Ω
|u|2 =−2ν

∫
Ω
|∇u|2. (2.1.18)

That implies that the energy decreases with time. We will ensure to build a
model that keeps this property.

2.2 The reduced order model

2.2.1 The semi-discrete ROM

To define the structure of the reduced order model, we need to project the so-
lution on a reduced basis.
We define ur by

ur (t ,ξ) =
r∑

i=1
xi (t)ϕi (ξ), (t ,ξ) ∈R+×Ω (2.2.1)

where the functions ϕi form an L2-orthonormal family of V .
Hence

∇·ϕi = 0. (2.2.2)

90 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Thus, by nature
∇·ur = 0, (2.2.3)

Introducing ur in the weak form [2.1.14] with ϕk as a test function we get

r∑
i=1

d xi

d t

∫
Ω
ϕi ·ϕk +

1

2

r∑
i , j=1

xi x j

∫
Ω

(
(ϕi ·∇)ϕ j ·ϕk − (ϕi ·∇)ϕk ·ϕ j

)+ν r∑
i=1

∫
Ω
∇ϕi ·∇ϕk

=
∫
Ω

f ·ϕk +
∫
Γ1

pext
(
ϕk ·n

)
.

(2.2.4)
As

∫
Ωϕi ·ϕk = δi ,k , that leads to

d xk

d t
=−ν

r∑
i=1

xi

∫
Ω
∇ϕi ·∇ϕk︸ ︷︷ ︸

Li near par t

+ 1

2

r∑
i , j=1

xi x j

∫
Ω

(
(ϕi ·∇)ϕk ·ϕ j − (ϕi ·∇)ϕ j ·ϕk

)
︸ ︷︷ ︸

Non−l i near par t

+b f k +bp k .
(2.2.5)

where

b f =
(
b f k

)
1≤k≤r

=
(∫
Ω

f ·ϕk

)
1≤k≤r

, (2.2.6)

and

bp =
(
bp k

)
1≤k≤r

=
(∫
Γ1

pext
(
ϕk ·n

))
1≤k≤r

. (2.2.7)

At this point, if we consider every k ∈ (1, . . . ,r), with r relatively small, it is start-
ing to look like a reduced order model. It may even look like what is used in [16].
The main difference is that we are not going to compute every terms of 2.2.5.
We will not compute explicitly gradients, products and so on. Alternatively, we
are going to identify these coefficients from a learning process. We do not need
to know the geometry of the system or the properties of the fluid. We will only
rely on some computations of the fluid flow.
We can rewrite equation 2.2.5 in the form

ẋ(t) = W (x(t))+b(t) (2.2.8)

where
b(t) = b f (t)+bp (t). (2.2.9)

2.2. THE REDUCED ORDER MODEL 91

and where W is

W(x) = Ax +
r∑

k=1
xk Mk x. (2.2.10)

A and Mk are r×r matrices. So W is the sum of a linear mapping and a quadratic
mapping. We will denote by M the r × r × r hypermatrix containing the Mk

M =

m1,1,k · · · m1,n,k
...

. . .
...

mn,1,k · · · mn,n,k

 . (2.2.11)

From 2.2.5, A is equal to

A =−ν
[∫

Ω
∇ϕi∇ϕ j

]
, (2.2.12)

and M to

M = [
mi , j ,k

]= ∫
Ω

(
(ϕk ·∇)ϕi ·ϕ j − (ϕk ·∇)ϕ j ·ϕi

)
. (2.2.13)

2.2.2 The discrete-in-time ROM

In practice we are not using a continuous time. With a discrete time and a cen-
tered scheme, equation 2.2.8 changes into

xi+1 −xi

δt
= W

(
xi+1 +xi

2

)
+ bi+1 +bi

2
. (2.2.14)

In order to shorten the notation we define

bi+ 1
2 = bi+1 +bi

2
, (2.2.15)

and

xi+ 1
2 = xi+1 +xi

2
. (2.2.16)

Equation 2.2.14 gives us the structure of the ROM we want to build. Alterna-
tively, we will not compute explicitly W, but rather identify W using learning
data, making sure that is has the same core properties.

92 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Our goal is to build a reduced model in the form

xi+1 −xi

δt
=W

(
xi+ 1

2

)
+bi+ 1

2 . (2.2.17)

where

W (x) = Ax +
r∑

k=1
xk Mk x. (2.2.18)

A and M are the unknown to identify. We will do so only using learning data

(bi
L ,ui

L)0≤i≤T` (2.2.19)

where uL is provided from a Computational Fluid dynamics (CFD) solver for
the given dynamical input bL .
A and M must be built from properties emerging in the weak formulation of
the PDE 2.2.5, projected in a POD basis.
It will be a truly non-intrusive method in the sense that it does not require fur-
ther information from the solver.
The ultimate goal being to be able to use this ROM to predict what will be the
flow u for a new dynamical input b.

Objective

In addition we would like the prediction phase to be fast enough to allow real
time computing. This would provide an extra feature compared to state-of-the-
art methods like [13].

Note: From now the bold letters W, A and M will always refer to the theoretical
operators defined above. Alternatively W ,A, and M will refer to the operators of
the reduced order model we try to identify.

2.2.2.1 Identification problem

First let us say a few words about the learning data. For a given experiment, we
call ubL the fluid velocity related to a learning excitation bL .
To make things simpler we first consider the case where we get access to the co-
efficients of the projection of the learning flow ubL on a set of vectors

(
ϕ1, . . . ,ϕr

)
satisfying the orthonormality criterion with the natural scalar product

∫
Ωϕ ·ψ.

2.3. PROPERTIES AND CONSTRAINTS ON THE ROM 93

We call xi
L the coefficients related to ubL (t i) (the learning flow at t i = t 0 + iδt).

The identification problem we want to address is

min
A,M

N∑
i=0

‖x(A, M)i −xi
L‖2

2 (2.2.20)

where x(A, M)i is the i th element of the sequence ruled by the following evolu-
tion equation:

xi+1 −xi

δt
=W

(
xi+1 +xi

2

)
+bi+ 1

2 , ∀i ≤ N ,

x0 = x0
L

(2.2.21)

where W directly involves A and M as in 2.2.10.

2.3 Properties and constraints on the ROM

A and M must have built in properties emerging from the weak formulation of
the PDE projected in a POD 2.2.5. Let us find out what they should be.

2.3.1 Properties of A

As already mentioned, A should inherit the properties ofA

A =−
[∫

Ω
∇ϕi∇ϕ j

]
(2.3.1)

which is a symmetric matrix. We omit intentionally δt or 2ν that are only non-
trivial positive constants multiplying the whole matrix.
In addition to being symmetric, this matrix is the opposite of a positive matrix.
Indeed, let x be a vector of Rr ,

xT Ax =−
r∑

j=1
x j

r∑
i=1

xi

∫
Ω
∇ϕi ·∇ϕ j

=−
∫
Ω
∇

(
r∑

i=1
xiϕi

)
·∇

(
r∑

j=1
x jϕ j

)

=−
∫
Ω

∣∣∣∣∣∇
(

r∑
i=1

xiϕi

)∣∣∣∣∣
2

2

(2.3.2)

94 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

which is negative.
Thus A will be by nature symmetric and we will pay attention that it remains
negative.

2.3.2 Properties of M

Let us denote by g M the function such that

g M (x) =
n∑

k=1
xk Mk x. (2.3.3)

Let us remind that the theoretical matrix M is equal to

M = [
mi , j ,k

]= ∫
Ω

(
(ϕk ·∇)ϕi ·ϕ j − (ϕk ·∇)ϕ j ·ϕi

)
. (2.3.4)

We look for M so that g M = g M.

2.3.2.1 General property of g M

One can notice that in a general manner two different hypermatrices M 1 and
M 2 can possibly lead to g M 1 = g M 2

. This is the case for instance with M 2 =[
m1

i , j ,k

]
=

[
m1

i ,k, j

]
. g M 1

i being the i th element of g we get

g M 1

i (x) =
n∑

k=1
xk

n∑
j=1

m1
i , j ,k x j

=
n∑

k=1

n∑
j=1

m1
i , j ,k xk x j

(2.3.5)

So we see that we can switch the roles of j and k.
From this result we can look for M verifying g M = g M in a form such as, for
k ∈ (1, . . . ,n), only the first k lines of Mk are non-zero without loss of generality.

Mk =

m1,1,k · · · m1,1,k
...

. . .
...

mk,1,k · · · mk,n,k

0 · · · 0
...

. . .
...

0 · · · 0

. (2.3.6)

2.3. PROPERTIES AND CONSTRAINTS ON THE ROM 95

2.3.2.2 Energy

Let us now have a look at the energy contribution of g M:

xT g M(x) = (∑r
k=1 xk Mk x

)
= ∑r

i=1 xi

(∑r
k=1 xk

(∑r
j=1 mi , j ,k x j

))
= ∑r

i , j ,k=1 xi x j xk
∫
Ω(ϕk ·∇)ϕi ·ϕ j − (ϕk ·∇)ϕ j

= ∫
Ω

((∑r
k xkϕk

) ·∇)(∑r
i xiϕi

) · (∑r
j x jϕ j

)
−((∑r

k xkϕk
) ·∇)(∑r

j x jϕ j

)
· (∑r

i xiϕi
)

= 0.

(2.3.7)

So we have to make sure to look for a matrix M that lives in a subspace verifying
this criterion. Let us calculate:

xT g M (x) = xT (
n∑

k=1
xk Mk x)

=
n∑

k=1
xk xT Mk x

=
n∑

k=1
xk

n∑
i=1

n∑
j=1

xi mi , j ,kx j

=
n∑

k=1

n∑
i=1

n∑
j=1

mi , j ,kxi x j xk

(2.3.8)

The stability condition is satisfied when the sums of the permutations of the i ,
j and k in mi , j ,k are zero.
Thus we look for M in the form

• for every triplet (i , j ,k) so that i < j < k

mi , j ,k =−mi ,k, j −m j ,i ,k , (2.3.9)

• for every couple (i ,k) so that k < i

mi ,k,i =−mk,i ,i , (2.3.10)

• for every couple (i ,k) so that i < k

mi ,k,i =−mi ,i ,k , (2.3.11)

96 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

• for every i
mi ,i ,i = 0. (2.3.12)

The number of constraints is then

Nc = n +n(n −1)+ n(n −1)(n −2)

6

= n2 + n(n −1)(n −2)

6
.

(2.3.13)

The number of a priori non-zero elements being

Nnz = n2(n +1)

2
, (2.3.14)

the number of degrees of freedom is

Ndo f = n

(
n(n +1)

2
−n − (n −1)(n −2)

6

)
. (2.3.15)

Note: It is interesting to notice that when we look at the whole model (i.e lin-
ear + nonlinear parts), even though the energy can not diverge it does not mean
that its linearization has eigenvalues with real parts at least nonpositive.

2.3.3 Invariance with respect to change of basis

As we are going to identify the model, we can wonder if this general structure is
preserved when the basis changes. The answer is no, in a general way. But if we
choose the new basis so it is othonormal it works.
Let us consider

xout = Ax in + g (x in) (2.3.16)

and P = [ε1, . . . ,εn] the matrix whose columns are the vectors of the new or-
thonormal basis.
We note

y in = P T x in, (2.3.17)

yout = P T xout. (2.3.18)

Thus
yout = P T Ax in +P T g (x in),

= P T AP y in +P T g (P y in).
(2.3.19)

2.3. PROPERTIES AND CONSTRAINTS ON THE ROM 97

Linear part The matrix Ã = P T AP will be the linear operator in the new basis.
First, let us notice that Ã remains symmetric. Then A and Ã are similar so they
share the same eigenvalues. Hence the stability constraint is preserved.

Non-linear part Let us note gP the new non-linear term

g P (y in) = P T g (x in),

= P T
n∑

k=1

(
P y in)

k Mk P y in,

=
n∑

k=1

(
P y in)

P T Mk P y in.

(2.3.20)

We define C = [
ci , j ,k

]
so that Ck = P T Mk P ,

g P (y in) =
n∑

k=1

(
P y in)

k Ck y in

=
n∑

k=1

(
n∑

j=1
pk, j y in

i

)
Ck y in,

(2.3.21)

Let us focus on g p
i (y in) the i th element of g p (y in)

g P
i (y in) =

n∑
k=1

(
n∑

j=1
pk, j y in

j

)(
n∑

l=1
ci ,l ,k y in

l

)

=
n∑

k=1

n∑
j=1

n∑
l=1

pk, j ci ,l ,k y in
j y in

l

=
n∑

k=1

n∑
j=1

(
n∑

l=1
pk, j ci ,l ,k

)
y in

j y in
l

(2.3.22)

By defining M p so that

mp
i , j ,k =

(n∑
m=1

pm, j ci ,k,m

)
, (2.3.23)

we get

g p (y in) =
n∑

k=1
y in

k M p
k y in (2.3.24)

98 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

which is the result we want.
What about the stability constraint ? Let

(
y1, y2

)
and

(
x1, x2

)
be so that y1 =

P T x1 and y2 = P T x2,

y2T
g p (y1) = y2T

P T g (P y1),

= P T x2T
P T g (x1),

= x2T
PP T g (x1),

= x2T
g (x1).

(2.3.25)

Hence this is invariant in the new basis. In particular, for y = P T x

yT g p (y) = xT g (x) = 0. (2.3.26)

The stability criterion is preserved for a new orthonormal basis.

2.4 Computational aspects

2.4.1 Evaluate the model: solving the nonlinear equation

In order to identify A and M , we have to be able to evaluate the model for a
given couple A and M . As the scheme is implicit and the equation is nonlinear
it is not trivial.
Assuming that we know xi , let us explain how we get to xi+1. We need to solve
the following problem

s −xi

δt
=W

(
s +xi

2

)
+bi+ 1

2 (2.4.1)

where s is the unknown. As there are r unknowns and r equations we choose
to use the Newton method to perform this resolution.
On this basis, we can compute the sequence of xi from 1 to N by solving this
system successively starting from x0.

2.4.2 Preprocessing of the learning data

At this point we have made the unlikely hypothesis that we have access to the
projection of a theoretical solution of the PDE in an orthonormal reduced basis.

2.4. COMPUTATIONAL ASPECTS 99

In practice we deal with a discrete solution coming from a solver. The solver
usually uses the finite volume method.
The reference learning solution related to the excitation bL is denoted by

UbL =
[
U 0

bL
, . . . ,U N

bL

]
(2.4.2)

where

U i
bL

=

ubL
i
1

...
ubL

i
n

 . (2.4.3)

Here UbL
i
k , is a vector of Rd (d = 2 or 3) representing the flow velocity at point

k.
However UbL is not a sufficient piece of information. Each of the n points is
linked to a volume. As the fluid is incompressible we can directly link the vol-
ume to the mass.
We define m = diag(mk) the diagonal mass matrix where an element of the di-
agonal is the mass of the corresponding point. This matrix is necessary to com-
pute the energy. We call E i the energy at time step i:

E i =
n∑

k=1
mk ubL

i
k

T
ubL

i
k (2.4.4)

Assuming that the CFD computation is reliable enough we expect that E i has
the same properties as the continuous equivalent from the original PDE: it should
decrease when the excitations are zero.

E i+1 ≤ E i for bi
L = 0 (2.4.5)

Furthermore, if the computation is accurate enough, once the solution is pro-
jected on an orthonormal reduced basis ofR(d×n), the properties of the reduced
order model introduced in 2.3.3 are compatible to model the solutions of this
system.
To build an orthonormal reduced basis we use the Singular Value Decomposi-
tion (SVD) method.
First, we introduce the ·̃ notation

ũ =

p

m1u1
...p

mnun

 . (2.4.6)

100 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

where each uk is a vector of Rd . This is convenient to write simply the natural
scalar product

(u|v) =
n∑

k=1
mk uT

k vk = ũT ṽ (2.4.7)

Then we apply the SVD to

ŨbL =

p

m1ubL
1
1 · · · p

m1ubL
N
1

...
. . .

...p
mnubL

1
n · · · p

mnubL
N
n

 . (2.4.8)

which gives
ŨbL =ΦΣΨT (2.4.9)

where

• Φ is a dn ×dn unitary matrix,

• Σ is a diagonal n ×N matrix with the singular values σk on the diagonal
which are non-negative real numbers,

• ΨbL is an N ×N unitary.

Depending on how the singular values (contained in Σ) decrease we chose a
number r of reduced basis vectors. We define then

Φr =
[
ϕ1 · · · ϕr

]
(2.4.10)

Σr =

σ1
. . .

σr

 (2.4.11)

Ψr =
[
ψ1 · · · ψr

]
(2.4.12)

where only the r first columns of each matrix are kept.
Hence we get the corresponding discrete-time coefficients xbl ∈Rr×N :

xbl =ΦT
r ŨbL =ΣrΨ

T
r . (2.4.13)

Hence, xbl is then the reference learning data used to identify the reduced order
model.

2.4. COMPUTATIONAL ASPECTS 101

2.4.3 The identifcation problem in the learning process

We can now try to solve the identification problem

min
A,M

N∑
i=0

‖x(A, M)i −xi
bl
‖2

2. (2.4.14)

This is a nonlinear least-squares problem. We are going to use a Gauss-Newton
method. At each time step i we need to get the derivative of xi+1 with respect
to A, M and xi . As we do not want to compute explicitely the Jacobian matrix
related to A, M and xi we need to compute the direct and inverse derivatives in
order to proceed as defined in appendix A.

2.4.3.1 Forward mode

First, let us study the forward mode for x 7→ y =W (x, A, M)

δy = dW (x, A, M ,δx,δA,δM)

= δAx + Aδx +
r∑

k=1
(δxk Mk x +xkδMk x +xk Mkδx) .

(2.4.15)

We note Jx the r × r matrix such that

Jx = A+ [
M1x, . . . , Mr x

]+ r∑
k=1

xk Mk . (2.4.16)

Thus
δy = dW (x, A, M ,δx,δA,δM)

= δAx + Jxδx

+
r∑

k=1
xkδMk x

(2.4.17)

Hence

δxi+1 −δxi

δt
= δAxi+ 1

2 + J
xi+ 1

2
δxi+ 1

2 +
r∑

k=1
x

i+ 1
2

k δMk xi+ 1
2 . (2.4.18)

We want to identify δxi+1. As δxi+ 1
2 = δxi+1+δxi

2 , we have

δxi+1 −δxi

δt
= δAxi+ 1

2 + J
xi+ 1

2

δxi+1 +δxi

2
+

r∑
k=1

x
i+ 1

2
k δMk xi+ 1

2 , (2.4.19)

102 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

which leads to(
1

δt
Ir − 1

2
J

xi+ 1
2

)
δxi+1 = δAxi+ 1

2 +
(

1

δt
Ir + 1

2
J

xi+ 1
2

)
δxi + δxi+1+

2

+
r∑

k=1
x

i+ 1
2

k δMk xi+ 1
2 .

(2.4.20)

This system being small it is solved using a direct method.

2.4.3.2 Reverse mode

In the same manner as earlier, we first look at the reverse mode derivative of
y =W (x, A, M):

px = AT +
r∑

k=1

(
ek xT M T

k +xk M T
k

)
py, (2.4.21)

p A = py xT , (2.4.22)

pMk = xk py xT , ∀k ∈ [1, . . . ,r] . (2.4.23)

Introducing this into the main equation, it leads to

pxi+ 1
2 =

(
AT +

r∑
k=1

(
ek xi+ 1

2
T

M T
k +x

i+ 1
2

k M T
k

))(
pxi+1 −pxi

)
, (2.4.24)

hence we get(
1

δt

(
AT +

r∑
k=1

(
ek xi+ 1

2
T

M T
k +x

i+ 1
2

k M T
k

))
+ 1

2
I

)
pxi

=
(

1

δt

(
AT +

r∑
k=1

(
ek xi+ 1

2
T

M T
k +x

i+ 1
2

k M T
k

))
− 1

2
I

)
pxi+1.

(2.4.25)

Once again we solve this relatively small system using a direct method.
Then we get

p A = pxi+1 −pxi

δt
xi+ 1

2
T

, (2.4.26)

and

pMk = x
i+ 1

2
k

pxi+1 −pxi

δt
xi+ 1

2
T

, ∀k ∈ [1, . . . ,r] . (2.4.27)

2.4. COMPUTATIONAL ASPECTS 103

2.4.4 Dealing with A nonpositive

Up to there we omitted the constraint that the symmetric matrix A should be
nonpositive. Yet it is obviously an important matter. The semidefinite program-
ming (SDP) [21] is sometimes the way to go to deal with this kind of constraints.
But this method is suitable to the cases where there is a linear form to minimize.
We did not find it to be most convenient solution here. So we decided to use an
alternative method.
Alternatively, we use the fact that any nonnegative symmetric S matrix can be
decomposed as

S = LLT , (2.4.28)

where L is a lower-triangular matrix with real and nonnegative diagonal entries.
This is the Cholesky decomposition and it is unique.
Hence we will look for the nonpositive symmetric matrix A in the form

A =−LLT . (2.4.29)

The constraint that the diagonal entries must be nonnegative is then easy to
handle. This L matrix will be the new unknown of the optimization problem
instead of A. Of course it brings nonlinearity and complexity to the problem,
but it appeared to be the most convenient way to insure the constraint is met.
We just need to connect the derivatives of F : L 7→ A =−LLT to the ones defined
in (2.4.3).
The forward mode is

dF (L,δL) =−LδLT −δLLT , (2.4.30)

and reverse mode is
pF (L, p A) =−LT p A−p ALT . (2.4.31)

2.4.4.1 The mixed approach

In practice, during the optimization process, the constraint can be far from be-
ing active. In other words, A can be very negative. In that case, we may just
ensure that A is symmetric (which is straight forward) as long as the constraint
is far enough from being active, without introducing the decomposition with L.
As soon as a step of the optimization process breaks the constraint, we go back
to the previous step of optimization and apply the Cholesky factorization to
the current −A (which is indeed nonnegative) and keep going dealing with L as
long as necessary. This works well as the optimization algorithm has no mem-
ory.

104 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

2.4.5 Alternative case: no access to the mass matrix m

We have seen in paragraph 2.4.2 how we proceed to work with a reduced basis
using the mass matrix m.
This m matrix allowed us to identify a convenient orthonormal basis to work
with using SVD.
To remain as non-intrusive as possible we should be able to build a ROM only
using the field UbL (the learning flow), even if we do not have access to the di-
agonal mass matrix m. It is the case we will consider in our first experiment 2.6.
When we cannot get access to m, we are not able to work with the right scalar
product. Thus we cannot make any reliable assumption about energy and or-
thonormality. We have to overcome this difficulty.

First, we proceed by directly performing an SVD on UbL .

UbL =ΦΣΨT (2.4.32)

That provides us with discrete-time coefficients that we note ybl .

ybL =ΦT
r UbL =ΣrΨ

T
r (2.4.33)

The columns of UbL are orthonormal with respect to the usual scalar product
in R(×), but they are not if we consider the natural scalar product of the system
defined with the mass matrix m.
As there is a default of orthonormality in the appropriate scalar product, we
cannot attempt to build a ROM with the correct properties working directly
with ybl if we do not make adjustments in the method.
We are going to describe 3 different ways to address this situation in paragraphs
2.4.5.1 to 2.4.5.3. And we will eventually decide which solution we choose.

2.4.5.1 Option 1: identifying the matrix of the scalar products

Going back to equation 2.2.4, the default of orthogonality of the basis functions
leads to the introduction of C such that

C
(

y i+1 − y i
)
=W

(
y i+ 1

2

)
+bi+ 1

2 . (2.4.34)

C is to be identified through learning and ci j should ideally correspond to
(
ϕi |ϕ j

)
(where the ϕi come from the SVD and are not orthonormal in the appropriate

2.4. COMPUTATIONAL ASPECTS 105

scalar product (·|·)). Thus C should be symmetric.
Let us demonstrate that C is a positive-definite matrix in the ideal case where it
is equal to C = [(

ϕi |ϕ j
)]

. For y nontrivial

yT C y =
n∑

i , j
yi y j

(
ϕi |ϕ j

)
=

(
n∑
i

yiϕi |
n∑
j

y jϕ j

)
= ‖

n∑
i

yiϕi‖2 > 0.

(2.4.35)

Hence, if we try to identify C , we have to ensure that it remains positive-definite
in the model. This new constraint may be inconvenient to deal with.

2.4.5.2 Option 2: the orthonoramalization matrix

Alternatively we may try to identify a lower-triangular matrix R that would rep-
resent the change of basis of the vectors we got from the SVD (without the mass
matrix) into an orthonormal set.
That means that we rewrite the equation with xi = R y i in the form(

xi+1 −xi
)
=W

(
xi+ 1

2

)
+Rbi+ 1

2 . (2.4.36)

where R is an unknown of the optimization problem. This optimization prob-
lem requires the use of R−1 as we want to minimize

min
A,M ,R

N∑
i=0

‖R−1x(A, M)i − y i
L‖2

2 (2.4.37)

The inversion of R (that is simple as the matrix is triangular) is not convenient
for the optimization process.

2.4.5.3 Option 3: the linear observation operator

The third option we consider involves a so-called observation operator. This is
the method we are going to implement.
It consists in decomposing the model into a dedicated dynamical part that has
to fit the properties from the physics involved, and an observation operator that
makes the link between the dynamical part and the data we want to learn from(

xi+1 −xi
)
=W

(
xi+ 1

2

)
+Bbi+ 1

2

y i+1 =C xi+1.
(2.4.38)

106 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Here B is a linear operator that multiplies the dynamical inputs and C is the
so-called linear observation operator.
Proceeding this way, we also need to identify the initial condition for the dy-
namical part x0. The optimization problem becomes then

min
A,M ,B ,C ,x0

N∑
i=0

‖y(A, M ,B ,C , y0)i − y i
L‖2

2 (2.4.39)

The key idea is to work with a dynamical part of the model that preserves the
basic structure and properties issued from the Navier-Stokes equations as de-
picted above.
The xi vectors correspond to time dependent coefficients in some orthonormal
reduced basis that we do not need to identify and that is efficient to represent
the fluid dynamics system.
Then the observation matrix C makes the link between those coefficients and
the quantities we want to model eventually.
This allows to use straightforwardly the dynamical model introduced before
connecting it with new operators. The operators A and M will have to follow
the exact rules we set above.
This method may seem more complicated at first glance, but in practice it proves
to be pretty efficient and offer new opportunities.

2.5 Giving flexibility to the model

We just introduced the linear operator method to overcome the lack of knowl-
edge about the mass matrix m. And we are going to implement it as the default
method as it has further advantages. We will even go further and add extra ele-
ments to the ROM.
The reason we want to bring flexibility to the model is because we need to ad-
dress problems where the boundary conditions we deal with are not strictly the
same as the ones defined in 2.1.3. We chose these boundary conditions be-
cause they allowed to exhibit a convenient structure for the dynamical part of
the ROM. Especially for the purpose of creating a nonlinear dynamical model
that cannot diverge. But there are not commonly encountered and can be re-
strictive.
In addition to the observation operator we are going to introduce new elements
that will allow to bring flexibility to the ROM without modifying the core prop-
erties and structure of the dynamical part of the model we have developed

2.5. GIVING FLEXIBILITY TO THE MODEL 107

throughout this chapter. We do not want to modify the properties of W in the
dynamical part, and only add elements around it that guarantee the ROM can-
not diverge.

2.5.1 Versatility provided by the observation operator

The observation operator brings some safe flexibility to the system. For exam-
ple, it allows to learn quantities that linearly derive from the fluid flow field, like
local observations or averaged quantities.
One extra feature is that the dynamical part of the model no longer has to be
the same size as the learning data coefficients vector (i.e. C is not necessarily
square).
The dynamical part of the ROM only allows the L2 norm of x to decrease when
the dynamical input b is set to zero. That is what we wanted as it was the sim-
plest way to go for a nonlinear dynamical model that could not diverge. But this
property can be really restricting.
However, the use of the observation operator allows the ROM to increase for a
finite amount of time with no risk of exploding when b = 0.

Example To illustrate this property let us consider a simple example. In order
to simplify we can only consider a linear ROM.

xi+1 −xi = Axi+ 1
2

y i+1 =Oxi+1
(2.5.1)

where

A = 10−3
[−2 1

1 −2

]
(2.5.2)

This matrix is symmetric and non-positive. Now, let us consider

x0 =
(
1
0

)
(2.5.3)

as the initial condition.
Figure [2.1] shows how the magnitude of each coefficient in x evolves with time.

108 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Figure 2.1 – Time evolution of the magnitude of x1 and x2

We observe that x2 first increases in magnitude before decreasing. In the
same time the norm of x only decreases as shown in Figure [2.2].

Figure 2.2 – Time evolution of the norm of y

That means that if use the following observation operator

O =
(
0
1

)
(2.5.4)

the energy of the output y can increase at first despite the dynamical input be-
ing 0. Which proves our point.
Combining the dynamical model and the observation operator is close to the
spirit of reservoir computing [20]. The reservoir computing consists in picking

2.5. GIVING FLEXIBILITY TO THE MODEL 109

in a reservoir of dynamical functions of the input what is needed to fit the tar-
geted output. This is done using an observation operator to be identified (this
is called the trained readout). In the usual reservoir computing methods the
reservoir layer may be a random neural network. In our case we train it as well
and make it live in a small space where it has to match basic properties issued
from the specific physics involved.
Now we want to build around this model and even add some new features. Do-
ing so we are entering a bit more the world of machine learning.

2.5.2 The observation offset

To give even more flexibility we add an offset term called d(
xi+1 −xi

)
=W

(
xi+ 1

2

)
+Bbi+ 1

2

y i+1 =C xi+1 +d
(2.5.5)

This term adds an offset to the model but does not affect the property that the
energy cannot explode if b is set to zero. From the performed experiments we
observed that this new term is really beneficial as it prevent the eigenvalues of
the linear term A from being to close to zero.

2.5.3 The excitation offset

We want to be able to modify the input entering the model. The new model is(
xi+1 −xi

)
=W

(
xi+ 1

2

)
+Bbi+ 1

2 +e

y i+1 =C xi+1 +d
(2.5.6)

where B and e define an affine transformation of the input. In the case of the
coronary the dynamical input we get is just a scalar. Hence B is simply a vector
distributing the input to all the dynamical variables.
This transformation is a bit more tricky than the previous one as it implies a
significant change of the energy. Indeed if we set b to zero there may still be
some energy entering the system because of e.
This new feature is adapted to the fact that in some cases the boundary con-
dition is such that a constant pressure is set at some outlets of the system for
example.

110 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

We are going to prove that the energy divergence is at most linear. Let us do it
with the time continuous case as it is more general.

d x

d t
=W (x)+e, (2.5.7)

Applying a left multiplication with xT we get

1

2

d‖x‖2
2

d t
= xT W (x)+xT e, (2.5.8)

As xT W (x) ≤ 0 by nature that gives

1

2

d‖x‖2
2

d t
≤ xT e,

≤
r∑
i

xi ei ,

≤
r∑
i
|xi ||ei |,

≤ ‖e‖∞
r∑
i
|xi |,

≤ r‖e‖∞‖x‖∞,

≤ r‖e‖∞‖x‖2.

(2.5.9)

Hence, to study the worst case scenario we may focus on the following differ-
ential equation

dα2

d t
= cα,

⇐⇒ 2α
dα

d t
= cα.

(2.5.10)

In this worst case scenario, we obviously look for the nontrivial solutions for α,
which leads to

dα

d t
= 1

2
c,

⇐⇒α(t) = 1

2
ct +α(0).

(2.5.11)

From this we deduct that

‖x(t)‖2 −‖x(0)‖2 =O (t). (2.5.12)

2.5. GIVING FLEXIBILITY TO THE MODEL 111

In conclusion the excitation offset allows the system to diverge but only lin-
early at most. This choice is worth the risk as it allow to accommodate various
boundary conditions.

All the elements we introduced to this point allow the ROM to be more versa-
tile. And they only involve a small number of new degree of freedom to identify.
Especially if we compare to the size of the hypermatrix of quadratic term.
Moreover we can observe how the method now differs from usual POD-Galerkin
reduced order models. With the latter, the space defined by the POD modes
on which the equations are projected is extremely important as the dynamical
computation is directly performed on the corresponding time coefficients. Al-
ternatively, the method proposed here separates somehow the space on which
we project the learning data and the dynamical part of the model. Then we rely
on learning to identify a correct dynamical model that performs well over time.
We could potentially project the learning field on a uniform function equal to 1
(calculating its spatial average) and still be able to catch in the dynamical part
what is necessary to get a reduced order model for this quantity. We can go
further and use this method to learn from measured data (coming from wind
tunnel experiments for example or from real life systems).

2.5.4 The updated learning process

The use of the observation operator changes slightly the learning process com-
pared to the case we directly use the dynamical part of the ROM to fit the learn-
ing data2.4. In particular, given the fact that the size of the dynamical part and
the size of the learning data have no longer to be the same.

Step 1 We first perform a SVD over the learning field UbL and select ro modes in
order to get a good approximation of the learning field.

Step 2 We start the learning process with only one variable in the dynamical part
of the model (i.e. C is a matrix ro ×1).

Step 3 Once the optimization is done, if we are not satisfied, we increased the
size of the dynamical part, adding a new variable, and start again the
process again. We iterate this way to add as many dynamical variables
as needed. We call rd the number of dynamical variables. Depending on
the case rd can even be greater than ro in the end.

112 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

2.5.5 The updated prediction process

We need to be able to predict what the flow will be for a new dynamical input.
There are two different cases to address:

Case 1 The flow at t = 0 is in the exact same configuration as during the learning
phase.

Case 2 The flow is not in the same configuration at t = 0.

In the first case there is no difficulty, we can perform a prediction straightfor-
wardly as the initial values of x0 identified throughout the learning phase can
be reused to predict.
In the second case, however, we need to identify x0. In that case we can use
the CFD solver to get the first time steps of the flow velocity. We use them to
identify x0 using Gauss-Newton, freezing any other element of the ROM. Then
we can predict the flow for the following time steps using the ROM.

2.6 The coronary test case

ANSYS provided us with experimental data produced with their CFD solver Flu-
ent. In particular, we got to study the blood flow in an coronary depending on
the massflow rate at one inlet. The goal being to build a model that predicts
what will the flow be for new time dependent massflow rates. To identify this
model we use a learning massflow rate and the corresponding blood flow. The
CFD solver used the finite volume method [22]. The learning data were gen-
erated by Ansys which means that we did not have the opportunity to tune the
experiments in order to help the building of the ROM.
In that case the data come as follows:

• The time discretization is regular,

• The only dynamical output is the mass flow rate that comes as a scalar.
There is no external source f . Hence bi , at time step i , is just a scalar
representing only the mass flow rate.

• The blood flow velocity is represented via Ux, U y and Uz that are vectors
of Rn where n ≈ 6× 105. Every element of the vectors correspond to a
given volume.

2.6. THE CORONARY TEST CASE 113

The learning mass flow rate and the learning blood flow field are then respec-
tively denoted bL and UbL .
As the method aims to be as little intrusive as possible we have little informa-
tion about the numerical simulation

• There are 0.26M polyhedral cells,

• Outlets massflow repartition is made based on outlet surface ratio to sum
of all the outlets surfaces,

• The duration of one computation is 4h on 12 CPUs for about 250 time
steps.

This particular case does not match exactly the properties introduced in 2.1.
In particular, the boundary conditions do not fit the ones described in 2.1.3.
Furthermore, we do not know the mass matrix m. For all theses reasons, we
will be using the flexibility given by the observation operator 2.5.

2.6.1 Experimental results

As mentioned earlier, we are first going to train the model using a learning
mass flow rate at the inlet (the learning dynamical input) and the correspond-
ing learning flow field issued from a CFD computation (Fluent) 2.6.1.1. Once
this is completed, we will be using the model to predict what happens for a
new mass flow rate. We will consider two profiles for the mass flow rate and will
compare the resulting flow with reference data computed with Fluent 2.6.1.2.

2.6.1.1 Learning phase

We denote by bL =
[

b0
L , . . . ,bNL

L

]
the learning dynamical input, i.e. the mass

flow rate. Its profile can be observed in Figure 2.3. The corresponding se-
quence for the flow field issued from the CFD computation is denoted by UbL =[
U 0

bL
, . . . ,U NL

bL

]
. Here the number of time steps is NL = 471. The data were gen-

erated by Ansys, so we could not monitor the learning data. We have to deal
with a learning dynamical input (i.e. the massflow rate) that is not optimal in
term of quantity of provided information. We would have preferred a signal
that carries more information. Anyway we are going to show that it still allows
to obtain good results.

114 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Figure 2.3 – Learning massflow rate (dynamical input)

First of all we perform a SVD (Singular Value Decomposition) on the learn-
ing flow field UbL .

UbL =ΦΣΨT (2.6.1)

We can see in Figure [2.4] how quickly the singular values in Σ decrease.

Figure 2.4 – Singular values for the learning flow field (logarithmic scale)

Keeping only the first ro columns of Φ the field is projected in a smaller
space

ybl =ΦT
ro

UbL , (2.6.2)

where ybl ∈ RNL
ro

. We took ro = 6. Doing so the projection error is 0.02199. That
ro sets the size of the observation part.
As mentioned earlier, during the learning process the size rd of the dynamical

2.6. THE CORONARY TEST CASE 115

part grows iteratively starting from 1. It reaches size rd = 6 at the end of the
learning process.
Eventually the quality of the learning can be measured in Figure 2.5.

Figure 2.5 – Learning - Blue line is the reference and dashed red line is the ROM

The relative error (compared to the global norm of ybl) for each time mode
is depicted in the table below

Table 2.1 – Learning - Relative error for the SVD time coefficients

116 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

1 2 3 4 5 6
L2 relative error 0.0030 0.0021 0.0014 0.0018 0.0014 0.0020
L∞ relative error 0.0050 0.0033 0.0025 0.0033 0.0020 0.0048

The global relative L2 error is 0.0048.

2.6.1.2 Validation

Now that identification of the model is done it is time to test the prediction
on validation data. We have two sets of validation data (namely 1 and 2). In
particular there are two new dynamical inputs that are shown alongside the
learning one in Figure [2.6].

Figure 2.6 – Learning and validation 1 and 2 massflow rates

We do not know if the flow starts from the same situation as in the learning
case. So we need as a first step to identify the initial condition x0. In both vali-
dation case, this is done using the 50 first time steps of the validation flow. Then
we can really predict what is happening without any help from the validation
data.
Each validation flow is projected in the reduced space from the learning phase
the usesΦro

yv =ΦT
ro

Uv , (2.6.3)

In the first validation case the projection error is 0.0250. In the second one it is
0.0212. As the vector inΦro are othonormal we know that if the results are good
in the small space, it will be so in the large one.

2.6. THE CORONARY TEST CASE 117

Validation 1 We can observe the results for the first validation case in Figure
2.7.

Figure 2.7 – Validation 1 - Blue line is the reference and dashed red line is the
ROM

The relative error for each time coefficient is depicted in the table below

Table 2.2 – Validation 1 - Relative error for the SVD time coefficients

118 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

1 2 3 4 5 6
L2 relative error 0.0236 0.0120 0.0036 0.0063 0.0056 0.0108
L∞ relative error 0.0599 0.0832 0.0373 0.0366 0.0349 0.0747

The global relative L2 error is 0.0312.

Validation 2 We can observe the quality of the results for the second valida-
tion case in Figure 2.7.

Figure 2.8 – Validation 2 - Blue line is the reference and dashed red line is the
ROM

2.6. THE CORONARY TEST CASE 119

The relative error for each time coefficient is depicted in the table below

Table 2.3 – Validation 1 - Relative error for the SVD time coefficients

1 2 3 4 5 6
L2 relative error 0.0264 0.0094 0.0047 0.0050 0.0058 0.0078
L∞ relative error 0.3907 0.0835 0.0489 0.0276 0.0548 0.0582

The global relative L2 error is 0.0364.
Overall the model proves to be reliable for this test case. But it would be inter-
esting to get a more complicated dynamical input in the learning phase in order
to test the ROM for validation data involving frequencies and magnitudes in a
wider span.
Now we would like to highlight the importance of the quadratic term in the
model. To do so we can test how the ROM performs without the nonlinear term
as a comparison.

2.6.1.3 Learning without the quadratic term

We reproduce the exact same experiment. Unless this time we remove the
quadratic term in the model

W (x) = Ax. (2.6.4)

To consider the best linear model we performed several model creations for
different size rd of the dynamical part. And we kept the one giving the best
validation results. That happens for rd = 6.

Learning The results of the learning phase is shown in Figure 2.9.

120 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Figure 2.9 – Learning - Blue line is the reference and dashed red line is the ROM

The global relative L2 learning error is 0.0136.

Validation 1 The results for the first validation set are shown in Figure 2.10.

2.6. THE CORONARY TEST CASE 121

Figure 2.10 – Validation 1 - Blue line is the reference and dashed red line is the
ROM

The global relative L2 error is 0.0579.

Validation 2 The results for the second validation set are shown in Figure 2.11.

122 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Figure 2.11 – Validation 2 - Blue line is the reference and dashed red line is the
ROM

The global relative L2 error is 0.0906.
We observe that the validation error is not so bad. This is mainly due to the
fact that the first time coefficient, that is the most significant, seems to be well
learned and predicted. However we can see that the smaller coefficients are
way better learned and predicted with the quadratic version. Which proves the
importance of taking into account this nonlinearity. It will certainly be even
more significant with validation data that differ more from the learning case.

2.7. MODELING THE PRESSURE 123

2.7 Modeling the pressure

In the coronary test case, the data we got from the CFD solver include, besides
the flow, the pressure field. Let us look for a way to learn and predict this pres-
sure field. We are going to take advantage of the previous reduced order model
of the fluid flow. As for the ROM of the flow, we are starting from the PDE of the
pressure to make a ROM emerge.

2.7.1 Mixed boundary conditions

Applying the divergence operator to equation 2.1.1 and using the boundary
conditions from 2.1.1 for u on Γi , i > 0, we get the following system of equa-
tions:

∆p =∇·
(

f − ∂u

∂t
− (u ·∇)u +ν∇2u

)
, on Ω,

p = ν∂u

∂n
+ 1

2
(u ·n)u −pext, on Γi , 1 ≤ i ,

∂p

∂n
=

(
f − ∂u

∂t
− (u ·∇)u +ν∇2u

)
·n, on Γ0,

(2.7.1)

From ∇·u = 0 on Ω and u = 0 on Γ0, we can get rid of the time derivatives and
the system simplifies into

∆p =∇· (f − (u ·∇)u +ν∇2u
)

, on Ω,

p = ν∂u

∂n
+ 1

2
(u ·n)u −pext, on Γi , 1 ≤ i ,

∂p

∂n
= (

f − (u ·∇)u +ν∇2u
) ·n, on Γ0,

(2.7.2)

Let pp be a particular solution of 2.7.2.
In order to write the weak form of 2.7.2, let us define

V = {
q ∈ H 1(Ω) | q = 0 on Γi , 1 ≤ i

}
. (2.7.3)

and
U =V +pp , (2.7.4)

We look for p ∈U so that∫
Ω
∆pq =

∫
Ω
∇· (f − (u ·∇)u +ν∇2u

)
q, on Ω, ∀q ∈V. (2.7.5)

124 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Integrating by parts we have∫
Ω
∆pq =−

∫
Ω
∇p∇q +

∫
Γ0

∂p

∂n
q

=−
∫
Ω
∇p∇q +

∫
Γ0

((
f − (u ·∇)u +ν∇2u

) ·n
)

q
(2.7.6)

and ∫
Ω
∇· (f − (u ·∇)u +ν∇2u

)
q =−

∫
Ω

(
f − (u ·∇)u +ν∇2u

)∇q

+
∫
Γ0

((
f − (u ·∇)u +ν∇2u

) ·n
)

q
(2.7.7)

Hence, equation 2.7.5 is equivalent to∫
Ω
∇p∇q =

∫
Ω

(
f − (u ·∇)u +ν∇2u

)∇q. (2.7.8)

This last equation seems convenient. However, some difficulties emerge when
handling the particular solution pp . Indeed, we would need to define a par-
ticular solution that depends gently on u. At this stage it seems complicated.
Furthermore, we cannot easily find a suitable basis for V , guaranteeing the ho-
mogeneous Dirichlet condition, from the learning data. We would need to get
further information for the field (the location of each element) which would
jeopardize the simple use of the SVD on the learning data.

2.7.2 Full Neumann boundary conditions

We can set the problem in a slightly different manner to make appear a ROM
structure more naturally. We can use the Neumann boundary conditions on
every Γi , i ≥ 0 (which is possible from 2.1.1):

∆p =∇·
(

f − ∂u

∂t
− (u ·∇)u +ν∇2u

)
, on Ω,

∂p

∂n
=

(
f − ∂u

∂t
− (u ·∇)u +ν∇2u

)
·n, on Γi , i ≥ 0,

(2.7.9)

This time we still can get rid of ∂u
∂t in the first line of the system thanks to the

∇·u = 0, but we cannot do the same in the second line as u is not equal to zero

2.7. MODELING THE PRESSURE 125

on Γi when i > 0:
∆p =∇· (f − (u ·∇)u +ν∇2u

)
, on Ω,

∂p

∂n
=

(
f − ∂u

∂t
− (u ·∇)u +ν∇2u

)
·n, on Γi , i ≥ 0,

(2.7.10)

Now let us define

V =
{

p ∈ H 1(Ω) |
∫
Ω

p = 0

}
(2.7.11)

We can decompose H 1(Ω) as the direct sum of two subspaces:

H 1(Ω) =V
⊕

span(1) (2.7.12)

The pressure p can be decomposed into the sum of a function of V and a uni-
form function e

p = p0 +e, p0 ∈V. (2.7.13)

Equation 2.7.10 is well posed in V .
After having integrated by parts the weak formulation of 2.7.10, we look for p0 ∈
V that satisfies∫

Ω
∇p0∇q =

∫
Ω

(
f − (u ·∇)u +ν∇2u

)∇q + ∑
i>0

∫
Γi

(
∂u

∂t
·n

)
q, on Ω. (2.7.14)

With this equation, p0 is well defined. Its dependency with respect to u is linear
and quadratic, and its dependency with respect to ∂u

∂t is linear.
We can now determine e thanks to the Dirichlet condition on Γi , i > 0. For
example if

p = ν∂u

∂n
+ 1

2
(u ·n)u −pext, on Γi , i > 0, (2.7.15)

we have

e =
∑

i>0
∫
Γi

(
ν∂u
∂n + 1

2 (u ·n)u −pext

)
−p0∑

i>0
∫
Γi

1
. (2.7.16)

So e depends in a linear and quadratic way on u.
From this, we cans state that the pressure p only depends on the fluid flow u (in
a linear and quadratic way), its time derivative (linearly), and on the dynamical
inputs f and pext. We are going build a static reduced order model of p based

126 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

on this result.
Projecting u and p on reduced bases we get

u ≈
ru∑

i=1
xu iϕi , (2.7.17)

f ≈
ru∑

i=1
b f iϕi , (2.7.18)

pext ≈
ru∑

i=1
bp i

(
ϕk ·n

)
. (2.7.19)

and

p ≈
rp∑

i=1
xp iψi , (2.7.20)

The projection on this reduced basis leads therefore to the following model of
the pressure

xp = Au xu +q N (xu)+ Au̇ ẋu +B f b f +Bp bp +ε, (2.7.21)

where Au , Au̇ , B f and Bp are in R×, and ε is just a scalar.
The quadratic term q N makes the link between the flow and the pressure as
follows

q N
k (x) =

n∑
k=1

x t Nk x (2.7.22)

where Nk is ru × ru × rp .
Here the hypermatrix N is not cubic and there is no stability constraint for its
coefficients contrary to what is done for the dynamical part in section 2.3. In-
deed, there is no stability constraint to watch for, the nonlinear term in 2.7.21
does not imply clear energy properties and that is not a problem as it only plays
a static role. Nevertheless we keep reducing the number of non-trivial elements
of N in order to avoid that two different N 1 and N 2 lead to the same application
(as done in section 2.3).

2.7.3 Experimental results: back to the coronary test case

To test this ROM, let us go back to the coronary test case.
The whole model is then(

xi+1
u −xi

u

)
=W

(
x

i+ 1
2

u

)
+Bbi+ 1

2 +e

xi+1
p = A1xi+1

u + A0xi
u +q N (xi+1

u)+Bbi+1 +ε.
(2.7.23)

2.7. MODELING THE PRESSURE 127

The upper part of the model is already identified by the previous experiment.
The lower part is the one that is going to be identified from learning here. It has
been marginally modified compared to 2.7.21 in order to adapt to the discrete
time decomposition. The time derivative does not appear explicitly. Instead,
two time steps are used in the linear part. Hence A0 and A1 play together the
role of Au and A·u . The scheme is not centered, but this has no major impact
as we are not building a dynamical model here but rather post-processing the
flow xu to model the pressure xp .
The only unknowns to be identified are N , A1, A0, B and ε.
The experiment is performed following the same steps as in section 2.6.1. The
learning and validation dynamical inputs are the same as earlier and can again
be observed in Figure 2.6.

2.7.3.1 Preprocessing the learning data

As a first step we perform a SVD of the learning pressure field. The singular
values behavior is shown in Figure 2.12.

Figure 2.12 – Singular values for the learning pressure field (logarithmic scale)

We choose to keep only the first ro = 4 modes from the SVD. The projection
error is 0.0305. The SVD time coefficients are used as the xp from 2.7.23.

2.7.3.2 Learning phase

Let us remind that the number of fluid coefficients rd from previous section is
6.
The quality of the learning is shown in Figure 2.13.

128 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Figure 2.13 – Learning - Blue line is the reference and dashed red line is the
ROM.

The relative error for each time coefficient is depicted in the table below

Table 2.4 – Learning - Relative error for the SVD time coefficients

1 2 3 4
L2 relative error 0.0019 0.0082 0.0038 0.0026
L∞ relative error 0.0065 0.0129 0.0054 0.0035

In the first validation case the projection error is 0.0312. In the second one it is
0.0289.

2.7.3.3 Validation

Validation 1 We can observe the quality of the first validation case in Figure
2.14.

2.7. MODELING THE PRESSURE 129

Figure 2.14 – Validation 1 - Blue line is the reference and dashed red line is the
ROM.

The relative error for each time coefficient is depicted in the table below

Table 2.5 – Validation 1 - Relative error for the SVD time coefficients

1 2 3 4
L2 relative error 0.0261 0.0504 0.0082 0.0024
L∞ relative error 0.0357 0.0854 0.0391 0.0048

Validation 2 We can observe the quality of the first validation case in Figure
2.15.

130 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Figure 2.15 – Validation 2 - Blue line is the reference and dashed red line is the
ROM.

The relative error for each time coefficient is depicted in the table below

Table 2.6 – Validation 2 - Relative error for the SVD time coefficients

1 2 3 4
L2 relative error 0.0261 0.0504 0.0082 0.0024
L∞ relative error 0.0357 0.0854 0.0391 0.0048

As a result we observe that this ROM is quite efficient to recover a global be-
havior for the pressure. In the future we would like to be able to build the model
relying only on a learning pressure field. That means being able to build at the
same time a compatible dynamical model for the fluid and a fluid-to-pressure
model that make it possible to fit the targeted pressure. Unfortunately, the data
we have been provided here are not rich enough to attempt that. Especially
because the learning dynamical input does not provide enough information.

2.8. CONCLUSION AND PERSPECTIVES 131

2.8 Conclusion and perspectives

We have seen thanks to the coronary test case that dynaROM can give satisfac-
tory results on experiments coming from CFD computations.
However the most important feature with this ROM is that it only requires
learning data to be created. Therefore it can be considered as part of the world
of machine learning. Measured data can be used to build a stable ROM.
Unfortunately, we did not get access to appropriate data of this kind. The only
opportunity we got to experiment building a ROM with measures was in the
field of weather forecasting. Adagos has been working with a start-up named
Wezr on short-term weather forecasting using artificial neural networks. Be-
sides that, we decided to try to use dynaROM to make a self-consistent model
of the wind measured by weather stations in the region of the San Francisco
Bay. A document presenting the general work we have done in the field of
weather forecasting and more specifically the experiment using dynaROM can
be found at www.adagos.com/romweather201805111708. However the use of
dynaROM in this particular case is a bit frustrating as there is no dynamical ex-
citation. DynaROM is only used as a data assimilation tool where the initial
condition x0 is tuned using the latest measures to get a new prediction.
We look forward to getting a more suitable test case involving measured data
and dynamical excitations.

www.adagos.com/romweather201805111708

132 CHAPTER 2. DYNAMICAL REDUCED ORDER MODELS

Chapter 3

A contribution to sparse grids

Sparse grids (SPG) are used as part of a hierchical numerical method of func-
tion approximation. They were originally developed by Sergey A. Smolyak in
[24].
They are made to approximate high dimensional functions. They naturally of-
fer the possibility to build step by step a design of experiment (i.e. the learning
set of data).
In this chapter we will first introduce the key principles of state of the art SPG
techniques in section 3.1. We will also present the alternative choice of basis
functions we have made.
Then we will study how SPG methods perform compared to a reference method
that is Kriging 3.2.
Finally, we will introduce a way to enhance the dimensional adaptavity strategy
that features in the SPG method 3.3. The efficiency of this method will be illus-
trated with an industrial experiment in the field of nuclear energy.
We will also say one word about the fact that SPG method can be adapated to
zROM 1, the reduced order model for structural analysis, in order to release the
latter as a product.

3.1 How do they work?

The goal is to build an estimate g of computationally intensive function G . As
it stands there is no prior information on the model.
That method is particularly interesting in high dimensional problems.

133

134 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

3.1.1 The one dimensional case

Before getting into more complex material it is instructive to have an insight
into the 1D case in order to get familiar with the mathematical notations.
The reference function is G : [0,1] 7→R and the approximate is g : [0,1] 7→R.

Let X i =
{

xi
j ∈ [0,1], j = 1,2, . . . ,mi

}
be the set of nodes at level i , then X i ⊂ X i+1.

The level i interpolation of G is

gi (G) = ∑
xi

j∈X i

ai
j G(xi

j),

where
{

ai
j ∈C ([0,1]), j = 1,2, . . . ,mi

}
are the basis functions subject to:

• ∀ j ∈ 1, . . . ,mi , ai
j (xi

j) = 1 ,

• ∀(j ,k) ∈ 1, . . . ,mi
2, j 6= k, ai

j (xi
k) = 0.

Let ∆i be the difference level i and level i −1 interpolations:

∆i =
∑

xi
j∈X i

∆

ai
j (G(xi

j)− gi−1(xi
j)) = ∑

xi
j∈X i

∆

ai
j w i

j ,

where,

• X i
∆ = X i X i−1 is the set added nodes to level i −1,

• w i
j =G(xi

j)− gi−1(xi
j) is called the j th surplus and is computed by evalu-

ating the difference between G and gi−1 at xi
j .

Therefore, to compute the level i interpolation we just need to compute w i
j .

3.1.1.1 Usual basis functions

There are two main versions of SPG techniques. The first one uses a Clenshaw-
Curtis grid and piece-wise linear basis functions. The second one relies on a
Chebyshev grid and polynomial basis functions.
The Clenshaw-Curtis grid is the simplest:

xi
j =

{
0.5 for j = 1,mi = 1

j−1
mi−1 for j = 1, . . . ,mi ,mi > 1

3.1. HOW DO THEY WORK? 135

and

mi =
{

1 for i = 1
2i−1 +1 for j > 1

Generally this type of grid is paired with piece-wise linear basis functions

a1
1 = 1,

ai
j (x) =

{
1− (mi −1)|x −xi

j | if |x −x j | < 1
mi−1 ,

0.

The basis functions from level 0 to 2 are pictured in Figure 3.1.

Figure 3.1 – Piece-wise linear basis functions

The second major option is to use the Chebyshev grid. It is the way to go
when we want to deal with polynomial basis functions. The reason is that it
allows to avoid the Runge’s phenomenon [26]. The grid is then

xi
j =

{
0.5 for j = 1,mi = 1
1
2

(
1− cos

(
π

j−1
mi−1

))
for j = 1, . . . ,mi ,mi > 1

mi =
{

1 for i = 1
2i−1 +1 for j > 1

And the basis functions come from Lagrangian polynomials

ai
j (x) =

{ ∏m
k=1,k 6= j

x−xi
k

xi
j−xi

k

for i > 1, j = 1, . . . ,mi .

Those functions are pictured in 3.2.

136 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

Figure 3.2 – Lagrangian polynomials

3.1.2 Multiple Dimensions

At this point we did not get the chance yet to observe the benefits of a sparse
grid. To do so we need to examine the multidimensional case. We now consider
the reference function G : [0,1]d 7→ (R) and the sparse grid approximate g .
For k = 1, ...,d , let X ik be a set of nodes at level ik .
Using tensor product, the interpolation formula over X =∏d

k=1 X ik is

g (i1, . . . , id)(G) = ∑
x

i1
j1
∈X l1

· · · ∑
x

id
jd
∈X ld

G
(
xi1

j1
, . . . , xid

jd

)(
ai1

j1
⊗ai2

j2
⊗ . . . aid

jd

)

The sparse grid relies on the fact that we do not compute every possible tensor
product, but only the ones such that

|k|1 =
d∑

i=1
ki ≤ d +N −1,

with k = (k1, . . . ,kd).

Figure 3.3 – A sparse grid

3.1. HOW DO THEY WORK? 137

Table 3.1 – Number of grid points depending on the method

Method dim=2 dim=10 dim = 100
Plain Grid 52 = 25 510 ≈ 107 5100 ≈ 7×109

Sparse Grid 13 221 20201

The sparse grid method is a way to overcome the so called curse of dimen-
sionality. The accuracy obtained with piecewise linear basis functions, with
respect to the L2 and L∞ norms, in the case the solution has bounded second
order mixed derivatives is mentioned in [25]. These results are presented in
Table 3.2. We can observe from the accuracy behavior with respect to d the
benefits of sparse grids compared to plain ones.

Table 3.2 – Number of grid points depending on the method and the dimension
and the corresponding accuracy d

Level n (let N = 2n +1) Number of points Error ‖G − g‖p , p = 2 or ∞.
Plain Grid N d O (N−2)
Sparse Grid (Clenshaw-Curtis) O (N l og (N)d−1) O (N−2|l og2(N)|3(d−1))

3.1.3 Error estimator

Sparse grid methods rely on their hierarchical structure. The procedure is to
add gradually the grids by analyzing error estimators.
Those estimators are

• e l
abs = max|i |1=d+l ||w i

j ||∞,

• e l
r el =

e l
abs

M−m ,

where M = max|i |1=d+l , j G(X i
j) and m = min|i |1=d+l , j G(X i

j).
Thanks to these two quantities we can estimate what the error may be at every
time a level is added. Thus we can target a given accuracy.

3.1.4 Dimensional adaptativity

From the error estimators we can select which level (i.e. sub-grid) is the most
interesting to add. This allows the model to favor the most significant inputs.

138 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

It is very convenient to fight the curse of dimensionality. When dealing with a
problem involving real physics and a large set of input parameters, we can of-
ten observe that a large number of the latest are not playing a major role. The
Sparse Grid techniques using the dimensional adaptativity allow the model to
seek for the most efficient enrichment of the design of experiment and the cor-
responding basis functions.
In practice, in this work, we used the Matlab Sparse Grid Interpolation Toolbox
developed by Andreas Klimke at the Institute of Applied Analysis and Numeri-
cal Simulation, at the High Performance Scientific Computing lab ("Lehrstuhl
für Numerische Mathematik für Höchstleistungsrechner"), Universitat Stuttgart
during his Ph.D. studies. The dimensional adaptivity strategy is precisely de-
scribed in the corresponding reference [27].
Basically it relies on the degree of dimensional adaptativity degree r set a priori

r = nAd aptPoi nt s

nTot alPoi nt s
, (3.1.1)

where nAd aptPoi nt s is the number of points added according to a purely adap-
tive refinement rule based on the local error estimations, and nTot alPoi nt s de-
notes the total number of sparse grid points.

3.1.5 Alternative basis functions

Basis functions used in sparse grid method are usually piecewise linear func-
tions or polynomials. They both have disadvantages. The first ones are not
smooth and get very local as the level number increases in the enrichment
strategy. The last ones are exposed to Runge’s phenomenon, a problem of oscil-
lation at the edge of an interval when interpolating a function with high degree
polynomials.
To remedy that, we decided to use cubic splines. They are more regular and
global than piecewise linear functions but allow to avoid the drawbacks of poly-
nomials. Furthermore, they perform perfectly well on the classical and "healthy"
Clenshaw-Curtis grid. The first levels of these new basis functions are displayed
in Figure 3.4. They are very close to polynomials at this stage.

3.2. COMPARISON WITH KRIGING 139

Figure 3.4 – Adagos basis functions

3.2 Comparison with Kriging

We have performed several tests to compare SPG methods to Kriging, an in-
terpolation method that is very popular within the industrial world. For this
purpose we are using two kinds of multivariate functions: the academic ones
and the physical ones. The kriging toolbox we use is DACE [28].

3.2.1 Academic functions

Here are some academic functions that allow to test approximation methods.
The first 3 ones have been suggested by our partner Areva.

• G1 (d=4):

f (x1, x2, x3, x4) = 3x1 +10−6x3
2 +2x3 + 2

3 10−6x3
4 , ∀(x1, x2, x3, x4) ∈Ω,

Ω= [0,0,−0.55,−0.55]× [1200,1200,0.55,0.55]
(3.2.1)

140 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

• G2 (d=7):

f (x1 . . . , x7) = (x1 −10)2 +5(x2 −12)2 +x4
3 +3(x4 −11)2 +10x6

5 +7x2
6 +x4

7 −10x6 −8x7,
∀(x1, . . . , x7) ∈Ω,Ω= [−10,10]7

(3.2.2)

• G3 (d=2):
f (x1, x2) = x2

1 x3
2 , ∀(x1, x2) ∈Ω,

Ω= [−5.5,5.5]2 (3.2.3)

• CarreDec (d=N):

f (x1, . . . , xN) =∑N
i=1(xi −1)4, ∀(x1, . . . , xN) ∈Ω,
Ω= [−10,10]N (3.2.4)

• DFunc (d=2):

f (x1, . . . , xN) =∑N
i=1 |xi −0.5|, ∀(x1, . . . , xN) ∈Ω,
Ω= [−10,10]N (3.2.5)

• Rosenbrock (d=2):

f (x1, . . . , xN) =∑N
i=1

(
1−x2

i +1000
(
xi+1 −x2

i

)2
)

,

∀(x1, . . . , xN) ∈Ω,Ω= [−5,10]N
(3.2.6)

• Rosenbrock anisotropic (d=2):

f (x1, . . . , xN) =∑N
i=1

(
1− (2i

N xi
)2 +1000

(
2(i+1)

N xi+1 −
(2i

N xi
)2

)2
)

,

∀(x1, . . . , xN) ∈Ω,Ω= [−5,10]N
(3.2.7)

• Welch et al. function (d=2):

f (x1, . . . , x20) = 5x12
1+x1

+5(x4 −x20)2 +x5 +40x3
19 −5x19

+0.05x2 +0.008x3 −0.03−0.03x7 −0.09x9 −0.01x10−
0.07x11 +0.25x2

13 −0.04x14 +0.06x15 −0.01x17 −0.03x18,
∀(x1, . . . , x20) ∈Ω,Ω= [−0.5,0.5]20

(3.2.8)

3.2. COMPARISON WITH KRIGING 141

3.2.2 Functions from physical problems

• Wingweight (d=10): The Wing Weight function models a light aircraft
wing. The response is the wing’s weight.

• Otlcircuit (d=6): The OTL Circuit function models an output transformer-
less push-pull circuit. The response Vm is midpoint voltage.

• Piston (d=7): The Piston Simulation function models the circular motion
of a piston within a cylinder. It involves a chain of nonlinear functions.
The response C is cycle time in seconds.

• Borehole (d=8): The Borehole function models water flow through a
borehole. The response is water flow rate, in m3/yr .

3.2.3 Results table

The results are displayed in Table 3.3. We can read the name of the function,
the dimension number (Dim), the targeted tolerance (Tolerance), the number
of points (Number of points), and the mean root mean squared error (RMSE)
for both sparse grid (SPG) and kriging (DACE).
The number of point is set by the sparse grid method through its enrichment
strategy to get to a given tolerance target. Then we give DACE (the Kriging tool-
box) the same number of points of experiment in the form of a latin hypercube
sampling, that is the design of experiment that suits Kriging best.

142 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

Function Dim Tolerance Number of
points

SPG (RMSE) DACE
(RMSE)

G1 4 0.1 17 1.24×10−11 0.0286
G2 7 0.1 29 0.00212 1.05
G3 2 0.1 37 2.51×10−16 0.0299
DFunc 10 0.1 261 0.00669 0.0562
CarreDec 10 0.1 261 0.0015 0.16
Rosenbrock 10 0.1 257 0.000848 0.18
Rosenbrock 30 0.1 1980 0.000676 0.116
Rosenbrock
anisotropic

10 0.1 57 0.0222 0.323

Rosenbrock
anisotropic

30 0.1 119 0.0467 0.568

Welchetal92 20 0.1 173 0.232 0.612
Welchetal92 20 0.01 557 0.0332 0.447
Wingweight 10 0.1 119 0.00211 0.00379
Wingweight 10 0.01 263 0.000628 0.00148
Wingweight 10 0.001 629 8.83×10−5 0.000686
Otlcircuit 6 0.1 21 0.0116 0.0265
Otlcircuit 6 0.01 71 0.00125 0.00842
Otlcircuit 6 0.001 95 0.000178 0.00302
Piston 7 0.1 55 0.0897 0.0983
Piston 7 0.01 241 0.0096 0.0128
Piston 7 0.001 1460 0.00203 0.00261
Borehole 8 0.1 89 0.00899 0.0208
Borehole 8 0.01 113 0.00494 0.017
Borehole 8 0.001 251 0.000812 0.0034

Table 3.3 – Table of results

3.2. COMPARISON WITH KRIGING 143

144 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

3.3. ENHANCED DIMENSIONAL ADAPTATIVITY 145

3.3 Enhanced dimensional adaptativity

While testing the benefits of SPG on high dimensional problems we found out
that the built-in dimensional adaptativity strategy may have defects.
Usual sparse grid methods cannot interpolate a dimension d linear function
with O (d) points.
Let us detail the first steps of the heuristic of the usual sparse grid toolbox [27]
in the case of multivariate linear function. d denotes the dimension.

G(x) = b +aT x, x ∈ [−1,1]d .

What happens during the building process if we assume that every ak is greater
than the absolute tolerance that is targeted (tol)? We are going to check this
out step by step.

Level 0 The coefficient multiplying the constant function linked to the level 0
grid is G(0) = b.

Level 1 The set of points of sub-grids at level 1 are the ones such that xi =±1
and xk = 0,∀k ∈ �1,d�\{i }. In dimension 3 the grid is displayed in Figure 3.5.

146 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

Figure 3.5 – 3d sparse grid at level 1

Level 2 At this point, all the error estimators are greater than the target toler-
ance, because of the assumption tol ≤ ak . Thus, no matter what the dimen-
sional adaptativity degree r is, every sub-grid of level 2 is added according to
the strategy implemented in the reference sparse grid toolbox [27]. In the case
d = 3, the grid is displayed in Figure 3.6.

Figure 3.6 – 3d sparse grid at level 2

3.3. ENHANCED DIMENSIONAL ADAPTATIVITY 147

At this stage of the process, the number of points in the grid is

npoi nt s = 1+4d +2d(d −1).

This number is huge when the dimension grows. This is due to the term 2d(d −
1). It corresponds to the introduction for the first time at this stage of crossed
levels. These are the first sub-grids (with their corresponding basis functions)
that make it possible for two separate inputs to interact. Every sub-grid con-
tains 4 points and there are d(d−1)

2 of them (2 choose d).
If we take the example of d = 100, 20201 points are used to approximate G ,
which is huge.
The problem is that the approximation was already good at level 1. But the
standard process was not able to find it out.
This problem is more general that it appears. When dealing with function com-
ing from a physics problem involving a lot of variables (i.e. d is large), we may
assume that many of them only have a small influence that can be approximate
as linear, and their interactions may be negligible. We have to avoid adding un-
necessary crossed levels involving those variables.
That is why we are suggesting alternative strategies.

3.3.1 Alternative strategies

At level 1 the approximation was already good. So we need to find way to know
that. We imagined several ways to do that. The general principle is to assume
that variables that only have a linear influence (when every other are set to zero)
do not have significant interactions with remaining variables.

Method 1 The first implemented method relies on the introduction of a lin-
earity index which quantifies how much the function seems to behave accord-
ing to every dimension.
Let us focus on the k th dimension and set every other input to 0. When getting
to level 1, two surpluses, e1 and e2, are computed at x1 and x2 the points such
that x1

k =−1 and x2
k = 1 (all others input being set to zero).

e1 =G(x1)−G(0),

e2 =G(x2)−G(0).

If |e1 + e2| ≤ ε, meaning that e1 and e2 are close to be inverse additives (ε be-
ing chosen to be small), we may make the assumption that the behavior of the

148 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

function according to this dimension is linear. From that conclusion we decide
to stop the enrichment involving this dimension.
Doing so for each and every dimension, we build a set of dimensions that we
assume have at most a linear effect in the function’s behavior. We call it Dl i n

. We will not add, at least initially, any crossed level involving dimensions in
Dl i n .
In the case of a linear function that means that there is no crossed level added.
Therefore the approximation of G is achieved using only 2d +1 learning points.

Method 2 In a similar manner we want to find out the "linear dimensions",
i.e. the variables playing only a linear role. To do so we decide to go to level
2 for every dimension, but paying attention of not adding any crossed level.
That process allows to validate or not the surrogate that was built at level 1.
Every dimension along which the level 1 approximation is validated thanks to
the partial level-2 points. At this stage we form Dl i n and forbid the addition of
crossed levels involving inputs among this set (in a first place at least).
In the case of a linear function the approximation of G is achieved using only
5d +1 learning points.
This is far more robust than method 1, and the number of evaluations is of the
same order.

3.3.2 A more general method

3.3.2.1 Gathering information as soon as possible

From the last example with the linear function, we observed that it is impor-
tant to postpone the moment we add computationally intensive crossed levels
in order to gather as much information as needed to make a decision.
We realized that, whatever the strategy about crossed levels is, some sub-grids
(and therefore learning points) will be introduced anyway to satisfy the toler-
ance we target. Those grids can provide us with a great piece of information
about the function.
Let us get into the details and consider G : x →G(x) where x ∈Rd . Whatever the
adaptativity strategy is, to satisfy the tolerance criterion, we will reach a mini-
mum level order along every single dimension (no crossed level involved at this
stage). An example of this exploration is pictured in Figure 3.7.

3.3. ENHANCED DIMENSIONAL ADAPTATIVITY 149

Figure 3.7 – Sparse grid without crossed level

The hypothetical crossed levels that could be candidate to be added have
no impact on the 1D approximation of the function along every single dimen-
sion (every other inputs being set to 0 if the box is [−1,1]d).
However, in the usual SPG method, if we have to reach the level 10 for the first
dimension, we will first add all the candidate crossed levels of lower order be-
fore reaching it. But this is a shame as we should gather all the information we
will have eventually anyway before making decisions about the exploration of
the crossed levels.
Thus, with the strategy we propose here, we first achieve every 1D approxima-
tion. Then we can sort the variables according to their appearing contribution
to the function and promote the most important ones. We will favor the addi-
tion of crossed levels between variables seeming to have a significant impact
on the function.

150 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

We can adopt the same strategy at higher levels. For example as soon as we
decide to introduce interactions between xi and x j , we can keep improving the
approximation in this 2D subspace as long as the tolerance is not reached. We
will use this new information to decide what crossed level involving 3 or more
inputs (even more computationally intensive) should be added.
To sum up this is a way to get information, that will eventually be provided in
any case, as soon as possible in order to make choices. This is a very different
approach from usual sparse grid methods.

3.3.2.2 Looking for interactions

We want to find a way to quantify how strongly an input interacts with its peers
for the function G−g , that is the difference between the reference function and
the current model, and represents what remains to be learned.
Let us assume that, following the strategy described in the previous paragraph
3.3.2.1, we have already performed a satisfactory approximation along every
dimension.
From then, we consider a new point of the space c = [±1, . . . ,±1], that is a corner
of the [−1,1]d hypercube. Then we introduce a set of d new vectors deriving
from c.

c i s.t.

{
c i

i = 0 ,
c i

k = ck ,∀k 6= i

In practice, we set the i th element of c i to zero.
Then by computing

γk = ∣∣(G − g
)

(c)− (
G − g

)
(ck)

∣∣ , ∀k ∈ {1, . . . ,d}.

and by sorting the γk we can get a good guess of the inputs that interact the
most strongly with others. If γk is large we can bet that the interaction of the
k t h input with others is strong. In fact, by setting the k t h input variable to zero,
if the difference of G − g at c and ck is large, it potentially means that the k t h
input is strongly involved in the value of G − g at c.
Of course it is just one estimation. That is why we may want to play with dif-
ferent c (different corners) to be more accurate. In practice it is an operation
involving only O (d) computations, which is very cheap compared to the cost of
adding blindly new crossed levels.
In practice, this is pretty efficient at finding a subset of inputs for which we
should add crossed levels (putting the other ones aside).

3.3. ENHANCED DIMENSIONAL ADAPTATIVITY 151

3.3.3 Test case: Fast Neutron Reactor

We had the chance to implement this enhanced sparse grid method into an
industrial test case: a cylindrical fast reactor.
The objective is to create a parametric model of the reactivity R as a function of
the combustible enrichment.
The initial configuration of the reactor is pictured in Figure 3.8.

• F ERT : Fertile,

• ABS: Absorbing medium,

• C 11, C 17 and C 23: combustible with 11, 17 and 23 enrichment percent-
age.

Figure 3.8 – Initial configuration

The solver we use is ERANOS [29].
The input variables are the combustible enrichment for every cell: 129 param-
eters pi , i = 1, . . . ,129. Thus d = 129.
If we call ci the initial enrichment percentage of cell i , we build a model for

152 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

pi ∈ [ci −4%;ci +4%] .
The connection of the SPG algorithm to the ERANOS solver is a work that has
been made by Mathieu Causse (Adagos), as well as the running of the following
experiments.

3.3.3.1 First experiment

In this first experiment the quantity we want to model is the reactivity R.

• The adapted SPG process reaches its goal after 387 calls to ERANOS.

• The estimated relative error is 3.0×10−3.

• The actual error on validation data set (latin hypercube sampling) is 4.2×
10−4.

Figure 3.9 – Significant parameters and interactions

In Figure 3.9,

• the circles show the most significant parameters according to the SPG
method.

• the lines connecting circles show parameters that interact in the SPG model.

With the usual SPG method, the number of calls to Eranos was exceeding 1000
(due to the interaction between input variables having only a linear influence)
without getting to target tolerance yet. We stopped the model creation at this
point.

3.3. ENHANCED DIMENSIONAL ADAPTATIVITY 153

3.3.3.2 Second experiment

In this second experiment the output we want to model is the void effect on
reactivity R −Rvoi d . It is the difference in reactivity before and after the reactor
is being emptied wit respect to the initial configuration.
Figure 3.10 shows that our method is able to catch the most significant param-
eters and their interactions.

Figure 3.10 – Significant parameters and interactions

Once again,

• circles show the most significant parameters according to the SPG model,

• lines connecting circles show parameters for which interactions have been
introduced.

One can observe on Figure 3.10 that two separate zones interact. This phe-
nomenon is physically consistent and is due to the TOPAZ design as explained
in [30].
That shows that the proposed method managed to exhibit meaningful interac-
tions without adding a large number of unnecessary crossed levels.

154 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

3.4 Prospects: application to zROM

We are adapting Sparse Grids to zROM 1, the reduced order model for structural
analysis, in order to release the latter as a product.
The sparse grids are used to build the design of experiment iteratively. At each
stage, a zROM model is built based on the algorithm of selection of the basis
functions 1.8.3.3.
The main difficulty is that the model is not interpolating contrary to usual SPG.
So we have to rethink completely the error estimations and consequently the
way the sub-grids are introduced.

3.4.1 Preliminary results: the vibrating plate

We have run tests with the vibrating plate test case 1.9.4. The specifications of
the experiment are the same as earlier.
We chose this test case because we have access to the solver and consequently
we can monitor the design of experiment. So we connected the SPG method to
zROM and started the experiment.
We disabled the dimensional adaptativity as we do not know how to deal with
it at the moment.
We are going to see how the ROM evolves when the sparse grid grows from level
1 to level 4.
At every level we update the preprocessing of the learning data and we keep
only 2 coefficients from the SVD. We decided to set a rule of thumb to define the
prescribed number of basis functions nbf we want to introduce at each level:

nbf =
nl

5
+1, (3.4.1)

where nl is the number of learning points for the current sparse grid. In prac-
tice, the actual number of basis functions in the model can exceeded nbf if the
last step in the selection 1.8.3.3 introduces several basis functions at once.
For every level we are going to display:

• The sparse grid and the basis function levels.

• The behavior of the model for the coefficients of the SVD (the SVD being
updated at each level). This behavior will be depicted for the same valida-
tion data (i.e. the same lengths of the plate L1 and L2 and frequencies) as
in 1.9.4. To reduce the number of graphics we only display the frequency
where the error is the largest.

3.4. PROSPECTS: APPLICATION TO ZROM 155

3.4.1.1 Level 1

A this stage the number of learning points is 7.

Figure 3.11 – Sparse grid and basis functions at level 1

Figure 3.12 – Comparison between the reference (left) and the ROM (right) for
the SVD coefficients at level 1

156 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

The validation relative error for the entire field (not the SVD coefficients) is
1.7239.

3.4.1.2 Level 2

A this stage the number of learning points is 25.

Figure 3.13 – Sparse grid and basis functions at level 2

3.4. PROSPECTS: APPLICATION TO ZROM 157

Figure 3.14 – Comparison between the reference (left) and the ROM (right) for
the SVD coefficients at level 2

The validation relative error for the entire field is 2.5398.

3.4.1.3 Level 3

A this stage the number of learning points is 69.

Figure 3.15 – Sparse grid and basis functions at level 3

158 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

Figure 3.16 – Comparison between the reference (left) and the ROM (right) for
the SVD coefficients at level 3

The validation relative error for the entire field is 0.1139.

3.4.1.4 Level 4

A this stage the number of learning points is 177.

Figure 3.17 – Sparse grid and basis functions at level 4

3.4. PROSPECTS: APPLICATION TO ZROM 159

Figure 3.18 – Comparison between the reference (left) and the ROM (right) for
the SVD coefficients at level 4

The validation relative error for the entire field is 0.0161.

These first results are encouraging in the sense that the shape of the sparse
grid does not seem to cause any trouble to zROM.
This sparse grid has the advantage to be easily refined iteratively (going one
level further) without having to multiply the number of learning points by 2d as
it would be the case for a cartesian grid.
However we still need to find a way to implement the dimensional adaptativity
strategy in this more complicated scenario.

160 CHAPTER 3. A CONTRIBUTION TO SPARSE GRIDS

Appendix A

Algorithmic differentiation

Calculating the gradient of a function is crucial for many applications in the
field of inverse problems, optimization, machine learning and many others.
Within this framework, we are going to introduce the useful concept of forward
and backward mode differentiation.

A.1 Forward and backward mode differentiation

Let us define the function f
Rn 7→Rm

y = f (x)
(A.1.1)

The forward mode differential is the usual one. For d x ∈Rn we write[
y,d y

]= d f (x,d x) (A.1.2)

where d y is in Rm and equals

d y = ∂x f d x

= lim
ε 7→0

f (x +εd x)− f (x)

ε
.

(A.1.3)

Alternatively, the backward mode is called p f . For py ∈Rm we define[
y, px

]= p f (x, py) (A.1.4)

where px is in Rn and is defined by

pxi = pyT ∂ f

∂xi
= ∂

(
pyT f

)
∂xi

(A.1.5)

161

162 APPENDIX A. ALGORITHMIC DIFFERENTIATION

To sum up, the forward mode allows to compute the derivative of every output
with respect to a scalar parameter (a linear combination of the inputs defined
by d x). Symmetrically, the backward mode allows to compute the derivative of
a linear combination of the outputs (defined by py) with respect to every input.
The use of forward and backward modes is popular in algorithmic differentia-
tion, and is especially used in the fied of optimization [23]. Those differentia-
tion modes are used at every step of a computing program.
If we call D f the Jacobian matrix of f , we have in more simple manner

d y = D f d x (A.1.6)

and
px = D f T py (A.1.7)

The role of d f and p f is to avoid computing explicitly D f . In practice, for
the application described in this document we compute d f and p f by hand
without using an automatic differentiation software.
For this reason we need a test to check that we are not mistaking. To do so we
use the following property

(d x|px) = (d x|D f T py)

= (D f d x|py)

= (d y, py).

(A.1.8)

This allows us to launch a test. If the scalar products mismatch, the calculation
of the forward and backward mode differentials is indeed wrong.

A.2 Gauss-Newton method

Let us consider

f : Rn → Rm

x → y = f (x).
(A.2.1)

Our goal is to minimize ‖ f (x)‖2
2 =

∑m
i=1 fi (x)2. To do so we use a Gauss-Newton

algorithm, the well-known iterative method to solve non-linear least squares
problems.
Starting from x0 the method proceeds by the iterations

xs+1 = xs − (
D f T D f

)−1
D f T f (xs), (A.2.2)

A.3. SEQUENCE OF INSTRUCTIONS 163

where D f is the Jacobian matrix of f .
Let d be such that

d = (
D f T D f

)−1
D f T f (xs). (A.2.3)

In practice we never invert D f T D f , but rather solve(
D f T D f

)
d = D f T f (xs). (A.2.4)

If the problem is small we can compute explicitly J f and solve the linear system
via a direct method.
Alternativelyn, if it gets to large, we will not build the Jacobian matrix D f but
use the forward and backward mode differentials. The linear system is then
solved by a conjugate gradient method. This method is generally efficient as
the eigenvalues of D f will often tend quickly towards zero in the problems we
address.
Let us define the forward and backward modes as in section A.1 (taking only
the second output for writing convenience)

[d y] = d f (x,d x), (A.2.5)

[px] = p f (x, py), (A.2.6)

Thus the internal linear system to be solved in Gauss-Newton is equivalent to
looking for d so that

p f (xs ,d f (xs ,d)) =−p f (xs ,F (xs)). (A.2.7)

This system can be solved iteratively via a conjugate gradient method. Once d
is identified, we get

xs+1 = xs +d . (A.2.8)

A.3 Sequence of instructions

Let f be
f : Rn 7→Rm

x 7→ f (x)
(A.3.1)

where x = (x1, . . . , xn). The xi for i = 1, . . . ,n are called independent variables.
Usually, when dealing with complex algorithms, the functions we might want
to handle can be the result of a long and complex sequence of instructions. For

164 APPENDIX A. ALGORITHMIC DIFFERENTIATION

example, the f function can be decomposed in a series of simpler instructions.
Assuming that there are K instructions fi , we define (xn+1, . . . , xN) the so called
intermediate variables (where N = n +K). f is then defined as

for i = n +1 to N {

xi = fi (x1, ..., xi−1) }

f = xN

(A.3.2)

Generally the intermediate functions fi only depends on a few variables x j , for
j < i . Hence we define Si ⊂ (1, . . . , i − 1) the actual subset of useful variables.
That leads to

for i = n +1 to N {

xi = fi (xSi) }

f = xN

(A.3.3)

These intermediate functions can be simple analytic functions, as well as parts
of computer codes. Let us take an example,

f (x) = 1+ sin(x1 +x2)

x2
1 +exp(x2)

. (A.3.4)

This can be decomposed as
x3 = x1 +x2

x4 = sin(x4)
x5 = 1+x4

x6 = exp(x2)
x7 = x2

1
x8 = x6 +x7

f = x9 = x5
x8

.

(A.3.5)

A.3.1 Forward mode differentiation

The forward mode is not difficult. It just consists in calculating the gradients of
every intermediate function fi and applying the usual rules of function compo-
sition. We can initialize the first n d xi to the suitable value and then{

for k = n +1 to N {

[xk ,d xk] = d fk (xSk ,d xSk) }
(A.3.6)

A.4. EXAMPLE 165

A.3.2 Backward mode differentiation

Assuming that we have already computed the values of the intermediate vari-
ables we compute the reverse mode as follows, starting with initializing every
pxi , i ≤ n to zero, and for example pxi to py for n +1 ≤ i ≤ N .

for k = N down to n +1 {[·, pxtemp
]= d fk (xSk , pxk)

∀i ∈ Sk , pxi = pxi +pxtemp }

(A.3.7)

A.4 Example

We should highlight the fact that the intermediate functions can take various
forms. For example one of the instruction can consist in solving a system. Let
us take the following example

f : Rn 7→Rm

x 7→ f (x)
(A.4.1)

where f (x) is the solution to
A(x)u = b (A.4.2)

Let us define
x1 = f1(x) = A(x) (A.4.3)

and f2 is the part of the algorithm that x1 as an input, solves

x1u = b (A.4.4)

and gives u as an output.
Let us take d x a small perturbation of x

d x1 = d f1(x,d x) (A.4.5)

Then we get
d x1u +x1du = 0 (A.4.6)

Hence, by solving
x1du =−d x1u (A.4.7)

we get du.
At this point we have determined the forward mode. In the same manner we

166 APPENDIX A. ALGORITHMIC DIFFERENTIATION

can look for the backward mode. Let us pick a value for pu. From f2 instruction
we get

px1 = puxT (A.4.8)

and
px1temp = xT

1 . (A.4.9)

Then going down to instruction f1 we get

px1 = px1temp +p f1(x, px1). (A.4.10)

Bibliography

[1] A. N. Kolmogorov, "On the representation of continuous functions of sev-
eral variables by superpositions of continuous functions of a smaller num-
ber of variables", Proceedings of the USSR Academy of Sciences, 108 (1956),
pp. 179–182; English translation: Amer. Math. Soc. Transl., 17 (1961), pp.
369–373.

[2] Zienkiewicz, Olgierd Cecil, et al. The finite element method. Vol. 3. London:
McGraw-hill, 1977.

[3] Tosio Kato, Perturbation theory for linear operators, Chapter Two, Pertur-
bation theory in a finite-dimensional space, Springer, 1980.

[4] Osgood, William F. (1899), "Note über analytische Functionen mehrerer Ve-
randerlichen", Mathematische Annalen, Springer Berlin / Heidelberg, 52:
462-464

[5] Hazewinkel, Michiel, ed. (2001) [1994], "Hartogs theorem", Encyclopedia
of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic
Publishers, ISBN 978-1-55608-010-4

[6] M. B. Giles, Collected matrix derivative results for forward and reverse
mode algorithmic differentiation, in Advances in Automatic Differentia-
tion, Springer, 2008, p. 35-44.

[7] Bjorn Gustaven and Adam Semlyen, Rational Approximation of frequency
domain responses by vector fitting, IEEE Transactions on Power Delivery,
Vol. 14, No. 3, July 1999.

[8] Philippe Guillaume, Alain Huard, Multivariate Padé approximation, Journal
of Computational and Applied Mathematics 121 (2000) 197-219.

167

168 BIBLIOGRAPHY

[9] Daniel Boichu and Vincent Robin, Multivariate Steinberg Theorem
(http://www.eudoxuspress.com/images/jcaamv3-05.pdf)

[10] Runge, Carl (1901), "Uber empirische Funktionen und die Interpolation
zwischen aquidistanten Ordinaten", Zeitschrift für Mathematik und Physik,
46: 224-243.

[11] De Boor, Carl, et al. A practical guide to splines. Vol. 27. New York:
Springer-Verlag, 1978.

[12] Das, I., and Dennis, J. E. (1998). Normal-boundary intersection: A new
method for generating the Pareto surface in nonlinear multicriteria opti-
mization problems. SIAM Journal on Optimization, 8(3), 631-657.

[13] Ladeveze, Pierre, J-C. Passieux, and David Neron. "The latin multiscale
computational method and the proper generalized decomposition." Com-
puter Methods in Applied Mechanics and Engineering 199.21-22 (2010):
1287-1296.

[14] Lumley JL. The structure of inhomegeneous turbulent flows. In: Monin
AM, Tararsky VI, editors. Atmospheric Turbulence and Wave Propagation.
Moscow: Nauka; 1967. p. 166–78

[15] Aubry, N., Holmes, P., Lumley, J., & Stone, E. (1988). The dynamics of co-
herent structures in the wall region of a turbulent boundary layer. Journal
of Fluid Mechanics, 192, 115-173. doi:10.1017/S0022112088001818

[16] Xiao, D., et al. "Non-intrusive reduced order modelling of the Navier-
Stokes equations." Computer Methods in Applied Mechanics and Engineer-
ing 293 (2015): 522-541.

[17] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge
Press, Jan 1, 1986

[18] P. Guillaume, M. Masmoudi, Solution to the Time-Harmonic Maxwell’s
Equations in a Waveguide; Use of Higher-Order Derivatives for Solving the
Discrete Problem, SIAM Journal on Numerical Analysis, 1997, Vol. 34, No. 4
: pp. 1306-1330

[19] Griewank, Andreas. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, PA, 2000. ISBN 0-89871-451-6.

BIBLIOGRAPHY 169

[20] Schrauwen, Benjamin, David Verstraeten, and Jan Van Campenhout. "An
overview of reservoir computing: theory, applications and implementa-
tions." Proceedings of the 15th European Symposium on Artificial Neural
Networks. p. 471-482 2007. 2007.

[21] Vandenberghe, Lieven, and Stephen Boyd. "Semidefinite programming."
SIAM review 38.1 (1996): 49-95.

[22] Versteeg, Henk Kaarle, and Weeratunge Malalasekera. An introduction to
computational fluid dynamics: the finite volume method. Pearson Educa-
tion, 2007.

[23] Griewank, Andreas, and Andrea Walther. Evaluating derivatives: princi-
ples and techniques of algorithmic differentiation. Society for Industrial
and Applied Mathematics, 2008.

[24] Sergey Smolyak, Quadrature and interpolation formulas for tensor prod-
ucts of certain classes of functions, Doklady Akademii Nauk SSSR, Volume
4, 1963, pages 240-243.

[25] Sparse grids, HJ Bungartz, M Griebel - Acta numerica, 2004 - Cambridge
Univ Press

[26] Runge, Carl (1901), "Uber empirische Funktionen und die In-
terpolation zwischen aquidistanten Ordinaten", Zeitschrift für
Mathematik und Physik, 46: 224-243. (http://www.ians.uni-
stuttgart.de/spinterp/doc/spinterpdoc.pdf)

[27] A. Klimke, Sparse Grid Interpolation Toolbox User’s Guide V5.1, February
24, 2008

[28] Lophaven, S. N., H. B. Nielsen, and J. Sondergaard. "DACE-a Matlab Krig-
ing toolbox; version 2; informatics and mathematical modelling." Techni-
cal University of Denmark, Technical Report No. IMM-TR-2002-12 (2002).
(http://www2.imm.dtu.dk/projects/dace/)

[29] Eranos solver, OECD Nuclear Energy Agency, (http://www.oecd-
nea.org/tools/abstract/detail/nea-1683/)

[30] Verrier, D., A. C. Scholer, and M. Chhor. "A New Design Option for Achiev-
ing Zero Void Effect in Large SFR Cores." Proceedings of FR13, Paris, France,
5-7 March (2013).

