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Introduction

A dielectric is an electrically insulating material, meaning it has a very poor electric conductivity, and therefore a negligible amount of electric current can traverse it. These materials are characterized by their electric permittivity, which is a physical property that quanties the electric polarizability of a dielectric. For their ability to store and dissipate electric and magnetic energy, dielectric materials in solid form, can be found in various applications such as electronics, optics, solid-state physics, and cell biophysics.

On the other hand, a dielectric liquid is a liquid that has very good insulating properties. Within classical applications, these uids can mainly be found in uses concerning insulation of high voltages such as in transformers, capacitors, high voltage cables, and switchgears. When submitted to an electric eld however, dielectric liquids can be set into motion. The resulting phenomena makes it possible to associate dielectric liquids with additional (and relatively unclassical) applications. The scientic discipline that is associated with the application of electric elds within dielectric liquids is referred to as electrohydrodynamics (EHD). In it's general form, it is the coupling between uid mechanics and electrostatics, summarized by the addition of an electric body force as a momentum source in the Navier-Stokes equation. This body force constitutes of three contributions: the coulombic, the dielectrophoretic (DEP), and the electrostrictive ones.

The nature of the electric eld used (DC or AC), and the signal frequency can play a crucial role in prioritizing the dominance of one term over the others. This important notion will be further elaborated later on. Today, some possible applications of electrohydrodynamics include EHD pumping, ionic wind and electro-aerodynamics, EHD spraying and atomization, EHD within multi-phase media, ow electrication, electrostatic precipitator (ESP), EHD microuidics, and nally EHD enhanced thermal transfers, aslo known as thermo-electrohydrodynamics (TEHD).

In thermal systems of single-phase nature, the existence of temperature gradients, gives rise to gradients in electric permittivity. In the presence of an AC electric eld, regulated at an appropriate frequency, these gradients give rise to a dielectrophoretic volumetric force, that acts as the lone term of the electric body force acting on a volume of dielectric liquid. For some, the discipline associated with this phenomenon is referred to as electrostrcitive-hydrodynamics, which is considered to be a sub-discipline of EHD.

Today, the scientic literature concerning this sub-discipline marks numerous advancements. In particular, the available literature indicates the interest of the scientic community with the analogy that can be made between thermal buoyancy and the dielectrophoretic force. Both originating from temperature dierences, this analogy (that will be elaborated in more detail in chapter 2) converged the interest of the scientic community to the exploration of the eects of dielectrophoretic forces in the geophysical ow context. By conning dielectric liquids in concentric sphere shells, it is possible to induce an electric gravity that has an isotropic nature.

From a fundamental point of view, the same buoyancy analogy has been explored for INTRODUCTION planar layers of dielectric liquids. By reviewing the literature, one can encounter several interesting studies regarding dielectric liquids conned between two parallel plates submitted to a constant temperature and an imposed electric potential (uniform electric eld).

The resulting patterns of the dielectrophoretic convection are very similar to that of the Rayleigh-Bénard one. In gravity, this convection is often suppressed by the dominance of the buoyancy force. In micro-gravity, and within planar geometries, the alignment of the temperature gradients with the electric eld, restricts the rise of a dielectrophoretic force at leading order. Similar to the Rayleigh-Bénard scenario, the problem becomes that of a stability one, monitored by an electric Rayleigh number (also known as Roberts number L), which is a function of the voltage dierence between the parallel plates. Above a critical Roberts number (L c ), the system is set into motion, and a convective motion takes place. In this case, the conductive stratication falls, and the Nusselt number (ratio of convective to conductive heat transfers) increases from unity, suggesting a modest enhancement of heat transfer.

Today, the possibility of utilizing high frequency AC electric elds for the enhancement of heat transfer of systems containing dielectric liquids is quasi-abandoned. From an engineering perspective, the enhancement of heat transfer at a high electric eld intensity (in order to attain L c ) is unpractical. In this work, the planar connement of dielectric liquids within thermal systems is revisited. By manipulating the non-uniformity factor of the electric eld, such that the dielectrophoretic torque is existent at zero order, the stability problem is converted to a convective one of steady nature. In the presence of terrestrial gravity, by using relatively modest electric eld intensities, the thermal buoyancy remains dominant and the role of the DEP force would be of perturbative nature. This means that the established buoyancy driven ow is slightly, yet steadily, modied, when an electric eld is applied. In micro-gravity however, for any L > 0, a dielectrophoretic convection sets the dielectric liquid in motion. This notion introduces a very promising engineering application, that suggests that the use of DEP forces can enhance heat transfer of systems in micro-gravity.

Space exploration and travel has long been an interest for mankind, and more particularly that of nations. This interest had reached it's peak during the cold war, when the Russians and Americans were competing to explore and travel in space. The former were the rst to do so, whereas the latter were the rst to land on the moon. Since then, trillions of dollars have been spent on research in order to advance in space travel aspects. Today the European, Chinese, and other various private entities (ex: SpaceX) have also been established in the aim of developing aordable and reliable spacecrafts.

The design of space shuttles, spacecrafts, rockets, satellites, etc... include a good deal of electronics and electronic powering. Dielectric liquids, such as transformer oil, not only act as insulators, and suppressants of corona discharge and arcing, but they also serve as coolants. For example, as indicated in some NASA reports, space-type electronic power transformers undergo very high temperature rises, and are cooled by means of dielectric oils. Similarly, dielectric liquids are used, within microelectronics, in order to counter act the eect of Joules heating. Therefore, the application of electrohydrodynamics for the purpose of enhancing heat transfers in micro-gravity conditions, is considered to be realistic, possible, promising, and even necessary.

Throughout the work of this thesis, inducing dielectrophoretic convection by means of non-uniform electric elds is accomplished following two strategies. The rst one, which has a rather fundamental nature, consists of transforming the electric eld in a dierentially heated cavity (vertical layer of uid held between two parallel constant temperature INTRODUCTION walls) from uniform to non-uniform. In this case, the classical dierentially heated cavity is revisited by replacing the vertical planar electrodes with misaligned partial electrodes along each vertical side wall. The second one consists of the use of triangular electrodes, in the purpose of creating high non-uniformities, and high intensity electric elds at the tips of the electrodes.

Generally speaking, the objective of this PhD is to study the role of non-uniform AC electric elds on dielectric liquids submitted to a temperature gradient. More specically, the following points will be covered:

1. Why and how do non-uniform electric elds create steady convective ows in dielectric liquids?

2. Can the order of magnitude of the velocity eld, the thermal and viscous boundary layer thicknesses, and the Nusselt number of a dielectrophoretically induced convection be theoretically predicted, quantied, or estimated via scaling analysis?

3. How do non-uniform electric elds modify a thermally stratied dielectric liquid in micro-gravity? Can this electric eld set the liquid dielectric in to motion? How is the temperature prole modied? How does this modication impact the heat transfer rate?

4. Is it possible to design an experimental setup in terrestrial gravity conditions, and still detect the steady eect of non-uniform electric elds on the established buoyancy driven ow? How is the heat transfer rate modied in such a case? What happens to the ow pattern?

Structure and General Content of the Thesis

In order to accomplish the objectives set out for this PhD thesis, it is necessary to introduce, in a general fashion, the scientic disciplines that are concerned. For this reason the rst chapter, introduces ingredients of uid mechanics and thermal convections. This is followed by a general introduction of electrohydrodynamics, emphasizing the multiphysics coupling between electrostatics, uid mechanics, and heat transfers. This is followed by a general review of the state of the art. Here the reader can nd a timeline-like narration that emphasizes the history/birth of EHD and its possible applications today. The topic is then focused on advancements of EHD in heat transfer, where dierent aspects of thermo-electrohydrodynamics (TEHD) are briey presented. Finally, the discussion is further converged towards dielectrophoretic driven TEHD, which are categorized into two parts, geophyscial ows and heat transfer enhancement.

Consequently, the following chapter demonstrates some theoretical ingredients that are useful for the analysis of the problem. Here we nd the denition of the mathematical model that describes the problem at stake. These governing equations are presented in non-dimensional form. A perturbation analysis is also performed in order to demonstrate the absence of the dielectrophoretic term at leading order when uniform electric elds are used. Finally, a scaling analysis is performed that summarizes the mechanical and thermal tendencies of the system. The thermal and viscous boundary layer thicknesses are described, and the Nusselt number is scaled as a function of the electric Rayleigh. This is followed by the presentation of numerical and experimental tools in chapters 4 and 5 respectively. Some particularities of the numerical calculations are precised. Concerning the experimental setup, chapter 5 includes a detailed description of the design
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and assembly of the experimental bench, measurement techniques, their calibration, and the post-processing required in order to quantify the raw data.

Finally the experimental and numerical results are presented, interpreted, and compared in chapter 6 for the partial electrode conguration, and chapter 7 for the triangular electrode conguration.

Chapter 1

General Background

Introduction

The quantitative study of convective heat transfers dates back to 1768 with the birth of Joseph FOURIER. However, in the context of Electrohydrodynamics, a relatively contemporary eld, interest in the eect of electric elds on dielectric liquids submitted to temperature gradients increased after the more recent, yet pioneering, work of Gross and

Porter [START_REF] Gross | Electrically Induced Convection in Dielectric Liquids[END_REF]. They investigated thermal convection in the presence of electric elds, and noted a signicant eect of DC elds on stratied uid layers, but no observable eect of AC elds on the dielectric uids.

A dielectric liquid, submitted to a temperature gradient in a closed cavity, experiences two major changes in its physical properties. The rst one is the density, that is approximated at rst order according to,

ρ = ρ ref (1 -β(T -T ref )) , (1.1.1)
where ρ, β, and T are the density, the thermal expansion coecient, and the temperature respectively. The ref subscript denotes a reference value. If the temperature gradients, within a dielectric liquid, are not aligned with earth's gravity, the resulting buoyancy force gives rise to a steady buoyancy-driven convective motion.

The second major change is within the dielectric constant, r , which behaves in a similar way to the mass density, since it can be approximated as linearly dependent on temperature,

r = ref (1 -λ(T -T ref )) , (1.1.2)
where λ is the thermo-dielectric coecient. As a consequence, if a temperature gradient is applied upon a dielectric uid, together with an electric eld, a joint contribution is expected which can give rise to a motion of thermo-dielectrophoretic origin.

Thermal convection in the context of EHD requires the multi-physics coupling between uid mechanics, heat transfers, and electrostatics. In this chapter, the physical mechanisms concerning the rise of a thermal convective motion are presented. The governing equations of a buoyancy-driven ow which can be summarized to the continuity, momentum balance, and energy balance are also presented. This is followed by a general presentation of electrohydrodynamics. In this part the coupling between uid mechanics and electrostatics is demonstrated. This demonstration is summarized by an additional conservation equation which is the electrostatic Gauss equation, and a supplementary volume force in the momentum equation, in the form of an electric body force.

Convective Heat Transfers

Even though the extent of convective heat transport, as a scientic discipline, is relatively wide, in the scope of this thesis, we are interested in phenomena related to natural convection of internal ows, in the laminar regime. Moreover, to further simplify, this thesis is strictly concerned with two-dimensional ows, more specically, with a geometrical domain restricted to a square cross section.

The basic principles of uid mechanics can be summarized by the conservation of mass and momentum. In heat transfer, the rst law of thermodynamics models the physics. In some cases, this is also referred to as the energy equation. The nature of the dual-physics coupling in natural convection is strong. The ow is driven by a buoyancy force, that rises due to a specic temperature distribution within a uid, in the presence of gravity.

On the other hand, the temperature distribution itself is modied by a convective term, which acts as a transport mechanism of heat. For a more complete study of the topic, the reader is advised to review the textbook titled "Convection Heat Transfer" by Adrian

Bejan [START_REF] Bejan | Convection heat transfer[END_REF].

Conservation of Mass -Law of Continuity

The rst and most basic principle in uid mechanics is the law of conservation of mass, described as the "continuity" of matter through a ow system. This means that within a control volume, the instantaneous mass trapped, is balanced by the inlet and outlet mass ow rates through the surface. This is summarized by the following:

∂M cv ∂t = ṁin - ṁout , (1.2.1)
where M cv is the mass instantaneously stored in the control volume (cv), t is time, and ṁin and ṁout are the associated mass ow rates that go in and out of this control volume respectively. where u and v are the velocity eld components along the x and y directions, respectively.

Dividing the former by the constant size of the control volume, we get:

∂ρ ∂t + ∂(ρu) ∂x + ∂(ρv) ∂y = 0 (1.2.3)
The assumption that dielectric liquids can be considered as incompressible uids, meaning the temporal and spatial variations in the density are negligble compared to the local variations in velocity, holds. Therefore, we can write:

∂u ∂x + ∂v ∂y = ⃗ ∇.⃗ u = 0 (1.2.4)
where ⃗ u = (u, v) is the velocity vector.

Conservation of Momentum -Newton's Second Law

The second principle of uid mechanics is derived from Newton's second law, written in a control volume formulation. In addition to the sum of forces and the term that accounts for the mass × acceleration, we can write the impact resulting from the ow of momentum in the control volume.

∂ ∂t

(M v n ) cv = F n + ṁin v n - ṁout v n , (1.2.5) 
where n indicates a chosen direction, usually taken as the normal to the surface. v n and F n are the projection of the velocity and forces on this direction, respectively. Momentum balance within a two-dimensional control volume in Cartesian coordinates, in the x-direction (based on Bejan [START_REF] Bejan | Convection heat transfer[END_REF]).

Applying this on a two-dimensional innitesimally small control volume (∆x∆y) in a

Cartesian coordinate system (g. 1.2), a force balance in the x-direction, and another in CHAPTER 1. GENERAL BACKGROUND the y-direction can be written. In this gure, the force balance in the x-direction is only represented. The control volume on the left side of this gure contains the impact of the momentum due to the ow, and the rate of change of the impact within. On the right side, the classical forces are represented by a normal stress (σ x ), a tangential stress (τ xy ), and a body force (f x ). We can now write: 

ρ ∂u ∂t + u ∂u ∂x + v ∂u ∂y = - ∂P ∂x + µ ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 + f x .
(1.2.11)

A similar equation can be expressed for the momentum along the y-direction. In vectorial notation, this can be summarized as,

ρ D⃗ u Dt = -⃗ ∇P + µ∇ 2 ⃗ u + ⃗ f v , (1.2.12)
where ⃗ f v is the volumetric body force vector. This, for example, can be in the form of a buoyancy force, or an electric force. Eq. 1.2.12 is a special case of the Navier-Stoke equation.

Conservation of Energy -First Law of Thermodynamics

To nalize the coupling between uid mechanics and heat transfer, the principle of conservation of energy is required. This principle can be represented by applying the rst law of thermodynamics to a control volume within a owing uid. In a literal fashion, the rst law of thermodynamics states that the rate of energy build-up in a control volume is the sum of (i) the net energy transfer due to uid ow, (ii) the net conductive heat transfer, and (iii) the rate of internal heat generation, minus (iv) the net work done by the control volume on its surrounding. where e, q ′′

x , q ′′ y , and q in are the specic internal energy, the conductive heat ux in the xdirection, the conductive heat ux in the y-direction, and the rate of internal heat/energy generation. The term on the left hand side is the rate of the energy build-up within the control volume. The rst term on the right hand side is the heat transfer by uid ow (convective term). The second term on the right hand side is the heat transfer via conduction. The third term on the right hand side is the rate of internal energy generation, and nally the last two terms on the right hand side represent the net work done by the control volume on it's surrounding.

The two latter terms originate from the work due to the normal and tangential stress as described in gure 1.2. By replacing the stresses with their respective constitutive relations, we nd (i) a kinetic energy term that is negligible compared to the internal energy changes, (ii) a pressure term that is also negligible in the case of incompressible uids, and nally (iii) a viscous dissipation term that is also negligible compared to the other terms. No internal energy generation source is considered here. Furthermore, by applying the thermodynamic relations of enthalpy and entropy for incompressible uids, the entire equation is reduced to

ρC p DT Dt = κ∇ 2 T , (1.2.14)
where T is the temperature, C p is the specic heat at constant pressure, and κ is the thermal conductivity. In the eld of convective heat transfer, this is known as the energy equation. The mathematical demonstrations, that demonstrate the simplication of the energy equation to the form expressed in eq. 1.2.14, are not presented here. The reader is advised to refer to [START_REF] Bejan | Convection heat transfer[END_REF], for more details.

Natural Convection

Natural convection occurs when a buoyancy force ( ⃗ F ρg ) is able to set a layer of uid in motion. A buoyancy force arises under the action of gravity (⃗ g), when gradients of density are present within a uid. The force is expressed as,

⃗ F ρg = ρ⃗ g . (1.2.15)
These gradients can be originated from dierent parameters (ex: salinity). Here the interest is exclusively focused on changes of density due to temperature gradients (eq. 1.1.1).

The buoyancy force that rises from temperature gradients is known as thermal buoyancy.

This phenomena exhibits a strong two-way coupling between both uid mechanics and heat transfer. In one way, the temperature gradients act as a driver within the momentum equation, via a body force. On the other hand, the resulting convective motion transports enthalpy, and modies the temperature distribution (and thus the resulting body force).

Including the buoyancy force in the momentum equation (eq. 1.2.12) yields,

ρ D⃗ u Dt = -⃗ ∇P + µ∇ 2 ⃗ u + ρ⃗ g . (1.2.16)
By dening the temperature, density, pressure, and velocity eld in a decomposed expression of a solution at leading order (which represents the uid at rest), noted by the subscript o, and a perturbation eld at 1st order, denoted by a prime, we can write

T = T o + T ′ (⃗ x, t); ρ = ρ o + ρ ′ (⃗ x, t); ⃗ u = ⃗ u o + ⃗ u ′ (⃗ x, t); P = P o (y) + P ′ (⃗ x, t);
Rewriting the eq. 1.2.16 with the decomposed terms,

(ρ o + ρ ′ ) D(⃗ u o + ⃗ u ′ ) Dt = -⃗ ∇(P o + P ′ ) + µ∇ 2 (⃗ u o + ⃗ u ′ ) + (ρ o + ρ ′ )⃗ g , (1.2.17) the background eld (hydrostatic) yields ⃗ u o = ⃗ 0, and ⃗ ∇P o = +ρ o ⃗ g . (1.2.18)
This describes the hydrostatic pressure, which is the weight of the uid column. Eq. 1.2.17 now writes,

(1 + ρ ′ ρ o ) D⃗ u ′ Dt = - 1 ρ o ⃗ ∇P ′ + ν∇ 2 ⃗ u ′ + ρ ′ ρ o ⃗ g . (1.2.19) CHAPTER 1. GENERAL BACKGROUND
The Boussinesq approximation assumes that the changes in density, due to temperature, are considered to be relatively small such that ρ ′ ρ o << 1. This means that the second term on the left hand side of eq. 1.2.19 remains negligible compared to the rst one.

Therefore, by replacing ρ ′ , from the estimation in eq. 1.1.1, and by dropping the primes, one gets:

D⃗ u Dt = - 1 ρ o ⃗ ∇P + ν∇ 2 ⃗ u + β(T -T o )⃗ g , (1.2.20)
where ν is the kinematic viscosity. The continuity (eq. 1.2.4), Boussinesq (eq. 1.2.20), and energy (eq. 1.2.14) equations are the governing equations describing natural convection.

General Background on Electrohydrodynamics

The principles mentioned earlier remain valid when applied to the eld of electrohydrodynamics. For this reason, only the electrostatic aspects and its relative principles will be introduced in this section. The general electromagnetism principles are presented in the form of the Maxwell equations. Then, the electroquasistatic approximation is derived from these equations. This is followed by the presentation of the electric force, that is coupled in the momentum equation, as a body force. The latter is derived from a thermodynamic point of view.

Governing Equations in EHD

In electrohydrodynamics, the governing equations are a special case of the Maxwell equations. In this section, these equations are simplied from their general form to the electroquasistatic limit.

Maxwell's Equations

The entire principles describing the physics in the discipline of electromagnetism are summarized by four equations. Even though Maxwell was not particularly responsible for establishing all of these electromagnetism laws, he was able however, to group them all.

Today in the eld of electromagnetism, these four laws are referred to as Maxwell's laws.

The fundamental entity, that gives rise to electromagnetic interactions, is the electrical charge. In the context of electromagnetism, the discussion is usually in the form of charge densities, which are the ensemble average of charge carriers. In some cases, it is likely to distinguish between two types of charge carriers: the free and the bounded ones. Thus distinguishing between two charge densities, the free charge density and the bounded charge density.

Similarly, the electric and magnetic eld are ensemble averages of the elds, due to individual particles. The laws governing the behavior of these elds, that can be summed up by the Maxwell equations, are: (i) Gauss' law, (ii) Gauss' law for magnetism, (iii) Faraday's law, and nally (iv) the Ampere-Maxwell law.

Gauss' Law: test

In a classical sense, Gauss' law can be expressed as:

o ⃗ ∇. ⃗ E = q + q p , (1.3.1)
where o is the absolute permittivity or permittivity of free space ( o = 8.8542×10 -12 F m), ⃗ E is the electric eld, q is the free charge density, and q p is the bounded charge density.

The bounded charge density, within a given volume, is equal to the outward ux of the polarization density through the surface ( ⃗ S) enclosing the volume (V ), such that

V q p dV = -∮ ⃗ S ⃗ P .d ⃗ S = - V ⃗ ∇. ⃗ P dV . (1.3.2)
The relation of the polarization vector ⃗ P , can thus be expressed as, q p = -⃗ ∇. ⃗ P .

(1.3.3)

Gauss' law can now be expressed as,

⃗ ∇. ⃗ D = q , (1.3.4)
where ⃗ D is the displacement vector dened as, ⃗ D = o ⃗ E + ⃗ P .

(1.3.5)

A more common manner to express Gauss' law is,

⃗ ∇.( ⃗ E) = q , (1.3.6) 
where = o r is the permittivity, and r is known as the dielectric constant. This expression is derived from the constitutive law that depicts a linear relation of the polarization vector as a function of the electric eld such that,

⃗ P = o χ e ⃗ E , (1.3.7) 
where χ e = ( r -1) is the electric susceptibility which is a dimensionless proportionality constant indicating the degree of polarization of a dielectric, in response to an applied electric eld.

Gauss' Law for Magnetism: test

The nonexistence of magnetic charges means that the magnetic eld, unlike the electric eld, has no scalar source.

⃗ ∇. ⃗ B = 0 (1.3.8)
where ⃗ B is the magnetic ux density. This divergence equation also means that the basic entity for magnetism is the magnetic dipole, and that the lines of the magnetic eld ux are continuous.

Faraday's Law: test

The law of Faraday states that an electromotive force rises, on a conductive loop, when the magnetic ux through the surface enclosed by the loop varies in time. One aspect of this can be translated to the Maxwell-Faraday law, that describes the rise of an electric eld due to the presence of time dependent magnetic elds. This can be expressed as,

⃗ ∇ × ⃗ E = - ∂ ⃗ B ∂t .
(1.3.9)

13 CHAPTER 1. GENERAL BACKGROUND Ampere-Maxwell Law: test Finally, we have the general form of Ampere's law which states that the sources of the magnetic eld are (i) the current density responsible for the motion of charge carriers, and (ii) the variation of the electric eld with respect to time, such that

⃗ ∇ × ⃗ H = ⃗ J + ∂ ⃗ D ∂t , (1.3.10)
where ⃗ H is the magnetic intensity eld ( ⃗ B = µ m ⃗ H) and ⃗ J = σ ⃗ E is the conduction current density. Both linear relations originate form constitutive laws of electromagnetism. µ m and σ are the magnetic permeability and the electric conductivity, respectively. The conduction current is the convection of the free charges under electromagnetic elds. The convection of the bounded charges (polar term) is taken into consideration within the displacement vector.

Electroquasistatics

The electroquasistatic form of the Maxwell equations is derived by the assumption that the magnetic energy in the system is negligible compared to the electrical energy. By comparing the dierent time scales, deduced from the non-dimensional form of Maxwell's equations, signicant simplications to the latter is possible.

For the following, consider l o , τ o , and u o to be the characteristic length, characteristic time, and characteristic velocity scales of the system, respectively. It is also worthy to mention the relation between the permittivity and permeability as c.

√ εµ m = 1, where c

is the speed of light in vacuum. Finally, the transit time of an electromagnetic wave to cross the system is τ em = l o c.

The ratio of the electric energy to the magnetic energy can be described as,

εE 2 2 B 2 2µ = E 2 c 2 B 2 .
(1. 3.11) When this ratio is greater than or less than unity, the system is said to be electrically dominant or magnetically dominant, respectively. In electrohydrodynamics, we are only interested in the former.

When the system is electrically dominant, the electric eld is chosen to non-dimensionalize Maxwell's equations. Supposing that E o is the typical order of magnitude of the electric eld intensity, from Gauss's law, the typical order of magnitude of the charge density (q o ) scales to

q o ∼ E o l .
(1.3.12)

An appropriate order of magnitude for the magnetic intensity eld (H o ) can be scaled by means of eq. 1.3.10. This equation can be also expressed as,

⃗ ∇ × ⃗ H = σ ⃗ E + ∂ ⃗ E ∂t , (1.3.13)
by replacing the conduction current density and the displacement vector by their respective expressions. Comparing both terms on the right hand side, 

(∂ ⃗ E ∂t) σ ⃗ E ∼ σ τ o = τ e τ o , (1.3 
∂q ∂t + ⃗ ∇.(σ ⃗ E) = 0 , (1.3.15)
which, considering Gauss' law, can be expressed as,

∂q ∂t + σ q = 0 , (1.3.16)
with the following solution, q(t) = q(0)e -t τe .

(1.3.17)

The charge decays with a characteristic time scale equal to the time scale of charge relaxation τ e .

According to the value of the charge relaxation time, two asymptotic scenarios are possible. (i) The ohmic term(σ ⃗ E) in eq. 1.3.13 is dominant when the ratio of τ e to τ o is much less than unity. On the other hand, (ii) the displacement term is dominant when this ratio of time scales is much greater than unity. Moreover, according to eq. 1.

3.17, one can note a negligible (space) charge density due to its fast extinction.

The Ohmic Term is Dominant: test In this case, the ohmic term scales the magnetic eld in eq. 1.3.13,

H o l o ∼ σE o , (1.3.18) 
therefore, the order of magnitude of the magnetic eld (B o ) is

B o = µ m H o = µ m σl o E o . (1.3.19)
The Maxell equations and the charge conservation equation can now be expressed in non-dimensional form. By dropping the overbar,

⃗ ∇.( ⃗ E) = q , (1.3.20) ⃗ ∇. ⃗ B = 0 , (1.3.21) ⃗ ∇ × ⃗ E = - τ m τ o . ∂ ⃗ B ∂t , (1.3.22) ⃗ ∇ × ⃗ H = ⃗ E + τ e τ o . ∂ ⃗ E ∂t , (1.3.23) ∂q ∂t + τ o τ e q = 0 , (1.3.24)
where τ m = σµ m l 2 o is the characteristic time scale of magnetic eld diusion. For the readers who are unfamiliar with this term, this time scale is dened as "diusive" because it appears by combining the third and fourth maxwell equations. The simplied version of the outcome of this combination yields a diusion equation (Laplace), with τ m as its characteristic time scale. More details on this can be found in [START_REF] Castellanos | Electrohydrodynamics[END_REF].

By referring to eq. 1.3.11, in the electroquasistatic state,

E 2 2 B 2 2µ m ∼ E 2 o (µ m σl o E o ) 2 µ m = τ e τ m > 1 . 
( 

τ m < τ em < τ e < τ o .
(1.3.27)

In the limit where c approaches innity, τ em , along with τ m τ o , will approach zero, and thus eq. 1.3.22 can now be expressed as,

⃗ ∇ × ⃗ E = ⃗ 0 . (1.3.28)
The Displacement Term is Dominant: test In this case, the displacement term determines the scale of the magnetic eld in eq.

1.3.13. Nondimensionalizing the fourth maxell equation, and comparing the orders of magnitude,H o scales as,

H o l o ∼ E o ε τ o , (1.3.29) 
and,

cB o = cµ m H o = E o . u o c . (1.3.30) 
Therefore the Maxell equations, in nondimensional form, and without the overbar, are

⃗ ∇.( ⃗ E) = q , (1.3.31) ⃗ ∇. ⃗ B = 0 , (1.3.32) ⃗ ∇ × ⃗ E = - τ em τ o 2 . ∂ ⃗ B ∂t , (1.3.33) ⃗ ∇ × ⃗ H = τ o τ e ⃗ E + ∂ ⃗ E ∂t .
(1.3.34)

By referring to eq. 1.3.11, in the electroquasistatic state,

εE 2 2 B 2 2µ m ∼ εE 2 o E 2 o (u o c 2 ) 2 µ m = τ o τ em 2 > 1 .
( 

τ m < τ em < τ o < τ e .
(1.3.37)

In the limit where c approaches innity, τ em along with τ em τ o will approach zero, therefore eq. 1.3.33 can now be expressed as,

⃗ ∇ × ⃗ E = ⃗ 0 .
(1.3.38) CHAPTER 1. GENERAL BACKGROUND Conclusion: As a conclusion the most important notion in the transition from the electromagnetic to the electroquasistatic limit is the curl-free nature of the electric eld, which leads to the writing of the electric eld as a gradient of the electric potential (φ) ⃗ E = -⃗ ∇φ .

(1.3.39)

Whether the ohmic term or the displacement term is dominant, the governing equations in the electroquasistatic limit have the following form:

⃗ ∇.( ⃗ E) = q , (1.3.40) ⃗ ∇. ⃗ B = 0 , (1.3.41) ⃗ ∇ × ⃗ E = ⃗ 0 , (1.3.42) ⃗ ∇ × ⃗ H = ⃗ J + ∂ ⃗ D ∂t , (1.3.43) 
∂q ∂t + ⃗ ∇. ⃗ J = 0 .

(1.3.44)

Electric Force

Today, the equation that describes the electric body force, that rises when submitting a dielectric liquid to an electric eld, seems to be usual. By referring to the literature, this equation is often expressed as,

⃗ f EHD = q ⃗ E - 1 2 E 2 ⃗ ∇ + ⃗ ∇ ⎛ ⎝ E 2 2 ρ ∂ ∂ρ T ⎞ ⎠ , (1.3.45)
where the rst term is known as the Coulomb force, the second one as the dielectrophoretic force, and the third one as the electrostrictive force. Even though the origins of the Coulomb force are easily traceable in the literature, it is not necessarily the case for the two remaining terms. It is in the textbook of Landau et al. [START_REF] Landau | Electrodynamics of continuous media[END_REF] on "Electrodynamics of Continuous Media", where some clues concerning the origin of the dielectrophoretic and electrostrictive forces can be found. The authors demonstrate how the electric force equation can be partially derived by using a thermodynamics approach.

Thermodynamics of Dielectric Liquids in an Electric Field

Unlike conductors, dielectrics are pervaded by electric elds. This plays an important role on the thermodynamic properties of dielectric liquids.

Consider a thermally insulated dielectric medium, submitted to an electric eld. This eld is supposed to be generated by a system composed of externally charged conductors.

Any change in the electric eld can be considered to rise due to changes in the charges within the conductors. For simplicity, the dielectric liquid is considered to be free of electric charges ( ⃗ ∇. ⃗ D = 0). For further simplicity, consider only one conductor having a charge q and an electric potential φ.

The necessary work (δW ) required to increase the charge by an innitesimal amount δq is δW = φδq .

(1.3.46) CHAPTER 1. GENERAL BACKGROUND This describes the mechanical work done by a given eld on a charge δq, brought from innity (where the potential is zero) to the surface of the conductor, i.e. through a potential dierence of φ. In other words, this can be considered as the work of the Coulomb force on a charge δq brought to the surface of the conductor.

Considering the integral form of Gauss' law, near the conductor,

q = ∮ ⃗ S ⃗ D.d ⃗ S , (1.3.47) 
where ⃗ D is the displacement electric eld, normal to the conductor, in the direction of the liquid dielectric. The electric potential being constant on the surface, the work equation can be written as,

δW = φδq = ∮ ⃗ S φδ ⃗ D.d ⃗ S = V ⃗ ∇.(φδ ⃗ D)dV . (1.3.48)
The varied eld must satisfy the original eld equation, therefore ⃗ ∇.(δ ⃗ D) = 0. Eq. 1.3.48, when expanded, can now be simplied to

δW = - V ( ⃗ E.δ ⃗ D)dV , (1.3.49) 
with ⃗ E = -⃗ ∇φ.

This electrical energy term can be added to the internal energy equation, as a source of energy. The expression of the innitesimal change of internal energy is expressed as,

δE = T δS - V ( ⃗ E.δ ⃗ D)dV , (1.3.50) 
where E, T and S are the total internal energy, temperature, and entropy, respectively. Therefore, the Helmholtz free energy (F = E -T S) is expressed as,

δF = -SδT - V ( ⃗ E.δ ⃗ D)dV .
(1.3.51)

Both the internal energy and the Helmholtz free energy also include a chemical potential energy term. This is because the energy is a function of another intrinsic (intensive)

property still not take into consideration: the density. The specic internal energy and specic free energy (quantities per unit volume) can now be expressed as, 

de = T ds + ζdρ -⃗ E.d ⃗ D , (1.3.52) df = -sdT + ζdρ -⃗ E.d ⃗ D , (1.3 
f = f o (T, ρ) -E 2 2 , (1.3.55) 
where e o and f o are the energies in the absence of an electric eld.

CHAPTER 1. GENERAL BACKGROUND

The Electric Force

In order to derive the electric body force, the electric stress tensor must be evaluated. This is done by a balance of stress versus free energy in a given system.

Due to the law of conservation of momentum, a body force (f i ) acting on a volume (dV ) is equal to the change of momentum entering the volume through its surfaces per unit time. If the momentum ux tensor is denoted by -σ ik , then

v f i dV = ∮ s k σ ik ds k . (1.3.56)
σ ik is also known as the electric stress tensor. s k is the normal vector of the surface. By applying the divergence theorem, the force can be expressed as,

f i = ∂σ ik ∂x k . (1.3.57)
Let us consider a plane-parallel layer, where the layers of thickness h are thin enough to consider a uniform electric eld within, as well as a constant density and temperature.

The electric eld is considered to be generated by conducting planes, with constant electric potential, found at the surface of the layer. Consider a virtual isothermal translation of the upper plane, over an innitesimal distance ⃗ a. This translation is not necessarily parallel to ⃗ n, the normal at the surface. The electric potential at the planes are assumed to remain unchanged, and the resulting deformation is assumed to be homogeneous during this displacement (g. 1.4). Due to this displacement, the layer exerts a force -σ ik n k on a unit area at the surface. The work done by this force is equivalent to -σ ik n k a i . This work is equal to the change in free energy hf (per unit area). Therefore, σ ik a i n k = δ(hf) = hδf + fδh. 

δf = ⎛ ⎝ ∂f ∂ ⃗ E ⎞ ⎠ T,ρ δ ⃗ E + ⎛ ⎝ ∂f ∂ρ ⎞ ⎠ ⃗ E,T δρ , (1.3.59) δf = -⃗ E.δ ⃗ E + ⎛ ⎝ ∂f ∂ρ ⎞ ⎠ ⃗ E,T
δρ .

(1.3.60)

Considering that the density, ρ = m A.h (where m and A are the constant mass and constant surface area, respectively), only changes with changes in h, these changes can be expressed as,

δρ = m A .δ 1 h = - m A h -2 δh .
(1.3.61)

Therefore, δρ = -ρ δh h .

(1.3.62)

Concerning the evaluation of the variation of the electric eld, consider that at a given point in space with position vector ⃗ r that was previously at a position ⃗ r -⃗ b before deformation. ⃗ b is the particle displacement vector. Under the previously mentioned conditions (homogeneous deformation and constant potential at the plates), the particle carries its potential with it. Therefore,

δφ = φ(⃗ r -⃗ b) -φ(⃗ r) = -⃗ b. ⃗ ∇φ = ⃗ b. ⃗ E , (1.3.63) 
where ⃗ E is the uniform electric eld before deformation. The relation of the particle displacement vector, ⃗ b, can be expressed as a function of the upper surface displacement vector,⃗ a, as (g. 1.4) ⃗ b = y h ⃗ a .

(1.3.64)

Finally the variation of the electric eld can be expressed as,

δ ⃗ E = -⃗ ∇(δφ) = -⃗ ∇( ⃗ b. ⃗ E) . (1.3.65) Since ⃗ E is uniform, ⃗ b = (ub x , b y (y)), and ⃗ n = (0, 1), δ ⃗ E = - ⃗ n( ⃗ E.⃗ a) h (1.3.66)
Taking into consideration that δh = a y = ⃗ a.⃗ n, as well as the change in free energy (eq. 

σ ik a i .n k = ( ⃗ n. ⃗ E)(⃗ a. ⃗ E) -⃗ a.⃗ nρ ⎛ ⎝ ∂f ∂ρ ⎞ ⎠ ⃗ E,T + ⃗ a.⃗ nf , (1.3.67) σ ik a i n k = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ E i E k -ρ ⎛ ⎝ ∂f ∂ρ ⎞ ⎠ ⃗ E,T δ ik + fδ ik ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ a i n k , (1.3.68)
where δ ik is the kronecker delta. The stress tensor can nally be expressed as,

σ ik = E i E k + ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ f -ρ ⎛ ⎝ ∂f ∂ρ ⎞ ⎠ ⃗ E,T ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ δ ik . (1.3.69)
By substituting the specic free energy (eq. 1.3.55), the stress tensor writes as,

σ ik = E i E k + ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ f o -E 2 2 -ρ ⎛ ⎝ ∂f o ∂ρ ⎞ ⎠ ⃗ E,T -ρ E 2 2 ⎛ ⎝ ∂ ∂ρ ⎞ ⎠ ⃗ E,T ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ δ ik .
(1.3.70)

Recalling the thermodynamic relation that derives the free energy per unit mass with respect to the specic volume into a pressure term [START_REF] Landau | Electrodynamics of continuous media[END_REF],

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ∂ ∂(1 ρ) ⎛ ⎝ f o ρ ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦T = f o -ρ ⎛ ⎝ ∂f o ∂ρ ⎞ ⎠ T = -P o , (1.3.71) 
where P o is the pressure present in the system in the absence of an electric eld for a specic value of ρ and T . The third term in the brackets in equation 1.3.70 can now be replaced,

σ ik = E i E k -P o (ρ, T )δ ik -E 2 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -ρ ⎛ ⎝ ∂ ∂ρ ⎞ ⎠ T ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ δ ik . (1.3.72) 
Now dierentiating this equation in accordance with equation 1.3.57,

f i = ∂ ∂x i ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ -P o + E 2 2 ρ ⎛ ⎝ ∂ ∂ρ ⎞ ⎠ T ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ - E 2 2 ∂ ∂x i + ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ - 1 2 
∂ ∂x i E 2 + ∂ ∂x k ( E i E k ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (1.3.73)
All the terms in the last brackets in the previous equation can be expressed as,

-E k ∂E k ∂x i + E k ∂E i ∂x k + E i ∂( E k ) ∂x k . (1.3.74)
By recalling the no charge condition, ⃗ ∇.( ⃗ E) = ∂( E k ) ∂x k = 0, the last term in the previous expression is zero. The two remaining terms also sum up to zero,

-E k ⎛ ⎝ ∂E k ∂x i - ∂E i ∂x k ⎞ ⎠ = 0 (1.3.75) since ⃗ ∇ × ⃗ E = ⃗ 0.
Therefore the electric force can be expressed as:

⃗ F = -⃗ ∇ P o (ρ, T ) + 1 2 ⃗ ∇ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ E 2 ρ ⎛ ⎝ ∂ ∂ρ ⎞ ⎠ T ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ - E 2 2 ⃗ ∇ (1.3.76)
The rst term here can be lumped with the pressure term in the momentum equation.

If the dielectric liquid contains volume charges, the Coulomb force must be added to the force equation. The complete electric body force is thus expressed as:

⃗ f EHD = q ⃗ E - 1 2 E 2 ⃗ ∇ + ⃗ ∇ ⎛ ⎝ E 2 2 ρ ∂ ∂ρ T ⎞ ⎠ (1.3.77) CHAPTER 1. GENERAL BACKGROUND 1.

Conclusion

In the context of this work, the concerned dielectric liquids are the ones that have very low electric conductivity. This means that the current traversing the liquid is negligible, Moreover, from an electrostatic point of view, the dielectric liquid is considered to be excluded of volumetric electric charges. This means that the governing electric equations are simplied to, 

⃗ ∇.( ⃗ E) = 0 , (1.4.1) ⃗ ∇ × ⃗ E = ⃗ 0 or ⃗ E = -⃗ ∇φ . ( 1 
D⃗ u Dt = - 1 ρ o ⃗ ∇P + ν∇ 2 ⃗ u + β⃗ g(T -T o ) - 1 2ρ o E 2 ⃗ ∇ , (1.4.4) 
DT Dt = α∇ 2 T , (1.4.5) 
where α = κ ρC p is the thermal diusivity. Since the electrostrictive force is a gradient term, it is lumped with the pressure term.

Finally the multi-physics coupling is summarized in g 1.5. The coupling between electrostatics and heat transfer is a very weak to non-existent one way coupling. The temperature dierences that give rise to dierences in permittivity barely modify the established electric eld. Concerning the electrostatic and uid mechanics coupling, it is of one-way nature. This is summarized by the addition of the electric force in the momentum equation as a volumetric source. Finally, the uid mechanics and heat transfer coupling is a two-way one. The ow is driven by a buoyancy force, that rises due to a specic temperature distribution within a uid, in the presence of gravity. On the other hand, the temperature distribution itself is modied by a convective term, which acts as a transport mechanism of heat. According to the late Antonio Castellanos, a pioneer in modern electrohydrodynamics (EHD) and author of the book "Electrohydrodynamics", EHD is the study of the dynamics of electrically charged uids submitted to an electric eld [START_REF] Castellanos | Electrohydrodynamics[END_REF]. This includes the interaction of these charges with the electric eld and uid surrounding them. Other terminologies in the literature are also electro-uid-dynamics (EFD) or electrokinetics.

Heat Transfer

Today this term is considered to be identical to Electrostrictive Hydrodynamics -(ESHD), which similar to EHD, involves the eect of electric body forces on dielectric liquids, however unlike EHD, it excludes the electrostatic and mechanical eects of volume charges (Coulomb force). ESHD includes dielectrophoresis, electrokinesis, electro-osmosis, and electrorotation. Phenomena related to ESHD were understood much later than the initial EHD discoveries and understanding. The rst recorded EHD phenomenon however, is charge injection and ion-drag. In the eld of EHD, this is also referred to as corona discharge.

In this chapter, a general state of the art review is presented. The rst section is a sort of brief timeline-like narration that emphasizes the history/birth of EHD and it's possible applications today. The topic is then converged towards advancements of EHD in heat transfer, where the dierent aspects of Thermo-electrohydrodynamics (TEHD) are briey presented. Finally, the discussion is further converged towards Dielectrophoretic driven TEHD, which are categorized into two parts, geophyscial ows and heat transfer enhancement.

Electrohydrodynamics 1629-2020: History and Applications

A corona discharge is a phenomenon that occurs when a strong electric eld near a conductor is capable of ionizing the surrounding dielectric uid and thus inducing a motion due to the drag created by the Coulomb force on these charges. In EHD, this is one way of converting electric energy to kinetic energy. According to several authors [START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF][START_REF] Popovi¢ | Studies of ow in ionized gas: Historical perspective, contemporary experiments, and applications[END_REF][START_REF] Rinaudo | The dust catcher: transforming dusty collections of scientic instruments into tools of education. Re-introducing science Sculpting the image of science[END_REF][START_REF] Robinson | A history of the electric wind[END_REF], it is believed that the rst unknowingly recorded observations related to EHD date back to 1629, when Niccolo Cabeo reported the interaction of sawdust with electried bodies [START_REF] Cabeo | Philosophia magnetica[END_REF].

It was later in 1709 when Francis Hausksbee was the rst to knowingly explain his experience of sensing a wind blowing when holding a charged tube near to him as an EHD CHAPTER 2. STATE OF THE ART: REVIEW phenomenon [START_REF] Robinson | A history of the electric wind[END_REF][START_REF] Yang | Corona driven air propulsion for cooling of electronics[END_REF]. The corona discharge was later a subject of interest of many known physicists. Newton was known to be responsible for introducing the terminology electric wind (known as ionic wind today) [START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF]. Faraday was the rst to infer that the induced motion arises from friction between charged and uncharged particles in the uid [START_REF] Faraday | Experimental researches in electricity[END_REF].

And nally Maxwell was recorded to be the rst to perform a qualitative analysis on the electric wind mechanism [START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF][START_REF] Robinson | A history of the electric wind[END_REF]. His work was believed to be the most complete at the time. This was followed by a quantitative analysis in the end of the 19 th century, where Chattock experimentally veried his derivation of the relationship between pressure and electric current for a parallel plane electrode conguration [START_REF] Chattock | Xliv. on the velocity and mass of the ions in the electric wind in air[END_REF][START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF][START_REF] Robinson | A history of the electric wind[END_REF]. Half a century later, the interest in corona discharge was renewed with Lob's retake on Chattok's analysis. The work of Lob's investigation of dierent geometries in general, and the thrust properties of the phenomenon in particular, attracted the attention of the United States Air Force in the mid-fties [START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF]. This lead to an increase of interest and funding for research in this eld, which continues until this day.

Due to their complexity and weak thrust performance, EHD thrusters designed for atmospheric purposes left researchers uninterested in their exploration. Very high voltages are required in order to generate an adequate thrust-to-power ratio [START_REF] Masuyama | Performance characterization of electrohydrodynamic propulsion devices[END_REF][START_REF] Wilson | An investigation of ionic wind propulsion[END_REF]. Advancements in space thrusters however reached its peak during the cold war, with Hall eect thrusters being developed as satellite stabilizers [START_REF] Gulczinski | Analysis of hall-eect thrusters and ion engines for orbit transfer missions[END_REF][START_REF] Sovey | Performance and lifetime assessment of magnetoplasmadynamic arc thruster technology[END_REF]. Despite their relatively low levels of thrust, the EHD space thrusters can achieve higher orders of specic impulse compared to fuel rockets, which makes them a remarkable candidate as a durable solution for space travel in the future. Besides EHD thrusters, other possible applications of the corona discharge also simultaneously emerged in the 50's, such as EHD drying and evaporation, EHD pumps, and EHD ow and heat transfer enhancement [START_REF] Ahsmann | The inuence of electric elds on the convective heat transfer in liquids[END_REF][START_REF] Krueger | Eects of unipolar air ions on microorganisms and on evaporation[END_REF][START_REF] Robinson | Movement of air in the electric wind of the corona discharge[END_REF][START_REF] Stuetzer | Ion drag pumps[END_REF].

A group of American scientists were the rst to unintentionally discover that the evaporation rate of droplets in air increases in the presence of ions [START_REF] Krueger | Eects of unipolar air ions on microorganisms and on evaporation[END_REF]. The group initially intended to study the eect of unipolar air ions on microorganisms. Three decades later the same observations were made in a more intentional manner. During the investigations of ionic wind on heat transfer, it was deduced that the presence of ions signicantly improved the evaporation rate [1012]. The simplicity and eciency of EHD drying interested researchers in exploring the phenomenon for industrial application. Today this technique is widely studied via research funded by the food industry. The studies conrm that this energy-ecient technique results in a product with high quality (color and appearance) and nutritional value, and is relatively easy to be scaled to an industrial application [START_REF] Bajgai | Drying of spinach with a high electric eld[END_REF][START_REF] Bajgai | High electric eld drying of japanese radish[END_REF][START_REF] Cao | Electrohydrodynamic drying characteristics of wheat using high voltage electrostatic eld[END_REF][START_REF] Esehaghbeygi | Electrohydrodynamic (ehd) drying of tomato slices (lycopersicon esculentum)[END_REF][START_REF] Goodenough | The eciency of corona wind drying and its application to the food industry[END_REF][START_REF] Li | Eect of electrohydrodynamic (ehd) technique on drying process and appearance of okara cake[END_REF]. For more detailed precision concerning the advancements of drying by means of high-voltage electric elds in the context of food and bio-processing, the reader is advised to refer to [START_REF] Singh | A comprehensive review on electrohydrodynamic drying and high-voltage electric eld in the context of food and bioprocessing[END_REF].

Robinson and Stuetzer were the rst to advocate the possibility of designing an EHD pump [START_REF] Robinson | Movement of air in the electric wind of the corona discharge[END_REF][START_REF] Stuetzer | Ion drag pumps[END_REF]. Unlike mechanical pumps, by eliminating moving parts in the design of EHD pumps (g. 2.1), the latter possesses many advantages over the former. The electrical to mechanical energy conversion rate however remains very low and is noted as a main disadvantage of EHD pumps. The lacking mechanical aspect of the EHD pump makes it an interesting solution for micro-scale cooling. For this reason, it remains a research topic of interest for many researchers today that are interested in electronics cooling. For additional details concerning up-to-date research regarding the dierent geometries, congurations, and eciencies of EHD pumps, the reader is advised to refer to review papers that concern EHD pumps [START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF]. CHAPTER 2. STATE OF THE ART: REVIEW Concerning the application within uid ow and enhancement of heat transfer, traces of the scientic community interest date back to the 30's [START_REF] Senftleben | Die einwirkung elektrischer and magnetischer felder auf das wärmeleitvermögen von gazen[END_REF] and resurfaces two decades later with numerous work consecutively published [START_REF] Ahsmann | The inuence of electric elds on the convective heat transfer in liquids[END_REF][START_REF] Allen | Electric stress and heat transfer[END_REF]. Due to the wide-range aspect of uid ow and heat transfer, it is not evident to pin point the origin of exploring the inuence of electric elds on heat transfer. It is also dicult to categorize the dierent aspects of this eld. Single and two phase ows, forced and natural convection, DC and AC electric elds, electrode geometry, and much more subcategories have been studied and will be briey discussed in the next section. [START_REF] Nishikawara | Numerical investigation of the characteristics of an ion drag pump[END_REF].

Ion injection and drag is considered to be the basis of Electrohydrodynamics for it was the rst phenomenon to be observed and understood by scientists. However during the development of this scientic eld, further understanding was established throughout the years, in the electrostatic aspect of EHD in particular. In the 60's, the concept of EHD induction was introduced by Melcher for example [START_REF] Melcher | Traveling-wave induced electroconvection[END_REF][START_REF] Melcher | Traveling-wave bulk electroconvection induced across a temperature gradient[END_REF]. On the other hand, the discoveries of Gross and Porter who observed electroconvection within dielectric liquids using DC electric elds in comparison to no electric eects using AC electric elds introduced the idea of exploring purely dielectrophoretic regimes [START_REF] Gross | Electrically Induced Convection in Dielectric Liquids[END_REF]. Moreover, by the end of the 60's, more advancements in EHD were expected, due to the initiation of the nite element method [START_REF] Argyris | Finite elements in time and space[END_REF][START_REF] Huebner | The nite element method for engineers[END_REF], which was considered to be a relatively simple calculation method for EHD. Today, a good deal of advancement is recorded in all the dierent elds of EHD. The latest International Symposium on Electrohydrodynamics (ISEHD) was held during June 2019 in Saint Petersburg -Russia. This occasion gave leading researchers from across the world the opportunity to present their work and discuss accomplished advancements with their peers. The topics of the work presented in ISEHD include EHD pumping, ionic wind and electro-aerodynamics, EHD spraying and atomization, EHD within multi-phase media, ow electrication, ESP, EHD microuidics, and nally EHD in thermal systems also known as thermo-electrohydrodynamics (TEHD).

Thermo-Electrohydrodynamics

In addition to the coupling in EHD between electrostatics and uid mechanics, TEHD is a multiphysics eld that involves yet another coupled physics: heat transfer.

The coupling of heat transfer and uid mechanics has long been an interesting topic in the scientic community, whether it is in the multi-phase context such as boiling and condensation, or in the single phase one such as natural convection. In the eld of convective CHAPTER 2. STATE OF THE ART: REVIEW heat transfer, the energy-momentum coupling has been abidingly understood. Whether in the case of forced convection, with a one-way coupling, or in the case of natural convection that concerns a two-way coupling, the eld of convective heat transfer has and continuously is being studied with vigorous interest.

Likewise, by adding the third electric ingredient to the remaining, we nd a literature relatively abundant in the eld of TEHD. Jones noted however, that the eld of thermo-electrohydrodynamics had long experienced "a general lack of coordination" and a "disjointed eort" to study the dierent heat transfer enhancement phenomena induced by an electric eld [START_REF] Jones | Electrohydrodynamically enhanced heat transfer in liquidsa review[END_REF]. Moreover, many researchers have not fully recognized, and in some cases overlooked, very important parameters that play crucial roles in the physics and particularity of the EHD phenomenon being studied. The most notable of these parameters must be the characteristic charge relaxation time of dielectric liquids, that has long been overlooked, and that plays a crucial role in identifying the dominant electrohydrodynamic eects in a system. Neglects of this sort led to various misinterpretations of experimental results in the eld.

Multi-Phase TEHD

Unlike convection and pool boiling, electric eld condensation, fusion, and melting received relatively less attention from the academic and industrial research communities, mainly due to their unlikely nature for being practical applications. The rst reported studies, that investigated the eect of electric elds on a vertical condensing plate, date back to the 60's [START_REF] Choi | Electrohydrodynamic condensation heat transfer[END_REF][START_REF] Velko | Condensation of vapor on a vertical plate with a transverse electrostatic eld[END_REF]. The enhancement of condensation heat transfer was reported to be highly costly, energy wise. A very high DC voltage power supply was required in order to have a modest heat transfer enhancement. Years later, the same conclusions were drawn when a horizontal cylindrical condensing system was tested [START_REF] Seth | The eect of an electric eld in the presence of noncondensable gas on lm condensation heat transfer[END_REF]. The studies in [START_REF] Choi | Electrohydrodynamic condensation heat transfer[END_REF] showed a critical voltage that indicates the threshold of a surface wave instability of the condensing lm. Beyond this critical value, the patterns of the condensate transform into drop-like structures. Using AC elds, it was recorded that the criteria for surface instability is less signicant compared to the case of DC elds [START_REF] Holmes | Condensation of freon-114 in the presence of a strong nonuniform, alternating electric eld[END_REF]. Concerning more recent advancements in condensation heat transfer enhancement, by means of an electric eld, the reader is advised to review [START_REF] Allen | Electrohydrodynamic enhancement of heat transfer and uid ow[END_REF][START_REF] Laohalertdecha | A review of electrohydrodynamic enhancement of heat transfer[END_REF].

Still in the context of multi-phase heat transfer, unlike condensation, boiling heat transfer in the presence of electric elds gained much more attention from the scientic research community. The rst reported study on this matter is linked to a group of researchers from the center of nuclear studies in Grenoble -France [START_REF] Bochirol | Systematic study of the use of electrical elds for improving heat exchange in boiling liquids[END_REF][START_REF] Bochirol | Etude de l'action de champs electriques sur les transferts de chaleur dans les liquides bouillants[END_REF]. Their investigated conguration constituted of a pair of parallel wire electrodes submitted to a 50 Hz AC high voltage (g. 2.2). Several general observations were made concerning the inuence of electric elds on boiling. This includes the decrease of nucleation sites in nucleate boiling, whereas in lm boiling, a destabilization eect of the vapor lm was observed.

They concluded that the DEP force dominates over the buoyancy for bubbles close to the wire [START_REF] Bonjour | Mecanisme de l'ebullition sous champ electrique[END_REF]. Later on, along with Louis Weil, the authors published a more complete article where they suggest that the eects of electric elds on heat transfer in liquids are more valuable during the boiling process. They support this by demonstrating that the electric eld is capable of controlling the rate of boiling heat transfer by transforming the boiling regimes from lm to nucleate [START_REF] Bonjour | Electroconvection eects on heat transfer[END_REF]. During the same year, Watson [START_REF] Watson | Inuence of an electric eld upon the heat transfer from a hot wire to an insulating liquid[END_REF] and Choi [START_REF] Choi | Electrohydrodynamic boiling heat transfer[END_REF] also performed experimental studies of boiling in order to explore the eect of DC voltages this time. Similar to his french colleagues, the latter also observed the capa-CHAPTER 2. STATE OF THE ART: REVIEW bility of the electric eld to transform lm boiling into nucleate boiling. Ever since the rst steps taken in Grenoble to explore the eects of electric elds on boiling, a good deal of advancement has been made throughout the years in this domain. To follow up with more details concerning the advancements in the experimentation and the theoretical and physical understanding of boiling in electric elds, the reader is advised to refer to [START_REF] Jones | Electrohydrodynamically enhanced heat transfer in liquidsa review[END_REF] for a 10 year review following the rst reported studies. For a more recent review, the reader is advised to refer to [START_REF] Allen | Electrohydrodynamic enhancement of heat transfer and uid ow[END_REF][START_REF] Laohalertdecha | A review of electrohydrodynamic enhancement of heat transfer[END_REF], where in addition to new experimental studies, numerical studies of the behavior of bubbles are also presented. 

Single-Phase TEHD

Without their knowledge, Kronig and Ahsmann were the rst to experimentally investigate the eect of Coulombic Forces on convective heat transfer in 1949 [START_REF] Kronig | The inuence of an electric eld on the convective heat transfer in liquids appl[END_REF]. The pair however contributed the eects of the DC and AC (low frequency) electric eld on the convective heat transfer to dielectrophoretic forces. Based on this wrongful assumption, they established a non-dimensional electric inuence number, which was used to correlate the eect of the electric eld on the enhancement of heat transfer. These discoveries attracted a lot of attention from the scientic community. Others investigated dierent electrode congurations such as Rogowski electrodes and concentric cylindrical electrodes [START_REF] Haan | The inuence of electric elds on the convective heat transfer in liquids ii[END_REF][START_REF] Schmidt | Der einuss elektrischer felder auf den wärmetransport in üssigen elektrischen nichtleitern[END_REF][START_REF] Weber | Free convection in electric elds[END_REF].

At this point, the results of dierent studies yielded incoherent and conicting conclusions. Bonjour and Verdier modied the Nusselt correlation that was rst establish by Kronig and Ahsmann by taking into consideration the unaccounted eect of the existence of free charges due to gradients in conductivity [START_REF] Bonjour | Interpretation de l'action de champs electriques sur les transferts de chaleur dans les liquides dielectriques[END_REF]. The new proposed correlation matched their experimental results [START_REF] Bochirol | Etude de l'action de champs electriques sur les transferts de chaleur dans les liquides bouillants[END_REF]. For the rst time, the importance of the conductivity gradients and the dominant role of the Coulomb force was highlighted. Furthermore, this helped establish the important role of the charge relaxation time, as a key parameter that characterizes the electrohydrodynamic regime and dictates which term of the electrical body force plays a leading role and which terms recedes.

Almost a decade later, Turnbull achieved signicant progress and established understandings in the eld of TEHD that have also been essential in highlighting EHD mechanisms and regimes. Turnbull argued that by using DC electric elds, the Coulomb term is strictly dominant and is established by the conductivity gradients that produce free charges [START_REF] Turnbull | Electroconvective instability with a stabilizing temperature gradient. i. theory[END_REF]. He also theoretically demonstrated an electroconvective instability CHAPTER 2. STATE OF THE ART: REVIEW threshold in dielectric liquids horizontally conned between two parallel plates, and later experimentally validated these predictions.

For the ve decades that followed Turnbull's theoretical and experimental ndings, numerous eorts have been made in order to further understand coulombic thermoelectrohydrodynamics. The dominant aspect of this electric force term attracted interest in it. Since the understanding of the corona ion injection and induction electroconvection, a third type of charge generation phenomenon came to exist: the ohmic model of electrical conduction [START_REF] Melcher | Electrohydrodynamics: a review of the role of interfacial shear stresses[END_REF]. Here, the development of EHD ows is possible by dissociationinjection conduction under non-equilibrium conditions of electrochemical reactions.

Characterizing, categorizing and further summarizing the entire scientic advancements in these topics is not possible in one section. Even-though these thematics are outside the scope of this PhD, their advancements remain very interesting. For this reason, the reader is advised to refer to [START_REF] Fylladitakis | Review on the history, research, and applications of electrohydrodynamics[END_REF][START_REF] Jones | Electrohydrodynamically enhanced heat transfer in liquidsa review[END_REF][START_REF] Laohalertdecha | A review of electrohydrodynamic enhancement of heat transfer[END_REF] for a general review of the advancements of EHD modied forced convection. Concerning single phase free convection, the review of Allen and Karayiannis [START_REF] Allen | Electrohydrodynamic enhancement of heat transfer and uid ow[END_REF] summarizes advances of coulombic heat transfer. The authors categorize the literature into corona injection, induction, and conduction.

Dielectrophoretic Driven Single-Phase TEHD

Unlike the Coulomb force which is generated by the presence of volume charges, the dielectrophoretic force relies purely on the physical properties of the dielectric uid (their in-homogeneity in particular). The mechanism resulting from these forces also dier. The former generates a drag mechanism, whereas the latter generates a volumetric mechanism similar to buoyancy. The dielectrophoretic mechanism can be favored in the case where electric charges are unwanted in the dielectric medium. Moreover, the electrochemical instability and decay of charge generations that accompany the coulombic applications, renders the dielectrophoretic ones much more dependable and long-lasting.

Since the dielectrophoretic force has long been neglected (as a force and topic of interest) compared to the Couloumb force, the literature in the eld of EHD nds itself lacking in its investigation. After extensively investigating the state of the art, we nd it suitable to separate the literature into two categories: (i) the electric gravity withing geophysical ows, and (ii) dielectrophoretically enhanced heat transfer.

Geophysical Flows and Electric Gravity

Laboratory experiments are crucial in order to validate current theoretical concepts concerning large-scale geophysical ows. The requirements in order to accurately assimilate thermal convection in the context of geophysical uid dynamics are: (i) spherical or cylindrical geometries, (ii) radial temperature gradients, (iii) rotation (Coriolis force), and (iv) isotropic centripetal gravity. The rst three requirements can be easily provided on earth. Due to Earth's gravitational direction however, the latter requirement is more complicated to fulll. An articial gravity within a spherical geometry is required in order to mimic that of earth. One way of doing so is by using strong electric elds within dielectric liquids submitted to temperature gradients. This however must be performed in micro-gravity conditions in order to suppress the eect of Earth's gravitational eld on the newly created articial gravity.

Smylie was the rst to suggest that the use of strong AC electric elds in dielectric liquids can simulate the central nature of Earth's gravity [START_REF] Smylie | Thermal convection in dielectric liquids and modelling in geophysical uid dynamics[END_REF]. Similar to the mass density, CHAPTER 2. STATE OF THE ART: REVIEW the permittivity, , is also linearly dependent on temperature. The author writes:

= o r [1 -λ(T -T ref )], (2.4.1)
where o , r , λ, T , and T ref are the absolute permittivity, the dielectric constant at the reference temperature, the thermo-dielectric coecient, the temperature, and the reference temperature respectively. The dielectrophoretic force can thus be written as,

⃗ f DEP = - 1 2 E 2 ⃗ ∇ = o r λ 2 E 2 ⃗ ∇(T -T ref ), (2.4.2)
where E 2 is the square of the electric eld magnitude. This can also be expressed as,

⃗ f DEP = o r λ 2 ⃗ ∇ E 2 (T -T ref ) - o r λ 2 (T -T ref ) ⃗ ∇E 2 .
(2.4.

3)

The author suggests lumping the rst term with the pressure (gradient terms). The remaining DEP term can therefore be expressed as:

⃗ f DEP = -ρ ref β(T -T ref )⃗ g e .
(2.4.4)

ρ ref , β, and ⃗ g e are the density at reference temperature, the thermal expansion coecient, and the electric gravity respectively. By writing the DEP force in this manner, we are able to do the analogy between the DEP and thermal buoyancy. The electric gravity is written as:

⃗ g e = λ o r 2ρ ref β ⃗ ∇E 2 .
(2.4.5)

Cylindrical Geometry

Chandra and Smylie investigated the role of the articial electric gravity within a cylindrical conguration [START_REF] Chandra | A laboratory model of thermal convection under a central force eld[END_REF]. The authors considered the centripetal gravity case in outward heating, within the annular geometry, as the most interesting conguration in geophysical applications. They investigated the stability of the TEHD convection and mentioned the applicability of TEHD convections to model ows at planetary scales. The authors also experimentally investigated a vertically positioned annular geometry. TEHD convection was detected by means of temperature measurements and the Nusselt number calculation (g. 2.3). The temperature dierences considered were very small such that the system remains in the conductive state (Nu = 1) in the absence of the electric eld. Beyond the threshold of a theoretically predicted electric number, the Nusselts experimentally calculated by Chandra and Smylie augmented beyond unity.

Takashima [START_REF] Takashima | Electrohydrodynamic instability in a dielectric uid between two coaxial cylinders[END_REF], Stiles and Kagan [START_REF] Stiles | Stability of cylindrical couette ow of a radially polarised dielectric liquid in a radial temperature gradient[END_REF], Malik et al. [START_REF] Malik | Thermo-electrohydrodynamic instabilities in a dielectric liquid under microgravity[END_REF], and Yoshikawa et al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] also performed a stability analyses on the cylindrical geometry with additional parameters and larger variation ranges considered. Recently, Travnikov et al. performed a 3D direct numerical simulation of TEHD convection within cylindrical congurations for a wide range of aspect ratio and Prandtl number [START_REF] Travnikov | Numerical investigation of the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF].

Similar to Chandra and Smylie, Futterer et al. [START_REF] Futterer | Thermal electro-hydrodynamic heat transfer augmentation in vertical annuli by the use of dielectrophoretic forces through ac electric eld[END_REF] experimentally investigated the eect of AC electric elds on natural convection within a vertical cylinder. By means of particle image velocimetry, the distortion of the base ow was detected. Concerning heat transfer, by measuring the Nusselt number, it was shown that low electric elds negatively impacts heat transfers. For high electric elds however, the Nusselt number increases suggesting an improvement in convective heat transfer. Seelig et al. [START_REF] Seelig | Dielectrophoretic force-driven convection in annular geometry under earth's gravity[END_REF] also The rst study concerning TEHD convection in a cylindrical geometry under microgravity conditions was presented in 2011 by Dahley et al. [START_REF] Dahley | Parabolic ight experiment" convection in a cylinder"convection patterns in varying buoyancy forces[END_REF]. The authors compare the velocity elds computed via PIV of their preliminary experimental results, performed on a parabolic ight, to numerical simulations. In 2018, DEP convection within a cylindrical annulus was re-examined [START_REF] Meier | Flow pattern and heat transfer in a cylindrical annulus under 1 g and low-g conditions: Experiments[END_REF]. More experimental campaigns in microgravity were performed and ow patterns are characterized. The eect of DEP convection on heat transfer is compared in the presence and absence of terrestrial gravity. This work is complemented by another [START_REF] Meyer | Flow patterns and heat transfer in a cylindrical annulus under 1g and low-g conditions: Theory and simulation[END_REF] that covers the theoretical (linear stability analysis) and numerical (direct numerical simulations) aspects of the problem.

In micro-gravity conditions, Meyer et al. [START_REF] Meyer | Eect of the initial conditions on the growth of thermoelectric instabilities during parabolic ights[END_REF] experimentally investigated the role of initial conditions on TEHD instabilities within two dierentially heated cylinders under microgravity conditions (parabolic ights). The growth rate of the instability was determined from PIV and shadowgraphy. The authors found that the instabilities grow faster when the initial conditions are closer to the purely conductive state.

Spherical Geometry

As suggested by Smylie [START_REF] Smylie | Thermal convection in dielectric liquids and modelling in geophysical uid dynamics[END_REF], in order to simulate the isotropic and centripetal nature of terrestrial gravity, the DEP analog can be considered. In order to assimilate all the components of geophysical ows, a spherical geometry and its rotation are necessary. In this context, the most famous work to be found in the literature is linked to Hart et al. [START_REF] Hart | Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity[END_REF].

By means of an experimental model, held under microgravity conditions within Spacelab In July 2003, a series of three published papers describes the experimental preparation and design [START_REF] Egbers | The geoowexperiment on iss (part i): Experimental preparation and design of laboratory testing hardware[END_REF], numerical simulations [START_REF] Travnikov | The geoow-experiment on iss (part ii): Numerical simulation[END_REF], and bifurcation analysis [START_REF] Beltrame | The geoow-experiment on iss (part iii): Bifurcation analysis[END_REF] of the GEOFLOW experiment on the ISS. This was followed by the fabrication and testing of the experimental setup in terrestrial gravity conditions [START_REF] Beltrame | Geoow: simulation of convection in a spherical shell under central force eld[END_REF][START_REF] Futterer | Thermal convection in rotating spherical shells: An experimental and numerical approach within geoow[END_REF]. By nally performing the GEOFLOW experiments in microgravity conditions, the preliminary results made it possible to identify sub and supercritical convection patterns [START_REF] Futterer | First identication of sub-and supercritical convection patterns from `geoow', the geophysical ow simulation experiment integrated in uid science laboratory[END_REF]. In this work, the mechanisms of the onset of steady ow or instability are presented, as well as their respective CHAPTER 2. STATE OF THE ART: REVIEW convection patterns established in the rotating and non-rotating case respectively. Moreover, the experimental interferogram images suggest sub and supercritical ow regimes, of which the latter is demonstrated, and compared to numerical ndings. This comparison suggests a shift between the experimental and numerical data.

The GEOFLOW II, which is the successor of GEOFLOW, aimed to study dielectric liquids with a temperature dependent viscosity. The purpose of this is to assimilate convection phenomena in Earth's outer core and mantle [START_REF] Futterer | From isoviscous convective experiment `geoow i'to temperature-dependent viscosity in `geoow ii'uid physics experiments on-board iss for the capture of convection phenomena in earth's outer core and mantle[END_REF]. In this work, experimental results of both GEOFLOW and GEOFLOW II are presented, and compared to three dimensional numerical simulations. The simulations were able to predict the sheet-like EHD RayleighBénard convection established in the temperature independent viscosity case. The plume-like thermal ows observed in the temperature dependent case however,

were not numerically predicted, unless the orders of magnitude of the viscosity within the numerical model was taken two orders of magnitude higher. Recently [START_REF] Zaussinger | Dielectrically driven convection in spherical gap geometry[END_REF], by using the temperature elds obtained via simulations, interferogram images are produced and compared to the experimental data of GEOFLOW II. The onset of thermal convection shows good agreement with the experiments.

For more details concerning the advancements in the eld of thermoelectrohydrodynamics in micro-gravity for geophysical ow applications, the reader is advised to refer to a complete literature review on the topic by Mutabazi et al. [START_REF] Mutabazi | Thermo-electro-hydrodynamic convection under microgravity: a review[END_REF].

Dielectrophoretically Enhanced Heat Transfer

Bonjour and Verdier were the rst to mention that the use of AC electric elds makes it possible for the dielectrophoretic term to be dominant rendering the electrophoretic one negligible. Ironically however, interest in investigating dielectrophoretic dominant mechanisms became popular only after Gross and Porter failed to perturb a thermally stratied dielectric liquid when using an AC electric eld [START_REF] Gross | Electrically Induced Convection in Dielectric Liquids[END_REF].

Both authors published an article in Nature, that presents experimental results of electric convection. The setup consisits of transformer oil held between two horizontal parallel plates with a thermal gradient such that the plate on the top was held at a higher temperature (thermally stratied). An electric eld was applied in a way that the lower plate was fed with an electric potential while the upper plate was held at earth potential.

When a positive potential was applied to the plate, convection patterns appeared similar to the Bénard cells in natural convection (g. 2.5). Cutting o the voltage caused the pattern to decay. On the other hand, the reversal of the eld showed an immediate collapse of the patterns. The duo also applied a 50 Hz AC electric eld that produced no detectable eect on the uid's stagnant stratication. The authors conclude by arguing that the thermal variation of the dielectric constant are relatively small. They stated that for this reason, the eect of non-homogeneous dielectric constant (and DEP) can be neglected and that the Coulomb term is responsible for the observed phenomena. They also mentioned that oils show an exponential increase in conductivity with temperature, and so the mobility of charge carriers is higher near the hot plate. With the DC potential, an accumulation of charges may be expected near this plate.

Despite Gross clearly concluding that it is the free charges in the bulk responsible for the electric convection when DC elds were used (Coulombic), Roberts initiates a theoretical study performing a stability analysis of the role of dielectrophoretic forces and buoyancy on a thermally stratied dielectric liquid (stable) [START_REF] Roberts | Electrohydrodynamic convection[END_REF]. He concludes that for a specic Rayleigh number (Ra), a critical electric Rayleigh (L c ) denes the threshold the critical Rayleigh number required for the onset of instability. This means that an increase in the electric eld tends to destabilize the system.

Takashima and Hamabata worked on the stability of natural convection in a vertical layer of dielectric uid in the presence of a horizontal AC electric eld [START_REF] Takashima | The stability of natural convection in a vertical layer of dielectric uid in the presence of a horizontal ac electric eld[END_REF]. The results of this analysis show a complicated eect of the electric and thermal coupling on the stability of the system. When the electric Rayleigh number is less than 2130, the electric eld has absolutely no eect on the stability of the established natural convection in the dierentially heated cavity no matter the values of the Prandtl and Grashof are. In order for the electric eld to destabilize the vertical ow, for low Prandtl numbers (Pr < 1)

the critical electric Rayleigh number is near 2130 when the Grashof is low. In this range of Prandtl, the value of the critical electric Rayleigh number quickly increases after a critical Grashof number of almost 10 3 . In the case of higher Prandtl numbers (Pr > 1),

this critical Grashof number (that denes the threshold of increase of the critical electric Rayleigh number) quickly decreases for increasing Prandtl numbers (g. 2.7).

Similar to Turnbull, Maekawa also studied the eect of an AC electric eld on the onset of natural convection in a horizontal dielectric uid layer heated from below [START_REF] Maekawa | Onset of natural convection under an electric eld[END_REF].

In this study, a free surface was also taken into consideration. The Galerkin method was applied on the perturbation equations and the boundary conditions and three convection onsets were dened: the onset of electric convection, the onset of buoyancy convection, and nally the onset of Marangoni convection. The authors dene an AC electric Rayleigh number (L ac ), and show that the governing parameters of natural convection are the elec- tric Rayleigh number (L ac ), the Rayleigh number (Ra), the Marangoni number (Ma), and the Biot number (Bi). As a general rule, convection tends to occur as L ac increases. For the onset of electric convection, the critical electric Rayleigh and critical wave number increases with the increase of the Biot number. This means that the electric convection tends to be suppressed and the distance between each cell becomes shorter as the heat transfer rate becomes higher at the free surface. For the onset of buoyancy convection, the critical Rayleigh number decreases as L ac increases, which is quite similar to the conclusion of Turnbull [START_REF] Turnbull | Eect of dielectrophoretic forces on the benard instability[END_REF]. For the onset of Marangoni convection, similar to buoyancy convection, the critical Marangoni number decrease as L ac increases.

In his work titled "Electro-thermal convection in dielectric liquids", Stiles [START_REF] Stiles | Electro-thermal convection in dielectric liquids[END_REF] tries to validate the theoretical predictions of Roberts [START_REF] Roberts | Electrohydrodynamic convection[END_REF] with the experimental results of Turnbull and Melcher [START_REF] Turnbull | Electrohydrodynamic Rayleigh-Taylor bulk instability[END_REF]. He sheds light on the validity of the electric Rayleigh number that was rst proposed by Roberts and its validity in AC TEHD (Turnbull and Melcher), As a result, he shows that for small values of Ra , L c Ra = 1.246. This slope tends to unity with the increase of Ra . Moreover, Stiles argues that Turnbull and Melcher have considered a wrong estimate for the temperature dependence of permittivity. Turnbull and Melcher used inaccurate and general assumptions to show that an electric Bond number close to unity is the critical threshold for which electric convection develops. This was supported with experimental results that conrmed their theoretical prediction, only because of the wrong thermo-dielectric coecients the authors estimated for their working uid. Stiles argues that by using the correct value for the thermo-dielectric coecient of the working uid used by Turnbull and Melcher, the expreimental critical Bond number is calculated at 1.57. This is comparable with the theoretical critical Bond number adapted from Roberts' analysis at 1.47.

Stiles also presents a table listing the Rayleigh number, the wave number, and electric

Rayleigh number as well as the critical voltage of ve organic liquids using bulk properties of these liquids under the condition of 20 ○ C temperature drop and 1 mm gap distance (g. 2.7). For these conditions, Stiles writes L c = -1.246Ra+2129 with 1% overestimation. The critical voltage is the voltage required to destabilize the system. Stiles denes its value as a function of the temperature drop, Rayleigh number, electric Rayleigh number, gap distance, expansion factor, density, relative permittivity, and temperature dependence of the relative permittivity.

A couple of years later, Stiles et al. performed a weakly nonlinear analysis and evaluated the heat transfer coecient [START_REF] Stiles | Convective heat transfer through polarized dielectric liquids[END_REF]. In the vicinity of criticality 0 ≤ δ ≤ 1 (with δ = L L c -1), Stiles writes:

Nu = 1 + aδ, (2.4.6)
where Nu is the Nusselt number, and a ≈ 0.8. By comparison with the Rayleigh-Bénard instability, the authors conclude that the conductive state is more stable in the electric gravity compared to Earth's gravity (Ra c < L c ), and the respective induced convection is less ecient in enhancing the heat transfer (a < a R.B ). Very recently, the work of Stiles on the stability and heat transfer has been extended by Fogaing et al. [START_REF] Fogaing | Heat transfer in the thermo-electro-hydrodynamic convection under microgravity conditions[END_REF] and Yoshikawa et al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF], which complemented the former theoretical aspects with direct numerical simulations.

Conclusion and Problematic

Ever since the detection of the rst electrohydradynmic phenomenon, major advancements have been made in the eld. This lead to the possible application of EHD in several domains. The most promising of which are food drying and bio-processing, ESP, EHD pumps, geophysical convection experimentation, and heat transfer enhancement.

Concerning heat transfer, in the context of dielectrophoretically induced convection in single phase ows, the work available in the literature mainly concerns the use of uniform electric elds, and treats the problem as a Rayleigh-Bénard equivalent. As interesting as this comparison is, heat transfer enhancement within such systems requires the attaining and surpassing of a certain threshold. In other words, very intense electric elds are required. Even in the case of micro-gravity, a certain critical electric Rayleigh number must be attained in order to destabilize the stagnant conducting regime into non-equilibrium.

In the present thesis, it is shown that by focusing on the non-uniformity factor of the electric eld, several advantages can be expected. Thus a DEP induced convection can be created at leading order. This in turn leads to a steady convective motion of a dielectric liquid for any electric Rayleigh number greater than zero. This promising approach, when applied in micro-gravity conditions, is capable of mixing and setting a dielectric liquid, that is stagnantly conducting heat, into motion. By doing so, an increase in heat transfer eciency of heat exchangers in outer-space can be fairly expected.

Chapter 3

Theoretical Approach

Introduction

In the work developed throughout this PhD, investigating a steady DEP induced convection within dielectric liquids, by means of non-uniform electric elds, in the context of micro-gravity conditions is essential. The foremost reason for which this context is considered is in order to uncouple the gravity dependent buoyancy motor and isolate the DEP force as the sole driver responsible for setting a stagnant volume of dielectric liquid into motion. This uncoupling allows the analysis of the role of the DEP motor independently. Moreover, within the micro-gravity context, a DEP induced convection promises an enhancement of heat transfer of thermal systems. This in turn yields electric elds as possible solutions for aerospacial applications concerned with heat transfer.

This enhancement of heat transfer, induced by DEP forces, can not be guaranteed in the presence of gravity. Coupling gravity to the problem introduces a more complex element. In the presence of terrestrial gravity, and for relatively high orders of electric eld intensity, the role of the DEP force on a dielectric liquid containing temperature gradients is found to be of negligible importance compared to that of thermal buoyancy. Even in the range of very high electric eld intensities (near dielectric breakdown), the DEP force acts only as a perturbative element on an established (thermal) buoyancy driven ow. Nevertheless, gravity is not excluded from the analysis developed in this chapter.

Even though the exploration of DEP in micro-gravity conditions is of interest, within the scope of this PhD, experiments were performed only in the laboratory, in the presence of terrestrial gravity.

The rst section demonstrates why non-uniform electric elds can give rise to DEP driven motion at leading order. This is accomplished by reformulating the momentum equation into a vorticity formulation, and by identifying the conditions for the emergence of the DEP term at leading order. Moreover, in this section, a perturbation approach is also presented in order to dierentiate the orders at which the DEP force plays a dierent role depending on whether the electric eld is uniform or non-uniform.

After this demonstration based on a perturbation approach, the section that follows describes how non-uniform electric elds are imposed within a dielectric liquid: two different electrode congurations are investigated. The rst one is the partial electrode conguration which is inspired from the classical dierentially heated cavity. The second one is the triangular electrode conguration which is inspired from the Taylor cone phenomenon in electrospraying.

Finally this chapter includes some theoretical predictions based on scaling analysis. in g. 3.1. In the rst one, the heated electrodes are considered perpendicular to the direction of gravity, in order to demonstrate the similarity between the buoyancy and dielectrophoretic stability problem. In the second one, referred to as dierentially heated conguration, the electrodes are set parallel to the direction of gravity. From a buoyancy point of view, the latter conguration unconditionally leads to a convective motion driven by a gravitational force at leading order. Dielectrophoretically speaking however, the DEP force is independent of the orientation of the uid layer, and therefore the problem remains that of a stability one.

Vorticity Formulation

The vorticity, ⃗ ω, mathematically dened as the curl of the velocity eld, ⃗ ω = ⃗ ∇ × ⃗ u, is the tendency for uid rotation, along a specic axis, leading to the generation of vortices.

For the case of two-dimensional, incompressible, and conned ows, the only possible way for the generation of uid ow is by the existence of a non-nil vorticity. For this reason, the vorticity formulation of the momentum equation is of crucial importance for determining and understanding the mechanisms that lead to the generation of a ow.

In order to understand the physical mechanisms of thermal buoyancy and DEP forces, both limiting cases are considered independently, by uncoupling the physics. In a rst case, the typical thermal convection problem is considered, in the limit of zero electric potential dierence (absence of electric forces). This is followed by the case where only the DEP force is considered, in the limit where the gravity (and thus thermal buoyancy) is non-existent.

Buoyancy-Driven Flow

By applying the curl operator to the momentum equation derived from the Boussinesq approximation (eq. 1.2.20), an equation that describes the evolution of the vorticity can be derived,

⃗ ∇ × ∂ ⃗ u ∂t + ⃗ ∇ × ⃗ u. ⃗ ∇⃗ u = ⃗ ∇ × - 1 ρ ref ⃗ ∇P + ⃗ ∇ × ν∇ 2 ⃗ u + ⃗ ∇ × βθ(⃗ x)⃗ g , (3.2.1) where θ(⃗ x) = T (⃗ x) -T ref .
The rst term on the left hand side can be expressed as ∂( ⃗ ∇ × ⃗ u) ∂t, because the curl operator is independent of time. The second term on the left hand side can be expanded as,

⃗ ∇ × ⃗ u. ⃗ ∇⃗ u = ⃗ u. ⃗ ∇⃗ ω -⃗ ω. ⃗ ∇⃗ u , (3.2.2) 
where the rst term on the right hand side (of equation 3.2.2) is known as the advection term (the convection of the vorticity). The second term on the right hand side is known as the vortex stretching term.

Since ρ ref is constant, the pressure term is omitted (curl of a gradient is zero). Therefore, the vorticity equation can be expressed as,

∂ ⃗ ω ∂t + ⃗ u. ⃗ ∇⃗ ω -⃗ ω. ⃗ ∇⃗ u = ν∇ 2 ⃗ ω + ⃗ ∇ × βθ(⃗ x)⃗ g . (3.2.3)
For a two-dimensional ow, where ⃗ u = (u, v) and ⃗ ω = (0, 0, ω z ), the stretching term vanishes, and the vorticity equation can be reduced to,

∂ω z ∂t + ⃗ u. ⃗ ∇ω z = ν∇ 2 ω z + βg ∂θ(⃗ x) ∂x . (3.2.4)
The buoyancy source, leading to the generation of motion, exists when a temperature gradient along the x-direction exists. More precisely speaking, a misalignment is required between gravity and the temperature gradient as imposed. For the case of horizontal parallel plates, this is established upon the presence of perturbations of an unstable layer of uid at equilibrium. Upon the surpassing of a certain threshold, dened by a critical Rayleigh number, the unstable layer of uid is set into motion, due to the arising of perturbative horizontal components of the temperature gradient.

For the case of vertical horizontal plates, there is no need for an instability criteria in order to generate convection. The instability-induced buoyancy-driven ow problem is transformed to one of a steady-induced buoyancy-driven nature. This is due to the existence of a misalignment of both the gravity vector and the temperature gradient at zero order. For any Rayleigh number greater than zero, the buoyancy source is non-nil, and the uid is set into steady motion (g. 3.1).

Dielectrophoretic-Driven Flow

The electric aspect is introduced to the problem via the introduction of the electrohydrodynamic body force of interest, with both the dielectrophoretic and the electrostrictive terms (eq. 1.3.77). By applying the curl operator on the electrohydrodynamic force, the dielectrophoretic torque, ⃗ M DEP , can be expressed as,

⃗ M DEP = ⃗ ∇ × ⃗ f DEP = - 1 2 ⃗ ∇E 2 × ⃗ ∇ . (3.2.5)
The electrostrictive term, which is a gradient one, is dropped because it is curl free. Now 

recalling that, ⃗ ∇( ⃗ A. ⃗ B) = ( ⃗ A. ⃗ ∇) ⃗ B + ( ⃗ B. ⃗ ∇) ⃗ A + ⃗ A × ( ⃗ ∇ × ⃗ B) + ⃗ B × ( ⃗ ∇ × ⃗ A) , (3.2 
⃗ M DEP = -( ⃗ E. ⃗ ∇) ⃗ E × ⃗ ∇ . (3.2.7)
The permittivity is the product of the absolute permittivity by the dielectric constant, therefore,

⃗ ∇ = o ⃗ ∇ r . (3.2.8) 
By taking into consideration the temperature dependence of the dielectric constant as described in eq. 1.1.2, this term can be expressed as,

⃗ ∇ = -o ref λ ⃗ ∇θ(⃗ x) .
(3.2.9)

Now by replacing the buoyancy torque term with the dielectrophoretic torque term, the momentum equation of the vorticity along the z-direction explicitly becomes:

∂ω z ∂t + ⃗ u. ⃗ ∇ω z = ν∇ 2 ω z + o ref λ ρ o ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ E x ∂E x ∂x . ∂θ ∂y + E y ∂E x ∂y . ∂θ ∂y -E x ∂E y ∂x . ∂θ ∂x -E y ∂E y ∂y . ∂θ ∂x ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . (3.2.10)
The DEP torque (eq. 3.2.7), leading to the generation of motion, exists when the electric eld, its gradient, and the temperature gradient are not aligned. In the absence of gravity, a thermal stratication is established. For the case of horizontal parallel plates, the uniform electric eld is aligned with the temperature gradient, and therefore a DEP source does not exist at leading order. In such a scenario, DEP convection may be established upon the presence of perturbations of an unstable layer of uid at equilibrium.

Upon surpassing a certain threshold, dened by a critical Roberts number, the unstable layer of uid is set into motion.

For the case of vertical horizontal plates, the same scenario presents itself since the problem is gravity independent. In micro-gravity, the orientation of the uid does not eect the orientation of the electric eld and the temperature gradient. Therefore, another way must be sought after in order to transform the instability-induced DEP-driven ow problem into a steady-induced DEP-driven one.

Perturbation Analysis

In an attempt to acquire further understanding of the source terms in the thermoelectrohydrodynamic problem, a perturbation analysis is required. The perturbation method is a mathematical tool that nds the approximate solution of a variable by means of decomposing the solution into dierent orders. This decomposition is based on a basic state at zero order (O(0)), and perturbative states at successive higher orders. In the analysis herein, only the rst (O(1)) and second orders (O( 2)) are to be considered. The variables can be decomposed as follows,

T = T o + ηT 1 + η 2 T 2 ; ⃗ u = ⃗ u o + η⃗ u 1 + η 2 ⃗ u 2 ; ⃗ E = ⃗ E o + η ⃗ E 1 + η 2 ⃗ E 2 ; ω z = ω zo + ηω z 1 + η 2 ω z 2 ;
where η << 1. The subscript o, 1, and 2 represent the zero, rst, and second order solutions, respectively, while the small parameter η is a dimensionless number to be dened.

In problems related to uid mechanics, the zero order solution is taken for that of the hydrostatic case. Therefore, ⃗ u o = ⃗ 0 and ω zo = 0. The uid layer is supposed to be homogeneous and is characterized by a constant density, temperature, and dielectric constant.

The electric eld imposed at zero order is also considered to be at its initial state, unmodied by uid ow or temperature eects. Therefore the gradients of the zero order solutions are nil.

The complete momentum equation of the vorticity along the z-direction, including both the buoyancy and DEP torques, is expressed as,

∂ω z ∂t + ⃗ u. ⃗ ∇ω z = ν∇ 2 ω z + βg ∂θ(⃗ x) ∂x + M DEP,z , (3.2.11) 
where M DEP,z is the z-component of the DEP torque ⃗ M DEP (see eq. 3.2.10). Equation 3.2.11 can be summarized by the following scheme, Inertia = Viscous + Buoyancy + DEP .

(3.2.12)

Replacing the decomposed forms of the variables in eq. 3.2.11, the vorticity equation becomes,

ηI(1) + η 2 I(2) = ηV s (1) + η 2 V s (2) + ηB(1) + η 2 B(2) + ηD(1) + η 2 D(2) , (3.2.13) 
or alternatively,

η I(1) -V s (1) -B(1) -D(1) + η 2 I(2) -V s (2) -B(2) -D(2) = 0 , (3.2.14) 
with I(i), V s (i), B(i), and D(i), the inertia, viscous, buoyancy, and DEP terms at i thorder, respectively. The rst order equation at O(1) writes,

I(1) = V s (1) + B(1) + D(1) , (3.2.15)
whereas the second order equation at O(2), is expressed as 

I(2) = V s (2) + B(2) + D(2) , (3.2 
I(2) = ∂ω z 2 ∂t + ⃗ u 1 . ⃗ ∇ω z 1 , (3.2.18) V s (1) = ν∇ 2 ω z 1 , (3.2.19) V s (2) = ν∇ 2 ω z 2 , (3.2.20) B(1) = βg ∂θ 1 ∂x , (3.2.21) B(2) = βg ∂θ 2 ∂x , (3.2.22) D(1) = ⎛ ⎝ 1 2ρ o o ref λ ⃗ ∇E 2 o × ⃗ ∇θ 1 ⎞ ⎠ ,z = o ref λ ρ o ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ E xo ∂E xo ∂x . ∂θ 1 ∂y + E yo ∂E xo ∂y . ∂θ 1 ∂y -E xo ∂E yo ∂x . ∂θ 1 ∂x -E yo ∂E yo ∂y . ∂θ 1 ∂x ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , (3.2.23)
and

D(2) = ⎛ ⎝ 1 2 o ref λ 2 ⃗ ∇( ⃗ E o . ⃗ E 1 ) × ⃗ ∇θ 1 + ⃗ ∇E 2 o × ⃗ ∇θ 2 ⎞ ⎠ ,z . (3.2.24)
In uid mechanics, the density, as estimated to be linearly dependent on temperature, is considered to be suciently accurate. For this reason, only rst order solutions are generally taken into consideration. The outcome of a perturbation analysis on the momentum equation instead of the vorticity equation, excluding all electric aspects, has a zero order equation that only describes the hydrostatic pressure as a function of the density and gravity, and a rst order equation that is referred to as the Boussinesq approximation.

Taking the curl of the Boussinesq equation yields eq. 3.2.15 without the term D(1).

Within the same reasoning, the linear changes in dielectric constant with respect to the temperature changes can be considered to be suciently accurate as well. Therefore, the notion of an equivalent electric Boussinesq approximation is possible (eq. 3.2.15). In this equation, one can note that the role of the DEP term at leading order 3.2.23 is a function of the electric eld at initial state (E o ). In the literature however, the governing equation studied is eq. 1.4.4. This equation considers the DEP term as a whole, without excluding the η 2 D(2) term which is signicantly small compared to the DEP term at rst order ηD(1).

The DEP term in the electric Boussinesq approximation, D(1), that is a function of the electric eld at initial state (E o ), suggests two things. The rst is that the electro- static and heat transfer coupling is weak. The electric forces that arise from an electric eld modied by the temperature, ⃗ E 1 , play a role only at second order. Only the initially imposed electric eld, ⃗ E o , plays a role in the electric force that dominates. Later on, this weak coupling notion is further supported in the Gauss equation of electrostatics, where it is shown that the role of the temperature distribution modies only slightly the electric potential distribution.

Finally, the second notion suggested by the expression of D(1) concerns the electric eld itself. In the case of uniform electric elds, the DEP term at rst order is zero.

This reinforces the previous conclusion (section 3.2.1.2) that in such a scenario, a DEP convection may only be established in the context of an instability problem. If the electric eld is non-uniform however, the DEP term at rst order is no longer negligible, and a DEP convection may be established in a steady state context.

In the case of thermal-buoyancy, it was shown that the orientation of the uid layer with respect to gravity plays a major role. Rotating a horizontal liquid layer into a vertical one misaligns the gravity eld and the temperature gradient so as to warrant a steady buoyancy driven ow. In a similar way, in order to warrant a steady DEP driven convection, the electric elds may be misaligned with respect to the temperature gradient. This can be done by modifying the electrode arrangement.

3.3 Non-Uniform Electric Fields in an Enclosed Cavity:

New Electrode Arrangements

Two dierent electrode geometries, that sustain non-uniform electric elds, are investigated. The rst one is the partial plane electrode geometry that is inspired from the dierentially heated cavity. The second one is the triangular electrode geometry that provides more intense electric elds, and is considered to be more relevant to engineering purposes.

Partial Plane Electrodes

In the case of a dierentially heated cavity, the vertical walls are held at constant but dierent temperatures, such that a temperature dierence is horizontally imposed along the uid. The two horizontal walls are considered to be insulating, meaning they are adiabatic (g. 3.1: schematic on the right). Several variations of the dierentially heated cavity is investigated rigorously in the literature. These studies concern dierentially heated cavities that are categorized and varied according to several aspects such as deep or shallow channels (along the third dimension), square or rectangle enclosures, tall or shallow uid layers, etc... . The dierentially heated cavity, as a topic, has been a vast subject of interest in the eld of heat transfer, for it captures the fundamental essence of the study of convective heat transfer driven by a buoyancy motor.

Inspired from the most basic form of the dierentially heated cavity, the shallow square enclosure, the partial dierentially heated cavity is considered as a conguration of interest. The aim here is to study, within a fundamental point of view, the eects of non-uniform electric elds within a square cavity. In order to further simplify the conguration, a unity ratio of the partially-heated to adiabatic walls is considered. Moreover, the positions of the partial walls are chosen to be at the extremities of the vertical spacial domain. The hot partial wall is at the top corner, whereas the cold partial wall is at the bottom one (g. 3.2). Since both partial walls are not facing each other, a non-uniform electric eld is established within the volume of the dielectric liquid.

Outside the context of EHD, the partially dierentially heated cavity has also been a popular conguration explored in the eld of convective heat transfer. The reader is advised to refer to [START_REF] Torabi | A comprehensive investigation of natural convection inside a partially dierentially heated cavity with a thin n using two-set lattice Boltzmann distribution functions[END_REF], where natural convection is investigated within a partially differentially heated cavity. In this work, several congurations are considered diering in the partially-heated to adiabatic wall ratio, and the y-position of both the hot and cold wall. A discussion is presented concerning the development of dierent patterns linked to the dierent congurations. The authors also discuss how the Nusselt number is aected as a function of the change in conguration. The red and blue side walls represent the conductive walls held at hot and cold temperatures respectively. Moreover, as commonly considered in the eld of EHD, the constant temperature walls are at the same time considered to be the electrodes. Therefore, the hot wall is submitted to an AC electric voltage. On the other hand, the cold electrode is grounded. The remaining black side walls in the scheme are submitted to thermal and electric Neumann boundary conditions since they are electrically and thermally insulated.

The discontinuity of the boundary conditions on each vertical wall is susceptible of creating numerical issues during computation. This complex singularity problem is bypassed by imposing a certain curvature at the edge of the electrode as shown in g. 3.2.

When considering the actual physical case, a sharp edge does not exist in nature. It is shown later on that for experimental purposes, this curvature is taken into consideration by means of very high precision micro-fabrication.

In order for the partial electrode geometry to conform to its expected function, it is not sucient for it to solely provide non-uniform electric elds. This electrode geometry must provide a dielectrophoretic torque at the conductive state, meaning, as eq. 3.2.7 suggests, ( ⃗ E. ⃗ ∇) ⃗ E and ⃗ ∇θ should not be aligned. In g. 3.3, a thermo-electrostatic numerical calculation is preformed (energy and electrostatic equations only) in order to evaluate the dielectrophoretic torque term at the conductive state. In this gure, the red vector eld represents the normalized unit vectors of ( ⃗ E. ⃗ ∇) ⃗ E, whereas the white vector elds are the normalized unit vectors of ⃗ ∇θ. The comparison of both vector elds suggests that a misalignment exists, and therefore a dielectrophoretic torque is present at leading order.

The vector eld is taken to be normalized for representative purposes only. The color map represents the normalized magnitude of the electric eld. The maximum intensity of the electric eld, in the electrode edge regions (EERs), scales as

E max ∼ E o r -1 3 c
, where r c is the non-dimensional radius of curvature as dened at the electrode edge. This falls in accordance with the analytical solution of the electric eld near a sharp edge [START_REF] Jackson | Classical electrodynamics[END_REF].

Triangular Electrodes

Even though the partial electrode conguration is considered worthy to be investigated for the reasons mentioned earlier, it falls far from being ideal for engineering applications.

For this purpose, the triangular electrode geometry is proposed. Inspired by the Taylor cone conguration and its subsequent features, triangular electrodes have the possibility to generate highly non-uniform and intense electric elds localized near the tip. The tri- angular electrodes are also more versatile than the partial electrodes. Several geometrical parameters can play a role in this versatility. This includes the curvature angle of the tip of the electrode, the height to base ratio of the electrodes, the y-position of the tip, and so on. These parameters can be investigated and optimized so as to yield an optimal geometrical parameter that itself optimizes the established DEP convection. In the scope of this PhD, only one arrangement is investigated within the square cavity. The precision concerning the dimensions of the triangular electrodes are specied later on. Similar to the partial electrode geometry, in order for the triangular electrode geometry to conform to its expected function, it is not sucient for it to solely provide non-uniform electric elds. This electrode geometry must provide a dielectrophoretic torque at the leading order. Again, in g. 3.5, a thermo-electrostatic numerical calculation is performed in order to evaluate the dielectrophoretic torque at conductive state. In this gure, the red vector eld represents the normalized unit vectors of ( ⃗ E. ⃗ ∇) ⃗ E, whereas the white vector CHAPTER 3. THEORETICAL APPROACH eld is the normalized unit vector of ⃗ ∇θ. The comparison of both vector elds, at the conductive state, suggests that a misalignment exists, and therefore the dielectrophoretic torque term exists. The color map represents the normalized magnitude of the electric eld. The maximum intensity of the electric eld, in the tip of the electrodes, scales as

E max ∼ E o r -0.15 c
, where r c is the non-dimensional radius of curvature as dened at the electrode edge. This falls in accordance with the analytical solution of the electric eld near a sharp edge tip [START_REF] Jackson | Classical electrodynamics[END_REF]. 

High Voltage

Theoretical Predictions: Scaling Analysis

In the eld of uid mechanics and convective heat transfer, scaling analysis is a theoretical tool often relied on in order to predict the response of a physical problem, as a function of the non-dimensional numbers governing it, and to estimate the expected scaling laws for the physical variables. These variables are the velocity eld components and the temperature distribution that are in turn necessary in order to assess the convective heat transfer of the system. Scaling analysis has grown popular within the scientic community for its simplicity, and its ability to obtain rather accurate theoretical predictions by taking into account fairly hefty scientic assumptions.

For the sake of lucidity, the dierentially heated cavity (g. 3.1) is solely considered for the scaling analysis. Concerning scaling analysis, both congurations of interest, the partial and triangular electrodes, are taken to be special cases derived from the general dierentially heated cavity. Concerning the former, it can be assumed that it is equivalent to the vertical heated wall limited to half its size. A similar assumption can be made for the latter, considering that at the limit where the height-to-base ratio of the triangular electrode is zero, the conguration falls identical to the dierentially heated cavity.

In the context of convective heat transfer, scaling analysis is performed in specic spacial domains known as boundary layers. The dierent terms weighting the momentum conservation equation are compared. Within the thermal boundary layer, the temperature gradients are concentrated, and therefore the buoyancy and dielectrophoretic forces accordingly. In this spacial domain, and for dielectric liquids, both forces can be scaled to that of viscous dissipation (friction). In the rst case, the buoyancy dominant limit is considered. This is possible when terrestrial gravity is present and the electric eld is absent. In the second case, micro-gravity conditions are considered along with the presence of an electric eld, and thus the dielectrophoretic force is dominant. In this limit, the dielectrophoretic force is isolated as the sole motor in the thermal boundary layer, and is scaled to the viscous dissipation. The continuity equation (eq. 1.2.4) is expressed as,

∂u ∂x + ∂v ∂y = 0 , (3.4.2)
where within the dened thermal boundary layer, the continuity scales as,

U x δ t ∼ U y H . (3.4.3)
U x and U y are the orders of magnitude of the x and y velocity vector components, respectively. In the limit where δ t << H (eq. 3.4.1), both components relatively compare as U x << U y , which is consistent with the vertically entrained nature of a ow within a thermal boundary layer near a vertical constant temperature wall.

The energy equation (eq. 1.4.5), taken at steady state, can be expressed as, 

u ∂T ∂x + v ∂T ∂y = α( ∂ 2 T ∂x 2 + ∂ 2 T ∂y 2 ) . ( 3 
U 2 y δ d H inertia ∼ ν U y δ 3 d friction , (3.4.15) 
and consequently,

δ d H ∼ Ra -1 4 Pr 1 2 .
(3.4.16)

In the previous, the scale for the vertical velocity component was taken the same as in eq. 3.4.13, since the vertical velocity is imposed by the driving instrument. In this case, the driving instrument, via dragging, is the thermal boundary layer characterized by U y .

The ratio of both viscous to thermal boundary layer thicknesses nally writes, As the Prandtl number increases, the distance from the no-slip wall, where the vertical velocity component reaches its peak also increases. Beyond this distance, the vertical velocity component starts to decay until it reaches a stagnant state.

δ d δ t ∼ Pr 1 2 . ( 3 
The previous discussion is valid in the case where a thermal boundary layer exists. In the literature, this case is referred to as the boundary layer regime or the high-Rayleigh

regime. An other limit is the conduction regime. In this case, the Rayleigh number is low, and the heat transfer across the cavity is dominated by conduction. By following the same scaling analysis, in the absence of a boundary layer, from eq. 3.4.4, the velocity component scales are,

U x ∼ U y ∼ α H , (3.4.24) 
and the Nusselt number in the conduction regime consistently scales as, Nu ∼ 1 . The coupling between the energy equation and the Laplace equation is weak (one-way):

Joule eect is considered here as negligibly small when making use of DEP actuation. In the case of a dierentially heated square cavity (H × H), the electric eld can be scaled by the voltage to size ratio, E x ∼ ∆V H.

In the dielectrophoresis-limited regime, the z-component of the dielectrophoretic torque, M DEPz replaces the buoyancy term in eq. 3.4.9: In the thermal boundary layer (TBL), only the transverse temperature derivative, ∂θ ∂x , dominates. The electric eld near the electrode, and therefore across the TBL, is essentially driven by its component E x along the direction normal to the electrode (x-direction): E x >> E y . For this reason, the third term of the DEP contribution is the dominant one.

u ∂ ∂x ∂v ∂x - ∂u ∂y + v ∂ ∂y ∂v ∂x - ∂u ∂y = ν ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ∂ ∂x ∂ 2 v ∂x 2 + ∂ 2 v ∂y 2 - ∂ ∂y ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + o ref λ ρ o ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ E x ∂E x ∂x .
Even though the y-component of the electric eld is small, its derivative with respect to

x does still play a key role in the case of a strongly non-uniform electric eld and an estimate for this y-component must be found by considering the conservation equation, ∇. ε ⃗ E = 0, at leading order:

E y ∼ δ t H E x .
Hence, the dominant contribution to the DEP term in the vorticity equation scales as, 

δ t H ∼ L -1 4 . (3.4.30)
The vertical velocity component can now be scaled as a function of the governing nondimensional numbers as,

U y ∼ α H L 1 2 , (3.4.31) 
and the Nusselt number can be scaled as,

Nu ∼ L 1 4 , (3.4.32)
suggesting an enhancement of convective heat transfer with increasing voltage dierences.

Again, it is possible for the thermal boundary layer to viscously drag another layer of uid adjacent yet outside of the thermal boundary layer (uid at T ref ). Let δ d be the thickness of this layer, which is also know as the drag boundary layer.

The DEP force no longer plays the role of the motor in this layer. Therefore, from eq.

3.4.27, one gets,

U 2 y δ d H inertia ∼ ν U y δ 3 d friction , (3.4.33) 
and therefore,

δ d H ∼ L -1 4 Pr 1 2 .
(3.4.34)

In the previous, the scale for the vertical velocity component was taken the same as in eq. 3.4.31, since the vertical velocity is imposed by the driving instrument. In this case, the driving instrument, via dragging, is the thermal boundary layer characterized by U y .

The ratio of both drag to thermal boundary layer thicknesses nally writes, A stratied core can therefore be expected outside the DBL provided that δ d H < 1.

δ d δ t ∼ Pr 1 2 . ( 3 
This condition, together with (3.4.34), leads to the generic criterion, Gr e > Pr >> 1.

(3.4.36)

Note also that the velocity scale as estimated above from eq. (3.4.31) is valid in the TBL while a viscous decay of the velocity prole is expected outside, in the DBL (Fig. 3.6).

If Pr << 1, then from eq. 3.4.29,

H δ t 4 L -1 Pr -1 inertia ∼ H δ t 1 H δ t DEP ,
and therefore the ratio of the thermal boundary layer thickness to height scales as a function of the Roberts and Prandtl numbers to the power -1/4,

δ t H ∼ Pr -1 4 L -1 4 .
(3.4.37)

The vertical velocity component can now be scaled as a function of the governing nondimensional numbers as, (3.4.41)

U y ∼ α H Pr 1 2 L 1 2 , (3.4 
In the latter scaling, the scale of the vertical velocity component is taken the same as in eq. 3.4.38. The ratio of both viscous to thermal boundary layer thicknesses again writes,

δ ν δ t ∼ Pr 1 2 . (3.4.42)
As the Prandtl number increases, the distance from the no-slip wall, where the vertical velocity component reaches its peak also increases. Beyond this distance, the vertical velocity component starts to decay until it reaches a stagnant state.

CHAPTER 3. THEORETICAL APPROACH

Conclusion

By reformulating the momentum equation into a vorticity formulation, the driving source of momentum in a conned dielectric liquid is identied as the dielectrophoretic torque. When non-uniform electric elds are used this torque is present at leading order.

This suggests that a steady induced DEP convection can possibly take place.

By performing a perturbation analysis, for the case of uniform electric elds, the DEP torque does not arise at leading order.

The partial electrode conguration and the triangular electrode conguration are considered in order to create non uniform electric elds within a dielectric liquid.

By means of scaling analysis, the Nusselt number is predicted to scale as the Roberts to the power -1/4 for dielectric liquids (high Prandtl uids). Other variables governing the ow are also predicted via scaling analysis. An analogy between DEP induced convection and buoyancy induced convection must be emphasized, robust up to the conclusions of a scaling analysis.

Chapter 4

Numerical Approach and Tools This is followed by a description of the numerical tools used. The commercial software based on the nite element method is used for discretizing the geometrical domain, and coupling and computing, at steady state, the nondimensional equations. The electrostatics module is inspected in relation to the accuracy of the electric elds computed near the rounded edge geometries. Mesh sensibility analysis is also presented here in the context of validating the convergence of the numerical output of the model.

The second step for exploring the role of non-uniform electric elds on DEP induced convection would be of experimental nature. The preliminary experimental setup is designed for laboratory investigation (in the presence of terrestrial gravity) and is detailed in the following chapter. In the intent of supporting the experimental results with numerical calculations, the assumptions considered for the general model are slightly modied.

The addition of the gravity component gives rise to a new non-dimensional number: the Rayleigh number. Moreover, in some cases, an additional friction term is taken into account in the momentum equation (Hele-Shaw problem). This is done in order to model, within the 2D approach, friction forces generated by the lateral walls at a particular depth along the third dimension of the experimental cavity. Finally, the mid-plane section of the experimental setup is entirely taken into consideration, for the purpose of modeling thermal conduction through the walls surrounding the cavity. Both numerical and experimental results suggest an important role of lateral heat loss on the outcome of the thermo-dielectophoretic induced convection.

Non-Dimensional Analysis of the Governing Equations

The four equations governing the mechanical, thermal, and electrostatics coupling are, (i) the continuity equation for incompressible uids (eq. 1.4.3), (ii) the momentum balance (eq. 1.4.4) in the absence of gravitational induced buoyancy forces, (iii) the energy balance (eq. 1.4.5), and nally (iv) the Gauss equation for electrostatics (eq.

1.4.1). At steady state, these equations respectively write as,

⃗ ∇.⃗ u = 0 , (4.2.1) ρ(⃗ u. ⃗ ∇)⃗ u = -⃗ ∇P + ρν∇ 2 ⃗ u + 1 2 ref o λ ⃗ ∇φ 2 ⃗ ∇(T -T o ) , (4.2.2) ⃗ u. ⃗ ∇T = α ∇ 2 T , (4.2.3) ⃗ ∇.( ⃗ E) = 0 . (4.2.4) Let ⃗ x * , ⃗ u * , θ
, ⃗ e g , Φ, P * , and ∇ * be the non-dimensional form of the vector space, velocity eld, temperature dierence, gravity eld, electric potential, pressure, and nabla operator respectively. The respective scales are,

⃗ x * = ⃗ x H ; ⃗ u * = H α ⃗ u; θ = T -T o ∆T ; ⃗ e g = ⃗ g g ; Φ = φ ∆V ; P * = H 2 ρα 2 P ; ∇ * = H∇
The continuity equation in non-dimensional form can be expressed as,

⃗ ∇ * .⃗ u * = 0 . (4.2.5)
The momentum balance, in its non-dimensional form, writes, 

ρ α 2 H 3 (⃗ u * . ⃗ ∇ * )⃗ u * = -ρ α 2 H 3 ⃗ ∇ * P * + ρν α 2 H 3 ∇ * 2 ⃗ u * + ref o λ ∆T ∆V 2 H 3 ⃗ ∇ * Φ 2 ⃗ ∇ * θ .
(⃗ u * . ⃗ ∇ * )⃗ u * = -⃗ ∇ * P * + Pr ∇ * 2 ⃗ u * + L.Pr ⃗ ∇ * Φ 2 ⃗ ∇ * θ . (4.2.7)
The non-dimensional form of the energy balance equation is, Finally, the equation for electrostatics can be expressed as,

α H . 1 H .∆T ⃗ u * . ⃗ ∇ * θ = α. 1 H 2 ∆T ∇ * 2 θ ,
⃗ ∇.( ⃗ E) = ⃗ ∇. ⃗ E + ⃗ E. ⃗ ∇ = 0 (4.2.10)
considering ⃗ E = -⃗ ∇φ, the previous equation becomes,

o r ∇ 2 φ + o ⃗ ∇φ. ⃗ ∇ r = 0 , (4.2.11)
or equivalently, the following Poisson equation,

∇ 2 φ = - ⃗ ∇φ. ⃗ ∇ r r . (4.2.12)
Note that the presence of a source term has nothing to do with the presence of space charges. Taking into account the linear approximation of the dielectric constant variation with respect to the temperature (eq. 1.1.2), one gets:

∇ 2 φ = λ ⃗ ∇φ. ⃗ ∇(T -T o ) 1 -λ(T -T o ) . (4.2.13)
This can also be expressed in the dimensionless form as, 

∆V H 2 ∇ * 2 Φ = λ H ∆V ∆T H ⃗ ∇ * Φ. ⃗ ∇ * θ 1 -λ∆T θ .
∇ * 2 Φ = ⃗ ∇ * Φ. ⃗ ∇ * θ a -θ (4.2.15) 
As a conclusion, by dropping the ( * ) symbol, the dimensionless governing equations are:

⃗ ∇.⃗ u = 0 , (4.2.16) ∇ 2 θ = ⃗ u. ⃗ ∇θ , (4.2.17) 
(⃗ u. ⃗ ∇)⃗ u = -⃗ ∇P + Pr ∇ 2 ⃗ u + L.Pr ⃗ ∇Φ 2 ⃗ ∇θ , (4.2.18) 
∇ 2 Φ = ⃗ ∇Φ. ⃗ ∇θ aθ . 

Boundary Conditions

The set of governing equations, associated to the strongly coupled TEHD problem, are solved by using COMSOL multiphysics, a software based on the nite element method.

The latter simplies the discretization of complex geometrical domains as well as the coupling between dierential equations. A purely mathematical module is used in order to customize the input of the mathematical model, and to secure our capacity to bypass eventual "black boxes" inside the software, such as smoothing algorithms. This also allows us to compute the equations in their non-dimensional form, and limit the uncertainties risen by the "blind" use of a commercial tool. The calculations are performed on a two-dimensional (size: 1 × 1) geometrical domain similar to that represented in gs. 4.1 and 4.2. A triangular mesh scheme is imposed with a total mesh number N mesh ≈ 1.5 -3 (×10 4 ) elements (depending on the conguration), and a minimum mesh size of 6 × 10 -5 . Triangular 2D meshing is common for use with nite elements method, in particular with problems concerning electrostatics and complex geometries. The tip of each mesh represents a node. The solution of the numerical model is calculated on each node, and further interpolated throughout the geometrical domain of a mesh by means of shape functions. The shape functions are polynomial functions of rst degree (linear) or higher. In the case where a rened mesh distribution is applied, a linear shape function is suciently appropriate to yield accurate results while minimizing calculation time. The electrodes are supposed to be perfectly conducting, both thermally and electrically, with the following boundary conditions for the temperature and the electric potential, Triangular Electrodes: Similarly, the tip of the triangular electrode are rounded with a curvature radius of r c = 10 -2 (g. 4.2). Again, the ratio of the curvature radius to the cavity size is equal to that considered in the experimental set-up. The boundary conditions for the velocity eld are no slip and non-permeable on all the walls. Once more, the electrodes are considered to be perfectly insulated, both thermally and electrically.

θ = 1 2, φ = 1, at x H = 1 2 (y H ∈ [0, 1 2]), (4.3.2) θ = -1 2, φ = 0. at x H = -1 2 (y H ∈ [-1 2, 0]).
Dirichlet boundary conditions are imposed, such that,

θ = +1 2, φ = 1, ⃗ u = ⃗ 0, ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ at y H = - 10 3 x H + 7 6 y H = + 10 3 x H - 7 6 
(x H ∈ [+0.35, +0.5]),

(4.3.5) θ = -1 2, φ = 0, ⃗ u = ⃗ 0, ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ at y H = + 10 3 x H + 7 6 y H = - 10 3 x H - 7 6 
(x H ∈ [-0.5, -0.35]), For problems concerning natural convection in a square cavity, a Cartesian meshing is commonly used for numerical calculations. The approriate mesh size to be considered is dependent on the regime of the ow. For low Rayleigh number ows, a rather coarse meshing is sucient, whereas for higher Rayleigh numbers, the size of the mesh must be smaller in order to attain grid independent accurate solutions. Another variant of Cartesian meshing is the grid uniformity. Laminar ows are calculated accurately with uniform Cartesian meshing, however "stretched" meshing is often imposed for turbulent ows. Such Cartesian schemes are non-uniform, and higher in resolution near the walls, in order to accurately represent the ow within the near-wall boundary layers. The classical numerical benchmark solutions of the dierentially heated cavity problem [START_REF] Barakos | Natural convection ow in a square cavity revisited: laminar and turbulent models with wall functions[END_REF][START_REF] De Vahl | Natural convection of air in a square cavity: a bench mark numerical solution[END_REF] x a range of mesh size between 0.05 to 0.0125 for laminar ows. For Ra ≤ 10 4 , a mesh size between 0.05 and 0.025 is tting, whereas for Ra ≥ 10 5 a smaller mesh size in the range of 0.025 and 0.0125 is more suitable.

Cartesian meshing is less suitable for application within complex geometries, including rounded circular edges. For this purpose, a triangular mesh scheme is adopted here.

In the case where the electrostatics aspect of the problem is uncoupled, the numerical calculations suggest that the natural convection problem, within partially (or triangular) dierentially heated cavities, converges grid independently with decreasing mesh size in the range similar to the ndings of the classical benchmarks [START_REF] Barakos | Natural convection ow in a square cavity revisited: laminar and turbulent models with wall functions[END_REF][START_REF] De Vahl | Natural convection of air in a square cavity: a bench mark numerical solution[END_REF]. In order to assess this convergence from a mechanical point of view, an evaluation of the maximum horizontal and vertical velocity components (u max and v max respectively) for dierent mesh sizes is performed. From a thermal point of view, the average Nusselts number, Nu mean , is evaluated at the hot electrode. Table 4.1 contains the solutions of the mesh sensitivity analysis performed for the partial electrode geometry for a unique Prandtl number (Pr = 220), a range of mesh sizes ranging from 2 × 10 -2 to 6 × 10 -5 , and for a Rayleigh number between 10 3 and 10 6 . Similar results are obtained for the triangular electrode conguration.

The mesh sizes here appear to be much smaller than the ones in the classical benchmark solutions of natural convection. In fact, the triangular meshing imposed here is nonuniform. The values of mesh size in table 4.1 are for the minimum mesh size located near the rounded edges. Beyond this minimum, the mesh size non-uniformly increases with a growth rate of 1.05. For the case of a minimum mesh size of 2 × 10 -2 , the average mesh size in the volume, far from the edges, can reach a value up to 0.2. For the case of minimum mesh size 6×10 -5 , the average mesh size far from the edges can reach up to 0.01. For low Rayleigh ows, Ra ≤ 10 4 , the solution converges near a minimum mesh size of 1.2 × 10 -2 . The error for the maximum velocity components and average Nusselt number is never more than 1.5%. For high Rayleigh ows, Ra ≥ 10 5 , the solution converges near a minimum mesh size of 3-6×10 -3 . The error for the maximum vertical velocity component reaches up to 2.7%. Concerning the maximum horizontal velocity component and average Nusselt number, the error is never more than 1.57%.

Electrostatics

In order to accurately represent the rounded edges of the electrodes, a high resolution triangular mesh is required. The minimum mesh size near the edges must be relatively small compared to the radius of curvature of the edge. The accuracy and smoothness of the edges increase as the mesh size decreases. Fig. 4.3 represents the quality of the rounded edges with three dierent mesh sizes considered. For as size of 6 × 10 -3 , the mesh is not enough rened, yielding discrete rounded edges. This is to be expected since the ratio of the mesh size to curvature radius is only 3/5. For a size of 3 × 10 drops to 30%, yielding a smoother edge. Finally, for a size as small as 6 × 10 -5 , the ratio is small enough (0.6%) for an accurate representation of the rounded edge.

𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒 = 6 × 10 -3 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒 = 3 × 10 -3 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒 = 6 × 10 -5 In comparison to heat transfer and uid ow, the numerical computation of an electric eld near rounded edges requires relatively smaller mesh size. A mesh sensitivity analysis is performed for strictly electrostatics calculation in order to evaluate the convergence of the electric eld with decreasing mesh sizes (table 4.2). The maximum and mean electric eld intensities ( ⃗ E max and ⃗ E mean respectively) are tabulated for dierent mesh sizes considered. The results suggest that the mean electric eld intensity is not sensitive to changes in the mesh size. This is to be expected because the electric eld far from CHAPTER 4. NUMERICAL APPROACH AND TOOLS the rounded edges do not require particularly rened grids. The maximum electric eld intensity however seems to be mesh dependent up to a mesh size of 3 × 10 -3 . The solution then converges for a mesh size of 6 × 10 In order to choose a mesh size that will be appropriate for the coupled problem the mesh size used for the simulations was xed at 6 × 10 -5 . In order to further support this choice, a nal mesh sensitivity analysis is done. In this case the complete TEHD coupling is considered excluding the buoyancy term (microgravity conditions). The solutions of this analysis on the partial electrode conguration are presented in table 4.3 for a xed

Prandtl number, Pr = 220, and a range of Roberts number, 10 3 ≤ L ≤ 10 6 .

Similarly to the case of natural convection, the solution suggests that a smaller mesh size is required for higher Roberts number. It is important to note that in the case of TEHD ows, the high order of magnitude of the maximum velocity components is linked to the regions near the electrode edges where the electric eld is highly intense. Far from the electrode edges, and along the remaining part of the Dirichlet side walls, the order of magnitude of the velocity components are similar to that of natural convection. Contrary to the case of natural convection, the required mesh size in the TEHD case are smaller due to the coupling with electrostatics that requires a small meshing. 

Additional Parameters

Till this point, the numerical model presented aims at simplifying as much as possible the multiphysics problem. These simplications are in the form of assumptions considered, such as the two-dimensional aspect considered and the purely adiabatic walls.

In fact, these simplications are rather dicult to fulll in real systems. By designing the experimental set-up in the fashion presented in the next chapter, two aspects are seen to be importantly inuential on the outcome of the TEHD ow. The rst one is of mechanical nature, and concerns the depth of the square cavity, along the third dimension.

The two walls situated along this dimension are likely to give rise to a friction force that can be modeled within a two-dimensional problem.

The second additional parameter to consider is of thermal nature. The purely adiabatic condition on the partial-walls, considered in the basic model of the partial electrode conguration, no longer holds in the experimental scenario. By modifying these Neuman conditions, and incorporating heat conduction within the partial vertical walls, the numerical simulations are able to more accurately compare to the TEHD ow observed in the experiments.

Hele-Shaw Approximation

The experiments related to this PhD have been performed within two set-ups of different cavity depths. This is described in detail in the following chapter (refer to sec.

5.1.2).

In order to compare the experimental results to numerical predictions, the role of the cavity depth on the structure of the ow is taken into consideration. In the case where the depth of the cavity along the third dimension is relatively small (Hele-Shaw cell), the viscous friction, risen from the walls along the third dimension, plays a damping role on the two-dimensional ow [START_REF] Hartline | Thermal convection in a hele-shaw cell[END_REF]. As long as the gap is small, gradients along the z direction can be estimated negligible, the ow can be considered two-dimensional, and the two-dimensional velocity can be gap averaged.

A two dimensional z-dependent velocity eld, ⃗ u(x, y, z) = (u x (x, y, z), u y (x, y, z), 0), can be approximated as a function of a z-averaged two-dimensional velocity ū(x, y) = (ū x (x, y), ūy (x, y), 0), considering a Poiseuille velocity prole (described by a parabolic function f (z)) along the gap, that is independent of (x, y), such that, ⃗ u(x, y, z) = ū(x, y).f (z) . The function f (z), can be considered as a general quadratic function (see Appendix C).

When applying the no slip boundary conditions, and the symmetry along z,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ f (±b 2) = 0, f ′ (0) = 0, , (4.5.2) 
where b is the depth of the cavity, this function can be expressed as,

f (z) = 3 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 - 2z b 2⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . (4.5.3) 
The velocity eld can therefore be expressed as ⃗ u(x, y, z) = ū(x, y). decreases, the viscous force generated by the shear along the lateral walls increases. This is physically consistent with the increase of shear friction in shallow channels. In case the depth along the z-direction increases, this term tends to zero. However, in this case, the assumption of a purely two dimensional ow becomes weaker. The continuity and energy equations are not modied by this averaging process.

3 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 - 2z b 2⎤ ⎥ ⎥ ⎥ ⎥ ⎦ .

Account for Heat Losses

The adiabatic conditions considered in theory can not be satised in reality. A purely insulating material does not exist. Even by considering materials with a very small thermal conductivity, adiabatic conditions considered on half parts of the vertical side walls can never be perfectly imposed. Due to this, the ow within the cavity, measured during the experiments, is expected to be relatively dierent from the ideal case, predicted via numerical simulations.

The case where adiabatic conditions are considered is numerically challenged. This is done in a simplied manner, by taking into consideration solely the 2D mid-plane section of the experimental set-up. The reader can refer to chapter 5 for a more detailed presentation of the set-up. The 2D schemes of the sections are represented in g. 4.5

for the partial electrode set-up. The thermal diusivity of each material is taken into consideration. In the gure, this is represented by α DL , α plexi , and α P V C for the dielectric liquid, plexiglas, and PVC respectively. Moreover, the possible role of convective heat loss with the ambient air is investigated such that T amb = (T H + T C ) 2.

In the case where the ideal boundary conditions are considered, as presented in sec.

4.3 and g. 4.1, the buoyancy driven ow, as predicted by the numerical simulations for an equivalent Ra = 2.1 × 10 6 , is represented in g. 4.6. In this gure, the y-component of the velocity is represented by the color-map, whereas the streamlines represent the isocontours of the stream function. Similarly, the case of the modied boundary conditions is presented here. For this case, the thermal conduction within the plexiglas and PVC are considered, whereas no convective heat loss with the ambient air is taken into consideration.

By comparing both gures, it is evident that the modied boundary conditions have an important impact on the ow. The structure of the ow, highlighted by the streamlines, is modied when the half walls are no longer considered adiabatic. In the case of adiabatic boundary conditions, the ow pattern is made of two vortices, originating near the constant temperature walls. In the case of the modied boundary conditions, the ow pattern is made from a primary vortex stretched throughout the entire cavity while two From the colormap, one can also note that the y-component velocity, near the adiabatic vertical walls, is quasi-nil for the case of ideal boundary conditions. In the modied boundary conditions scenario, this in no longer true. The y-component of the velocity is non-zero all along the vertical wall. By comparing theses results to the ow within the experimental set-up calculated via PIV (chapter 6), the modied boundary conditions seem to be more adaptable for this comparison.

Finally, in order to asses the eect of the convective heat loss with the ambient air on the ow of the dielectric liquid, two scenarios are investigated. In the rst case, the outer walls of the experimental set-up are considered to be adiabatic, such that h = 0 W m 2 ⋅K.

In the second case, a convective heat transfer is considered with the ambient air (taken as the mean of the hot and cold temperature), such that h = 10 W m 2 ⋅K. The temperature 

Conclusion

The numerical model is summarized by the coupling of four governing equations: continuity, momentum balance, energy balance, and electrostatics. The non-dimensional analysis of these equations introduces the Prandtl, Roberts, and Rayleigh numbers.

The mathematical TEHD problem is solved by the nite element method. The spacial domain is discretized by triangular meshing. A mesh sensitivity analysis is performed in order to select a minimum mesh size required for the convergence of the model.

Finally, the possibility of considering additional parameters is discussed. In the case where numerical simulations are used in order to compare to experimental results, two things must be taken into consideration. The rst is the depth of the cavity along the third dimension. In some of the experiments, the cavity is quite shallow along the third dimension, for this reason a Hele-Shaw estimation is fairly considered within the two dimensional simulations in order to incorporate the role of the viscous friction along the lateral walls in the two dimensional ow calculation in the mid-plane of the cavity.

The second experimental parameter taken into consideration is the modication of the boundary conditions. The adiabatic conditions in reality can be questioned . For this reason, the numerical simulations take into consideration the possibly non-negligible role of these modied boundary conditions on the ow of the dielectric liquid in the partial electrode conguration.

Chapter 5

Experimental Setup, Procedure, and Post Processing

In order to observe and further quantify the eect of volumetric dielectrophoretic forces (of thermal origins) on dielectric liquids, an experimental bench was designed and put in place with the aim to be the rst EHD setup capable of investigating the steady contribution of non-uniform electric elds on the buoyancy driven ow of dielectric uids.

The design brief of this project was formulated based on an interest to (i) measure the velocity eld of a TEHD ow, (ii) quantify the eect of the electric eld on the heat transfer, and (iii) respect and impose (as ideally as possible) the proper boundary conditions of the theoretical model in order to validate the latter.

For this purpose, dierent design parameters and elements were carefully chosen. These choices include the general design of the bench on one hand, and all the measurement techniques required to quantify the results on the other. The general assembly of the experimental bench as described in detail in section 5.1, has the purpose of imposing the required boundary conditions, and at the same time houses some measurement probes. These probes include a set of optical equipment required for the purpose of measuring the velocity eld of the ow (via PIV), and a set of thermocouples required for the purpose of assessing the role of the electric eld on heat transfer. The experimental range achievable by this experimental facility is also described later on in the chapter (sec. 5.3).

The rst part of this chapter contains an extensive description of the experimental bench, from the design phase, through fabrication, and assembly. This is followed by the description of several measurement techniques that were set up, along with the calibration, validation, and post-processing required in this context. Finally, the physical limits that dene the experimental range are described.

Experimental Bench: Design, Fabrication, and Assembly

In this section, details concerning the choices made for the experimental bench are presented. The main objective here is to respect the specications of the design brief.

The cavity containing a dielectric liquid is created within a Plexiglas block. The transparent nature of this material allows visualization, and the possibility to perform PIV measurements within the cavity. In order to impose the required Dirichlet boundary conditions, copper blocks are fabricated and used both as heat exchangers and as elec-trodes simultaneously. Copper is a very good electric and thermal conductor. This comes in agreement with the superposition of the required electric and thermal Dirichlet conditions. Concerning the Neumann conditions, which are more dicult to ideally impose, PVC and Plexiglass are used. The choice of the working uid plays a critical role in the specications of this experimental bench, and is discussed in detail in sec. 5.1.3.

Designing and sizing the dierent parts that make up this experimental assembly was accomplished based on theoretical reasoning (e.g section 5.1.2), and further numerical calculations performed on COMSOL Multiphysics, in order to estimate the electric eld intensity required. The design was accomplished with the aid of a commercial computer-aided designing and drafting software (CADD: CATIA) in order to perform three-dimensional drawings of the dierent design parts and further create a 3D computeraided assembly of the entire apparatus. Afterwards, 2D technical drawings were performed for the purpose of fabrication, where the majority of the work was insourced. In the case of specic technicalities however, some outsourcing was necessary. This includes the fabrication of the Plexiglas block, that requires a very critical nishing and polishing, and the highly precise copper electrodes mentioned in the next sections. 

General Functional Schematic

Cavity

The Plexiglas block that contains the cavity, along with the copper electrodes, is the (5.1.2)

By taking into account the physical properties of the working uid (table 5.1) at a reference temperature, and by limiting the electric potential dierence to the RMS of the maximum output of the amplier (∼ 20 kV), this scaling suggests that the distance between both electrodes must be in the order of centimeters. Therefore, the inter-electrode distance was taken as H = 2 × 10 -2 m. In order to further simplify the problem, the cavity was taken to be square (H × H).

In the next subsections two dierent variants of the Plexiglass block are presented.

The element of dierence is the third dimension of the cavity (the cavity depth). A rst set of experiments were performed with a Plexiglas block containing a shallow cavity.

A second set of experiments were performed with a Plexiglas block containing a deeper cavity. The remaining secondary design features are presented in these subsections.

Shallow Cavity

In this case, the dimension along the third direction was taken as one forth of that of the square side. The proximity of the lateral walls is expected to create viscous forces along the third dimension and to limit the arising of any 3D ow component. A shallow contains the shallow cavity. Plexiglas was chosen for its ease of fabrication and for its optical properties. One drawback for using Plexiglas however, is the fact that it is not resilient to high temperatures. As temperatures increase, deformations within the block may arise, and lead to the deterioration of its optical properties. The general dimensions of this block can be found in gure 5.2. The block contains a network of 0.6 mm holes that house type-T thermocouples of 0.5 mm diameter in order to measure the temperature distribution within the Plexiglas in the 2D plane of the cavity. This is detailed further on in this chapter (see section 5.2.1). Another design feature is the presence of two 2 mm passages that connect the cavity to the lling holes. The lling holes on the left side of the gure, are two M6 compatible threaded holes that act as a housing for M6 Cap type ttings. This is why the block is bulkier on one side compared to the other.

Two holes are used so that the air in the cavity can be evacuated through one hole while the working uid is being lled from the other hole. The cap ttings (see gure 5.9) provide a tight seal. Finally a last feature is the rectangular groove on each side of the plexiglas. These grooves act as housings for the copper electrodes in order to secure their accurate placement and a watertight t. More precise 2D technical drawings can be found in Appendix A.

Deep Cavity

Even though the shallow cavity design is suitable for ensuring a 2D ow, it has the drawback of having the total heat ux at the heat exchangers less sensitive to ow variations in the cavity. The convective heat transfer surface, A f luid : surface area of the electrode in contact with the uid, is very small (20 × 5 mm 2 ) compared to the total heat transfer surface,A total , between both electrode (60 × 20 mm 2 ). This total surface includes the Plexiglas walls in contact with the heat exchangers. The liquid layer in the shallow cavity can be thermally short-circuited by the walls of the Plexiglas. The majority of the heat ux passes through the walls.

Figure 5.3 represents the equivalent thermal circuit of the system, assuming one dimensional heat transfer, and no heat loss with the ambient temperature. The total heat transfer can be summarized by a conductive heat transfer in the solid walls of the Plex-iglas with a thermal resistivity R cond.w = Hκ -1 wall A -1 wall , a conductive heat transfer within the uid layer R cond.f = Hκ -1 f luid A -1 f luid , and a convective heat transfer within the uid layer

R conv.f = h -1 f luid A -1 f luid .
Where κ is the thermal conduction, h is the internal convective heat transfer coecient, and A wall = A total -A f luid . In the conductive regime, the ratio of heat ux within the uid to the total heat ux of the system, q f luid q total is almost 6%. This means that almost all of the heat is passing through the walls. In the presence of convection, taking the convective heat transfer coecient such that Nu = 10 (expected value of Nu for ranges of ∆T of interest), this ratio rises to 40%. This is still relatively small because more than half the heat is passing through the wall. The other unfavorable factor concerning the shallow cavity is the order of magnitude of the total heat ux which is less than 1 Watt. In the order of 1 Watt, gradients of temperature within the thermal loop are expected to be very small for the acquisition system to detect. the ratio of heat ux within the uid to the total heat ux of the system, q f luid q total , is almost 37.5% in conductive regime. In the presence of convection, this ratio increases to 82%, and the order of magnitude of the total heat ux increases to almost 4 Watts.

Choice of the Working Fluid

For a working uid to be suitable for single phase TEHD experiments, several criteria must be satised. The most important of which is having a relaxation frequency lower than the frequency of the AC electric eld imposed. If this criterion is not respected, the experiments risk to deviate from DEP originated to Coulomb originated phenomena, which falls outside the context of this PhD. In order to attenuate Coulombic eects, it is necessary to impose an electric eld with frequencies much higher than the relaxation frequency of the dielectric liquid. The voltage gain of the amplier drastically decreases with increasing output frequency, limiting the upper limit of the working frequency. Therefore, dielectric liquids with lower relaxation frequencies are favored. The relaxation frequency is a function of both the electric permittivity and electric conductivity. The orders of magnitude of the former being relatively similar for most dielectric liquids, it is of interest to focus on liquids that have very low electric conductivity.

Another advantage of choosing a working uid with very low electric conductivity is to satisfy another important criterion: the suppression of Joule's heating. Submitting the dielectric liquid to very high voltages, electric conductivities as low as 10 -8 S⋅cm -1 can give rise to large but unwelcome level of Joules heating.

For the purpose of meeting the secondary criteria, the working uid of choice must also have specic physical, electrical, and chemical properties. In order to give rise to a signicant DEP force within the dielectric liquid bath, a relatively high dielectric constant and a high dependence of the latter on temperature are required (λ). The evaporation and freezing points must also not fall in the range of the desired working temperatures.

The chosen working uid must also be chemically stable, nontoxic, and inammable. Finally, it is more suitable for the working uid to have a mass density similar to that of water. This is to facilitate the choice of tracers used for PIV: tracer particles having a specic gravity dierent than that of unity are dicult to nd, especially with proper physicochemical properties.

Prop.

Glycerol HFE7100 n-pentane FC-43 FC-72 47v20 47v1000 which eliminate the problem of having trapped bubbles within the volume. Also this product is available in a wide range of kinematic viscosity between 1 × 10 0 -6 × 10 5 mm s 2 , therefore the Prandtl number can be varied without having to change the dimensions of the cavity and the experimental assembly in general (same dielectric properties).

ρ [kg⋅m -3 ] 1261 1510 626 1860 1680 950 970 ν [m 2 ⋅s -1 ] 1.11×10 -3 3.84×10 -7 3.83×10 -7 2.53×10 -6 3.81×10 -7 2×10 -5 1×10 -3 α [m 2 ⋅s -1 ] 9.35×10 -8 3.87×10 -8 7.61×10 -8 3.18×10 -8 3.08×10 -8 9.04×10 -8 1.13×10 -7 β [K -1 ] 6.15×10 -4 1.8×10 -3 1.58×10 -3 1.2×10 -3 1.56×10 -3 1.07×10 -3 9.45×10 -4 λ (λ cal. ) [K -1 ] 4×10 -3 (4.9×10 -3 ) (9.3×10 -4 ) (7.4×10 -4 ) (8.4×10 -4 ) 2×10 -3 2×10 -3 r [-]

Electrode Congurations

All the electrodes are made of copper because of its high thermal and electric conductivities. As previously mentioned, the copper blocks act as both electrodes and heat exchangers at the same time.

In order to impose a constant temperature in each electrode, two thermal circuits, each of them regulated by a JULABO CORIO CD-200F Refrigerated/Heating Circulator, are managed in each electrode. The circulators can sustain constant temperatures in a range from -20 ○ C to +150 ○ C with a temperature stability of ±0.03 ○ C. For the ground electrode held at cold temperature, JULABO Thermal G is used, which is a commercial thermal liquid. Its working temperature range is from -30 ○ C to +80 ○ C. Thermal G has a relative density very close to unity and a kinematic viscosity of 4.07 mm 2 s. This commercial thermal uid is not suitable for the high voltage electrode due to its relatively high electric conductivity. For this reason the silicon oil RHODORSIL 47V20 was used.

Its physical and electrical properties can be found in table 5.1.

Each electrode also contains a threaded hole that houses a compatible screw that is connected to the high voltage amplier for the hot electrode or the ground for the cold electrode. The amplier is a TREK MODEL 30/20A that has an output voltage of 0 to ±30 kV DC or peak AC. This amplier is controlled by means of a signal generator and the output voltage is measured via a digital oscilloscope.

The TREK high voltage amplier has a signal bandwidth of 2.5 kHz. This means that the output signal is attenuated by 2 % of its actual value for frequencies of 2.5 kHz or lower. This attenuation increases with increasing frequencies. The accurate data is not provided by the supplier, however upon testing the amplier at dierent frequencies, the decrease of the provided output gain with respect to an increase in frequency was tracked (g. 5.5). With the cavity behaving as the imposed load, the system is nothing but a low-pass lter with a cut frequency near 1 kHz. 

Partial Electrode Conguration

The side walls are composed of two blocks tightly screwed together. The rst block is made of copper and serves both as an electrode and a hot (or cold) wall, while the second one is made of a dielectric polymer in order to be as much as possible thermally and electrically insulating (g. 5.6). The role of the electrodes is also to maintain a constant temperature. To this end, a thermal liquid circulates throughout the blocks. The copper blocks are manufactured with special care so as to warrant a reproducible curvature radius all along the edge, R = 200 µm±10 µm. This electrode was designed to t with the shallow cavity. More precise 2D technical drawings can be found in Appendix A.

Triangular Electrode Conguration

The second electrode geometry is triangular. This geometry aims to provide a more intense electric eld that can be optimized by geometrical parameters. The triangular base to height aspect ratio, and more importantly the edge curvature of its tips, are important geometrical parameters that can eect the DEP ow. Therefore this electrode was designed in such a way as to have a practical way for eciently changing the prole of the triangular electrodes for experiments. To do so, the electrode is separated into two parts. The rst one is the base (g. 5.7), which is the xed and common part.

The base holds the thermal liquid that circulates within, and is connected to the high voltage amplier. The second is the detachable block (g. 5.8) which can be changed in electrode was designed to t with the deep cavity. More precise 2D technical drawings of the base and the detachable piece can be found in Appendix A.

Experimental Bench Assembly

An example of the main assembly is represented in gure 5.9. The Plexiglas block containing the cavity is the central piece. The vertical walls of the cavity which are also the electrodes are embedded within insulating blocks (PVC). The insulation has a double role, thermal and electric. This is represented by the dark grey color. Then via 4 threaded rods and 8 screws, the entire cavity is tightly sealed. The uid is pushed from the lling hole and the air is released from the release hole. The 2D technical drawings of the insulating blocks can be found in Appendix A. 

Measurement Techniques: Data Acquisition and

Post-Processing

This section contains the instrumentation, the processing methods, and the approaches used in order to detect and further quantify the eect of non-uniform electric elds on a buoyancy driven ow. This is divided into three parts: the eect on (i) the convective heat transfer, (ii) the temperature distribution within the dielectric liquid, and (iii) the structure of the buoyancy driven ow.

Heat transfer measurement is necessary in order to quantify the eect of non-uniform electric elds on the convective heat transfer. Therefore, a two-dimensional thermal model is presented in the following section, that summarizes the total heat ux between the hot and cold heat exchangers, and takes into account the conductive heat losses through the plexiglas walls, and convective heat losses with the ambient air. For this purpose, a network of temperature measurement points is established, and the heat ow rate within the thermal loops is measured.

In an attempt to quantify the temperature distribution within the dielectric liquid, an optical refractive index approach (shadwograph and schlieren) is adopted. These optical techniques allow to calculate the temperature distribution in a transparent media. By doing so, better understanding can be established on how electric elds can perturb the isotherms in a given liquid, and how that eects the Nusselt number.

Finally, in order to quantify the velocity eld in the absence and presence of an electric eld, Particle Imaging Velocimetry (PIV) is adopted.

Total Heat Transfer Measurement

In the eld of uid mechanics, one way to evaluate the role of a uid on heat transfer is via the evolution of the Nusselt number. The role of convective heat transfer is quantied by how much the Nusselt number in the system deviates from unity, where unity represents a stagnant liquid bath and a thermally conductive regime.

In the case of this study, the interest is to evaluate how the convective heat transfer is aected by volumetric DEP forces in the presence of an electric eld. To this end, the convective heat transfer within the system must be quantied in the absence of an electric eld rst, and then compared to that in the presence of an electric eld. By doing so, the positive (or negative?) contribution of the DEP forces to heat transfer enhancement can be identied and quantied.

In order to evaluate the evolution of the Nusselt number in the cavity of the experiment, it is necessary to thermally model the entire system as a whole, by taking into consideration the conductive heat transfer within the plexiglas, and the heat losses to the ambient air. This is schematically represented in g. 5.10 in the median plane of the system. In this gure, the black dots represent the locations of the temperature measurements using thermocouples. Other thermocouples are required in the copper plates in order to validate the Dirichlet boundary condition at the constant temperature walls.

The thermocouples in the plexiglas are required in order to evaluate the temperature distribution within, in the aim of estimating the lateral heat loss, due to eventual convective exchange in the ambient air. Finally, the thermocouples within each thermal loop are required in order to evaluate inlet and outlet temperatures of each heat exchanger (copper block).

The considered two-dimensional heat transfer (represented by the orange arrows)

within the system can be categorized into ve: (1) convective and conductive heat transfers between the heat exchangers and the dielectric liquid within the cavity, (2) convective and conductive heat transfers between the dielectric liquid and the plexiglas walls, (3) conductive heat transfers between the heat exchangers and the plexiglas walls, (4) convective and conductive heat transfers through the plexiglas wall towards the ambient air, and nally (5) convective and conductive heat transfers through insulating pvc blocks towards the ambient air. This two-dimensional heat transfers model is represented by the network of thermal resistances in gure 5.11.

The thermal conductivities of silicon oil (κ = 0.14 W mK), plexiglas (κ = 0.18 W mK), and PVC (κ = 0.2 W mK) are relatively similar, therefore thermal conduction is not particularly dominant in a certain material in this system. As demonstrated in section 5.1.2, contrary to the deep cavity, in the case of the shallow cavity, the small surface area of the cross section containing the uid increases the dielectric liquids' thermal resistivity, and forces the majority of the heat ux to cross through the plexiglas wall and the PVC insulation.

In order to create a symmetry and to minimize the thermal losses for both hot and cold heat exchangers, the experimental hot and cold temperatures at both heat exchangers are xed in such a way that their mean temperature is equal to that of the ambient room temperature. Therefore the three dimensional heat loss with the ambient air via the PVC insulation can be assumed to be the same for both the hot and cold heat exchangers.

In order to solely quantify the convective heat transfers from the hot temperature wall to the cold temperature wall, energy balances require to measure the inlet and outlet temperatures of the thermal liquids circulating within the copper plates and their respective ow rates. If T h,in , T h,out , T c,in , and T c,out are respectively the hot inlet, hot outlet, cold 

Qh = ṁh C p h ∆T h (5.2.2)
where ṁc and ṁh are the cold and hot mass ow rates respectively, whereas C Pc and C P h are the specic heat capacity of the cold and hot thermal uid, and nally Qc and Qh are the total cold and hot heat ux from the thermal loops respectively.

The heat transfer between the dielectric liquid and the plexiglas walls varies according to the distance with respect to the contant temperature walls. This heat transfer is directed towards the plexiglas walls on the top part of the cavity where the dielectric liquid is hot. On the other hand, on the bottom half, the heat ux is directed from the plexiglas towards the dielectric liquid. Likewise, the heat loss from the plexiglas walls to the ambient air depends on the position within the plexiglas wall, and changes in sign between the top and lower half. In order to predict the thermal response of the system rather accurately, and to further quantify the heat loss to the ambient air, two dimensional numerical calculations are required, that take into account the convective heat transfer with the ambient air near the plexiglas and the PVC insulation. The thermal tendencies suggested by numerical calculations can be compared to measurements of the temperature in the plexiglas wall.

Even though the actual heat transfer of the system is three dimensional, an estimate of the heat loss can be predicted by using some general assumption. Neglecting the convective heat transfer between the plexiglas wall and the ambient air, the heat ux at the hot heat exchanger can be divided into three sections: heat ux through the (1) PVC, (2) dielectric liquid, (3) plexiglas wall. Considering the three-dimensional heat transfer in the PVC block as independent and unidirectional in each dimension, the heat ux along all directions can be summed up into one. In the case of the deep cavity, in the conductive state, only 15% of Qh is expected to cross through the dielectric liquid. The remaining heat owing through the hot heat exchanger crosses the plexiglas wall or is lost to the ambient air. The total ux Qh is expected to be in the range, 0.5-1.5 W, depending on the temperature dierence. When convection takes place within the cavity, the heat ux through the dielectric liquid can be expected to reach up to 70% of Qh . The remaining heat owing through the hot heat exchanger is lost within the plexiglas wall or to the ambient air. Here, Qh is expected to be in the range of 1.5-4.5 W, depending on the temperature dierence between the hot and cold heat exchanger.

In order to accurately measure the temperature in the plexiglass, the heat exchangers, and the thermal loops, calibrated type-T thermocouples are used and a dierential connection is used where necessary. In order to complete the calculation of the heat ux at the heat exchangers, the ow rate is controlled and measured using oval-gear ow meters.

Temperature Measurement

The temperature measurements are performed using T-type thermocouples (Copper/Constantan). These thermocouples are of 0.5 mm diameter for the ones inserted in the Plexiglas block, and 1 mm diameter for the others. Thermocouples are accurate tem- perature probes that are based on the thermoelectric eect (Seebeck eect) that was rst discovered by T.J. Seebeck in 1821. This discovery is summarized by the detection of an electric current that ows in a closed circuit, composed of two dierent metals, when a temperature dierence is present between the two junctions of this circuit. The summarized essentials state that (i ) thermoelectric currents can not be sustained in circuits of single homogeneous materials, and (ii ) the algebraic sum of the thermoelectric potential of a circuit is zero if the circuit is held at a uniform temperature.

Constantan

On an open-circuit similar to the one represented in gure 5.12, the Seebeck eect depicts that the voltage gradient is linearly dependent on the temperature gradient such that: ∇V = -S e .∇T (5.2.3) where S e is the Seebeck coecient. Therefore in order to measure a temperature at a point A, the reference temperature or "cold junction" temperature (T cj ) must be known.

Typical temperature acquisition systems measure (via a sensor) a unique cold junction temperature for all the thermocouples. However, due to their insulative nature, the temperature within acquisition cards are in-homogeneous, therefore the measured cold junction temperature in such systems is not accurate. In order to sustain a homogeneous and constant cold junction temperature (for all the thermocouples) that is measured accurately, an in-house cold junction box was fabricated, where all cold junctions are xed on a big copper block. The high thermal conductivity of copper ensures a uniform temperature. An ice-bath calibrated 4-wire platinum resistance thermometer (Pt100) is inserted inside the copper plate. The latter is xed inside a thermally insulated box and is represented in g. 5.13

The main reason for choosing type-T thermocouples is because of its temperature range [-50 ○ C , 200 ○ C], and its good linearity within this range.

Calibration of the temperature measurement chain: There are 12 thermocouples inserted in the experimental setup (see g. 5.10). A general calibration is performed on one of these thermocouples in order to calibrate the absolute temperature. Later on, this thermocouple is used as a reference, in order to perform a reference calibration for the remaining 11 thermocouples. This is done in order to have accurate relative temperature measurements.

All thermocouples were immersed in a thermal bath along with a calibrated Pt100 sensor in order to have a uniform temperature at the tip of all the probes. The electric The electric potential measurements of the remaining thermocouples were compared to that of the reference thermocouple. Figure 5.14 suggests that the average dierences in electric potential measurements between the reference thermocouple and the remaining thermocouples are very low (1%). These are represented by percentage dierences dened as:

%∆V i = V i -V rT C V rT C × 100 , (5.2.5)
where the subscript i represents a thermocouple (i = 1⋯11). The values are higher near zero because the electric potential readings are quasi-nil when the cold junction and hot junction are at the same temperature. Since the relative error is high, the measurements becomes less accurate when reading potential dierences in the order of 10 µV compared to the typical range of 0.1 mV -1 mV.

Finally in order to compute the temperature for a particular thermocouple T i :

T i = a(V i -Vi ) 2 + b(V i -Vi ) + c + T cj , (5.2.6) with Vi = ∑ n j (V i,j -V rT C,j ) n ,
where Vi is the average of the deviation of the electric potential measurement of each thermocouple with respect to the reference thermocouple. This value is averaged for all of the measurements performed at dierent temperatures ∆T j . The calibration was performed at 15 dierent thermal bath temperatures, in other words (j = 1⋯15).

In order to further improve the accuracy of the temperature measurements, two pairs of thermocouples are connected in a way as to obtain dierential temperature measurements (g. 5.13). The two dierential connections are installed to the thermocouple pair at the inlet and outlet ow of each thermal circuit. The measurement uncertainty increases when obtaining a temperature dierence by subtracting the temperatures from two measured points A and B. Dierential temperature measurements permit to directly measure the temperature dierence between the two points, while measurement uncertainty for the the cold junction temperature is removed.

Flow Rate Measurement

Along with accurately measuring the temperature dierence of the ow at the inlet and outlet of the constant temperature loops, it is required to control and measure the ow rate, with the purpose to further perform energy balances.

Control: It is important to be able to control the ow rate of the thermal uids circulating inside the copper walls. As the ow rate increases, the temperature dierences between the inlet and outlet temperature decreases, and its measurement becomes less accurate. The thermal control units purchased do not include a ow rate control and measurement system. Therefore, in order to provide the former, a needle valve is installed for each circuit in order to monitor accurately the ow rate. In order to avoid any electrical risks, and moreover any temperature uctuations due to Joule's eect, very electrically insulating uids are needed in this circuit. For this reason, silicon oil is used (see details in section 5.1.3 and table 5.1). The cold thermal circuit is not exposed to the same risks since it is connected to ground. The thermal uid used here is referred to as the Julabo "Thermal G". Its heat capacity is C p = 3350 J⋅kg -1 ⋅K -1 , its kinematic viscosity is ν = 4.07 × 10 -6 m 2 ⋅s -1 , and its density is ρ = 1080 kg⋅m -3 .

Measurement: Measuring the ow rate of the circulating thermal liquids is essential for quantifying the heat transfer rate in the system. For this purpose, an oval-gear ow meter Both data points correlate perfectly with a volumetric ow rate linearly dependent on the signal frequency such that:

Vi = a i .f OG 1,2 (5.2.7)
where V is the volumetric ow rate in L⋅min -1 , f OG is the signal frequency output of the oval-gear unit in Hz, and a is the slope coecient in L⋅min -1 ⋅Hz -1 . The subscript 1 represents the cold oval-gear unit (OG1) with a 1 = 4.9 × 10 -2 L⋅min -1 ⋅Hz -1 , whereas the subscript 2 represents the hot oval-gear unit (OG2) with a 2 = 4.75 × 10 -2 L⋅min -1 ⋅Hz -1 .

Within the low ow rate range, the standard deviation for OG1 is 1.83% and for OG2 is 1.175%.

Limitations and Drawbacks

One limitation of the temperature measurement set-up is the placement of a temperature probe at the high voltage copper plate. In order to avoid dielectric breakdowns, or any kind of electric short circuit, this thermocouple needs to be removed each time the high voltage is imposed. In the presence of an electric eld, the temperature of the hot copper plate is predicted via a time extrapolation.

In the presence of an applied electric eld, the temperature measurements in the thermal loops showed no change when compared to the case of the absence of the electric eld.

This suggests that the global heat resistance between the hot and cold heat exchangers is not suciently sensitive for the detection of changes due to the application of the electric eld. Upon referring to numerical simulations of buoyancy driven ows, perturbed by DEP forces, the electric eld is seen not to be capable of signicantly improving the heat transfer through the cavity. The electric eld minimally modies the temperature distribution (isotherms), and therefore minimally eects the Nusselt number. The present set-up fails to quantify the role of the electric eld on heat transfers.

Upon performing an energy balance on each heat exchanger, the total heat ux measured through both exchangers are not equal. Even though the ambient temperature increases during experimentation due to the electrical heat dissipation from the instrumentation, the 300 -400% dierence detected between both heat exchangers is not due to this. The important dierence here suggests that the ambient heat loss is more signicant and less symmetric than predicted. In order to overcome this, it is suggested for future developments to impose the experimental setup to a vacuum in order to minimalize the heat loss. By doing so, the global thermal resistance is expected to be more sensitive to changes related to the ow of the dielectric liquid within.

Temperature Distribution within the Fluid: Refractive Index Gradient Techniques

In order to measure the temperature distribution within the dielectric uid, the shad- Besides the ability to quantify the temperature distribution, it is possible to visualize and extract qualitative information concerning the ow of the uid via the shadowgraph and schlieren techniques.

The setup of both techniques require a range of dierent optical equipment. The schlieren setup is slightly more complex mainly due to the precision of the cut-o position at the focal point of the second converging lens. Adopting for a lens setup rather than a mirror one also adds to the complexity of the set-up and highly reduces the sensitivity [START_REF] Settles | Schlieren and shadowgraph techniques-visualizing phenomena in transparent media[END_REF].

Throughout this PhD, both techniques were explored via a lens setup with the available equipment and space. The low sensibility of the resulting setups restricted the possibility of their exploitation. The reader is advised to refer to Appendix B, which contains a detailed elaboration concerning the work done in this context.

Flow Measurement: Particle Image Velocimetry

In the eld of uid mechanics, particle image velocimetry (PIV) can today be considered one of the most common optical techniques for uid visualization. In the literature [START_REF] Rael | Particle image velocimetry: a practical guide[END_REF], the origins of this technique are traced back to Ludwig Prandtl, who is believed to have been a pioneer in his quest and attempts to quantify ows. Prior to his water tunnel experiments, it is believed that the understanding of uid mechanics has been strictly

qualitative. In his early 20 th century experiments, Prandtl relied on the disturbance of suspended mica particles in order to study structures of steady and unsteady ows [START_REF] Prandtl | Über ussigkeitsbewegung bei sehr kleiner reibung. Verhandl. III[END_REF].

Even though Prandtl's technique remains qualitative, it gave him an insight on ow phenomena, and is believed to be the rst initiative that later on lead to the advancements of the PIV technique today. One century after the mica particle suspension technique, and due to the scientic and technological advancements and progress in various domains such as optics, lasers, imaging, tracer materials, and computing, we are able to easily have quantitative information of a uid ow with very high accuracy on the computed velocity eld.

PIV has been developed since the early 80's [START_REF] Adrian | Scattering particle characteristics and their eect on pulsed laser measurements of uid ow: speckle velocimetry vs particle image velocimetry[END_REF][START_REF] Meynart | Equal velocity fringes in a Rayleigh-Benard ow by a speckle method[END_REF][START_REF] Meynart | Instantaneous velocity eld measurements in unsteady gas ow by speckle velocimetry[END_REF][START_REF] Pickering | Speckle photography in uid ows: signal recovery with two-step processing[END_REF][START_REF] Simpkins | Laser speckle measurements of transient Benard convection[END_REF] and took it's more complete form in the early 90's with the possibility of mapping instantaneous ow elds [START_REF] Adrian | Particle-imaging techniques for experimental uid mechanics[END_REF]. by tracer particles. The choice of particles is very important because it will depict the quality of the PIV calculations. This choice is based on several criteria that need to be met. The particles must have a density and dielectric constant similar to that of the liquid, and an appropriate radius. The size of the particle plays an important role on the visibility and light scattering characteristics on one hand, and on mechanical aspects that concern sedimentation and the entrainement of the particles by the surrounding liquid on the other. In their turn, these particles must be illuminated, therefore lighting equipment is required for this purpose, depending on the application. In all cases, a laser source is required, and an optical arrangement that transforms the laser beam into a laser sheet is also necessary. Whether or not a synchronizer is needed in order to control the laser CHAPTER 5. EXPERIMENTAL SETUP, PROCEDURE, AND POST PROCESSING pulsing, the camera exposure time, and the lming frequency will depend on the type of ow studied. In our case, where the ow is considered relatively slow (∼ 10 -3 m/s), a synchronizer is not required. A continuous monochromatic laser and a regular lming frequency (25 fps) is sucient.

The nal sub-system of the PIV setup is the computation. Nowadays, many commercial and open source PIV codes are available for users to automatically post-process their data. In order to evaluate the recorded images, the region of interest is usually divided into sub-regions called "interrogation areas" or "interrogation windows" (g. 5.18: interogation window at time t and t'). By comparing two or more consecutive frames, the displacement of tracer particles in one interrogation area is determined by means of statistical methods (auto-and cross-correlations). The vector eld is later calculated by taking into account the time delay between two frames and the magnication of the camera optics. This is repeated for all of the interrogation windows, and the complete velocity eld is computed [START_REF] Adrian | Particle-imaging techniques for experimental uid mechanics[END_REF][START_REF] Stamhuis | Quantitative ow analysis around aquatic animals using laser sheet particle image velocimetry[END_REF][START_REF] Willert | Digital particle image velocimetry[END_REF].

PIV Setup

The Plexiglas block is purposely designed with a clear lower facade, in order to pass a laser sheet through it (gures 5.18 and 5.19).

Prior to injection, the dielectric liquid is mixed with red uorescent polyethylene microspheres of density ρ p = 995 kg m 3 and mean diameter d p = 50 µm. These quasineutrally buoyant microspheres are excited by a continuous monochromatic green laser The top right and left corners of the cavity are poorly lit compared to the remaining geometrical domain. That is mainly because the triangular electrodes block the vertical light sheet. This was not the case for the other electrode geometries. In some cases this led to an absence of information in these regions. In other cases however, after graphical enhancement of the raw images, the tracers in the poorly lit regions became more detectable, and the OPENPIV code was able to detect the tracers and calculate the velocity eld in these regions.

Post Processing

From an adjustment of the image brightness, contrast, and range of interest, image enhancement is done in order to increase the contrast between the luminous particles and the dark volume so that the OpenPIV code becomes more performant. OpenPIV is available on Matlab with a graphical user interface that facilitates the process for end users. The user rst uploads the images in sequential order. Then, the user can specify a rectangular range of interest. This will limit the calculation to this region, and therefore the computation time can be reduced. Another important use of this feature is that by xing the calculation domain, a reference of the image magnication factor can be xed. This is useful in converting spatial components from pixels to meters. The choice of the interrogation window size can also be made, and nally the user can input the image frame frequency so that the calculations will take the time interval between two frames into consideration.

In our case, the region of interest was xed to the square edges of the cavity. By doing so, we have a reference for the magnifying factor in the images. The total numbers of pixels in any direction will be equivalent to 20 mm. The interrogation area was taken as 32 pixels by 32 pixels, and nally the frame rate was taken as 25 fps, which corresponds to the lming rate of the camera used. The total acquisition time is typically in the range of 300 seconds, yielding a total of 7500 frames.

OpenPIV code applies a cross-correlation algorithm [START_REF] Adrian | Particle-imaging techniques for experimental uid mechanics[END_REF][START_REF] Taylor | Long-duration time-resolved piv to study unsteady aerodynamics[END_REF] in order to deduce the velocity elds from PIV images. This means that a statistical extraction of the average displacement of the particles in a certain interrogation window is done. The code then divides this displacement value by the time interval between two frames that was provided by the user. The outcome is both components of the velocity positioned at the center of the interrogation window.

OpenPIV uses URAPIV [START_REF] Gurka | Computation of pressure distribution using piv velocity data[END_REF], which is a very well-known PIV algorithm. This opensource code allows a simple accurate cross-correlation analysis and uses fast-Fouriertransform (FFT) and other statistical tools (such as the mean, the standard deviation, and the median [START_REF] Taylor | Long-duration time-resolved piv to study unsteady aerodynamics[END_REF]) to validate the velocity vectors computed in each interrogation window. It has been tested and validated by comparison with benchmarks [START_REF] Okamoto | Standard images for particleimage velocimetry[END_REF][START_REF] Stanislas | Main results of the second international piv challenge[END_REF], and compared to other commercial softwares [START_REF] Gurka | Computation of pressure distribution using piv velocity data[END_REF][START_REF] Liberzon | Vorticity characterization in a turbulent boundary layer using piv and pod analysis[END_REF]. The accuracy of the opensource algorithm matched the commercial ones and yielded an error in the order of 0.1 pixel [START_REF] Taylor | Long-duration time-resolved piv to study unsteady aerodynamics[END_REF].

Finally, the last step of the postprocessing is the conversion. This includes the computed values of the velocity vector from pix/sec to m/sec, and the geometrical domain from pixels to meters. The output of the OpenPIV algorithm are n × ".vec" les of instantaneous velocity elds, where n is the total number of the data set (images recorded).

As part of the post-processing, a matlab script is required to convert the crude data in the ".vec" les into useful matrices that contain the x and y coordinates, and u and v components of velocity that are rescaled to actual values. The time average is also calculated for all the data sets, and the plots of vorticity, streamlines, and velocity proles are possible outputs of this post processing script (g. 5.21). 

Particle Size: Sedimentation and Dielectrophoresis

Concerning the PIV setup, it is important to take into consideration two particular phenomena that may alter the measurement quality into account: Sedimentation and Dielectrophoresis. In order to choose a particular size for the tracers, a compromise has to be made in order to balance out dierent aspects. The particles must be small enough compared to the interrogation window size. Moreover, the smaller the size, the more the tendency of the particle to behave as a passive tracer with respect to the ow of continuous liquid phase (Stokes number is inversely proportional to the particle radius size). The buoyancy or dielectrophoresis forces are also inversely proportional to the particle size. However, if the particle size is very small, and the laser power is not suciently high, its light scattering properties might risks being too poor for the camera to capture enough light. At the same time, a compromise must be found with the laser power so as to avoid bleaching.

Particle Sedimentation: In any kind of experimental setup, corrections are essential in order to draw trustworthy data. In the case of PIV, the most classical correction concerns the sedimentation of the tracer particles, since a perfectly neutral buoyancy is very dicult to achieve. Micro-spherical particle suppliers have managed in the last decade to enhance their products, and provide the market with particles that have relative densities very close to unity. This is mainly because the typical choice of working uid in the eld is water. Therefore as soon as the choice of working uid diverges from water, the diculty of matching tracer particles also increases.

The absolute sedimentation velocity of one particle suspended in an innite volume of uid can be estimated by the Stokes formula:

⃗ v sedi = (ρ p -ρ f )⃗ gr p 4.5µ
(5.2.8)

For the polyethlene particle with a mean radius r p = 25 µm, the estimated sedimentation velocity is in the order of 1e-5 m/sec. Using eq. 5.2.8, one can have a general idea of the order of magnitude of the sedimentation velocity. In reality, the sedimentation of the particles in the experiment will depend on various factors. Eq. 5.2.8 describes the sedimentation of one single particle in an innite volume. When trying to take into consideration the eect of neighboring particles, particle concentration, and cavity geometry and size, estimating the sedimentation velocity becomes much more complicated.

In order to have a more accurate quantication of the sedimentation of the tracer particles, PIV imaging and calculations were performed in the absence of temperature dierences. The dielectric liquid and tracer particle mixture were taken at room temperature. Within the cavity, the sedimentation of these particles were recorded at dierent stages. The data was then calculated on OpenPIV. The maximum sedimentation speed calculated was in the order of 10 percent of the minimum buoyancy driven velocity expected. The average sedimentation velocity was much lower.

Even though the sedimentation velocity is negligible compared to the buoyancy driven ow, a correction factor of the sedimentation velocity was taken nonetheless. The velocity elds calculated via OpenPIV were corrected by a matrix of sedimentation velocity as a post processing step.

Particle Dielectrophoresis: The existence of a dielectric constant gradient at the interface between a particle (polyethelene r = 2.3) surrounded by a dielectric liquid gives rise to a dielectophoretic force known as dielectrophoresis. This force can be expressed as [START_REF] Jones | Liquid dielectrophoresis on the microscale[END_REF] ⃗

F = 2πr 3 p ⎛ ⎝ p -f p -2 f ⎞ ⎠ ⃗ ∇E 2 
(5.2.9)

The ratio of this force to the Archimedes force on a polyethelene particle suspended in silicon oil is slightly less than 30%. This indicates the negligible role of this force on the PIV setup.

In order to verify the absence of dielectrophoresis risen due to the existence of a dielectric constant gradient between the dielectric liquid and particles, several experiments are performed for a wide range of frequency (refer to 5.3.1). For a frequency larger than 20 Hz, the tests conducted in the absence of temperature gradients lead to a stagnant state of the uid. Even though the jump of electric permittivity between the particles and the uid is in the order of 10%, the DEP drag shows no impact on the suspended particles: the tracers are recorded sedimenting to the bottom of the cavity.

Experimental Range

The experimental range is the range of non-dimensional numbers and electric eld frequency covered during the experiments. As previously mentioned in the preceding chapters, the non-dimensional numbers governing dielectrophoretic thermoelectrohydrodynamics are the Prandtl, Rayleigh, and Roberts numbers.

The particular choices made during the designing of the experimental setup x the range of the non-dimensional numbers. For example, the choice of the working uid xes the range of (1) the Prandtl number to a unique value, and (2) the working frequency to values higher than the critical relaxation frequency. In addition to the choice of a particular working uid, xing a unique cavity size restricts the Rayleigh number to a range determined by the temperature dierence limit.

In this section the ranges of the dierent non-dimensional numbers and signal frequency are presented. In this context, the working uid, temperature, and voltage dierence limits will also be discussed in the following subsections.

Frequency Range and EHD Regimes

By considering the relaxation frequency of silicon oil, f rel = σ -1 = 0.04 Hz (as calculated at room temperature: 25 ○ C), the eect of the Coulomb force on the charges in the bulk are expected to be attenuated when using a signal frequency higher than this value. This calculated relaxation frequency represents a theoretical one that is often not suciently accurate since the electric conductivity of the dielectric liquid is subject to variations due to impurities within the liquid. The choice made for a suitable working frequency is justied following a series of experimental tests performed with no imposed temperature gradient (g. 5.22). Applying a DC electric eld on the dielectric liquid yielded a chaotic motion. On the other hand, a low range of frequencies (0.05 Hz -20 Hz) was observed to induce oscillatory motions due to the Coulombic regime. Above the critical value of 20 Hz, the system quickly stopped to react to the applied electric eld, and the dielectric liquid remained stagnant, while the uorescent seeded particles within started to sediment with time. Via experiments, this phenomena (no motion) was remarked to be valid for the entire range of frequencies between 20 Hz and 1000 Hz. For frequencies higher than 1000 Hz, the high voltage amplier's gain rapidly dropped. For this reason the upper limit is xed to 1000 Hz.

The actual relaxation frequency (20 Hz) is experimentally demonstrated to be 500 times higher than the theoretical relaxation frequency (0.04 Hz). The working frequency is chosen to be 500 Hz, in order to surpass the actual relaxation frequency with a sucient margin.

The dielectric constant and electrical conductivity of the uorescent particles used are 2.4 and 10 -16 S/cm, respectively. This yields a relaxation frequency for the tracer particles in the order of 0.4 mHz. 

The Prandtl Range (Working Fluid)

All the experiments were performed with the same working uid, RHODORSIL 47V20, setting the Prandtl number to Pr= 220. However, various viscosities are available for similar silicon oils, opening the possibility for further experiments to cover a range of Prandtl numbers from 10 to 6 × 10 6 .

The Rayleigh Range (Temperature Range)

The Rayleigh number is the ratio of the buoyancy term to that of thermal and shear diusivity, and is expressed as Ra = gβ∆T H 3 να. Since only one working uid and one cavity dimension (20×20) is being used, the Rayleigh number range of the experiment depends on the temperature dierence between the hot and cold walls.

The maximum temperature that can be used is limited by Plexiglas, since it can not withstand temperatures higher than 60 ○ C. Beyond this limit, deformations due to thermal expansion deteriorate the optical properties of the transparent walls. The minimum temperature that can be used is limited by the refrigerated circulator at -20 ○ C. By considering a margin of 10 degrees from these limits, for both the hot and cold temperatures, the maximum temperature dierence between the two copper plates is thus xed to ∆T = 60K. Therefore the range of the Rayleigh number for Pr = 220 is:

0 < Ra < 2.8 × 10 6

The Roberts Range (Voltage Range)

The Roberts number is the ratio of the dielectrophoretic term to that of thermal and shear diusivity, and is expressed as L = ref o λ∆T ∆V 2 ρνα. Having dened a particular temperature range, a working uid, and a xed cavity dimension, the Roberts number range now solely depends on the maximum voltage dierence attainable between both electrodes. This is limited by the dielectric breakdown that occurs within the working uid itself at high voltages. Theoretical range of dielectric strength for RHODROSIL oils is between 10-16 kV/mm (depending on the temperature 20-200 degrees). In the experiments, the breakdown was remarked for mean electric eld intensities (∆V H) in the range of 1 kV/mm. In this range, the intense electric eld near the edges of the electrodes lead to the dielectric breakdown within the silicon oil. Therefore, the maximum voltage applied was xed at 18 kV for a frequency of 500 Hz. Beyond this limit (L max ≈ 5.5 × 10 4 ), an electric spark was igniting within the working uid. This 

Conclusion

In the general aim of studying the dielectrophoretic eect of nonuniform AC electric elds on dielectric liquids submitted to a temperature gradient, a series of specications have been established that form the design brief of this project. The focus is summarized 94 CHAPTER 5. EXPERIMENTAL SETUP, PROCEDURE, AND POST PROCESSING on imposing the theoretically required boundary conditions, and quantifying the eects of the electric eld when these conditions are present.

The quantication strategy is divided into two main parts. The rst one consists in quantifying the global heat transfer within the dielectric liquid in the absence and presence of an electric eld.The second one consists in measuring the ow of the liquid when perturbed by DEP forces. In order to do so, several approaches have been established with numerous measurement strategies. Concerning heat transfer, the measurement of thermal ows, and temperature distribution was performed. In order to measure the velocity eld of the ow, PIV was adopted. The measurement techniques that were set up have been calibrated, corrected when necessary, and post processed.

Finally the working range of the experiments is presented as a function of the nondimensional numbers that govern the physics. This is done by summarizing all the limiting factors that make up the dierent elements of the experimental setup.

Chapter 6

Dierential Heated Cavity: From Uniform to Non-Uniform Electric Fields

Introduction

In this chapter, the rst electrode arrangement of interest is explored. The partial plane electrode arrangement is considered here as a transition from the general case often extensively inspected in the literature: TEHD in a dierentially heated cavity. The idea here is to introduce the non-uniform aspect of the electric eld to the general problem (g. 6.1). Indeed mechanically and thermally speaking, the dierentially heated cavity and the pv c

𝜃 = 1 2 𝜕𝜃 𝜕𝑛 = 𝜕𝜑 𝜕𝑛 = 0 Dielectric liquid y/H x/H 𝜃 = - 1 2 + 1 2 - 1 2 - 1 2 + 1 2 pv c 𝜃 = 1 2 Dielectric liquid y/H x/H 𝜃 = - 1 2 + 1 2 - 1 2 - 1 2 + 1 2 
𝜕𝜃 𝜕𝑛 = 𝜕𝜑 𝜕𝑛 = 0 partially dierentially heated cavity problems are not the same. The former has already been extensively investigated. The dierent regimes that rise from the steady ow of natural convection within dierent types of rectangular enclosures are well understood [START_REF] Bejan | Convection heat transfer[END_REF].

The latter has also been investigated in the natural convection context. Recently, one can nd in the literature a numerical investigation [START_REF] Torabi | A comprehensive investigation of natural convection inside a partially dierentially heated cavity with a thin n using two-set lattice Boltzmann distribution functions[END_REF] of natural convection within a partially dierentially heated cavity. The study considers the role of dierent congurations (size and position) of the partially heated walls on the convective heat transfer and structure of the uid ow within the cavity. Indeed, further understanding the partially dierentially heated cavity problem can come useful in optimizing cooling systems.

As a rst step, the electrostatic aspect is introduced to the partially dierentially heated cavity problem. The DEP torque risen from this coupling is investigated at zero CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS order. The comparison is done between uniform and non-uniform electric elds. As demonstrated in chapter 3, the TEHD problem within the dierentially heated cavity is equivalent to a Rayleigh-Benard stability problem. The alignment of the uniform electric eld in this arrangement with the temperature distribution yields no DEP force at leading order. By introducing non-uniform electric elds however, this is no longer the case. A steady DEP induced convective motion is expected to rise at leading order (see sec. 3.2).

Afterwards, the problem is uncoupled and numerically investigated. By considering micro-gravity conditions, the thermal buoyancy term is disregarded, and thus the purely DEP induced ow is inspected. In this context, the role of the DEP torque on the ow and the heat transfer is evaluated. The numerical ndings are compared to theoretical predictions.

This is followed by an experimental investigation with the intention of detecting DEP induced motion at steady state. Experimentally exploring within micro-gravity conditions is rather complicated, therefore the experiments are initially performed in the laboratory, within terrestrial gravity conditions. The intention here is to detect DEP induced perturbation on an already established steady buoyancy-driven thermal ow. The experimental results are compared to numerical ndings.

Electric Field Non-Uniformity and the DEP Term at Conductive State

As elaborated in chapter 3, the vorticity equation can be expressed as,

(⃗ u. ⃗ ∇)⃗ ω = ∇ 2 ω + L.Pr( ⃗ E. ⃗ ∇) ⃗ E × ⃗ ∇θ , (6.2.1) 
where the second term on the right hand side is the DEP torque. In gures 6.2 and 6.3, the unit vector elds of ( ⃗ E. ⃗ ∇) ⃗ E and ⃗ ∇θ are represented in red and white respectively for the dierentially heated cavity and the partially dierentially heated cavity respectively. 

sin(γ) = ( ⃗ E. ⃗ ∇) ⃗ E × ⃗ ∇θ ( ⃗ E. ⃗ ∇) ⃗ E ⃗ ∇θ . (6.2.2)
Here, the quantity γ is dened as the angular deviation between the electric and thermal contributions to the DEP torque.

In the case of uniform electric elds (g. 6.2), both ( ⃗ E. ⃗ ∇) ⃗ E and ⃗ ∇θ are aligned.

Moreover, the colormap demonstrates that sin(γ) = 0 throughout the entire cavity. This suggests, as predicted, the absence of DEP torque at leading order. The problem here is a Rayleigh-Benard (RB) stability equivalent.

In the case of non-uniform electric elds (g. 

E. ⃗ ∇) ⃗ E× ⃗ ∇θ ( ⃗ E. ⃗ ∇) ⃗ E ⃗ ∇θ for conductive state ⃗ u = ⃗ 0.

Steady DEP-Driven Flow in Microgravity Conditions: Uncoupled Problem

The numerical simulations conrm that in microgravity conditions and for any value of the Roberts number, L > 0, the liquid system is set in motion due to the permanent contribution of the DEP torque.

The results, as represented in gs. 6.4 -6.7, demonstrate the eect of the electric eld with an increasing electric Grashof number (Gr e = L.Pr The availability of both a non-uniform electric eld and a temperature gradient is responsible for a DEP torque. The angular momentum so generated puts in motion the (otherwise) stagnant liquid, leading to the generation of a pair of two counter-rotating vortices on the whole of the cavity (gs. 6.4-6.5).

The velocity scale, as well as the vorticity scale, consistently grows with a larger and larger electric Grashof number. An intensication of the angular momentum is present in the EER (recall g. 3.2) due to the edge of the electrode (Taylor cone eect). The angular momentum is also seen to diuse far within the liquid core under viscous drag, especially when the Prandtl number is large (Fig. 6.5). CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS For a large enough electric eld, the counter-rotating vortices are no longer symmetrically distributed with respect to the centre of the cavity. Note that this symmetry breakup can also be made evident for a large Prandtl number (Pr ∼ 10 3 ) while the electric Grashof number remains moderate (Gr e ∼ 1, see e.g. Fig. 6.5a). A companion symmetry breakup is made evident on the temperature maps (see e.g. gs. 6.6-6.7). Anticipating on the following, it can be shown that this is mainly due to the non-linear convective terms in the energy equation; the latter terms being intensied for a larger Roberts number. A thermal stratication is seen to take place in the core of the cavity (tilted isotherms) for large enough values of the Prandtl and electric Grashof numbers (Pr ∼ 1000, Gr e ∼ 100

and more), the Roberts number becomes so large that the convective deformation of the isotherms is suspected to alter the DEP torque distribution due to its temperature dependence (see Eq. 1.3.69 and Fig. 6.7c). This is conrmed by plotting the quantity, Whatever the Prandtl number is, the velocity proles show that the liquid system is set in motion for a minimal increment of the voltage applied. By increasing the voltage (or equivalently the electric Grashof number), the magnitude of the velocity in the y-direction consistently increases near the constant temperature wall as well as near the adiabatic wall. The source of the uid entrainement along each of these vertical walls is dierent however.

sin(γ) = ( ⃗ E. ⃗ ∇) ⃗ E× ⃗ ∇θ ( ⃗ E. ⃗ ∇) ⃗ E ⃗ ∇θ ,
The maximum value of the non dimensional velocity, v max , is represented in g. 

v max ∼ L to v max ∼ L 1 2 .
The diusive regime, essentially driven by thermal and viscous diusivities, is described by the curl of eq. 4.2.18 with inertia removed. As a result, it is governed by a basic balance between the viscous torque and the DEP torque,

∇ 2 ω ∼ L ( ⃗ E. ⃗ ∇) ⃗ E× ⃗ ∇θ,
from which it is easy to deduce the scaling law, v max ∼ L.

The BL regime is dened as a viscous regime (Pr ∼ 1 and larger) with thermal CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS boundary layers free to develop alongside electrodes. The scaling analysis developed in sec. 3.4, explains the observed scaling law, v max ∼ L 1 2 (eq. 3.4.31).

Near the side wall where temperature gradients are concentrated (BL regime, see e.g. gs. 6.13-6.14), the driving source is the DEP force. Outside the thermal boundary layer, the uid motion is dragged due to viscosity. The associated dragged boundary layer (thickness: δ d ) is dened as the boundary layer near a side electrode that extends along the x-direction until the y-component of the velocity vanishes. The non dimensional thickness δ d H is therefore calculated as the distance along the cutline, y H

= 1 4 ( x H ∈ [-1 2, +1 2 
]), measured between the point where the y-component of the velocity is zero and the hot side wall, x H = 1 2. 

δ d δ t ∼ Pr 1 2 .
The dependence of δ d on the Roberts number is plotted in Fig. 6.12 for a large range of the Prandtl number: Pr ∈ [0.1, 10 4 ]. Interestingly, all data are observed to collapse onto a master curve regardless of the value of the Prandtl number. As illustrated in the insert (Fig. 6.12), the ratio δ d /δ t consistently increases for a growing Prandtl number as long as δ d remains smaller than the size of the cavity (see scaling law (3.4.35) in 3.4). Here, δ t denotes the thickness of the thermal boundary layer which develops along CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS a side electrode. By considering the temperature prole along the cutline, y H = 1 4 (x H ∈ [-1 2, +1 2], see Figs. 6.13-6.14), the non dimensional thickness δ t H is dened here as the distance calculated between x/H = 1/2 (hot electrode) and the axial position X where θ maxθ( X) = 0.9 * (θ maxθ min ). Here, θ max = 0.5 and θ min is dened as the local minimum temperature found near the hot electrode.

Beyond the diusive regime (L c,1 ∼ 3 × 10 3 ), δ d is observed to decrease, which is consistent with the progressive arising of a BL regime. A rst intermediate scaling law can be identied as δ d H ∼ L -0.075 , however this does not agree with the results of the thermal boundary layer represented later on. This could possibly be due to the denition of the boundary layer thickness.

For large values of the Roberts number (L larger than 10 6 ), a last scaling law, δ d H ∼ L -1 4 , is made evident, the latter being consistent with the scaling analysis in sec. 3.4 provided that: i) Pr ≫ 1, ii) δ d is larger than δ t and iii) the ratio δ d H is small enough for the dragged boundary layers along the side electrodes not to be overlapped. The latter condition means that the condition (3.4.36) for which it is possible to distinguish a thermal core must be fullled.

The non-dimensional temperature, θ, is plotted along the same cut line as before, x H ∈ [-1 2, +1 2] and y H = 1 4, for a large range of the electric Grashof number, Gr e ∈ [0.1, 1500], and asymptotic values of the Prandtl number, Pr=0.1, Pr=10 (Fig. Prandtl number as large as Pr= 10 4 (g. 6.14), even an electric Grashof number of unit order (no more) is sucient to cause under viscous drag the arising of the boundary layer regime. A thermally stratied core can even be made evident from the threshold value, Gr e = 50. At the same time, the formation of a thermal boundary layer can be noticed nearby the hot wall with the characteristic presence of a local minimum (see insert in Fig.

6.10).

The above switch from diusive to BL regime can be explained by the decisive role of the convective term in the energy equation. As long as thermal transfers are driven by conduction, a (quasi)linear temperature distribution imposed between the cold and hot electrodes is related to a low to moderate DEP torque: the Péclet number remains small to moderate (of unit order, at most) since the velocity scale is consistently based on thermal diusivity. The coupling between vorticity and energy equations is weak. The shift to a BL regime corresponds to the emergence of a strong coupling characterised by a threshold on the Péclet number. In the BL regime, it is necessary to redene the velocity scale (see Eq. 3.4.31, sec. 3.4) and the corresponding Péclet number formally writes:

Pe = UyH α = L 1 2
. Whatever the temperature proles considered, Fig. 6.13 (Pr = 10, Gr e = 500) or Fig. 6.14 (Pr = 10 4 , Gr e = 1), a consistent estimate for the critical threshold is found to be Pe c ∼ 100. n, the normal unit vector at the electrode under consideration 1 and C e , the integration path along the interface between the electrode and the dielectric liquid. Considering that an estimate of the heat ux density at the electrode writes as, φ tot = κ.∆T δ -1 t , with κ, the heat conductivity, and given that the ux density, φ c = κ∆T H -1 , is calculated in conduction regime, the Nusselt number can be estimated as follows:

Nu ∼ φ tot φ c ∼ H δ t . (6.3.2)
As it can be seen in g. 6.16, the conduction regime is conrmed to extend up to L c,1 .

Beyond this Roberts number, heat transfer enhancement is made evident with a signicant increase in the Nusselt number which demonstrates the capability of the DEP-induced convection to improve heat transfers. At the departure from the conduction regime, the 1 Because the enthalpy is conserved, the global Nusselt number can be calculated regardless of whether the electrode selected is the left one or the right one. Nusselt number follows the scaling law, Nu ∼ L 1 4 , whatever the value of the Prandtl number, accordingly with the scaling law established in sec. 3.4 (eq.3.4.32).

By plotting the Nusselt number as a function of the Prandtl number (insert in g.

6.16), heat transfer enhancement is evident for a growing Prandtl number provided the latter is of unit order and more. The Nusselt number increase follows the scaling law, Pr 1 4 , while remaining dependent on the electric Grashof number, in agreement with the scaling law, Nu ∼ L 1 4 . Note that the validity of the latter is established over a limited range: from L c,1 until a critical Roberts, L c,2 ∼ 10 5 . Beyond this, a second and robust scaling law can be numerically identied: Nu ∼ L 0.15 .

The heat transfer enhancement due to DEP convection does still exist while being less marked. If one compares the thermal and convective patterns as calculated for values of the Roberts number around the critical value L c,2 (compare gures 6.5(b) and 6.7(b) obtained for L < L c,2 with gures 6.5(c) and 6.7(c) obtained for L > L c,2 ), one can conclude that the arising of a third vortex in the right bottom corner of the cavity corresponds to the point of criticality. Its dissipative role is suspected to hinder heat transfer enhancement.

Steady DEP Role on a Buoyancy Driven Flow: Experimental Investigation

An experimental approach is used in order to detect the rise of steady volumetric DEP forces due to non-uniform electric elds and temperature gradients (see chapter 5). The set-up being designed to run in the lab, terrestrial gravity, along with thermal gravita-NON-UNIFORM ELECTRIC FIELDS tional buoyancy are considered and introduced in the problem. A thermo-convective ow of the dielectric liquid is initially established within the cavity. The ow is quantied via PIV after it reaches a steady state. This is followed by an introduction of an electric eld within the liquid. Upon the attaining of a second steady state, the velocity eld of the dielectric liquid is again computed and compared to that of the absence of an electric eld.

As a rst step, the structure of the ow and the established velocity eld are compared with and without the presence of an electric eld. The PIV experimental data are compared to numerical calculations.

The eect of the electric eld on the convective heat transfers is also experimentally investigated. The account for heat transfer through the initially assumed Neumann walls, via a simplied approach, also plays a role in the dierence observed. However, it can be noted that the order of magnitudes of the velocity and the streamlines are in fair agreement.

When applying a voltage between the two half electrodes such that L = 1.13 × 10 5 , L = 2.0 × 10 5 , and L = 3.15 × 10 5 , the experimental ow of the dielectric liquid is modied, as illustrated in gs. 6.17 and 6.18. These perturbations are signicant in the electrode edge region, where a highly non-uniform electric eld is generated. Near the hot electrode edge region, even though the PIV resolution is not suciently high, g. 6.17d suggests a slight increase in the local horizontal velocity component. This falls in agreement with the numerical predictions (g. 6.19d). The experimental results also suggest that the DEP force is responsible for modifying the location where the secondary vortices separate from the main one. This can be observed via the streamlines near the EER of both sides. This perturbation then yields to the stretching/shrinking and alteration of the structure of the two secondary vortices in the upper and lower half of the test cell. numbers. As also experimentally observed, the ow is strongly modied in the region of high electric elds. The numerical results highlight a symmetry breakup between the upper and lower half of the cavity. In the presence of an electric eld, the separation location seems to be lower than the midpoint of the cavity. For increasing Roberts number, similarly to the experimental results, the numerical results demonstrate the increase and decrease in size of the upper and lower vortices respectively. The velocity calculated in the zones near the electric edge regions is even higher than the experimental measurements.

In g. 6.21, the non-dimensional velocity proles (y-component), of both experimental and numerical results, are represented on a cutline taken at y H = 1 4 for Pr = 220, Ra = 2.1 × 10 6 , and several Roberts numbers. Concerning the numerical results, represented by lled lines, it can be noted that the increase of Roberts numbers slightly increases the maximum and decreases the minimum vertical velocities near the hot wall and the cold (pseudo-adiabatic) wall respectively. As expected, the maximum vertical velocity (situated near the hot wall) is larger than the absolute value of the minimum vertical velocity (situated near the cold pseudo-adiabtic wall), for all Roberts numbers. This is indeed consistent with the fact that temperature gradients, and thus buoyancy sources, are concentrated near constant temperature walls. The ow being buoyancydominant, the increase of vertical velocity near the hot wall, due to increasing Roberts numbers, is noted to be less signicant than the decrease of vertical velocity near the cold (pseudo-adiabtic) wall. An increase of Roberts number from L = 0 to L = 3.15 × 10 5 leads to a 13.85% increase in the maximum vertical velocity, and a 26.6% decrease in the minimum vertical velocity. Finally, the role of the electric eld on the established boundary layer thickness, in the considered Roberts range, seems to be insignicant. In comparison, the experimental results, represented by dotted lines in g. 6.21, demonstrate a thicker boundary layer, that also seems not to be signicantly aected by increasing Roberts numbers. Again, the maximum vertical velocity (situated near the hot wall) is larger than the absolute value of the minimum vertical velocity (situated near the cold pseudo-adiabtic wall). Compared to the numerical simulations, the orders of magnitude of the vertical velocities are relatively larger, except in the case of L = 1.13 × 10 5 and L = 2.0 × 10 5 . The role of increasing electric elds on the maximum and minimum vertical velocities seem less pronounced when compared to the results of the numerical simulations.

While orders of magnitude are conserved, we believe that discrepancies between numerical and experimental velocities may rise from a lack of accuracy of the physico-chemical properties provided by suppliers. More relatively speaking however, the large dierences between the positive and negative vertical velocities, may be due to the temperature dependence of physico-chemical properties. This is all the more true for the viscosity (in NON-UNIFORM ELECTRIC FIELDS particular for high Prandtl ows: Pr = 220), that is considered constant in the numerical simulations [START_REF] Fröhlich | Large departures from Boussinesq approximation in the RayleighBénard problem[END_REF]. In the experiments however, the high orders of temperature dierences imposed between the hot and cold electrodes plays a role in creating an inhomogeneity in viscosity, decreasing (or increasing) the latter near the hot (or cold) plate, and thus yielding higher (or lower) orders of magnitude of vertical velocity. Compared to the vertical velocity, and its associated boundary layer thickness, the order of magnitude of the horizontal velocity, as well as its associated boundary layer thickness, are consistent with mass conservation, for both numerical and experimental results.

In order to distinguish between the impact of the electric eld on the main recirculating loop and the impact of the electric eld on the secondary vortices, two regions of interest are dened (g. 6.23):

A rst one (zone 1) is mainly aected by the shear stress induced by the secondary vortices,

A second one (zone 2) is dened in front of the cold half-electrode, where the ow results from the joint contribution of one secondary vortex and the main recirculating ow. Based on the reference case, L = 0, the averaged norm of the velocity is calculated for each region,

U * = ∬ s ⃗ u L ds ∬ s ⃗ u L=0 ds (6.4.1)
for Ra = 2.6 × 10 6 and for a range of Roberts numbers covering all the experimental range available. Calculations of U * are performed both from the experimental results and from the numerical simulations (g. 6.24).

In zone 2, U * decreases with the Roberts number, as it can be seen from experimental and numerical results. This highlights the fact that the dielectric buoyancy competes with the thermal buoyancy, leading to a decrease in the overall convection.

In contrast, U * is found to increase in zone 1, which demonstrates a subsequent increase in the shear stress between the upper and lower co-rotating vortices. The two CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS Figure 6.24: Experimental and numerical normalized averaged velocity in zones 1 and 2 as a function of L for Ra = 2.6 × 10 6 . opposite tendencies observed in zones 1 and 2 remain consistent with the requirement for mass conservation along a cross-section of the cavity. The new pattern for the vorticity distribution as observed in presence of the electric eld allows the electrostatic energy to be converted into mechanical energy, while the temperature distribution is fundamentally not changed. This can be observed by comparing the temperature proles and isotherms in the presence of a zero, low, and high electric elds (g. 6.25).

In g. 6.23, the color map represents the ratio of the dielectrophoretic torque, ⃗ M DEP , to the thermal buoyancy torque, ⃗ M ρg = Ra.Pr ⃗ ∇θ × ⃗ e g , in the conductive regime. Being physically limited with L much smaller than Ra, we note that ⃗ M DEP ∼ 0.05 ⃗ M ρg in the volume related to zone 1. It is nevertheless worthy to note that M DEP acts in the same way as M ρg in the upper half part of the cavity, while it acts in the opposite way in the lower half part. This is also consistent with the symmetry breakup observed from the two secondary vortices. Referring to the results obtained in microgravity, the two counterrotating vortices act as a momentum source for the upper vortex, and momentum sink for the lower vortex. Near the EER, the high intensity of the electric eld yields a much larger dielectrophoretic torque (zone 2). This leads to intense local perturbations near the EERs which are further diused within the volume under viscosity.

Eect of the Electric Field on Heat Transfers

As indicated in chapter 5, a network of temperature acquisition points has been established within the experimental setup in order to evaluate the eect of the electric eld on the heat transfers within the cavity. In the case of the partial electrode geometry, gure Prior to introducing the working uid, the temperatures measured by all the temperature probes (except T c ) quickly increase from their initial temperature (ambient temperature at t = 0). After the initial sharp increase, the temperature in thermocouples 1, 2, and 4 continues to slightly increase, whereas that of thermocouples 3, 5, and 6 slightly decreases. This is due to the fact that the cold thermal circuit requires more time to reach the required temperature (the cooling rate of the thermal bath is much slower than the heating rate). This can be noticed from g. 6.27, the temperature measured at the cold electrode surface requires much more time to stabilize at the required temperature. Since point 3, 5, and 6 are nearest to the cold wall, they are the ones eected by this.

Beyond this point, the working uid is introduced within the cavity as indicated in gure 6.27. Thermocouples 1,3, and 5 react marginally before the thermocouples 2,4, and 6 since the former is much closer to the cavity than the latter (and thus closer to the working uid it contains). This can be observed on the gure near t = 3600s by the sharp and sudden decreases of temperatures. The decrease in temperatures is due to the temperature of the working uid that was kept at ambient temperature before being injected in the cavity (T amb = 21 ○ C at t = 3600 s).

Monitoring the evolution of the temperature within the plexiglas is also useful in order to detect the time threshold for the system to reach a steady state. The order of magnitude of this threshold time can be estimated by calculating the diusive (thermal) characteristic timescale of the system: τ α ∼ H 2 α. By taking the characteristic length scale as the distance between both electrodes, and the thermal diusivity of the plexiglas, the characteristic timescale can be estimated at: τ α ≈ 4 × 10 3 s. The thermal diusivity of the plexiglas is taken into consideration here because the temperature measurement points are placed within it. Since both plexiglas and silicon oil have similar thermal diffusivities, the estimation of the characteristic timescale remains relatively independent of the choice.

From g. 6.27, the time threshold that determines a quasi-steady state can be assumed to be in the range of 4000 seconds. In order to be much more conservative, the The entire assembly is sourounded by PVC blocks (purple). The red and blue arrows represent the direction of ow of the thermal uids, whereas the black circles represent the position of the thermocouples and their dimensions. The arrows in orange represent the conductive and convective heat transfers.

quasi-steady state is considered much later as can be seen on the gure. In reality, one can observe from this gure that the temperatures are in permanent increase, even if this increase is relatively negligible. For this reason, the word "quasi" is used here. This continuous increase suggests that a thermal loss, via convective heat transfer with the ambient air, might be taking place. The temperatures continue on varying because the ambient temperature continues on increasing. This is due to the use of heating and refrigerating machines, that heat up with time, causing the ambient temperature surrounding the experimental set-up to increase, and therefore restricts the possibility of attaining an actual steady state. Not only can we conclude that a heat loss scenario is taking place with the ambient air, but one can also say that this heat loss is not constant in time due to the increase of the ambient temperature.

When the electric eld is imposed (in this case an eective voltage of almost 12 kV), as indicated in the gure, the temperature within the plexiglas wall does not seem to be perturbed. In fact the temperature still increases after the electric eld is imposed, in a similar way as in the absence of an electric eld. This increasing tendency of the temper- ature however, can not be linked to the electric eld and can not be dierentiated from the one due to the convective heat transfer with the ambient air that continues to increase in temperature throughout the experimental room due to the heating of the equipments being used. the experimental set-up is taken as the mean temperature between the hot and cold electrode temperatures. In g. 6.28, the steady state temperature proles for the case of h = 0 W m 2 ⋅K (square) and h = 10 W m 2 ⋅K (cross) are plotted. This is done for three horizontal sections A, B, and C (see g. 6.26). Sections A and B overlay the points where the thermocouples are placed within the plexiglas block, whereas section C is located far from the cavity and near the edge in contact with the ambient air.

In the absence of heat loss with ambient air, as expected, there is a remarkable oset between the temperature prole of each section. Due to the proximity of the hot electrode surface, the dierence in temperatures between sections A and B near the hot electrode (x/H=0.833) are less than that on the other side (x/H=0.167). In the presence of heat loss with the ambient air such that h = 10 W m 2 ⋅K, the temperature prole at section A seems to remain unmodied, whereas that of section B is slightly changed (negative oset of -0.5 ○ C). The eect of the convective heat transfer with air on the temperature distribution seems to be quite minimal on areas near the cavity (sections A and B). This is not exactly the case for regions far from the cavity. By referring to the temperature proles on section C (g. 6.28), one can notice that the role of the convective heat transfer with the ambient air on the temperature distribution is no longer negligible. Particularly near the hot temperature wall, the temperature oset between both cases reaches a value up to 6 ○ C.

Unfortunately, there are no actual measurement points in section C to compare the real life experimental ndings with the numerical results. Similar to the numerical predictions, the temperature measurements on points 1 to 6, represented on sections A and B (circle) on g. 6.28, suggest that an oset exists between both temperature proles.

Here the temperatures are time averaged in a quasi-steady state. In comparison to the numerical results, the oset in the experimental ndings is much less remarkable than that predicted numerically. Similar to the numerical predictions however, the temperature dierences between the measurement points near the constant hot wall seem much smaller than that on the other side. However, at this point, with these measurement points, no decisive conclusion can be drawn concerning the role of the thermal loss with the ambient air surrounding the experimental set-up.

Realistically speaking, heat loss with the ambient air is unavoidable. Even though the numerical results suggest that heat loss with the ambient air does not really eect the temperature distribution near the cavity, and thus the ow within it, we are not capable here of quantifying this. In order to have a better understanding on the eect of the electric eld on the heat transfer within the cavity, the heat loss must be minimized at all cost. For this reason, an in-vacuum set-up might have been a better alternative, eventually eliminating or drastically minimizing all heat loss with ambient air. The latter strategy is currently under development.

Being restricted to work in a particular range of Roberts number (due to dielectric breakdown issues: see sec. 5.3.4) much less than Ra, the ow is more buoyancy dominant.

This in turn constrains the impact of the electric eld on the heat transfers. By referring to the temperature distribution throughout the cavity in general, and near the constant temperate walls in specic (g. and presented in g. 6.29. For any particular Rayleigh number, Nu * increases as the Roberts number increases. For a low range of Roberts number (such that ∆V = 6 kV), Nu * seems to be less than 1%. For higher Roberts number (such that ∆V = 14 -15 kV), the Nu * increases up to 6% at most. Finally in the case were Ra = 2.6×10 6 , the maximum calculated Nu * reaches slightly more than 8%. Even though we can conclude that the heat transfer is enhanced with increasing Roberts number, for the range of electric elds used throughout the experiments, this enhancement of convective heat transfer is not expected to surpass 8% of the convective heat transfers in the absence of an electric eld.

Concerning the experimental measurements, the temperatures measured seem to be unaected when an electric eld is applied. Considering the cold electrode for example, the mass ow rate of the thermal uid circulating within (C p = 3350 J⋅kg -1 ⋅K -1 ) is measured at almost ṁc = 2.5×10 -3 kg⋅s -1 . The temperature dierence between the cold inlet and outlet temperature is measured at ∆T c = 0.35 for Ra = 2.1 × 10 6 and L = 0 to L = 3.15 × 10 5 .

The heat ux at the cold copper electrode can thus be estimated at Qc = 2.88 W. As estimated in sec. 5.2.1, only around 15% of this is expected to cross the dielectric liquid, whereas the remaining is gained via heat loss. If the heat loss is assumed to be unmodied when the electric eld is imposed (heat loss is negligibly dependent on the ow within the cavity), an 8% modication of convective heat transfer translates to a dierence of less than 0.03 ○ C on ∆T c . This is indeed much lower than the resolution of the temperature CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS measurements on the experimental setup. Which in turn explains why the introduction of an electric eld to the ow passes by undetected.

Conclusion

In microgravity, the use of a non-uniform and non-intense electric eld has the potential to cause a permanent convective ow of dielectric liquids within a dierentially-heated cavity, provided that a temperature gradient is made available. Heat transfers are governed by the electrical Rayleigh number, also referred to as Roberts number, which characterizes the ratio between the production of vorticity of dielectric origin (DEP torque) and the dissipative torque due to viscous friction on the other hand (Jawichian et al. [START_REF] Jawichian | Forced convection of dielectric liquids using a non-uniform ac electric eld in microgravity[END_REF]).

Two critical Roberts numbers are identied from the behavior of the Nusselt number, L c,1 ∼ 3 × 10 3 and L c,2 ∼ 10 5 : the rst one, L c,1 , reects the transition from a purely diusive regime to a boundary layer regime generated by DEP, the second one, L c,2 , corresponds to the emergence of co-rotating vortices (Jawichian et al. [START_REF] Jawichian | Heat transfer enhancement by a nonuniform electric eld in microgravity conditions[END_REF]). The latter generate a higher level of viscous dissipation which hinders heat transfer enhancement. From the end user point of view, it is demonstrated here that heat transfers can be enhanced within on-board systems provided that the dielectric liquid of interest is characterized by a Prandtl number large enough. Its optimal value directly depends on the value of the voltage imposed. The latter can be signicantly diminished when the dielectric liquid is highly viscous. In the rst section, only the electrostatic and thermal aspects are introduced to the triangular electrode dierentially heated cavity. The DEP torque risen from this coupling is investigated. As demonstrated in chapter 3, the misalignment of the electric eld with the temperature distribution yields a DEP force at leading order. Therefore, a steady DEP-driven convective motion is expected to rise even in the conductive regime that can set a dielectric liquid into motion.

Afterwards, uid mechanics is coupled to the problem and the latter is numerically investigated. By considering micro-gravity conditions, the thermal buoyancy term is disregarded, and thus the purely DEP induced ow is inspected. In this context, the role of the DEP torque on the ow pattern and subsequent heat transfers are evaluated. The numerical ndings are compared to theoretical predictions. This is followed by an experimental investigation with the intention of detecting DEP induced motion at steady state. Again, since experimentally exploring within microgravity conditions is rather complicated, our experiments are performed in the laboratory, in presence of gravity, and thus in presence of buoyancy force. The objective here is to detect DEP induced perturbations on an already established steady buoyancy-driven ow.

The experimental results are compared to numerical ndings. 

(γ) = ( ⃗ E. ⃗ ∇) ⃗ E× ⃗ ∇θ ( ⃗ E. ⃗ ∇) ⃗ E ⃗ ∇θ for conductive state ⃗ u = ⃗ 0 (right).
uniquely for the conductive state, where ⃗ u = ⃗ 0 (uid mechanics uncoupled). The colormap represents sin(γ), where

sin(γ) = ( ⃗ E. ⃗ ∇) ⃗ E × ⃗ ∇θ ( ⃗ E. ⃗ ∇) ⃗ E ⃗ ∇θ . (7.2.1)
The quantity γ is dened as the angular deviation between the electric and thermal contributions to the DEP torque.

In the case of non-uniform electric elds risen by a pair of triangular electrodes, Even in the case of low Prandtl numbers, when small voltages are applied, the velocity proles suggest that the dielectric liquid is set into motion. By increasing the voltage (and thus the electric Grashof number), both gs. 7.7 and 7.8 suggest that the y-component of the velocity eld consistently increases near the constant temperature walls. Near these walls, a certain boundary layer can be made evident from the velocity proles, the thickness of which decreases for increasing voltages. In the case of low Roberts ows, the velocity proles suggest the formation of a single vortex structure in the upper half of the cavity. For higher Roberts ow, this is no longer the case. The velocity proles for higher Gr e numbers in g. 7.8 suggest that in addition to the formation of a local vortex near the hot wall in the upper half of the cavity (similar to the one observed in g. 7.3c), another local vortex also rises near the cold wall, co-rotating with the primary vortex that envelopes it.

In g. 7.9, the vorticity distribution and the streamlines are represented for the case of Pr = 5000 and Gr e = 1000. Indeed the local vortex near the cold wall, as suggested by the velocity proles in g. 7.8, are made evident by the streamline in g. 7.9-a. These streamlines, along with the vorticity map also indicate that the dielectric liquid is not entrained in the top and bottom corners of the hot triangular electrode, as well as near the mid section of the cold triangular electrode. This is indeed consistent when referring to the temperature distribution (g. 7.9-b). The isotherms here suggest strong temperature gradients near the far extremities of the cold electrode (top and bottom left corners), and less strong gradients near the tip of the cold electrode. Inversely, on the hot electrode, up to a critical Roberts number of L ∼ 10 4 . The scaling law for the y-component of the velocity is estimated at v max ∼ L. The diusive regime, essentially driven by thermal and viscous diusivities, is described by the curl of eq. 4.2.18 with inertia removed. As a result, it is governed by a basic balance between the viscous torque and the DEP torque,

∇ 2 ω ∼ L ( ⃗ E. ⃗ ∇) ⃗ E × ⃗
∇θ, from which it is easy to deduce the scaling law, v max ∼ L. boundary layer (thickness: δ d ), is dened as the layer of uid near the hot constant temperature wall, that extends along the negative x-direction (beyond v max ) until the y-component of the velocity decreases to 15% of the value of v max . The non-dimensional thickness δ d H is therefore calculated as the distance along the cutline, y H

= 1 4 ( x H ∈ [-1 2, +1 2 
]), measured between the point x(v) and the hot side wall, x H = 0.425 (position of the hot electrode at y H = 1 4). x(v) is dened as x(v) < x(v max ), with v = 0.15 × v max . Interestingly, all data are observed to collapse onto a master curve regardless of the value of the Prandtl number. The thickness δ d is observed to decrease before reaching the previously observed critical Roberts number (L ∼ 10 4 as predicted from g. 7.11). This suggests that the diusive regime could actually be identied at L ∼ 10 3 . For larger values of the Roberts number (L > 10 5 ), a scaling law, δ d H ∼ L -1 4 , is made evident, the latter being consistent with the scaling analysis in sec. 3.4 provided that: i) Pr ≫ 1, ii) δ d is larger than the thermal boundary layer thickness and iii) the ratio δ d H is small enough for the dragged boundary layers along the side electrodes not to be overlapped. The latter condition means that the condition (3.4.36), for which it is possible to distinguish a thermal core, must be fullled.

In gs. 7.13 and 7.14, the non-dimensional temperature proles are plotted along a cutline, such that x H ∈ [-1 2, +1 2] and y H = 0, for a large range of the electric Grashof number, Gr e ∈ [0.1, 1500], and a Prandtl number of Pr=10 and Pr=5000 respectively.

In the case of low values of the Prandtl number, for example Pr=0.1, the temperature prole remains linear whatever the order of magnitude of the electric Grashof. This temperature prole is similar to the one obtained with Pr = 10 or Pr = 5000 provided that electrical buoyancy is switched o: Gr e = 0. For low Prandtl number values, heat transfers are simply governed by conduction all over the cavity.

For a large enough Prandtl number, this is no longer the case. When Pr=10, and in The coupling between vorticity and energy equations is weak. The shift to a BL regime corresponds to the emergence of a strong coupling characterized by a threshold on the Péclet number. In the BL regime, it is necessary to redene the velocity scale (see Eq. 

= 0 (x H ∈ [-1 2, +1 2 
], the non-dimensional thickness δ t H is dened here as the distance calculated between x/H = 0.365 (hot electrode) and the axial position X where θ( X) = (θ max + θ min ) 2. Beyond a rst threshold characterized by the already mentioned critical value of the Roberts number, L ∼ 10 with ⃗ n, the normal unit vector at the electrode under consideration and C e , the integration path along the interface between the electrode and the dielectric liquid. Considering that an estimate of the heat ux density at the electrode writes as, φ tot = κ.∆T δ -1 t , with κ, the heat conductivity, and given that the ux density, φ c = κ∆T H -1 , is calculated in conduction regime, the Nusselt number can be estimated as follows: The set-up being mounted in SIMaP laboratory, thermal gravitational buoyancy that rises due to the presence of terrestrial gravity is considered and introduced to the problem.

Nu ∼ φ tot φ c ∼ H δ t . ( 7 
A thermo-convective ow of the dielectric liquid is initially established within the cavity.

Once a steady state is attained, the velocity eld is calculated via PIV. Subsequently, a high voltage drop is imposed between both triangular electrodes. Once a second steady state is attained, the velocity eld of the dielectric liquid is again computed and compared to that in the absence of an electric eld, with the aim to detect the rise of steady DEP body forces due to non-uniform electric elds and temperature gradients, and to understand their role on an already established buoyancy driven ow.

Experimental results show that when the Roberts number increases, the DEP-induced buoyancy is able to alter the thermally-induced convective ow. This eect is made evident from the velocity maps and streamfunction isocontours. Fig. 7.17 represents the buoyancy driven ow in the absence of an electric eld. The steady-state x and y velocity components' distribution, as computed by the numerical simulations for Ra=1.58 × 10 6 , Pr = 220, and L = 0, are represented by the colormaps in gs. 7.17-a and 7.17-c respectively. The streamfunction isocontours are also plotted here (dotted lines). As expected, a viscous boundary layer is established near the constant temperature walls. Within this layer, the vertical velocity component gradually increases from the boundary condition at the wall (v = 0), and then decays outside the layer, forming a relatively stagnant core, characterized by a horizontally stratied liquid layer. The dielectric liquid is then entrained near the adiabatic walls forming a thicker boundary layer. As expected, the order of magnitude of the x-component velocity is less than that of the y-component. The maximum velocity in the x-direction is in the order of 6 × 10 -4 m s, while that in the y-direction is almost 1.5 × 10 -3 m s. The minimum velocity in the x-direction is localized on the top left corner of the cavity, whereas the maximum is localized in the bottom right corner. Accordingly, the boundary layers formed in the y-direction seem to have a thickness that is thinner in these maximum and minimum zones. Within the primary vortex developing along the walls of the cavity, secondary structures appear. The formation of such vortices is due to the angular deviation of the temperature isocontours with respect to gravity. The order of magnitude of the velocity of these structures is signicantly less compared to that of the primary vortex (see colomap).

However, since the scheme used here for plotting the streamfunction isocontours is of uniform density, these structures are made visible.

Similarly, the time-averaged x and y velocity components' distribution, as computed by PIV in the steady-state for Ra=1.58 × 10 6 , Pr = 220, and L = 0, are represented by the colormaps in gs. 7.17-b and 7.17 this layer, a relatively stagnant core, characterized by a horizontally stratied liquid layer is developed. Similar to its numerical counterpart, the dielectric liquid, owing near the horizontal plexiglas walls, forms a thicker boundary layer. The order of magnitude of the x-component velocity is almost half that of the y-component. Similarly to the numerical predictions, the maximum velocity in the x-direction is localized on the bottom right corner of the cavity. Accordingly, the boundary layer thickness formed in the y-direction seems thinner in this maximum velocity zone. The minimum however is not particularly localized in any corner on the top part of the cavity. This might be due to the fact that these corners receive less illumination from the laser sheet (see g. 5.19 in sec. 5.2.3.2), which causes an optical artifact. The streamfunction isocontours, that are plotted in gs.

7.17-b and 7.17-d via dotted lines, suggest the presence of secondary structures within the primary vortex. These secondary vortices are very similar to the ones predicted by the numerical simulations.

In a similar case, with Ra=1.58 × 10 6 and Pr = 220, the x-component time-averaged ), the x-component velocity distribution seems to be slightly modied throughout the midsection of the cavity. In the case of no (or low) electric eld, the core of the ow is rather stagnant (colormap: green). For DEEP CAVITY intact is broken up when the voltage drop is further incremented (g. 7.18-b). For more intense electric elds (g. 7.18-c and g. 7.18-d ), the ow is no longer symmetric, and the core of the cavity is dominated by a positive horizontal entrainement. The y-component time-averaged velocity distribution for the same parameters are represented in g. 7.19-a -g. 7.19-d. From the colormap of the latter, the role of the imposed electric eld on the y-component velocity distribution seems to be of negligible importance. The vertical viscous boundary layer, initially developed by the buoyancy dominant ow, is unaected, and the order of magnitude of the velocity in the y-direction is noted to be uninuenced by the presence of high voltages.

Finally, for the same set of conditions, the results of the numerical simulations are presented in gs. 7.20 and 7.21 for the x and y component velocity distribution respectively. By referring to the streamlines (represented by dotted lines) on these gures, one can again note that the buoyancy-driven ow is indeed disturbed when the voltage drop between both triangular electrodes is slightly incremented (g. 7.20-a ). Contrary to the experimental results, the numerical predictions suggest that symmetry breakup observed on the secondary vortices in the core of the cavity, occurs for even the low Roberts number range. In the case where L= 8.6 × 10 4 or higher, the secondary vortices in the lower half of the cavity no longer appear. The primary vortex, enveloping the geometrical boundaries, is no longer symmetric as well. The ow that rises near the hot wall, that is entrained towards the cold wall (near the top adiabatic wall), recirculates towards the hot wall throughout the entire lower half of the cavity. The steamlines and colormaps suggest that the stagnant core is now only localized in the center of the upper half of the cavity (similar to the ow in micro-gravity), whereas the lower half is dominated by a positive horizontal uid ow. This is further highlighted by the colormap of the x-component velocity distribution in g. 7.20. Unlike the experimental results (that do not succeed, due to the PIV resolution, to demonstrate a signicant dierence in the velocity distribution when a voltage drop is imposed), the numerical simulations clearly depict how the velocity distribution is disturbed for increasing Roberts number. For L= 1.5 × 10 5 , or higher, the maximum of the velocity in the x-direction is no longer localized in the bottom right corner (gs. 7.20-c and 7.20-d ). The velocity distribution in this zone is rather uniform for these ranges of Roberts number. However, near the tips of both triangular electrodes, the maximum x-component velocity is evident. Likewise, the velocity distribution in the y-direction also manifests a dierence in a high Roberts range. The boundary layer near the constant temperature walls are no longer uniform along these walls. On the upper half of the cavity, the order of magnitude of the vertical velocity, near the electrodes, is higher, yielding a thinner boundary layer. Whereas in the lower half of the cavity, the boundary layers near the constant temperature walls behave inversely.

In g. 7.22, the non-dimensional velocity proles (y-component), of both experimental and numerical results, are represented on a cutline taken at y H = 1 4 for Pr = 220, Ra = 1.58 × 10 6 , and several Roberts numbers. Concerning the numerical results, represented by lled lines, it can be noted that the increase of Roberts numbers slightly increases the maximum and decreases the minimum vertical velocities near the hot and cold walls respectively. The increase of vertical velocity near the hot wall, due to increasing Roberts numbers, is noted to be slightly more signicant than the decrease of vertical velocity near the cold wall. An increase of Roberts number from L = 0 to L = 1. decrease in thickness with increasing Roberts numbers. Unlike the numerical results, the maximum vertical velocity (situated near the hot wall) is larger than the absolute value of the minimum vertical velocity (situated near the cold wall). Compared to the numerical simulations, the orders of magnitude of the vertical velocities are relatively larger. The role of increasing electric elds on the maximum and minimum vertical velocities seems similar to the results of the numerical simulations. Similarly to the partial electrode experiments (6.4.1), the large dierences between the positive and negative vertical velocities, may be due to the temperature dependence of physico-chemical properties. This indeed can be the case for the viscosity (in particular for high Prandtl ows: Pr = 220), that is considered constant in the numerical simulations. In the experiments however, the high orders of temperature dierences imposed between the hot and cold electrodes plays a role in creating an inhomogeneity in viscosity, decreasing (or increasing) the latter near the hot (or cold) plate, and thus yielding higher (or lower) orders of magnitude of vertical velocity. In such a case, the Prandtl number can range between 165 to 330, depending on the temperature. In g. 7.23, the non-dimensional velocity proles (x-component), of both experimental and numerical results, are represented on a cutline taken at x H = 0 for Pr = 220, Ra = 1.58 × 10 6 , and several Roberts numbers. Concerning the numerical results, represented by lled lines, it can be noted that the increase of Roberts numbers slightly 

Conclusion

In microgravity conditions, the use of a pair of triangular electrodes, that gives rise to non-uniform and intense electric elds, has the potential to generate a permanent convective ow of dielectric liquids, provided that a temperature gradient is available. In such a scenario, the DEP torque that is created from this particular arrangement of the electric eld and the temperature distribution gives rise to vorticities of opposite signs in the upper and lower half of the cavity. This in turn leads to the generation of two counter rotating vortices that eciently mix a dielectric liquid within an enclosed cavity. The 

Conclusion

The unprecedented notion of the rise of steady-state dielectrophoretic-induced convection, in dielectric liquids, by means of non-uniform AC electric elds is introduced and explored in the present thesis. Indeed, in the absence of gravity, since a dielectrophoretic torque exists at zero order when use is made of non-uniform electric elds in the presence of temperature gradients, it is possible to set a dielectric liquid in steady motion even with a modest electric eld intensity. In this work, this approach is investigated for the case of a dielectric liquid conned in a square cavity, and submitted to temperature and electric potential gradients by means of two dierent electrode congurations. The rst one is referred to as partial electrode conguration, which introduces the non-uniformity factor of an electric eld to the dierentially-heated cavity problem. The second one is the triangular electrode conguration that has the potential, due to its geometric versatility, to optimize the generation of highly non-uniform and intense electric elds.

The scientic approach undertaken can be categorized into two parts. The rst one is a numerical approach that uncouples gravity from the thermo-hydraulic coupling of the problem. By doing so, the dielectrophoretic torque is isolated, and its eect on a stagnant dielectric liquid under conductive regime is analyzed. This is done by means of modeling and computing the non-dimensional set of governing elliptic equations from weak formulations and the nite element method. The results of the numerical simulations in micro-gravity are compared to theoretical predictions established from scaling analysis.

Similar power laws are observed when comparing the results of the numerical simulations to the scaling laws discovered theoretically. The results, issued from both electrode congurations, suggest that the dielectric liquid is set into motion for any Roberts number larger than zero. Indeed, the presence of a torque at leading order gives rise to a steady state rotation of the dielectric liquid. This however, does not mean that the heat transfer rate is modied for any L> 0. Thermally speaking, even though a dielectrophoretic-induced convection is established in both conguration, a diusive regime is seen to be present up to a Roberts in the order of 10 3 . Beyond this threshold, heat transfer enhancement can be made evident from the dependence of the Nusselt number on increasing Roberts number, and the development of a boundary layer regime.

The second approach is of experimental nature, performed on an experimental bench, designed and set up in the SIMaP laboratory. This time, the presence of terrestrial gravity is responsible for the emergence of a thermal buoyancy force, which is coupled to the problem. The working uid is a type of silicon oil such that Pr = 220. This liquid is contained within a cavity, formed in a Plexiglas block, and sealed by a pair of electrodes.

Both copper electrodes are connected to a high voltage AC amplier, and each one of them hosts a thermal uid that circulates within in order to keep them at constant, but dierent, temperatures. An optical set-up is put in place in order to perform PIV, and temperature measurement points are dened in order to perform heat transfer analysis. Within the limits dened by the experimental set-up, the order of magnitude of the Conclusion Rayleigh numbers is always higher than that of the Roberts number. The experiments are expected to be buoyancy dominant. For this reason, the objective here is to detect modications of an established buoyancy-driven ow, due to imposing a dielectrophoretic torque.

The experimental results, via PIV, succeed in demonstrating the ability of the imposed electric eld to modify the structure of the ow, when the Roberts number is large enough.

The outcome of the ow of the dielectric liquid, when both the DEP and buoyancy torques are present, highlights the role of the DEP torque. This role, when referring to the ow pattern in micro-gravity, is characterized by the presence of two counter-rotating vortices.

The superimposition of these vortices (numerically predicted in micro-gravity) with the vortex structure of a buoyancy driven ow in the absence of an electric eld (numerically predicted and experimentally calculated via PIV) is consistent with the structure of the resulting ow when both DEP and gravity coexist (numerically predicted and experimentally calculated via PIV).

In comparison with numerical simulations, similar tendencies can be observed particular to each electrode conguration. Concerning the partial electrode conguration, it was noted that even with thermally insulating materials, heat conduction through the vertical partial adiabatic walls could not be neglected; thus, adiabatic boundary conditions could not be perfectly realized and conduction within the walls had to be taken into account also in the comparison simulations. Finally, concerning heat transfers, the DEP force is seen to improve signicantly the convective heat transfer in micro-gravity systems. When comparing the increase of the Nusselt number as a function of the Roberts for both congurations, heat transfer enhancement seems to be even more pronounced in the case of triangular electrodes (g.

Conclusion

C.1). In the conductive regime and low Roberts boundary layer regimes, there is no particular dierence between both congurations. The ratio of the Nusselt number for the triangular electrode conguration (Nu ∆ ) to the Nusselt number for the partial electrode conguration (Nu PE ) increases from unity beyond a Roberts number ≈ 10 4 . Beyond a Roberts number of 10 5 , Nu ∆ is more than double Nu PE , and the ratio of both Nusselts numbers keeps on increasing for increasing Roberts numbers with a tendency numerically predicted as ∼ L 0.13 . Besides the possible role due to the dierence in heat transfer area at the electrodes in each conguration, the role of jet impingement heat tranfers seems to be responsible for a much pronounced heat transfer enhancement when use is made of the triangular electrodes. Translating this into an actual application, by using the same working uid studied here, and for a temperature dierence of [START_REF] Dvo°ák | Über eine neue einfache art der schlierenbeobachtung[END_REF] Concerning the experimental aspect of this work, a better approach is required in order to asses the problem thermally. The heat losses that are present in the experiments are not well controlled and quantied. One way of doing so would be by placing the experimental set-up, which is relatively small, in a vacuum controlled environment, and quantifying the heat loss in the conductive state.

Afterwards, an experimental setup in micro-gravity conditions could be envisaged. A parabolic ight being one option, the short timescale of the zero gravity mode in such conditions must be taken into consideration. One way of also supporting this would be by considering a time varying gravity in the numerical simulations.

Moreover, the temperature dependence of the physico-chemical properties (for example Conclusion the viscosity) must be taken into consideration in future numerical simulations.

Finally, the geometrical parameters of the triangular electrodes must be put to the test. An optimum of these geometrical aspects for sure exists for which the ow of the dielectric uid can be optimized. On a more general note, and with an engineering point of view, it is also interesting to explore other atypical electrode surfaces and electrode combinations, in which the DEP-induced convection can be optimized for heat transfers enhancement in both gravity and microgravity conditions. where f 1 and f 2 are the focal lengths of lenses L 1 and L 2 , respectively. In a schlieren system, the knife-edge kept at the focal length of the second convex lens is first adjusted, when no disturbance in the test region is present, to cutoff all but an amount corresponding to the dimension a k of the light beam. Let a 0 be the original size of the laser beam falling on the knife-edge. If the knife-edge is properly positioned, the illumination at the screen changes uniformly, depending upon its direction of the movement. Let I 0 be the illumination at the screen when no knife-edge is present. The illumination I k with the knife-edge inserted in the focal plane of the second lens but without any disturbance in the test region will be given by

I k = a k a 0 I 0 (2.7)
Let a be the displacement of the light beam in the vertical direction y above the knife-edge corresponding to the angular deflection (α ) of the beam passing through The effect of a non-uniform non-intense ac electric field on a differentially heated dielectric liquid Abstract: In this thesis, the concept of steady-state dielectrophoretic-induced convection in confined dielectric liquids, by means of non-uniform non-intense electric fields, is introduced and investigated. First, theoretical foundations of electrohydrodynamics are presented and a multiphysics coupling between fluids mechanics, heat transfers, and electrostatics is made evident. It is shown that a dielectrophoretic (DEP) torque arises at leading order provided that a non-uniform electric field is imposed. Thus, in microgravity conditions, the possibility of setting a dielectric liquid in motion, even with a modest electric field intensity, is shown to be finally conceivable in conductive regime as well as in boundary layer regime. In this work, steady ThermoElectroHydroDynamic (TEHD) convection is investigated for the case of a dielectric liquid confined in a differentially-heated square cavity, submitted to an electric potential gradient imposed from an electrode pair. Two electrode configurations, that generate the required non-uniform electric fields, are proposed: a partial planar electrode pair and a triangular electrode pair. Scaling analysis and a numerical study are developed in order to investigate dielectrophoreticinduced convective heat transfers. The scaling laws and the numerical results show that a significant enhancement of heat transfers is made possible from the use of a non-intense non-uniform electric field, with no need for giving rise to unstable regimes. An experimental approach is also considered, reintroducing gravity and buoyancy-driven convection. Silicon oil is confined in a cavity, formed in a Plexiglas block, and sealed by a pair of electrodes, one of them is connected to a high voltage AC amplifier while the other one is grounded. Both electrodes are kept at different but constant temperatures. By means of PIV imaging of fluorescent tracers, the velocity field in steady-state is measured and processed, and the effect of the imposed DEP torque on the whole flow is made evident. In comparison with numerical simulations, similar tendencies can be observed relative to each electrode configuration. Finally, the temperature is measured at different locations on the experimental bench for the configuration based on partial electrodes. In presence of gravity, heat transfer enhancement, expected from the application of a non-uniform electric field, is not particularly pronounced since the flow is dominated by thermal buoyancy. Mots-clés : champ électrique, non-uniforme, force diélectrophorétique, microgravité, transfert de chaleur, liquide diélectrique
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 2 r c non-dimensional radius of curvature -⃗ r position vector of a particle after displacement m s specic entropy S⋅kg -1 s k k component of the surface vector m 2 t time s xiv LIST OF SYMBOLS u velocity eld component in the x-direction

1 R

 1 J⋅K -1 ⋅kg -1 C Pc specic heat capacity of cold thermal uid J⋅K -1 ⋅kg -1 C P h specic heat capacity of hot thermal uid J⋅K -1 ⋅kg -1 cond.f conductive thermal resistance within the uid layer K⋅W -1 R cond.w conductive thermal resistance in the walls K⋅W -1 R conv.

W⋅m - 1

 1 value K T bath temperature of the thermal bath K T cj temperature at the cold junction K T h,in hot inlet temperature K T h,out hot outlet temperature K T c,in cold inlet temperature K T c,out cold outlet temperature K U x order of magnitude of the x velocity component m⋅s -1 U y order of magnitude of the y velocity component ⋅K -1 κ f luid thermal conductivity of the dielectric liquid W⋅m -1 ⋅K -1 κ wall thermal conductivity of the plexiglas wall W⋅m -1 ⋅K -1 λ thermo-dielectric coecient temperature dierence between both electrodes K ∆T h temperature dierence between hot inlet and outlet K ∆T c temperature dierence between cold inlet and outlet K ∆V voltage dierence between both electrodes v ∆x innitesimal length in the x-direction m ∆y innitesimal length in the y-direction m Constants c speed of light in vacuum 3×10

Figure 1 . 1 :

 11 Figure 1.1: Mass balance within a two-dimensional control volume in Cartesian coordinates (based on Bejan [13]).

Figure 1 . 4 :

 14 Figure 1.4: Scheme of a plane-parallel layer undergoing a deformation
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 1 3.58) By referring to equation 1.3.53, the change in free energy, under isothermal conditions, CHAPTER 1. GENERAL BACKGROUND can be expressed as,

  Figure 1.5: Scheme representing the multi-physics coupling in TEHD.
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 1 Introduction

Figure 2 . 1 :

 21 Figure 2.1: Schematic of an Ion drag pump from Nishikawara et al. [88].

Figure 2 . 2 :

 22 Figure 2.2: Nucleate boiling in the absence (on the left) and presence (on the right) of an electric eld (110 Kv cm). The electric eld is able to intensify the nucleate boiling causing a change of regime. Image taken from Bonjour et al. [21].

Figure 2 . 3 :

 23 Figure 2.3: Experimentally calculated Nusselt number as a function of electric Rayleigh number, taken from Chandra and Smylie [28].

3 ,Figure 2 . 4 :

 324 Figure 2.4: Schlieren images of convection patterns under the following Rayleigh (Ra) and Taylor (Ta) conditions: (a) Ra = 4.7 × 10 3 , Ta = 3.95 × 10 4 , (b) Ra = 7.59 × 10 4 , Ta = 6.32 × 10 5 , (c) Ra = 3.79 × 10 4 , Ta = 6.32 × 10 5 . The Taylor number is the ratio of the rotational forces to the viscous drag. Images taken from Hart et al.[START_REF] Hart | Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity[END_REF] 
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 2526 Figure 2.5: Convection paterns similar to Bénard cells in transformer oil held at a vertical temperature dierence of 12 ○ C and a DC potential dierence of 1.8 kV cm. Image taken from Gross and Porter [51].

Figure 2 . 7 :

 27 Figure 2.7: (a) Table containing values (for several dielectric liquids) of Rayleigh numbers (Ra; dened as R in the gure), critical wavenumbers (a c ), critical electric numbers (L c ), and critical voltages (V c ) for convective instability in a 1 mm dielectric liquid layer held at a temperature gradient of 20 ○ C. Table taken from Stiles [116]. (b) Variation of the critical electric Rayleigh number (L c ) as of function of Prandtl number (indicated on the curves) and Grashof number (G). The dotted and continous lines represent the stationary and oscillatory modes respectively.Figure taken from Takashima and Hamabata [119].

CHAPTER 3 .Figure 3 . 1 :

 331 Figure 3.1: Scheme representing a dielectric liquid conned between two horizontal parallel plates (left) and between two vertical parallel plates (right), known as the dierentially heated cavity.

Figure 3 .Figure 3 . 2 :

 332 Figure 3.2 is a schematic representation of the partially dierentially heated cavity.

Figure 3 . 3 :

 33 Figure 3.3: Normaized electric eld intensity (colormap) and direction vector elds of ( ⃗ E. ⃗ ∇) ⃗ E

Figure 3 .Figure 3 . 4 :

 334 Figure 3.4 is a schematic representation of a dierentially heated cavity equipped with triangular electrodes. The red and blue walls represent the conductive triangular electrodes held at hot and cold temperatures respectively. The hot electrode is connected to a high voltage AC amplier. On the other hand, the cold electrode is grounded. The remaining black horizontal walls in the scheme are imposed to thermal and electric Neumann boundary conditions. These walls are considered to be electrically and thermally insulated.
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 35 Figure 3.5: Normaized electric eld intensity (colormap) and direction vector elds of ( ⃗ E. ⃗ ∇) ⃗ E

( 3 . 4 . 1 )Figure 3 . 6 :

 34136 Figure 3.6: Thermal and drag boundary layer near a hot wall for Pr >> 1

( 3 .

 3 4.25) 3.4.2 Dielectrophoresis-Limited Regime: ⃗ g = ⃗ 0 and ⃗ E ≠ ⃗ 0

  .4.35) As the Prandtl number increases, the thickness of the layer of outer temperature uid (at T ref ) vertically dragged also increases. The velocity scale is attained within the thermal boundary layer, whereas the decay of this velocity occurs within the drag boundary layer (g. 3.6).

. 38 )Nu ∼ Pr 1 4 L 1 4 .Fig. 3 .- 1 4

 384431 Fig.3.7 qualitatively demonstrates that the thermal boundary layer is driven upwards by buoyancy and restrained by inertia. Outside this layer, the uid is supposed to be at a mixing temperature (T ref ), and is motionless. The vertical velocity component, in this case rises and decays within the thermal boundary layer. In the viscous boundary layer, standing along the no-slip side wall, the DEP motor is restrained by the viscous dissipation generated from the shear. Therefore, from eq. 3.4.27, one gets, ν U y δ 3 ν friction

4. 1

 1 IntroductionAs a rst step, the steady role of DEP induced convection on heat transfer by means of non-uniform electric elds in microgravity conditions is modeled and numerically explored. The multiphysics coupling is performed on a commercial software (COMSOL multiphysics) using the nite element method. The two-dimensional model is computed for both the partial and triangular electrode geometries. The theoretical predictions in chapter 3 are used as a reference for comparison with the results of the numerical simulations.In the rst part, the numerical model is presented. The model is expressed by the coupling of the four governing equations mentioned in the earlier chapters: continuity, momentum balance, energy balance, and electrostatics equation. The governing equations are nondimensionalized, and the varying parameters are reduced to the Prandtl and Roberts non-dimensional numbers. The boundary conditions are imposed specically for each conguration.

( 4 . 2 . 6 )

 426 Multiplying both sides of the equation by H 3 ρα 2 , and introducing the Prandtl number, Pr= ν α , and the Roberts number, L= ref o λ∆T ∆V 2 ρνα , the momentum balance equivalently writes,

( 4 . 2 . 8 )

 428 which simplies to, ⃗ u * . ⃗ ∇ * θ = ∇ * 2 θ .

( 4 .

 4 2.9) 

Figure 4 . 1 :

 41 Figure 4.1: Boundary conditions and triangular meshing (non-dimensional mesh size of 6×10 -5 ) of the calculation domain (partial electrode geometry).

( 4 . 3 . 3 )

 433 Finally, electrical and thermal boundary conditions of Neuman type are considered at the insulating walls, y H = ±1 2, x H = 1 2 (y H ∈ [-1 2, 0]), and x H = -1 2 (y H ∈ [0, 1 2]): ∂θ ∂n = ∂φ ∂n = 0.

Figure 4 . 2 :

 42 Figure 4.2: Boundary conditions and triangular meshing (non-dimensional mesh size of 6×10 -5 ) of the calculation domain (triangular electrode geometry).

  y H = ±1 2 (x H ∈ [-0.5, 0.5]).

( 4 . 3 . 7 )

 437 Electrical and thermal boundary conditions of Neuman type are considered at the insulated walls can be expressed as, at y H = ±1 2 (x H ∈ [-0.5, 0.5]).

( 4 . 3 . 8 ) 4 . 4

 43844 Discretizing the Geometrical Domain: Size and Sensitivity 4.4.1 Heat Transfer and Fluid Flow

(d) Ra = 10 6 Table 4 . 1 :

 641 Mesh sensitivity analysis for the partial electrode geometry (electrostatics uncoupled): variation of the maximum horizontal velocity component (u max ), maximum vertical velocity component (v max ), and the hot wall mean Nusselt number (Nu mean ) for Pr = 220 and varying Ra numbers.

Figure 4 . 3 :

 43 Figure 4.3: Representation of the rounded edges with dierent mesh sizes.

( 4 . 5 . 4 )Figure 4 . 4 :

 45444 Figure 4.4: Poiseuille velocity prole due to no slip conditions on the surface of the walls at depth ± b 2 .

( 4 . 5 . 6 )

 456 Compared to the two dimensional momentum equation, the gap averaged equation expresses a slight amplication of the convective term with a coecient of 6/5. Concerning the viscous term, an additional term is also present here. As the depth of the cavity, b,

Figure 4 . 5 :Figure 4 . 6 :

 4546 Figure 4.5: 2D scheme of the mid-plane section of the experimental set-up for the partial electrode conguration.(a) (b) 𝑣

Figure 4 . 7 :

 47 Figure 4.7: Temperature distribution in the mid-plane section of the experimental set-up for the partial electrode conguration with an equivalent of Ra = 2.1 × 10 6 for (a) h = 0 W m 2 ⋅K and (b) h = 10 W m 2 ⋅K .

Figure 5 . 1 :

 51 Figure 5.1: General schematic of the experimental set-up.

  heart of this experimental setup. Several important factors are taken into account for the sizing of the cavity within the Plexiglas block. These factors include the choice of the working uid (sec. 5.1.3), and the high voltage amplier used. The latter has an output voltage range of 0 to ±30 kV DC or peak AC.The inter-electrode distance (the distance between the two vertical walls) was taken upon the scaling of the DEP force to that of buoyancy. The Roberts number is scaled to the Rayleigh number,

Figure 5 . 2 :

 52 Figure 5.2: Three dimensional technical drawing of the shallow cavity Plexiglas block

Figure 5 .

 5 Figure 5.2 represents a three dimensional technical drawing of the Plexiglas block that

Figure 5 . 3 :Figure 5 . 4 :

 5354 Figure 5.3: Scheme of a plane-parallel layer undergoing a deformation

Figure 5 . 5 :

 55 Figure 5.5: Measured output gain of the TREK 30/20A as a function of frequency.

Figure 5 . 6 :

 56 Figure 5.6: Three-dimensional drawings of one half electrode and one insulating block.

Figure 5 . 7 :

 57 Figure 5.7: Three-dimensional drawings of the triangular electrode base.

Figure 5 . 8 :

 58 Figure 5.8: Three-dimensional drawings of the triangular electrode.

Figure 5 . 9 :

 59 Figure 5.9: Three-dimensional drawing of the experimental assembly

Figure 5 . 10 :( 5

 5105 Figure 5.10: Two dimensional schematic represantation of the cavity (white) sourounded by two vertical plexiglass walls (grey) and two horizontal constant temperature walls (red and blue). The entire assembly is sourounded by PVC blocks (purple). The red and blue arrows represent the direction of ow of the thermal uids, whereas the black circles represent the position of the thermocouples and their dimensions. The arrows in orange represent the conductive and convective heat transfers. inlet, and cold outlet temperatures, and ∆T h = T h,in -T h,out and ∆T c = T c,out -T c,in , the total heat ux at the cold and hot heat exchangers are respectively expressed as, Qc = ṁc C pc ∆T c

Figure 5 . 11 :

 511 Figure 5.11: Schematic of the equivalent circuit of the thermal model of the system (nodal approach).

Figure 5 . 12 :

 512 Figure 5.12: Fundamantal working principle of a thermocouple (T-type).

Figure 5 . 13 :

 513 Figure 5.13: In-house cold junction box that includes dierential connections of thermocouples.

  potential dierences, measured by the reference thermocouple (rTC), were recorded for dierent bath temperatures. The thermal bath temperatures were measured via the Pt100 sensor. Simultaneously, another Pt100 sensor was measuring the temperature at the cold junction (the copper plate). In gure 5.14, the electric potential of the reference thermocouple is plotted as a function of the dierence between the temperatures measured by the two Pt100 sensors (dierence between hot and cold junction points). A second order polynomial model was used to express the temperature as a function of the voltage at the reference thermocouple.∆T = a.V 2 rTC + b.V rTC + c ,(5.2.4)where ∆T = T bath -T cj is the temperature dierence between the measurement point and the cold junction and a = -6.02205 × 10 5 K⋅V -2 , b = 2.4993 × 10 4 K⋅V -1 , and c = 0.181 38 K, for the oset value at the cold junction measurement probe.

Figure 5 . 14 :

 514 Figure 5.14: Variation of the electric potential measurements of the reference thermocouple and percentage dierence of the remaining thermocouples as a function of dierent temperature points.

Figure 5 .

 5 Figure 5.15 represents the thermal circuits. The thermal uid leaves the thermal control unit, passes through the copper electrodes and through a needle valve and a ow meter. The hot thermal circuit is connected to the electrode that holds the high voltage.

Figure 5 . 15 :

 515 Figure 5.15: Principle of operation of an oval-gear volumetric ow meter.

  is installed in each thermal circuit. Oval-gear ow meters (OG) are positive displacement type volumetric ow meters that transport dened volumes of uids in separate measuring chambers. The principle of operation is described in gure 5.16. The pair of precisely xed oval-gears is the element of measurement. The rotations of these gears are measured via a sensor and are linearly dependent on the specic volume they allow to pass per rotation. Due to this mechanism, even very small volumetric ow rates can be measured. This is useful in our case since the volumetric ow rate within our circuits is low (0.05-2 L/min). Even though it is very dicult to estimate the head losses within the circuit, the small order of magnitude of the volumetric ow rate was estimated by an open bath discrete volume ow rate measurement. Upon the circulation of the liquid throughout all the pipping and ttings, a nite volume of this ow is measured and chronometrized in order to estimate the ow rate.

Figure 5 . 16 : 1 ]Figure 5 . 17 :

 5161517 Figure 5.16: Principle of operation of an oval-gear volumetric ow meter.

  owgragh and the schlieren optical techniques were implemented. Refractive index gradient techniques are non-invasive techniques allowing to quantify the temperature distribution without risking to perturb the ow. The temperature distribution can be retrieved via the calculation of the refractive index distribution in a 2D plane. For the shadowgraph, this is done by solving a Poisson equation, while for the schlieren technique this is possible by integrating the intensity distribution.

5. 2 . 3 . 1 Figure 5 . 18 :

 231518 Figure 5.18: General layout of the PIV setup.

(Figure 5 .

 5 Figure 5.19: PIV Setup in triangular electrode conguration

Figure 5 .

 5 [START_REF] Bonjour | Mecanisme de l'ebullition sous champ electrique[END_REF] shows a comparison of an image before and after graphical enhancement. Basic image enhancement plays a non negligible role on the quality of PIV calculations (OpenPIV).

Figure 5 . 20 :

 520 Figure 5.20: Comparison of image quality of raw images vs. enhanced images

Figure 5 . 21 :

 521 Figure 5.21: Example of post-processing output: Colormap of the vorticity along the z-direction and streamlines for a ow using the partial electrode conguration (left), and colormap of the velocity component in the x-direction and streamlines for a ow using the triangular electrode conguration (right).

92 CHAPTER 5 .Figure 5 . 22 :

 925522 Figure 5.22: Reaction of the dielectric liquid to dierent signal frequencies held at constant temperature.

Figure 5 . 23 :

 523 Figure 5.23: Recorded image of an electric breakdown within the working uid during a Partial Electrode Experiment:9 kV/cm ; f = 500 hz

Figure 5 . 24 :

 524 Figure 5.24: Experimental range as described with a Ra vs L plot for Pr = 220. The blue marks represent experimental points and the red hashed regions are regions beyond experimental limits.

Figure 6 . 1 :

 61 Figure 6.1: Scheme of the dierentially heated cavity (left) and the partially dierentially heated cavity (right).

Figure 6 . 2 :

 62 Figure 6.2: Dierentially heated cavity: unit vector elds ( ⃗ E. ⃗ ∇) ⃗ E (red) and ⃗ ∇θ (white).

Figure 6 . 3 :

 63 Figure 6.3: Partially dierentially heated cavity: unit vector elds ( ⃗ E. ⃗ ∇) ⃗ E (red) and ⃗ ∇θ

- 1 ) 10 !Figure 6 . 4 : 100 !Figure 6 . 5 :

 1106410065 Figure 6.4: Vorticity map and streamlines for Pr = 220 (a) Gr e = 1, (b) Gr e = 10, (c)

Figure 6 . 6 :Figure 6 . 7 :

 6667 Figure 6.6: Temperature prole and isotherms for Pr = 220 (a) Gr e = 1, (b) Gr e = 10, (c) Gr e = 100.

CHAPTER 6 .Figure 6 . 8 :Figure 6 . 9 :

 66869 Figure 6.8: Unit vector elds ( ⃗ E. ⃗ ∇) ⃗ E (red) and ⃗ ∇θ (white). Colormap of the quantity sin(γ) =

Figure 6 . 10 :

 610 Figure 6.10: Non-dimensional velocity prole (y-component) along the cutline y H = 1 4 for Pr=10 4 and Gr e ∈ [0.1, 1500].

1 Figure 6 . 11 :

 1611 Figure 6.11: Maximal value of the non-dimensional velocity (y-component) along the cutline y H = 1 4 as a function of the Roberts number for a range of the Prandtl number: Pr ∈ [0.1, 10 4 ]. critical Roberts number, L c,1 ∼ 3 × 10 3 , the scaling law for the y-component of the velocity is modied due to the arising of the boundary layer regime (BL regime), switching from

2 Figure 6 . 12 :

 2612 Figure 6.12: Dependence of the thickness of the dragged boundary layer, δ d , on the Roberts number for Pr ∈ [0.1, 10 4 ]. The data related to Pr=5000 (∎) and Pr=10000 () progressively depart from the scaling law δ d H ∼ L -1 4 since (3.4.36) is no more fullled. Insert: dependence of the boundary layer thickness ratio, δ d δ t , on the Prandtl number for Gr e ∈ [0, 1500]. The dashed

6. 13 )Figure 6 . 13 :

 13613 Figure 6.13: Non-dimensional temperature prole along the cutline y H = 1 4 for Pr=0.1 or for Pr=10 and a large range of the electric Grashof number: Gr e ∈ [0.1, 1500].

Figure 6 .

 6 Figure 6.14: Non-dimensional temperature prole along the cutline y H = 1 4 for Pr=10 4 and a large range of the electric Grashof number: Gr e ∈ [0.1, 1500].

Fig. 6 .

 6 Fig. 6.15 represents the variation of the (non dimensional) thickness of the thermal boundary layer (TBL), δ t H, as a function of the Roberts number for an extended range of Prandtl numbers Pr ∈ [0.1, 10 4 ]. Here, δ t denotes the thickness of the thermal boundary layer as calculated by considering the temperature prole θ(x H, y H = 1 5).
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  Beyond a rst threshold characterized by the already mentioned critical value of the Roberts number, L c,1 ∼ 3 × 10 3 , the conduction regime is replaced by the BL regime and δ t H consistently decreases with the Roberts number. For large values of the Prandtl and Roberts numbers, the scaling law for δ t H is found consistent with eq. (3.4.30) but to a limited extent. Beyond a second threshold characterized by L c,2 ∼ 10 5 , the decrease CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS Pr -0.15

Figure 6 . 15 :

 615 Figure 6.15: Thickness of the thermal boundary layer and its dependence on the Roberts number for a wide range of the Prandtl number: Pr ∈ [0.1, 10 4 ].

15 Figure 6 . 16 :

 15616 Figure 6.16: Nusselt number as a function of the Roberts number with Pr ∈ [0.1, 10 4 ]. Insert: Nusselt number as a function of the Prandtl number with Gr e ∈ [0, 1500].

6. 4 . 1 Figure 6 .Figure 6 .

 4166 Figure 6.17: x-component velocity maps and streamlines for Ra = 2.1 × 10 6 , as deduced from the experiments (a) L = 0 ,(b) L = 1.13 × 10 5 ,(c) L = 2.0 × 10 5 ,(d) L = 3.15 × 10 5 .

Figures 6 .

 6 Figures 6.19 and 6.20 plot the streamlines and the horizontal and vertical velocity component maps respectively, as obtained numerically for the same Rayleigh and Roberts

Figure 6 .

 6 Figure 6.20: y-component velocity maps and streamlines for Ra = 2.1 × 10 6 , as deduced from the numerical simulations (a) L = 0 ,(b) L = 1.13 × 10 5 ,(c) L = 2.0 × 10 5 ,(d) L = 3.15 × 10 5 .

CHAPTER 6 .Figure 6 . 21 :

 6621 Figure 6.21: Non-dimensional experimental (dotted lines) and numerical (lled lines) velocity proles (y-component) along the cutline y H = 1 4 for Pr = 220, Ra = 2.1 × 10 6 , and several Roberts numbers.

Figure 6 . 22 :

 622 Figure 6.22: Non-dimensional experimental (dotted lines) and numerical (lled lines) velocity proles (x-component) along the cutline x H = 0 for Pr = 220, Ra = 2.1×10 6 , and several Roberts numbers.

Figure 6 . 23 :

 623 Figure 6.23: Ratio of DEP to thermal buoyancy torques in zones 1 and 2 for Ra = 2.1 × 10 6 and L = 3.15 × 10 5 .

6 . 3 Figure 6 . 25 :

 63625 Figure 6.25: Non-dimensional temperature prole and isotherms for Ra = 2.6 × 10 6 (a) L = 0, (b) L = 2.2 × 10 5 , (c) L = 4.4 × 10 5

CHAPTER 6 .Figure 6 . 26 :

 6626 Figure 6.26: Two dimensional schematic represantation of the cavity (white) sourounded by two vertical plexiglass walls (grey) and two horizontal constant temperature walls (red and blue). The entire assembly is sourounded by PVC blocks (purple). The red and blue arrows represent the direction of ow of the thermal uids, whereas the black circles represent the position of the thermocouples and their dimensions. The arrows in orange represent the conductive and convective heat transfers.

CHAPTER 6 .Figure 6 . 27 :

 6627 Figure 6.27: Temperature measurements of an experiment: Evolution of the temperatures in thermocouples 1 to 6 and the thermocouple in the hot electrode surface as a function of time.

Figure 6 . 28 :

 628 Figure 6.28: Experimental and numerical temperature proles on sections A, B, and C for ∆T = 55 ○ C and ∆V = 0 kV.

  6.25), the reader has probably already noted that the role of the electric eld on heat transfer in this range of Roberts and Rayleigh is of negligible order. The electric eld seems to only slightly disturb the temperature isocontours near the constant temperature walls, in comparison to the case without electric eld. The Nusselt number being eected by changes of temperature distribution near the constant CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS temperature wall (eq. 7.3.1), the electric eld seems to have a rather passive role on heat transfer. This is numerically investigated, for the range of Roberts and Rayleigh numbers corresponding to the experiments performed, by plotting the evolution of Nu * as a function of the Roberts number for dierent Rayleigh numbers. Nu * is dened as the dierence between the Nusselt calculated at a particular Ra and L, and the Nusselt for the same Ra in the absence of an electric eld (L = 0), non-dimensionlized by the latter. It is described as, Nu * = Nu Ra,L -Nu Ra,L=0 Nu Ra,L=0 , (6.4.2)

6 Figure 6 . 29 :

 6629 Figure 6.29: Numerically calculated Nu * as a function of L, for a range of Ra.
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 17 By considering the boundary layer regime and the velocity scale as dened by(3.4.31), the Reynolds number writes as Re ∼ Pr -1 L Rhodorsil 47v20 silicon oil can be fairly considered as a pretty good candidate for experiments based on dielectric liquids. With such a viscous uid, Re remains small to moderate even for the highest Roberts number simulated (L max = 10 7 , Pr = 200 ∶ Re < 15), which justies 2-D calculations. Note that most of the dielectric liquids relevant to the present TEHD conguration are characterized by a high level of viscosity.The experiments with Rhodorsil 47v20 silicon oil were performed in the laboratory in terrestrial gravity conditions. A buoyancy driven ow is rst established within the cavity, and the eect of a non-uniform electric eld on this ow is studied. The velocity of the ow is quantied via PIV and temperature measurements are made in order to evaluate the potential eect of the electric eld on heat transfers. Up to now, heat losses between the set-up and ambient atmosphere are so signicant that no DEP-induced change on the Nusselt number, as experimentally measured, can be made evident. An upgraded set-up is currently under development with a vacuum-based approach in order to eliminate the noisy role of ambient atmosphere.The range of Roberts number being relatively smaller compared to that of Rayleigh, the experiments of the dielectric liquid were buoyancy dominant. However, concerning the structure of the ow, the electric eld used was able to alter and modify the initially established vortices within the cavity. The DEP torque at the conductive state being of opposite signs in the upper and lower halves of the cavity contributed in the stretching and shrinking of the vortices in each half respectively. The PIV results are compared with numerical simulations. Similar tendencies are observed. Unlike the experimental results that are lagging in resolution, the numerical simulations highlight the important local perturbative role of the DEP torque near the electrode edge regions, where the electric eld is more intense (Jawichian et al.[START_REF] Jawichian | Role of a non-uniform ac electric eld on a buoyancy-driven ow in a dierentially heated cavity[END_REF]).Chapter Eect of Non-Uniform Electric Fields, Risen by a Pair of Triangular Electrodes, on a Dielectric Liquid Inside a Deep Cavity7.1 IntroductionIn this chapter, the role of the triangular electrode arrangement, on inducing a DEP driven motion within dielectric liquids, is investigated (g. 7.1). Inspired by the Taylor cone, triangular electrodes have the possibility to generate highly non-uniform and intense electric elds localized near the tip edge.

AFigure 7 . 1 :

 71 Figure 7.1: Scheme of the traingular electrode dierentially heated cavity (left) and unit vector elds ( ⃗ E. ⃗ ∇) ⃗ E (red) and ⃗ ∇θ (white). Colormap of the quantity sin(γ) = ( ⃗
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 372100733741003757677178 Figure 7.2: Vorticity map and streamlines for Pr = 220 (a) Gr e = 1, (b) Gr e = 10, (c)

CHAPTER 7 .Figure 7 . 9 :

 779 Figure 7.9: (a) Vorticity map and streamlines, (b) temperature distribution and isotherms for Pr = 5000 and Gr e = 1000.

Figure 7 . 10 :

 710 Figure 7.10: Non-dimensional velocity prole (y-component) along the cutline y H = 1 4 for Pr = 0.1 (dotted lines) and Pr = 5 × 10 3 (lled lines) and Gr e ∈ [0.1, 1000]. The velocity for Pr = 5 × 10 3 is non-dimensionlized by considering a viscous time scale.

1 Figure 7 . 11 :

 1711 Figure 7.11: Maximal value of the non-dimensional velocity (y-component) along the cutline y H = 1 4 as a function of the Roberts number for a range of the Prandtl number: Pr ∈ [0.1, 5 × 10 3 ].

4 Figure 7 . 12 :

 4712 Figure 7.12: Dependence of the thickness of the dragged boundary layer, δ d , on the Roberts number for Pr ∈ [0.1, 5 × 10 3 ].

Fig. 7 .

 7 Fig. 7.12 represents the evolution of the dragged boundary layer thickness as a function of the Roberts number for a large range of the Prandtl number: Pr ∈ [0.1, 5000].
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 7713 Figure 7.13: Non-dimensional temperature prole along the cutline y H = 0 for Pr= 10 and a large range of the electric Grashof number: Gr e ∈ [0.1, 1500].

Figure 7 . 14 :

 714 Figure 7.14: Non-dimensional temperature prole along the cutline y H = 0 for Pr=5 × 10 3 and a large range of the electric Grashof number: Gr e ∈ [0.1, 1000].
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 43715 Figure 7.15: Thickness of the thermal boundary layer and its dependence on the Roberts number for a wide range of the Prandtl number: Pr∈ [0.1, 5 × 10 3 ].

Figure 7 . 16 :

 716 Figure 7.16: Nusselt number as a function of the Roberts number with Pr ∈ [0.1, 5000]. Insert: Nusselt number as a function of the Prandtl number with Gr e ∈ [0, 1500].

Figure 7 .

 7 Figure 7.17: x-component velocity distribution and streamlines for Ra = 1.58 × 10 6 , Pr = 220, and L = 0, as deduced from (a) the numerical simulations and (b) the experiments. y-component velocity distribution and streamlines for Ra= 1.58 × 10 6 , Pr = 220, and L = 0, as deduced from (c) the numerical simulations and (d) the experiments.

CHAPTER 7 .Figure 7 .Figure 7 .

 777 Figure 7.18: x-component time-averaged velocity maps and streamfunction isocontours for Ra = 1.58 × 10 6 and Pr = 220, as deduced from the experiments (a) L = 0 (for sake of comparison), (b) L = 3.8 × 10 4 , (c) L = 8.6 × 10 4 , (d) L = 1.5 × 10 5 , (e) L = 1.8 × 10 5 .

8 × 10 5 Figure 7 . 22 :

 85722 Figure 7.22: Non-dimensional experimental (dotted lines) and numerical (lled lines) velocity proles (y-component) along the cutline y H = 1 4 for Pr = 220, Ra= 1.58 × 10 6 , and several Roberts numbers.
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 7723 Figure 7.23: Non-dimensional experimental (dotted lines) and numerical (lled lines) velocity proles (x-component) along the cutline x H = 0 for Pr = 220, Ra= 1.58 × 10 6 , and several Roberts numbers.

  heat transfer is governed by the Roberts' number, which characterizes the ratio between the DEP source and the dissipative term due to viscous friction on the other hand. Two critical Roberts numbers are identied from the behavior of the Nusselt number: the rst one reects the transition from a purely diusive regime to a boundary layer regime generated by DEP (near L∼ 10 3 ), the second one corresponds to another regime that is developed near L∼ 10 5 .Experiments with Rhodorsil 47v20 silicon oil are performed in the presence of gravity conditions. A buoyancy driven ow is rst established within the cavity, and is later disturbed by imposing a non-uniform electric eld across the triangular electrodes. The eect of this nonuniform electric eld on the ow is inspected. The velocity of the ows is quantied via PIV. These experiments are considered to be buoyancy dominant, since the maximum imposed voltage drop across the triangular electrodes (limited by dielectric breakdowns) xes the Roberts number in a range which is relatively smaller compared to that of the Rayleigh number. However, the electric eld used is still able to disturb the initially buoyancy established ow within the cavity, in a way that is coherent with the DEP induced convection previously investigated in microgravity. The torque actuations of opposite signs, as expected to rise independently of gravity, plays a role in modifying the primary vortex. The PIV results are compared with numerical simulations. Similar tendencies are observed. Unlike the experimental results that are lagging in resolution, the numerical simulations highlight the important local perturbative role of the DEP torque near the triangular tips, where the electric eld is more intense.

13 Figure C. 1 :

 131 Figure C.1: Ratio of the triangular electrode Nusselt number (Nu ∆ ) to the partial electrode Nusselt number (Nu PE ) as a function of the Roberts number with Pr ∈ [0.1, 5000].

  Perspectives: Studies in the eld of electrohydrodynamics have long shown interest in the possible role of controlling uid ow, via non-intrusive techniques (electric forces), and possibly enhancing heat transfers by intensifying convective ows. The dielectrophoretic force being usually overlooked, in comparison to its Coulombic counterpart, the aim of this work is to shed light on the possible importance of this term in single phase EHD ows.More precisely, in the possibility of developing steady-state DEP-induced convection, by considering non-uniform electric elds. However, this study does not claim to cover entirely all the key aspects of this phenomenon.

Fig. 2 . 4

 24 Fig.2.[START_REF] Allen | Electric stress and heat transfer[END_REF] Schematic drawing that shows the path of the light beam in a schlieren system made of lenses. When the screen is at the conjugate focus, the relationship (1/ p)+(1/q) = (1/ f 2 ) is followed and the image on the screen is the same size as the cross-section of the test section corresponding to the location p. For the distances shown, the angle detected at the screen is the cumulative turning of the light beam within the test cell. Figure redrawn from[START_REF] Ahsmann | The inuence of electric elds on the convective heat transfer in liquids[END_REF] 

Fig. 2 . 5

 25 Fig. 2.5 View of undisturbed and deflected light beam cross-sections at the knifeedge of a schlieren system. The horizontal displacement of the light beam does not contribute to intensity contrast

Figure B. 3 :o a s = f 2 f 1 (

 31 Figure B.3: Schematic representation of the lens schlieren set-up, taken from Panigrahi and Muralidhar [90].

Figure B. 4 :

 4 Figure B.4: Schematic representation of the initial ligh beam at the focal point and the distrubed ligh beam with a horizontal cut-o
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  .4.4) By taking into account the scaling of the velocity components (eq. 3.4.3), and the general denition of the considered thermal boundary layer (eq. 3.4.1), the energy equation scales therefore the ratio of the thermal boundary layer thickness-to-height scales as a function of the Rayleigh number to the power -1/4,

	as,											U y ∆T H δ t H ∼ Ra -1 4 . ∼ α ∆T δ 2 t	.					(3.4.5) (3.4.12)
	The vertical velocity component can now be scaled as a function of the governing non-Therefore, the vertical velocity component scales as, U y ∼ α H . (3.4.6) dimensional numbers as, U y ∼ α Ra 1 2 , (3.4.13) H δ 2 t and the Nusselt number can be scaled as,
	In the eld of convective heat transfer, the Nusselt number dened as Nu ∼ Ra 1 4 .	(3.4.14)
		Nu = Fig. 3.6 qualitatively demonstrates that the thermal boundary layer controls the hH , (3.4.7) κ
	is a non-dimensional number formulated as a ratio of convective to conductive heat trans-transition of the temperature from an absolute maximum (temperature at the wall) to
																							t . Therefore, the
	Nusselt number scales as,						Nu ∼	H δ t						(3.4.8)
	u	∂ ∂x	∂v ∂x	-	∂u ∂y	+ v	∂ ∂y	∂v ∂x	-	∂u ∂y	= ν	⎡ ⎢ ⎢ ⎢ ⎢ ⎣	∂ ∂x	∂ 2 v ∂x 2 +	∂ 2 v ∂y 2 -	∂ ∂y	∂ 2 u ∂x 2 +	∂ 2 u ∂y 2	⎤ ⎥ ⎥ ⎥ ⎥ ⎦	+ gβ	∂θ ∂x	. (3.4.9)
										U 2 y δ t H			ν	U y δ 3 t			gβ∆T δ t		
										inertia			friction							
							H δ t	4	Ra -1 Pr -1			H δ t	4	Ra -1			H δ t	1	H δ t	,	(3.4.11)
								inertia				friction				buoyancy
	where						Pr =	ν α		and			Ra =	gβ∆T H 3 αν		.

fers. The Nusselt number is used to evaluate the heat transfer enhancement of a thermal system under convection. h is the averaged heat transfer coecient at the constant temperature wall, and within the thermal boundary layer is scaled to κ.δ -1

Finally, the vorticity equation (eq. 3.2.4), taken at steady state, with both the vortex advection and vortex dissipation terms expanded, can be expressed as, By taking into consideration both the scaling of the velocity components from the continuity equation, and the limit of δ t << H, the dominant terms for each of the inertia, friction, and buoyancy terms can be scaled as, buoyancy .

(3.4.10)

The buoyancy term being the motor in the δ t × H layer, multiplying the former scales by the reciprocal of the buoyancy scale, allows one to scale the remaining terms in comparison with the buoyancy such that, If Pr >> 1, which is the case for dielectric liquids, then friction ∼ buoyancy , and the mean (mixing) temperature (outside the thermal boundary layer). Fig.

3

.6 also suggests that the motion of the uid is not restricted to a δ t × H. It is possible for the thermal boundary layer to viscously drag another layer of uid adjacent, yet outside, of the thermal boundary layer (uid at T ref ).

Let δ d be the thickness of this layer, also referred to as the drag boundary layer. The buoyancy no longer plays the role of the momentum source in this layer. Therefore, from eq. 3.4.10, the viscous drag is balanced by inertia such as,

  .4.17) As the Prandtl number increases, the thickness of the layer of constant temperature uid (at T ref ) vertically dragged also increases. The velocity scale is attained within the thermal boundary layer, whereas the decay of this velocity occurs within the drag boundary layer Nu ∼ Pr 1 4 Ra 1 4 .

	The vertical velocity component can now be scaled as a function of the governing non-
	dimensional numbers with,	U y ∼	α H	Pr 1 2 Ra 1 2 ,	(3.4.19)
	and the scaling law for the Nusselt number writes as,	
					(3.4.20)
				∆𝑇	
				2	
				𝑈 𝑦	
				𝛿 𝜈	
	y			𝛿 𝑡	
	x	𝑇 ν U y δ 3 ν ∼ gβ∆T δ ν ,	(3.4.21)
		friction	buoyancy	
	(g. 3.6). If Pr << 1, then from eq. 3.4.11, one similarly gets, and thus, δ ν H ∼ Ra -1 4 Pr 1 4 .	(3.4.22)
	H δ t In the previous, the scale for the vertical velocity component, U y was taken the same as 4 Ra -1 Pr -1 inertia ∼ H δ t H 1 the one in eq. 3.4.19. The ratio of both viscous to thermal boundary layer thicknesses δ t again writes, δ ν δ t ∼ Pr 1 2 .
					(3.4.18)

buoyancy

, and therefore the ratio of the thermal boundary layer thickness to height scales as a function of the Rayleigh and Prandtl numbers to the power -1/4,

δ t H ∼ Pr -1 4 Ra -1 4 . ℎ𝑜𝑡

Figure 3.7: Thermal and viscous boundary layer near a hot wall for Pr << 1

Fig. 3.7 qualitatively demonstrates that the thermal boundary layer is driven upwards by buoyancy and restrained by inertia. Outside this layer, the uid is at constant temperature (T ref ), while being motionless. The vertical velocity component, in this case rises and decays within the thermal boundary layer. The distance, from the no-slip wall,

where the vertical velocity component reaches its proper scale is described according to a viscous boundary layer (dierent from the one where Pr >> 1), whose role just consists in matching the no slip boundary condition. In this layer, the buoyancy motor is restrained by viscous dissipation generated from the no-slip condition at the vertical wall. Therefore, from eq. 3.4.10,

(3.4.23) 

  The DEP term being the motor in the δ t × H layer, multiplying the former scales by the reciprocal of the DEP scale, allows one to scale the remaining terms in comparison with the DEP such that, If Pr >> 1, which is the case for dielectric liquids, then the latter balance becomes,
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		H δ t	4	L -1 Pr -1	H δ t	4	L -1	H δ t	1	H δ t	,	(3.4.29)
			inertia	friction		DEP
	where	Pr =	ν α	and	L =	ref o λ∆T ∆V 2 ρνα	.
												(3.4.28)

DEP ∼ o ref λ∆V 2 ∆T ρδ t H 3 . friction ∼ DEP ,

and therefore the ratio of the thermal boundary layer thickness-to-height scales as a function of the Roberts number to the power -1/4,

  -3 , this ratio u max v max Nu mean 6 × 10 -5 2.2884 2.3159 1.058 3 × 10 -3 2.2546 2.3082 1.055 6 × 10 -3 2.2636 2.3091 1.056 9 × 10 -3 2.2132 2.2981 1.059 1.2 × 10 -2 2.2319 2.2867 1.039 1.5 × 10 -2 2.1907 2.2702 1.053 2 × 10 -2 2.1552 2.2717 × 10 -3 18.199 29.328 2.496 1.2 × 10 -2 18.273 29.137 2.504 1.5 × 10 -2 19.632 29.399 2.524 2 × 10 -2 22.180 33.433 Nu mean 6 × 10 -5 36.333 80.274 3.535 3 × 10 -3 36.652 82.502 3.565 6 × 10 -3 39.994 83.241 3.59 9 × 10 -3 45.859 87.688 3.648 1.2 × 10 -2 50.838 102.99 3.912 1.5 × 10 -2 59.341 103.95 3.926 2 × 10 -2 91.714 114.19 3.563

	1.04	mesh size 6 × 10 -5 3 × 10 -3 8.1952 9.5634 1.588 u max v max Nu mean 8.202 9.5979 1.591 6 × 10 -3 8.1435 9.5731 1.586 9 × 10 -3 8.2269 9.5374 1.586 1.2 × 10 -2 8.0826 9.5379 1.58 1.5 × 10 -2 7.7693 9.5456 1.587 2 × 10 -2 7.993 9.5471 1.537
	(a) Ra = 10 3		(b) Ra = 10 4
	mesh size 6 × 10 -3 17.857 29.172 u max v max Nu mean 2.5 2.5 3 × 10 -3 17.874 29.071 6 × 10 -5 18.145 29.216 2.505	mesh size	u max	v max
	9 2.46			
	(c) Ra = 10 5			

Table 4 .

 4 -5 at the vicinity of the electrode edges. 2: Mesh sensitivity analysis of the partial electrode geometry (electrostatics only): variation of the maximum electric eld intensity ( ⃗ E max ), and mean electric eld intensity ( ⃗ E mean ) for dierent mesh sizes.

	mesh size 6 × 10 -5 3 × 10 -3 6 × 10 -3 9 × 10 -3 1.2 × 10 -2 8.4729 0.76896 ⃗ E max ⃗ E mean 7.5848 0.76888 7.7765 0.76887 8.0025 0.76888 9.0865 0.76892 1.5 × 10 -2 8.9519 0.76898 2 × 10 -2 5.6864 0.76936

Table 4 .

 4 Nu mean 6 × 10 -5 19.738 49.559 1.683 3 × 10 -3 19.648 49.348 1.676 6 × 10 -3 19.721 48.968 1.673 9 × 10 -3 19.393 48.160 1.662 1.2 × 10 -2 18.882 46.981 1.637 1.5 × 10 -2 19.111 47.027 Nu mean 6 × 10 -5 361.19 1312.0 4.067 3 × 10 -3 366.39 1337.3 4.208 6 × 10 -3 385.35 1372.4 4.196 9 × 10 -3 449.15 1530.3 3.58 1.2 × 10 -2 524.24 1763.5 3.559 1.5 × 10 -2 628.28 1972.7 3.116 2 × 10 -2 820.93 2476.1 1.586(d) L = 10 6 3: Mesh sensitivity analysis for the partial electrode geometry (buoyancy uncoupled): variation of the maximum horizontal velocity component (u max ), maximum vertical velocity component (v max ), and mean Nusselt number (Nu mean ) as valued at the hot electrode for Pr = 220 and dierent L numbers.

	u max 6 × 10 -5 1.7628 3.1038 v max Nu mean 1.01 3 × 10 -3 1.7504 3.0771 1.01 6 × 10 -3 1.7395 3.0466 1.01 9 × 10 -3 1.7083 2.9814 1.008 1.2 × 10 -2 1.6805 2.8846 1.007 1.5 × 10 -2 1.6308 2.8369 1.009 2 × 10 -2 1.5101 2.5247 1.002	mesh size 2 × 10 -2 18.407 43.283 1.431 u max v max 1.64
	(a) L = 10 3		(b) L = 10 4
	mesh size 2 × 10 -2 103.13 301.03 1.689 u max v max Nu mean 98.12 302.19 2.801 1.5 × 10 -2 98.017 305.91 2.651 1.2 × 10 -2 98.083 293.28 2.695 9 × 10 -3 94.965 298.29 2.741 6 × 10 -3 97.592 297.11 2.795 3 × 10 -3 97.948 302.06 2.802 6 × 10 -5	mesh size	u max	v max
	(c) L = 10 5			

Table 5 .

 5 1: Physicochemical properties of most common dielectric liquids.

	σ [S⋅cm -1 ] f rel [Hz] Pr [-]	41.1 5×10 -8 13.7×10 3 12000	7.4 1×10 -8 15.3×10 3 9.92	1.84 --5.04	1.9 1×10 -15 5.94×10 -3 6.46×10 -3 4.22×10 -2 4.03×10 -3 1.75 2.68 2.8 1×10 -15 1×10 -14 1×10 -15 79.5 12.35 220 8850

Table 5 .

 5 Mossotti relation is a good tool to estimate this coecient. In table 5.1, in cases where λ is not available in the literature, λ cal. , presented in parenthesis, is the thermodielectric coecient as calculated according to eq. (5.1.4). As the table suggests, other liquids such as glycerol and HFE's are deemed not t for applications of DEP induced EHD, because of their very high relaxation frequencies.

	higher dependence of the latter on temperature (λ). The Clausius-Mossotti relation that
	is described as,	∂ r ∂ρ	=	( r -1)( r + 2) 3ρ	,	(5.1.3)
	shows that these two dielectric properties are codependent. The relation of the thermo-
	dielectric coecient with the dielectric constant writes as,
		λ β	=	( r -1)( r + 2) 3 r	,	(5.1.4)
	and clearly shows that for increasing dielectric constants, λ is expected to increase. The
	Clausius-					

1 lists the physicochemical properties of most common dielectric liquids. In single phase TEHD experimental studies, the most common choice of dielectric liquid are oils. These liquids are highly viscous with a low thermal diusivity (table 5.1, Pr >> 1), favoring the establishment of a ow in the laminar state. Compared with uorinated liquids, silicon oils have better electric properties, with higher dielectric constants and a

The working uid of choice was a type of silicon oil, more specically, RHODORSIL 47V20. The number 47 is a reference of the polydimethylsiloxane oil family of the supplier, "V" is for viscosity, and nally the number 20 refers to the value of the kinematic viscosity in mm s 2 . The physical properties of this working uid are presented in table 5.1.

Mechanically speaking, these products have low surface tensions (19.7 mN m at25 ○ C)

  is non-nil throughout the entire cavity. The zones in red on the top half part of the cavity suggest a DEP actuation of positive vorticity. On the other hand, the zones in blue on the bottom half part of the cavity suggest a DEP actuation of negative vorticity. The DEP torque source is clearly present at zero order. A steady induced DEP convective motion is expected here, with the rise of two counter-rotating vortices in the upper and lower halves of the cavity.

	( ⃗ E. ⃗ ∇) ⃗ E and ⃗ ∇θ are not aligned at zero order. Moreover, the colormap demonstrates
	that sin(γ)

  CHAPTER 7. THE EFFECT OF NON-UNIFORM ELECTRIC FIELDS, RISEN BY A PAIR OF TRIANGULAR ELECTRODES, ON A DIELECTRIC LIQUID INSIDE A DEEP CAVITYit can be seen from g. 7.10 that the newly proposed non-dimensionalization is indeed adaptable for high Prandtl (high viscosity) ows. Note: for high Prandtl ows, the order of magnitude of the vertical velocity component is larger near the cold wall compared to the hot one, as suggested by the velocity proles in gs. 7.8 and 7.10, on the considered cutline. This is consisent with the ow pattern discussed earlier for high Prandtl ows (g. 7.9).Along the previously considered cutline, dened such that x H ∈ [-1 2, +1 2] and y H = 1 4, the maximum value of the vertical non-dimensional velocity component, v max , is represented in g. 7.11 as a function of the Roberts number, for a wide range of Prandtl numbers. It is important to distinguish between two dierent regimes that are established.The rst is the diusive regime that can be noted, according to g. 7.11, to appear

	10 -2	10 -1	10 0	10 1	10 2	10 3	10 4	10 5	10 6	10 7

3 

is non-dimensionlized by considering a viscous time scale.

By comparing the orders of magnitude of the non-dimensional vertical velocity component for low Prandtl (g. 7.7) and high Prandtl ows (g. 7.8), one can note that the diusive time scale considered is no longer adaptable for high Prandtl ows. By considering a viscous time scale, such that the velocity eld is non-dimensionalized by H ν,

  The second regime that is visibly established, according to g. 7.11, beyond this critical Roberts threshold. The scaling law for the y-component of the velocity is modied due to the arising of the boundary layer regime (BL regime), switching to v max ∼ L 1 2 . The BL regime is dened as a viscous regime (Pr ∼ 1 and larger) with thermal boundary

layers free to develop alongside electrodes. The scaling analysis developed in sec. 3.4, explains well the observed scaling law, v max ∼ L 1 2 (eq. 3.4.31), despite the slight geometrical departure (triangular electrode) from the case of a at plate considered in sec. 3.4. The driving source near the constant temperature walls, where the temperature gradients are concentrated (BL regime: see e.g. gs. 7.13-7.14), is the dielectrophoretic torque. Outside this thermal boundary layer, the entrainement of the dielectric liquid is due to viscous drag. Here, the boundary layer associated with this, also known as the dragged A PAIR OF TRIANGULAR ELECTRODES, ON A DIELECTRIC LIQUID INSIDE A DEEP CAVITY

  3 , the conduction regime is replaced by the BL regime and δ t H consistently decreases with the Roberts number, with the TBL thickness scaling as, δ t H ∼ L -2 3 , as obtained from a numerical t. For larger values of the Prandtl and Roberts numbers, beyond a threshold characterized by

	CHAPTER 7. THE EFFECT OF NON-UNIFORM ELECTRIC FIELDS, RISEN BY
	A PAIR OF TRIANGULAR ELECTRODES, ON A DIELECTRIC LIQUID INSIDE A
	DEEP CAVITY
	(7.3.1)

L∼ 10 5 , the scaling law for δ t H is found consistent with eq.

(3.4.30)

.

In order to evaluate heat transfer enhancement that results from DEP-induced convection, a Nusselt number is introduced such that, Nu = Ce ⃗ ∇θ.⃗ nds,

  .3.2)By referring to g. 7.16, the conduction regime is conrmed to extend up to a Roberts of ∼ 10 3 . Beyond this Roberts number, a signicant increase in the Nusselt number suggests that heat transfer enhancement is made possible by means of DEP-induced convection.At the departure from the conduction regime, a robust scaling law can be numerically identied: Nu ∼ L 2 3 . Beyond this, near a Roberts number of 10 5 , the Nusselt number follows the scaling law, Nu ∼ L1 4 , whatever the value of the Prandtl number, accordingly with the scaling law established in sec.3.4 (eq.3.4.32).
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  degrees, an order of 1-2 kV/cm is required to enhance heat transfers by 200% (depending of the electrode conguration). More data, concerning actual microgravity applications, on the expected heat transfer enhancement as a function of electric eld intensity is represented in table C.1. In the presence of gravity, heat transfer enhancement is no longer pronounced, since the ow is essentially buoyancy-driven. Experimentally, the temperature measurements performed were not sensitive enough to detect any changes related to DEP-induced convection, and therefore they do not yield anything particularly conclusive. The numerical simulations on the other hand, for the case of the partial electrode conguration, demonstrate that at best (maximum voltage: threshold to dielectric breakdown), the convective heat transfer can be enhanced by 10%.⃗ E [kV⋅cm-1 ] 0.0754 0.2385 0.7543 1.6867 2.3853 5.3338 7.5432 9.2385 Nu ∆ [%]TableC.1: Expected enhancement of heat transfers for the triangular and partial electrodes as a function of electric eld intensity, using silicon oil 47v20, at a temperature of 35 ○ C, in microgravity conditions.

		100	100.1	111.2	219.2	314.2	597.5	742.9	836.8
	Nu PE [%]	100	100	110.5	172.3	203.8	284.8	320.3	342.2

Effet d'un champ électrique ac non uniforme non intense sur un bain liquide diélectrique différentiellement chauffé Résumé :

  : electric field, non-uniform, dielectrophoretic force, microgravity, heat transfers, dielectric liquid Dans les travaux de recherche développés durant cette thèse, le concept de convection d'origine diélectrophorétique dans les liquides diélectriques confinés, telle qu'obtenue par application de champs électriques non uniformes et non intenses, est proposé et étudié. Dans un premier temps, les ingrédients théoriques de l'électrohydrodynamique sont présentés, puis les propriétés du couplage multiphysique entre mécanique des fluides, thermique et électrostatique sont mises en évidence. On peut démontrer qu'un couple d'origine diélectrophorétique est présent dès le régime conductif dès lors qu'un champ électrique non-uniforme est imposé. En conséquence, la possibilité de mettre un liquide diélectrique en mouvement, en imposant des champs électriques modestes en microgravité, est concevable en régimes conductif et de couches limites. Dans cette thèse, on étudie la convection ThermoElectroHydroDynamique (TEHD) d'un fluide diélectrique, en cavité différentiellement chauffée et soumise à un gradient de potentiel électrique produit par une paire d'électrodes. Deux configurations d'électrodes sont proposées : des électrodes planes partielles et des électrodes triangulaires. Une analyse en ordres de grandeur et une étude numérique sont développées afin d'étudier les transferts de chaleur convectifs induits par la flottabilité d'origine diélectrophoretique. Les lois d'échelle et les résultats numériques montrent qu'une amélioration sensible des transferts thermiques est possible grâce à l'utilisation d'un champ électrique non intense, non uniforme, sans qu'il soit nécessaire de recourir à des régimes instables. En outre, une approche expérimentale est également développée, réintroduisant la gravité et par conséquent la flottabilité d'origine thermique. De l'huile silicone est confinée dans une cavité ménagée au sein d'un bloc de plexiglas et scellée par une paire d'électrodes. Celles-ci sont connectées, pour l'une, à un amplificateur AC, pour l'autre, à la masse. Toutes deux sont maintenues à des températures différentes et constantes. Le champ de vitesse en régime permanent est mesuré par PIV à l'aide de traceurs fluorescents et l'effet du couple de rotation diélectrophorétique sur l'écoulement est détecté. En comparant avec les simulations numériques, des tendances similaires sont observées pour chaque configuration d'électrodes. Enfin, la température est mesurée à différentes localisations sur le banc expérimental pour la configuration basée sur les électrodes planes partielles. En présence de gravité, l'augmentation du transfert de chaleur, attendue avec la présence de champs électriques non uniformes, n'est pas particulièrement prononcée dès lors que l'écoulement est dominé par la flottabilité d'origine thermique.

This representation is uniquely for the conductive state, where ⃗ u = ⃗ 0. The colormap
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 CHAPTER 6. DIFFERENTIAL HEATED CAVITY: FROM UNIFORM TO NON-UNIFORM ELECTRIC FIELDS buoyancy is able to alter the thermally-induced convective ow. This eect is made evident from the velocity and streamline maps. A steady change in the velocities is also pointed out when calculating the averaged velocities in two selected regions of the cavity (g. 6.23). Fig. [START_REF] Argyris | Finite elements in time and space[END_REF].17a and 6.18a represent the experimental streamlines and the horizontal and vertical velocity components respectively, as calculated with OPENPIV, for a large Rayleigh number, Ra = 2.1 × 10 6 , and none applied electric eld (L = 0). In addition to a main recirculating loop on the whole cavity, two secondary vortices can be noticed in the upper and lower half parts of the cavity. The presence of such a convective ow structure is essentially due to the thermal boundary conditions along the side walls that are experimentally found dierent from the ideal boundary conditions considered earlier (see sec. The velocity map diers somewhat between the experimental and numerical results, partly due to a tracer density that does not allow to resolve the velocity along the walls.

NON-UNIFORM ELECTRIC FIELDS

The non-uniformity of the electric eld as well as the relative direction of the temperature gradient remain the essential parameters to intensify heat transfers, especially with a small voltage applied. For future prospects, the electrode conguration could be upgraded for instance by adding one more electrode pair at the top and bottom walls. the case of a high electric eld, the core is no longer stagnant, and the horizontal velocity in this zone is in the order of 1 × 10 -4 (u ≈ 22 -colormap: yellow). Indeed this can be conrmed by referring to the streamlines. In g. 7.18-a, the streamlines suggest that even for a slight increment of the voltage drop between the triangular electrodes, the secondary structures within the primary vortex are disturbed. The symmetry that is still relatively Huygens who also created his version of the schlieren technique [START_REF] Huygens | Oeuvres completes de Christiaan Huygens[END_REF][START_REF] Rienitz | Schlieren experiment 300 years ago[END_REF]. The rst ever published shadowgram came a century later by Jean-Paul Marat [START_REF] Marat | Recherches physiques sur le feu[END_REF]. The introduction of the cut-o/knife-edge ingredient to the schlieren technique can be linked to the works of Foucault in the 19 th century in astronomical telescope mirrors [START_REF] Foucault | Mémoire sur la construction des télescopes en verre argenté[END_REF][START_REF] Foucault | Recueil des travaux scientiques de Léon Foucault: Texte[END_REF][START_REF] Ingalls | Amateur telescope making, book three; contributions to amateur precision optics by advanced amateurs and professionals[END_REF]. It was nally August Toepler who re-invented the schlieren technique and named it "schlieren" after the German word for optical in-homogeneity in glass (streaks or smudges) [START_REF] Krehl | August toeplerthe rst who visualized shock waves[END_REF][START_REF] Toepler | Optische studien nach der methode der schlierenbeobachtung[END_REF][START_REF] Toepler | Beobachtungen nach einer neuen optischen methode: Ein beitrag experimentalphysik[END_REF].

Later on, Vincenz Dovrak repeated most of Toepler's original visualizations and showed that the more simple shadowgraph technique (based on Hooke and Marat) is able to yield similar results [START_REF] Dvo°ák | Über eine neue einfache art der schlierenbeobachtung[END_REF]. The rst shadowgrapgh photos were published by Boys a few years after Dovak [START_REF] Boys | On the photography of ying bullets by the light of the electric spark[END_REF].

RIG techniques are not limited to shadowgraph and schlieren techniques. However, due to their relative simplicity, in the scope of this PhD these are the techniques of interest. The rst choice was the shadowgraph, which is known to be the simplest and most straight forward technique for ow visualization.

Shadowgraph Technique: Among the dierent RIG techniques, the shadowgraph is considered to be the simplest. Parallel light rays that traverse a specic transparent media are refracted and bent out of their original paths if the media is one that contains gradients in refractive index. The refractive index of materials are density dependent.

Therefore in the presence of temperature gradients within a particular uid, a gradient in refractive index is to be expected. The modication of the light ray path leads to a spatial modulation of the light intensity distribution with respect to the original lightintensity distribution (absence of temperature and refractive index gradients). This leads to shadow patterns that prevail in the regions of high density gradients. points along the path that requires the least time, this means that the optical path length between two points is a minima such that:

where the primes are derivations along z. Now by applying the variational principle and considering gradients along the z direction to be negligible compared to that in the (xy) plane, two Euler-Lagrange equations can be formulated:

The four constants of integration in order to solve these equations can be considered by the boundary conditions of the light rays at incidence point: the locations (x i , y i ) and local derivatives (x ′ i , y ′ i ). Since we are considering that the light rays are entering parallel to the z-direction, these local derivatives are nil. This also means that the nal light-intensity distribution on the screen is detected by the displacements of the light rays from the initial parallel positions x sx i and y sy i .

x s -

the thickness of the test cell wall, t, can also be taken into consideration since the light ray can undergo displacements within the solid wall. We therefore write:

x e , y e , x ′ (z e ), andy ′ (z e ) can be computed by solving the dierential equation. The refraction within the solid wall x ′ (z et) and y ′ (z et) can be calculated by using Snell's law and considering the refractive index of Plexiglas and air.

A simplied Laplacian method is suggested [START_REF] Panigrahi | Schlieren and shadowgraph methods in heat and mass transfer[END_REF] , that directly relates the light intensity disturbance to the in-homogeneous refractive index. By assuming that the light rays undergo innitesimal deviations, but exit each plane with a nite yet very small deection angle, we can write:

where I o and I s are the initial and nal light intensity respectively. Readers are invited to refer to Panigrahi and Muralidhar [START_REF] Panigrahi | Schlieren and shadowgraph methods in heat and mass transfer[END_REF] for further details on the elaboration of eq. B.8.

Via any of the above methods, the refractive index distribution can be calculated and translated into a temperature distribution. In addition, another limiting factor of our shadowgraph setup was its sensitivity. One possible way of improving this is by increasing the cavity depth or by increasing the screen distance L (eq. B.8). This however is not possible, because the plexiglas block can not be modied, and the experimental room was not spacious enough to increase the screen distance. Regardless, the literature suggests that improving the sensitivity by increasing L comes at the cost of loss in accuracy. The geometry of images projected on a screen lose precision when the screen is put further away [START_REF] Settles | Schlieren and shadowgraph techniques-visualizing phenomena in transparent media[END_REF].

Shadowgraph Schlieren

One solution is to modify the optical setup to a schlieren setup. The cut-o aspect of the schlieren is the element responsible for improving the sensitivity.

Schlieren Technique: As previously mentioned, similar to the shadowgraph technique, the schlieren optics also detects gradients of refractive index within a transparent medium.

Unlike the shadowgraph where the light ray deection and displacement is taken into consideration, the schlieren technique only accounts for the deection of the light rays that traverse an in-homogeneous media. In the presence of a thermally perturbed media, part of the deected rays will traverse the knife-edge and will be captured in the schlieren images.

The knife edge or cut o is generally placed perpendicular to the direction in which gradients of temperature are expected. The amount of cut-o depicts the contrast of the schlieren images. When the cut-o is small, the contrast of the images is weak, and the schlieren is less sensitive. When the cut-o is large however, the contrast of the schlieren images are higher, and the optics becomes more sensitive. By doing so however, there is the risk of losing information in regions of low temperature gradients.

Similar to shadowgraph, quantitative information can also be deducted from schlieren images [START_REF] Goldstein | Optical systems for ow measurement: Shadowgraph, schlieren, and interferometric techniques[END_REF]. The contrast in the schlieren images are formed due to the deection of the light in an inhomogenous refraction index eld in the directions of zones with higher index of refraction. In order to recover quantitative information from a schlieren image, one has to determine the cumulative angle of refraction of the light beam emerging from the test cell, as a function of its position in the cross-sectional area [START_REF] Panigrahi | Schlieren and shadowgraph methods in heat and mass transfer[END_REF].

Let us consider the path of a light beam through a test cell as presented in gure B.3, considering gradients of refractive index only in the y direction.

When the cut-o is taken horizontal, the horizontal displacements of the light beam do not contribute to the intensity contrast. If the light beam is considered at a time τ and location z, the wavefront will be translated at a distance ∆z after a period of ∆τ

where c o is the speed of light in vacuum, and n is the refractive index of the medium. Since gradients of n exist in the y direction, the wavefront is considered to be deected 

the image contrast can thus be presented as

here we supposed that the gradients along the z direction are negligible compared to that in the x-y plane.

In order to improve its sensitivity, the previously mounted shadowgraph setup was now modied into a schlieren set-up. This basic modication required only an additional converging lens and a knife edge cut-o. These modications however did not aect the quality of the images (g. B.2). In g. B.5, schlieren images at two dierent time frames of a buoyancy driven ow, perturbed by a uniform electric eld, are presented. The poor nishing on the inner surface of the plexiglas walls are visible. Moreover we realize that the distribution of the light intensity is very random. Near the walls of the cavity, the intensity of light is lower than the central part. On the top of the cavity, the light intensity is very high along a horizontal section. While applying an electric eld via the parallel plates, we were able to detect a change in the contrast of the light intensity near the right bottom corner. This is highlighted on the gure by the circled sections. This suggests that a vortex is formed at specic time frames in that region. This vortex is comparable with results of numerical similutions that detected instationary and periodic vortex formations insthe corners of the cavity.

The quality of the images are not suciently satisfactory in order to retrieve useful information.

Complications: Both the shadwograph and schlieren are refractive index gradient techniques that are capable of measuring the temperature distribution and visualizing a ow.

The rst is sensitive to the deection angle and displacement of light rays, whereas the second is only sensitive to the deection angle. It is possible to retrieve information from both the shadowgraph and schlieren techniques. The temperature distribution can be retrieved via the calculation of the refractive index distribution in a 2D plane. For the shadowgraph, this is done by solving a Poisson equation, while for the schlieren this is possible by integrating the intensity distribution.

The setup of both techniques require a number of optical equipment. The schlieren setup is slightly more complex mainly due to the precision of the cut-o position at the (C.9)