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Titre: Développement de méthodes numériques pour la neutronique en milieu continu
Mots clés: Monte-Carlo, transport de particules, annulation de poids, bruit neutronique

Résumé: La simulation Monte Carlo est la méth-
ode “étalon” pour les problèmes de transport de
particules en radioprotection, physique des réac-
teurs, sûreté-criticité et instrumentation nucléaire.
Au prix d’un coût de calcul élevé, des solutions
de référence sont obtenues, pouvant ensuite être
utilisées pour la validation numérique de solveurs
déterministes, plus rapides mais approchés. Le
développement de nouvelles stratégies de réduc-
tion de variance et la disponibilité accrue de
ressources HPC ont énormément élargi le champ
d’application des simulations Monte Carlo, cou-
vrant des régimes non stationnaires couplés aux
multi-physiques, et des observables auparavant in-
accessibles. Dans cette thèse, nous illustrerons
comment les algorithmes de suivi de particules,
au cœur des méthodes de Monte Carlo, doivent
évoluer pour faire face à ces nouveaux défis. Nous
présenterons d’abord les stratégies de suivi exis-
tantes, basées sur la description standard “con-

stante par morceaux” des milieux, et examinerons
leurs avantages et leurs inconvénients. Ensuite,
nous étendrons ces méthodes au cas des milieux
aléatoires et des milieux continus, chacun impli-
quant des défis spécifiques. Pour le cas des mi-
lieux continus, l’objet principal de cette thèse, nous
montrerons que la méthode negative-weighted
delta tracking est très efficace, puisqu’elle ne né-
cessite pas une section efficace majorante stricte
(contrairement à la méthode delta tracking clas-
sique). Afin de surmonter les possibles instabilités
dues à la présence de particules de poids négatifs
dans cet algorithme, nous développerons et appli-
querons avec succès des techniques d’annulation
de poids, exactes ou approchées. Enfin, en nous
appuyant sur ces résultats, nous montrerons que
l’annulation de poids est également essentielle pour
assurer la convergence et réduire considérablement
l’incertitude statistique dans les problèmes de bruit
neutronique.

Title: Development of numerical methods for neutronics in continuous media
Keywords: Monte Carlo, particle transport, weight cancellation, neutron noise

Abstract: Monte Carlo simulation is the “gold
standard” for particle transport problems emerging
in radiation shielding, reactor physics, criticality-
safety and nuclear instrumentation. Reference
solutions with almost no approximations can be
obtained, at the expense of high computational
cost, which can then be used for the numer-
ical validation of faster but approximate deter-
ministic solvers. The development of novel vari-
ance reduction strategies and the increased avail-
ability of HPC resources has enormously widened
the field of application for Monte Carlo simula-
tions, covering non-stationary regimes with multi-
physics feedback, and previously inaccessible ob-
servables. In this PhD thesis we will illustrate how
particle-tracking algorithms, which lie at the heart
of Monte Carlo methods, should evolve in order to
cope with these new challenges. We will first re-
view the existing particle-tracking strategies, based

on the standard piece-wise-constant medium de-
scription, and examine their merits and drawbacks.
Then, we will extend these methods to the case
of random media and continuously-varying media,
each involving specific challenges. For the case
of continuously-varying media, which is the main
focus of this thesis, we will show that negative-
weighted delta tracking is highly effective, in that
it does not require a strict majorant cross section
(contrary to regular delta tracking). In order to
overcome the possible instabilities due to the pres-
ence of negative-weighted particles in this algo-
rithm, we will develop and successfully test exact
and approximate weight cancellation techniques.
Finally, by building on these findings, we will show
that weight cancellation can also be key to achiev-
ing convergence and greatly reducing the statistical
uncertainty in neutron noise problems.
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1 - Introduction

The distribution of neutrons and photons in phase space within the systems of interest in radiation
shielding and nuclear reactor physics applications can be described by the Boltzmann transport equation.
Two families of numerical methods exist to solve the Boltzmann equation for neutrons. Deterministic
methods are the best known category, and encompass a variety of techniques which rely on the discretization
of phase space. Virtually all deterministic solvers utilize the multi-group approximation, where nuclide cross
sections are approximated as being constant within a given energy interval [1]. The direction component
of the solutions are often discretized along several discrete ordinates (which leads to the Sn methods), or
can be approximated as a finite sum of spherical harmonics (which leads to the Pn methods) [2]. Spatial
coordinates are typically discretized by means of a geometric mesh, although certain techniques such as the
Method of Characteristics do not require a spatial mesh but assume that the neutron source is a piece-
wise constant or piece-wise linear function of the phase space coordinates [2]. Deterministic codes such as
APOLLO3®, developed at CEA, are able to solve the transport equation relatively fast,1 and are therefore
the most commonly used solvers in the nuclear industry. In order to finely discretize the six dimensions of
phase space (or seven, for non-stationary problems where time must be added to the phase space variables),
the number of degrees of freedom for a full reactor problem could reach 1021, which is beyond reach of the
current generation of computers [3]. To alleviate this problem, reduced-order models and approximations
are introduced in the deterministic solvers, which adds a modeling bias, in addition to the unavoidable
discretization errors, in the final results. This is particularly delicate for the treatment of the energy variable;
the use of multi-group cross sections, which requires highly sophisticated self-shielding models, might result
in errors whose magnitude is very difficult to predict [2].

The Monte Carlo method was initially developed during the 1940’s, to solve the Boltzmann equation by
a probabilistic approach [4]. In this technique, a population of neutrons is followed through a sequence of
free flights and collisions with the traversed materials. The evolution of each particle is inherently stochastic
and must be sampled according to the physical laws (cross sections, energy-angle distributions, and yields)
provided in the nuclear data libraries. Random numbers are used in conjunction with known probabilities for
different events to decide the fate of the particle, from birth all the way to death due to capture or leakage.
Each time an event of interest is sampled, the corresponding particle contributes to the estimated value of
the observable associated with the event, known as a score or tally. After the entire population has been
processed2, the ensemble average over all the particle contributions provides an unbiased estimate of the
sought observable.

Knowledge of the flight and collision kernels of the Boltzmann equation (in addition to the source) is
sufficient to sample the particle trajectories: a key advantage of the Monte Carlo method is that it does not
require the discretization of the Boltzmann equation (although the phase space must be decomposed into
regions to record the sampled events for each portion of interest). Different quantities such as flux, current,
and reaction rates can be estimated by averaging the contributions of the particles to the corresponding
scores within the given portion of phase space. By directly simulating the physical process for individual
particles, it is possible to obtain an unbiased solution with no approximations, and to estimate the associated
statistical uncertainty (i.e. the level of confidence that we can have in the obtained result).3 The absence

1It is generally accepted that deterministic solvers are much faster with respect to Monte Carlo solvers. Thisis to be nuanced, since the calculation time for deterministic codes typically does not include the time spentperforming self-shielding calculations and homogenization to obtain multi-group cross sections.2The use of random numbers with different seeds to sample stochastic processes ensures that the results ofeach simulation are different and independent. A deterministic code will always yield the same result for agiven problem.3The Monte Carlo solution is exact for the given nuclear data, geometry, and material compositions. If thereare uncertainties in the geometric configuration and material composition, or if the provided nuclear data isinadequate, the results from a Monte Carlo simulation may not align with experimental results.
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of bias makes Monte Carlo methods the gold standard for the verification of deterministic codes. The main
drawback of Monte Carlo simulations is that they are slower than deterministic solvers, notably because the
statistical uncertainty decreases as 1/

√
N as a function of the number of simulated particles, N . For this

reason, traditionally the use of Monte Carlo codes in the nuclear industry is limited compared to deterministic
solvers, and is typically restricted to stationary problems.

1.1 . New Challenges for Monte Carlo Particle Simulations in Reactor Physics

In the past few decades, the computational resources which are available to most users has increased
drastically. Monte Carlo simulations which used to take hours or days on once state-of-the-art super-
computers can now be run on a personal laptop in a matter of minutes. While Monte Carlo codes were once
almost exclusively used for the study of research reactors or full cores in stationary conditions, several projects
in Europe (HPMC4 and McSAFE5) and in the USA (CESAR6 and CASL7) have stimulated new simulation
methods and variance reduction techniques enabling unprecedented achievements. Monte Carlo codes are
now used to perform full core analysis for fuel depletion calculations with coupled thermal-hydraulics and
thermo-mechanics solvers to take into account multi-physics feedback [5–8]. Recently, dynamic Monte
Carlo simulations of full core transients including the time scale of the delayed neutron precursors, with
coupled multi-physics have been performed [7, 9, 10]. With the continual improvements being made to high
performance computing (HPC) infrastructures, the number of possibilities for Monte Carlo simulations in
reactor physics is still expanding. New types of simulations which have never been previously considered
are now being examined. Some research has focused on solving for the higher harmonics of the transport
equation, to improve source convergence and calculate the dominance ratio, which is key to reactor safety
[11, 12]. Another new topic of interest, developed in the framework of the EU H2020 CORTEX project
(2017-2021), has been solving the neutron noise equation in the frequency domain, in order to understand
the effects of vibrating fuel pins and assemblies in a reactor core [13, 14].

Both the advancements in HPC, and the investigation of new types of simulations, force Monte Carlo
code developers to completely reconsider how the transport routines are implemented. The first such example
is perhaps the development of techniques to perform on the fly Doppler broadening of cross sections [15, 16].
Another prime example is the rewrite of codes from a history-based to an event-based algorithm for better
utilization of GPUs [17]. As GPUs were developed to be most efficient when performing the same operation
on multiple pieces of data, efficiently harnessing their computational potential requires sorting particles
which are undergoing the same type of reaction. It is clear from these examples that the advancement
of Monte Carlo analysis for nuclear reactor physics will require code developers to reconsider traditional
methods, inventing new techniques that better match the constraints of modern computing architectures.

1.2 . The Voyage from Continuous Media to Neutron Noise

The primary goal of this thesis is to research a possible approach to improve the fidelity of the modeling of
material properties in relation to particle transport by Monte Carlo simulations. In most current production-
level Monte Carlo codes, the material properties are assumed to be piece-wise constant functions of spatial
position. Each elementary volume (or cell) of the geometric model typically has an associated temperature,
density, and isotopic composition: within this spatial region, these physical quantities are assumed to be
spatially homogeneous. Except in a few cases, this hypothesis is typically not met in reality, as all of these
properties may be continuous functions of the spatial position. This is particularly relevant in reactor physics
applications, when we consider neutron transport simulations which are coupled with thermal-hydraulic,
thermo-mechanic, and depletion fields: in order to take into account multi-physics feedback, it is necessary

4High performance Monte Carlo reactor core analysis. https://www.fp7-hpmc.eu5High-PerformanceMonteCarloMethods for SAFEtyDemonstration. https://cordis.europa.eu/project/id/7550976Center for Exascale Simulation of Advanced Reactors.7Consortium for Advanced Simulation of Light Water Reactors. https://casl.gov
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to look-up the temperature, density, and isotopic concentrations at any position in the reactor, which makes
the material properties seen by the neutrons along their displacements also continuously dependent on
the particle position. Utilizing this information would enable a more accurate representation of real world
systems. Libraries are already being developed to allow Monte Carlo neutronics codes to query temperatures
and densities calculated by the multi-physics solvers in memory [18]. Spatially continuous cross sections
could also be applied to depletion problems, where the isotopic concentrations can vary spatially. In current
codes, fuel pins must be discretized into many rings (≈ 10), in order to account for skin effects. Spatially
continuous isotopic concentrations could potentially make this ring discretization unnecessary.

The temperature, density, and isotopic concentrations are all used to determine the macroscopic cross
section at a given position and energy. If these material properties are continuous functions of position, then
so is the macroscopic cross section. Sampling how far a particle will travel before undergoing a collision is
an integral component to the Monte Carlo algorithm, as will be outlined in Sec. 2.3. This task becomes
quite difficult, however, once the cross sections are no longer piece-wise constant. Our goal was therefore
to first critically review the existing Monte Carlo particle tracking methods, and to explore how they can be
adapted to sample flight distances from continuously-varying cross sections.

In Part I, we consider several different particle tracking algorithms, and examine their performance when
used in fixed-source problems with spatially-continuous cross sections. Of the considered algorithms, our
analysis shows that a method that we refer to as negative-weighted delta tracking [19, 20] is the most
promising. Negative-weighted delta tracking has the peculiarity that particles can have either a positive
or negative statistical weight. After this initial investigation in Chapter 4, we attempt to examine the
performance of negative-weighted delta tracking in k-eigenvalue power iteration simulations. Although the
algorithm performs very well in fixed-source problems, all of the power iteration simulations fail to complete,
much to our surprise. In Part II we analyze why power iteration with negative-weighted delta tracking fails,
and propose a strategy based on weight cancellation as a solution. Loosely speaking, weight cancellation is
an operation which takes a positively-weighted particle and a negatively-weighted particle and “combines”
them in such a way that their weights may cancel with one another. Accomplishing this in an unbiased
manner in a Monte Carlo simulation is highly nontrivial, as particles are each located at different phase-space
coordinates, and it is therefore impossible for a positive and negative particle to end up at the exact same
coordinates. We develop two different weight cancellation methods in Part II, and apply them to power
iteration with negative-weighted delta tracking: we show that this approach indeed allows these simulations
to complete normally.

While the development of weight cancellation techniques initially appears unrelated to the problem of
spatially-continuous media, it is absolutely mandatory when using negative-weighted delta tracking. Other
problems in the field of nuclear reactor physics exist which could also potentially benefit from the application
of weight cancellation. One such case is solving the neutron noise equation in the frequency domain. A
previous PhD at CEA focused on the development of Monte Carlo methods to solve the neutron noise
equation [21], and we decided that the weight cancellation techniques developed in Part II ought to be
tested in this domain. Part III of this thesis applies the newly developed weight cancellation techniques to
the neutron noise problem as a variance reduction technique.

1.3 . Chenille

TRIPOLI-4® is the production-level, reference Monte Carlo code for particle transport which has been
under development at CEA since the mid 90’s [22]. As a production-level code used in industry, TRIPOLI-4®

has a plethora of features (including the possibility of propagating neutrons, photons and electrons/positrons
in the electromagnetic shower) for applications ranging from reactor physics to radiation shielding and
nuclear instrumentation: currently the code base sits at approximately 400 kSLOC (Source Lines Of Code).
Attempting to make even small changes in such a large program can be challenging, especially for students
who have yet to become acquainted with the code and its peculiarities. The work presented in this thesis
required implementing novel particle transport algorithms, restructuring how power iteration and fixed-
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source transport problems are decomposed, and adding weight cancellation meshes. All these tasks are
highly invasive with respect to the architecture of a Monte Carlo code: doing the work which was required
by the scientific goals set for the course of this thesis would have been hardly feasible in TRIPOLI-4®, under
the time constraints of a PhD program. As such, although the implementations existing in TRIPOLI-4® were
often taken as a starting point, all of the new algorithms which were conceived and tested were implemented
in Chenille, a new Monte Carlo mini-app developed from scratch over the course of this thesis.

Chenille is a Monte Carlo mini-app which is able to simulate the transport of neutrons in three-
dimensional geometries, using either multi-group or continuous-energy nuclear data. Being only ≈ 20
kSLOC, and written in a very modular manner, Chenille’s size and code style facilitate the fast implementa-
tion and testing of new algorithms, even those requiring extensive rewriting of the existing architecture. Due
to Chenille’s importance to this thesis, we will briefly outline some of its characteristics and capabilities. We
mention that some of the one-dimensional single-speed simulations, which are found at various locations in
the manuscript for benchmark calculations, were run in a different toy program, also developed during this
thesis [23].

1.3.1 . Geometry

Chenille is able to perform transport in general three-dimensional geometries. Surfaces such as planes,
cylinders, and spheres can be defined by the user, each with a unique identifier. The configuration space can
be bisected by the equation of a surface. All points in space are either on the positive side, or the negative
side of the surface. This combination of a side and surface is sometimes referred to as a half-space [24].
Half-spaces are combined using Boolean operators to define a volume, which is associated with a material to
define a cell. Unlike in other codes, a cell can only be filled by a material in Chenille. Cells can be grouped
together into universes, which can in turn be placed inside of a lattice. A lattice is a special generalization
of a universe in Chenille, which is used to replicate the same universe in a structured and repeated manner.
Their main use case is the construction of fuel assemblies, and then the placement of fuel assemblies within
the core. There are two available lattices in Chenille, regular rectilinear lattices, and regular hexagonal
lattices. Not being able to nest universes inside of cells is admittedly a limitation, although for most reactor
physics applications this has not been an issue. A built-in plotting functionality allows the user to plot a
two-dimensional slice of the geometry, which helps ensure that the input file is correct.

1.3.2 . Particle Tracking

As one of the main investigations of this thesis was the examination of different particle tracking methods,
Chenille has several options. Standard surface tracking is the default tracking method. Delta tracking is
also available; currently it is not possible to use a hybrid combination of surface tracking and delta tracking,
as is done in Serpent [25]. The majorant cross section is calculated by unionizing the energy grid of all
nuclides present in the problem, and then evaluating the total macroscopic cross section of all materials
at all energy points. A variant of negative-weighted delta tracking, as proposed by Carter et al., has also
been implemented in Chenille [19]. When in multi-group mode, either the majorant cross section, or a
user-provided sampling cross section is used, as is the case in Chapter 8; currently, only the majorant cross
section is used in continuous-energy mode, making it equivalent to delta tracking.

1.3.3 . Physics

Three different simulation modes are available: fixed-source, k-eigenvalue, and neutron noise. All three
modes are available in both multi-group and continuous-energy particle transport. Macroscopic multi-group
cross sections are provided for each material in the input file. It is possible to simulate any arbitrary number
of energy groups. The user may also provide up to five Legendre moments for anisotropic scattering.
Fission is always isotropic, and the fission spectrum is assumed to be independent of the incident energy.
For continuous-energy physics, Chenille uses the Papillon Nuclear Data Library (PapillonNDL), which is
developed and maintained by myself [26]. PapillonNDL is a C++20 library which reads ACE files for
continuous-energy neutron data, and is released as free and open-source software under the GPLv3 license.
It provides the classes which are responsible for evaluating microscopic cross sections, and sampling scattering
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Figure 1.1: Flux profile for the CROCUS research reactor at EPFL, simulated using Chenille.
and fission distributions. Thermal scattering laws are also supported, and can be used with PapillonNDL and
Chenille. Currently, Chenille does not utilize unresolved resonance region probability tables. Basic verification
has been done using a suite of analytic multi-group problems [27], and comparison of results against OpenMC
for a set of criticality benchmark problems in continuous-energy. Figure 1.1 depicts the static flux for the
CROCUS research reactor benchmark [28], calculated using Chenille. A previous study conducted with
TRIPOLI-4® using ENDF/B-VII.0 estimated a multiplication factor of keff = 1.00249±0.00002 [29]. Using
ACE files produced from the ENDF/B-VII.0 evaluation [30] and processed using version 2 of FRENDY [31],
a multiplication factor of keff = 1.00249± 0.00002 was obtained by Chenille. Despite not using probability
tables for the unresolved resonance region, this estimate is in excellent agreement with the results from
TRIPOLI-4® and MCNP [29].

1.3.4 . Miscellaneous
Chenille has a basic tally system which can score the flux or reaction rates over a regular rectilinear mesh.

Both collision estimators and track-length estimators are available, although the track-length estimators for
reaction rates are only available in surface tracking. At the end of each simulation, all the tallies are written
to binary NumPy files, allowing the data to be read quickly in Python, for data analysis and visualization
[32].

Chenille has been written with both shared memory and distributed memory parallelism, using the
OpenMP and MPI standards respectively. Input files are written in YAML, making them very easy to read
and write. A multi-group-only version of Chenille, referred to as MGMC, has been made publicly available
as free software under the CeCILL-v2.1 license [33]. MGMC has all of the main features of Chenille, but
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lacks the necessary classes and functions to interact with the PapillonNDL API.

1.4 . Structure of Thesis

This thesis is organized into three mains parts, each focusing on a specific theme:

1. Part I is devoted to assessing the performance of a variety of different particle tracking methods. Two
different use cases are considered: stochastic media and spatially continuous cross sections.

2. Part II considers the application of negative-weighted delta tracking to k-eigenvalue power itera-
tion problems, showing that weight cancellation algorithms are mandatory for these simulations to
converge.

3. Part III applies the newly developed weight cancellation methods to neutron noise simulations, as a
variance reduction technique.

Each part of the manuscript begins with an introductory chapter, which is followed by several research
publications (each in a separate chapter), and then a final concluding chapter. The introductory chapter is
intended to provide the reader with the necessary prerequisite knowledge and tools that will then be used
in the problems described in the subsequent publications. Some of the main methods used in the papers
are outlined, and the important results are summarized. All of the detailed technical analysis and results
of numerical simulations are provided in these papers. They are presented in an order which should allow
for a smooth transition between the different parts of the manuscript and make the train of thought clear.
One investigation, while answering some questions, leads to others in a slightly different area; eventually,
after enough questions have been asked and then answered, it is quite possible to find oneself very far from
where one started (which is the definition of a random walk, as simulated by Monte Carlo!). Finally, each
thematic part is terminated with a concluding chapter, which summarizes the major results, and mentions
the open questions that should be addressed by future research. The list of chapters which have either been
previously published, or been submitted for publication, is provided below. Along with each chapter, one
will find the appropriate reference for the associated publication.

Chapter 3: H. Belanger, C. Larmier, D. Mancusi, and A. Zoia, “Optimization of Particle Tracking Meth-
ods for Stochastic Media,” In Proceedings of the International Conference on Physics of Reactors 2022
(PHYSOR 2022), May 2022, Pittsburgh, PA, p. 294-303.

Chapter 4: H. Belanger, D. Mancusi, and A. Zoia, “Review of Monte Carlo methods for particle transport
in continuously-varying media,” European Physical Journal Plus, vol. 135, no. 11, p. 877, 2020, doi:
10.1140/epjp/s13360-020-00731-y.

Chapter 7: H. Belanger, D. Mancusi, and A. Zoia, “Solving Eigenvalue Transport Problems with Negative
Weights and Regional Cancellation,” In Proceedings of the The International Conference on Mathematics
and Computational Methods Applied to Nuclear Science and Engineering 2021 (M&C 2021), October 2021,
p. 46-55.

Chapter 8: H. Belanger, D. Mancusi, and A. Zoia, “Exact weight cancellation in Monte Carlo eigen-
value transport problems,” Physical Review E, vol. 104, no. 1, p. 015306, 2021, doi: 10.1103/phys-
reve.104.015306.

Chapter 9: H. Belanger, D. Mancusi, and A. Zoia, “Unbiasedness and optimization of regional weight
cancellation,” Physical Review E, vol. 106, no. 2, p. 025302, 2022, doi: 10.1103/physreve.106.025302.
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Chapter 12: H. Belanger, D. Mancusi, and A. Zoia, “Variance Reduction Techniques for Monte Carlo
Neutron Noise Simulations,” In Proceedings of the International Conference on Physics of Reactors 2022
(PHYSOR 2022), May 2022, Pittsburgh, PA, p. 544-553.

Chapter 13: H. Belanger, D. Mancusi, A. Rouchon, and A. Zoia, “Variance Reduction and Noise Source
Sampling Techniques for Monte Carlo Simulations of Neutron Noise Induced by Mechanical Vibrations,”
Nuclear Science and Engineering, accepted for publication.
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2 - Particle Tracking in Continuous Media

Monte Carlo codes devoted to particle transport problems rely on sampling an ensemble of random
particle trajectories through the traversed multiplying or non-multiplying media. Starting from the source
event, each sampled trajectory consists of a series of random flights separated by collisions with the nuclei
composing the material: the trajectory is terminated when the particle is killed upon reaching a leakage
boundary, when its statistical importance decreases below some predefined threshold, or when a sterile
capture event is sampled (if the simulation is analog). Determining the distance that a particle will travel
along a given direction before undergoing a collision is therefore an integral operation in Monte Carlo
transport codes. In this chapter we will illustrate how Monte Carlo codes traditionally deal with this
operation, and how flight sampling must be modified and extended in order to take into account two relevant
classes of materials often encountered in real-world applications: random media, and spatially-continuous
media.

In Sec. 2.1, we will first overview the standard “homogeneous medium” assumption, which is used in
virtually all production Monte Carlo transport codes, and the tracking methods which are typically employed
to move particles through the problem domain. Sec. 2.2 provides a concise introduction to the sampling
methods needed for particle tracking in random media, and in particular for the class of Markov geometries
based on Poisson tessellations. Finally, in Sec. 2.3 the distinct challenges of spatially-continuous media
properties in the context of flight sampling are presented, with a brief discussion concerning which existing
tracking methods would allow for particle transport simulations in such a scenario.

2.1 . Overview of Existing Tracking Methods

Virtually all general-purpose production Monte Carlo codes today employ the “homogeneous medium”
assumption, which assumes that the cross sections are piece-wise constant functions of spatial position. This
corresponds to every fundamental volume (often referred to as a “cell” in Monte Carlo transport jargon)
of the simulated model containing a single material, with a uniform composition, density, and temperature
[1–4]. For an infinite homogeneous medium, the probability density function (PDF) for a particle to have
its first collision at a distance s is written as

f(s) = Σt (E) exp (−Σt(E)s) , (2.1)
where E is the energy of the particle, and Σt(E) is the total macroscopic cross section (typically in units
of cm−1) in the homogeneous medium, at energy E [5]. The exponential functional form in Eq. (2.1)
stems from the assumption that the collision centers (i.e., the nuclei) in the traversed medium are uniformly
distributed, hence the number of particle-nuclei collision events over a flight path ds is Poisson-distributed
with parameter Σt (E) ds. Integrating Eq. (2.1) with respect to s, we may obtain the explicit cumulative
density function (CDF) for the flight distance d:

F (d) =

d∫

0

f(s)ds =

d∫

0

Σt (E) exp (−Σt(E)s) ds = 1− exp (−Σt(E)d) . (2.2)

Sampling a random variable ξ ∼ U(0, 1) and setting F (d) = ξ by virtue of the inverse transform theorem
[5], from Eq. (2.2) it is therefore possible to analytically obtain the corresponding flight distance

d = − ln(1− ξ)

Σt(E)
. (2.3)

Often, the 1 − ξ in Eq. (2.3) is simply written as ξ, as both terms are uniformly distributed on the unit
interval, and are therefore statistically equivalent [5].
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Observe that, in the homogeneous media assumption, the macroscopic cross section is allowed to be
a continuous function of the particle energy, E. Cross sections which are continuous in energy pose no
problem for Monte Carlo tracking of neutral particles (neutrons and photons), as the energy of the particle
remains constant over a flight, and can only change during a collision. As such, basically all of the existing
production Monte Carlo codes use cross section representations which are continuous in energy [1–4]. This
is in contrast to deterministic transport codes, which must use the multi-group approximation, assuming
that the cross section for a nuclide is constant over a given energy interval [6, 7]. Multi-group cross sections
require great care, as they must be properly self-shielded and homogenized to ensure that reaction rates
are preserved [7]. Conversely, sampling from continuous-energy cross sections foregoes the need for any
such approximations and constitutes a prominent advantage of Monte Carlo codes. In the following, we will
refer to continuous media to denote the possibility of having fundamental volumes where the material is
not necessarily uniform, but demonstrates some spatial dependence. This idea will be outlined in detail in
Sec. 2.3. The remainder of this section will review the possible tracking methods which are able to treat
homogeneous media.

2.1.1 . Surface Tracking
The derivation of Eq. (2.3) assumes that our system is comprised of a single uniform and infinitely large

volume. Considering the behavior of d as ξ → 1, we note that

lim
ξ→1

− ln(1− ξ)

Σt(E)
= ∞. (2.4)

Therefore, the theoretical maximum flight distance of a particle is d = ∞. Most systems of interest, however,
are not infinitely large, and are composed of several different volumes, each with a different material. Any
flight distance sampled from Eq. (2.3) is only valid for the volume with the cross section which was used in
computing d; if a distance is sampled that would cause the particle to move into a different volume during
the flight, we are only allowed to displace the particle to the boundary of this new volume, where the cross
section for this new volume is then used to sample a new flight distance.1 This process is repeated until a
flight distance is sampled which would not take the particle into a different material [5].

Determining where a particle will leave one volume and enter another can be a complex task. Most
Monte Carlo codes use a form of constructive solid geometry (CSG), where primitive volumes (or surface
half-spaces) are combined using Boolean operators [8, 9]. For these primitives, there are known algorithms
to compute the distance to the boundary of a volume, ds, for a given starting position r0, and direction
of travel Ω̂ [8]. This method of comparing a sampled flight distance to the distance to the boundary of
a volume is often called surface tracking or ray tracing. Ray tracing is an equivalent term that is more
commonly used in the computer graphics communities, where the image rendering problem is identical to
the problem of determining the distance to the boundary of a volume in the application of Monte Carlo
methods for reactor physics problems [8, 10, 11]. The basic structure of the surface tracking algorithm is
presented in Alg. 2.1. It assumes that a particle starts a flight at position r0, traveling in direction Ω̂ at
energy E.

Surface tracking is likely the most ubiquitous tracking method, and some variants of this algorithm are
used in TRIPOLI-4®, Serpent, MCNP, OpenMC, and many other Monte Carlo codes devoted to particle
transport [1–4]. One reason for this is that surface tracking allows for the use of both collision estimators
and track length estimators for reaction rates. If one wishes to estimate the reaction rate for the reaction
channel α via the collision estimator, a particle of weight w will contribute

Σα (r, E)

Σt (r, E)
w (2.5)

1It is also possible that that the distance sampled could be larger than the distance to the nearest boundary con-dition. If a “vacuum” boundary is encountered, the particle is killed, and can no longer contribute any statistics.For a “reflective” boundary, the particle is advanced to the boundary, and has its direction modified accordingto the law of reflection.
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Algorithm 2.1: Surface Tracking Procedure
1 Sample random variable ξ ∼ U(0, 1);
2 d := − ln(1− ξ)/Σt(r0, E);
3 ds := find distance to volume boundary given r0 and Ω̂;
4 if d < ds then
5 r1 := r0 + dΩ̂;
6 Contribute to track length estimator scores;
7 Contribute to collision estimator scores;
8 Perform collision, changing E and Ω̂;
9 r0 = r1;
10 else
11 r1 := r0 + dsΩ̂;
12 Contribute to track length estimator scores;
13 r0 = r1;
14 Find new volume;
15 Update Σt(r0, E) for current volume;
16 Goto line 1;
17 end

to the estimation of the reaction rate, at each collision site [5]. For the track length estimator, a particle
will contribute

w

|r1−r0|∫

0

Σα(r0 + sΩ̂, E)ds (2.6)
to the estimation of the reaction rate, where r0 is the starting position of the flight and r1 is the position
where the particle underwent another collision or moved into a different material [5]. Evaluating the integral
in Eq. (2.6) is quite straightforward under the homogeneous media assumption; the integral simply becomes
a sum of the cross sections for reactions α in volume i, multiplied by the distance di that the particle flew
through volume i:

w

|r1−r0|∫

0

Σα(r0 + sΩ̂, E)ds = w
∑

i

Σα,i(E)di, (2.7)
where ∑

i

di = |r1 − r0|. (2.8)
With surface tracking, the distance flown through each volume is always explicitly calculated, and therefore
available for use in scores based on the track length estimator. The use of track length estimators is often
preferred over the use of collision estimators, particularly when one is trying to estimate the reaction rates
across a mesh, or within individual material volumes, as a particle does not need to have a collision within
the region of interest in order to contribute to the estimation of the reaction rate.

2.1.2 . Delta Tracking
Delta tracking is a rejection sampling technique which can be used in place of surface tracking. Wood-

cock appears to have been the first to formalize the use of delta tracking, and promoted the use of this
technique in the GEM Monte Carlo code [12]: for this reason, delta tracking is also called Woodcock track-
ing. The method has since become well-known, especially from its prominent use in the Serpent Monte
Carlo code [13, 14].

A specific feature of delta tracking is that it requires a majorant cross section Σmaj (E) which, for each
point in the tabulated energy grid, must be larger than or equal to the largest total cross section of all
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Algorithm 2.2: Delta Tracking Procedure
1 Sample random variable ξ1 ∼ U(0, 1);
2 d := − ln(1− ξ1)/Σmaj (E);
3 r1 := r0 + dΩ̂;
4 Find current volume;
5 Compute Σt (r1, E);
6 Sample random variable ξ2 ∼ U(0, 1);
7 if ξ2 < Σt (r1, E) /Σmaj (E) then
8 Contribute to collision estimator scores;
9 Perform a real collision, changing E and Ω̂;
10 r0 = r1;
11 else
12 Virtual collision (do nothing);
13 r0 = r1;
14 Goto line 1;
15 end

materials in the problem domain. Mathematically, this can be summarized as

Σmaj (E) ≥ max
r

Σt (r, E) , (2.9)
where Σt (r, E) would be a piece-wise constant function in space, under the homogeneous media assumption.
In general, Σmaj (E) must be prepared on initialization, as it depends on what materials are used in the
problem [15]. From this majorant cross section, the distance to a tentative collision site is sampled using

d = − ln(1− ξ)

Σmaj (E)
. (2.10)

We note that Eq. (2.10) only differs from Eq. (2.3) in that the total cross section has been replaced with
this new majorant cross section. It is not necessary to keep track of where the particle will move from one
volume into another in this method. Regardless of the geometry of the system, the particle will be moved
a distance of d. At this tentative collision site, we look up what volume we are in, and find the total cross
section at the present position. Then, with probability Σt (r, E) /Σmaj (E), a real collision is performed;
the particle may contribute to reaction rates using the standard collision estimator, and then undergo the
collision physics. Alternatively, with probability 1 − Σt (r, E) /Σmaj (E), the particle will undergo what is
called a virtual collision, where the energy and direction of the particle do not change (hence the name
“delta” tracking), and the particle does not contribute to any scores with the collision estimator. This
process is repeated with the sampling of a new distance to a new tentative collision site, until a real collision
is sampled, or the particle leaks from the system. The delta tracking algorithm is summarized in Alg. 2.2.

From just a cursory inspection, it is not evident that this algorithm is unbiased for systems with more than
one material. A very thorough analysis of the method, with a mathematical proof of its unbiasedness, has
been provided by Coleman [16]. A distinct advantage of the delta tracking method over surface tracking is
that it is no longer necessary to compute the distance to surface intersections, which can be computationally
intensive. However, when Σt (r, E) /Σmaj (E) ≪ 1, many virtual collisions must be performed before a real
collision is sampled, and statistics for the collision estimator are only generated at real collisions.2 This issue
is known as the “localized heavy absorber problem”, and has been shown to greatly reduce the efficiency
of delta tracking [13]. If a geometrically small portion of the problem domain contains a material which
has a very large cross section (which is then used as the majorant), then the probability of a real collision

2An alternative version of the collision estimator, which generates statistics at both real and virtual collisions,exists and is discussed in Sec. 4.3.1.
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is greatly reduced in the majority of the problem domain. The Serpent code has chosen to avoid these
performance penalties by switching to surface tracking in areas where the probability of a real collision is
below some user-defined threshold [13]. Another disadvantage of delta tracking is that it is impossible to
use track length estimators: without having calculated all the surface intersections along the flight path, we
do not know what distance the particle traveled through each volume3.

2.1.3 . Negative-Weighted Delta Tracking
While delta tracking allows forgoing the calculation of surface crossings, the requirement of using a

majorant cross section can at times be burdensome. The construction of a majorant cross section becomes
difficult when considering performance implications, or in combination with the use of the Target Motion
Sampling algorithm as a method of performing on-the-fly Doppler broadening for the cross sections [15, 17,
18]. Additionally, the localized heavy absorber problem might impede its efficiency for problems of interest
to reactor physics [15]. It is therefore reasonable to conjecture that relaxing the requirement of a majorant
cross section could be beneficial in some cases. In the literature, it appears that a tracking method very
similar to delta tracking but not requiring the use of a strict majorant cross section has been developed on
two separate occasions. The first such implementation was proposed by Carter et al. in 1972 [19]. A similar
tracking method was independently proposed by Legrady et al. in 2017 [20], and was later shown to be a
generalization of the method proposed by Carter et al. [21]. In this manuscript, we refer to this family of
methods collectively as negative-weighted delta tracking, as these transport methods are closely related to
delta tracking (using a system of rejection sampling with real and virtual collisions), and allow the statistical
weights of particles to become negative. We will outline this method in the more general framework used
by Legrady et al., and will then specify under what conditions the variant proposed by Carter et al. can be
retrieved.

As proposed by Legrady et al., the negative-weighted delta tracking algorithm makes use of two free
parameters. The first of these parameters is a sampling cross section, Σsmp (r, E). This cross section is not
required to satisfy the definition of a majorant cross section provided by Eq. (2.9). All that is required is
that it be greater than zero. The second parameter is the probability of sampling a real collision, denoted as
q, which may be a function of any of the phase space parameters involved in the flight. All that is required
is that q represent a valid probability (i.e. q ∈ [0, 1]). Using the sampling cross section, the distance to a
tentative collision site is sampled (in the same manner that the majorant is used in delta tracking). If a
particle started a flight at r0, the tentative collision site is then r1 = r0 + dΩ̂. A real collision occurs with
probability q: should this event be sampled, the particle’s weight is then updated as

w = w
Σt (r1, E)

q (r1, E) Σsmp (r0, E)
. (2.11)

Should a virtual collision be sampled (which occurs with complementary probability 1 − q), the particle’s
weight is instead updated as

w = w
1− Σt(r1,E)

Σsmp(r0,E)

1− q (r1, E)
. (2.12)

This algorithm is presented in Alg. 2.3 [20]. Upon inspection of Eq. (2.12), if a virtual collision is sampled
at a tentative collision site where the sampling cross section is not a majorant, i.e. where Σt (r1, E) >

Σsmp (r0, E), the weight multiplier is negative and the particle’s weight will therefore change sign.
The variant of negative-weighted delta tracking proposed by Carter et al. can be retrieved by choosing

q to be [21]

q(r0, r1, E) =
Σt (r1, E)

Σt (r1, E) + |Σsmp (r0, E)− Σt (r1, E)| . (2.13)
3While it is not possible to use track length estimators for reaction rates with delta tracking, it is possible to usethe track length estimator for the flux over a mesh, for example. Only the distance traveled through eachmeshelement is needed in this case, which can be calculated from mesh parameters and the flight start and endpoints.
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Algorithm 2.3: Negtive-Weighted Delta Tracking Procedure
1 Sample random variable ξ1 ∼ U(0, 1);
2 d := − ln(1− ξ1)/Σsmp (r0, E);
3 r1 := r0 + dΩ̂;
4 Find current volume;
5 Compute Σt (r1, E);
6 Sample random variable ξ2 ∼ U(0, 1);
7 if ξ2 < q(r1, E) then
8 w := w Σt(r1,E)

q(r1,E)Σsmp(r0,E)
;

9 Contribute to collision estimator scores;
10 Perform a real collision, changing E and Ω̂;
11 r0 := r1;
12 else

13 w := w
1− Σt(r1,E)

Σsmp(r0,E)

1−q(r1,E)
;

14 Virtual collision (do nothing);
15 r0 := r1;
16 Goto line 1;
17 end

Observe that negative-weighted delta tracking reduces to regular delta tracking, should Σsmp (r, E) satisfy
the requirement of a majorant cross section given by Eq. (2.9), and if one chooses a real collision probability
of

q(r0, r1, E) =
Σt (r1, E)

Σsmp (r0, E)
. (2.14)

While a majorant is no longer required, two pieces of information must now be provided for the negative-
weighted delta tracking algorithm to work: a sampling cross section, and a real collision probability. Although
the variant of Legrady et al. has demonstrated the potential to yield performance improvements over standard
delta tracking, its performance is highly dependent on the choice of these two free parameters [20]. Currently,
there is no clear method to determine the optimum choice of these parameters for any given system, without
performing some sort of optimization study beforehand [20, 21]. We stress the fact that both variants
require the presence of negative particle weights in the simulation: many authors have previously observed
that Monte Carlo simulations involving mixtures of positive and negative particle weights could potentially
lead to serious issues with numerical convergence and/or large variances [22–24].

2.1.4 . Regionalization
As was previously mentioned in Sec. 2.1.2, the efficiency of delta tracking can sometimes be diminished

in the presence of the localized heavy absorber problem. When this occurs, the majorant cross section is
determined by a small volume fraction of the model domain, where the probability of sampling a real collision
is unity. Conversely, in the vast majority of the problem domain a large number of virtual collisions would be
required, each demanding the determination of the particle’s current volume and total cross section, both
of which can be time-consuming operations. This situation is quite common in reactor physics problems,
where each fuel assembly might have a few control rods, or burnable poison rods, which are likely to become
the majorant cross section at thermal energies.

As mentioned, switching to surface tracking whenever the real collision probability is lower than some
user-defined threshold is a way of overcoming this issue [13]. An alternative solution to the localized heavy
absorber problem was proposed by Guo and Chen, which we refer to as regionalization [25]. In their approach,
the problem domain is broken into several different regions, each with its own majorant cross section. Doing
this means that we are required to calculate the distance a particle can fly along its current direction, until
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entering the next region. If a particle samples a distance to a new tentative collision site which is larger
than the distance to the next region, then the particle may only be moved as far as the region boundary.
Here, the majorant is updated, and then a new distance can be sampled; at this point, the regionalization
method begins to become very resemblant of surface tracking. As long as

• it is fast to determine the region containing a given position;

• it is fast to evaluate the distances to the surfaces which enclose a region;

• the mean free path of particles in a region is shorter than or comparable to the average linear size of
the region,

then it is reasonable to hope for improved performance from a regionalized version of delta tracking. Re-
gionalization might be applied to negative-weighted delta tracking as well, and is similarly expected to
potentially improve its performance. These criteria can be met by using a simple subdivision technique,
such as a regular or irregular Cartesian mesh. Alternatively, more advanced structures from the field of
computer graphics, such as voxels and octrees, might be used to generate regionalizations which can be
better adapted to the geometry and material composition of each specific problem [8, 26, 27].

2.2 . Transport in Stochastic Geometries

In many applications occurring in particle transport problems for reactor physics, the geometry and
material compositions are known only statistically. Stochastic geometries, or problems where material
regions are organized in a random manner, emerge for instance in the investigation of neutron multiplication
in random fuel-cladding-moderator mixtures which can form during severe accidents in nuclear reactors,
leading to core degradation and corium formation [28], or in the analysis of neutron shielding by randomly
dispersed absorber lumps embedded in concrete plates [29]. Another well-known example in reactor physics
concerns next-generation reactor designs: TRISO fuel, for example, takes the form of small spherical particles
which are randomly dispersed within larger fuel elements [30]. Transport problems for inertial confinement
fusion experiments involve photon propagation through turbulent Rayleigh-Taylor instabilities, which can
also be described in terms of random media [31]. For all of these cases, the material properties at a given
location are not known exactly, and some probability pα(r) is typically assigned for sampling material phase
(“color”) α at position r. Different mathematical methods and models have been introduced in the literature
in order to describe the statistical properties of random media. Such examples include the random placement
of bodies (typically spheres) in a background matrix (aligning with the TRISO fuel case), and Poisson or
Voronoi tessellations, where a portion of the viable domain is randomly partitioned by planes (aligning with
the corium case) [32]. For illustration, realizations of spherical inclusions in a background matrix and a
Poisson tessellation are shown in Figure 2.1.

The Monte Carlo method is a natural choice for examining particle transport in stochastic geometries.
Due to the complex and disordered nature of random media, analyzing such a system with a deterministic
transport code would require a highly refined spatial mesh, which could raise issues in convergence, run time,
and memory usage. Since no geometry discretization is required in the Monte Carlo approach, some of these
problems can be avoided or mitigated. Nonetheless, stochastic media used in most realistic particle transport
simulations pose distinct challenges to Monte Carlo particle tracking routines. Often, such problems contain
several hundreds of thousands (if not millions or billions) of volumes. This makes standard surface tracking
quite inefficient, or even practically impossible, as a huge number of surface intersection calculations might
be required for each particle history: whenever a particle moves from one volume to another, it might have
to check hundreds of thousands of volumes before finding the correct one. Due to these inherent difficulties,
most Monte Carlo simulations of stochastic geometries rely on either surface tracking with neighbor maps
[33] (which will be detailed Sec. 2.2.2) or delta tracking [34]. No comparison has been previously attempted
between these two strategies: in order to establish a firmer ground for performing particle transport in random
media, and thus enhance the reliability of these Monte Carlo methods for complex real-world applications,
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Figure 2.1: On the left is a realization of stochastic spherical inclusion placed in a backgroundmatrix. On the right is a realization of a Poisson tessellation. Both configurations correspondto two-dimensional cuts of three-dimensional random media sampled using the CASTORMonte Carlo code developed at CEA.
in this thesis we will examine which of these two approaches is most efficient, and further discuss other
techniques which might speed up particle tracking. As a case-study, for the remainder of this work we shall
consider the case of Poisson tessellations, whose properties are subsequently outlined in Sec. 2.2.1. The
considered acceleration techniques are presented in Sec. 2.2.2. A comprehensive investigation is conducted
in Chapter 3.

2.2.1 . Properties of Poisson Tessellations
Isotropic and homogeneous Poisson tessellations are stochastic partitions of space into disjoint polyhedra

and belong to the class of Markov media [32]. Consider an infinitely large medium, composed of an infinite
number of different convex volumes. We trace an arbitrary line through this geometry, and compute the
chord lengths determined by intersecting the volumes of the medium with the line. The medium is said
to be Markovian if the chord lengths are exponentially distributed. Infinitely large Poisson tessellations
can be shown to have the Markov property [35]. The properties of isotropic and homogeneous Poisson
tessellations depend on a single parameter ρ, called the tessellation density, having units of inverse length.
By construction, the distribution describing the chord length is exponential, with parameter ρ, namely

P (l) = ρe−ρl. (2.15)
This then indicates an average chord length of Λ = ⟨l⟩ = 1/ρ. An algorithm leading to an explicit
construction procedure to sample isotropic and spatially homogeneous Poisson tessellations of a finite region
embedded in a D-dimensional space has recently been implemented [35]. This algorithm is based on the
formalism of integral geometry [32], and has been extended to the broader cases of non-isotropic [36] and
spatially non-homogeneous [37] Poisson tessellations. For the sake of simplicity, here we will exclusively
focus on the isotropic and spatially homogeneous case. For Poisson tessellations in D spatial dimensions,
the average number of volumes within an D-dimensional cube with side length L scales as

⟨NV ⟩ ∝ (ρL)D . (2.16)
Figure 2.2 demonstrates the effect of increasing the tessellation density for a box of a fixed size. On average,
each volume within the tessellation will have

⟨Nn⟩ = 2D (2.17)
26



Figure 2.2: All three images depict a 50 cm × 50 cm slice of a 3D Poisson tessellation used inChapter 3 and sampled using the CASTOR code. The realization on the left has a tessellationdensity of ρ = 0.1 cm−1, the realization in the center has ρ = 0.8 cm−1, and the realizationon the right has ρ = 2 cm−1. Blue represents water, red represents UOX fuel, and greenrepresents cladding. The probability of each material is provided in Sec. 3.4, and is based ofthe material ratio of an idealized fuel pin cell.
sides, which means that the average number of neighboring volumes is also 2D, independently of the
tessellation density ρ. In three spatial dimensions, ⟨Nn⟩ = 6, and it has been shown that the associated
variance is (13π2 +336)/12− 62 ≃ 2.6921 [35, 38]: the dispersion σ[Nn] ≃ 1.641 is small and the average
value is thus representative of a typical cell of the tessellation. Due to the complexity of Poisson tessellations,
even for the simpler case of isotropic and spatially homogeneous geometries, only a limited number of exact
results are known [32]. Moreover, these properties are only strictly valid for an infinite Poisson tessellation.
For a finite tessellation, i.e., a tessellation restricted to a region of finite size, such as a cube or a sphere, these
properties are not exact, especially in the vicinity of the tessellation boundary. However, for a sufficiently
large tessellation (ρL ≈ 100), the deviations from the ideal formulas at the boundary of the tessellation are
minimal [35].

Previously, the CASTOR code (Construction and Analysis of STOchastic Realizations) has been devel-
oped to generate Poisson tessellations for use with the Monte Carlo transport codes at CEA [38]. Once
the tessellation has been constructed, it is necessary to associate material properties with each volume in
the tessellation. Typically, one only knows the probability pα of material α within the tessellation, which
corresponds to the fraction of the volume occupied by material α. With the material probabilities known
in advance, the Switzer procedure is used to attribute a material to each volume by sampling the colors
independently from pα [39]. The resulting “colored” geometry is still Markovian, having scaled chord length
distributions

Pα(l) = ραe
−ραl, (2.18)

where ρα = ρ(1− pα) is the tessellation density for material α. This yields a colored average chord length
of Λα = Λ/(1 − pα). With respect to tracking, only the uncolored tessellation is seen by the particle; the
material-specific quantity ρα (and equivalently Λα) plays no role in particle tracking.

2.2.2 . Particle Tracking in Random Media
We will now examine the distinct issues related to Monte Carlo particle transport in Poisson tessellations,

and propose some strategies to overcome these difficulties. When using surface tracking, each time a particle
leaves a cell, it is moved to the boundary of the cell, and then a search is performed to determine the new
cell that the particle is about to enter. In a naive implementation, this typically requires iterating through
all cells available to the particle in the geometry, and checking if the particle is located inside that cell.
Tracking can only continue once the new cell is found. Having to iterate through all possible cells becomes
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quite time-consuming when the number of volumes is large, as can be the case for Poisson tessellations with
high ρ. Most of the acceleration techniques which will be outlined in this section focus on speeding up this
process of determining in which cell a particle finds itself.

Not only is it time-consuming to determine which cell a particle is in, but surface tracking has the added
disadvantage of needing to calculate all of the surface intersections to determine at what distance a particle
will leave its current cell. If the material and geometric properties are such that a particle will typically fly
through several cells before undergoing a collision, it is reasonable to envision that surface tracking might
become very inefficient. For this reason, some researchers suggest the use of delta tracking when performing
transport in stochastic media [34]. If the majorant cross section is very close to the total cross section,
few virtual collisions will be performed. Since the cell must be found at each tentative collision site, virtual
collisions can be particularly costly with stochastic media, as a cell search must be performed even for events
that do not generate any statistics. Techniques which accelerate the cell search process could potentially
provide a benefit to delta tracking as well.

Evaluation of Simulation Performance

The performance of the acceleration techniques which are examined in Chapter 3 is done using the Figure
of Merit (FOM). To compute the FOM, a specific quantity is typically chosen for the comparison, and it’s
FOM is can be calculated as

FOM =
1

Tσ2
, (2.19)

where σ2 is the variance of the estimation of the tally, and T is the wall-clock run time that was required
to obtain the estimate. This quantity is used as a reference, as it is generally know that for a quantity
estimated by Monte Carlo methods,

σ2 ∝ 1

N
, (2.20)

where N is the number of independent replicas (i.e. generations or batches) [5]. Additionally, it is generally
true that

T ∝ N . (2.21)
Through Eqs. (2.20) and (2.21), we can infer that Eq. (2.19) should be a constant (for a given code, computer
system, parallelization scheme, and quantity). A larger FOM indicates a better calculation efficiency. For
the simulations performed in Chapter 3, we chose keff as the variable used to compute the FOM.

Neighbor Maps

Neighbor maps, sometimes also referred to as connectivity maps, have been successfully used to accelerate
surface tracking. In its most basic form, a neighbor map is simply a list of all cells which touch another cell
[40]. Some codes are able to construct this neighbor map on-the-fly during the course of the simulation,
while others read them as an input parameter [1, 2]. Regardless of how this map is obtained (which can
nonetheless affect the initialization time of the specific code), the usage and results are the same. When a
particle leaves a cell, the code will first iterate through all of the cells in its neighbor map. If the map was
properly generated and is complete, the particle is then guaranteed to be in one of the cells in the neighbor
map; otherwise, the code performs a linear search through the rest of the cells, as if the neighbor map did
not exist. Connectivity maps can be further improved during the simulation by also taking into account the
frequency at which the neighboring cells are visited by the particles.

In 3D Poisson tessellations, it is noted From Eq. (2.17) that each cell will have an average of 6 neighbors.
Only needing to check the ≈ 6 neighboring cells is much more efficient than needing to iterate through
the, say, ≈ 105 cells which could be in the tessellation. A thorough analysis is presented in Chapter 3.
Simulations performed with TRIPOLI-4® have shown that surface tracking can be sped up by a factor of
100 when using a neighbor map with Poisson tessellations [33, 38]. Due to the very large run times which
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would have been encountered, the analysis of different acceleration techniques in Chapter 3 only compares
surface tracking with neighbor maps to delta tracking.

While neighbor maps are commonly used with surface tracking, no literature has been found referencing
the use of neighbor maps with delta tracking. The reason for this is likely due to the fact that with the
delta tracking algorithm it is possible for the particle to cross through several cells during a single flight, so
that the particle is not guaranteed to be located in a neighboring cell at the end of the flight. However, if
the mean free path length λ is smaller than or of the same order of magnitude as the average chord length
(Λ = 1/ρ), there will reasonably be a large probability that, if the particle leaves its current cell, its flight
will end in a neighboring cell. If true, delta tracking should also benefit from the use of a neighbor map
when Λ > λ. This hypothesis is thoroughly examined in Chapter 3: we will show that, if no cell search mesh
(outlined below) is used, then neighbor maps are beneficial for delta tracking, with the largest improvements
being observed for the regime Λ > λ. For the cases of Λ ≈ λ and Λ < λ, neighbor maps provide little to
no performance improvements for delta tracking.

Cell Search Mesh

Another acceleration technique is the use of a cell search mesh, taking the form of a regular rectilinear mesh
that is imposed on top of the Poisson tessellation. From a particle’s position, it is fast to calculate the
corresponding tuple of indices in the mesh using the pitch along each direction. Each element of this mesh
contains a list of all cells which are located within the corresponding cuboid region. The cell corresponding
to the particle’s position is guaranteed to be in the list of cells contained in the mesh element. If the mesh
has a sufficient number of elements along each coordinate axis, then the number of cells which need to be
checked is greatly reduced, speeding up the cell search process.

The cell search mesh is only beneficial to speed up “where am I?” queries. For this reason, surface
tracking would not generally benefit from the use of a cell search mesh if a neighbor map is also being used,
except at particle initialization. When particles are stored in the bank while waiting to be transported, in
several production-level Monte Carlo codes only their position and direction are typically recorded [2, 3].
The reasoning for this is multi-faceted, but it means that the cell of a banked particle must be determined
when a particle is initialized for transport. Surface tracking can then benefit from the cell search mesh when
initializing particles for transport, where it would otherwise need to iterate through all possible cells. Once
this first cell has been determined, however, surface tracking can simply use the neighbor map for all other
cell look-ups. On the contrary, delta tracking can benefit more from the use of a cell search mesh. At every
tentative collision site, the cell could quickly be obtained using the cell search mesh, and this could greatly
reduce the penalty imposed by virtual collisions, where the cell must be determined but statistics are not
generated. In Chapter 3 we make extensive use of the cell search mesh with both surface and delta tracking.
The performance of the two methods is examined in relation to the refinement of the search mesh. If no cell
search mesh is used, then surface tracking with neighbor maps always outperforms delta tracking variants.
If a cell search mesh is utilized, surface tracking seems to have superior efficiency when Λ > λ, while delta
tracking has the best performance when Λ < λ. It is also noted that, with a cell search mesh, delta tracking
with a neighbor map is slightly less efficient than vanilla delta tracking. This is because of the slight penalty
that is incurred on the occasions when the particle does not fly into a neighboring cell.

Geometry Kernel

In most general-purpose Monte Carlo codes, the geometry is described not just with cells, but also universes
and lattices [2–4]. A cell has a defined volume region, which can be filled with either a material, universe,
or lattice. Universes are simply a collection of cells which are all present within the same coordinate system.
These cells could in turn contain other universes, or lattices, or could terminate with a material. A lattice
contains many universes which are organized in a repetitive pattern, typically a regular rectilinear mesh.
This concept is useful when modeling structures such as fuel assemblies, where different pins are repeated
in a regular manner. With universes nested in lattices or cells, and lattices nested in cells, the entire
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geometry model can be represented as a directed acyclic graph (DAG), where cells filled with materials are
the terminating leaves. For large nuclear reactor models, using this DAG structure can reduce the memory
footprint by three orders of magnitude [41]. The exact cell at a given position is then represented as the
path through the DAG which describes the geometry. In this thesis, we shall refer to this path through the
geometry DAG as the “geometry kernel”. The geometry kernel is often stored with a particle, since it is
needed for tracking purposes, but it is not stored with banked particle information. Instead, the geometry
kernel must be determined at particle initialization. For traditional nuclear reactor problems (such as PWRs
and BWRs), this is not a costly operation, as the use of lattices in the geometry definition typically makes
this operation relatively fast.

When performing particle transport in stochastic media, on the contrary, we will not be able to profit
from lattices, as the involved geometry structures are not repetitive: all of the random material cells are
generally placed within the same universe. The initial geometry kernel of a particle is built when it undergoes
initialization. As this particle undergoes transport, it may create secondary particles through reactions like
fission or (n, 2n) collisions. These secondary particles are then added to the bank to be transported at a
later time, but without this geometry kernel which is known thanks to the parent particle. For standard
reactor problems, this discarded information is not generally worth the added memory requirements, as it is
very cheap to recalculate. In order to avoid recalculating quantities which have already been determined, it
might be a good idea to store the geometry kernel with banked particles, theoretically speeding up particle
initialization. Storing the geometry kernel also poses the disadvantage of increased time spent in MPI
communications, where particles are transferred between nodes. There are also implementation details
which must be considered if one is going to store the geometry kernel with banked particle information. In
general, the maximum size of the geometry kernel depends on how the geometry was defined by the user.
Allowing an arbitrary geometry kernel size would require the kernel to be stored on the heap, complicating
the transfer of particles between nodes using MPI. Limiting the size of the geometry kernel is a possible
solution to the problem, but restricts the generality of the code, and the geometries that could be modeled.
These design choices and the disadvantage of slower MPI communications would have to be balanced with
the possibility of faster simulations for stochastic media. In Chapter 3 we examine the effects of storing
the geometry kernel as an acceleration technique. In general, storing the kernel only leads to performance
improvements for surface tracking with neighbor maps when no cell search mesh is used. The kernel is only
used to speed up the initialization of the particle’s history. Once completed, the neighbor map can be used
to facilitate speedy searches for the next cell. While storing the geometry kernel would also speed up the
initialization of histories for delta tracking, that method requires many frequent cell searches. Removing
just one of these cell searches reduces the time spent performing cell searches by just a fraction of the time
that would otherwise be required. When the cell search mesh is used, storing the geometry kernel always
degrades performance for all methods, due to the added costs in MPI communications.

2.3 . Transport in Continuous Media

The overview of tracking methods in Sec. 2.1 only considered material regions where, for a given volume
V and energy E, the total macroscopic cross section is spatially constant for all positions in V . The case
of random media modeled using Poisson tessellations in Sec. 2.2, while posing distinct challenges in terms
of the number of cells and the lack of regular (periodic) geometric structures, still relied on the assumption
that the material properties were region-wise constant within each cell of the tessellation.

For a material comprised of many different isotopes, the total macroscopic cross section can be computed
as

Σt(r, E) =
∑

i

Ni(r)σt,i(T (r), E), (2.22)
where Ni is the concentration of isotope i, σt,i is the microscopic total cross section for isotope i, and
T is the temperature [42]. The microscopic cross section for an isotope is generally given as a function
of energy and temperature. However, temperature is generally a function of position, so we will simply
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Figure 2.3: Ratio of the total cross section (left) and fission probability (right) of 2.4 w/o en-riched UO2, at 1500K and 800K.
consider the cross section to be a function of position: σt,i(r, E). This implies that the homogeneous
medium assumption used previously in Sec. 2.1 and 2.2 (and commonly adopted in almost all existing
general-purpose Monte Carlo codes) is only true when the isotopic concentrations and the temperature are
constant within a given material volume. In real-world applications, however, this is rarely ever the case,
and a more faithful description would inherently require the use of a spatially-continuous representation for
material properties.

Let us first consider a simple example of a single fuel pin from a PWR reactor. The temperature at the
center of a fuel pin in a PWR might be approximately 1500K, while the temperature on the outer surface
of the fuel might be approximately 800K [43, 44]. Over a distance of less than 4mm, the temperature can
vary by approximately 700K. The effects of this temperature variation can lead to large differences in the
total cross section and thus the fission probability within the fuel. Figure 2.3 demonstrates that, within the
resolved resonance region, the total cross section can be more than 3 times larger at the center of the fuel
than at the fuel’s outer surface. This subsequently produces large changes in the fission probability as well.
For reactor eigenvalue calculations at steady state, these phenomena are often ignored, and an effective
temperature is used for the entire fuel region.

The consideration of spatially-continuous media reaches far beyond reactor physics simulations at steady
state. Recently, Monte Carlo neutronics solvers have been coupled with various thermal-hydraulics and/or
thermo-mechanics solvers to perform various types of multi-physics simulations [45–49]. These studies vary
greatly in scope, as some are examining operational or accidental power transients with Doppler broadening
and moderator density feedback, while others are performing fuel burn-up analysis. The coupling strategy
also varies, and is often accomplished through chained input files and calls to different physics solvers
[48, 49]. Other multi-physics code drivers have been developed to perform the transfer of data between
physics solvers in memory [50]. With such utilities, one can consider the possibility of being able to use, in
particle transport, the spatially-continuous temperature and density fields that are computed by the thermal-
hydraulics and thermo-mechanics solvers. Particles could then look up the temperature and density for their
given position in space, and use that information when computing cross sections. Being able to make use
of these spatially-continuous fields would increase the fidelity of Monte Carlo simulations for multi-physics
applications.

Another use-case of spatially-continuous cross sections would be the spatially-continuous representation
of isotope concentrations for reactor depletion simulations. Currently, fuel pins must be discretized into many
different rings when performing depletion simulations, to account for the spatial self-shielding effects within
the pin [51]. If this is not taken into account, inaccurate results will be obtained; conversely, increasing the
pin discretization also increases the memory footprint of the simulation. Instead of using many discrete rings
to model the fuel pellets, a higher fidelity option would be to model the isotopic concentrations continuously,
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using for instance Zernike polynomials [52]. Depending on the resolution required, it is also possible that a
continuous representation could require less computation time, and have a smaller memory footprint [52].

It is thus clear that the treatment of spatially-continuous cross sections in Monte Carlo simulations can
contribute to increased fidelity of results. We will now overview the difficulties that arise when incorporating
spatially-continuous cross sections, the existing approaches to treat such cases, and possible strategies with
potential to improve the efficiency and/or the accuracy of these methods. A thorough analysis will be then
presented in Chapter 4.

2.3.1 . Sampling Flight Distances with Spatially-Continuous Cross Sections
If the total macroscopic cross section is known for all positions and energies in the problem domain, then

the PDF for the particle to have its first interaction at sΩ̂+ r0 when starting at position r0 and traveling
in the direction of Ω̂ at energy E is [5]:

f(s) = Σt

(
sΩ̂+ r0, E

)
exp


−

s∫

0

Σt

(
uΩ̂+ r0, E

)
du


 . (2.23)

The PDF may be integrated to produce the CDF, which is used to obtain the flight distance d:

F (d) =

d∫

0

Σt

(
sΩ̂+ r0, E

)
exp


−

s∫

0

Σt

(
uΩ̂+ r0, E

)
du


 ds. (2.24)

When Σt is constant over the spatial variables, we retrieve the CDF used in Eq. (2.2) for the homogeneous
media assumption. In general, the two integrals in Eq. (2.24) make it extremely cumbersome or even
impossible to solve for the flight distance d using analytical inversion, as was done in Eq. (2.3). Instead,
different sampling methods which do not rely on inversion should be used. Delta tracking and negative-
weighted delta tracking are two tracking methods which can be used without modification for continuously-
varying cross sections. Another method, referred to as “direct sampling”, has been proposed to treat
spatially-continuous cross sections [53]. We will briefly outline the use of these techniques with spatially-
continuous cross sections.

Delta Tracking

As delta tracking is a rejection sampling technique, no numerical integration of the macroscopic cross
section is required to sample the flight distance. All that is needed is a valid majorant cross section to
sample the distance to tentative collision sites. Unfortunately, determining this majorant in the context of
coupled multi-physics simulations could be quite difficult. The dependence of the microscopic cross section
on temperature is not trivial, and can be time-consuming to compute [54]. It is possible that alternative
Doppler-broadening methods such as Target Motion Sampling could eliminate this problem, as work has
already been conducted on how to compute the majorant cross section when temperature effects must
also be considered [17, 18]. As the temperature and density fields are updated by different solvers, these
quantities can change over the course of the simulation, making the determination of the majorant more
difficult. Depending on the internal representation of the temperature field in the solvers being used, it
might not even be possible to obtain the maximum and minimum temperatures for a material region in
advance. Due to these difficulties, approximations might be made when determining a majorant, and Monte
Carlo practitioners might be tempted to multiply this majorant by a large “safety factor”, in an effort to
protect themselves from not having a true majorant cross section. On the surface, this seems like a good
idea, but could lead to needlessly increasing the majorant, and therefore reducing the probability of a real
collision, which in turn increases run times. Even if a “tight” majorant could be obtained, delta tracking
could still suffer from the localized heavy absorber problem, and be very inefficient. Switching to surface
tracking in such regions, as done in Serpent, is not an option with spatially-continuous cross sections. These
limitations inherent to delta tracking lead us to consider the use of negative-weighted delta tracking, which
does not require the use of a strict majorant cross section.
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Negative-Weighted Delta Tracking

Both of the variants for negative-weighted delta tracking outlined in Sec. 2.1.3 have the advantage of
not requiring a majorant cross section. It is therefore possible to forego the aforementioned difficulties in
determining a majorant cross section for delta tracking, at the cost of introducing a mixture of positive
and negative statistical weights to the simulation. The presence of a combination of positive and negative
weights will in general increase the variance of scores in the simulation, which is undesirable at best and
might prevent the simulation from achieving a satisfactory uncertainty at worst. Another potential difficulty
in using the variant proposed by Legrady et al. is that a real collision probability must be provided, and
the efficiency of the method can vary greatly depending on this parameter [20, 21]. In view of these
considerations, in Chapter 4 one of our main objectives is to evaluate the trade-off between not needing
a majorant, and the introduction of negative weights into the scores. Delta tracking, and both negative-
weighted delta tracking variants are tested using several different cross section shapes, in 1D fixed-source
benchmark problems for particle transport. The different functional forms of cross sections are given in
Sec. 4.3, and the corresponding results are presented in Sec. 4.4. To compare two tracking methods,
the FOM was used, but the time variable T in Eq. (2.19) is replaced with the number of cross section
evaluations required for the simulation. Since cross section look-ups account for almost 80% of the run time
in continuous energy codes, it is appropriate to assume that the run time is proportional to this quantity [55].
The findings from these simulations indicate that the variant of Legrady et al. has inconsistent performance,
at times outperforming delta tracking, and at others performing much worse. It seems that the efficiency
of this method is highly dependent on the choice of the real collision probability q, making the method less
robust. Conversely, the variant of Carter et al. is shown to demonstrate performance which is comparable
to, if not better than delta tracking for fixed-source problems, and seems to be more robust than the variant
of Legrady et al.. Nonetheless, in Part II we will demonstrate that negative-weighted delta tracking displays
severe instabilities when used for k-eigenvalue power iteration problems. We will analyze in detail the cause
of these numerical difficulties, and propose a solution to this problem in Chapters 6, 7, and 8.

Direct Sampling

Direct sampling is a method which was proposed by Brown and Martin for performing transport in continuous
media [53]. It is based on the use of the optical depth, defined as

τ(x) =

x∫

0

Σt

(
r0 + sΩ̂, E

)
ds. (2.25)

Starting from position r0 and looking along the direction Ω̂, one first determines the distance ds to the
surface where the particle would leak (either from the current cell, or from the problem domain). The
probability of the particle not undergoing a collision and leaking is then

PNC = exp (−τ(ds)) . (2.26)
Therefore, with probability PNC the particle will either be moved to the next cell at a distance ds, or leak
from the problem domain and be killed. With probability 1 − PNC , the particle will undergo a collision at
some distance d < ds. It is then possible to calculate the distance to the collision using

τ(d) = − ln [1− (1− PNC) ξ] =

d∫

0

Σt

(
r0 + sΩ̂, E

)
ds, (2.27)

with ξ being a uniform random number in [0, 1). To solve Eq. (2.27), it is possible to use Newton’s method,
or a bisection search to obtain d [53]. The weakness of this method is that for both determining PNC

and determining d through iterative methods one must be able to integrate the macroscopic cross section
over any parameterized ray through 3D space. If limited to a particular subset of continuous media, where
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the material density is the only quantity that varies spatially (and relative isotopic concentrations remain
constant), then performing the required integration is reasonably feasible in a 3D setting, and has been
demonstrated in conjunction with functional expansion tallies [56]. While this method has been used for
depletion studies where relative isotopic concentrations were allowed to vary spatially, the optical depths
were estimated by evaluating the cross section at several points along the flight path [52]. A large number
of cross section evaluations might be needed to ensure that the accuracy of this integration is adequate to
properly determine leakage rates. Varying isotopic concentrations are also easier to treat, as the macroscopic
cross section is linear with respect to this quantity, and the microscopic cross section would only need to
be evaluated once per nuclide. A spatially continuous temperature field is more difficult to treat, as the
relationship between temperature and the microscopic cross section is not linear, and can be very costly
to calculate [54]. Even if faster methods to describe the Doppler broadening effects are used [57, 58], due
to the non-linear relationship, many cross section evaluations would be needed to perform integrals. We
evaluate direct sampling in Chapter 4 alongside delta tracking and negative-weighted delta tracking, for the
same set of 1D fixed-source benchmark problems. As outlined in Sec. 4.4, direct sampling has very poor
performance compared to delta tracking and negative-weighted delta tracking, despite the very generous
evaluation criteria, which considered a cross section integration to take the same amount of time as a cross
section evaluation.
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ABSTRACT

Random media emerge in several applications involving particle transport, encompassing e.g.
photon propagation through Rayleigh-Taylor instabilities in fuel pellets for inertial confinement
fusion, or neutron multiplication problems related to the assessment of re-criticality risk following
severe accidents with fuel degradation. Reference calculations in such material configurations by
means of Monte Carlo transport codes are particularly challenging, since high-density stochastic
media might involve several hundreds of thousands of volumes and thus make particle tracking
routines extremely cumbersome. In order to cope with these issues, two distinct strategies have
been proposed so far: the use of neighbor maps, or the use of delta tracking. In this work we will
compare these methods and illustrate their specific merits and drawbacks, as taken both alone and
in combination with each other.

KEYWORDS: Random media, Monte Carlo, Delta tracking, Neighbor map

1. INTRODUCTION

Particle transport in stochastic media is key in several technological applications in nuclear science, includ-
ing e.g. the evaluation of re-criticality risk due to neutron multiplication in reactor cores following severe
accidents with fuel degradation [1], photon propagation through turbulent material layers with Rayleigh-
Taylor instabilities for inertial confinement fusion [2], or next-generation reactor design involving randomly
dispersed fuel particle [3]. In all such situations, the material properties are known only statistically, and
a specific stochastic model is needed in order to assign the cross sections at a given point. For this pur-
pose, several approaches have been suggested, encompassing random inclusions, where objects of fixed or
varying shape are randomly placed within a background matrix, or stochastic tessellations, where a given
domain is randomly partitioned using planes [4]. In this work we will focus on the latter class of stochastic
media, and adopt Markov media as a prototype example for our numerical investigations. Markov media
are a widely used model, originally proposed for particle transport through stratified slab-like configura-
tions in one dimension [2], and have recently been extended to three dimensions [5, 6].

Since three-dimensional Markov media will result in complex geometrical structures, it is natural to resort
to Monte Carlo simulations (as opposed to deterministic methods) in order to perform particle transport.
Monte Carlo circumvents the need for spatial meshes and the associated discretization bias, at the expense
of increased computer time for the individual tracking of particle histories. In real-world applications,
the number of volumes of each realization of Markov media might exceed several hundreds of thousands,
which would make a naive approach to particle tracking in the best case extremely cumbersome; in the worst
case, such calculations would simply be unfeasible, due to the overwhelming computer time which would
be required. In order to speed up particle tracking in three-dimensional random media, two strategies have
been introduced: the use of neighbor maps [6], or the use of delta tracking [7]. Neighbor maps associate
each volume of the tessellation with a list of neighbors, so that a particle located within a volume performing
surface-tracking during a flight only need to determine the next crossed volume from the list of neighbours



instead of the full list of volumes in the tessellation [8]: since the polyhedral volumes composing three-
dimensional Markov media have on average six faces [4], the use of neighbor maps turns out to be highly
effective in decreasing the cost of particle-tracking routines [6]. Delta tracking is based on replacing surface
tracking by a collision-based rejection procedure whereupon either the particle flight stops or a new flight
in the same direction is re-sampled [9]. Since this sampling procedure does not involve the tracking of the
next surface in the direction of flight, the computer cost is greatly reduced and this method has been also
shown to be very effective for particle transport in random media [7].

In this work, we will assess the specific merits and drawbacks of neighbor maps and delta tracking in simple
benchmark configurations consisting in Markov media inspired by re-criticality problems in fuel assemblies
with severe material degradation [1]. The two methods will be used both alone and in combination with
each other, and the performances will be assessed as a function of the tessellation density. To the best of our
knowledge, similar comparisons have never been attempted before, and thus shed light on the behaviour
of such strategies for real-life applications. In addition, we will also probe the effectiveness of using
superimposed meshes in order to further accelerate particle tracking. This paper is organized as follows:
in Sec. 2 we will describe Markov media and the procedure to sample them. Then, in Sec. 3 we will detail
the algorithms used for particle tracking. We will introduce a benchmark transport problem in Sec. 4 and
present the corresponding simulation results in Sec. 5. Conclusions will be finally drawn in Sec. 6.

2. MARKOV MEDIA

Markov media can be produced by using a two-step procedure. The first step consists in using a Poisson
hyperplane tessellation in order to partition a domain of a D-dimensional space into randomly shaped
polyhedra by sampling hyperplanes from an auxiliary Poisson process [4]. The sampling of homogeneous
and isotropic Poisson stochastic geometries depends on a single free parameter ρ, the so-called tessellation
density, that influences the average number of resulting planes per unit volume. Homogeneous and isotropic
Poisson tessellations satisfy a Markov property: for domains of infinite size, arbitrary drawn lines will be
cut by the hyperplanes of the tessellation into segments whose lengths are exponentially distributed, with
an average chord length Λ = 1/ρ [4]. The quantity Λ intuitively defines the correlation length, i.e. the
typical linear size of a volume composing the random tessellation. The second step consists of assigning
each polyhedron of the tessellation a material property i with a given probability pi, using the Switzer’s
coloring procedure [8]. The coloring probabilities pi are typically chosen so as to preserve material volume
ratios (i.e., the total amount of material that is present on average per unit volume). After the coloring
procedure, the chord length distribution in each material i is still exponential, with a corresponding average
Λi = Λ/(1− pi), whence the name of Markov media. For illustration, examples of un-colored and colored
Markov media are provided in Fig. 1.

One key property of finite-size Poisson geometries is the number of resulting polyhedral volumes, which
is a random quantity for each realization and depends on ρ: the higher the tessellation density, the more
polyhedra in the tessellation. For a Poisson tessellation applied to a D-dimensional box of side L, it has
been shown that the average number of volumes scales as (ρL)D and the associated standard deviation
scales as (ρL)D−1/2 [8]. For infinite-size Poisson tessellations, the lowest-order moments and correlations
(and in rare cases the full distributions) of a few significant polyhedral features are exactly known [4];
finite-size effects come into play when the tessellated domain is bounded [5]. In particular, the average
number of D-dimensional faces per polyhedron, which intuitively represents the connectivity degree of the
tessellation, reads ⟨CD⟩ = 2D in infinite domains [4], which means that the average number of neighbors
for a volume in dimension D = 3 will be ⟨C3⟩ = 6. To the best of our knowledge, the associated
distribution is not known, although numerical estimates have been provided by Monte Carlo methods for
D = 2 and D = 3 [8]: in three-dimensional Poisson geometries, the number of neighbors per volume
ranges typically between 4 and 10 with a probability close to 0.99, and falls off very rapidly after 11.

A code capable of sampling three-dimensional Poisson tessellations has been recently developed at CEA [5,
6]. During the generation of each stochastic realization, care is taken so as to store the indexes of the



Figure 1: Realizations of a Poisson tessellation for ρ = 2 and L = 50, before (left) and after (right)
the Switzer’s coloring procedure. The number of volumes is about 6.5× 105. The coloring

probabilities have been chosen in agreement with the benchmark specifications provided in Sec. 4:
red corresponds to UOX fuel, blue to moderator and green to cladding.

neighboring volumes. The code can export not only the surface-based description of the volumes (including
the assignation of material properties to each volume) but also the neighbor map, i.e. a map associating each
volume index to the list of indices of the neighboring volumes. The format of the neighbor map can be
easily read by Monte Carlo transport solvers. Moreover, an additional feature implemented in the generator
allows superposing a regular Cartesian mesh (with arbitrary number of cells nx × ny × nz along the axes)
over the realization and storing the list of polyhedral volumes present in each mesh cell. These lists are
pre-computed by the generator and can be also easily exported to Monte Carlo transport solvers.

3. PARTICLE TRACKING METHODS

We detail now the algorithms that have been used to probe the efficiency of particle tracking routines for
Markov media. All of the algorithms and methods discussed in this section have been implemented in
a modified version of the MGMC Monte Carlo code [10], developed at CEA for R&D purposes. The
new version of MGMC has been extended to not only handle three-dimensional multi-group problems, but
also perform calculations in continuous energy, with modeling of all continuous-energy physics, scattering
distributions, and thermal scattering laws. In addition to the original shared memory parallelization with
OpenMP, distributed memory parallelization has been added with MPI, allowing effective use of cluster
computing resources available at CEA. Use of this code facilitates quick development, and provides a rather
modular setting where different tracking methods and simulation modes can quickly be examined, in a
fairly realistic environment. The code represents general three-dimensional geometries using a Constructive
Solid Geometry (CSG) model, which is quite standard in Monte Carlo codes; volumes are defined relative
to different surface sides, and can be grouped together in universes. Universes may be placed inside of
lattices, allowing for efficient replication of the same geometry portion. This structure then resembles a
tree, and the exact location of a position in a geometry is defined by the path through the tree structure [11].

3.1. Surface Tracking

Surface tracking (ST) is the most common particle tracking method, used in most Monte Carlo neutral
particle transport codes [12–14]. With this technique, the distance ds to the nearest surface in the geometry
along the direction of flight is determined, and compared to the sampled distance for the next collision site
d. The distance to a collision site is calculated using the standard exponential distribution, which is true for
volume-wise homogeneous material properties. In the event that d > ds, then the particle is moved to the



Algorithm 1: Surface Tracking
1 Sample ξ ∈ U(0, 1)
2 d := − ln(ξ)/Σt

3 ds := distance to closest surface
4 r = r +min(d, ds)Ω
5 if d < ds then
6 Perform collision
7 else
8 Find new volume and update Σt

9 Goto 1
10 end

Algorithm 2: Delta Tracking
1 Sample ξ ∈ U(0, 1)
2 d := − ln(ξ)/Σmaj(r, E)
3 r = r + dΩ
4 Find new volume and determine Σt

5 Sample ξ′ ∈ U(0, 1)
6 if ξ′ < Σt(r, E)/Σmaj(r, E) then
7 Perform real collision
8 else
9 Goto 1

10 end

corresponding surface, and the next material volume must be determined. Once the new material volume
is found, the procedure starts again, and repeats until d < ds, at which point the particle is advanced by d
and a collision occurs. The general methodology is provided in Algorithm 1.

3.2. Delta Tracking

Delta tracking (DT), also known as Woodcock tracking, is an alternative to ST, and is the principal track-
ing method in the Serpent Monte Carlo code [9]. Use of this method requires a majorant cross section
Σmaj(r, E), which fulfills

Σmaj(r, E) ≥ Σt(r, E). (1)

Here, the distance to a tentative collision site d is calculated using the typical exponential distribution,
but Σt is replaced by Σmaj. Once at the new location, we determine what volume the particle lies in and
we sample whether the particle undergoes a real collision or a virtual collision. A real collision occurs
with probability Pr = Σt(r, E)/Σmaj(r, E), and the particle correspondingly undergoes an interaction. A
virtual collisions occurs with probability 1 − Pr, and correspondingly neither the direction nor energy of
the particle is changed. The particle then samples a new distance to a tentative collision site, and continues
this process until a real collision is sampled. DT is outlined in Algorithm 2. With this method, one is
not required to perform many surface intersection calculations, which can be quite costly. However, in the
presence of small volumes having very large cross sections compared to the other volumes, the efficiency of
delta tracking decreases, as many virtual collisions will be performed: this issue is known as the ‘localized
heavy absorber problem’ [9].

3.3. Neighbor Maps

A neighbor map takes the form of a list for each volume, which provides a reference or handle to all other
volumes in the geometry which touch the volume in question: this method provides a means of speeding up
the volume search during the transport algorithm [15]. For ST, this acceleration technique is applied at line
8 of Algorithm 1. If a particle was previously in volume A, and has crossed the boundary of A to enter an
immediate neighbor of A, then the particle only needs to look through the list of neighbors for volume A,
and not the entire list of volumes, greatly speeding up the search for the new volume. The potential gain is
particularly large in problems involving particle transport in random media with millions of volumes, as on
average a volume in a Poisson tessellation has only six neighbors: for such large systems, use of a neighbor
map becomes mandatory in order to keep the computational burden within acceptable limits.

Neighbors maps are used in combination with surface tracking in TRIPOLI-4®, the production Monte
Carlo code developed at CEA [13], and have been recently implemented in MGMC. We are not aware of
examples of the use of neighbor maps with delta tracking in the literature. This is almost certainly due to the



reasoning that with delta tracking one is not guaranteed to move to a neighboring volume, but could instead
traverse multiple volumes on a single flight. Therefore, it might at first seem as though no improvements
could be made in using a neighbor map. However, in the context of particle transport in random media, if
one considers the case where the mean free path length λ is of the same order of magnitude as the mean
chord length Λ, then it is reasonable to assume that there is a large probability that a particle will travel to a
neighbor of its last known volume in most cases. If this is true, one should be able to see performance gains
when using a neighbor map with delta tracking, under certain conditions. For a quantitative assessment,
we will explore different regimes of the ratio Λ/λ when considering the use of neighbor maps with delta
tracking. The neighbor map is computed and provided by the stochastic geometry generator, and the map
is then read and used by the MGMC transport code.

3.4. Volume Search Mesh

Another tracking acceleration option is the use of a volume search mesh. This takes the form of a regular
Cartesian mesh imposed on top of the geometry. Each cell of this mesh contains a list of all volumes that
are present within the mesh cell. It is very fast to determine in which mesh cell a particle is located. If a
sufficiently fine mesh is used, there are much fewer volumes per mesh cell than volumes in the problem, so
it should be much faster to determine in which volume a particle is located by using the list of volumes in
the particle’s current mesh cell. The Poisson tessellation generator used in this work is able to create this
search mesh, which is then read and used by the MGMC Monte Carlo code.

3.5. Geometry Kernel Memory

When performing power iteration simulations, generated fission particles are typically stored in a bank,
to be processed in the subsequent generation. While the exact position of the daughter particles and their
paths in the CSG tree is known when the daughter particles are created, typically the only information that
is stored is the position, direction, energy, and weight of the particle [9, 12]. This reduces the memory
requirements for storing fission particles, and reduces the amount of data that needs to be sent between
computer nodes between generations. For stochastic geometries, however, it can be costly to re-construct
this path through the CSG tree. We have thus implemented a version of the MGMC code where the
exact path through the CSG tree is saved with banked particles, and also transferred between nodes when
synchronising fission banks between generations. Such an operation comes at the added cost of requiring
more memory to store banked fission particles, and demands the transfer of more data with MPI calls
between generations. Unlike in TRIPOLI-4®, which uses a flat geometry structure and thus enables the
information concerning the volume to be kept in memory with a single integer [13], MGMC uses a nested
structure with universes, lattices, and volumes. Representing this unique path requires the storage of sets
of several local coordinates, due to the possibility of nested lattices [11]. We therefore modified the code to
only allow for up to 10 coordinate layers, effectively limiting users to have at most two nested lattices. This
choice was made to facilitate an easier implementation, as having a maximum number of local coordinates
greatly simplifies the logic for carrying out the synchronization between MPI nodes. We will refer to the
structure containing the path through the CSG tree as the geometry kernel.

4. BENCHMARK SPECIFICATIONS

In this paper, we consider three different test systems. All three are realizations obeying ternary Markov
mixtures, obtained from the Poisson geometry generator described in Sec. 2. These configurations were all
cubical, with reflective boundary conditions on all sides. For the Switzer’s coloring procedure, each volume
of the tessellation was randomly assigned one of the following compositions: fuel, moderator or cladding.
The respective coloring probabilities, provided in Tab. I, are defined so that the ensemble-averaged volume
ratio of each material corresponds to those obtained in a square pin-cell of side length δ = 1.262082
cm, with a fuel pin having an outer radius of R2 = 0.47436 cm, surrounded by borated light water as a
moderator. The fuel pin has two portions: UOX fuel at the center, with a radius R1 = 0.41266 cm, and



Material Isotopes Concentration Color probability
(atoms × 1024 × cm−3)

UOX fuel

U235 8.4148× 10−4 πR2
1

δ2
≈

U238 2.1625× 10−2 0.335861
O16 4.4932× 10−2

Moderator

H1 4.7716× 10−2 1− πR2
2

δ2
≈

O16 2.3858× 10−2 0.556196
B10 3.9724× 10−6

B11 1.5890× 10−5

Cladding
ZR90 2.2060× 10−2

ZR91 4.8107× 10−3 π
R2

2 −R2
1

δ2
≈

ZR92 7.3532× 10−3 0.107943
ZR94 7.4518× 10−3

ZR96 1.2005× 10−3

Table I: Material compositions for the UOX
pin cell used for the benchmark configurations.

Case ρ (cm−1) Λ (cm) λ (cm)

1 0.10 10.00 1.156
2 0.80 1.25 1.403
3 2.00 0.50 1.548

Table II: Description of the benchmark
parameters.

then cladding between R1 and R2. The respective material compositions for the fuel, the cladding and the
moderator are provided in Tab. I. The proposed compositions correspond to fresh (Beginning Of Life) fuel.
All materials were assumed to be at a uniform temperature of T = 294 K. These choices were inspired by
an idealized model of fuel assembly with random material fragmentation following a severe accident [1].

The goal of our simulations is to assess the performance of the different tracking modes as a function of
the ratio between the average chord length Λ of the tessellation and the mean free path λ. For this purpose,
we will consider configurations corresponding to three regimes: Λ ≪ λ, Λ ∼ λ, and Λ ≫ λ. Three
realizations of the Markov media satisfying these regimes were sampled by using the tessellation densities
ρ provided in Tab. II. Since λ is not known in advance and must be determined by a transport simulation, the
parameters were determined by trial and error. For each realization, the side of the cube was then rescaled
so that L = 100/ρ. Since the number of polyhedral volumes in the tessellation only depends on the product
Lρ, the number of volumes is the same for the three realizations and is equal to 652628. A depiction of the
configuration is presented in Fig. 1. For each of the three configurations, ST with the neighbor map, DT
without the neighbor map, and DT with the neighbor map were considered. A second version of these nine
cases was run, where the geometry kernel was stored with banked particles, giving 18 distinct test cases. A
volume search mesh was used for almost all simulations, since computation times could otherwise exceed
the allowed time limits on the computer cluster. To probe the effects of the mesh, we took each of the 18
test cases to be a function of n, representing the number of cells of the mesh on each axis of the box.

5. SIMULATION RESULTS

The calculations are performed with the Monte Carlo particle transport code MGMC described in Sec. 3,
in criticality mode. For all configurations, we compute the multiplication factor k (based on a collision
estimator) and the associated variance σ2, and measure the corresponding simulation wall clock time T .



The figure of merit (FOM) is computed as follows: FOM = 1/(σ2T ). Each transport simulation was run
with 16 MPI ranks, each using 32 OpenMP threads, distributed over 256 CPUs of type EPYC 7281 2.1
GHz. All simulations were performed using 105 particles and 2500 batches (the first 500 of which were
discarded to allow for source convergence).

The simulation times are displayed in Fig. 2, and the corresponding FOM values in Fig. 3. From these
results, it becomes evident that there are two different regimes with respect to n: when 1 ≤ n ≤ 10,
increasing the the size of the volume search mesh decreases the run time exponentially. Once the search
mesh reaches a size n× n× n = 103, however, a further increase in n does little to improve performance,
and we see that run times level off. For n > 10, we are therefore dominated by the volume search mesh.
The right hand columns of Figs. 2 and 3 provide a better view of the asymptotic behavior of this regime. For
case 1, when ρ = 0.1, ST has a higher FOM than the DT variants; as ρ increases, the DT variants become
more effective for Λ ≪ λ. A counter-intuitive observation for the n > 10 regime is that DT without the
neighbors map consistently performs better than DT with the neighbor map, in all cases. During DT, when
a particle is not in its last known volume, it first searches the neighbor map (if one is present), and if this
fails then it will use the mesh. With DT, one is not guaranteed to be in a neighbor of the last known volume,
but one is guaranteed to be in one of the volumes provided by the volume search mesh. This means that
systematically using the neighbor map first leads to extra searches for the case where a particle is not in
a neighbor. When the number of neighbors and the number of volumes provided by the search mesh are
somewhat similar, it will in general take more time to look at the neighbors first, although there exist cases
where a particle is more likely to have flown into a neighboring volume. One important note is that all
simulation cases that transferred the geometry kernel with the banked particle took longer to run than the
version of the code not keeping the geometry kernel. This can be explained due to the efficiency of the
search mesh when n > 10, making it very fast to re-generate the geometry kernel when starting a new
history. Keeping this geometry kernel with the banked particles leads to added MPI costs, and this is what
can explain the longer run times for the trials that kept the geometry kernels.

When looking at the 1 ≤ n ≤ 10 regime, in the left-hand columns of Figs. 2 and 3, we first see that ST
with a neighbor map is always more efficient than either of the DT variants. This can be explained by
the fact that with ST a particle is always guaranteed to fly into a neighbor; if the neighbors are known for
each volume, the time required to determine the next volume is minimal. Examining the two DT variants,
it is seen that when Λ ≫ λ the neighbor map version is faster. This is logical, as in this case it is less
likely that a particle will fly out of a volume at all. Furthermore, in the event that it does, it is very likely
to have only flown at most one volume away (i.e. into a neighbor). As the ratio of Λ/λ decreases, the
improvements that the neighbor map provides also decrease, but always seem to yield a slightly lower run
time. Such behavior is the converse of that observed in the asymptotic regime of n > 10. When the
number of volumes provided by the volume search mesh is very large (compared to the average number of
neighbors a volume has), then it is always beneficial to look in the neighbors first. It is still more likely that
a particle is to fly into a neighboring volume than into a volume being farther away. Therefore, it is more
efficient to check the (on average) 6 neighboring volumes first, and then start looking at the thousands of
volumes which may have been provided by the search mesh. Keeping the geometry kernel with the banked
particles turns out to provide a very reasonable gain in efficiency for ST when the volume search mesh
is not used or is not effective, and reduces run times by approximately a factor of 2. While DT with the
neighbor map demonstrated some improvements when storing the geometry kernel for case 1, it appears
that in general keeping the geometry kernel is not particularly advantageous for either of the DT methods.

6. CONCLUSIONS

In this work we have examined several different transport methods for performing Monte Carlo particle
transport in stochastic geometries. Surface tracking (ST) and delta tracking (DT) were both tested using
neighbor maps, and volume search meshes of varying refinement. We also looked at the possibility of
storing the particles position in the CSG tree between generations. In general, if a volume search mesh
is not used or not optimally refined, ST with a neighbor map is always better than DT, with or without a
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Case 2: ρ = 0.8, Λ ∼ λ
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Case 3: ρ = 2, Λ ≪ λ
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Figure 2: Left. Simulation time (in seconds) as a function of the number n of cells in the mesh along
each axis, for the following benchmark configurations: ρ = 0.1 (top), ρ = 0.8 (middle) and ρ = 2

(bottom). Each plot displays different tracking modes: red triangles (resp. plusses) refer to ST with
neighbor map without (resp. with) storing the geometry kernel, blue diamonds (resp. crosses) to DT

without neighbor map without (resp. with) storing the geometry kernel and green circles (resp.
stars) to DT with neighbor map without (resp. with) storing the geometry kernel. Right. Same data,

displayed with a focus on the range n ∈ [20, 100].
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Figure 3: Left. Figure of merit (FOM) as a function of the number n of cells in the mesh along each
axis, for the following benchmark configurations: ρ = 0.1 (top), ρ = 0.8 (middle) and ρ = 2

(bottom). Each plot displays different tracking modes: red triangles (resp. plusses) refer to ST with
neighbor map without (resp. with) storing the geometry kernel, blue diamonds (resp. crosses) to DT

without neighbor map without (resp. with) storing the geometry kernel and green circles (resp.
stars) to DT with neighbor map without (resp. with) storing the geometry kernel. Right. Same data,

displayed with a focus on the range n ∈ [20, 100].



neighbor map. If a volume search mesh is used and is sufficiently refined, then DT can be more efficient
than ST when the mean chord length is larger than the mean free path. Storing the CSG tree in memory does
reduce run times for ST when the volume search mesh is not used or is ineffective, but is not significantly
beneficial for DT. If an optimal volume search mesh is used, storing the CSG tree is detrimental to the run
time for all methods, due to the increased MPI overhead. While this study only analyzed performance with
regard to the global parameter keff, a topic of further investigation would be an analysis of performance on
scores for local reaction rates, where DT is only able to use a collision estimator, while ST is able to use a
track-length estimator.
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Abstract. Monte Carlo techniques for solving the Boltzmann neutron transport equation have become
increasingly popular in recent years, due to their exact nature and to the increase in computational power.
Monte Carlo makes it possible to solve transport problems without discretizing the geometry or energy
domain. Current mainstream methods, however, do not allow for media with continuous properties, such
as spatially-varying cross sections due to density and temperature variations. Being able to perform sim-
ulations under such conditions is a desirable feature for a complete Monte Carlo implementation in the
contexts of multi-physics and depletion simulations. Several methods can currently be used to conduct
transport in materials having non-uniform cross sections. This paper aims to compare some of these
methods (substepping, direct sampling, delta tracking, and several delta tracking variants) in a simplified
one-dimensional system with spatially-varying cross sections, to examine their respective properties. Per-
formance (as measured by the Figure of Merit), robustness, and ease of implementation are considered in
evaluating the methods. Such results will help determine which transport methods would be most suitable
for implementation in a general-purpose Monte Carlo code.

1 Introduction

The Monte Carlo method has been in use since the dawn of computational nuclear engineering to solve the Boltzmann
neutron transport equation(s), and has become increasingly popular, due to the fact that solutions are exact (no
approximation and discretization are introduced), and its large computational requirements are offset by the rapid
development of modern super-computers and by the relatively simple implementation of massively parallel Monte
Carlo calculation strategies, making this method increasingly accessible. Not only are static criticality problems for
full reactor cores possible, but also depletion problems, kinetics, and even multi-physics problems coupled with thermo-
hydraulics solvers can nowadays be tackled using Monte Carlo neutronics solvers [1–4].

This new realm of problems poses particular challenges that have not traditionally been considered in Monte Carlo
transport codes. When considering coupling with thermo-hydraulics solvers, cross sections have to be prepared at
many different temperatures. Depending on the temperature resolution required to adequately simulate the system
and the number of different nuclides present, a prohibitively large amount of memory could be required to hold the
necessary data. This limitation fostered the development of algorithms that avoid cross-section preprocessing, such
as on-the-fly Doppler broadening of cross sections [5] or target motion sampling [6]. Such methods may mitigate the
memory problem in the context of multi-physics simulations, but fail to address the fact that the temperature within
a given cell, be it a fuel pin, or moderator channel, is not uniform but has a spatial dependence, therefore imposing
a spatial dependence on the cross section as well. The remedy to this issue has traditionally been to homogenize the
problem domain by giving each cell a uniform temperature, which is valid at every point in the cell. This temperature
is typically selected so as to best represent the physical properties of the system to be simulated [7].

The magnitude of the variation of the cross section within the cell is highly dependent on the neutron energy,
the material composition for the given cell, and the variations in temperature which can be expected. For example,
a typical fuel pin in a PWR reactor might have an outer surface temperature of approximately 500K, and a core
temperature near 1500K [8]. As an order-of-magnitude estimate of the extent of the possible cross-section variation,
we consider the ratio of the total cross section for 238U at 1500K to the total cross section at 500K. The choice of
238U for this example is motivated by the fact that it is a primary component of the fuel. Figure 1 shows that it
is possible to have up to an order of magnitude in the value of the cross section between the center and outer edge
of a pin, for neutron energies in the resolved resonance region. Even in the thermal region, the ratio deviates from
unity by approximately 18%. The effects of temperature for materials such as water, however, are somewhat milder,
as illustrated by the total cross section ratio for 1H at 600K to 300K, shown in Figure 2. For energies greater than
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Fig. 1: Ratio of the total cross section at 1500 K to 500 K for 238U. Cross sections have been extracted from the
ENDF-B.VIII library [9] and preprocessed with NJOY2016 [10].

10−10 10−8 10−6 10−4 10−2 100

Energy [MeV]

100

101

Cr
os

s S
ec

tio
n 

Ra
tio

Fig. 2: Ratio of the total cross section at 600 K to 300 K for 1H. Cross sections have been extracted from the ENDF-
B.VIII library [9] and preprocessed with NJOY2016 [10].

100 eV, the cross sections are very nearly equal, while in the thermal region the 600K cross section is approximately
40% larger. Ignoring these spatial variations leads to a biased sampling of the collision sites for neutrons during a
Monte Carlo simulation.

Temperature gradients may also affect the branching ratios of reaction channels. Figure 3 shows the ratio of the
fission probability at 1500K to that at 500K for 235U. Most of the variation here is again observed within the resonance
region, where neutrons spend a small part of their time, but the probability for fission can still be as much as 2.5 times
greater at 1500K than for 500K. Effects due to this branching are lost under the assumption of homogeneous media.
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Fig. 3: Ratio of the fission probability at 1500 K to 500 K for 235U.

One solution to this problem has been to divide regions into smaller portions, each with their own material
properties. This method however would require a very large number of subdivisions to produce accurate results in
certain cases, and is not exact, but is the only feasible option for the standard method of ray-tracing, used in most
general-purpose codes such as MCNP [11] and TRIPOLI-4® [12]. Delta tracking [13], on the contrary, is an exact
sampling method for flights in continuously varying media. Delta tracking is based on rejection sampling of collision
sites and on the definition of a majorant cross section, i.e. a cross section that must always be larger than the total
cross section. Determining a proper value for the majorant cross section is the main difficulty of this method. Use of
a value which is not a true majorant can lead to events having a probability greater than unity: if this occurs, the
resulting collision sites are no longer valid. In an attempt to avoid this situation, it could be tempting to overestimate
the majorant cross section, ensuring global statistical validity. Overestimating the majorant however will decrease
the efficiency of the method and increase the computation time [14]. This is also congruous to the well-known local
heavy absorber problem, also reducing the efficiency of delta tracking [15]. If one were to consider the density and
temperature to be non-constant, then ensuring a proper majorant at all locations could become a cumbersome task.
Vittanen and Leppänen have previously developed a method of determining the majorant cross section for use in the
target motion sampling algorithm [6]. While this problem is distinct from the currently considered issue of varying
temperatures, one could envision a similar process for the determination of majorant cross sections. A variant of delta
tracking has previously been used to perform transport calculations with varying cross sections due to density [16].

Other tracking methods for continuous media have also been proposed, such as the direct integration approach
introduced by Brown and Martin [17]. While several different algorithms and strategies have been investigated in
recent years, there has been little work done to apply and compare these methods to transport problems where cross
sections are spatially varying, such as one might find in a multi-physics context.

The aim of this work is thus to shine light on a few existing methods by applying them to a simple continuous
transport problem, and comparing their advantages and disadvantages. We propose three evaluation endpoints: perfor-
mance, robustness, and simplicity. Any new method should have a performance at least equal to the current standard.
Since we are considering continuous media, we have chosen to consider the reference method to be delta tracking,
such as implemented in the Monte Carlo code Serpent [18]. New methods must be robust, in the sense that they do
not break easily, and have few conditions attached. If an algorithm cannot easily handle real-world simulations, or
requires that too many other conditions be met, it will serve little use. Lastly, a simple method should be preferred
over a more complicated method. This would allow it to be implemented more efficiently in existing codes, and would
likely also lend itself to being a more robust method. An evaluation of current methods in this context will hopefully
illuminate a direction for better implementing more accurate multi-physics Monte Carlo simulations.

This paper is structured as follows: Sec. 2 will provide an overview of the current available methods to perform
neutral particle transport in continuous media. Sec. 3 outlines the benchmark system used to compare various methods,
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and specifies the examined observables. A discussion of the performance of the investigated tracking methods is
provided in Sec. 4, followed by the concluding remarks in Sec. 5.

2 Particle tracking in continuous media

We start by reviewing the theory of neutral particle tracking in continuous media. Let E be the particle energy. The
probability that a particle at position r⃗ has a collision within an infinitesimal distance ds is known to be

dP = Σt(r⃗, E)ds (1)

where Σt is the total macroscopic cross section as a function of the particle position and energy. The probability
distribution function (PDF) for the particle traveling from its current location at r⃗0 in the direction Ω̂, and having its

first interaction at sΩ̂ + r⃗0 is

f(s) = Σt(sΩ̂ + r⃗0, E) exp

[
−
∫ s

0

Σt(uΩ̂ + r⃗0, E)du

]
. (2)

Upon integration of the PDF, the cumulative distribution function (CDF) for the flight distance d is obtained:

F (d) =

∫ d

0

Σt(sΩ̂ + r⃗0, E) exp

[
−
∫ s

0

Σt(uΩ̂ + r⃗0, E)du

]
ds. (3)

In order to then sample the flight distance, a uniform random variable ξ ∈ U(0, 1) would be generated, and set equal
to the CDF, thereby providing the sampled flight distance d as [19]

F−1(ξ) = d. (4)

2.1 Ray tracing in piecewise homogeneous media

Solving for the inverse of Eq. (3) is hardly feasible, except under certain conditions. Traditionally, the common
assumption used in most Monte Carlo transport codes is that of piecewise homogeneous media. This requires that the
macroscopic total cross section be constant within a given region or volume. With the enforcement of this requirement,
Eqs. 3 and 4 become the much tamer, and more familiar

1− e−Σt(E)d = ξ ⇒ d = − ln(ξ)

Σt(E)
. (5)

Under this assumption, the tracking process then follows an algorithm that we shall refer to in this paper as ray tracing
(the term surface-to-surface tracking is also commonly used in the literature). The general idea of this procedure is
outlined in Algorithm 1. With this approach, care must be taken to ensure that the boundary crossings are properly
handled. The flight distance sampling is only valid for the current material; as such, should a distance larger than
the distance to the closest surface along the direction of flight be chosen, the particle may only move to that surface
intersection. The cell and material are then changed to take into account this new region, and a new flight distance
must then be selected with the new total cross section.

The main limitation of this method is the fact that material cells must have piecewise constant cross sections. Thus,
ray tracing cannot faithfully represent systems with continuously-varying cross sections; nevertheless, it is possible to
adapt ray tracing by dividing cells into many smaller cells, each with a constant cross section, in a method known
as substepping [17]. Depending on the problem being considered, many subdivisions could be required, potentially
using large amounts of computer memory, and being computationally inefficient. Such a method would still only ever
provide an approximate solution to the problem of interest, however, and could only yield the true solution in the
limit of the number of subdivisions tending to infinity.

To date, several alternative tracking methods have been proposed, each with their own advantages and shortcom-
ings. Some of these methods make use of cells and ray tracing in addition to other techniques, while others do not
make use of these classic tools. A brief explanation of each of these methods is provided in the rest of this section.
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Algorithm 1: Ray-tracing procedure.

1 Sample uniform random variable ξ;
2 d := − ln(ξ)/Σt(E);
3 ds := distance to closest surface;
4 if d < ds then
5 Move particle by d;
6 Perform real collision;
7 Tally real collision estimator;

8 else
9 Move particle by ds to new cell;

10 Update Σt(E) for current cell;
11 Goto line 1;

12 end

2.2 Delta (Woodcock) tracking

Delta tracking (also referred to as Woodcock tracking) is a rejection sampling technique, first made popular by
Woodcock in the 1960’s [13]. Subsequently, variants of this technique have been implemented in many Monte Carlo
codes, most notably in Serpent [15]. In this method, a majorant cross section Σmaj(E) is chosen at each energy in the
unionized energy grid, under the constraint that

Σmaj(E) ≥ max
r⃗
Σt(r⃗, E). (6)

Here Σt(E, r⃗) may be a piecewise constant function in space, in which case Eq. (6) reduces to the maximum over all
the cells of the total cross section at the given energy. Using the majorant cross section, a tentative collision site is
selected by sampling a flight distance with

d = − ln(ξ)

Σmaj(E)
. (7)

Once at the new location r⃗1 = dΩ̂ + r⃗0, there are two possibilities: a normal collision (called a real collision) may
occur with probability Preal = Σt(r⃗1, E)/Σmaj(E), or a virtual collision may occur with probability Pvirt = 1−Preal.
Should a virtual collision occur, the particle is just displaced to the collision site, leaving both its flight direction and
energy unchanged. A new flight distance is sampled using Eq. (7), and the process starts again. This continues until
the particle undergoes a real collision. The procedure is outlined in Algorithm 2.

Algorithm 2: Delta tracking procedure.

1 Sample uniform random variable ξ1;
2 d := − ln(ξ1)/Σmaj(E);

3 r⃗1 := dΩ̂ + r⃗0;
4 Tally total collision estimator;
5 Sample random variable ξ2;
6 if ξ2 < Σt(r⃗1, E)/Σmaj(E) then
7 Perform real collision;
8 Tally real collision estimator;

9 else
10 r⃗0 := r⃗1;
11 Virtual collision; goto line 1;

12 end

This method has the advantage of not needing to calculate surface intersections at each flight, which are often
computationally expensive. There are known issues with this method, however, such as its performance in the presence
of localized heavy absorbers, which lead to many virtual collisions [15]. Such inefficiencies are often encountered in
reactor problems, where a control rod can have a much larger total cross section compared to other materials in the
core, despite taking up a very small portion of the total volume. When a particle finds itself in a material with a cross
section which is much smaller than the majorant, many virtual collisions will occur, as many short flight distances will
be sampled without the particle having a real collision (see the previous definition of Preal) [15]. Also problematic is
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the requirement of ensuring a majorant cross section, which can become difficult in the context of continuous media,
where variations in the position change both the density and temperature, in turn changing the macroscopic total cross
section. If one were to drastically overestimate the total cross section in an effort to safely ensure a majorant, the same
inefficiencies such as those observed in the local heavy absorber problem would be encountered, as needless virtual
collisions would be performed. Nonetheless, delta tracking has been proven to be a reliable way to solve problems with
non-constant densities [16].

2.3 Direct sampling

The direct sampling method as proposed by Brown and Martin involves numerically integrating the macroscopic total
cross section to obtain the flight distance [17]. The probability of the particle not having a collision in the cell, and
leaking (either out of the problem or to another cell) can be defined as

PNC = exp
[
− τ(ds)

]
= exp

[
−
∫ ds

0

Σt(sΩ̂ + r⃗0, E)ds

]
. (8)

This equation generally speaking implies numerical integration of the cross section to obtain the optical depth τ(ds)
to the cell boundary. There is then a probability PNC that the particle moves to the next cell, and probability 1−PNC

that it undergoes a collision within the current cell. Should a collision be sampled, then the optical depth at which
the collision will occur may be sampled as

τ(d) = − ln
[
1− (1− PNC)ξ

]
=

∫ d

0

Σt(sΩ̂ + r⃗0, E)ds (9)

and the exact value of d may be found using an iterative algorithm such as Newton’s method, or the bisection method
[17]. Direct sampling has been shown to be a viable method, producing the same results as substepping or delta
tracking [20].

The accuracy of this method however hinges on the ability to obtain very accurate numerical integrations of the
cross section, a requirement which may be difficult to meet in many cases. Notwithstanding, for cases where the
cross section is easily represented analytically and direct integration is feasible and readily conducted, direct sampling
provides an efficient and exact technique for sampling the flight distance of a spatially-varying cross section.

2.4 New (and old) delta tracking variants

2.4.1 Regional delta tracking

Methods to overcome what is known in the nuclear engineering field as the local heavy absorber problem have been
developed in the field of computer graphics, where delta tracking is sometimes used in the rendering of high-fidelity
images. Yue et al. used kd-trees to divide media of interest into different subdomains, each with their own majorant
extinction coefficient (analogous to the total cross section) [21]. Another implementation which used supervoxels was
proposed by Szirmay-Kalos et al. [22]. Both of these works demonstrated speed improvements with their algorithms,
compared to standard delta tracking implementations. These methods work in the same manner as regular delta
tracking, except that the system geometry is divided into arbitrary regions, each having its own majorant cross
section. In doing so, areas of the geometry which have a high cross section relative to other areas can be separated,
preventing their high cross sections from increasing the majorant globally, decreasing efficiency by increasing the
probability of virtual collisions in the other parts of the geometry. More recently, Guo and Chen have used a similar
concept to improve the delta tracking method in reactor transport problems [23]. In their paper, the method is applied
to three different whole-core reactor systems, and each one was simulated faster using their multi-region technique.

Recently, Lemaire et al. have investigated the optimization of algorithms which represent piecewise deterministic
Markov processes, a class of simulations to which delta tracking belongs. Their work examines three different methods
for determining the majorant cross section for use in flight distance sampling [14]. The first and least efficient is the use
of the global majorant, as we have previously outlined for the traditional delta tracking method. Second is the use of
a local majorant, similar to this regional delta tracking variant. The local majorant demonstrated large improvements
in efficiency compared to use of the global majorant [14]. Lastly, a third option is outlined, where the majorant is
calculated by taking the majorant cross section along the flight path of the particle, and is the most efficient of
the three methodologies [14], but is not examined in this work. This method essentially reduced the problem to a
different one-dimensional system for each flight, but, as outlined in Sec. 3, the system that we used to benchmark
these methods is already a one-dimensional rod geometry. In addition, the work of Lemaire et al. does not consider the
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added computational cost that would be required to calculate all surface intersections along the flight path for each
flight. Therefore, while this method would reduce the number of virtual collisions which occur, it is not necessarily
the case that the computational time would be reduced; this method should be further investigated in future work to
determine whether it could pose an advantage over other delta tracking variants.

2.4.2 Negative weighted delta tracking

A method proposed by Legrady et al. provides an option that is far more general than delta tracking, and does
not require the sampling cross section to be a strict majorant [24]. This method is based on two free parameters: a

sampling cross section, Σsmp(r⃗, E, Ω̂) > 0, and a probability of having a real collision, q(r⃗, E, Ω̂) ∈]0, 1[. Both of these
parameters may be taken to be arbitrary functions of the phase space coordinates. For each flight, the distance is
sampled using Eq. (7), replacing Σmaj(E) with Σsmp(r⃗, E, Ω̂). Once the particle is moved to the tentative collision
site, a real collision is performed with probability q, and a virtual collision with probability 1 − q. A fair game is
achieved by altering the weight of the particle (w) at both real and virtual collisions, as outlined in Algorithm 3 [25].

Algorithm 3: Negative weighted delta tracking procedure.

1 Sample uniform random variable ξ1;
2 d := − ln(ξ1)/Σsmp(r⃗0);

3 r⃗1 := dΩ̂ + r⃗0;
4 Sample random variable ξ2;
5 if ξ2 < q then

6 w := w
Σt(r⃗1, E)

q Σsmp(r⃗0)
;

7 Perform real collision;
8 Tally real collision estimator;
9 Tally total collision estimator;

10 else

11 w := w
1− Σt(r⃗1,E)

Σsmp(r⃗0)

1− q
;

12 Virtual collision; goto line 1;
13 Tally total collision estimator;

14 end

Upon examination of Algorithm 3, it is evident that the sign of the particles weight will change when a virtual
collision is sampled, and the cross section is smaller than the sampling cross section. In spite of the appearance of
negative weights, which usually lead to inflated variances for the target observables, Legrády [24] and Molnár [25]
showed that it is possible for this method to perform just as well, if not better than standard delta tracking, provided
that Σsmp and q are properly chosen for the problem at hand. The choice of these parameters is non-trivial, and highly
dependent on the geometric and material properties of the problem to be examined. Also, the best choice of Σsmp and
q in one portion of the geometry may not be a good choice in another portion [24].

2.4.3 Carter, Cashwell, and Taylor tracking

An older, and little discussed variant of delta tracking is that proposed by Carter, Cashwell, and Taylor in 1972, which
we shall simply refer to as CCT tracking (or CCTT) in this work [26]. This method also allows for a flexible sampling
cross section, which need not be a strict majorant, and which can be cast as a function of the phase space coordinates.
Contrary to negative weighted delta tracking, no other free parameter is introduced. A key element of this method
(outlined in Algorithm 4), is that the magnitude of the particle weight increases every time a (real or virtual) collision
is attempted at a position where the sampling cross section underestimates the actual total cross section. Additionally,
on virtual collisions, the sign of the weight is changed in conjunction with its magnitude.

It should be noted that, if the sampling cross section Σsmp is a majorant, the delta tracking algorithm is recovered,
preventing the sign of the particle from changing, or the magnitude of the weight from increasing. In regions of the
phase space where Σsmp is not a majorant, however, the factor F (which is always greater than unity, as defined
in Algorithm 4), multiplies the particle weight. The algorithm has the property that, if the sampling cross section
overestimates the total cross section by a small amount, then the weight increase due to the factor F is only marginally
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Algorithm 4: CCT Tracking procedure.

1 Sample uniform random variable ξ1;
2 d := − ln(ξ1)/Σsmp;

3 r⃗1 := dΩ̂ + r⃗0;
4 if Σt(r⃗1) < Σsmp(r⃗0) then
5 Use delta tracking algorithm;
6 else
7 Tally total collision estimator;

8 D :=
Σt(r⃗1)

2Σt(r⃗1)−Σsmp(r⃗0)
;

9 F := 2
Σt(r⃗1)

Σsmp(r⃗0)
− 1;

10 Sample random variable ξ2;
11 if ξ2 < D then
12 w := w · F ;
13 Perform real collision;
14 Tally real collision estimator;

15 else
16 w := −w · F ;
17 Virtual collision; goto line 1;

18 end

19 end

greater than unity, with F approaching unity as Σsmp approaches Σt from below. This is a highly desirable feature, as
it guarantees that small underestimations of the actual total cross section will result in small increases in the variance.

At first glance, this method appears to be rather different from the previously outlined negative weighted delta
tracking. Despite this, and the fact that CCTT was developed much earlier, it is in fact a special case of negative
weighted delta tracking. Molnar et al. have pointed out that the selection of q = Σt/(Σt + |Σsmp −Σt|) in negative
weighted delta tracking yields exactly the algorithm for CCTT [25]. With this choice of q, CCTT and NWDT reduce
to the same method if they employ the same sampling cross section. Compared to the general case of negative weighted
delta tracking, where q is an independent variable, CCTT is easier to use, as there is only one independent variable
which must be determined (Σsmp). Determination of Σsmp is easier in CCTT as well, as it is known that the closer
the sampling cross section is to being the true majorant, the fewer negative particles will be born. Conversely, there
are no straightforward criteria to determine Σsmp and q in negative weighted delta tracking for any given system.

3 Benchmarking in a 1D System

In order to test these different transport methods in the context of continuous media, either due to density or tem-
perature variations, a series of one-dimensional rod systems are proposed. All of these systems have a length of 2 cm
(x ∈ [0, 2]), with vacuum boundary conditions at either end. Particles can only move in the forward or the backward
direction; scattering is isotropic (forwards or backwards with equal probability), the systems are non-multiplying, and
the one-speed approximation is used. For simplicity, only the total cross section is allowed to vary spatially, while
the probabilities for scattering and absorption remain constant at all locations in the rod, with values of 0.7 and 0.3
respectively. For these fixed-source problems, all particles begin at x = 0, traveling into the rod. The total cross section
was allowed to vary spatially according to several different functional forms, which are provided in Table 1 and are
inspired (but different) from those used by Brown and Martin [17]. Care is taken to ensure that the cross sections
are all positive over the system domain. For each transport method and cross section profile combination, 103 batches
of 105 particles were used to generate the reported data. The C++ source code for the program used to carry out
the simulations described in this section, as well as the numeric results, have been made publicly available under the
CeCILL v2.1 license [27].

3.1 Examined Transport Methods

The series of systems previously described are solved using several different transport methods, based on the theory
detailed in Sec. 2. To provide a baseline, the substepping method (SS) is used, assuming a constant cross section over
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Table 1: Functional forms of the total cross section (in units of cm−1) as a function of position x (in units of cm,
x ∈ [0, 2]), in the rod.

Linearly Increasing (LI) Σt(x) = x

Linearly Decreasing (LD) Σt(x) = 2− x

Exponentially Increasing (EI) Σt(x) = 0.1e2x

Exponentially Decreasing (ED) Σt(x) = e−3x

Sharp Gaussian (SG) Σt(x) =

√
2

π
exp

[
−
(
x− 1.23

0.05

)2
]
+ 0.1

Broad Gaussian (BG) Σt(x) =

√
2

π
exp

[
−
(
x− 1.23

)2]
+ 0.1

each sub-interval (using the mid-point of the region). One hundred sub-intervals were used for all problems, providing
a reasonable approximation for most of the proposed systems.

Direct sampling (DS), as described by Brown and Martin, is used, with the slight alteration of replacing Newton’s
method with the bisection method. While it is claimed that Newton’s method could not fail in the particular case of
cross sections which are guaranteed to be positive, numerical difficulties were encountered when the value of the cross
section was close to zero, causing the method to fail1. As such, the bisection method was used due to its simplicity,
and the fact that it can never fail, despite it being somewhat less efficient.

Standard delta tracking (DT) was examined using the “best case scenario” of taking the maximum cross section
for the system over the given domain as the majorant. In practice, this is rarely the case and usually the value used as
the majorant is somewhat greater than the maximum cross-section value, leading to extra virtual collisions. Regional
delta tracking (RDT) was applied by dividing the problem domain into 5 equi-spaced bins, and the majorant cross
section in each region was taken to be the maximum value of the cross section over that portion of the domain. When
a particle moves from one bin to another, it is stopped at the boundary where the majorant is updated for the new
region, and a new flight distance is sampled. This is required to make sure the majorant used to sample the flight
distance is never smaller than the true majorant in the region.

The performance of negative weighted delta tracking (NWDT) is dependent on the value ofΣsmp and the probability
of a real collision (q), which are both free parameters chosen to have any reasonable value (0 < q < 1 and Σsmp > 0).
The optimal choice of these parameters is highly dependent on the problem geometry and material properties. The
values of q = 0.3 and p = Σsmp/Σmaj = 0.85 have been chosen for these systems, somewhat arbitrarily. These
values seem to perform reasonably well across all the examined cross section profiles. Further discussion as to the
determination of the optimal values for use with this method is outside the scope of this work. Implementing the
regional variation of negative weighted delta tracking (RNWDT) was done in a similar way to the traditional delta
tracking, with the sampling cross section in each bin also being 85% of the maximum value of the cross section within
the bin. Like with RDT, a particle is stopped at the boundary of a region, where the sampling cross section is updated
and an new flight distance is sampled. This is not strictly necessary for the algorithm, but was chosen as it better
matches the procedure required in RDT.

Carter, Cashwell, and Taylor Tracking (CCTT) was performed using the same ratio Σsmp/Σmaj = 0.85 as the
negative weighted delta tacking methods, and likewise for its regional variant (RCCTT). RCCTT also stops particles
at bin boundaries to update the sampling cross section and flight distance. A second variant of Regional Carter
Tracking was also implemented, however, where the initial value of the sampling cross section is taken to be 85% of
the maximum, but is progressively updated as locations are found where the total cross section is greater than the
sampling cross section. This method is referred to as Improving Regional Carter Tracking (IRCCTT).

The fiducial quantities which shall be examined with these different transport methods are the leakage rate, the
integral collision rate (average number of collisions per particle), and the collision density. In transport methods that
have virtual collisions, such as delta tracking and its related methods, two estimators can be used to calculate the
collision density and number of collisions per particle: one estimator which scores only at real collisions, and another
which scores at both real and virtual collisions, previously described by Leppänen [28]. These shall be referred to
as the real collision estimator, and the total collision estimator for the duration of this work. The quantities which
were tallied for each family of tracking methods are presented in Table 2. Standard variance reduction techniques
such as implicit capture and Russian Roulette are used for all methods. These techniques are applied to the negative
particles by using the absolute value of their weight in calculations. The cutoff weight for roulette is |w| = 0.6, while
the survival weight is 1 for positive particles, and −1 for negative particles. Several of the tested methods also provide

1 It is well known that Newton’s method has the tendency to fail when the first derivative of the function of interest is close
to zero, causing the method to diverge due to overcorrections to the estimate.
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Table 2: Quantities which are tallied for the real and total collision estimators of the collision density for each family
of transport method. These values are then normalized by the volume of the tally bin when recorded.

Real Total

SS / DS w -

DT w
wΣt(r⃗)

Σmaj

NWDT
wΣt(r⃗)

qΣmaj

wΣt(r⃗)

Σsmp

CCTT w
wΣt(r⃗)

Σsmp

the possibility of a particle weight being increased in magnitude. Where this is the case (NWDT- and CCT-based
methods), particle splitting is also implemented: particles are split once they obtain a weight magnitude of 2.0 or
greater.

3.2 Evaluation of Methods

Well known in the transport community is the Figure of Merit (FOM), a quantity used to compare the efficiency of
different codes. One accepted definition is

FOM =
1

TR2
(10)

where T is the wall-clock time required to perform the simulation, and R is the relative standard error of the estimated
quantity; in this paper, the standard error was estimated using independent replicas.

The problem with using this definition for a simple model such as the one proposed in this work is that the
wall-clock time of our model is not necessarily representative of the behaviour of the tracking algorithm. In a real,
continuous-energy MC calculation, about 80% of the time is spent looking up the values of cross sections [29,30].
(Conversely, in our simple model, the calculation time is overwhelmingly dominated by the pseudo random number
generator). Given this fact, the amount of time required to perform a real simulation is highly correlated to the number
of cross section searches required by a method. In an effort to obtain evaluations more representative of how methods
might perform relative to one another in a production-level, continuous-energy MC transport code, the time parameter
T in Eq. (10) has been replaced with the total number of times the actual total cross section has been looked up,
which we will denote by Nxs.

For the direct sampling and substepping methods, the calculation ofNxs was slightly more nuanced. Direct sampling
not only requires performing a search for the cross section, but must also integrate it along the line of flight. As the
time to complete such an operation is highly implementation-dependent, it was chosen to count each integration of the
cross section as only one cross section search, therefore incrementing Nxs by one. This choice is somewhat arbitrary
and it is likely to yield unrealistically favorable evaluations for the method; as we shall see in the following, this choice
actually has very little importance. Substepping is also peculiar, as each region has a constant cross section. As such,
each time a particle moves from one region to another, and a new cross section must be sought for the region, Nxs is
incremented by one.

4 Results and discussion

4.1 Integral collision rate and leakage

Part of the results of our calculations are presented in Table 3. For the sake of conciseness, we limit the content of
this table to the Exponentially Increasing and the Broad Gaussian cross-section shapes (see Table 1), although our
analysis is based on all the calculation results.

One of the first observations is that the RDT method always outperformed the traditional DT method, regardless
of the cross section or the estimator being used. The extent to which the regional variant performed better than the
standard method was slightly dependent on the form of the cross section being examined. RDT showed greater im-
provement for cross sections which were monotonically increasing, than for those which were monotonically decreasing.
This can be seen in the exponential cross sections where, for exponentially increasing, RDT outperformed DT by a
factor of more than 3.5 for the real collision estimator. For the exponentially decreasing cross section, the ratio of their
respective FOMs was 2.9.
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CCTT and RCCTT exhibit a behavior quite similar to that seen between DT and RDT. RCCTT always outper-
forms CCTT, though the difference between increasing and decreasing cross sections was not observed. This is likely
due to the sampling cross section for CCTT and RCCTT being only 85% of the maximum cross section, either for the
entire problem, or for the region in which a particle finds itself. In this case, at the location of the maximum, there is
a possibility of the particle changing sign, and the magnitude of the particle weight will increase. The comparison of
CCTT vs DT and RCCTT vs RDT is more difficult, however. There were some cases where CCTT outperformed DT,
and others where DT outperformed CCTT. The same is true for the relationship between RCCTT and RDT. Taking
the Broad Gaussian cross section as an example that might be more typical of many real world reactor problems,
where particles see both an increase and a decrease in the cross section, it was observed that DT and RDT performed
marginally better than CCTT and RCCTT. These values can be seen in Table 3. Interestingly, the IRCCTT method
always performed just as well as the RDT method, and sometimes slightly better. As the simulation runs, IRCCTT
decreases the probability of a particle having a collision in a location where the sampling cross section under-estimates
the maximum, progressively reducing the probability of a collision occurring where the particles sign would change,
and weight magnitude would increase, therefore pushing the method to behave more like RDT.

One striking difference between the CCTT family and the NWDT family is the difference in the amount of particle
splitting which occurred in each method. NWDT could sometimes have to transport as many as 30% extra particles,
as particle weights would increase drastically, causing high amounts of splitting. For the Broad Gaussian cross section,
NWDT transported 30.1% extra particles, while CCTT only transported 0.0013% extra particles, a marginal increase
over the 108 particles initially prescribed for each simulation. Despite this large number of extra particles, NWDT
does not perform quite as many additional cross section evaluations. With the Broad Gaussian, NWDT performed
1.72 cross section look-ups per history, compared to 1.66 for DT. The near factor of 10 between their FOMs is then
accounted for by the higher variance for NWDT. A higher variance is not surprising, as the large number of extra
particles indicates large changes in the magnitude of particle weights.

RNWDT always outperformed NWDT as seen with DT and RDT as well as CCTT and RCCTT. NWDT and
RNWDT exhibited poorer performance for all for all test cases compared to DT, RDT, CCTT, and RCCTT. DS
typically had a FOM an order of magnitude lower than that of NWDT, and performed similarly to SS.

4.2 Collision density

The FOM for the collision density of four selected cross sections are provided in Figure 4. Several observations can
be made with the FOM of the collision density which seem rather contradictory to the previously discussed results
for integral collision rates. One such example in Figure 4a is that NWDT has a substantially higher FOM from x = 0
up to x ≈ 1.25 compared to DT and CCTT. From x = 0 to x ≈ 0.5, NWDT even performs better than the meshed
variants. Figures 4b and 4c also have substantial portions of the problem domain where NWDT performed better
than DT and CCTT when using the real collision estimator. However, in the regions having the largest number of
collisions, DT and CCTT do perform better than NWDT. Our choice of the real collision probability, q = 0.3, leads to
a larger number of real collisions in NWDT (compareded to DT) in regions where the majorant cross section is much
larger than total cross section. A larger number of real collisions in these regions will of course increase the FOM for
the real estimator in that location, explaining why NWDT is able to outperform DT and CCTT in certain regions.
This lack of real collisions in optically thin regions is congruous to the known inefficiencies in delta tracking, due to
the exclusive use of the real collision estimator, and is recognized as one of the main disadvantages of the method [15].

Saw-tooth features are also observable in the FOM for the RNWDT and RCCTT methods, particularly in Figure 4a
for the exponentially increasing cross section. These features always occur near the boundary of two regions, where the
sampling cross section changes. For RCCTT, a dip in the FOM, observed near x ≃ 1.6 cm, is caused by the particles
with negative weights being generated in this region; indeed, at the location of the dip, the sampling cross section
underestimates the real cross section. The negative weights of course increase the variance in that region, causing
this dip. This explanation is also the reason behind the teeth in the RNWDT FOM. These teeth are also present the
other cross sections, but sometimes appear to be decreasing, as seen with the exponentially decreasing cross section
in Figure 4b. For a monotonically decreasing cross section, negative particles are produced at the left side of the bin,
decreasing the FOM. This is also why the teeth change from increasing to decreasing for the Gaussian cross sections.

In addition, despite the fact that the FOM of the RNWDT method for the integral collision rate is 2.7 times
smaller than that of DT, RNWDT performs just as well as both DT and CCTT in estimating the spatial collision
density. This surprising observation will be discussed further in Sec. 4.4.

Presented in Figure 5 are the FOM for the collision density calculated with the total collision estimator for the
same cross sections. The main difference with the real collision estimator (Fig. 4) is the presence of saw-teeth in
all of the regional methods. When moving from one region to another, the sampling cross section changes, which in
turn alters the number of virtual collisions which will occur. For methods such as RCCTT, IRCCTT, and RDT, this
leads to an increase in the FOM for the exponentially increasing cross section, because of the increased probability
of a virtual collision, as seen in Figure 5a. NWDT also has a performance much more comparable to DT and CCTT
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Table 3: Tabulated results of the average number of collisions per particle for the exponentially increasing and broad
Gaussian cross sections. For monotonically increasing cross sections, the total collision estimators for delta tracking
and Carter Tracking perform worse than the real collision estimators. This behavior is not seen in monotonically
decreasing and non-monotonic cross sections.

Exponentially Increasing

Estimator Avg. Collisions / Part. FOM

SS
Real 1.701157 ± 0.000110 2.262× 10−2

Total - -

DS
Real 1.701195 ± 0.000108 2.760× 10−2

Total - -

DT
Real 1.701328 ± 0.000110 2.098× 10−1

Total 1.701260 ± 0.000125 1.623× 10−1

RDT
Real 1.700965 ± 0.000114 7.745× 10−1

Total 1.701021 ± 0.000113 7.762× 10−1

NWDT
Real 1.701128 ± 0.000321 3.657× 10−2

Total 1.700933 ± 0.000285 4.632× 10−2

RNWDT
Real 1.701366 ± 0.000334 7.669× 10−2

Total 1.701229 ± 0.000182 2.579× 10−1

CCTT
Real 1.701079 ± 0.000113 2.321× 10−1

Total 1.701017 ± 0.000127 1.846× 10−1

RCCTT
Real 1.701154 ± 0.000127 7.006× 10−1

Total 1.701237 ± 0.000121 7.742× 10−1

Broad Gaussian

Estimator Avg. Collisions / Part. FOM

SS
Real 1.088740 ± 0.000087 1.708× 10−2

Total - -

DS
Real 1.088684 ± 0.000085 2.903× 10−2

Total - -

DT
Real 1.088836 ± 0.000085 9.964× 10−1

Total 1.088815 ± 0.000078 1.175× 100

RDT
Real 1.088762 ± 0.000088 1.117× 100

Total 1.088732 ± 0.000086 1.171× 100

NWDT
Real 1.088649 ± 0.000256 1.053× 10−1

Total 1.088626 ± 0.000126 4.344× 10−1

RNWDT
Real 1.088408 ± 0.000273 1.022× 10−1

Total 1.088612 ± 0.000131 4.424× 10−1

CCTT
Real 1.088732 ± 0.000108 6.875× 10−1

Total 1.088766 ± 0.000096 8.763× 10−1

RCCTT
Real 1.088668 ± 0.000114 7.281× 10−1

Total 1.088689 ± 0.000100 9.434× 10−1

through the entire problem geometry when using the total collision estimator. This is again in contradiction with the
behavior observed with the integral collision rate estimated with the total collision estimator, as NWDT always had
a worse FOM than DT and CCTT.

Both the SS and DS methods demonstrated much worse performance than the other methods, regardless of the
cross section examined. The FOM for these methods has been left out of the plots in Figures 4 and 5, as values were
indistinguishable from zero, given the scale imposed by the FOM for the other methods. It should be noted that our
criteria for determining the FOM for these two methods was somewhat generous. For SS, several simulations would
need to be done to ensure that enough steps are present to obtain an accurate result. Our reported values assume
that the number of required steps is known, despite not having any knowledge of the problem solution. In the case
of DS, an integration of the cross section was considered to be equivalent to the time required for one cross section
look-up. Indeed, if the density of a material or its isotopic concentration is represented as a polynomial, with a constant
material temperature, it is quite likely that the integration to determine PNC from Eq. (8) can be carried out quite
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Fig. 4: Figure of Merit throughout the rod, using the real collision estimator, for the selected cross section profiles.

fast and efficiently. A continuous representation of the temperature (be it by polynomial or some other method) is
likely to greatly hinder the performance of DS however. This is because there is no linear relationship between the
temperature and the cross section. As such, many small steps along the flight path would need to be made; at each
step the temperature would be evaluated, and the cross section at that location would then be Doppler broadened,
in an effort to approximate the value of PNC . Depending on the temperature profile, many small steps might need
to be taken, and many evaluations the total cross section may need to be carried out, in order to obtain an accurate
estimate of PNC . It is arguably conceivable to transform a polynomial representation of the temperature field into a
polynomial representation of the spatial dependence of the macroscopic cross section, which could make DS be truly
competitive. However, such a transformation would likely be difficult to construct and expensive to update on the fly,
during the course of a multi-physics simulation.

4.3 Regional splitting effects on FOM

From Figure 6, for the three examined regional tracking methods (RDT, RNWDT, RCCTT) it is always observed
that increasing the number of regional divisions in the system leads to a decrease in the number of true cross section
look-ups required to perform the simulation. This is due to the fact that, within a region, the initial flight distance is
determined with a sampling cross section or majorant cross section which is specific to only that region. If the sampled
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Fig. 5: Figure of Merit throughout the rod, using the total collision estimator, for the selected cross section profiles.

distance then places the particle in a new region, the particle is moved to the next region, and begins sampling a new
distance with the sampling/majorant cross section of that region. This provides a fair way to transport particles while
minimizing look-ups of the true cross section. These findings are in agreement with the results previously obtained by
Guo and Chen [23].

In Figure 6, it is also apparent that there are diminishing returns on increasing the number of regions in a system.
For all three methods, at least 85% of the total possible decrease to the number of cross section evaluations had been
reached once six regions were used. Therefore, adding more than six regions for this system would not be beneficial.
Such a response is important to note, as regionalization in a 3D fully continuous transport code with an analogous
method such as voxelization, with each voxel needing to contain a set of sampling/majorant cross sections, could quickly
increase the memory footprint of such a method. Such a method however, has recently been used in the GUARDYAN
Monte Carlo neutron transport code [31]. Their voxelization technique not only divides the spatial domain into bins,
but the energy domain as well. With this implementation, impressive speedup factors of up to 34–35 were obtained
under certain conditions. One might also envision a modified version of these regional methods that treat each cell in
the geometry as its own region, requiring no more resources than already required for current transport methods. Such
an implementation has already been used in Serpent with nonuniform densities, and demonstrated very reasonable
performance [16].
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Fig. 6: The number of true cross section evaluations performed per particle. All batches were simulated in the Broad
Gaussian system.

While both of these techniques seem promising, more work must be done to compare these two methods. Specifically,
comparisons must be made in regards to the memory footprint of each method, and potential speedup which one might
expect to gain, and the overall ease of implementation and use.

4.4 Collision estimators

Two different collision estimators were evaluated for each method (excluding substepping and direct sampling). The
first is the standard collision estimator, which only scores at real collisions. The second is the total estimator, which
scores at both real and virtual collisions. Table 3 presents a subset of the data for the average number of collisions
per particle. These samples have been selected as they demonstrate the differences in performance between collision
estimators, transport methods, and material properties.

Under the Exponentially Increasing cross section, delta tracking performed measurably better with the real collision
estimator than with the total collision estimator, having a FOM which was 29% greater. Looking at delta tracking
performance under the Broad Gaussian, the total collision estimator then performed better by 18%. This is very
different from the regional delta tracking variant, which had a very similar performance for the two estimators under
both cross section profiles. The lack of a discrepancy between the two estimators with this tracking method is due to
each region having its own local majorant. Because the local majorant is usually much closer to the minimum value of
the cross section in the region, the likelihood of a virtual collision is smaller than if the global majorant had been used.
With fewer virtual collisions, the estimator behaves similarly to the real estimator, leading to a similar performance.

Conversely, negative weighted delta tracking performed consistently better when using the total estimator, as
compared to using the real estimator. This is also attributed to the mechanics of the method, as the probability of a
collision being virtual is constant, and not affected by the shape of the cross section along the particles path. Because
of this, the total collision estimator would be expected to always outperform the real collision estimator, as more scores
are provided when also counting virtual collisions.

Passing from the integrated collision rate to the spatial collision densities in Figures 4 and 5, different conclusions
can be drawn. Figure 4a presents the FOM as a function of position for the Exponentially Increasing cross section,
using the real collision estimator, and Figure 5a likewise but for the total estimator. Looking at the curves for delta
tracking, it can be seen that the FOM never exceeds 0.004 within the problem domain while using the real estimator,
but the FOM for the total collision estimator remains above 0.01 from x = 0 cm up to x = 1.0 cm, and then ends
just below 0.005 at x = 2.0 cm. The total collision estimator is clearly much more efficient at determining the spatial
collision density than the real collision estimator for this problem. This is the opposite of what was observed for the
integrated collision tally, where the real collision estimator was generally less efficient. Further complicating this is
the fact that for the Broad Gaussian cross section, presented in Figures 4d and 5d, the total collision estimator does
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indeed perform better than the real collision estimator. Negative weighted delta tracking performed better with the
total collision estimator in both cases, as seen in Table 3. These observations would suggest that the best estimator is
dependent on the transport method, but more interestingly, such as with delta tracking, the estimator that performs
better at tallying the integral reaction rate may perform worse at tallying the spatial reaction rate. One could choose
to have more knowledge of the spatial reaction rate, at the expense of having less knowledge about the magnitude of
the reaction rate, or vice-versa. A possible explanation of this finding is that the virtual collision estimator has a high
covariance, as particles experiencing several virtual collisions could score in several bins, without changing direction or
energy. The integrated collision rate (f) is the sum of the collision rates in each bin (fi), which make up the collision
density:

f =
∑

i

fi. (11)

From general probability theory, the variance of quantity f can be described as:

σ2
f =

∑

i

σ2
i +

∑

i

∑

j,j ̸=i

ρijσiσj , (12)

where σ2
i is the variance of fi, and ρij is the correlation coefficient between the fi and fj quantities. By increasing

the correlation between bins, the correlation coefficient would increase. From Eq. (12), it is observed that, for given
values of σi, the variance of the integrated collision rate increases with an increase of the correlation coefficients.

4.5 Discussion

One important result of these comparisons is that no method can be considered better than another for all, or even
most cases when comparing FOM alone. It is quite evident that, for a given problem, one transport method might
perform much better at calculating the integral collision rate, while that same method is the worst at calculating the
spatial collision density for that same problem. Furthermore, the appropriateness of each method for a given case also
changes with the geometry of the problem, and the material properties. Due to these factors, it is impossible to single
out just one method which is dominant. From our observations, it does seem evident that substepping and direct
sampling are the methods which provided the worst performance, and were consistently much less efficient than the
other examined methods. Similarly contradicting results were observed regarding the use of the real collision estimator,
or the total collision estimator. Neither proved to consistently have superior performance.

The implementation of regionalization for delta tracking, negative weighted delta tracking, and Carter Cashwell
and Taylor tracking did lead to an increase in performance for all methods when looking at the spatial collision density,
and integral collision rate tally. There is clearly the possibility to obtain gains in performance by regionalizing the
problem geometry. Depending on how regionalization is implemented, however, this could potentially lead to difficulties
with how to split a system, and extra memory requirements, should a large number of regions be desired. Further work
on this subject is required to determine whether a method such as that used in computer graphics with voxelization
would be better or worse than an approach using the material cells such as already examined by Leppänen [16].

5 Conclusions

The field of Monte Carlo simulation for neutron transport is quickly moving in the direction of attempting to solve
coupled multi-physics problems. This paper has reviewed several methods that solve the problem of efficiently sampling
the flight kernel in cases where the total macroscopic cross section is not piecewise constant, but varies spatially in
a continuous manner. Numerical simulations have been carried out for a simple, yet significant, one-dimensional
transport benchmark.

The three criteria initially considered in this paper for any new transport method were performance, robustness, and
simplicity. Should the authors have to rank the examined methods based on these criteria, they would assign direct
sampling with the lowest mark, due to the complexity required to compute the numeric integration under certain
circumstances. Next would be the negative weighted delta tracking, and regional negative weighted delta tracking
methods. While these algorithms do pose solutions to the problem of determining the true majorant cross section in
continuous media, the authors are unaware of any straightforward criteria for choosing the real collision probability
and sampling cross section for a problem. Also, despite the number of required cross section evaluations being similar
to that of delta tracking, the amount of particle splitting which was observed lead to a serious need for synchronization
in parallel implementations, when particles need to be added to the bank. Tied for first are delta tracking and Carter,
Cashwell, and Taylor tracking. Delta tracking is of course well proven, and quite simple to implement, though hindered
by the requirement of knowing the majorant cross section, and by the well-known local heavy absorber problem. CCT
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tracking is not much more complicated than delta tracking, and does not require the knowledge of the true majorant.
It does require the use of negative weights, however, which could cause problems with the variance in certain situations
(which have not been encountered in our simulations). Despite this fact, CCT tracking performed just as well as delta
tracking, and therefore provides a possible path forward.

Future work must be conducted to further evaluate these methods. One aspect yet to be explored is the performance
of these methods in eigenvalue problems, to be solved by power iteration. Multiplying systems could potentially pose
unique considerations when using methods such as CCT or NWDT, which produce negative-weighted particles. More
work should also be conducted to explore the method (not considered here) which uses the majorant along the flight
path, as described by Lemaire et al. [14]. This method should be evaluated in a three-dimensional Monte Carlo code
to assess the possible benefits and drawbacks of using the majorant cross section along the flight path, and to see the
true effects on computation time when surface intersections must be calculated along the entire trajectory.
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5 - Conclusions for Particle Tracking Methods

We recall here our main findings concerning particle tracking in stochastic media and in continuously-
varying media.

5.1 . Acceleration Techniques for Stochastic Geometries

From the work presented in Chapter 3, focusing on the use of different acceleration techniques for
performing transport in Poisson tessellations, the conclusions depended on whether or not a cell search
mesh was used in the problem. If a cell search mesh is not used or is not properly refined, then the following
trends were observed:

• Surface tracking with a neighbor map is always better than delta tracking or delta tracking with a
neighbor map.

• Neighbor maps do improve the performance of delta tracking, with the largest improvement observed
for cases where Λ ≫ λ.

• Storing the geometry kernel with banked particles improves performance for surface tracking, but
provides little improvement to delta tracking.

If a cell search mesh is used and is properly refined, then it was observed that:

• Surface tracking is better when Λ ≫ λ, while delta tracking is better when Λ ≪ λ.

• Neighbor maps reduce the performance of delta tracking.

• Storing the geometry kernel with banked particles reduces the performance.

Future work should focus on the use of these acceleration techniques for the class of stochastic inclusions
(in particular the prominent example of spherical inclusions), whose geometrical properties and connectivity
structure are inherently different from those of random tessellations. For these types of media, neighbor
maps do not generally help: when a particle moves between random spheres, it must first pass through
the common background matrix. Each sphere therefore has only one neighbor, and the background matrix
neighbors all spheres, so neighbor maps would provide no benefit. In this case, it is unknown whether surface
tracking or delta tracking is more efficient.

5.2 . Transport in Spatially Continuous Media

In Chapter 4 we have compared the performance of delta tracking, negative-weighted delta tracking, and
direct sampling for several single speed, 1D, fixed-source transport problems. We have also considered the
effects of regionalization on delta tracking and negative-weighted delta tracking. In general, the negative-
weighted delta tracking variant of Carter et al. performed very similarly to delta tracking, when using a
sampling cross section which was 85% of the majorant value of the cross section. In the examined fixed-
source problems, the simultaneous presence of positive and negative weights did not appear to greatly
degrade performance; on the contrary, Carter et al.’s method demonstrated slightly better performance on
certain spatial scores, depending on the cross section shape, the position in question, and the estimator.
Performance would certainly decrease, however, if an even lower sampling cross section were used, as
this would generate more negative particles, further increasing the variance in scores. The performance
of the negative-weighted delta tracking variant proposed by Legrady et al. typically demonstrated poorer
performance than the other two methods. For certain cross section shapes, such as the exponentially
increasing cross section for example, Legrady et al.’s variant had much better performance on spatial scores
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when compared to the other two methods for the majority of the problem domain. For other problems,
such as the broad Gaussian, it demonstrated worse performance at all positions. It appears that the choice
of the real collision probability q has a large effect on the efficiency of the method for a given problem,
and that the optimal choice is highly problem-dependent. This makes the application of Legrady et al.’s
variant of negative-weighted delta tracking in a general-purpose Monte Carlo code quite difficult, as the
method appears to be much less robust than either delta tracking, or Carter et al.’s variant. Direct sampling
demonstrated very poor performance compared to the three other methods, despite the generosity it was
afforded in the calculation of its performance criteria. Dividing the problem domain into regions always
improved the efficiency of the delta tracking and negative-weighted delta tracking algorithms, but needlessly
increasing the number of regions demonstrated diminishing returns. These results indicate that either delta
tracking or Carter et al.’s variation of negative-weighted delta tracking would be the best candidates for
treating spatially continuous cross sections in a general-purpose Monte Carlo code, as both demonstrated
excellent performance, and appeared to be rather robust in general.

We stress that our analysis conducted in Chapter 4 only considered fixed-source transport problems.
In Part II, we will consider the use of delta tracking and Carter et al.’s method for eigenvalue problems
solved by power iteration, in view of their significance to reactor physics applications. In Chapters 7 and
8, we will see that, while Carter et al.’s variant performs well for fixed-source problems, it leads to severe
instabilities when applied to k-eigenvalue power iteration problems. We will propose some novel strategies
based on weight cancellation methods, and demonstrate their potential to counter these issues through
several numerical applications on benchmark configurations.
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6 - Negative-Weighted Delta Tracking with
Weight Cancellation

In Part I of this manuscript, we have focused on the evaluation of existing transport methods which can
treat spatially continuous cross sections. In Chapter 4, these methods were compared using one-dimensional
single-speed fixed-source benchmark problems, with total macroscopic cross sections that exhibited different
types of spatial behavior. From this study, we have determined that the best candidates for treating spatially
continuous cross sections in a robust, general-purpose Monte Carlo code would be either delta tracking, or the
negative-weighted delta tracking variant proposed by Carter et al. [1]. Since Chapter 4 only considered fixed-
source transport problems, it is of utmost importance to evaluate the chosen particle-tracking methods in
the context of k-eigenvalue power iteration, which is the most frequently used method for solving eigenvalue
problems of interest in reactor physics. In Sec. 6.1, we will therefore address the modifications which must
be made to the standard power iteration algorithm to facilitate the use of negative weights, and show that
computational instabilities might arise due to their use. We will also outline why weight cancellation, a
procedure by which the positive and negative statistical weights carried by the particles are “summed up”
by exact or approximate methods, is a viable solution to these instabilities. Section 6.2 will first present an
approximate cancellation technique, as a possible strategy to remedy the previously mentioned instabilities.
An exact cancellation method will subsequently be developed in Sec. 6.3. While the majority of Part II
will be devoted to the use of weight cancellation to solve the instabilities encountered while using negative-
weighted delta tracking for power iteration, these findings have inspired other possible applications of weight
cancellation for Monte Carlo simulations in the field of nuclear reactor physics, which will be then considered
in Part III.

6.1 . Failure of Negative-Weighted Delta Tracking with Power Iteration

The delta tracking method is well-known in the Monte Carlo community, and part of its success stems
from the fact that it is routinely used in the Serpent Monte Carlo code, which is primarily intended for reactor
physics applications [2–4]. Delta tracking has therefore already been proven in power iteration simulations;
it requires no special treatment or modifications to the general algorithm for power iteration [5]. To the
best of our knowledge, the only existing transport code which uses any variant of negative-weighted delta
tracking is GUARDYAN, developed at the Budapest University of Technology [6]. GUARDYAN is unique
in that it was written to only run on Graphics Processing Units (GPUs), and is devoted to dynamic (time-
dependent) Monte Carlo simulations for the study of reactor transients. The code adopts Legrady et al.’s
variant of negative-weighted delta tracking, always with a majorant cross section for a sampling cross section,
therefore preventing the production of negative-weighted particles according to Alg. 2.3 [6]. It appears that
negative-weighted delta tracking has never been tested with power iteration on a problem where a non-
majorant sampling cross section was used (i.e. where negative-weighted particles can be produced). We will
subsequently outline the modifications which we made to the power iteration algorithm to accommodate
negative weights, and then discuss the behavior of the resulting algorithm. In particular, we will show that
instabilities may appear, seriously affecting the convergence of this scheme.

6.1.1 . Accommodating Negative Weights in Power Iteration

There are two possible methods to handle the production of fission particles during power iteration. In
the TRIPOLI-4® Monte Carlo code, after nuclide i has been sampled, the number of fission particles born
at a collision site is sampled from

n =

⌊
νi,f (E)σi,f (E)

σi,t(E)
+ ξ

⌋
, (6.1)
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where ξ ∼ U(0, 1), and each fission neutron inherits the statistical weight w from its parent [7]. At the
beginning of the next generation, these particles can be normalized, so that the net weight entering each
generation is kept constant, ensuring the stability of the particle population [5]. This approach to handling
fission production in power iteration is able to treat negative weights without modification. If a particle
with a negative weight produces fission particles, its progeny will inherit the negative weight of the parent
neutron.

Other codes, like OpenMC,1 use an alternative method: the number of fission particles born at a collision
site is sampled from

n =

⌊
w

k
(g−1)
eff

· νi,f (E)σi,f (E)

σi,t(E)
+ ξ

⌋
, (6.2)

where k(g−1)
eff is the estimated multiplication factor from the previous generation [9].2 In this framework,

each particle is born with the same weight, and the weight entering each generation is kept constant. If N
particles enter a generation, and the simulation began with an initial net weight of W , then each particle
will be initialized with a weight of W/N [8]. This methodology is not able to handle particles with negative
weights; Eq. (6.2) would imply the creation of a negative number of particles, which is of course not possible.
Instead, we modify the algorithm in the following manner. At each collision site,

n =

⌊
|w|
k
(g−1)
eff

· νi,f (E)σi,f (E)

σi,t(E)
+ ξ

⌋
(6.3)

fission particles are sampled. If the parent of the fission particles was positive, they are all born with a
weight of 1; if the parent was instead negative, their weights are all initialized to be −1. Once the current
generation has finished, all of the fission source particles must be normalized before they begin the next
generation. To normalize their weights, we first calculate the net weight of the particles entering the next
generation as

Wnet =
∑

i

wi. (6.4)
We then can determine a coefficient

Cw =
W

Wnet
(6.5)

which will multiply all of the fission particles’ weights. This enforces Wnet = W at beginning of each
generation. Due to the inclusion of negative weights in the simulation, the number of particles entering a
generation no longer plays a role in determining the initial weight of each particle, contrary to the case of
the original OpenMC/MCNP implementation which assumed all weights to be positive [8].

For all of our studies on the behavior of negative-weighted delta tracking in the context of power
iteration, we decided to use the modified MCNP approach for treating fission production. This choice was
admittedly entirely arbitrary. Carter et al.’s variant of negative-weighted delta tracking will first be tested
on the “broad Gaussian cross section” benchmark problem, which was used in Chapter 4. The problem
will be slightly modified, adding a fission cross section. While the total macroscopic cross section varies
spatially, the scattering, capture, and fission probabilities will be constant within the rod, and have values of
Σs/Σt = 0.7, Σc/Σt = 0.1, and Σf/Σt = 0.2 respectively, and the number of neutrons born per fission will
be νf = 2.5. This simple test problem is presented in detail in both Chapters 7 and 8. Our key finding is that
the simulation was not able to complete normally. System analysis tools indicated that, as the simulation
ran, its memory footprint would grow without bound, and at an exponential rate with respect to the number
of generations. Each fission generation would also take more and more time to complete. Eventually, the
memory consumption would reach a point where the operating system would terminate the simulation.
With memory consumption growing uncontrollably, and the time required to complete each generation also

1MCNP uses the same formula, but replaces themicroscopic cross sections for the isotope with themacroscopiccross sections for the material [8].2For the first generation, a “guess” for the initial value of keff is used.
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becoming longer, it was hypothesised that the particle population was growing without bound (despite a
reported eigenvalue of keff ≈ 0.336, according to the collision estimator for the generations which were able
to complete). To gain insight into this peculiar (and unexpected) behavior, we have carefully examined the
evolution of the number of simulated particles in the modified power iteration, as well as their statistical
weights. For this purpose, we have defined several observables: N+ is the number of positive-weighted
particles, and N− is the number of negative-weighted particles. From these two values, we can define the
total number of particles as

Ntot = N+ +N−, (6.6)
and the net number of particles as

Nnet = N+ −N−. (6.7)
A symmetric set of quantities can be defined for the weight as well, where the positive weight in the system
is

W+ =
∑

i

max (wi, 0) , (6.8)
the negative weight in the system is

W− = −
∑

i

min (wi, 0) , (6.9)
the total weight is

Wtot =
∑

i

|wi| =W+ +W−, (6.10)
and the net weight is

Wnet =
∑

i

wi =W+ −W−. (6.11)
These eight quantities were calculated at the beginning of each generation of the modified power iteration,
and displayed as a function of the generation in Fig. 6.1. We observe that, while Nnet and Wnet remain
constant with generation, N+, N−, Ntot, W+, W−, and Wtot are all increasing exponentially.3 This explains
the increase in memory consumption and run times which was previously observed. Many other population
control techniques such as particle splitting and combing were applied in an attempt to control the particle
population and thus prevent the simulation from being abnormally terminated [5, 10]; unfortunately, none
of these techniques provided any relief with respect to aforementioned instabilities. It is important to note
that, although not explicitly displayed in this thesis, the inability to control the particle population when
using negative-weighted delta tracking for power iteration was also observed when using the TRIPOLI-4®

approach to treating the fission source sampling.

6.1.2 . Coupled Transport Equations
To better understand the mechanisms at play in eigenvalue problems involving positive and negative

weights, which render the normalization of the particle population impossible, we will explicitly consider the
flux from the positive particles, φ+, and the flux from the negative particles, φ−, separately. This approach
will be first taken in Chapter 7, and again in Chapter 8 with much more detail. Section 8.8 will provide our
detailed derivation of a system of Boltzmann-like equations for φ±, for negative-weighted delta tracking as
outlined in Alg. 2.3. The resulting set of coupled transport equations can be shown to be:
[
Ω̂ · ∇+Σsmp(r, E)

]
φ±(r, Ω̂, E) =

∫∫
νs(r, E

′)Σs(r, E
′)fs(E′ → E, Ω̂′ → Ω̂)φ±(r, Ω̂′, E′)dE′dΩ̂′

1

k

∫∫
νf (r, E

′)Σf (r, E
′)ff (E

′ → E, Ω̂′ → Ω̂)φ±dE′dΩ̂′

∆(Σsmp(r, E)− Σt(r, E))φ±(r, Ω̂, E) + ∆ (Σt(r, E)− Σsmp(r, E))φ∓(r, Ω̂, E), (6.12)
3The “kink” observed in N at generation 1 in Fig. 6.1 is due to the initial guess of keff being too high compared tothe actual value.
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Figure 6.1: Behavior of the number of particles and weight in the simulation, given as a func-tion of generation, for a power iteration simulation performed using negative-weighted deltatracking.
where the function ∆(x) is given by

∆(x) =

{
x x > 0

0 x ≤ 0
. (6.13)

The terms involving ∆ describe the coupling between positive and negative particles when virtual collisions
occur at locations where Σsmp(r, E) < Σt(r, E).4 In this scheme, both φ+ and φ− are strictly positive
quantities (when considering the fundamental eigenstate). The physical flux, corresponding to the funda-
mental eigenmode of the eigenvalue formulation of the Boltzmann equation, can be retrieved from these
two quantities via φ = φ+−φ−. However, Eq. (6.12) is associated to a general eigenvalue k, which does not
necessarily coincide with the keff eigenvalue of the Boltzmann equation. At this point, to simplify notation
it becomes useful to introduce the scattering operator

Sφ(r, Ω̂, E) =

∫∫
νs(r, E

′)Σs(r, E
′)fs(E′ → E, Ω̂′ → Ω̂)φ(r, Ω̂′, E′)dE′dΩ̂′ (6.14)

and the fission operator

Fφ(r, Ω̂, E) =

∫∫
νf (r, E

′)Σf (r, E
′)ff (E

′ → E, Ω̂′ → Ω̂)φ(r, Ω̂′, E′)dE′dΩ̂′. (6.15)
Summarizing the analysis of this coupled system which will be performed in Sec. 8.3.1, we write the coupled
system of transport equations in Eq (6.12) in operator form as

Aζ =
1

k
Fζ, (6.16)

where the desired eigenstate is

ζ =

[
φ+

φ−

]
(6.17)

and the operators A and F are taken to be

A =

[
Ω̂ · ∇+Σsmp − S −∆(Σsmp − Σt) −∆(Σt − Σsmp)

−∆(Σt − Σsmp) Ω̂ · ∇+Σsmp − S −∆(Σsmp − Σt)

]
(6.18)

and

F =

[
F 0
0 F

]
. (6.19)

4The following identities may be useful to the reader: ∆(x) + ∆(−x) = |x| and∆(x)−∆(−x) = x.
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Upon inspection of Eq. (6.16), we notice that we can define a parity operator

P =

[
0 I
I 0

]
, (6.20)

I being the identity operator. We can easily verify that PAP = A and PFP = F . The quantity P is
also an involutive operator, meaning that P = P−1. From these two properties, we can demonstrate that,
if ζ̄ is an eigenstate of Eq. (6.16) with associated eigenvalue k̄, then so is P ζ̄:

A(P ζ̄) = (PP )A(P ζ̄)

= P (PAP )ζ̄

= PAζ̄

=
1

k̄
PF ζ̄

=
1

k̄
(PF )(PP )ζ̄

=
1

k̄
(PFP )(P ζ̄)

=
1

k̄
F (P ζ̄). (6.21)

For ζ̄ to be nondegenerate, it must be the case that

P ζ̄ = ±ζ̄, (6.22)
where either φ−(r, Ω̂, E) = −φ+(r, Ω̂, E), or φ+(r, Ω̂, E) = φ−(r, Ω̂, E). Eq. (6.21) indicates that any
solution of Eq. (6.16) is also a solution of Eq. (6.22), i.e. the k-eigenvectors have a well-defined parity; there
is a family of odd-parity states ζo with dominant eigenvalue ko, and a family of even-parity states ζe with
dominant eigenvalue ke. Choosing to write ζo as

ζo = φ(r, Ω̂, E)

[
1
−1

]
(6.23)

and substituting into Eq. (6.16), we obtain

Ω̂ · ∇φ+Σtφ = Sφ+
1

ko
Fφ. (6.24)

This is actually the Boltzmann k-eigenvalue equation for the physical system of interest: φ is the fundamental
flux eigenmode which we are trying to estimate, and ko is the multiplication factor keff. Therefore, the odd
solutions of Eq. (6.16) correspond to the solutions of the physical Boltzmann k-eigenvalue equation. Writing
ζe as

ζe = η(r, Ω̂, E)

[
1
1

]
(6.25)

and substituting into Eq. (6.16), a different transport equation is obtained:

Ω̂ · ∇η + [Σsmp − |Σsmp − Σt|]η = Sη + 1

ke
Fη. (6.26)

The even eigenstate has an effective total cross section on the left hand side, whereas the scattering and
fission operators are identical to those found in the regular transport equation. Since Σsmp −|Σsmp − Σt| ≤
Σt, and the equation for η has the same Σs and Σf as in the equation for φ, then the equation for η
must have a smaller capture cross section. We may therefore conclude that the dominant eigenvalues of
Eqs. (6.24) and (6.26) must satisfy

ke ≥ ko = keff. (6.27)
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By nature of the power-iteration algorithm, the simulation will always converge to the eigenstate corre-
sponding to the eigenvalue with the largest magnitude. Therefore, if Σsmp(r, E) < Σt(r, E) at any position
or energy within the problem domain, power iteration will not converge on the physical flux, φ, but will
converge on the non-physical eigenstate η. Moreover, by keeping the net weight of the system constant,
be it with Eq. (6.3) or with the TRIPOLI-4® algorithm, the total weight is left free to increase by a factor
ke/ko at each generation. This explains the exponential growth observed in Fig. (6.1). This analysis, further
developed in Chapters 7 and 8, sheds light on the failure of the negative-weighted delta tracking algorithm
when applied to eigenvalue problems, and supports our numerical findings on the observed instabilities. No
population control mechanism, or normalization techniques can be applied to the fission source to prevent
this convergence toward the non-physical even parity eigenstate. This was indeed observed to be the case
when different population control mechanisms were applied to our test problem.

6.1.3 . Necessity of Weight Cancellation
In light of the insights gained through the analysis in Sec. 6.1.2, we might wonder whether negative-

weighted delta tracking has any hope of being used for power iteration without a majorant cross section.
As a matter of fact, there are several other occurrences of Monte Carlo methods involving mixtures of
positive and negative particle weights, in the field of neutronics and beyond. A literature survey suggests
that many of these different types of simulations and systems benefit from, or even strictly require, the use
of “weight cancellation” techniques in order to ensure proper convergence [11–16]. By weight cancellation,
it is essentially meant that a particle with a positive statistical weight must “find” a particle that has a
negative statistical weight: these two particles must “combine” in some fashion, so that their weights can
be summed. In a continuous phase space, the probability that any two particles actually “meet” at exactly
the same point is vanishingly small, which suggests that the application of weight cancellation methods
will generally demand extreme care. Based on these considerations, in Sec. 8.3.2, we will demonstrate that
the application of a weight cancellation procedure can indeed allow negative-weighted delta tracking with
power iteration to successfully converge to the fundamental eigenstate, thus overcoming the aforementioned
issues. The derivation of this scheme is also summarized here, as this result is one of the key elements of
this thesis.

While the solution to the transport equation in Eq. (6.24) is an element of a vector space V, the solution
to the coupled system in Eq. (6.16) is an element of V × V. We can define an operator D which yields the
physical flux φ = φ+ − φ− when applied to ζ. Therefore, D maps V × V → V. A suitable definition for
D is then

D =
[
I −I

]
. (6.28)

A second operator is also required, which instead provides the mapping V → V ×V, and we shall denote it
as E. There are many suitable choices for E; we only require that

DE = I, (6.29)
since mapping from V up to V × V, and back down to V, should not change the original function which
DE was acting on. Several different options for E will be proposed in Chapter 8, but we do not elaborate
on E anymore here, as the exact form is not necessarily important.

A cancellation operator C can be constructed with D and E:

C = ED. (6.30)
C first takes the difference of the positive and negative flux, which conceptually corresponds to summing
positively and negatively weighted particles that exist at the exact same point in phase space (the action of
D). Once the weights have been cancelled, the result is then moved back into the expanded vector space by
the action of E. By virtue of the action of D, this cancellation operator annihilates all even-parity vectors,
leaving only odd-parity vectors. We can therefore apply cancellation to the fission source, as

Aζ =
1

k
CFζ. (6.31)
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In order to verify that this has not altered the odd eigenstates associated with the physical transport equation,
we apply D to both sides, resulting in

DAζ =
1

k
DCFζ =

1

k
DFζ, (6.32)

which simplifies to the physical transport equation in Eq. (6.24). The physical eigenstates and corresponding
eigenvalues are therefore left intact by cancellation.

The removal of the even eigenstates from the fission source should prevent power iteration from con-
verging on the non-physical solutions. In Sec. 8.3.3, we will devise a method to model cancellation in a
deterministic solver, where we demonstrate how cancellation is indeed able to permit convergence of power
iteration. However, a more important result which will result from this deterministic model is the fact that
there is a minimum amount of cancellation which is required to permit convergence of power
iteration on the physical eigenstate. Although we have yet to discuss how cancellation might be carried
out in a Monte Carlo simulation, it is possible that (independently of the algorithm applied) the removal of
all of the negative weight from the fission source might be unfeasible. If the amount of cancellation that
is attainable is not sufficient to ensure ko > ke, it would simply not be possible to use negative-weighted
delta tracking in the simulation. Even if it is the case that ko > ke, this does not necessarily indicate that
running the simulation with negative-weighted delta tracking is feasible. In the event that the dominance
ratio ke/ko is very close to unity, the resulting Wtot of the system might be so large as to prevent the
simulation from running on most computers, or to prevent adequate convergence of scores.

6.2 . Approximate Regional Weight Cancellation

There are several different methods which could be implemented in a Monte Carlo code to perform weight
cancellation of positive and negative particles. One such method is an approximate regional cancellation
method, which has been used extensively by Yamamoto, for a variety of problems [12–15]. In his approach,
Yamamoto scores the fission rate in cancellation regions that are pre-defined by the user in some manner.
Positive particles bring a positive contribution to the fission rate in a cancellation region, whereas negative
particles bring a negative contribution, leading to a cancellation of weight. At the end of a generation, the
net intensity of the fission source in each cancellation region can be calculated, and used to sample the
fission source particles which will initiate the next generation. The new fission source particles are distributed
uniformly within the cancellation region, which leads to an approximation. An additional disadvantage of
this method is that fission particles need to be re-sampled: re-sampling fission particles in continuous energy
is somewhat difficult to accomplish, as the spectrum for the fission energy is typically dependent on the
incident neutron energy [17].

Another approximate regional cancellation method has been proposed by Zhang et al. and has been
demonstrated on the calculation of the first sixty eigenstates and eigenvalues for the BEAVRS benchmark
reactor [18, 19]. In their approach, a mesh is imposed on top of the geometry, dividing the domain into
many cancellation regions. Over the course of the simulation, fission particles are sampled in the standard
manner, and stored in the fission bank. At the end of the generation, the fission particles are sorted into the
cancellation regions created by the cancellation mesh. With all particles sorted into the cancellation regions,
the average weight of all the particles in the region is then calculated, and assigned to each of the particles
in the region. Figure 6.2 shows the effective result of this operation. This technique has several advantages
over Yamamoto’s method. First, it requires fewer modifications to an existing code, and is slightly easier to
implement. Additionally, it does not require the re-sampling of fission particles, as these are sampled in the
standard manner, with the incident energy of their parent. While the net weight in the cancellation region
is then distributed amongst all of the contributing particles, the positions in phase space of the sampled
fission sites do not change, which should be seen as an advantage. This method is also fast to run from
a computational standpoint. Unfortunately, approximate regional cancellation will introduce a bias in the
fission source, which will propagate to all the simulation results. The bias can be reduced by using smaller
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Figure 6.2: Depiction of the approximate regional cancellation method, where the averageweight is assigned to all particles. After this operation, all particle weights in the same regionwill have the same sign.
cancellation regions; as a consequence however, there will also be fewer particles per cancellation region,
reducing the cancellation efficiency of the method.

Considering the trade-offs of the two approximate techniques, we have chosen to use the method
proposed by Zhang et al. as our approximate cancellation method of choice. For the rest of this work,
this will be the method which is being referred to when approximate regional cancellation is mentioned.
In Chapter 7, we attempt to use negative-weighted delta tracking to solve the C5G7 benchmark problem.
C5G7 is a three dimensional multi-group benchmark (7 groups), consisting of a 1/8th simplified core, with
four 17 × 17 fuel assemblies [20]. The published reference value for the multiplication factor of the C5G7
benchmark is keff = 1.183810 ± 0.000036 [20]. This problem does not contain spatially continuous cross
sections, but instead assumes homogeneous media, as it is standard in today’s Monte Carlo simulations.
The sampling cross section used for the problem was the majorant cross section for all but the 1st energy
group, where the sampling cross section was taken to be 90% of the majorant for that group. Section 7.4
again demonstrates that the particle population diverges; without weight cancellation, it was not possible
to complete the C5G7 simulation using negative-weighted delta tracking. A 34× 34× 10 cancellation mesh
was then imposed over the four assemblies in the problem. Each fuel pin was then given its own cancellation
mesh region in the x-y plane, and was split into 10 different axial cancellation regions along the z-axis. Using
approximate regional weight cancellation, Ntot no longer increased exponentially, but was easily controlled,
allowing the simulation to finish uninterrupted. Despite a cancellation mesh that might be considered “too
coarse”, the estimated multiplication factor was keff = 1.18378±0.00002, well within the statistical error of
the reference value. The results from Chapter 7 indicate that not only is weight cancellation a solution to
perform power iteration with negative-weighted delta tracking, approximate regional weight cancellation is
also an easily implemented method to accomplish weight cancellation. Initial results seem to indicate that
the imposed bias on the fission source is small enough so as to not be of great importance for many reactor
physics problems.

6.3 . Exact Regional Weight Cancellation

The choice to use a Monte Carlo code over a deterministic code is often at least partially driven by
the fact that it requires far fewer approximations in its solution strategy. An added sense of fidelity to the
physics at play is often attractive to code users. It is therefore firmly implanted within the Monte Carlo
mindset that exact physics, or an exact algorithm, should be used whenever possible (or at least be made
available). Despite the success of the approximate regional cancellation method which will be outlined in
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Figure 6.3: Depiction of a one dimensional example of exact regional cancellation. The can-cellation region is delimited by the positions xR− and xR+ . A particle beginning a flight at x0would then contribute at least β to the fission emission density at every position within thecancellation region. The sampled position of the emitted fission particle, x, then determineswhat fraction of the particle can be uniformly distributedwithin the region, andwhat fractionmust remain at x.
Chapter 7, we will now examine possibilities for an exact cancellation method, which would impose no bias
on simulation results.

Only a handful of works from the literature appear to mention possible weight cancellation techniques
which are exact. Booth initially proposed a point-wise cancellation scheme, which estimated the fission
density contribution from all particles, at the collision sites of all the other particles [11]. This method had a
computational complexity of O(N2

tot), which would make it very time consuming in a general-purpose Monte
Carlo code. Later, Booth and Gubernatis proposed an exact regional cancellation method, which is linear in
complexity with respect to the number of particles [21]. We will focus only on exact regional cancellation
in this work, as its O(Ntot) complexity makes the method much more appealing for implementation in a
general Monte Carlo code.

6.3.1 . Conceptual Introduction

Regional cancellation makes use of a fission emission density function, which we shall denote as ζ(P ′ →
P ). This is interpreted as the expected contribution to the fission emission density at the generalized phase
space point P = (r, Ω̂, E), given an event that occurred at the phase space point P ′. Booth and Gubernatis
do not give a precise definition of ζ(P ′ → P ) in their work [21], but their proposed concept is sufficient for
the time being. A particle entering either a flight or a collision at the point P ′ could potentially contribute
to the fission emission density at the point P , after undergoing a fixed number of flights and collisions. Now,
we consider a “cancellation region” R, which is a generalized phase space volume, with dimensions along all
three spatial axes, both direction axes, and the energy axis. A particle can begin a series of flights/collisions
at the point P ′, and eventually produce a fission particle at the point P , which we take to be located within
R.

The following summarizes the concept of exact regional cancellation as described by Booth and Guber-
natis [21], and as implemented in Chapter 7. From the point P , we are (at least in theory) able to look
back at the particles history, and calculate ζ(P ′ → P ) for any previous point P ′ that occurred during the
particle’s lifetime. If, for a given point P ′, ζ(P ′ → P ′′) ̸= 0 for all values of P ′′ ∈ R, it is possible to
envision splitting the fission particle that was emitted at P into two portions: one which will remain at
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P , and another portion which will then be “smeared” across the cancellation region R, contributing to the
fission emission density uniformly at all points in R. Figure 6.3 helps demonstrate this concept, with a
simplified one-dimensional phase space example. The blue line indicates the value of the fission emission
density for a particle beginning a flight at x0, and contributing to the fission emission density at x. The
cancellation region R is delimited by the vertical lines at xR− and xR+ . If the flight starting at x0 produced
a fission particle at x, we could consider the possibility of (ζ(x0 → x)−β)/ζ(x0 → x) of the particle being
located exactly at x, and β/ζ(x0 → x) of the particle being uniformly distributed at all points between
xR− and xR+ . If the original particle at x was born with a weight of w, then the point-wise portion of the
particle which will remain located at x has a weight of

wp =
ζ(x0 → x)− β

ζ(x0 → x)
w, (6.33)

and the portion which can be uniformly distributed across R has a weight of

wu =
β

ζ(x0 → x)
w. (6.34)

Splitting the fission particles into a point-wise and uniform component does nothing to achieve cancel-
lation in itself. Suppose however that multiple fission particles are born in the cancellation region R, and
particle i is able to contribute a uniform portion of wu,i.5 These uniform portions can be summed into a
variable

U =
∑

i

wu,i, (6.35)
which is unique for each cancellation region. This sum of the uniform components has effectively led to a
cancellation effect, as some of the particles could have been initially born with a positive weight, and some
with a negative weight. Once the uniform portions of all particles which were born in R have been summed,
the uniform weight contained in U must now be somehow distributed within the region. To do this,

n = ⌈|U |⌉ (6.36)
new particles will be sampled uniformly within R, and each will be assigned a weight of U/n.

Here, we have assumed that β is the minimum value of ζ(x0 → x) for all points x ∈ R. This facilitates
the visualization, but Booth and Gubernatis have shown that β can actually be taken to be any value,
without biasing the fission source [21]. This cancellation method is tested on a one-dimensional, single-
speed system in Sec. 7.3, using negative-weighted delta tracking. For this test case, we use a fission emission
density function of

ζ(x0 → x) = Σf (x) exp(−Σsmp|x− x0|), (6.37)
which is interpreted as the probability of a particle to fly from a previous collision at x0 to x, and induce
a fission. This approach was shown to work well at performing weight cancellation, and allowed power
iteration to converge without issue. Nonetheless, many questions remain, such as what form the fission
emission density function should take, how cancellation might be performed in more than one dimension
and in continuous energy, and how should β be determined.

6.3.2 . Conditions for the Unbiasedness of Regional Cancellation
Having outlined the general principle of exact regional cancellation in Sec. 6.3.1, we expand upon the

foundation laid by Booth and Gubernatis. Chapter 9 provides a detailed derivation for how exact regional
cancellation can be performed in three spatial dimensions, and in continuous energy. The results from
Sec. 9.3 are summarised very briefly here.

We make use of the integral form of the Boltzmann k-eigenvalue transport equations for this analysis,
introducing the collision density

Ψ(P ) = Σt(r, E)φ(r, Ω̂, E), (6.38)
5Each particle i would have a unique βi, used to calculate its uniform portion.

79



and the emission density, which we denote as χ(P ). These two quantities are coupled through the relations

Ψ(P ) =

∫
T (P ′ → P )χ(P ′)dP ′ (6.39)

χ(P ) =

∫
C(P ′ → P )Ψ(P ′)dP ′, (6.40)

where T (P ′ → P ) is the flight kernel and C(P ′ → P ) is the collision kernel [5]. For our purposes here, we
will use

T (P ′ → P ) =
Σt(r, E

′)

|r − r′|2
exp


−

|r−r′|∫

0

Σt(r
′ + uΩ̂′, E′)du


 δ

(
Ω̂− r − r′

|r − r′|

)
δ
(
Ω̂′ − Ω̂

)
δ
(
E − E′)

(6.41)
for the flight kernel, and

C(P ′ → P ) = ν̄(r′, E′)f̄
(
Ω̂, E|r′, Ω̂′, E′

)
δ(r − r′) (6.42)

for the collision kernel, ν̄ being the average number of particles emitted per collision, and f̄ being the
average transfer function. We also introduce the fission emission density

χf (P ) =
1

k

∫
Cf (P

′ → P )φ(P ′)dP ′, (6.43)
where Cf (P

′ → P ) is the fission kernel, taking the form of

Cf (P
′ → P ) =

νf (r
′, E′)Σf (r

′, E′)
kΣt(r′, E′)

ffiss

(
Ω̂, E|r′, Ω̂′, E′

)
δ(r − r′). (6.44)

Now consider a particle which enters a collision at P1. Upon application of the collision kernel by Eq. (6.40),
the particle will leave the collision at P2, and enter a flight. Application of the flight operator through
Eq. (6.39) moves the particle to P3. Subsequently applying the fission kernel as in Eq. (6.44) yields a fission
particle which is emitted at P4. This series of events leads us to then consider the fission emission density
at P4, for all possible trajectories which begin at P1 where a particle enters a collision. The subsequent
application of the collision, flight, and fission kernels on the collision density yields the transfer function

ζ(P1 → P4) =

∫
dE3

νf (r4, E3)Σf (r4, E3)ffiss

(
Ω̂4, E4|r4, r4−r1

|r4−r1| , E3

)
f̄
(

r4−r1
|r4−r1| , E3|r1, Ω̂1, E1

)

k|r4 − r1|2
×

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du


 . (6.45)

ζ(P1 → P4) is the expected contribution to the fission emission density at point P4, for a particle that
undergoes a collision-flight-fission, starting at P1. From here, we wish to develop an estimator for the
fission emission density at phase space coordinate Q ∈ R, which acts on fission particles which were
emitted at P4 ∈ R, and started a collision-flight-fission at P1. If this estimator, ϑ(P1 → P4|R, Q), is to be
unbiased, it must conserve the expected fission emission density at Q, i.e. ϑ(P1 → P4|R, Q) must satisfy

∫
ζ(P1 → P4)ϑ(P1 → P4|R, Q)dP4 = ζ(P1 → Q) (6.46)

to be unbiased. The choice of
ϑ(P1 → P4|R, Q) = δ(P4 −Q) (6.47)
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corresponds to the standard estimator for the fission emission density, where a particle only contributes to
the fission emission density at the exact phase space coordinate where it was emitted. Using the intuition
gained from Booth and Gubernatis’ work, in Sec. 9.3.2 it is shown that

ϑ(P1 → P4|R, Q) =
ζ(P1 → P4)− β

ζ(P1 → P4)
δ(P4 −Q) +

β

ζ(P1 → P4)

1

VR
(6.48)

is also an unbiased estimator for the fission density, where

VR =

∫

R
dP . (6.49)

This estimator contributes 1− β/ζ(P1 → P4) of the fission particle’s weight to the fission emission density
at P4, and β/ζ(P1 → P4) of the fission particle’s weight uniformly across all phase space coordinates in R.
For Eq. (6.46) to hold true upon insertion of Eq. (6.48), it is required that β have no functional dependence
on P4. We are therefore permitted to use any information from the sampled history at P1, P2, and P3 in
the calculation of β, and regional cancellation will be unbiased. The transition kernel ζ(P1 → P4) must
also be non-zero for all points in R, which implies the that the entire cancellation region must be fissile,
and ”accessible” for histories starting at P1.

The transition kernel that we have developed in Eq. (6.45) is somewhat problematic, however, since
performing the integral over E3 is likely not feasible (and potentially even impossible) in a general continuous-
energy Monte Carlo code. To remove the integral over E3 from the transition kernel, we must instead not
start from P1, but from an intermediate point between P1 and P2. This concept is developed in Secs. 9.3.3
and 9.3.4, where additional details can be found. Briefly, we must start not at the beginning of the collision
(P1), but at the point mid-way through the collision where the energy E2 has been sampled, but the new
direction, Ω̂2, is still unknown. This is elucidated from the form of the collision kernel which is typically
used in continuous-energy Monte Carlo codes, where a nuclide is first sampled, then a scattering channel,
then an energy, and finally a direction. Such a collision kernel can be written as

C(P ′ → P ) = Cs(P
′ → P ) +

1

k
Cf (P

′ → P ), (6.50)
where the scattering kernel is now given as

Cs(P
′ → P ) =

δ (r − r′)
Σt(r′, E′)

∑

i

Ni(r
′)
∑

m
m̸=fiss

νi,m(E′)σi,m(r′, E′)fi,m
(
E|Ω̂′, E′

)
fi,m

(
Ω̂|Ω̂′, E′, E

)

(6.51)
and the fission kernel is given as

Cf (P
′ → P ) =

δ (r − r′)
Σt(r′, E′)

∑

i

Ni(r
′)νi,fiss(E

′)σi,fiss(r
′, E′)fi,fiss

(
E|Ω̂′, E′

)
fi,fiss

(
Ω̂|Ω̂′, E′, E

)
. (6.52)

In this formalism, the scattering law for isotope i and reaction channel m has been decomposed into

fi,m

(
Ω̂, E|Ω̂′, E′

)
= fi,m

(
E|Ω̂′, E′

)

︸ ︷︷ ︸
Marginal PDF for E

× fi,m

(
Ω̂|Ω̂′, E′, E

)

︸ ︷︷ ︸
Conditional PDF for Ω̂

. (6.53)

Creating a transition kernel which starts at the partial collision point between P1 and P2 where E2 has been
sampled generates

ζ(P1 → P4|i,m,E3) =
νf (r4, E3)Σf (r4, E3)ffiss

(
Ω̂4, E4|r4, r4−r1

|r4−r1| , E3

)
fi,m

(
r4−r1
|r4−r1| |Ω̂1, E1, E3

)

k|r4 − r1|2
×

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du


 . (6.54)
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This is a general transition kernel which could possibly be used to perform exact regional cancellation
in a three dimensional continuous-energy problem. However, this kernel can be simplified under certain
conditions. From Eq. (6.46), any terms in the transition kernel which do not depend on P4 can be removed
from the integral, and then cancel with the identical term on the other side. If our cancellation region R
is perfectly homogeneous, then terms such as νf (r4, E3) and Σf (r4, E3) will be constant within R, and
can be neglected. Similarly, if fission is perfectly isotropic, and the distribution for the fission energy E4

is independent of the incident energy, we do not need to perform cancellation along the dimensions of Ω̂4

or E4, and the term ffiss

(
Ω̂4, E4|r4, r4−r1

|r4−r1| , E3

)
can also be neglected. These conditions are true for the

multi-group benchmark problems which are used to test exact regional cancellation in Chapters 8 and 9.
For these multi-group problems, it is possible to reduce the transition kernel to just

ζ(P1 → P4|E3) =

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du




|r4 − r1|2
. (6.55)

This transition kernel is tested in a modified version of the C5G7 multi-group benchmark (although with some
slight modifications, covered in Sec. 9.3.6, for the accommodation of delta tracking and negative-weighted
delta tracking). Exact regional cancellation is demonstrated to be unbiased for this three dimensional
multi-group problem, and allows power iteration to converge on the fundamental eigenstate.

6.3.3 . Optimization of Exact Regional Cancellation
Section 9.3 informs us as to how the fission emission density function (transition kernel) can be deter-

mined, and what restrictions must be observed when calculating β, for cancellation to be unbiased. The
choice of β is a complex topic, however, since Sec. 9.3.2 shows that β can take any value and result in an
unbiased fission emission density estimator, so long as the value was not calculated using P4. Each particle
k in a cancellation region will have its own cancellation parameter βk. Combining Eqs. (6.10), (6.33), (6.34),
and (6.35), we can write the total weight for the region R after cancellation as

Γ =
∑

k∈R

∣∣∣∣
ζk − βk
ζk

wk

∣∣∣∣+
∣∣∣∣∣
∑

k∈R

βk
ζk
wk

∣∣∣∣∣, (6.56)
where ζk is a shorthand for ζ(P1,k → P4,k). Our initial implementation of cancellation used the minimum
value of ζk within the cancellation region for β, as this was easy to determine, and seemed to be a relatively
safe choice as it prevents the point-wise portion from changing sign (see Sec. 8.5). Nonetheless, it is
entirely likely that there is an alternative method for calculating βk, which results in a smaller value Γ when
compared to using the minimum value of ζk. If we can minimize the total weight in each region, we will also
minimize Wtot for the entire problem, therefore maximizing the efficiency of cancellation. Equation (6.56)
is unfortunately quite unmalleable, due to the absolute values.

In Sec. 9.4, we propose to minimize the total weight in a cancellation region by using the alternative
form

Γ2 =
∑

k∈R

(
ζk − βk
ζk

wk

)2

+

(∑

k∈R

βk
ζk
wk

)2

. (6.57)
While replacing |·| with (·)2 has given us a differentiable function which could in theory be minimized, any
resulting values for βk would be functions of ζk, and therefore P4,k, which is not allowed if cancellation is to
be unbiased. In order to remove the functional dependence on P4,k, two different possibilities are proposed
in Secs. 9.4.1 and 9.4.2. The first proposition replaces ζ(P1,k → P4,k) with

⟨ζk⟩ =

∫

R
ζ(P1,k → P4,k)dP4,k

∫

R
dP4,k

, (6.58)
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resulting in a straightforward minimization, as presented in Secs. 9.4.1 and 9.8. However, we show in
Sec. 9.6.1 that for the modified C5G7 benchmark, this approach to choosing βk results in a value of
Wtot ≈ 8 · 106, while using the minimum of ζk for βk results in Wto ≈ 4.9 · 106. It is not known why this
approach fails to yield a better cancellation efficiency than using the minimum value. The fact that this
method is almost half as efficient as using the minimum of ζk might indicate that simply replacing ζk with
⟨ζk⟩ and then minimizing is not sufficient, and that similar results might be observed with other problems,
although this has yet to be observed.

A second approach to optimizing the cancellation efficiency instead builds on Eq. (6.57), and minimizes
the quantity

⟨Γ2⟩ =

∫

R
Γ2

∏

k∈R
ζkdP4,k

∫

R

∏

k∈R
ζkdP4,k

. (6.59)

The details of this optimization are provided in Sec. 9.9, and the resulting solution for βk is given in
Sec. 9.4.2. For this method,

βk = ⟨ζk⟩ ck
(
1− S

wk

)
, (6.60)

where

ck =

(
2 ⟨ζk⟩

〈
1

ζk

〉
− 1

)−1 (6.61)
and

S =

∑

k∈R
ckwk

1 +
∑

k∈R
ck

. (6.62)

We test this method in Sec. 9.6.1 and show that it yields a value of Wtot = 2.7 · 106, which is much lower
than the total weight when using the minimum value of ζk.

It is important to mention how ⟨ζk⟩ and ⟨1/ζk⟩ are determined in the simulation. Performing the
necessary integrations analytically or numerically would likely be too computationally expensive to be done
in a general-purpose Monte Carlo code. Instead, we choose to use a Monte Carlo estimate for these
quantities, where random points P̃i are sampled uniformly within the phase space region R. The needed
quantities are then estimated as

⟨ζk⟩ ≈
1

Ns

Ns∑

i=1

ζ(P1,k → P̃i) (6.63)
and 〈

1

ζk

〉
≈ 1

Ns

Ns∑

i=1

1

ζ(P1,k → P̃i)
, (6.64)

Ns being the number of random points used. In this manner, we are able to easily treat non-cuboid
cancellation regions by performing rejection sampling on the points P̃i. This advantage makes exact regional
cancellation much more robust, as we will demonstrate in Sec. 9.6.3 on the true C5G7 benchmark, with
cylindrical fuel pins as per original specifications. Using exact regional cancellation, power iteration is able
to converge on the fundamental eigenstate, and does not appear to demonstrate any bias in the resulting
estimates for keff, or the scalar flux.

References

[1] L. L. Carter, E. D. Cashwell, and W. M. Taylor, “Monte Carlo Sampling with Continuously Varying
Cross Sections Along Flight Paths,” Nuclear Science and Engineering, vol. 48, no. 4, p. 403–411, 1972.

83



[2] J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho, “The Serpent Monte Carlo
code: Status, development and applications in 2013,” Annals of Nuclear Energy, vol. 82, p. 142–150,
2015.

[3] J. Leppänen, “Performance of Woodcock delta-tracking in lattice physics applications using the Serpent
Monte Carlo reactor physics burnup calculation code,” Annals of Nuclear Energy, vol. 37, no. 5, p.
715–722, 2010.

[4] ——, “On the use of delta-tracking and the collision flux estimator in the Serpent 2 Monte Carlo
particle transport code,” Annals of Nuclear Energy, vol. 105, p. 161–167, 2017.

[5] I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations.
CRC Press, 1991.

[6] B. Molnar, G. Tolnai, and D. Legrady, “A GPU-based direct Monte Carlo simulation of time dependence
in nuclear reactors,” Annals of Nuclear Energy, vol. 132, p. 46–63, 2019.

[7] A. Zoia, “Simulation Monte-Carlo pour le transport de particules: notice théorique,” CEA, Tech. Rep.
SERMA/LTSD/NT/2018-63255/B, 2019.

[8] “MCNP-A General Monte Carlo N-Particle Transport Code, Version 5,” Los Alamos National Labora-
tory, Tech. Rep. LA-UR-03-1987, 2003.

[9] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, B. Forget, and K. Smith, “OpenMC: A
state-of-the-art Monte Carlo code for research and development,” Annals of Nuclear Energy, vol. 82,
p. 90–97, 2015.

[10] T. E. Booth, “A Weight (Charge) Conserving Importance-Weighted Comb for Monte Carlo,” Los
Alamos National Laboratory, Tech. Rep. LA-UR-96-0051, 1996.

[11] ——, “Computing the Higher k-Eigenfunctions by Monte Carlo Power Iteration: A Conjecture,” Nuclear
Science and Engineering, vol. 143, no. 3, p. 291–300, 2003.

[12] T. Yamamoto, “Convergence of the second eigenfunction in Monte Carlo power iteration,” Annals of
Nuclear Energy, vol. 36, no. 1, p. 7–14, 2009.

[13] ——, “Monte Carlo method with complex weights for neutron leakage-corrected calculations and
anisotropic diffusion coefficient generations,” Annals of Nuclear Energy, vol. 50, p. 141–149, 2012.

[14] ——, “Monte Carlo algorithm for buckling search and neutron leakage-corrected calculations,” Annals
of Nuclear Energy, vol. 47, p. 14–20, 2012.

[15] ——, “Monte Carlo method with complex-valued weights for frequency domain analyses of neutron
noise,” Annals of Nuclear Energy, vol. 58, p. 72–79, 2013.

[16] J. S. Spencer, N. S. Blunt, and W. M. Foulkes, “The sign problem and population dynamics in the full
configuration interaction quantum Monte Carlo method,” The Journal of Chemical Physics, vol. 136,
no. 5, p. 054110, 2012.

[17] A. Trkov, M. Herman, and D. A. Brown, “ENDF-6 Formats Manual,” Brookhaven National Laboratory,
Tech. Rep. BNL-203218-2018-INRE, 2018.

[18] P. Zhang, H. Lee, and D. Lee, “A general solution strategy of modified power method for higher mode
solutions,” Journal of Computational Physics, vol. 305, p. 387–402, 2016.

84



[19] P. Zhang, H. Lee, M. Lemaire, C. Kong, J. Choe, J. Yu, F. Khoshahval, and D. Lee, “Practical Monte
Carlo simulation using modified power method with preconditioning,” Annals of Nuclear Energy, vol.
127, p. 372–384, 2019.

[20] E. E. Lewis, M. A. Smith, N. Tsoulfanidis, G. Palmiotti, T. A. Taiwo, and R. N. Blomquist, “Bench-
mark specification for Deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial
homogenisation (C5G7 MOX),” NEA/NSC, Tech. Rep. JT00105087, Mar 2001.

[21] T. E. Booth and J. E. Gubernatis, “Exact Regional Monte Carlo Weight Cancellation for Second
Eigenfunction Calculations,” Nuclear Science and Engineering, vol. 165, no. 3, p. 283–291, 2010.

85



7 - Solving Eigenvalue Transport Problems with Negative
Weights and Regional Cancellation

This chapter has previously appeared as:

H. Belanger, D. Mancusi, and A. Zoia, “Solving Eigenvalue Transport Problems with
Negative Weights and Regional Cancellation,” In Proceedings of the The International
Conference on Mathematics and Computational Methods Applied to Nuclear Science
and Engineering 2021 (M&C 2021), October 2021, p. 46-55.

86



SOLVING EIGENVALUE TRANSPORT PROBLEMS WITH
NEGATIVE WEIGHTS AND REGIONAL CANCELLATION

Hunter Belanger, Davide Mancusi, and Andrea Zoia
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ABSTRACT

There are several lesser-known variants of delta tracking which rely on the use of nega-
tive particle weights to transport particles, without necessarily known the majorant cross
section of the system. To the authors’ knowledge, these methods have never been ap-
plied to k-eigenvalue power iteration problems. This work does just that, and outlines a
new problem with the weight normalization of the particles which arises when the par-
ticle weights are allowed to switch sign. While the net weight of the particles in the
system will remain stable using traditional population control techniques, the total weight
magnitude of the system will increase without bound, over whelming computer memory,
and requiring more time to complete each generation of the simulation. Two systems
are examined: a 1D single-speed rod, with a spatially varying cross section, and the 3D
multigroup C5G7 benchmark. Weight cancellation techniques previously developed for
calculation of the second harmonic of the Boltzmann transport equation have been used
to successfully control the particle population. In the 1D problem, an exact regional can-
cellation method previously proposed by Booth and Gubernatis is used, while in the 3D
problem, an approximate technique previously outlined by Zhang et al. is implemented.
Both methodologies are shown to adequately control the particle population, allowing
power iteration simulations to be conducted.

KEYWORDS: Monte Carlo, delta tracking, negative weights, cancellation, eigenvalue

1. INTRODUCTION

Negative weights have been used in Monte Carlo particle simulations for a large variety of reasons.
One such use of negative weights has been to study the effects of neutron noise [1]. Methods
developed by Booth and Gubernatis make use of negative weights to obtain the second harmonic
of the Boltzmann transport equation [2,3]. A variation on the standard delta tracking [4] was
proposed by Carter et al. in the early 1970s, to solve transport problems with continuously-varying
cross sections [5]. More recently, Légrády et al. have generalized Carter et al.’s tracking algorithm
by embedding it into a broader framework [6,7]. These methods makes use of a sampling cross
section Σsmp(P ), which is a function of the phase-space coordinates (r, Ω̂, E), denoted as P . The
sampling cross section is used to determine the flight distance of a particle to a tentative collision
site. At a tentative collision site, a real collision is performed with probability q(P ), and a virtual



collision is performed with probability 1 − q(P ). This quantity, q(P ) may be defined to be an
arbitrary function of the phase-space coordinates, so long as it remains a valid probability over the
domain of P (i.e. 0 ≤ q(P ) ≤ 1 ∀ P ). In the event of a real collision, the particle weight (w)
is multiplied by Σt(P

′)/
[
Σsmp(P )q(P )

]
, with Σt(P

′) being the true cross section at the particle’s
new position. For a virtual collision, the weight is multiplied by

[
1−Σt(P

′)/Σsmp(P )
]
/
[
1−q(P )

]

[7]. One may note here, that for a virtual collision where Σt(P
′) < Σsmp(P ), the particle weight

will be multiplied by a negative factor, changing its sign. Therefore, depending on the choice of
Σsmp(P ), particles may switch sign during the random walk process.

There is a marked difference between the use of negative weights for obtaining the second har-
monic, and the use of negative weights in the two delta tracking-like methods. In the former, a
particle is either born as having a positive or negative weight, and the sign cannot change, and is
also kept for all of the particle’s progeny as well [2]. In the latter two, a particle’s weight may
change sign at a virtual collision. These methods however permit one to use an arbitrary cross sec-
tion (Σsmp) for sampling flight distances. This leniency makes the methods proposed by Légrády
et al. and Carter et al. very attractive for situations where it could be difficult to determine the ma-
jornat cross section, such as in the context of spatially continuously varying cross section. In such
cases, it could be simple to look-up the exact total cross section at a given location and energy, but
ensuring a majorant might be difficult (in the case of polynomial isotopic densities for example).

Belanger et al. have previously examined these two methodologies, along with several others,
using a simple 1D-rod, single speed test system, with different cross section shapes, as a function
of position within the rod [8]. Only fixed source problems were considered, and and examination
of power iteration problems was left for a future work. This paper has expanded on upon those
results, adding fission and power iteration capabilities to their original code, to solve keff eigenvalue
problems. When sampling the number of new fission neutrons, the algorithm used by OpenMC
and MCNP was implemented [9,10], with a slight modification to accommodate negative weights.
The number n of generated fission neutrons for any given collision is

n =

⌊
|w| · νΣf

Σt

· 1

k
(G−1)
eff

+ ξ

⌋
, (1)

where w is the particle weight, k(G−1)
eff is the value of the effective multiplication factor calculated

for the previous generation, and ξ is a random variable sampled from U(0, 1). Each of the n new
neutrons born at this fission site starts with weight 1 for the case of w > 0, or −1 for the case of w <
0. This leads to the next generation starting with N+ positive particles, and N− negative particles.
Using this straightforward extension of this population control scheme for fission neutrons, it was
observed that the net number of particles will remain stable (Nnet = N+ − N−), while the total
number of particles to be transported (Ntot = N+ + N−) will increase without bound, increasing
simulation times and eventually overwhelming the computer memory.

This issue has, to our knowledge, never been previously reported. Attempts were made to use other
population control methods, such as weight combing [11], but it was soon realized that it is not
possible to solve this conundrum with such a methodology. The only viable strategy is to perform
a cancellation of the negative and positive weights [3]. Similar problems arise in the context of
determining higher harmonics of the transport equation using Monte Carlo methods, as discussed
by Booth [2], where a point-wise cancellation scheme is suggested. Booth and Gubernatis have



also proposed an exact regional cancellation method [3]. This paper applies the exact regional can-
cellation method to the aforementioned extension to the systems examined by Belanger et al. [8],
to remedy the problem of population normalization when conducting transport simulations with
methods which involve both negative and positive weights. Approximate regional cancellation, as
outlined by Zhang et al. [12], is then be used to address the same issue in a 3D test problem (the
C5G7 benchmark [13]).

2. TRANSPORT WITH NEGATIVE PARTICLES

We can formalize transport problems involving negative particles by writing two coupled transport
equations; one describes the angular flux of the positive particles (φ+), and another describes the
angular flux of the negative particles (φ−). The transport equations are provided in Equation 2:

Ω̂ · ∇φ±(P ) + Σsmp(P )φ±(P ) =
∫

φ±(P
′)

[
Σs(P

′ → P ) +
χ(E)ν(P ′)

4πkeff
Σf (P

′)

]
δ(r′ − r)dP ′

+ φ±(P )Θ
(
Σsmp(P )− Σt(P )

)[
Σsmp(P )− Σt(P )

]

+ φ∓(P )Θ
(
Σt(P )− Σsmp(P )

)[
Σt(P )− Σsmp(P )

]
, (2)

where Θ(x) is the Heaviside step function. For the sake of conciseness, we omit the derivation
of these equations; it must be noted that these equations are equally valid for both the negative-
weighted delta tracking as presented by Légrády et al. [6], and the method presented by Carter
et al. [5]. The system of equations represented by Equation 2 may be re-written as an eigenvalue
equation of the form

Â

[
φ+(P )
φ−(P )

]
=

1

keff
F̂

[
φ+(P )
φ−(P )

]
. (3)

From Equation 2, it is determined that the operators are symmetric under exchange of φ+ and φ−,
therefore the eigenstates must have either odd or even parity, and be of the form

ηo(P )

[
1
−1

]
, and ηe(P )

[
1
1

]
. (4)

The odd eigenstates correspond to the spectrum of the true Boltzmann transport equation, which is
dominated by the keff eigenvalue. The even eigenstates correspond to a different equation, and are
associated with a different spectrum of eigenvalues, with a dominant that we denote as ktot.

Thus, the introduction of negative weights manifests itself with the appearance of an additional set
of eigenvalues. Unfortunately, the new ktot eigenvalue dominates the effective multiplication factor,
keff, which can no longer be determined by power iteration. The power iteration converges towards
a symmetric state, characterized by the same number of positive and negative particles. Since
ktot > keff, the population control of Equation 1 will not stabilize the total number of neutrons,
which will grow without bound. Note that applying population control with ktot instead will still
lead the power iteration to converge to the wrong eigenstate. The only solution is to annihilate
positive and negative weights.



Figure 1: Sizes of the populations in the 1D rod, without weight cancellation, for each
generation.

3. EXACT REGIONAL CANCELLATION: 1D BENCHMARK

The first system to be analyzed is a 1D rod, single speed problem, taken from Belanger et al. where
the total cross section is a function of position within the rod [8]. As a general representative case,
the Broad Gaussian cross section profile has been used, where the cross section is given as

Σt(x) =

√
2

π
exp
[
−
(
x− 1.23

)2]
+ 0.1 ∀x ∈ [0, 2], (5)

and leakage boundary conditions are applied at x = 0 and x = 2. While the total interaction
probability varies spatially, the reaction channel probabilities have been kept constant throughout
the rod, with the absorption probability being Σa/Σt = 0.3, and fission probability being Σf/Σt =
0.2. The number of neutrons born per fission is ν = 2.5, and scattering is isotropic (in a 1D system,
this means a particle may either scatter forwards, or backwards, both with equal probability). The
tracking method of Carter et al. was employed, which implies q = Σt/(Σt + |Σsmp − Σt|) [7].
The sampling cross section was chosen to be a constant value of Σsmp = 0.85Σt(x = 1.23). This
choice of sampling cross section allows positive particles to become negative when the have a
virtual collision within the interval [x ≈ 0.8, x ≈ 1.66]. Since this tracking method allows particle
weight magnitudes to increase, the variance reduction techniques of roulette and splitting were
utilized, on both positive and negative particles. Roulette was performed when |w| < 0.6, and
the survival weight was w = ±1, ensuring that the particle weight kept its sign. Particles were
split if |w| ≥ 2. The reference value for this system, obtained using standard delta tracking, is
keff = 0.33573± 0.00002.

These simulation parameters, in conjunction with the production of new fission neutrons described



by Equation 1, were then used to conduct a power-iteration keff eigenvalue simulation using the
tracking method of Carter et al.. The particle populations as a function of generation are presented
in Figure 1. Immediately apparent is the exponential growth of the N+, N−, and Ntot populations,
while Nnet remains stable. This leads to an increase in computation time, and quickly exhausts the
computer’s memory, as more particles need to be transported.

In order to solve this problem, the exact weight cancellation algorithm proposed by Booth and
Gubernatis was implemented [3]. Despite its apparent spatial discretization, this method performs
the cancellation of weights amongst all particles within a spatial region in a manner which is exact.
This is done by determining the uniformly distributed portion for each particle which is born in
the region, and distributing this uniform weight equally amongst all the particles in the region. To
implement this algorithm, the minimum expected fission density in the region for each particle
which does fission in the region must be calculated. Consider particle p, which is born in region R
at xp, and who’s parent, p′, previously came from xp′ /∈ R. The quantity required is the minimum
of the expected fission density of particle p′, within region R, which we shall denote as β. In the
1D case, with the previously described Gaussian cross section, this minimum fission density will
always occur at one the the boundaries of R, xR1 or xR2:

β = min

[
Σf (xR1) exp(−Σsmp|xR1 − xp′ |),Σf (xR2) exp(−Σsmp|xR2 − xp′|)

]
. (6)

The true fission density corresponding to the birth of particle p is then found, replacing xR with xp

in the previous equation:
f = Σf (xp) exp(−Σsmp|xp − xp′ |). (7)

This methodology ensures that β < f always. With these two quantities, it is possible to determine
what portion of p may be uniformly distributed within the region. If p has a weight w, then the
uniform portion wu and static portion ws are

wu = w
β

f
ws = w

f − β

f
. (8)

The weight of particle p is now set to ws, and the sum of all wu for all particles in the region is
then tallied in a variable we shall call UR. Once all new particles in the region have been treated,
the uniform weight for the region, UR, must be distributed. This is accomplished by sampling
ζ = ⌈UR⌉ new particles, which will be uniformly placed within the region, each having a weight
w = UR/ζ . It is reiterated that this approach to exact regional cancellation is only valid when xp′

is not in the same region as xp. This is because the probability of a particle flying from xp′ to xp′

and having an interaction is zero, thus making the minimum fission density in the region zero (i.e.
β = 0).

The previously outlined system was again simulated, this time with exact regional cancellation,
using 10 equally spaced regions over the problem domain. Figure 2a presents the population sizes
with this exact regional cancellation. An eigenvalue of keff = 0.33575 ± 0.00002 was obtained
using this transport method, in agreement with the that obtained by delta tracking. Initially, there
are no negative particles, but after only two generations, the number of negative particles has
increased to its equilibrium value near 1100, and oscillates near this value in a stable manner for
the duration of the simulation. Figure 2b shows an enlarged portion of Figure 2a, showing how N+

increased by the same amount as N−. Ntot must therefore increase by twice the amount that N+



(a) (b)

Figure 2: Sizes of the populations in the 1D rod, with exact regional weight cancellation, for
each generation.

and N− increased. While more particles must be transported than initially prescribed, the system
is now stable, and a power iteration problem of any number of generations can be conducted.
This also demonstrates that weight cancellation is indeed a solution to this problem where the
number of particles increases when solving keff eigenvalue problems using coupled negative and
positive particle weights. This exact regional weight cancellation scheme as described by Booth
and Gubernatis, and implemented in this paper, is only valid for 1D systems. The reason for this is
that 1D systems have the advantage that all points within the cancellation region R are along the
line of flight for a particle leaving xp′ , flying in the direction of xp. This is of course, not the case
in higher dimensions. If one were to consider a flight through a 2D region, the weight cancellation
could only occur along the ray through the region, imposed by the particle flight. There is of course
a probability of zero that another particle would have exactly the same ray through the region, and
the uniform weight portions could then never be canceled with the uniform weight portions of
another particle.

4. APPROXIMATE REGIONAL CANCELLATION: C5G7

Performing weight cancellation in 3D, and in an exact manner is a non-trivial task. Recently,
works by Zhang et al. have implemented an approximate method to conduct weight cancellation
[14,12]. This methodology has proven to work well in their subsequent works, obtaining higher
harmonics of the transport equation for a full 3D reactor core benchmark [15]. The method works
by imposing a mesh over the fissile portions of the geometry. After all particles of a generation
have been transported, there is a new set of particles which represents the subsequent neutron
source after an application of the transport operators. These new particles should all be within the
the meshed fissile regions. The particles are then sorted into the mesh bin corresponding to their



positions. Once all particles in a bin have been found, the total weight of the bin is calculated, as
the simple sum of the weight of all particles in the bin. From this, the average weight of a particle
in the bin is calculated, and then all of the particle weights are changed to this average value.

This is only an approximate approach to weight cancellation. As the cancellation mesh becomes
more resolved (with each bin being smaller), this approximation becomes more accurate. Using a
finer mesh however can start to reduce the efficiency of the cancellation at a certain point, as the
bins can become so small, there may be no other particles in the bin to average with, leading to
very little, or no cancellation. A thorough analysis of the optimization and behavior of different
meshes is outside the scope of this work, but general characteristics as to the performance and
accuracy of fine vs. coarse meshes will be touched upon subsequently.

The C5G7 is a multi-group benchmark, typically used to evaluate deterministic solvers. In 3D, it
consists of a 1/8th core, with two UO2 assemblies, and two MOX assemblies. 7 energy groups are
used for the macroscopic cross sections. Reflective boundary conditions are applied on the three
boundaries coinciding with the fuel assemblies, and vacuum boundary conditions are used on the
three outer surfaces. The reference eigenvalue for the system is keff = 1.183810± 0.000036 [13].
This system was chosen as it provides a geometry which is rather representative of general reactor
physics applications, and allows for a basic investigation of the application of methods to energy
dependent cross sections, while remaining easy to implement, change, and verify.

A multigroup Monte Carlo code, with basic support for 3D general geometries was written to
conduct all of these tests. For validation of the code, standard delta-track was first implemented,
to ensure agreement with the reference values for keff and normalized pin powers. The tracking
method of Carter et al. was then added to the code. In a multi-group representation, each energy
group has its own sampling cross section Σg,smp, where g ∈ [1, 7]. For this test, the sampling
cross section for groups 2 through 7 was chosen to be the true majorant for those groups. The
sampling cross section for group 1 was set to Σ1,smp = 0.9Σ1,maj. This particular choice leads to an
underestimation of the cross section in all fissile regions of the system, for the first energy group.
Under these conditions, neutrons in the 1st group which experience a virtual collision in a fuel
region will experience a sign change. Also, once the neutron has scattered down to a higher energy
group, it can no longer change sign, as the sampling cross section is the majorant. Any particles
with a negative weight are stuck with it, and naturally can only produce negative progeny. Variance
reduction methods of Russian roulette, and particle splitting were implemented, utilizing the same
parameters as in the previous 1D benchmark.

Figure 3 shows the particle populations at the end of each generation. The observations are very
similar to those previously observed for the 1D rod. Asymptotically, the the positive (N+) and
negative (N−) populations increase exponentially, while maintaining a constant difference. The
increase of Ntot in this 3D benchmark is much sharper however compared to the 1D rod problem,
and it was only possible to run 35 generations in a reasonable about of time.

To evaluate the accuracy and efficiency of the approximate cancellation method, two different
meshes were used to perform the cancellation, one being relatively ”fine”, with the other being
relatively ”coarse”. For both meshes, a 34x34 grid was defined for the x-y plane, so that each fuel
pin had only one x-y bin. The fine mesh used 100 bins along the length of the fuel pins along
the z-axis, while the coarse mesh only used 10 bins. The particle populations as a function of the



Figure 3: Sizes of the populations in the C5G7 simulation, without weight cancellation, for
each generation.

generation for these two mesh configurations are presented in Figure 4. With the coarse mesh,
it is observed (in Figure 4a) that as the fission source converges, the cancellation becomes more
effective, and by the time 100 generations have been completed, there are only ever two or three
negative particles in the system, per generation. For the fine cancellation mesh (in Figure 4b),
it is similarly noted that the cancellation becomes more efficient as the source becomes more
converged, though not as efficient as with the coarse mesh. Here, there were typically 850 negative
particles in the system, per generation. This is to be expected with smaller mesh bins, as there will
be fewer particles present in each bin. The fission source required approximately 200 generations
to converged under both problems. For both problems, 2200 generations were run, with the first
200 being discarded, and both resulted in an eigenvalue of keff = 1.18378±0.00002, in a agreement
with the reference eigenvalue for the problem.

5. CONCLUSIONS

This work has established the context in which a Monte Carlo simulation will fail to stabilize,
when solving a k-eigenvalue transport problem with positively and negatively weighted particles.
As a remedy to these instabilities in one dimension, the concept of exact regional cancellation,
as proposed by Booth and Gubernatis, was built upon. Weight cancellation was demonstrated
to adequately stabilize the particle populations, and allow the simulation to be conducted in an
exact manner. As a solution to the same problem in three dimensions, an approximate weight
cancellation scheme was used, where a Cartesian mesh is imposed over the fissile domain, and the
average particle weight within a mesh bin is assigned to all particle in that bin. This methodology
was applied to the C5G7 multigroup benchmark, as a proof of concept. While not exact, both



(a) (b)

Figure 4: Sizes of the populations in the C5G7 simulation, with weight cancellation. Figure
a was produced using a coarse cancellation mesh, while Figure b was produced with a fine

cancellation mesh.

meshes produced results in good agreement with the accepted eigenvalue for the problem. The
approach was shown to be quite efficient at canceling positive and negative weights, with both
a coarse and fine meshes resulting in stable simulations. More work must be done to further
examine the properties of such systems, such as the effects of using different choices of Σsmp, and
different cancellation meshes. For the 3D case, exact methods of weight cancellation should also
be investigated, as an alternative to the approximate one used in this paper.
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Random walks are frequently used as a model for very diverse physical phenomena. The Monte
Carlo method is a versatile tool for the study of the properties of systems modelled as random
walks. Often, each walker is associated with a statistical weight, used in the estimation of observable
quantities. Weights are typically assumed to be positive; nonetheless, some applications require the
use of positive and negative weights or complex weights, and often pose particular challenges with
convergence. In this paper, we examine such a case from the field of nuclear reactor physics, where
the negative particle weights prevent the power iteration algorithm from converging on the sought
fundamental eigenstate of the Boltzmann transport equation. We demonstrate how the use of weight
cancellation allows convergence on the physical eigenstate. To this end, we develop a novel method
to perform weight cancellation in an exact manner, in three spatial dimensions. The viability of this
algorithm is then demonstrated on a reactor physics problem.

I. INTRODUCTION

Many physical processes can be be represented by the
random movement of particles, or “walkers”, through
phase space. Such phenomena include radiation trans-
port, propagation of active molecules in living bodies, or
the spread of epidemics [1–4]. Quite often, it is desirable
to compute the properties of such systems with the aid
of Monte Carlo simulations. This is certainly the case
in neutron transport, where Monte Carlo techniques are
used to sample the random walk process and thus solve
the Boltzmann neutron transport equation [5]. In this
context, the Monte Carlo method may be preferred to
(faster) deterministic methods because it requires very
few (if any) approximations: Monte Carlo simulations
are typically used to obtain reference solutions to which
deterministic solutions may be compared.

The random walkers have an associated statistical
“weight”, which is typically positive and real. This
weight is used to estimate the observable quantities which
are sought in the simulation. Certain forms of trans-
port problems, however, require the use of positive and
negative weights, or even complex weights. Some ex-
amples include diffusion quantum Monte Carlo [6], the
solution of neutron noise equations in the frequency do-
main [7], the determination of the second harmonic of
the Boltzmann eigenvalue equation [8], and the determi-
nation of transmittance in graphics rendering [9]. Monte
Carlo simulations that use negative or complex weights
are notoriously difficult, as they often do not converge to
the desired solution [6, 8], or have a very high variance
in the observed quantities [7]. Most literature recognizes
that applying weight cancellation, where walkers carry-
ing positive and negative weights may annihilate with
one another, is highly beneficial for the solution of these
problems [6–8, 10, 11].

∗ hunter.belanger@cea.fr
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‡ andrea.zoia@cea.fr

Several methods for performing weight cancellation
have been proposed. One method, stemming from neu-
tron transport, achieves weight cancellation by pairing
walkers individually (as opposed to pooling weights of
walkers within a defined region) [8]. While in theory this
algorithm is exact (i.e. it does not introduce any approx-
imation), it is difficult to implement, and has a quadratic
computational complexity in the number of random walk-
ers being simulated. Another linear, exact regional can-
cellation algorithm has been proposed [11], but is only
valid in 1D geometries. One alternative approach con-
sists of using an approximate technique of averaging the
weight of all walkers within the same region [7]. This
is easily applied to 3D, and has linear complexity, but
does not provide an exact solution. Finally, it must
be mentioned that not all random walker problems are
posed in a manner which makes cancellation difficult. In
the full configuration interaction quantum Monte Carlo
technique, for example, cancellation is straightforward,
as walkers explore a discrete state space, as opposed to
a continuous state space; when two walkers of different
signs land in the same state, they may immediately an-
nihilate [12].

In this paper, we review some of the existing weight
cancellation methods and propose a novel exact 3D re-
gional cancellation algorithm, that has linear complexity
in the number of walkers, and that can be easily gener-
alized to any number of dimensions. The development of
this method has been motivated by certain neutron trans-
port problems that require the use of negative walker
weights in conjunction with the power iteration technique
(for obtaining the dominant eigenstate), and that fail to
converge to the correct solution without weight cancella-
tion; a simplified example of such a system is presented
in Section II. Subsequently, in Section III, we will de-
velop a mathematical model to explain why the power
iteration fails in the presence of negative weights, and
why weight cancellation can resolve this problem. We
will demonstrate how the existing 1D regional cancella-
tion algorithm allows successful convergence of our 1D
power iteration problem in Section IV, and we will de-
velop our novel, 3D version of the cancellation algorithm
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in Section V, testing it on a reactor physics benchmark
in Section VI. Finally, we will present our conclusions
Section VII.

II. POWER ITERATION DEBACLE

In neutron transport, a main quantity of interest is
the fundamental eigenpair of the Boltzmann k-eigenvalue
equation for neutrons, which we write here in its one-
speed form, as a function of position r and direction Ω̂:

Ω̂ · ∇φk(r, Ω̂) + Σt(r)φk(r, Ω̂) =∫

4π

Σs(r, Ω̂
′ → Ω̂)φk(r, Ω̂

′)dΩ̂′ +

ν(r)Σf (r)

4πk

∫

4π

φk(r, Ω̂
′)dΩ̂′. (1)

Here φk is the eigenfunction, k is the eigenvalue, Σt is the
total cross section, Σs is the scattering cross section, Σf

is the fission cross section, and ν is the average number
of new particles produced per fission. While it does not
explicitly appear in Eq. (1), there is an implicitly defined
capture cross section Σc = Σt−Σs−Σf , which results in
the death of neutrons. In general, Eq. (1) admits several
eigenvalue-eigenfunction pairs; the fundamental (largest)
k-eigenvalue is the multiplication factor, which is typi-
cally written as keff. The corresponding eigenfunction φ0

is known as the angular neutron flux, and it represents
the average number of neutrons crossing a unit surface
area per unit time [5].

In order to obtain keff and φ0, a numerical technique
known as power iteration is often employed [5, 13]. Al-
though Eq. (1) is not written in such a form, we may as-
sume that it represents an eigenvalue problem of the type
Lv0 = λ0v0, with v0 being the fundamental eigenstate,
and λ0 being the fundamental eigenvalue. In relation
to Monte Carlo transport problems, the operator L can
be interpreted as the propagation of particles through a
system from one fission event to another. With power
iteration, one may obtain the fundamental state v0 from
any state b such that the inner product ⟨b, v0⟩ ≠ 0, by
repeated application of the operator L:

lim
n→∞

Lnb

|Lnb| = v0. (2)

Therefore, starting from almost any initial state, it is
possible to converge to the fundamental mode [13].

We wish to use Monte Carlo to yield a solution to
Eq. (1), in the sense that the average density of walk-
ers in phase space should satisfy Eq. (1), and represent
the fundamental eigenmode. In the context of Monte
Carlo, the idea of the power iteration technique needs
to be adapted as follows. Starting from an arbitrary set
of walkers, we sample random walks for all walkers until
their death. Along the walk, a walker may be randomly
killed if the magnitude of its weight becomes too low, or

split if the magnitude becomes too large [14]. During the
random walks of this first generation, new particles will
be born from fission. These fission particles are stored in
a bank and are attributed to the second generation. Once
the first generation has finished, the banked particles un-
dergo population control, where those with small weights
may randomly be killed, those with large weights may be
split into multiple particles, and the net weight of all par-
ticles is normalised. This is done to keep the net weight
of all the particles at the beginning of a generation con-
stant, and to keep the number of particles in the simula-
tion constant on average [14]. This culled and normalized
particle bank is subsequently used as the source for the
second generation. These particles then undergo the ran-
dom walk, producing fission particles which will belong
to the third generation. This application of the random
walk mechanics on a generation of particles may be con-
tinued indefinitely. After a number of a generations, the
positions (and directions) of the fission particles will set-
tle on an equilibrium distribution, representing the con-
verged fission source for the problem [14]. The combined
random walks of all particles from this converged fission
source represent the dominant eigenfunction of Eq. (1).
With the fission source converged, observable quantities
(such as the angular flux and the multiplication factor)
may be estimated in each generation. With an estima-
tion of the angular flux and the multiplication factor ob-
tained by each generation, an average may be calculated,
although the estimation of the uncertainty is not trivial
[15].
Within a generation, the random walk process is sam-

pled as follows. A particle begins with an initial position
and direction, which for the first generation may be sam-
pled from a somewhat arbitrary distribution. The first
task is to sample the distance the particle will fly be-
fore having a collision. In most applications of Monte
Carlo simulation to reactor physics problems, the total
cross section is usually assumed to be piece-wise constant
within each macroscopic geometric region composing the
modeled system. To sample a flight distance in a material
region with a spatially constant cross section, a random
variable ξ ∼ U [0, 1) is drawn, and the cumulative distri-
bution function for the flight distance must be inverted
to obtain the distance to collision dc

1:

ξ =

∫ dc

0

Σt exp(−Σts)ds⇒ dc = − ln(1− ξ)

Σt
. (3)

The sampled distance is only valid in the given material
region. If the distance dm to the next material bound-
ary is less than dc, the particle is only moved by dm, the
cross section is updated, and a new distance to collision
is sampled. Once at a collision site, the collision me-
chanics may be simulated; the particle can be captured

1 It is for this reason that the underlying random walk is called
“exponential flight” [16].
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with probability Σc/Σt, whereupon the history is ter-
minated; alternatively, scattering events may occur with
probability Σs/Σt, or the particle may produce new fis-
sion particles with probability Σf/Σt, which will be part
of the next generation [14]. The multiplication factor
may be estimated in several different manners: here we
use the collision estimator. When a particle of weight
w has a collision, we add the expected number of fission
neutrons produced per collision at that location, namely
wν(r)Σf (r)/Σt(r), to an accumulator which we shall re-
fer to as K. Once the generation has finished, the esti-
mate for the multiplication factor for the generation G
is

k
(G)
eff =

K

W
, (4)

G being the generation number, and W being the sum
of the weights of all the particles at the beginning of the
generation (which is a constant, because of the normal-
ization procedure described above). The accumulator K
must of course be reset to zero before each new genera-
tion begins.

A more realistic description of the system would con-
sist of relaxing the hypothesis of piece-wise constant cross
sections, especially in view of multi-physics problems [17]
where the cross sections for neutron transport depend on
complex space-dependent physical feedback mechanisms
such as temperature and material density fields. Re-
cently, we examined different methods of sampling the
flight distance for the case of spatially varying cross sec-
tions [18]. Such methodologies are highly desirable for
the next generation of Monte Carlo transport codes, as
they could allow for a better representation of the system
being simulated, reduce memory requirements, and pair
well with the reactor physics community’s goals of taking
into account a multi-physics approach [19]. In principle,
sampling the distance to collision for spatially dependent
cross sections would require inverting the following equa-
tion for dc:

ξ =

∫ dc

0

Σt(sΩ̂+ r0) exp

(∫ s

0

Σt(uΩ̂+ r0)du

)
ds. (5)

In practice, this is quite difficult to accomplish. Our
previous work considered several algorithms which could
sample flight distances from spatially continuous cross
sections, without needing to directly invert Eq. (5). In
particular, we examined the traditional delta tracking
[20, 21], and the negative weighted delta tracking meth-
ods [22, 23].

In order to illustrate how these algorithms work, we
revisit a simple one-dimensional transport problem that
was considered in our previous paper. In the so-called
‘rod model’, particles may only move in the forward or
backward direction, along a line segment. For our pur-
poses, this line segment has a finite length, and it is pos-
sible for particles to leak out of either end of the line. For
our application we will set the boundaries of the segment
at x = 0 and x = 2. As an example of a space-dependent

Algorithm 1: Negative weighted delta tracking

1 Sample uniform random variable ξ1;
2 d := − ln(ξ1)/Σsmp;

3 r1 := dΩ̂+ r0;
4 Sample random variable ξ2;
5 if ξ2 < q then

6 w := w
Σt(r1)

qΣsmp
;

7 Perform real collision;

8 else

9 w := w
1− Σt(r1)

Σsmp

1− q
;

10 Virtual collision; goto line 1;

11 end

cross section, we will use the broad-Gaussian cross sec-
tion from our earlier paper [18]. This cross section profile
was chosen as it is not monotonic, and better represents
the idea that particles may see both an increase and de-
crease in the cross section along their ray of flight. The
chosen Σt(x) has the form

Σt(x) =

√
2

π
e−(x−1.23)2 + 0.1 ∀x ∈ [0, 2]. (6)

The scattering, absorption and fission probabilities are
chosen to be spatially constant, having values of Σs/Σt =
0.7, Σc/Σt = 0.1, and Σf/Σt = 0.2. The average number
of neutrons born per fission is ν = 2.5; both scattering
and fission are isotropic (equal probability of emission
forward or backward).
Transport is conducted using the negative weighted

delta tracking (NWDT) method [22, 23]. The basic pro-
cedures for this method are presented in Alg. 1. It relies
on the concept of real and virtual collisions. NWDT re-
quires two parameters: a sampling cross section Σsmp,
which is used to sample the distance to a tentative colli-
sion site, and a probability q, which is used to determine
whether a collision is real or virtual. At a real collision,
the mechanics of a collision are used to change the direc-
tion of the particle accordingly. A virtual collision does
not simulate the collision mechanics; instead, the direc-
tion of the particle is left unchanged, and the distance
to a new tentative collision site is sampled, where the
process begins again. Both Σsmp and q are allowed to
be functions of the position. According to the NWDT
algorithm, the particle weight changes sign when a vir-
tual collision is sampled, and Σt > Σsmp. Here, we have
chosen Σsmp = 0.85Σt(x = 1.23), which leads to particles
changing sign within the region 0.8 <∼ x <∼ 1.66. As for
q, we have used q = Σt/(Σt + |Σsmp − Σt|), which corre-
sponds to the strategy proposed by Carter, Cashwell and
Taylor [23, 24]. This choice of q was motivated by our
previous work, where the method demonstrated very rea-
sonable performance compared to the standard of delta
tracking [18].

Delta tracking is a special case of NWDT, where the
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sampling cross section Σsmp is taken to be a strict majo-
rant cross section Σmaj, with Σmaj ≥ Σt and the accep-

tance probability q is taken equal to Σt/Σmaj [20, 21]
2.

With these choices, particle weights never change sign;
however, insisting on the use of delta tracking can raise
a number of practical problems, because it could be very
challenging to obtain a majorant when using spatially
continuous cross sections in a more realistic context. If
one were to conduct a simulation where both the isotopic
density and the temperature of materials varied spatially,
there is, in general, no way to exactly determine the ma-
jorant cross section for the system. It is certainly pos-
sible to probe the phase space of the problem, testing
the cross section at each point. However, if the selected
sampling cross section is not in fact a majorant, it will
be impossible to handle collisions for which Σt > Σsmp;
even if such an event does not occur, the results will be
slightly biased. Conversely, if Σsmp is chosen by apply-
ing a large safety margin to the maximum known cross
section (in an effort to ensure underestimation of the ma-
jorant does not occur), the method becomes quite inef-
ficient, as many unnecessary virtual collisions will occur
[21]. NWDT tolerates underestimations in the majorant
cross section, and also allows one to avoid gross overesti-
mations of the majorant which reduce efficiency.

With NWDT, not only may there be negatively
weighted particles in the system, but the weights may
also change in magnitude. These two traits can lead to
an increase in variance and simulation time. To mitigate
these effects, roulette is used on particles with |w| < 0.6,
with the survival weight being w = ±1 (ensuring that
the particle keeps its initial sign). Particles are also split
if |w| ≥ 2.

In our previous work, we neglected fission. In view of
testing NWDT in the framework of power iteration for
eigenvalue problems, fission has been added to our model.
The number n of new fission neutrons generated at any
collision is taken to be

n =

⌊
|w|νΣf

Σt
· 1

k
(G−1)
eff

+ ξ

⌋
, (7)

where ξ ∼ U [0, 1) is a uniform random variable, and

k
(G−1)
eff is the estimated value of keff for the previous gen-

eration of particles. Without dividing by k
(G−1)
eff , the

number of particles in the simulation would either in-
crease exponentially if the system is super-critical (keff >
1), or decrease exponentially if the system is sub-critical
(keff < 1). This algorithm closely follows standard meth-
ods applied in Monte Carlo codes [28, 29], with slight
modifications to accommodate fission with negative par-
ticles. All new fission particles are born with a weight

2 Delta tracking is also sometimes referred to as self-scattering in
the electron transport community [25], as thinning [26], or as the
null-collisions method [27].
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FIG. 1. The number of positive and negative particles per
generation, when using the population control scheme pro-
vided in Eq. (7).
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FIG. 2. The weight of positive and negative particles per gen-
eration, when using the population control scheme provided
in Eq. (7).

w = ±1, keeping the sign of the weight of the particle
inducing fission. Between particle generations, all parti-
cle weights are multiplied by a normalization coefficient
to ensure that the net weight of the system (sum of all
particle weights) is always a constant value.

Figure 1 shows the number of positive and negative
particles per generation, when starting with 106 parti-
cles uniformly distributed within the rod. Also shown is
the net number of particles Nnet = N+ − N−, and the
total number of particles Ntot = N+ + N−. Similarly,
Figure 2 shows the total positive weight W+ (the sum of
the weights of all positive particles), the total negative
weight W− (the sum of the magnitude of the weights
of all negative particles), together with the net weight
Wnet =W+−W− and the total weightWtot =W++W−.
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FIG. 3. The number of positive and negative particles per
generation, when using the population control scheme pro-
vided in Eq. (8).

The number of particles is somewhat less meaningful
than the weight, as one can use methods such as weight
combing [30] to adjust how many particles are followed
in the simulation, but this says nothing about the mag-
nitude of their weight. Weight is the more natural quan-
tity to examine, as its behavior is not controlled by the
number of particles. It is instructive, however, to con-
sider the interplay between weight and number of par-
ticles. While Eq. (7) keeps the net number of particles
stable as expected, the total number of particles is left
to increase exponentially. Eventually, this increase in
the number of particles causes each generation to take
a longer amount of time to process, and the memory re-
quirements increase as well. At some point, the computer
memory is overwhelmed, and the simulation fails. In an
attempt to remedy this problem, we modified Eq. (7) by

replacing k
(G−1)
eff ; using the value of keff for the previous

generation keeps the net number of particles constant on
average, so a new quantity ktot was defined, representing
the the increase in the total weightWtot of the simulation.
The quantity ktot may be estimated in a similar manner
to the multiplication factor, accumulating the collision

estimator |w|ν(r)Σf (r)/Σt(r). Using k
(G−1)
tot in Eq. (7),

we obtain

n =

⌊
|w|νΣf

Σt
· 1

k
(G−1)
tot

+ ξ

⌋
. (8)

The effects on the particle populations from using this
normalization technique are presented in Figure 3 and
Figure 4. While the total number of particles indeed re-
mains constant on average, the net number of particles
now decreases exponentially. The net weight of course
remains constant because we are normalizing it at the
end of the generation. With fewer net particles to main-
tain the entire initial weight of the system, the magnitude

0 10 20 30 40 50
Generation

104

105

106

107

108

W
ei

gh
t

W +
W
Wtot

Wnet

FIG. 4. The weight of positive and negative particles per gen-
eration, when using the population control scheme provided
in Eq. (8).

of the weight of the particles increases drastically. This
is indicated by the total weight of the system continu-
ing to increase exponentially in Figure 4. This leads to
near equal quantities of positive and negative particles,
each with very large weight magnitudes, causing large
fluctuations in the flux estimators, and therefore a larger
variance in scores.
Other population control mechanisms were tested as

well, hoping that they might stabilize the system. One
such method was particle combing [30], conducted be-
tween each generation of particles. While combing did
reduce the total number of particles going into each gen-
eration, the weight magnitude of each particle was quite
large. Once they entered the simulation, the particles
were split, causing an abrupt increase in memory con-
sumption. After several generations, the simulation is
killed by the operating system due to the large memory
consumption.
Although the rod model example is admittedly simple,

similar results have been obtained when using the NWDT
algorithm in combination with power iteration on more
realistic reactor physics problems in 3D, and with energy-
dependent cross sections (see Sec. VI). It is clear that the
power iteration with NWDT cannot be used to estimate
the equilibrium distribution of walkers, and therefore the
solution to Eq. (1). It is therefore pertinent to better
understand why the power iteration is failing, and how
the problem might be addressed.

III. NECESSITY OF WEIGHT CANCELLATION

A. The failure of power iteration

The Boltzmann equation presented in Eq. (1) is not
capable of describing the interaction between the posi-
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tive and negative particle populations in a simulation,
only their combined average angular flux. It is fairly
straightforward, however, to propose a formulation of the
transport equation which is capable of representing both
positively and negatively weighted particles. Consider-
ing Alg. 1, outlining the NWDT method, we may write
a set of coupled transport equations, one for the angular
flux φ+ of the positive particles, and a second for the
angular flux φ− of the negative particles, resulting in the
following coupled equations:

Ω̂ · ∇φ± +Σsmpφ± = Sφ± +
1

k
Fφ± +

∆(Σsmp − Σt)φ± +∆(Σt − Σsmp)φ∓. (9)

Here, S is defined as

Sφ =

∫

4π

Σs(r, Ω̂
′ → Ω̂)φ(r, Ω̂′)dΩ̂′ (10)

and F is defined as

Fφ =
ν(r)Σf (r)

4π

∫

4π

φ(r, Ω̂′)dΩ̂′. (11)

We have also made use of the function

∆(x) =

{
x x > 0

0 x ≤ 0
. (12)

A rigorous derivation of this statement is given in the
Appendix. There is a subtlety in this formulation: in-
stead of having one species of particles which may have
a weight that is positive or negative, we now have two
species (positive and negative), and both are represented
by particles having a strictly positive weight. In this
framework, our unknown is now the set of eigenfunctions

ζ =

[
φ+

φ−

]
, (13)

which is the solution of the generalized eigenvalue prob-
lem

Aζ =
1

k
Fζ, (14)

operator A being

A =

[
A11 A12

A12 A11

]
, (15)

with

A11 = Ω̂ · ∇+Σsmp − S −∆(Σsmp − Σt),

A12 = −∆(Σt − Σsmp),
(16)

and F being defined as

F =

[
F 0
0 F

]
. (17)

If we use V to denote the vector space of the physical
flux, then ζ is an element of the expanded vector space
V × V.

Given the previous definitions, the physical flux is in-
terpreted to be

φ = φ+ − φ− (18)

and may be retrieved through the application of D : V ×
V → V, defined as

D =
[
I −I

]
(19)

and whose action is

D

[
f
g

]
= f − g. (20)

The eigenvalue equation presented in Eq. (14) has sev-
eral interesting properties, which may be elegantly out-
lined by the introduction of the parity operator, namely

P =

[
0 I
I 0

]
. (21)

Eq. (14) is invariant under the action of the parity oper-
ator: that is, if ζ̄ is a solution of Eq. (14) with eigenvalue
k̄, then so is P ζ̄. It is easily verifiable that PAP = A
and PFP = F , and therefore

A(P ζ̄) =
1

k̄
F (P ζ̄). (22)

Thus, if the eigenvalue k̄ is non-degenerate, we must have
P ζ̄ = ±ζ̄. This partitions the eigenstates into two sets,
depending on the sign of their eigenvalue with respect to
P . The odd eigenstates have the form

ζo =

[
φ
−φ

]
. (23)

By inserting this ansatz into Eq. (14), we can verify that
φ must solve the physical eigenvalue equation

Ω̂ · ∇φ+Σtφ = Sφ+
1

k
Fφ, (24)

which is just Eq. (1). We denote the eigenfunctions and
eigenvalues of this equation as φi and kφ,i, respectively,
with i ∈ {0, 1, . . .}. The even eigenstates have the form

ζe =

[
η
η

]
, (25)

where η must solve the modified Boltzmann equation

Ω̂ · ∇η +Σt,ηη = Sη + 1

k
Fη, (26)

which is verified by substitution into Eq. (14). Here we
have defined

Σt,η = Σsmp − |Σsmp − Σt|. (27)
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We denote the eigenfunctions and eigenvalues of Eq. (26)
as ηi and kη,i, respectively, with i ∈ {0, 1, . . .}.

Since we always have Σt,η ≤ Σt, the equation for η
has the same scattering and fission terms as Eq. (1), but
capture has been decreased, namely

Σc,η = Σt,η − Σs − Σf ≤ Σt − Σs − Σf . (28)

Thus, on physical grounds, we correspondingly expect a
larger dominant eigenvalue:

kη,0 ≥ kφ,0 = keff. (29)

Therefore, the dominant eigenvalue of Eq. (14) is not keff,
but the nonphysical eigenvalue kη,0. Applying the power
iteration method to Eq. (14) will result in convergence
towards the latter eigenstate. Additionally, the equilib-
rium distribution is even under the exchange of positive
and negative particles, i.e. it contains the same amount
of positive and negative particles, and thus zero net par-
ticles. Converging to a state which has zero net particles
is incompatible with traditional population control mech-
anisms (such as combing, or normalizing by keff), which
are designed to keep the net weight constant, leading
to the divergence in particle populations which was ob-
served in Sec. II.

It is worth stressing the similarity between our analysis
and the study by Spencer et al. [12] on the origin of the
sign problem in full configuration interaction quantum
Monte Carlo without weight cancellation.

B. Modeling weight cancellation

Previous investigations have shown that weight cancel-
lation can be very effective in dealing with Monte Carlo
problems using particles of both positive and negative
weights [6, 8, 12, 31]. In view of these considerations, in
the following we will formally address the effect of cancel-
lation on Eq. (14). Weight cancellation can be modeled
in the following manner: we start with some function of
the phase space variables (r, Ω̂), i.e. an element of V.
This function may be embedded in V × V by applying a
suitable mapping E : V → V ×V. There is some latitude
in the definition of E; one possible definition is

E1f =

[
f
0

]
, (30)

but equally valid choices could be

E0f =

[
0
−f

]
(31)

E1/2f =

[
f/2
−f/2

]
(32)

(33)

or the non-linear variant

Ẽf =

[
max(f, 0)
−min(f, 0)

]
. (34)

The only property that we require of E is that it should
be right-inverse to D, viz.

DE = I. (35)

This property expresses the fact that lifting a function
from V into V × V (the action of E) followed by collaps-
ing back into the space V of physical fluxes (the action
of D) should not change the function we started with.
It is easily verifiable that the previously proposed defi-
nitions of E satisfy this property. In matrix notation,
the operators E1, E0, and E1/2 are given by the general
formula

Ez =

[
zI

(z − 1)I

]
. (36)

It is not possible to express Ẽ as a matrix, as it is non-
linear.

Let us now consider the operator product with the op-
posite ordering, C = ED. This operator, C : V × V →
V × V is a projector, by virtue of Eq. (35):

C2 = EDED = E(DE)D = ED = C. (37)

By construction, the null space of C coincides with the
null space of D, which is the space of even (unphysical)
vectors:

C

[
η
η

]
= 0. (38)

Therefore, the operator C can be regarded as a model for
perfect cancellation. We have shown that the even vec-
tors represent the solutions of the nonphysical Boltzmann
equation in Eq. (26). This is supported by the explicit
form of C which follows from the previous definitions for
E:

Cz

[
f+
f−

]
= EzD

[
f+
f−

]
=

[
z(f+ − f−)

(1− z)(f+ − f−)

]
(39)

C̃

[
f+
f−

]
= ẼD

[
f+
f−

]
=

[
max(f+ − f−, 0)
−min(f+ − f−, 0)

]
.(40)

Note that only C̃ can guarantee that both vector compo-
nents are non-negative, but it requires that both C and
E be non-linear. In matrix notation, Cz reads

Cz =

[
zI −zI

(z − 1)I −(z − 1)I

]
. (41)

Going back to our eigenvalue equation, Eq. (14) may
be modified to include the application of cancellation on
the fission source:

Aζ =
1

k
CFζ. (42)

If ζ is even, Fζ must also be even as [F ,P ] = 0. Since
C maps even vectors to 0, the cancellation operator in
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Eq. (42) causes the nonphysical eigenmodes correspond-
ing to Eq. (26) to vanish.

At this point, it remains to be shown that cancellation
does not perturb the physical eigenvalues of Eq. (14),
that were initially associated with the odd eigenstates.
To accomplish this, we start with Eq. (42), and apply D
from the left on both sides, as this is the operator which
performs the mapping V × V → V:

DAζ =
1

k
DCFζ. (43)

From Eq. (35), we may substitute DC = D. Using
Eqs. (13), (15), and (18), this then simplifies to

(A11 −A12)φ =
1

k
Fφ. (44)

Eq. (12) indicates that ∆(x)−∆(−x) = x, which, when
combined with Eq. (16), yields

[
Ω̂ · ∇+Σt

]
φ = Sφ+

1

k
Fφ. (45)

This is the physical Boltzmann transport equation.
Therefore, cancellation leaves the physical eigenstates
unchanged, so long as Eq. (35) holds true, regardless of
the form of E.

In summary, the introduction of cancellation conserves
all the (physical and nonphysical) eigenstates of Eq. (9);
however, the nonphysical part of the spectrum is rele-
gated to zero, while the physical eigenvalues are unper-
turbed and dominate the power iteration.

C. Deterministic proof of concept

In order to better understand the effects of cancel-
lation, and how it positively affects the convergence of
the power iteration, it is fruitful to visualize the spec-
trum of the associated equations. For this purpose, we
have written a deterministic solver that computes the
full spectrum of eigenvalues and eigenfunctions (using
the LAPACK library [32]) for a discretized version of the
one-dimensional system introduced in Sec. II. A deter-
ministic solver was necessary, since Monte Carlo can only
be used to estimate the fundamental mode by power it-
eration. This solver uses a finite-difference method, with
cross section values being taken at the midpoint of each
spatial bin; both the positive and negative particle fluxes
are explicitly considered.

Before considering cancellation, it is helpful to observe
the behaviour of the eigenvalue spectrum of Eq. (14) as
a function of Σsmp/Σmaj. This quantity roughly mea-
sures of the amount of negative weight that is produced
by NWDT; the smaller the ratio is, the more negative
weight is introduced. The spectrum is the union of the
sets of eigenvalues kφ,i and kη,i and is presented in Fig-
ure 5. Naturally, the spectrum associated with the phys-
ical Boltzmann equation does not change with the ra-
tio of Σsmp/Σmaj. The eigenvalues of the nonphysical

0.700.750.800.850.900.951.00
smp/ maj
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10 1
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FIG. 5. Behavior of the eigenvalue spectrum as a function of
the ratio of the sampling cross section to the majorant cross
section. Eigenvalues associated with the physical Boltzmann
equation have a solid line, while those associated with the
nonphysical Boltzmann equation have a dotted line.

Boltzmann equation diverge from the physical values as
this ratio decreases from unity. The dominant nonphysi-
cal eigenvalue kη,0 continually increases above kφ,0, while
the other depicted eigenvalues decrease from their phys-
ical counterparts. In Eq. (29), we heuristically demon-
strated that kη,0 ≥ keff, and this is indeed the case in
Figure 5. Our heuristics however, are not able to make
any remarks as to the behavior of the higher eigenvalues,
and while for this system kη,i for i > 0 always appears to
decrease when Σsmp/Σmaj decreases, we have observed
other systems which do not exhibit this behavior.
When the cancellation operator C1 is added in accor-

dance with Eqs. (41) and (42), we find that cancellation
indeed suppresses the even eigenstates, leaving only the
odd ones associated with the physical solutions, so long
as Σsmp/Σmaj > 0. This is the case for a cancellation
operator which is “perfect”, in that it is able to conduct
cancellation in a manner which always completely neu-
tralizes the negative particle population. While this is
of course desired, and possible to implement in a deter-
ministic solver, we will later show in Sec. IV that 100%
cancellation efficiency is not necessarily achievable in a
Monte Carlo approach. To mimic this fact, we introduce
an imperfect cancellation operator C(α):

C(α) = αC1 + (1− α)I. (46)

Here α represents the cancellation efficiency: when α = 1
there is perfect cancellation, and when α = 0 there is
no cancellation. This is a highly idealized approach to
model imperfect cancellation, and is not necessarily a
faithful model of the effect of cancellation in a Monte
Carlo setting.

Figure 6 presents the effects of cancellation with vary-
ing levels of efficiency, for the case of Σsmp/Σmaj = 0.7.
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FIG. 6. Behaviour of the eigenvalue spectrum as a function
of cancellation efficiency α, for the case of Σsmp/Σmaj = 0.7.
Eigenvalues associated with the physical Boltzmann equation
have a solid line, while those associated with the nonphysical
Boltzmann equation have a dotted line.

For values of α between 1 and approximately 0.21, the
cancellation operator remains efficient enough that the
physical eigenstate is the dominant one. A critical point
is reached near α ≈ 0.21, where the eigenvalues of the
physical and nonphysical systems are equal. Further re-
ducing the efficiency of cancellation leads to the nonphys-
ical eigenstate being the dominant one. This example in-
dicates that for our system, there is a minimum amount
of weight cancellation required in order for power itera-
tion to converge on the fundamental physical eigenstate.
This is likely true for all systems which can be described
by coupled transport equations for positive and negative
particles.

Even in settings where enough cancellation is present
to make the kφ,0 mode dominant, cancellation might still
be unable to reduce kη,0 to a level that allows for rapid
statistical convergence towards the fundamental mode.
To clarify this, we introduce the dominance ratio, which
is defined as the ratio of the second-largest eigenvalue to
the largest one. The dominance ratio is equal to kη,0/kφ,0

for values of α where kφ,0 > kη,0 > kφ,1. If instead α
is such that kη,0 < kφ,1, then the dominance ratio is
kφ,1/kφ,0, which is the dominance ratio of the physical
system. The dominance ratio provides an indication of
the rate of convergence of the power iteration. When
it is very close to unity, more iterations are required to
converge on the dominant eigenvalue. Should α be suffi-
ciently large to ensure kη,0 < kφ,1, the convergence rate
of the problem will no longer be bound by the efficiency
of cancellation, but by the physical properties of the sys-
tem being examined.

This model for cancellation in a deterministic context
provides valuable insight as to the behavior of this cou-
pled system of positive and negative particles, and to the
possible behavior of implementing cancellation of parti-

cle weights in a Monte Carlo context. It is for this rea-
son that we do not go beyond the provided surface-level
analysis of the effects of cancellation efficiency or choice
of Σsmp on the convergence of the deterministic model.
We will now continue by discussing techniques of weight
cancellation in Monte Carlo simulations.

IV. AN EXACT REGIONAL CANCELLATION
SCHEME FOR 1D PROBLEMS

As mentioned in the introduction, several cancellation
strategies have been proposed in the past; one of these,
devised by Booth and Gubernatis, is exact in 1D geome-
tries [11]. This method works by partitioning all fissile
domains of the problem domain into regions. Between
each generation, weight cancellation amongst all new fis-
sion particles born in the region occurs. An important
feature of this algorithm is that it has linear computa-
tional complexity with the number of particles partaking
in cancellation, making it a good candidate for inclu-
sion in general-purpose Monte Carlo transport codes. We
have therefore chosen to focus on this algorithm. We will
now provide a brief overview of how Booth and Guber-
natis’ method works, as it is essential for understanding
our proposed 3D algorithm, which will be developed in
Sec. V.
Booth and Gubernatis make use of a quantity referred

to as the fission density [11]. In an effort to reproduce
and expand upon their work, we have chosen the follow-
ing definition for the expected fission density: considering
a particle starting a flight at position x0 and traveling in
direction µ = ±1, its expected fission density f(x|x0, µ)
is the expected value of the number of fission events per
unit length around x. It can be written as the product
of the probability density of flying from x0 to x and hav-
ing a collision at position x, and the probability of that
collision being in the fission reaction channel. The exact
form of f(x|x0, µ) depends on the transport methodol-
ogy being employed. For NWDT, this formula can be
deduced by examination of Alg. 1. The probability den-
sity of flying from x0 to x and having a real collision
is

Pc(x|x0, µ) =





q
Σt(x)

qΣsmp
Σsmpe

−Σsmp|x−x0| x− x0
|x− x0|

= µ

0
x− x0
|x− x0|

̸= µ

.

(47)

The Σsmpe
−Σsmp|x−x0| portion is the probability density

of flying from x0 to x, and having either a real or virtual
collision. The factor q is the probability of the collision
being real, while Σt(x)/(qΣsmp) is the weight correction
factor for real collisions. This must of course be combined
with the fission probability

Pf (x) =
Σf (x)

Σt(x)
. (48)
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FIG. 7. Presented is a neutron (the colored circle), beginning
a flight at x0, and flying in the µ = 1 direction (direction of
flight is indicated by the arrow). For this flight, the expected
fission density, f(x|x0, µ) has been plotted as a blue line. The
limits of the region are denoted at xR− and xR+ . The value
of β displayed here is the minimum value of f(x|x0, µ) within
the region. Note that f(x|x0, µ) = 0 for positions that cannot
be reached by the particle.

As f(x|x0, µ) = Pf (x)Pc(x|x0, µ), for the case of NWDT
we may write

f(x|x0, µ) =





Σf (x)e
−Σsmp(x0)|x−x0| x− x0

|x− x0|
= µ

0
x− x0
|x− x0|

̸= µ

,

(49)
noting that the fission density is zero for all positions
which cannot be reached by the particle during the con-
sidered flight.

With the expected fission density for a particle having
been defined, let us consider a fission particle p belong-
ing to the fission source and ready to start a random
walk, at position xp, located in an arbitrary region R
(with bounds xR− and xR+

). The parent of this particle
(which was a member of the previous fission generation)
was previously at position x0 before flying to xp, and
producing the current particle of interest. Figure 7 illus-
trates the expected fission density of the parent particle,
as well as the bounds of region R, and x0. The depicted
value of β in the plot is the minimum value of the fis-
sion density within the region, for the flight of the parent
particle:

β = min
x∈R

f(x|x0, µ). (50)

The idea of Booth and Gubernatis’ method is to esti-
mate the fission density associated with the flight as the
sum of a uniform component over the region R and a
pointwise component concentrated at the actual fission

site. For a fission particle born in R, which was induced
by a particle beginning a flight at x0 and traveling in
the direction µ, the bottom shaded portion in Fig. 7 rep-
resents the fraction of the fission density which is uni-
formly distributed in R, while the top portion represents
the non-uniform fraction of the fission density, which de-
pends on the position xp where the parent lands and
induces a fission. This indicates that, for the particle p,
the fraction of the fission density concentrated at xp is
(f(xp|x0, µ)−β)/f(xp|x0, µ), and the fraction uniformly
distributed through region R is β/f(xp|x0, µ). As such,
we can set the weight of p to be

wp = w
f(xp|x0, µ)− β

f(xp|x0, µ)
(51)

and at the same time create a uniform weight portion wu

of the particle, representing the portion of the particle
which is evenly distributed throughout R, namely

wu = w
β

f(xp|x0, µ)
. (52)

It is important to note that wp+wu = w: the net weight
in the system has not been modified, we have simply dis-
placed a portion of w, distributing it uniformly through
region R.
Dividing particles into a pointwise and uniform portion

does not in and of itself accomplish any weight cancella-
tion. When there are many fission particles within the
same region, however, all of their uniform weight portions
may be combined into a single weight which represents
the uniformly distributed portion of the fission source for
the region. This quantity shall be denoted as UR, and
is the sum of all uniform weight portions for all particles
born within the region, each coming with a sign. Neg-
ative particles will yield negative contributions to UR,
while positive particles will yield positive contributions,
leading to a cancellation. Once all particles have con-
tributed their uniform portion to UR, n new particles are
sampled uniformly within the region, where

n = ⌈|UR|⌉ . (53)

Each of these uniformly sampled particles within R then
has a weight of UR/n.
These newly sampled, uniformly distributed particles

belong to the same generation as particle p, and behave
exactly like traditionally generated particles from this
point on. Under this scheme, a particle which was ini-
tially positive will produce a positive uniform portion,
and keep a positive weight; conversely, negative particles
will remain negative and produce negative uniform por-
tions. In the case of x0 being in the same region as xp,
the uniform weight portion wu must be zero, as the mini-
mum of the expected fission density “behind” the starting
point of the flight is zero. Therefore, particles with x0
and xp in the same region effectively do not partake in the
cancellation process. These two properties are ensured by
β being the minimum value of f in the region. However,
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it is possible to relax the requirement that β should be
the minimum of the expected fission density of the re-
gion. Booth and Gubernatis show in their original work
that any value of β may be used, while still producing
an unbiased result [11]. In the event of β > f(xp|x0, µ),
the sign of the particle’s pointwise weight portion will
change.

With this regional method, the efficiency of cancella-
tion can never be 100%. Only the uniform weight por-
tions contribute to cancellation. For negative weighted
fission particles, the pointwise weight portions do not
cancel, always leaving some residual negative weight.
Given this information, one might think that using a
value of β which is larger than the minimum fission den-
sity might be beneficial, as it would increase the magni-
tude of the weight which goes into the uniform portion.
This is not necessarily the case, however, as it could lead
to the pointwise portions of positive particles becoming
negative, via Eq. (51), possibly defeating the purpose of
cancellation. Sadly, this method of cancellation can not
be modeled as a linear operator, and therefore we are
unable to put it in the context of of the framework which
was put forth in Section III. This makes regional can-
cellation conceptually similar to (though not the same

as) the C̃ operator mentioned in Eq. (40). It is inconse-
quential if our cancellation is linear or not; so long as it
corresponds to a choice of E that preserves Eq. (35), the
method will be exact and unbiased.

A. Results of the 1D methodology

We added the exact 1D cancellation method of Booth
and Gubernatis to the power iteration problem outlined
in Sec. II, performing the cancellation between genera-
tions, and before the normalization of the system weight
occurs. Thirty evenly spaced cancellation regions were
used to partition the rod, and β was always taken to
be the minimum of the expected fission density within
the region. With cancellation, the simulation was stable,
and was able to complete without issue. An eigenvalue
of keff = 0.33577 ± 0.00005 was obtained after 120 gen-
erations (20 inactive generations). This is in excellent
agreement with the value obtained for the system using
delta tracking, which was keff = 0.33573 ± 0.00005 af-
ter the same number of generations. The weights W+,
W−, Wnet, and Wtot are shown in Figure 8. We see that
the negative weight quickly rises to an equilibrium level,
near 5000, and fluctuates then about that value for the
duration of the simulation. The positive weight must
naturally increase by the same amount to keep the net
weight of the system constant. This leads to an increase
in the total transported weight of approximately 104 (the
net weight still being 106). The evolution of the number
of positive and negative particles is presented in Figure 9.
The number of particles in memory stabilizes near almost
2 · 106, twice as many particles as were initially used.

The cancellation algorithm itself has linear computa-
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FIG. 8. The positive weight (W+), negative weight (W−), net
weight (Wnet), and total weight (Wtot) in the 1D rod system,
when using 30 cancellation regions and 106 initial particles.
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FIG. 9. The number of positive (N+), negative (N−), net
(Nnet), and total (Ntot) particles in the 1D rod system, when
using 30 cancellation regions and 106 initial particles.

tional complexity with respect to the number of fission
particles at any given generation. However, it is less obvi-
ous whether the total number of fission particles present
once the simulation has settled to equilibrium is itself a
linear function of the net weight of the system. It is ev-
ident that the total amount of weight transported must
increase until equilibrium is reached, but is the increase
linear in the net weight of the system? To examine this,
we performed several runs with different initial values of
Wnet and we looked at the average value of W−/Wnet, as
a function of Wnet. The total weight can be deduced by
looking at only the behavior of the negative weight, as
the increase in the positive weight will mirror the neg-
ative weight. The result of this study is presented in
Fig. 10. When too little net weight is injected in the
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FIG. 10. Negative weight fraction (W−/Wnet) as a function
of net weight (Wnet) in the 1D rod system, when using can-
cellation with 30 cancellation regions.

system, a higher percentage of negative weight will be
present in the system at equilibrium. There appears to
be a critical point (in this case, near Wnet = 400) above
which the fraction of negative weight no longer decreases
by adding more net weight. This might at first seem
counter-intuitive, but positive particles are always being
converted to negative particles during the random walk
(because of the NWDT algorithm), and the cancellation
process is not 100% efficient. Above this critical point,
no matter how much positive weight is added to the sys-
tem at the beginning of the simulation, the equilibrium
amount of negative weight will on average be a set frac-
tion of the net weight. In other words, the total equi-
librium weight is a linear function of the starting weight
only for sufficiently large values of the latter.

Another consideration is the effect of the number of
cancellation regions on the amount of negative weight.
When there are fewer regions, each one must become
larger; this makes cancellation less efficient, as β will de-
crease if one is taking β to be the minimum of f over
the region. Conversely, making regions too small will
result in too few particles which can partake in cancel-
lation, also reducing the efficiency. To examine this, we
have plotted the negative weight fraction for the num-
ber of cancellation regions in Figure 11. Indeed, from
the figure, there is a range for which the fraction of nega-
tive weight decreases (i.e. the efficiency of cancellation in-
creases) by adding more regions. The number of regions
where the minimum occurs depends on the net weight
of the system. Here, this occurs near 6 × 102 regions
for Wnet = 104, 4 × 103 for Wnet = 105 and 2 × 104

for Wnet = 106, suggesting that the optimal number of
regions does not quite scale linearly with the net initial
weight. The three tested net weights all had very sim-
ilar behavior, and the efficiency improved at the same
rate when adding cancellation regions, until the mini-
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FIG. 11. Negative weight fraction (W−/Wnet) as a function of
the number of cancellation regions, for different net weights.

mum value was reached. There is also a large range over
which the negative weight fraction is less than 1% of the
net weight. For all net weights, this range starts at ap-
proximately 20 regions, and goes up to 2 × 103 regions
for Wnet = 104, or 3× 105 regions for Wnet = 106.
This section has outlined the methodology behind

Booth and Gubernatis’ regional cancellation. The poten-
tial of the method was successfully demonstrated, having
canceled enough negative weight to allow for the proper
convergence of the power iteration algorithm when using
NWDT. In light of this success, we move on to extend-
ing the method to work with more realistic problems in
higher spatial dimensions.

V. EXACT 3D, MULTI-GROUP, REGIONAL
CANCELLATION SCHEME

Unfortunately, it is not possible to directly implement
the 1D regional cancellation scheme of Booth and Gu-
bernatis in higher spatial dimensions. One-dimensional
systems have the special property that lines coincide
with volumes, ensuring the lines of flight of all particles
traversing the region overlap, as well as their uniform
weight portions. This fact allows us to add the uniform
weight portions of all particles in the region, effectively
leading to a cancellation of negative and positive weight.
For higher dimensions, this is not the case. The uniform
portion of the particle weights may only be distributed
along their rays of flight within the cancellation region,
but the flight rays will never overlap completely. It is
then no longer possible to combine the uniform weight
portions as before by simply taking their sum.
The problem with the method of calculating the fission

density in Eq. (49) is that it is only valid along the ray
of flight of the parent particle, after the flight direction
has been sampled. To extend the regional cancellation to



13

higher dimensions, it is required to consider the probabil-
ity of the parent particle scattering into the solid angle
which is subtended by the cancellation region. This is
done by examining Ω̂′, the direction of the parent parti-
cle at position r0 before the direction is changed by the
scattering kernel. After the parent has been modified by
the process of scattering, it then has a direction Ω̂, which
must intersect the cancellation region (given that we are
attempting to perform cancellation for a particle in the
region which was induced by the parent). The scattering
cosine for the interaction which the parent underwent at
r0 is then µ = Ω̂′ · Ω̂. For neutron transport, the az-
imuthal direction of a scatter is almost always isotropic,
and only the scattering cosine is anisotropic (should there
be any anisotropy) [5]. The probability density of scat-

tering in direction Ω̂ from direction Ω̂′ is therefore

P (Ω̂|Ω̂′) =
P (µ)

2π
, (54)

with

∫ 1

−1

P (µ)dµ = 1. Modifying Eq. (49) to use the

flight kernel for 3D, and applying this factor to consider
the scattering angle, we arrive at the expected fission
density

f(r|r0, Ω̂′) =
P (µ)Σf (r)

2π|r − r0|2
e−Σsmp(r0)|r−r0|, (55)

where

µ =
r − r0
|r − r0|

· Ω̂′. (56)

Taking a closer look at Eq. (55), one may recognize it
as being what Lux and Koblinger refer to as the next-
event estimator, for the fission rate at r given a collision
at r0 [14, Sec. 6.IV.A]. Note that Eq. (55) represents
the expected fission density over the scattering and the
free flight following it; this should be contrasted with
Eq. (49), which represents the expected fission density
over the following free flight only.

While there is only one natural shape for a cancella-
tion region in 1D, there are an infinite number of possible
shapes in 3D which one could use. In this work, we will
consider right rectangular prisms for our cancellation re-
gion. This is due to the fact that it is very simple to sam-
ple positions within a right rectangular prism uniformly,
which is required in the cancellation processes. We will
choose β to be the minimum value of the expected fis-
sion density within the cancellation region. If Σf (r) is
spatially varying within the cancellation region and scat-
tering is anisotropic, it is difficult to determine the true
minimum; when Σf (r) is homogeneous within the region
and scattering is isotropic, however, one may determine
the true minimum of the expected fission density for the
flight from r0 to r by evaluating f(r|r0, Ω̂′) at all eight
corners of the prism, as the minimum must occur at one
of those eight points. Figure 12 provides a depiction of

r

r0
Ω'

FIG. 12. Depiction of the 3D regional cancellation process.
To find the uniform weight fraction of the fission particle at
r, β must first be determined. This is done by calculating the
expected fission density at all eight corners of the cancellation
region (though only two are depicted by the dashed arrows)
from the parent particles previous position and direction (r0

and Ω̂′), and taking the minimum value.

the cancellation process. Using the minimum as the value
of β for the flight, it is possible to calculate a pointwise
weight portion and a uniform weight portion of the fis-
sion particle, as was done before in Eq. (51) and Eq. (52).
Once the uniform portions of all fission particles in the
region have been collected, one may take the net uniform
weight of the region, and sample new particles to add to
the fission bank uniformly within the prism.

Until now, for simplicity, we have only considered
single-speed transport, with all cross sections being
energy-independent. With no energy dependence, one
does not need to consider how to sample the energy of the
uniform particles. In all realistic applications in reactor
physics, however, all cross sections are continuous func-
tions of the neutron energy, and the emission spectrum
for the energy of fission neutrons depends on the collided
nuclide and on the incoming energy of the neutron which
induced the fission [5]. Under this assumption, it would
be impossible to collect uniform portions of all the fission
particles together. Without this action, no cancellation
occurs. This fact poses a difficulty in applying weight
cancellation to continuous energy systems.

An approximation which is often used in the reactor
physics community is the multi-group treatment of the
energy variable in the phase space, by using cross sections
which are piece-wise constant in energy. These energy in-
tervals in which the cross section is constant are referred
to as groups. We denote the g-th energy group as Eg,
with g ∈ {1, 2, .., Ng}. By convention, the group corre-
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sponding with the highest energy is E1, while the group with the lowest energy is ENg
[5]. The multi-group k-

eigenvalue Boltzmann equation reads

Ω̂ · ∇φ(r, Ω̂, Eg) + Σt(r, Eg)φ(r, Ω̂, Eg) =

Ng∑

g′=1

∫

4π

Σs(r, Ω̂
′ → Ω̂, Eg′ → Eg)φ(r, Ω̂

′, Eg′)dΩ̂′ +

1

4πk

Ng∑

g′=1

χ(Eg′ → Eg)ν(r, Eg′)Σf (r, Eg′)

∫

4π

φ(r, Ω̂′, Eg′)dΩ̂′ (57)

The structure of Eq. (57) is formally that of a system
of particles with Ng species, coupled with each other by
means of scattering or fission.

Here, the fission spectrum χ(Eg′ → Eg) is written to
show a dependence of the fission particle energy on the
parent particle’s incident energy. This dependence on
the incoming particle energy is relatively weak and is of-
ten ignored in the multi-group approximation [5]. In this
case, we may simply write χ(Eg), moving it outside the
sum in Eq. (57). Under this approximation, we may col-
lect the uniform portions of all fission neutrons in the
region together; regardless of the energy of their parent,
their energy spectra are all the same. However, one must
change the definition of the expected fission density to
take energy into account. Equation (55) is then modi-
fied to include the energy group Eg of the particle that
induces fission:

f(r|r0, Ω̂′, Eg) =
P (µ,Eg)Σf (r, Eg)

2π|r − r0|2

×e−Σsmp(r0,Eg)|r−r0|. (58)

A similar problem can occur for the direction of the
fission particles as well. In continuous energy transport,
both the direction and energy of the fission particles may
be a function of the energy and direction of the incoming
neutron. While the nuclear data representations allow for
this, it is a very marginal occurrence3 in major nuclear-
data evaluation libraries [33, 34]. Therefore, we do not
need to make any special considerations for the angular
distribution of fission particles in order to apply regional
cancellation to multi-group problems.

We have seen that weight cancellation takes place at
fission; however, one may wonder what is special about
fission, and whether one could perform cancellation at
scattering events, instead. At fission, the energy and an-
gular distributions of the secondary fission particles are
independent of the properties of the particle that induces
the fission event. Fission represents the natural cancella-
tion event because the three-dimensional distribution of

3 One exception to this is the evaluation for 232Th which has
anisotropic distributions for prompt fission neutrons in the lab-
oratory frame, in both ENDF/B-VIII.0 and JEFF-3.3.

the expected fission density (Eq. (58)) encodes all the six-
dimensional distribution of the fission emission density in
phase space.

VI. IMPLEMENTATION AND RESULTS

To test our exact, 3D multi-group regional cancella-
tion, we used a modified version of the C5G7 interna-
tional benchmark, which we have depicted in Figure 13
[35]. The C5G7 represents a small 1/8th nuclear reac-
tor core, with four fuel assemblies and 7 energy groups,
that is customarily used to assess and compare deter-
ministic transport codes. In its original specifications,
the fuel pins within the assemblies are cylindrical, with
a radius of 0.54 cm [35]. The use of cylindrical fuel pins
however makes it difficult to use arbitrarily small can-
cellation regions while also being able to directly calcu-
late the minimum value of Eq. (58), to be used as β.
In order to facilitate cancellation, we have modified the
benchmark so that the fuel pins are square in the x-y
plane, with side lengths of 0.756 cm. This choice allows
the fuel cells to be easily cut into an integral number of
rectangular prisms to be used as cancellation regions, en-
suring that no material other than fuel is present in the
region. An important difference from the 1D rod system
is that, in the C5G7 benchmark, the cross sections are
piece-wise spatially constant, being homogeneous within
a given material cell. Also, while we derived the 3D can-
cellation formulas for the general case of anisotropic scat-
tering, all scattering in the C5G7 benchmark is assumed
to be isotropic, simplifying Eq. (58) to

f(r|r0, Eg) =
Σf (r, Eg)

4π|r − r0|2
e−Σsmp(r0,Eg)|r−r0|. (59)

Under this assumption, we have no need to keep track of
the parent particle’s initial direction Ω̂′, as there is equal
probability of scattering in any direction.
The C5G7 benchmark makes use of 3 reflective bound-

ary conditions, as shown in Figure 13. One caveat of
the regional cancellation method is that Eq. (58) is akin
to a next-event point reaction rate estimator. Due to
this, a trivial implementation of the method can not be
used with reflective boundary conditions [28]. Use of this
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FIG. 13. Geometric configuration for our modified version of the C5G7 benchmark, with boundary conditions. Each color
represents a material, associated with a unique set of cross sections.

method with reflective boundary conditions is only pos-
sible if special book-keeping is done to ensure a proper
calculation of the expected fission density. If a particle
begins at r0 and encounters a reflection before having a
real collision at r, then the distances which one would ob-
tain by simply computing |r − r0| will not represent the
actual distance traveled. It is also not enough to simply
store the distance traveled by the particle, as one should
ideally be able to calculate the value of f for any given r
in the region, in order to calculate β. To ensure a proper
calculation of |r − r0|, the initial position r0 of the par-
ent particle is stored: upon each reflection, this position
is transformed to the mirrored location on the other side
of the plane of reflection. When doing this, the point will
generally lie outside of the defined geometry for the sys-
tem, but this should not pose a problem, as we only need
to be able to calculate the flight distance between r0 and
other points in the cancellation region. With delta track-
ing and NWDT, Σmaj(Eg) and Σsmp(Eg) do not depend
on the position within the geometry, but only on the en-
ergy group. We therefore do not need to worry about
trying to find what material this fictitious point would
be located in, or the distance to the next surface.

A problem of this type is admittedly a simple case,
where NWDT is not strictly necessary. One is able to
trivially determine the majorant cross section so that
delta tracking could be used, avoiding the problem of neg-
ative weights all together. As mentioned in Sec. II, how-
ever, in the context of multi-physics problems which are
represented with spatially continuous cross sections, de-

termining the majorant exactly is likely to be difficult, or
impossible. It would certainly be interesting to test this
algorithm on a more complex problem, where delta track-
ing would not be possible (or would be very inefficient).
It would be difficult to verify that the presented cancella-
tion method is working with such a problem, however, as
it could not easily be solved with existing methods. This
is why we have chosen to examine this simpler problem.
To test and evaluate cancellation and NWDT, a multi-

group Monte Carlo code, called MGMC, was written to
solve k-eigenvalue power iteration problems. MGMC
supports general geometries using traditional surface-
based descriptions of volumes. Either delta tracking [20]
or the variant of negative weighted delta tracking devel-
oped by Carter, Cashwell, and Taylor [22, 24] may be
selected for transport. Scalar flux and the fission re-
action rate may be scored over a rectilinear mesh, us-
ing collision estimators4. Monte Carlo estimates are
saved as binary Numpy files [36] for easy analysis and
plotting with Python. Cancellation regions are defined
by a rectilinear mesh imposed on top of the problem,
and can be used with both delta tracking and negative
weighted delta tracking. Shared memory parallelism is
implemented with OpenMP. Geometry, material proper-
ties, scores, cancellation, and simulation settings are all
controlled with a YAML input file. MGMC is written in

4 Scalar flux is defined as

∫

4π
φ(r, Ω̂)dΩ̂ [5].
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FIG. 14. The positive, negative, net, and total weights in
the modified C5G7 benchmark, using negative weighted delta
tracking and no weight cancellation.

C++17, and has been made available under the CeCILL-
v2.1 license [37]. One will also find the necessary input
files to replicate our results there.

All simulations were started with 106 particles uni-
formly distributed across the four fuel assemblies, all in
the first energy group, and ran for 2200 generations, with
the first 200 generations being discarded to allow for fis-
sion source convergence. Delta tracking was first run
(without weight cancellation) to obtain a reference mul-
tiplication factor for the system, which was found to be
keff = 1.21912± 0.00002. When using the Carter, Cash-
well, and Taylor variant of negative weighted delta track-
ing, the majorant cross section was used for the sampling
cross section in all the energy groups except for the first;
for the first energy group, 0.9Σmaj(E1) was used as the
sampling cross section. With this choice of Σsmp, the to-
tal cross section is underestimated in all of the fuel pins
in the first energy group. Any virtual collisions which
occur in these regions of the phase space will therefore
result in the particle weight changing sign.

Running this simulation with NWDT, and without the
use of any weight cancellation, causes the particle popu-
lations to diverge and the simulation to fail. The expo-
nential increase in total weight is depicted in Figure 14.
The behavior is nearly identical to the 1D case presented
in Section II. Asymptotically, the negative weight will
increase at the same rate as the positive weight, with the
difference between the two remaining constant. The ex-
ponential increase inWtot also leads to an exponential in-
crease in the total number of particles in the simulation,
overwhelming computer memory, exactly as in the 1D
case. This supports the point made by Eq (29); weight
cancellation will always be necessary when attempting to
perform power iteration simulations using NWDT.

In order to implement regional cancellation, all fuel
pins were divided into cubical cancellation regions with

FIG. 15. Scalar flux of the 7th energy group in the center
axial slice of the core, obtained using negative weighted delta
tracking and 3D regional cancellation.

side lengths of 0.252 cm. This mesh was chosen by trial
and error, as we have found no practical way to know in
advance for any system the minimum number of cancella-
tion regions required to stabilize the simulation. Cubical
cancellation regions also seemed to be more efficient than
regions which had aspect ratios much larger than one, as
compact region shapes lead to a higher minimum value
of f in the region, and therefore increases β.

Our 3D multi-group exact regional cancellation algo-
rithm was able to stabilize the particle populations when
using NWDT in conjunction with the previously outlined
parameters, and an eigenvalue of keff = 1.21915±0.00005
was obtained. This is in very good agreement with the
value of keff obtained from traditional delta tracking with
no weight cancellation, as the two estimates differ by less
than one standard deviation. The thermal (7th energy
group) scalar flux which was tallied is shown in Figure 15.
This was compared with the flux tally from the delta
tracking simulation by performing a Student t-test in
each mesh cell [38]. The plot of the absolute value of
the Student t-statistic is provided in Figure 16. It can
be seen there that the two flux estimates are also in good
agreement with one another, with no apparent spatial
dependence in their difference.

These two maps only show a small portion of the ex-
amined phase space. For a more thorough comparison,
a histogram of the distribution of the Student t-statistic
for the NWDT flux and the delta tracking flux is given
in Figure 17 [38]. Large portions of the flux tally mesh
have average values of zero, due to the large water re-
flectors. These elements were removed before producing
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FIG. 16. Absolute value of the Student t-statistic for the dif-
ference between the delta tracking and NWDT flux estimates.
The portion displayed is for the 7th energy group, at center
axial slice.

Figure 17. Elements which had a relative error greater
than 20% (in either the NWDT or the delta tracking
score) were also removed, as the Student t-test is only
applicable on normally distributed variables; therefore,
we need to ensure that sufficient statistics are accumu-
lated, so that the central limit theorem may apply. The
20% cut-off is admittedly somewhat arbitrary, but it is
likely that bins with such a high relative error are not nor-
mally distributed. It can be seen that the histogram has
very good agreement with the theoretical distribution,
which we assume to be normal given the large number of
degrees of freedom for the comparison.

Finally, Figure 18 shows the behaviour of the weights
in the system for the first 100 generations in the simula-
tion. As with the 1D case, there is initially no negative
weight. This increases rapidly in the first 10-20 gener-
ations, before beginning to level out. By the time 80
generations have passed, the weights have reached their
equilibrium values. This is much longer than the 1D case,
which only required 2–3 generations before the weights
reached equilibrium. The longer time to convergence is
attributed to the C5G7 benchmark having a higher dom-
inance ratio than the 1D case.
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FIG. 17. Histogram of the Student t-statistic for the difference
between the flux estimates obtained with delta tracking and
NWDT. The curve plotted on top is the expected normal
distribution.
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FIG. 18. The positive, negative, net, and total weights in
the modified C5G7 benchmark, using negative weighted delta
tracking with exact 3D regional weight cancellation.

VII. CONCLUSIONS

Over the course of this work, we have presented a pre-
viously undocumented population control problem which
arises when attempting to run k-eigenvalue power iter-
ation Monte Carlo simulations with both negative and
positive weights in negative weighted delta tracking [22].
Modeling the transport process through a set of coupled
Boltzmann transport equations for negative and positive
particles, we were able to show that the power iteration
technique applied to negative weighted delta tracking will
always fail to converge, as the sought physical fundamen-
tal eigenvalue is not the dominant eigenvalue of the sys-
tem. Instead, a fictitious eigenvalue, associated with a
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system with a lower amount of absorption, is now domi-
nant. We have formally developed a cancellation opera-
tor, demonstrating theoretically, and with a determinis-
tic model, how particle weight cancellation can suppress
the fictitious eigenstate and restore convergence of power
iteration to the physical fundamental eigenvalue.

To demonstrate weight cancellation in a Monte Carlo
context, we have implemented the exact 1D region can-
cellation algorithm of Booth and Gubernatis [11] in a 1D
rod model. Weight cancellation did stabilize the particle
populations through the fission generations, allowing the
simulation to finish. As the method outlined by Booth
and Gubernatis is only valid in 1D single-speed prob-
lems, we have developed an exact 3D regional cancella-
tion method. We tested our 3D algorithm on a modified
version of the C5G7 reactor-physics benchmark, using
negative weighted delta tracking. Cancellation stabilized
the particle populations, and also resulted in estimates
for the multiplication factor and flux which were in agree-
ment with the reference results obtained through delta
tracking. Our exact 3D multi-group regional cancella-
tion could potentially be useful for other applications
in neutron transport as well. One such case is the use
of Monte Carlo methods to obtain higher harmonics of
the k-eigenvalue equation [8]. Our cancellation algorithm
could also potentially prove useful in transport problems
involving complex particle weights, such as the search
for critical buckling or the solution of the neutron noise
equations [7, 39].

Several questions remain to be settled in regard to the
methodology of 3D cancellation. First, in this work we
have required that a cancellation region consist of only
one material. Being able to have multiple materials in a
cancellation region would make it easier to perform can-
cellation on different geometric forms (cylindrical pins).
Second, extension of this algorithm to continuous energy
will require the application of new techniques, because
in continuous-energy transport the fission spectrum de-
pends on the incoming neutron energy. Finally, the ef-
ficient choice of β should be evaluated. While we have
chosen to use the minimum value of the expected fission
density in the region for β, Booth and Gubernatis made
clear that any value of β results in an unbiased estimate of
the fission density. However, the variance of the weights
of the fission particles clearly depends on β. It is de-
sirable to characterize which choices of β result in more
efficient cancellation. All of these issues will require fur-
ther investigation to improve the algorithm, and to probe
its possible extension to continuous-energy problems.

Appendix: Derivation of coupled Boltzmann
transport equations

We provide here the derivation of the coupled system
of Boltzmann equations, where the populations of posi-
tive and negative particles are treated separately and are
assumed to be governed by the rules of negative weighted

delta tracking (Alg. 1) [22]. The quantities that we wish
to describe are the angular fluxes of positive and negative
particles. These quantities are not physical observables,
but they are useful to characterize the behaviour of the
random walk. Consider any one of the usual Monte Carlo
estimators for the (physical) angular flux; the unbiased-
ness condition requires any such estimator to be propor-
tional to the particle weight w. Replacing the particle
weight w in the estimator with

w+ =

{
w w > 0

0 w ≤ 0
(A.1)

results in a modified estimator; we define the angular
flux of positive particles φ+ to be the expected value of
the modified estimator. Likewise, replacing the particle
weight with

w− =

{
0 w > 0

−w w ≤ 0
(A.2)

results in a modified estimator, whose expected value is
defined to be the angular flux of negative particles, φ−.
A few properties are worth stressing. First, if all par-

ticle weights are positive, then φ+ = φ (the physical
angular flux) and φ− = 0. Second, since w+ − w− = w,
then φ+ − φ− = φ. Finally, since w+ ≥ 0 and w− ≥ 0,
then both φ+ and φ− are always non-negative.

With these postulations, we may commence our deriva-
tion of the angular flux of positive particles. We shall
obey the rules for negative weighted delta tracking [22],
presented in Alg. 1. The Boltzmann equation for neutron
transport is canonically written in the form of a balance
equation, where losses = gains. These losses and gains
refer to the change in the neutron flux at the phase space
point (r, Ω̂). This can be referenced in Eq. (1), where the
left hand side (LHS) of the equation represents losses,
while the right hand side (RHS) represents gains. More
detail as to the reasoning and derivation behind partic-
ular terms can be found in Nuclear Reactor Theory, by
Bell and Glasstone [5].

Starting with the LHS, we first consider losses due to
particle streaming, LS . This term is identical to that
found in Eq. (1), only replacing the physical angular flux
with the angular flux of positive particles:

LS = Ω̂ · ∇φ+(r, Ω̂). (A.3)

Next, we consider losses due to collisions, LC . In the case
of NWDT, it is possible to be removed from the phase
space point by having a collision at r (real or virtual),
which occurs with a cross section Σsmp. We therefore
consider the losses due to collisions with the term

LC = Σsmp(r)φ+(r, Ω̂). (A.4)

In the event of a real collision, the particle direction will
change, so there is indeed a removal from the phase space
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point. If a virtual collision occurs and the positive par-
ticle changes sign to be a negative particle, this is also
a loss. If a virtual collision does not result in a positive
particle becoming negative, then it is not actually a loss.
This case will be treated on the RHS by adding a gain
term for virtual collisions which do not result in a sign
flip. The only possible sources for loss is then LS and
LC , and we then have a LHS of

LS + LC = Ω̂ · ∇φ+(r, Ω̂) + Σsmp(r)φ+(r, Ω̂). (A.5)

Next, we may consider gains at the phase space point
(r, Ω̂). Gains may only come from particles which have
had either a real or virtual collision, allowing them to
enter the phase space point in question. First, we shall
consider the gains from real collisions, GR. A real colli-
sion occurs with probability q(r), and when this happens,
a weight modification also occurs, which is a multiplica-
tion of the factor Σt(r)/(q(r)Σsmp(r)):

GR = q(r)
Σt(r)

q(r)Σsmp(r)
R, (A.6)

here R is the sum of the gains of all real collision channels.

We have two possible reaction channels which contribute
to gains at (r, Ω̂): particles having a collision at r and

scattering from direction Ω̂′ into direction Ω̂ (RS), and
particles having a collision at r, inducing a fission particle
which is born traveling in direction Ω̂ (RF ). Treating the
scattering term, we must sum over all possible incoming
directions, resulting in

RS =
Σsmp(r)

Σt(r)

∫

4π

Σs(r, Ω̂
′ → Ω̂)φ+(r, Ω̂

′)dΩ̂′. (A.7)

We must multiply by the ratio Σsmp/Σt to account for
the fact that we are conditioning on the collision being
real. We now perform a similar operation for the fission
channel, with the assumption that the distribution of the
direction of fission particles is isotropic:

RF =
Σsmp(r)

Σt(r)

ν(r)

4πk

∫

4π

Σf (r)φ+(r, Ω̂
′)dΩ̂′. (A.8)

These being the only two real collision channels (R =
RS + RF ), we may combine the definitions of RS , RF ,
and GR to obtain the result presented in Eq. (A.9), where
we have employed our previous definitions for S and F
from Eq. (10) and Eq. (11).

GR = q(r)
Σt(r)

q(r)Σsmp(r)

[
Σsmp(r)

Σt(r)

∫

4π

Σs(r, Ω̂
′ → Ω̂)φ+(r, Ω̂

′)dΩ̂′ +
Σsmp(r)

Σt(r)

ν(r)

4πk

∫

4π

Σf (r)φ+(r, Ω̂
′)dΩ̂′

]

=

∫

4π

Σs(r, Ω̂
′ → Ω̂)φ+(r, Ω̂

′)dΩ̂′ +
ν(r)

4πk

∫

4π

Σf (r)φ+(r, Ω̂
′)dΩ̂′

= Sφ+ +
1

k
Fφ+ (A.9)

All that remains are gains from virtual collisions GV .
The probability of a virtual collision is 1 − q(r), and is
accompanied by a weight modification of

∣∣∣1− Σt(r)
Σsmp(r)

∣∣∣
1− q(r)

. (A.10)

We take the absolute value here, as our particle weights
may never become negative. Instead, a change in sign
is modeled by the transfer of a particle from the pos-
itive population (corresponding to φ+) to the negative
population (corresponding to φ−). Our virtual gains are

GV = (1− q(r))

∣∣∣1− Σt(r)
Σsmp(r)

∣∣∣
1− q(r)

V, (A.11)

V being the sum of gains due to virtual collisions. The
first channel for virtual collisions is the previously men-
tioned case of a positive particle having a virtual colli-
sion, and remaining positive (V+). This only occurs when
Σsmp(r) ≥ Σt(r), and can be modeled with the Heaviside

function

Θ(x) =

{
1 x ≥ 0

0 x < 0
. (A.12)

Our gains from virtual collisions of positive particles is
then

V+ = Σsmp(r)Θ
(
Σsmp(r)− Σt(r)

)
φ+(r, Ω̂). (A.13)

In the event that Σsmp(r) < Σt(r), negative particles
will flip sign, joining the positive particles (V−). This is
modeled in a similar manner, simply flipping the argu-
ment in the Heaviside function, and replacing the positive
angular flux with the negative angular flux:

V− = Σsmp(r)Θ
(
Σt(r)− Σsmp(r)

)
φ−(r, Ω̂). (A.14)

With these terms defined, we may combine our defini-
tions of GV and V = V+ + V− to obtain the gains from
virtual collisions, presented in Eq. (A.15), having used
the function from Eq. (12).
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All loss and gain terms have now been defined, leav-
ing us with the final form of the equation, describing the
angular flux of the positive particles in Eq. (A.16). By
symmetry, the equation for negative particles must have
the exact same form, and is given in Eq. (A.17). Re-

gardless of whether a particle is negative or positive, it is
transported in the same manner, and by the same rules.
These two equations are of course the form presented in
Eq. (9), and demonstrate the coupling relationship be-
tween positive and negative particles.

GV = (1− q(r))

∣∣∣1− Σt(r)
Σsmp(r)

∣∣∣
1− q(r)

Σsmp(r)

[
Θ
(
Σsmp(r)− Σt(r)

)
φ+(r, Ω̂) + Θ

(
Σt(r)− Σsmp(r)

)
φ−(r, Ω̂)

]

= Θ
(
Σsmp(r)− Σt(r)

)[
Σsmp(r)− Σt(r)

]
φ+(r, Ω̂) + Θ

(
Σt(r)− Σsmp(r)

)[
Σt(r)− Σsmp(r)

]
φ−(r, Ω̂)

= ∆
(
Σsmp(r)− Σt(r)

)
φ+(r, Ω̂) + ∆

(
Σt(r)− Σsmp(r)

)
φ−(r, Ω̂) (A.15)

Ω̂ · ∇φ+ +Σsmpφ+ = Sφ+ +
1

k
Fφ+ +∆

(
Σsmp − Σt

)
φ+ +∆

(
Σt − Σsmp

)
φ− (A.16)

Ω̂ · ∇φ− +Σsmpφ− = Sφ− +
1

k
Fφ− +∆

(
Σsmp − Σt

)
φ− +∆

(
Σt − Σsmp

)
φ+. (A.17)
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The Monte Carlo method is often used to simulate systems which can be modeled by random
walks. In order to calculate observables, in many implementations the “walkers” carry a statis-
tical weight which is generally assumed to be positive. Some random walk simulations, however,
may require walkers to have positive or negative weights: it has been shown that the presence
of a mixture of positive and negative weights can impede the statistical convergence, and special
weight-cancellation techniques must be adopted in order to overcome these issues. In a recent work
we demonstrated the usefulness of one such method, exact regional weight cancellation, to solve
eigenvalue problems in nuclear reactor physics in three spatial dimensions. The method previously
exhibited had several limitations (including multi-group transport and isotropic scattering) and
needed homogeneous cuboid cancellation regions. In this paper we lift the previous limitations, in
view of applying exact regional cancellation to more realistic continuous-energy neutron transport
problems. This extended regional cancellation framework is used to optimize the efficiency of the
weight cancellation. Our findings are illustrated on a benchmark configuration for reactor physics.

I. INTRODUCTION

For day-to-day industrial needs in the field of nuclear
reactor physics, deterministic codes are used to solve the
neutron transport equation, estimating the reaction rates
and the power distribution in the reactor core [1–3]. De-
terministic methods have the advantage of running fast,
but this speed comes at the cost of accuracy: many ap-
proximations are introduced, discretizing the phase space
(position, direction and energy) and thus leading to a
bias in the results. The gold-standard in reactor physics
for solving the neutron transport equation is the Monte
Carlo method, which does not need to introduce any dis-
cretization of the phase space, and is therefore free of any
bias [4]. This high-fidelity simulation method comes at
the cost of requiring extensive computer resources. Be-
cause of this computational cost, multi-physics simula-
tions of a full-core nuclear reactor model, using Monte
Carlo neutronics codes coupled with other state-of-the-
art thermal-hydraulics and fuel performance codes, have
become possible only very recently, mainly thanks to the
increase in available computer power and to the develop-
ment of efficient variance-reduction techniques [5, 6].

In these Monte Carlo simulations, the particles being
simulated (typically neutrons or photons) carry a statis-
tical weight, which is used to estimate observable quanti-
ties such as reaction rates and power distributions within
the core of the nuclear reactor. For most applications in-
volved in nuclear reactor physics or radiation shielding
problems, these statistical weights are always positive.
However, several types of Monte Carlo neutronics sim-
ulations require that the particles being sampled carry
negative statistical weights (or complex weights, where
each component is allowed to be negative). Problems

∗ hunter.belanger@cea.fr
† davide.mancusi@cea.fr
‡ andrea.zoia@cea.fr

that require negative weights include the evaluation of
the second harmonic of the flux, critical buckling, and
neutron noise, as the quantities being estimated in these
problems can be negative [7–9]. There are also special re-
jection sampling methods which allow negative weights,
that could be used to treat spatially continuous mate-
rial properties, even when the desired quantities should
be positive [10]. Random walk problems using positive
and negative statistical weights emerge more broadly in
many applications outside of nuclear reactor physics, e.g.
in quantum diffusion Monte Carlo [11], or in the Wigner
Monte Carlo formalism [12]. Such simulations can be
particularly challenging, as the summing of positive and
negative contributions to estimate the observable quan-
tities leads to very large variances in these tallies: it is
often recognized that weight cancellation is mandatory
to ensure convergence [7, 8, 13].

In a recent work, we have focused on the case of spa-
tially continuous material properties for particle trans-
port applications emerging in reactor physics. Material
cross sections for neutron transport depend on the en-
ergy of the incident particle, as well as on the tempera-
ture and density of the material. Traditional neutronics
codes (both Monte Carlo and deterministic) make the
approximation that each material region in the reactor
model has a constant temperature and density [1–3, 14–
17]. In a real nuclear reactor, however, this is certainly
not the case, as the temperature and density will de-
pend continuously on position. The continual advances of
high-performance computing resources allows us to con-
sider new ways of improving the fidelity of our Monte
Carlo codes. It is in this context that we have examined
the possibility of treating spatially-continuous material
temperatures and densities in Monte Carlo simulations
in a previous work [10]. In particular, we have focused
on assessing which particle-tracking methods might be
best suitable to treat spatially-continuous cross sections
for fixed-source transport problems, typically occurring
in radiation shielding applications [10]. Among the pos-
sible choices, the delta-tracking [18, 19] and negative-
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weighted delta-tracking [20, 21] sampling strategies were
deemed particularly attractive. Negative-weighted delta-
tracking, although beneficial for dealing with spatially-
continuous cross sections, has a potential drawback due
to the statistical weights of the particles being allowed
to become negative: in a subsequent study concerning
k-eigenvalue problems, we have shown that the coupling
of positive and negative particle weights prevents conver-
gence of the power iteration method to the fundamental
mode of the physical system being studied [22].

To overcome these issues, an exact regional weight can-
cellation method, originally proposed by Booth and Gu-
bernatis in a 1D context [23], was extended to 3D and was
shown to allow the convergence of power iteration with
negative-weighted delta-tracking in a multi-group reactor
physics benchmark [22]. Such a weight cancellation tech-
nique might be useful to improve the simulation meth-
ods of the other previously mentioned problems which
have particles with negative statistical weights. While
our previous work in Ref. 22 demonstrated potential for
the method, many questions were left unanswered: un-
der what conditions is regional cancellation unbiased?
How might one extend cancellation from multi-group to
continuous-energy material cross sections? Is it possible
to maximize the efficiency of weight cancellation, for a
given set of particles in a cancellation region? Our goal
in this paper is to build upon our previous results in
Ref. 22 and to start addressing these very questions.

Our manuscript is organised as follows. In Sec. II,
we provide a brief summary of the exact regional can-
cellation technique which we presented in our previous
paper. Section III will develop the mathematical theory
behind the family of techniques for regional cancellation,
for the most general continuous-energy case. We also ex-
amine what conditions must be satisfied to ensure that
a regional cancellation method is unbiased. The theory
presented in this section elucidates the concepts which
are integral to the technique (for both multi-group and
continuous-energy calculations), and blazes the trail for
implementing exact regional cancellation in continuous-
energy problems. The question of optimizing cancella-
tion is then treated in Sec. IV, where two candidate opti-
mization methods are proposed. Section V discusses the
implementation of the two optimization strategies in our
Monte Carlo code, and discusses how these two strate-
gies allow us to deal with heterogeneous cancellation re-
gions. The different optimization strategies are compared
in Sec. VI, and we also assess the performances of our
methods on a reactor physics benchmark with hetero-
geneous cancellation regions. Some concluding thoughts
and remarks are provided in Sec. VII.

II. REGIONAL WEIGHT CANCELLATION

Previously, we have extended the 1D exact regional
cancellation scheme of Booth and Gubernatis [23] to work
in 3D multi-group neutron transport problems [22]. Here,

we shall briefly outline the mechanics of this method, in
a general continuous-energy framework. For the case of
k-eigenvalue problems, the fundamental mode and eigen-
value are sought by Monte Carlo methods using power
iteration, which basically consists of following the neu-
tron histories over fission generations [4]. When negative-
weighted delta-tracking is used to sample particle flights,
the transported neutron will have positive and negative
weights, and weight cancellation will be mandatory to
ensure the convergence of power iteration [22]. In this
context, the regional cancellation operation is applied
to neutrons born from fission. The fission particles are
first sorted into user-defined cancellation regions, based
on their position. Once all of the particles have been
sorted into their cancellation regions, we may then con-
sider each cancellation region independently for the can-
cellation procedure. In our previous work, a simple recti-
linear mesh was imposed on top of the problem geometry.
Consider cancellation region R (which is assumed to

be composed of only one fissile material), containing fis-
sion neutrons which have already been sampled. In ad-
dition to storing its own position (r), energy (E), and

direction (Ω̂), each fission particle also stores its par-
ent’s energy (E′), the position of the previous collision
(r′), and the direction of the parent’s penultimate flight

(Ω̂′′).1 From this information, we can calculate the “fis-
sion density function”, i.e. the expected fission density
at r due to a collision at r′ coming from direction Ω̂′′,
and a subsequent flight from r′ to r at energy E′; this
is a key ingredient for the weight cancellation procedure.
The exact form of the fission density function depends
on the particle tracking method being used. For the case
of negative-weighted delta-tracking,2 as examined in our
previous work, the fission density function was taken to
be

ζ(r|r′, Ω̂′′, E′) =

P
(

r−r′

|r−r′| · Ω̂′′
)
Σf (r, E

′)

2π|r − r′|2
e−Σsmp(E

′)|r−r′|. (1)

In this notation, Σsmp is the sampling cross-section re-
quired for negative-weighted delta tracking, Σf is the fis-
sion cross-section, and P is the probability density func-
tion for the cosine of the scattering angle for the previous
collision.3 Based on ζ, we are able to split each fission

1 The direction of the parent’s last flight is not explicitly stored,

as it can be calculated as Ω̂′ = r−r′
|r−r′| .

2 We will only mention negative-weighted delta-tracking in the
text, since that was the focus of our previous work, but Eq. (1)
is also valid for regular delta-tracking, where Σsmp would be the
majorant cross section. This could be of use for neutron noise or
critical buckling problems, which would not necessarily require
the use of negative-weighted delta-tracking but nonetheless re-
quire weight cancellation.

3 While the symbol f was used for the fission density function in
Ref. 22, we have instead chosen to use ζ in this paper, to avoid
any confusion with other subsequent symbols.
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particle in R into two components: a point-wise compo-
nent with weight wp, and a uniform component of weight
wu. The point-wise portion, wp, keeps the phase space

coordinates (r, Ω̂, E) of the split fission particle. The
uniform component, wu, is spread uniformly over the re-
gion R. To calculate the point-wise and uniform weights,
we use

wp =
ζ(r|r′, Ω̂′′, E′)− β

ζ(r|r′, Ω̂′′, E′)
w (2)

wu =
β

ζ(r|r′, Ω̂′′, E′)
w, (3)

respectively, with w being the weight of the original fis-
sion particle [23]. Note that wp + wu = w, so that
the net weight is conserved. The free parameter β can
take any value, and in general is chosen independently
for each particle in R. Our previous work followed the
recommendation of Booth and Gubernatis, and always
took β to be the minimum value of ζ(r′′|r′, Ω̂′′, E′) over
all possible r′′ ∈ R, for the particle of interest. We
demonstrated that, for the case of isotropic scattering
and cuboid cancellation regions, one only needs to eval-
uate ζ(r′′|r′, Ω̂′′, E′) for the eight corners of the cuboid
(taking r′′ to be the corner positions) to find the mini-
mum value within R.

With wp and wu having been calculated for each fission
particle in R, we then take the sum of all the uniform
weight components

U =

N∑

i=1

wu,i, (4)

where the extra subscript i indicates the fission particle.
This operation is effectively where the cancellation oc-
curs: depending on the initial weights wi of the fission
particles, the individual uniform components wu,i will be
positive or negative, and taking their sum cancels some of
the positive and negative weight which was in the region
R. The uniform weight U must be distributed uniformly
within R. To do this, n = ⌈|U |⌉ new fission particles are
sampled within R, each having a weight of U/n. The po-
sitions of the n uniform particles are sampled uniformly
in R. In our previous work, the direction was sampled
from an isotropic distribution, as fission was assumed to
be perfectly isotropic, and the energy was sampled from
the fission spectrum of the material in R, as it was as-
sumed that the fission spectrum had no dependence on
incident neutron energy. These n new uniform fission
particles must be added to the fission bank, and will then
be transported along with the other fission particles dur-
ing the next fission generation.

The method proposed in Ref. 22 that we have recalled
here, was demonstrated to work successfully and be un-
biased on a simple reactor physics benchmark problem.
While those results were very promising, the initial im-
plementation admittedly had several limitations. First,
cancellation regions must be homogeneous, containing

only a single fissile material. Second, fission must al-
ways be isotropic, and the fission spectrum must be in-
dependent of the incident energy. In general, even in
continuous-energy transport, fission is almost always rep-
resented as isotropic, so this is not necessarily a large
inconvenience. However, the fission energy spectrum is
generally assumed to be dependent on the incident neu-
tron energy. Furthermore, while Booth and Gubernatis
argue that cancellation is unbiased for any value of the
parameter β, the amount of canceled weight (and thus
the efficiency of the method) clearly does depend on β.
Using the minimum value of the fission density as β is
not necessarily the most efficient choice for achieving the
highest amount of cancellation. Nonetheless, taking β to
be the minimum within R guarantees that both wp and
wu have the same sign as w: when β is larger than the
minimum, the point-wise portion, wp, can change sign,
potentially leading to even more positive and negative
weight in the region than there was initially. The cancel-
lation operation does not change the net weight Wnet in
the bin, as

Wnet =
N∑

i

wi =
N∑

i

wu,i +
N∑

i

wp,i = U +
N∑

i

wp,i (5)

will still be located in the bin. However, cancellation
does change the total weight, Wtot, defined as the sum
of the absolute values of all weights. The total weight
before cancellation is

Wtot =

N∑

i

|wi|, (6)

while the post-cancellation total weight is

Wtot,post =
N∑

i

|wp,i|+ |U | =
N∑

i

|wp,i|+
∣∣∣∣∣

N∑

i

wu,i

∣∣∣∣∣. (7)

By using the triangle inequality, it is possible to show
that

Wtot,post ≥ |Wnet|.

The more efficient cancellation is, the closer Wtot,post

will be to Wnet, with 100% cancellation efficiency cor-
responding to Wtot,post = Wnet (i.e. all negative weight
is removed). The optimal choice for β will maximize the
cancellation efficiency, and therefore minimize Wtot,post.
This optimal choice of β is clearly dependent on the other
particles in the bin, and determining this optimal value
is vital for improving the overall computational efficiency
of the simulation.

III. UNBIASEDNESS OF CANCELLATION

In this section, a method for performing exact re-
gional cancellation in general continuous-energy prob-
lems shall be developed, and it will be demonstrated
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under what conditions such schemes lead to an unbiased
fission source. For this purpose, it is mathematically ben-
eficial to use the integral form of the transport equation,
as opposed to the integro-differential form adopted in our
previous work. We will begin by presenting the integral
transport form for the eigenvalue transport problem in
Sec. III A. Section III B makes a first attempt at devel-
oping an estimator for the fission emission density in a
region, which averages over all possible collisions and sub-
sequent flights which induce the fission. While this exact
estimator is likely of little use to a practical application,
we are able to use it to examine what requirements must
be observed in order to have an unbiased fission emission
density estimator. Section III C discusses how far back
in a particle’s history one must look, so that it is possible
for it to have contributed to the fission emission density
everywhere within the cancellation region. Section IIID
uses the ideas from Section III C to decompose the col-
lision operator as is done in most Monte Carlo codes, to
produce a fission emission density estimator which could
potentially be used in an industrial code to achieve exact
regional cancellation. Section III E outlines the possi-
bility of distributing some of the fission emission density
within the region according to a generic function, instead
of distributing it uniformly. Finally, Section III F exam-
ines why delta-tracking algorithms are more suited to
exact regional cancellation, and the peculiarities which
can arise from delta-scatters.

A. Integral Formulation of the Transport Equation

We will start with the k-eigenvalue Boltzmann trans-
port equation in integral form. Let P = (r, Ω̂, E) denote
the coordinates of a point in phase space. The collision
density ψ(P ) = Σt(r, E)φ(r, Ω̂, E) and the emission den-
sity χ(P ) are related by [4]:

ψ(P ) = Tχ(P ) (8)

χ(P ) =

[
Cs +

1

k
Cf

]
ψ(P ), (9)

where Σt is the total macroscopic cross section, and φ is
the angular neutron flux. In this notation, T is the flight
operator, defined as

Tg(P ) =
∫
T (P ′ → P )g(P ′)dP ′, (10)

where we have made use of the flight kernel

T (P ′ → P ) =

Σt(r, E
′)

|r − r′|2
exp


−

|r−r′|∫

0

Σt(r
′ + uΩ̂′, E′)du




δ

(
Ω̂− r − r′

|r − r′|

)
δ
(
Ω̂′ − Ω̂

)
δ (E − E′) . (11)

We note that the flight kernel T (P ′ → P ) is normalized,
and can be interpreted as the probability density func-
tion (PDF) for a particle having a flight and landing at
the phase space coordinate P , conditioning on its initial
phase space coordinate being P ′.
The scattering operator Cs in Eq. (9) is defined as

Csg(P ) =

∫
Cs(P

′ → P )g(P ′)dP ′, (12)

with the scattering kernel Cs(P
′ → P ) being

Cs(P
′ → P ) =

νs(r
′, E′)Σs(r

′, E′)
Σt(r′, E′)

fscat

(
Ω̂, E|r′, Ω̂′, E′

)
δ (r − r′) , (13)

where Σs is the macroscopic scattering cross section, νs
is the average number of neutrons emitted from a scat-
ter, and fscat is the joint PDF for a neutron to scatter
in direction Ω̂ at energy E. The fission operator Cf is
similar to the scattering operator in Eq. (12), but instead
uses a fission kernel Cf (P

′ → P ), defined as

Cf (P
′ → P ) =

νf (r
′, E′)Σf (r

′, E′)
Σt(r′, E′)

ffiss

(
Ω̂, E|r′, Ω̂′, E′

)
δ (r − r′) , (14)

where Σf is the macroscopic fission cross section, νf is
the average number of neutrons produced per fission, and
ffiss is the joint PDF for fission neutrons to be emitted
in direction Ω̂ at energy E. The scattering and fission
operators may be combined into a collision operator

χ(P ) = Cψ(P ), (15)

which has a corresponding collision kernel

C(P ′ → P ) = Cs(P
′ → P ) +

1

k
Cf (P

′ → P ). (16)

Here C(P ′ → P ) can be interpreted as the average num-
ber of of particles produced about the phase space co-
ordinate P , from a collision induced by a particle at
P ′. Given this interpretation, it is also possible to
rewrite C(P ′ → P ) in a more concise form, using an
average yield ν̄(r′, E′), and an average transfer function

f̄(Ω̂, E|r′, Ω̂′, E′):

C(P ′ → P ) = ν̄(r′, E′)f̄
(
Ω̂, E|r′, Ω̂′, E′

)
δ(r − r′).

(17)
It is clear that Eq. (17) is true if

ν̄(r′, E′) =
νs(r

′, E′)Σs(r
′, E′)

Σt(r′, E′)
+
νf (r

′, E′)Σf (r
′, E′)

kΣt(r′, E′)
(18)
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and

f̄
(
Ω̂, E|r′, Ω̂′, E′

)
=

νs(r
′, E′)Σs(r

′, E′)
ν̄(r′, E′)Σt(r′, E′)

fscat

(
Ω̂, E|r′, Ω̂′, E′

)
+

νf (r
′, E′)Σf (r

′, E′)
kν̄(r′, E′)Σt(r′, E′)

ffiss

(
Ω̂, E|r′, Ω̂′, E′

)
. (19)

B. Averaging over all Scattering Events

Consider the following particle history. A neutron en-
ters a collision at P1, and then leaves that collision at

P2. The particle then undergoes a flight and experiences
a fission at P3. The fission at P3 then contributes to
the fission emission density at P4. It is assumed that P4

is located within the generalized phase space region R,
which will act as our cancellation region. 4 This partial
particle history is depicted in Fig. 1. Despite the fact
that r4 = r3, P3 is not, in general, located in the can-
cellation region R, as Ω̂3 and E3 may not be within the
domain of R. In order to examine the fission emission
density at point P4, we must first determine the collision
density ψ(P3), for a given collision at P1. From Eq. (8)
and Eq. (9), it follows that

ψ(P3) = TCψ(P3) =

∫
T (P2 → P3)

∫
C(P1 → P2)ψ(P1)dP1dP2 (20)

=

∫∫∫
dr1dΩ̂1dE1

∫∫∫
dr2dΩ̂2dE2ψ

(
r1, Ω̂1, E1

)
ν̄(r1, E1)f̄

(
Ω̂2, E2|r1, Ω̂1, E1

)
δ (r2 − r1)

Σt (r3, E3) exp


−

|r3−r2|∫

0

Σt

(
r2 + uΩ̂2, E2

)
du



δ
(
Ω̂3 − r3−r2

|r3−r2|

)
δ
(
Ω̂3 − Ω̂2

)
δ(E3 − E2)

|r3 − r2|2
(21)

=

∫∫∫
dr1dΩ̂1dE1ψ

(
r1, Ω̂1, E1

)
ν̄(r1, E1)

δ

(
Ω̂3 −

r3 − r1
|r3 − r1|

) f̄
(
Ω̂3, E3|r1, Ω̂1, E1

)
Σt(r3, E3)

|r3 − r1|2
exp


−

|r3−r1|∫

0

Σt

(
r1 + uΩ̂3, E3

)
du


 . (22)

The integral over P1 in Eq. (22) indicates that ψ(P3) is a sum of contributions from all possible initial phase space

points P1 for which Ω̂3 = r3−r1

|r3−r1| .

The fission emission density χf (P4) is defined as

χf (P4) =
1

k
Cfψ(P4). (23)

Combining Eq. (14) and Eq. (22), we obtain

χf (P4) =

∫∫∫
dr1dΩ̂1dE1ψ

(
r1, Ω̂1, E1

)
ν̄(r1, E1)

∫
dE3

νf (r4, E3)Σf (r4, E3)ffiss

(
Ω̂4, E4|r4, r4−r1

|r4−r1| , E3

)
f̄
(

r4−r1

|r4−r1| , E3|r1, Ω̂1, E1

)

k|r4 − r1|2

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du




=

∫∫∫
ψ
(
r1, Ω̂1, E1

)
ν̄(r1, E1)ζ(P1 → P4)dr1dΩ̂1dE1. (24)

4 While our previous work in Ref. 22 used cancellations which only
spanned space, we now consider cancellation regions spanning all
dimensions of phase space. We therefore must consider three spa-

tial dimensions, two dimensions for direction, and one dimension
for energy.
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P1 = (r1,Ω1,E1)

P2 = (r2,Ω2,E2) = (r1,Ω2,E2) 

P3 = (r3,Ω3,E3) = (r3,Ω2,E2) 

P4 = (r4,Ω4,E4) = (r3,Ω4,E4) 

Flight Operator

Fission Operator

Phase Space 
Coordinate

Cancellation 
Region

Key

Collision Operator

R

FIG. 1. Depicted here is the relationship between phase space
points P1, P2, P3, and P4. Points connected by a flight oper-
ator (solid line) share the same direction and energy, and are
only discontinuous in position. Points connected by a colli-
sion or fission operator (dotted and dashed lines respectively)
share the same position, but are generally discontinuous in
direction and energy. Any branches which might result from
the application of the collision operator from P1 to P2 are not
depicted.

In the last step we have introduced the function ζ:

ζ(P1 → P4) =

∫
dE3

νf (r4, E3)Σf (r4, E3)ffiss

(
Ω̂4, E4|r4, r4−r1

|r4−r1| , E3

)
f̄
(

r4−r1

|r4−r1| , E3|r1, Ω̂1, E1

)

k|r4 − r1|2

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du


 (25)

Here ζ(P1 → P4) is the transition kernel for a particle
starting at P1, undergoing a collision, then a flight, and
then producing fission particles at P4.

We now wish to construct an estimator for the ex-
pected fission emission density at a point Q ∈ R. Our
estimator operates on events where a fission particle is
emitted at P4 ∈ R, from a particle originally enter-
ing a collision at P1. To be unbiased, our estimator
ϑ(P1 → P4|R, Q) for the fission emission density must
have the property [4]

∫
ζ(P1 → P4)ϑ(P1 → P4|R, Q)dP4 = ζ(P1 → Q). (26)

In order to achieve regional cancellation, we would like
to define an estimator ϑ for the fission emission density
at Q where a portion of the fission emission density is
located exactly at Q, and the remaining portion is uni-
formly distributed within the phase space region R. We
shall define this estimator to have the form

ϑη(P1 → P4|R, Q) = (1− η)δ(Q− P4) +
η

VR
. (27)

Here, VR is the generalized phase space volume occu-

pied by R, and η is the portion of the fission emission
density that we wish to uniformly distribute within R.5

If η is taken to be a constant with respect to P4, then,
upon evaluation of the left-hand side of Eq. (26), using
Eq. (27), we obtain:

∫
ζ(P1 → P4)ϑη(P1 → P4|R, Q)dP4 =

∫
ζ(P1 → P4)

[
(1− η)δ(Q− P4) +

η

VR

]
dP4 =

(1− η)ζ(P1 → Q) +
η

VR

∫
ζ(P1 → P4)dP4. (28)

Comparing Eq. (28) and Eq. (26), it is clear that the only
unbiased option is η = 0, corresponding to no cancella-
tion. It is permissible however to allow η = η(P1, P4)
to be both a function of P1 and P4, as ϑ is already a
function of these parameters. Using the ansatz

η(P1, P4) =
β

ζ(P1 → P4)
, (29)

inspired by Eq. (3), we see that

5 Note that the parameter η may take any value (real or complex); in particular, it is not required to lie in the [0, 1] interval.
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∫
ζ(P1 → P4)ϑη(P1,P4)(P1 → P4|R, Q)dP4 =

∫
ζ(P1 → P4)

[(
1− β

ζ(P1 → P4)

)
δ(Q− P4) +

β

VRζ(P1 → P4)

]
dP4 =

ζ(P1 → Q)− β + β = ζ(P1 → Q), (30)

which, compared with right-hand side of Eq. (26), shows
that this choice leads to an unbiased estimator.

Equation (30) indicates that we are allowed to dis-
tribute a factor β/ζ(P1 → P4) of the fission particle uni-
formly within R, so long as β has no functional depen-
dence on P4. This requirement on β is essential to ensure
that, after integrating over P4, both β terms will cancel;
note however that β is allowed to depend on P1. We are
therefore allowed to pick β = 0 whenever it is convenient,
so long as information from P4 is not used to make this
choice.

Additionally, Eq. (30) indicates that we must require
ζ(P1 → P4) ̸= 0 ∀P4 ∈ R. If this is not the case, then η
is undefined. In particular, this implies that we require
Σf (r4, E3) > 0 everywhere within our cancellation re-

gion. We must also require ffiss(Ω̂4, E4|r4, r4−r1

|r4−r1| , E3) >

0 ∀P4 ∈ R; as fission is nearly perfectly isotropic, the an-
gular component is not problematic, but the energy com-
ponent could indeed be zero for very low energies, and
care must therefore be taken when selecting the energy
bounds for R. Despite these restrictions, we are given
some liberty as to the definition of R, as it is allowed to
be non-convex.

The ansatz of Eq. (29) has the following remarkable
property. Suppose that ζ(P1 → P4) has the structure

ζ(P1 → P4) = h0(P1)ζ0(P1 → P4). (31)

Consider the estimators

ϑζ = ϑ

(
P1 → P4|R, Q, η =

β

ζ

)
(32)

ϑζ0 = ϑ

(
P1 → P4|R, Q, η =

β0
ζ0

)
. (33)

The two estimators are actually identical for β0 = β/h0.
In other words, any factor in ζ(P1 → P4) that is inde-
pendent of P4 can be pulled out of the definition of ζ and
still yield an unbiased estimator for the fission emission
density.

Finally, note that the integral over E3 in the definition
of ζ could be somewhat problematic and/or expensive to
compute in a continuous-energy Monte Carlo code. It
effectively corresponds to averaging over all possible nu-
clides, reaction channels, and energies, which could have
been sampled in determining P3, and leading to a fission
particle at P4. We therefore would like to determine if
there is an alternative, simpler, unbiased option.

C. Expected-Value Estimators for Cancellation

As it has been developed, ζ(P1 → P4) can be inter-
preted as a type of expected-value estimator [24], because
it is the expected contribution to the fission emission den-
sity at P4, for a particle entering a collision at P1. For the
purpose of carrying out weight cancellation, several kinds
of expected-value estimators for the fission emission den-
sity at P4 could potentially be used in place of the form
given by Eq. (25). All that is required of ζ(P1 → P4) is
that it be non-zero for all points P4 inR. This is required
by Eq. (30), as we can only distribute fission emission
density uniformly within R if ζ(P1 → P4) > 0 ∀P4 ∈ R.
With this in mind, we will now consider what types of
expected-value estimators could be used in lieu of ζ.

Next-event estimators are particular forms of
expected-value estimators that average the sampled
quantity over the following event in the stochastic pro-
cess. Let us evaluate if a next-event estimator is suitable
for the purpose of cancellation. Consider a next-fission
estimator for the fission emission density; such an
estimator is applied to particles undergoing a collision
at P3 = (r3, Ω̂3, E3) and yields the expected fission

emission density at a generic point Q = (r, Ω̂, E) ∈ R.
Since fission does not change the position of particles,
the contribution of the next-fission estimator vanishes
everywhere except for r = r3. Therefore, a next-
fission estimator is not able to yield a non-vanishing
contribution at all the points in cancellation region R.

Thus, in order for cancellation to be possible, we need
to include more than one event in our expected-value es-
timator, i.e. we need to use at least a next-next-event
estimator, or possibly an estimator of even higher or-
der. It is then crucial to determine the number of events
that our estimator needs to look ahead and average over,
in order to yield a non-vanishing contribution to all the
phase space points in the cancellation region. Indeed,
we want to minimize the number of look-ahead events,
because the evaluation of expected-value estimators be-
comes more and more cumbersome as the number of look-
ahead events increases.

Consider now the possibility of a next-flight-fission es-
timator. In our notation, such an estimator acts on par-
ticles emitted at P2 and yields the expected fission emis-
sion density at Q, averaged over all possible flights from
P2 and all possible fission events. Since the flight opera-
tor does not modify the particle direction (see Eq. (11)),
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the expected fission density vanishes everywhere except
at positions reachable from r2 with direction Ω̂2. In gen-
eral, this does not cover the whole cancellation region,
except in the one-dimensional case [22, 23].

It is now probably clear that a next-collision-flight-
fission estimator should in general yield a non-vanishing
contribution to the fission emission density at all phase
space points within R. In other words, given a particle
undergoing a collision at P1, the expected fission emis-
sion density (averaged over the next collision, flight, and
fission) should not vanish anywhere within R. This cor-
responds to Eq. (25) above and justifies the construction
of the previous section.

Two remarks are in order here. First, there are cases
where even a next collision-flight-fission estimator is not
sufficient to achieve a non-vanishing expected fission
emission density at all points within R. Indeed, the col-
lision between P1 and P2 may be subject to kinematic
constraints, and Eq. (25) shows that the expected fission

emission density vanishes if f̄
(

r−r1

|r−r1| , E3|r1, Ω̂1, E1

)
= 0

for some r in cancellation regionR. Second, an estimator
based on Eq. (25) would require the evaluation of the in-
tegral over E3 at every collision, which is impractical. In
fact, regional cancellation attempts to perform the can-
cellation algorithm a posteriori, after flights have already
been sampled, and fission particles have been produced.
Since we have already sampled a Monte Carlo history
from P1 through P2, P3, and P4, we would like to reuse
as much information as possible from the sampled his-
tory to remove part of the fission density from P4 and
redistribute it uniformly within R.

Thus, our expected-value estimator needs to average
over sufficiently many event samplings to be able to “see”
the whole region R; at the same time, we want our es-
timator to average over the strict minimum number of
samplings. Each additional real variable that we aver-
age over introduces an extra integration in the expression
of the expected fission emission density and reduces the
usefulness of the P1 → P4 history that we have already
sampled.

D. Intermediate Collision Points

For the subsequent analysis, it is useful to consider a
different form of the collision kernel, more aligned with

how most continuous-energy Monte Carlo codes sample a
collision event. While Eq. (17) presents the collision ker-
nel in terms of the averaged macroscopic cross sections
and yields, most continuous-energy Monte Carlo codes do
not handle collisions in such a manner. In production-
level codes, microscopic cross sections are tabulated for
different nuclides and different reaction channels (elas-
tic, level inelastic, etc.) [14–17]. Each combination of
nuclide and reaction channel has an independent trans-
fer function for each type of non-capture collision. The
concentration Ni(r

′) of nuclide i is a function of posi-
tion, and the total microscopic cross section σi(r

′, E′) is
a function of position and energy.6 The total macroscopic
cross section is

Σt(r
′, E′) =

∑

i

Ni(r
′)σi(r

′, E′). (34)

At a collision site, we select the nuclide with which our
particle will undergo a collision: nuclide i is chosen with
probability Ni(r

′)σi(r′, E′)/Σt(r
′, E′). With nuclide i

having been sampled, a reaction channel m must next be
sampled. If we let σi,m(r′, E′) be the partial microscopic
cross section for channel m, then the total microscopic
cross section is

σi(r
′, E′) =

∑

m

σi,m(r′, E′), (35)

and channel m will be selected with probability
σi,m(r′, E′)/σi(r′, E′). This channel has an as-
sociated yield of νi,m(E′), and transfer function

fi,m

(
Ω̂, E|Ω̂′, E′

)
. Continuous-energy nuclear data files

typically give fi,m as a product of a marginal PDF in
energy and a conditional PDF in direction:

fi,m

(
Ω̂, E|Ω̂′, E′

)
=

fi,m

(
E|Ω̂′, E′

)
fi,m

(
Ω̂|Ω̂′, E′, E

)
. (36)

When this is the case, the energy E is first sampled from
the marginal PDF, and the direction is subsequently sam-
pled from the conditional PDF. With these provisions, it
is then possible to write the collision kernels, Eqs. (13)
and (14), as

6 The microscopic cross section is typically given as a function of
temperature and energy. However, since the temperature is a
function of position, we have chosen to present the microscopic

cross section as a function of position and energy, to avoid the
introduction of a superfluous variable.
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Cs(P
′ → P ) =

δ (r − r′)
Σt(r′, E′)

∑

i

Ni(r
′)
∑

m
m̸=fiss

νi,m(E′)σi,m(r′, E′)fi,m
(
E|Ω̂′, E′

)
fi,m

(
Ω̂|Ω̂′, E′, E

)
(37a)

Cf (P
′ → P ) =

δ (r − r′)
Σt(r′, E′)

∑

i

Ni(r
′)νi,fiss(E

′)σi,fiss(r
′, E′)fi,fiss

(
E|Ω̂′, E′

)
fi,fiss

(
Ω̂|Ω̂′, E′, E

)
. (37b)

Based on the form of Eqs. (37), we introduce then the
concept of an “intermediate collision point”, indicating
that the required pieces of information are sampled in-
crementally when performing a collision. Examples of
intermediate collision points would be the state where
we have sampled only the nuclide, or the nuclide and
the channel, or the nuclide, reaction channel, and en-
ergy. With the concept of an intermediate collision, it is
then evident that there is an intermediate collision point
between P1 and P2, where the particle has selected an
isotope to collide with (i), a reaction channel (m), and
even an outgoing energy (E2), but has yet to select a

direction Ω̂2 out of the collision. In general, this inter-
mediate collision point between P1 and P2 is the strict
minimum number of steps we must look back in a par-
ticle’s history, in order to see a nonzero fission emission
density everywhere withinR (assuming that is is possible
to scatter into all directions subtended by R). This state
is accessible in a Monte Carlo simulation, as the nuclide,
reaction channel, and energy E3 were all sampled when
producing the fission particle at P4, and this information
can be stored with the particle. The transition kernel
from P1 to P4, given a collision with nuclide i in reaction
channel m and outgoing energy E3, is then

ζ(P1 → P4|i,m,E3) =
νf (r4, E3)Σf (r4, E3)ffiss

(
Ω̂4, E4|r4, r4−r1

|r4−r1| , E3

)
fi,m

(
r4−r1

|r4−r1| |Ω̂1, E1, E3

)

k|r4 − r1|2
×

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du


 . (38)

This is now quite reminiscent of the fission density func-
tion which we used in our previous work [22], as sum-
marized in Sec. II (see Eq. (1)). It is worth stressing
that Eq. (38) uses the macroscopic fission cross section
Σf and the average fission transfer function ffiss, which
are averaged over all fissile nuclides at r4. In general,
these quantities might vary within R, due to spatial
dependence in the nuclide concentrations and temper-
ature. Examining under what circumstances the esti-
mator ϑ(P1 → P4|R, Q, η) is unbiased for the transi-
tion kernel presented in Eq. (38), it is straightforward
to observe that this condition is met for the choice of
η = β/ζ (P1 → P4|i,m,E3).

Equation (38) (and its associated estimator) are sub-
ject to the same constraints as Eq. (25), as discussed in
Sec. III C: namely, the expected fission emission den-
sity must be non-zero at all the points in the can-
cellation region. In particular, it is required that

fi,m

(
r4−r1

|r4−r1| |Ω̂1, E1, E3

)
> 0 ∀ r4 ∈ R. A special case

arises when the reaction channel m uses a delta distri-
bution for either the energy or direction (such as in level
inelastic scattering). If such a channel was selected dur-

ing the last collision, then the value of ζ(P1 → P4) is
infinite at the collision point (as we are evaluating the
delta distribution at the singularity), and it vanishes al-
most everywhere within R. Thus, such channels do not
generally partake in cancellation, as the uniform portion
would then necessarily be zero according to Eq. (29). Fi-
nally, not all nuclear data facilitates the decomposition
provided by Eq. (36). Sometimes the joint PDF might
be provided as a marginal PDF in direction, and a con-
ditional PDF in energy. If this is the case, one must
go back to the intermediate collision point before having
sampled the direction, in order to see the entire cancel-
lation region.

If the region R contains only one material, which is
completely homogeneous in nuclide concentrations and
temperature, then νf and Σf are independent of P4. As
we have discussed in Sec. III B, these factors may be re-
moved from the definition of ζ, without compromising the
unbiasedness of the method. In addition, if fission is as-
sumed to be perfectly isotropic (a frequent assumption),
and if the fission energy E4 is completely independent of
the incident energy and direction, then we do not actu-
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ally need to perform cancellation on the fission emission
density, but only on the collision density at r4. For the
multi-group benchmark in Ref. 22 in which we previously
demonstrated exact regional cancellation in 3D, we used
homogeneous cancellation regions, where both fission and
scattering were isotropic, and the fission energy was also
assumed to be independent of the incident energy E3.
This indicates that ζ could be simplified to

ζ(P1 → P4|E3) =

exp


−

|r4−r1|∫

0

Σt

(
r1 + u

r4 − r1
|r4 − r1|

, E3

)
du




|r4 − r1|2
(39)

and still result in an unbiased cancellation method.

E. Non-Uniform Cancellation

Suppose now that, instead of distributing some fission
emission density uniformly over R, we would like to dis-
tribute fission emission density according to an arbitrary
function, D(Q). In this case, our estimator must be mod-
ified as

ϑD(P1 → P4|R, Q, η) =
ζ(P1 → Q|i,m,E3)−D(Q)β

ζ(P1 → Q|i,m,E3)
δ(Q− P4)+

β

ζ(P1 → P4|i,m,E3)

D(Q)

VR
. (40)

This can be shown by following the same approach taken
in Eq. (30).

Here, we have placed a portion (ζ(P1 → Q|i,m,E3)−
D(Q)β)/ζ(P1 → Q|i,m,E3) of the weight at the sam-
pled point P4, and a portion β/ζ(P1 → Q|i,m,E3) of
the particle is distributed according to D(Q). It is only
assumed here that D(Q) is dimensionless and that it is
piece-wise continuous. In theory, there is no reason that
D(Q) could not be negative, or even complex valued7;
if D(Q) is negative or complex, it might not be possi-
ble to sample it directly, but such a situation might be
treated using e.g. importance sampling [4]. Finally, we
note that for the choice of D(Q) = 1 the case of uniform
cancellation is retrieved.

7 While this paper only considers particles with a single real-valued
statistical weight, some transport problems require that particles
carry a complex weight [7, 9].

F. Fission Emission Density Function with
Delta-Tracking Schemes

In the above derivations, we have often made use of
the non-homogeneous exponential distribution

Σt(r + dΩ̂, E) exp


−

d∫

0

Σt(r + sΩ̂, E)ds


 , (41)

which occurs in the flight kernel T (P ′ → P ) and in
the transition kernel ζ(P ′ → P ). This distribution is
sampled when trying to determine the distance d a par-
ticle will travel from initial position r along direction
Ω̂, before undergoing a collision. For the case of piece-
wise constant macroscopic cross sections, this distribu-
tion is straightforward to sample for d. However, when
the macroscopic cross section is not piece-wise constant,
more sophisticated methods than direct sampling are of-
ten employed [10]. Delta-tracking and negative-weighted
delta-tracking are two such methods that sample the dis-
tance to collision using a sampling cross section Σsmp(E),
and then sample whether a real or virtual collision has
occurred with a specific criterion [19–21]; in the distinct
case of negative-weighted delta-tracking, a weight modi-
fier may be additionally applied to the particle’s weight,
which could potentially be negative [20, 21]. 8 In a real
collision, the particle undergoes a reaction as normal. In
a virtual collision, the particle’s energy and direction do
not change; this event is usually known as delta scatter-
ing. The particle continues to sample new flight distances
and to move to the new location, until a real collision
is sampled. Coleman [25] and Legrady et al. [21] have
previously provided evidence as to why such sampling
methods are unbiased.
It is possible to include virtual collisions in the trans-

port equations by modifying the flight kernel to be

TDT (P
′ → P ) =

Σsmp(E
′) exp (−Σsmp(E

′)|r − r′|)
|r − r′|2

δ

(
Ω̂− r − r′

|r − r′|

)
δ
(
Ω̂′ − Ω̂

)
δ (E − E′) , (42)

and the collision kernel to be

CDT (P
′ → P ) =

Σt(r
′, E′)

Σsmp(E′)
C(P ′ → P )+

(
1− Σt(r

′, E′)
Σsmp(E′)

)
δ(E − E′)δ(Ω̂− Ω̂′)δ(r − r′). (43)

8 Using negative weights can be advantageous in some cases, as it
allows Σsmp(E) to be less than Σt(r, E). In delta-tracking, it
is required that Σsmp(E) ≥ Σt(r, E) everywhere in the problem
domain: because of this requirement, it could be difficult to de-
termine Σsmp(E) for delta-tracking, when considering spatially
continuous cross sections [10].



11

These equations are valid for both delta tracking and
negative-weighted delta tracking. From Eq. (42), the
PDF for leaving a collision site at r′ and flying to r
and inducing a fission (given that we are flying in the

direction of r, i.e. Ω̂′ = r−r′

|r−r′| ) is

Σf (r, E
′) exp (−Σsmp(E

′)|r − r′|) , (44)

which is exactly the form presented in Eq. (1). Thus,
delta-tracking-like algorithms provide the large advan-
tage of not requiring the integration of the total cross
section along the flight path. This makes them interest-
ing for the purpose of performing exact regional cancel-
lation.

The form of Eq. (42) is valid regardless of whether the
collision at r′ was real or virtual. Equation (43) shows
that the angular distribution for virtual collisions is sin-
gular, because it is described by a delta distribution. As
discussed in Sec. IIID, channels with singular distribu-
tions are not allowed to partake in cancellation, i.e. we
need to set β = 0 for all such channels. For the par-
ticular case of virtual collisions, however, another treat-
ment is possible. At the site where the virtual collision
took place, there was a probability that the particle could
have instead undergone a real collision. We can there-
fore imagine “splitting” the particle before the collision.
A weight w(1−Σt(r, E

′)/Σsmp(E
′)) is considered to un-

dergo a virtual collision, and have its next collision at P3;
this virtual collision portion cannot be used in cancella-
tion, as the angular distribution was a delta distribution,
and the uniform component is then always zero, as ex-
plained in Sec. IIID. The rest of the particle weight,
namely wΣt(r, E

′)/Σsmp(E
′), is considered to undergo a

real collision and have its next collision at P3, like the
virtual part. However, this part can also partake in can-
cellation. The point-wise fission particle weight which
must remain at the sampled fission particle site is then

w

(
1− Σt(r, E

′)
Σsmp(E′)

)
+ w

Σt(r, E
′)

Σsmp(E′)

(
1− β

ζ(P ′ → P )

)
=

w

(
1− β

ζ(P ′ → P )

Σt(r, E
′)

Σsmp(E′)

)
=

w

(
1− β′

ζ(P ′ → P )

)
, (45)

where we have set β′ = βΣt/Σsmp. Thus, splitting shows
that all collisions can be assumed to partake in cancella-
tion as if they were real, because the presence of virtual
collisions only affects the choice of β. Since the estima-
tor is unbiased for any β, the factor Σt(r, E

′)/Σsmp(E
′)

is not necessary. However, note that this approach is only
unbiased so long as at the virtual collision site the real
component of the scattering kernel for forward scattering
with no energy change is not zero (i.e. C(P → P ) ̸= 0).
Otherwise, the real collision component could not reach
P3, as it would be impossible to have a real collision with
forward scattering and no change in energy. This was
possible in our previous multi-group example, because

in-group scattering was always allowed and all scattering
was assumed to be isotropic; however, this might not be
as trivial in a continuous-energy setting.

IV. OPTIMIZATION OF CANCELLATION
EFFICIENCY

We now turn our attention to the optimal choice of
the free parameter β of the cancellation estimator, used
to calculate the weight that can be uniformly distributed
over the cancellation region. In Booth and Gubernatis’s
seminal paper [23] and in our previous work [22], β was
chosen to be the minimum of the expected fission den-
sity over the cancellation region. This choice has the
advantage of being relatively easy to evaluate, but it is
not necessarily the most efficient one. In this section we
attempt to introduce a better strategy to determine the
cancellation parameter β for each particle partaking in
cancellation.
In order to optimize for the cancellation efficiency, one

must first properly define the quantity to be optimized.
As we mentioned in Sec. II, the maximum amount of can-
cellation will occur when the sum of the absolute value of
all the weights remaining after cancellation in the region
has been minimized. For N particles which initially land
in a cancellation region, we define the absolute value of
all weight in a region after cancellation as

Γ1 =
N∑

k=1

|wk,p|+
∣∣∣∣∣

N∑

k=1

wk,u

∣∣∣∣∣, (46)

with wk,p being the point-wise weight of particle k, and
wk,u the uniform weight portion of particle k.9 Equa-
tion (46) is the total post-cancellation weight discussed
in Sec. II, Eq. (7). As each particle has a different value
for the cancellation parameter β, we then may substitute
to obtain

Γ1 =
N∑

k=1

∣∣∣∣
ζk − βk
ζk

wk

∣∣∣∣+
∣∣∣∣∣

N∑

k=1

βk
ζk
wk

∣∣∣∣∣, (47)

where wk and βk are respectively the pre-cancellation
weight and the cancellation parameter of the k-th parti-
cle, and ζk = ζ(P ′

k → Pk) is the expected fission density
of the k-th particle, which is assumed to have had its pre-
vious collision in P ′

k and its fission event in Pk (note that
we have simplified the notation here compared to Sec. III;
for a given particle, P ′

k and Pk respectively correspond
to P1 and P4).
Due to the presence of the absolute values, it is quite

difficult to optimize the expression of Γ1 analytically with

9 While there are N particles in the cancellation region before the
cancellation operations have been carried out, there will be more
than N particles after cancellation, due to the new uniform par-
ticles which are created during the cancellation process.
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respect to βk. We instead define a modified quantity Γ2,
which shares a minimum with Γ1:

Γ2 =

N∑

k=1

(
ζk − βk
ζk

wk

)2

+

( N∑

k=1

βk
ζk
wk

)2

. (48)

We now wish to obtain the set of optimal values βk
that minimize Γ2. To remain unbiased, we are not al-
lowed to calculate βk based on the phase space coor-
dinates Pk where the particle k landed in the cancel-
lation region (this was made evident in Eq. (30)). As
ζk = ζ(P ′

k → Pk), we cannot directly minimize Eq. (48).
In the two subsequent sections, we will present two rea-
sonable options to avoid this problem, both possibly giv-
ing way to a method of optimizing the regional cancella-
tion algorithm. We go through the optimization for each
case, obtaining two different formulations for calculating
the set of optimal values for βk.

A. Replacing ζk with ⟨ζk⟩

The first approach consists in averaging ζk over the
entire phase space of the region R, such that

⟨ζk⟩ =

∫

R
ζ(P ′

k → Pk)dPk

∫

R
dPk

. (49)

We may then replace ζk with ⟨ζk⟩ in Eq. (48), and opti-
mize the new approximate form

Γ∗
2 =

N∑

k=1

( ⟨ζk⟩ − βk
⟨ζk⟩

wk

)2

+

( N∑

k=1

βk
⟨ζk⟩

wk

)2

, (50)

which is now independent of Pk. The detailed derivation
for this approach is presented in Appendix A, and the
resulting equation for the cancellation parameter βk is
found to be

βk = ⟨ζk⟩
(
1− S∗

wk

)
, (51)

where we make use of the definition

S∗ =
W

N + 1
, (52)

and

W =

N∑

k=1

wk, (53)

W being the net weight in the region R before cancel-
lation. It should also be mentioned that Eq. (51) would
also be obtained if we first minimized Eq. (48) with re-
spect to βk and then averaged over Pk.

B. Optimization of ⟨Γ2⟩

The second approach consists in averaging Γ2 over the
phase space of the region R, obtaining

⟨Γ2⟩ =

∫

R
Γ2

N∏

k=1

ζkdPk

∫

R

N∏

k=1

ζkdPk

. (54)

We may then optimize ⟨Γ2⟩ instead of Γ2. The complete
derivation is provided in Appendix B, and leads to a
different equation for βk:

βk = ⟨ζk⟩ ck
(
1− S

wk

)
. (55)

Here, we have made use of the two following definitions:

ck =

(
2 ⟨ζk⟩

〈
1

ζk

〉
− 1

)−1

, (56)

where the angle brackets have the same meaning as in
Eq. (49), and

S =

N∑

k=1

ckwk

1 +
N∑

k=1

ck

. (57)

C. Small Region Limit

For the two possible methods that we have outlined
to minimize the weight after cancellation, we are left
with two different possibilities for the value of βk. At
first glance, these two choices of βk look quite differ-
ent. Upon closer inspection of the definition of ck in
Eq. (56), we notice that ck = 1 only if 1/ ⟨ζk⟩ = ⟨1/ζk⟩.
When this is the case, it then follows from Eq. (57) that
S = S∗. This then indicates that the two definitions of
βk given by Eq. (51) and Eq. (55) are equivalent only
when 1/ ⟨ζk⟩ = ⟨1/ζk⟩. In general, however, Jensen’s in-
equality implies 1/ ⟨ζk⟩ ≤ ⟨1/ζk⟩ [26]. If a cancellation
region were defined such that it is small enough that one
could reasonably assume that ζ(P ′

k → Pk) is nearly con-
stant within the region, then ck ≈ 1, leading to the two
methods being equivalent. However, this would likely re-
quire such a small region that it is very unlikely that any
other particles would be located within the region, which
will make cancellation very ineffective.
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V. MONTE CARLO IMPLEMENTATION

A. Cancellation with Distributed Memory
Simulations

Most production Monte Carlo codes make use of
distributed-memory parallel computing techniques such
as Message Passing Interface (MPI), although the exact
algorithm used varies from code to code [14–17]. Gen-
erally speaking, distributed-memory parallelization can
pose a problem for cancellation, which is by construction
more efficient when there are more particles in each can-
cellation region. With distributed-memory paralleliza-
tion, the fission particles within a given cancellation re-
gion will be distributed amongst several nodes. To en-
sure the highest possible efficiency, cancellation must be
performed on the entire fission source. One method to
do this is to send all of the fission particles to the mas-
ter node between power iteration generations, and then
perform cancellation only on the master node. Another
option would be to use a method inspired by domain
decomposition [27], where certain nodes perform cancel-
lation for certain regions, and fission particles would need
to be sent to the node which corresponds to their can-
cellation region. This method is certainly possible, but
likely much more difficult to implement in production
Monte Carlo codes. For the proof of concept presented
in this paper, we have chosen to use the former method,
sending all fission particles to the master node for can-
cellation.

B. Calculation of ⟨ζk⟩ and ⟨1/ζk⟩

In order to evaluate βk according to Eq. (51), we must
have knowledge of ⟨ζk⟩. For Eq. (55), we additionally
need knowledge of ⟨1/ζk⟩. In general, it is not possi-
ble to analytically calculate either of these quantities for
particle k, born with phase space coordinates Pk located
within cancellation region R. However, it is possible to
estimate both of these quantities with a Monte Carlo
sampling approach. For each particle k, we know the
phase space coordinates P ′

k of its previous collision, and
we know the bounds of the outgoing phase space coordi-
nates Pk which define the cancellation region R.

Assume that a set of non-overlapping, hypercuboid
cancellation regions are imposed on top of the problem
domain. Then, between each generation of power iter-
ation, the fission particles (having stored their parent’s
previous phase space coordinates P ′

k) may be sorted into
the cancellation regions, based on their phase space co-
ordinates Pk. Once this is accomplished for a given can-
cellation region R, we may iterate over all particles in R,
and estimate their values of ⟨ζk⟩ and additionally ⟨1/ζk⟩,
depending on which optimisation algorithm is chosen.

The estimates for these quantities may be obtained using

⟨ζk⟩ ≈
1

Ns

Ns∑

i=1

ζ(P ′
k → P̃i) (58)

and

〈
1

ζk

〉
≈ 1

Ns

Ns∑

i=1

1

ζ(P ′
k → P̃i)

, (59)

respectively, where Ns is the number of samples to be
used in the estimation, and the outgoing phase space
coordinates P̃i are pseudo-randomly sampled so that P̃i ∈
R and P̃i ∼ U(R). This is straightforward to accomplish
with cuboid regions.
With this approach, a better estimate of ⟨ζk⟩ and

⟨1/ζk⟩ may be obtained by augmenting the number of
samples. As Ns is increased, the error on the estimate
of the two expectation values will decrease according to
O(1/

√
Ns) [28]. This indicates that a large Ns may

be required to obtain a suitable estimate of ⟨ζk⟩ and
⟨1/ζk⟩. Even more problematic is the fact that evalu-

ating ζ(P ′
k → P̃i) could be quite costly; this is especially

true in the case of continuous-energy neutron transport
problems, where many evaluations of scattering distribu-
tions would be necessary. In order to reduce Ns, while
still obtaining adequate estimates for ⟨ζk⟩ and ⟨1/ζk⟩,
we propose the use of a quasi-random technique, using a
Sobol’ sequence [28] to sample the outgoing phase space

coordinates P̃i. This approach generally has a better
convergence rate than using a pseudo-random number
generator to sample P̃i, as it leads to a more uniform ex-
ploration of the phase space [28]. At any rate, we stress
that statistical uncertainties on the estimation of ⟨ζk⟩
and ⟨1/ζk⟩ only affect the efficiency of the cancellation
method, as we have proved that the method is unbiased
for any values of the free parameters βk.

C. Heterogeneous Cancellation Regions

In this work, we have proposed two possible approaches
to selecting an optimal value of β, to optimize the amount
of weight which is cancelled. Neither of these approaches
requires the minimum value of the fission emission den-
sity within the cancellation region R. Hence, it is no
longer necessary to restrict the cancellation regions to be
cuboids, as we were required to do in Ref. 22. In light
of our proposed sampling methods to estimate ⟨ζk⟩ and
⟨1/ζk⟩ to obtain the optimized cancellation parameter
βk, it is evident that a rejection technique may be ap-
plied to isolate different material regions within a given
cuboid cancellation region. If we have a cancellation re-
gion with fuel and water, then all of the fission particles
are of course only born inside the fuel portion, and the
fission density everywhere in the water should be zero.
When sampling the random phase space coordinates P̃i,
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we must now add the requirement that P̃i have spatial
coordinates that are located inside of the fuel material.

Other special cases can be handled using this approach.
For example, cancellation can also be performed when
there are two non-connected fuel regions within the same
cancellation mesh region. We may also have cancellation
regions which contain multiple different fuel regions. Us-
ing rejection sampling to determine cancellation regions
makes it easy to apply regional cancellation to complex
geometries encountered in realistic reactor physics prob-
lems. Of course, the rejection procedure must also be
applied to the sampling of the phase space coordinates
of the uniformly distributed particles.

D. Monte Carlo Implementation in the
open-source code MGMC

For our previous work on regional cancellation, a multi-
group Monte Carlo mini-app called MGMC was used to
test cancellation on a well-known reactor physics bench-
mark. MGMC has been developed to facilitate the fast
and easy implementation and testing of new transport
algorithms. Being only ≈ 13 k lines of code, it is much
faster to test new ideas in MGMC than it would be in
a large industrial code. General 3D geometries are sup-
ported using a standard constructive solid geometry for-
malism based on surfaces, universes, and lattices, famil-
iar to any user of other well-known Monte Carlo codes
[14–17]. Different mesh tallies are available for flux or
reaction rates, with track-length or collision estimators.
MGMC can solve fixed-source, k-eigenvalue, and neu-
tron noise problems, using both shared and distributed
memory parallelism. Shared memory parallelism is im-
plemented with OpenMP, while the distributed memory
parallelism is implemented using MPI. Different trans-
port methods such as surface-tracking, delta-tracking,
and negative-weighted delta-tracking are also available.
All of the outlined cancellation algorithms have been im-
plemented in MGMC, which was used to run the simu-
lations presented in the next section. MGMC has been
make publicly available as free software under the Ce-
CILL v2.1 license [29].

VI. SIMULATION RESULTS

For our numerical simulations, in this Section we will
make use of the modified C5G7 benchmark which we in-
troduced in our previous work [22]. The C5G7 is a multi-
group neutron transport benchmark which comes from
the nuclear reactor physics community, for the purpose
of validating different codes [30]. Our modified version
makes use of square profile fuel pins with side lengths of
0.756 cm, in lieu of cylindrical pins of radius 0.54 cm as
proposed in the original specifications. This modification
allows a regular 170× 170× 765 mesh to be imposed on
top of the geometry over the fuel assemblies to act as can-

cellation regions, and guaranteed that each cancellation
region contained a unique material. For continuity, we
make use of the same cancellation mesh. For transport,
we again use the negative-weighted delta-tracking vari-
ant proposed by Carter et al. [20], and identical sampling
cross sections to the previous study: the sampling cross
section for the first group is 90% of the majorant cross
section, while all other sampling cross sections were taken
to be the majorant. This means that the sampling cross
section underestimates the total cross section in the first
energy group for all fuel pins in the problem. Whenever
a virtual collision occurs for a particle in the first energy
group, inside a fuel pin, its weight will then change sign.
Once a particle leaves the first group, it is impossible for
the sign to change at a collision (although signs can pos-
sibly change during cancellation). Virtual collisions lead
to the presence of negative weights in the system, and
we have shown that weight cancellation is mandatory for
k-eigenvalue power iteration problem to converge when
using negative-weighted delta-tracking [22]. All simula-
tions were initiated with 106 particles, and ran for 2500
generations, with the first 500 being discarded to allow
for source convergence.
As we have shown in Ref. 22, the total weight of all the

fission particles between two generations increases with-
out bound if weight cancellation is not applied. This
increase in total weight is accompanied by an increase in
the number of particles and large statistical fluctuations
in estimated quantities, making it nearly impossible to
estimate the multiplication factor and static flux for the
system. The effect of cancellation is to limit the growth of
Wtot to a saturation value; the more efficient cancellation
is, the lower the saturation value will be. Thus, we have
chosen to assess the efficiency of cancellation by using
the saturation value of Wtot, which is calculated imme-
diately after applying the cancellation procedure. Note
that Wtot has a lower theoretical limit of Wnet, which is
kept constant by normalizing all particle weights between
generations [22].

A. Comparison of Optimization Strategies

To determine which method of choosing βk leads to
the most efficient cancellation of positive and nega-
tive weights, the optimization techniques described in
Sec. IVA and Sec. IVB were compared against the orig-
inal implementation using the minimum value of the fis-
sion density within the region. Both optimization options
utilized Ns = 100 samples for estimating ⟨ζk⟩ and ⟨1/ζk⟩.
The values ofWtot are plotted against the number of gen-
erations in Figure 2. For comparison, curves correspond-
ing to no cancellation and approximate cancellation have
also been presented. Approximate cancellation imposes
a mesh on top of the geometry, and sorts fission particle
into this mesh. The average weight of all particles in each
mesh element can then be calculated and assigned to the
particles [31, 32]. This method is quite efficient, but is
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FIG. 2. Behavior of Wtot as a function of generation, for
different cancellation methods, including no cancellation and
approximate cancellation.

not exact, and imposes a bias on the fission source and on
the eigenvalue (though the bias can be made arbitrarily
small by using a sufficiently fine mesh).

If no cancellation technique is used, the total weight in-
creases exponentially, without bound. This phenomenon
is expected when using negative-weighted delta-tracking
with k-eigenvalue power iteration, as described previ-
ously [22]. When taking βk = minR(ζk), an asymptotic
value of Wtot ≈ 4.9 · 106 was seen. The most efficient
method of determining βk was that obtained from op-
timizing ⟨Γ2⟩ in Eq. (55), resulting in Wtot ≈ 2.7 · 106,
almost half the amount of total weight obtained with the
minimum strategy. Calculating βk from Eq. (51) for the
case of replacing ζk with ⟨ζk⟩ is less efficient than using
the minimum value of ζk within the cancellation region,
resulting in Wtot ≈ 8.0 · 106. It is not known why this
approximation does not perform as well as using the min-
imum of ζk, and this intriguing question calls for future
investigations.

Approximate cancellation yielded the lowest total
weight (and therefore the highest cancellation efficiency),
with Wtot ≈ 1.4 ·106, but is not an exact approach. Cur-
rently, we do not know of any way to estimate, or to
put a limit on the bias imposed by this method without
running several realizations, each with a different mesh
size.

B. Strategies for Evaluating the Average Fission
Emission Densities

The analysis in Sec. VIA shows that the optimal choice
for determining βk for the C5G7 benchmark is Eq. (55),
from the optimization of ⟨Γ2⟩. We now consider the op-
timal strategy for estimating the requisite values of ⟨ζk⟩
and ⟨1/ζk⟩ for each particle. Figure 3 depicts the behav-
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FIG. 3. Behaviour of Wtot as a function of generation, for
different cancellation parameters. For all curves, βk is deter-
mined from the optimization of ⟨Γ2⟩, Eq. (55). The estimated
values of ⟨ζk⟩ and ⟨1/ζk⟩ are determined with a varying num-
ber of points, using either a pseudo-random number generator
(PRNG) or a Sobol’ sequence.

ior of Wtot where points P̃i (from Eqs. (58) and (59)) are
sampled with either a pseudo-random number generator
(PRNG) or a Sobol’ sequence.

First of all, the spread among the different strategies
for estimating ⟨ζk⟩ and ⟨1/ζk⟩ is much smaller than the
spread among the different minimization strategies of
Fig. 2. It is observed that in general, when Ns < 50,
using Sobol’ points leads to more efficient weight cancel-
lation. This effect is most apparent for Ns = 3, where
the Sobol’ sequence leads to approximately 9.2% less to-
tal weight being transported, compared to the PRNG
estimation strategy. The increased efficiency observed in
the Sobol’ points diminishes however with increasing Ns.
Sobol’ estimation gives a 2.8% improvement for Ns = 5,
1.8% improvement for Ns = 10, and only a 0.5% im-
provement for Ns = 50. This would indicate that the
estimated values for ⟨ζk⟩ and ⟨1/ζk⟩ start to become in-
dependent of the evaluation strategy at around Ns = 50.

In addition to achieving more weight cancellation, the
Sobol’ points also have the added benefit of being slightly
easier to compute, as the quasi-random numbers used
the compute the points can be tabulated in advance, and
written in the code. All that is then needed is a table
lookup to get a Sobol’ value, whereas several mathemati-
cal operations must be performed to calculate each value
generated from a PRNG. However, a drawback with the
use of Sobol’ points is that one does not necessarily know
in advance how many points will be needed, when con-
sidering heterogeneous cancellation regions.
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FIG. 4. Histogram distribution of the Student t-variable,
comparing the flux computed from delta-tracking to the flux
computed with negative weighted delta-tracking. A normal
distribution is plotted on top of the histogram for a reference.

C. Demonstration of Heterogeneous Cancellation
Regions on the C5G7 Benchmark

We also tested the rejection-based sampling technique
described in Section VC, for performing regional cancel-
lation in cuboid regions which contain multiple materi-
als. Instead of using our modified version of the C5G7
benchmark, we have opted to use the original version
with cylindrical fuel pins [30], in combination with the
same 170×170×765 mesh as used in our previous simula-
tions. A reference calculation was performed using stan-
dard delta-tracking and obtained a multiplication factor
of keff = 1.18383 ± 0.00003, which is in agreement with
the reference solution for the 3D version of the bench-
mark [30]. Cancellation used the method for calculating
β proposed in Sec. IVB, with Ns = 10 samples being
used to estimate ⟨ζk⟩ and ⟨1/ζk⟩.

When running the same simulation with negative-
weighted delta-tracking, using the same sampling cross
sections as before, and exact cancellation, a multipli-
cation factor of keff = 1.18382 ± 0.00009 was obtained,
which is in agreement with the delta-tracking value. A
comparison of the two estimations of the flux were also
made, looking at the Student t-variable, which is defined
as

ti =
φi,A − φi,B√
σ2
i,A + σ2

i,B

, (60)

where φi,x is the average value of the flux in the i-th bin
for calculation x, and σi,x is its standard error. A corre-
sponds to the results from the delta-tracking simulation
without weight cancellation, and B corresponds to the
results from the negative-weighted delta-tracking simu-
lation with cancellation. For independent, normally dis-
tributed variables with a large number of degrees of free-
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FIG. 5. Plots of the positive, negative, net, and total weights
as a function of generation, for the original C5G7 benchmark.
Exact regional cancellation with heterogeneous regions was
used to perform the simulation.

dom, the distribution of the t-variable should approach a
normal distribution. A plot of the empirical distribution
of the t-variable is provided in Figure 4. We excluded
from the comparison all the bins where the flux was esti-
mated to be zero, or where the relative standard error was
greater than 20%. This was done in an effort to ensure
that each bin was approximately normally distributed,
for the Student t-variable distribution assumptions to be
reasonable. It is clear from Figure 4 that the two flux
estimates are in good agreement. The t-variable distri-
bution is not perfectly normal, which is to be expected,
as there are correlations between the scores in different
flux bins. In general, this is a very strong indication
that our cancellation method has not imposed any bias
on the fission source, and that the method is still exact
when applied to heterogeneous cancellation regions.
The behavior of the total weight is shown in Fig. 5.

While Wtot is larger than in the case of square fuel pins
with homogeneous cancellation region presented in Fig. 2,
the behavior is in general similar. A large Wtot indicates
that there are more negative particles, which will increase
the variance in scores. This is indeed the case, as our
previous work obtained an uncertainty for keff of only
5 × 10−5 (albeit for a slightly different problem) [22],
while an uncertainty of 9 × 10−5 was obtained for this
problem.

VII. CONCLUSIONS

This work has leveraged the integral form of the Boltz-
mann transport equation to provide a more in-depth
mathematical analysis of the exact regional weight can-
cellation technique, considerably expanding on previous
works on the subject [22, 23]. Not only has this formal
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approach given a much better understanding as to the
mechanics of regional cancellation in simplified isotropic
multi-group problems, but it has illuminated the non-
trivial path to performing exact cancellation in more
complex problems, where scattering is anisotropic, and
the fission spectrum may depend on the incident energy
of a particle. The analysis highlights the fact that the
implementation of exact regional cancellation is rather
straightforward in a multi-group Monte Carlo code, but
will be more difficult in a continuous-energy code, as one
will need access to conditional scattering distributions in
the laboratory frame, which are not always available for
all reactions. The implementation of exact regional can-
cellation in a continuous-energy code is thus a subject
which will require further research.

Additionally, a strategy to determine an optimal value
of the cancellation parameter β for each particle under-
going cancellation has been conceived. For each particle
k within a cancellation region, its optimal cancellation
parameter βk can be computed if both the average value
of the fission emission density in the region and the av-
erage value of the inverse of the fission emission density
in the region are known. Our previous implementation
required that cancellation regions be homogeneous and
cubical, which restricted its applicability to simple prob-
lems. Thanks to the improvements in the optimization
technique proposed in this work, both requirements have
been relaxed.

On a modified version of the C5G7 benchmark, our
technique to optimize weight cancellation was demon-
strated to reduce the total weight in the simulation by
approximately 45%, when compared to using the mini-
mum value of the fission emission density in the region
for β, as previously suggested in the literature. In or-
der to estimate the average fission emission density and
the average inverse of the fission emission density, a sam-
pling approach has been proposed, where the averages are
estimated using the values of the fission emission den-
sity at pseudo-random or quasi-random points. It was
demonstrated that the quasi-random Sobol’ sequence re-
quires slightly fewer points than the pseudo-random se-
quence to reach the asymptotic limit of the optimized
cancellation algorithm. As a comparison, the use of 3
Sobol’ points had very similar performance to the use of
5 pseudo-random points for the modified version of the
C5G7 benchmark examined here. However, such results
are likely to be highly problem-dependent, and more sys-
tems should be analyzed to ascertain what sort of perfor-
mance improvements could be expected in general. We

also tested the use of heterogeneous cancellation regions
on the original C5G7 benchmark, with cylindrical fuel
pins. No bias was observed in the resulting fundamental
eigenvalue, or flux tally.

Appendix A: Optimization of Γ∗
2

We remind the reader of the definition of Γ∗
2:

Γ∗
2 =

N∑

k=1

( ⟨ζk⟩ − βk
⟨ζk⟩

wk

)2

+

( N∑

k=1

βk
⟨ζk⟩

wk

)2

. (A1)

We optimize Γ∗
2 simultaneously for all particles by dif-

ferentiating with respect to βj , and setting the partial
derivative equal to zero:

∂Γ∗
2

∂βj
= −2

⟨ζj⟩ − βj

⟨ζj⟩2
w2

j + 2
wj

⟨ζj⟩
N∑

k=1

βkwk

⟨ζk⟩
= 0. (A2)

This may be simplified to

−wj +
βjwj

⟨ζj⟩
+

N∑

k=1

βkwk

⟨ζk⟩
= 0. (A3)

On the left-hand-side, the second term matches the argu-
ment of the sum in the third term. Summing over index
j, we see that

−W +
N∑

j=1

βjwj

⟨ζj⟩
+N

N∑

k=1

βkwk

⟨ζk⟩
= 0. (A4)

Here, we used the definition provided in Eq. (53). This
allows us to isolate the sum

N∑

k=1

βkwk

⟨ζk⟩
= S∗ =

W

N + 1
. (A5)

Applying this substitution to Eq. (A3) while also using
Eqs. (52) and (53), we find that the optimized value of
βj is

βj = ⟨ζj⟩
(
1− W

(N + 1)wj

)
= ⟨ζj⟩

(
1− S∗

wj

)
. (A6)

Appendix B: Optimization of ⟨Γ2⟩

Substituting Eq. (48) into Eq. (54), and partially ex-
panding the squared terms, we see that
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⟨Γ2⟩ =

∫

R

[ N∑

k=1

(
1− 2βk

ζk
+
β2
k

ζ2k

)
w2

k +

N∑

k=1

N∑

l=1

βk
ζk

βl
ζl
wkwl

] N∏

m=1

ζmdPm

∫

R

N∏

n=1

ζndPn

(B1)

=

∫

R

[ N∑

k=1

(
1− 2βk

ζk
+
β2
k

ζ2k

)
w2

k +
N∑

k=1

N∑

l=1
l ̸=k

βk
ζk

βl
ζl
wkwl +

N∑

k=1

β2
k

ζ2k
w2

k

] N∏

m=1

ζmdPm

N∏

n=1

⟨ζn⟩
(B2)

=
N∑

k=1

(
1− 2βk

⟨ζk⟩
+

β2
k

⟨ζk⟩

〈
1

ζk

〉)
w2

k +
N∑

k=1

N∑

l=1
l ̸=k

βk
⟨ζk⟩

βl
⟨ζl⟩

wkwl +
N∑

k=1

β2
k

⟨ζk⟩

〈
1

ζk

〉
w2

k (B3)

=

N∑

k=1

(
w2

k − 2βkw
2
k

⟨ζk⟩

)
+

N∑

k=1

β2
kw

2
k

⟨ζk⟩

(
2

〈
1

ζk

〉
− 1

⟨ζk⟩

)
+

N∑

k=1

N∑

l=1

βk
⟨ζk⟩

βl
⟨ζl⟩

wkwl. (B4)

It is convenient to use the constant ck, defined by Eq. (56), which may be substituted into Eq. (B4) to produce

⟨Γ2⟩ =
N∑

k=1

(
w2

k − 2βkw
2
k

⟨ζk⟩

)
+

N∑

k=1

β2
kw

2
k

ck ⟨ζk⟩2
+

N∑

k=1

N∑

l=1

βk
⟨ζk⟩

βl
⟨ζl⟩

wkwl. (B5)

Now that all of the integrals have been simplified, we

are left with ⟨Γ2⟩ as a function of βk, ⟨ζk⟩, and
〈

1
ζk

〉

∀k = 1, . . . , N . We now optimize ⟨Γ2⟩ with respect to
the cancellation parameter βj by solving for

∂ ⟨Γ2⟩
∂βj

= 0. (B6)

From Eq. (B5), one may then proceed by solving

∂ ⟨Γ2⟩
∂βj

= −
2w2

j

⟨ζj⟩
+

2βjw
2
j

cj ⟨ζj⟩2
+

2wj

⟨ζj⟩
N∑

k=1

βkwk

⟨ζk⟩
= 0. (B7)

Upon a division by 2wj/ ⟨ζj⟩ on both sides, we are left
with

−wj +
βjwj

cj ⟨ζj⟩
+

N∑

k=1

βkwk

⟨ζk⟩
= 0. (B8)

It is possible to isolate the sum in the third term on the

left-hand-side by multiplying by cj , and then summing
over j:

−
N∑

j=1

cjwj +
N∑

j=1

βjwj

⟨ζk⟩
+

N∑

j=1

cj

N∑

k=1

βkwk

⟨ζk⟩
= 0. (B9)

We will now define

S =
N∑

k=1

βkwk

⟨ζk⟩
, (B10)

and substitute Eq. (B10) into Eq. (B9), allowing one to
solve for S. Doing so, one may obtain the result provided
by Eq. (57). Now that the summation term, S, can be
computed without knowledge of βj , we may substitute
Eq. (57) and Eq. (B10) into Eq. (B8), and solve for βj ,
producing

βj = ⟨ζj⟩ cj
(
1− S

wj

)
. (B11)
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10 - Conclusions for Weight Cancellation

In Part II, we have investigated the use of negative-weighted delta tracking in k-eigenvalue power iteration
simulations, and explored different weight cancellation techniques. Our main findings are summarized below.

10.1 . Negative-Weighted delta tracking with Power Iteration

The results of Part I indicated that spatially continuous cross sections can be successfully treated using
negative-weighted delta tracking. However, Chapter 4 only compared the behavior of tracking methods
in fixed-source problems, while most reactor physics problems make use of k-eigenvalue power iteration.
Therefore, in Chapters 7 and 8, we attempted to use negative-weighted delta tracking to solve a simple
power iteration problem. Unfortunately, large instabilities with the method were encountered, and it was
impossible to complete a simulation, as the number of particles stored in memory would grow exponentially
with each generation.

We were able to understand the observed explosion in the particle population by writing a set of coupled
transport equations where the flux of the positive and negative particles have been considered separately.
From this analysis, conducted in Chapter 8, it was observed that the addition of negative weights in the
algorithm also introduces a second set of eigenstates which do not correspond to the true Boltzmann equation
for the system, but a fictitious system with less sterile capture. One of these new fictitious eigenstates will
always have the largest eigenvalue; power iteration will therefore converge to this fictitious state instead
of converging to the fundamental mode for the physical Boltzmann equation. Further analysis indicated
that the application of a weight cancellation procedure could potentially remove the fictitious eigenstates
from the system, permitting power iteration to converge on the physical eigenstate. This hypothesis was
confirmed on several simplified transport problems. In addition, we also examined the three-dimensional
C5G7 multi-group benchmark, where we showed that weight cancellation was indeed a viable option to
enable the convergence of power iteration.

10.2 . Weight Cancellation

Having determined that weight cancellation allowed the convergence of power iteration simulations
performed using negative-weighted delta tracking, we began to examine what algorithms were at our disposal
to accomplish such an operation in Monte Carlo simulations. A few approximate cancellation methods were
identified in the literature; we chose to favor the method proposed by Zhang et al., which imposes a regular
mesh on top of the geometry and assumes that, between fission generations, the fission source particles are
sorted into the elements of this cancellation mesh based on their phase space coordinates. The average
weight of all the particles in each cancellation mesh element is computed, and this average weight is then
assigned to all of the fission source particles in that mesh element. This method is very fast and easy to
implement in an existing Monte Carlo code with minimal modifications. Approximate regional cancellation
was demonstrated on the C5G7 multi-group benchmark in Chapter 7, and allowed the simulation to complete
normally, despite the use of negative-weighted delta tracking. The main limitation of approximate regional
cancellation is not necessarily that it is approximate, but that there is no way to estimate the bias that it
introduces in the simulation results. Currently, the only way to determine if the cancellation mesh if “fine
enough” is to refine the mesh, run the simulation, and see how the results have changed. Finding a better
method to determine the appropriate refinement of the cancellation mesh in advance should be the subject
of future research.

Exact cancellation methods were also considered, which do not impose a bias on the fission source.
An exact regional cancellation method proposed by Booth and Gubernatis was considered, as its linear
computational complexity with the number of particles increases its potential for use in a production-
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level Monte Carlo code. The initial description and implementation of this technique was done for a
one-dimensional single-speed problem, leaving many questions unanswered as to how one might go about
implementing this method in higher spatial dimensions, or in continuous energy. We have further developed
exact regional cancellation for use in three dimensional multi-group benchmarks, demonstrating the method
on two versions of the C5G7 benchmark in Chapters 8 and 9. We have also developed the theoretical
framework describing under what conditions exact regional cancellation is unbiased, and suggested how it
might be performed in continuous-energy simulations, in Chapter 9. Future work will need to focus on
the treatment of regional cancellation in a continuous-energy setting: it is likely that the main difficulty
in this process will be gaining access to a representation of the nuclear data that is compatible with the
requirements of cancellation, which is not necessarily available in standard Monte Carlo codes.

In Chapter 9, we have also developed a technique to choose the parameter used in exact regional
cancellation such that the amount of cancellation performed is maximized. Using the optimal approach
on the C5G7 benchmark, a higher cancellation efficiency was achieved than when using the minimum
value of the expected fission emission density in the cancellation region, as was proposed by Booth and
Gubernatis. The implementation of this method has also made it possible to perform cancellation in non-
cuboid cancellation regions (e.g. cylindrical fuel pins). Despite this improvement in the efficiency of the
algorithm, it was still observed that the efficiency of exact regional cancellation is extremely sensitive to
the refinement of the cancellation mesh used to define cancellation regions. Currently, there is no way of
knowing if a cancellation mesh has the appropriate refinement to allow enough weight cancellation to occur,
which is in turn mandatory for power iteration simulations to converge. The meshes used in this work were
mostly determined by trial and error; determining an adequate cancellation mesh before running a simulation
should be a topic of future investigations to improve the usability of exact regional cancellation.

In Part II, we have only considered the application of weight cancellation to the convergence of k-
eigenvalue power iteration simulations when using negative-weighted delta tracking. There are many other
types of Monte Carlo problems in the field of nuclear reactor physics which necessitate the use of negative
particle weights. Examples of these are the computation of higher harmonics of the flux, the search for
critical buckling, and the solution of the neutron noise equation. All of these types of simulations could
potentially benefit from the new weight cancellation techniques which have been presented in this work. In
Part III, we examine the impact of weight cancellation methods on solving the neutron noise equation by
Monte Carlo simulation.
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11 - Application of Weight Cancellation to Neutron Noise

Our exploration of weight cancellation techniques up until this point has been solely motivated by the
newly discovered fact that k-eigenvalue power iteration problems using negative-weighted delta tracking do
not converge on the fundamental eigenstate of the Boltzmann equation in the absence of weight cancellation.
The desire to use negative-weighted delta tracking for power iteration problems is rooted in the results
gathered in Part I, where the tracking method appeared to be a very suitable option for treating spatially
continuous cross sections as initially tested on fixed-source problems. There are, however, many other types
of Monte Carlo problems in the domain of nuclear reactor physics where mixtures of positive and negative
weights are used. We will briefly overview these applications, as the cancellation methods discussed in this
thesis are also likely to be of interest in these cases.

Both the approximate regional cancellation method and the exact regional cancellation method were
initially proposed in papers about the calculation of the second harmonic (or even higher harmonics) of the
Boltzmann k-eigenvalue equation [1–5]. While the first harmonic (the static flux) is positive throughout
the problem domain, higher harmonics necessarily have “nodes”, where the solution changes sign from
positive to negative [6]. Knowing these higher eigenstates is useful for higher-order perturbation theory;
furthermore, the second eigenstate enables evaluating the dominance ratio, defined as k1/k0, where k0 is
the eigenvalue associated with the first harmonic (i.e. keff), and k1 is the eigenvalue for the second harmonic
[6]. The dominance ratio determines how fast the fission source in a Monte Carlo criticality simulation will
converge [7]. These higher modes can be of interest to reactor physicists for a variety of calculations, and
their investigation has fostered the development of the approximate fission matrix method, which has been
implemented in a variety of general-purpose Monte Carlo codes [8]. The fission matrix method is only able
to approximate the higher eigenstates of the fission source [8]. Booth was one of the first to propose an
exact method to estimate higher eigenstates of the flux [1]. His method poses the advantage of not needing
to store the large fission matrix, and being able to solve for only the first few harmonics (as opposed to
obtaining the entire spectrum with the fission matrix method). The pioneering methods developed by Booth
to calculate higher harmonics have been expanded and improved by several authors: the common point of all
these techniques is that they all require that particles to be allowed to carry positive and negative weights,
and that a weight cancellation technique be applied to these particles [3, 4].

Another kind of problem involving particles with complex weights, where each component can be positive
or negative, is that of critical buckling search [9, 10]. Several formulations of this problem have been
proposed; in the full variant where particles are required to carry complex weights, it is assumed that the
angular flux can be factored into the following form:

φ(r, Ω̂, E) = ϕ(r, Ω̂, E) exp(iB · r), (11.1)
where ϕ(r, Ω̂, E) is a spatial fine structure, B is the geometric buckling vector, and exp(iB · r) is a
macroscopic energy-independent factor [10]. Such an algorithm can be used to estimate the diffusion
coefficient by means of Monte Carlo methods, or to perform leakage-corrected calculations of pin cells
or fuel assemblies, such as those done for the generation of multi-group cross sections [10]. Yamamoto’s
proposed method can either be used to determine the magnitude of the geometric buckling vector for a given
value of keff, or conversely determine keff for a known geometric buckling. In order to ensure convergence,
Yamamoto makes use of a cancellation procedure in his implementation, making critical buckling a domain
of interest for the application of exact or approximate weight cancellation techniques as well.

A phenomenon referred to as “neutron noise” is known to affect power reactors when fluid-structure
interactions or fluctuations in the moderator density occur in the core, causing a time dependent perturbation
around the stationary neutron flux. Although noise is generally an unwanted phenomenon, the information
carried in the neutron flux fluctuations can be usefully extracted for a variety of purposes, ranging from
core monitoring and diagnostics to cross section measurements. Perhaps the oldest work addressing this
topic comes from Oak Ridge National Laboratory in the late 1940’s [11]. Since then, many occurrences of
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neutron noise have been encountered, and many analytical and computational methods have been developed
to model and predict the presence of such perturbations in power reactor cores [12–19]. A proper summary of
the history of this vast field is unfortunately not possible here, but the interested reader is encouraged to read
the first chapter of Rouchon’s PhD thesis, which gives a thorough overview of the subject [20]. Neutron
noise can be an indication of potentially hazardous behavior in the core, such as fuel rod or assembly
vibrations which could lead to fretting. Since it is impossible to look inside the core to examine the cause
of these vibrations, the EU H2020 CORTEX project (2017-2021) has recently promoted the development
of simulation tools aimed at understanding what types of core phenomena could generate specific noise
perturbations, in view of solving the inverse problem of locating the origin of the detected noise [21].
From this international effort, two Monte Carlo solvers have been independently developed to simulate the
perturbation of the static neutron flux for a variety of different types of core perturbations [20, 22–24]. Both
of these methods solve the neutron noise equations in the frequency domain, where particles must carry
complex statistical weights with real and imaginary components being allowed to be positive or negative.
As illustrated in this Chapter, the (complex) noise field can be estimated by solving a fixed-source problem,
where the noise source particles are sampled from a complex source and are then propagated by means
of a Boltzmann-like operator which is also complex. For reasons that will be discussed subsequently, the
simulation method proposed by Rouchon et al. did not make use of any cancellation method [24], whereas
Yamamoto’s initial implementation did make use of weight cancellation [22]. It is quite possible that the
advancements to weight cancellation methods developed in Part II could be applied to the problem of
neutron noise, and Part III of this manuscript is dedicated to this question. In Sec. 11.1, we shall summarize
the derivation of the canonical linearized neutron noise equations in the frequency domain. Section 11.2
covers the methodology for sampling the noise source particles, which are then transported according to the
rules presented in Sec. 11.3. A branchless noise sampling technique is examined in Chapter 12 as a possible
variance reduction technique, the results of which are summarized in Sec. 11.4. Finally, we will summarize
the observed effects of applying weight cancellation to neutron noise simulations in Sec. 11.5. A thorough
analysis will be provided in Chapter 12 for the case of neutron noise induced by oscillations, and in Chapter
13 for the case of neutron noise induced by mechanical vibrations.

11.1 . Derivation of the Canonical Noise Equations

In deriving the linearized neutron noise equations, we first start with the time-dependent Boltzmann
transport equation:

Bk(r, Ω̂, E, t)φ(r, Ω̂, E, t) = 0 =

[
1

v

∂

∂t
+ Ω̂ ·∇+Σt(r, E, t)

]
φ(r, Ω̂, E, t)−

∫∫
[νΣf ]s (r, E

′ → E, Ω̂′ → Ω̂, t)φ(r, Ω̂′, E′, t)dE′dΩ̂′−
1

keff

∫∫
[νΣf ]f,p (r, E

′ → E, Ω̂′ → Ω̂, t)φ(r, Ω̂′, E′, t)dE′dΩ̂′−
1

keff

∑

j

∫∫∫
λje

−λj(t−t′) [νΣf ]jf,d (r, E
′ → E, Ω̂′ → Ω̂, t′)φ(r, Ω̂′, E′, t)dE′dΩ̂′dt′, (11.2)

where the shorthand

[νΣf ]α (r, E
′ → E, Ω̂′ → Ω̂, t′) = να(r, E)Σα(r, E)fα(r, E

′ → E, Ω̂′ → Ω̂) (11.3)
has been employed. In Eq. (11.2), one will notice a factor of 1/keff scaling the fission production terms.
Neutron noise occurs in power reactors which are critical, and dividing by the multiplication factor enforces
this.1 In general, we consider that all of the material terms (energy-angle distributions, cross sections, and

1While a reactor may be exactly critical in real life, our simulations of the same reactor often are not, due touncertainties in technological specifications of the core and in nuclear data.
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yields) for a reaction α can be decomposed into a stationary and a perturbed component as2

[νΣf ]α (r, E → E′, Ω̂ → Ω̂′, t) = [νΣf ]α (r, E → E′, Ω̂ → Ω̂′) + δ [νΣf ]α (r, E → E′, Ω̂ → Ω̂′, t).
(11.4)

Such a decomposition permits us to also decompose the transport operator as

Bk(r, Ω̂, E, t) = B(r, Ω̂, E, t) + δB(r, Ω̂, E, t) (11.5)
with the operator B taking the form of

B(r, Ω̂, E, t) = 1

v

∂

∂t
+ Ω̂ ·∇+Σt(r, E)−

∫∫
[νΣf ]s (r, E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−
1

keff

∫∫
[νΣf ]f,p (r, E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−
1

keff

∑

j

∫∫∫
λje

−λj(t−t′) [νΣf ]jf,d (r, E
′ → E, Ω̂′ → Ω̂)dE′dΩ̂′dt′ (11.6)

and the perturbation operator δB(r, Ω̂, E, t) taking the form of

δB(r, Ω̂, E, t) = Ω̂ ·∇+ δΣt(r, E, t)−
∫∫

δ [νΣf ]s (r, E
′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′−

1

keff

∫∫
δ [νΣf ]f,p (r, E

′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′−
1

keff

∑

j

∫∫∫
λje

−λj(t−t′)δ [νΣf ]jf,d (r, E
′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′dt′ (11.7)

We also assume that the flux can be decomposed in a similar manner:

φ(r, Ω̂, E, t) = φc(r, Ω̂, E) + δφ(r, Ω̂, E, t), (11.8)
where φc(r, Ω̂, E) is the critical flux, and the small perturbation δφ(r, Ω̂, E, t) is the neutron noise.
Substituting Eqs. (11.5) and (11.8) into Eq. (11.2) yields

Bk(r, Ω̂, E, t)φ(r, Ω̂, E, t) =

[
B(r, Ω̂, E, t) + δB(r, Ω̂, E, t)

][
φc(r, Ω̂, E) + δφ(r, Ω̂, E, t)

]
=

B(r, Ω̂, E, t)φc(r, Ω̂, E) + B(r, Ω̂, E, t)δφ(r, Ω̂, E, t)+
δB(r, Ω̂, E, t)φc(r, Ω̂, E) + δB(r, Ω̂, E, t)δφ(r, Ω̂, E, t) = 0. (11.9)

Disregarding the second-order time-dependent term, and realizing that Bφc = 0, the two remaining terms
may be rearranged as

B(r, Ω̂, E, t)δφ(r, Ω̂, E, t) = −δB(r, Ω̂, E, t)φc(r, Ω̂, E). (11.10)
This is the linearized neutron noise equation in the time domain. Typically we are interested in periodic
solutions corresponding to times long after the transient regime. It is therefore beneficial to move to the
frequency domain using a Fourier transform

g(ω) = F [g(t)] =

∫ +∞

−∞
g(t)e−iωtdt. (11.11)

Applying Eq. (11.11) to Eq. (11.10) finally results in the “orthodox” linearized neutron noise equation in the
frequency domain [14]:

B(r, Ω̂, E, ω)δφ(r, Ω̂, E, ω) = −δB(r, Ω̂, E, ω)φc(r, Ω̂, E) (11.12)
2In this work, we do not consider the possibility of precursor decay constants being time-dependent.
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with

B(r, Ω̂, E, ω) = i
ω

v
+ Ω̂ ·∇+Σt(r, E)−

∫∫
[νΣf ]s (r, E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−
1

keff

∫∫
[νΣf ]f,p (r, E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−
1

keff

∑

j

∫∫
λj

λj + iω
[νΣf ]jf,d (r, E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′ (11.13)
and

δB(r, Ω̂, E, ω) = Ω̂ ·∇+ δΣt(r, E, ω)−
∫∫

δ [νΣf ]s (r, E
′ → E, Ω̂′ → Ω̂, ω)dE′dΩ̂′−

1

keff

∫∫
δ [νΣf ]f,p (r, E

′ → E, Ω̂′ → Ω̂, ω)dE′dΩ̂′−
1

keff

∑

j

∫∫
λj

λj + iω
δ [νΣf ]jf,d (r, E

′ → E, Ω̂′ → Ω̂, ω)dE′dΩ̂′. (11.14)
Eq. (11.12) has several interesting features which should be noted. First of all, there is no eigenvalue

associated with the neutron noise (δφ), indicating that this is actually a fixed-source problem. The noise
source is −δBφc, and depends on the critical flux. Finally, since both δB and B are complex, the neutron
noise is also complex and we deduce that our noise particles must correspondingly have complex statistical
weights.

11.2 . Sampling of the Noise Source

As the noise equation is effectively a fixed-source problem, we start our treatment of how to solve the
noise equation with the sampling of the noise source particles. A key point is that the noise source requires
the critical flux φc. A noise simulation therefore starts with normal k-eigenvalue power iteration, where a
large enough number of batches are performed so that the fission source has converged to the fundamental
eigenstate. Once the fission source has converged, one or more additional power iteration generations
are performed, during which the noise source particles for a single noise batch are sampled based on the
term −δBφc. The exact methodology for sampling the noise particles depends on the type of perturbation
which is being considered, which in turn determines the perturbation operator −δB. In this thesis, we will
consider two different types of perturbations: oscillations in the macroscopic cross sections, and mechanical
vibrations.

11.2.1 . Cross Section Oscillations
The problem of cross section oscillations makes the assumption that the perturbation in the core takes

the form of a small sinusoidal oscillation on top of the static value of the macroscopic cross sections:

Σα(r, E, t) = Σα(r, E) [1 + εα1P(r) sin(ω0t)] = Σα(r, E) + δΣα(r, E, t), (11.15)
and 1P(r) is an indicator function for the perturbed region P, so that

1P(r) =

{
1 r ∈ P
0 r ̸∈ P

. (11.16)
In the frequency domain, inside the perturbed region P, this perturbation term is then

δΣα(r, E, ω) = −iπεαΣα(r, E) [δ(ω − ω0) + δ(ω + ω0)] . (11.17)
Such a problem is admittedly academic, as it is rather unlikely that a phenomenon exists which could
impose a perturbation on the macroscopic cross section, without affecting the macroscopic energy-angle
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distributions. Nonetheless, this remains an excellent problem for benchmarking codes, and comparing
different noise solvers [25]. Familiarity with the treatment of cross section oscillations is also integral to
understanding the sampling strategy which we will develop for mechanical vibrations in Chapter 13. The
sampling of the noise source for cross section oscillations is briefly outlined here and thoroughly examined
in Chapters 12 and 13.

Time-dependent cross sections in Eq. (11.15) lead to the integrands in Eq. (11.14) having the form

δ [νΣf ]α (r, E → E′, Ω̂ → Ω̂′, ω) = να(r, E)fα(r, E → E′, Ω̂ → Ω̂′)δΣα(r, E, ω) (11.18)
inside the perturbed region of the geometry, where only the macroscopic cross sections are assumed to be
time-dependent. The integrals for scattering and fission appearing in Eq. (11.14) can then be rewritten as

∫∫
δΣα(r, E

′, ω)
Σα(r, E′)︸ ︷︷ ︸

complex importance factor

να(r, E
′)Σα(r, E

′)fα(E′ → E, Ω̂′ → Ω̂)︸ ︷︷ ︸
standard production rate

dE′dΩ̂′. (11.19)

From this perspective, the perturbation operator in Eq. (11.14) can be sampled as a standard production rate,
but with an additional complex yield. During the last power iteration generation, neutrons are propagated
normally, using implicit capture and forced fission. Additionally, whenever a neutron undergoes a collision
in the perturbed volume P, the noise source sampling procedure is applied. A nuclide is sampled in the
standard manner, which will be used for sampling noise source particles. Should the sampled nuclide be
fissile, a random variable ξ ∼ U(0, 1) is used to determine how many fission noise particles will be sampled:

nf =

⌊
νf (E)σf (E)

σt (E) keff
+ ξ

⌋
. (11.20)

These nf fission noise neutrons are born with a weight wδΣf (r, E, ω)/Σf (r, E) (w being the weight of
the parent particle), and have their energies and directions sampled in the standard manner. Any delayed
neutrons have their weights multiplied by an additional factor of λj/(λj + iω). A scatter noise source
particle is also sampled, born with a weight of

w
δΣs(r, E, ω)

Σs(r, E)

σs(E)

σt(E)
, (11.21)

where σi,t(E) is the microscopic total cross section of nuclide i, and σi,s(E) is the microscopic scattering
cross section. The scattering channel, energy, and direction are sampled as usual. Finally, a “copy” of the
incident particle is created, with the same direction and energy, and a weight of

w
δΣt(r, E, ω)

Σt(r, E)
. (11.22)

All of these noise source particles are placed into a special bank, for use after the last power iteration cycle.

11.2.2 . Mechanical Vibrations
Mechanical vibrations typically refer to either the vibrations of individual fuel pins, control rods, or

entire fuel assemblies in the core. The initial methodology to sample the noise source from vibrations in the
development version of TRIPOLI-4® was an approximate technique, and is covered in Sec. 13.3.2. In this
section we summarize a novel exact methodology for sampling the noise source from vibrations, which will
then be extensively detailed in Sec. 13.3.2.

Mechanical vibrations can be modeled in terms of the interfaces between material regions being time-
dependent: the neutron noise is induced by the fact that the material present at a given location becomes
a function of time, where “invading” materials are moving into “host” materials. By linear superposition,
the effects of multiple interfaces can be decomposed into the sum of the effects induced by each interface.
We will then consider the case of a material interface in one spatial dimension, where material ML can be
found at positions x < x0 and material MR can be found at positions x > x0 in nominal conditions, before
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the perturbation is introduced in the system. If this interface at x0 begins vibrating periodically along the
x-axis, Zoia et al. have demonstrated that the material at position x and time t can be written as [26]

M(x, t) = ∆M [H(x− x0)−H(x− x0 − ε sin(ω0t))] , (11.23)
H(x) being the Heaviside step function. The noise source will thus stem from M(x, t) being a function of
time, which in turns makes cross sections, energy-angle distributions and yields also functions of time. The
difficulty of sampling the noise source for this type of perturbation is not immediately evident at this point.
When treating the case of cross section oscillations, only one material formally “partakes” in the perturbation,
as the geometry is not being perturbed: only the properties of the materials at a given position become time-
dependent. Conversely, in mechanical vibrations, the geometric configuration of these materials is changing
over time. Taking the example of a fuel pin vibrating in water, when a neutron undergoes a collision in the
water, just outside of the fuel pin, it should be possible to produce fission noise source particles, despite the
fact that no fissile isotopes exist at that position in the static geometry. Thus, for cross section oscillations,
only the material in the static geometry at the collision site was required, while in mechanical vibrations we
must also consider the material on the other side of the interface, which is not located at our current particle
position in the static geometry. From this insight, we then deduce that all of the time dependence for the
production rate of a given reaction is better represented as a time dependence of the isotope concentrations:

να(r, E, t)Σα(r, E, t)fα(r, E → E′, Ω̂ → Ω̂′, t) =
∑

k

Nk(r, t)νk,α(E)σk,α(E)fk,α(E → E′, Ω̂ → Ω̂′),

(11.24)
where Nk is the concentration of isotope k. The perturbation term in the frequency domain is then written
as

δ [νΣf ]α (r, E → E′, Ω̂ → Ω̂′, ω) =
∑

k

δNk(r, ω)νk,α(E)σk,α(E)fk,α(E → E′, Ω̂ → Ω̂′). (11.25)
Section 13.3.2 will show that for a vibration along the x-axis about the interface at x0 the Fourier-transformed
isotope concentrations stemming from Eq. (11.23) is

δNk(r, ω) = ∆Nk

{
c0(x, x0)δ(ω) +

∑

n

cn(x, x0) [δ(ω − nω0) + δ(ω + nω0)(−1)n]

}
, (11.26)

where ∆Nk = Nk(x < x0) − Nk(x > x0) is the difference of the two isotope concentrations across the
interface, and

cn(x, x0) =
2

n
sin

(
n arcsin

(
x− x0
ε

))
e−inπ/2 ∀n ≥ 1, (11.27)

and

c0(x, x0) =





π − 2 arcsin
(
x−x0

ε

)
for x ≥ x0

−π − 2 arcsin
(
x−x0

ε

)
for x < x0

, (11.28)

are the Fourier coefficients.
Sampling Eq. (11.25) is non-trivial, as δNk(r, ω) ̸= 0 when Nk(r) = 0. We therefore cannot use the

same strategy as in Eq. (11.19), multiplying and dividing by Nk(r) in order to obtain a production rate. To
get around this problem, we define a fictitious material M∗ which is composed of the union of all isotopes
in materials ML and MR. With this new fictitious material, we can now rewrite the integrals for sampling
the noise source particles as

∫∫ ∑

k∈M̂

δNk(r, ω)

N∗
k

N∗
kνk,α(E)σk,α(E)fk,α(E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′. (11.29)

In this form, it becomes clear that we can now sample noise source particles in a manner similar to the
method used for cross section oscillations. Nuclide k is sampled from the fictitious material M∗ as would
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Figure 11.1: Example of the noise source from a vibrating square fuel pin, in a 2-group simu-lation.
be done for a normal collision. Fission, scatter, and copy noise source particles are sampled from nuclide k
in a manner nearly identical to that used for cross section oscillations. Equation (11.20) is used to determine
how many fission noise particles will be sampled, each being born with a weight of

w
δNk(r, ω)

N∗
k

Σ∗
t (E)

Σt(r, E)
, (11.30)

Σ∗
t being the macroscopic total cross section of the fictitious material M∗. Delayed fission noise particles

have their weight multiplied by λj/(λj + iω), as before. A scatter noise source particle is also sampled,
having a weight of

w
δNk(r, ω)

N∗
k

Σ∗
t (E)

Σt(r, E)

σs(E)

σt(E)
. (11.31)

The copy noise source particle does not actually need the fictitious material to be sampled; it will be created
with a weight of

w
δΣt(r, E)

Σt(r, E)
, (11.32)

δΣt(r, E) being calculated in a manner identical to Eq. (11.26).
An example of the noise source for a single vibrating square fuel pin in a UOX assembly is presented

in Fig. 11.1. This is the same problem that is examined in Chapter 13. Comparisons of this new exact
source sampling technique are made with the approximate method in TRIPOLI-4®, in Sec. 13.6.1. For a
realistic problem such as the vibration of a fuel pin along a given axis, the vibrating region actually has two
interfaces, one on each side. The real component of the noise source in Fig. 11.1 is much smaller than the
imaginary component. Upon examination of Eqs. (11.27) and (11.30), we see that δNk is purely imaginary for
the first harmonic (i.e. n = 1). The real component therefore only stems from the imaginary component
of the complex factor

λj
λj + iω

=
λ2j − iλjω

λ2j + ω2
(11.33)

multiplying the yield of delayed neutrons. For realistic problems from reactor physics, frequencies of interest
are generally of the order of ω ≈ 2π rad s−1, while the average precursor decay constant is approximately
λ ≈ 0.08 s−1 [20, 25]. This leads to a real component which is several orders of magnitude smaller than
the imaginary component for the first harmonic (n = 1).

Looking at the left and right side of Fig. 11.1, it is noticed that the source is positive on one side of
the pin, and negative on the other (which side is positive depends on the energy group in question). In
Sec. 13.6.2 we will show that having a positive source very close to a negative source in phase space leads to
very large statistical uncertainties in the noise field, as intuitively expected, due to the linear superposition
of positive and negative contributions.
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11.2.3 . Frequency Dependence of the Noise Equation

Our initial derivation of the linearized noise equation treated the angular frequency ω as a continuous
variable. However, in Secs. 11.2.1 and 11.2.2 we have shown that the noise source for oscillations and
mechanical vibrations is actually composed of discrete harmonics which are multiples of the perturbation
frequency ω0:

−δB(r, Ω̂, E, ω)φc(r, Ω̂, E) = −
∑

n

δB(r, Ω̂, E, nω0)φc(r, Ω̂, E)δ(ω − nω0). (11.34)

Consequently, the noise field must be decomposed into a sum of discrete harmonics:

δφ(r, Ω̂, E, ω) =
∑

n

δφ(r, Ω̂, E, nω0)δ(ω − nω0). (11.35)

Equation (11.12) can therefore be described as a set of fully decoupled equations, with one equation per
harmonic:

B(r, Ω̂, E, nω0)δφ(r, Ω̂, E, nω0) = −δB(r, Ω̂, E, nω0)φc(r, Ω̂, E). (11.36)
For the case of oscillating cross sections, there are only two possible frequencies (n = ±1), while there is
an infinite number of positive and negative discrete frequencies for the case of vibrations. The noise fields
resulting from positive and negative harmonics are related through

δφ(r, Ω̂, E,−nω0) = δφ†(r, Ω̂, E, nω0), (11.37)
where (·)† indicates the complex conjugate, which means that we only need to solve for the positive
frequencies. Cross section oscillations are therefore monochromatic problems, and there is only one frequency
which needs to be solved for (ω = ω0). When solving the noise equation for vibration problems by Monte
Carlo, each simulation considers only a single (positive) harmonic δφ(r, Ω̂, E, nω0) at a time. In practice,
on physical grounds it is only necessary to obtain the first few harmonics n = 1 and n = 2. Furthermore,
Zoia et al. have shown that the higher harmonics (n ≥ 2) might substantially deviate from the exact
Fourier-transformed solutions due to the approximations made in the orthodox linearization [26]. The noise
field for vibrations also has a component at n = 0, which represents the time-averaged effect on the critical
flux, which is imposed by the vibration. Since adding a vibration will in general change the reactivity and
fundamental eigenstate, using the critical flux φc to sample the noise source without taking into account
the n = 0 correction introduces a further approximation. Zoia et al. mention this limit of the linearized
noise equations, and discuss possible approaches to improve on this approximation [26].

11.3 . Transport of Noise Particles

Now that noise source particles have been sampled, they must be transported, according to operator B
from Eq. (11.13). Upon inspection, Eq. (11.13) is actually quite similar to the standard Boltzmann operator
used to sample particle flights and collisions in standard Monte Carlo codes, the main differences being the
addition of a complex absorption term, iω/v, and a complex factor in front of the delayed fission operator.
The complex factor for delayed neutrons can be dealt with using a weight multiplier, as detailed earlier in
the context of the noise source sampling. Two different methodologies have been presented in the literature
to handle the complex absorption term, and will be outlined here.

Yamamoto, who wrote the first Monte Carlo noise solver in the frequency domain, decided to handle
the imaginary absorption term with a complex exponential transform [22]. In this approach, the distance to
a collision site is sampled with the total macroscopic cross section, and the complex weight of the particle
changes continuously over the length of the flight, as [22]

w(r0 + dΩ̂) = w(r0)
[
cos
(ω
v
d
)
− i sin

(ω
v
d
)]

. (11.38)
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The application of a complex exponential transform complicates the scoring of track-length tallies for the
noise field as well. A noise particle which will fly distance dk through the tally mesh element k will contribute

∫ dk

0
w(r0 + sΩ̂)ds = w(r0)

ω

v

[
sin
(ω
v
dk

)
+ i

(
cos
(ω
v
dk

)
− 1

)]
(11.39)

to the noise field [22]. Two additional modifications are required in the transport algorithm, the first being
with the sampling of fission particles. As the weight of noise particles is complex, the number of fission
particles produced at a collision site should be determined as

n =

⌊
ν(E)σf (E)

σt(E)keff
+ ξ

⌋
, (11.40)

each fission noise particle inheriting its parent’s weight.3 All delayed neutrons must be multiplied by the same
complex factor in Eq. (11.33), as used when sampling fission noise source particles. The second modification
is in relation to Russian roulette, which is typically only defined for particles with a single positive weight.
Yamamoto chose to perform roulette on the real and imaginary components of the weight separately (using
their absolute value), only killing the particle once both the real and imaginary components have been sent
to zero [22]. Apart from these modifications, transport proceeds as normal.

A second Monte Carlo noise solver has been implemented in the development version of TRIPOLI-4®

by Rouchon et al., using a slightly different methodology [24]. The main difference in the transport of noise
particles between the two implementations is the handling of the complex absorption term. Rouchon et al.
have modified Eq. (11.13) by adding and subtracting a factor of ηωδφ/v, where η is a real positive quantity,
resulting in a transport equation which takes the form

[
Ω̂ ·∇+Σt(r, E) + η

ω

v︸ ︷︷ ︸
Σ̃t

]
δφ(r, Ω̂, E, ω) =

η − i

η︸ ︷︷ ︸
νω

η
ω

v︸︷︷︸
Σω

δφ(r, Ω̂, E, ω) + . . . . (11.41)

We now have an effective real and positive total cross section of Σ̃t, which can be used to sample flight
distances. The problem of complex absorption has now been transformed into a complex copy term appearing
at the right-hand side, with corresponding copy cross section Σω. Once at the collision site, a copy of the
incident particle is made with a probability of Σω/Σ̃t; should the copy particle be created, its weight is
multiplied by the complex yield νω [24]. With this methodology, no modifications are required for tallies, as
the particle weight remains constant over the flight. Apart from this new complex copy term in the collision
operator, transport is performed as normal, where we simply use Σ̃t in place of Σt. Rouchon et al. make
use of the same roulette algorithm as Yamamoto. In general, it was determined that for most frequencies
of interest for reactor physics η = 1 is a suitable choice, although different values of η were required for
convergence at frequencies outside the “plateau region” [24]

λ < ω < λ+
βeff

Λeff
. (11.42)

Both Yamamoto and Rouchon et al. decided to let their particles carry complex statistical weights
[22, 24]. This is certainly a valid option, but it is worth noting that there is another option. One could
choose to let each particle be either real or imaginary, but not both. It is unclear whether such a “split
species” approach is beneficial for noise simulations. Intuitively, splitting the real and imaginary components
could potentially reduce correlations between the two quantities, but further investigations would be required
to quantify this statement. Performing split species transport would not require any specific modifications
to the transport methodology, other than splitting noise particles after any complex yield is applied to the
particle (at the copy operation, and at delayed fission).

3This approach for determining the number of fission neutrons is standard in several Monte Carlo codes, butdiffers from the approach taken by MCNP (see Eq. (6.2)).
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Figure 11.2: Depiction of the solution strategy for neutron noise simulations. Each noise batchbegins with a series of power iteration generations which are required to sample the noisesource. Sampled noise particles are then sent to noise transport until they have all died.A new noise source can be sampled from the fission particles which remain by performingmore power iteration generations.

In Sec. 11.3 we have detailed how the noise source particles are sampled during the final power iteration
generation. In the present Section we have subsequently outlined how those particles are transported, until
they have all either leaked or been killed by roulette. Once this occurs, one noise batch has finally been
completed. In order to estimate the variance for our noise field, we must obtain a collection of (ideally
independent) replicas. Yamamoto’s method was not able to do this, due to implementation limitations
[22, 23]. Rouchon et al.’s method made use of the newly developed iteration scheme for dynamic Monte
Carlo simulations in TRIPOLI-4® to perform independent replicas [27, 28]. After the noise batch has
completed, the program will resume with power iteration. Several generations of power iteration can be
performed to decorrelate the noise source between batches, before performing one generation where a new
noise source is sampled. After this generation, power iteration is paused, and noise transport may be resumed
again, performing a second noise batch. This can be repeated indefinitely, to generate statistics for the noise
field as required. Figure 11.2 depicts this solution strategy.

11.4 . Branchless Sampling for the Noise Source

The noise source for vibrations has nearly equal positive and negative components which are located
adjacent to one another, as depicted in Fig. 11.1. Transport of this source poses a number of computational
challenges. From Sec. 11.2, we have seen that at each collision site within the perturbed region at least
two noise source particles will be sampled: one for the copy operator, and one for the scattering operator.
Additionally, should the material be fissile, it is also possible that a number of fission noise particles will
be sampled. Each of these sampled noise source particles will be born with a different statistical weight;
depending on δΣα, some of these might be dominantly real, while others dominantly imaginary. The sign
of each weight component can also vary. Therefore, at the same position, we are sampling positively and
negatively-weighted source particles, which could potentially be increasing the variance of the tally for the
resulting noise field. Each noise particle’s contribution to the noise field will have the same sign as its
weight: positive and negative contributions then are summed up to obtain the noise field tallies, leading to
an increase in the associated variance. In Chapter 12, we will hypothesize that the variance of the noise
field estimation may be reduced by only sampling one type of noise source particle at a collision site, using
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a “branchless noise source sampling” scheme. Branchless collision sampling is a class of variance reduction
methods [7]: when a a particle undergoes a collision, it either undergoes a scatter, or creates a single
fission particle (in a manner which is not analog). The underlying idea is that suppressing the branches of
the neutron histories induced by fission events should lead to a smaller dispersion in the tallies (and in a
reduction of the simulation time). While seldom used in general-purpose Monte Carlo codes, these methods
have been recently shown to be useful for time-dependent (kinetic) simulations in reactor physics [27, 29].
Sjenitzer and Hoogenboom have developed a variant where, for standard neutron transport (without any
complex weights), the probability of sampling reaction channel j is

Pj =
νjΣj∑

k

νkΣk

, (11.43)

and a weight correction factor of

m =

∑

k

νkΣk

∑

k

Σk

(11.44)

is always applied to the weights (regardless of the type of reaction that was sampled). We see that this
approach conserves the expected production per reaction channel, as

mPj =
νjΣj

Σt
. (11.45)

Unfortunately, this formulation is impossible to use with the sampling of noise source particles, as it would
lead to complex-valued probabilities. In Sec. 12.3, we derive a method for performing branchless collisions
with complex yields, which is summarized here.

The objective is to determine the probability Pj of sampling a noise source channel, where Pj must
be a real positive quantity, with 0 ≤ Pj ≤ 1. We must also determine a complex weight multiplier
mj = mj,R + imj,I , which ensures that

mjPj =
(νδΣ)j
Σt

. (11.46)
We want to minimize the average squared magnitude of the outgoing particle’s weight, which is then
equivalent to minimizing ∑

j

(
m2

j,R +m2
j,I

)
Pj . (11.47)

Through the method of Lagrange multipliers, we must minimize

Γ =
∑

j

(
m2

j,R +m2
j,I

)
Pj − γ


∑

j

Pj − 1


−

∑

j

γj,R

(
mj,RPj −

(νδΣ)j,R
Σt

)
−

∑

j

γj,I

(
mj,IPj −

(νδΣ)j,I
Σt

)
, (11.48)

where γ, γj,R, and γj,I are the Lagrange multipliers associated with the constraints for our problem. Fol-
lowing the derivation in Sec. 12.3, we obtain

Pj =
|(νδΣ)j |∑
k |(νδΣ)k|

, (11.49)
and

mj =

∑
k |(νδΣ)k|

Σt

(νδΣ)j
|(νδΣ)j |

. (11.50)
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From Eq. (11.50), we notice that the weight multiplier mj now has a constant magnitude, but a different
complex phase for each reaction channel j. Due to the sum of complex magnitudes in Eqs. (11.49) and
(11.50), it is actually not possible to consider delayed fission as a single reaction channel. Each precursor
family has a different complex yield, and must therefore be considered as an individual reaction channel.

In Sec. 12.5, we implement and test this technique in a two-group reflected assembly benchmark problem
for cross section oscillations, which has been previously used to compare different noise solvers [25]. From the
results presented in Sec. 12.5.1, we observe that using the branchless noise sampling method unfortunately
(and quite disappointingly) does not improve the efficiency of the calculation, and may even lead to a slight
degradation in efficiency. The reason for this slight degradation in performance is not yet been elucidated,
and deserves further investigation. One reason might be that the weight modifier has a different complex
phase for each reaction channel, so there are still positive and negative weight components being produced
in the perturbation region, while we have also reduced the number of noise particles which will contribute
to the generation of statistics. It might therefore be more important (at least for the benchmark problem
examined in Sec. 12.5.1) to have more noise particles to generate statistics than to reduce the variance in
the weight magnitude of noise source particles. Future work should be devoted to a more thorough analysis
of the behavior of this sampling method; in particular, branchless noise source sampling should also be tested
on vibration problems, to see if similar results are obtained.

11.5 . Weight Cancellation for Variance Reduction in Noise Problems

The presence of positive and negative weight components in the neutron noise equation leads us quite
naturally to propose the weight cancellation methods examined in Part II as variance reduction technique for
noise simulations. For the simulations conducted in Part II, however, weight cancellation was always used on
k-eigenvalue problems, and applied between subsequent fission generations of the power iteration algorithm.
Performing cancellation at fission sites is the most efficient option as its isotropic nature effectively reduces
the dimensionality of the cancellation operation. The propagation of neutron noise resembles instead a
fixed-source problem, and the structure of the calculation does not inherently lead to the use of fission
generations, where we could immediately apply weight cancellation. Thus, the first nontrivial question that
we have to address is how to incorporate weight cancellation in the fixed-source transport scheme used for
neutron noise problems. In the following we briefly detail our implementation strategy; a thorough discussion
is presented in Chapters 12 and 13.

11.5.1 . How to Apply Weight Cancellation to Fixed-Source Problems

In Part II, it has been outlined that applying weight cancellation to fission particles is an efficient choice
for power iteration, since it allows having the entire collection of particles be present synchronously.4 For
noise simulations, when fission noise neutrons are produced we typically do not have access to all of the fission
noise particles synchronously: fission noise particles are added to a special secondary particle bank, and will
be subsequently transported by the same computer node, without pausing to perform any communications
with other nodes partaking in the simulation. This MPI communication scheme is depicted in Fig. 11.3.
With this approach, there is never a step in the transport algorithm where all of the fission noise particles
are on the same node, for weight cancellation to be performed.

To gain access to the fission noise banks, we have chosen to break each noise batch into “inner fission
generations”. All of the initial noise source particles will be distributed to the computer nodes to be
transported, with fission noise particles being stored in a separate bank. Once there are no more noise
particles to be transported (apart from those in the fission noise banks), all of the fission noise particles can
be sent to the master node. Once there, the weight cancellation method of choice can be applied to all of

4Cancellation is most efficient when all particles can participate. The easiest way to accomplish this is to send allparticles to the master node. Alternatively, one could also use a domain decomposition approach for cancel-lation, where all particles within the same geometric region are sent to the same node for cancellation. Eitherapproach is possible, though the domain decomposition version is likely more difficult to implement.
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the fission noise particles. The particles resulting from cancellation are then redistributed to the computer
nodes to be transported. Their fission progeny will again be kept in the separate fission noise bank, so that
weight cancellation can be performed at the end of the second inner generation. This process will continue
until eventually no fission noise particles are produced during an inner fission generation, at which point the
noise batch has completed.5 Figure 11.4 depicts this new MPI communication scheme, with the application
of inner generations inside of each noise batch. Readers familiar with similar schemes will perhaps note that
this is nearly identical to the MPI communication strategy used in many Monte Carlo transport codes for
power iteration problems [30].

While it is certainly possible to apply weight cancellation between every inner generation with this
scheme, it is also easy to implement a variant where cancellation will only be performed for a user-defined
number of inner generations at the beginning of each noise batch, and then the decomposition into inner
generations options is turned off. The impact of this variant is explored in Sec. 12.5.2. One could also
choose to use inner generations while not using any weight cancellation algorithm. At first, this choice would
appear to be counterintuitive, as it would increase the amount of MPI communications required to perform
the simulation, without even being able to gain any potential benefits in efficiency from weight cancellation.
Nonetheless, while verifying the MPI implementation for this algorithm, we noticed that quite surprisingly,
the simulation time can be reduced by a non negligible factor by simply breaking up a noise batch into inner
generations (without applying cancellation). By redistributing fission noise particles amongst the computer
nodes at each inner generation, the computational load is more evenly balanced, so nodes spend less time
waiting for other nodes to finish. This question of load balancing has yet to be properly studied, and will
hopefully be the subject of future research.

11.5.2 . Observed Performance Improvements

In Chapters 12 and 13 we carefully assess the impact of applying weight cancellation to neutron noise
problems, the former considering cross section oscillations, and the latter considering mechanical vibrations.
The observed results on the calculation efficiency are summarized in this section, based on the FOM as
a metric. For our noise simulations, it is instructive to consider two different times in the FOM formula
(see Eq. (2.19)): the wall-clock time spent to complete the entire simulation (power iteration to sample the
noise source and noise transport), and the wall-clock time spent performing just noise transport. Applying
weight cancellation to the noise particle transport will have no effect on the power iteration component of
the simulation, which must always be performed to obtain the critical flux, so it is certainly a valid option
to only consider the effects on the time spent transporting noise particles when looking at the FOM.

Cross Section Oscillations

The test problem for testing cross section oscillations is the same problem proposed in Ref. 25, the parameters
of which are summarized in Sec. 12.5. It is a two-dimensional two-group reflected 17 × 17 fuel assembly,
with square profile fuel pins. It is assumed that one of these fuel pins exhibits a cross section oscillation.
In Sec. 12.5.2 we show that the average improvement in the FOM, when comparing inner generations
with approximate weight cancellation to inner generations without cancellation, is approximately a factor
of 24− 29, when considering the total run time. If one instead considers the time only spent transporting
noise particles, this factor raises then to 46− 54.

If we compare the performance of using inner generations with approximate cancellation to no inner
generations (and no cancellation by consequence), these factors are even larger. When using the total run
time, the FOM is improved by a factor of 35− 40; using the time spent transporting noise particles, this is
actually an improvement of 88− 100 in the FOM. From these values, it is evident that a large improvement
in the FOM can be achieved by simply decomposing a noise batch into inner generations and performing
load balancing.

5Currently, we take for granted the fact that a noise batch will finish. There are difficulties in convergence thatarise for frequencies which lie outside of the plateau regime [20, 24].
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Real ImaginaryGroup 1 Group 2 Group 1 Group 2
Approximate Coarse Total Run Time 304 304 234 235Noise Run Time 1623 1624 1252 1254
Approximate Fine Total Run Time 129 129 122 122Noise Run Time 487 487 461 461

Exact Total Run Time 8 8 8 8Noise Run Time 14 14 14 14
Table 11.1: FOM gain factors for the calculation of the first harmonic, for given cancellationmethods when compared to the baseline solution strategy which does not use weight can-cellation or inner generations.
Mechanical Vibrations

In Chapter 13 we consider weight cancellation for the case of mechanical vibrations. A variation to the
same benchmark used for oscillations is considered, where the fuel pin is now vibrating periodically, at an
angular frequency of 2π rad s−1, with an amplitude of 0.2 cm. Three different cancellation methods are
applied to this problem in Sec. 13.6.2: approximate cancellation on a “coarse” 170×170 mesh, approximate
cancellation on a “fine” 340 × 340 mesh, and exact cancellation on a 170 × 170 mesh. The resulting
average improvements in the FOM, when compared to not using inner generations or weight cancellation,
are provided in Table 11.1. Considering the noise transport time, using approximate cancellation with the
coarse mesh, an improvement by more than a factor of 1200 is observed in the FOM, for both the real
and imaginary component. Using approximate cancellation with the finer mesh will reduce the efficiency of
cancellation, but lead to large improvements in the FOM which are still factors of 487 for the real component,
and 461 for the imaginary component. Unfortunately, exact regional cancellation is much less efficient, and
only yields an improvement by a factor of 14 in the FOM.

As is depicted in Sec. 13.6.2, the estimation for the resulting noise field is essentially unusable in the
absence of weight cancellation techniques, because the statistical uncertainty is overwhelmingly large. The
application of weight cancellation reduces the variance in the estimated noise field to the point that it
becomes feasible to perform sensitivity analysis in Monte Carlo neutron noise simulations, i.e. investigate
the effects of small changes in the physical parameters on the resulting neutron noise field. For this purpose,
in Sec. 13.6.3 we compute the noise field for the same benchmark geometry, but with a slightly larger
vibration amplitude, or with a slightly higher frequency. Thanks to the application of weight cancellation,
we are able to observe the small changes to the neutron noise field, and examine that changing the vibration
amplitude and changing the vibration frequency does result in slightly different shapes of the noise amplitude
and phase.
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ABSTRACT

Advanced Monte Carlo methods have been recently proposed in order to solve the neutron noise
equations in the frequency domain, which allows establishing reference solutions to validate
faster but approximate deterministic solvers. Due to the presence of particles carrying two sta-
tistical weights (for the real and imaginary components of the noise field), both of which may be
positive or negative, Monte Carlo simulations of neutron noise pose distinct challenges in terms
of variance reduction. In this work we investigate two variance-reduction techniques, namely
branchless collisions and weight cancellation, and probe their effectiveness for a benchmark con-
figuration concerning the noise field induced by a pin with oscillating cross sections in a fuel
assembly.
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1. INTRODUCTION

The small fluctuations of the neutron flux caused by small perturbations of the macroscopic cross sections
take the name of neutron noise. The physical origin of this phenomenon is related to variations introduced
in the core, such as vibrations of fuel or control rods. Having tools to aid in analyzing and locating the
source of such fluctuations would allow taming them without needing to shutdown the reactor or forcing
it to operate at lower power. Neutron noise has been of great interest as of late, with the recent CORTEX
H2020 project [1]. Current neutron noise analysis tools are mostly based on state-of-the-art numerical
codes, accounting for arbitrary cross section variations in the time or frequency domain [2–8]. Recently,
advanced deterministic [9,10] and Monte Carlo solvers [3,4] have been developed to perform neutron noise
analysis in the frequency domain. These methods allow one to address realistic applications at the scale of
fuel assemblies or full cores, with unprecedented accuracy [2, 9, 11–13]. Each simulation code has distinct
advantages and disadvantages, due to implementation choices and implicit assumptions.

In this paper, we focus on the Monte Carlo method for noise analysis in the frequency domain. Such
a tool is absolutely necessary, as Monte Carlo is the “gold standard” in reactor physics, as it requires
very few (if any) approximations, and no discretization in space or energy. However, performing noise
calculations with the Monte Carlo method poses particular challenges, due to the fact that the neutron noise
is a complex quantity and thus noise particles must carry two statistical weights (for the real and imaginary
components), both of which may be positive or negative [3, 4]. The use of negative weights in Monte
Carlo codes is known to cause cause problems with convergence, or lead to large variances [14, 15], and
the neutron noise problem is no exception [3, 4]. In order to tackle these issues, Yamamoto implemented
a weight cancellation method that was applied to noise particles at fission events [3]. Unfortunately, the
analysis of the necessity of weight cancellation was not attempted, and no comparisons were made with
calculations that did not use cancellation. Additionally, implementation constraints inhibited the estimation
of the variance of scores, making it impossible to quantitatively assess the performance effects of weight
cancellation. Weight cancellation was abandoned in a later implementation, as it was felt that adding



such a technique to a production-level code would make it less versatile [11]. On the other hand, the
methods implemented in TRIPOLI-4® by Rouchon et al. for the study of neutron noise did not use weight
cancellation [4].

The question as to the effects and necessity of weight cancellation in Monte Carlo methods for neutron noise
remains unanswered. Recently, we have shown that weight cancellation is necessary when performing
power iteration with negative weights and certain transport methods [15], and new algorithms for exact
regional cancellation in three dimensions were proposed [15, 16]. The goal of the present paper is to
explore the potential of using weight cancellation as a variance reduction method in neutron noise problems.
Additionally, we consider the use of branchless collision methods, where a single particle is forced out of
each collision event [17], to improve the sampling of the neutron noise source.

2. MONTE CARLO SIMULATIONS OF NEUTRON NOISE

Noise theory is based on the assumption that the material cross sections have time-dependent perturbations
around their stationary value, namely, Σr(r, E, t) = Σr(r, E) + δΣr(r, E, t). Plugging these expressions
in the time-dependent Boltzmann equation, linearizing and moving to the frequency domain by taking the
Fourier transform yields the noise equation

B(ω)δφ(ω) = −δB(ω)φc(r, E,Ω) (1)

for the frequency-domain neutron noise δφ(ω) = δφ(r, E,Ω, ω), where ω denotes the angular frequency.
Here we have introduced the Fourier-transformed Boltzmann operator

B(ω) = i
ω

υ
+Σt(r, E) +Ω · ∇ −

∫∫
fs(Ω

′ ·Ω, E′ → E)Σs(r, E
′)dE′ dΩ′

− χp(E)

4πkeff

∫∫
νp(E

′)Σf (r, E
′)dE′ dΩ′ −

∑

j

λj
λj + iω

χj
d(E)

4πkeff

∫∫
νjd(E

′)Σf (r, E
′)dE′ dΩ′ , (2)

and φc(r, E,Ω) is the critical flux satisfying the k-eigenvalue Boltzmann equation (having associated fun-
damental eigenvalue keff). We have also defined the Fourier-domain perturbation operator
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(3)

where δΣr(ω) = δΣr(r, E, ω) are the Fourier-transformed cross section perturbations.

In order to estimate the noise field δφ(ω) that satisfies Eq. (1), in this work we have written an independent
implementation of the Monte Carlo sampling strategy used by TRIPOLI-4®, which has been outlined by
Rouchon et al. [4]. This implementation has been added to the MGMC multi-group Monte Carlo code,
which is freely available and distributed under the CeCILL-v2.1 open-source license [18]. The first step
consists of determining the critical flux φc, achieved by running a regular power iteration with a sufficient
number of inactive generations, starting from an arbitrary neutron distribution. Once the neutron population
is distributed according to φc, we sample the noise source −δB(ω)φc. The operator −δB(ω) must be pre-
pared before running the simulation: it contains the Fourier-transformed perturbed cross sections δΣr(ω),
which are problem-dependent. Since δΣr(ω) are in general complex quantities, the noise source will be
also complex: the sampled noise particles carry thus complex statistical weights, where the signs of the real
and imaginary parts of the weights can be positive or negative [4, 13]. The noise source population must



then be propagated according to the operator B(ω), in order to determine the noise field δφ(ω). Due to the
close resemblance between B(ω) and the regular Boltzmann operator, it is possible to solve the transport
problem associated with B(ω) by a set of stochastic rules obtained by suitably modifying those associated
to the regular Boltzmann operator [4, 13]. Finally, M independent noise replicas (essentially fixed-source
batches) are performed, ensuring that error bars on the noise field δφ(ω) can be estimated.

In Ref. 3, the complex cross section Σt + iω/υ on the left-hand-side of Eq. (2) is taken into account
explicitly by modifying the particle weights during flights. As outlined by Rouchon et al., we choose
instead to modify the collision kernel [4]: we add a term (ηω/υ)δφ, η being a real positive constant, to
both sides of Eq. (2), and we move the term (iω/υ)δφ to the right-hand-side. Then, the noise equation
becomes:

(
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η
η
ω

υ
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(
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)
. (4)

In this case, we have a real modified total cross section Σ̃t(r, E, ω) = Σt(r, E) + ηω/υ > 0. Hence,
flight lengths are sampled as in standard Monte Carlo calculations, provided that Σ̃t is used instead of
Σt. Because of the structure of Eq. (4), the collision operator is now different from that of the regular
Boltzmann equation, and we have to treat a new type of particle production associated to the special copy
operator appearing at the right hand side of Eq. (4). More details about the methodology may be found
in Refs. 9 and 4. Due to the presence of complex yields, the copy and delayed fission operators lead to a
coupling between the real and imaginary components of δφ(ω). Implicit capture (with forced fission) and
Russian roulette can be used as is customary. Similarly as in Ref. 3, Russian roulette is applied separately
to the absolute value of the real and imaginary parts of the particle weight: the particle is killed only if the
real and the imaginary parts are both killed.

Contrary to the original TRIPOLI-4® implementation, where noise particles (and their descendants) were
followed from birth to death, in this work we break each independent noise replica into inner generations,
where the noise particles generated at fission events are stored in a bank until the other particles have
died. By virtue of this strategy, the stored fission noise particles may thus undergo cancellation before
being transported (in turn also storing their fission daughters in a bank). This is very similar to the method
proposed by Yamamoto [3].

3. BRANCHLESS NOISE SOURCE SAMPLING

When sampling the neutron noise source −δB(ω)φc during power iteration, every time a particle has a
collision at a location where δΣt(r, E, ω) ̸= 0, noise particles can be produced at that location through
several different channels. In the strategy used by TRIPOLI-4®, each channel is forced, and the resulting
particle is multiplied by a corrective weight factor so that there is no bias [4]. The first channel is a copy of
the incident particle, which arises from the δΣt operator in Eq. (3). The second is the scattering operator
when δΣs(r, E, ω) ̸= 0. In addition to these two, should the perturbation occur in a fissile medium,
then fission noise particles related to δΣf (r, E, ω) may be produced as well. Since the copy, scattering
and fission contributions are in general complex, producing multiple noise particles at every collision site
means that there are several particles at the same location, some with positive weight components, and
some with negative weight components. As this could potentially lead to large increases in the variance, we
have investigated the possibility of sampling just one noise particle at each collision site, using branchless
collision methods. Branchless methods in Monte Carlo simulation are well known [17], and have been
used in many applications, such as for reactor kinetics [19–22]. In branchless schemes, regardless of the
reaction channel selected at the collision, only one particle leaves the collision site and the particle weight
is adjusted accordingly. While using branchless collisions precludes the possibility of using forced fission,
it still may provide variance reduction benefits in certain applications [19–22]. For standard branchless
collisions, the probability of selecting reaction channel j, which has a cross section Σj and a yield of νj , is



given as

Pj =
νjΣj∑
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After the event has been sampled, the particle weight w′ becomes
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For this to be unbiased, all yields and cross sections must be non-negative.

The utility of this method is that only one particle is ever emitted from a collision (even in the case of fission)
and that the magnitude of the weight of the outgoing particle is independent of the selected channel. As
noise particles may have positive and negative real and imaginary weight components, it is possible that
producing only one source particle at a collision could reduce the variance in the noise field induced by the
source, as there could be fewer positive and negative components being added at the same source location.
The traditional formulation of the branchless collision, however, must be modified to sample the noise
source, as in this case the yields and cross sections are complex. We must determine the probability Pj of
sampling reaction j, which must of course be a positive real number. We also search for a complex weight
multiplier mj = mj,R + imj,I . We must also require that

Pjmj,R =
(νδΣ)j,R

Σt
and Pjmj,I =

(νδΣ)j,I
Σt

(7)

to remain unbiased. The complex quantity (νδΣ)j is unique for each channel, and can be determined
from examination of Eq. (2). As an example, for the case of scattering (νδΣ)s = δΣs. In the case of
delayed fission (with one precursor family), (νδΣ)f,d = νd

λ
λ+iω δΣf . From these conditions, we may use

the method of Lagrange multipliers to find the choice of mj,R , mj,I , and Pj which minimize the average
magnitude squared of the outgoing particle’s weight
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where γ, γi,R , and γi,I are the real valued Lagrange multipliers. Looking at a specific channel j, we may
proceed with

∂Γ

∂mj,R

= 2mj,RPj − γj,RPj = 0 ⇒ γj,R = 2mj,R and, by symmetry, γj,I = 2mj,I (9)
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− γ − γj,Rmj,R − γj,Imj,I = 0 ⇒ γ = −|mj |2 ⇒ mj = meiφj , (10)

where φj is real. From these equations, we are able to see that the probability Pj of selecting reaction
channel j, and its complex weight multiplier mj are respectively
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j
|(νδΣ)j |
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Regardless of the reaction channel chosen, the magnitude of the complex weight multiplier is always the
same, and only the complex phase φj changes with the reaction channel. This approach allows us to
produce only one noise particle at each collision site when sampling the noise source.



4. WEIGHT CANCELLATION

For the preliminary examination of the effects of cancellation examined in this work, we have chosen to use
an approximate cancellation technique, with a mesh imposed on top of the geometry [23]. In between each
inner generation of a noise replica, the fission particles that have been generated and placed in the bank are
sorted into the appropriate bin in the mesh. Within each bin, the average weight of the real component, and
the average weight of the imaginary component are calculated. The real and imaginary weight portion of
every particle in the bin is then set equal to the average value estimated for the bin. The smaller the bins,
the better this approximation becomes, but also the less efficient, as there will be fewer particles per bin.

At the beginning of a noise replica, all of the noise particles are localized within the regions where δB(ω) is
non-vanishing, and they will then propagate throughout the rest of the geometry during the noise transport
simulation. Because of this behavior, it is reasonable to conjecture that it is more efficient to perform weight
cancellation early on in the noise propagation, before the particles are able to move very far away from the
noise source. At the early stages of noise transport (i.e., during the first few inner fission generations),
positive and negative noise particles are more likely to be close to each other spatially, and will therefore
lead to more particles per bin, and more weight cancellation. We therefore test two different applications of
weight cancellation: one where cancellation is performed after every inner generation of the noise transport,
and another where cancellation is performed only after each of the first 10 inner generations, and then no
cancellation is performed after that.

5. SIMULATION RESULTS

All tests were performed on a two-group, two-dimensional fuel assembly problem, which was presented as
exercise 2 in the benchmark proposed in Ref. 24. One fuel pin in a 17x17 UOX assembly is perturbed by
an oscillation of the cross sections. A depiction of this system is provided in Fig. 1a. The perturbed cross
sections are defined as

Σt,g(t) = Σt,g[1 + 0.041 cos(ω0t)], (12)

Σs,g→g′(t) = Σs,g→g′ [1 + 0.034 cos(ω0t)], (13)

Σf,g(t) = Σf,g[1 + 0.021 cos(ω0t)], (14)

with ω0 = 2πHz. All simulations were performed with 106 particles per power-iteration generation,
and 1000 noise replicas were scored. Using the entropy metric, it was determined that only 10 power-
iteration generations needed be discarded to allow for convergence of the critical source. After each noise
replica, three power-iteration generations were performed, to reduce correlations between the sampled noise
sources (for more details, see [13]); noise sources were only sampled in the third power-iteration generation
between noise replicas. The weight magnitude cutoff for roulette was |w| = 0.8, with a survival weight
of |w| = 1 (respecting the initial sign of the particle). When cancellation was used, it was performed on a
68x68 mesh, cutting each fuel pin into four equal parts. While this is a somewhat coarse mesh, no bias was
observed when compared to results obtained from APOLLO3® [24]. An example of the resulting noise
field δφ(ω) is provided in Fig. 1b.

The efficiency of different variance reduction methods has been examined by use of the Figure of Merit
FOM = 1/(σ2T ), where σ is the estimated error of the score, and T is the wall-clock time required to
obtain that error. The time used when calculating the FOM can be either taken as the total runtime of
the simulation, or the time that the code spent transporting noise particles (i.e., after the noise source has
been sampled). The latter option stems from the power-iteration portion of the code being always present,
and rather independent of the variance reduction techniques which are applied to noise transport. We have
chosen to provide both values here, as we think both are of interest. The FOM was calculated at all points
within the 170x170 regular mesh used to tally the real and imaginary portions of the noise field, each having
its own FOM.



Figure 1: Depictions of the test system, and the resulting noise field.

(a) Presented here is a radial cut of the
examined assembly. The oscillating fuel pin

is colored in pink.

Group 1 Group 2

1.08

1.06

1.04

1.02

1.00

0.98

0.34

0.33

0.32

0.31

0.30

0.29

0.28

0.27
Real Noise Field

Group 1 Group 2

0.0505

0.0510

0.0515

0.0520

0.0525

0.0530

0.0535

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

0.0170

Imaginary Noise Field

(b) The normalized noise field resulting from the examined cross
section oscillations.

Table I: Average ratio of the FOMs between branchless noise source sampling, and standard noise
source sampling. Values larger than 1 indicate that branchless sampling was more efficient than

standard sampling.

(a) Average real noise field FOM ratios.

Group 1 Group 2

Runtime FOM 0.89 0.89

Noise FOM 1.06 1.06

(b) Average imaginary noise field FOM ratios.

Group 1 Group 2

Runtime FOM 0.68 0.68

Noise FOM 0.80 0.80



5.1. Effects of Branchless Noise Source Sampling on the FOM

The comparison of FOMs between using the branchless noise sampling method and using the standard
noise sampling method is summarized in Table I. These tests did not use any weight cancellation. Looking
at only the real portion for the noise field in Table Ia, there does not appear to be a large difference in
performance. When using the total runtime of the simulation, the branchless sampling is slightly less
efficient, while using the noise time indicates that the branchless method is not significantly different from
the standard sampling scheme.

Examining the imaginary portion in Table Ib, both the runtime and noise FOMs demonstrate a slight de-
crease in performance when using branchless sampling. However, the observed differences in the FOM
between branchless and standard sampling are not overwhelming. There is always less than a factor of 2
between the two methods, so it is unreasonable to state that the standard sampling technique is truly advan-
tageous over the branchless method.

The exact reason as to the slight decrease in performance with branchless sampling is not entirely under-
stood. Fewer noise particles need to be transported in this method, leading to a speed increase, and it was
hoped that creating only one particle at a point could also reduce the variance in scores. Nonetheless, these
effects may not be large enough, as the physical parameters for the examined benchmark exercise allow
very little coupling between the real and imaginary noise field. The only way to sample an imaginary noise
source particle is through sampling a delayed fission, which is rare; it is also rare for real noise particles
to become imaginary (or gain an imaginary component). Generating imaginary noise particles in the stan-
dard sampling scheme was already a rare event, and the branchless method leads to this occurring even
less frequently. It might therefore be more important to sample more imaginary noise particles that can go
generate statistics, than it is to try and reduce the variance of the imaginary noise source.

5.2. Effects of Weight Cancellation on the FOM

The effects of cancellation on the FOM are much more pronounced than those of branchless sampling. In
Table II, all calculations used the standard noise sampling method. Weight cancellation was performed
between every inner generation of the noise replicas. For the real noise field, an increase in performance by
a factor of 23 was observed when using the runtime FOM; this factor increases to 54 when using the noise
FOM. The results are even better when looking at the imaginary noise field, where increases by factors of
29, and 66 were observed in the runtime FOM and noise FOM respectively. Such improvements are quite
astonishing, and far from being trivial.

The reason for such large increases in performance is two-fold. While the simulation without cancellation
took approximately 14.5 hours to complete, the simulation which performed cancellation between each
inner noise generation took only 5.3 hours to complete. At first glance, this result is quite counter-intuitive.
Performing weight cancellation between every inner noise generation requires performing many more com-
putations, and also requires time to be spend performing MPI operations, as all particles must first be sent to
the same node before cancellation can be performed After cancellation, particles must then be redistributed
back to all worker nodes. Despite having to perform these additional operations, less time is required as
weight cancellation reduces the total weight

∑
j |wj | of the system, allowing particle histories to die much

faster than if cancellation were not used. In addition to shortening particle histories, weight cancellation
also reduces the variance in the scores, as instead of scoring many positive and negative contributions, the
contributions are closer in value to what the average should be. Such large improvements are made possible
through the combination of these two factors. The increase in the FOM for the imaginary portion is likely
larger than the gain for the real portion, due to the fact that the complex magnitude of this system is heavily
dominated by the real noise field, and the average value of the imaginary field has a much lower magnitude,
meaning it is more likely to have positive and negative score contributions in the imaginary field.



Table II: Average ratio of the FOMs between performing weight cancellation between all inner
generations, and not performing weight cancellation. Values larger than 1 indicate cancellation was

more efficient than no cancellation.

(a) Average real noise field FOM ratios.

Group 1 Group 2

Runtime FOM 23.64 23.64

Noise FOM 54.40 54.41

(b) Average imaginary noise field FOM ratios.

Group 1 Group 2

Runtime FOM 28.60 28.61

Noise FOM 65.83 65.83

Table III: Average ratio of the FOMs between performing weight cancellation between the first 10
inner generations, and not performing weight cancellation.

(a) Average real noise field FOM ratios.

Group 1 Group 2

Runtime FOM 25.44 25.46

Noise FOM 53.81 53.85

(b) Average imaginary noise field FOM ratios.

Group 1 Group 2

Runtime FOM 21.95 21.95

Noise FOM 46.43 46.41

Given the increases in performance occurred while performing cancellation between each inner noise gen-
eration, it was hoped that even better increases in FOM might be observed when only using cancellation
between the first 10 generations. Table III shows that this is not the case, however. While there were still
drastic improvements compared to not using cancellation at all, the gains for the imaginary noise field re-
ported in Table IIIb were slightly lower, with observed factors of 21 for the runtime FOM and 46 for the
noise FOM. The FOMs for the real noise field were more similar to the results obtained when perform-
ing cancellation between all inner generations: a slight increase was observed in the runtime FOM, while a
slight decrease was observed in the noise FOM. These results are somewhat discouraging: it was hoped that
reducing the number of MPI operations would decrease the wall-clock time, while still reducing the vari-
ance in scores with the weight cancellation being performed when it is most effective. It is entirely possible,
however, that the optimal number of inner generations for which cancellation should be performed is more
than 10. In general, the number of inner generations per noise replica was around 700. These preliminary
investigations should be extended by performing cancellation for a varying number of generations, to see
if there might be an optimal value (as opposed to simply performing cancellation at the end of each inner
generation). This being said, always performing weight cancellation is certainly an excellent approach for
the benchmark configuration examined in this work, given the observed performance increases it provides,
even if a slightly more effective approach might exist.

6. CONCLUSIONS

In this paper, we have investigated the effectiveness of two variance-reduction techniques for noise calcu-
lations. First, we examined the use of branchless methods to sample the noise source. It was observed
that such techniques seem to pose no real benefit, and may even be detrimental to performance. While
this puzzling behaviour should be investigated further, it seems unlikely that the branchless technique for
complex weights (at least in the form proposed in this paper) has much to offer in terms of improving the
sampling of the noise source.



Subsequently, the effects of weight cancellation were considered. There are currently two main algorithms
in use for performing state-of-the-art neutron noise calculations in Monte Carlo simulations, which have
been implemented in the production-level codes TRIPOLI-4® [4] and MCNP [11]. The method developed
by Rouchon et al. for TRIPOLI-4® does not use any weight cancellation; while Yamamoto used a weight
cancellation technique in an initial implementation [3], it was later abandoned, as it was determined to
not be strictly necessary for the typical domains of interest, and would be difficult to implement in a large
production-level code [11]. As Yamomoto’s initial implementation could not estimate the variance of the
noise field, no performance studies were conducted. This has left an open question as to the necessity
and effects of weight cancellation in Monte Carlo noise simulations. In this work, we implemented the
noise method used in TRIPOLI-4® [4], but added a weight cancellation scheme similar to that used by
Yamamoto [3]. It was demonstrated that the use of weight cancellation during noise transport can produce
large increases in the Figure of Merit (FOM). When using the total runtime to calculate the FOM, increases
by a factor of more than 28.6 were sometimes observed. If considering the FOM calculated with only
the time spent transporting noise particles, this factor increases to 65.8. Such large improvements are
far from trivial: while these results must be confirmed on a larger set of benchmark configurations, they
indicate that cancellation should be made available in any production-level Monte Carlo code capable of
performing neutron noise calculations. Further examinations should also look at the case of neutron noise
induced by vibrations: this is typically a more difficult problem for Monte Carlo codes than oscillations,
and is an area where weight cancellation may play an even more important role [25].
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[7] A. Vidal-Ferràndiz, A. Carreño, D. Ginestar, C. Demazière, and G. Verdú. “A time and frequency
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Variance Reduction and Noise Source Sampling Techniques for Monte Carlo
Simulations of Neutron Noise Induced by Mechanical Vibrations
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Neutron noise in nuclear power reactors refers to the small fluctuations around the average neu-
tron flux at steady state resulting from time-dependent perturbations inside the core. The neutron
noise equations in the frequency domain can be solved using Monte Carlo simulation codes, which
are capable of obtaining reference solutions involving almost no approximations, but are hindered by
severe issues affecting the statistical convergence: the simultaneous presence of positive and negative
particles, which is required by the nature of the complex noise equations, leads to catastrophically
large variance in the tallies. In this work, we consider the important case of neutron noise problems
induced by mechanical vibrations. First, we derive a new exact sampling strategy for the noise
source. Then, building upon our previous findings in other contexts, we show that weight cancel-
lation methods can be highly beneficial in dealing with the presence of negative weights, enabling
extremely large gains in the figure of merit. We successfully demonstrate our results on a benchmark
configuration consisting of a fuel assembly with a vibrating pin and we discuss possible pathways
for further improvements.

I. INTRODUCTION

Neutron noise in nuclear power reactors is defined as
the small fluctuations occurring around the average neu-
tron flux at steady state due to perturbations typically
induced by fluid-structure interactions or moderator den-
sity fluctuations inside the core [1–3]. These perturba-
tions may affect different reactor components, at the scale
of single or multiple fuel rods, entire assemblies, or the
full core vessel, depending on the specific physical origin
of the disturbances. Generally speaking, neutron noise is
an unwanted phenomenon, which in some extreme cases
might lead to a significant decrease in reactor power in
order to ensure safe operation, or even to the shut-down
of the reactor [4]. Notwithstanding, such disturbances
carry an information content that can be usefully ex-
ploited to improve reactor diagnostics through the appli-
cation of inverse problem techniques, for instance by lo-
cating anomalous control rod or fuel assembly vibrations,
or monitoring moderator speed and void fraction [5–10].

The neutron noise equations are established by con-
sidering the effect of temperature and density changes
and/or material displacements on the operators occur-
ring in the Boltzmann equation and in the precursor
equations: the noise is considered as a small time-
dependent perturbation with respect to the stationary
flux, and the time-dependent operators are similarly de-
composed into a stationary part and a residual time-
dependent perturbation [3]. Then, assuming that the
products of perturbed quantities can be neglected (the
so-called ‘orthodox’ linearization [11]), a Fourier trans-
form finally leads to a complex-valued equation for the
neutron noise in the frequency domain [3].
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† davide.mancusi@cea.fr
‡ amelie.rouchon@cea.fr
§ andrea.zoia@cea.fr

A number of analytical and semi-analytical results con-
cerning the solutions of the noise equations have been ob-
tained using diffusion theory, simplified few-group trans-
port equations, and Green’s function methods [12–17]:
although these approaches shed light on the behaviour
of the neutron noise field in a variety of physical con-
figurations, their application to real-world systems is
somewhat limited. Recently, a renewed interest in neu-
tron noise stimulated by industrial problems related to
core diagnostics has fostered the development of novel
numerical codes capable of solving the noise equations
in the time or frequency domain using state-of-the-art
methods [18–24]. In this respect, a remarkable contri-
bution has been provided by the EU H2020 CORTEX
project (2017-2021) [25], during which several determin-
istic and Monte Carlo solvers for the noise equation
have been conceived [26–28] and validated against bench-
mark problems [29–31] and experimental data stemming
from dedicated measurement campaigns in research re-
actors [32, 33].
Since the number of available experimental datasets

for the qualification of faster, albeit approximate, de-
terministic solvers for the noise equations is still rather
small, one would like to rely on Monte Carlo simula-
tion as a gold-standard tool to compute reference so-
lutions involving almost no approximations, similarly
to what is customarily done for the regular Boltzmann
equation in reactor physics and radiation shielding prob-
lems [30, 31]. Monte Carlo sampling methods devoted
to the noise equations have been devised and success-
fully tested in several applications, but numerical inves-
tigations have shown that their statistical convergence
may be extremely poor in some cases: this is basically
due to the fact that solving the noise equations requires
sampling particles carrying complex statistical weights
with positive and negative real and imaginary compo-
nents [20, 21]. When positive and negative contributions
are tallied in order to estimate the neutron noise, the
variance might become overwhelmingly large and a huge
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number of sampled particles is mandatory to achieve a
reasonable statistical uncertainty, which makes such sim-
ulations unwieldy even for relatively simple configura-
tions [30, 31].

The possibility of using Monte Carlo simulations as a
routine tool for industrial calculations in the field of neu-
tron noise therefore crucially depends on the availabil-
ity of ad hoc variance reduction and population control
techniques capable of handling the simultaneous presence
of positive and negative particles. Recent insights have
shown that weight cancellation methods might be the key
to successfully dealing with such issues [20, 34, 35]. Pre-
liminary investigations involving cross section oscillation
problems in a fuel assembly suggest that the introduc-
tion of weight cancellation actually leads to astounding
improvements in the figure of merit of the noise simula-
tions by Monte Carlo codes, at the expense of extensive
restructuring of the sampling routines [36]. The benefits
induced by the vastly reduced statistical uncertainty es-
tablish Monte Carlo simulations as a practical tool to ob-
tain reference solutions and outweighs the efforts involved
in code rewriting. In this work, we extend and consider-
ably generalize our previous findings to the case of neu-
tron noise induced by mechanical vibrations, which poses
distinct challenges in both sampling the noise source par-
ticles and handling the variance of the resulting noise
field.

This work is organized as follows: In Sec. II we re-
call the derivation of the neutron noise equations in
the frequency domain, and we show that they can be
interpreted as a complex-valued fixed-source transport
problem, starting from a complex-valued source. Subse-

quently, in Sec. III we review existing sampling methods
for the noise source, and introduce a new exact sam-
pling strategy for the case of mechanical vibrations. Af-
ter briefly recalling in Sec. IV the Monte Carlo methods
for solving the transport of noise particles, in Sec. V we
discuss the application of weight cancellation to reduce
the variance of noise problems. The effectiveness of these
methods is illustrated in Sec. VI on a benchmark configu-
ration consisting of a fuel assembly where a pin is subject
to periodic mechanical vibrations. Conclusions are finally
drawn in Sec. VII.

II. THE NEUTRON NOISE EQUATIONS

We start by considering a neutron multiplying system
which is initially critical. To allow for possible model bias
due to technological uncertainties and/or nuclear data,
we assume that the fission production is normalized by
the fundamental eigenvalue keff, which enforces the sta-
tionary state. Now, if a perturbation is introduced into
the system, so that the macroscopic quantities such as
cross sections, yields, and scattering laws become time-
dependent, then the resulting neutron flux φ(r, Ω̂, E, t)
will also be time-dependent, and will be therefore de-
scribed by the time-dependent Boltzmann equation, cou-
pled to the evolution equations for the delayed neutron
precursors. After injecting the precursor equations into
the Boltzmann equation, we concisely denote the time-
dependent transport equation as Bk(t)φ(r, Ω̂, E, t) = 0,
where

Bk(t) =
1

v

∂

∂t
+ Ω̂ ·∇+Σt(r, E, t)−

∫

4π

∫ ∞

0

νs(r, E
′, t)Σs(r, E

′, t)fs(E
′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′−

1

keff

∫

4π

∫ ∞

0

νf,p(r, E
′, t)Σf (r, E

′, t)ff,p(E
′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′−

1

keff

∑

j

∫ t

−∞

∫

4π

∫ ∞

0

λje
−λj(t−t′)νjf,d(r, E

′, t′)Σf (r, E
′, t′)f jf,d(E

′ → E, Ω̂′ → Ω̂, t′)dE′dΩ̂′dt′. (1)

Due to the effect of the perturbation, it is assumed that
all of the time-dependent terms in Eq. (1) can be decom-
posed into a stationary part and an additional small, pe-
riodic, time-dependent contribution1. For example, the
total macroscopic cross section is decomposed as

Σt(r, E, t) = Σt(r, E) + δΣt(r, E, t). (2)

1 In this work, we do not consider the possibility of perturbations
in the precursor decay constants.

This can similarly be done for reaction yields, scattering
laws and fission spectra. As it would become slightly
cumbersome to write each integral explicitly, we use the
following shorthand for the decomposition of the term
associated with the generic reaction channel α:

να(r, E, t)Σα(r, E, t)fα(E → E′, Ω̂ → Ω̂′, t) =

να(r, E)Σα(r, E)fα(E → E′, Ω̂ → Ω̂′)

+ δ[ναΣαfα](r, E → E′, Ω̂ → Ω̂′, t), (3)

where all of the time dependence has been placed in the
single δ[ναΣαfα] term. A thorough discussion on this de-
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composition will be provided in Sec. III. In this formal-
ism, we may break the operator Bk(t) into two different

components

Bk(t) = B(t) + δB(t), (4)

with the operator

B(t) = 1

v

∂

∂t
+ Ω̂ ·∇+Σt(r, E)−

∫

4π

∫ ∞

0

νs(r, E
′)Σs(r, E

′)fs(E
′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−

1

keff

∫

4π

∫ ∞

0

νf,p(r, E
′)Σf (r, E

′)ff,p(E
′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−

1

keff

∑

j

∫ t

−∞

∫

4π

∫ ∞

0

λje
−λj(t−t′)νjf,d(r, E

′)Σf (r, E
′)f jf,d(E

′ → E, Ω̂′ → Ω̂)dE′dΩ̂′dt′, (5)

and the perturbation operator

δB(t) = δΣt(r, E, t)−
∫

4π

∫ ∞

0

δ[νsΣsfs](r, E
′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′−

1

keff

∫

4π

∫ ∞

0

δ[νf,pΣf,pff,p](r, E
′ → E, Ω̂′ → Ω̂, t)dE′dΩ̂′−

1

keff

∑

j

∫ t

−∞

∫

4π

∫ ∞

0

λje
−λj(t−t′)δ[νjf,dΣf,df

j
f,d](r, E

′ → E, Ω̂′ → Ω̂, t′)dE′dΩ̂′dt′. (6)

Consequently, we postulate that the time-dependent flux
which solves Eq. (1) can be similarly decomposed as

φ(r, Ω̂, E, t) = φc(r, Ω̂, E) + δφ(r, Ω̂, E, t), (7)

where φc is the fundamental eigenmode of the Boltzmann
equation associated with the fundamental eigenvalue keff,
before the time-dependent disturbance was introduced,
and the flux perturbation δφ is the neutron noise. From
these definitions, we see that

Bk(t)φ(r, Ω̂, E, t) = 0

=

[
B(t) + δB(t)

][
φc(r, Ω̂, E) + δφ(r, Ω̂, E, t)

]

= B(t)δφ(r, Ω̂, E, t) + δB(t)φc(r, Ω̂, E)

+ B(t)φc(r, Ω̂, E) + δB(t)δφ(r, Ω̂, E, t). (8)

The term B(t)φc(r, Ω̂, E) vanishes, since φc is the crit-
ical (stationary) flux. Next, we apply the “orthodox”
linearization, where we assume that for small perturba-
tions the terms involving products of perturbed quan-

tities can be neglected, namely, δBδφ ≈ 0. The valid-
ity of this assumption has been discussed by several au-
thors [11, 12, 37], and has been recently revisited for the
case of mechanical vibrations [16, 17]. Upon rearrang-
ing the two remaining terms, we obtain a Boltzmann-like
transport equation for the neutron noise which resembles
a fixed-source problem:

B(t)δφ(r, Ω̂, E, t) = −δB(t)φc(r, Ω̂, E), (9)
the term −δBφc representing the “noise source”.
Since we are typically interested in the periodic so-

lution to the noise equation, we apply then a Fourier
transform

g(ω) = F [g(t)] (ω) =

∫ +∞

−∞
e−iωtg(t)dt (10)

to Eq. (9), ω denoting the angular frequency, which yields
the linearized noise equation in the frequency domain:

B(ω)δφ(r, Ω̂, E, ω) = −δB(ω)φc(r, Ω̂, E). (11)

The Fourier-transformed operators appearing in Eq. (11)
are complex-valued and read
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B(ω) = i
ω

v
+ Ω̂ ·∇+Σt(r, E)−

∫

4π

∫ ∞

0

νs(r, E
′)Σs(r, E

′)fs(E
′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−

1

keff

∫

4π

∫ ∞

0

νf,p(r, E
′)Σf (r, E

′)ff,p(E
′ → E, Ω̂′ → Ω̂)dE′dΩ̂′−

1

keff

∑

j

λj
λj + iω

∫

4π

∫ ∞

0

νjf,d(r, E
′)Σf (r, E

′)f jf,d(E
′ → E, Ω̂′ → Ω̂)dE′dΩ̂′, (12)

and

δB(ω) = δΣt(r, E, ω)−
∫

4π

∫ ∞

0

δ[νsΣsfs](r, E
′ → E, Ω̂′ → Ω̂, ω)dE′dΩ̂′−

1

keff

∫

4π

∫ ∞

0

δ[νf,pΣf,pff,p](r, E
′ → E, Ω̂′ → Ω̂, ω)dE′dΩ̂′−

1

keff

∑

j

λj
λj + iω

∫

4π

∫ ∞

0

δ[νjf,dΣf,df
j
f,d](r, E

′ → E, Ω̂′ → Ω̂, ω)dE′dΩ̂′. (13)

For symmetry, it is sometimes convenient to write the
δΣt(r, E, ω) term in Eq. (13) in the same form as the
other terms:

δΣt(r, E, ω) =∫

4π

∫ ∞

0

δΣt(r, E
′, ω)δ(E′ − E)δ(Ω̂′ − Ω̂)dE′dΩ̂′, (14)

which shows that δΣt(r, E, ω) is associated to a unit

yield and a “delta-copy” spectrum δ(E′ − E)δ(Ω̂′ − Ω̂).

The terms δΣt(r, E, ω) and δ[ναΣαfα](r, E
′ → E, Ω̂′ →

Ω̂, ω) appearing in the noise source involve the Fourier-
transformed perturbation of the transport operators, and
as such their precise functional form is determined by
the specific type of perturbation of the noise model (e.g.,
mechanical vibrations or oscillations). Regardless of the
nature of the solver (deterministic or Monte Carlo), these
quantities must thus be prepared in advance, in the
source code, before solving the noise equation (11). In
the next section we will discuss the exact form of the
noise source for two different types of perturbations, and
the Monte Carlo strategies that we have implemented to
sample them.

III. SAMPLING THE NEUTRON NOISE
SOURCE

Sampling the neutron noise source requires the knowl-
edge of the Fourier-transformed perturbation operator
−δB(ω) and the fundamental eigenmode φc(r, Ω̂, E).
The fundamental eigenmode can be obtained by run-
ning the well-known power iteration algorithm, which
leads to a collection of neutrons whose flux is pre-
cisely φc(r, Ω̂, E), after a sufficiently large numbers of
inactive cycles. When convergence has been attained,

−δB(ω)φc(r, Ω̂, E) can be estimated by running one or
more additional power iteration cycles, where the noise
source particles are sampled from the histories of the neu-
trons, and are placed in a dedicated bank [28]. This
sampling strategy is inspired from the algorithm used to
implement Monte Carlo kinetic simulations [38]. As pre-
viously mentioned, the explicit form of −δB(ω) depends
on the type of noise source to be examined.

A. Cross Section Oscillations

First, we shall consider the simple case of cross sec-
tion oscillations, which, although somewhat artificial, is
nonetheless important in that it will play a key role in
addressing the more involved case of mechanical vibra-
tions, covered in Sec. III B. Cross section oscillations
are relatively straightforward, since they do not involve
any spatial movement of the materials. Suppose there is
a spatial region P where the macroscopic cross sections
exhibit a periodic time dependence. We write the cross
sections as [30]

Σα(r, E, t) = Σα(r, E) [1 + εα sin(ω0t)1P(r)] , (15)

where εα is the amplitude of the perturbation, and

1P(r) =

{
1 for r ∈ P
0 for r ̸∈ P . (16)

Upon taking the Fourier transform, the cross section per-
turbation in the frequency domain is then

δΣα(r, E, ω) = Σα(r, E)1P(r)hα(ω, ω0, εα), (17)

where

hα(ω, ω0, εα) = −iπεα [δ(ω − ω0) + δ(ω + ω0)] . (18)
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We assume that no other material properties display any
time dependence. Such a problem is admittedly aca-
demic, but provides an excellent benchmark for compar-
ison of codes and verification of algorithms. The noise
source terms in Eq. (13) can be thus written as

∫

4π

∫ ∞

0

να(r, E
′)δΣα(r, E

′, ω)×

fα(r, E
′ → E, Ω̂′ → Ω̂)φc(r, Ω̂

′, E′)dE′dΩ̂′. (19)

By multiplying and dividing by Σα(r, E
′) in the inte-

grand, and rearranging, we then have

∫

4π

∫ ∞

0

δΣα(r, E
′, ω)

Σα(r, E′)︸ ︷︷ ︸
complex importance factor

×

να(r, E
′)Σα(r, E

′)fα(r, E
′ → E, Ω̂′ → Ω̂)︸ ︷︷ ︸

standard production rate

×

φc(r, Ω̂
′, E′)dE′dΩ̂′. (20)

Eq. (20) can be handled by Monte Carlo codes with
importance sampling, where we use the standard sam-
pling methods for the production rate, and multiply the
weight of the sampled noise particles corresponding to re-
action α by the complex factor δΣα(r, E, ω)/Σα(r, E) =
hα(ω, ω0, εα)1P(r). To sample the noise source, action
only needs to be taken when a neutron has a collision
within the region P exhibiting the cross section oscilla-
tions. At this point, we need to separately sample the
three components of the noise source, that is, the copy
term δΣtφc, the fission term, and the scattering term.
The noise source contribution from the term δΣtφc is
sampled by creating an exact copy of the particle and
multiplying its weight by ht(ω, ω0, εt). For fission and
scattering, a nuclide is sampled from the material at r,
in the standard manner, and we apply forced fission and
implicit absorption. If the nuclide is fissile, then a ran-
dom variable ξ ∼ U(0, 1) is used to calculate the number
of fission noise particles to produce:

n =

⌊
νf (E)σf (E)

σt (E) keff
+ ξ

⌋
, (21)

where σt(E) and σs(E) are respectively the microscopic
total and scattering cross sections for the selected nu-
clide. Each fission noise particle will inherit the weight
of its parent, and have its energy and direction sampled
normally. The weights of these particles are multiplied
by hf (ω, ω0, εf ); furthermore, any delayed neutrons will
also have their weight multiplied by the complex yield
λj/(λj+iω). Finally, noise particles from scattering must
be sampled; first we sample a scattering channel, and
then we sample the energy and direction of the scattered
noise particle. In addition to multiplying the noise par-
ticle’s weight by hs(ω, ω0, εs), it is also necessary to mul-
tiply by the probability of scatter, σs(E)/σt(E), where
σs(E) is the microscopic scattering cross sections for the
selected nuclide.

B. Mechanical Vibrations

Mechanical vibrations are inherently different from the
previous case of cross section oscillations, due to the fact
that they involve material displacements as a function
of time. Assuming that the displacement occurs along
one spatial dimension, we will have material ML at po-
sition x < x0 and material MR at position x > x0 before
the perturbation is applied. In stationary conditions, the
material as a function of position is thus described by the
function

M(x) =

{
ML for x < x0
MR for x > x0

. (22)

Now, if a perturbation is introduced into this system in
the form of a sinusoidal vibration of the interface between
the two materials, with angular frequency ω0 and ampli-
tude ε > 0, then the material found at a given position in
the perturbed region is also a function of time. For posi-
tions where |x− x0| < ε, the function which determines
the material at position x and time t is written as

M(x, t) =M(x)+

∆M [H(x− x0)−H(x− x0 − ε sin(ω0t))] , (23)

where ∆M = ML − MR, and H(x) is the Heaviside
function [16]. This function always returns either ML

or MR. Based on the material perturbation δM =
M(x, t) −M(x) across the interface, the corresponding
perturbation of the operator kernels δ[ναΣαfα] must then
be

δ[ναΣαfα](x,E
′ → E, Ω̂′ → Ω̂, t) = ∆[ναΣαfα]×

[H(x− x0)−H(x− x0 − ε sin(ω0t))] , (24)

where

∆[ναΣαfα] =

νLα (E)ΣL
α(E)fLα (E

′ → E, Ω̂′ → Ω̂)−
νRα (E)ΣR

α (E)fRα (E′ → E, Ω̂′ → Ω̂). (25)

The Fourier transform of Eq. (24) has been shown to be
[16]

δ[ναΣαfα](x,E
′ → E, Ω̂′ → Ω̂, ω) =

∆[ναΣαfα]

{
c0(x, x0)δ(ω)+

∞∑

n=1

cn(x, x0) [δ(ω − nω0) + δ(ω + nω0)(−1)n]

}
, (26)

with

cn(x, x0) =
2

n
sin

(
n arcsin

(
x− x0
ε

))
e−inπ/2 (27)
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for n ≥ 1, and

c0(x, x0) =





π − 2 arcsin
(
x−x0

ε

)
for x ≥ x0

−π − 2 arcsin
(
x−x0

ε

)
for x < x0

. (28)

Immediately apparent from Eq. (26) is that, while the
noise source for cross section oscillations is monochro-
matic, the noise source for mechanical vibrations con-
tains an infinite number of discrete harmonics at nω0,
all multiples of the perturbation frequency ω0. Addition-
ally, there is a non-trivial spatial dependence indicated
by Eq. (27). All even harmonics are purely real and have
even spatial parity about x0, whereas all odd harmonics
are purely imaginary and have odd parity. We will now
consider possible methods to sample the noise source for
mechanical vibrations in a Monte Carlo code.

1. Approximate Noise Source Sampling

From Eq. (24), we see that the noise source is caused by
a difference of the product of the cross section, reaction
yield, and scattering law. In the initial approach imple-
mented in the noise solver of the TRIPOLI-4® Monte
Carlo code, developed at CEA [39], it was assumed that

∆[ναΣαfα] ≈ ναfα∆Σα(x, x0, ω), (29)

where only the difference in the macroscopic cross sec-
tions was considered. It must be noted that, while ∆Σα

requires evaluating the cross section on both sides of the
interface, να and fα were both evaluated only for the ma-
terial at the location where the collision occurred. This
was partially done for simplicity, as evaluating fα on both
sides of the interface to obtain ∆[ναΣαfα] could pose par-
ticular challenges2.

At first glance, it would appear that Eq. (29) could
be handled with importance sampling, as was done for
cross section oscillations, where one only needs informa-
tion from the material at which the collision occurred,
and this is the main advantage of the proposed approx-
imation. Sadly, further assumptions are required. As a
tangible example, let us consider the case of a fuel pin
vibrating in water moderator. Unlike for the case of oscil-
lating cross sections, where all of the nuclides participat-
ing in the perturbation are present at the sampling site
in the unperturbed system, in Eq. (29) isotopes from the
fuel participate in the perturbation in the water and vice
versa. It should therefore be possible to sample fission
noise particles from collisions occurring in the water sur-
rounding the vibrating pin, which would not be allowed

2 While the data representations used in Monte Carlo codes allow
for easy sampling from the distribution fα, they often do not
facilitate the evaluation of the distribution fα corresponding to
a given argument.

Fuel Moderator

x0

d = x0 - x

x0 + εx0 - ε

(x, y, z)

v

(x0 + d, y, z)

v

FIG. 1. Depicted is the operation of copying noise particles
from fission in the fuel, and placing them in the moderator.
The line at x0 is the boundary between the fuel and the mod-
erator for the static problem. Dashed lines at x0−ε and x0+ε
represent the minimum and maximum positions of the inter-
face with the vibration. The particle in the fuel is the sampled
fission noise particle. An exact copy of this fission noise par-
ticle (identical direction, energy, and weight) is placed at the
symmetric position within the moderator, corresponding to
an x-coordinate of x0 + d. The weight of the copied particle
in the moderator must be multiplied by (−1)n+1, to account
for the parity of the coefficients cn(x, x0).

with the importance sampling scheme from oscillations.
A clever method was devised to circumvent this issue in
TRIPOLI-4®: when a fission noise particle is sampled
in the fuel region, a copy is made and then translated
across the boundary of the vibration, to the symmetric
location relative to the vibrating interface (taking into ac-
count the parity of the given harmonic). So long as the
flux is approximately constant over the distance of the
translation, this is likely a reasonable approximation, al-
lowing for the placement of fission noise source particles
in the water. This approximation of the placement of fis-
sion noise particles in the moderator is depicted in Fig. 1.
Otherwise, the scheme implemented in TRIPOLI-4®

samples noise source particles for vibrations in the same
manner as for cross section oscillations. TRIPOLI-4®

therefore also ignores the possibility of creating scatter
noise particles from isotopes present on the other side of
the interface (i.e. a noise particle born from a scattering
event with a fuel isotope, when having a collision in the
water).

2. Exact Noise Source Sampling

The noise equation is typically written using macro-
scopic material cross sections, yields, and energy-angle
distributions. Each of the factors in the source term is
actually a weighted average of the cross sections, yields
and energy-angle distributions of each individual isotope
present in the material. It is therefore possible to rewrite
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Eq. (3) for mechanical vibrations as

να(r, E, t)Σα(r, E, t)fα(r, E → E′, Ω̂ → Ω̂′, t) =
∑

k

Nk(r, t)νk,α(r, E)σk,α(r, E)fk,α(r, E → E′, Ω̂ → Ω̂′).

(30)

Here, Nk is the concentration of nuclide k, and σk,α is the
microscopic cross section of nuclide k for reaction channel
α. For an individual nuclide, the microscopic cross sec-
tions, reaction yields and energy-angle distributions are
time-independent. However, the macroscopic material-
averaged quantities become time-dependent through the
concentration Nk(r, t) of nuclides in the perturbed re-
gion, which is clearly a time-dependent quantity. In
Monte Carlo codes, each individual nuclide is modelled
explicitly, and the ensemble material averages naturally
arise from neutrons undergoing collisions with all of the
nuclides present in a given material. This suggests a new
sampling strategy for the noise source due to mechani-
cal vibrations. The concentration of nuclides in the per-
turbed region can be decomposed as

Nk(r, t) = Nk(r) + δNk(r, t), (31)

allowing us to write each term of the noise source as

∫

4π

∫ ∞

0

∑

k

δNk(r, t)νk,α(r, E
′)σk,α(r, E

′)×

fk,α(r, E
′ → E, Ω̂′ → Ω̂)φc(r, Ω̂

′, E′)dE′dΩ̂′. (32)

The form of δNk(r, t) depends again on the material in-
terface behavior given in Eq. (23), and therefore leads to
a similar form for the Fourier transform δNk(r, ω).

To sample Eq. (32), one might be inclined to multi-
ply and divide by Nk(r), similar to the approach taken
for oscillations, so to convert Eq. (32) into a complex-
weighted particle production rate. Sadly, such a strategy
is not possible for the case of vibrations. Consider the
case of a UO2 fuel pin vibrating in water. When inside
the perturbed region in the water surrounding the pin,
δN235U ̸= 0, but N235U = 0, and it is therefore impos-
sible to divide by N235U(r). Our proposed solution to
this problem is to define a new fictitious material which
is only used for the sampling of the noise source. This
material must contain all nuclides which are present in
the two materials involved in the vibration, and all of
their concentrations must be nonzero. The exact choice
of the concentration for each isotope is arbitrary. In this
work, we decided that if a nuclide is only present in the
left or the right material (but not both), then its con-
centration in the material where it is present is taken
for use in the fictitious material. If an isotope exists in
both the left and right material, then the average con-
centration was used. The question of the optimal choice
of these concentrations is left for future work. We shall
denote the isotope concentrations of this fictitious mate-
rial as N∗

k (r); correspondingly, the fictitious material has

a total cross section of

Σ∗
t (r, E) =

∑

k

N∗
k (r)σk,t(E). (33)

It is then possible to multiply and divide Eq. (32) by this
fictitious concentration, and perform importance sam-
pling. The collision kernel which should be used to sam-
ple the noise source is therefore

Σ∗
t (r, E)

Σt(r, E)

∑

k

δNk(r, ω)

N∗
k (r)

N∗
k (r)σk,t(E)

Σ∗
t (r, E)

×

∑

m

σk,m(E)

σk,t(E)
νk,m(E)fk,m(E → E′, Ω̂ → Ω̂′), (34)

m being a dummy index for the reaction channel. Now,
the noise source sampling strategy is as follows: During
power iteration, when a neutron undergoes a collision
in the region of a vibration, a new fictitious material
must be constructed. Nuclide k is sampled with proba-
bility N∗

k (r)σk,t(E)/Σ∗
t (r, E), and will be used only for

the sampling of the noise source particles. At this point,
the sampling of the noise source is congruent to the ap-
proach used for cross section oscillations. We have ef-
fectively reduced the problem of sampling the vibration
source to the problem of sampling an oscillating (space-
dependent) source. If nuclide k is fissile, then fission noise
particles must be sampled. Next, the noise particles born
from scattering are sampled. A scattering channel for the
nuclide can then be sampled nominally, along with the
outgoing energy and direction. All the sampled noise
source particles must have their weights multiplied by
the complex factor

Σ∗
t (r, E)δNk(r, ω)

Σt(r, E)N∗
k (r)

. (35)

Finally, a copy of the incident particle is also created and
added to the noise source, with its weight multiplied by
δΣt(r, E, ω)/Σt(r, E). The fictitious material is not ac-
tually needed for producing the copy noise particle, which
can be handled in an identical manner to the approach
taken earlier in Eq. (14).
It should be noted that for realistic problems, vibra-

tion regions could overlap. For the case of a fuel pin with
cladding, there would effectively be two material inter-
faces (fuel/cladding and cladding/water): if the ampli-
tude of the vibration is larger than the thickness of the
cladding, the two vibration regions will overlap. This
will have the effect of creating three effective regions:
one where a fuel-cladding mixture is visible, one where a
fuel-cladding-water mixture is visible, and another where
a cladding-water mixture is visible. Since the effects of
vibrations can be combined linearly, treatment of this
situation is straightforward. One just needs to ensure
that all nuclides of all vibrations at a given position are
included in the fictitious material, and then sum all the
contributions to δNk(r, ω) coming from the vibration of
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each interface. In our implementation we chose to con-
struct the fictitious material only when it is known what
vibration regions are influencing the noise sampling at
the given collision site. This avoids determining all pos-
sible region overlaps and material combinations in ad-
vance, which might be rather involved depending on the
geometric form of each vibration.

IV. TRANSPORT OF NOISE PARTICLES

Once the noise source has been sampled as shown in
the previous section, noise particles must be transported
according to the stochastic rules defined by the opera-
tor B(ω), in order to solve the fixed-source problem in
Eq. (11). For both oscillations and mechanical vibra-
tions, the structure of the noise source term is

−δB(ω)φc = −
∑

n

δBnφcδ(ω − nω0), (36)

where δBn = δB(nω0) is the perturbation operator evalu-
ated at frequency nω0. (The case of oscillation is special
in that the source contains only a single frequency.) Cor-
respondingly, we therefore expect the noise field to be of
the form

δφ(r,Ω, E, ω) =
∑

n

δφn(r,Ω, E)δ(ω − nω0), (37)

where δφn(r,Ω, E) is the solution of the Fourier-
transformed noise equation corresponding to the noise
source component at frequency nω0, namely

Bnδφn = −δBnφc, (38)

with Bn = B(nω0) the noise operator evaluated at the
discrete frequencies nω0 of the source. This yields an
infinite system of fully decoupled linear equations for the
noise components δφn. For negative frequencies where
n < 0, we make use of the fact that δφ−n = δφ†

n, the
symbol † indicating the complex conjugate. The null
frequency at n = 0 represents the time-averaged effect
on the static flux, as the perturbation will introduce a
change of reactivity into the system, which is typically
neglected in the orthodox linearization approach [16].

The operator δB is complex-valued, indicating that the
noise source particles must therefore carry complex sta-
tistical weights, and each component can be positive or
negative. The noise transport operator B is also complex-
valued, and differs from the standard Boltzmann oper-
ator in three places, which therefore alter the regular
flight and collision sampling procedures. We first no-
tice that the fission production must be divided by keff,
which must be known before starting the noise simula-
tion. The second modification is that delayed neutrons
must have their weights multiplied by the complex yield
factor λj/(λj+iω), depending on the angular frequency ω
and on the precursor family j. Both of these changes are
minor, and straightforward to implement in most Monte

Carlo codes. More problematic is the fact that B involves
an effective total cross section which is complex:

Σt(r, E) + i
ω

v
. (39)

Two different methods have been proposed to address
this peculiarity. Yamamoto proposed to change the par-
ticle’s weight continuously along the flight, using a com-
plex exponential transform involving also the modifica-
tion of the track-length estimator [20]. In this work, we
use an alternative implementation proposed by Rouchon
et al., which adds the real term

η
ω

v
δφ (40)

to both sides of Eq. (11), where η is real and has the
same sign as ω [21]. Doing so effectively adds a new
copy reaction with cross section Σω(E) = ηω/v, having
a complex yield νω = (η − i)/η, and the effective total
cross section becomes

Σ̃(r, E) = Σt(r, E) + Σω(E), (41)

which is a real positive quantity. Flight distances of noise
particles are now sampled using the effective total cross
section Σ̃. At each collision, a copy of the noise particle
is made with probability Σω/Σ̃, which has its complex
weight multiplied by νω. This is consistent with treat-
ment of δΣt given in Eq. (14). In general, Σt must be

replaced by Σ̃ throughout the transport algorithms. Oth-
erwise, transport algorithms are left unchanged. Vari-
ance reduction techniques such as implicit capture and
roulette can still be used. In the method proposed by
Rouchon et al., implicit capture is performed by multi-
plying the complex weight by Σs/Σ̃. For roulette, we
follow the algorithm proposed by Yamamoto, where the
real and imaginary weight components undergo roulette
independently [20, 21]. The choice of η = 1 was used,
as this has been previously demonstrated to yield good
performance for most frequencies of interest for reactor
physics [21].
Each component of the complex weight of noise par-

ticles can be positive or negative; correspondingly, the
noise field will be estimated through the sum of these
positive and negative contributions, which causes a very
large variance in the scores. This phenomenon has been
observed in cross section oscillation problems [30], but is
exacerbated by the case of vibrating fuel pins [31]. On the
one hand, as the noise source for cross section oscillations
is constant within the vibration region, the particles of
differing sign are only produced through delayed fission,
which is a weak effect in most realistic systems. Dur-
ing noise transport, sign changes to particle weights can
only occur through the copy channel, and delayed fission.
Both of these reaction channels are typically weak, and
this therefore leads to minimal appearances of particles
of differing sign components. On the other hand, as is
depicted in Sec. VIA, and previously shown by Zoia et al.
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[16], the noise source of a vibrating fuel rod has a positive
contribution on one side, and a negative contribution on
the other, leading to nearly equal quantities of positive
and negative noise source particles at the beginning of
the problem. The resulting noise field is effectively the
difference of two nearly equal stochastic quantities, which
leads to catastrophic convergence issues for the statistical
uncertainty. From these preliminary investigations, it is
evident that the development of specialized variance re-
duction techniques is required if we want to obtain usable
neutron noise results via Monte Carlo methods.

V. WEIGHT CANCELLATION FOR VARIANCE
REDUCTION

Monte Carlo transport problems involving a mixture of
positive and negative particles are not unique to neutron
noise, and have appeared repeatedly in the literature for
e.g. performing delta tracking without a majorant cross
section [40, 41], for the calculation of the higher harmon-
ics of k-eigenvalue problems [42, 43], and for the com-
putation of critical buckling [44, 45]. Based on his pio-
neering work on higher harmonics and critical buckling,
Yamamoto’s initial implementation for solving the noise
equation by Monte Carlo methods utilized an approxi-
mate weight cancellation technique, as it was determined
to be necessary when trying to solve the noise equation
for frequencies outside of the “plateau region” λ < ω <
λ + βeff/Λeff [20]. When solving the noise equation for
frequencies within the plateau region, weight cancellation
was determined to be unnecessary, and was abandoned
in Yamamoto’s later implementation done in MCNP4C,
due to the complexity of incorporating such changes in
a production-level Monte Carlo code [27]. Furthermore,
Yamamoto’s initial implementation using weight cancel-
lation was not able to estimate the variance of scores,
and it was therefore impossible to determine what ef-
fect, if any, weight cancellation had on the estimation of
the noise field, beside enabling the calculations to run
in finite time [20]. The method developed by Rouchon
et al. is able to estimate the variance of the noise field;
previous results from simpler case-studies showed that
convergence within the plateau region could be achieved
without weight cancellation, which was therefore not im-
plemented in the code [21]. Nonetheless, the convergence
difficulties mentioned above for the case of vibrations has
led us to begin an examination of the possible benefits
of approximate or exact weight cancellation. Our recent
work has demonstrated that the use of weight cancella-
tion can provide a very large improvement in computa-
tional efficiency for the case of neutron noise induced by
cross section oscillations, leading to an improvement by
a factor of 90-100 on the figure of merit (FOM) when
compared to the implementation in TRIPOLI-4® [36].
In this section, we show how weight cancellation can be
performed on neutron noise problems for the case of vi-
brations, and illustrate the computational gains which

can be achieved through the use of the algorithm.

A. When to Perform Cancellation

Previous investigations in the context of weight can-
cellation for delta tracking methods have shown that it
is most efficient to perform cancellation on the fission
source [34]: Fission particles are unique in that their an-
gular distribution is almost always considered to be per-
fectly isotropic, and their energy is almost independent
of the incident energy. This effectively reduces the di-
mensionality of weight cancellation, which makes exact
regional cancellation methods more efficient (in terms
of the amount of weight being cancelled), and reduces
the bias inherent to approximate cancellation methods
[34, 35].
Most of our previous work on cancellation has been

applied to eigenvalue problems solved by using power
iteration, where one naturally has access to the fission
source between subsequent fission generations, providing
the ideal opportunity to apply the weight cancellation al-
gorithm [34]. However, neutron noise equations are effec-
tively fixed-source problems, where source particles are
sampled and then distributed to all of the MPI processes
participating in the simulation. Since fixed-source prob-
lems must always be subcritical, all simulated particles
eventually die; once an MPI process receives its packet
of particles to transport, it never needs to communicate
with the other processes again, until it receives the next
packet of particles for the subsequent batch (independent
replica). Any fission particles born during a batch are
typically added to the secondary particle bank, so that
they can be transported later on. The MPI process will
eventually transport all of the generated fission noise par-
ticles (because of sub-criticality), completing the batch.
When using MPI, each process is identified by its rank,
which is an index that is unique to that process. A depic-
tion of the MPI communication scheme for this standard
fixed-source algorithm is provided in Figure 2. Since all
of the fission particles are just added to the bank of par-
ticles to be transported during the current batch, there is
never a step in the algorithm where we have access to the
entire fission source during the computation, contrary to
what happens in power iteration schemes.
However, having access to the entire fission source is

essential to maximizing the efficiency of weight cancel-
lation; if not all of the particles participate, less weight
will be canceled. We have therefore implemented a dif-
ferent fixed-source iteration algorithm for noise problems,
in order to gain access to the entire fission source. The
scheme presented here was inspired by the decomposition
proposed by Yamamoto, although differing in implemen-
tation [20, 27]. For a single batch, the initial source par-
ticles are sampled, and then sent to all the available MPI
processes. Each process will transport all of the assigned
initial particles, and will store all of the produced fission
particles in a separate bank. Once it has transported the
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FIG. 2. Standard MPI communication scheme for a single fixed-source batch.

initial assigned packet of particles, each process will send
its bank of fission particles back to the master process.
Now, with all of the fission particles on the master pro-
cess, it is possible to perform weight cancellation on the
entire fission source. Once the cancellation operation is
complete, the new fission particles are redistributed to
all of the MPI processes, where they will be transported.
Any resulting fission particles will again be stored in a
separate bank; once each process has finished, the fis-
sion particles are again sent to the master process, where
cancellation can occur again. This practically breaks the
fixed-source batch into “inner generations”, as depicted
in Fig. 3. This MPI communication scheme is nearly
identical to that used in standard power iteration imple-
mentations, with the exception that all of the particles
will eventually die out, signaling the end of the fixed-
source batch.

B. Approximate Cancellation

In this work, we will consider both exact and approx-
imate weight cancellation methods. We will first exam-
ine approximate cancellation, based on the technique ini-
tially proposed by Zhang et al., which is conceptually
simple, easy to implement in a Monte Carlo code, and
results in very good cancellation efficiency [46]. For this
purpose, a rectilinear mesh is imposed on top of the prob-

lem domain, and the particles which will undergo can-
cellation are then sorted into this mesh, based on their
position (and possibly energy, if desired). The average
weight of all particles in each mesh element is calculated,
and this average weight is then assigned to each of the
particles in the element. Summing the particle weights
to compute the average is what effectively leads to can-
cellation, as the total weight will be the sum of positive
and negative components. While this approach imposes
a bias on the resulting fission source, the bias can be
made minimal by taking a sufficiently fine mesh. How-
ever, refining the mesh is a double-edged sword: the bias
will be reduced, but the efficiency of cancellation will be
reduced as well, as there will be fewer particles present in
each mesh element. Despite this, our previous work has
shown approximate cancellation to be much more effi-
cient at cancelling weight than the exact version (treated
in Sec. VC), and we have not observed any measurable
bias for a reasonably refined mesh [35].

C. Exact Cancellation

Exact regional cancellation was originally proposed by
Booth and Gubernatis, for use in calculating the higher
harmonics of k-eigenvalue problems [47]. The initial for-
mulation was limited to one-dimensional configurations,
but we have previously expanded this formalism to three-
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FIG. 3. Proposed MPI communication scheme where a single fixed-source batch is broken into inner fission generations. While
only three inner generations are depicted here to demonstrate the concept, there will generally be hundreds or thousands of
inner generations per noise batch.

dimensional multi-group settings. This cancellation tech-
nique is applied on the fission source, and in practice
can be used in combination with delta tracking [48] or
negative-weighted delta tracking [40, 41] transport meth-
ods: we have provided a successful numerical demonstra-
tion of exact regional cancellation for a modified version
of the C5G7 reactor physics benchmark [34]. Fission
particles are sorted into geometric volumes, referred to
as cancellation regions. Our previous work used a reg-
ular rectilinear mesh, with each mesh element acting as
a cancellation region. Fission particles must store the
position of their parent’s previous collision (r′), their
parent’s energy (E′), and their parent’s penultimate di-

rection (Ω̂′′), in addition to their own phase space co-

ordinates (r, Ω̂, E). From this information, the fission
density function can be calculated, which for the case of
delta tracking reads

ζ(r|r′, Ω̂′, E′) =

P
(

r−r′

|r−r′| · Ω̂′
)
Σf (r, E

′)

2π|r − r′|2
e−Σmaj(E

′)|r−r′|, (42)

where P is the probability density function for the cosine
of the scattering angle between directions Ω̂′ and r−r

|r−r| ,

and Σmaj(E
′) is the majorant cross section used in the

delta tracking algorithm [34, 48, 49]. Using this fission

density function, each fission particle i (having a weight
wi) is split into two portions: a point-wise part with
weight

wp,i = wi
ζ(r|r′, Ω̂′′, E′)− βi

ζ(r|r′, Ω̂′′, E′)
, (43)

and a uniform part with weight

wu,i = wi
βi

ζ(r|r′, Ω̂′′, E′)
. (44)

Here βi is a cancellation parameter, which can take
any value, so long as it does not depend on (r, Ω̂, E)
[34, 47, 50]. The point-wise portion represents the piece
of the fission particle which must be placed exactly at
r, and the uniform portion represents the piece which
can be uniformly distributed across the entire cancella-
tion region. A thorough discussion on how to determine
an appropriate value of βi, which ultimately affects the
cancellation efficiency, is provided in Refs. 34 and 50.
For each cancellation region R, we iterate over all of the
particles in the region, summing their uniform parts

UR =
∑

i∈R
wu,i. (45)

We then set all of the fission particle weights to be equal
to their point-wise portion (wi := wp,i). Lastly, we must
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sample fission particles with a total weight equal to the
remaining weight UR, which will be uniformly distributed
within R. The exact cancellation algorithm can be ap-
plied as is to neutron noise problems; the only required
modification concerns the number of uniform particles to
be added to each region, which for particles carrying real
and imaginary statistical weights reads

n =
⌊
max

(
|Re{UR}|, |Im{UR}|

)⌋
, (46)

each with a weight of w = UR/n.
Compared to approximate cancellation, exact regional

cancellation is much more difficult to implement in a
Monte Carlo code. Additionally, it results in much less
total weight cancellation as well, which can lead to only
minimal performance improvements in problems which
require cancellation [34, 35, 50]. However, the exact re-
gional method aligns with the Monte Carlo philosophy,
in that no approximation nor bias is introduced in the
sampling scheme.

VI. SIMULATION RESULTS

The Monte Carlo noise equation solution method de-
vised by Rouchon et al. was implemented in the de-
velopment version of TRIPOLI-4® [21, 39]. Since
TRIPOLI-4® is a mature general-purpose code with
about 400 kSLOC (source lines of code), implement-
ing all of the changes necessary to perform the exact
noise source sampling technique outlined in Sec. III B 2,
or the cancellation methods described in Sec. V, would
require an exceptionally large rewriting effort. There-
fore, all of the methods described in the paper have
been implemented in a multi-group Monte Carlo mini-
app called MGMC, with approximately 13 kSLOC and
thus allowing for quick implementation and testing of
new transport algorithms [51]. MGMC is able to per-
form transport in general 3D geometries, composed of
surface-based volumes, universes, and lattices. Shared-
memory parallelism is implemented via OpenMP, and
distributed-memory parallelism is implemented via MPI.
Basic quantities such as flux and reaction rates can be
scored using either track-length or collision estimators,
across regular rectilinear meshes, and are written to bi-
nary NumPy files, for easy data processing in Python
[52]. These features make MGMC entirely representative
of a larger production-level code; therefore, it can be as-
sumed that any improvement in calculation efficiency ob-
served in MGMC would be similar to the improvements
one could expect from implementing the same methods
in a production-level code, such as TRIPOLI-4®. Delta
tracking and weight cancellation have previously been
added to MGMC, along with neutron noise transport
[34, 36]. Newly implemented for this work was the sam-
pling the noise source corresponding to mechanical vibra-
tions. MGMC has been released as free software, and is
available under the CeCILL-v2.1 license [51].

In order to illustrate the novel noise source sampling
and the weight cancellation methods implemented in
MGMC, in this work we have selected a benchmark prob-
lem that has been previously used to compare the results
of several different neutron noise solvers [30, 31]. It is a
2D, 2 group problem, in the form of a reflected 17x17 fuel
assembly, with square pins. A diagram of this system is
presented in Fig. 4. The assembly pitch is 1.26 cm, with
fuel pins having a side length of 0.7314 cm. A 0.08 cm
water blade surrounds the entire assembly. Reflective
boundary conditions are assumed for the four outer edges
of the problem domain. The neutron noise is induced by
a vibrating fuel pin (marked in pink in Fig. 4), subject
to a sinusoidal displacement along the x-axis, with an
angular frequency of ω0 = 2π rad s−1 and an amplitude
of ε = 0.2 cm, as per benchmark specifications. The two
vibrating interfaces are located at x = −2.8857 cm and
x = −2.1543 cm.

Since exact regional weight cancellation can only be
performed with delta tracking, all simulations were run
with this transport method, to ensure fairness in the com-
parison of simulation runtimes. All simulations began
with 106 particles in power iteration, distributed uni-
formly within the assembly, all in the first group. The
first 13 generations were discarded to allow for source
convergence. Between each noise batch, three extra
power iteration inactive generations were performed, to
ensure proper decorrelation of the noise source between
replicas. Simulations were set to run for either 104 noise
batches, or a maximum run time of 2 days (whichever
came first). Simulations were run on a computing clus-
ter at CEA, each run using 16 MPI processes, and 32
OpenMP threads per MPI process. The noise field was
estimated with a track-length estimator in all simula-
tions. The real and imaginary components of the field
are scored in separate tallies. Breaking the scoring of
complex quantities into a real and imaginary component
facilitates the addition of neutron noise simulations to
existing codes.

For the purpose of code-to-code comparison and
verification, our Monte Carlo simulations were com-
pared to the results generated by the deterministic
noise solver previously implemented in APOLLO3®

[53, 54]. The noise equation solver has been added to
the Integro-Differential Transport (IDT) lattice solver of
APOLLO3®, which uses the method of short character-
istics in conjunction with the discrete ordinates method
[54]. To accomplish this, the standard iteration loops
are applied to the complex fission source and scattering
source, with the addition of an iteration loop between
the real and imaginary components. Thus, the standard
one-group transport solver methods can be used, and
one can consequently benefit from all numerical meth-
ods already implemented in APOLLO3® [55]. To com-
pare the noise source and noise field between codes, these
quantities were normalized by the estimated value of the
static flux at the center of the assembly in group 2, for
the respective code.



13

FIG. 4. Depiction of the 2D reflected assembly for the neutron
noise benchmark problem proposed in [30]. The pink fuel pin
(located two cells down and two cells left from the center)
experiences a small sinusoidal vibration to the left and right.
All other fuel pins are unperturbed.

A. Sampling of the Noise Source

We first compare the first harmonic of the noise
source, sampled with the approximate method and the
exact method, against the noise source obtained from
APOLLO3®. By default, the deterministic noise solver
of APOLLO3® computes the harmonics of the exact
noise source (Sec. III B 2). The real and imaginary com-
ponents of the source are shown as a function of the x
coordinate at y = −2.52 cm, in Fig. 5. The real com-
ponent of group 2 is zero, as this portion of the source
only comes from delayed neutrons, which according to the
benchmark model are all born in group 1. Immediately
apparent is the fact that the amplitude of the source from
the approximate method is much smaller than the true
source, for the imaginary component. The approximate
source sampling also has an asymmetry, where the source
has a slightly larger amplitude in the fuel pin than in the
water. Both of these effects are primarily due to the
approximate source sampling method ignoring the dif-
ference in the scattering law in the noise source. This is
evident upon examination of the real component in group
1, which is purely due to delayed fission: very good agree-
ment is observed between the approximate method and
APOLLO3®. Since the real component (which is only
due to fission) appears to have a shape and amplitude
which agree with the exact source from APOLLO3®,
it can be inferred that the discrepancy in the imagi-
nary component is primarily due to the inadequate treat-

ment of the scattering laws in the approximate sampling
method. The agreement observed in the real component
also indicates that making a copy of the fission noise
source particles in the fuel and moving them into the wa-
ter is an adequate approximation for this system, where
the flux is relatively constant over the perturbed region.
Other numerical investigations concerning systems with
larger flux gradients (such as the one-dimensional rod
model investigated in [16]) show that this approximation
might become inappropriate and lead to large differences
in the resulting noise source.
The exact noise source sampling method has excellent

agreement with the APOLLO3® results, for all groups
and components. In the imaginary components shown
in Fig. 5, the exact source has the correct amplitude
and shape when compared to APOLLO3®. By using
the same fictitious material to sample the noise source
on both sides of the vibration interface, it is possible to
eliminate the discontinuity which was observed on in the
approximate method. This demonstrates that our pro-
posed exact source sampling method is not just correctly
treating the perturbation in the macroscopic cross sec-
tions, but also in the scattering laws.
Next, we look at the second harmonic of the noise

source. Here, group 2 of the imaginary component is
zero, and group 1 of the imaginary component comes
from delayed fission, as shown in Fig. 6. Most of the
noise source is now in groups 1 and 2 of the real compo-
nent. Again, we observe that the proposed exact noise
source sampling technique is in excellent agreement with
the source calculated by APOLLO3®. The noise source
sampled using the approximate method agrees quite well
with the APOLLO3® source and the exact sampling
in the imaginary component, which is only due to de-
layed fission. Examining the real component, it is again
observed that the amplitude of the source using the ap-
proximate method is smaller than the one obtained with
the exact method. The asymmetry which was observed
in the first harmonic is less visible in the second har-
monic. In the first harmonic this asymmetry was visible
exactly at the material interface. For the second har-
monic, the amplitude of the real component of the first
group is slightly smaller in the water than in the fuel.
As the exact noise source sampling technique has

now been verified, and demonstrated to have far supe-
rior agreement with APOLLO3®, only the exact noise
source sampling method is used for the remainder of the
paper.

B. Application of Weight Cancellation

Next, the effects of weight cancellation on the perfor-
mance of noise simulations is examined. Three different
cancellation methods were used: approximate cancella-
tion with a coarse mesh, approximate cancellation with
a fine mesh, and exact cancellation. A 170 × 170 regu-
lar rectilinear mesh was used for both the approximate
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FIG. 5. Real and imaginary components of the noise source through the center of the vibrating fuel pin at y = −2.52 cm, for
the first harmonic.
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FIG. 6. Real and imaginary components of the noise source through the center of the vibrating fuel pin at y = −2.52 cm, for
the second harmonic.

coarse and exact cancellation methods. For approximate
cancellation with a fine mesh, a 340×340 rectilinear mesh
was used instead. A simulation was also run without
cancellation, and without inner generations (essentially
the algorithm used in TRIPOLI-4®), which served as a
baseline for all comparisons. The resulting noise field was
scored using the track-length estimator over a 138× 138
regular rectilinear mesh. To compare the efficiency of
each simulation method, we have used the average ratio
of the figure of merit (FOM) for results obtained using
cancellation to results obtained using the baseline algo-
rithm. The FOM is defined as

FOM =
1

Tσ2
, (47)

where T is the wall-clock run time, and σ2 is the variance
of the quantity being examined. Cancellation is only ap-

plied to the noise particles, and can therefore only change
the amount of time spent transporting noise particles. It
will have no effect on the time spent performing power
iteration to sample the noise particles to begin each noise
replica. Because of this, it can be argued that the FOM
should only be calculated using the time spent transport-
ing noise particles. We have chosen to look at the FOM
for both the total run time (time spent during power it-
eration, noise transport, and cancellation), and the noise
run time (time spent during noise transport and cancel-
lation), as we think both quantities are of interest. For
each run time, the ratio for the FOM was computed in
each element of the noise field scoring mesh, and then
the average of that ratio was calculated independently
for each component (real or imaginary) of the noise field
and each energy group. As a result, for each cancellation
method, 8 FOM ratios are provided, 4 calculated with
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the total run time, and 4 calculated with the noise run
time.

1. Analysis of the First Harmonic

For the first harmonic of the original benchmark prob-
lem, a slice of the noise field at the axis through the
middle of the perturbed fuel pin is provided in Fig. 7.
These plots compare all four Monte Carlo simulations
to the deterministic results obtained with APOLLO3®.
Immediately, one is drawn to the results from the base-
line algorithm where no cancellation was used. Not only
are the error bars quite large for both components and
both groups, but it also appears as though there was
a bias in the result, since this noise field systematically
has a higher value than in all other simulations. This
is most noticeable in the real component, and at regions
far away from the perturbed pin in the imaginary com-
ponent. Running the same simulation parameters with
a different seed for the random number generation in-
dicated that this behavior is not systematic, and that
sometimes a similar phenomenon is observed, but with a
systematically lower value than the deterministic results.
This seems to suggest that the Monte Carlo results from
the baseline algorithm presented here are far from con-
verged, and would require a much larger number of noise
batches to generate better statistics. Unfortunately, this
was not feasible given the poor performance of this algo-
rithm. It could also be the case that the error bars are
under-estimated because of the correlations induced by
power iteration; to test this hypothesis, further investi-
gations with an increased number of decorrelation cycles
would be needed. Looking at the noise field estimated
with exact regional cancellation, there is certainly an ob-
servable improvement in the resulting variance, and the
systematic bias observed without cancellation has been
reduced. For the imaginary component, the error bars
are now overlapping the deterministic results at some po-
sitions. Despite the disagreements observed far from the
pin, very decent agreement is observed in the vicinity of
the perturbation, where the amplitude of the noise field
is largest.

The two approximate cancellation methods had the
best agreement with the deterministic results. While
there were always visible differences in the real compo-
nent, there was always agreement within the error bars.
For the imaginary component, both approximate meth-
ods had nearly perfect agreement with APOLLO3®,
although the fine mesh variant did have slightly better
agreement. These small differences could be due to the
approximate nature of the cancellation technique, as re-
fining the cancellation mesh should reduce the bias in the
results. Based on the error bars and the level of agree-
ment observed between the two approximate methods
and the deterministic results, it is difficult to conclude
if the slight disagreement in the coarse mesh results are
actually due to the bias induced by approximate cancel-

lation. At the observed level of agreement, one must also
call into question the accuracy of the deterministic re-
sults, which have a bias induced by the geometric and
angular discretization.
The improvements in the FOM for the simulations us-

ing cancellation, when compared to the baseline algo-
rithm without cancellation, are presented in Tab. I. The
approximate cancellation with the coarse mesh had the
best improvement in performance. Looking at the total
run time, the real component was improved by a factor
of about 300 and the imaginary component by a factor
of about 230. If the noise run time is used, these become
factors of 1620 and 1250 respectively. Approximate can-
cellation with the fine mesh gave an improvement of ap-
proximately 120 when looking at the total run time, and
approximately 480 when looking at the noise run time.
The performance gains when using the fine mesh might
have been smaller due to less weight being cancelled with
a finer mesh, as a finer mesh leads to fewer noise parti-
cles per mesh element. This performance penalty leads
to a theoretical reduction in any bias in the results, al-
though we were unfortunately not able to measure this
phenomenon. Exact regional cancellation leads to the
lowest FOM improvements, with a factor of 8 observed
when using the total run time, and a factor of 14 for the
noise run time.
A word of caution must be added to the FOM ratios

provided in Tab. I. All of these ratios used the baseline
algorithm results as a denominator. Since the FOM only
considers the variance of the examined score, these re-
ported factors do not consider the fact that the average
values obtained with the baseline algorithm seemed to
have a systematic bias. There is no good way to quan-
titatively measure the improvements in the average that
cancellation provided, as demonstrated in Fig. 7. As pre-
viously mentioned, this apparent bias could also indicate
that the error bars from the results obtained with the
baseline algorithm were underestimated, and the perfor-
mance improvements might actually be even larger; to
support this statement, one would need to perform in-
dependent replicas and estimate the “true” error bars.
Additionally, the observed improvements in the FOM are
not solely due to the application of weight cancellation.
It was observed that breaking the fixed-source problem
into inner generations, without applying any weight can-
cellation between inner generations, reduced the simula-
tion time when compared to the baseline method. This
phenomenon will be the subject of future work.

2. Analysis of the Second Harmonic

For the sake of completeness, we have then examined
how our proposed approach behaves when applied to the
calculation of the second harmonic of the noise field. We
chose to use the two different approximate cancellation
methods and the baseline method to calculate the sec-
ond harmonic, to evaluate the performance gains pro-
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FIG. 7. First harmonic of the noise field running through the center of the vibrating fuel pin at y = −2.52 cm, obtained with
APOLLO3® and MGMC using different weight cancellation methods (or no weight cancellation).

Real Imaginary

Group 1 Group 2 Group 1 Group 2

Approximate Coarse
Total Run Time 304 304 234 235

Noise Run Time 1623 1624 1252 1254

Approximate Fine
Total Run Time 129 129 122 122

Noise Run Time 487 487 461 461

Exact
Total Run Time 8 8 8 8

Noise Run Time 14 14 14 14

TABLE I. First harmonic improvement factors for the FOM of given weight cancellation methods when compared to the
baseline solution strategy which does not use weight cancellation.

vided by weight cancellation. It was chosen to not use
exact weight cancellation here, as its performance was
significantly poorer than the two approximate methods.
The resulting noise fields are depicted in Fig. 8. While
the amplitude of the second harmonic in the vicinity of
the vibration appears to be smaller than the amplitude
observed in the first harmonic, this is not the case at

positions farther from the perturbation. Far to the left
or right of the vibration, the amplitude of the second
harmonic is much larger than that of the first, which is
coherent with previous findings by Zoia et al. [16]. This
might happen because of two possibly concurrent rea-
sons: specific symmetries of the system could suppress
the first harmonic and thus promote the second; more-
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FIG. 8. Second harmonic of the noise field running through the center of the vibrating fuel pin at y = −2.52 cm, obtained with
MGMC using different approximate weight cancellation meshes, or without weight cancellation.

Real Imaginary

Group 1 Group 2 Group 1 Group 2

Approximate Coarse
Total Run Time 244 244 344 344

Noise Run Time 1322 1323 1864 1864

Approximate Fine
Total Run Time 119 119 152 151

Noise Run Time 446 446 570 569

TABLE II. Second harmonic improvement factors for the FOM of given weight cancellation methods when compared to the
baseline solution strategy which does not use weight cancellation.

over, it has been shown that the orthodox linearization
of the noise equations can nonphysically amplify the sec-
ond harmonic (with respect to the exact solution of the
exact noise equations) while leaving the first harmonic al-
most unaffected. Examining the real component, it then
appears as though the results from the baseline method
demonstrate a large bias, and do not agree with the two
other results. The estimated value of the imaginary com-
ponent has much better agreement with the values of the

solutions which used approximate cancellation, but there
is more than 100% relative error.

Focusing on the two approximate weight cancellation
methods, both solutions are in excellent agreement in the
immediate vicinity of the vibrating pin in the real com-
ponent. Moving farther away from the pin, the results
obtained with the fine cancellation mesh have a slightly
lower value than those obtained with the coarse mesh. It
is possible that this difference is due to the finer mesh im-
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posing less of a bias when compared to the coarse mesh.
Both solutions agree within one standard deviation how-
ever, and the results would require further convergence
to confirm this hypothesis. In both the real and imagi-
nary components, the structure of the static flux is visi-
ble, which was not the case for the first harmonic results,
which is coherent with the expected behaviour of local
and global components of the noise field (see e.g. [3] and
references therein).

Table II displays the FOM ratios for the two approxi-
mate cancellation methods, when compared to the base-
line method. In general, the performance improvements
are very similar to the values seen with the first har-
monic. In the first harmonic, the imaginary component
of the noise field was dominant, while the real component
is dominant for the second harmonic. Comparing the
FOM ratio of the coarse mesh for the imaginary compo-
nent of the first harmonic with the real component of the
first harmonic, we see that the coarse mesh cancellation
method was actually slightly more effective at estimat-
ing the noise field for the dominant component of the
second harmonic than of the first. This is also true for
the non-dominant component with the coarse mesh as
well. Strangely, this is not true for the fine cancellation
mesh, as this method had slightly poorer performance on
the dominant component of the second harmonic, than
on the first.

C. The Effects of Vibration Frequency and
Amplitude

Given the remarkable improvements in performance
that weight cancellation has enabled, it is now possible
to envision the use of Monte Carlo noise simulations to
perform reactor analysis and assess the impact of specific
parameters on the noise field. In this section, examine
the first harmonic for two altered versions of the bench-
mark: one where the angular frequency of the vibration
of the fuel pin has been increased from ω0 = 2π rad s−1 to
ω0 = 4π rad s−1 (without changing the amplitude), and
a second one where the vibration amplitude has been in-
creased from ε = 0.2 cm to ε = 0.4 cm (without changing
the frequency). The resulting noise amplitude and phase
for these two problems (in addition to modulus and phase
of the original benchmark parameters) are presented in
Fig. 9. Approximate cancellation with the fine mesh was
used to obtain these results. In the previous sections, we
examined the complex noise field δφ because this is the
quantity which is estimated in the Monte Carlo simula-
tion, and the associated error bars are available, permit-
ting a comparison in performance with the FOM. Reac-
tor physicists, however, are typically more interested in
the modulus (|δφ|) and phase (atan2 (Im{δφ},Re{δφ})),
which can be calculated from the complex field. Despite
having error bars for the complex field, it was not possi-
ble to exhibit error bars for the modulus and phase, as
the covariance between the real and imaginary part was

not scored. Due to this limitation, no error bars are given
in Fig. 9.
First, we will consider the effects of the proposed vari-

ations to the vibration parameters on the noise modulus.
From Fig. 9, we first note that in the immediate vicinity
of the perturbation, changing only the frequency seems
to have little impact on the modulus. Increasing the am-
plitude of the vibration however, leads to an increase in
magnitude and width of the peaks. One would certainly
expect a widening of the peak in this case, as the area of
the perturbation has been increased. With a larger per-
turbation region, more noise source particles will be sam-
pled in the vicinity of each interface, contributing to the
larger magnitude. Farther away from the perturbed pin,
we see that both the ω0 = 4π rad s−1 and the ε = 0.4 cm
cases have a slightly larger amplitude, although this ef-
fect is slightly less apparent in group 2. These results
could indicate that for this system the global component
of the noise is more sensitive to the frequency of the vi-
bration, while the local component is more sensitive to
the amplitude of the vibration, in agreement with the
spectral analysis previously performed by Rouchon [53].
Examining the noise phase, it appears as though aug-

menting the perturbation (either in frequency or ampli-
tude) has little effect on the depth of the observed well.
Changing the vibration parameters did seem to change
the width of the phase well in both cases, and this ef-
fect is apparent in both energy groups. The increased
frequency reduced the well width, while the increased
amplitude enlarged it. Curiously, the observed changes
in the well width only ever occur on +x side of the well
in the first group, and on the −x side of the well for the
second group. This asymmetric behavior might be due
to the water hole located near the bottom left corner of
the vibrating pin. Examining a problem with a more
symmetric configuration could therefore be of interest in
future investigations.

VII. CONCLUSIONS

In this work, we have considerably extended our previ-
ous findings concerning the use of Monte Carlo methods
for neutron noise simulations. The contributions pre-
sented in this paper are twofold. First, we have pro-
posed a novel method to sample in an exact manner the
noise source particles produced from mechanical vibra-
tions within a system. Contrary to the previous im-
plementation in TRIPOLI-4®, which for the sake of
simplicity utilized many approximations, we have shown
that the noise source due to mechanical vibrations can
be represented without any approximation by mapping
it to a perturbation of the isotopic concentrations. For
this purpose, a fictitious material must be defined, con-
taining the union of the nuclides on either side of the
vibrating interface. A nuclide is then randomly chosen
from this fictitious material, which allows sampling the
noise source particles in a manner which is nearly identi-
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FIG. 9. Modulus and phase of the noise field through the center of the vibrating fuel pin at y = −2.52 cm, for different vibration
parameters. All results were obtained using MGMC, with approximate cancellation and the fine cancellation mesh.

cal to the method used in the much simpler case of cross
section oscillations. This new method was implemented
in the multi-group Monte Carlo mini-app MGMC and
verified against the noise source calculated with the de-
terministic noise solver in APOLLO3®: the two noise
sources were in excellent agreement.

Second, we have applied weight cancellation methods
as a variance reduction technique for neutron noise sim-
ulations. For the case of mechanical vibrations, the noise
source contains nearly equal positive and negative con-
tributions in both the real and imaginary components,
which makes it very difficult to estimate the resulting
noise field, because of very large variances in scores.
Preliminary investigations on the case of cross section
oscillations have shown that these issues can be over-
come using weight cancellation methods [36]. In view of
probing the effects of weight cancellation for the more
involved case of mechanical vibrations, we have imple-
mented a new Monte Carlo noise solver in MGMC. We
have started from the Monte Carlo neutron noise method
which was previously demonstrated in TRIPOLI-4®, as

it is able to produce error bars for the noise field. This
solution scheme was then modified, breaking the fixed-
source noise batches into inner fission generations, in or-
der to accommodate weight cancellation. To test our
new solution strategy with weight cancellation, we have
selected a recent benchmark for neutron noise problems,
consisting in a two-dimensional, two-group reflected fuel
assembly with a single vibrating fuel pin. Approximate
weight cancellation and exact regional weight cancella-
tion were tested on this benchmark problem: use of a rel-
atively coarse mesh with approximate cancellation leads
to improvements in the FOM by factors as high as 1624
when compared to the original neutron noise scheme im-
plemented in TRIPOLI-4®, at the expense of a slight
but undetected bias in the noise field. Use of a finer
mesh for approximate cancellation, which is required in
order to quench the bias inherent to this method, yielded
an improvement in the FOM by factors as high as 487.
By comparison, the exact weight cancellation technique
only improved the FOM by a factor of 14 and showed less
potential for implementation in production Monte Carlo
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codes, due to its algorithmic complexity.

The application of approximate weight cancellation im-
proves the quality of the resulting noise field due to me-
chanical vibrations to the point that it becomes feasible
to use Monte Carlo methods to analyse changes in the
noise field stemming from small changes to the vibration
frequency and amplitude; previously, without the use of
weight cancellation, such a comparison would have been
extremely challenging, if not impossible, for the case of
a fuel pin vibration [31]. Our results would indicate that
the application of weight cancellation to Monte Carlo
neutron noise simulations is essentially mandatory if one
is to obtain usable results for the study of neutron noise
in power reactors. Although further investigations are re-
quired, our analysis shows that the bias imposed on the
resulting noise field by the approximate weight cancella-
tion is typically small, and more than acceptable since it

can be reduced by refining the cancellation mesh. While
refining the mesh will reduce the efficiency of cancella-
tion (and also the efficiency of the noise calculation),
the observed improvements in the FOM for the exam-
ined benchmark problem suggest that this is likely not
a problem. In the future, we hope to demonstrate this
new Monte Carlo neutron noise solution scheme on larger
problems, such as vibrating fuel assemblies, or vibrating
clusters of fuel pins, to further demonstrate the potential
for Monte Carlo method to be applied to neutron noise
analysis.
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14 - Conclusions for Neutron Noise

In Part III, we have focused on the development of possible variance reduction techniques which could
be applied to neutron noise problems. For noise simulations, particles carry complex statistical weights, and
the real and imaginary parts are allowed to be either positive or negative. The estimation of the noise field
is then a sum of positive and negative contributions, which greatly increases the variance of the noise tally.
Stimulated by the findings of Part II, where we have shown that weight cancellation was capable of solving
the convergence issues of eigenvalue problems involving positive and negative weights, we have applied
similar strategies to noise simulations. In the following we recall our key findings and original contributions.

For the problem of noise induced by cross section oscillations, we considered a branchless sampling
approach to sample the noise source particles, the underlying idea being to quench the statistical dispersion
due to the creation of multiple noise particles at the same collision site. A new formalism for performing
branchless sampling with complex yields was developed for this puropose in Chapter 12. Unfortunately, using
this technique on cross section oscillations seemed to have very little effect on the FOM for the estimated
noise field, or may have even led to a slight degradation in performance. The exact cause of this observation
is not yet understood. Future work should revisit this method, to see if similar results are obtained for
mechanical vibration problems, and also examine possible alternative formulations which might improve the
method’s efficiency.

The application of weight cancellation to noise problems yielded more promising results. Using approx-
imate weight cancellation for the cross section oscillation problem in Chapter 12, a typical improvement by
a factor of 100 in the FOM was observed (using the time spent transporting neutrons) when comparing the
new calculation scheme with inner generations and weight cancellation to the original TRIPOLI-4® baseline
implementation, that does not use inner fission generations and does not apply weight cancellation. In
Chapter 13, the problem of mechanical vibrations was considered. Using approximate cancellation on a
coarse mesh, for a two-group benchmark with a single vibrating fuel pin, improved the FOM by a factor of
more than 1200; using a fine cancellation mesh led to a factor of more than 460. Exact regional cancellation
was unfortunately not as effective, and only improved the FOM by a factor of 14. Weight cancellation
reduced the variance in the noise field tally to a great enough extent that it was possible to perform sensi-
tivity analysis in noise simulations, i.e., observing the small deviations in the noise field resulting from small
changes in the physical parameters of the benchmark. Without the use of cancellation, the large statistical
uncertainties resulting from the baseline algorithm would have made the noise field for mechanical vibra-
tion problems essentially unusable, and sensitivity analysis impossible. The results presented in Chapter 13
strongly suggest that weight cancellation should be mandatory for Monte Carlo codes that solve the noise
equation. We hope to test weight cancellation on larger noise problems in the future, such as vibrating
assemblies in a full core, in continuous-energy.

In addition to exploring the effects of weight cancellation, we have also made another original contribution
to the solution of noise problems. The initial noise sampling scheme for vibrations in TRIPOLI-4® made many
simplifying approximations, which resulted in a different noise source than that predicted by APOLLO3®.
To remedy this situation, we have developed a novel algorithm to sample the noise source from mechanical
vibrations in an exact manner, making it possible to more accurately represent this phenomenon in our
Monte Carlo simulations. The complete derivation of this method was performed in Chapter 13, and was
checked against the noise source obtained from APOLLO3® as a reference. The new approach requires the
construction of a fictitious material which contains the union of isotopes from the materials on either side
of the vibrating interface. A nuclide can be sampled from this fictitious material in the standard manner,
and be used to sample the noise source particles with a methodology which is very similar to that of the
simpler case of cross section oscillations. Our initial implementation of this exact noise sampling scheme has
been added to Chenille for flat vibrating surfaces. In the near future, we hope to extend this functionality
to cylindrical interfaces as well, facilitating the treatment of standard fuel pins and cladding.

192



15 - Conclusions and Future Work

Continual advances in high performance computing resources allow Monte Carlo code developers to
consider performing simulations which were once impossible. To accompany these new capabilities, the
initial goal of this thesis was to improve the fidelity of material representations in Monte Carlo transport
codes. Currently, most production-level codes assume that material properties are piece-wise constant over
the elementary cells of the geometric model. In most real-world applications, such an assumption is not a
truly faithful representation of reality, as temperature and density fields are generally continuous functions of
position: this is particularly relevant in the domain of reactor physics, where the neutron field is coupled with
the multi-physics feedback due to temperature and density effects in the fuel and in the moderator. With new
coupled multi-physics simulations, one can therefore envision that during neutron transport the temperature
and density at any given position can be queried from the thermal-hydraulic and thermo-mechanic solvers
coupled with the Monte Carlo code. Allowing material properties to be spatially continuous functions gives
rise to macroscopic cross sections which are also spatially continuous. Sampling the distance that a particle
will fly before undergoing a collision becomes much more difficult under these circumstances.

In Part I of this manuscript, we performed an analysis of the existing particle tracking algorithms that
could potentially be used to deal with spatially continuous cross sections. We found that the two best
candidates were delta tracking [1] and and a variant of negative-weighted delta tracking proposed by Carter
et al. [2]. Delta tracking requires a majorant cross section which is used to sample the distance to tentative
collision sites. Negative-weighted delta tracking only requires a sampling cross section which need not be a
majorant; this additional flexibility comes at the cost of introducing negative particle weights. When used
on fixed-source transport problems, both methods have comparable performance, so long as the sampling
cross section for negative-weighted delta tracking does not underestimate the total cross section by a large
factor. These results also indicate that negative-weighted delta tracking might be the preferred method for
application in a general-purpose Monte Carlo code. Determining the majorant cross section across a spatially
continuous temperature and density field for use in delta tracking could potentially be quite challenging.
Delta tracking is known to demonstrate poor performance in reactor physics problems at certain energies,
due to the localized heavy absorbed problem [3], and Carter et al.’s negative-weighted delta tracking would
have similar difficulties. While Serpent is able to counter this inefficiency by switching to surface tracking
at these energies, this would not be possible when using spatially continuous cross sections.

We instead considered regionalization as a possible solution, where the problem domain could be divided
into regions via a simple mesh, and each region would contain a unique majorant (or sampling) cross section.
Both delta tracking and negative-weighted delta tracking demonstrated better performance when the number
of unique regions was increased, although with diminishing returns. It is likely that a regionalization approach
might be effective to counter the localized heavy absorbed problem, but more work is needed to develop a
methodology for best determining these regions.

In Part I we also assessed the efficiency of tracking methods in stochastic media, for the important
class of Poisson tessellations, which might be used to model fuel fragmentation following severe accidents.
Surface tracking and delta tracking were compared for different tessellation densities, where the average
chord length, Λ, was either smaller than, greater than, or approximately equal to the mean free path of
particles, λ. Three different acceleration techniques were also considered: neighbor maps, cell search meshes,
and storing the geometry kernel with banked particles. In general, if a cell search mesh is used, then surface
tracking with a neighbor map is better than delta tracking when Λ ≫ λ, while delta tracking is superior in
the regime where Λ ≪ λ. When a cell search mesh is not utilized, surface tracking with a neighbor map
was always more efficient than delta tracking.

This analysis was carried out exclusively for the case of Poisson tessellations, however, and likely does not
hold for the case of stochastic spherical inclusions in a background matrix (which would model TRISO fuel
particles for example): the spheres only have one neighbor (the background matrix), and the background
matrix is a neighbor to all of the spheres. Future research should therefore address this class of stochastic
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media, to determine which methods might be best for this use case.
For our comparison of delta tracking and negative-weighted delta tracking with spatially continuous cross

sections, we initially focused on fixed-source problems. In view of their key role for most reactor physics
applications, we then turned our attention to k-eigenvalue problems, and we assessed the performance
of negative-weighted delta tracking when used in combination with power iteration. In Part II of the
manuscript, we have performed power iteration simulations using delta tracking and negative-weighted delta
tracking. While the delta tracking algorithm demonstrated no difficulties, as expected from the literature,
the negative-weighted delta tracking simulations led to catastrophic termination. The number of particles
in the simulation would increase without bound, eventually overwhelming the computer memory, leading
the program to be killed by the operating system. Eventually, by modeling the system as a set of coupled
transport equations for the positive and negative flux, we were able to determine that the presence of
negative weights introduces of new family of nonphysical eigenstates, and that the dominant eigenstate of
the set of coupled equations will always correspond to one of these nonphysical eigenstates. Moreover, we
were able to prove that weight cancellation (where particles with positive and negative weights annihilate
with one another) can allow power iteration to converge to the fundamental mode of the physical transport
equation. Our analysis also showed that there is a minimum amount of weight cancellation that is required
for the system to converge to the physical flux.

If a general Monte Carlo code implements the negative-weighted delta tracking method (and does not
use a majorant cross section), then a weight cancellation technique must also be implemented, and having
as many options for this as possible is of benefit to both code developers and users. To perform weight
cancellation, two different techniques were taken from the literature. The first method was an approximate
regional weight cancellation method [4]. This method is very easy to implement, and is quite fast. Using
this algorithm on the C5G7 benchmark with negative-weighted delta tracking, the particle population was
stabilized, and the simulation was able to complete normally. Although the method does impart a bias
on the results, this bias was not visible for the cancellation mesh which we utilized in our simulation. An
exact regional cancellation method had previously been proposed in the literature [5], but had only been
demonstrated in a one-dimensional single-speed transport problem. In Part II we extended this technique for
use in three-dimensional multi-group transport problems. Using this new algorithm on the C5G7 benchmark
with negative-weighted delta tracking, it was possible to complete a power iteration simulation nominally,
albeit in a longer time frame and with a larger variance than if delta tracking had been used. We subsequently
proposed a method to optimize the selection of the cancellation parameters to increase the amount of weight
which is cancelled by the algorithm. This optimal choice of cancellation parameters was shown to improve
the efficiency of exact regional cancellation, although the technique is still much less efficient in terms of
figure of merit than the approximate regional cancellation method.

The theory for how one might go about performing exact weight cancellation in continuous-energy
simulations has been sketched, but we have also stressed that gaining access to the required nuclear data
in a Monte Carlo code may be difficult. Future work will need to attempt a full three-dimensional and
continuous-energy implementation of exact weight cancellation. Even if it were possible to perform exact
cancellation in continuous-energy, the efficiency of the method might not be high enough to be effective at
permitting the convergence of power iteration for certain simulations. In such cases, we might be forced
to rely exclusively on approximate weight cancellation: a challenging topic of research would thus be the
quantification of the error imposed by this method. Currently, the only way to determine if a cancellation
mesh is refined enough so that the bias in the results is not visible is to perform several simulations with
different cancellation meshes. Being able to quantify the error of approximate cancellation and predict the
required cancellation mesh refinement in advance would greatly contribute to the confidence in the method.

Although initially of interest in this work for performing power iteration with negative-weighted delta
tracking, weight cancellation techniques are useful for other key applications of Monte Carlo simulations in
the domain of reactor physics. In the literature, the two weight cancellation techniques that we considered
in this thesis were previously used for estimating the second harmonic of the flux [4, 5], determining the
critical buckling [6, 7], and solving the neutron noise equations in the frequency domain [6–8]. In Part
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III of the manuscript, we have applied exact and approximate weight cancellation methods to the particles
carrying complex statistical weights involved in neutron noise simulations, which are notoriously hindered
by serious convergence issues. When applied to the academic problem of neutron noise induced by cross
section oscillations, approximate weight cancellation could improve the figure of merit by a factor of 100,
when considering only the time spent transporting noise particles. For the case of neutron noise induced by
mechanical vibrations, we found an improvement of more than 1200 with a coarse approximate cancellation
mesh, and a factor of approximately 470 for a fine approximate cancellation mesh. Exact regional cancellation
was not as effective, however, and only resulted in an improvement by a factor of 14 for mechanical vibrations.

Our results indicate that weight cancellation is absolutely essential to obtain results from neutron noise
simulations. Without weight cancellation, the variance in the noise field is too large for the obtained results
to be of any use. For the examined noise problems, most of the amplitude of the noise field is either in the
imaginary or the real component, but never equally shared between the two. While the relative error of the
dominant component can be reduced to very acceptable levels, the relative error of the weaker component
is always somewhat large: a remaining question is thus whether variance reduction techniques exist which
could improve the relative error of the weaker component of the noise field.

We have also proposed and tested another possible variance reduction technique, branchless noise source
sampling: for unknown reasons, this technique seemed to have little effect, and may have even led to a
slight degradation in performance. Further investigations will be needed in order to understand the reasons
of this failure and to propose possible improvements.

In the benchmark problems considered in Part III, the noise detectors were somewhat close to the noise
source: in the general case where the detectors are located far from the source, it would be interesting
to see whether adjoint-driven variance reduction methods could be developed for the noise equation, pos-
sibly leading to effective zero-variance schemes such as those proposed for other types of reactor physics
simulations [9–11].

Finally, to perform the neutron noise simulations of a vibrating fuel pin, we have developed a new exact
algorithm for sampling the noise source from a vibrating interface. This method will improve the fidelity of
future Monte Carlo noise simulations, as only approximate techniques were available before. In the future,
we hope to demonstrate these newly developed techniques on a noise problem in continuous-energy, and on
larger problems, such as vibrating fuel assemblies.
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A - Résumé Détaillé en Français

A.1 . Introduction

La distribution des neutrons et des photons dans l’espace des phases au sein des systèmes d’intérêt dans
les applications de radioprotection et de physique des réacteurs nucléaires peut être décrite par l’équation
de Boltzmann. Deux familles de méthodes numériques existent pour résoudre l’équation de Boltzmann
pour les neutrons. Les méthodes déterministes sont la catégorie la plus connue et englobent une variété
de techniques qui reposent sur la discrétisation de l’espace des phases. Tous les solveurs déterministes
utilisent l’approximation multi-groupes, où les sections efficaces des nucléides sont approximées comme étant
constantes dans un intervalle d’énergie [1]. La composante de direction des solutions est souvent discrétisée
le long de plusieurs ordonnées discrètes (ce qui conduit aux méthodes Sn), ou peut être approchée comme
une somme finie d’harmoniques sphériques (ce qui conduit aux méthodes Pn) [2]. Les coordonnées spatiales
sont généralement discrétisées au moyen d’un maillage géométrique, bien que certaines techniques telles
que la méthode des caractéristiques ne nécessitent pas de maillage spatial mais supposent que la source
de neutrons est une fonction constante ou linéaire par morceaux des coordonnées de l’espace de phase [2].
Les codes déterministes tels que APOLLO3®, développé au CEA, sont capables de résoudre l’équation de
transport relativement rapidement,1 et sont donc les solveurs les plus couramment utilisés dans l’industrie
nucléaire. Afin de discrétiser finement les six dimensions de l’espace des phases (ou sept, pour les problèmes
non stationnaires où il faut ajouter le temps aux variables de l’espace des phases), le nombre de degrés de
liberté pour le problème d’un cœur complet peut atteindre 1021, ce qui est hors de portée de la génération
actuelle d’ordinateurs [3]. Pour pallier ce problème, des modèles d’ordre réduit et des approximations sont
introduits dans les solveurs déterministes, ce qui ajoute un biais de modélisation, en plus des inévitables
erreurs de discrétisation, dans les résultats finaux. Ceci est particulièrement délicat pour le traitement de la
variable énergie : l’utilisation de sections efficaces multi-groupes, qui nécessite des modèles d’autoprotection
très sophistiqués, peut entraîner des erreurs dont l’amplitude est très difficile à prédire [2].

La méthode Monte Carlo a été initialement développée dans les années 1940, pour résoudre l’équation
de Boltzmann par une approche probabiliste [4]. Dans cette technique, une population de neutrons est suivie
à travers une séquence de vols libres et de collisions avec les matériaux traversés. L’évolution de chaque
particule est intrinsèquement stochastique et doit être échantillonnée selon les lois physiques (sections
efficaces, distributions énergie-angle et rendements) fournies dans les bibliothèques de données nucléaires.
Des nombres aléatoires sont utilisés en conjonction avec des probabilités connues pour différents événements
afin de décider le destin de la particule, de sa naissance jusqu’à sa mort due à la capture ou à la fuite. Chaque
fois qu’un événement d’intérêt est échantillonné, la particule correspondante contribue à la valeur estimée
de l’observable associée à l’événement, appelée un score ou un tally. Une fois que toute la population a
été traitée2, la moyenne d’ensemble sur toutes les contributions des particules fournit une estimation non
biaisée de l’observable recherchée.

La connaissance des opérateurs de vol et de collision de l’équation de Boltzmann (en plus de la source)
est suffisante pour échantillonner les trajectoires des particules : un avantage clé de la méthode Monte Carlo
est qu’elle ne nécessite pas la discrétisation de l’équation de Boltzmann (bien que l’espace des phases doive
être décomposé en régions pour enregistrer les événements échantillonnés pour chaque quantité d’intérêt).
Différentes quantités telles que le flux, le courant et les taux de réaction peuvent être estimées en faisant

1Il est généralement admis que les solveurs déterministes sont beaucoup plus rapides par rapport aux solveursMonte Carlo. Ceci est à nuancer, car le temps de calcul des codes déterministes n’inclut généralement pas letemps passé à effectuer des calculs d’autoprotection et d’homogénéisation pour obtenir des sections efficacesmulti-groupes.2L’utilisation de nombres aléatoires avec des grains différents pour échantillonner des processus stochastiquesgarantit que les résultats de chaque simulation sont différents et indépendants. Un code déterministe donneratoujours le même résultat pour un problème donné.
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la moyenne des contributions des particules aux scores correspondants dans la partie donnée de l’espace
des phases. En simulant directement le processus physique pour les particules individuelles, il est possible
d’obtenir une solution non biaisée et sans approximations, et d’estimer l’incertitude statistique associée
(c’est-à-dire le niveau de confiance que nous pouvons avoir dans le résultat obtenu).3 Grâce à l’absence
de biais, la méthode Monte Carlo est la méthode étalon pour la vérification et la validation de codes
déterministes. Le principal inconvénient des simulations Monte Carlo est qu’elles sont plus lentes que les
solveurs déterministes, notamment parce que l’incertitude statistique décroît comme 1/

√
N en fonction du

nombre de particules simulées, N . Pour cette raison, traditionnellement, l’utilisation des codes Monte Carlo
dans l’industrie nucléaire est relativement limitée par rapport aux solveurs déterministes, et généralement
restrainte aux problèmes stationnaires.

A.1.1 . Nouveaux Défis pour les Simulations Monte Carlo en Physique des Réacteurs

Au cours des dernières décennies, les ressources informatiques disponibles pour la plupart des utilisa-
teurs ont considérablement augmenté. Les simulations Monte Carlo qui prenaient auparavant des heures
ou des jours sur des super-calculateurs, autrefois à la pointe de la technologie, peuvent désormais être
exécutées sur un ordinateur portable personnel en quelques minutes. Alors que les codes Monte Carlo
étaient autrefois presque exclusivement utilisés pour l’étude des réacteurs de recherche ou des cœurs en
conditions stationnaires, plusieurs projets en Europe (HPMC4 et McSAFE5) et aux États-Unis (CESAR6 et
CASL7) ont stimulé le dévelopement de nouvelles méthodes de simulation et de techniques de réduction
de variance permettant des réalisations sans précédent. Les codes Monte Carlo sont maintenant utilisés
pour effectuer une analyse complète du cœur pour les calculs d’évolution avec des solveurs couplés pour la
thermohydraulique et la thermomécanique pour prendre en compte la multi-physique [5–8]. Récemment, des
simulations Monte Carlo dynamiques ont été effectuées sur des transitoires complets d’un cœur, y compris à
l’échelle de temps des précurseurs de neutrons retardés, avec une multi-physique couplée [7, 9, 10]. Avec les
améliorations continues apportées aux infrastructures de calcul à haute performance (HPC), le nombre de
possibilités pour les simulations Monte Carlo en physique des réacteurs ne cesse de s’étendre. De nouveaux
types de simulations qui n’avaient jamais été envisagés auparavant sont actuellement à l’étude. Certaines
recherches se sont concentrées sur la résolution des harmoniques supérieures de l’équation de transport,
afin d’améliorer la convergence de la source et de calculer le rapport de dominance, qui est essentiel à la
sûreté du réacteur [11, 12]. Un autre nouveau sujet d’intérêt, développé dans le cadre du projet EU H2020
CORTEX (2017-2021), a été la résolution de l’équation du bruit neutronique dans le domaine de fréquences,
afin de comprendre les effets des vibrations des crayons ou des assemblages dans un cœur [13, 14].

Les progrès du HPC et l’étude de nouveaux types de simulations obligent les développeurs de code
Monte Carlo à reconsidérer complètement la manière dont les routines de transport sont mises en œuvre. Le
premier exemple de ce type est peut-être le développement de techniques permettant d’effectuer à la volée
l’élargissement Doppler des sections efficaces [15, 16]. Un autre exemple est la réécriture d’un algorithme «
history-based » vers un algorithme « event-based » pour une meilleure utilisation des GPUs [17]. Comme
les GPUs ont été développés pour être plus efficaces lorsqu’ils effectuent la même opération sur plusieurs
éléments de données, exploiter efficacement leur potentiel de calcul nécessite de trier les particules qui
subissent le même type de réaction. Il ressort clairement de ces exemples que l’avancement de l’analyse
Monte Carlo pour la physique des réacteurs nucléaires obligera les développeurs de code à reconsidérer les
méthodes traditionnelles, en inventant de nouvelles techniques qui correspondent mieux aux contraintes des
architectures informatiques modernes.

3La solution obtenue par la méthode Monte Carlo est exacte pour les données nucléaires, la géométrie et lescompositions de matériaux données. S’il existe des incertitudes dans la configuration géométrique et la com-position des matériaux, ou si les données nucléaires fournies sont inadéquates, les résultats d’un systèmepeuvent ne pas s’aligner avec les résultats expérimentaux.4High performance Monte Carlo reactor core analysis. https://www.fp7-hpmc.eu5High-PerformanceMonteCarloMethods for SAFEtyDemonstration. https://cordis.europa.eu/project/id/7550976Center for Exascale Simulation of Advanced Reactors.7Consortium for Advanced Simulation of Light Water Reactors. https://casl.gov
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A.1.2 . Des Milieux Continus au Bruit Neutronique

L’objectif principal de cette thèse est de rechercher une approche possible pour améliorer la fidélité
de la modélisation des propriétés des matériaux en relation avec le transport de particules par des simu-
lations Monte Carlo. Dans la plupart des codes Monte Carlo actuels, les propriétés des matériaux sont
supposées être des fonctions constantes par morceaux de la position spatiale. A chaque volume élémentaire
(ou cellule) du modèle géométrique sont typiquement associées une température, une densité et une com-
position isotopique : au sein de cette région spatiale, ces propriétés physiques sont supposées spatialement
homogènes. Sauf dans quelques cas, cette hypothèse n’est généralement pas satisfaite dans la réalité, car
toutes ces propriétés peuvent être des fonctions continues de la position spatiale. Ceci est particulière-
ment pertinent dans les applications de la physique des réacteurs, lorsque l’on considère les simulations
de transport neutronique couplées aux champs thermohydraulique, thermomécanique et d’évolution : pour
prendre en compte les effets multi-physiques, il est nécessaire de rechercher la température, la densité et
les concentrations isotopiques à n’importe quelle position dans le réacteur, ce qui rend les propriétés du
matériau vues par les neutrons le long de leurs déplacements également dépendantes de manière continue
de la position. L’utilisation de ces informations permettrait une représentation plus précise des systèmes du
monde réel. Des bibliothèques sont déjà en cours de développement pour permettre aux codes neutron-
iques de Monte Carlo d’interroger les températures et densités calculées par les solveurs multi-physiques
en mémoire [18]. Les sections efficaces spatialement continues pourraient également être appliquées aux
problèmes d’évolution, où les concentrations isotopiques varient dans l’espace. Dans les codes actuels, les
crayons de combustible doivent être discrétisés en plusieurs couronnes (≈ 10), afin de tenir compte des
effets de peau. Des concentrations isotopiques spatialement continues pourraient potentiellement rendre
cette discrétisation en couronnes inutile.

La température, la densité et les concentrations isotopiques sont toutes utilisées pour déterminer la
section efficace macroscopique à une position et une énergie données. Si ces propriétés matérielles sont
des fonctions continues de la position, alors la section macroscopique l’est aussi. L’échantillonnage de la
distance parcourue par une particule avant de subir une collision est une partie intégrante de l’algorithme
Monte Carlo, comme cela est décrit dans la section 2.3. Cette tâche devient cependant laborieuse une fois
que les sections efficaces ne sont plus constantes par morceaux. Notre objectif était donc d’examiner de
manière critique les méthodes de suivi des particules existantes et de les adapter pour échantillonner des
distances de vol à partir de sections efficaces spatialement continues.

Dans la partie I, nous considérons plusieurs algorithmes de suivi de particules différents et examinons leurs
performances lorsqu’ils sont utilisés dans des problèmes à source fixe avec des sections efficaces spatialement
continues. Parmi les algorithmes considérés, notre analyse montre qu’une méthode que nous qualifions de
negative-weighted delta tracking est la plus prometteuse [19, 20]. La particularité de la méthode negative-
weighted delta tracking est que les particules peuvent avoir un poids statistique positif ou négatif. Après
cette investigation initiale dans le chapitre 4, nous tentons d’examiner les performances du negative-
weighted delta tracking dans les simulations d’itération de puissance. Bien que l’algorithme fonctionne
dans le cas des problèmes à source fixe, toutes les simulations d’itération de puissance échouent, à notre
grande surprise. Dans la partie II, nous analysons les raisons de cet échec et proposons une stratégie basée
sur l’annulation de poids comme solution. L’annulation de poids est une opération qui « combine » une
particule de poids positif et une particule de poids négatif de manière à ce que leurs poids s’annulent l’un
avec l’autre. Accomplir cela de manière non biaisée dans une simulation Monte Carlo n’est pas trivial, car
les particules sont chacune situées à des coordonnées d’espace de phase différentes, et il est donc impossible
qu’une particule positive et négative se retrouve exactement aux mêmes coordonnées. Nous développons
deux méthodes d’annulation de poids différentes dans la partie II, et les appliquons à l’itération de puissance
avec negative-weighted delta tracking : nous montrons que cette approche permet à ces simulations de se
terminer normalement.

Alors que le développement des techniques d’annulation de poids apparaît initialement indépendant du
problème des milieux continus dans l’espace, il est primordial lors de l’utilisation du negative-weighted delta
tracking. D’autres problèmes dans le domaine de la physique des réacteurs nucléaires existent qui pourraient
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également bénéficier de l’application de l’annulation de poids. Un de ces cas est la résolution de l’équation
du bruit neutronique dans le domaine de fréquences. Une précédente thèse au CEA s’est concentrée sur le
développement de méthodes Monte Carlo pour résoudre l’équation du bruit neutronique [21], et nous avons
décidé de tester les techniques d’annulation de poids développées dans la partie II dans ce domaine. La
partie III de cette thèse applique les techniques d’annulation de poids nouvellement développées au problème
du bruit neutronique en tant que technique de réduction de la variance.

A.1.3 . Chenille

TRIPOLI-4® est le code Monte Carlo de référence pour le transport de particules qui est en développe-
ment au CEA depuis le milieu des années 90 [22]. En tant que code utilisé dans l’industrie, TRIPOLI-4®

possède une pléthore de fonctionnalités (y compris la possibilité de propager des neutrons, des photons et
des électrons/positons dans la gerbe électromagnétique) pour des applications allant de la physique des
réacteurs à la radioprotection et à l’instrumentation nucléaire : actuellement la base de code se situe à env-
iron 400 kSLOC (Source Lines Of Code). Tenter d’apporter même de petits changements à un programme
aussi vaste peut s’avérer difficile, en particulier pour les étudiants qui ne se sont pas encore familiarisés avec
le code et ses particularités. Le travail présenté dans cette thèse a nécessité la mise en œuvre de nouveaux
algorithmes de transport de particules, la restructuration de la décomposition des problèmes d’itération de
puissance et de transport à source fixe, et l’ajout de maillages d’annulation de poids. Toutes ces tâches
sont très invasives vis-à-vis de l’architecture d’un code Monte Carlo ; le travail qu’exigeaient les objectifs
scientifiques fixés pour le déroulement de cette thèse aurait été difficilement réalisable dans TRIPOLI-4®,
sous les contraintes temporelles d’une thèse. Ainsi, bien que les implémentations existantes dans TRIPOLI-
4® aient souvent été prises comme point de départ, dans la pratique tous les nouveaux algorithmes ont été
conçus et testés à partir de Chenille, une nouvelle mini-application Monte Carlo développée à partir de zéro
au fil de cette thèse.

Chenille est une mini-application de simulation Monte Carlo capable de simuler le transport de neutrons
dans des géométries tridimensionnelles, en utilisant des données nucléaires multi-groupes ou en énergie
continue. Avec seulement ≈ 20 kSLOC et écrit de manière très modulaire, la taille et le style de Chenille
facilitent la mise en œuvre et le test rapides de nouveaux algorithmes, même ceux nécessitant une réécriture
approfondie de l’architecture existante. Comme l’une des principales investigations de cette thèse était
l’examen de différentes méthodes de suivi des particules, Chenille a plusieurs options. Le surface tracking
standard est la méthode de suivi par défaut. Le delta tracking est également disponible ; actuellement, il
n’est pas possible d’utiliser une combinaison hybride de surface tracking et de delta tracking, comme c’est
le cas dans Serpent [23]. Une variante du negative-weighted delta tracking, telle que proposée par Carter et
al. a également été implémentée dans Chenille [19]. Trois modes de simulation différents sont disponibles :
source fixe, valeur propre k et bruit neutronique. Les trois modes sont disponibles en transport de particules
multi-groupes et en énergie continue. Dans ce dernier cas, Chenille utilise la bibliothèque Papillon Nuclear
Data Library (PapillonNDL), qui est développée et maintenue par moi-même [24]. PapillonNDL est une
bibliothèque C++20 qui lit les fichiers ACE pour les données de neutrons en énergie continue, et est publiée
en tant que logiciel libre et open-source sous la licence GPLv3. Il fournit les classes qui sont responsables de
l’évaluation des sections efficaces microscopiques et de l’échantillonnage des lois de diffusion et de fission.
Les lois de diffusion thermique sont également prises en charge et peuvent être utilisées avec PapillonNDL
et Chenille. Actuellement, Chenille n’utilise pas de tables de probabilité pour les régions de résonances
non résolues. Une vérification de base a été effectuée à l’aide d’une suite de problèmes analytiques multi-
groupes [25] et d’une comparaison des résultats avec OpenMC pour un ensemble de problèmes de référence
de criticité en énergie continue. Chenille a été écrit avec à la fois un parallélisme de mémoire partagée et
un parallélisme de mémoire distribuée, en utilisant respectivement les normes OpenMP et MPI. Les fichiers
d’entrée sont écrits en YAML, ce qui les rend très faciles à lire et à écrire. Une version multi-groupes de
Chenille, appelée MGMC, a été mise à la disposition du public en tant que logiciel libre sous la licence
CeCILL-v2.1 [26]. MGMC possède toutes les fonctionnalités principales de Chenille, mais ne dispose pas
des classes et fonctions nécessaires pour lire les fichiers ACE et interagir avec l’API de PapillonNDL.
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A.1.4 . Structure de la Thèse
Cette thèse est organisée en trois parties principales, chacune portant sur un thème spécifique :

1. La partie I est consacrée à l’évaluation des performances d’une variété de différentes méthodes de
suivi des particules. Deux cas d’utilisation différents sont considérés : les milieux stochastiques et les
sections efficaces spatialement continues.

2. La partie II examine l’application du negative-weighted delta tracking aux problèmes d’itération de
puissance k, montrant que les algorithmes d’annulation de poids sont obligatoires pour que ces
simulations convergent.

3. La partie III applique les nouvelles méthodes d’annulation de poids aux simulations de bruit neutron-
ique, en tant que technique de réduction de la variance.

Chaque partie du manuscrit commence par un chapitre d’introduction, suivi de plusieurs publications
de recherche (chacune dans un chapitre distinct), puis d’un dernier chapitre de conclusion. Le chapitre
d’introduction est destiné à fournir au lecteur les connaissances préalables nécessaires et les outils qui seront
ensuite utilisés dans les problèmes décrits dans les publications ultérieures. Certaines des principales méth-
odes utilisées dans les articles sont décrites et les résultats importants sont résumés. Toutes les analyses
techniques détaillées et les résultats des simulations numériques sont fournis dans ces articles. Ils sont présen-
tés dans un ordre qui doit permettre une transition en douceur entre les différentes parties du manuscrit et
rendre le fil de la pensée clair. Une enquête, tout en répondant à certaines questions, en amène d’autres dans
un domaine légèrement différent ; finalement, après avoir posé suffisamment de questions puis répondu, il
est tout à fait possible de se retrouver très loin de son point de départ (ce qui est la définition d’une marche
aléatoire, telle que simulée par Monte Carlo !). Enfin, chaque partie thématique se termine par un chapitre
de conclusion, qui résume les principaux résultats, et mentionne les questions ouvertes qui devraient être
abordées par les recherches futures. La liste des chapitres qui ont déjà été publiés ou qui ont été soumis
pour publication est fournie ci-dessous. Avec chaque chapitre, on trouvera la référence appropriée pour la
publication associée.

Chapitre 3: H. Belanger, C. Larmier, D. Mancusi, and A. Zoia, “Optimization of Particle Tracking Meth-
ods for Stochastic Media,” In Proceedings of the International Conference on Physics of Reactors 2022
(PHYSOR 2022), May 2022, Pittsburgh, PA, p. 294-303.

Chapitre 4: H. Belanger, D. Mancusi, and A. Zoia, “Review of Monte Carlo methods for particle transport
in continuously-varying media,” European Physical Journal Plus, vol. 135, no. 11, p. 877, 2020, doi:
10.1140/epjp/s13360-020-00731-y.

Chapitre 7: H. Belanger, D. Mancusi, and A. Zoia, “Solving Eigenvalue Transport Problems with Negative
Weights and Regional Cancellation,” In Proceedings of the The International Conference on Mathematics
and Computational Methods Applied to Nuclear Science and Engineering 2021 (M&C 2021), October 2021,
p. 46-55.

Chapitre 8: H. Belanger, D. Mancusi, and A. Zoia, “Exact weight cancellation in Monte Carlo eigen-
value transport problems,” Physical Review E, vol. 104, no. 1, p. 015306, 2021, doi: 10.1103/phys-
reve.104.015306.

Chapitre 9: H. Belanger, D. Mancusi, and A. Zoia, “Unbiasedness and optimization of regional weight
cancellation,” Physical Review E, vol. 106, no. 2, p. 025302, 2022, doi: 10.1103/physreve.106.025302.
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Chapitre 12: H. Belanger, D. Mancusi, and A. Zoia, “Variance Reduction Techniques for Monte Carlo
Neutron Noise Simulations,” In Proceedings of the International Conference on Physics of Reactors 2022
(PHYSOR 2022), May 2022, Pittsburgh, PA, p. 544-553.

Chapitre 13: H. Belanger, D. Mancusi, A. Rouchon, and A. Zoia, “Variance Reduction and Noise Source
Sampling Techniques for Monte Carlo Simulations of Neutron Noise Induced by Mechanical Vibrations,”
Nuclear Science and Engineering, accepted for publication.

A.2 . Conclusions et Travaux Futurs

Les progrès continus des ressources de calcul haute performance permettent aux développeurs de code
Monte Carlo d’envisager d’effectuer des simulations qui étaient autrefois impossibles. Pour accompagner ces
nouvelles capacités, l’objectif initial de cette thèse était d’améliorer la fidélité des représentations matérielles
dans les codes de transport Monte Carlo. Actuellement, la plupart des codes supposent que les propriétés
des matériaux sont constantes par morceaux sur les cellules élémentaires du modèle géométrique. Dans la
plupart des applications du monde réel, une telle hypothèse n’est pas une représentation fidèle de la réalité,
car les champs de température et de densité sont généralement des fonctions continues de la position : ceci
est particulièrement pertinent dans le domaine de la physique des réacteurs, où le champ neutronique est
couplé aux contre réactions multi-physique dues aux effets de température et de densité dans le combustible
et dans le modérateur. Avec de nouvelles simulations multi-physiques couplées, on peut donc envisager que
lors du transport des neutrons, la température et la densité à une position donnée puissent être interrogées
à partir des solveurs thermohydrauliques et thermomécaniques couplés au code Monte Carlo. Permettre
aux propriétés des matériaux d’être des fonctions spatialement continues donne lieu à des sections efficaces
macroscopiques qui sont également spatialement continues. L’échantillonnage de la distance parcourue par
une particule avant de subir une collision devient beaucoup plus difficile dans ces circonstances.

Dans la partie I de ce manuscrit, nous avons effectué une analyse des algorithmes de suivi de particules
existants qui pourraient potentiellement être utilisés pour traiter des sections efficaces spatialement contin-
ues. Nous avons constaté que les deux meilleurs candidats étaient le delta tracking [27] et une variante
du negative-weighted delta tracking proposée par Carter et al. [19]. Le delta tracking nécessite une section
efficace majorante qui est utilisée pour échantillonner la distance jusqu’aux sites de collision provisoires. Le
negative-weighted delta tracking ne nécessite qu’une section efficace d’échantillonnage qui n’a pas besoin
d’être majorante; cette flexibilité supplémentaire se fait au prix de l’introduction de poids de particules
négatifs. Lorsqu’elles sont utilisées sur des problèmes de transport à source fixe, les deux méthodes ont des
performances comparables, tant que la section efficace d’échantillonnage pour le negative-weighted delta
tracking ne sous-estime pas la section efficace totale par un facteur important. Ces résultats indiquent
également que le negative-weighted delta tracking pourrait être la méthode préférable pour l’application
dans un code Monte Carlo à usage général. La détermination de la section efficace majorante à travers un
champ de température et de densité spatialement continu pour une utilisation dans le delta tracking pour-
rait potentiellement être compliquée. Le delta tracking est connu pour avoir de mauvaises performances
dans les problèmes de physique des réacteurs à certaines énergies, en raison du problème localisé de forte
absorption [28], et le negative-weighted delta tracking de Carter et al. aurait des difficultés similaires. Alors
que Serpent est capable de contrer cette inefficacité en passant au surface tracking à ces énergies, cela ne
serait pas possible en utilisant des sections efficace spatialement continues.

Nous avons plutôt considéré la régionalisation comme une solution possible, où le domaine du problème
pourrait être divisé en régions via un maillage simple, et chaque région contiendrait une section efficace
majorante (ou d’échantillonnage) unique. Le delta tracking et le negative-weighted delta tracking ont
de meilleures performances lorsque le nombre de régions uniques a augmenté, mais avec des rendements
décroissants. Il est probable qu’une approche de régionalisation pourrait être efficace pour contrer le prob-
lème localisé de forte absorption, mais des travaux supplémentaires sont nécessaires pour développer une
méthodologie permettant de déterminer au mieux ces régions.
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Dans la partie I, nous avons également évalué l’efficacité des méthodes de suivi dans les milieux stochas-
tiques, pour la classe importante des mosaïques de Poisson, qui pourraient être utilisées pour modéliser
la fragmentation du combustible suite à des accidents graves. Le surface tracking et le delta tracking
ont été comparés pour différentes densités de pavage, où la longueur moyenne de la corde, Λ, était in-
férieure, supérieure ou approximativement égale au libre parcours moyen des particules, λ. Trois techniques
d’accélération différentes ont également été envisagées : les cartes de voisins, les maillages de recherche de
cellules et le stockage du noyau géométrique avec des particules. En général, si un maillage de recherche
de cellules est utilisé, le surface tracking avec une carte de voisins est meilleur que le delta tracking lorsque
Λ ≫ λ, tandis que le delta tracking est supérieur dans le régime où Λ ≪ λ . Lorsqu’un maillage de recherche
de cellules n’est pas utilisé, le surface tracking avec une carte de voisins était toujours plus efficace que le
delta tracking.

Cependant, cette analyse a été effectuée exclusivement pour le cas des pavages de Poisson et ne serait
probablement plus valable pour le cas des inclusions sphériques stochastiques dans une matrice de fond
(qui modéliserait les particules de combustible TRISO par exemple) : les sphères n’ont qu’un seul voisin (la
matrice de fond), et la matrice de fond est voisine de toutes les sphères. Les recherches futures devraient
donc aborder cette classe de milieux stochastiques, afin de déterminer quelles méthodes pourraient être les
meilleures pour ce cas d’utilisation.

Pour notre comparaison du delta tracking et du negative-weighted delta tracking avec des sections
efficaces spatialement continues, nous nous sommes d’abord concentrés sur les problèmes de source fixe.
Compte tenu de leur rôle clé pour la plupart des applications de physique des réacteurs, nous avons ensuite
porté notre attention sur les problèmes de valeurs propres k, et nous avons évalué les performances du
negative-weighted delta tracking lorsqu’il est utilisé en combinaison avec l’itération de puissance. Dans la
partie II du manuscrit, nous avons donc effectué des simulations d’itération de puissance en utilisant le
delta tracking et le negative-weighted delta tracking. Alors que l’algorithme de delta tracking n’a démontré
aucune difficulté, comme prévu dans la littérature, les simulations de negative-weighted delta tracking ont
conduit à une terminaison catastrophique. Le nombre de particules dans la simulation augmente sans limite,
submergeant finalement la mémoire de l’ordinateur, conduisant le programme à être tué par le système
d’exploitation. Finalement, en modélisant le système comme un ensemble d’équations de transport couplées
pour le flux positif et négatif, nous avons pu déterminer que la présence de poids négatifs introduit une
nouvelle famille d’états propres non physiques, et que l’état propre dominant de l’ensemble d’équations
couplées correspond toujours à l’un de ces états propres non physiques. De plus, nous avons pu prouver
que l’annulation de poids (où les particules avec des poids positifs et négatifs s’annihilent les unes avec
les autres) peut permettre à l’itération de puissance de converger vers le mode fondamental de l’équation
de transport physique. Notre analyse a également montré qu’il existe un minimum d’annulation de poids
nécessaire pour que le système converge vers le flux physique.

Si un code Monte Carlo général implémente la méthode de negative-weighted delta tracking (et n’utilise
pas de section efficace majorante), une technique d’annulation de poids doit également être implémentée,
et avoir autant d’options que possible pour cela soit avantageux pour à la fois les développeurs de code
et les utilisateurs. Pour effectuer une annulation de poids, deux techniques différentes ont été tirées de la
littérature. La première méthode était une méthode d’annulation de poids régionale approchée [29]. Cette
méthode est très facile à mettre en œuvre, et assez rapide. En utilisant cet algorithme sur le benchmark C5G7
avec le negative-weighted delta tracking, la population de particules a été stabilisée et la simulation a pu se
terminer normalement. Bien que la méthode confère un biais aux résultats, ce biais n’était pas visible pour
le maillage d’annulation que nous avons utilisé dans notre simulation. Une méthode d’annulation régionale
exacte avait déjà été proposée dans la littérature [30], mais n’avait été démontrée que dans un problème
de transport unidimensionnel à vitesse unique. Dans la partie II, nous avons étendu cette technique pour
l’utiliser dans des problèmes de transport multi-groupes tridimensionnels. En utilisant ce nouvel algorithme
sur le benchmark C5G7 avec negative-weighted delta tracking il a été possible de compléter une simulation
d’itération de puissance nominalement, bien que dans un laps de temps plus long et avec une variance plus
grande que si le delta tracking avait été utilisé. Nous avons ensuite proposé une méthode pour optimiser la
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sélection des paramètres d’annulation afin d’augmenter la quantité de poids annulée par l’algorithme. Il a
été démontré que ce choix optimal des paramètres d’annulation améliore l’efficacité de l’annulation régionale
exacte, bien que la technique soit encore beaucoup moins efficace en termes de facteur de mérite que la
méthode d’annulation régionale approchée.

La théorie sur la façon dont on pourrait procéder pour effectuer une annulation de poids exacte dans des
simulations en énergie continue a été esquissée, mais nous avons également souligné qu’il peut être difficile
d’accéder aux données nucléaires requises dans un code Monte Carlo. Les travaux futurs devront tenter une
mise en œuvre complète en trois dimensions et en énergie continue de l’annulation de poids exacte. Même
s’il était possible d’effectuer une annulation exacte en énergie continue, l’efficacité de la méthode pourrait
ne pas être suffisamment élevée pour permettre la convergence de l’itération de puissance pour certaines
simulations. Dans de tels cas, nous pourrions être contraints de nous fier exclusivement à l’annulation du
poids approchée : un sujet de recherche difficile serait donc la quantification de l’erreur imposée par cette
méthode. Actuellement, la seule façon de déterminer si un maillage d’annulation est suffisamment raffiné
pour que le biais dans les résultats ne soit pas visible est d’effectuer plusieurs simulations avec différents
maillages d’annulation. Être capable de quantifier l’erreur d’annulation approchée et de prédire à l’avance
le raffinement du maillage d’annulation requis contribuerait grandement à la confiance dans la méthode.

Bien qu’initialement intéressantes dans ce travail pour effectuer une itération de puissance avec le
negative-weighted delta tracking, les techniques d’annulation de poids sont utiles pour d’autres applications
clés des simulations Monte Carlo dans le domaine de la physique des réacteurs. Dans la littérature, les
deux techniques d’annulation de poids que nous avons considérées dans cette thèse étaient auparavant
utilisées pour estimer la deuxième harmonique du flux [29, 30], déterminer le laplacien critique [31, 32], et
résoudre l’équation du bruit neutronique dans le domaine fréquentiel [31–33]. Dans la partie III du manuscrit,
nous avons appliqué des méthodes d’annulation de poids exactes et approchée aux particules portant des
poids statistiques complexes impliquées dans les simulations de bruit neutronique, qui sont notoirement
entravées par de graves problèmes de convergence. Lorsqu’elle est appliquée au problème académique du
bruit neutronique induit par les oscillations de la section efficace, l’annulation approchée du poids a amélioré
le facteur de mérite d’un facteur 100, en ne considérant que le temps passé à transporter des particules
de bruit. Pour le cas du bruit neutronique induit par les vibrations mécaniques, nous avons trouvé une
amélioration de plus de 1200 avec un maillage d’annulation approché grossier, et un facteur d’environ 470
pour un maillage d’annulation approché fin. L’annulation régionale exacte n’a cependant pas été aussi
efficace et n’a entraîné qu’une amélioration d’un facteur 14 pour les vibrations mécaniques.

Nos résultats indiquent que l’annulation de poids est absolument essentielle pour obtenir des résultats
à partir de simulations de bruit neutronique. Sans annulation de poids, la variance dans le champ de bruit
est trop grande pour que les résultats obtenus soient d’une quelconque utilité. Pour les problèmes de bruit
examinés, la plus grande partie de l’amplitude du champ de bruit est soit dans la composante imaginaire soit
dans la composante réelle, mais jamais également partagée entre les deux. Tandis que l’erreur relative de la
composante dominante peut être réduite à des niveaux acceptables, l’erreur relative de la composante la plus
faible est toujours quelque peu importante : il reste donc à savoir s’il existe des techniques de réduction de
la variance qui pourraient améliorer l’erreur relative de la composante la plus faible du champ de bruit. Nous
avons également proposé et testé une autre technique de réduction de variance possible, l’échantillonnage de
source de bruit de façon « branchless » : pour des raisons inconnues, cette technique semble avoir peu d’effet,
et peut même conduire à une légère dégradation des performances. Des investigations complémentaires
seront nécessaires pour comprendre les raisons de cet échec et proposer d’éventuelles améliorations. Dans
les problèmes de référence considérés dans la partie III, les détecteurs de bruit étaient proches de la source
de bruit : dans le cas général où les détecteurs sont situés loin de la source, il serait intéressant de voir si des
méthodes de réduction de la variance utilisant le flux adjoint pourraient être développées pour l’équation de
bruit, conduisant éventuellement à des schémas de variance nulle tels que ceux proposés pour d’autres types
de simulations neutroniques [34–36]. Enfin, pour effectuer les simulations de bruit neutronique d’un crayon
de combustible vibrant, nous avons développé un nouvel algorithme exact pour échantillonner la source de
bruit à partir d’une interface vibrante. Cette méthode améliorera la fidélité des futures simulations de bruit
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Monte Carlo, car seules des techniques approchées étaient disponibles auparavant. Dans le futur, nous
espérons démontrer ces techniques nouvellement développées sur un problème de bruit en énergie continue,
et sur des problèmes plus vastes, tels que des assemblages de combustibles vibrants dans un cœur complet.
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