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Introduction (fr)

Informatique quantique. Les lois de la physique quantique, qui régissent le comportement des sys-
tèmes physiques dont la taille s’approche de celle des atomes, sont sur certains aspects très différentes
des lois de la physique classique régissant les systèmes macroscopiques. L’une des principales propriétés
non-classiques des systèmes quantiques est la possibilité de superpositions d’états : de manière simplifiée,
l’état d’un système quantique (appelé un état quantique) est représenté par une combinaison linéaire à
coefficients complexes des états qu’il pourrait prendre en physique classique. D’une certaine manière, le
système peut alors être interprété comme étant dans plusieurs états classiques en même temps. Une autre
propriété des systèmes quantiques est qu’il est en général impossible de mesurer un système quantique
sans affecter son état : la mesure d’un système quantique en superposition de plusieurs états classiques
produit pour résultat l’un de ces états, aléatoirement, la probabilité de chaque état étant fonction du
coefficient correspondant (appelé amplitude) dans la combinaison linéaire associée ; cela fixe le système
dans l’état observé, ainsi d’éventuelles mesures ultérieures donneront le même résultat. Une troisième
propriété non-classique est l’intrication (aussi appelée enchevêtrement) : l’état de plusieurs systèmes
quantiques considérés ensemble est, en général, une superposition quelconque des diverses combinaisons
possibles d’états classiques de ces systèmes, et ne peut pas nécessairement être décrit en considérant
chaque système individuellement. En particulier, la mesure de plusieurs systèmes quantiques ne donne
pas toujours des résultats indépendants. Un exemple simple est celui de deux systèmes quantiques,
tous deux en superposition de deux mêmes états classiques, tels que mesurer l’un des deux systèmes
(n’importe lequel) donne l’un des deux états possibles avec probabilité 1

2 chaque, et que mesurer ensuite
l’autre système donne nécessairement le même résultat que la première mesure. Un tel comportement a
été observé expérimentalement avec des systèmes éloignés de plusieurs centaines de kilomètres. Comme
ce comportement ne dépend pas de la distance qui sépare les deux systèmes, cela peut donner l’impression
que ceux-ci communiquent plus vite que la lumière, bien qu’il soit en réalité impossible de transmettre
de l’information par ce biais.

L’informatique quantique est un domaine de l’informatique visant à exploiter de telles propriétés
non-classiques afin de réaliser certaines tâches de manière plus performante. Parmi les exemples les plus
connus, on peut citer des algorithmes en temps polynomial pour factoriser un nombre entier en produit de
facteurs premiers [122] ou pour résoudre des systèmes d’équations linéaires [78], ainsi qu’un algorithme
permettant de trouver un élément dans un tableau de taille n en seulement O(

√
n) opérations [71].

D’autres applications pour lesquelles les lois de la physique quantique peuvent être utilisées de manière
avantageuse sont dans les domaines de la communication et de la cryptographie : il existe par exemple
des protocoles de communication dans lesquels — en théorie — il est impossible d’intercepter un message
sans que cela ne soit repéré par l’expéditeur ou le destinataire [18, 59].

Intuitivement, la différence entre des données quantiques et classiques est la suivante : étant donnée
une variable classique, pouvant prendre des valeurs dans un ensemble A, son équivalent quantique prend
ses valeurs — ou, pour utiliser la terminologie habituelle, ses états — dans CA. Autrement dit, une
variable quantique est dans une superposition de ses valeurs classiques possibles. L’exemple le plus simple
de donnée quantique — qui est l’élément de base dans la plupart des modèles d’informatique quantique
— est le qubit, l’équivalent quantique du bit. L’état d’un qubit est un vecteur de C2, généralement écrit
sous la forme d’une superposition α |0〉+ β |1〉, où α, β ∈ C2, et |0〉 , |1〉 correspondent aux valeurs 0 et 1
d’un bit classique. Un qudit est la généralisation d’un qubit en dimension supérieure à 2. Un qudit est
décrit par un vecteur soit de Cd pour un entier d donné, soit de CN, qui est généralement écrit comme
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Introduction (fr)

une superposition d’états de base notés |0〉 , |1〉 , |2〉 , ...
Un exemple d’état intriqué de deux qubits est 1√

2 (|00〉 + |11〉), qui a précisément le comportement
décrit plus haut : mesurer l’un des deux qubits fixe le système soit dans l’état |00〉, soit dans l’état |11〉,
chacun avec probabilité 1

2 , de sorte que le résultat de la mesure est 0 ou 1 selon le cas, et que mesurer
ensuite l’autre qubit donne nécessairement le même résultat.

Circuits quantiques. À l’exception des préparations d’états — ou initialisations — et des mesures,
les opérations réalisables sur des données quantiques consistent à appliquer (en place) une transformation
unitaire à un ou plusieurs états quantiques. Un programme quantique de bas niveau sans intructions de
contrôle consiste donc en une suite d’opérations unitaires appliquées chacune à un sous-ensemble des sys-
tèmes quantiques disponibles (généralement des qubits), éventuellement précédées par des initialisations
et suivies par des mesures. Les circuits quantiques sont une représentation graphique de telles suites
d’opérations : chaque opération unitaire est représentée par un élément graphique, appelé une porte, avec
des fils d’entrée et de sortie, représentés respectivement à gauche et à droite, représentant les systèmes
quantiques affectés par l’opération. Un exemple typique de circuit quantique sur 3 qubits est le suivant :

V
U

V

H

W

W

où chaque fil représente un qubit. La notation peut aussi être enrichie pour représenter les initialisations
et mesures :

V

|0〉+|1〉√
2

|0〉
U

|0〉 V

H

W

W

Les circuits quantiques sont omniprésents en informatique quantique. En effet, ils peuvent être vus —
approximativement — comme le langage assembleur d’un processeur quantique. En particulier, dans le
modèle traditionnel de calcul quantique où un ordinateur classique contrôle un coprocesseur quantique,
le rôle de la partie classique consiste essentiellement à construire des circuits quantiques qu’elle envoie au
coprocesseur quantique pour exécution, et à traiter ensuite les résultats renvoyés par le coprocesseur.

Langages graphiques. Le formalisme des circuits quantiques appartient à une classe d’outils formels
appelés langages graphiques. Il est à noter que cette appellation peut désigner divers types de langages
dans les divers domaines de l’informatique, leur point commun étant de représenter une certaine infor-
mation graphiquement, associé généralement au fait que les éléments graphiques peuvent y être combinés
pour en former de plus complexes. Les langages graphiques que nous considérons dans cette thèse sont
plus précisément des langages de diagrammes de cordes, c’est à dire de diagrammes avec des fils d’entrée
et de sortie représentés de part et d’autre du diagramme (dans cette thèse nous les représentons respec-
tivement à gauche et à droite), de la même manière que dans les circuits quantiques. Les diagrammes
sont en général construits à partir d’un ensemble de diagrammes élémentaires appelés générateurs, de
manière inductive à l’aide d’un ensemble d’opérations comprenant au moins la composition séquentielle

D1 D2··· ··· ··· et la composition parallèle
· D1·· ···

·· ·· ·· D2

.

De nombreux types d’objets peuvent être représentés à l’aide de diagrammes de cordes, essentielle-
ment tous ceux qui possèdent une notion d’entrées et de sorties. Dans cette thèse, l’essentiel des objets
représentés peuvent être vus soit comme des programmes quantiques, prenant des données quantiques en
entrée et renvoyant le résultat en sortie, soit comme des évolutions ou des transformations, dont l’entrée
est l’état initial d’un système quantique et la sortie est l’état final du système.

Parmi les langages graphiques utilisés en informatique quantique, en plus des circuits quantiques,
on trouve notamment le ZX-calcul [45, 46], qui peut être vu comme une généralisation des circuits
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quantiques avec de bonnes propriétés topologiques et de réécriture, ainsi que des langages de structure
similaire comme le ZW-calcul [75] et le ZH-calcul [14].

Théories équationnelles. Un langage graphique — comme tout langage ou presque — est générale-
ment équipé d’une sémantique, la plupart du temps donnée sous la forme d’une fonction associant à
chaque diagramme une interprétation (aussi appelée la sémantique du diagramme, par un léger abus de
langage), qui peut être vue comme une description de ce que le diagramme fait en tant que programme
ou processus. Parmi les problèmes habituellement considérés, souvent directement liés applications pra-
tiques des langages, on trouve notamment celui de déterminer si deux diagrammes donnés ont la même
interprétation — on dit alors qu’ils sont équivalents — et celui de transformer un diagramme donné en
un diagramme équivalent plus adapté à une utilisation particulière.

Par exemple dans l’étude des circuits quantiques, un problème important est celui de l’optimisation des
circuits. Les circuits produits au cours de l’exécution d’un programme quantique peuvent en effet facile-
ment devenir de grande taille et coûteux à implémenter physiquement, de sorte qu’en les optimisant en
temps réel on peut obtenir un gain significatif en termes de temps de calcul et d’utilisation des ressources.
Un autre problème pratique couramment rencontré est celui de la satisfaction des contraintes matérielles
des implémentations physiques. En particulier, certaines implémentations de mémoires quantiques ont
une topologie particulière qui empêche d’appliquer des portes multi-qubits à certains ensembles de qubits.
Pour exécuter un circuit quantique sur une telle implémentation, il est donc nécessaire de le transformer
d’abord en un circuit équivalent ne contenant que des portes physiquement réalisables.

Un outil souvent utile pour étudier l’équivalence des diagrammes et pour les transformer est une théorie
équationnelle. Autrement dit, un ensemble d’égalités entre des diagrammes — dont il est généralement
requis qu’elles respectent la sémantique — qui peut être utilisé pour réécrire un diagramme en un autre
équivalent en remplaçant des sous-diagrammes l’un après l’autre. Étant donnée une théorie équationnelle,
on peut par exemple définir une stratégie de réécriture afin d’optimiser les diagrammes (comme nous le
faisons notamment dans le chapitre 4).

Une propriété souvent recherchée chez une théorie équationnelle est qu’elle soit complète, c’est à dire
telle qu’il soit possible de transformer n’importe quel diagramme en n’importe quel autre diagramme
équivalent par réécriture successive de sous-diagrammes. Des théories équationnelles complètes sont
connues pour les ZX-, ZW- et ZH-calculs, ainsi que pour de nombreux fragments de ces langages (c’est à
dire des sous-langages générés par un sous-ensemble des générateurs). Inversement, bien que le formalisme
des circuits quantiques soit largement utilisé depuis près de trois décennies, et que la question ait un réel
intérêt pratique, aucune théorie équationnelle complète n’était connue pour les circuits quantiques au
moment de débuter cette thèse.

Contrôle quantique. Bien que les circuits quantiques soient un bon outil pour décrire les opérations
à effectuer sur des données quantiques, ils ne tiennent pas compte d’un autre aspect de la program-
mation qu’est le flux de contrôle. En effet, dans un circuit quantique, l’ordre des portes est fixé. De
nombreux langages de programmation quantiques traitent cet aspect de manière naïve, en adoptant un
paradigme habituellement résumé par l’expression “données quantiques, contrôle classique”. Autrement
dit, l’application d’opérations quantiques sur des données quantiques est contrôlée de manière classique,
à l’aide de primitives usuelles comme les instructions conditionnelles if et les boucles for et while. Bien
que cela soit suffisant dans beaucoup de cas, cela n’exploite pas l’ensemble des possibilités offertes par les
lois de la physique quantique, qui permettent également au flux de contrôle d’être lui-même quantique.

L’ingrédient essentiel pour un flux de contrôle quantique est le contrôle cohérent1, qui est essentielle-
ment la version quantique d’une instruction conditionnelle if. Celui-ci consiste à contrôler le choix d’une
opération à appliquer à un système quantique, appelé le système cible, à partir de l’état d’un autre
système quantique, appelé le système de contrôle, qui peut être en superposition : à chacun des états
classiques superposés est associée une opération à appliquer au système cible.

1À noter que les expressions “contrôle quantique” et “contrôle cohérent” sont également utilisées dans d’autres contextes
dans des sens différents, en particulier en physique expérimentale dans des situations où l’on contrôle le comportement d’un
système quantique — alors qu’ici on contrôle à partir de l’état d’un système quantique.
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Introduction (fr)

Un exemple simple de contrôle cohérent est le quantum switch [34] : étant donnés un qubit — dont
l’état est une combinaison linéaire α |0〉+β |1〉— un second système quantique, et deux opérations U et V
agissant sur le second système, le quantum switch de U et V est l’opération sur le système global (composé
du qubit, utilisé comme système de contrôle, ainsi que du second système, utilisé comme système cible)
définie par linéarité par |0〉 ⊗ |ϕ〉 7→ |0〉 ⊗ V U |ϕ〉 et |1〉 ⊗ |ϕ〉 7→ |1〉 ⊗ UV |ϕ〉. Autrement dit, le qubit
contrôle l’ordre dans lequel les opérations U et V sont appliquées : s’il est dans l’état |0〉, l’opération
appliquée au système cible est V U , et s’il est dans l’état |1〉, l’opération appliquée au système cible est
UV . Le fait qu’une opération soit appliquée avant l’autre implique que la première peut communiquer
de l’information à la seconde, en particulier au moyen de l’état intermédiaire du système cible. C’est
pourquoi un tel dispositif est généralement interprété comme opérant un contrôle cohérent de l’ordre
causal des deux opérations. Lorsque le qubit de contrôle est en superposition, U et V sont appliquées
dans un ordre causal indéfini.

Avantages pour le calcul et la communication. Le contrôle quantique apporte de nouveaux
avantages, pour la réalisation de certaines tâches, par rapport à ce qui est déjà permis par l’informatique
quantique avec un contrôle classique. Par exemple, étant donnés deux canaux de communication quan-
tiques qui, pris chacun individuellement, n’ont aucune capacité de transmission d’information (le bruit
qu’il contiennent efface complètement le signal donné en entrée), il est néanmoins possible de transmettre
de l’information en envoyant un signal dans les deux à la fois en superposition, au moyen du contrôle
cohérent [4]. Le contrôle cohérent peut également être utilisé pour améliorer les performances de tâches
plus calculatoires. Par exemple, étant données deux opérations quantiques dont on sait qu’elles commu-
tent ou bien anticommutent, l’utilisation du contrôle cohérent permet de déterminer dans lequel de ces
deux cas elles se trouvent, en faisant un seul appel à chacune, alors qu’en utilisant un circuit quantique
pour répondre à la même question il est en général nécessaire d’effectuer deux appels à l’une des opéra-
tions [31]. Guérin et al. [72] ont défini une tâche de communication basée sur ce problème et prouvé
qu’elle nécessite exponentiellement moins de ressources, en termes de quantité d’information à échanger
entre les différents acteurs, lorsqu’il est possible d’effectuer du contrôle cohérent d’ordre causal.

Un autre exemple de tâche où le contrôle quantique apporte un avantage est, étant données n opéra-
tions unitaires U1, ..., Un, d’implémenter une permutation contrôlée (classiquement) de ces opérations
— c’est à dire un programme qui étant donnée une permuation σ, applique les opérations dans l’ordre
correspondant. Cela peut être fait en utilisant une occurrence de chaque Ui et O(n) quantum switches,
alors que dans le cadre habituel des circuits quantiques, le meilleur algorithme connu nécessite Θ(n2)
appels aux Ui. Cette dernière complexité a été prouvée optimale sous réserve d’une restriction sur le type
de circuit utilisé [50, 60].

Implémentations. Plusieurs implémentations expérimentales de contrôle cohérent ont été réal-
isées, en particulier de l’ordre causal de deux opérations via le quantum switch, afin de démontrer la
réalité physique de certaines de ses conséquences. Dans [112], les auteurs réalisent une implémentation
du protocole utilisant le quantum switch pour décider si deux opérations commutent ou anticommutent,
et vérifient son fonctionnement sur des exemples. Dans [116, 68, 117], les auteurs démontrent la réalité
physique d’un ordre causal indéfini. Dans [67, 73], les auteurs démontrent expérimentalement qu’il est
possible de transmettre une quantité significative d’informations à l’aide de deux canaux qui individu-
ellement n’en transmettent aucune, en les mettant l’un à la suite de l’autre dans une superposition des
deux ordres causaux possibles. Enfin, [129] montre expérimentalement un gain de performance permis
par l’utilisation du quantum switch pour une tâche similaire à celle définie dans [72].

Cadres formels pour le contrôle quantique. L’objectif initial de cette thèse était de développer
un cadre formel dans lequel il soit possible de représenter des programmes ou des évolutions impliquant
un contrôle quantique, et de raisonner sur ceux-ci.

Cette question a été peu explorée avant le début de cette thèse. En 2008, Chiribella et al. [32]
ont introduit le concept de supermap, pour désigner des opérateurs agissant sur des opérations quan-
tiques. Bien que très utiles par ailleurs, les supermaps ne sont pas adaptées pour l’étude approfondie
d’un programme en particulier, puisqu’elles ne prennent en compte que le comportement extensionnel
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des opérations. Dans [33], les mêmes auteurs introduisent les quantum networks, qui peuvent être vus
comme un langage graphique permettant de décrire une classe très générale de programmes quantiques
pouvant comporter du contrôle quantique et des transformations d’ordre supérieur (autrement dit des
transformations de transformations, et ainsi de suite). Ils traitent cependant ce langage de manière es-
sentiellement sémantique, et à ma connaissance il n’y a pas eu de tentative d’exploiter celui-ci comme
un langage permettant de raisonner sur les programmes quantiques qu’il permet de représenter, de la
manière dont nous cherchons à le faire dans cette thèse. Dans [50], les auteurs introduisent un langage
graphique avec des connexions programmables entre les opérations. Le langage utilise le quantum switch
comme générateur, et permet de décrire le contrôle cohérent de l’ordre causal de plusieurs canaux quan-
tiques, mais ne permet pas de décrire un contrôle quantique plus général, comme le contrôle cohérent
du choix entre plusieurs canaux. Enfin, un cadre formel basé sur ce que les auteurs appellent des causal
boxes a été introduit dans [111]. Il a cependant l’inconvénient de nécessiter des conditions non-triviales
pour garantir la bonne définition des programmes représentés. Pour finir, dans le domaine des langages
de programmation à vocation plus appliquée, il faut aussi mentionner plusieurs propositions pour gérer
le contrôle quantique [56, 6, 132, 118].

Optique linéaire pour l’informatique quantique. Dans le cadre du développement actuel des
technologies quantiques, divers supports physiques permettant de stocker de l’information quantique
sont actuellement à l’étude. Parmi ceux-ci on trouve notamment des systèmes matériels comme les
circuits supraconducteurs, les atomes froids et les ions piégés, ainsi que des systèmes faits de lumière,
où l’information est stockée dans des photons. Parmi les différents supports possibles, les photons ont
un rôle privilégié de par le fait qu’ils sont le seul support actuellement envisageable pour transmettre de
l’information quantique : afin de faire communiquer des processeurs quantiques entre eux, il est donc
nécessaire, quelque soit le support physique utilisé par ceux-ci, de traiter une partie de l’information
de manière photonique. Il existe de plus des approches apparemment viables pour une informatique
quantique entièrement basée sur les photons, à la fois dans le régime NISQ (pour noisy intermediate-scale
quantum, c’est à dire pour les systèmes accessibles à court et moyen terme, qui n’ont pas une taille
suffisante pour permettre la correction d’erreurs) [94] et dans le régime des systèmes de grande dimension
avec correction d’erreurs [17].

L’unité standard d’information quantique est le qubit, et les photons offrent un large choix de manières
d’encoder des qubits. Cependant, il est aussi intéressant de noter que d’utiliser directement l’état des
photons, sans passer par un encodage, peut parfois être plus avantageux. Un bon exemple pour illustrer
cela est le BosonSampling [2], une tâche de calcul #P -difficile mais qui peut être réalisée efficacement
en faisant intéragir des photons dans un circuit optique linéaire idéal. Avec le Random Circuit Sam-
pling [3, 23], c’est l’une des deux principales tâches pour lesquelles des démonstrations expérimentales
d’un avantage calculatoire quantique — où un système quantique permet de réaliser une tâche a priori
hors de portées des capacités actuelles de calcul classique — ont été proposées [13, 135, 131, 134].

Un autre avantage de l’informatique quantique photonique est de permettre d’implémenter le contrôle
cohérent de manière simple. Notamment, toutes les implémentations expérimentales citées plus haut
adoptent une approche photonique : celles de [112, 116, 117, 73] utilisent le degré de liberté spatial d’un
photon comme qubit de contrôle et sa polarisation comme système cible ; celles de [68, 67] font l’inverse
; enfin, celle de [129] utilise le degré de liberté spatial comme qubit de contrôle et le degré de liberté
temporel comme système cible.

Les implémentations optiques du contrôle cohérent utilisent généralement essentiellement l’optique
linéaire, c’est à dire la partie de l’optique qui n’utilise que des éléments ne modifiant pas la longueur
d’onde des photons et obéissant au principe de superposition, comme c’est le cas des éléments les plus
courants comme les beam splitters — polarisants ou non — les lentilles, les miroirs, les déphaseurs et les
lames à retard, auxquels s’ajoutent les sources et détecteurs de photons.

Dans une grande partie de cette cette thèse, nous nous plaçons dans le cadre d’une famille d’implémen-
tations utilisant la polarisation comme qubit de contrôle, comme celles de [68, 67]. Plus précisément,
nous considérons un photon, décrit de manière abstraite par sa polarisation, sa position, et un troisième
degré de liberté, dont nous ne spécifions pas la nature physique. La polarisation est décrite par un état
quantique de dimension 2 engendré par deux polarisations particulières (linéaires), dites respectivement
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verticale et horizontale et notées V et H. Comme nous considérons uniquement des dispositifs où — à
un instant donné — le photon peut uniquement être à un nombre fini et borné de positions spécifiques,
sa position est décrite par un état quantique de dimension finie n. Concernant le troisième degré de
liberté, utilisé intuitivement pour stocker des données sur lesquelles des opérations seront effectuées, nous
le prenons également de dimension finie q. Les trois degrés de liberté du photon (position, polarisation et
données) se comportent comme des systèmes quantiques distincts, l’état du photon est donc décrit par
un élément de l’espace vectoriel C2 ⊗ Cn ⊗ Cq, généré par des états de base de la forme |c〉 ⊗ |p〉 ⊗ |x〉
aussi notés |c, p, x〉 (avec c ∈ {V,H}, p ∈ {0, ..., n − 1} et x ∈ {0, ..., q − 1}), qui correspondent aux
états classiques possibles du photon. On peut alors effectuer du contrôle quantique en utilisant un beam
splitter polarisant (ou PBS, d’après l’acronyme anglais de polarising beam splitter) , qui réfléchit le
photon si sa polarisation est verticale, et le transmet (autrement dit, le laisse passer) si sa polarisation est
horizontale. Autrement dit, en considérant que la position du photon a deux états classiques possibles,
correspondant aux deux positions verticales possibles (en haut ou en bas), le PBS applique l’opération
contrôlée définie par linéarité par |V, p, x〉 7→ |V, p, x〉 et |H, p, x〉 7→ |H〉 ⊗X|p〉 ⊗ |x〉, où X est définie
par |0〉 7→ |1〉 and |1〉 7→ |0〉. Si la polarisation du photon est en superposition, alors sa position devient
superposée également (ce que l’on peut interpréter comme le fait d’être aux deux endroits en même
temps), et intriquée avec la polarisation. En plaçant différentes opérations, agissant sur le troisième
degré de liberté du photon, sur les différents chemins parcourus en superposition par le photon, on
obtient alors un contrôle cohérent de ces opérations par la polarisation.

Contributions de la thèse. L’objectif de départ de cette thèse était de développer un cadre formel
dans lequel il soit possible de représenter des dispositifs de contrôle cohérent et de raisonner sur ceux-ci
de manière aussi simple et générale que possible. C’est un projet de grande ampleur qui n’en est qu’à
son commencement. Notre approche pour ce faire a été d’abstraire et de formaliser une implémentation
en optique linéaire du contrôle cohérent, comme esquissé dans le paragraphe précedent. Découlant di-
rectement de cette approche, notre première contribution, présentée dans le chapitre 3, est un langage
graphique essentiellement inspiré de cette implémentation. Cette approche induit naturellement deux
points de vue : le premier, qui sous-tend l’idée initiale, privilégie le contrôle cohérent, et traite l’optique
linéaire de manière abstraite et avant tout comme un moyen de représenter des processus impliquant
du contrôle cohérent. Le second privilégie l’aspect optique linéaire, et considère les diagrammes comme
représentant avant tout des dispositifs optiques physiquement valides : le contrôle cohérent est alors vu
comme une conséquence des lois de l’optique quantique. Dans cette thèse nous adoptons tour à tour les
deux points de vue.

Dans le chapitre 3, nous introduisons un langage graphique, le PBS-calcul, dont la syntaxe et la sé-
mantique sont directement tirés d’un fragment restreint de l’optique linéaire, et qui permet de représenter
le contrôle cohérent d’opérations quantiques. Nous l’équipons d’une axiomatisation complète (c’est à dire
une théorie équationnelle complète), qui est de plus minimale (autrement dit, il n’y a aucune redondance
entre les axiomes). Le langage a une expressivité relativement limitée, à la fois pour ce qui est des opéra-
tions pouvant être contrôlées et de la manière dont elles peuvent être contrôlées. Son but principal est de
poser les fondations d’un cadre formel pour l’étude du contrôle quantique et de ses différents aspects. Le
reste de cette thèse consiste essentiellement à développer ce cadre formel, en s’appuyant sur le formalisme
du PBS-calcul, dans plusieurs directions :

Dans le chapitre 4, nous introduisons un raffinement du PBS-calcul, pour lequel nous donnons égale-
ment une axiomatisation complète et minimale, et nous examinons le problème de l’optimisation des
ressources dans ce cadre. Nous donnons une procédure simple pour le problème naturel de l’optimisation
des appels à oracles dans les diagrammes. Nous montrons ensuite qu’un raffinement naturel de ce prob-
lème est NP-difficile, malgré les limitations du langage. Enfin nous donnons une heuristique de complexité
polynomiale pour ce problème raffiné, et nous montrons qu’elle donne un résultat optimal pour une famille
restreinte de diagrammes. Nous n’évaluons cependant pas ses performances dans le cas général.

Les travaux exposés dans le chapitre 5 adoptent le second point de vue évoqué plus haut et se con-
centrent sur la partie optique linéaire : nous définissons un langage graphique pour les circuits optiques
linéaires sans création ni destruction de photons. Ce langage peut être vu comme une extension du PBS-
calcul comprenant les principaux éléments optiques linéaires utilisés expérimentalement par les physiciens,
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mais sans les boîtes noires qui permettaient de faire intervenir des appel à oracles. Nous donnons une
axiomatisation complète de ce langage. La preuve de complétude s’appuie sur une forme normale com-
posée de plusieurs parties dont la principale est un circuit optique appartenant à un fragment du langage,
celui des circuits polarisation-preserving, définis comme étant ceux composés uniquement d’éléments qui
n’agissent pas sur la polarisation. Ce fragment est lui-même équipé d’une théorie équationnelle complète,
et le circuit intervenant dans la forme normale pour le langage complet est lui-même une forme normale
permettant de démontrer la complétude de l’axiomatisation du fragment. Nous définissons également un
système de réécriture fortement normalisant et confluent, permettant de mettre n’importe quel circuit du
fragment en forme normale.

Dans le chapitre 6, nous exploitons une correspondance entre les circuits optiques linéaires polarisation-
preserving et les circuits quantiques avec portes multicontrôlées, pour trouver une théorie équationnelle
complète pour les circuits quantiques.

Pour finir, dans le chapitre 7, nous étendons la syntaxe du PBS-calcul (dans sa version du chapitre 3)
afin de permettre le contrôle cohérent de canaux de communication quantiques généraux. Comme la
description habituelle des canaux quantiques, donnée par un objet mathématique appelé CPTP map,
est insuffisante dans un contexte de contrôle cohérent, notre principale contribution est de caractériser
précisément quelles informations la description d’un canal quantique doit contenir, pour qu’il soit possible
de prédire son comportement dans le cadre du contrôle cohérent permis par les diagrammes du PBS-calcul.
Nous traitons également cette question en considérant des restrictions naturelles du PBS-calcul.

À quelques ajouts et arrangements près, chaque chapitre correspond à un article publié durant la
thèse :

• [39] Alexandre Clément et Simon Perdrix. PBS-calculus: A graphical language for coherent control
of quantum computations. In 45th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2020), 2020. doi:10.4230/LIPIcs.MFCS.2020.24. (Chapitre 3)

• [40] Alexandre Clément et Simon Perdrix. Resource optimisation of coherently controlled quan-
tum computations with the PBS-calculus. In 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), 2022. doi:10.4230/LIPIcs.MFCS.2022.36.
(Chapitre 4)

• [38] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix et Benoît Valiron. LOv-
calculus: A graphical language for linear optical quantum circuits. In 47th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2022), 2022. doi:10.4230/LIPIcs.
MFCS.2022.35. (Chapitre 5)

• [37] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix et Benoît Valiron. A
complete equational theory for quantum circuits. 2022. arXiv:2206.10577. preprint arXiv, soumis
à LICS 2023. (Chapitre 6)

• [24] Cyril Branciard, Alexandre Clément, Mehdi Mhalla et Simon Perdrix. Coherent control and
distinguishability of quantum channels via PBS-diagrams. In 46th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2021), 2021. doi:10.4230/LIPIcs.MFCS.
2021.22. (Chapitre 7)

L’exposé de ces résultats de recherche est précédée par une introduction rapide des principales notions
nécessaires : dans le chapitre 1, nous donnons une définition des structures combinatoires qui sous-tendent
les langages graphiques considérés dans cette thèse. Dans le chapitre 2, nous faisons une brève introduction
à l’informatique quantique afin en particulier d’introduire les concepts utilisées dans cette thèse.
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Introduction

Quantum Computing. The laws of quantum physics, which apply to physical systems when their
size comes close to the atomic scale, are in some ways quite different from the laws of classical physics
which apply to macroscopic systems. One of the main non-classical properties of quantum systems is
the possibility of superposition: roughly speaking, the state of a quantum system, called a quantum
state, is represented by a complex linear combination of its possible classical states. This can somehow
be interpreted as the system being in several classical states at the same time. Another property of
quantum systems is that it is in general impossible to measure a quantum system without affecting it:
when measuring a system which is in a superposition of classical states, one gets one of these states,
randomly, with the probability of each classical state depending on the coefficients (called amplitudes)
of the linear combination representing the superposition. This fixes the system in the observed classical
state, so that any further measurement gives the same result. A third property is entanglement: the
state of several quantum systems is, in general, a superposition of the various combinations of classical
states of the systems, which cannot necessarily be described by considering each system separately. This
implies that if one measures several quantum systems, the results are not necessarily independent. For
instance, there may exist two quantum systems, that are each in a superposition of the same two states,
in such a way that measuring any of them gives one of the two states each with probability 1

2 , and then
measuring the other system necessarily gives the same result. Such a behaviour has been observed even
with systems that are far away from each other, making it look like the two systems communicated faster
than light, although actually no information can be transmitted by these means.

Quantum computing is a computational paradigm which consists in exploiting such non-classical
properties to improve the performances of some computing tasks. Among the most well-known examples,
one can cite polynomial-time algorithms for factoring integers into prime factors [122] or solving linear
systems of equations [78], and an algorithm for finding an element in an array of size n with only O(

√
n)

operations [71]. Another application of exploiting the laws of quantum physics in computer science is
for communication and cryptography: one can for instance design communication protocols that — in
theory — make it impossible to intercept a message unless either the sender or the recipient notices it
[18, 59].

Roughly speaking, the difference between quantum and classical data is the following: given a classical
variable, which can take values in a set A, its quantum equivalent takes its values — or more properly
speaking, its states — in CA. In other words, a quantum variable is in a superposition of its possible
classical states. The simplest example of quantum data — and the basic element in most models of
quantum computing — is a qubit, which is the quantum equivalent of a bit. The state of a qubit is a
vector of C2, generally written in the form of a superposition α |0〉 + β |1〉, where α, β ∈ C, and |0〉 , |1〉
correspond to the values 0 and 1 of a classical bit. A qudit is a generalisation of a qubit in dimension
greater than two. It is described by a vector in Cd for some integer d, or in CN, and generally written as
a superposition of basis states that are usually denoted by |0〉 , |1〉 , |2〉 , ...

An example of an entangled state of two qubits is 1√
2 (|00〉 + |11〉), which has exactly the behaviour

sketched above: measuring one of the two qubits fixes the global system either in state |00〉 or in state
|11〉, each with probability 1

2 , so that the outcome of the first measurement is either 0 or 1 depending
of the case, and a further measurement of the other qubit necessarily gives the same result as the first
measurement.
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Introduction

Quantum Circuits. Along with state preparations — i.e. initialisations — and measurements, the
main kind of operations that one can perform on quantum data is applying a unitary transformation to
one or several quantum states. Therefore, a basic low-level quantum computation is a sequence of unitary
transformations each applied to a subset of the available quantum registers — which are often qubits —
possibly preceded by some preparations and followed by some measurements. Quantum circuits are a
graphical way to represent this: each unitary transformation is represented as a box, called a gate, with
input and output wires, represented on its left and on its right respectively, which represent the quantum
systems that it acts upon. A typical example of a quantum circuit on 3 qubits is the following:

V
U

V

H

W

W

One can also enrich the notation to represent initialisations and measurements:

V

|0〉+|1〉√
2

|0〉
U

|0〉 V

H

W

W

Quantum circuits are ubiquitous in quantum computing. Indeed, they can — very roughly speaking
— be seen as the assembly language of a quantum processor. Hence, in the traditional model of quantum
computing, where a classical computer controls a quantum coprocessor, the role of the classical part
essentially consists in building quantum circuits to be sent to the quantum coprocessor for execution, and
then processing the outputs.

Graphical Languages. The formalism of quantum circuits belongs to a class of formal tools called
graphical languages. Note that this term can have a variety of meanings in the various sub-fields of
computer science, most having in common that they represent some information graphically, and that
graphical elements can be combined to build bigger graphical representations. The graphical languages
that we consider in this thesis are more precisely languages of string diagrams. That is, diagrams with
input and output wires, represented by wires on their left and their right respectively, as for quantum
circuits. The diagrams are usually generated from a set of small diagrams called generators, and built
inductively by combining smaller diagrams into bigger ones by several means including sequential com-

position D1 D2··· ··· ··· and parallel composition
· D1·· ···

·· ·· ·· D2

.

String diagrams can represent various kinds of things with inputs and outputs. The diagrams con-
sidered in this thesis can mostly be seen as representing either quantum computations, which take some
quantum data as input and produce the result of the computation as an output; or quantum evolutions
or transformations, whose input is the initial state of a quantum system and whose output is the final
state.

Besides quantum circuits, other graphical languages used in the field of quantum computing are the
ZX-calculus [45, 46], which can be seen as a generalisation of quantum circuits with good topological and
rewriting properties, together with languages with a similar structure such as the ZW-calculus [75], and
the ZH-calculus [14].

Equational Theories. A graphical language — as most languages — usually comes with a se-
mantics, generally given as a function associating with every diagram an interpretation,2 which roughly
speaking tells us what the diagram does. Then a natural and practical problem is to be able to know
when two diagrams have the same interpretation — one then says that they are equivalent — and to
transform a diagram into an equivalent one which is better according to some criterion.

2By abuse of language, the interpretation of a diagram is usually called the semantics of the diagram.
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For instance, in the study of quantum circuits, an important question is that of circuit optimisation.
Indeed, the circuits produced during the execution of a quantum algorithm are often large and costly
to implement, so that optimising them can lead to a significant reduction of the execution time and the
amount of resources needed. Another application of transforming circuits into equivalent ones is the
satisfaction of hardware constraints. Indeed, some physical implementations of quantum memory have
a topology that restricts to which sets of qubits one can apply a multi-qubit gate. As a consequence,
to execute a quantum circuit on such implementations, one first has to transform it into an equivalent
circuit made only of allowed gates.

An often useful tool for the study of equivalence and rewriting of diagrams in a given graphical
language is an equational theory. That is, a set of equalities between diagrams, which is generally
required to be sound — that is, in every equality, the two sides have the same semantics — and can be
used to rewrite a diagram into an equivalent one, by replacing sub-diagrams one after the other. Given
an equational theory, one can then for instance define a rewriting strategy for diagram optimisation (see
Chapter 4).

A desirable property of an equational theory is to be complete, that is, such that any two equivalent
diagrams can be rewritten one into the other by means of the equational theory. The ZX-, ZW- and
ZH-calculi are each equipped with a complete equational theory, as well as many of their fragments (that
is, sub-languages generated from a subset of the generators). By contrast, although the formalism of
quantum circuits have been widely used for more than two decades and the question is of interest, no
complete equational theory had been found at the beginning of this PhD.

Quantum Control. While quantum circuits are good at describing the operations that one can perform
on quantum data, they do not address another aspect of computing which is the control flow. Indeed, in
a quantum circuit, the order of the gates is fixed. Many quantum programming languages address this
aspect in a naive way by adopting the “quantum data, classical control” paradigm. That is, the application
of quantum operations on quantum data is controlled in a classical way, using usual constructs such as
if statements, for loops and while loops. However, the laws of quantum physics actually also allow the
control flow to be quantum.

The essential ingredient for a quantum control flow is coherent control,3 which is roughly speaking the
quantum version of an if statement. It consists in controlling an operation to be performed on a quantum
system, called the target system, by using the state of another quantum system, called the control system,
which can be in superposition: each of the classical states in superposition is associated with a particular
operation to be applied to the target system. Then the global operation is defined by linearity, and can
be interpreted as applying a superposition of the different operations to the target system.

A simple example of coherent control is the quantum switch [34]: given a qubit, whose state is a
linear combination α |0〉 + β |1〉, another quantum system, and two operations U and V acting on the
second system, the quantum switch of U and V is the operation on the global system (of both the qubit,
used as a control system, and the other quantum system, used as a target system) defined by linearity
by |0〉 ⊗ |ϕ〉 7→ |0〉 ⊗ V U |ϕ〉 and |1〉 ⊗ |ϕ〉 7→ |1〉 ⊗ UV |ϕ〉. That is, the qubit controls the order in which
U and V are applied: if the control qubit is in state |0〉 then V U is applied, and if it is in state |1〉 then
UV is applied. The fact that one operation is applied before the other implies that the first one can
send information to the second one by means of the intermediate state. For this reason, such a scheme is
usually understood as performing coherent control of the causal order of the two operations. When the
control qubit is in superposition, U and V are applied in an indefinite causal order .

Computational and Communication Advantages. Quantum control allows for more than
quantum computing with classical control does: for instance, given two quantum communication channels
which are so noisy that they do not allow for transmitting any information, by using both in superpo-
sition by means of coherent control, it is possible to transmit some information anyway [4]. Moreover,
using coherent control can be advantageous for some computing tasks. For instance, given two quantum

3Note that the phrases “quantum control” and “coherent control” also appear in the literature with other meanings, in
particular in experimental physics to refer to the control of quantum systems, rather than, as here, to a form of control
based on the state of a quantum system.
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operations U and V with the promise that they either commute or anticommute, deciding whether they
commute or not can be done using one call to each of them, whereas in general, a quantum circuit solving
this problem needs to call either U or V twice (and the other once) [31]. A communication task based on
this problem has been defined and proven to require exponentially less resources, in terms of the amount
of quantum information exchanged between the parties, when coherent control (more precisely, of the
causal order) is used compared to the same setting with a definite causal order [72].

A related example of advantage is the following: given n unitary operations U1, ..., Un, we want to
implement a classically controlled permutation of them — that is, a program which, given a permutation
σ of n elements, performs the Uis in the order specified by σ. This can be done using one occurrence of
each Ui and O(n) quantum switches, whereas in the usual quantum circuits framework, the best known
algorithm requires Θ(n2) calls to the Uis. It has additionally been proven that the latter is the best
possible asymptotic complexity assuming a restriction on the circuits allowed [50, 60].

Implementations. Several experimental implementations of coherent control have been realised,
in particular of the causal order of two operations via the quantum switch, to prove the physical reality of
some of its consequences, mostly using a photonic approach. Some of them use a path degree of freedom
of a photon as a control qubit and its polarisation as a target system [112, 116, 117, 73], or the other
way around [68, 67]. Another one uses a path degree of freedom as a control qubit and a time degree of
freedom as a target qudit [129].

Specifically, in [112], an implementation of the protocol using the quantum switch for deciding whether
two gates commute or anticommute is realised and tested. In [116, 68, 117], the physical reality of the
indefiniteness of a causal order is shown. In [67, 73], it is shown that by using two channels in sequence
in a superposition of the two possible orders, one can transmit a significant amount of information even
though each channel taken individually cannot transmit any information. Finally, [129] gives evidence of
an experimental advantage provided by the quantum switch for a task similar to the one defined in [72].

Formal Frameworks for Quantum Control. The first goal of this PhD was to develop a formal
framework in which one can represent quantum computations, or evolutions — understood in both cases
abstractly, as essentially a process transforming an input into an output — involving quantum control,
and reason about them.

Previously to the beginning of this PhD, little work had been done in this direction. In 2008, Chiribella
et al. [32] introduced the concept of supermap. Supermaps are functions mapping quantum operations
to quantum operations. Although very useful as a concept, they do not constitute a framework for the
study of particular coherently controlled quantum computations, since they only take into account their
extensional behaviour. In [33], the same authors have defined quantum networks, which can be seen as a
graphical language for describing a general class of quantum computations, possibly including quantum
control and higher-order transformations (that is, transformations of transformations and so on). It is
however treated essentially from a semantic point of view and to my knowledge, it has not been further
exploited as a language for representing and reasoning on the quantum computations that it represents,
in the way that we aim to do in this thesis. In [50], the authors have introduced a graphical language
with programmable connections. The language uses the quantum switch as a generator, and makes it
possible to describe the coherent control of the causal order of a set of quantum channels, but does not
describe more general quantum control, for instance of the choice among different channels. A framework
of causal boxes has been defined in [111]. It has however the drawback to have non-trivial well-formedness
conditions. Finally, note that in the context of programming languages a few proposal have been made
for handling quantum control [56, 6, 132, 118].

Linear Optical Quantum Computing. The development of quantum technologies has proceeded
at pace over the past number of years, with a variety of different physical supports for quantum infor-
mation being pursued. These include matter-based systems like superconducting circuits, cold atoms,
and trapped ions, as well as light-based systems, in which information is encoded in photons. Among
these, photons have a privileged role in the sense that regardless of hardware choice it will eventually
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be necessary to network quantum processors, and, as the only sensible support for communicating quan-
tum information, some quantum information will need to be treated photonically. Yet, in their own
right, photons also offer viable approaches to quantum computing in the noisy intermediate-scale [94]
and large-scale fault-tolerant [17] regimes.

The standard unit of quantum information is the quantum bit or qubit, and photons allow for a
rich variety of ways to encode qubits. However it is also interesting to note that treating photons as
informational units in their own right can be advantageous. A good example is BosonSampling, originally
proposed by Aaronson and Arkhipov [2], a computational task that is #P -hard but which can be efficiently
solved by interacting photons in an idealised generic linear optical circuit in which no qubit encoding
need be imposed. At present, along with Random Circuit Sampling [3, 23], this provides one of the two
main routes to experimental demonstrations of quantum computational advantage [13, 135, 131, 134], in
which quantum devices have been claimed to outperform classical capabilities for specific tasks.

As evoked in the “Implementations” section above, coherent control, in particular, can be implemented
with optics. More precisely, with linear optics, that is, only with optical elements that do not change the
wavelength of the photons and obey the superposition principle (like the most commonly used ones such
as beam splitters — polarising or not —, lenses, mirrors, phase shifters and wave plates), together with
photon sources and detectors. In this thesis, we will especially have in mind a family of implementations
that use the polarisation of a photon as a control qubit, as those of [68, 67]. Specifically, we will consider
a photon, described in an abstract way by its polarisation, its position, and a third, unspecified, degree of
freedom. The polarisation is described by a quantum state of dimension 2 generated by the vertical and
horizontal (linear) polarisations, denoted V and H respectively; we will only consider settings in which
the photon can be at a finite number of specific locations at a given time, so that its position is a quantum
system of finite dimension n; finally, the third degree of freedom, thought of as containing some data,
is also taken to be of finite dimension q. The three degrees of freedom of the photon behave as distinct
quantum systems, thus the state of the photon is described by a vector in C2⊗Cn⊗Cq, generated by basis
states of the form |c〉 ⊗ |p〉 ⊗ |x〉, also written |c, p, x〉, which correspond to the possible classical states of
the photon (with c ∈ {V,H}, p ∈ {0, ..., n − 1} and x ∈ {0, ..., q − 1}). Then one can perform coherent
control by using a polarising beam splitter (PBS) : when the photon encounters it, it is reflected if its
polarisation is vertical, or transmitted (that is, it passes through the PBS) if its polarisation is horizontal.
That is, considering that the position has two possible classical states, corresponding respectively to the
two possible vertical positions (on the top or on the bottom), the PBS performs the controlled operation
defined by linearity by |V, p, x〉 7→ |V, p, x〉 and |H, p, x〉 7→ |H〉 ⊗ X|p〉 ⊗ |x〉, where X is defined by
|0〉 7→ |1〉 and |1〉 7→ |0〉. If the polarisation of the photon is in superposition, then its position becomes in
superposition too (in other words, the photon is at two places at the same time), and moreover entangled
with the polarisation. Then by putting different operations, acting on the third degree of freedom of the
photon, on the different paths followed in superposition by the photon, one performs a coherent control
of these operations by the polarisation.

Contributions and Plan of the Thesis. The first objective of this PhD was to develop a formal
framework in which one could represent coherent control schemes and reason about them in an as general
and simple way as possible. This is a wide project which is only at its beginning. Our approach to do so
has been by abstracting and formalising a linear optical implementation of coherent control, as described
in the preceding paragraph. Following this approach, our first contribution, presented in Chapter 3, is
a graphical language essentially inspired by this implementation, with limited features. This approach
naturally yields two points of view: the first one, which underlies the initial idea, consists in focusing
on coherent control, and considering the linear optical aspect in an abstract way and primarily as a
tool to represent coherently controlled processes. The second point of view consists in focusing on the
linear optical aspect, and considering our graphical languages primarily as representing physically sound
(linear) optical schemes: then coherent control is seen as a consequence of the laws of quantum optics.
This thesis touches on both points of view.

In Chapter 3, we introduce a graphical language called the PBS-calculus, whose syntax and semantics
directly come from a small fragment of linear optics, for representing the coherent control of quantum
evolutions. We equip it with a complete axiomatisation (that is, a complete equational theory), which is
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also minimal (that is, there are no redundancies between the axioms). This language has some limitations,
both in the quantum evolutions that can be controlled and in the way that they can be controlled. Its
main goal is to provide the foundations of a formal framework for studying quantum control and its
various aspects. The rest of the thesis essentially consists in developing this framework, by building on
the formalism of the PBS-calculus, in several directions:

In Chapter 4, we introduce a refinement of the PBS-calculus, for which we also give a complete and
minimal axiomatisation, and explore the question of resource optimisation in this framework. We give a
simple procedure for the natural problem of optimising calls to oracles. We find that a natural refinement
of this problem is NP-hard, despite the limitations of the language. We also give a heuristic for this
refined optimisation problem, that we prove to give the optimal result in a restricted case. However, we
do not evaluate its accuracy in the general case.

The work exposed in Chapter 5 focuses on the linear optical part: we define a graphical language for
linear optical circuits that are photon-preserving (in the sense that they do not contain elements that
can change the number of photons in the circuit), which is an extension of the PBS-calculus but without
oracles. Our main result is a complete axiomatisation of this language. The proof relies on a normal form
whose main part is a circuit belonging to a fragment of the language, namely of polarisation-preserving
circuits. This fragment has itself a complete equational theory and a proof of completeness based on a
normal form (on which the normal form for the whole language is based), moreover we define a confluent
and terminating rewriting system that puts any circuit of this fragment in normal form.

In Chapter 6, we exploit a correspondence between polarisation-preserving linear optical circuits and
quantum circuits with multi-controlled gates to find a complete axiomatisation of quantum circuits.

Finally, in Chapter 7, we extend the language of Chapter 3 in order to allow for the coherent control
of general quantum channels. Note that the usual description of a quantum channel, namely as a CPTP
map, is not sufficient in a coherent control context. Our main contribution is then to precisely characterise
what information one needs to provide about a channel, in addition to the usual CPTP map, to be able
to predict its behaviour in the coherent control framework allowed by PBS-diagrams, as well as in some
of its restrictions.

Up to a few arrangements and additions, each chapter essentially corresponds to an article published
during the PhD:

• [39] Alexandre Clément and Simon Perdrix. PBS-calculus: A graphical language for coherent
control of quantum computations. In 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2020), 2020. doi:10.4230/LIPIcs.MFCS.2020.24. (Chapter 3)

• [40] Alexandre Clément and Simon Perdrix. Resource optimisation of coherently controlled quan-
tum computations with the PBS-calculus. In 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), 2022. doi:10.4230/LIPIcs.MFCS.2022.36.
(Chapter 4)

• [38] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
LOv-calculus: A graphical language for linear optical quantum circuits. In 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2022), 2022. doi:10.
4230/LIPIcs.MFCS.2022.35. (Chapter 5)

• [37] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
A complete equational theory for quantum circuits. 2022. arXiv:2206.10577. arXiv preprint,
submitted to LICS 2023. (Chapter 6)

• [24] Cyril Branciard, Alexandre Clément, Mehdi Mhalla, and Simon Perdrix. Coherent control and
distinguishability of quantum channels via PBS-diagrams. In 46th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2021), 2021. doi:10.4230/LIPIcs.MFCS.
2021.22. (Chapter 7)

Although the chapters are written in a way that makes them relatively independent from each other,
the logical order between them can be summarised by the following diagram:

xx
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Chapter 3

Chapter 4 Chapter 5 Chapter 7

Chapter 6

The exposition of these research results is preceded by a short introduction of the main necessary
notions. In Chapter 1, we define the combinatorial structures that underlie all the graphical languages
that we will consider in the thesis. In Chapter 2, we briefly give basic notions of quantum computing
and introduce the related concepts being used in this thesis.
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Chapter 1

Structure of Graphical Languages

The graphical languages mentioned in the introduction, namely the ZX-calculus, the ZH-calculus, the
ZW-calculus, and quantum circuits, have the following properties in common, together with many other
languages of string diagrams:

• The diagrams are defined unambiguously by their graphical representation. This is despite the
fact that a given graphical representation can generally be built in several ways: for instance,
D1 D2 D3 can be build by combining first D1 and D2 together, then adding D3, or by

combining first D2 and D3 together, then adding D1.

• Consistently with the fact that the diagrams essentially represent transformations of an input into
an output, deforming a diagram into another valid diagram does not change the transformation
represented (as long as the input and output wires are not messed up).

These nice properties, almost necessary (in particular the first one) for the languages to be well-defined
and practical to use, are provided by the mathematical structures underlying the languages, namely, the
so-called structure of PROP and its variants.

The languages that we will define and manipulate in this thesis will also be based on such structures,
so as to enjoy the same properties. More precisely, in addition to the structure of PROP itself, we will use
the structure of PRO, which is a restriction of it, and the structures of traced PROP and coloured traced
PROP, which are extensions of it. The purpose of this chapter is to formally define these structures, and
to give the basic notions and some intuition about them.

The usual definitions of these structures (see for instance [98, 133, 74] and nLab) are within the
framework of category theory. However, they can be seen as fundamentally combinatorial structures,
and there is actually no need to introduce any notion of category theory to define them, or to work with
them — at least in the way that we do in this thesis. For this reason, and as introducing the necessary
notions of category theory would require much more efforts than needed, we follow here the approach of
[27], where the structure of PROP is defined in a combinatorial way. We adapt the definition given in
that paper, to the structures that we need:

Definition 1.1. A traced PROP P is a collection of sets P[n,m], indexed by N2. An element f ∈ P[n,m]
is called a morphism and is written f : n→ m. These sets are equipped with:

1. a sequential composition ◦ : P[m, k]×P[n,m]→ P[n, k] satisfying:
• associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f)

2. a parallel composition ⊕ : P[n,m]×P[k, `]→ P[n+ k,m+ `], satisfying:
• associativity: (f ⊕ g)⊕ h = f ⊕ (g ⊕ h)
• compatibility of the sequential and parallel compositions: (f2◦f1)⊕(g2◦g1) = (f2⊕g2)◦(f1⊕g1)

3. an empty morphism : 0→ 0 satisfying:

3



Chapter 1. Structure of Graphical Languages

• neutrality: ⊕ f = f ⊕ = f for all f : n→ m

4. an identity morphism : 1→ 1 satisfying:

• neutrality: f ◦ ⊕n = f = ⊕m ◦ f for all f : n → m, where ⊕n is defined inductively by
⊕0 = and ⊕n+1 = ⊕n ⊕

5. a swap : 2→ 2 satisfying:

• inverse law: ◦ = ⊕2

• naturality: σm ◦ ( ⊕ f) = (f ⊕ ) ◦ σn for all f : n→ m, where σk is defined inductively by
σ0 = and σk+1 = ( ⊕k ⊕ ) ◦ (σk ⊕ )

6. a trace Tr : P[n+ 1,m+ 1]→ P[n,m] satisfying:
• naturality in the input: Tr(f ◦ (g ⊕ )) = Tr(f) ◦ g for all f : n+ 1→ m+ 1 and g : k → n

• naturality in the output: Tr((g⊕ ) ◦ f) = g ◦ Tr(f) for all f : n+ 1→ m+ 1 and g : m→ k

• dinaturality: Tri(( ⊕m⊕ g) ◦ f) = Trj(f ◦ ( ⊕n⊕ g)) for all f : n+ i→ m+ j and g : j → i

• superposing: Tr(g ⊕ f) = g ⊕ Tr(f) for all f : n+ 1→ m+ 1 and g : k → `

• yanking: Tr( ) = .

Additionally, if we remove Item 6 from the definition then the collection of sets is called a PROP, and if
we remove Items 5 and 6 then it is called a PRO. The named equalities above are called axioms.

The concepts of (traced) PRO(P)s are mainly used for graphical languages, as it will be the case in
this thesis, therefore the morphisms are generally represented graphically. A morphism f : n → m is
represented with n input wires and m output wires. By convention, in this thesis, the diagrams are to
be read from left to right. Therefore, the input wires are on the left, and the output wires are on the
right. The wires on each side are ordered from top to bottom. For instance, a morphism f : 5 → 6 is
represented in the following way:

f

The sequential composition g ◦ f , the parallel composition f ⊕ g, and the trace Tr(f) are respectively
depicted as follows:

f g
f

g
f

Intuitively, the trace often represents a feedback loop.4
The graphical representations of the axioms of traced PROP given in Definition 1.1 are the following:

Neutrality of the identity: for any f : n→ m,

f ◦ ⊕n = f = ⊕m ◦ f

f = f = f

Neutrality of the empty morphism: for any f : n→ m,

⊕ f = f = f ⊕

f
= f =

f

4In this thesis, this will always be the case except for extended quantum circuits (see Section 2.3).
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Associativity of the sequential composition: for any
f : n→ m, g : m→ k, h : k → `,

(h ◦ g) ◦ f = h ◦ (g ◦ f)

f g h = f g h

Associativity of the parallel composition: for any
f : n1 → m1, g : n2 → m2, h : n3 → m3,

(f ⊕ g)⊕ h = f ⊕ (g ⊕ h)

f

g

h

=

f

g

h

Compatibility of the sequential and parallel com-
positions: for any f1 : n1 → m1, g1 : m1 → k1,
f2 : n2 → m2, g2 : m2 → k2,

(g1 ◦ f1)⊕ (g2 ◦ f2) = (g1 ⊕ g2) ◦ (f1 ⊕ f2)

f1 g1

f2 g2

=
f1 g1

f2 g2

Naturality of the swap: for any f : n→ m,

σm ◦ ( ⊕ f) = (f ⊕ ) ◦ σn

f
=

f

Inverse law:

◦ = ⊕2

=

Naturality in the input: for any f : n+ 1→ m+ 1
and g : k → n,

Tr(f ◦ (g ⊕ )) = Tr(f) ◦ g

f
g = f

g

Naturality in the output: for any f : n+1→ m+1
and g : m→ k,

Tr((g ⊕ ) ◦ f) = g ◦ Tr(f)

f
g = f

g

Dinaturality: for any f : n + i → m + j and
g : j → i,

Tri(( ⊕m ⊕ g) ◦ f) = Trj(f ◦ ( ⊕n ⊕ g))

f
g

= f
g

where Trk denotes the kth power of the trace op-
eration.

Superposing: for any f : n + 1 → m + 1 and
g : k → `,

Tr(g ⊕ f) = g ⊕ Tr(f)

f

g

=
f

g

Yanking:

Tr( ) =

=

The axioms of (traced) PRO(P) characterise the fact that, on the one hand, the graphical repre-
sentation is unambiguous (in particular without needing to add dotted boxes), and on the other hand,
that the graphical representations of morphisms, called diagrams, can be deformed at will. Indeed, it is
considered as established (Theorems 3, 7 and 20 of [120])5 that two diagrams are equivalent according
to the axioms of a (traced) PRO(P) if and only if they are isomorphic in a graph-theoretical sense, that

5Theorems 3.1, 3.12 and 5.22 in the arXiv version.
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is, if one can be obtained from the other by graphically deforming it in a way that preserves the relative
order of the input and output wires. But note, actually, that in [120], the author points out that the
result for traced PROPs (Theorem 20) relies on a result by Kelly and Laplaza (Theorem 8.2, [90]) which
is only proven in the case where all generators have type 1→ 1 — which is not the case for the (traced)
PRO(P)s that we will consider in this thesis. Another caveat pointed out in [120] is that the results
for PROs and PROPs (Theorems 3 and 7 respectively) rely on results by Joyal and Street (Theorem
1.5 of [87] and Theorem 1.2 of [88] for PROs, and Theorem 2.3 of [88] for PROPs) which assume that
during the graphical deformation, all intermediate diagrams have their wires oriented from left to right.
In both cases, the general case does not appear in the literature. However, since it is very likely that it is
not significantly harder, and no counterexample has been found so far despite the wide use of this kind
of graphical languages, we will assume it to be true. Moreover, whenever we use this result in a proof
to deform a diagram, we can directly use the axioms instead. If this result were to be false and some
proof were to become incomplete because of this, then it would suffice to add the missing axioms to the
definition of a (traced) PRO(P) to make the proof complete again.

Remark 1.2. Note that in the literature, the parallel composition ⊕ (also called the monoidal product)
is generally written ⊗. We prefer to use ⊕ here as it is more consistent with the semantics of most of
the (traced) PRO(P)s that we will consider in this thesis. The only exception is the PROP of quantum
circuits, for which we will revert to the usual ⊗ notation.

Example 1.3. The collection of sets M, where M[n,m] = C2m×2n , is a traced PROP, with = 1,

=
(

1 0
0 1

)
, =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, the sequential composition given by the matrix product, the parallel

composition given by the Kronecker product ⊗, and the trace given by the partial trace over C2, where
the partial trace is defined as follows: given three Hilbert spaces A, A′ and B, one can identify the space
L(A ⊗ B,A′ ⊗ B) with L(A,A′) ⊗ L(B) (where for any vector spaces V and V ′, L(V,V ′) denotes the
space of linear maps from V to V ′, and L(V) := L(V,V)); then the partial trace over B is the linear map
TrB : L(A⊗B,A′⊗B)→ L(A,A′) defined by TrB(A⊗B) = Tr(B)A for any A ∈ L(A,A′) and B ∈ L(B).

Most of the time, we will consider the (traced) PRO(P) generated (more precisely, freely generated)
by some particular set of generators. That is, the smallest (traced) PRO(P) containing these generators,
the empty diagram and the identity (and the swap if relevant), closed under sequential and parallel
composition (and trace if relevant). The definition can be formalised as follows:

Definition 1.4. Given a set A, together with a type na → ma for each element a ∈ A, to define the
traced PROP (freely) generated by A, we first consider the set of terms inductively defined as follows:

: 0→ 0 : 1→ 1 : 2→ 2 ∀a ∈ A, a : na → ma

f : n→ m g : m→ k

g ◦ f : n→ k

f : n→ m g : k → `

f ⊕ g : n+ k → m+ `

f : n+ 1→ m+ 1
Tr(f) : n→ m

and then we take its quotient by the axioms of traced PROP.

Note that we use the fraction notation of inference rules, which is widely used in logic-related fields.

A fraction such as f : n→ m g : k → `

f ⊕ g : n+ k → m+ `
means “given any f : n → m and g : k → `, we build a new

term denoted f ⊕g, of type n+k → m+ `”. Note that before taking the quotient by the axioms of traced
PROP, two syntactically different terms are considered distinct.

The definition of the PROP (resp. the PRO) generated by a set of generators is the same but without
the last rule involving the trace (resp. without the rule involving the trace and without the swap).
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Example 1.5. In Chapter 5, we will consider the PROP LOv of LOv-circuits6 generated by

0 : 0→ 1 0 : 1→ 0 ϕ : 1→ 1
θ

: 1→ 1

θ : 2→ 2 : 2→ 2

where θ, ϕ ∈ R.
A non-trivial example of deformation is the following:

θ
ϕ

θ′

0ϕ′

= ϕ
θ′

0
θϕ′

One can also consider the traced PROP generated by the same generators, as we do in the discussion
of Section 5.5. An example of deformation involving the trace is the following:

θ
ϕ

θ′ 0

ϕ′

=
θ

ϕ
θ′

0ϕ′

In Chapter 4, we will also use coloured traced PROPs. Graphically, this means that each wire has a
type taken from a fixed set, and the types of wires are represented using either colours or labels (or both,
to avoid loss of information in case of black and white printing or for colour-blind readers). The axioms
are the same, and they still characterise the fact that a diagram represents a unique morphism and can
be deformed at will (again Theorems 3, 7 and 20 of [120], with the same caveats). The formal definition
is analogous to the non-coloured case:

Definition 1.6. A coloured traced PROP (or traced coloured PROP) P is a collection of sets P[a, b],
indexed by (C∗)2, where C∗ is the set of finite words over an alphabet C. The elements of C are usually
called colours, and those of C∗ are called objects. The empty word of C∗ is denoted ε and the concatenation
in C∗ is denoted ⊕. As in the case of (traced) PRO(P)s, an element f ∈ P[a, b] is called a morphism and
is written f : a→ b. These sets are equipped with:

1. a sequential composition ◦ : P[b, c]×P[a, b]→ P[a, c] satisfying:

• associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f)

2. a parallel composition ⊕ : P[a, b]×P[c, d]→ P[a⊕ c, b⊕ d], satisfying:

• associativity: (f ⊕ g)⊕ h = f ⊕ (g ⊕ h)
• compatibility of the sequential and parallel compositions: (f2◦f1)⊕(g2◦g1) = (f2⊕g2)◦(f1⊕g1)

3. an empty morphism : ε→ ε satisfying:

• neutrality: ⊕ f = f ⊕ = f for all f : a→ b

4. an identity morphism a : a→ a for every a ∈ C, satisfying:

• neutrality: f ◦ idb = f = idc ◦ f for all f : b → c, where idd is inductively defined by idε =
and idd⊕a = idd ⊕ a for any d ∈ C∗ and a ∈ C

5. a swap
a

b : a⊕ b→ b⊕ a for every a, b ∈ C, satisfying:

• inverse law: a

b
◦

a

b = a ⊕ b

6For Linear Optical circuits with vacuum state sources and detectors (see Chapter 5 for details).
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Chapter 1. Structure of Graphical Languages

• naturality: σa,d ◦ ( ⊕ f) = (f ⊕ ) ◦ σa,c for all f : c→ d, where σa,e is defined inductively
for any a ∈ C and e ∈ C∗ by σa,0 = a and σa,e⊕b = (ide ⊕

a

b ) ◦ (σa,e ⊕ b )

6. a trace Tra : P[b⊕a, c⊕a]→ P[b, c] for every a ∈ C, satisfying (where the letters b, c, d, e, i, j denote
elements of C∗):

• naturality in the input: Tra(f ◦ (g ⊕ a )) = Tra(f) ◦ g for all f : b⊕ a→ c⊕ a and g : d→ b

• naturality in the output: Tra((g⊕ a ) ◦ f) = g ◦Tra(f) for all f : b⊕ a→ c⊕ a and g : c→ d

• dinaturality: Tri((idd ⊕ g) ◦ f) = Trj(f ◦ (idc ⊕ g)) for all f : c ⊕ i → d ⊕ j and g : j → i,
where Tre is inductively defined by Trε(f) = f and Tra⊕e(f) = Tra(Tre(f))

• superposing: Tra(g ⊕ f) = g ⊕ Tra(f) for all f : b⊕ a→ c⊕ a and g : d→ e

• yanking: Tra( a
a

) = a .

Additionally, if we remove Item 6 from the definition then the collection of sets is called a coloured PROP,
and if we remove Items 5 and 6 then it is called a coloured PRO.

The coloured (traced) PRO(P) generated by a set can be defined in a similar way as Definition 1.4,
note that the generators are then given with a coloured type ba → ca with ba, ca ∈ C∗.

Example 1.7. In Chapter 4, we will consider the coloured traced PROP, with set of colours {v,h,>},
generated by the following generators:

: >⊕> → >⊕> : >⊕ v→ v⊕> : > → h⊕ v

: h⊕> → h⊕> : v⊕> → >⊕ v : v⊕ h→ >

: >⊕ h→ >⊕ h : > → v⊕ h : h⊕ v→ >
¬ : > → > ¬ : v→ h ¬ : h→ v

U : > → > U : v→ v U : h→ h

where U is an element of some fixed monoid. Note that these are 15 distinct generators.
Graphically, the wires of type v will be represented in red, those of type h in blue, and those of type

> in black. An example of diagram is the following:

¬
U

v

h ¬

Note that we have put some labels to avoid ambiguity in case of black and white printing or for colour-
blind readers. However, we have kept their number as small as possible to avoid overloading the diagram.
These two labels are sufficient to avoid ambiguity: indeed, for each of the 3-leg generators ,

and , the type of the three wires is fixed; for the generators of the form ¬ or U , the
type of one of the two sides uniquely determines the type of the other side; and for the 4-leg generators,
knowing that one of the four wires is of type h (resp. v) uniquely determines the types of the other three
wires. Additionally, in Chapter 4 we will omit the label >, so that unless otherwise specified, the wires
whose type is ambiguous in a diagram are black by convention.
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Chapter 2

Quantum Computing

2.1 Key Notions and Concepts
Introduction. Quantum computing consists in using intrinsically quantum properties of quantum sys-
tems, such as superposition and entanglement, to improve the performances of some computing tasks.

The first task for which the idea of using quantum systems for computing was evoked is the simulation
of quantum systems: indeed, these are usually hard to simulate with a classical computer, as one has
to handle a vector space whose dimension grows exponentially with the size of the system, and many
tasks involving such simulations are known to be NP-hard, like Boson Sampling [2] or Random Circuit
Sampling [3, 23]. On the contrary, it is in theory possible to build universal quantum computers able
to simulate any kind of quantum system, while keeping the amount of resources needed — in space and
time — linear in the size of the system to simulate. This may find applications for instance in chemistry,
for designing new molecules while being able to precisely know their properties in advance.

Among the other kinds of tasks in which quantum computers could outperform classical computers,
maybe the most widely known example is that of Shor’s algorithm [122], which allows one to factor a
k-bit composite integer into a non-trivial product of two integers in time Õ(k2), whereas the best known
classical algorithm has complexity 2Θ̃(k1/3). The existence of this algorithm implies that widely used
cryptographic protocols, like RSA, which rely on the hardness of factorisation, would no longer be secure
if scalable quantum computers were to be available. A related algorithm, also presented in [122], allows
one to find discrete logarithms in polynomial time, which breaks additional cryptographic protocols like
EDCSA.

Another example is Grover’s algorithm [71], which allows one to search for a particular element in
an unstructured n-length array in time O(

√
n), whereas classically there is no better method than the

naive one, which has complexity Θ(n) on average. Grover’s algorithm has a large range of potential
applications as it can be adapted to many situations where some kind of search is involved.

Other applications of quantum computing, that are more likely to be reachable in the near future,
include optimisation algorithms, like quantum annealing for finding the maximum of a function, or QAOA.

Quantum States and State Spaces. Quantum computing manipulates quantum states, that is, states
of quantum systems, which are described by a unit vector in some Hilbert space called the state space of
the system.

The difference between classical and quantum data can be seen as follows. Given a variable a in classi-
cal computing, whose possible values are elements of a set A = {a1, a2, ...}, one can consider an orthonor-
mal basis of CA: ea1 , ea2 , .... Following Dirac’s notation,7 we write the basis vectors as |ea1〉 , |ea2〉 , ....
Then we can simplify the notation and just write |a1〉 , |a2〉 , .... The quantum equivalent of the variable

7In quantum physics, vectors are usually written as |ϕ〉 (pronounce “ket ϕ”), and their adjoints (that is, linear forms)
are usually written as 〈ϕ| (pronounce “ϕ bra”), in such a way that given a vector |ϕ〉, its adjoint (namely, the orthogonal
projection onto |ϕ〉) is written 〈ϕ|. Then applying a linear form 〈ϕ| to a vector |ψ〉 is written 〈ϕ| |ψ〉 = 〈ϕ|ψ〉 (pronounced
“ϕ bracket ψ”, note the pun), which corresponds to the scalar product of |ϕ〉 and |ψ〉.
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Chapter 2. Quantum Computing

a is a quantum state, that is, a unit vector, of CA, which can be written as a normalised linear combina-
tion α1 |a1〉 + α2 |a2〉 + ..., called a superposition, of the basis states |ai〉, which can be interpreted as a
superposition of the possible values of a.

Example 2.1. For instance, the quantum equivalent of a bit is a qubit, whose state is a unit vector of

C2, usually written as α |0〉 + β |1〉, where |0〉 and |1〉 are usually identified with the elements
(

1
0

)
and(

0
1

)
of the canonical basis of C2, and |α|2 + |β|2 = 1.

Combination of Quantum Systems. The state space of two quantum systems put together is the
tensor product of their respective state spaces. In other words, the state of two quantum systems is not
just the state of each of the two systems separately, but rather a superposition of all possible combinations
of basis states. In particular, by putting together a system with state space CA and another one with
state space CB , the overall state space is CA ⊗ CB = CA×B , that is, the state of the joint system is a
superposition of all possible pairs (a, b) with a ∈ A and b ∈ B. In other words, combining the quantum
equivalents of two variables gives the quantum equivalent of the pair that we get by puting the two
classical variables together.

If one takes a system in state |ϕ〉 ∈ H and another independent system in state |ϕ′〉 ∈ H′, the state
of the combined system is |ϕ〉 ⊗ |ϕ′〉 ∈ H ⊗ H′. Such a state is called a separable state. A state that is
not separable is said to be entangled.

Remark 2.2. The notation |ϕ〉 ⊗ |ϕ′〉 is often abbreviated into |ϕ〉 |ϕ′〉. Moreover, following the identi-
fication CA ⊗ CB = CA×B, given two basis states |ai〉 and |bj〉 with ai ∈ A and bj ∈ B, the basis state
|ai〉 ⊗ |bj〉 of CA×B is often written |ai, bj〉, itself sometimes abbreviated into |aibj〉.

Example 2.3. The state space of n qubits is (C2)⊗n. The canonical basis of this space is composed of the
2n possible tensor products of n basis vectors of {|0〉 , |1〉}, which can be identified with the lists of n bits.
For instance, |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 is often denoted by |01011〉.8 By means of the binary encoding,9
these lists of bits can also be identifed with the integers 0, ..., 2n − 1.

Example 2.4. The state 1√
2 (|00〉+ |11〉) of two qubits is entangled.

Example 2.5. A quantum system that we will consider in this thesis is a photon, which is a particle
with several degrees of freedom:

• a polarisation, described as a quantum superposition α |V〉+β |H〉 of two distinguished polarisations
that we call vertical (denoted V) and horizontal (denoted H)

• a position, which will be a superposition of a finite number, say n, of possible locations

• another degree of freedom described by a vector in some Hilbert space H.

The different degrees of freedom behave as distinct quantum systems, thus the overall state of the photon10

is described by a vector in C{V,H} ⊗ Cn ⊗ H, and is a superposition of basis states of the form |c, p, x〉
with c ∈ {V,H}, p ∈ [n] := {0, ..., n− 1}, and x ∈ H.

Basic Operations. There are essentially three kinds of basic operations that one can do in quantum
computing.

• First, preparing a system in a chosen state, whose description is given by non-quantum means (in
particular, it cannot depend on the state of another quantum system).

8Following Remark 2.2, this state could also be denoted by |0, 1, 0, 1, 1〉. We will sometimes prefer this notation with a
comma, in particular for clarity when referring to an unknown basis state of several qubits, e.g. |x, y〉.

9The binary encoding is the most natural one, and is therefore the one that is almost always used; note however that in
Chapter 6, it will be more convenient for us to use a different encoding, called Gray code (see Definition 6.40).

10A photon has actually many degrees of freedom, but it is sufficient to consider only those that are relevant in the context
of our work.
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2.1. Key Notions and Concepts

• Second, applying (in-place) a unitary transformation to one or more quantum systems.

• Third, measuring a quantum system with respect to a given orthonormal basis of its state space.
The outcome of such a measurement is probabilistic: given two quantum systems with state spaces
H and H′, and an orthonormal basis {|e1〉 , |e2〉 , ...} of H, so that the composite system is in state
α1 |e1〉 ⊗ |ϕ1〉+ α2 |e2〉 ⊗ |ϕ2〉+ ... , measuring the first system with respect to this basis gives the
classical outcome ei with probability |αi|2, and leaves the second system in state |ϕi〉. Depending
on the nature of the measurement, the first system is either destroyed (destructive measurement),
or left in state |ei〉 so that the final overall state is the separable state |ei〉 ⊗ |ϕi〉 (projective
measurement).
Note that the final remaining state ϕi is only defined up to a global phase (that is, up to a
multiplicative scalar of the form eiθ). This does not create ambiguity since two quantum states
differing only by a global phase are indistinguishable.

No-Cloning. The no-cloning theorem states that there is no physically realisable quantum operation
which, given a quantum state |ϕ〉, produces |ϕ〉 ⊗ |ϕ〉. This is essentially because all physical operations
are linear (even the measurement has some kind of linearity, see the CPTP map formalism below, and
in particular Example 2.7). For the same reason, the operations must be done in-place, for instance
given a transformation of quantum states V , it is in general not possible to build the transformation
|ϕ〉 7→ |ϕ〉 ⊗ V |ϕ〉.

Quantum Circuits. Quantum circuits, originally introduced in [55], are a graphical language for
representing low-level quantum computations. They are made of primitives called gates, that are unitary
operations acting on one or more qubits, possibly together with qubit initialisations and measurements,
combined together using parallel and sequential composition. The set of available gates depends on the
possibilities offered by the setup that one wants to model. A typical quantum circuit looks like this:

V

|0〉+|1〉√
2

U

|0〉 V

H

W

W

We will talk more in details about quantum circuits in Section 2.2.

Mixed States and Density Matrices. Due to the probabilistic nature of measurement, it is natural
to consider probability distributions on quantum states. These distributions are called mixed states.
One usually represent mixed states using the formalism of density matrices. Given a quantum system
which is in one of the states |ϕ1〉 , |ϕ2〉 , ... with probability p1, p2, ... respectively, its density matrix is∑
i

pi |ϕi〉〈ϕi|.11 A fundamental property of this formalism is that two mixed states are distinguishable

by a physical experiment if and only if they have different density matrices ([105], Sections 2.2 and 2.4).
Note that |ϕi〉〈ϕi| is a matrix of rank 1, and that Tr(|ϕi〉〈ϕi|) = Tr(〈ϕi| |ϕi〉) = 〈ϕi|ϕi〉 = 1, since |ϕi〉

is a unit vector. Therefore, the trace of a density matrix is the sum of the probabilities of the different
states, which is equal to 1. It is known that density matrices (at least in finite dimension) are exactly
the (Hermitian) positive matrices12 of trace 1.

CPTP Maps. A linear map f : Cn×n → Cm×m is said to be positive if for any positive matrix A,
f(A) is still positive. It is completely positive if for any k, f ⊗ idCk×k is positive. A completely positive
trace-preserving (CPTP) map is a completely positive map f such that for any A, Tr(f(A)) = Tr(A). It is

11Recall that 〈ϕi| := |ϕi〉†, where A† denotes the adjoint of a matrix — or of a vector seen as a column matrix — which
in the context of a Hilbert space is its conjugate transpose.

12A matrix A ∈ Cn×n is positive if for any v ∈ Cn, one has v†Av ≥ 0. In particular, v†Av ∈ R, and one can prove that
this property implies that A is necessarily Hermitian (that is, A† = A).
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Chapter 2. Quantum Computing

known that CPTP maps are exactly the physically realisable functions mapping mixed states (represented
by their density matrix) to mixed states ([105], Section 8.2).

Intuitively, positivity, together with trace preservation, means that f maps density matrices to density
matrices, and therefore, physical states to physical states. Complete positivity means that it does so even
in the presence of a context.

Example 2.6. Given a unitary operation U acting on quantum states, the corresponding CPTP map
acting on density matrices is ρ 7→ UρU†.

A CPTP map defined in this way is said to be pure.

Example 2.7. Consider a qubit in a pure (that is, not mixed) state α |0〉 + β |1〉. Its density matrix is

(α |0〉+β |1〉)(α† 〈0|+β† 〈1|) = |α|2 |0〉〈0|+αβ† |0〉〈1|+βα† |1〉〈0|+|β|2 |1〉〈1| =
(
|α|2 αβ†

βα† |β|2
)
. Performing

a projective measurement of this qubit in the standard basis {|0〉 , |1〉} (also called the computational basis)
leaves it in state |0〉 with probability |α|2, and in state |1〉 with probability |β|2, hence its density matrix

after the measurement is |α|2 |0〉〈0|+ |β|2 |1〉〈1| =
(
|α|2 0

0 |β|2
)
.

Now, consider a qubit in a mixed state, which is in one of several pure states αi |0〉 + βi |1〉, with

respective probabilities pi. Its density matrix is
∑
i

(αi |0〉+βi |1〉)(α†i 〈0|+β
†
i 〈1|) =


∑
i

|αi|2
∑
i

αiβ
†
i∑

i

βiα
†
i

∑
i

|βi|2

.

If one performs the same projective measurement on this qubit, the probability that it is left in state |0〉
is
∑
i

pi|αi|2, while the probability that it is left in state |1〉 is
∑
i

pi|βi|2. Hence, its density matrix after

the measurement is

∑i |αi|2 0

0
∑
i

|βi|2

.

Thus, the CPTP map corresponding to the projective measurement of a qubit in the standard basis is(
a b
c d

)
7→
(
a 0
0 d

)
.

Quantum Channels. A quantum channel is something that takes a quantum state as an input, trans-
forms it and outputs the result. It can be described as a CPTP map, which completely characterises its
behaviour from an input/output point of view. For this reason, the phrase “quantum channel” is generally
understood as a synonym of “CPTP map” in the literature about quantum information theory. However,
in particular in Chapter 7, we will see situations where two physical devices described by the same CPTP
map can in fact be distinguished: either by using coherent control (see below), that is, roughly speaking,
by sending a state both in a channel and outside of it, in superposition; or by using the same physical
channel twice in a row. This is why we will not abide by this shortcut in this thesis, and will rather see
a quantum channel essentially as a physical device, although treated in an abstract way.

Coherent Control. Coherent control, also called more simply quantum control, consists in controlling
the choice of an operation — usually unitary (or pure) — to be applied to a quantum system, by using
the state of another quantum system. For instance, it is common in the framework of quantum circuits to

introduce controlled gates. For instance, the controlled version of a gate U , denoted
U

, applies

U to the second qubit (called the target qubit) if the first one (called the control qubit) is in state |1〉,
and does nothing (or equivalently applies the identity) if it is in state |0〉. That is, the controlled gate is

defined by linearity by |0〉 |ϕ〉 7→ |0〉 |ϕ〉 and |1〉 |ϕ〉 7→ |1〉 ⊗ U |ϕ〉. It is also common to consider
U

,
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2.2. Quantum Circuits

defined by |0〉 |ϕ〉 7→ |0〉 ⊗ U |ϕ〉 and |1〉 |ϕ〉 7→ |1〉 |ϕ〉. By composing the two kinds of controlled gates

U V
, one applies either U or V — or a “superposition” of both — depending on the state of the

control qubit: |0〉 |ϕ〉 7→ |0〉 ⊗ U |ϕ〉 and |1〉 |ϕ〉 7→ |1〉 ⊗ V |ϕ〉, which is represented by a block-diagonal

matrix:
(
U 0
0 V

)
. This is a coherent control of the unitary operations U and V by the control qubit.

Coherent control also works with more general control and target systems: a unitary operation is
associated with each element of a particular basis of the state space of the control system, and is applied
to the target system if the control system is in the corresponding state. The global operation is still
defined by linearity, and can still be represented by a block-diagonal matrix made of all the unitaries.

A commonly considered example of coherent control is the quantum switch [34]: given a control qubit
and two unitary operations U and V acting on a target system, the quantum switch of U and V is the
global operation defined by linearity by |0〉 |ϕ〉 7→ |0〉 ⊗ V U |ϕ〉 and |1〉 |ϕ〉 7→ |1〉 ⊗ UV |ϕ〉. That is, one
performs a coherent control of the order in which U and V are applied.

Note that in quantum circuits, the controlled gate
U

has to be introduced as a new generator,

one cannot obtain it from the non-controlled gate U . In fact, it has been proven that there does not
exist a quantum circuit in which it would suffice to plug one or more copies of an arbitrary gate to get
its controlled version [11, 64]. Moreover, one cannot represent the quantum switch using only one copy

of each gate or of its controlled version: one has to represent it for instance as
U UV

.

Coherent control can be extended to control operations that are not unitary. First, what was just
explained above works also for non-unitary square matrices (but in this case the resulting global operation
is not unitary either). These, strictly speaking, do not represent physical evolutions but can be useful as
a mathematical tool. Coherent control can also be extended to quantum channels, but this requires to
adopt a more precise description than CPTP maps. We address this question in Chapter 7.

2.2 Quantum Circuits
Definition 2.8. Given a set G of unitary matrices whose dimensions are powers of 2, the PROP of
quantum circuits with gates in G is generated by the set of generators composed of, for each U ∈ G∩C2n×2n ,
a gate U : n→ n. That is, the quantum circuits are built from these generators together with the empty
circuit , the identity and the swap , combined using sequential and parallel compositions, and
are considered up to deformation by the axioms given at Items 1 to 5 of Definition 1.1.

The parallel wires in a quantum circuit are meant to represent qubits. A unitary matrix U ∈ C2n×2n

therefore yields a gate acting on n qubits. Indeed, with the identification of the integers 0, ..., 2n− 1 with
lists of bits, U can also be seen as a matrix in C{0,1}n×{0,1}n . The semantics of a quantum circuit is the
overall unitary tranformation that it applies to the state of its input qubits:

Definition 2.9 (Semantics). For any quantum circuit C : n → n, let JCK : C{0,1}n → C{0,1}n be the
linear map inductively defined as follows:

JC2 ◦ C1K = JC2K ◦ JC1K , JC1 ⊗ C3K = JC1K⊗ JC3K ,

and ∀x, y ∈ {0, 1},

J K = 1 7→ 1, J K = |x〉 7→ |x〉 , J K = |x, y〉 7→ |y, x〉 ,
r

U

z
= U.

Note that we use here the notation ⊗ for the parallel composition, as mentioned in Remark 1.2, since
this is more consistent with the semantics.

Note also that according to Definition 2.8, all quantum circuits have the same number of input and
output qubits. However, it is common to extend this definition by adding qubit initialisations, represented
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Chapter 2. Quantum Computing

as states |ϕ〉 ∈ C2, which can be seen as generators of type 0 → 1. It is also common to add a qubit
measurement , which can be seen as a generator 1→ 0, note however that this requires to extend
the formalism in which the semantics is expressed, either by using density matrices and CPTP maps, or
more naively by directly considering probability distributions on states.

There are other extensions and variants of the formalism of quantum circuits. For instance, one may
want to represent the classical outcome of a measurement in the circuit, possibly to reuse it somewhere
else in the circuit: this is usually done using double wires . This makes the PROP of quantum
circuits into a coloured PROP with two types of wires: simple wires for qubits and double wires for
classical bits. Reusing the outcome of a measurement can be done by introducing gates with some double
input wires. This means that the unitary map applied to the input qubits depends on some classical bits,
thus such a gate with classical inputs can be interpreted as a parametrised gate.

As an example of variant of the formalism, it is sometimes more convenient to consider the swap as
a proper gate rather than a structural generator subject to deformation. Then quantum circuits form a
PRO instead of a PROP. In this context, the swap gate is usually depicted as .

Another variant consists in replacing qubits with qutrits, that is, quantum states living in a space of
dimension 3 instead of 2, or by more general quantum states, possibly by mixing several types of systems
in a circuit.

Finally, another extension consists in considering more general matrices than just unitary ones.

Example 2.10. A commonly used set of gates, called the Clifford+T gate set, is composed of H =

1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, CNot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, Z =
(

1 0
0 −1

)
, S =

(
1 0
0 i

)
and T =

(
1 0
0 ei

π
4

)
.

H is called the Hadamard gate, X is sometimes called the not gate, and CNot is called the controlled-
not gate and is usually depicted as . Note that CNot is a controlled version of the not gate X:

=
X

. Note also that Z = S2 and S = T 2.

2.3 Extended Circuit Notations
We present here two particular extensions of the formalism of quantum circuits, that we will use in
particular in Chapter 7.13 The first one consists in enriching the original PROP of quantum circuits with
quantum states and their adjoints, and with a trace (which makes circuits into a traced PROP). The
second one consists in adding a discard map to the first extension so that circuits represent operations
that are not pure (that is, roughly speaking, that involve measurements) and therefore act on density
matrices.

States and Projectors. First, we allow for qubit states |ϕ〉 : 0 → 1 and their adjoints 〈ϕ| : 1 → 0 as
generators, with the obvious semantics. Note that we identify the state |ϕ〉 with the linear map C→ C2

defined as λ 7→ λ |ϕ〉; more generally, in this thesis, we will also do so with states in more general Hilbert
spaces |ϕ〉 ∈ H, for instance the semantics of a circuit without input qubits will be considered as a state.

Trace. We also add a trace operator to circuits, that is, we consider the traced PROP generated by
gates, states and their adjoints. The semantics of the trace is given by JTr(C)K = TrC2(JCK), where TrC2

is the partial trace over C2, defined in Example 1.3.
Note that in general, the partial trace does not preserve unitarity.

Remark 2.11. Note that the matrix of J K is


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. Thus, the traced PROP defined in

13In Chapter 7, we will additionally allow for states in arbitrary Hilbert spaces instead of qubits.
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2.3. Extended Circuit Notations

Example 1.3 is isomorphic to a variant of the traced PROP of quantum circuits with partial trace, where
the gates can be arbitrary matrices.

Discard Map. Following [47, 28], we further extend quantum circuits to represent linear maps C2n×2n →
C2m×2m (typically, CPTP maps), using a discard map represented by the “ground” symbol , which
represents the fact that the corresponding qubits are traced out.

Tracing out a quantum system means throwing it away, which can be done for instance by measuring
it and not looking at the outcome. Actually, it is equivalent from an observational point of view to just
just stopping considering this system. In the framework of density matrices, given a quantum system in
some mixed state, tracing out a sub-system corresponds to taking the partial trace of the global density
matrix over the state space of the sub-system.

To properly define the semantics of circuits with symbols, we need to release the constraint that
the partial trace must be taken over the last factor of a tensor product of spaces. For simplicity we do
so in the case of density matrices of lists of qubits, but the definition can be extended to tensor products
of more general Hilbert space (although this requires to complexify the notation):

Definition 2.12. Given a list of bits b0...bn−1 ∈ {0, 1}n, let 0 ≤ i1 < ... < ik ≤ n and 0 ≤ ī1 < ... < ī` ≤
n be the indices of the bits equal to 1 and to 0, respectively. Then the partial trace Trb0...bn−1 : (C2×2)⊗n →
(C2×2)⊗` is the linear map defined by Trb0...bn−1

(⊗n−1
i=0 Ai

)
=
(∏k

j=1 Tr(Aij )
)⊗`

j=1Aīj .

Given a “pure” (i.e. -free) circuit, plugging one (or several) in its output wire(s) corresponds
essentially to tracing out the corresponding qubits — or more precisely, to defining the map that takes
a matrix (typically, a density matrix, ρ), applies the pure CPTP map corresponding to the semantics
of the circuit (that is, ρ 7→ JCK ρ JCK†, where C is the circuit), and traces out the systems to which the
ground symbol is attached. More formally:

Definition 2.13. Given a “pure” (i.e. -free) circuit C : m → n, the semantics of the circuit C ′

obtained by plugging in some of its output wires is (|C ′|) : ρ 7→ Trb0...bn−1

(
JCK ρ JCK†

)
, where bi = 1 if

the ith output wire of C (starting from 0) has a , and bi = 0 otherwise.

For example:

(∣∣∣∣∣ U

∣∣∣∣∣
)

= ρ 7→ TrC2⊗C2(UρU†) = ρ 7→

u

ww
v

UU† ρ

}

��
~

(∣∣∣∣∣ V|ϕ〉

∣∣∣∣∣
)

= ρ 7→ TrC2(V (ρ⊗ |ϕ〉〈ϕ|)V †) = ρ 7→

u

v V|ϕ〉V † 〈ϕ|
ρ

}

~

where the top example defines a map C8×8 → C2×2, and the bottom example defines a map C2×2 → C2×2.
Note the representation of the output of the circuit, for a given input density matrix ρ, in the traced
PROP of quantum circuits with partial trace.

Going further, one can consider as a generator of the traced PROP, of type 1 → 0, and place it

anywhere in the circuit. Indeed, one has



∣∣∣∣∣∣∣∣∣∣∣
C

∣∣∣∣∣∣∣∣∣∣∣

 =



∣∣∣∣∣∣∣∣∣∣∣
C

∣∣∣∣∣∣∣∣∣∣∣

 for any circuit C

(with at least two output qubits), which, together with the fact that the semantics of -free circuits is
compatible with deformation, ensures that all ways of pulling the symbols to the right give the same
semantics.14

14We admit here that given two circuits whose symbols are all on the right, deforming one into the other (when
possible) can be done just by vertically permuting some symbols and output wires, and deforming the rest of the circuit.
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Chapter 2. Quantum Computing

Remark 2.14. Note that projective measurements can be recovered from discard maps, for instance the

measurement of a qubit can be implemented as
|0〉

.
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PBS-Diagrams and Extensions
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Chapter 3

PBS-Diagrams and the
PBS-Calculus

Most models of quantum computation (like quantum circuits) and most quantum programming languages
are based on the quantum data/classical control paradigm. In other words, based on a set of quantum
primitives (e.g. unitary transformations, quantum measurements), the way these primitives are applied
on a register of qubits is either fixed or classically controlled.

However, quantum mechanics offers more general control of operations: for instance in quantum optics
it is easy to control the trajectory of a system, like a photon, based on its polarisation using a polarising
beam splitter. One can then position distinct quantum primitives on the distinct trajectories. Since the
polarisation of a photon can be in superposition, it achieves some form of quantum control, called coherent
control: the quantum primitives are applied in superposition depending on the state of another quantum
system. Coherent control is not only a subject of interest for foundations of quantum mechanics [77,
108, 136], it also leads to advantages in solving computational problems [60, 10, 50, 115] and in designing
more efficient protocols [61, 31, 4, 58, 72], for instance for deciding whether two unitary transformations
are commuting or anti-commuting [31] (see Example 3.17). Several experimental implementations of
coherent control, in particular of the quantum switch, have been realised [116, 68, 117], in particular to
demonstrate some of its advantages over classical control [112, 67, 73, 129].

Coherent control is loosely represented in the usual formalisms of quantum computing. For instance,
in the quantum circuit model, the only available quantum control is the controlled gate mechanism: a
gate U is applied or not depending on the state of a control qubit. The quantum switch cannot be
implemented with a single copy of U and a single copy of V in the quantum circuit model, and more
generally using any language with a fixed or classically controlled order of operations.

Notice that other models of quantum computations (e.g. Quantum Turing Machines) or programming
languages (e.g. Lineal [56] or QML [6]), allow for arbitrary coherent control of quantum evolutions, the
price to pay is, however, the presence of non-trivial well-formedness conditions to ensure that the repre-
sented evolution is valid. Indeed, the superposition (i.e. linear combination) of two unitary evolutions is
not necessarily a unitary evolution.

In this chapter, we introduce a graphical language, the PBS-calculus, for representing coherent control
of quantum computations, where unitary maps (and more generally arbitrary matrices) can be coherently
controlled. Our goal is to provide the foundations of a formal framework which will be further developed
to explore the power and limits of the coherent control of quantum evolutions. Contrary to the quantum
circuit model, the PBS-calculus allows a representation of the quantum switch with a single copy of each
gate to be controlled. Moreover, any PBS-diagram is valid by construction (no side or well-formedness
condition). The syntax of PBS-diagrams is inspired by quantum optics and is actually already used
in several papers dealing with coherent control of quantum evolutions [4, 10]. Our contribution is to
provide formal syntax and semantics (both operational and denotational) for these diagrams, and also to
introduce an equational theory which allows one to transform diagrams. Our main technical contribution
is the proof that the equational theory is complete (if two diagrams have the same semantics then one
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Chapter 3. PBS-Diagrams and the PBS-Calculus

|H〉 |V〉
QS[U, V ] :=

U

V

Figure 3.1: (a) Intuitive behaviour of a polarising beam splitter: horizontal polarisation goes through,
vertical polarisation is reflected; (b) Quantum switch of two matrices U and V .

can be transformed into the other using the equational theory) and minimal (in the sense that each of
the equations is necessary for the completeness of the language).

The syntax of the PBS-calculus is inspired by linear optics, and in particular by the peculiar behaviour
of the polarising beam splitter. A polarising beam splitter transforms a superposition of polarisations
into a superposition of positions: if the polarisation is horizontal the photon is transmitted whereas it is
reflected when the polarisation is vertical (see Figure 3.1.a). As a consequence a photon can be routed
in different parts of a scheme, this routing being quantumly controlled by the polarisation of the photon.
This is a unique behaviour which has no counterpart in the quantum circuit model for instance. Polarising
beam splitters can be used to perform a quantum switch, as depicted as a PBS-diagram in Figure 3.1.b.

Related Works. In the context of categorical quantum mechanics several graphical languages have
already been introduced: ZX-calculus [45, 83], ZW-calculus [75], ZH-calculus [14] and their variants.
Notice in particular a proposal for representing fermionic (non-polarising) beam splitters in the ZW-
calculus [54]. An apparent difference between the PBS-calculus and these languages, is that the category
of PBS-diagrams is traced but not compact closed. This difference is probably not fundamental, as for any
traced monoidal category there is a completion of it to a compact closed category [89]. The fundamental
difference is the parallel composition: in the PBS-calculus two parallel wires correspond to two possible
positions of a single particle (i.e. a direct sum in terms of semantics), whereas, in the other languages it
corresponds to two particles (i.e. a tensor product).

The parallel composition makes the PBS-calculus closer to the graphical linear algebra approach
[22, 21, 20], however the generators and the fundamental structures (e.g. Frobenius algebra, Hopf algebra)
are a priori unrelated to those of the PBS-calculus.

In the context of quantum programming languages, there are a few proposals for representing quantum
control [56, 6, 132, 118]. Colnaghi et al. [50] have introduced a graphical language with programmable
connections. The language uses the quantum switch as a generator, but does not aim to describe schemes
with polarising beam splitters. Notice also that the inputs/outputs of the language are quantum channels.

Finally, several formal languages, more specifically designed to represent coherently controlled quan-
tum computations, were introduced short after the PBS-calculus [128, 12, 130, 126, 29].

Structure of the Chapter. In Section 3.1, the syntax of PBS-diagrams is introduced. Thanks to
a structure of traced PROP, PBS-diagrams are considered up to a structural congruence which allows
one to deform the diagrams at will. Section 3.2 is dedicated to the semantics of the language: two
semantics, a path semantics and a denotational semantics, are introduced. The denotational semantics
is proved to be adequate with respect to the path semantics. In Section 3.3, the axiomatisation of the
PBS-calculus is introduced, and our main result, the soundness and completeness of the language, is
proved. In Section 3.4, the axiomatisation is proved to be minimal in the sense that none of the axioms
can be derived from the others. Finally, in Section 3.5, we consider the application of the PBS-calculus to
the problem of loop unrolling. We show in particular that any PBS-diagram involving unitary matrices
can be transformed into a trace-free diagram.

3.1 Syntax
The set of PBS-diagrams is the traced PROP freely generated by the polarising beam splitter , the
polarisation flip (a.k.a. negation) ¬ , and the gates U for all matrices U ∈ Cq×q, where q is a fixed
positive integer. That is, PBS-diagrams are obtained by combining these three generators, together with
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the identity and the swap , by means of sequential composition ◦, parallel composition ⊕, and
trace Tr(·), and are considered up to graphical deformation (see Chapter 1 for details). Thus, the syntax
of the language is the following:

Definition 3.1. Given q ∈ N \ {0}, a PBSq-diagram D : n→ n is inductively defined as:

: 0→ 0 : 1→ 1 ¬ : 1→ 1 : 2→ 2 : 2→ 2

U ∈ Cq×q

U : 1→ 1
D1 : n→ n D2 : n→ n

D2 ◦D1 : n→ n

D1 : n→ n D2 : m→ m

D1 ⊕D2 : n+m→ n+m

D : n+ 1→ n+ 1
Tr(D) : n→ n

Recall that the sequential composition D2◦D1, the parallel composition D1⊕D2, and the trace Tr(D)
are respectively depicted as follows:

D1 D2··· ··· ···
· D1·· ···

·· ·· ·· D2

·· ·· ··
D

and that the structural congruence given by the axioms of traced PROP guarantees that (i) two terms
leading to the same graphical representation are equivalent, and (ii) a diagram can be deformed at will.

In the following, the positive integer q will be omitted when it is useless or clear from the context.

3.2 Semantics
In this section, we introduce the semantics of PBS-diagrams. First, we introduce an operational semantics
for PBS-diagrams with a classical control. The operational semantics, called path semantics is based on
the graphical intuition of a routed particle. Then we introduce a denotational semantics for the general
case, with a quantum control. We show the adequacy between the two semantics, providing a graphical
way to compute the denotational semantics of a PBS-diagram.

We only consider the case where a single particle, say a photon, is present in the diagram. The particle
is made of a polarisation and an additional data register. The particle has: an initial polarisation, which
is an arbitrary superposition of the vertical (V) and horizontal (H) polarisations (that we call classical
polarisations in the following); an arbitrary position, which is a superposition of the possible input wires
of the diagram; and an input data state, which is a vector |ϕ〉 ∈ Cq.

3.2.1 Classical Control – Path Semantics
Classical Control. We first consider input particles with a classical polarisation and a classical

position. Roughly speaking, the particle is initially located on one of the input wires with a given
polarisation in {V,H}, and moves through the diagram depending on its polarisation. The action of a
PBS-diagram can be informally described as follows using a token made of the current polarisation c of
the particle and a matrix U representing the matrix applied so far to the data register:

• The particle is either reflected or transmitted by a polarising beam splitter, depending on its
polarisation:

(V, U) → (V, U) (V, U) → (V, U)

(H, U) → (H, U) (H, U) → (H, U)

• The polarisation may vary but remains classical (that is, in {V,H}) as the polarisation flip — the
only generator which acts on the polarisation — interchanges horizontal and vertical polarisations:

¬
(V, U)

→ ¬
(H, U)

¬
(H, U)

→ ¬
(V, U)

• V acts on the data register, transforming the state |ϕ〉 into V |ϕ〉:
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V
(c, U)

→ V
(c, V U)

• The particle can freely move through wires, e.g.:

(c, U) → (c, U)

(c, U)

→
(c, U)

Thus the token follows a path from the input to the output and accumulates a matrix along the path.
We formalise this intuitive behaviour as a big-step operational semantics that we call path semantics in
this context. A configuration is a triplet (D, c, p), where D : n→ n is a PBS-diagram, c ∈ {V,H} is the
input polarisation of the particle, and p ∈ [n] := {0, . . . , n − 1} is its input position: 0 means that the
particle is located on the first upper input wire, 1 on the second one and so on. The result is made of
the final polarisation c′ and position p′, and of the matrix U representing the overall action of D on the
data register.

Definition 3.2 (Path semantics). Given a PBS-diagram D : n → n, a polarisation c ∈ {V,H} and a
position p ∈ [n], let (D, c, p) U=⇒ (c′, p′) (or simply (D, c, p)⇒ (c′, p′) when U is the identity) be inductively
defined as follows:

( , c, 0)⇒ (c, 0) ( ¬ ,H, 0)⇒ (V, 0) ( ¬ ,V, 0)⇒ (H, 0)
(

U , c, 0
) U=⇒ (c, 0)

(
, c, p

)
⇒(c, 1− p) (D1, c, p)

U=⇒ (c′, p′) (D2, c
′, p′) V=⇒ (c′′, p′′)

(D2 ◦D1, c, p)
V U==⇒ (c′′, p′′)

(◦)

(
,V, p

)
⇒(V, p) D1 : n→ n p < n (D1, c, p)

U=⇒ (c′, p′)
(D1 ⊕D2, c, p)

U=⇒ (c′, p′)
(⊕1)

(
, H , p

)
⇒(H, 1− p) D1 : n→ n p ≥ n (D2, c, p− n) U=⇒ (c′, p′)

(D1 ⊕D2, c, p)
U=⇒ (c′, p′ + n)

(⊕2)

D : n+ 1→ n+ 1 ∀i ∈ {0, . . . , k}, (D, ci, pi)
Ui=⇒ (ci+1, pi+1)

(Tr(D), c0, p0) Uk···U0====⇒ (ck+1, pk+1)
(Tk)

with p0, pk+1 < n, ∀i ∈ {1, ..., k}, pi = n, and k ∈ {0, 1, 2}.

Intuitively, Rule (Tk) means that the photon repeatedly traverses D until it goes out by another
wire than the traced wire. Thus its premise is a chain of arrows (D, c0, p0) U0=⇒ (c1, n), (D, c1, n) U1=⇒
(c2, n), ..., (D, ck, n) Ui=⇒ (ck+1, pk+1) in which all intermediate states have position n.

Remark 3.3. Here we treat the token only as an informal tool, the formalisation being done via the path
semantics. Note however that it can be made more formal, as has been done for instance in the context
of ZX-diagrams [30].

Example 3.4. As expected, the path semantics of the quantum switch QS[U, V ] :=
Tr ( ◦ ◦ ( U ⊕ V ) ◦ ) (see Figure 3.1.b) is (QS[U, V ],H, 0) UV==⇒ (H, 0) and

(QS[U, V ],V, 0) V U==⇒ (V, 0).

Example 3.5. PBS-diagrams implementing a controlled permutation are given in Figures 3.2 and 3.3.
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¬ ¬

U1 U2 U3

U1

U1

U2U3

U2

U3

U1

U2

U3 U1

U2

U3 U1

U2

U3

Figure 3.2: Two diagrams having the same semantics, that implement a controlled permutation of 3
unitary maps. Given a permutation (xyz) of (123), we have (D, c, x) UzUyUx=====⇒ (c, x), where D is any of
the two diagrams and c = V if the signature of (xyz) is 1, c = H otherwise. A generalisation to the
controlled permutation of n unitary maps is given in Figure 3.3.

Uσ(n−2) Uσ(n−1)

Uσ(n)Uσ(n−3)

Uσ(n)

Uσ(n−1)Uσ(n−2)

Uσ(n−3)

Uσ(1)

Uσ(1)

Uσ(n−4)

Uσ(n−4)

.

Figure 3.3: Given n ≥ 4 and n transformations U1, ..., Un ∈ Cq×q, the parallel composition of all diagrams
of this form, with σ a permutation such that σ(n − 3) < σ(n − 2) and σ(n − 1) < σ(n), is a n!

2 →
n!
2

diagram, with n!
2 occurrences of each gate, that implements a controlled permutation of the Ui.

Note that the path semantics does not need to be defined for the empty diagram , and more
generally for diagrams D : 0→ 0. Indeed, for such diagrams there is no valid configuration (D, c, p) as p
should be one of the input wires of D.

The (Tk)-rule is parametrised by an integer k. Intuitively, this parameter is the number of times the
photon goes through the corresponding trace. We show in the following that roughly speaking, a particle
can never go through a given trace more than twice. In other words, the path semantics, which assumes
k ≤ 2, is well-defined for any valid configuration:

Proposition 3.6. For any diagram D : n → n and any (c, p) ∈ {V,H} × [n], there exist unique
(c′, p′) ∈ {V,H} × [n] and U ∈ Cq×q such that (D, c, p) U=⇒ (c′, p′).

In the previous proposition, uniqueness means that the path semantics is deterministic: since diagrams
are considered modulo structural congruence (i.e. up to deformation), it implies that these deformations
preserve the path semantics.

Moreover, all PBS-diagrams are invertible in the following sense:

Proposition 3.7. For any diagram D : n → n and any (c, p) ∈ {V,H} × [n], there exist unique
(c′, p′) ∈ {V,H} × [n] and U ∈ Cq×q such that (D, c′, p′) U=⇒ (c, p).

As a consequence, any diagram D : n → n essentially acts as a permutation on {V,H} × [n],
if one ignores its action on the data register. We introduce dedicated notations for representing the
corresponding permutation, as well as the actions on the data register:

Definition 3.8. For any diagram D : n → n, we call τD the permutation of {V,H} × [n], and for

any c, p ∈ {V,H} × [n], we call UDc,p ∈ Cq×q the matrix, such that (D, c, p)
UDc,p==⇒ τD(c, p). We also

denote respectively by cDc,p ∈ {V,H} and pDc,p ∈ [n] the polarisation and the position such that τD(c, p) =
(cDc,p, pDc,p).

Proof of Propositions 3.6 and 3.7. The proof consists of two steps: First, we no longer assume the axioms
of traced PROP (that is, we no longer consider the diagrams up to deformation), and prove that the two
propositions hold in this context, where diagrams are just terms built inductively using the generators
and the rules given in Definition 3.1. Then, we prove that any two diagrams equivalent modulo the
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axioms of traced PROP have the same path semantics.

Not assuming the axioms of traced PROP implies that for any diagram D, we are in exactly one of
the following cases:

• D = , , , U or

• there exist unique D1 and D2 such that D = D2 ◦D1

• there exist unique D1 and D2 such that D = D1 ⊕D2

• there exists a unique D′ such that D = Tr(D′).

We prove both propositions together by structural induction on D.

If D = then {V,H} × [n] is empty so both propositions hold.

If D is a generator then we have n = 1 if D = , ¬ or U , and n = 2 if D = or , and in
any case it is easy to see that both propositions hold.

If D = D2 ◦ D1, then for any (c, p) ∈ {V,H} × [n], by induction hypothesis there exist unique
(c′, p′) ∈ {V,H} × [n] and U ∈ Cq×q such that (D1, c, p)

U=⇒ (c′, p′), and again by induction hypothesis
there exist unique (c′′, p′′) ∈ {V,H} × [n] and V ∈ Cq×q such that (D2, c

′, p′) V=⇒ (c′′, p′′). Therefore,
there is exactly one way of meeting the premises of the only rule that can reduce (D, c, p) and these
premises completely determine the conclusion of the rule, so Proposition 3.6 holds for D.

Similarly, for any (c, p) ∈ {V,H}×[n], by induction hypothesis there exist unique (c′, p′) ∈ {V,H}×[n]
and U ∈ Cq×q such that (D2, c

′, p′) U=⇒ (c, p), and again by induction hypothesis there exist unique
(c′′, p′′) ∈ {V,H}× [n] and V ∈ Cq×q such that (D1, c

′′, p′′) V=⇒ (c, p). Therefore, there is exactly one way
to meet the premises of the only rule with which we can reduce D and get a reduction with right-hand
side (c, p). These premises completely determine the conclusion of the rule, so Proposition 3.7 holds for D.

If D = D1 ⊕D2 with D1 : n1 → n1 and D2 : n− n1 → n− n1, let (c, p) ∈ {V,H} × [n].
If p < n1, then by induction hypothesis there exist unique (c′, p′) ∈ {V,H}× [n1] and U ∈ Cq×q such

that (D1, c, p)
U=⇒ (c′, p′), so that there is exactly one rule that allows us to reduce (D, c, p) (namely Rule

⊕1), and exactly one way to meet its premises, so Proposition 3.6 holds forD. If p ≥ n1, then by induction
hypothesis there exist unique (c′, p′) ∈ {V,H}× [n−n1] and U ∈ Cq×q such that (D2, c, p−n1) U=⇒ (c′, p′),
so that there is exactly one rule that allows us to reduce (D, c, p) (namely Rule ⊕2), and exactly one way
to meet its premises, so Proposition 3.6 holds for D.

Similarly, if p < n1, then by induction hypothesis there exist unique (c′, p′) ∈ {V,H} × [n1] and
U ∈ Cq×q such that (D1, c

′, p′) U=⇒ (c, p), so that there is exactly one rule that allows us to reduce D
and get (c, p) (namely Rule ⊕1), and exactly one way to meet its premises, so Proposition 3.7 holds
for D. If p ≥ n1, then by induction hypothesis there exist unique (c′, p′) ∈ {V,H} × [n − n1] and
U ∈ Cq×q such that (D2, c, p−n1) U=⇒ (c′, p′), so that there is exactly one rule that allows us to reduce D
and get (c, p) (namely Rule ⊕2), and exactly one way to meet its premises, so Proposition 3.7 holds for D.

If D = Tr(D′) with D′ : n+ 1→ n+ 1, then for any (c0, p0) ∈ {V,H} × [n], by induction hypothesis
of Proposition 3.6 there exist unique (c1, p1) ∈ {V,H} × [n+ 1] and U0 ∈ Cq×q such that (D′, c0, p0) U0=⇒
(c1, p1). If p1 < n, then there is exactly one reduction from (D, c0, p0) which comes from applying Rule
T0, so Proposition 3.6 holds for D. If p1 = n, then again by induction hypothesis of Proposition 3.6 there
exist unique (c2, p2) ∈ {V,H} × [n+ 1] and U1 ∈ Cq×q such that (D′, c1, n) U1=⇒ (c2, p2). If p2 < n, then
there is exactly one reduction from (D, c0, p0), which comes from applying Rule T1, so Proposition 3.6
holds for D.
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By uniqueness in the induction hypothesis of Proposition 3.7, since (D′, c0, p0) U0=⇒ (c1, n), (D′, c1, n) U1=⇒
(c2, p2, U1) and (c0, p0) 6= (c1, n), we have (c1, n) 6= (c2, p2), so that if p2 = n then c2 = c̄1. In this
case, again by induction hypothesis of Proposition 3.6, there exist unique (c3, p3) ∈ {V,H} × [n + 1]
and U2 ∈ Cq×q such that (D′, c̄1, n) U2=⇒ (c3, p3). Again by uniqueness in the induction hypothesis of
Proposition 3.7, since (D′, c0, p0) U0=⇒ (c1, n) and (c0, p0) 6= (c̄1, n), we have (c3, p3) 6= (c1, n), and since
(D′, c1, n) U1=⇒ (c̄1, n) and (c1, n) 6= (c̄1, n), we have (c3, p3) 6= (c̄1, n). Therefore, we cannot have p3 = n,
so p3 < n and there is exactly one reduction from (D, c0, p0), which comes from applying Rule T2. So
Proposition 3.6 holds for D.

Similarly, by induction hypothesis of Proposition 3.7 there exist unique (c1, p1) ∈ {V,H}× [n+1] and
U0 ∈ Cq×q such that (D′, c1, p1) U0=⇒ (c0, p0). If p1 < n, then there is exactly one reduction from D with
right-hand side (c0, p0), which comes from applying Rule T0. So Proposition 3.7 holds for D. If p1 = n,
then again by induction hypothesis of Proposition 3.7 there exist unique (c2, p2) ∈ {V,H} × [n+ 1] and
U1 ∈ Cq×q such that (D′, c2, p2) U1=⇒ (c1, n). If p2 < n, then there is exactly one reduction from D with
right-hand side (c0, p0), which comes from applying Rule T1. So Proposition 3.7 holds for D.

By uniqueness in the induction hypothesis of Proposition 3.6, since (D′, c1, n) U0=⇒ (c0, p0), (D′, c2, p2) U1=⇒
(c1, n) and (c1, n) 6= (c0, p0), we have (c1, n) 6= (c2, p2), so that if p2 = n then c2 = c̄1. In this case, again
by induction hypothesis of Proposition 3.7, there exist unique (c3, p3) ∈ {V,H} × [n+ 1] and U2 ∈ Cq×q

such that (D′, c3, p3) U2=⇒ (c̄1, n). Again by uniqueness in the induction hypothesis of Proposition 3.6, since
(D′, c1, n) U0=⇒ (c0, p0) and (c0, p0) 6= (c̄1, n), we have (c3, p3) 6= (c1, n), and since (D′, c̄1, n) U1=⇒ (c1, n)
and (c1, n) 6= (c̄1, n), we have (c3, p3) 6= (c̄1, n). Therefore, we cannot have p3 = n, so p3 < n and there
is exactly one reduction from D with right-hand side (c0, p0), which comes from applying Rule T2. So
Proposition 3.7 holds for D.

To finish proving the result, we have to check that two diagrams equivalent modulo the axioms of
traced PROP have the same path semantics. To do this, it suffices to check for each of the axioms
given in Definition 1.1 that both sides have the same path semantics (that is, the same permutation τD
and matrices UDc,p — which we have just proved to be well-defined for diagrams not considered up to
deformation). This is straightforward in each case except for dinaturality. In this case we first prove that
Rule (Tmk ) below follows from those of Definition 3.2 (in the sense that it is admissible):

D : n+m→ n+m ∀i ∈ {0, . . . , k}, (D, ci, pi)
Ui=⇒ (ci+1, pi+1)

(Trm(D), c0, p0) Uk···U0====⇒ (ck+1, pk+1)
(Tmk )

for all k,m ∈ N, with p0, pk+1 < n and ∀i ∈ {1, ..., k}, pi ≥ n.
To prove this, we proceed by induction on m. The case m = 0 is trivial, and the case m = 1

corresponds to Rule (Tk) of Definition 3.2 (the rule is admissible even for k ≥ 3 since it is then not
possible to satisfy its premises).

Now, assume that Rule (Tmk ) follows from those of Definition 3.2. Let D : n + m + 1 → n + m + 1.
Let c0 ∈ {V,H} and p0 ∈ [n]. Let (c1, p1), . . . , (ck+1, pk+1) be the (unique) sequence of couples such that
∀i ∈ {0, . . . , k}, (D, ci, pi)

Ui=⇒ (ci+1, pi+1) with p0, pk+1 < n and ∀i ∈ {1, ..., k}, pi ≥ n (that is, k + 1 is
the first index after 0 such that pk+1 < n). Let (ci0 , pi0), . . . , (cik′+1 , pik′+1), with 0 = i0 < i1 < · · · <
ik′ < ik′+1 = k+1, be the subsequence of (c1, p1), . . . , (ck+1, pk+1) where all couples with pi = n+m have

been removed. For each j ∈ {0, . . . , k′}, by Rule (Tk) one has (Tr(D), cij , pij )
Uij+1−1···Uij========⇒ (cij+1 , pij+1).

Additionally, one has Tr(D) : n + m → n + m, pi0 , pik+1 < n and ∀j ∈ {1, ..., k′}, pij ≥ n, so that by
Rule (Tmk ), one has (Trm+1(D), c0, p0) Uk···U0====⇒ (ck+1, pk+1), which validates Rule (Tm+1

k ).
Given Rule (Tmk ) for all k,m, we check the compatibility of the word path semantics with dinaturality
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as follows: given any D1 : n+m and D2 : m with n,m ≥ 0, on the one hand one has
(( ⊕n ⊕D2) ◦D1, c, p)

UD1
c,p==⇒ (cD1

c,p , p
D1
c,p) if pD1

c,p < n

(( ⊕n ⊕D2) ◦D1, c, p)
U
D2

(cD1
c,p),(pD1

c,p−n)U
D1
c,p

=============⇒ (cD2

(cD1
c,p),(pD1

c,p−n), p
D2

(cD1
c,p),(pD1

c,p−n) + n) if pD1
c,p ≥ n

so that given c0 ∈ {V,H} and p0 ∈ [n], if one has a sequence (( ⊕n⊕D2)◦D1, c0, p0) U0=⇒ (c1, p1), . . . , (( ⊕n⊕
D2) ◦D1, ck, pk) Uk=⇒ (ck+1, pk+1) with p0, pk+1 < n and ∀i ∈ {1, ..., k}, pi ≥ n, then one has a sequence

(D1, c0, p0) U ′0=⇒ (c′1, p′1), (D2, c
′
1, p
′
1−n) U ′′1==⇒ (c1, p1−n), (D1, c1, p1) U ′1=⇒ (c′1, p′1), . . . , (D1, ck−1, pk−1)

U ′k−1===⇒
(c′k, p′k), (D2, c

′
k, p
′
k−n) U ′′k==⇒ (ck, pk−n), (D1, ck, pk) U ′k=⇒ (ck+1, pk+1) with ∀i ∈ {0, . . . , k−1}, U ′′i+1U

′
i = Ui,

and U ′k = Uk, so that (Trm(( ⊕n ⊕D2) ◦D1), c0, p0)
U ′kU

′′
k U
′
k−1···U

′′
1 U
′
0============⇒ (ck+1, pk+1).

On the other hand, one has
(D1 ◦ ( ⊕n ⊕D2), c, p)

UD1
c,p==⇒ (cD1

c,p , p
D1
c,p) if p < n

(D1◦( ⊕n⊕D2), c, p)
U
D1

(cD2
c,p−n),(pD2

c,p−n+n)
U
D2
c,p−n

===============⇒ (cD1

(cD2
c,p−n),(pD2

c,p−n+n)
, pD1

(cD2
c,p−n),(pD2

c,p−n+n)
) if p ≥ n

so that given c0 ∈ {V,H} and p0 ∈ [n], if one has a sequence (D1◦( ⊕n⊕D2), c0, p0) Ũ0=⇒ (c′1, p′1), . . . , (D1◦
( ⊕n⊕D2), c′k, p′k) Ũk=⇒ (c′k+1, p

′
k+1) with p0, p

′
k+1 < n and ∀i ∈ {1, ..., k}, p′i ≥ n, then one has a sequence

(D1, c0, p0) U ′0=⇒ (c′1, p′1), (D2, c
′
1, p
′
1−n) U ′′1==⇒ (c1, p1−n), (D1, c1, p1) U ′1=⇒ (c′1, p′1), . . . , (D1, ck−1, pk−1)

U ′k−1===⇒
(c′k, p′k), (D2, c

′
k, p
′
k − n) U ′′k==⇒ (ck, pk − n), (D1, ck, pk) U ′k=⇒ (ck+1, pk+1) with U ′0 = Ũ0 and ∀i ∈ {0, . . . , k −

1}, U ′iU ′′i = Ũi, so that one has (c′k+1, p
′
k+1) = (ck+1, pk+1) and (Trm(D1◦( ⊕n⊕D2)), c0, p0)

U ′kU
′′
k U
′
k−1···U

′′
1 U
′
0============⇒

(ck+1, pk+1). This proves that the two sides of the equality have the same semantics.

In a PBS-diagram, the particle can go through each wire at most twice. Otherwise, roughly speaking,
it would go back to the same position with the same polarisation and thus will come back again and
again to this same configuration and thus enter an infinite loop — but by reversibility, this would mean
that it had always been in this infinite loop, which contradicts the fact that it comes from an input wire.

Moreover, each wire is traversed at most twice among all possible input states (c, p) of the photon.
Indeed, due to reversibility, it is always possible to know from which input state the photon comes from,
which implies that there cannot be two input states leading the photon to pass through the same wire
with the same polarisation.

In particular, each gate of the diagram is visited at most twice:

Proposition 3.9. Any gate U of a diagram D contributes to at most two paths UDc0,p0
and UDc1,p1

,
i.e. given D′ the diagram D where one occurrence of U has been replaced by an arbitrary matrix V ,
∀(c, p) /∈ {(p0, c0), (p1, c1)}, UDc,p = UD

′

c,p .

Proof. The proof is straightforward by induction on D.

As a consequence the diagrams of Figure 3.2 are optimal in the number of uses of each Ui: since each
of the 6 paths must depend on each Ui, at least three copies of each Ui are required in a diagram which
solves the permutation problem of 3 unitaries. More generally, for any n ≥ 4, the diagram of Figure 3.3
is optimal in the number of uses of each Ui for the same reason.

Remark 3.10. One can see Proposition 3.9 as a formal statement of the fact that every wire is traversed
at most twice. Indeed, in a given diagram, one can add a gate on any wire and check that it is visited at
most twice.

Additionally, notice that the formalism of bare diagrams defined in Chapter 7 will allow us to express
this property in a somehow more direct way (see Proposition 7.3).
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3.2.2 Quantum Control – Denotational Semantics
A crucial property of PBS-diagrams is to offer the ability to have a quantum control, i.e. a particle whose
input state is a superposition of polarisations, positions, or both. To encounter the quantum control, we
introduce in this section a denotational semantics which associates with any diagram a map acting on the
state space Hn := C{V,H} ⊗Cn ⊗Cq. Using Dirac notations, {|V〉 , |H〉} (resp. {|x〉 | x ∈ {0 . . . k− 1}})
is an orthonormal basis of C{V,H} (resp. Ck). Thus {|c, p, x〉 | c ∈ {V,H}, p ∈ [n], x ∈ [q]} is an
orthonormal basis of Hn.

Definition 3.11. The denotational semantics of a PBS-diagram D : n → n is the linear map JDK :
Hn → Hn inductively defined as follows:

J K = 0 J K = |c, 0, x〉 7→ |c, 0, x〉
q y

= |c, p, x〉 7→ |c, 1− p, x〉
q

U
y

= |c, 0, x〉 7→ |c, 0〉 ⊗ U |x〉

J ¬ K =
{
|V, 0, x〉 7→ |H, 0, x〉
|H, 0, x〉 7→ |V, 0, x〉

q y
=
{
|V, p, x〉 7→ |V, p, x〉
|H, p, x〉 7→ |H, 1− p, x〉

JD2 ◦D1K = JD2K ◦ JD1K JD1 ⊕D2K = JD1K � JD2K JTr(D)K = T (JDK)

where:

• f�g := ϕ◦(f⊕g)◦ϕ−1 with ϕ : Hn⊕Hm → Hn+m the isomorphism defined as (|c, p, x〉 , |c′, p′, x′〉) 7→
|c, p, x〉+ |c′, p′ + n, x′〉.

• T (f) :=
∑
k∈N

π1 ◦ (f ◦ π0)k ◦ f ◦ ι with ι : Hn→Hn+1 :: |c, x, y〉 7→ |c, x, y〉, π0 : Hn+1→Hn+1 ::

|c, x, y〉 7→

{
0 if x < n

|c, n, y〉 if x = n
, and π1 : Hn+1→Hn :: |c, x, y〉 7→

{
|c, x, y〉 if x < n

0 if x = n.
.

While the semantics of the trace is defined by means of an infinite sum, this sum is actually made of
a finite number of non-zero elements, which guarantees that the denotational semantics is well-defined:

Proposition 3.12. For any diagram D : n → n, JDK is well-defined and JDK ∈ SLPn, where SLPn is
the monoid of the linear maps f : Hn → Hn such that f |c, p, x〉 = |τ(c, p)〉⊗Uc,p |x〉 for some permutation
τ on {V,H} × [n] and matrices Uc,p ∈ Cq×q.

The denotational semantics is adequate with respect to the path semantics:

Theorem 3.13 (Adequacy). For any D : n→ n, JDK = |c, p, x〉 7→ |τD(c, p)〉 ⊗ UDc,p |x〉,

where τD and UDc,p are such that (D, c, p)
UDc,p==⇒ τD(c, p).

Proof of Proposition 3.12 and Theorem 3.13.

Auxiliary Lemmas. We first prove the following three lemmas:

Lemma 3.14. Let n ≥ 0 and f ∈ SLPn+1, and let τ be the permutation and Uc,p the family of matrices,
such that f = |c, p, y〉 7→ |τ(c, p)〉 ⊗Uc,p |y〉. For any (c, p, y) ∈ {V,H} × [n]× [q], the series

∑
k∈N

π1 ◦ (f ◦

π0)k ◦ f ◦ ι(|c, p, y〉) has at most one non-zero term (exactly one if f is injective), of index k1 − 1, where
k1 is the smallest k ≥ 1 such that τk(c, p) ∈ {V,H} × [n], or equivalently, the smallest k ≥ 1 such that
fk(|c, p, y〉) ∈ Hn. Moreover, we have k1 ≤ 3.

Lemma 3.15. For any n ≥ 0 and f ∈ SLPn+1, T (f) is well-defined and T (f) ∈ SLPn.

Lemma 3.16. Let n ≥ 0 and f ∈ SLPn+1. Let τ be the permutation and Uc,p the family of matrices,
such that f = |c, p, y〉 7→ |τ(c, p)〉⊗Uc,p |y〉. For any (c, p, y) ∈ {V,H}× [n]× [q], we have T (f)(|c, p, y〉) =∣∣τk1(c, p)

〉
⊗ Uτk1−1(c,p) · · ·Uc,p |y〉, where k1 is the smallest k ≥ 1 such that τk(c, p) ∈ {V,H} × [n].
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Proof of Lemmas 3.14 and 3.16. Let (c, p, y) ∈ {V,H}×[n]×[q] and let k1 be the smallest k ≥ 1 such that
τk(c, p) ∈ {V,H} × [n]. Since the sequence (τk(c, p))k∈N is periodic and τ0(c, p) = (c, p) ∈ {V,H} × [n],
k1 exists. Since τ is injective, if there were 1 ≤ k′ < k′′ ≤ k1 such that τk′(c, p) = τk

′′(c, p), this would
mean that τk′′−k′(c, p) = (c, p) ∈ {V,H} × [n], with 1 ≤ k′′ − k′ < k1, which contradicts the definition
of k1. Therefore, the couples τ(c, p), τ2(c, p), ..., τk1−1(c, p) are all different. By definition of k1, these
couples are all in the set {V,H} × {n} = {(V, n), (H, n)}, which has only two elements, so that k1 ≤ 3.

Let us prove by finite induction that for every k ∈ {0, ..., k1 − 1}, we have
(f ◦ π0)k ◦ f ◦ ι(|c, p, y〉) = fk+1(|c, p, y〉). This is obviously true for k = 0, and assuming that this is
true for some 0 ≤ k < k1 − 1, we have (f ◦ π0)k+1 ◦ f ◦ ι(|c, p, y〉) = f(π0((f ◦ π0)k ◦ f ◦ ι(|c, p, y〉))) =
f(π0(fk+1(|c, p, y〉))), and by definition of k1, we have fk+1(|c, p, y〉) ∈ {V,H}×{n} so that π0(fk+1(|c, p, y〉)) =
fk+1(|c, p, y〉), and consequently (f ◦π0)k+1 ◦ f ◦ ιj(|c, p, y〉) = fk+2(|c, p, y〉). This finishes the induction.

Additionally, for any k ∈ N, we have fk(|c, p, y〉) =
∣∣τk(c, p)

〉
⊗ Uτk−1(c,p) · · ·Uc,p |y〉.

For any k < k1−1, by definition of k1, we have τk+1(c, p) ∈ {V,H}×{n} so that π1(fk+1(|c, p, y〉)) =
0, that is, the term of index k of the series is zero.

We have τk1(c, p) ∈ {V,H} × [n], so that the term of index k1 − 1 of the series is not zero unless
Uτk1−1(c,p) · · ·Uc,p |y〉 = 0, and this term is equal to π1(fk1(|c, p, y〉)) =

∣∣τk1(c, p)
〉
⊗Uτk1−1(c,p) · · ·Uc,p |y〉.

For any k ≥ k1, we have (f ◦ π0)k ◦ f ◦ ι(|c, p, y〉) = (f ◦ π0)k−k1 ◦ f(π0(fk1(|c, p, y〉))), and since
τk1(c, p) ∈ {V,H} × [n], we have π0(fk1(|c, p, y〉)) = 0, so that the term of index k of the series is
zero.

Proof of Lemma 3.15. The well-definedness is a direct consequence of Lemma 3.16. Given f ∈ SLPn+1,
by Lemma 3.16 there exist a family of matrices Vc,p such that T (f) = |c, p, y〉 7→ |τ∗(c, p)〉 ⊗ Vc,p |y〉,
where τ∗ : {V,H} × [n] → {V,H} × [n] :: (c, p) 7→ τk1(c, p) with k1 the smallest k ≥ 1 such that
τk(c, p) ∈ {V,H}× [n]. What we have to prove is that τ∗ is a permutation, that is, that it is a bijection.

We claim that this is the case and that its inverse is (τ−1)∗ : {V,H} × [n]→ {V,H} × [n] :: (c, p) 7→
(τ−1)k2(c, p) with k2 the smallest k ≥ 1 such that (τ−1)k(c, p) ∈ {V,H} × [n].

Indeed, let (c, p) ∈ {V,H}× [n] and k1 be the smallest k ≥ 1 such that τk(c, p) ∈ {V,H}× [n]. Then
for any k ∈ {1, ..., k1−1}, we have (τ−1)k(τ∗(c, p)) = (τ−1)k(τk1(c, p)) = τk1−k(c, p), which, by definition
of k1, is not in {V,H}×[n] because 1 ≤ k1−k < k1. We also have (τ−1)k1(τ∗(c, p)) = (τ−1)k1(τk1(c, p)) =
(c, p), which is in {V,H} × [n]. Therefore, the smallest k ≥ 1 such that (τ−1)k(τ∗(c, p)) ∈ {V,H} × [n]
is k1, so that (τ−1)∗(τ∗(c, p)) = (τ−1)k1(τk1(c, p)) = (c, p). This proves that (τ−1)∗ ◦ τ∗ = id. We can
prove in the same way that τ∗ ◦ (τ−1)∗ = id, which proves our claim.

Proof of Theorem 3.13. We proceed by structural induction on D.

• If D = , then we have τD = id, UDc,p = Iq for every c, p, and JDK = |c, 0, x〉 7→ |c, 0, x〉, so the
result holds.

• IfD = ¬ , then we have τD = (V, p) 7→ (H, p)
(H, p) 7→ (V, p) , UDc,p = Iq for every c, p, and JDK = |V, p, y〉 7→ |H, p, y〉

|H, p, y〉 7→ |V, p, y〉 ,
so the result holds.

• If D = , then we have τD = (c, p) 7→ (c, 1− p), UDc,p = Iq for every c, p, and JDK = |c, p, y〉 7→
|c, 1− p, y〉, so the result holds.

• If D = , then we have τD = (V, p) 7→ (V, p)
(H, p) 7→ (H, 1− p) , UDc,p = Iq for every c, p, and JDK =

|V, p, y〉 7→ |V, p, y〉
|H, p, y〉 7→ |H, 1− p, y〉 , so the result holds.

• If D = U , then we have τD = id, UDc,p = U for every c, p, and JDK = |c, p, y〉 7→ |c, p〉 ⊗ U |y〉, so
the result holds.

• If D = D2 ◦ D1, then on the one hand, for any (c, p) ∈ {V,H} × [n], we have

(D1, c, p)
UD1
c,p==⇒ τD1(c, p) and (D2, τD1(c, p))

U
D2
τD1 (c,p)

======⇒ τD2(τD1(c, p)), so by Rule (◦) we have
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(D, c, p)
U
D2
τD1 (c,p)U

D1
c,p

=========⇒ τD2(τD1(c, p)), so that τD = τD2 ◦ τD1 and UDc,p = UD2
τD1 (c,p)U

D1
c,p . On

the other hand, by induction hypothesis, we have JD1K = |c, p, y〉 7→ |τD1(c, p)〉 ⊗ UD1
c,p |y〉 and

JD2K = |c, p, y〉 7→ |τD2(c, p)〉 ⊗ UD2
c,p |y〉. Therefore, for any (c, p, y) ∈ {V,H} × [n] × [q] we have

JDK (|c, p, y〉) = JD2K (JD1K (|c, p, y〉)) = JD2K (|τD1(c, p)〉⊗UD1
c,p |y〉 = |τD2(τD1(c, p))〉⊗UD2

τD1 (c,p)U
D1
c,p |y〉.

So the result holds for D.

• If D = D1 ⊕D2 with D1 : n1 → n1, then on the one hand, we have

τD = (c, p) 7→

{
τD1(c, p) if p < n1

(c′, p′ + n1) if p ≥ n1, where (c′, p′) = τD2(c, p− n1)
and for any

(c, p) ∈ {V,H}× [n] we have UDc,p =
{
UD1
c,p if p < n1

UD2
c,p−n1

if p ≥ n1
. On the other hand, by induction hypoth-

esis, we have JD1K = |c, p, y〉 7→ |τD1(c, p)〉 ⊗ Uc,p |y〉 and JD2K = |c, p, y〉 7→ |τD2(c, p)〉 ⊗ UD2
c,p |y〉,

so that JDK = JD1K � JD2K = |c, p, y〉 7→
{
|τD1(c, p)〉 ⊗ UD1

c,p |y〉 if p < n1

|c′, p′ + n1〉 ⊗ UD2
c,p−n1

|y〉 if p ≥ n1
where (c′, p′) =

τD2(c, p− n1). So the result holds for D.

• If D = Tr(D′), let (c, p, y) ∈ {V,H}×[n]×[q], and let k1 be the smallest k ≥ 1 such that τkD′(c, p) ∈
{V,H} × [n]. On the one hand, if we write τkD′(c, p) as (ck, pk), then for all i ∈ {0, ..., k1 − 1} we

have (D′, ci, pi)
UD
′

ci,pi===⇒ (ci+1, pi+1), and by definition of k1, we have τ i+1
D′ (c, p) /∈ {V,H} × [n], that

is, pi+1 = n, if and only if i < k1. Therefore, by Rule (Tk1), we have (Tr(D′), c, p)
UD
′

τ
k1−1
D′

(c,p)
···UD

′
c,p

===========⇒
(τD′(c, p)). On the other hand, by induction hypothesis we have JDK′ = |c, p, y〉 7→ |τD′(c, p)〉 ⊗
UD

′

c,p |y〉. By Lemma 3.16, this implies that JDK (|c, p, y〉) = T (JD′K)(|c, p, y〉) =
∣∣∣τk1
D′(c, p)

〉
⊗

UD
′

τ
k1−1
D′ (c,p)

· · ·UD′c,p |y〉. So the result holds for D.

Proof of Proposition 3.12. First, we do not assume the axioms of traced PROP and we prove by
structural induction that for any diagram D : n→ n, JDK is well-defined and in SLPn.

If D = , , ¬ , or , then this is a direct consequence of the definition of J.K.
If D = D2 ◦ D1, then by induction hypothesis, JD1K and JD2K are well-defined and in SLPn. By

definition we have JDK = JD2K ◦ JD1K, and it is easy to see that SLPn is closed under composition.
If D = D1 ⊕D2, with D1 : n1 → n1, then D2 : n − n1 → n − n1 and by induction hypothesis, JD1K

and JD2K are well-defined and we have JD1K ∈ SLPn1 and JD2K ∈ SLPn−n1 . It is easy to see that for
any f ∈ SLPm and g ∈ SLPk we have f � g ∈ SLPm+k, so that JDK := JD1K � JD2K ∈ SLPn.

If D = Tr(D′), then by induction hypothesis, JD′K is well-defined and in SLPn+1. By Lemma 3.15
this implies that JDK := T (JD′K) is well-defined and in SLPn.

The last thing to prove is (still not assuming the axioms of traced PROP) that two diagrams that
are equivalent modulo the axioms of traced PROP have the same denotational semantics. For this it
suffices to remark that the proof of Theorem 3.13 does not need to assume the axioms of traced PROP,
so Theorem 3.13 still holds if we do not assume them. Then, since, as a consequence of Proposition 3.6,
two diagrams equivalent modulo these axioms have the same path semantics, by Theorem 3.13 they have
the same denotational semantics.

The adequacy theorem implies that two diagrams have the same denotational semantics if and only
if they have the same path semantics. As a consequence, it provides a graphical characterisation of the
denotational semantics. Indeed, for any diagram D : n → n, JDK is, by linearity, entirely defined by τD
and {UDc,p}c∈{V,H},p∈[n]. Since τD and UDc,p have a nice graphical interpretation as paths from the inputs
to the outputs, the adequacy theorem provides a graphical way to compute the denotational semantics
of any PBS-diagram.
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Example 3.17. The quantum switch (Figure 3.1.b and Example 3.4) can be used to decide whether U
and V are commuting or anti-commuting [31]. The semantics of the quantum switch is JQS[U, V ]K ={
|V, 0, x〉 7→ |V, 0〉 ⊗ V U |x〉
|H, 0, x〉 7→ |H, 0〉 ⊗ UV |x〉

. We assume that UV = (−1)kV U and call the quantum switch with

a control qubit in a uniform superposition: JQS[U, V ]K |V〉+|H〉√
2 ⊗ |0, x〉 = |V,0〉⊗V U |x〉+|H,0〉⊗UV |x〉√

2 =
|V,0〉⊗V U |x〉+(−1)k|H,0〉⊗V U |x〉√

2 = |V〉+(−1)k|H〉√
2 ⊗ V U |0, x〉. Thus, by measuring the control qubit in the

{ |V〉+|H〉√
2 , |V〉−|H〉√

2 }-basis, one can decide whether U and V are commuting or anti-commuting.

3.3 Equational Theory – PBS-Calculus
The representation of a quantum computation using PBS-diagrams is not unique, in the sense that two
distinct PBS-diagrams may have the same semantics (e.g. the diagrams of Figure 3.2). In this section,
we introduce 10 equations on PBS-diagrams (see Figure 3.4) as the axioms of a language that we call the
PBS-calculus. We prove that the PBS-calculus is sound (that is, consistent with the semantics), complete
(that is, it captures entirely the semantic equivalence) and minimal (that is, all axioms are necessary to
have completeness). Completeness is proved by means of a normal form.

3.3.1 Axiomatisation
Definition 3.18. A congruence is an equivalence relation R on the set of diagrams such that if D1 R D′1
and D2 R D′2 then (D2 ◦D1) R (D′2 ◦D′1) and (D1 ⊕D2) R (D′1 ⊕D′2), and if D R D′ then Tr(D) R
Tr(D′).

Definition 3.19 (PBS-calculus). Two PBS-diagrams D1, D2 are equivalent according to the rules of the
PBS-calculus, denoted PBS ` D1 = D2, if one can transform D1 into D2 using the equations given in
Figure 3.4. More precisely, PBS ` · = · is defined as the smallest congruence which satisfies the equations
of Figure 3.4 together with the axioms of Definition 1.1.

= I (3.1)

¬ U = ¬U (3.2)

U

U

=
U

U

(3.3)

U V

=
U

(3.4)

¬

¬

¬

¬
= (3.5)

U V = V U (3.6)

U = (3.7)

= (3.8)

= (3.9)

¬
=

¬ ¬
(3.10)

Figure 3.4: Axioms of the PBS-calculus. Given q a positive integer, U, V ∈ Cq×q are arbitrary matrices,
I ∈ Cq×q is the identity.

Equations (3.1) and (3.6) in Figure 3.4 reflect the monoidal structure of the matrices, with the identity
element (Equation (3.1)) and the associative binary operation (Equation (3.6)). Equations (3.2) and (3.3)
mean that both the polarising beam splitter and the polarisation flip commute with a gate. Equation
(3.8) tells us that the polarising beam splitter is self-inverse (note that the negation is also self-inverse
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3.3. Equational Theory – PBS-Calculus

and that this is a consequence of the axioms, see Example 3.20). Equation (3.5) translates the fact that
flipping the control state before and after performing a control of the position results in flipping the
final position. To give a meaning to Equation (3.10), it is useful to flip it upside down, and to remark
that in a two-wire diagram, polarising beam splitters and negations on the bottom wire each perform a
CNot on the qubits representing the polarisation and the position, in opposite ways, so that each side of
the equation combines 3 CNots and thus performs a swap between these two qubits. In Equation (3.4),
there are essentially two steps: first, the wire with the gate V is a dead code, as no photon can go to
the wire, so it can be discarded; the second step consists in merging the two polarising beam splitters.
Equation (3.9) is the only equation acting on three wires: if the polarisation is vertical then the polarising
beam splitters behave as identities, so the swaps on the right-hand side cancel out and the two sides are
equivalent, and if the polarisation is vertical then the polarising beam splitters behave as swaps, so the
two sides are equivalent too. Equation (3.7) reflects the fact that isolated parts of a diagram have no
effect on the rest.

Example 3.20. The fact that the negation is self-inverse can be derived in the PBS-calculus: PBS `
¬ ¬ = (see Proposition 3.21 below). A more sophisticated example is the proof that the two

diagrams of Figure 3.2 are equivalent, given in Appendix A.2.

Proposition 3.21. The following equation is a consequence of the axioms of the PBS-calculus:

¬ ¬ = (3.11)
Proof. To prove this equation, we have:

¬ ¬
(3.7)=

¬ ¬

I

(3.1)=
¬ ¬

(3.8)=
¬ ¬

inverse law=
¬ ¬

(3.5)=
¬ ¬ ¬

¬

¬

¬

(3.10)=
¬ ¬

¬

¬

¬

(3.10)=
¬

¬

¬

¬

(3.8)=
¬ ¬

¬¬
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(3.5)=

inverse law=

(3.8)=

(3.1)= I

(3.7)=

All these equations preserve the semantics of the PBS-diagrams:

Proposition 3.22 (Soundness). For any two diagrams D1 and D2, if PBS ` D1 = D2 then JD1K = JD2K.
Proof. Let∼ be the relation such thatD1 ∼ D2 if and only if JD1K = JD2K, and≈ be the relation such that
D1 ≈ D2 if and only if PBS ` D1 = D2. By definition, ≈ is the smallest congruence preserving Equations
(3.1) to (3.10). It is clear that ∼ is a congruence, so it suffices to prove that it preserves Equations (3.1)
to (3.10) too. This can be done easily by using the graphical way to compute the denotational semantics
provided by Theorem 3.13.

3.3.2 Normal Forms
In this section, we introduce a notion of diagrams in normal form which is used in the next sections both
to characterise the expressiveness and to prove the completeness of the PBS-calculus. They are made of
two parts: the first one corresponds to a superposition of linear maps, and the second one corresponds
to a permutation of the polarisations and positions, written in a way that is convenient here.

Definition 3.23 (Normal form). Diagrams in normal form are inductively defined as: is in normal
form, and for any N : n→ n in normal form,

· · ·· ·
·

· · ·N σj

?U

V

, and, if n > 0, · · ·· · ·· · ·N σj
?

?

···σk

U

V

,

are in normal form, where ? denotes either or ¬ , and σ` : m→ m =
···

··· ···
`

00

m−1

.

Remark 3.24. For any U, V ∈ Cq×q let E(U, V ) :=
U

V

. A diagram in normal form can

be written in the form P ◦ E, where E is of the form E(U0, V0) ⊕ · · · ⊕ E(Un−1, Vn−1), and P is built
using only , ¬ , , , ◦ and ⊕.

In the following we show that any diagram is equivalent to a diagram in normal form.

Lemma 3.25. If N1 and N2 are in normal form then N1 ⊕N2 is in normal form.

Proof. By definition of the normal forms.
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3.3. Equational Theory – PBS-Calculus

Lemma 3.26. For any diagram N : n→ n in normal form and any diagram g of the form ( ⊕i)⊕ h⊕
( ⊕n−i−1) with h = , ¬ or E(U, V ), or ( ⊕i)⊕ h⊕ ( ⊕n−i−2) with h = or , there exists
N ′ in normal form such that PBS ` g ◦N = N ′.

Proof. We proceed by induction on n.
If n = 0, then there is no such g so the result trivially holds.
If n ≥ 1, we write N in the form

· · ·· ·
·

· · ·N ′ σj

?U

V

or · · ·· · ·· · ·N ′ σj
?

?

···σk

U

V

.

We call these two forms type A and B respectively.
By induction hypothesis we only have to prove that g ◦N can be put in the form

· · ·· · ·
· · ·D σj′

?

··· N ′

U

V

or · · ·· · ·· · ·D σj′
?

?

···σk′
··· N ′

U

V

for some diagram D : n− 1→ n− 1 built using , , ¬ , , , E(U ′, V ′), ◦ and ⊕.
To prove this, we proceed by case distinction:

• If h = , then g ◦N = N , so there is nothing to do.

• If h = ¬ , then we slide it through σj (σk and σj if N is of type B),

– if it does not arrive on the last wire if N is of type A, or one of the last two wires if N is of
type B, then we get the desired form with D = ( ⊕i′)⊕ ¬ ⊕ ( ⊕n−i′−2)

– if it arrives on the last wire (resp. on one of the last two wires), then it merges with the ?

on its wire and changes its value: if ? is then h simply takes its place, and if ? is
¬ then the two negations cancel out by Equation (3.11).

• If h = E(U ′, V ′), then we slide it through σj (σk and σj if N is of type B),

– if it does not arrive on the last wire if N is of type A, or one of the last two wires if N is of
type B, then we get the desired form with D = ( ⊕i′)⊕ h⊕ ( ⊕n−i′−2)

– if it arrives on the last wire (resp. on one of the last two wires), then it commutes with the
? on its wire, trivially if ? is , and by the following equation (that we will prove to

be a consequence of the axioms of the PBS-calculus) if ? is ¬ :15

U

V

¬
=

V

U

¬
(3.12)

then, ifN is of type B, it passes through the beam splitter by one of the following two equations:

U

V

=

U

I

I

V

(3.13)

15In the equations, U, V, U ′ and V ′ stand for generic matrices, not necessarily related to the context.

33



Chapter 3. PBS-Diagrams and the PBS-Calculus

U

V

=

I

V

U

I

(3.14)

finally, the top part becomes part of D, and the bottom part merges with the E(U, V ) from
N by the following equation:

U

V V ′

U ′

=
U ′U

V ′V
(3.15)

• If h = , then by manipulating the wires according to the axioms of traced PROP, we can write
g ◦ N in one of the desired forms, with D being a permutation of the wires (that is, a sequential
composition of parallel compositions of and ).

• If h = then we look at the indices i1 and i2 of the wires to which h is connected on the other
side of σj (on the other side of σk ◦ (σj ⊕ ) if N is of type B). The wire i1 is connected to the top
wire of h and the wire i2 to the bottom wire of h.

– If i1, i2 < n − 1 in the case of type A (i1, i2 < n − 2 in the case of type B), then i2 = i1 + 1
and we can slide the beam splitter across σj (σk and σj in the case of type B) to put N in the
desired form with D = ( ⊕i′)⊕ h⊕ ( ⊕n−i′−3).

– If N is of type A and i2 = n − 1, then by manipulating the wires we can write g ◦ N in the
form

· · ·· · ·
· · ·D1 D2

?

··· N ′

U

V

where D1 and D2 are permutations of the wires. Then, if ? is ¬ , we apply the
following equation:

¬
=

¬ ¬

¬
(3.16)

and the ¬ on the left is composed with D1 to give us D. Finally, we get the desired form
by manipulation of the wires.

– If N is of type A and i1 = n − 1, then by manipulating the wires, and applying once the
following equation :

= (3.17)

we can write g ◦N in the form

· · ·· · ·
· · ·D1 D2

?

··· N ′

U

V

where D1 and D2 are permutations of the wires. Then we proceed as in the previous case.
– If N is of type B, i1 < n − 2 and i2 = n − 2, then by manipulating the wires we can write
g ◦N in the form

···D1

?

?

···D2
··· N ′

U

V

··· ···
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where D1 and D2 are permutations of the wires. Then, depending on the ? between the
two beam splitters, we use one of the following two equations:

= (3.18)

¬ = ¬

¬

¬ (3.19)

Immediately in the second case, or after a few manipulation of wires in the first case, we get
the desired form.

– If N is of type B, i2 < n − 2 and i1 = n − 2, then by manipulating the wires and using once
Equation (3.17), we can write g ◦N in the same form as in the previous case. Then we proceed
in the same way.

– If N is of type B, i1 < n − 2 and i2 = n − 1, then by manipulating the wires we can write
g ◦N in the form

···D1
?

?

···D2
··· N ′

U

V

··· ···

where D1 and D2 are permutations of the wires. Then if the ? between the two beam
splitters is , then we apply the following equation:

= (3.20)

if the ? between the two beam splitters is ¬ , then we proceed as follows:

¬

(3.16)=

¬

¬

¬

(3.20)=

¬¬

¬

which gives us the desired form after some manipulation of wires.
– If N is of type B, i2 < n − 2 and i1 = n − 1, then by manipulating the wires and applying

Equation (3.17) we write g ◦ N in the same form as in the previous case, and we proceed in
the same way.

– If N is of type B, i1 = n − 2 and i2 = n − 1, then by manipulating the wires, we can write
g ◦N in the following form:

· · ·· · ·· · ·N ′ σj
?

?

···σk

U

V
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then we apply one of the following equations:

= (3.8)

¬
=

¬ ¬
(3.10)

¬
=

¬

¬
(3.21)

¬

¬
=

¬

¬
(3.22)

In the four cases, this gives us the desired form, after a few manipulation of wires if necessary.
– If N is of type B, i1 = n − 1 and i2 = n − 2, then by manipulating the wires and applying

Equation (3.17) once, we can write g ◦N in the same form as in the previous case and proceed
in the same way. This finishes the case distinction.

It remains to prove Equations (3.12) to (3.22). We give the derivations in Appendix A.1.1.

Lemma 3.27. If N1 : n→ n and N2 : n→ n are in normal form then there exists N ′ : n→ n in normal
form such that PBS ` N2 ◦N1 = N ′.

Proof. Notice that up to using the axioms of PROP, N2 = g` ◦ . . . ◦ g0 where each gk consists of either
E(U, V ), , ¬ , or acting on any one or two consecutive positions, in parallel with the identity
on the other positions. By Lemma 3.26, each gk can be successively integrated to the normal form.

Lemma 3.28. If N : n+ 1→ n+ 1 is in normal form then there exists N ′ : n→ n in normal form such
that PBS ` Tr(N) = N ′.

Proof. We write N in the form

· · ·· ·
·

· · ·N ′ σj

?U

V

or · · ·· · ·· · ·N ′ σj
?

?

···σk

U

V

.

As in the proof of Lemma 3.26, we call these two forms type A and B respectively.
We proceed by case distinction:

• If N is of type A and j = n − 1, then we apply one of the following two equations, that we will
prove to be consequences of the axioms of the PBS-calculus:

U

V = (3.23)

U

V

¬

= (3.24)

• If N is of type A and j 6= n− 1, then we slide the E(U, V ) and the ? through the trace and σj ,
then integrate them to N ′ by Lemma 3.26. Finally, we remove the trace by yanking (see Chapter 1),
which gives us a normal form after a few additional manipulation of wires.
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• If N is of type B and k = n− 1, then we apply one of the following two equations:

U

V

=
I

V

(3.25)

U

V

¬
=

I

V U

(3.26)

then we conclude by Lemma 3.26 and manipulation of wires.

• If N is of type B, k < n− 1 and j = n− 2, then we apply one of the following two equations:

U

V

=
U

I

(3.27)

U

V

¬

=
UV

I

(3.28)

then we conclude by Lemma 3.26 and manipulation of wires.

• If N is of type B, k < n− 1 and j < n− 2, let D represent E(U, V ). We proceed as follows:

D

dinaturality,
naturality of

the swap=

D

naturality of
the swap=

D

yanking=
D

then we conclude by applying Lemma 3.26 three times and manipulating the wires.

It remains to prove Equations (3.23) to (3.28). This is done in appendix, Section A.1.2.

We are now ready to prove that any PBS-diagram can be put in normal form:

Proposition 3.29. For any D : n → n, there exists a PBS-diagram N : n → n in normal form such
that PBS ` D = N .
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Proof. Combining Lemmas 3.25, 3.27 and 3.28, it remains to prove that any generator of the language
can be put in normal form:

= I

I
(3.29)

¬ = ¬I

I
(3.30)

U = U

U
(3.31)

=

I

I

I

I

(3.32)
=

I

I

I

I

(3.33)

To prove Equation (3.31), we have:

U
(3.7)=

U

U

(3.8)=
U

U

(3.3)=
U

U

To prove Equation (3.29), we have:

(3.1)= I
(3.31)= I

I

Equations (3.30), (3.32) and (3.33) are direct consequences of Equation (3.29).

Remark 3.30. By unfolding the proof of Proposition 3.29, one can obtain a deterministic procedure to
transform any diagram into its normal form. Its complexity, defined as the number of transformations by
one of Equations (3.1) to (3.10), is O

(
tm2), where m is the number of generators ( , ¬ , and U ),

and t the number of traces in the diagram. Note that this procedure has probably not the best possible
complexity.

3.3.3 Completeness
The main application of the normal forms is the proof of completeness:

Theorem 3.31 (Completeness). For any D,D′ : n→ n, if JDK = JD′K then PBS ` D = D′.
Proof. By Proposition 3.29, there exist N,N ′ in normal form such that PBS ` D = N and PBS ` D′ =
N ′. Moreover, by soundness (Proposition 3.22), JNK = JDK = JD′K = JN ′K. Finally, one can show that
JNK = JN ′K implies that N = N ′. Specifically, one can show inductively that the normal form is entirely
determined by its semantics by considering the path semantics for a particle located on the last input
wire.
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3.3.4 Expressiveness
A PBS-diagram represents a superposition of linear maps together with a permutation of polarisations
and positions. Indeed, Proposition 3.12 shows that for any diagram D : n → n, JDK ∈ SLPn, where
SLPn is the monoid of the linear maps f : Hn → Hn such that f |c, p, x〉 = |τ(c, p)〉 ⊗ Uc,p |x〉 for some
permutation τ on {V,H} × [n] and matrices Uc,p ∈ Cq×q. We show in the following that conversely, any
linear map in SLPn can be represented by a PBS-diagram:

Theorem 3.32. For any f ∈ SLPn, ∃D : n→ n, JDK = f .
Proof. The proof relies on the normal forms: given a linear map f ∈ SLPn one can inductively construct
a diagram in normal form, by considering the image of f when the particle is located on the last position
(p = n− 1).

Note that SLPn is strictly included in the set of linear maps from Hn to Hn. As a consequence, while
being universal for SLPn, PBS-diagrams are not expressive enough to represent a (non-polarising) beam
splitter for instance.

3.4 Minimality of the Set of Axioms
In the following we show that each of the ten equations of Figure 3.4 is necessary for the completeness of
the PBS-calculus:

Theorem 3.33 (Minimality). None of Equations (3.1) to (3.10) is a consequence of the others.

Note that all equations involving matrices, except Equation (3.1), are schemes of equations i.e. one
equation for each possible matrix (or matrices). In Theorem 3.33, we show that each of the ten axioms,
for most of the matrices, cannot be derived from the nine others. More precisely, Equation (3.4) (resp.
(3.7)) is not a consequence of the nine others for any U (resp. any U, V ); Equation (3.2) (resp. (3.6))
is not a consequence of the others for any U 6= I (resp. any U, V 6= I). Finally, if det(U) /∈ {0, 1}, then
Equation (3.3) is not a consequence of the others. We conjecture that the condition det(U) /∈ {0, 1} can
be relaxed to U 6= I.

We prove this result by examining each equation and proving that it is not a consequence of the
others. Equations (3.1) to (3.8) and (3.10) are treated in Section 3.4.1. Equation (3.9) is treated in
Section 3.4.2.

3.4.1 Independence of Equations (3.1) to (3.8) and (3.10)
We prove for each equation that it is not a consequence of the others in a dedicated lemma. For Equations
(3.1), (3.2), (3.5) and (3.6), the proof follows a common pattern: we introduce an alternative denotational
semantics [[[.]]], whose definition follows that of J.K but differs for some of the generators. Then we check
that it preserves every equation except the one that we want to prove to be independent from the others.
In each case, Lemma 3.34 below gives us that the consequences of the preserved equations are preserved
too, which implies that the unpreserved equation is not a consequence of the others.

Lemma 3.34. Let [[[.]]] be a function mapping any diagram D : n → n to a linear map [[[D]]] ∈ SLPn,
defined inductively in the same way as J.K except maybe in the case of , ¬ and U . Let A be a
set of equations of the form D1 = D2 where D1, D2 are PBS-diagrams, such that every equation of A is
preserved by [[[.]]] (that is, for every equation D1 = D2 in A we have [[[D1]]] = [[[D2]]]). Then A is sound
with respect to [[[.]]], that is, for any two diagrams D1, D2 : n→ n, if A ` D1 = D2 then [[[D1]]] = [[[D2]]].
Proof. The same proof as for J.K shows that [[[.]]] is well-defined.

By definition, A ` . = . is the smallest congruence satisfying the equations of A. Since [[[D2 ◦D1]]] and
[[[D1 ⊕D2]]] only depend on [[[D1]]] and [[[D2]]], and [[[Tr(D)]]] only depends on [[[D]]], the relation ∼, defined
as D1 ∼ D2 if and only if [[[D1]]] = [[[D2]]], is a congruence. Therefore, it contains A ` . = ., which is what
we wanted to prove.

Lemma 3.35. Equation (3.1) is not a consequence of Equations (3.2) to (3.10).
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Proof. Let [[[.]]] be defined inductively in the same way as J.K, except in the case of U , for which we
define [[[ U ]]] : H1 → H1 :: |c, 0, y〉 7→ 0.
Equations (3.2), (3.3) and (3.6) are preserved by [[[.]]] because both sides are interpreted as the zero map.
Equation (3.7) is preserved because both side are interpreted as the unique map H0 → H0. Equation

(3.4) is preserved because both sides are interpreted as
{
|V, 0, y〉 7→ |V, 0, y〉
|H, 0, y〉 7→ 0

. Finally, Equations (3.5)

and (3.8) to (3.10) are preserved because both sides are interpreted in the same way as by J.K. As a
consequence, by Lemma 3.34, all consequences of equations (3.2) to (3.10) are preserved by [[[.]]]. By
contrast, Equation (3.1) is not preserved by [[[.]]] because one side is interpreted as the identity whereas
the other side is interpreted as the zero map. Hence, Equation (3.1) is not a consequence of Equations
(3.2) to (3.10).

Lemma 3.36. If U 6= I, then Equation (3.2) is not a consequence of Equations (3.1) and (3.3) to (3.10).
Proof. Let [[[.]]] be defined inductively in the same way as J.K, except in the case of U , for which we

define [[[ U ]]] :=
t

U

|

=
{
|V, 0, y〉 7→ |V, 0, y〉
|H, 0, y〉 7→ |H, 0〉 ⊗ U |y〉

.

Equation (3.2) is not satisfied unless U = I, because the left-hand side is interpreted as{
|V, 0, y〉 7→ |H, 0〉 ⊗ U |y〉
|H, 0, y〉 7→ |V, 0, y〉

whereas the right-hand side is interpreted as
{
|V, 0, y〉 7→ |H, 0, y〉
|H, 0, y〉 7→ |V, 0〉 ⊗ U |y〉

.

By using the graphical characterisation of the denotational semantics, adapted to [[[.]]], it is easy to check
that Equations (3.1) and (3.3) to (3.10) are preserved by [[[.]]]. By Lemma 3.34, this implies that all
consequences of these equations are preserved by [[[.]]], so that Equation (3.2) is not a consequence of
them.

Lemma 3.37. If det(U) /∈ {0, 1}, then Equation (3.3) is not a consequence of Equations (3.1), (3.2) and
(3.4) to (3.10).
Proof. Given a diagram D : n → n, let us say that a wire in D is used if there exists c ∈ {V,H} and
p ∈ [n] such that an input photon with classical polarisation c and position p passes through this wire.
Let us define d(D) as the product of all determinants of the matrices labelling the gates that are on used
wires of D.

Let us fix a diagram D and consider the effect of applying the axioms inside it. It is easy to check that
all axioms of traced PROP, as well as Equations (3.1), (3.2), (3.5) and (3.8) to (3.10) preserve the gates
of D and the fact that their wire is used or not. Equation (3.7) can only add or remove gates on unused
wires. Equation (3.4) adds or removes V on an unused wire and does change the fact that the wire of
U is used or not, indeed, in the patterns on both sides of the equation, the wire of U is used if and

only if it is possible to have a photon with polarisation H arrive at the input of the pattern. Applying
Equation (3.6) replaces U and V by V U (or V U by U and V ) on a given wire, which does not
change d(D). Thus, applying Equations (3.1), (3.2) and (3.4) to (3.10) does not change d(D).

By contrast, although the two sides of Equation (3.3) have the same d-quantity, whenever det(U) /∈
{0, 1} this property is not preserved when one transforms an arbitrary diagram using this equation.

For instance, d


U

U

 = det(U) whereas d

 U

U

 = det(U)2. Hence,

Equation (3.3) is not a consequence of Equations (3.1), (3.2) and (3.4) to (3.10).

Lemma 3.38. For any U, V , Equation (3.4) is not a consequence of Equations (3.1) to (3.3) and (3.5)
to (3.10).
Proof. This is clear, because Equations (3.1) to (3.3) and (3.5) to (3.10), as well as the axioms of traced
PROP, preserve the parity of the total number of and ¬ in a given diagram, whereas Equation
(3.4) changes this parity.

Lemma 3.39. Equation (3.5) is not a consequence of Equations (3.1) to (3.4) and (3.6) to (3.10).
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Proof. Let [[[.]]] be defined inductively in the same way as J.K, except in the cases of and ¬ ,
for which we define [[[ ]]] and [[[ ¬ ]]] as being the identity (notice that the proof also works if we
additionally define [[[ U ]]] as the identity). Then it is clear that Equations (3.1) to (3.4) and (3.6) to
(3.10) are preserved, and Equation (3.5) is not preserved because its left-hand side is interpreted as the
identity whereas its right-hand side is interpreted as J K. By Lemma 3.34, this implies that Equation
(3.5) is not a consequence of Equations (3.1) to (3.4) and (3.6) to (3.10).

Lemma 3.40. If U, V 6= I, then Equation (3.6) is not a consequence of Equations (3.1) to (3.5) and
(3.7) to (3.10).
Proof. Let [[[.]]] be defined inductively in the same way as J.K, except in the case of U , for which we

define [[[ U ]]] :=
{
|c, p, x〉 7→ |c, p, x〉 if U = I

|c, p, x〉 7→ |c, p〉 ⊗M |x〉 if U 6= I
where M is a fixed arbitrary matrix such that

M2 6= M . Then it is easy to check that Equations (3.1) to (3.5) and (3.7) to (3.10) are preserved by
[[[.]]]. But Equation (3.6) is not preserved if U, V 6= I, because then the left-hand side is interpreted as
|c, p, x〉 7→ |c, p〉 ⊗ M2 |x〉 whereas the right-hand side is interpreted as |c, p, x〉 7→ |c, p〉 ⊗ M |x〉, and
M2 6= M . By Lemma 3.34, this implies that Equation (3.6) is not a consequence of Equations (3.1) to
(3.5) and (3.7) to (3.10).

Lemma 3.41. For any U , Equation (3.7) is not a consequence of Equations (3.1) to (3.6) and (3.8) to
(3.10).
Proof. This is clear, because Equation (3.7) is the only one that allows us to make a non-empty diagram
equivalent to the empty diagram.

Lemma 3.42. Equation (3.8) is not a consequence of Equations (3.1) to (3.7), (3.9) and (3.10).
Proof. This is clear, because Equation (3.8) is the only one that allows us to make a diagram without
beam splitters equivalent to a diagram containing beam splitters.

Lemma 3.43. Equation (3.10) is not a consequence of Equations (3.1) to (3.9).
Proof. It suffices to remark that Equation (3.10) is the only one that allows us to change the parity of
the number of ¬ in a diagram.

3.4.2 Independence of Equation (3.9)
3.4.2.1 A Variant of the Traced PROP Structure (PROTWEB)

To prove that Equation (3.9) is not a consequence of Equations (3.1) to (3.8) and (3.10), we need
to introduce a variant of the structure of traced PROP with fewer congruence axioms, more precisely
without those that allow us to create or remove swaps.

Definition 3.44. A PROTWEB P is a collection of sets P[n,m], indexed by N2. An element f ∈ P[n,m]
is called a morphism and is written f : n→ m. These sets are equipped with:

1. a sequential composition ◦ : P[m, k]×P[n,m]→ P[n, k] satisfying:
• associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f)

2. a parallel composition ⊕ : P[n,m]×P[k, `]→ P[n+ k,m+ `], satisfying:
• associativity: (f ⊕ g)⊕ h = f ⊕ (g ⊕ h)
• compatibility of the sequential and parallel compositions: (f2◦f1)⊕(g2◦g1) = (f2⊕g2)◦(f1⊕g1)

3. an empty morphism : 0→ 0 satisfying:

• neutrality: ⊕ f = f ⊕ = f for all f : n→ m

4. an identity morphism : 1→ 1 satisfying:

• neutrality: f ◦ ⊕n = f = ⊕m ◦ f for all f : n→ m, with the convention ⊕0 =
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5. a swap : 2→ 2 satisfying:
• naturality: σm ◦ ( ⊕ f) = (f ⊕ ) ◦ σn for all f : n→ m, where σk is defined inductively by
σ0 = and σk+1 = ( ⊕k ⊕ ) ◦ (σk ⊕ )

6. a trace Tr : P[n+ 1,m+ 1]→ P[n,m] satisfying:
• naturality in the input: Tr(f ◦ (g ⊕ )) = Tr(f) ◦ g for all f : n+ 1→ m+ 1 and g : k → n

• naturality in the output: Tr((g⊕ ) ◦ f) = g ◦ Tr(f) for all f : n+ 1→ m+ 1 and g : m→ k

• dinaturality: Tri(( ⊕m⊕ g) ◦ f) = Trj(f ◦ ( ⊕n⊕ g)) for all f : n+ i→ m+ j and g : j → i

• superposing: Tr(g ⊕ f) = g ⊕ Tr(f) for all f : n+ 1→ m+ 1 and g : k → `.

By comparing Definition 3.44 with Definition 1.1, one can see that we have just removed two axioms,
namely inverse law and yanking:

Lemma 3.45. A collection of sets is a traced PROP if and only if it is a PROTWEB and satisfies
inverse law and yanking:

◦ = ⊕2 Tr( ) = .

= =

Remark 3.46. To give a definition of the structure of PROTWEB in the language of category theory,
one can first define a traced weak braided category as a strict monoidal category that is additionally a
weak braided monoidal category in the sense of [62] or [123] and a right traced category in the sense of
[120]. Then a PROTWEB is a traced weak braided category whose objects are freely generated from the
monoidal unit and a single object by monoidal product, and identified with the natural integers.

The two axioms that we have removed are the only ones that allow for creating or removing swaps.
The main reason why we will use a PROTWEB instead of a PROP in the proof of independence of
Equation (3.9) is to be able to count the number of swaps in a diagram. Intuitively, in a PROTWEB,
the diagrams can still be deformed at will, as long as one does not create or remove intersections between
wires.

To prove that Equation (3.9) is not a consequence of the others, we will need to talk about sub-
diagrams in a context where the diagrams are defined up to the axioms of PROTWEB instead of those
of traced PROP. Although the notion of sub-diagram is clear in a traced PROP, it may be less obvious in
a PROTWEB, where swaps cannot be freely created or removed. This is why we give a formal inductive
definition of it:

Definition 3.47. We define the notion of sub-diagram inductively as follows. Given two diagrams d
and D, we say that d is a sub-diagram of D if at least one of the following properties is satisfied (up to
the relevant structural congruence axioms, which are the axioms of a traced PROP in all of this chapter
except in the proof of Lemma 3.48 (after the two preliminary remarks), where they will be the axioms of
a PROTWEB):

• d = D

• there exists two non-identity16 diagrams D1 and D2 such that D = D2 ◦D1 and d is a sub-diagram
of D1 or a sub-diagram of D2

• there exists two non-empty diagrams D1 and D2 such that D = D1 ⊕D2 and d is a sub-diagram of
D1 or a sub-diagram of D2

• there exists a diagram D′ such that D = Tr(D′) and d is a sub-diagram of D′.
16That is, not of the form ⊕n.
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3.4.2.2 Proof of the Independence of Equation (3.9)

Lemma 3.48. Equation (3.9) is not a consequence of equations (3.1) to (3.8) and (3.10).
Proof. Let us first make two remarks.

First, since Equation (3.9) does not contain gates, if it is a consequence of the other equations, then
it is a consequence of these equations where all U and V are instantiated by I. Indeed, all of these
equations that contain gates are still true when all U and V are instantiated by I. Hence, given a valid
derivation of Equation (3.9) from the others, by replacing every unitary matrix by I in this derivation,
we get a valid derivation of Equation (3.9).

Second, by Equation (3.1), being a consequence of Equations (3.1) to (3.8) and (3.10) where all U
and V are instantiated by I is equivalent to being a consequence of these equations where the gates have
been removed (except in Equation (3.1)). That is, being a consequence of the following equations:

= I (3.1)

¬ = ¬

=

= (3.4’)

¬

¬

¬

¬
= (3.5)

=

= (3.7’)

= (3.8)

¬
=

¬ ¬
(3.10)

Equation (3.1) is now useless since it only allows us to create and remove I gates without changing
anything else, and neither the other equations nor Equation (3.9) contain gates. Equations that have
become an instance of reflexivity are now useless too. Finally, Equation (3.4’) can be simplified through
Equations (3.8) and (3.7’) into Equation (3.34) below. Thus, what we have to prove is that Equation
(3.9) is not a consequence of the following equations:

= (3.34)

¬

¬

¬

¬
= (3.5)

= (3.7’)

= (3.8)

¬
=

¬ ¬
(3.10)

In the rest of the proof, we no longer assume the yanking and inverse law axioms, but we consider
the corresponding equations instead:

=
(y)

= (σσ)
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We have to prove that Equation (3.9) is not a consequence of Equations (3.34), (3.5), (3.7’), (3.8),
(3.10), (y) and (σσ), still assuming the other axioms of the traced PROP, which by definition are the
axioms of a PROTWEB.

Note that we also consider the notion of sub-diagram with respect to the axioms of a PROTWEB,
that is, in Definition 3.47, the conditions are considered up to these axioms. Intuitively, a sub-diagram
in this sense is a part of a diagram that can be separated from the rest of the diagram by drawing a box
around it.

We will say that a diagram is circle-free if it does not have non-empty 0→ 0 sub-diagrams. Intuitively,
a 0→ 0 sub-diagram in the context of a PROTWEB is graphically represented as a union of connected
components, which cannot be reached by a photon and do not affect the semantics of the diagram.

We consider the following set of rewriting rules on the set of gate-free diagrams:

D → for every non-empty diagram D : 0→ 0 (3.35)

D → for every circle-free D : 1→ 1 such that D 6= and JDK = Id (3.36)

D → ¬ for every circle-free D : 1→ 1 such that D 6= ¬ and JDK = J ¬ K (3.37)

d

D

→

D

(3.38)

for every diagram D with a circle-free, non-identity sub-diagram d : 2→ 2 that we can slide along its two
wires inside D, by using the axioms of the PROTWEB, in a constant direction and make it come back
to the initial point, without having to use dinaturality to slide anything else than d while doing so (in
other words, roughly speaking, d can do a round trip in D without encountering any obstacle that would
have to be pushed in front of it while it moves)

→ (3.39)

¬
→

¬ ¬
(3.40)

¬
→

¬ ¬
(3.41)

¬

¬
→

¬

¬
(3.42)

→
¬

¬

¬

¬
(3.43)

→
¬

¬

¬

¬
(3.44)

→ (3.45)

It is easy to see that these rules preserve the semantics.
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Remark 3.49. Any gate-free 1 → 1 diagram is interpreted as Id or J ¬ K, and can therefore be reduced
to either or ¬ , by first applying Rule (3.35) repeatedly to remove all its 0→ 0 sub-diagrams, and then
applying Rule (3.36) or (3.37).

The axioms of PROTWEB do not change the number of , , ¬ , or of trace wires, in a diagram
(even naturality of the swap and dinaturality, due to the fact that all diagrams have number of input
wires equal to their number output wires), so these numbers are well-defined for a given diagram. This
allows us to define the level of a diagram as a tuple (b, x, n, t), where:

• b is the number of

• x is the number of

• n is the number of ¬

• t is the number of trace wires.

It is easy to check that each of the rewriting rules strictly decreases the level, according to the lexico-
graphic order. Since the lexicographic order on N4 is well-founded, this implies that the rewriting system
is strongly normalising.

Let us prove that the rewriting system is confluent. Because of strong normalisation, it suffices to
prove that it is locally confluent. Let →∗ be the reflexive transitive closure of →. Let D be a diagram
and let D (a)→ D1 and D (b)→ D2 be two reduction steps, where (a) and (b) are the respective rules applied.
We have to prove that there exists a diagram D′ such that D1 →∗ D′ and D2 →∗ D′. We proceed by
case distinction.

If the two patterns in D that are transformed by (a) and (b) do not overlap, then after applying (a)
to the first pattern or (b) to the second one, we can still apply the other rule to the other pattern and
the final result does not depend on the order in which (a) and (b) are applied. That is, there exists D′

such that D1
(b)→ D′ and D2

(a)→ D′.

In the rest of the case distinction, we assume that the patterns concerned by (a) and (b) overlap.

It is easy to see that if (a) is Rule (3.35), (3.36) or (3.37) and (b) is among Rules (3.39) to (3.45), then
the only way the concerned patterns in D can overlap is if the pattern concerned by (b) is included in
that concerned by (a). In this case, on the one hand, (a) transforms its pattern into , or ¬ , and on
the other hand, the effect of applying (b) is to transform the pattern of (a) into a semantically equivalent
diagram (which is not , or ¬ because it contains at least a trace), which can then be transformed
into , or ¬ by applying (a). Since the rules preserve the semantics, the final sub-diagrams obtained
in each case are the same. Therefore, D2

(a)→ D1. Of course, the same argument applies with (a) and (b)
exchanged.

If (a) is Rule (3.35) and (b) is Rule (3.36) or (3.37), then since the pattern concerned by (b) does not
contain any 0 → 0 sub-diagram, it is necessarily included in the pattern concerned by (a), which, after
applying (b), can still be transformed into the empty diagram by applying (3.35). Therefore, D2

(3.35)→ D1.
The same argument applies with (a) and (b) exchanged.

If both (a) and (b) are Rule (3.35), then the union of the two patterns concerned by (a) and (b) is a
0 → 0 sub-diagram of D. Applying (a) or (b) does not change the fact that it is of type 0 → 0, so that
right after we can transform it into the empty diagram by applying Rule (3.35) (unless it has already
become empty in which case there is nothing more to do). This gives us the desired diagram D′

If both (a) and (b) are among the two rules (3.36) and (3.37), then the union of the two concerned
patterns can be written in the form d2 ◦ d ◦ d1 in such a way that, up to exchanging the roles of (a) and
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(b), the pattern concerned by (a) is d◦d1 and the pattern concerned by (b) is d2 ◦d. Then, after applying
(a) or (b), we can apply Rule (3.36) or (3.37) to transform the resulting whole sub-diagram into or ¬ ,
and since the rules preserve the semantics, the result is the same regardless of whether (a) or (b) was first
applied. This gives us the desired diagram D′.

If (a) is Rule (3.38), then:

• if (b) is Rule (3.35), then since d is circle-free, it does not intersect the pattern concerned by (b).
Therefore, the situation is the same as when the two patterns do not overlap and there exists D′

such that D1
(b)→ D′ and D2

(a)→ D′.

• if (b) is Rule (3.36) or (3.37), then the condition of Rule (3.38) implies that the pattern concerned
by (b) either is included in d, in which case we have D2

(3.38)→ D1, or contains d as a sub-diagram,
in which case we have D1

(b)→ D2, or is disjoint from it, in which case we are in the same situation
as when the two patterns do not overlap and there exists D′ such that D1

(b)→ D′ and D2
(a)→ D′.

• if (b) is Rule (3.38) too, then (a) and (b) each transform an instance of d into the identity. After
this, the other instance of d can be transformed into the identity by applying Rule (3.38) again
(unless it has already become equal to the identity), and the result is the same regardless of whether
(a) or (b) was first applied. This gives us the desired diagram D′.

• if (b) is among Rules (3.39) to (3.45), then the condition of Rule (3.38) implies that the pattern
concerned by (b) is either included in d, in which case we have D2

(3.38)→ D1, or disjoint from it, in
which case we are in the same situation as when the two patterns do not overlap and there exists
D′ such that D1

(b)→ D′ and D2
(a)→ D′.

If both (a) and (b) are among Rules (3.39) to (3.45), then by looking at the possible left-hand sides
of these rules, we can see that unless they are the same and D1 = D2, the two patterns cannot have a
¬ in common, and any generator in common cannot be the leftmost one of both patterns, neither can
it be the rightmost one of both patterns. So the cases to consider are:

• those in which the two patterns have one generator in common, which is on the right of one pattern
and on the left of the other

• those in which the two patterns have two generators in common, the leftmost generator of each
pattern being the rightmost one of the other pattern.

The first possibility means that the two patterns in D are in a sub-diagram of one of the following
forms:

?

??

?

?

?

?

?

d2

d1

where ? denotes either or ¬ , and d1, d2 : 1→ 1 are arbitrary diagrams.
D1 and D2 are obtained from D by applying one of the rules (3.39) to (3.45), to the left part of the

sub-diagram for one of the two, and to the right part of the sub-diagram for the other (possibly after
sliding d1 and d2 through the swap by naturality of it — note that d1 and d2 appear in only one case,
as in the other cases it is possible to slide them out of the considered sub-diagram). To reduce them to
a common diagram, we still focus on the same sub-diagram. If relevant, we reduce d1 and d2 to or ¬
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as described in Remark 3.49. Then we apply Rule (3.36) to all double negations to remove them. Then,
if there are still two generators of type or , we apply the appropriate rule among (3.39) to (3.45).
Finally, we apply Rule (3.36) repeatedly to all resulting double negations in order to remove them. After
that, the sub-diagram is of the form

?

?

,
?

?
or

?

?

?

?

where ? still denotes either or ¬ . It is easy to see that two diagrams of these forms have the
same semantics only if they are equal. And since the reduction rules preserve the semantics, the two final
sub-diagrams must have the same semantics, hence they are equal.

The second possibility means that the union of the two patterns is of the form

?

? ?

?

, d2

d1

or d2

d1

where d1, d2 : 1 → 1 are arbitrary diagrams. This union is not necessarily a sub-diagram of D. Indeed,
on the one hand, there can be some 0→ 0 diagrams inside the loop, and on the other hand we may have
to use the naturality of the swap to transform each of the two patterns into the other, which means that
there are external wires that intersect the union. However, in any case, after applying (a) or (b), we can

apply Rule (3.38) to transform it into . This reduces D1 and D2 to a common diagram, and

finishes proving that the rewriting system is confluent.

Transforming a diagram by applying Equation (3.34), (3.5), (3.7’), (3.8), (3.10), (y) or (σσ) amounts
to applying, or to applying the opposite of, Rule (3.36), (3.43), (3.35), (3.39), (3.40), (3.36) or (3.45)
respectively. Therefore, if two diagrams D1 and D2 are equivalent according to these equations, they are
equivalent according to the equivalence relation generated by the reduction relation→. By confluence, this

implies that there exists a diagram D′ such that D1 →∗ D′ and D2 →∗ D′. Since

and are normal forms for the rewriting system, this proves that they are not

equivalent according to Equations (3.34), (3.5), (3.7’), (3.8), (3.10), (y) and (σσ), and therefore that
Equation (3.9) is not a consequence of these equations, which is what we wanted to prove.

3.5 Removing the Trace – Loop Unrolling
We consider in this section an application of the PBS-calculus. The semantics of the language points out
that each trace, or feedback loop, is used at most twice. As a consequence, a natural question is to decide
whether all loops can be unrolled, in order to transform any PBS-diagram into a trace-free PBS-diagram.

Note first that in many cases, like in E(U, V ) =
U

V

, the trace wires are useless in the

sense that no particle can reach them, and are only here to guarantee that the diagram is well-formed.
In particular, this is the case of all trace wires in diagrams in normal form, since these trace wires are
part of diagrams of the form E(U, V ). This implies that any diagram can be transformed into a diagram
without any “useful” trace wire. By slightly changing the formalism, for instance like in Chapter 4, one
can avoid writing useless trace wires, and in this sense a diagram in which all trace wires are useless
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can be considered trace-free. Nonetheless, we examine here the question of writing a diagram trace-free
within the current formalism of PBS-diagrams. Such a transformation is possible when all matrices are
invertible:
Proposition 3.50. Let D : n→ n with n ≥ 2 be a PBS-diagram such that all matrices appearing in the
gates of D are invertible. Then there exists a trace-free PBS-diagram D′ such that PBS ` D = D′.

Proof. By Proposition 3.29, there exists a diagram N in normal form such that PBS ` D = N . What we
have to prove is that N is equivalent through the axioms of the PBS-calculus to a trace-free diagram. By
Remark 3.24, let us decompose N into P ◦ E, where E is of the form E(U0, V0) ⊕ · · · ⊕ E(Un−1, Vn−1),
and P is trace-free and gate-free. We just have to prove that E is equivalent to a trace-free diagram.

By the axioms of PROP, we can write E in the form E =
n−1∏
p=0

( ⊕p ⊕ E(UV,p, UH,p) ⊕ ⊕n−1−p), so

it is sufficient to prove that every factor ⊕p ⊕ E(UV,p, UH,p) ⊕ ⊕n−1−p is equivalent to a trace-free
diagram. To do so, it is enough to prove that any diagram of the form E(U, V ) ⊕ or ⊕ E(U, V ) is
equivalent to a trace-free diagram. And since ⊕ E(U, V ) = ◦ (E(U, V ) ⊕ ) ◦ , it suffices to
prove that E(U, V )⊕ is equivalent to a trace-free diagram.

First, assume that U and V have a square root. Then E(U, V )⊕ is equivalent to
√
U

√
U

√
U
−1 √

V
−1 √

V
√
V ¬¬ ¬

.

If U or V does not have a square root, let us consider their polar decompositions U = QS and V = Q′S′

with Q,Q′ unitary and S, S′ positive-definite Hermitian. Then by Equation (3.15), PBS ` E(U, V )⊕ =
(E(Q,Q′)⊕ )◦ (E(S, S′)⊕ ), and since each of Q, S, Q′ and S′ have a square root, E(Q,Q′)⊕ and
E(S, S′)⊕ are equivalent to trace-free diagrams of the form above, so that by composition, E(U, V )⊕
is equivalent to a trace-free diagram too.

Notice that Proposition 3.50 is not true for PBS-diagrams with a single input/output. Indeed a
trace-free diagram of type 1 → 1 is made of generators acting on 1 wire only, so in particular it has no
polarising beam splitter and as a consequence cannot have a behaviour which depends on the polarisation.
For instance, the diagram E(U, V ) used in the normal forms (see Remark 3.24) cannot be transformed
into a trace-free diagram unless U = V .

On the other hand, PBS-diagrams involving at least one non-invertible matrix are not necessarily
equivalent to a trace-free one. Indeed, we have the following property:
Lemma 3.51. For any trace-free PBS-diagram D, either all UDc,p are invertible or at least two of them
are not.

Proof. We prove the result by structural induction on D.
If D = , , ¬ , or then for every (c, p) we have UDc,p = Iq, which is invertible, so the

result holds.
If D = U then for every c ∈ {V,H} we have UDc,0 = U . If U is invertible, then the result holds, and

if U is not invertible, then the result holds too.
If D = D2 ◦ D1, then for any (c, p) we have UDc,p = UD2

τD1 (c,p)U
D1
c,p . The product UD2

τD1 (c,p)U
D1
c,p is

invertible if and only if both UD2
τD1 (c,p) and UD1

c,p are. Therefore, if all UD1
c,p and all UD2

c,p are invertible then
all UDc,p are invertible. If not all UD1

c,p are invertible, then by induction hypothesis at least two of them are
not, and consequently at least two UDc,p are not invertible. If not all UD2

c,p are invertible, then by induction
hypothesis at least two of them are not; since τD1 is surjective, this implies that at least two UD2

τD1 (c,p)
are not invertible and consequently that at least two UDc,p are not invertible. In all three cases, the result
holds.

If D = D1 ⊕ D2, then the set of all UDc,p is the union of the set of all UD1
c,p and the set of all UD2

c,p .
Therefore, if all UD1

c,p and UD2
c,p are invertible then all UDc,p are, and if not all are invertible, then by

induction hypothesis at least two UD1
c,p or two UD2

c,p are not invertible, so that at least two UDc,p are not
invertible. In both cases the result holds.
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This prevents the following diagram from being equivalent to a trace-free one:

Example 3.52. If U is not invertible, then the diagram DU : 2 → 2 = U
is not equivalent,

according to the rules of the PBS-calculus, to any trace-free diagram. Indeed, for any (c, p) 6= (V, 1) we
have UDUc,p = Iq, which is invertible, whereas UDUV,1 = U .

Another interesting property is that loop unrolling, when it is possible, requires the use of matrices
that were not present in the original diagram. This is a consequence of the following lemma:

Lemma 3.53. Given any diagram D : n→ n, let us define |D| :=
∏

c∈{V,H},p∈[n]

det
(
UDc,p

)
. Then for any

trace-free diagram D, we have |D| =
∏

G gate in D

det (U(G))2 where U(G) denotes the matrix with which

G is labelled.

Proof. Intuitively, due to the invertibility of the PBS-diagrams (Proposition 3.7), for each wire of a trace-
free diagram D, there are exactly two initial configurations which go through this particular wire. As a
consequence each gate of D contributes twice to |D|.

More formally, we proceed by structural induction on D.
If D = , , ¬ , or , then D does not contain any gate, and for any (c, p) we have

det(UDc,p) = 1. So with the usual convention that the empty product is equal to 1, the result holds.
If D = U , then we have |D| =

∏
c∈{V,H}

det(U) = det(U)2, and U is the only gate in D, so the

result holds.
If D = D2 ◦ D1, then on the one hand, the set of gates of D is the disjoint union of the respective

sets of gates of D1 and D2, so that

∏
G gate in D

det (U(G))2 =

 ∏
G gate in D1

det (U(G))2

 ∏
G gate in D2

det (U(G))2

 ,

which by induction hypothesis is equal to |D1||D2|. On the other hand, we have

|D| =
∏

c∈{V,H},p∈[n]

det
(
UDc,p

)

=
∏

c∈{V,H},p∈[n]

det
(
UD2
τD1 (c,p)U

D1
c,p

)

=
∏

c∈{V,H},p∈[n]

det
(
UD2
τD1 (c,p)

)
det
(
UD1
c,p

)

=

 ∏
c∈{V,H},p∈[n]

det
(
UD2
τD1 (c,p)

) ∏
c∈{V,H},p∈[n]

det
(
UD1
c,p

)

=

 ∏
c∈{V,H},p∈[n]

det
(
UD2
c,p

) ∏
c∈{V,H},p∈[n]

det
(
UD1
c,p

)
= |D1||D2|

which proves the result for D.
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If D = D1 ⊕D2, then on the one hand, the set of gates of D is the disjoint union of the respective
sets of gates of D1 and D2, so that

∏
G gate in D

det (U(G))2 =

 ∏
G gate in D1

det (U(G))2

 ∏
G gate in D2

det (U(G))2

 ,

which by induction hypothesis is equal to |D1||D2|. On the other hand, the set of the UDc,p is the disjoint
union of the set of the UD1

c,p and the set of the UD2
c,p , so that |D| = |D1||D2|. This proves the result for

D.

Example 3.54. Unless det(U) is a kth root of unity for some odd integer k, the following diagram
DU does not have the same semantics as any trace-free diagram in which all gates are labelled by U :

U
. Indeed, we have |DU | = det(U), and by Lemma 3.53, if DU is equivalent modulo the

axioms of the PBS-calculus to a trace-free diagram D′U in which all gates are labelled by U , then we
have |DU | = det(U) = det(U)2N , where N is the number of gates in D′U . By Lemma 3.51, we have
det(U) 6= 0, so that det(U)2N−1 = 1, that is, det(U) is a kth root of unity with k = 2N − 1 odd (if N = 0
then det(U) = 1 so the result is still true).

3.6 Final Remark
In the definition of the PBS-calculus, we have restricted the gates to being indexed by square matrices
of finite dimension. However, note that one can extend the PBS-calculus by allowing the gates to be
indexed by the elements of an arbitrary monoid, while preserving most of the results exposed in this
chapter:

On the one hand, it is then not possible anymore to define the denotational semantics, except in the
cases of some particular monoids, which makes Proposition 3.12 and Theorems 3.13 and 3.32 pointless,
and may alter the results and the proofs of Section 3.5.

On the other hand, it is possible to define JDK for instance as the function (c, p) 7→ (cDc,p, pDc,p, UDc,p).
Then the equational theory is still sound and complete, and the proofs are the same. The proofs that the
equations are not consequences of each other are the same, except for Equations (3.1), (3.3) and (3.6).
Note that for Equations (3.1) and (3.6), the independence can still be proven using the arguments given
for Equations (4.1) and (4.2) respectively in the proof of Theorem 4.19. The question of proving the
independence of Equation (3.3) in the case of an arbitrary monoid has not been investigated.

In Chapter 4, we will introduce such an extension and allow an arbitrary monoid to index the gates, in
addition to allowing for removing the useless trace wires. The case of a free monoid (that is, a monoid of
words) will be of particular interest in the context of this chapter where we will be interested in resource
optimisation, as then the letters can be interpreted as independent queries to oracles.
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Chapter 4

Coloured PBS-diagrams and
Resource Optimisation

As pointed out before, some problems can be solved more efficiently by using coherent control rather than
the usual quantum circuits. This separation has been proved in a multi-oracle model where the measure
of complexity is the number of queries to (a single or several distinct) oracles, which are generally unitary
maps. The simplest example is the following problem [31]: given two oracles U and V with the promise
that they are either commuting or anti-commuting, decide whether U and V are commuting or not. This
problem can be solved using the quantum switch, which can be implemented using only two queries by
means of coherent control, whereas solving this problem requires at least 3 queries (e.g. two queries to
U and one query to V ) in the quantum circuit model (see Figure 4.1).

In this chapter, we address the problem of optimising the resources of coherently controlled quantum
computations represented as PBS-diagrams. To do so, we first refine the framework of the PBS-calculus
to make it more resource-sensitive. Then, we consider the problem of optimising the number of queries,
and also the number of polarising beam splitters, of a given coherently controlled quantum computation,
described as a PBS-diagram.

Note that a PBS-diagram may have some useless wires, like in the example of the “half quantum
switch”, see Figure 4.2 (left). We refine the PBS-calculus in order to allow one to remove these useless
wires, leading to unsaturated PBS (or 3-leg PBS) like or . To avoid ill-formed diagrams
like , a typing discipline is necessary. To this end, we use the framework of coloured PROPs:
each wire has 3 possible colours: black, red and blue which can be interpreted as follows: a photon going
through a blue (resp. red) wire must have a horizontal (resp. vertical) polarisation.

The introduction of unsaturated polarising beam splitters requires to revisit the equational theory of
the PBS-calculus. The heart of the refined equational theory is the axiomatisation of the 3-leg polarising
beam splitters, together with some additional equations which govern how 4-leg polarising beam splitters
can be decomposed into 3-leg ones. To show the completeness of the refined equational theory, we
introduce normal forms and show that any diagram can be put in normal form. Finally, we also show
the minimality of the equational theory by proving that none of the equations can be derived from the

U

V

|V〉+|H〉√
2 ⊗ |0〉

V

|0〉+|1〉√
2

|0〉 U

|0〉 V

Figure 4.1: [Left] Coherently controlled quantum computation for solving the commuting problem. Only
two queries are used: one query to U and one query to V . [Right] Optimal circuit for solving the
commuting problem, where the 3-qubit gate is a control-swap. Note that three queries are necessary in
the quantum circuit model.
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U

V

U

V

Figure 4.2: A coherent control of U and V , also called a half quantum switch: when the initial polarisation
is vertical (V), U is applied on the data register, when the polarisation is horizontal (H), V is applied.
Whatever the polarisation is, the particle always goes out of the top port of the second beam splitter. On
the right-hand side the diagram is made of beam splitters with a missing leg, whereas on the left-hand
side standard beam splitters are used, and a useless trace is added.

other ones.
Note also that as opposite to Chapter 3 where we have restricted the gates to be indexed by square

matrices of finite size, here we allow the gates to be indexed by the elements of an arbitrary monoid. The
case that we will consider for resource optimisation is that of a free monoid, that is, the monoid of words
over some alphabet. Then each letter can be interpreted as an oracle, or as an external resource, which
is called each time it appears in a gate.
Resource Optimisation. The coloured PBS-calculus, thanks to its refined equational theory, provides
a way to detect and remove dead code in a diagram. We exploit this property to address the question
of resource optimisation. We introduce a specific form of diagrams that minimises the number of gates,
more precisely the number of queries to oracles, with an appropriate modelisation of oracles. We provide
an efficient procedure to transform any diagram into this specific form. We then focus on the problem
of optimising both the number of queries and the number of polarising beam splitters. We refine the
previous procedure, leading to an efficient heuristic. We show that the produced diagrams are optimal
when every oracle is queried at most once, but might not be optimal in general. We actually show
that the general optimisation problem is NP-hard using a reduction from the maximum Eulerian cycle
decomposition problem [25].
Related Works. While there are numerous works on resource-optimisation of quantum computations,
in particular for quantum circuits [93, 9, 103], there was, up to our knowledge, no procedure for resource
optimisation of coherently controlled quantum computation.

4.1 Coloured PBS-Diagrams
We represent the refined language of PBS-diagrams as a coloured traced PROP (see Definition 1.6 in
Chapter 1). We are going to use the “colours” v, h, >, to denote respectively vertical, horizontal or
possibly both polarisations.

Definition 4.1. Given a monoid M, let DiagM be the traced coloured PROP with colours {v,h,>} freely
generated by the following generators, for any U ∈ M:

: >⊕> → >⊕> : >⊕ v→ v⊕> : > → h⊕ v

: h⊕> → h⊕> : v⊕> → >⊕ v : v⊕ h→ >

: >⊕ h→ >⊕ h : > → v⊕ h : h⊕ v→ >
¬ : > → > ¬ : v→ h ¬ : h→ v

U : > → > U : v→ v U : h→ h

The morphisms of DiagM are called M-diagrams or simply diagrams when M is irrelevant or clear
from the context.

Regarding notations, we use actual colours for wires: blue for h-wires, red for v-wires, and black
for >-wires. We also add labels on the wires, so that there is no loss of information in the case of a
colour-blind reader or black and white printing. To avoid overloading the diagrams, we omit the types
that are clear from the context (see Example 1.7 for additional explanations about infering them), and
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¬
U

v

h ¬
U2

U1 ¬

¬

U3

¬U2

U4

¬

v
h

Figure 4.3: (Left) An example of diagram of type >⊕>⊕v⊕h→ >⊕h⊕>⊕v. (Right) An example
of a diagram of type > ⊕ v ⊕ h ⊕ > ⊕ h → h ⊕ > ⊕ v ⊕ > ⊕ h, in a particular form that we will call
normal form (see Definition 4.15).

we take the convention that the type > is always omitted (in other words, a wire of ambiguous type is
black by convention). Two examples of diagrams are given in Figure 4.3.

Unless specified, the unit of M is denoted I and its composition is · which will be generally omitted
(V U rather than V · U). The main two examples of monoids we consider in the rest of this chapter are:

• The monoid U(H) of isometries of a Hilbert space H with the usual composition. When H is of
finite dimension, the elements of U(H) are unitary maps. With a slight abuse of notations, the
corresponding traced coloured PROP of diagrams is denoted DiagH.

• The free monoid G∗ on some set G. The gates, when the monoid is freely generated, can be
interpreted as queries to oracles (each element of G corresponds to an oracle): the gates implement
a priori arbitrary operations with no particular structures. We use the term abstract diagram when
the underlying monoid is freely generated, and we refer to the elements of G as names. Notice that
the free monoid case can also be seen as an extension of the bare diagrams defined in Section 7.1.1
in Chapter 7.

There are other examples of interests: One can consider for instance a monoid of commuting or
anticommuting gates, that can be used to model the problem studied in [31]. Another example is the
monoid of n-qubit quantum circuits whose generators are layers of gates acting on n qubits (e.g. H ⊗
CNot⊗ I ⊗H when n = 5 where H is the 1-qubit Hadamard gate, CNot the 2-qubit controlled-not gate,
and I the 1-qubit identity) and whose composition is the sequential composition of circuits. The monoid
can be quotiented by equations like (H⊗ I) · (I⊗H) = H⊗H and (H⊗ I) · (H⊗ I) = I⊗ I. Finally, one
can consider the monoid of unitary purifications17 used to describe coherent control of quantum channels
in Chapter 7 (see Section 7.1.2).

The PBS-diagrams of Chapter 3 correspond to the special case where the monoid M is Cq×q for some
q ≥ 1 and no coloured wires are used, namely the diagrams are restricted to those generated from ,
¬ , U , and , using ◦, ⊕ and Tr>.

4.2 Semantics
As for vanilla PBS-diagrams (that is, those of Chapter 3), the input of a diagram is a single particle,
which has a polarisation, a position and a data register. A basis state for the polarisation is either
vertical or horizontal, and a basis state for the position is an integer which corresponds to the wire on
which the particle is located. The type of a diagram restricts the possible input/output configurations: if
D : v⊕> → h⊕h⊕v then the possible input (resp. output) configurations are the following polarisation-
position pairs: {(V, 0), (V, 1), (H, 1)} (resp. {(H, 0), (H, 1), (V, 2)}). More generally for any object18 a,
let [a] be the set of possible configurations, and |a| be its size, inductively defined as follows: |ε| = 0,
|a⊕>| = |a⊕ v| = |a⊕ h| = |a|+ 1, and [ε] = ∅, [a⊕ v] = [a] ∪ {(V, |a|)}, [a⊕ h] = [a] ∪ {(H, |a|)} and
[a⊕>] = [a] ∪ {(V, |a|), (H, |a|)}.

17Given a Hilbert space H, the elements of the monoid are triplets [U, |ε〉 , E] where E is a Hilbert space, U : H⊗E → H⊗E
is a unitary transformation, and |ε〉 ∈ E. The composition is defined as [U2, |ε2〉 , E2] · [U1, |ε1〉 , E2] = [(σE1,H ⊗ I)(I ⊗
U2)(σH,E1 ⊗ I)(U1 ⊗ I) , |ε1〉 ⊗ |ε2〉 , E1 ⊗ E2] where σK,K′ is the swap between the two Hilbert spaces K, K′.

18As of Definition 1.6.
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Coloured diagrams have a path semantics similar to that defined in Section 3.2 in Chapter 3. However,
since the monoid M is not in general a monoid of linear maps, the definition of a denotational semantics
is less straightforward. We make the path semantics into a denotational one by defining the semantics
JDKpath of an M-diagram D : a→ b as a map [a]→ [b]×M which associates with an input configuration
(c, p), an output configuration (c′, p′) and a side effect Uk . . . U1 ∈ M which represents the action performed
on a data register of the particle. Thus the semantics of a diagram can be formulated as follows:

Definition 4.2 (Path semantics). Given an M-diagram D : a → b, a polarisation c ∈ {V,H} and a
position p ∈ [a], let (D, c, p) U=⇒ (c′, p′) (or simply (D, c, p)⇒ (c′, p′) when U is the identity) be inductively
defined as follows:

( a
, c, 0

)
⇒ (c, 0) ( ¬ ,H, 0)⇒ (V, 0) ( ¬ ,V, 0)⇒ (H, 0)

(
U

a , c, 0
) U=⇒ (c, 0)(

¬v ,H, 0
)
⇒ (V, 0)

(
¬h ,V, 0

)
⇒ (H, 0)

(
,V, 0

)
⇒ (V, 0)

(
,V, 0

)
⇒ (V, 1)

(
,V, 0

)
⇒ (V, 0)

(
,V, 1

)
⇒ (V, 0)(

,H, 0
)
⇒ (H, 1)

(
,H, 0

)
⇒ (H, 0)

(
,H, 1

)
⇒ (H, 0)

(
,H, 0

)
⇒ (H, 0)

(
a

b , c, p

)
⇒ (c, 1− p) (D1, c, p)

U=⇒ (c′, p′) (D2, c
′, p′) V=⇒ (c′′, p′′)

(D2 ◦D1, c, p)
V U==⇒ (c′′, p′′)

(◦)

(
a

b ,V, p
)
⇒ (V, p) D1 : a→ b p < |a| (D1, c, p)

U=⇒ (c′, p′)
(D1 ⊕D2, c, p)

U=⇒ (c′, p′)
(⊕1)

(
a

b , H , p

)
⇒ (H, 1− p) D1 : a→ b p ≥ |a| (D2, c, p− |a|)

U=⇒ (c′, p′)
(D1 ⊕D2, c, p)

U=⇒ (c′, p′ + |a|)
(⊕2)

D : a⊕ d→ b⊕ d (D, c0, p0) U0=⇒ (c1, p1) ∀i ∈ {1, . . . , k}, (D, ci, |a|)
Ui=⇒ (ci+1, pi+1)

(Trd(D), c0, p0) Uk···U0====⇒ (ck+1, pk+1)
(Tk)

with p0 < |a|, pk+1 < |b|, ∀i ∈ {1, ..., k}, pi = |b|, and k ∈ {0, 1, 2}.

Given D : a → b and (c, p) ∈ [a], we denote respectively by cDc,p, pDc,p and UDc,p the polarisation, the

position and the element of M, such that (D, c, p)
UDc,p==⇒ (cDc,p, pDc,p). In the case where M is the free monoid

G∗, its elements can be seen as words, so we will use the notation wDc,p instead of UDc,p.

Finally, let JDKpath : [a]→ [b]×M be defined as JDKpath (c, p) = ((cDc,p, pDc,p), UDc,p).

The intuition behind Rule (Tk) is the same as in Chapter 3. Here, due to the fact that a diagram
can have different numbers of input and output wires, we have to change the position pi from |b| to |a|
at each step, so that it matches the position of the traced wire on the input side.

Note that like for vanilla PBS-diagrams, the semantics of the trace requires only a finite number of
unfoldings, namely 2. Indeed, like for PBS-diagrams, one can show that any wire of a diagram is used at
most twice, each time with a distinct polarisation (cf. Propositions 7.3 and 3.9).

Proposition 4.3. J.Kpath is well-defined, i.e. the axioms of the traced coloured PROP are sound and the
semantics of the trace is well-defined.

Proof. This can be proved in a similar way as Proposition 3.6 of Chapter 3.
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4.2.1 Quantum Semantics
Any diagram whose underlying monoid consists of linear maps admits a quantum semantics, which
corresponds to the denotational semantics of vanilla PBS-diagrams, defined as follows:

Definition 4.4 (Quantum semantics). Given a monoid M of linear maps (with the standard composition)
on a complex vector space V, for any M-diagram D : a → b the quantum semantics of D is the linear
map VD : C[a] ⊗ V → C[b] ⊗ V :: |c, p〉 ⊗ |ϕ〉 7→

∣∣cDc,p, pDc,p〉⊗ UDc,p |ϕ〉
The diagrams in DiagH are valid by construction, in the sense that their semantics are valid quantum

evolutions:

Proposition 4.5. For any D ∈ DiagH, VD : C[a] ⊗H → C[b] ⊗H is an isometry.

Proof. Since there exists an orthonormal basis of C[a] ⊗ V composed of vectors of the form |c, p〉 ⊗ |ϕ〉,
it suffices to check that VD preserves all scalar products of vectors of this form. For any c, p, c′, p′, |ϕ〉
and |ϕ′〉, one has (〈c, p| ⊗ 〈ϕ|)V †DVD(|c′, p′〉 ⊗ |ϕ′〉) =

〈
cDc,p, p

D
c,p

∣∣cDc′,p′ , pDc′,p′〉 ⊗ 〈ϕ|UDc,p†UDc′,p′ |ϕ′〉. On the
one hand, it can be proved in the same way as in Chapter 3 that the function (c, p) 7→ (cDc,p, pDc,p) is a
bijection (see Propositions 3.6 and 3.7), so that (cDc,p, pDc,p) = (cDc′,p′ , pDc′,p′) if and only if (c, p) = (c′, p′).

That is,
〈
cDc,p, p

D
c,p

∣∣cDc′,p′ , pDc′,p′〉 = 〈c, p|c′, p′〉 =
{

1 if (c, p) = (c′, p′)
0 if (c, p) 6= (c′, p′)

. On the other hand, since UDc,p is an

isometry, if (c, p) = (c′, p′) then 〈ϕ|UDc,p
†
UDc,p |ϕ′〉 = 〈ϕ|ϕ′〉. Thus,

(〈c, p| ⊗ 〈ϕ|)V †DVD(|c′, p′〉 ⊗ |ϕ′〉) =
{
〈ϕ|ϕ′〉 if (c, p) = (c′, p′)
0 if (c, p) 6= (c′, p′)

= (〈c, p| ⊗ 〈ϕ|)(|c′, p′〉 ⊗ |ϕ′〉).

Note that JDKpath = JD′Kpath implies VD = VD′ ; the converse is true if and only if 0 /∈ M:

Proposition 4.6. Given a monoid M of complex linear maps, we have ∀D,D′, JDKpath = JD′Kpath ⇔
VD = VD′ , if and only if 0 /∈ M.

Proof. Let us assume that M is a monoid of linear maps on a complex vector space V.
Since the quantum semantics is defined from the path semantics, it is clear that ∀D,D′, JDKpath =

JD′Kpath ⇒ VD = VD′ .
Given an M-diagram D, if 0 /∈ M, then for all c, p, UDc,p 6= 0, so that there exists |ϕ〉 ∈ V such that

UDc,p |ϕ〉 6= 0. Then
∣∣cDc,p, pDc,p〉 ⊗ UDc,p |ϕ〉 6= 0, which implies that cDc,p and pDc,p are uniquely determined

from the data of c, p and VD. Since in any case, UDc,p is uniquely determined from the data of c, p and
VD, this implies that if 0 /∈ M then JDKpath is uniquely determined from VD. Hence if 0 /∈ M then for any
two M-diagrams D and D′, VD = VD′ ⇒ JDKpath = JD′Kpath.

Conversely, if 0 ∈ M, then for example, with D = 0 and D′ = ¬0 , both of type > → >,
one has VD = V ′D = 0 but JDKpath (V, 0) = ((V, 0), 0) 6= JD′Kpath (V, 0) = ((H, 0), 0).

In particular, two diagrams in DiagH have the same path semantics if and only if they have the same
quantum semantics.

4.2.2 Interpretation
Given a monoid homomorphism γ : M → M′, one can transform any M-diagram into a M′-diagram
straightforwardly, by applying γ on each gate of the diagram:

Definition 4.7. Given an M-diagram D : a → b and a monoid homomorphism γ : M → M′, we define
its γ-interpretation γ(D) : a → b as the M′-diagram obtained by applying γ to each gate of D. It is
defined inductively as: γ( U

a : a → a) = γ(U)a : a → a, for any other generator g, γ(g) = g,
γ(D2 ◦D1) = γ(D2) ◦ γ(D1), γ(D1 ⊕D2) = γ(D1)⊕ γ(D2), and γ(Tre(D)) = Tre(γ(D)).
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Proposition 4.8. Any M-diagram is the interpretation of an abstract diagram.

Proof. Given an M-diagram D, let G be the underlying set of M and γ : G → M s.t. ∀U ∈ G, γ(U) = U .
The function γ can be extended trivially into a homomorphism γ : G∗ → M. Notice that D can be seen
as a (abstract) diagram of DiagG

∗
and γ(D) = D.

It is easy to see that the action of monoid homomorphisms on diagrams is well-behaved with respect
to the semantics:

Proposition 4.9. Given any M-diagram D : a → b and any monoid homomorphism γ : M → M′, for
any configuration (c, p) ∈ [a], if JDKpath (c, p) = ((c′, p′), U) then Jγ(D)Kpath (c, p) = ((c′, p′), γ(U)).

Proof. Straightforward by induction.

As a consequence, given two abstract diagrams D1, D2 ∈ DiagG
∗
, if JD1Kpath = JD2Kpath then for any

homomorphism γ : G∗ → M, Jγ(D1)Kpath = Jγ(D2)Kpath. The converse is not true in general. Nonetheless,
interpreting abstract diagrams using 2-dimensional Hilbert spaces is enough to completely characterise
their semantics:

Proposition 4.10. Given a Hilbert space H of dimension at least 2 and a set G, ∀D1, D2 ∈ DiagG
∗
, there

exists a monoid homomorphism γ : G∗ → U(H) s.t. JD1Kpath = JD2Kpath ⇔ Jγ(D1)Kpath = Jγ(D2)Kpath.

Note that a similar result has been proved in the more general19 framework of graphical languages.
Namely, it has been proved [79, 121] that an equation is a consequence of the axioms of a traced symmetric
(resp. dagger compact closed) monoidal category — a structure very similar to a traced PROP (resp.
a slight generalisation of this structure) — if and only if it is preserved by any interpretation of the
diagrams in finite-dimensional vector (resp. Hilbert) spaces.

A stronger version of Proposition 4.10, where the homomorphism γ is independent of the diagrams,
is also true, assuming the axiom of choice:

Proposition 4.11. Given a Hilbert space H of dimension at least 2, and a set G of cardinality at most
the cardinality of U(H), there exists a monoid homomorphism γ : G∗ → U(H) s.t. ∀D1, D2 ∈ DiagG

∗
,

JD1Kpath = JD2Kpath ⇔ Jγ(D1)Kpath = Jγ(D2)Kpath.

Remark 4.12. Notice that the cardinality of U(H) is max(2ℵ0 , 2dim(H)) (where 2ℵ0 is the cardinality of
R and dim(H) is the Hilbert dimension of H).20

Proof of Propositions 4.11 and 4.10. Given a monoid homomorphism γ : G∗ → U(H), a G∗-diagram D
and any c, p, one has Jγ(D)Kpath (c, p) = ((cDc,p, pDc,p), γ(wDc,p)). Therefore, to prove that ∀D1, D2, Jγ(D1)Kpath =
Jγ(D2)Kpath ⇒ JD1Kpath = JD2Kpath, it suffices to prove that for any two words w1, w2 ∈ G∗, if γ(w1) =
γ(w2) then w1 = w2.

We first prove Proposition 4.11.
By Zorn’s lemma, there exists a maximal family (αi)i∈I of Q-algebraically independent complex

numbers of absolute value 1. Such a family must have the cardinality of C (that is, 2ℵ0). Indeed, the
cardinality of the set of polynomials in one variable with coefficients in the field extension of Q generated
by the αi, is max(ℵ0, card(I)), and since each of these polynomials has finitely many roots, the set
of their roots has cardinality at most max(ℵ0, card(I)). If card(I) is strictly less than 2ℵ0 , then so is

19In the sense that proving Proposition 4.10 reduces to proving that for any two words w1, w2 there exists γ : G∗ → U(H)
s.t. w1 = w2 ⇔ γ(w1) = γ(w2), and that a word can be seen as a very simple diagram consisting of just a sequence of
generators. The reason why these results (in particular that of [121]) do not directly imply Proposition 4.10 is because they
allow the space to depend on the diagrams given, and to be of arbitrary (finite) dimension.

20Indeed, an element of U(H) can be described as a matrix with rows and columns indexed by the elements of a given
Hilbert basis of H, in which the columns (and the rows) are normalised and pairwise orthogonal. Conversely, every such
matrix describes a unique element of U(H). To bound the cardinality of U(H) from below, note that the possible first
columns of such matrices are exactly the normalised sequences of complex numbers indexed by the chosen Hilbert basis of
H, and that the set of those sequences has cardinality

(
2ℵ0
)dim(H) = 2ℵ0×dim(H) = max(2ℵ0 , 2dim(H)). To bound it from

above, note that the set of all matrices with rows and columns indexed by the chosen Hilbert basis of H has cardinality(
2ℵ0
)dim(H)×dim(H) = 2ℵ0×dim(H)×dim(H) = max(2ℵ0 , 2dim(H)).
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max(ℵ0, card(I)); therefore, since the set
{
α ∈ C

∣∣ |α| = 1
}
has cardinality 2ℵ0 , it contains an element

α⊥ which is not a root of any of these polynomials, so that by adding α⊥ to the family (αi)i∈I , we still
have a family of Q-algebraically independent complex numbers of absolute value 1, which contradicts the
maximality of (αi)i∈I .

If the cardinality of G is no greater than 2ℵ0 , then without loss of generality, we can assume that
G ⊆ I. We start with the case where H = C2. We consider the function γ : U ∈ G 7→ H

(
1 0
0 αU

)
,

extended into a monoid homomorphism γ : G∗ → U(C2) (where H = 1√
2

(
1 1
1 −1

)
). Given two words

w1, w2 ∈ G∗ such that w1 6= w2, the entries of γ(w1) and γ(w2) are polynomials in the αU with coefficients
in Q. The two matrices of polynomials obtained by replacing each αU by a variable XU in γ(w1) and
γ(w2) differ by at least one entry: indeed, by instantiating each variable XU by either eiπ/4 or e3iπ/4 in
such a way that the sequence of angles induced by w1 and w2 are different, we get two different sequences
of the patterns HT and HTS with T =

(
1 0
0 eiπ/4

)
and S = T 2, and it follows from Theorem 4.1 of [66]

(which is Theorem 1(II) of [102]) that these two products of matrices have distinct values.21 Since the
αU are algebraically independent, this implies that γ(w1) 6= γ(w2).

Still in the case where the cardinality of G is no greater than 2ℵ0 , if H 6= C2, then it suffices to consider
a subspace of H of dimension 2, and to define for any U ∈ G, γ(U) as having matrix H

(
1 0
0 αU

)
on

this subspace (in an arbitrary, fixed, othonormal basis) and as being the identity on the orthogonal
complement.

If the (Hilbert) dimension of H is strictly greater than ℵ0, then Zorn’s lemma implies that H can
be decomposed into a direct sum of dim(H) orthogonal subspaces of dimension 2: H =

⊕
j∈J Hj with

card(J) = dim(H) and ∀j,dim(Hj) = 2. For each of the (2ℵ0)dim(H) = 2dim(H) possible families (ij)j∈J of

elements of I indexed by J , one can define a linear map δ((ij)j∈J) ∈ U(H) as having matrix H
(

1 0
0 αi

)
in an arbitrary orthonormal basis of Hj (chosen with the help of the axiom of choice) for every j. If the
cardinality of G is no greater than 2dim(H), then without loss of generality, we can assume that G ⊆ IJ .
We define the function γ : G → U(H) by ∀U, γ(U) = δ(U), and extend it into a monoid homomorphism
γ : G∗ → U(C2). Given two words w1, w2 ∈ G∗ such that w1 6= w2, there exists an index j ∈ J such that
the two sequence of elements of i induced by w1 and w2 at index j are distinct, which, by the argument
given above, implies that the unitary maps on Hj induced respectively by γ(w1) and γ(w2) are distinct.
Hence, γ(w1) 6= γ(w2).

Finally, to prove Proposition 4.10 without using the axiom of choice, it suffices to exhibit an infinite
family of Q-algebraically independent complex numbers of absolute value 1. One can consider for example
the eiπk , for k ≥ 2, whose algebraic independence follows from the Lindemann-Weierstrass theorem and
the fact that π is transcendental. Given such a family, one can use a similar argument as above to prove
a weaker version of Proposition 4.11 in which the cardinality of G is required to be at most ℵ0, which
immediately implies Proposition 4.10.

4.3 Equational Theory
In this section, we introduce an equational theory which allows one to transform any M-diagram into
an equivalent one. As for the PBS-calculus, we prove that it is sound, complete and minimal. The
axioms are given in Figure 4.4. We call the corresponding language the CPBS-calculus (for “Coloured
PBS-calculus”):

21Indeed, the regular expression (HT |HTS)∗ describes the same set of words as ε|(HT (HT |SHT )∗(ε|S)), which, since
both the identity operator and S belong to the Clifford group, clearly describes a subset of the Matsumoto-Amano normal
forms defined in [66] (Equation (2)).
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Definition 4.13 (CPBS-calculus). Two M-diagrams D1, D2 are equivalent according to the rules of the
CPBS-calculus, denoted CPBS ` D1 = D2, if one can transform D1 into D2 using the equations given in
Figure 4.4. More precisely, CPBS ` · = · is defined as the smallest congruence which satisfies equations
of Figure 4.4 in addition to the axioms of coloured traced PROP.

I
v = v (4.1)

U V
v = V U

v (4.2)

U ¬v = ¬ U
v (4.3)

¬
=

¬

¬
(4.4)

U
=

U

U

(4.5)

U v = (4.6)

¬ ¬v = v (4.7)

¬ ¬h = h (4.8)

= (4.9)

= v

h
(4.10)

= (4.11)

= (4.12)

= (4.13)

v
= (4.14)

v = (4.15)

h
= (4.16)

h = (4.17)

Figure 4.4: Axioms of the CPBS-calculus. U, V ∈ M. Equations (4.1) and (4.2) reflect the monoid
structure of M; Equations (4.3) to (4.5) show how the three generators commute; Equation (4.6) means
that a disconnected diagram (with no inputs/outputs) can be removed; Equations (4.7) to (4.10) witness
the fact that the negation and the 3-leg PBS are invertible; Equations (4.11) and (4.12) are essentially
topological rules; Equations (4.13) to (4.17) show how 4-leg PBS can be decomposed into 3-leg PBS.
Notice in particular that the other rules do not use 4-leg PBS, as a consequence one could define the
language using 3-leg PBS only and see the 4-leg PBS as syntactic sugar.

Notice that the CPBS-calculus subsumes the PBS-calculus: the fragment of monochromatic (black)
Cq×q-diagrams of the CPBS-calculus coincides with the set of PBS-diagrams, moreover, the completeness
of both languages (see Theorem 4.18 below and Theorem 3.31) implies that for any two PBS-diagrams
D1 and D2, PBS ` D1 = D2 if and only if CPBS ` D1 = D2.

Proposition 4.14 (Soundness). For any two M-diagrams D1 and D2, if CPBS ` D1 = D2 then
JD1Kpath = JD2Kpath.

Proof. Since the semantic equality is a congruence, it suffices to check that for every equation of Figure 4.4,
both sides have the same semantics, which is easy to do.

We introduce normal forms, which will be useful to prove that the equational theory is complete, and
will also play a role in optimising the number of gates in a diagram in Section 4.4.

Definition 4.15. A diagram is said to be in normal form if it is of the form M ◦ P ◦ F ◦G ◦ S, where:

• S is of the form b1 ⊕ · · · ⊕ bn, where each bi is either v , h or

• G is of the form g1 ⊕ · · · ⊕ gk, where each gi is either v , h , Ui
v or Ui

h , with Ui 6= I

• F is of the form n1 ⊕ · · · ⊕ nk, where each ni is either v , h , ¬v or ¬h

• P is a permutation of the wires, that is, a trace-free diagram in which all generators are identity
wires or swaps

• M is of the form w1 ⊕ · · · ⊕ wm, where each wi is either v , h or .

For example, the diagram shown in Figure 4.3 (right) is in normal form.

Theorem 4.16. For any M-diagram D, there exists an M-diagram in normal form N such that CPBS `
D = N .
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Proof. The proof is by structural induction on D.

• , v , h , ¬v , ¬h , U
v , U

h , , , v
v

, h
h

, h
v

and
v
h

are already in normal form.

• The normal forms of , , , , v , v , h and h are given by
Equation (4.9), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16) and (4.17) respectively.

• The normal forms of ¬ , U , , v ,
v

, h and
h

are obtained as follows:

¬
(4.9)=

¬
U

(4.9)=
U

(4.4)=
¬

¬

(4.5)=
U

U

(4.11)=
¬

¬

v

(4.9)=
v

v (4.9)=
v

h

(4.9)=
h

h (4.9)=
h

(4.9)=

• If D = D1⊕D2, then by induction hypothesis there exist two diagrams in normal form N1 and N2
such that CPBS ` D1 = N1 and CPBS ` D2 = N2. Then CPBS ` D = N1 ⊕N2 and it is easy to
see that N1 ⊕N2 is in normal form.

• If D = D2 ◦D1, then by induction hypothesis, let N1 and N2 be two diagrams in normal form such
that CPBS ` D1 = N1 and CPBS ` D2 = N2. Let us decompose them as N1 = M1◦P1◦F1◦G1◦S1
and N2 = M2 ◦ P2 ◦ F2 ◦ G2 ◦ S2, following Definition 4.15. One has CPBS ` D = N2 ◦ N1 =
M2 ◦ P2 ◦ F2 ◦G2 ◦ S2 ◦M1 ◦ P1 ◦ F1 ◦G1 ◦ S1. Equation (4.10) makes S2 ◦M1 equal to a parallel
composition of red and blue identity wires, so that CPBS ` D = M2 ◦P2 ◦F2 ◦G2 ◦P1 ◦F1 ◦G1 ◦S1.
By naturality of the swap, one has G2 ◦ P1 = P1 ◦ G′2, where G′2 is a parallel composition of
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coloured non-identity gates and identity wires, obtained by permuting the “rows” of G2. One has
(4.3), (4.18) ` G′2 ◦ F1 = F1 ◦ G′′2 , where G′′2 is obtained by changing some colours in G′2, and
Equation (4.18) is the following variant of Equation (4.3):

¬U
h = ¬ U

h (4.18)

which is derived from the equations of Figure 4.4 as follows:

¬ U
h (4.7)= ¬ ¬U ¬h

(4.3)= ¬¬ U¬h

(4.8)= ¬U
h

Thus, CPBS ` D = M2 ◦ P2 ◦ F2 ◦ P1 ◦ F1 ◦ G′′2 ◦ G1 ◦ S1. By naturality of the swap, one has
F2 ◦P1 = P1 ◦F ′2, where F ′2 is a parallel composition of coloured identities and negations (obtained
by permuting F2). One has (4.7), (4.8) ` F ′2◦F1 = F ′′, where F ′′ is obtained by removing all double
negations in F ′2 ◦ F1. Finally, (4.2), (4.1) ` G′′2 ◦G1 = G′′′, where G′′′ is still a parallel composition
of coloured non-identity gates and identity wires. Thus, CPBS ` D = M2 ◦ (P2 ◦P1)◦F ′′ ◦G′′′ ◦S1,
with S1, G′′′, F ′′, (P2 ◦ P1) and M2 respectively of the forms described in Definition 4.15, so that
their composition is in normal form. This gives us the result.

• If D = Trv(D′) : a → b, then by induction hypothesis, let N ′ be a diagram in normal form such
that CPBS ` D′ = N ′. Let us decompose it as N ′ = M ′ ◦P ′ ◦F ′ ◦G′ ◦S′, following Definition 4.15.
Since N ′ is of type a ⊕ v → b ⊕ v, S′ (resp. M ′) is of the form S ⊕ v (resp. M ⊕ v ) where
S (resp. M) is a parallel composition of coloured identity wires and copies of (resp. ).

Using the structural congruence, one can write P ′ in the form P

v

or P1

c

P3

v

P2 ,

where P , or P1, P2 and P3, are permutations of the wires. In the first case, Trv(N ′) can (still using
the structural congruence) be written in the form

P

v

FG MS

U

with S, G, F , P and M of the forms demanded by Definition 4.15 (in particular, F ′ cannot have
a negation on its bottom wire since this would prevent N ′ from being of type a ⊕ v → b ⊕ v), so

that (4.6) ` Trv(N ′) = PFG MS , which is in normal form. In the second case,

Trv(N ′) can be written in the form

P1

c

P3

? v

P2FG MS

U

where ?v c is either v or ¬v . Then using the structural congruence (in particular the
yanking axiom), one can write it in the form

P1
c

P3

?v

P2
FG MS

U

.
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By naturality of the swap, one can slide the gate U and the possible negation through P1. Then,
possibly using Equation (4.18), one can move the gate U to the other side of F . Finally, it may
remain to merge U with a gate of G using Equation (4.2) or its following variant:

U V
h = V U

h (4.19)

and/or to remove a double negation using Equation (4.8). Then one gets a diagram in normal form.
Equation (4.19) is derived from the equations of Figure 4.4 as follows:

U V
h (4.8)(4.3)= V¬ U

h ¬

(4.2)= V U¬h ¬

(4.3)(4.8)= V U
h

• The case D = Trh(D′) : a→ b is analogous to the previous case. Instead of using Equations (4.3)
and (4.6)one uses respectively Equation (4.18) and the following variant of Equation (4.6):

U
h = (4.20)

which is derived from the equations of Figure 4.4 as follows:

U
h

(4.8)= U ¬ ¬
h

= U ¬¬
v

(4.3)= U ¬ ¬
v

(4.7)= U v

(4.6)=

• IfD = Tr>(D′) : a→ b, then by induction hypothesis, let N ′ be a diagram in normal form such that

CPBS ` D′ = N ′. Tr>(N ′) can be written in the form N ′′ , which by dinaturality and

Equation (4.10), can be transformed into N ′′

vh
. It suffices then to proceed successively

as in the two preceding cases to get a diagram in normal form.

Note that the structure of the normal form as well as the proof of Theorem 4.16 use in an essential
way the removal of useless wires made possible by the use of colours, and in particular Equation (4.10),
which has no equivalent in the monochromatic PBS-calculus of Chapter 3. An example of a diagram and
its normal form are given in Figure 4.5.

Now we use the normal form to prove the completeness of the CPBS-calculus:
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U U

WV

¬ WU ¬

¬U

Figure 4.5: An example of a diagram (left) and its equivalent diagram in normal form (right).

Lemma 4.17 (Uniqueness of the normal form). For any two diagrams in normal form N and N ′, if
JNKpath = JN ′Kpath then N = N ′.

Proof. If JNKpath = JN ′Kpath, then in particular N and N ′ have same type: N,N ′ : a→ b for some a, b.
Let us decompose N and N ′ into N = M ◦ P ◦ F ◦G ◦ S and N ′ = M ′ ◦ P ′ ◦ F ′ ◦G′ ◦ S′.
It follows directly from the definition that S and S′ are uniquely determined by their input type, so

that since they both have input type a, S = S′. Similarly, M and M ′ are uniquely determined by their
output type, so that since they both have output type b, M = M ′.

Let S−1 andM−1 be the horizontal reflections of respectively S andM , that is, the diagrams obtained
by replacing by in S and by in M . One has (4.10) ` M−1 ◦N ◦ S−1 = P ◦ F ◦ G
and (4.10) ` M−1 ◦ N ′ ◦ S−1 = P ′ ◦ F ′ ◦ G′, so that by Proposition 4.14,

q
M−1 ◦N ◦ S−1y

path =
JP ◦ F ◦GKpath =

q
M−1 ◦N ′ ◦ S−1y

path = JP ′ ◦ F ′ ◦G′Kpath. For any c, p, one has JP ◦ F ◦GKpath (c, p) =
((cFc,p, pPc,p), UGc,p) and JP ′ ◦ F ′ ◦G′Kpath (c, p) = ((cF ′c,p, pP

′

c,p), UG
′

c,p), so that UGc,p = UG
′

c,p, cFc,p = cF
′

c,p and
pPc,p = pP

′

c,p. Because of their respective forms required by Definition 4.15, G, G′, F , F ′, P and P ′ are
uniquely determined by the family of, respectively, the UGc,p, the UG

′

c,p, the cFc,p, the cF
′

c,p, the pPc,p, and the
pP
′

c,p. Hence, G = G′, F = F ′ and P = P ′.

Theorem 4.18 (Completeness). Given any two M-diagrams D1 and D2, if JD1Kpath = JD2Kpath then
CPBS ` D1 = D2.

Proof. By Theorem 4.16, there exist N1, N2 in normal form such that CPBS ` D1 = N1 and CPBS `
D2 = N2. By Proposition 4.14, JN1Kpath = JD1Kpath = JD2Kpath = JN2Kpath. Therefore, by Lemma 4.17,
N1 = N2. By transitivity, this proves that CPBS ` D1 = D2.

Finally, each equation of Figure 4.4 is necessary for the completeness:

Theorem 4.19 (Minimality). None of the equations of Figure 4.4 is a consequence of the others.

Proof. For

• each of Equations (4.1), (4.4) and (4.7) to (4.17)

• each instance of Equations (4.3) and (4.5)

• the class of all instances of Equation (4.2) without I gates in the left-hand side

• each class of instances of Equation (4.6) given by an equivalence class of elements of M for the
equivalence relation ∼∗conj, defined as the transitive closure of ∼conj, itself defined by U ∼conj V if
there exist W,T ∈ M such that U = WT and V = TW

we give an invariant that is satisfied by exactly one side of the considered equation (or of each element of
the considered class of instances of Equation (4.2) or (4.6)), and such that for any diagram D, applying
any other equation or instance inside D (that is, replacing a sub-diagram of D that matches one side of
the equation by the other side) preserves the fact that D satisfies the invariant or not. In each case, this
proves that the equations that break the invariant are not consequences of those that preserve it in any
diagram.

Note that the instances of Equation (4.2) with an I gate in the left-hand side are consequences of
Equation (4.1), and that the elements of a class of instances of Equation (4.6) are consequences of any
particular instance of Equation (4.6) of the same class together with Equation (4.2).
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• For Equation (4.1), the invariant is that at least one gate can be reached by a particle from an
input wire.

• For the class of all instances of Equation (4.2) without I gates in the left-hand side, the invariant is
the maximum number of non-I gates that a particle coming from an input wire can traverse along
its path in the diagram.

• For each instance of Equation (4.3) given by a particular U , the invariant is that all gates labelled
with U are red.

• For Equation (4.4), the invariant is that the diagram contains a (black) ¬ .

• For each instance of Equation (4.5) given by a particular U , the invariant is that the diagram
contains a (black) U .

• For each class of instances of Equation (4.6), the invariant is that there exists a wire in the diagram
and a polarisation V or H such that the path of a particle starting from this wire with this
polarisation is a closed loop, and that the product of the labels of the gates traversed by the
particle before getting back to its starting point with its initial polarisation for the first time, is
an element of the equivalence class (note that this does not depend on the choice of the starting
point).

• For Equation (4.7), the invariant is that all wires are red.

• For Equation (4.8), the invariant is that no particle entering the diagram by a blue input wire
can reach the output without passing through a negation at some point in the diagram. Note that
Equation (4.7) cannot change this invariant because in order to reach a red wire, the particle coming
from a blue wire has to get its polarisation changed, and therefore to pass through a negation.

• For Equation (4.9), the invariant is that all wires are black and the diagram is non-empty and does
not contain any .

• For Equation (4.10), the invariant is that the diagram contains at least one black wire.

• For Equation (4.11), the invariant is that the diagram contains at least one generator among ,
, v , h and ¬ .

• For Equation (4.12), the invariant is that the diagram contains at least one generator among ,
, v and h .

• For Equation (4.13), the invariant is that the diagram contains a .

• For Equation (4.14), the invariant is that the diagram contains a v .

• For Equation (4.15), the invariant is that the diagram contains a v .

• For Equation (4.16), the invariant is that the diagram contains a h .

• For Equation (4.17), the invariant is that the diagram contains a h .

4.4 Resource Optimisation
We show in this section that the equational theory of the CPBS-calculus can be used for resource opti-
misation.
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4.4.1 Minimising the Number of Oracle Queries
We consider the problem of minimising the number of oracle queries: given a set G of (distinct) oracles
and a G∗-diagram D, the objective is to find a diagram D′ equivalent to D (i.e. JDKpath = JD′Kpath) such
that D′ uses a minimal number of queries to each oracle. Since there are several oracles, the definition
of the optimal diagrams should be made precise.

First, we define the number of queries to a given oracle:

Definition 4.20. Given a G∗-diagram D, for any U ∈ G, let #U (D) be the number of queries to U
in D, inductively defined as follows: #U ( wa ) = |w|U , #U (g) = 0 for all the other generators,
#U (D1 ⊕ D2) = #U (D2 ◦ D1) = #U (D1) + #U (D2), and #U (Tra(D)) = #U (D), where |w|U is the
number of occurrences of U in the word w ∈ G∗.

We can now define a query-optimal diagram as follows:

Definition 4.21. A G∗-diagram D is query-optimal if ∀D′ ∈ DiagG
∗
, ∀U ∈ G, JDKpath = JD′Kpath

implies #U (D) ≤ #U (D′).

Note that given a diagram, it is not a priori guaranteed that there exists an equivalent diagram which
is query-optimal: for instance, it might be that all the diagrams which minimise the number of queries
to some oracle U do not minimise the number of queries to another oracle V . However, we actually show
(Proposition 4.23) that any diagram can be turned into a query-optimal one. To this end, we first need
a lower bound on the number of queries to a given oracle:

Proposition 4.22 (Lower bound). For any G∗-diagram D : a → b and any U ∈ G, #U (D) ≥⌈∑
(c,p)∈[a]

|wDc,p|U
2

⌉
where wDc,p ∈ G∗ is such that JDKpath (c, p) = ((c′, p′), wDc,p).

Proof. Note that each gate wa of the diagram D is used at most twice according to the semantics,22

in other words, there are either at most two pairs (c, p), (c′, p′) such that w contributes once to wDc,p and
once to wDc′,p′ ; or at most a single pair (c, p) such that w contributes twice to wDc,p. As a consequence,∑

(c,p)∈[a] |wDc,p|U ≤ 2#U (D), which leads to the lower bound.

Note that Proposition 4.22 provides a lower bound on the minimal number of queries to U one can
reach in optimising a diagram since the right-hand side of the inequality only depends on the semantics
of the diagram.

We are now ready to introduce an optimisation procedure that transforms any diagram into an
equivalent query-optimal one:

Query optimisation procedure of a G∗-diagram D:

1. Transform D into its normal form DNF . A recursive procedure for doing this can easily be deduced
from the proof of Theorem 4.16.

2. Split all gates into elementary gates (that is, gates whose label is a single letter), using the following
variants of Equation (4.2), which are consequences of the equations of Figure 4.4 (see Appendix B.1):
∀U ∈ G, ∀w ∈ G∗, w 6= I:

wU
v → U w

v (4.21) wU
h → U wh (4.22) wU → U w (4.23)

3. As long as the diagram contains two non-black gates with the same label, merge them. To do so,
deform the diagram to put one over the other, and apply one of the following equations, which are
also consequences of the equations of Figure 4.4:

22This can be stated more formally by replacing the contents of the gates by distinct names in order to get a (coloured)
bare diagram (see Section 7.1.1), and then proved in a similar way as Proposition 7.3.
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U

U
h

v
U

Figure 4.6: Two equivalent diagrams: the diagram on the left is optimal in terms of number of polarising
beam splitters, the diagram on the right is optimal in terms of queries. Note that there is no equivalent
diagram with no polarising beam splitter and at most a single query.

U

U

v

h
→

U
(4.24)

U

U
h

v
→

U
(4.25)

U

U

v

v
→

¬¬

U
(4.26)

U

U

h

h
→

¬¬ U
(4.27)

An example of query-optimised diagram is given in Figure 4.9. The query-optimisation procedure
transforms any diagram into an equivalent query-optimal one:

Proposition 4.23. The diagram D0 output by the query optimisation procedure is query-optimal: for
any U and any D′ s.t. JD′Kpath = JD0Kpath, one has #U (D0) ≤ #U (D′).

Proof. Note that in DNF , for each gate there is one and only one input state (c, p) which goes to this gate.
As a consequence ∀U,#U (DNF ) =

∑
(c,p)∈[a] |wDc,p|U (where DNF : a → b). Moreover ∀U,#U (D0) =⌈

#U (DNF )
2

⌉
, thus D0 meets the lower bound of Proposition 4.22 and hence is query-optimal.

Note that the query-optimisation procedure is efficient: one can naturally define the size |D| of a
diagram D ∈ DiagG

∗
as follows: | wa | = |w|, |g| = 1 for all the other generators, |D1 ⊕ D2| =

|D2 ◦ D1| = |D1| + |D2|, and |Tra(D)| = |D| + 1. Step 1 of the procedure, which consists in putting
the diagram in normal form, can be done using a number of elementary equations of Figure 4.4 which is
quadratic in the size of the diagram, the other two steps being linear. Notice that here we only count
the number of basic equations. The procedure also requires some diagrammatic transformations (that
is, deformations), which can be handled efficiently (more precisely, at most in quadratic time) using
appropriate data structures.

4.4.2 Optimising Both Queries and PBS
We refine the resource optimisation of a diagram by considering not only the number of queries but also
the number of instructions, and in particular the number of polarising beam splitters. Note that the
number of beam splitters and the number of queries cannot be minimised independently, in the sense
that there might not exist a diagram that is both query-optimal and PBS-optimal (see such an example
in Figure 4.6). As the implementation of an oracle is a priori more expensive than the implementation
of a single PBS, we optimise the number of queries and then the number of PBS in this order, i.e. the
measure of complexity is the lexicographic order number of queries, number of polarising beam splitters.

Definition 4.24. A diagram D is query-PBS-optimal if D is query-optimal and for any query-optimal
diagram D′ equivalent to D (i.e. JDKpath = JD′Kpath), #PBS(D) ≤ #PBS(D′), where #PBS(D) be the
number of PBS of D.

We introduce an efficient heuristic, called PGT procedure that, when applied on a query-optimal
diagramD0, preserves the number of queries. The produced diagram, called in PGT form (see Figure 4.7),
contains at most as many PBS as the original diagram, and moreover is query-PBS-optimal when there
is at most one query to each oracle (see Proposition 4.30 and Theorem 4.31).23

23At least if the gates used only once are represented as coloured gates, which is the case in the diagrams output by the
query optimisation procedure, see Remark 4.32.
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U1

U`

P
(4.A)

C1

Ck

σ1 σ2

?

?

?

?

?

?

?

?

C1

Ck

(4.B)

v h
v v

Figure 4.7: Schematic description of a diagram in PGT form (for Permutation, Gates and Traces). A
diagram is in PGT form if it is of the form (4.A), with P of the form (4.B), and the Ci of the forms depicted
on the second line. ? denotes either a or ¬a with a ∈ {v,h}, and σ1, σ2 are permutations of
the wires.

More precisely, the PGT procedure consists in putting D0 in the so-called PGT form, which we prove
to contain few PBS. First, we consider query-free diagrams:

Definition 4.25. A diagram D is in stair form if it is of the form

C1

Ck

σ1 σ2

?

?

?

?

?

?

?

?

C1

Ck

(4.B)

where σ1 and σ2 are permutations of the wires, ? denotes either a or ¬a with a ∈ {v,h}, and
C1, ..., Ck are each of one of the following forms:

v h
v v

The diagrams of these forms will be called staircases. The Ci will be called the staircases of D.

Remark 4.26. Note that in the diagram (4.B), all wires can be of arbitrary colours. We did not represent
the labels in order to not overload the figures.

Diagrams in stair form are optimal in terms of number of polarising beam splitters:

Theorem 4.27. Any diagram D : a → b in stair form is PBS-optimal (that is, for any diagram D′ :
a→ b, JDKpath = JD′Kpath ⇒ #PBS(D) ≤ #PBS(D′)).

Proof. Given any gate-free diagram Q : d → e, we denote by {dQi }i=1,...,kQ the finest partition of
{0, ..., |d| − 1} such that there exists a partition {eQi }i=1,...,kQ of {0, ..., |e| − 1} satisfying ∀i,∀c, p, (p ∈
dQi ⇔ pPc,p ∈ e

Q
i ). It is easy to see that the partition {eQi }i=1,...,kQ is unique and that symmetrically, it

is the finest partition of {0, ..., |e| − 1} such that there exists a partition {fQi }i=1,...,kQ of {0, ..., |d| − 1}
satisfying ∀i,∀c, p, (p ∈ fQi ⇔ pPc,p ∈ e

Q
i ) (which of course implies that ∀i, fQi = dQi ).
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Given P =

C1

Ck

σ1 σ2

?

?

?

?

?

?

?

?

: d → e a diagram in stair form, let {di}i=1,...,k be the

partition of {0, ..., |d| − 1} such that an index j is in di if the input wire of P of index j is connected
to Ci. Similarly, let {ei}i=1,...,k be the partition of {0, ..., |e| − 1} such that an index j is in ei if the
output wire of P of index j is connected to Ci. One has ∀i,∀c, p, (p ∈ di ⇔ pPc,p ∈ ei). It is easy to see
that {di}i=1,...,k is the finest partition of {0, ..., |d| − 1} such that there exists {ei}i=1,...,k satisfying this
property, that is, up to reordering the partitions, one has k = kP and ∀i, di = dPi and ei = ePi .

Again given an arbitrary gate-free diagram Q : d → e, let us decompose d = x1 ⊕ · · · ⊕ xn and
e = y1 ⊕ · · · ⊕ ym, with ∀j, xj , yj ∈ {v,h,>}. Since any gate-free diagram is equivalent to a diagram in
stair form (indeed, by applying Steps 2 to 7 of the PGT procedure described below — which does not rely
on Theorem 4.27 — one can put any gate-free diagram in stair form), the preceding paragraph, because
of the input/output types of the five kinds of staircases, implies that for every i there are four cases:

1.
∣∣∣dQi ∣∣∣ =

∣∣∣eQi ∣∣∣, ∀j ∈ dQi , xj = > and ∀j ∈ eQi , yj = >

2.
∣∣∣dQi ∣∣∣ =

∣∣∣eQi ∣∣∣ and exactly one element of dQi and one element of eQi are not equal to >

3.
∣∣∣dQi ∣∣∣ =

∣∣∣eQi ∣∣∣+ 1, ∀j ∈ eQi , yj = > and exactly two elements of dQi are not equal to >

4.
∣∣∣eQi ∣∣∣ =

∣∣∣dQi ∣∣∣+ 1, ∀j ∈ dQi , xj = > and exactly two elements of eQi are not equal to >

We denote by sL(Q) the number of indices i for which we are in Case 3.

Moreover, by examining more in details the semantics of the five kinds of staircases, one can show that
for every index i ∈ {1, ..., kQ}, there exists two bijections ρi : Z/

(∣∣∣dQi ∣∣∣Z)→ dQi and τi : Z/
(∣∣∣eQi ∣∣∣Z)→ eQi

such that for any p ∈ {1, ..., |dQi |}, if (V, ρi(π(p))) ∈ [d] then (Q,V, ρi(π(p))) ⇒
(
cQV,ρi(π(p)), τi(π(p))

)
,

and if (H, ρi(π(p))) ∈ [d] then (Q,H, ρi(π(p)))⇒
(
cQH,ρi(π(p)), τi(π(p+ 1))

)
, where π : Z→ Z/kZ denotes

the canonical projection.
Concrete instances of the bijections ρi and τi can be built by starting from any element j ∈ dQi and

defining ρi(1) = x. Then, the properties of ρi and τi imply that knowing the path semantics of Q, for
any p ∈ Z/

(∣∣∣dQi ∣∣∣Z), the data of ρi(p) uniquely determines τi(p) and τi(p + 1), and the data of τi(p)
uniquely determines ρi(p) and ρi(p− 1), so that ρi and τi can be built incrementally.

It is easy to see that given a diagram in stair form P : d→ e, one has #PBS(P ) = |e| − kP + sL(P ).
In the rest of this proof, our goal is to prove that for any gate-free diagram Q : d → e, one has
#PBS(Q) ≥ |e| − kQ + sL(Q). Then, since |e| − kQ + sL(Q) only depends on the semantics of Q, and
diagrams in stair form reach this lower bound, this will imply that they are PBS-optimal.

Since any gate-free diagram Q : d → e can be deformed into a diagram of the form (4.A) with P
trace-free, it suffices to prove, on the one hand, that the inequality holds for trace-free diagrams, and on
the other hand, that it is preserved by the trace operation.

To prove that the trace preserves the inequality, given a gate-free diagram Q : d ⊕ a → e ⊕ a with
a ∈ {v,h,>}, it suffices to consider the sets dQi and eQj that contain the index of the bottom input (resp.
output) wire, and to examine the possible cases (essentially, whether i = j, to which of the four cases
described above the pairs (dQi , e

Q
i ) and (dQj , e

Q
j ) correspond, and whether the traced wire has type > or
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U

U

U

U

Figure 4.8: [Left] An example of diagram in PGT form which is optimal in the number of queries but
not in the number of polarising beam splitters. Indeed it is equivalent to the diagram on the right which
is query-optimal and PBS-free.

not). In each case, it suffices to build the bijections ρi and τi and to look at the effect of applying the
trace.

To prove that it holds for trace-free diagrams, we remark that up to deformation, a trace-free (gate-
free) diagram can be written as a sequential composition of diagrams of the form idf⊕g⊕idf ′ with f, f ′ ∈

{v,h,>}∗ and g ∈
{

, v , v , h , h , , , , , ¬a ,
a

b

}
(where idf is inductively defined by idε = and idf⊕a = idf ⊕ a for any f ∈ {v,h,>}∗ and
a ∈ {v,h,>}). We call such diagrams layers. Then we proceed by induction on the number of lay-
ers. The base case is that of an identity diagram idd : d → d, for which kidd = |d| and SL(idd) = 0, so
that the inequality holds. It remains to prove that given any trace-free diagram Q : d→ e satisfying the
inequality, and any layer idf ⊕ g⊕ idf ′ of input type e, the composition (idf ⊕ g⊕ idf ′) ◦Q still satisfies
the inequality. This can be done by considering the set(s) eQi and eQj that contain the indice(s) of the
wire(s) of Q where g is plugged (together with the corresponding dQi and dQj ), and examining the possible
cases. In each case, it suffices to build the bijections ρi and τi and to look at the effect of appending the
layer (idf ⊕ g ⊕ idf ′).

We extend the stair form to diagrams with queries as follows, leading to the PGT form (for Permu-
tation/Gates/Traces):

Definition 4.28. A G∗-diagram is in PGT form (for Permutation, Gates and Traces) if it is of the form

U1

U`

P (4.A)

where P is in stair form and U1, ...., U` ∈ G.

Remark 4.29. Like in the diagram (4.B), all wires of (4.A) can be of arbitrary colours.

Contrary to the stair form, the PGT form is not optimal (see as an example Figure 4.8). Intuitively,
if there are several queries to an oracle U , then decomposing the corresponding gates into blue and red
gates and then recomposing them in a different way may lead to a diagram with a smaller number of PBS.
However, we will prove that applying the PGT procedure after the query optimisation procedure gives
us a query-PBS-optimal diagram when there is at most one query to each oracle (see Theorem 4.31).

The procedure relies on equations of Figure 4.4, together with easy to derive variants of these equa-
tions. The derivations of the additional equations are given in Appendix B.2.
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PGT procedure: Given a query-optimal diagram D0:

0. During the whole procedure, every time there are two consecutive negations, we remove them using
Equation (4.7), (4.8) or their all-black version:

¬ ¬ = (4.28)

1. Deform D0 to put it in the form (4.A) with P gate-free. The goal of the following steps is to put
P in stair form.

2. Split all PBS of the form
a

b into combinations of , , and , using
Equations (4.13) to (4.17).

3. As long as there are two PBS connected by a black wire, with possibly a black negation on this
wire, push this negation out (if present) using Equation (4.4), and cancel the PBS together using
Equation (4.10). It may be necessary to flip the PBS upside down using Equation (4.11) and/or
(4.12) in order to be able to apply Equations (4.4) and (4.10). Note also that to cancel the two
PBS together one may have to use dinaturality:

=
vh

When there are not two such PBS anymore, all black wires are connected to at least one side of
P (possibly through negations), and the PBS are connected together with red and blue wires with
possibly negations on them.

4. Remove all loops using the following equations:

v = (4.29) h = (4.30) = (4.31) ¬ = (4.32)

Note that since D0 is query-optimal, there cannot be loops containing gates at this point.

5. Deform P to put it in the form (4.B) with σ1 and σ2 being wire permutations and the Ci being trace-
free and connected. It remains to transform the Ci into staircases. Up to additional deformation
of P in order to reorder the input and output wires of the Ci, and to using Equations (4.11) and
(4.12), every Ci is of one of the following forms:

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

where ? is either a or ¬a with a ∈ {v,h}, is either or and is
either or .
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6. Remove the negations in the middle of the Ci by pushing them to the bottom by means of Equation
(4.4) and its following variants (all of the form “a three-wire PBS with a negation on one of the
three wires is equal to this PBS reflected vertically with negations on the other two wires”; note
that Equations (4.4), (4.33), (4.34) and (4.35) have to be applied from right to left, while Equations
(4.36), (4.37), (4.38) and (4.39) have to be applied from left to right):

¬
=

¬

¬
(4.33)

¬
=

¬

¬
(4.34)

¬
=

¬

¬
(4.35)

¬
=

¬ ¬
(4.36)

¬
=

¬

¬
(4.37)

¬
=

¬¬
(4.38)

¬
=

¬

¬
(4.39)

7. Up to deforming P in order to flip the Ci upside down, and to using Equations (4.11) and (4.12)
wherever necessary, every Ci is now of one of the following forms (note that it is easy to know of
which form each Ci should be, before deforming it, by looking at its input/output type):

(a) (b) (c)

(d) (e)

Transform each of them into one of the five kind of staircases depicted in Definition 4.25, depending
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W ¬

¬

U W ¬U

Figure 4.9: The diagram on the left is the obtained by applying the query-optimisation procedure on
the example of Figure 4.5. The diagram on the right is (up to deformation) obtained by applying the
PGT procedure to the diagram on the left. Note that this diagram is both query- and PBS-optimal.

on its type:

• If Ci is of the form (a), (b) or (c), then repeatedly apply Equation (4.14) or (4.15) to put it

in the form

v

,

v

or

v

respectively.

• If Ci is of the form (e), then repeatedly apply the following equation:

=
h

(4.40)

to put it in the form

h

.

• If Ci is of the form (d), then repeatedly apply the following variant of Equation (4.10):

= v

h
(4.41)

and Equation (4.13), as follows:

(4.41)=

(4.13)=

and finally apply Equation (4.9) once, in order to put it in the form .

This gives us the desired diagram D1 and finishes the procedure.

An example of diagram produced by the PGT procedure is given in Figure 4.9.
Since the PGT procedure consists in putting a subdiagram of D0 in stair form (except Step 1 which

is just deformation and does not change the number of PBS), Theorem 4.27 implies in particular that
this procedure does not increase the number of PBS in D0:
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Proposition 4.30. The diagram D1 output by the PGT procedure contains at most as many PBS as the
initial diagram D0.

This also implies that given any diagram D, there exists an equivalent query-PBS-optimal diagram
in PGT form. Indeed, by Proposition 4.23, there exist query-optimal diagrams equivalent to D, and
among these diagrams, some of them have minimal number of PBS and are therefore query-PBS-optimal.
Finally, applying the PGT procedure to one of these diagrams gives us an equivalent diagram in PGT
form, which, since the PGT procedure does not change the gates or increase the number of PBS, is still
query-PBS-optimal.

Applying the PGT procedure after the query optimisation procedure produces an interesting heuristic:
the output diagram is necessarily query-optimal and, although it is not necessarily query-PBS-optimal
in general, it is whenever it does not contain two queries to the same oracle:

Theorem 4.31. Given a diagram D1 obtained by applying first the query optimisation procedure then
the PGT procedure to a diagram D, if D1 does not contain two queries to the same oracle (i.e. ∀U ∈
G,#U (D1) ≤ 1), then it is query-PBS-optimal.

Proof. Let D1 : a→ b be an abstract diagram obtained from applying the query optimisation procedure
followed by the PGT procedure, in which all gates bear different labels. We write it in the form

U1

U`

P

with P in stair form and U1, ..., U` ∈ G (where all wires and gates can be of arbitrary colours).
For each (c, p) ∈ [a], let p(1)

c,p, ..., p
(`c,p)
c,p be the sequence of positions such that wD1

c,p = U
p

(1)
c,p
...U

p
(`c,p)
c,p

(with `c,p = |wD1
c,p |). This sequence is determined without ambiguity since the names Ui are pairwise

distinct. There exists a sequence of polarisations c(1)
c,p, ..., c

(`c,p)
c,p such that JP Kpath (c, p) = ((c(1)

c,p, |b| +
p

(1)
c,p), ε), ∀i ∈ {1, ..., `c,p − 1}, JP Kpath (c(i)c,p, |a|+ p

(i)
c,p) = ((c(i+1)

c,p , |b|+ p
(i+1)
c,p ), ε), and JP Kpath (c(`c,p)

c,p , |a|+
p

(`c,p)
c,p ) = ((cD1

c,p , p
D1
c,p), ε) (where ε denotes the empty word).

Given a query-PBS-optimal diagram D′1 equivalent to D1, up to applying the query optimisation
procedure and the PGT procedure, we can assume that D′1 is in PGT form. Note that any diagram E
obtained from applying the query optimisation procedure necessarily satisfies that, for every U ∈ G, it
contains exactly

⌊∑
(c,p)∈[a]

|wEc,p|U
2

⌋
black gates labelled with U , and one red or blue gate labelled with

U if and only if
∑

(c,p)∈[a] |wEc,p|U is odd. Since the PGT procedure does not change the gates, it preserves
this property. Therefore, D1 and D′1 both satisfy this property, and since they have the same semantics,
this implies that they have the same gates up to turning some red gates into blue gates and vice-versa.
That is, up to slightly deforming it in order to permute the gates, we can put D′1 in the form

U1

U`

P ′
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with P ′ in stair form. For each (c, p) ∈ [a], there also exists a sequence of polarisations c′(1)
c,p , ..., c

′(`c,p)
c,p such

that JP ′Kpath (c, p) = ((c′(1)
c,p , |b| + p

(1)
c,p), ε), ∀i ∈ {1, ..., `c,p − 1}, JP ′Kpath (c′(i)c,p , |a| + p

(i)
c,p) = ((c′(i+1)

c,p , |b| +
p

(i+1)
c,p ), ε), and JP ′Kpath (c′(`c,p)

c,p , |a|+ p
(`c,p)
c,p ) = ((cD1

c,p , p
D1
c,p), ε).

Let P ′′ be the diagram obtained from P ′ by adding, for every position q such that there exist c, p
and i ∈ {1, ..., `c,p} satisfying q = p

(i)
c,p and c

(i)
c,p 6= c

′(i)
c,p , a negation on input wire |a| + q and on output

wire |b| + q. Let d be such that P : a ⊕ d → b ⊕ d. It is easy to see that for every (c, p) ∈ [a], and for
every couple (c, p) ∈ [a ⊕ d] with p ≥ |a| that can be written as (c′(i)c′,p′ , |a| + p

(i)
c′,p′) for some c′, p′ ∈ [a]

and i ∈ {1, ..., `c′,p′}, one has JP ′′Kpath (c, p) = JP Kpath (c, p). Since D1 is query-optimal, every black gate
can be reached from two basis states (c, p) ∈ [a] and every non-black gate can be reached from one basis
state, which implies that every couple (c, p) ∈ [b ⊕ d] with p ≥ |b| can be written as (c′(i)c′,p′ , |b| + p

(i)
c′,p′),

and therefore, every couple (c, p) ∈ [a ⊕ d] with p ≥ |a| can be written as (c′(i)c′,p′ , |a| + p
(i)
c′,p′). Hence, P ′′

has the same semantics as P . Since by construction, P ′′ contains the same number of PBS as P ′, and by
Theorem 4.27, P is PBS-optimal, this implies that P contains at most as many PBS as P ′, that is, D1
contains at most as many PBS as D′1. Hence, D1 is query-PBS-optimal.

Remark 4.32. The proof of Theorem 4.31 uses the fact that the diagrams output by the query optimi-
sation procedure, in addition of being query-optimal, have the property that if a gate is used only once
(that is, if it is accessible from only one input state (c, p), and a particle with this input state traverses
only once the gate), then it is represented as red or blue. Note that a diagram in PGT form with only
one query to each oracle may not be query-PBS-optimal if it contains a black gate used only once. For

instance,
U

h

is in PGT form but not query-PBS-optimal as it is equivalent to U
h .

Finally, note that, like the query optimisation procedure, the PGT procedure is efficient: it can be
done using a number of elementary graphical transformations (those of Figure 4.4) which is linear in the
size of the diagram. It also requires some diagrammatic transformations, which can be handled using
appropriate data structures, leading to a quadratic algorithm.

4.4.3 Hardness
We show in this section that the query-PBS optimisation problem is actually NP-hard.

Theorem 4.33. The problem of, given an abstract diagram, finding an equivalent query-PBS-optimal
diagram, is NP-hard.

Proof. Let G be a set of names. We will prove that the problem is already NP-hard when we restrict the
input diagram to the family P defined as follows:

Definition 4.34. Given a word w = w0...wn−1 with w0, ..., wn−1 ∈ G and a permutation σ of [n], we
define σ(w) as the rearranged word wσ(0)...wσ(n−1).

Definition 4.35. We denote by P the set of G∗-diagrams D : >⊕n → >⊕n such that there exists a word
w = w0...wn−1 ∈ Gn and a permutation σ of [n] such that for every p ∈ [n], JDKpath (V, p) = ((V, p), wp)
and JDKpath (H, p) = ((H, p), wσ(p)).

We polynomially reduce this restricted problem from the maximum Eulerian cycle decomposition
problem, also called MAX-ECD [25], which consists in, given an Eulerian undirected graph G, finding
a maximum-cardinality edge-partition of G into cycles (that is, partitioning the set of edges of G into
the maximum number of cycles). Note that the NP-hardness of MAX-ECD follows directly from the
NP-completeness of the problem of deciding whether G can be edge-partitioned into triangles, which is
proved in [81] (it corresponds to the case of the edge-partition into copies of the complete graph K3).

The MAX-ECD problem is equivalent to the problem of, given an Eulerian graph G, finding a suitable
orientation of its edges together with an edge-partition of the resulting directed graph into directed cycles,
so that the number of cycles is maximal among all possible choices of orientation and partition. Indeed,
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given these, it suffices to erase the directions of the edges to get an undirected edge-partition into cycles,
and given such a partition, it suffices to choose, for each cycle, one of the two possible ways of orienting
it.

Given an Eulerian graph G, we construct a diagram of P as follows: first, we choose an arbitrary
orientation of the edges of G so as to get an Eulerian directed graph ~G (which can be done by following
an Eulerian circuit of G, which itself can be found in polynomial time [63]) and we associate a label,
more precisely an element of G, with each vertex of G, in such a way that any two distinct vertices bear
distinct labels. Without loss of generality, we can assume that the vertices of G are elements of G and
thereby identify them with their labels. We enumerate the edges of ~G as e0, ..., en−1. In ~G — since it
is Eulerian — each vertex has in- and out-degree equal, that is, each vertex appears as many times as
the head of an arrow as as the tail of an arrow, hence there exists a permutation σ of [n] and a word
w = w0...wn−1 ∈ Gn such that for any p ∈ [n], ep is of the form (wp, wσ(p)). We consider the following
diagram:

Cw,σ :=

w0

wn−1

Dσ D−1
σ

whereDσ : >⊕n → >⊕n is a ¬ -free diagram in stair form24 such that for any p ∈ [n], JDσKpath (V, p) =
((V, p), ε) and JDσKpath (H, p) = ((H, σ(p)), ε), and D−1

σ is the horizontal reflection of Dσ, which therefore
satisfies that for any p ∈ [n],

q
D−1
σ

y
path (V, p) = ((V, p), ε) and

q
D−1
σ

y
path (H, p) = ((H, σ−1(p)), ε).

For any p ∈ [n], one has JCw,σKpath (V, p) = ((V, p), wp) and JCw,σKpath (H, p) = ((H, p), wσ(p)). In
particular, Cw,σ is in P, and for any p ∈ [n], wCw,σV,p is the tail of ep and wCw,σH,p is the head of ep.25

Let Copt
w,σ be a query-PBS-optimal diagram equivalent to Cw,σ. Up to applying the PGT procedure,

which can be done in polynomial time and neither changes the gates nor increases the number of PBS,
we can assume that Copt

w,σ is in PGT form. That is, up to reordering some wires, it is of the form

w0

wn−1

P

with P in stair form. Since for every c, p, the word wC
opt
w,σ

c,p has length 1, P is such that for any c ∈ {V,H}
and p ∈ [n], one has pPc,p ∈ {n, ..., 2n− 1} and pPc,p+n ∈ [n].

By looking at the semantics of a generic diagram in stair form (in particular by considering the
functions ρi and τi defined in the proof of Theorem 4.27), it is easy to see that this implies that up to
reordering the wires on the sides of P , we can write Copt

w,σ in the form

w0

wn−1

P2

P1

24Note that the type of Dσ forces all of its staircases to be made only of all-black PBS.
25See the end of Definition 4.2 for the definition of wCw,σc,p . Note that we identify words of length 1 with their single letter.
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where P1 and P2 are two diagrams in stair form. Up to a few more deformations, Copt
w,σ is of the form

w0

wn−1

P1 P2 .

Due to the semantics of Copt
w,σ, for any c, c′ ∈ {V,H} and p, p′ ∈ [n], if JP1Kpath (c, p) = ((c′, p′), ε)

then JP2Kpath (c′, p′) = ((c, p), ε). Hence, one can replace P1 or P2 by the horizontal reflection of the
other without changing the semantics. This implies that P1 and P2 contain the same number of PBS
(otherwise, by replacing the one with more PBS by the horizontal reflection of the other, one would obtain
a diagram equivalent to Copt

w,σ with strictly fewer PBS, which would contradict its query-PBS-optimality),
and subsequently, that the diagram Copt′

w,σ obtained by replacing P2 by the horizontal reflection P−1
1 of

P1 is still query-PBS-optimal.
Up to slightly deforming P1, we can write it in the form

?

C1

Cr

?

?

?

σ1 σ2

where σ1 and σ2 are permutations of the wires, the Ck are of the form , and ? denotes

either or ¬ . Using this, we can write Copt′
w,σ in the form

?

C1

Cr

?

?

?

σ1 σ2

?

C−1
1

C−1
r

?

?

?

σ−1
1σ−1

2

w0

wn−1

where given any gate-free diagram D, D−1 denotes its horizontal reflection.
Since the diagram is symmetric, we can remove the negations in the middle without changing the

semantics of the diagram or its query-PBS-optimality. This gives us

Copt′′
w,σ :=

?

C1

Cr

?

σ1 σ2

?

C−1
1

C−1
r

?

σ−1
1σ−1

2

w0

wn−1

.

Let us consider the diagram

Copt,6¬
w,σ :=

C1

Cr

σ1 σ2

C−1
1

C−1
r

σ−1
1σ−1

2

w0

wn−1

obtained by removing all negations on the sides of Copt′′
w,σ . For each p ∈ [n] such that there was a

negation on the pth input and output wire, one now has
q
Copt, 6¬
w,σ

y
path (V, p) = ((V, p), wσ(p)) and

q
Copt,6¬
w,σ

y
path (H, p) = ((H, p), wp). Let us consider the directed graph G̃ obtained by reversing the

edge ep in ~G for every such p. For every p ∈ [n], we denote by ẽp the pth edge of G̃, which is either ep or
its reverse (wσ(p), wp). Then for every p ∈ [n], wC

opt, 6¬
w,σ

V,p is the tail of ẽp and wC
opt, 6¬
w,σ

H,p is the head of ẽp.
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G̃ can be edge-partitioned into r cycles as follows: For each k ∈ {1, ..., r}, let nk be such that Ck :
>⊕nk → >⊕nk . Let also Nk :=

∑k−1
j=1 nk. By abuse of notation, we denote by σ1 and σ2 the permutations

of [n] respectively associated with the diagrams σ1 and σ2, so that ∀c, p, Jσ1Kpath (c, p) = ((c, σ1(p)), ε)
and Jσ2Kpath (c, p) = ((c, σ2(p)), ε). Note that for any k ∈ {1, ..., r} and any p ∈ [nk], one has

• ∀i ∈ [nk],
q
Copt,6¬
w,σ

y
path (V, σ−1

1 (Nk + i)) = ((V, σ−1
1 (Nk + i)), wσ2(Nk+i))

• ∀i ∈ [nk − 1],
q
Copt,6¬
w,σ

y
path (H, σ−1

1 (Nk + i)) = ((H, σ−1
1 (Nk + i)), wσ2(Nk+i+1))

•
q
Copt, 6¬
w,σ

y
path (H, σ−1

1 (Nk + nk − 1)) = ((H, σ−1
1 (Nk + nk − 1)), wσ2(Nk)).

Hence, there is a cycle wσ2(Nk) → wσ2(Nk+1) → · · · → wσ2(Nk+nk−1) → wσ2(Nk) in G̃, associated with Ck.
Considering the cycle associated with each Ck gives us an edge-partition of G̃ into r cycles, since these
cycles are edge-disjoint and cover all edges of G̃.

It remains to prove that there is no orientation of the edges of G such that the resulting directed
graph can be edge-partitioned into more than r cycles. Reasoning by contradiction, assume that there
exists such an orientation yielding an Eulerian directed graph ˜̃G with an edge-partition into r′ cycles with
r′ > r. We enumerate these cycles in an arbitrary order, and denote by mk the length of the kth cycle,
for k ∈ {1, ..., r′}. We denote by ˜̃ep the pth edge of ˜̃G, which is either ẽp or its reverse. Note that the
in- and out-degree of each vertex are the same in ˜̃G as in ~G and G̃, so that there exist two permutations
τ1 and τ2 of [n] such that ∀p ∈ [n], ˜̃ep = (wτ1(p), wτ2(p)). Therefore, there exists an enumeration of [n] as
(ik` )k∈{1,...,r′},`∈[mk], such that the kth cycle can be written

wτ1(ik0 )

˜̃e
ik0−−→ wτ1(ik1 )

˜̃e
ik1−−→ · · ·

˜̃e
ik
mk−2−−−−−→ wτ1(ikmk−1)

˜̃e
ik
mk−1−−−−−→ wτ1(ik0 ).

Let s be the permutation of [n] such that ∀k, `, s(ik` ) = Mk + `, where Mk :=
∑k−1
j=1 mk. We make the

same abuse of notation as for σ1 and σ2 by also denoting by s the diagram that is a permutation of the
wires according to s. We consider the following diagram, where for each k ∈ {1, ..., r′}, C ′k : >⊕mk →

>⊕mk is of the form , and for each p ∈ [n], the ? on wire p is if ˜̃ep and ẽp have

the same direction, or ¬ otherwise:

Cw,τ :=

C ′1

s s−1

C ′1
−1

s−1s

wτ1(0)

wτ1(n−1)?

?

?

?

C ′r′ C ′r′
−1

.

For any k ∈ {1, ..., r′} and ` ∈ [mk], if ˜̃ep and ẽp have the same direction then one has JCw,τ Kpath (V, ik` ) =
((V, ik` ), wτ1(ik` )) and JCw,τ Kpath (H, ik` ) = ((H, ik` ), wτ1(ik`+1 mod mk

)), and if they have opposite directions
then one has JCw,τ Kpath (V, ik` ) = ((V, ik` ), wτ1(ik`+1 mod mk

)) and JCw,τ Kpath (H, ik` ) = ((H, ik` ), wτ1(ik` )).

That is, in any case, wCw,τV,ik`
is the tail of ẽik` and wCw,τH,ik`

is its head. Since the indices ik` span [n] entirely,
this implies that Cw,τ has the same semantics as Copt,6¬

w,σ . But Cw,τ contains n − r′ PBS whereas Copt,6¬
w,σ

contains n− r PBS, so that Cw,τ contains strictly fewer PBS than Copt,6¬
w,σ , which contradicts the query-

PBS-optimality of Copt,6¬
w,σ .

This proves that the edge-partition of G̃ into cycles obtained from Copt,6¬
w,σ has maximum number

of cycles among all possible choices of orientation and partition. In other words, the undirected edge-
partition of G obtained by erasing the directions of the edges in this edge-partition of G̃ has maximum
number of cycles. This finishes the reduction.

In the following, we explore a few variants of the problem, which remain NP-hard.
First, query-PBS optimisation is still hard when restricted to negation-free diagrams:
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Corollary 4.36. The problem of, given a negation-free abstract diagram, finding an equivalent diagram
which is query-PBS-optimal among negation-free diagrams, is NP-hard.
Proof. We reduce this problem from the problem maxDCD of, given an Eulerian directed graph ~G, finding
a maximum-cardinality edge-partition of ~G into directed cycles. This problem is defined and proved to
be NP-hard in [7].

The proof has the same structure as the proof of Theorem 4.33 : we define Cw,σ in the same way,
and we consider an equivalent diagram Copt

w,σ which is now query-PBS-optimal only among negation-free
diagrams. Since the PGT procedure preserves the property of being negation-free, we can still assume
that it is in PGT form. With the same arguments as in the proof of Theorem 4.33, we can do the same
deformations and define Copt′

w,σ in the same way. This time, Copt′
w,σ is negation-free, so that Copt,6¬

w,σ = Copt′
w,σ

and G̃ = ~G, so the construction of the proof of Theorem 4.33 gives us an edge-partition of ~G. To prove
that this edge-partition has maximum cardinality, we only have to prove that there is no edge-partition
of ~G into strictly more cycles, and the proof of this is the same as for Theorem 4.33 (with the difference
that we necessarily have ˜̃G = ~G, which allows for many simplifications).

Additionally, it is also hard, in a query-optimal diagram, to optimise the PBS and the negations
together, respectively: with respect to a cost function (at least in the case where the cost of a negation is
not less than the cost of a PBS); with the negations prioritised over the PBS; and with the PBS prioritised
over the negations. Note that the NP-hardness is clear in the third case since the considered problem is
a refinement of the query-PBS-optimisation problem addressed in Theorem 4.33.
Corollary 4.37. For any α ≥ 1, the problem of, given an abstract diagram D, finding an equivalent
query-optimal diagram D′ such that #PBS(D′) + α#¬(D′) is minimal, is NP-hard, where #¬(D) is the
number of negations in D.

The proof relies on the following lemma:
Lemma 4.38. Given any diagram D of P which is query-optimal and contains at least one negation, there
exists an equivalent negation-free diagram with the same gates containing at most #PBS(D) + #¬(D)− 1
PBS.
Proof of Corollary 4.37. Note that the proofs of Theorem 4.33 and Corollary 4.36 actually give us slightly
stronger results than the exact statements of Theorem 4.33 and Corollary 4.36, since they in fact consider
the restricted versions of their respective problems in which the input diagram is required to be in P.

Given Lemma 4.38, Corollary 4.37 follows from this stronger version of Corollary 4.36. Indeed, it
suffices to prove that the problem of optimising #PBS(D) +α#¬(D) together with the queries is already
NP-hard when restricted to the case where the input diagram D is negation-free and in P. Given
such a diagram D, any query-optimal diagram D′ equivalent to D such that #PBS(D′) + α#¬(D′) is
minimal, is negation-free. Indeed, if it was not, then, since it is in P, by Lemma 4.38 there would
exist an equivalent query-optimal, negation-free diagram D′′ that would satisfy #PBS(D′′) +α#¬(D′′) =
#PBS(D′′) ≤ #PBS(D′) + #¬(D′) − 1 < #PBS(D′) + α#¬(D′), which would contradict the fact that
#PBS(D′) + α#¬(D′) is minimal. Thus, finding a query-optimal diagram D′ equivalent to D such that
#PBS(D′) +α#¬(D′) is minimal, amounts to finding a diagram equivalent to D and query-PBS-optimal
among negation free diagrams.

Proof of Lemma 4.38. Let D : >⊕n → >⊕n be a query-optimal diagram of P containing at least one
negation. Let us first apply Step 1 of the PGT procedure, that is, by mere deformation, we put D in the
form

w0

wn−1

P
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with P gate-free. Let f(P ) be the number of positions p such that cPV,p = H (note that this number does
not depend on the way of deforming D). Since the semantics of P applies a permutation to the couples
(c, p), there are the same number of positions p such that cPH,p = V, so that there are 2f(P ) couples (c, p)
such that cDc,p 6= c. Each photon that enters P with a basis state corresponding to one of these couples
gets its polarisation changed while traversing P , which means that it traverses at least one negation.
Since each negation can be reached from at most two basis states, this implies that f(P ) ≤ #¬(D).

Note that additionally, due to the semantics of D (since it is in P), for any c, c′ ∈ {V,H} and
p, p′ ∈ [2n] such that JP Kpath (c, p) = (c′, p′), one has p ∈ [n] if and only if p′ ∈ {n, ..., 2n − 1} and
vice-versa, and JP Kpath (c′, p′) = (c, p). Combined with the fact that JP Kpath applies a permutation to the
couples (c, p), this implies that there are the same number of positions p such that respectively: p ∈ [n]
and cPV,p = H; p ∈ [n] and cPH,p = V; p ∈ {n, ..., 2n− 1} and cPV,p = H; p ∈ {n, ..., 2n− 1} and cPH,p = V.
Since the sum of these four numbers of positions is equal to 2f(P ), this implies that f(P ) is even and

that the number of positions p is equal to f(P )
2 in each case.

By applying the rest of the PGT procedure, we put P in stair form and thereby transform D into a
diagram D′ in PGT form. With a similar argument as in the proof of Theorem 4.33, we can put D′ in
the form

w0

wn−1

P1 P2

where P1 and P2 are in stair form. Since D ∈ P, for any c, c′ ∈ {V,H} and p, p′ ∈ [n], if JP1Kpath (c, p) =
((c′, p′), ε) then JP2Kpath (c′, p′) = ((c, p), ε). Hence, P1 has the same semantics as the horizontal reflection
of P2 and vice-versa. By Theorem 4.27, this implies that P1 and P2 contain the same number of PBS.
Therefore, by replacing P2 by the horizontal reflection of P1, we get a diagram D′′ which is still equivalent
to D and still has at most as many PBS as D. As in the proof of Theorem 4.33, we can write D′′ in the
form

?

C1

Cr

?

?

?

σ1 σ2

?

C−1
1

C−1
r

?

?

?

σ−1
1σ−1

2

w0

wn−1

where σ1 and σ2 are permutation of the wires, the Ck are staircases (see Definition 4.25), and given any
gate-free diagram E, E−1 denotes its horizontal reflection. Since D′′ is symmetric, we can remove the
negations in the middle without changing its semantics, which gives us

D′′′ :=

?

C1

Cr

?

σ1 σ2

?

C−1
1

C−1
r

?

σ−1
1σ−1

2

w0

wn−1

.

Let

L :=

?

C1

Cr

?

σ1 σ2 .

For every letter U ∈ {w0, ..., wn−1}, let dU (D) be the number of positions p such that for some p1, p2,
one has pLV,p1

= pLV,p2
= p and wp = U . Since D ∈ P, U appears as many times among the wDV,p

as among the wDH,p. Since ∀c, p, wDc,p = wpLc,p , this implies that the number of positions p′ such that
for some p′1, p′2 one has pLH,p′1 = pLH,p′2

= p′ and wp′ = U is also dU (D). We arbitrarily associate a
position p′ of the second kind with each position p of the first kind, so as to distribute these 2dU (D)
positions into dU (D) couples (p, p′). By doing so for every U ∈ {w0, ..., wn−1}, we obtain d(D) couples,
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where d(D) :=
∑

U∈{w0,...,wn−1}

dU (D), with the property that every position q satisfying for some p1, p2, c,

pLc,p1
= pLc,p2

= q, appears exactly once among these couples (as a left element if c = V, and as a right
element if c = H).

For each position q among these 2d(D) positions, there is exactly one polarisation c such that cLc,p 6= c.
This property is not affected by appending negations at the right of L, so that there is also exactly one
polarisation c (for each q) such that cP1

c,q 6= c. By definition of P1, there is also exactly one polarisation

c such that cPc,q 6= c. Since all of these 2d(D) positions q are in [n], this implies that 2 f(P )
2 ≥ 2d(D).

Since f(P ) ≤ #¬(D), this inequality implies that 2d(D) ≤ #¬(D).
For each of the d(D) couples (p, p′), we do the following transformation in D′′′ (up to deformation):

U

U

→
U

U

.

Each time, we put L in stair form again, we transform L−1 symmetrically so that it remains the horizontal
reflection of L, and we remove any negations at the right of L and at the left of L−1, which is possible
because D′′′ remains symmetric. One can check that if the PBS appended to L is connected to two
different Cis, then this results in merging them together, so that the number of PBS stays the same
(after adding the additional PBS), and if it is connected to a single Ci then this results in splitting it
into two staircases, so that the number of PBS in L decreases by 2. The behaviour of L−1 is symmetric.
At the end, the total number of PBS is at most #PBS(D) + 2d(D), and the equality can be reached only
if at every step two Cis have been merged. This gives us a diagram

D′′′′ := L′ L′
−1

w0

wn−1

with L′ of the form

?

?

σ′1 σ′2

C ′1

C ′r′

in which there are no couples of positions p1, p2 such that pLV,p1
= pLV,p2

anymore. In particular, for each
position p such that for some p1, JL′Kpath (V, p1) = ((H, p), ε), there exists p2 such that JL′Kpath (H, p2) =
((V, p), ε). For each of these positions, we apply the following transformation:

U → ¬ ¬U

This gives us a diagram

D(5) := L′′ L′′
−1

w0

wn−1

with L′′ such that for all c, p, cL′′c,p = c. By putting L′′ in normal form, then in stair form again, we get a
diagram L′′′ without negations and with at most as many PBS as L′′. In particular, the resulting diagram
D(6) (after proceeding symmetrically in L′′−1) contains at most #PBS(D) + 2d(D) PBS. If it has strictly
fewer PBS, or if 2d(D) < #¬(D), then we have the desired result. If it has exactly #PBS(D) + 2d(D)
PBS and 2d(D) = #¬(D), then this means in particular that at each of the steps of the transformation
of D′′′ into D′′′′, two Cis have been merged. By hypothesis, #¬(D) ≥ 1, so the fact that 2d(D) = #¬(D)
implies that d(D) > 0. This implies that there has been at least one step in the transformation of D′′′
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into D′′′′, in which two staircases connected to two gates with the same label have been merged. Since
these staircases have not been split, there is at least one couple of gates in D(5) that have the same label
and are connected to the same staircase. Then by applying to them the same transformation as before:

U

U

→
U

U

and putting L′′′ (and L′′′−1) in stair form again, we get a diagram with #PBS(D) + #¬(D)− 2 PBS and
no negations, which is equivalent to D.

Although we were only able to prove Corollary 4.37 for α ≥ 1, we conjecture that the optimisation is
actually NP-hard even if the negations cost less than the PBS:

Conjecture 4.39. For any α ≥ 0, the problem of, given an abstract diagram D, finding an equivalent
query-optimal diagram D′ such that #PBS(D′) + α#¬(D′) is minimal, is NP-hard, where #¬(D) is the
number of negations in D.

Corollary 4.40. The problem of, given an abstract diagram D, finding an equivalent query-¬-PBS-
optimal26 diagram is NP-hard.

Proof. The NP-hardness of this problem directly follows from Corollary 4.36. Indeed, given a negation-
free diagram D, the query optimisation procedure gives us a negation-free query-optimal diagram D′

equivalent to D. Any query-¬-PBS-optimal diagram equivalent to D has to contain at most as many
negations as D′, namely 0, that is, be negation-free. Thus, finding a query-¬-PBS-optimal equivalent to
D amounts to finding a negation-free query-PBS-optimal diagram equivalent to D.

Finally, as noted above, the NP-hardness when the PBS are prioritised over the negations is a direct
consequence of Theorem 4.33:

Remark 4.41. The problem of, given an abstract diagram D, finding an equivalent query-PBS-¬-optimal
diagram is NP-hard.

4.5 Discussions and Future Work
The power and limits of quantum coherent control is an intriguing question. Maybe surprisingly,27 we
have proved that coherently controlled quantum computations, when expressed in the PBS-calculus, can
be efficiently optimised: any PBS-diagram can be transformed in polynomial time into a diagram that
is optimal in terms of oracle queries. We have refined the procedure to also decrease the number of
polarising beam splitters. It leads to an optimal diagram when each oracle is queried only once, but
the corresponding optimisation problem is NP-hard in general. We leave to future work an experimental
evaluation of the PGT procedure when each oracle is not necessarily queried only once.

It might be that the NP-hardness result is even more significant than the optimisation heuristic, as
the hardness might scale up as the language is further developed. There is however no certainty that
things will necessarily happen as badly, and it might be a perspective for further developments of this
language to find extensions of it in which such optimisation problems are easy to solve.

To perform the resource optimisation, we have introduced a few add-ons to the framework of the
PBS-calculus. First, we have refined the syntax in order to allow the representation of unsaturated (or
3-leg) polarising beam splitters. They are essential ingredients for resource optimisation, as they provide
a way to decompose a diagram into elementary components and then remove the useless ones. However,
note that one can perform resource optimisation of vanilla PBS-diagrams, using the refined one only as

26A diagram is query-¬-PBS-optimal if it is optimal according to the lexicographic order: the number of queries then the
number of negations and finally the number of polarising beam splitters. The definition of a query-PBS-¬-optimal diagram
is analogous.

27One may argue that this could be due to the simplicity of the language. It belongs to future work to know whether
things would be as simple if the language were to be extended to allow for a more general quantum control.
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an intermediate language. Indeed, given a vanilla PBS-diagram (where all wires are black), one can apply
the optimisation procedures described in this chapter. The resulting optimised PBS-diagram may contain
some unsaturated PBS, but all these 3-leg PBS can be saturated by adding useless traces and then one
can make the diagram monochromatic. The resulting vanilla PBS-diagram keeps the same number of
queries and PBS.

We have also generalised the gates of the diagrams, by considering arbitrary monoids. This is a natural
abstraction that allows one to consider various examples and in particular the one of the free monoid
which is appropriate to model the oracle queries. The query complexity is a convenient model to prove
lower bounds, but note that the optimisation procedures described in this chapter can be applied with
any arbitrary monoid (for instance using Proposition 4.8). However, there is no guarantee of minimality
with an arbitrary monoid.

A natural question would then be to consider the problem of resource optimisation in the case of an
arbitrary monoid. This requires to introduce a complexity measure, the most natural way to do so would
probably be to define a cost function on the elements of the monoid, that is, a function c : M → R≥0
(M being the monoid), satisfying c(I) = 0 and c(UV ) ≤ c(U) + c(V ). Note however that this problem
is hard in general, and sometimes even not solvable. This may be the case, for instance, if M is a free
monoid quotiented by a list of equalities between words which in particular make it into a group, and
the cost function associates with each element of M the length of the smallest word representing this

element. Indeed, optimising the resources of a simple diagram of the form
U

V

requires in

general to decide whether U and V are equal. This is an instance of the word problem for groups, which
is known to have undecidable instances, even with a finite alphabet and a finite list of equalities defining
M [106, 49].
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Chapter 5

LOv-Calculus : A Graphical
Language for Photon-Preserving

Linear Optical Circuits

In Chapters 3 and 4, we have developed a language — the PBS-calculus — and a variant of it, which
are inspired by linear optics but are essentially considered as an abstract tool for describing coherently
controlled quantum processes. In this chapter, we take the opposite point of view and focus on the linear
optical aspect: we develop a language dedicated to linear optical quantum computing (LOQC), with a
similar structure as the PBS-calculus, which formalises the kinds of diagrammatics that are currently in
use in the physics community.

Compared to the PBS-calculus, this language, called the LOv-calculus, does not have gates as gener-
ators, but instead has the main physical apparatuses used in the physics literature about linear optics,
the polarising beam splitter (PBS) being one of them. The language comes equipped with an equational
theory that is sound and complete with respect to the standard semantics of LOQC. Our other main con-
tribution is a strongly normalising and globally confluent rewriting system for the polarisation-preserving
fragment, for which the normal form is a refinement of the Reck et al. [114] decomposition, with natural
conditions imposed on the parameters which we prove to make it unique.

In practice such a language can find many uses including for the design, optimisation, verification,
error-correction, and systematic study of linear optical quantum circuits for quantum information. Ad-
ditionally, and maybe more importantly, our language makes it possible to formalise and reason within
a common framework on various presentations of LOQC stemming from parallel research paths. Our
semantics not only allows us to recover, extend and improve on some key results in LOQC such as the
universal decompositions of Reck et al. [114] and Clements et al. [41], but it also gives a unifying language
for the different formalisms from the literature.

Note that the rewriting system for the polarisation-preserving fragment has been implemented in the
Perceval software [80].28

Finally, it turns out that finding complete equational theories for linear optical circuits paves the way
towards the design of complete equational theories for quantum circuits (see Chapter 6).

Plan of the chapter. The chapter is structured as follows. In Section 5.1, we present the syntax and
the semantics of the LOv-calculus. The equational theory and its soundness are given in Section 5.2.
In Section 5.3 we present the strongly normalising and globally confluent rewriting system. This allows
us to prove the completeness of the LOv-calculus in Section 5.4. Finally, in Section 5.5, we discuss a
perspective consisting in adding a trace construction, similar to the trace of the PBS-calculus, to the
LOv-calculus.

28See https://perceval.quandela.net/docs/notebooks/Rewriting rules in Perceval.html.
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(a) Triangular form [114].
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(b) Rectangular form [41].

Figure 5.1: Triangular and rectangular universal forms for polarisation-preserving circuits.
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Figure 5.2: LOv-circuit implementing a variational quantum eigensolver [110], an algorithm with appli-
cations including calculation of ground-state energies in quantum chemistry.

5.1 Linear Optical Quantum Circuits
A linear optical quantum computation [96, 95] (LOQC) consists of spatial modes through which photons
pass — which may be physically instantiated by optical fibers, waveguides in integrated circuits, or simply
by paths in free space (bulk optics) — and operations that act on the spatial and polarisation degrees
of freedom of the photons, including in particular beam splitters ( θ ), polarising beam splitters ( ),
phase shifters ( ϕ ), wave plates (

θ
), pola-negations ( ¬ ) and finally the vacuum state sources and

detectors ( 0 and 0 ). Their action and the semantics are described in Section 5.1.2.

5.1.1 Syntax
We formalise linear optical quantum circuits as a PROP (not traced, that is without the trace operator,
see the bottom of Definition 1.1 in Chapter 1 for a formal definition. The main reasons for this choice
are that feedback loops are not needed to represent the linear optical schemes used in practice, and that
there is not a clear, unique way to give them a physical meaning. See Section 5.5 for discussions about
how to give a semantics to linear optical circuits with trace):

Definition 5.1. LOv is the PROP of LOv-circuits generated by

0 : 0→ 1 0 : 1→ 0 ϕ : 1→ 1
θ

: 1→ 1

θ : 2→ 2 : 2→ 2

where θ, ϕ ∈ R. We write ¬ as a shortcut notation for π
2
−π2 .

Example 5.2. An example of a linear optical quantum circuit using all of the connectives presented in
Definition 5.1 is shown in Figure 5.2.

Remark 5.3. Similarly as in the preceding chapters, the axioms of PROP guarantee that linear optical
quantum circuits are defined up to deformations: Figure 5.3 shows two equivalent circuits under the
axioms of PROP.
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¬

θ
ϕ

θ′

0

= ϕ
θ′

¬

0
θ

Figure 5.3: Two equivalent representations of the same LOv-circuit.

r
0

z
= 0

r
0

z
= 0 J K = 0

r
θ

z
= |c, p〉 7→ cos(θ) |c, p〉+ i sin(θ) |c, 1− p〉

r

θ

z
=

{
|V, 0〉 7→ cos(θ) |V, 0〉+ i sin(θ) |H, 0〉
|H, 0〉 7→ cos(θ) |H, 0〉+ i sin(θ) |V, 0〉

r
ϕ

z
= |c, 0〉 7→ eiϕ |c, 0〉

q y
=

{
|V, p〉 7→ |V, p〉
|H, p〉 7→ |H, 1− p〉

q y
= |c, p〉 7→ |c, 1− p〉

J K = |c, 0〉 7→ |c, 0〉

Table 5.1: Semantics of LOv-circuits.

Among the generators, the beam splitters and phase shifters are known to preserve the polarisation
of the photons. As a consequence, we define a polarisation-preserving sub-PROP of LOv as follows.

Definition 5.4. LOPP is the PROP of polarisation-preserving circuits generated by beam splitters θ

and phase shifters ϕ .

In the following, it will also be useful to work in the PRO of polarisation-preserving circuits (see the
bottom of Definition 1.1), in which swaps are not allowed.

Definition 5.5. LOPRO
PP is the PRO generated by beam splitters θ and phase shifters ϕ .

5.1.2 Single-Photon Semantics
We will characterise photons by their spatial and polarisation modes. Spatial modes refer to position, and
polarisation can be horizontal (H) or vertical (V). Unlike in the previous chapters, we do not consider
an additional degree of freedom. For any n ∈ N, let Mn = {V,H} × [n], where [n] = {0, . . . n − 1}, be
the set of basis states (spatial and polarisation modes). The state space of a single photon is CMn =
span(|V, p〉 , |H, p〉 | p ∈ [n]). Notice that CM0 = C∅ = {0} is the Hilbert space of dimension 0. The
semantics of a LOv-circuit is defined as follows.

Definition 5.6. For any LOv-circuit D : n → m, let JDK : CMn → CMm be the linear map inductively
defined by Table 5.129, and by JD2 ◦D1K = JD2K ◦ JD1K, JD1 ⊕D2K = JD1K ⊕ JD2K, where for all
f ∈ CMn → CMm and g ∈ CMn′ → CMm′ , (f ⊕ g)(|c, k〉) = f(|c, k〉) if k < n and Sm,m′(g(|c, k − n〉)) if
k ≥ n, with Sm,m′ : CMm′ → CMm+m′ = |c, k〉 7→ |c, k +m〉 a shift of the positions by m.

Example 5.7. The negation inverts polarisation: J ¬ K : |V, 0〉 7→ |H, 0〉 and |H, 0〉 7→ |V, 0〉.

Remark 5.8. The semantics of the circuits is sound with respect to the axioms of PROP. In other words
two circuits that are equal up to deformation have the same semantics.

Remark 5.9. All the generators of LOv-circuits are photon-preserving, even the vacuum state sources
( 0 ) and detectors ( 0 ). Indeed the vacuum state source produces no photons, whereas the semantics
of the detector corresponds to a postselection on the case where no photons are detected.

29There are many possible conventions for beam splitters. We have chosen this one as it is a symmetric operation with
good composition properties (see Figure 5.5). The convention for the wave plate has been chosen for similar reasons (see
for instance Equations (5.17), (5.34) and (5.37)).
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Remark 5.10. Note that a multi-photon semantics can be defined from the single-photon semantics using
the Fock space formalism in a similar way as in Section 3 of [53]. However, since we only study photon-
preserving linear optical circuits, and only consider circuits in themselves (that is, not in the context of
a particular experiment), it is sufficient here to work only with the single-photon semantics. Since the
multi-photon semantics is uniquely determined by the single-photon semantics, our results that use the
single-photon semantics can be straightforwardly reformulated in terms of the multi-photon semantics.

Note that CMn is isomorphic to C{V,H} ⊗ Cn, and that up to identifying these two spaces, the
semantics of a LOPP-circuit, and more generally of any LOv-circuit which does not contain or

θ
,

is of the form IC{V,H} ⊗ f for some f : Cn → Cm. This is why we also define a polarisation-preserving
semantics which is sometimes more appropriate for those circuits:

Definition 5.11. For any LOv-circuit D : n→ m such that JDK = IC{V,H}⊗f for some f : Cn → Cm, we
define JDKpp := f . In other words, JDKpp : Cn → Cm is the unique linear map such that JDK◦ι = ι◦JDKpp
where ι : Cn → CMn :: |k〉 7→ |H, k〉.

For instance
q

θ
y

pp =
(

cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
.

Polarisation-preserving circuits are universal for unitary transformations, this is a direct consequence
of the result of Reck et al. [114]. One can actually make the representation of each unitary unique in a
natural way, as illustrated by the following two cases on 2 and 3 modes, the general case being proved in
Section 5.3 (see Proposition 5.37).

Lemma 5.12. For any unitary 2 × 2 matrix U , there exist unique β1, α1 ∈ [0, π) and β2, β3 ∈ [0, 2π)

such that
t

β1 α1 β2

β3

|

pp

= U , and α1 ∈ {0, π2 } ⇒ β1 = 0.

Proof. Let us consider such β1, α1 ∈ [0, π) and β2, β3 ∈ [0, 2π). We first prove that, assuming that they
exist, their values are uniquely determined by U . We have:

U =

u

v
β1 α1 β2

β3

}

~

pp

=
(
ei(β1+β2) cos(α1) ieiβ2 sin(α1)
iei(β1+β3) sin(α1) eiβ3 cos(α1)

)

If U has a null entry, then since it is unitary, it is either diagonal or anti-diagonal. If it is diagonal,
then sin(α1) = 0, which, since α1 ∈ [0, π), implies that α1 = 0, which by the constraint on β1 and
α1, implies that β1 = 0. Consequently, β2 = arg(U0,0) and β3 = arg(U1,1). If U is anti-diagonal, then
cos(α1) = 0, which, since α1 ∈ [0, π), implies that α1 = π

2 , which by the constraint on β1 and α1, implies
that β1 = 0. Consequently, β2 = arg(U0,1

i ) and β3 = arg(U1,0
i ).

If U has no null entry, since UU† = I, we have ei(β1+β2) cos(α1)U†1,0 + ieiβ2 sin(α1)U†1,1 = 0. Hence,

β1 is the unique angle in [0, π) such that eiβ1U†1,0

iU†1,1
∈ R, namely arg(U1,0)− arg(U1,1) + π

2 mod π. Then α1

is the unique angle in [0, π) such that tan(α1) = − e
iβ1U†1,0

iU†1,1
, and since α1 ∈ (0, π), we have sin(α1) > 0, so

that β2 = arg U0,1
i and β3 = arg( U1,0

ieiβ1 ). This finishes proving the uniqueness.
Conversely, it is easy to see that given any unitary U , the unique possible values given above for β1,

α1, β2 and β3 are well-defined and satisfy the desired properties (note that the existence also follows from
the result of [114]).

Lemma 5.13. For any unitary 3 × 3 matrix U , there exist unique angles α1, α2, α3, β1, β2, β3 ∈ [0, π)

and β4, β5, β6 ∈ [0, 2π) such that

u

ww
v α1

α2

α3

β2

β1 β3

β4

β5

β6

}

��
~

pp

= U , where ∀i ∈ {1, 2, 3}, αi ∈

{0, π2 } ⇒ βi = 0, and where α2 = 0⇒ α1 = 0.
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Proof. Let us consider such α1, α2, α3, β1, β2, β3 ∈ [0, π) and β4, β5, β6 ∈ [0, 2π). We first prove that,
assuming that they exist, their values are uniquely determined by U .

Let U1 :=

u

wwww
v

α1β1

β2
}

����
~

pp

◦ U†, U2 :=

u

wwww
v

α1

α2β2

β1

}

����
~

pp

◦ U† and

U3 :=

u

wwww
v

α1

α2

α3

β2

β1 β3

}

����
~

pp

◦ U†, where J−Kpp is defined in Definition 5.11.

By construction, U3 =

e−iβ4 0 0
0 e−iβ5 0
0 0 e−iβ6

, so that

U2 =

e−iβ4 0 0
0 e−i(β3+β5) cos(α3) −ie−i(β3+β6) sin(α3)
0 −ie−iβ5 sin(α3) e−iβ6 cos(α3)

 , (E)

and U1 =

u

wwww
v

α2β2
}

����
~

†

◦ U2. Since

α2β2

does not act on the last mode, this implies that

(U1)2,0 = 0.30 That is, by definition of U1, ieiβ1 sin(α1)U†0,1 + cos(α1)U†0,2 = 0.

• If U0,1, U0,2 6= 0, then this equality implies that cos(α1) 6= 0 and sin(α1) 6= 0 (indeed, if cos(α1) = 0
then sin(α1) = ±1 and conversely, which in both cases prevents the equality from being satisfied).
Hence, β1 is the unique angle in [0, π) such that ieiβ1U†0,1

U†0,2
∈ R, namely arg(U0,1) − arg(U0,2) +

π
2 mod π. Then α1 is the unique angle in [0, π) \ {π2 } such that tan(α1) = − U†0,2

ieiβ1U†0,1
.

• If U0,2 = 0 and U0,1 6= 0, then sin(α1) = 0, which means, since α1 ∈ [0, π), that α1 = 0. Due to the
constraints on the angles, this implies that β1 = 0 too.

• If U0,1 = 0 and U0,2 6= 0, then cos(α1) = 0, which means, since α1 ∈ [0, π), that α1 = π
2 . Due to

the constraints on the angles, this implies that β1 = 0 too.

• If U0,1 = U0,2 = 0, then since U is unitary, it is of the form U =

eiϕ 0 0
0 ∗ ∗
0 ∗ ∗

, where ∗ denotes

any complex number. Then, regardless of α1 and β1, U1 is of the same form: U1 =

eiϕ 0 0
0 ∗ ∗
0 ∗ ∗

.

Consequently, U2 =

eiϕ cos(α2) ∗ ∗
ieiϕ sin(α2) ∗ ∗

0 ∗ ∗

. By (E), this implies that sin(α2) = 0, which means,

since α2 ∈ [0, π), that α2 = 0. Due to the constraints on the angles, this implies that α1 = β1 =
β2 = 0 too.

Thus, α1 and β1, and in turn U1, are uniquely determined given U .
30We denote by Mi,j the entry of indices (i, j) of a matrix M , the index of the first row and column being 0.
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Since (U1)2,0 = 0, U1 can be written as

(U1)0,0 ∗ ∗
(U1)1,0 ∗ ∗

0 ∗ ∗

. By (E) we have (U2)1,0 = 0, that is,

ieiβ2 sin(α2)(U1)0,0 + cos(α2)(U1)1,0 = 0. Since U1 is unitary, |(U1)0,0|2 + |(U1)1,0|2 = 1, so that we
cannot have (U1)0,0 = (U1)1,0 = 0. The other cases are similar to those of α1 and β1:

• If (U1)0,0, (U1)1,0 6= 0, then similarly, the equality implies that cos(α2) 6= 0 and sin(α2) 6= 0. Hence,
β2 is the unique angle in [0, π) such that ieiβ2 (U1)0,0

(U1)1,0
∈ R, namely arg((U1)1,0) − arg((U1)0,0) +

π
2 mod π. Then α2 is the unique angle in [0, π) \ {π2 } such that tan(α2) = − (U1)1,0

ieiβ2 (U1)0,0
.

• If (U1)1,0 = 0 and (U1)0,0 6= 0, then sin(α2) = 0, which means, since α2 ∈ [0, π), that α2 = 0. Due
to the constraints on the angles, this implies that β2 = 0 too.

• If (U1)0,0 = 0 and (U1)1,0 6= 0, then cos(α2) = 0, which means, since α2 ∈ [0, π), that α2 = π
2 . Due

to the constraints on the angles, this implies that β2 = 0 too.

Thus, α2 and β2, and in turn U2, are also uniquely determined given U .
Furthermore, (E) implies that

• If (U2)1,1, (U2)2,1 6= 0, then β3 is the unique angle in [0, π) such that eiβ3 (U2)1,1
i(U2)2,1

∈ R, namely,
arg((U2)2,1) − arg((U2)1,1) + π

2 mod π, and α3 is the unique angle in [0, π) such that tan(α3) =
i(U2)2,1

eiβ3 (U2)1,1
.

• If (U2)2,1 = 0 and (U2)1,1 6= 0 then sin(α3) = 0, which means, since α3 ∈ [0, π), that α3 = 0. Due
to the constraints on the angles, this implies that β3 = 0 too.

• If (U2)1,1 = 0 and (U2)2,1 6= 0, then cos(α3) = 0, which means, since α3 ∈ [0, π), that α3 = π
2 . Due

to the constraints on the angles, this implies that β3 = 0 too.

Thus, α3 and β3, and in turn U3, are also uniquely determined given U .

Finally, since U3 =

e−iβ4 0 0
0 e−iβ5 0
0 0 e−iβ6

, we necessarily have β4 = − arg((U3)0,0), β5 = − arg((U3)1,1)

and β6 = − arg((U3)2,2). This finishes proving the uniqueness.
Conversely, it is easy to see that the unique possible values given above for α1, α2, α3, β1, β2, β3,

β4, β5 and β6 are well-defined for any unitary U and satisfy the desired properties, which proves the
existence.

Remark 5.14. It is possible to generalise the proof of Lemma 5.13 to extend the result to an arbitrary
number of modes (namely, to prove that any unitary n × n matrix is represented in a unique way by a
circuit with the same shape and conditions on the angles as in Figure 5.10). This provides an alternative
proof of Proposition 5.37.

LOv-circuits are more expressive than LOPP-ones, they not only act on the polarisation but the use
of detectors and sources allows for the representation of non-unitary evolutions: For any LOv-circuit
D : n→ m, JDK is sub-unitary31. LOv-circuits are actually universal for sub-unitary transformations:

Theorem 5.15 (Universality of LOv). For every sub-unitary map U : CMn → CMm (i.e. such that
U†U v I) there exists a circuit D : n→ m s.t. JDK = U .

Proof. The proof relies on the normal forms developed in Section 5.4 and on the universality of LOPRO
PP -

circuits (Proposition 5.37). It is given at the end of Section 5.4.
31U is sub-unitary (see for instance [119]) iff U†U v I, where v is the Löwner partial order, i.e. I − U†U is positive

semi-definite. Equivalently, U is sub-unitary iff it is a sub-matrix of a unitary matrix.
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5.2 Equational Theory
Two distinct LOv-circuits may represent the same quantum evolution: for instance, composing two
negations is equivalent to the identity. In order to characterise equivalences of LOv-circuits, we introduce
a set of equations, shown in Figure 5.4. They capture basic properties of LOv-circuits, such as: detectors
and sources essentially absorbing the other generators (Equations (5.8) to (5.14)); parameters forming
a monoid (Equations (5.1) to (5.3)); and various commutation properties (Equations (5.15) and (5.16)).
Equations (5.4) to (5.7) are the axioms of the PBS-calculus that are relevant here (see Figure 3.4), and
capture the behaviour of PBS and negations in the absence of other generators. Notice that there are
two equations acting on 3 modes: Equation (5.6) and Equation (5.18). Equation (5.6) can be seen as
related to the Yang-Baxter Equation [86] (see Equation (A.1) and its proof, and note that the right-hand
side can be flipped upside down by deformation), while Equation (5.18) is a property of decompositions
into Euler angles, generalised with additional phases. Indeed, in 3-dimensional space, the two sides of
this equation correspond — if one ignores the phases — to two distinct decompositions in elementary
rotations. Finally, Equation (5.17) captures the fact that a beam splitter performs the same operation as
a wave plate, on the position instead of on the polarisation, and therefore can be simulated using wave
plates, together with some PBS and negations that essentially serve to swap the polarisation with the
position.

Definition 5.16 (LOv-calculus). Two LOv-circuits D1, D2 are equivalent according to the rules of the
LOv-calculus, denoted LOv ` D1 = D2, if one can transform D1 into D2 using the equations given in
Figure 5.4. More precisely, LOv ` · = · is defined as the smallest congruence which satisfies the equations
of Figure 5.4 in addition to the axioms of PROP.

ϕ2ϕ1 = ϕ1+ϕ2 (5.1)

0 = (5.2)

0 = (5.3)

¬

¬

¬

¬
= (5.4)

= (5.5)

= (5.6)

¬
=

¬ ¬
(5.7)

0 0 = (5.8)

0 ϕ = 0 (5.9)

0
θ

= 0 (5.10)

0

0
=

0

0
(5.11)

0ϕ = 0 (5.12)

0
θ

= 0 (5.13)

0

0
=

0

0
(5.14)

ϕ
π
2

= ϕ
π
2

(5.15)

ϕ

ϕ
=

ϕ

ϕ
(5.16)

θ =
¬¬

θ

θ

(5.17)

θ1

θ2

θ3

ϕ1

ϕ2

= α1

α2

α3

β2

β1 β3

β4

β5

β6

(5.18)

Figure 5.4: Axioms of the LOv-calculus. The equations are valid for arbitrary parameters ϕ,ϕi, θ, θi ∈ R.
In Equation (5.18), the angles on the left-hand side can take any value while the right-hand side is given
by Lemma 5.13 (where U is the J.Kpp-semantics of the left-hand side of the equation).
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θ1
ϕ1 θ2 =

β1 α1 β2

β3

(5.19)

θ1 θ2 = θ1+θ2 (5.20)

θ
ϕ

ϕ
= θ

ϕ

ϕ
(5.21)

θ

θ

= θ

¬¬
(5.22)

¬ ¬ = (5.23)

¬ ϕ = ¬ϕ (5.24)

0 ¬ = 0 (5.25)

0¬ = 0 (5.26)

0

0 θ =
0

0
(5.27)

0

0θ =
0

0
(5.28)

π
2 =

π
2

π
2

(5.29)

θ = θ (5.30)

= (5.31)

θ =
¬¬

θ

θ

(5.32)

θ

¬

¬
= θ

¬

¬
(5.33)

¬
θ

= ¬
θ

(5.34)

θ

θ

=
θ

θ

(5.35)

Figure 5.5: Useful consequences of the axioms of the LOv-calculus. In Equation (5.19), the angles on
the left-hand side can take any value, and the right-hand side is given by Lemma 5.12.

0 = (5.36)

π
= π (5.37)

π
=

π

π
(5.38)

θ

π
= −θ

π
(5.39)

ϕ
θ

= ϕ
θ

(5.40)

θ1 θ2
=

θ1+ θ2
(5.41)

θ2θ1

θ1

= θ2 θ1

θ1

(5.42)

θ = θ (5.43)

=

π
4

−π2

0 0

π

π
4

−π2 (5.44)

π
4

π
4

π−π2 −π2
θ θ

= 0 02θ (5.45)

Figure 5.6: Interesting consequences of the axioms of the LOv-calculus.
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Proposition 5.17 (Soundness). For any two LOv-circuits D1, D2, if LOv ` D1 = D2 then JD1K = JD2K.

Proof. Since semantic equality is a congruence, it suffices to check that for every equation of Figure 5.4
both sides have the same semantics, which follows from Definition 5.6 and Lemma 5.13.

Example 5.18. The 2π-periodicity of the parameters is proved using the equational theory, as Propo-
sition 5.19. Figure 5.5 shows some other equations that will be useful in the rest of this chapter, in
particular for proving that the equational theory is complete (Theorem 5.22), and that we derive explicitly
from the axioms (the derivations are given in Appendix C.1). Figure 5.6 shows some additional interest-
ing properties that are not directly used in the proofs; the fact that these are consequences of the axioms
of Figure 5.4 will follow from the completeness result.

Proposition 5.19. The rules of the LOv-calculus imply that the parameters are 2π-periodic, i.e. for any
θ, ϕ ∈ R:

LOv `
θ = θ+2π LOv ` ϕ = ϕ+2π LOv ` θ

=
θ+2π

Proof. We actually prove a stronger version of the 2π-periodicity for the phase shifter:

ϕ = ϕ mod 2π (5.46)

as follows:

ϕ
(5.8)(5.3)= 0 ϕ

0

0

0

(5.19)=
0

0 0

0

ϕ mod 2π

0

(5.2)(5.3)(5.8)= ϕ mod 2π

Then, the equality of Proposition 5.19 follows straightforwardly:

ϕ
(5.46)= ϕ mod 2π (5.46)= ϕ+2π

To prove the 2π-periodicity for the beam splitter, we proceed as follows:

θ (5.3)(5.2)=
0 0θ

(5.19)=
0 θ mod π επ

επ
where ε =

{
0 if θ mod 2π ∈ [0, π)
1 if θ mod 2π ∈ [π, 2π)

(5.19)=
0 0θ+2π

(5.3)(5.2)= θ+2π

Finally, the 2π-periodicity for the wave plate follows from that for the beam splitter as follows:
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θ

(5.8)(5.10)(5.22)= θ

00 ¬¬

=
00 ¬¬

θ+2π

(5.22)(5.10)(5.8)=
θ+2π

Remark 5.20. Note that we could also prove the following stronger equations, for any k ∈ Z, with the
same sequence of rewriting steps, that is, in a bounded number of steps:

θ = θ+2kπ
ϕ = ϕ+2kπ

θ
=

θ+2kπ

Lemma 5.21. The equations of Figure 5.5 are consequences of the axioms of the LOv-calculus.

Proof. The derivations are given in Appendix C.1.

We now state one of our main results: the completeness of the LOv-calculus.

Theorem 5.22 (Completeness). For any two LOv-circuits D1, D2, if JD1K = JD2K then LOv ` D1 = D2.

The proof of Theorem 5.22 is given in Section 5.4. As a step towards proving the theorem, we first
consider the fragment of the LOPRO

PP -circuits.

5.3 Polarisation-Preserving Circuits
This section gives a universal normal form for any LOPRO

PP -circuit. We prove the uniqueness of that form
by introducing a strongly normalising and confluent polarisation-preserving rewriting system: PPRS.

Definition 5.23. The rewriting system PPRS is defined on LOPRO
PP -circuits with the rules of Figure 5.7.

First, note that the rewriting system PPRS is sound with respect to the LOv equational theory:

Lemma 5.24. If D1 rewrites to D2 using the PPRS rewriting system then LOv ` D1 = D2.

Proof. It suffices to show for each rule of Figure 5.7 that it is sound with respect to the equational
theory, that is, that we can transform the left-hand side into the right-hand side using the axioms of the
LOv-calculus.

The soundness of Rules (5.56) and (5.57) is a direct consequence of Proposition 5.19. Note that in
both cases, transforming the left-hand side into the right-hand side using the equations of Figure 5.4 only
requires a bounded number of rewriting steps (see Remark 5.20).

The soundness of Rule (5.58) is a direct consequence of Equation (5.1).
The soundness of Rule (5.59) is a direct consequence of Equation (5.2).
The soundness of Rule (5.60) is a direct consequence of Equation (5.3).
The soundness of Rule (5.61) is a direct consequence of Equations (5.2), (5.1) and (5.21).
The soundness of Rule (5.62) is a direct consequence of Equation (5.29), (5.1) and (5.2).
To prove the soundness of Rule (5.63), if ϕ ∈ [π, 2π) and θ ∈ (0, π), then we have:

θ0
ϕ0 (5.3)= 0 ϕ0 θ0
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(5.19)= π−θ0
ϕ0−π

π

0

(5.2)= π−θ0
ϕ0−π

π

To prove the soundness of Rule (5.64), if θ ∈ [π, 2π) then we have:

θ (5.3)(5.2)=
0 0θ

(5.19)= θ−π π

π

0

(5.2)= θ−π π

π

The soundness of Rule (5.65) is a direct consequence of Equations (5.18) and (5.2).
The soundness of Rule (5.66) is a direct consequence of Equations (5.19) and (5.2).

Theorem 5.25. The rewriting system PPRS is strongly normalising.

Proof. Given a LOPRO
PP -circuit D : n→ n, let us consider the tuple (a, b, c, d, e), defined as follows.

• a is the number of beam splitters in D with angle not in [0, π)

• b is the number of beam splitters in D with angle not in [0, 2π)

• c =
n−2∑
i=0

(n− i)c(i) where c(i) is the number of beam splitters in D between positions i and i+ 1

• To define d, let us define the depth of a phase shifter p of D, denoted d(p), as the maximal number
of beam splitters that a photon starting from p and going to the right would be able to traverse
before reaching an output port, if it were allowed to choose each time whether to be reflected or
transmitted. Then d :=

∑
p phase shifter of D

w(p) · 9d(p), where, given a phase shifter p = ϕ of D,

w(p) :=


4 if p belongs to a pattern of the form θ

ϕ ϕ1 ϕk

3 if p does not belong to such a pattern and ϕ /∈ [0, π)
2 if p does not belong to such a pattern and ϕ ∈ [0, π)

.

• e is the number of phase shifters in D with angle not in [0, 2π).

Since N5 is well-ordered with respect to the lexicographic order, to prove that the rewriting system is
strongly normalising, it suffices to prove that each of the rewriting rules strictly decreases the tuple
(a, b, c, d, e) with respect to this order.

• Rule (5.56) strictly decreases e without increasing any component of the tuple.

• Rule (5.57) strictly decreases b without increasing a.
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ψ → ψ mod 2π (5.56)

ψ
→

ψ mod 2π
(5.57)

ϕ2ϕ1 → ϕ1+ϕ2 (5.58)

0 → (5.59)

0 → (5.60)

θ

ϕ
→ θ

−ϕ ϕ

ϕ
(5.61)

π
2

ϕ

→
π
2

ϕ
(5.62)

θ0
ϕ0

→
π−θ0

ϕ0−π

π
(5.63)

θ4 →
θ4−π π

π
(5.64)

θ1

θ2

θ3

ϕ1

ϕ2

∗

∗

→ α1

α2

α3

β2

β1 β3

β4

β5

β6

(5.65)

θ1
ϕ1 θ2

∗

→
β1 α1 β2

β3

(5.66)

Figure 5.7: Rewriting rules of PPRS. ψ ∈ R \ [0, 2π), ϕ,ϕ1, ϕ2 ∈ (0, 2π), ϕ0, θ4 ∈ [π, 2π), θ, θ0, θ1, θ2, θ3 ∈
(0, π), and θ0 6= π

2 . ϕ
∗

denotes either ϕ or . In Rules (5.65) and (5.66), the angles on
the left-hand side can take any value while the right-hand side is given by Lemma 5.13 and Lemma 5.12
respectively.

• Rule (5.58) does not change a, b or c since it does not affect the beam splitters; and strictly decreases
d. Indeed, it transform two phase shifters p1, p2 of same depth into a phase shifter p12 with same
depth as p1 and p2; if w(p12) = 4 then this means that one had w(p1) = w(p2) = 4, so that d has
strictly decreased since w(p12) < w(p1)+w(p2); and if w(p12) ∈ {2, 3} then since w(p1)+w(p2) ≥ 4,
one also has w(p12) < w(p1) + w(p2), so that d has strictly decreased.

• Rule (5.59) does not increase a, b or c since it does not affects the beam splitters; and it strictly
decreases d since it removes a phase shifter.

• Rule (5.60) does not increase a or b since it only removes a beam splitter, and strictly decreases c.

• Rule (5.61) does not change a, b or c since it does not affect the beam splitters, and it strictly
decreases d. Indeed, removes a phase shifter p on the bottom left of a beam splitter, which decreases
d by 4 ·9d(p), adds a phase shifter of depth d(p) on the top left of this beam splitter, which increases
d by at most 3 ·9d(p), and adds two phase shifters of depth at most d(p)−1, which increases d twice
by at most 4 · 9d(p)−1. In total, d has decreased by at least 4 · 9d(p)− 3 · 9d(p)− 8 · 9d(p)−1 = 9d(p)−1.

• Rule (5.62) does not change a, b or c since it does not affect the beam splitters, and it strictly
decreases d since it moves a phase shifter to a place where it has strictly lower depth.

• Rule (5.63) does not change a, b or c since it affects the beam splitters only by changing the angle
of one of them and keeps this angle in (0, π), and it strictly decreases d. Indeed, it takes a phase
shifter p with angle not in [0, π) on the top left of a beam splitter, and puts its angle in [0, π), which
decreases d by 9d(p). It also adds a phase shifter of depth at most d(p)− 1, which increases d by at
most 4 · 9d(p)−1. In total, d has decreased by at least 5 · 9d(p)−1.

• Rule (5.64) strictly decreases a.

94



5.3. Polarisation-Preserving Circuits

β1

∗

(a) For n = 1

α1
β1 β2

β3

∗

∗

∗
?1

(b) For n = 2

α1

α2

α3

β2

β1 β3

β4

β5

β6

∗
∗

∗

∗

∗

?2

∗2
?1 ?3

(c) For n = 3

Figure 5.8: Normal forms of PPRS for n ∈ {1, 2, 3}. ∗ means that the phase shifter or beam splitter is
replaced by (an) identity wire(s) when the angle is zero. ∗i represents the identity in the preceding case
and also when αi = 0. ?i represents the identity in the preceding two cases and also when αi = π

2 . The
αi are in [0, π) as well as the phases with a ?i, all other phases are in [0, 2π).

• Rule (5.65) decreases c by 1, and does not increase a or b since it only outputs beam splitters with
angle in [0, π).

• Rule (5.66) does not increase a or b since it can only output a beam splitter with angle in [0, π),
and it strictly decreases c.

As PPRS is terminating, every LOPRO
PP -circuit can be reduced to at least one normal form. The next

step is to show that the normal forms are unique, this is the purpose of Theorem 5.27. To this end, it is
useful to first characterise the normal forms of circuits on at most three modes:

Lemma 5.26. For any LOPRO
PP -circuit of size n ∈ {1, 2, 3}, PPRS terminates to a unique normal form

with the shape shown in Figure 5.8.

Proof. First, we show that the normal forms are necessarily of the form given in Figure 5.8.
In a normal form, because of Rule (5.56), all phase shifters have angle in [0, 2π); because of Rules

(5.57) and (5.64), all beam splitters have angle in [0, π); because of Rules (5.59) and (5.60), there is no
phase shifters or beam splitters with angle 0; because of Rule (5.62), there is no phase shifter on the top
left of a π

2 -angled beam splitter; and because of Rule (5.63), all phase shifters on the top left of a beam
splitter have angle in [0, π). Thus, if a normal form is of one of the three forms given in Figure 5.8, then
the conditions on the angles are satisfied.

Because of Rule (5.58), a normal form cannot contain two consecutive phase shifters. This implies in
particular that the normal forms have the claimed shape for n = 1.

Additionally, a normal form also cannot contain two consecutive beam splitters (i.e. a pattern of the

form θ1
ϕ1 θ2

∗

ϕ2
∗ ). Indeed, because of Rule (5.61), in such a pattern in a normal form, there

would not be a phase shifter on the bottom wire, so that the pattern would be reducible by Rule (5.66).
Thus, in the case where n = 2, a normal form contains at most one beam splitter. Because of Rule (5.61),
such a beam splitter does not have any phase shifter on its bottom left, and because of Rule (5.58), there
is at most one phase shifter on each of its other three ports. Because of Rule (5.62), there is no phase
shifter on the bottom right if the angle of the beam splitter is π

2 . Moreover, if the normal form does not
contain a beam splitter, then because of Rule (5.58) there is at most one phase shifter on each of the two
wires. Thus, in all cases, the normal forms have the claimed shape for n = 2.

In the case where n = 3, since there cannot be two consecutive beam splitters in a normal form, the
beam spitters are alternatively between the top two wires and the bottom two wires. Because of Rules
(5.61) and (5.58), if there is a beam splitter between the top two wires, then one betwen the bottom
two wires, and then again one between the top two wires, those three beam splitter necessarily match
the left-hand side of Rule (5.65). Hence, a normal form contains at most three beam splitters: at most
one on the top and two on the bottom. Additionally, if the one on the top is not here, then since there
cannot be two consecutive beam splitters, there is only one on the bottom. Finally, Rules (5.61) and
(5.58) guarantee that the phase shifters are such that the normal form has the shape given in Figure 5.8c.
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Figure 5.9: Non-trivial critical peaks (more precisely, those not involving single-generator patterns).

Now, we want to show that the normal forms are unique (that is, that the normal form of any circuit
is unique). Lemma 5.24 and Proposition 5.17 imply that the rewriting rules preserve the semantics, hence
it suffices to show that the circuits of Figure 5.8 are uniquely determined by their semantics. One can
check that given any circuit of the form given in Figure 5.8b (resp. Figure 5.8c), there is a (unique) way
of adding 0-angled phase shifters and beam splitters that gives us a circuit of the form of Lemma 5.12
(resp. Lemma 5.13) with the conditions on the angles satisfied. Then the uniqueness for n = 2 and n = 3
follows from the uniqueness given by Lemma 5.12 and Lemma 5.13 respectively. For n = 1, the proof is
straightforward.

Theorem 5.27. PPRS is globally confluent.

Proof. Since PPRS is strongly normalising, by Newman’s lemma [125], it suffices to prove that PPRS is
locally confluent.

First, note that the trivial critical pairs, in which the two rewriting rules are applied to disjoint pat-
terns, can be closed in a straightforward way. Indeed, after doing any of the two transformations involved,
the other one can be done independently, and the final result does not depend on which transformation
was applied first.

Additionally, the non-trivial critical pairs (see Figure 5.9) all involve at most three (spatial) modes.
Indeed, first, two overlapping patterns necessarily share at least one spatial mode, so that if they

both involve at most two modes, then their union involves at most three modes. This implies that any
non-trivial critical pair involving at least four modes must arise from at least one instance of Rule (5.65).

If the other rewriting step of the critical pair is not an instance of Rule (5.65), it would involve at most
two modes. For the union with the instance of Rule (5.65) to involve four modes, it must involve exactly
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Figure 5.10: General scheme of a PPRS triangular normal form. The stars mean that any phase shifter
or beam splitter with angle 0 is replaced by the identity. The conditions on the angles are the following:
αi,j , βi,j ∈ [0, π); γi ∈ [0, 2π); αi,j = 0⇒ ∀j′ > j, αi,j′ = 0; αi,j ∈ {0, π2 } ⇒ βi,j = 0.

two modes and the two patterns must share only one mode. Consequently, their union is composed only
of phase shifters. Since in the left-hand side of Rule (5.65) there is at most one phase shifter on each
mode, the union of the two patterns must be a single phase shifter.32 Moreover, for the two patterns
to share not more than one mode, it must be on the top mode of one pattern and on the bottom mode
of the other pattern. Namely, since the left-hand side of Rule (5.65) does not have a phase shifter on
the bottom mode, it must be on the top mode of the associated pattern and on the bottom mode of the
other pattern. The only rule in which the left-hand side involves two modes and has a phase shifter on
the bottom mode is Rule (5.61), but this phase shifter cannot belong to a pattern corresponding to the
left-hand side of Rule (5.65) since it would be both on the top left and on the bottom left of a beam
splitter at the same time, which is not possible.

Hence, any non-trivial critical pair involving at least four modes must arise from two instances of
Rule (5.65). Since the left-hand side of this rule does not have a phase shifter on the bottom mode, the
two patterns cannot share only one mode and must share at least two modes. Then since their union
involves at least four modes, they share exactly two modes. These two modes are the top two of one
pattern and the bottom two of the other pattern. In the left-hand side of Rule (5.65), there are at most
two generators that act only on the bottom two modes and therefore can be in the intersection of the
two patterns: the phase shifter labeled with ϕ1 if present, and the beam splitter labelled with θ2. If the
phase shifter labeled with ϕ1 is in the intersection of the two patterns then it necessarily correspond to
the phase shifter labeled with ϕ2 in the other pattern, but this is not possible since on is on the top
right of a beam splitter whereas the other is on the bottom right of a beam splitter. Therefore, the two
patterns necessarily overlap by one beam splitter, which is the bottom one in one pattern and one of the
two top ones in the other pattern. But in the left-hand side of Rule (5.65), the bottom beam splitter is
connected by its top wires to the bottom of another beam splitter on each side, whereas each of the two
top ones is connected by at least one of its top wires to the top wire of another beam splitter, hence the
two patterns cannot overlap this way.

Thus, all non-trivial critical pairs involve at most three spatial modes. It follows from Lemma 5.26
that any critical pair on at most three wires can be closed, which gives us the local confluence.

We now characterise the normal forms of PPRS in the general case.

Definition 5.28. A PPRS triangular normal form is a circuit with a triangular shape similar to Fig-
ure 5.1a, but with all 0-angled generators replaced with identities and with additional conditions on the
angles, as described in Figure 5.10.

Figure 5.11 shows an example: the figure on the left is the “full” circuit with 0-angled beam splitters
while on the right is the corresponding PPRS triangular normal form.

Lemma 5.29. A LOPRO
PP -circuit is irreducible if and only if it is a PPRS triangular normal form.

Proof. First we prove that PPRS triangular normal forms are irreducible by checking that none of the
rules of Figure 5.7 can be applied in a PPRS triangular normal form.

32Note that two patterns that overlap only by identities can be considered disjoint.
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Figure 5.11: An example of a PPRS triangular normal form. In the figure on the left, the beam splitters
and phase shifters with angle 0 in the corresponding triangular form are shown in red. In the figure on
the right, they are replaced with identities.

• In a PPRS triangular normal form, the angles of all generators are in (0, 2π) (indeed, in Figure 5.10,
∀i, j, αi,j , βi,j , γi ∈ [0, 2π), and all generators with angle 0 are replaced by the identity). Hence,
one cannot apply Rules (5.56),(5.57),(5.59) and (5.60).

• For each beam splitter replaced by the identity in the scheme of Figure 5.10, the conditions on the
angles imply that the phase shifter on its top left is replaced by the identity too. Hence, in a PPRS
triangular normal form, any phase shifter must be either on the top left of a beam splitter, or on
the far right of the circuit. In both cases, there cannot be another phase shifter on its right. Hence,
there are no consecutive phase shifters, so that Rule (5.58) cannot be applied. Moreover, this also
implies that a phase shifter cannot be on the bottom left of a beam splitter, so that Rule (5.61)
cannot be applied either.

• The conditions on the angles imply that there is no phase shifter on the top left of a π
2 -angled beam

splitter. Hence, Rule (5.62) cannot be applied.

• The angles of the beam splitters, and of the phase shifters on the top left of beam splitters, are in
(0, π). Hence, Rules (5.63) and (5.64) cannot be applied.

• The triangular shape, together with the fact that αi,j = 0⇒ αi,j+1 = 0 in Figure 5.10, imply that
any beam splitter must be connected by its top right either directly to the output (possibly through
a phase shifter), or to the bottom left of another beam splitter. In the left hand sides of Rules (5.65)
and (5.66), the top right of the leftmost beam splitter is connected to the top left of another beam
splitter, which is incompatible with this property. Hence, one cannot find these patterns in a PPRS
triangular normal form, so that Rules (5.65) and (5.66) cannot be applied.

Now we want to prove that any irreducible circuit is a PPRS triangular normal form. First, note that
any irreducible circuit satisfies the following properties:

• There are no consecutive phase shifters. This is due to Rule (5.58).

• All angles are in (0, 2π). This is due to Rules (5.56),(5.57),(5.59) and (5.60).

• The angles of the beam splitters, and of the phase shifters on the top left of beam splitters, are in
(0, π). This is due to Rules (5.63) and (5.64).

• There is no phase shifter on the top left of a π
2 -angled beam splitter. This is due to Rule (5.62).

• There is no phase shifter on the bottom left of a beam splitter. This is due to Rule (5.61).

• There are not two consecutive beam splitters on the same modes. This is due to Rule (5.66) and
to the fact that there is no phase shifter on the bottom left of a beam splitter.
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Second, we can remark that a LOPRO
PP -circuit of size n ≥ 2 is a PPRS triangular normal form if and

only if it is of the form

D
C ′

?
∗

where C ′ is a PPRS triangular normal form of size n− 1, and D is of the form

α1

α0

αn−2

αn−3

β1

β0

βn−3

βn−2

∗

∗
∗

∗

∗

∗
∗

∗

where, as in Figure 5.10, the stars mean that any phase shifter or beam splitter with angle 0 is replaced
by the identity, and ∀i, αi, βi ∈ [0, π), αi = 0⇒ αi+1 = 0, and αi ∈ {0, π2 } ⇒ βi = 0. We will call such
a circuit a PS-BS-diagonal.

We now prove by induction on n that any irreducible circuit of size n is a PPRS triangular normal
form.

If n ∈ {1, 2, 3}, then the result follows directly from Lemma 5.26.
Given n ≥ 3, let us assume that the result holds for circuits of size at most n, and consider an

irreducible LOPRO
PP -circuit C of size n+ 1.

First, C contains at most one beam splitter between the top two wires. Indeed, by contradiction,
assume that it contains two beam splitters or more between the top two wires. Then by deformation, C
can be written in the form

∗ ∗∗

C1
C2

C3

∗

.

Since C is irreducible, C2 is irreducible too, so that by induction hypothesis it is a PPRS triangular
normal form. Since there cannot be two consecutive beam splitters in C, there must be a beam splitter
between the top two wires in C2. Thus by deformation, C can be written in the form

∗ ∗∗

C1

D2

C3

∗

∗ ϕ
∗

∗
∗

C ′2

where D2 is a PS-BS-diagonal and C ′2 is a PPRS triangular normal form. If ϕ 6= 0 (that is, if the phase
shifter is present), then C can be reduced using Rule (5.61). If ϕ = 0 (that is, if the phase shifter is
not present), then C can be reduced using Rule (5.65). In both cases, this contradicts the fact that C is
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irreducible.

Thus, C contains at most one beam splitter between the top two wires. If it contains no beam splitter
between these wires, then it is of the form

?

C ′

∗

with C ′ irreducible. By induction hypothesis, C ′ is a PPRS triangular normal form. Note that the
identity circuit is a PS-BS-diagonal (with ∀i, αi = βi = 0), so that C is a PPRS normal form.

If C contains a beam splitter between the top two wires, then by deformation it can be written in the
form

α

C1 C2

∗
?
∗

β

with C1 and C2 irreducible. Note that since C is irreducible, α cannot be equal to 0, and α = π
2 ⇒ β = 0.

By induction hypothesis, C1 is a PPRS triangular normal form, so that C can be further decomposed as

αβ

C2

∗
?
∗

D1
C ′1

ϕ
∗

where D1 is a PS-BS-diagonal and C ′1 is a PPRS triangular normal form. Since there cannot be a phase
shifter on the bottom left of a beam splitter, one has ϕ = 0, so that up to deformation,

C =

αβ

C2

∗
?
∗

D1
C ′1

.

Since α 6= 0 and α = π
2 ⇒ β = 0,

αβ
∗

D1
necessarily satisfies the conditions to be a PS-BS-
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diagonal. Moreover, C2
C ′1

is irreducible as it is a sub-circuit of C, so that by induction

hypothesis it is a PPRS triangular normal form. Hence, C is a PPRS triangular normal form.

Theorem 5.30. Any LOPRO
PP -circuit, with the rules of PPRS, converges to a unique PPRS triangular

normal form.

Proof. Since PPRS is globally confluent and terminating, every circuit is reduced to a unique normal
form. It follows from Lemma 5.29 that this normal form is a PPRS triangular normal form.

Remark 5.31. By using Equation (5.18) (together with Equations (5.1), (5.2) and (5.21)) and by adding
0-angled beam splitters if necessary, one can turn any circuit in PPRS triangular normal form into a
circuit in the rectangular form of [41] shown in Figure 5.1b.

More precisely, if necessary, one adds 0-angled beam splitters in the PPRS triangular normal form
to obtain a triangular shape, as in Figure 5.1a. Then, for example with 7 spatial modes, one proceeds as
follows:33

→

→

→ · · · →

=

→ · · · →

33Here we only show how the beam splitters move along the process. We interpret Equation (5.18) as sliding one of the
beam splitters through the two others while changing the parameters and adding some phase shifters. Before and after each
move it may be necessary to manipulate the phase shifters with the help of Equations (5.1), (5.2) and (5.21). The beam
splitters represented in red are just to be moved, and the beam splitters represented in blue have just been moved.
Note that we apply Equation (5.18) from right to left. Indeed, note that the upside-down version of Equation (5.18) is

sound. This implies that by manipulating the phases, any pattern of three beam splitters of the shape of the right-hand
side of Equation (5.18) and with angles in [0, π) can be made to satisfy the required conditions, and that there exists a
left-hand side with the angles of the beam splitters in [0, π). In practice, one would in fact rather use a generalised version of
Equation (5.18) with fewer conditions, which can be derived from the axioms of the LOv-calculus (or of the LOPP-calculus
defined below) due to their completeness.
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→ · · · →

=

→ · · · →

This leads us to a rectangular form of [41] (see Figure 5.1b).

We can now prove the completeness for the polarisation-preserving fragment.

Theorem 5.32. For any LOPRO
PP -circuits C1,C2 such that JC1Kpp = JC2Kpp, their normal forms are equal,

i.e. N1 = N2, where N1 (resp. N2) is the unique normal form of C1 (resp. C2) given by Theorem 5.30.

Proof. As the rewriting system preserves the semantics, it is sufficient to prove that JN1Kpp = JN2Kpp ⇒
N1 = N2.

Let idn denote the identity circuit with n identity wires. First, we show by induction on n that
JNKpp = JidnKpp ⇒ N = idn for any PPRS triangular normal form N : n→ n.

For n = 1, N = β1
∗

. The semantics imposes β1 = 0. Therefore N = id1.
Let us consider the case where N is of size n + 1. With the notations of Figure 5.10 for the angles,

one has 〈0| JNKpp |0〉 = ei(β0,0+γ0) cos(α0,0). Since 〈0| Jidn+1Kpp |0〉 = 1, this implies that α0,0 = 0. In
turn, the conditions on the angles imply that β0,0 = 0. Hence γ0 = 0 too. Again by the conditions on
the angles, one has ∀i, α0,i = β0,i = 0. Thus, N is of the form id1 ⊕N ′ where N ′ is a PPRS triangular
normal form. By induction hypothesis, N ′ = idn, so that N = idn+1, which concludes the induction.

Let P be an inverse circuit of N1 and N2, that is, a LOPRO
PP -circuit such that JP Kpp = JN1K

−1
pp . The

existence of such a circuit follows from [114]. As JN1P Kpp = JPN2Kpp = JidnKpp, the term N1PN2 can
both be reduced to N1 (by reducing PN2 first) and N2 (by reducing N1P first). By Theorem 5.30,
N1 = N2.

It follows directly from Theorems 5.30 and 5.32 that one can obtain a complete equational theory for
LOPRO

PP -circuits by turning the rules of Figure 5.7 into equations. This equational theory can be simplified,
moreover it can be extended into a complete equational theory for LOPP-circuits by observing that the
swap is equivalent to a π

2 -angled beam splitter, up to a global phase.

Definition 5.33 (LOPP-calculus). Two LOPP-circuits D1, D2 are equivalent according to the rules of
the LOPP-calculus, denoted LOPP ` D1 = D2, if one can transform D1 into D2 using the equations given
in Figure 5.12. More precisely, LOPP ` · = · is defined as the smallest congruence which satisfies the
equations of Figure 5.12 in addition to the axioms of PROP.

Remark 5.34. The equations of Figure 5.12 are consequences of the axioms of the LOv-calculus. Indeed,
Equations (5.B) and (5.D) correspond respectively to Equations (5.3) and (5.1); Equation (5.G) is a par-
ticular case of Equation (5.18) (up to Equation (5.2)); Equations (5.E) and (5.F) correspond respectively
to Equations (5.21) and (5.19); Equation (5.A) follows directly from Equation (5.2) and Proposition 5.19;
and Equation (5.C) follows directly from Equations (5.29), (5.1) and (5.2).

102



5.3. Polarisation-Preserving Circuits
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Figure 5.12: Axioms of the LOPP-calculus. The equations are valid for arbitrary parameters ϕ,ϕi, θ, θi ∈
R. In Equations (5.F) and (5.G), the angles on the left-hand side can take any value while the right-hand
side is given by Lemma 5.13 and Lemma 5.12 respectively.

Corollary 5.35. The equational theory given by Figure 5.12 is sound and complete: for any two LOPP-
circuits D1 and D2, JD1Kpp = JD2Kpp iff LOPP ` D1 = D2.

Proof. The soundness follows directly from the fact that the equations of Figure 5.12 are consequences
of those of the LOv-calculus, together with the soundness of the latter.

Regarding completeness, first, using Equation (5.C) one can transform any circuit into a swap-free
circuit. Then it remains to show that every rule of Figure 5.7 is sound with respect to the equational
theory given by Figure 5.12.

For Rules (5.56) to (5.64) and (5.66), it suffices to remark that in the proof of Lemma 5.24 we only
use Equations (5.1), (5.2), (5.3), (5.21) and (5.19) — which correspond to Equations (5.D), (5.A), (5.B),
(5.E) and (5.F) respectively — Equation (5.29) — which is a direct consequence of Equations (5.C), (5.A)
and (5.D) — and Proposition 5.19 in the cases of a phase shifter and of a beam splitter — which follow
from Equations (5.A), (5.B), (5.D) and (5.F).

Regarding Rule (5.65), its LHS can be transformed as follows:

θ1

θ2

θ3

ϕ1

ϕ2

∗

∗

(5.A)(5.D)(5.E)=

θ1

θ2

θ3
ϕ2 − ϕ1ϕ1

ϕ1

(5.G)= α1

α2

α3

β′2

β′1 β′3

β′4

β′5

β′6

ϕ1

ϕ1

(5.D)= α1

α2

α3β′3

β′4

β′5

β′6

ϕ1 + β′2

ϕ1 + β′1

Note that the angles in the resulting circuit are not necessarily those of the RHS of Rule (5.65).
However, it can be reduced to a normal form using the PPRS rewriting system, and one can remark
that the reduction cannot use Rule (5.65) (indeed, using this rule would require a second beam splitter
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between the two top wires, but no rule in PPRS allows for creating beam splitters or to move them to
the top). Moreover, one can check that the conditions on the angles in Rule (5.65) are the same as in a
PPRS triangular normal form on 3 modes, so that up to using Equations (5.A) and (5.B), the normal
form corresponds to the RHS of Rule (5.65). Hence, the soundness of Rule (5.65) with respect to the
equational theory of Figure 5.12 follows from that of the other rules.

Remark 5.36. Note that Equation (5.G) is slightly simplified compared to Equation (5.18), with one
phase shifter less. We have just proved that Equation (5.18) can be derived from the equations of Fig-
ure 5.12. However, this does not imply a priori that we can replace Equation (5.18) by Equation (5.G)
in the axioms of the LOv-calculus while preserving the completeness. Indeed, the derivation uses Equa-
tion (5.E) (a.k.a. Equation (5.21)), whose proof itself uses Equation (5.18) with two non-zero phases (see
Appendix C.1). Such a simplification nonetheless becomes possible if one generalises Equation (5.15) into
Equation (5.40), since one can then derive Equation (5.21) using Equations (5.17), (5.24) (which follows
from Equations (5.1) and (5.40)) and (5.16).

Finally, we can now show that PPRS triangular normal forms give a unique representation of any
unitary:

Proposition 5.37 (Universality and uniqueness in the polarisation-preserving fragment). For any uni-
tary U : Cn → Cn, there exists a unique circuit T in PPRS triangular normal form such that JT Kpp = U .

Proof. This follows directly from [114], Theorems 5.30 and 5.32, Lemma 5.24 together with Proposi-
tion 5.17, and the fact that all PPRS triangular normal forms are irreducible.

5.4 Completeness of the LOv-Calculus
To prove the completeness of the LOv-calculus (Theorem 5.22), we introduce the following notion of
normal form.

Definition 5.38 (Normal form). A circuit in normal form N : n→ m is a circuit of the form shown in
Figure 5.13, where T is a PPRS triangular normal form (Definition 5.28). If n′ = m′ = 0, then N is
said to be in pure normal form.

}
m′

0

0
n′

{
0

0

T

¬ 0

¬ 0

m¬0

¬0

n



Figure 5.13: Shape of a circuit in normal form as of Definition 5.38.

Lemma 5.39 (Uniqueness of the pure normal form). If two circuits N1 and N2 in pure normal form are
such that JN1K = JN2K, then N1 = N2.

Proof. Let T1 (resp. T2) be the LOPRO
PP -circuit associated with N1 (resp N2) as in Figure 5.13. Note that

JTiKpp ◦ µ = µ ◦ JNiK where µ : CMn → C2n is the isomorphism |V, k〉 7→ |2k〉 and |H, k〉 7→ |2k + 1〉.
Thus JN1K = JN2K implies JT1Kpp = JT2Kpp so that the result follows from Proposition 5.37.

Lemma 5.40. For any circuit D without vacuum state sources or detectors there exists a circuit in pure
normal form N such that LOv ` D = N .
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Proof. By Theorem 5.30 and Lemma 5.24, it suffices to prove that any circuit D : n→ n without 0 or
0 can be put in the form

D′

nn


¬0

¬0

¬ 0

¬ 0

(E ′)

where D′ is a LOPRO
PP -circuit, by using the equations of Figure 5.4.

Note that any circuit D : n → n without 0 or 0 can be written as dk ◦ · · · ◦ d1, with the di
of the form id` ⊕ g ⊕ id`′ , where id` := ···`

{
(with id0 = ), g ∈ { θ , , ϕ ,

θ
, } and

`+ `′ = n− 1 or n− 2 depending on the type of g (if k = 0 then we take the product dk ◦ · · · ◦ d1 to be
the identity circuit idn).

By Equations (5.23), (5.5) and (5.8), idn is equivalent to the circuit of the form (E ′) with D′ = id2n,
which is indeed a LOPRO

PP -circuit. It remains to prove that for any circuit D of the form (E ′) with D′ a
LOPRO

PP -circuit, any g ∈ { θ , , ϕ ,
θ
, } and any `, the circuit D ◦ (id` ⊕ g ⊕ id`′) can be put

again in the form (E ′) with D′ being a LOPRO
PP -circuit.

The generator g passes through the left part of D as follows:

¬0

ϕ

=
¬0 ϕ

ϕ

(5.67)

¬0

θ =
¬0

θ (5.68)

¬0

¬0

=
¬0

¬0

(5.69)

¬0

¬0

θ

=
¬0

¬0

θ

θ

(5.70)

¬0

¬0

=
¬0

¬0

(5.71)

Then, using Equation (5.C) (and Remark 5.34), we can remove the swaps in order to turn the middle
part into a LOPRO

PP -circuit, which finishes the proof.

It remains to prove Equations (5.67) to (5.71) using the axioms of the LOv-calculus. The derivations
are given in Appendix C.2.

The completeness for circuits without vacuum state sources or detectors follows directly from Lem-
mas 5.39 and 5.40:

Proposition 5.41. Given any two circuits D1 and D2 without any 0 or 0 , if JD1K = JD2K then
LOv ` D1 = D2.
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Proof. By Lemma 5.40, there exist two circuits in pure normal form N1 and N2 such that LOv ` D1 = N1
and LOv ` D2 = N2. By soundness (Proposition 5.17), one has JN1K = JD1K = JD2K = JN2K, so that by
Lemma 5.39, N1 = N2. The result follows by transitivity.

Proof of Theorem 5.22. We now have the required material to to finish the proof of Theorem 5.22.
Let D1, D2 : n→ m be any two LOv-circuits such that JD1K = JD2K. By deformation, we can write them
as

}
m′

0

0
n′
{

0

0

D′1

}
mn

{
and }

m′′
0

0
n′′
{

0

0

D′2

}
mn

{

where D′1, D′2 do not contain 0 or 0 . Up to using Equation (5.8), we can assume that n′′ = n′. Since
circuits without vacuum state sources and detectors necessarily have the same number of input wires as
of output wires, this implies that m′′ = m′. By Lemma 5.40, we can put D′1 and D′2 in pure normal form.
Then by using Equations (5.11), (5.14), (5.25) and (5.26), we get two circuits in normal form

DNF
1 =

0

0

0

0

T1

}
mn

{
¬0

¬0

¬ 0

¬ 0

2n′
{ }

2m′
and DNF

2 = }
2m′0

0
2n′
{

0

0

T2

}
mn

{
¬0

¬0

¬ 0

¬ 0

with T1 and T2 in PPRS triangular normal form.
JD1K = JD2K implies that π ◦ JT1Kpp ◦ ι = π ◦ JT2Kpp ◦ ι where ι : C2n → C2(n+n′) is the injection

|k〉 7→ |k〉 and π : C2(m+m′) → C2m is the projector s.t. π |k〉 = |k〉 when k < 2m and π |k〉 = 0 otherwise.
By using basic linear algebra, one can show that this implies that there exists two unitaries Q,Q′ s.t.
JT2Kpp = (I ⊕Q′) ◦ JT1Kpp ◦ (I ⊕Q) (see Lemma C.36 in Appendix C.3).

By Proposition 5.37, there exist two circuits Tin and Tout in PPRS triangular normal form such that
JTinKpp = Q and JToutKpp = Q′. By Equations (5.9), (5.12), (5.27) and (5.28), we can make Tin and Tout

appear, turning DNF
1 into

Tin

}
2m′

0

0
2n′
{

0

0

T1

mn

 ¬0

¬0

¬ 0

¬ 0

Tout

.

Since by construction, the middle part (made of Tin, T1 and Tout) has the same semantics as T2, by
Proposition 5.41 (or by Corollary 5.35 and Remark 5.34), we can transform it into T2 using the axioms
of the LOv-calculus, which means transforming DNF

1 into DNF
2 . The result follows by transitivity.

Proof of Theorem 5.15. Finally, we can now also prove the universality of LOv-circuits. Let U :
CMn → CMm be a sub-unitary map i.e. a map U s.t. U†U v In. We show in the following how to
construct a LOv-circuit C s.t. JCK = U . First note that V : C2n → C2m = µm ◦ U ◦ µ†n is also a
sub-unitary map, where µn : CMn → C2n is such that µn |V, k〉 = |2k〉 and µn |H, k〉 = |2k + 1〉.

Since In − V †V is semi-definite positive there exists A : C2n → C` s.t. A†A = In − V †V . As a
consequence the matrix W : C2n → C2m+` =

(
V
A

)
is an isometry since W †W = V †V + A†A = I2n.

W can be turned into a unitary matrix by adding columns to W , i.e. ∃B,D s.t. U ′ : C2m+` → C2m+` =
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V B
A D

)
is unitary. By Proposition 5.37, there exists a LOPRO

PP -circuit T s.t. JT Kpp = U ′. Let C be
the following LOv-circuit:

}
`

0

0
2m+ `− 2n

{ 0

0

T

}
mn

{
¬0

¬0

¬ 0

¬ 0

By construction, JCK = U .

5.5 Discussion About the Trace
Note that we have defined LOv-circuits as a PROP without a trace. In this section, we discuss two ways
of enriching LOv-circuits with a trace while giving it a semantics.

5.5.1 Instant-Travel Model
5.5.1.1 Definition

If we were to add a trace to LOv-circuits, the most obvious way to give it a semantics is by adapting the
formula of Definition 3.11: JTr(D)K = T (JDK), where, for any sub-unitary f : CMm+1 → CMn+1 ,

T (f) :=
∞∑
k=0

π<n ◦ (f ◦ πnm)k ◦ f ◦ ιm

where π<n =
CMn+1 → CMn

|c, p〉 7→

{
|c, p〉 if p < n

0 if p = n

, πnm =
CMn+1 → CMm+1

|c, p〉 7→

{
0 if p < n

|c,m〉 if p = n

and

ιm = CMm → CMm+1

|c, p〉 7→ |c, p〉 .

In other words, π<n =

u

wwwww
v

0

n


}

�����
~
, πnm =

u

wwww
v

0

0

0

0

n


m

}

����
~
, ιm =

u

wwwww
v

0

m


}

�����
~

and

JTr(D)K =
∞∑
k=0

u

wwwww
v

0

0

0

0
DD

0

0

0

0

0

0

0

0
D

0 0

}

�����
~
.

It follows from a result of [16] that if f is unitary, then T (f) is well-defined and unitary. If f is
only sub-unitary, then similarly as in the proof of Theorem 5.15, we can build a unitary matrix of the
form

(
A B
C f

)
. That is, we can write f as π̄(N+1)

(n+1) ◦ U ◦ ῑ
(N+1)
(m+1), where U : CN+1 → CN+1 is unitary,

π̄
(N)
(n) =

CMN → CMn

|c, p〉 7→

{
|c, p+ n−N〉 if p ≥ N − n
0 if p < N − n

and ῑ
(N)
(m) = CMm → CMN

|c, p〉 7→ |c, p+N −m〉 . Then
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T (f) =
∞∑
k=0

π<n ◦
(
π̄

(N+1)
(n+1) ◦ U ◦ ῑ

(N+1)
(m+1) ◦ πnm

)k
◦ π̄(N+1)

(n+1) ◦ U ◦ ῑ
(N+1)
(m+1) ◦ ιm

=
∞∑
k=0

π<n ◦ π̄(N+1)
(n+1) ◦

(
U ◦ ῑ(N+1)

(m+1) ◦ πnm ◦ π̄
(N+1)
(n+1)

)k
◦ U ◦ ῑ(N+1)

(m+1) ◦ ιm.

Noting that π<n ◦ π̄(N+1)
(n+1) = π̄

(N)
(n) ◦ π<N , ῑ

(N+1)
(m+1) ◦ πnm ◦ π̄

(N+1)
(n+1) = πNN and ῑ

(N+1)
(m+1) ◦ ιm = ιN ◦ ῑ(N)

(m),
this gives us

T (f) =
∞∑
k=0

π̄
(N)
(n) ◦ π<N ◦ (U ◦ πNN )k ◦ U ◦ ιN ◦ ῑ(N)

(m).

Since U is unitary, it is clear given the result of [16] that this series is convergent and equal to π̄(N)
(n) ◦

T (U) ◦ ῑ(N)
(m), which is sub-unitary.

Thus, defining JTr(D)K = T (JDK) gives a well-defined semantics to the trace, which preserves the
fact that the semantics of any circuit is sub-unitary. Additionally, if the semantics of a circuit is unitary
(which is the case for instance if it contain neither 0 nor 0 ), then the semantics of its trace is still
unitary.

Moreover, it is easy to see that if the semantics of a circuitD does not act on the polarisation, that is, if
JDK = IC{V,H}⊗f for some f : Cn → Cm, then this is also the case of Tr(D), and JTr(D)Kpp = Tpp(JDKpp),
where Tpp is defined analogously as T . This implies that one can also make the PROP of LOPP-circuits
into a traced PROP and give this semantics to the trace.

5.5.1.2 Complete Equational Theories

With this semantics, the completeness result of Theorem 5.22 can be extended to the traced PROP of
LOv-circuits by adding the two axioms of Figure 5.14 to those of Figure 5.4. Analogously, the completeness
result of Corollary 5.35 can be extended to the traced PROP of LOPP-circuits by adding the two axioms
of Figure 5.15 to those of Figure 5.12. Indeed, to show these extended completeness results, it suffices

ϕ

θ

00

00
=

α

00
(5.74)

α

00 = (5.75)

Figure 5.14: Additional axioms to the LOv-calculus for traced LOv-circuits. In Equation (5.74),
α = arg

(
2 cos(ϕ)− cos(θ)(1 + cos2(ϕ))− i sin(θ) sin2(ϕ)

)
(and by convention, α = 0 if θ = ϕ = 0 and

α = π if θ = ϕ = π).

ϕ

θ = α (5.78)
α

= (5.79)

Figure 5.15: Additional axioms to the LOPP-calculus for traced LOPP-circuits. In Equation (5.78),
α = arg

(
2 cos(ϕ)− cos(θ)(1 + cos2(ϕ))− i sin(θ) sin2(ϕ)

)
(and by convention, α = 0 if θ = ϕ = 0 and

α = π if θ = ϕ = π).

to prove that any circuit can be transformed into a trace-free circuit using the equations of Figures 5.4
and 5.14 (resp. Figures 5.12 and 5.15). By induction, it suffices to prove that given a trace-free circuit
D, Tr(D) can be transformed into a trace-free circuit.
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In the case of a LOPP-circuit, it follows from Corollary 5.35 and Proposition 5.37 that using the
equations of Figure 5.12, D can be transformed into a PPRS triangular normal form flipped upside
down. This gives us a circuit of the form

∗

∗

∗

∗
∗

∗

∗

∗ ∗

∗

∗

∗

∗

∗

∗ ∗

∗

∗ ∗

∗

∗

∗
∗

∗

∗

∗
∗

∗ ∗

∗
∗

∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗

∗
∗

∗
∗

?

?

?

?

?

?

?

?

(with possibly missing beam splitters and phase shifters), from which the trace can be removed using
Equation (5.1) (together with deformation) and Equation (5.78) or (5.79).

In the case of a general LOv-circuit, the proof is similar. By proceeding in a similar way as in the
proof of Theorem 5.22 (but with all circuits flipped upside down), on can transform D into a normal
form flipped upside down. Then Tr(D) looks like, for instance:

∗

∗

∗

∗
∗

∗
0 ∗
0

∗ ∗

∗

∗

∗

∗

∗

∗ ∗
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∗ ∗
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∗
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∗

∗
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∗
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∗
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∗
∗

∗0
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∗
∗

∗
∗

0

0

∗
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?¬0

¬0

¬ 0

¬ 0

¬ 0

which can be deformed into
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∗

∗
∗

∗
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0
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0
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∗
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0

0

∗
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.

After using the following equality, which is a consequence of the axioms of the LOv-calculus:

0 0 ¬¬
= 00

00

one can then, twice, apply Equation (5.74) or (5.75), together with some additional transformations by
the axioms of the LOv-calculus, to remove the two traces.

5.5.1.3 Physical Interpretation

Intuitively, a photon in a circuit with traces follows several (possibly infinitely many) paths in super-
position, each path being from an input wire to an output wire and containing an arbitrary number

of travels through trace wires. For instance in the circuit
ϕ

θ , there is one possible path for

each natural integer, corresponding to the number of times the photon takes the feedback loop, and
a photon entering this circuit follows all these paths in superposition (except if ϕ is a multiple of π).
Namely, the amplitude corresponding to passing n times through the feedback loop is cos(ϕ) if n = 0,
and − sin2(ϕ) cosn−1(ϕ)eniθ if n 6= 0.
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Intuitively, the semantics assumes that the travelling time is the same for all possible paths. Physically,
this can mean that the travelling time through loops is negligible, which may not be a realistic assumption,
especially in cases where the photon loops an unbounded number of times. In particular, one can notice
the discontinuity in the value of α given by Equation (5.78) when θ = 0: one has α = π if ϕ 6= 0 but
α = 0 if ϕ = 0. Intuitively, when θ = 0 and ϕ approaches 0, in order to approximate the final state of the
photon, one has to take into account a number of values of n (corresponding to the number of times the
photon takes the feedback loop) that approaches infinity, which eventually breaks the assumption that
the travelling time is negligible. The situation is similar when θ = π: then one has α = 0 if ϕ 6= π but
α = π if ϕ = π.

With the diagrams considered in Chapters 3, 4 and 7, since there is only one path for each basis state of
the photon, it is always possible to correct the differences in the time taken by the photon in the different
paths of a physical implementation, by adding elements such as at the output. Unfortunately,

such a correction is clearly not possible in traced LOv-circuits, for instance in
ϕ

θ . Correction

might however be possible in the case where the photon is purely monochromatic, since in this case a
difference in travelling time would become equivalent to a difference in phase, which could be corrected
using a phase shifter. As with the negligible time hypothesis above, any defect in the monochromality
would (at least in theory) become apparent if θ and ϕ come close enough to 0 or π.

Finally, this semantics might make sense in the context of an experiment in which the time when the
photon exits the circuit does not matter.

5.5.2 Delayed Trace
The semantics of the trace given in the previous section can be made more realistic by taking into account
the time that the photon takes to go into a feedback loop and traverse the circuit again. We briefly present
here a possible way to formalise this, although the study of such a formalism is essentially left for future
work.

We consider time as an additional degree of freedom of the photon, so that its state space is now
CMn ⊗ CR. We also consider an additional generator τ , for any τ ∈ R>0, which delays the photon
by τ :

r τ z
:= |c, p, t〉 7→ |c, p, t+ τ〉. The semantics of the other generators is the same as before on

the polarisation and the position, and they do not act on the time. The semantics of the sequential and
parallel compositions is adapted in the straightforward way, and the semantics of the trace is defined in
the same way as in the previous section, with π<n, πnm and ιm not acting on the time. Now we impose
an additional restriction on diagrams, namely that there must be a delay generator at the beginning of
every trace loop. For instance, in Figure 5.16, the diagram on the right is valid while the diagram on the
left is not.

ϕ

θ ϕ′

θ′

ϕ

θ ϕ′

θ′
τ

3τ

Figure 5.16: [Left] A circuit with instant-travel traces. [Right] The same circuit with delayed traces, with
a different delay for each trace.

As a possible variant of this formalism, instead of requiring that every trace is preceded by a delay
generator, one can slightly change the semantics of the trace so that it already includes a fixed delay. Note
that then, strictly speaking, circuits do not form a traced PROP anymore, since the yanking axiom is
not sound with respect to the modified semantics. Indeed, is then equivalent to a delay generator.
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Other, straightforward, possible variants consist in considering discrete time and/or preventing time
from going arbitrarily far in the past, for instance by working in Z, R>0 or N instead of R.

Note that the idea of using a delayed trace and delay generators is similar to the approach of [26],
although the structures considered are different (indeed, [26] considers circuits with discard maps, similar
to those of Section 2.3, in which in particular different wires represent different quantum systems instead
of different positions of the same quantum system).

As a final remark, note that in this chapter, we have not considered the travelling time of a photon
in a circuit without a trace. Indeed, in practice it is always possible to choose the length of the different
wires so that all paths take the same time to follow.
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Chapter 6

A Complete Equational Theory for
Quantum Circuits

Quantum circuits currently form the de facto standard for representing low-level, logical operations on a
quantum memory. They are used for everything: resource estimation [69], optimisation [9, 57, 92, 101,
100, 103], satisfaction of hardware constraints [91, 104], etc.

However, as ubiquitous to quantum computing as they are, the graphical language of quantum circuits
has never been fully formalised. In particular, a complete equational theory has been a longstanding open
problem for 30 years [1]. It would make it possible to directly prove properties such as circuit equivalence
without having to rely on ad-hoc sets of equations. So far, complete equational theories were only known
for non-universal fragments (that is, not able to represent arbitrary unitaries, even approximately), such
as circuits acting on at most two qubits [19, 48], the stabiliser fragment [99, 113], the CNot-dihedral
fragment [8], or fragments of reversible circuits [82, 43, 42].

A seemingly promising approach to developing a complete equational theory for quantum circuits has
been to rely on other graphical languages for quantum computing. Arguably the strongest candidate
has been the ZX-calculus [44, 45],34 equipped with complete equational theories [83, 76, 84, 85, 127].
The ZX-calculus shares the same underlying mathematical representation for states: wires correspond
to Hilbert spaces and parallel composition to the tensor operation. Nonetheless, the completeness of the
ZX-calculus does not lead a priori to a complete equational theory for quantum circuits. The reason lies
in the expressiveness of the ZX-calculus and the non-unitarity of some of its generators. Any quantum
circuit can be straightforwardly seen as a ZX-diagram. On the other hand, a ZX-diagram does not
necessarily represent a unitary map, and even when it does, extracting a corresponding quantum circuit
is known to be a hard task in general [57, 52].

A related approach, used for instance for the fragment of Clifford+T circuits [65, 70, 19], has been
to rely on decompositions of unitary matrices into elementary operations. This approach is related to
the first one in that those decompositions can be made into a graphical language. This language has a
structure of PROP, as the ZX-calculus, but with the difference that the parallel composition stands for
the direct sum instead of the tensor product.

In this chapter, we introduce the first complete equational theory for quantum circuits, by following
the second approach. Specifically, we rely on the complete axiomatisation of the LOPP-calculus found in
Chapter 5. Thus the elementary unitary operations are those performed by the beam splitters and the
phase shifters.

The key difference between LOPP-circuits and ZX-diagrams, that allows us to derive a complete
equational theory for quantum circuits from the LOPP-calculus but not from the ZX-calculus, is that
unlike ZX-generators, the generators of LOPP-circuits are unitary, making it possible to write a translation
not only of quantum circuits into LOPP-circuits but also the other way.

The complete equational theory for quantum circuits is derived from that for (polarisation-preserving)35

34or its variants like ZH [14] and ZW [76], sharing several similar properties.
35In this chapter we will not consider other kinds of linear optical circuits than polarisation-preserving ones.
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Z := P (π) (6.1)

X := H HZ (6.2)

RX(θ) := H HP (θ)
-θ/2

(6.3)

··· ··· := ··· ··· (6.4)

··· ··· := ··· ··· (6.5)

Figure 6.1: Usual abbreviations of quantum circuits.

linear optical circuits as follows: equipped with maps for encoding (from quantum circuits to linear optical
circuits) and decoding (from linear optical circuits to quantum circuits), one can roughly speaking prove
completeness for quantum circuits as long as their equational theory is powerful enough to derive a finite
number of equations, those corresponding to the decoding of the equations of the complete equational
theory for linear optical circuits.

Due to the difference in its interpretation in both kinds of circuits, the parallel composition is not
preserved by the encoding nor the decoding maps. The translations are actually based on a sequential-
isation of circuits, since the translation of a local gate (acting on at most two wires) is translated as a
piece of circuit acting potentially on all wires. Technically, this forces us to work with raw circuits,36

that is, circuits not considered up to the axioms of PROP, as a circuit may lead to a priori distinct
translations depending on the choice of the sequentialisation. Moreover, a single linear optical generator
like a phase shifter (which consists in applying a phase on a particular basis state) is decoded as a piece
of circuit that can be interpreted as a multi-controlled gate acting on all qubits. As we choose to stick
with the usual generators of quantum circuits acting on at most two qubits, multi-controlled gates are
inductively defined and we introduce an equational theory powerful enough to prove the basic algebra of
multi-controlled gates, necessary to finalise the proof of completeness.

The chapter is structured as follows. We first introduce a set of “structural” relations for quantum
circuits generated by the standard elementary gates: Hadamard, Phase-rotations, and CNot. We define
multi-controlled gates using these elementary gates, and show that the basic algebra of multi-controlled
gates can be derived from the structural relations. In addition to the structural equations, we introduce
Euler-angle-based equations. We then proceed to the proof of completeness, based on a back-and-forth
translation from quantum circuits to linear optical circuits.

6.1 Quantum Circuits

6.1.1 Quantum Circuits: Syntax and Semantics
We consider quantum circuits defined on the following standard set of generators: Hadamard, Control-
Not, and Phase-gates, together with global phases.

Definition 6.1. Let QC be the PROP generated by H : 1 → 1, : 2 → 2, and for any ϕ ∈ R,
P (ϕ) : 1→ 1 and ϕ : 0→ 0.

A quantum circuit C : n→ n with n inputs and n outputs is called a n-qubit circuit. Given an n-qubit
circuit C, the corresponding unitary map JCK acts on the Hilbert space C{0,1}n = span(|x〉 , x ∈ {0, 1}n):

Definition 6.2 (Semantics). For any n-qubit quantum circuit C, let JCK : C{0,1}n → C{0,1}n be the linear
map inductively defined as follows: JC2 ◦ C1K = JC2K◦ JC1K, JC1 ⊗ C3K = JC1K⊗ JC3K, and ∀x, y ∈ {0, 1},

36Raw terms are for instance similarly used [109] as an intermediate step in the definition of PROP.
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∀ϕ ∈ R,

J H K = |x〉 7→ |0〉+ (−1)x |1〉√
2

,
q

P (ϕ)
y

= |x〉 7→ eixϕ |x〉 , J K = |x〉 7→ |x〉 ,

r z
= |x, y〉 7→ |x, x⊕ y〉 , 37 J K = |x, y〉 7→ |y, x〉 , J ϕ K = 1 7→ eiϕ, J K = 1 7→ 1.

Remark 6.3. As before, the axioms of PROP guarantee that circuits can be depicted graphically without
ambiguity, and moreover, that they are defined up to deformation. For instance:

P (π/4)

P (π/4)

H =

P (π/4)

P (π/4)H

.

As before too, the semantics is well-defined, that is, two circuits (or more precisely, using the vocabulary
introduced in Section 6.2.1, two raw circuits) equal up to deformation have the same semantics.

Proposition 6.4 (Universality [15]). For any unitary map U acting on C{0,1}n , there exists an n-qubit
circuit C such that JCK = U .

We use standard shortcuts in the description of quantum circuits, given in Figure 6.1. In textual
description, we sometimes use CNot, s(ϕ), X, P (ϕ), etc. to denote respectively , ϕ , X , P (ϕ) ,
etc. Moreover, when the parameters (e.g. ϕ) are not specific values they can take arbitrary ones. We
write RX(θ) for the so-called X-rotation [105],38 whereas the standard phase gate P (ϕ) is a Z-rotation
only up to a global phase. As a consequence, they have a slightly different behaviour: P is 2π-periodic:
JP (2π)K = I, whereas RX is 4π-periodic, and we instead have JRX(2π)K = −I.

6.1.2 Structural Equations
We introduce a set QC0 of structural equations on quantum circuits in Figure 6.2. These equations are
structural in the sense that the transformations on the parameters are only based on the fact that R is
an additive group. In particular, these equations are valid for any reasonable39 restriction on the angles.

We write QC0 ` C1 = C2 when C1 can be transformed into C2 using the equations of Figure 6.2.40

Proposition 6.5. The structural equations of Figure 6.2 are sound, i.e. if QC0 ` C1 = C2 then
JC1K = JC2K.

Proof. By inspection of the equations of Figure 6.2.

Equations (6.a) to (6.l) are fairly standard in quantum computing. Equation (6.m), which is used
for instance in [5], describes two equivalent ways to define a controlled-Z gate. Note that this equation
cannot be derived from the other axioms as it is the only equation on 2 qubits which does not preserve
the parity of the number of CNots plus the number of swaps. Equations (6.n) and (6.o) are more
involved and account for some specific commutation properties of controlled gates (see Proposition 6.27
and Proposition 6.30).

The axioms of QC0, i.e. the equations given in Figure 6.2, are sufficient to derive standard elementary
circuit identities like those given in Figure 6.3.

One can also prove that some particular circuits, called phase-gadgets [51], can be flipped vertically:
37Where x⊕ y := x+ y mod 2.
38JRX(θ)K =

(
cos( θ2 ) −i sin( θ2 )
−i sin( θ2 ) cos( θ2 )

)
39I.e. which forms an additive group and contains π/2.
40More formally, QC0 ` · = · is defined as the smallest congruence which satisfies the equations of Figure 6.2 (together

with the axioms of PROP).
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H H = (6.a)

0 = 2π = (6.b)

ϕ1 + ϕ2 = ϕ1 ϕ2 (6.c)

P (0) = (6.d)

= (6.e)

X
=

XX
(6.f)

= (6.g)

= (6.h)

P (θ)
=

P (θ)
(6.i)

= (6.j)

P (ϕ1) P (ϕ2) = P (ϕ1+ϕ2) (6.k)

P (ϕ)X X = P (−ϕ)
ϕ

(6.l)
H H

=
P (π2 ) P (−π2 )

P (π2 )
(6.m)

RX(θ)

RX(-θ)

HH

RX(θ′)

RX(θ′)
=

RX(θ)

RX(-θ)

H H

RX(θ′)

RX(θ′)
(6.n)

RX(θ)

RX(-θ)

H

RX(θ)

RX(-θ)

H RX(-θ′)

RX(-θ′)

H

RX(θ′)

RX(θ′)

H

=

RX(θ)

RX(-θ)

H

RX(θ)

RX(-θ)

HRX(-θ′)

RX(-θ′)

H

RX(θ′)

RX(θ′)

H

(6.o)

Figure 6.2: Axioms of QC0: Structural equations on quantum circuits. The equations are defined for
any ϕ,ϕ1, ϕ2, θ, θ

′ ∈ R.
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= (6.8)

H

H
=

H

H
(6.9)

X X = (6.10)

= (6.11)

X
=

X
(6.12)

Z Z = (6.13)

= (6.14)

Z
=

Z

Z
(6.15)

RX(θ)
=

RX(θ)
(6.16)

RX(0) = (6.17)

RX(θ) RX(θ′) = RX(θ+θ′) (6.18)

H
=

HH H

X
(6.19)

Figure 6.3: Standard circuit identities that can be derived from the axioms of QC0, given in Figure 6.2 .
The proofs are given in Appendix D.1.

QC0 `
P (ϕ)

=
P (ϕ)

(6.6)

QC0 `
RX(θ)

=
RX(θ)

(6.7)

For instance, Equation (6.6) is derived as follows:

P (ϕ)
=

P (ϕ)

(6.h)=
P (ϕ)

(6.e)=
P (ϕ)

(6.i)=
P (ϕ)

(6.e)=
P (ϕ)

The other derivations are given in Appendix D.1.
Combining Equation (6.6) and Equation (6.i), one can easily prove the following equation, used for

instance in [103] in the context of circuit optimisation:

QC0 `
P (ϕ′)P (ϕ)

=
P (ϕ′) P (ϕ)

When ϕ = −ϕ′ = α/2 the above circuits are two equivalent standard implementations of a controlled-
Z-rotation of angle α. We show in the next section how the basic algebra of (multi-)controlled gates can
be derived.
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6.1.3 Controlled Gates
Multi-controlled gates are useful to describe more elaborate quantum circuits. We use the notations “λ”
and “Λ” for controls. Given a 1-qubit gate G, λ1G is a 2-qubit positively controlled gate: if the control
qubit (the top one) is in state |1〉 (resp. |0〉) then G (resp. the identity) is applied on the target qubit (the
bottom one). λ2G is a 3-qubit positively controlled gate, where the two upper qubits are controls: they
both need to be in state |1〉 for the gate G to fire on the bottom qubit. We also consider more general
multi-controlled gates Λx1...xkG with positive (when xi = 1) and negative (when xi = 0) controls: if the
first qubit is in the state |x1〉 (resp. |x1〉) then Λx2...xkG (resp. the identity) is applied on the remaining
qubits. Finally, ΛxyG denotes a multi-controlled gate with control qubits on both sides — above and
below — of the target qubit.

We will follow a standard construction for multi-controls using a decomposition into elementary 1- and
2-qubit gates (see for instance [15]). Note that we do not aim here at defining all controlled operators:
as this construction is the main apparatus for the completeness result, we only focus on the operations
s(ϕ), X, RX(θ) and P (ϕ). Other controlled operations can then be derived if needed.

We first define in Definition 6.6 circuits implementing regular, all-positive multi-controlled gates λnG.
We then present in Definition 6.7 how to handle positive and negative controls. In Definition 6.8 we
finally introduce controlled gates with controls both above and below the gate G.
Definition 6.6 (Positively multi-controlled gates). For all n ∈ N and G ∈ {s(ϕ), X,RX(θ), P (ϕ)}, we
define a quantum circuit λnG.41 This circuit acts on n wires when G = s(ϕ) and n + 1 otherwise. We
define each circuit λnG as follows.

• λnRX(θ) is defined by induction:

λ0RX(θ) := RX(θ), λn+1RX(θ) :=
λnRX(- θ2 )λnRX( θ2 )

H H

.

• λnP (ϕ) is defined by induction using λnRX(ϕ):

λ0P (ϕ) := P (ϕ), λn+1P (ϕ) :=
λn+1RX(ϕ)

λnP (ϕ2 )

H H

.

• λnX is a simple macro:

λnX := λnP (π)
H H

• Finally, λ0s(ϕ) := s(ϕ) and λn+1s(ϕ) := λnP (ϕ).
Definition 6.7 (Multi-controlled gates). For any k-length list of booleans x = x1, . . . , xk (xi ∈ {0, 1}),
for any G ∈ {s(ϕ), X,RX(θ), P (ϕ)} we define the quantum circuit ΛxG as

ΛxG := λkG

Xx1 Xx1

Xxk Xxk

when G ∈ {X,RX(θ), P (ϕ)}, and

Λxs(ϕ) := λks(ϕ)
Xx1 Xx1

Xxk Xxk

.

41Note that G spans non-elementary gates. The constructor λ is not considered as a gate operator, and the fact that the
circuit λnG happens to be related to G is a corollary of its definition, as discussed further in the chapter.
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where x = 1− x, X1 = X , and X0 = .

Definition 6.8 (General multi-controlled gates). Given two lists of booleans x ∈ {0, 1}k and y ∈ {0, 1}`,
if xy is the concatenation of x and y we define the two quantum circuits

• for any G ∈ {X,RX(θ), P (ϕ)}

ΛxyG := ΛxyG
`

k

• Λxys(ϕ) := Λxys(ϕ).

One can double check using the semantics that ΛxyG is actually a multi-controlled gate:

Proposition 6.9. For any x, u ∈ {0, 1}k, y, v ∈ {0, 1}`, a ∈ {0, 1} and G ∈ {X,RX(θ), P (ϕ)},

q
ΛxyG

y
|u, a, v〉 =

{
|u〉 ⊗ (JGK |a〉)⊗ |v〉 if uv = xy,
|u, a, v〉 otherwise,

and

q
Λxys(ϕ)

y
|u, v〉 =

{
eiϕ |u, v〉 if uv = xy,
|u, v〉 otherwise.

We use the standard bullet-based graphical notation for multi-controlled gates: the ith control is black
(resp. white) when xi = 1 (resp. xi = 0), and the jth from the end control is black (resp. white) when
y`−j+1 = 1 (resp. = 0), e.g.:

Λ11
1 X : , Λ0

10RX(θ) : RX(θ)
,

Λ10P (ϕ) :
P (ϕ)

, Λ1...1RX(θ) :
RX(θ)

.

To avoid ambiguity with CNot we will not use the notation in the particular case of Λ1X and Λ1X:

Λ1X :
X

, Λ1X :
X

,

Λ1...1X :
X

(if there can be exactly one control).

Note however that Λ1X is provably equivalent to CNot:

Proposition 6.10. QC0 ` Λ1X = .

Proof. First, we can notice that

QC0 ` Λ1P (π) def=
ΛεP (π2 )

H H
Λ1RX(π)
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def=
H HRX(π2 ) RX(-π2 )

H HP (π2 )

(6.3)= -π/4
H

H HP (π2 )

P (π2 ) H P (-π2 ) HH

π/4
H H

(6.a)(6.c)=
H

H HP (π2 )

P (π2 ) H P (-π2 ) HH
0

(6.b)=
H

H HP (π2 )

P (π2 ) H P (-π2 ) HH

(6.9)=
H

HP (π2 )

P (π2 ) P (-π2 ) HH

H

H

(6.a)(6.9)=
H

HP (π2 )

P (π2 ) P (-π2 ) H

H

(6.a)=
P (π2 )

P (π2 ) P (-π2 )

(6.m)=
H H

It follows that

QC0 ` Λ1X
def= Λ1P (π)

H H

=
H H HH

(6.a)= .

6.1.4 Properties of Multi-Controlled Gates

In this section, we will prove basic properties of multi-controlled gates, namely: that one can swap pos-
itive (or negative) controls together (Proposition 6.17), and positive controls with phase gates (Propo-
sition 6.18); that combining a positive and a negative control of the same gate gives the gate itself
(Proposition 6.26); and that two multi-controlled gates commute whenever there is a control and an
anti-control on the same qubit (Propositions 6.27 and 6.30).

A large part of the proofs of this section will be by induction on the number of control qubits of the
multi-controlled gates. Note that their definition is explicitly inductive only in the case with only positive
controls, this is why we first make the inductive properties of more general multi-controlled gates explicit:
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6.1.4.1 Inductive Properties for Multi-Controls

The following technical lemmas highlight the inductive properties of the circuits ΛxG.
Lemma 6.11 (Base case for the inductive properties). For all G ∈ {s(ϕ), X,RX(θ), P (ϕ)}, if ε is the
empty list, ΛεG = G.

Proof. In the case of an empty list, in Definition 6.7 there are no gates Xxi , and ΛεG = λ0G. We can
then check in Definition 6.6 that each λ0G is G: by definition this is true for RX(θ), s(ϕ) and P (θ). For
X we fall back on the definition of X as HP (π)H = HZH.

Lemma 6.12 (Inductive properties for Λ0xG). For all x ∈ {0, 1}k, and G ∈ {s(ϕ), X,RX(θ), P (ϕ)},

Λ0xG = Λ1xG

X X

Proof. This is directly derived from the definition of ΛxG: the Xx1 ’s on the top wire are X for Λ0xG and
the identity for Λ1xG, while the Xxi ’s on the lower wires are the same.

Lemma 6.13 (Inductive properties for Λxs(ϕ)). Suppose that x is a k-length list of booleans. We then
have Λ1s(ϕ) = P (ϕ), Λ1x1s(ϕ) = Λ1xP (ϕ), and

Λ1x0s(ϕ) = Λ1xP (ϕ)
X X

Proof. By definition, Λ1s(ϕ) is λ1s(ϕ): there are no Xxi since the list only contains a single 1. By
definition, λ1s(ϕ) is λ0P (ϕ), which is P (ϕ).

Suppose now that x is a k-length list of booleans, and b is a single boolean. Consider Λ1xbs(ϕ): by
definition it is

λk+2s(ϕ)
Xx1 Xx1

XxkXxk

XbXb

.

By definition, λk+2s(ϕ) = λk+1P (ϕ). Now, Λ1xP (ϕ) is

λk+1P (ϕ)
Xx1 Xx1

XxkXxk

.

We directly recover Λ1x1s(ϕ), i.e. when b = 1, and the case b = 0 since this just amounts to add the two
gates X0 = X1 = X on the bottom wire.

Lemma 6.14 (Inductive properties of ΛxX). Suppose that x is a k-length list of booleans. Then

Λ1xX = Λ1xP (π)
H H

.

Proof. By definition,

Λ1xX = λk+1X
Xxk

Xx1

Xxk

Xx1

= λk+1P (π)
Xxk

Xx1

Xxk

Xx1

HH

,

which is exactly the right-hand side of the desired equation.

121



Chapter 6. A Complete Equational Theory for Quantum Circuits

Lemma 6.15 (Inductive properties of ΛxP (ϕ)). Suppose that x is a k-length list of booleans. Then

QC0 ` Λ1xP (ϕ) = Λ1xRX(ϕ)
Λ1xs(ϕ2 )

H H

Proof. By definition,

Λ1xP (ϕ) = λk+1P (ϕ)
Xxk

Xx1

Xxk

Xx1

= λkP (ϕ2 )

Xxk

Xx1

λk+1RX(ϕ)
Xxk

Xx1

HH

Since XX is the identity according to Equation (6.10), this is equal to

λkP (ϕ2 )

Xxk

Xx1

λk+1RX(ϕ)
Xxk

Xx1Xx1 Xx1

Xxk Xxk

HH

.

We can conclude by noting that

Λ1xs(ϕ2 ) = λkP (ϕ2 )

Xxk

Xx1 Xx1

Xxk

and Λ1xRX(ϕ) = λk+1RX(ϕ)
Xxk

Xx1Xx1

Xxk

.

Lemma 6.16 (Inductive properties of ΛxRX(ϕ)). Suppose that x is a k-length list of booleans. Then

QC0 ` Λ1xRX(θ) = ΛxRX(- θ2 )ΛxRX( θ2 )

H H

.

Proof. By definition of Λ1xRX(θ) and λk+1RX(θ), we have:

Λ1xRX(θ) =
λkRX(- θ2 )λkRX( θ2 )

H H

Xx1

Xxk

Xx1

Xxk

.

Using Equation (6.10), we infer that

Λ1xRX(θ) =
λkRX(- θ2 )λkRX( θ2 )

H H

Xx1

Xxk

Xx1

Xxk

Xx1

Xxk

Xx1

Xxk

.

We can then conclude by using the definition of ΛxRX( θ2 ) and ΛxRX(- θ2 ) (and the deformation of circuits
coming from the PROP structure).

Since these lemmas are essentially consequences of the definitions (except for the use of Equation (6.10)
in Lemmas 6.15 and 6.16), in the following we will mostly keep their uses implicit.
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6.1.4.2 Swapping Controls Together and With Phase Gates

In a multi-qubit controlled gate, all control qubits play a similar role. This can be expressed as the
following commutation property:

RX(θ)
=

RX(θ)

This property is provable in QC0, considering three cases depending on whether the exchanged control
qubits are either above or below the target qubit:

Proposition 6.17. For any x ∈ {0, 1}k, y ∈ {0, 1}`, z ∈ {0, 1}m, a, b ∈ {0, 1} and any G ∈ {s(ϕ), X,
RX(θ), P (ϕ)},

QC0 ` Λxabzy G

k

= Λxbazy G

k

(6.20)

QC0 ` ΛxzabyG

`

= ΛxzbayG

`

(6.21)

QC0 ` ΛxabyG

k − 1

`− 1

= ΛxbayG

k − 1

`− 1

(6.22)

A peculiar property of controlled phase gates (and hence controlled scalars) is that the target qubit
is actually equivalent to the control qubits, e.g.:

P (ϕ)
= P (ϕ)

This property is also provable in QC0:

Proposition 6.18. For any x ∈ {0, 1}k, y ∈ {0, 1}`,

QC0 ` Λxy1P (ϕ) = Λx1yP (ϕ) (6.23)

Ancillary Lemmas To prove Propositions 6.17 and 6.18, we need to first prove a few ancillary lemmas.
To state these lemmas, it is convenient to introduce a graphical notation of multi-controlled gate

which allows for more flexibility in the position of the target qubit, relatively to the control qubits:

Λx

G

`

k

:=
ΛxG

`

k
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Lemma 6.19. For any x ∈ {0, 1}k,

QC0 `
Λx

RX(θ)

Λx

RX(θ′)

=
Λx

RX(θ)

Λx

RX(θ′)

.

Proof. We proceed by induction on k. If k = 0, then the equality is a consequence of the topological
rules.42 If k ≥ 1, by Equation (6.10) we can assume without loss of generality that x = 1z with
z ∈ {0, 1}k−1. One has

Λx

RX(θ)

Λx

RX(θ′)

Lemma 6.16=
Λz

RX( θ2 )

Λz

RX( θ′2 )

Λz

RX(- θ2 )

H H

Λz

RX(- θ′2 )

H H

then it is easy to see that the two parts commute by induction hypothesis and Equations (6.8) and (6.a),
together with topological rules.

Lemma 6.20. For any x ∈ {0, 1}k,

QC0 `
Λx

RX(θ)
=

Λx

RX(θ)

.

Proof. We proceed by induction on k. If k = 0, then the result is just Equation (6.7). If k ≥ 1, then we
can assume without loss of generality that x = 1z with z ∈ {0, 1}k−1. One has

Λx

RX(θ)

=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(6.e)=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

42The topological rules are the rules that allow us to deform the circuits, that is, the axioms of PROP.
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(6.j)=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

induction
hypothesis=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(6.e)=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(6.14)(6.j)=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

(6.e)=

ΛxRX(- θ2 )RX( θ2 )

H

Λz Λz

H

=
Λx

RX(θ)
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Lemma 6.21. For any x ∈ {0, 1}k,

QC0 ` Λ0xRX(θ) = ΛxRX( θ2 )ΛxRX( θ2 )

H H

.

Proof. The proof relies on the following property:

QC0 ` ΛxRX(θ)
Z

= ΛxRX(-θ)
Z

(6.24)

that we prove by induction on the length of x as follows:
If x = ε, then

RX(θ)Z
(6.3)= H HP (θ)

-θ/2

Z

(6.a)(6.2)= H HP (θ)
-θ/2

X

(6.10)(6.l)(6.c)= H HP (-θ)
θ/2

X

(6.2)(6.3)(6.a)= RX(-θ) Z

If x 6= ε, then the commutation is a direct consequence of the induction hypothesis and Equation (6.i).

Given this property, the result can be deduced as follows:

Λ0xRX(θ) = ΛxRX(- θ2 )ΛxRX( θ2 )

H HX X

(6.2)(6.a)= ΛxRX(- θ2 )ΛxRX( θ2 )

H HZ X

(6.15)= ΛxRX(- θ2 )ΛxRX( θ2 )

H HZ X

Z

(6.24)= ΛxRX( θ2 )ΛxRX( θ2 )

H HZ X

Z

(6.15)(6.1)(6.i)(6.13)= ΛxRX( θ2 )ΛxRX( θ2 )

H HZ X
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(6.2)(6.a)(6.13)= ΛxRX( θ2 )ΛxRX( θ2 )

H H

Lemma 6.22. For any x, x′ ∈ {0, 1}k,

QC0 ` Λx′RX(θ′)ΛxRX(θ) = Λx′RX(θ′) ΛxRX(θ) (6.25)

In the proof of Propositions 6.17 and 6.18 (and in a few other later proofs), we will more precisely
use the particular case of Equation (6.25) where x = x′:

QC0 ` ΛxRX(θ′)ΛxRX(θ) = ΛxRX(θ′) ΛxRX(θ) (6.26)

Proof of Equation (6.25). The proof is by induction on x.
If x = ε (i.e. k = 0),

RX(θ) RX(θ′)

(6.3)=
RX(θ) P (θ′)H H

-θ′/2

(6.a)(6.9)=
RX(θ) P (θ′)H H

HH
-θ′/2

(6.6)(6.3)(6.a)(6.c)=
P (θ)

P (θ′)

H H

HH
- θ+θ′2

(6.i)=
P (θ)

P (θ′)

HH

H H
- θ+θ′2

(6.6)(6.a)(6.c)(6.3)=
RX(θ)P (θ′) HH

H H
-θ′/2

(6.9)(6.a)(6.3)=
RX(θ)RX(θ′)

If k ≥ 1, then we can write x = az and x′ = a′z′ with a, a′ ∈ {0, 1}. One has (where the ± signs
correspond respectively to (−1)a and (−1)a′):

Λx′RX(θ′)ΛxRX(θ)

Lemma 6.21=
ΛzRX(± θ2 )ΛzRX( θ2 )

H H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H H
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(6.a)(6.j)(6.14)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.e)(6.14)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

induction
hypothesis=

ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.g)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.8)(6.j)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

induction
hypothesis=

ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.8)(6.j)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

induction
hypothesis=

ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.8)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.g)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H
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induction
hypothesis=

ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.14)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.8)(6.e)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.14)(6.j)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.a)=
ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

HH H

Lemma 6.21=
Λx′RX(θ′) ΛxRX(θ) .

Proof of Propositions 6.17 and 6.18. First, we consider the case G = RX(θ) of Equations (6.20)-
(6.22), for which the proof is a direct induction based on Equation (6.26).

Next, we prove Equation (6.23) in the case y = ε.
We can assume without loss of generality that x = 1k. If k = 0, then

Λ1P (ϕ) def=
H

H HP (ϕ2 )

P (ϕ2 ) H P (-ϕ2 ) HHHH

ϕ/2-ϕ/2

(6.c)(6.b)(6.a)(6.9)=
P (ϕ2 )

P (ϕ2 ) P (-ϕ2 )
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(6.6)=
P (ϕ2 )

P (ϕ2 ) P (-ϕ2 )

(6.c)(6.b)(6.a)(6.9)= Λε1P (ϕ).

If k ≥ 1, then one has

Λx1P (ϕ) def= Λx1RX(ϕ)
Λx1s(ϕ2 )

H H

Equations (6.20)-(6.22)
(case G = RX(θ))= Λ1xRX(ϕ)

Λx1s(ϕ2 )

H H

def= Λx1s(ϕ2 )

H H

ΛxRX(-ϕ2 )ΛxRX(ϕ2 )

H H

= Λx1s(ϕ2 )

H HΛxRX(-ϕ2 )RX(ϕ2 )
H H

Λx Λx

def,(6.a)=

Λxs(ϕ4 )

H HΛxRX(-ϕ2 )RX(ϕ2 )

H H

Λx Λx

RX(ϕ2 )

Λx

Lemmas 6.19 and 6.20=

Λxs(ϕ4 )

H H

ΛxRX(-ϕ2 )RX(ϕ2 )H H

Λx Λx

RX(ϕ2 )

Λx
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=

Λxs(ϕ4 )

H HΛxRX(-ϕ2 )RX(ϕ2 )

H H

Λx Λx

RX(ϕ2 )

Λx

= Λx1P (ϕ)

= Λx1P (ϕ).

Now, we can prove Equations (6.20)-(6.22) in the case G = s(ϕ) (the cases G = P (ϕ) and G = X
are direct consequences of this case). Without loss of generality we can assume y = ε and consider only
Equation (6.20).

The proof is by induction on the number r of input qubits of Λxabzs(ϕ). If z = ε, which is necessarily
the case in the base case r = 2, then the result is a direct consequence of the case y = ε of Equation (6.23).
If z 6= ε, then using Definitions 6.6 and 6.7 (in particular the case of λn+1P (ϕ) in Definition 6.6), the result
is a direct consequence of the induction hypothesis and the case G = RX(θ) of Equations (6.20)-(6.22).

Finally, using the definition of Λxy1P (ϕ) in terms of Λxy1P (ϕ), the general case of Equation (6.23)
follows directly from the case y = ε and Equations (6.20)-(6.22).

6.1.4.3 Monoid Structure

The gates P (ϕ) form a monoid, i.e. P (ϕ + ϕ′) = P (ϕ) ◦ P (ϕ′) (Equation (6.k)) and P (0) =
(Equation (6.d)). Notice that RX(θ) and s(ϕ) also form monoids. It is provable in QC0 that their
multi-controlled versions enjoy the same property:

Proposition 6.23. For any x ∈ {0, 1}k, y ∈ {0, 1}`,

QC0 ` ΛxyRX(θ′) ◦ ΛxyRX(θ) = ΛxyRX(θ + θ′), QC0 ` ΛxyRX(0) = idk+`+1,

QC0 ` ΛxyP (ϕ′) ◦ ΛxyP (ϕ) = ΛxyP (ϕ+ ϕ′), QC0 ` ΛxyP (0) = idk+`+1,

QC0 ` Λxys(ϕ′) ◦ Λxys(ϕ) = Λxys(ϕ+ ϕ′), QC0 ` Λxys(0) = idk+`,

where idk := ⊗k is the identity circuit on k qubits (see Figure 6.5 below).

Remark 6.24. Note that Proposition 6.23 does not imply the periodicity of controlled gates. The latter
is proven in Proposition 6.39 with the help of the rules of Figure 6.4.

Proof of Proposition 6.23. First, proving that multi-controlled gates with angle 0 are equivalent to
the identity is straightforward by induction.

To prove the rest of the proposition, we first prove that QC0 ` Λ1...1RX(θ′)◦Λ1...1RX(θ) = Λ1..1RX(θ+
θ′). The proof is by induction: we unfold the two multi-controlled gates, use Equation (6.26) to put
the multi-controlled gates with angles θ/2 and θ′/2 side by side, and merge them using the induction
hypothesis. We use again Equation (6.26) to allow the combination of the multi-controlled gates with
angle −θ/2 and −θ′/2, closing the case.

The cases with more general controls are derived from this one using Definitions 6.7 and 6.8.
It remains to treat the ΛxP and Λxs cases. Those cases are a direct consequence of the following

lemma:

131



Chapter 6. A Complete Equational Theory for Quantum Circuits

Lemma 6.25. For any x ∈ {0, 1}k and y ∈ {0, 1}` with ` ≥ k,

QC0 ` ΛyRX(θ)

Λxs(ϕ)

= ΛyRX(θ)

Λxs(ϕ)

.

To prove the previous lemma, we do a proof by induction on k. However, to prove the induction step
for k ≥ 2, we use QC0 ` Λ1k−2

s(ϕ) ◦ Λ1k−2
s(ϕ′) = Λ1k−2

s(ϕ + ϕ′) and QC0 ` Λ1k−2
s(0) = idk−1, which

are the statements of Proposition 6.23.
Therefore, we need to do a common induction proof for both the ΛxP and Λxs cases of Proposition 6.23

and for Lemma 6.25. The plan of the proof is the following. First we prove an ancillary equation
(Equation (6.27)) which is derived from previous lemmas. Then we proceed with the induction proof: for
k ≥ 2, the induction step of Lemma 6.25 is proved with the help of Proposition 6.23 with k − 2 control
qubits, while the induction step of Proposition 6.23 is proved with the help of Lemma 6.25 with x of size
k, and of the ΛxRX case which is already proven.

First we prove the following property, which is true for any a, b ∈ {0, 1}, z ∈ {0, 1}m and G ∈
{s(ϕ), P (ϕ), RX(θ), X}:

QC0 ` ΛabzG = ΛaczG where c =
{
b if a = 0
b̄ if a = 1

(6.27)

To prove Equation (6.27), by Equations (6.10), (6.12) and (6.f) we can assume without loss of generality
that a = b = 1. If G = RX(θ), then

Λ11zRX(θ)

=
ΛzRX(- θ4 )ΛzRX( θ4 )

H H

ΛzRX( θ4 )ΛzRX(- θ4 )

H H

HH

(6.9)(6.a)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(6.e)(6.14)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(6.e)(6.14)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H
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(6.8)(6.j)(6.e)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(6.e)(6.14)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(6.e)(6.14)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(6.8)(6.j)(6.e)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

H

H

(6.9)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH

(6.e)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH

(6.14)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH

(6.e)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH

(6.14)(6.j)(6.8)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 )ΛzRX(- θ4 )

H

HH
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(6.26)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(6.j)(6.e)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(6.26)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(6.g)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(6.14)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(6.26)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH

(6.j)(6.a)=
ΛzRX(- θ4 )ΛzRX( θ4 )

H

ΛzRX( θ4 ) ΛzRX(- θ4 )

H

HH H H

Lemma 6.21,
def= Λ10zRX(θ)

Now, to prove Proposition 6.23 and Lemma 6.25, by Equation (6.10) we can assume without loss of
generality that x = 1k. We proceed by induction on k. If k = 0, then Proposition 6.23 is a consequence
of Equations (6.b), (6.c), (6.d) and (6.k), and Lemma 6.25 is a consequence of the topological rules. If
k = 1, then Λxs(ϕ) = P (ϕ). Let y = az with a ∈ {0, 1}. By Lemma 6.21, one has

QC0 ` ΛyRX(θ)

P (ϕ)

=
P (ϕ)

ΛzRX(± θ2 )ΛzRX( θ2 )

H H
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(6.a)(6.b)(6.c)(6.3)=
RX(ϕ)

ΛzRX(± θ2 )ΛzRX( θ2 )

H H

ϕ/2

(6.16)=
RX(ϕ)

ΛzRX(± θ2 )ΛzRX( θ2 )

H H

ϕ/2

(6.3)(6.c)(6.b)(6.a)=
P (ϕ)

ΛzRX(± θ2 )ΛzRX( θ2 )

H H

Lemma 6.21= ΛyRX(θ)

P (ϕ)

where the ± sign is (−1)a. The case of k = 1 for Proposition 6.23 is then a direct consequence of the
previous result, the case with RX , Definition 6.6 (case λnP (ϕ)) and Equations (6.a), (6.d) and (6.k).

If k ≥ 2, let z = 1k−1 and t = 1k−2. To prove Lemma 6.25, one has

Λxs(ϕ) = ΛtRX(-ϕ2 )

H H

Λzs(ϕ2 )
ΛtRX(ϕ2 )

H H

induction hypothesis
of Proposition 6.23= ΛtRX(-ϕ2 )

H H

Λzs(ϕ2 )
ΛtRX(ϕ2 )

H H

Λts(ϕ4 ) Λts(-ϕ4 )

induction hypothesis
of Lemma 6.25= ΛtRX(-ϕ2 )

H H

Λzs(ϕ2 )
ΛtRX(ϕ2 )

H H

Λts(ϕ4 ) Λts(-ϕ4 )

(6.a), def= ΛtP (-ϕ2 )

H H

Λzs(ϕ2 )
ΛtP (ϕ2 )

H HH H

(6.9)(6.a)= ΛtP (-ϕ2 )
Λzs(ϕ2 )

ΛtP (ϕ2 )

def= Λzs(-ϕ2 )
Λzs(ϕ2 )

Λzs(ϕ2 ) .
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Hence, the commutation with ΛyRX(θ) follows by induction hypothesis and Equation (6.27), together
with Proposition 6.17.

Then to prove the ΛxP case of Proposition 6.23, one has

ΛxP (ϕ′) ◦ ΛxP (ϕ) = ΛxRX(ϕ)
ΛzP (ϕ2 )

H H

ΛxRX(ϕ′)ΛzP (ϕ
′

2 )

HH

(6.a)= ΛxRX(ϕ)
ΛzP (ϕ2 )

H H

ΛxRX(ϕ′)ΛzP (ϕ
′

2 )

induction hypothesis
of Lemma 6.25= ΛxRX(ϕ)

ΛzP (ϕ2 )

H H

ΛxRX(ϕ′)ΛzP (ϕ
′

2 )

ΛxRX case and
induction hypothesis
of Proposition 6.23= ΛxRX(ϕ+ϕ′)ΛzP (ϕ+ϕ′

2 )

H H

= λxP (ϕ+ ϕ′).

Finally, the Λxs case is a direct consequence of the ΛzP case.

6.1.4.4 Complementarity of Control and Anti-Control

Combining a control and anti-control on the same qubit makes the evolution independent of this qubit,
as in the following example in which the evolution is independent of the second qubit:43

P (ϕ)P (ϕ)
=

P (ϕ)

Such simplifications can be derived in QC0:

Proposition 6.26. For any x ∈ {0, 1}k, y ∈ {0, 1}`, and G ∈ {s(ϕ), X,RX(θ), P (ϕ)},

QC0 ` Λ0x
y G ◦ Λ1x

y G = ⊗ ΛxyG.

Proof. Without loss of generality, we can assume that y = ε.
The case where G = s(ϕ) and x = ε follows directly from Equations (6.l), (6.k) and (6.d). The cases

where G = s(ϕ) and x 6= ε follow directly from the case G = P (ϕ), together with Equation (6.10).
By Equations (6.10) and (6.a), the case G = X follows directly from the case G = P (π).
The case G = P (ϕ) follows from the case G = RX(θ) by a straightforward induction, using Lem-

mas 6.15 and 6.25 and Equation (6.a).
Thus, it suffices to treat the case where G = RX(θ). One has

Λ0xRX(θ) ◦ Λ1xRX(θ)

43Note that in the above example we implicitly use Proposition 6.17 to swap the first two qubits and apply Proposi-
tion 6.26. As a consequence, the resulting multi-controlled gate acts on non-adjacent qubits. Similarly to the CNot case
(see Equations (6.4) and (6.5)), we use some syntactic sugar to represent such multi-controlled gates acting on non-adjacent
qubits.
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Lemmas 6.16 and 6.21= ΛxRX(- θ2 )ΛxRX( θ2 )

H H

ΛxRX( θ2 )ΛxRX( θ2 )

H H

(6.a)= ΛxRX(- θ2 )ΛxRX( θ2 )

H

ΛxRX( θ2 )ΛxRX( θ2 )

H

(6.26)= ΛxRX(- θ2 )ΛxRX( θ2 )

H

ΛxRX( θ2 )ΛxRX( θ2 )

H

(6.e), Proposition 6.23,
(6.e)(6.a)= ΛxRX(θ) .

Proposition 6.26 shows how control and anti-control can be combined on the first qubit of a multi-
controlled gate. Note, however, that it can be generalised to any control qubit thanks to Proposition 6.17.

6.1.4.5 Controlled and Anti-Controlled Gates Commute (Same Target)

Another useful property of multi-controlled gates is that they commute when there is a control and anti-
control on the same qubit, as in the following example in which their controls differ on the third (and
last) qubit:

P (ϕ)
=

P (ϕ)

When the target qubit is the same, such a commutation property can be derived in QC0, using in
particular Equation (6.n):

Proposition 6.27. For any x, x′ ∈ {0, 1}k, y, y′ ∈ {0, 1}`, and G,G′ ∈ {X,RX(θ), P (ϕ)}, if xy 6= x′y′44

then
QC0 ` ΛxyG ◦ Λx

′

y′G
′ = Λx

′

y′G
′ ◦ ΛxyG .

Ancillary Lemmas To prove Proposition 6.27, we need to first prove two ancillary lemmas.

Lemma 6.28. For any x ∈ {0, 1}k,

QC0 ` ΛxX = ΛxRX(π)
Λxs(π2 ) (6.28)

Proof. If x = ε, then Equation (6.28) is a direct consequence of Lemma 6.11 and Equations (6.2), (6.b),
(6.c) and (6.3). If x 6= ε, then Equation (6.28) is a direct consequence of Lemmas 6.12, 6.14 and 6.15
and Equations (6.10) and (6.a).

44xy 6= x′y′ iff ∃i, xi 6= x′i ∨ yi 6= y′i.
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Lemma 6.29. For any x ∈ {0, 1}k,

QC0 ` ΛxRX(θ)
H H

= ΛxRX(θ)
HH

Proof. We proceed by induction on k. If k = 0 then the result is a direct consequence of Equations (6.3),
(6.a) and (6.i). If k ≥ 1, then without loss of generality we can assume that x = 1z with z ∈ {0, 1}k−1.
One has

ΛxRX(θ)

H H

=

H H

ΛzRX(- θ2 )ΛzRX( θ2 )

H H

(6.a)=

H H

ΛzRX(- θ2 )ΛzRX( θ2 )

H H

H H

(6.9)=

H

H

ΛzRX(- θ2 )ΛzRX( θ2 )

H

HH H

(6.a)=

H

ΛzRX(- θ2 )ΛzRX( θ2 )
HH H

(6.e)(6.11)=

H

ΛzRX(- θ2 )ΛzRX( θ2 )
HH H

induction
hypothesis=

H

ΛzRX(- θ2 )ΛzRX( θ2 )
HH H

(6.11)(6.e)=

H

ΛzRX(- θ2 )ΛzRX( θ2 )
HH H
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induction
hypothesis=

H

ΛzRX(- θ2 )ΛzRX( θ2 )
HH H

(6.a)(6.9)(6.a)=

H H

ΛzRX(- θ2 )ΛzRX( θ2 )

H H

= ΛxRX(θ)

HH

.

Proof of Proposition 6.27. We assume without loss of generality that y = y′ = ε.

First, for the case where G = RX(θ) and G′ = RX(θ′), we prove by induction on k that for any
x, x′ ∈ {0, 1}k,

QC0 ` ΛxRX(θ) ◦ Λx
′
RX(θ′) = Λx

′
RX(θ′) ◦ ΛxRX(θ). (6.29)

The desired result corresponds to Equation (6.29) with x 6= x′. Notice that when x = x′, Equation (6.29)
is already a consequence of Proposition 6.23.

If k = 0, then Equation (6.29) is a direct consequence of Equation (6.18). If k ≥ 1, then we can write
x = az and x′ = a′z′ with a, a′ ∈ {0, 1}. One has (where the ± signs correspond respectively to (−1)a
and (−1)a′):

Λx′RX(θ′) ◦ ΛxRX(θ) Lemma 6.21= ΛzRX(± θ2 )ΛzRX( θ2 )

H H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H H

(6.a)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.25)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

induction
hypothesis= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.e)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H
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induction
hypothesis,

(6.e)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.25)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

(6.a)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

HH H

Lemma 6.21= ΛxRX(θ) ◦ Λx′RX(θ′)

If G = P (θ) and G′ = P (θ′), we prove by induction on k that for any z, z′ ∈ {0, 1}k,

QC0 ` Λzs(ϕ) ◦ Λz
′
s(ϕ′) = Λz

′
s(ϕ′) ◦ Λzs(ϕ). (6.30)

The result corresponds to the case where z = x1 and z′ = x′1 with x 6= x′. Notice that the case where
x = x′ is already a consequence of Proposition 6.23.

If k = 0, then Equation (6.30) is a consequence of the topological rules.
If k = 1, then it is a consequence of Equations (6.k) and (6.l).
If k ≥ 2, note first that by Equations (6.2), (6.a), (6.24), and (6.13) (or (6.l), (6.a), (6.c) and (6.3) if

m = 0), for any x ∈ {0, 1}m,

QC0 ` Λx0s(ϕ) = ΛxRX(-ϕ)
Λxs(ϕ2 )

H H

. (6.31)

Let z = xa and z′ = x′a′ with a, a′ ∈ {0, 1} and x, x′ ∈ {0, 1}k−1. One has (with the ± signs being
(−1)1−a and (−1)1−a′ respectively):

Λz′s(ϕ′) ◦ Λzs(ϕ) (6.10)(6.a)(6.31)= ΛxRX(±ϕ)
Λxs(ϕ2 )

H

Λx′s(ϕ
′

2 )
Λx′RX(±ϕ′)

H

Lemma 6.25= ΛxRX(±ϕ)
Λxs(ϕ2 )

H

Λx′s(ϕ
′

2 )
Λx′RX(±ϕ′)

H

induction
hypothesis= ΛxRX(±ϕ)

Λxs(ϕ2 )

H

Λx′s(ϕ
′

2 )
Λx′RX(±ϕ′)

H

(6.29)= ΛxRX(±ϕ)
Λxs(ϕ2 )

H

Λx′s(ϕ
′

2 )
Λx′RX(±ϕ′)

H
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Lemma 6.25= ΛxRX(±ϕ)
Λxs(ϕ2 )

H

Λx′s(ϕ
′

2 )
Λx′RX(±ϕ′)

H

(6.10)(6.a)(6.31)= Λzs(ϕ) ◦ Λz′s(ϕ′).

For the case where G = RX(θ) and G′ = P (θ′), we prove by induction on k ≥ 1 that for any
x, x′ ∈ {0, 1}k with x 6= x′,

QC0 ` Λx′RX(θ′)ΛxRX(θ)
H H

= Λx′RX(θ′) ΛxRX(θ)
HH

(6.32)

Note that by Lemma 6.25 (and the definition of ΛxP (θ′)), Equation (6.32) is equivalent to the desired
result.

If k = 1, then without loss of generality we can assume that x = 1 and x′ = 0. One has

H HRX(θ′)RX(θ)
Lemma 6.21=

H HRX( θ′2 )RX(- θ2 )RX( θ2 ) RX( θ′2 )

HHHH

(6.a)(6.7)=
H H

RX( θ′2 )RX(- θ2 )

RX( θ2 ) RX( θ′2 )

HH

(6.16)=
H H

RX( θ′2 )RX(- θ2 )

RX( θ2 ) RX( θ′2 )

HH

(6.n)=
HH

RX( θ′2 ) RX(- θ2 )

RX( θ2 )RX( θ′2 )

H H

(6.16)=
HH

RX( θ′2 ) RX(- θ2 )

RX( θ2 )RX( θ′2 )

H H

(6.7)(6.a)=
HH RX( θ′2 ) RX(- θ2 )RX( θ2 )RX( θ′2 )

H HHH

Lemma 6.21=
HH RX(θ′) RX(θ)

If k ≥ 2, then by Proposition 6.17, we can assume without loss of generality that we can write x = az
and x′ = az′ with a, a′ ∈ {0, 1} and z 6= z′. One has (where the ± signs correspond respectively to (−1)a
and (−1)a′):

Λx′RX(θ′)ΛxRX(θ)

H H
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Lemma 6.21=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H H

(6.a)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

Lemma 6.29=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

induction
hypothesis=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

Lemma 6.29=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

induction
hypothesis=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

(6.19)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

H

X

H

(6.a)=
H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )
H

H

H

X

H H HH H

Lemma 6.29,
(6.a)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

H

X

H HH H

Lemma 6.29=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

H

X

H HH H

induction
hypothesis,

(6.a)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

HX

HH H
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(6.12)(6.19)
(6.10)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

HH HH H

Lemma 6.29,
(6.a)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

HH H

Lemma 6.29=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

HH H

induction
hypothesis,

(6.a)=

H H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

H

(6.19)(6.a)=

H

X

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

HH

(6.a)=

H

X

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

HHH H

Lemma 6.29,
(6.a)=

H

X

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

HH

(6.12)(6.19)
(6.10)(6.a)=

H

ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

H H

Lemma 6.29,
(6.a)= ΛzRX(± θ2 )ΛzRX( θ2 )

H

H

Λz′RX(± θ′2 )Λz′RX( θ′2 )

H

H

H H

Lemma 6.21= Λx′RX(θ′) ΛxRX(θ)

HH

If G = X or G′ = X, then by Equation (6.28), the result follows from the preceding cases together
with Lemma 6.25 and Equation (6.30).
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6.1.4.6 Controlled and Anti-Controlled Gates Commute (Different Targets)

Controlled and anti-controlled gates also commute when the target qubits are not the same in both gates,
as in:

P (ϕ) = P (ϕ) .

This property can also be derived in QC0, using in particular Equation (6.o):

Proposition 6.30. For any a, b ∈ {0, 1}, x, x′ ∈ {0, 1}k, y, y′ ∈ {0, 1}`, z, z′ ∈ {0, 1}m and G,G′ ∈
{X,RX(θ), P (ϕ)}, if xyz 6= x′y′z′ then

QC0 ` ΛxyazG ◦ Λx
′by′

z′ G′ = Λx
′by′

z′ G′ ◦ ΛxyazG

Ancillary Lemmas To prove Proposition 6.30, we need a few additional ancillary lemmas.

Lemma 6.31. For any x ∈ {0, 1}k,

QC0 `
Λx

RX(θ)

=
Λx

RX(θ)

.

Proof.

Λx

RX(θ)

=
Λx

RX(- θ2 )

Λx

RX( θ2 )

HH

(6.a)=
Λx

RX(- θ2 )

Λx

RX( θ2 )

HH

HH

(6.9)=
Λx

RX(- θ2 )

Λx

RX( θ2 )

H

H H

H
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(6.8)=
Λx

RX(- θ2 )

Λx

RX( θ2 )

H

H H

H

(6.9)=
Λx

RX(- θ2 )

Λx

RX( θ2 )

HH

HH

(6.a)=
Λx

RX(- θ2 )

Λx

RX( θ2 )

HH

=
Λx

RX(θ)

Lemma 6.32. For any x ∈ {0, 1}k and y ∈ {0, 1}`,

QC0 ` (idk ⊗X ⊗ id`) ◦ ΛxyX = ΛxyX ◦ (idk ⊗X ⊗ id`)

and
QC0 ` (idk ⊗X ⊗ id`) ◦ ΛxyRX(θ) = ΛxyRX(θ) ◦ (idk ⊗X ⊗ id`)

Proof. The case of ΛxyX is a direct consequence of Propositions 6.26 and 6.27. Indeed, using Proposi-
tion 6.26, (idk ⊗X ⊗ id`) can be decomposed into a product of multi-controlled gates of the form Λx′y′X
with x′ ∈ {0, 1}k and y′ ∈ {0, 1}`. Then these multi-controlled gates commute with ΛxyX, trivially in the
case where x′y′ = xy, and by Proposition 6.27 in the other cases. For the case of ΛxyRX(θ), note that by

Equations (6.1) to (6.3), (6.b) and (6.c), one has X = RX(π)
π/2

. Then s(π2 ) commutes by the topo-
logical rules, while the commutation of (idk ⊗RX(π)⊗ id`) is a direct consequence of Propositions 6.26,
6.27 and 6.23: using Proposition 6.26, it can be decomposed into a product of multi-controlled gates of
the form Λx′y′RX(π) with x′ ∈ {0, 1}k and y′ ∈ {0, 1}`. Then these multi-controlled gates commute with
ΛxyRX(θ), by Proposition 6.27 in the cases where x′y′ 6= xy, and by Proposition 6.23 in the case where
x′y′ = xy.
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Lemma 6.33.

QC0 `

P (ϕ) XX

=

P (-ϕ)

P (ϕ)

Proof.

P (ϕ) XX

=

RX(ϕ) XX

P (ϕ2 )

H H

(6.2)(6.a)=

RX(ϕ) XZ

P (ϕ2 )

H H

(6.24)(6.a)(6.13)=

RX(-ϕ)

P (ϕ2 )

H H

Proposition 6.23 and Lemma 6.25=

RX(-ϕ)

P (-ϕ2 )

H H

P (ϕ)

=

P (-ϕ)

P (ϕ)

Lemma 6.34. For any x ∈ {0, 1}k and y ∈ {0, 1}` with ` ≥ k,

QC0 ` Λys(ϕ′)
Λxs(ϕ)

= Λys(ϕ′)
Λxs(ϕ)

.

Proof. We proceed by induction on ` − k. If ` = k then the result is a consequence of Proposition 6.23
or 6.27 (or just of the topological rules if k = ` = 0). If ` ≥ k + 1, then without loss of generality, we
can assume that y = t1 for some t ∈ {0, 1}`−1. Then by Lemma 6.15 (together with Lemma 6.12 and
Equation (6.10)),

QC0 ` Λys(ϕ′)
Λxs(ϕ)

=
Λxs(ϕ)

H H

ΛtRX(ϕ′)Λts(ϕ
′

2 )
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so that the commutation follows by induction hypothesis and Lemma 6.25.

Proof of Proposition 6.30. If G = RX(θ) and G′ = P (ϕ) (or conversely), then by Proposition 6.18,
the result is a consequence of Lemma 6.32 and Proposition 6.27.

If G = P (ϕ) and G′ = P (ϕ′), then by Proposition 6.18, the result is a consequence of Lemmas 6.33
and 6.34 (together with Equation (6.10)) and Proposition 6.27.

Now we treat the case where G = RX(θ) and G′ = RX(θ′). By Lemma 6.32, we can assume without
loss of generality that a = b = 1. By definition of Λtu and Proposition 6.17, we can also assume without
loss of generality that k = m = 0. Then the hypothesis xyz 6= x′y′z′ becomes y 6= y′. We proceed by
induction on `. If ` = 1, then without loss of generality we can assume that y = 1 and y′ = 0. One has

RX(θ)

RX(θ′)

Proposition 6.17,
def=

RX(- θ′2 )

H HRX(θ)

RX( θ′2 )

(6.26)=
RX(- θ′2 )

HHRX(θ)

RX( θ′2 )

Lemma 6.21,
def=

RX( θ4 ) RX( θ4 )RX(- θ4 ) RX(- θ4 )

RX( θ′4 ) RX( θ′4 )RX(- θ′4 )RX(- θ′4 )

H

H

H

H H

H

HH

H

H H H

(6.a)=
RX( θ4 ) RX( θ4 )RX(- θ4 ) RX(- θ4 )

RX( θ′4 ) RX( θ′4 )RX(- θ′4 )RX(- θ′4 )

H

H

H

H

H

H

(6.7)=
RX( θ4 )

RX( θ4 )RX(- θ4 )

RX(- θ4 )

RX( θ′4 )

RX( θ′4 )RX(- θ′4 )

RX(- θ′4 )

H

H

H

H

H

H

(6.16)=
RX( θ4 )

RX( θ4 )RX(- θ4 )

RX(- θ4 )

RX( θ′4 )

RX( θ′4 )RX(- θ′4 )

RX(- θ′4 )

H

H

H

H

H

H

(6.9)(6.e)=
RX( θ4 )

RX( θ4 )RX(- θ4 )

RX(- θ4 )

RX( θ′4 )

RX( θ′4 )RX(- θ′4 )

RX(- θ′4 )

H

H

H

H

H

H

(6.o)=
RX( θ4 )

RX( θ4 ) RX(- θ4 )

RX(- θ4 )

RX( θ′4 )

RX( θ′4 ) RX(- θ′4 )

RX(- θ′4 )

H

H

H

H

H

H
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(6.e)(6.9)=
RX( θ4 )

RX( θ4 ) RX(- θ4 )

RX(- θ4 )

RX( θ′4 )

RX( θ′4 ) RX(- θ′4 )

RX(- θ′4 )

H

H

H

H

H

H

(6.16)=
RX( θ4 )

RX( θ4 ) RX(- θ4 )

RX(- θ4 )

RX( θ′4 )

RX( θ′4 ) RX(- θ′4 )

RX(- θ′4 )

H

H

H

H

H

H

(6.7)=
RX( θ4 )RX( θ4 ) RX(- θ4 )RX(- θ4 )

RX( θ′4 ) RX( θ′4 ) RX(- θ′4 )RX(- θ′4 )

H

H

H

H

H

H

(6.a)=
RX( θ4 )RX( θ4 ) RX(- θ4 )RX(- θ4 )

RX( θ′4 ) RX( θ′4 ) RX(- θ′4 )RX(- θ′4 )

H

H

H

HH

H

H H

H

H HH

Lemma 6.21,
def=

RX(- θ′2 )

H H

RX( θ′2 )

RX(- θ2 )

HH

RX( θ2 )

(6.26)=
RX(- θ′2 )

H H

RX( θ′2 )

RX(- θ2 )

H H

RX( θ2 )

Proposition 6.17,
def=

RX(θ)

RX(θ′)

.

If ` ≥ 2, by Proposition 6.17 we can assume without loss of generality that y = at and y′ = a′t′ with
a, a′ ∈ {0, 1} and t 6= t′. One has (with the ± signs being (−1)a and (−1)a′ respectively):

Λy

RX(θ)

Λy′

RX(θ′)

Proposition 6.17,
Lemma 6.21=

Λt

RX( θ2 )

Λt′

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′

RX(± θ′2 )

H H

(6.a)=
Λt

RX( θ2 )

Λt′

RX( θ′2 )

Λt

RX(± θ2 )

H

Λt′

RX(± θ′2 )

H
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Lemma 6.31=
Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′ Λt′

RX(± θ′2 )

induction
hypothesis=

Λt

RX( θ2 )

Λt′

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′

RX(± θ′2 )

Lemma 6.31,
induction
hypothesis=

Λt

RX( θ2 )

Λt

RX(± θ2 )

H H

Λt′

RX( θ′2 )

Λt′

RX(± θ′2 )

(6.8)=
Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′ Λt′

RX(± θ′2 )

Proposition 6.17,
Lemma 6.31=

Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′ Λt′

RX(± θ′2 )

(6.8),
Proposition 6.17,

Lemma 6.31=
Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′ Λt′

RX(± θ′2 )
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Lemma 6.31,
induction
hypothesis=

Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′ Λt′

RX(± θ′2 )

(6.8),
Proposition 6.17,

Lemma 6.31=
Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H H

Λt′ Λt′

RX(± θ′2 )

(6.a)=
Λt

RX( θ2 )

RX( θ′2 )

Λt

RX(± θ2 )

H HH H

Λt′ Λt′

RX(± θ′2 )

Proposition 6.17,
Lemma 6.21= Λy

RX(θ)

Λy′

RX(θ′)

.

It remains to treat the cases where G or G′ = X. First, note that for any t ∈ {0, 1}p, using
Equation (6.28) and Proposition 6.26 (together with Proposition 6.17), and then Proposition 6.18, one
can decompose ΛtX as follows:

QC0 ` ΛtX = ΛtRX(π)ΛtP (π2 ) ΛtP (π2 )

X X

.

In the cases where G or G′ = X, one can use this decomposition, and make the multi-controlled parts
commute using the preceding cases. The non-controlled X gates commute with the control dots by
changing their colour, with the help of Equation (6.10). This does not alter the fact that the multi-
controlled gates commute, since the X gates are not on the same wire as the control dots of different
colours. And since the decomposition produces each time two X gates on the same wire, any control dot
gets changed twice, so that it is the same at the end as at the beginning.
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6.1.5 Euler Angles and Periodicity
QC0 is not complete. In particular equations based on Euler angles, which require non-trivial calculations
on the angles, cannot be derived. As a consequence we add to the equational theory the three rules shown
in Figure 6.4, leading to the equational theory QC. We write QC ` C1 = C2 when C1 can be rewritten
into C2 using equations of Figure 6.2 and Figure 6.4 (together with the deformation rules).

H = RX(π2 )P (π2 ) P (π2 ) (6.p)

RX(α1) RX(α3)P (α2) = RX(β2) P (β3)P (β1)
β0 (6.q)

RX(γ1)

P (γ2) RX(γ3)

RX(γ4)
=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
(6.r)

Figure 6.4: Non-structural equations. In Equations (6.q) and (6.r) the LHS circuit has arbitrary
parameters which uniquely determine the parameters of the RHS circuit. Equation (6.q) is nothing but
the well-known Euler-decomposition rule which states that any unitary can be decomposed, up to a global
phase, into basic X- and Z-rotations. Thus for any αi ∈ R, there exist βj ∈ R such that Equation (6.q) is
sound. We make the angles βj unique by assuming that β1 ∈ [0, π), β0, β2, β3 ∈ [0, 2π) and if β2 ∈ {0, π}
then β1 = 0. Equation (6.p) is the particular Euler decomposition of H. Equation (6.r) reads as follows:
the equation is defined for any n ≥ 2 input qubits, in such a way that all gates are controlled by the first
n−2 qubits. Equation (6.r) can be seen as a generalisation of the Euler rule, using multi-controlled gates.
Similarly to Equation (6.q), for any γi ∈ R, there exist δj ∈ R such that Equation (6.r) is sound. We ensure
that the angles δj are uniquely determined by assuming that δ1, δ2, δ5 ∈ [0, π), δ3, δ4, δ6, δ7, δ8, δ9 ∈ [0, 2π),
if δ3 = 0 then δ2 = 0, if δ3 = π then δ1 = 0, if δ4 = 0 then δ1 = δ3 (= δ2) = 0, if δ4 = π then δ2 = 0, if
δ4 = π and δ3 = 0 then δ1 = 0, and if δ6 ∈ {0, π} then δ5 = 0.

The Euler decomposition of H (Equation (6.p)) is not unique:

Proposition 6.35. QC ` H = RX(−π2 )P (−π2 ) P (−π2 )

Proof.

H
(6.d)(6.k)(6.17)(6.18)= RX(−π2 )P (−π2 ) P (−π2 ) RX(π2 )P (π2 ) P (π2 ) H

(6.p)= RX(−π2 )P (−π2 ) P (−π2 ) H H

(6.a)= RX(−π2 )P (−π2 ) P (−π2 )

More generally the Euler angles are not unique, but can be made unique by adding some constraints
on the angles, like choosing them in the appropriate intervals (see Figure 6.4).

Proposition 6.36. Equations (6.q) and (6.r) are sound. Moreover, the choice of parameters in the
RHS-circuits to make the equations sound is unique (under the constraints given in Figure 6.4).

Proof. The proof is inspired by the proofs of Lemmas 5.12 and 5.13.

151



Chapter 6. A Complete Equational Theory for Quantum Circuits

Soundness and Uniqueness of Equation (6.q).

Given any α1, α2, α3 ∈ R, let U :=
q

RX(α1) RX(α3)P (α2)
y
. We have to prove that there exist unique

β0, β1, β2, β3 satisfying the conditions of Figure 6.4 such that
s

RX(β2) P (β3)P (β1)
β0

{
= U . We are

going to prove that assuming that such βj exist, their values are uniquely determined by U . Since we
are going to do so by giving explicit expressions of the unique possible value of each βj in terms of the
entries of U , it will then be easy to check that these expressions indeed define angles with the desired
properties.

One has

U =
t

RX(β2) P (β3)P (β1)
β0

|

= eiβ0

(
cos
(
β2
2
)

−ieiβ1 sin
(
β2
2
)

−ieiβ3 sin
(
β2
2
)

ei(β1+β3) cos
(
β2
2
))

If U has a null entry, then since it is unitary, it is either diagonal or anti-diagonal. If it is diagonal,
then sin

(
β2
2
)

= 0, which, since β2 ∈ [0, 2π), implies that β2 = 0, which by the constraint on β1 and
β2, implies that β1 = 0. Consequently, β0 = arg(U0,0) and β3 = arg

(
U1,1
U0,0

)
. If U is anti-diagonal, then

cos
(
β2
2
)

= 0, which, since β2 ∈ [0, 2π), implies that β2 = π, which by the constraint on β1 and β2, implies
that β1 = 0. Consequently, β0 = arg

(
U0,1
−i

)
and β3 = arg

(
U1,0
U0,1

)
.

If U has no null entry, then one has β2 6= π and ie
−iβ1U0,1

U0,0
= tan

(
β2
2
)
. Hence, β1 is the unique angle in

[0, π) such that ie
−iβ1U0,1

U0,0
∈ R, namely arg

(
iU0,1
U0,0

)
mod π. In turn, β2 is the unique angle in [0, 2π)\{π}

such that tan
(
β2
2
)

= ie−iβ1U0,1

U0,0
. Finally, one has eiβ3 = cos( β2

2 )U1,0

−i sin( β2
2 )U0,0

, so that β3 = arg
(

cos( β2
2 )U1,0

−i sin( β2
2 )U0,0

)
,

and eiβ0 = U0,0

cos( β2
2 )

, so that β0 = arg
(

U0,0

cos( β2
2 )

)
.

Soundness and Uniqueness of Equation (6.r).

Let Bn : {0, ..., 2n−1} → {0, 1}n be any bijection such that Bn(1...101) = 2n−3, Bn(1...111) = 2n−2 and
Bn(1...110) = 2n − 1,45 and let Bn : C2n → C{0,1}n be the linear map |k〉 7→ |Bn(k)〉. Given any n-qubit

quantum circuit C such that B−1
n ◦ JCK ◦Bn is of the form

(
I 0
0 U

)
with U ∈ C3×3, let JCKB3 := U .

Given any γ1, γ2, γ3, γ4 ∈ R, let U :=

u

www
v RX(γ1)

P (γ2) RX(γ3)

RX(γ4)

}

���
~

B3

. We have to prove that there

exist unique δ1, δ2, δ3, δ4, δ5, δ6, δ7, δ8, δ9 satisfying the conditions of Figure 6.4 such that
u

www
v

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

}

���
~

B3

= U,

or equivalently,
s

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
{

B3
= U.

45The reason for this choice is that it coincides with the Gray code (see Definition 6.40) in the 2-qubit case while for any

number of qubits it ensures that the semantics of the two sides of Equation (6.r) is of the form
(

I 0
0 U

)
with U ∈ C3×3.
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We are going to prove that assuming that such δj exist, their values are uniquely determined by U . Since
we are going to do so by giving explicit expressions of the unique possible value of each δj in terms of
the entries of U , it will then be easy to check that these expressions indeed define angles with the desired
properties.

Let U123 :=
s

RX(δ3)P (δ2)P (δ1)

{

B3
=

eiδ2 0 0
0 ei(δ1+δ2) cos

(
δ3
2
)
−i sin

(
δ3
2
)

0 −iei(δ1+δ2) sin
(
δ3
2
)

cos
(
δ3
2
)
, U4 :=

s
RX(δ4)

{

B3
= cos

(
δ4
2
)

−i sin
(
δ4
2
)

0
−i sin

(
δ4
2
)

cos
(
δ4
2
)

0
0 0 1

 and U56 :=
s

RX(δ6)P (δ5)

{

B3
=

1 0 0
0 eiδ5 cos

(
δ6
2
)
−i sin

(
δ6
2
)

0 −ieiδ5 sin
(
δ6
2
)

cos
(
δ6
2
)
.

Let also UI := U123 ◦ U†, UII := U4 ◦ UI and UIII := U56 ◦ UII.
By construction,

UIII =
s

P (δ7) P (δ9)

P (δ8)
{†

B3
=

e−iδ9 0 0
0 e−i(δ7+δ8+δ9) 0
0 0 e−iδ8

 (E1)

so that

UII = U†56 ◦ UIII =

e−iδ9 0 0
0 e−i(δ5+δ7+δ8+δ9) cos

(
δ6
2
)

ie−i(δ5+δ8) sin
(
δ6
2
)

0 ie−i(δ7+δ8+δ9) sin
(
δ6
2
)

e−iδ8 cos
(
δ6
2
)
 (E2)

and UI = U†4 ◦ UII. Since U4 acts as the identity on the last entry, this implies that (UI)2,0 = 0.46 That
is, by definition of UI,

− iei(δ1+δ2) sin
(
δ3
2
)
U†0,1 + cos

(
δ3
2
)
U†0,2 = 0. (E3)

By direct calculation using the definitions of UI and UII, one gets (UI)0,0 = eiδ2U†0,0 and (UI)1,0 =
ei(δ1+δ2) cos

(
δ3
2
)
U†0,1−i sin

(
δ3
2
)
U†0,2, so that (UII)1,0 = −i sin

(
δ4
2
)
(UI)0,0+cos

(
δ4
2
)
(UI)1,0 = −i sin

(
δ4
2
)
eiδ2U†0,0+

cos
(
δ4
2
)
(ei(δ1+δ2) cos

(
δ3
2
)
U†0,1 − i sin

(
δ3
2
)
U†0,2). That is, since by (E2), (UII)1,0 = 0:

− i sin
(
δ4
2
)
eiδ2U†0,0 + cos

(
δ4
2
) (
ei(δ1+δ2) cos

(
δ3
2
)
U†0,1 − i sin

(
δ3
2
)
U†0,2

)
= 0 (E4)

• If U0,1 = U0,2 = 0, then since U is unitary, U0,0 6= 0 and (E4) becomes −i sin
(
δ4
2
)
eiδ2U†0,0 = 0, that

is sin
(
δ4
2
)

= 0. Since δ4 ∈ [0, 2π), this implies that δ4 = 0, which by the conditions of Figure 6.4,
implies that δ1 = δ2 = δ3 = 0.

• If (U0,1, U0,2) 6= (0, 0), then ei(δ1+δ2) cos
(
δ3
2
)
U†0,1 − i sin

(
δ3
2
)
U†0,2 6= 0. Indeed, if this expression was

equal to 0, by (E3) this would mean that the non-zero vector
(
ei(δ1+δ2)U†0,1

U†0,2

)
is in the kernel of the

matrix
(

cos
(
δ3
2
)

−i sin
(
δ3
2
)

−i sin
(
δ3
2
)

cos
(
δ3
2
) ), whereas this matrix is invertible. Then:

– If U0,0 = 0, then (E4) implies that cos
(
δ4
2
)

= 0, which, since δ4 ∈ [0, 2π), implies that δ4 = π.
By the conditions of Figure 6.4, this implies that δ2 = 0. Then:

∗ If U0,2 = 0, then U0,1 6= 0, and (E3) implies that sin
(
δ3
2
)

= 0, that is, since δ3 ∈ [0, 2π),
that δ3 = 0. By the conditions of Figure 6.4, together with the fact that δ4 = π, this
implies that δ1 = 0.

∗ If U0,1 = 0, then U0,2 6= 0, and (E3) implies that cos
(
δ3
2
)

= 0, that is, since δ3 ∈ [0, 2π),
that δ3 = π. By the conditions of Figure 6.4, this implies that δ1 = 0.

46Where we denote by Mi,j the entry of indices (i, j) of any matrix M , the index of the first row and column being 0.
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∗ If U0,1, U0,2 6= 0, then (E3), on the one hand, implies that δ3 6= π, and on the other hand,
is equivalent to

tan
(
δ3
2
)

=
e−iδ1U†0,2

iU†0,1
.

Hence, δ1 is the unique angle in [0, π) such that e−iδ1U†0,2

iU†0,1
∈ R. In turn, δ3 is the unique

angle in [0, 2π) such that tan
(
δ3
2
)

= e−iδ1U†0,2

iU†0,1
.

– If U0,0 6= 0, then (E4) can be simplified into

− i tan
(
δ4
2
)
eiδ2U†0,0 + ei(δ1+δ2) cos

(
δ3
2
)
U†0,1 − i sin

(
δ3
2
)
U†0,2 = 0. (E5)

∗ If U0,2 = 0, then U0,1 6= 0, and (E3) implies that sin
(
δ3
2
)

= 0, that is, since δ3 ∈ [0, 2π),
that δ3 = 0. By the conditions of Figure 6.4, this implies that δ2 = 0. Then (E5) becomes

−i tan
(
δ4
2
)
U†0,0 + eiδ1U†0,1 = 0

that is,

tan
(
δ4
2
)

=
eiδ1U†0,1

iU†0,0
.

Hence, δ1 is the unique angle in [0, π) such that eiδ1U†0,1

iU†0,0
∈ R. In turn, δ4 is the unique

angle in [0, 2π) such that tan
(
δ4
2
)

= eiδ1U†0,1

iU†0,0
.

∗ If U0,1 = 0, then U0,2 6= 0, and (E3) implies that cos
(
δ3
2
)

= 0, that is, since δ3 ∈ [0, 2π),
that δ3 = π. By the conditions of Figure 6.4, this implies that δ1 = 0. Then (E5) becomes

−i tan
(
δ4
2
)
eiδ2U†0,0 − iU

†
0,2 = 0

that is,

tan
(
δ4
2
)

= −
e−iδ2U†0,2

U†0,0
.

Hence, δ2 is the unique angle in [0, π) such that e−iδ2U†0,2

U†0,0
∈ R. In turn, δ4 is the unique

angle in [0, 2π) such that tan
(
δ4
2
)

= − e
−iδ2U†0,2

U†0,0
.

∗ If U0,1, U0,2 6= 0, then (E3), on the one hand, implies that δ3 /∈ {0, π}, and on the other
hand, is equivalent to

ei(δ1+δ2) =
cos
(
δ3
2
)
U†0,2

i sin
(
δ3
2
)
U†0,1

. (E6)

Then by substituting in (E5), we get

−i tan
(
δ4
2
)
eiδ2U†0,0 +

cos2( δ3
2
)
U†0,2

i sin
(
δ3
2
) − i sin

(
δ3
2
)
U†0,2 = 0

which can be simplified into

−i tan
(
δ4
2
)
eiδ2U†0,0 +

U†0,2

i sin
(
δ3
2
) = 0
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which is equivalent to

tan
(
δ4
2
)

= −
e−iδ2U†0,2

sin
(
δ3
2
)
U†0,0

. (E7)

Hence, δ2 is the unique angle in [0, π) such that
e−iδ2U†0,2

U†0,0
∈ R. Then (E6) can be rephrased

into

tan
(
δ3
2
)

=
e−i(δ1+δ2)U†0,2

iU†0,1
.

Hence, δ1 is the unique angle in [0, π) such that e
−i(δ1+δ2)U†0,2

iU†0,1
∈ R. In turn, δ3 is the unique

angle in [0, 2π) such that tan
(
δ3
2
)

= e−i(δ1+δ2)U†0,2

iU†0,1
. Finally, δ4 is the unique angle in [0, 2π)

satisfying (E7).

Thus, assuming that the δj exist, since UI and UII only depend on δ1, δ2, δ3, δ4 and U , they are uniquely
determined by U . Then (E2) implies that

• If (UII)1,2 = 0, then sin
(
δ6
2
)

= 0, which means, since δ6 ∈ [0, 2π), that δ6 = 0. By the conditions of
Figure 6.4, this implies that δ5 = 0.

• If (UII)2,2 = 0, then cos
(
δ6
2
)

= 0, which means, since δ6 ∈ [0, 2π), that δ6 = π. By the conditions of
Figure 6.4, this implies that δ5 = 0.

• If (UII)1,2 = 0, (UII)2,2 6= 0, then

tan
(
δ6
2
)

= eiδ5(UII)1,2

i(UII)2,2
.

Hence, δ5 is the unique angle in [0, π) such that eiδ5 (UII)1,2
i(UII)2,2

∈ R. In turn, δ6 is the unique angle in

[0, 2π) such that tan
(
δ6
2
)

= eiδ5 (UII)1,2
i(UII)2,2

.

Thus, assuming that the δj exist, since UIII only depends on δ5, δ6 and UII, it is uniquely determined by
U . Then by (E1), δ8 = arg((UIII)†2,2), δ9 = arg((UIII)†0,0) and δ7 = arg

(
(UIII)0,0(UIII)2,2

(UIII)1,1

)
.

Note that Equation (6.q) subsumes Equations (6.k) and (6.l), which can now be derived using the
other axioms of QC:

Proposition 6.37. The following two equations of QC,

P (ϕ1) P (ϕ2) = P (ϕ1+ϕ2) (6.k) P (ϕ)X X = P (−ϕ)
ϕ

(6.l)

can be derived from the other axioms of QC.

Proof. Proof of Equation (6.k):

P (ϕ1) P (ϕ2)
(6.a)= P (ϕ1) P (ϕ2) H HH H H H

(6.b)(6.c)(6.3)= RX(ϕ1) RX(ϕ2) HH

ϕ1+ϕ2
2

(6.d)= RX(ϕ1) RX(ϕ2) HH

ϕ1+ϕ2
2

P (0)
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(6.q)= HH

ϕ1+ϕ2
2

RX(β2) P (β3)P (β1)

β0

(6.q)= RX(ϕ1+ϕ2) RX(0) HH

ϕ1+ϕ2
2

P (0)

(6.d)(6.17)= RX(ϕ1+ϕ2) HH

ϕ1+ϕ2
2

(6.3)(6.a)(6.c)(6.b)= P (ϕ1+ϕ2)

The first use of Equation (6.q) is valid since Equation (6.q) is applied from left to right. The second
use of Equation (6.q) is valid since it preserves the semantics. Note that one can show that β1 = β3 = 0,

β2 = ϕ1 + ϕ2 mod 2π and β0 =
{

0 if (ϕ1 + ϕ2 mod 4π) ∈ [0, 2π)
π if (ϕ1 + ϕ2 mod 4π) ∈ [2π, 4π)

.

Proof of Equation (6.l):

P (ϕ)X X
(6.2)(6.1)= P (ϕ)P (π) HH P (π) HH

(6.b)(6.c)(6.3)= P (ϕ)RX(π) RX(π)
π

(6.q)(6.c)= RX(β2) P (β3)P (β1)

β0 + π

One has β1 = β2 = 0, β3 = −ϕ mod 2π and β0 = ϕ−π mod 2π. Indeed, this choice of angles satisfies
the conditions of Equation (6.q) and is sound with respect to the semantics (moreover Proposition 6.36
guarantees that this is the only possible choice). Thus, by Equations (6.d) and (6.17), this implies that

one can transform P (ϕ)X X into P (-ϕ mod 2π)

(ϕ−π mod 2π)+π
(6.b)(6.c)= P (-ϕ mod 2π)

ϕ
. Finally,

P (-ϕ)
(6.17)= RX(0)P (-ϕ)RX(0)

(6.q)(6.b)= RX(0) P (-ϕ mod 2π)P (0)
(6.d)(6.17)= P (-ϕ mod 2π) ,

which terminates the proof.

The introduction of the additional equations of Figure 6.4 allows us to prove some extra properties
about multi-controlled gates, like periodicity (for those with a parameter) in Proposition 6.39 and the
fact that a multi-controlled X gate is self-inverse.

Proposition 6.38. For any x ∈ {0, 1}k, y ∈ {0, 1}`,

QC ` ΛxyX ◦ ΛxyX = idk+`+1

Proof. The case x = y = ε is a direct consequence of Equation (6.10). For the other cases, without loss
of generality we can assume that y = ε and x = 1k. First, we can show that QC ` ΛxP (2π) = idk+1 as
follows:

P (2π)

Proposition 6.23=
RX(0)

P (2π) RX(0)

RX(0)
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(6.r)=
RX(0)P (0)P (0)

RX(0)

RX(0)P (0) P (0) P (0)

P (0)

Proposition 6.23= .

It follows that:

ΛxX ΛxX
def= ΛxP (π)

H

ΛxP (π)
H HH

(6.a)= ΛxP (π) ΛxP (π)
HH

Proposition 6.23= ΛxP (2π)
HH

QC`ΛxP (2π)=idk+1

=
HH

(6.a)= .

Proposition 6.39. For any x ∈ {0, 1}k, y ∈ {0, 1}`, θ ∈ R,

QC ` ΛxyRX(θ + 4π) = ΛxyRX(θ), QC ` ΛxyP (θ + 2π) = ΛxyP (θ), QC ` Λxys(θ + 2π) = Λxys(θ).

Proof. Because of the additivity given by Proposition 6.23, it is sufficient to show that for any x ∈ {0, 1}k,
y ∈ {0, 1}`,

QC ` ΛxyRX(4π) = idk+`+1, QC ` ΛxyP (2π) = idk+`+1, QC ` Λxys(2π) = idk+`.

Additionally, by Equation (6.10) and Definitions 6.7 and 6.8, we can assume without loss of generality
that y = ε and x = 1k.

First, note that the case where x = ε only needs QC0:

2π
(6.b)=

P (2π)
(6.1)(6.k)= Z Z

(6.13)=
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RX(4π)
(6.3)= H HP (4π)

-2π

(6.b)(6.c)(6.k),
QC0`P (2π)=

= H H

(6.a)=

For the case where k ≥ 1, note first that we have already proved that QC ` ΛxP (2π) = idk+1, in the
proof of Proposition 6.38.

As Λx1s(2π) = ΛxP (2π), this also proves that for any x = 1k, QC ` Λxs(2π) = idk.
Finally:

Λ1xRX(4π)

Proposition 6.23,
(6.a), def= Λ1xP (4π)

Λ1xs(-2π)

H H

QC`idk+1=Λ1xs(2π)
= Λ1xP (4π)

Λ1xs(-2π)

H H

Λ1xs(2π) Λ1xs(2π)

Proposition 6.23= Λ1xP (2π)

H H

Λ1xs(2π)
Λ1xP (2π)

QC`Λ1xs(2π)=idk+1

QC`Λ1xP (2π)=idk+2

=

H H

(6.a)=

6.2 Completeness
In this section we prove the main result of this chapter, namely the completeness of QC. To this end, a
back and forth encoding of quantum circuits into LOPP-circuits is introduced.

6.2.1 Forgetting the Monoidal Structure
The proof of completeness for quantum circuits is based on a back and forth translation from linear
optical circuits. While both kinds of circuits form a PROP, so both have a monoidal structure, these
monoidal structures do not coincide. The monoidal product of quantum circuits corresponds to the tensor
product, whereas that of linear optical circuits is a direct sum. Hence the translations do not preserve
the monoidal structure.
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As a consequence there is a technical issue around defining the translation directly on circuits. We
instead define the transformations on raw circuits, that is, circuits not considered up to the axioms of
PROP, which are just terms built inductively from the generators (including , and ) using the
sequential and parallel compositions ◦ and ⊗ (resp. ◦ and ⊕), in a similar way as in the first part of
Definition 1.4. The collection of raw quantum (resp. LOPP) circuits is denoted by QCraw (resp. LOraw

PP ).
Note that we recover the standard circuits by considering the raw circuits up to the equivalence relation
≡ given by the axioms of PROP: QC = QCraw/≡ and LOPP = LOraw

PP /≡. As this will be useful in the
following, we give these axioms in Figure 6.5 in the form of an equational theory for raw circuits.

idk ◦ C ≡ C ≡ C ◦ idk

C ≡ C ≡ C

(t1)

(C3 ◦ C2) ◦ C1 ≡ C3 ◦ (C2 ◦ C1)

C1 C2 C3 ≡ C1 C2 C3

(t2)

⊗ C ≡ C ≡ C ⊗

C
≡ C ≡

C

(t3)

σk ◦ ( ⊗ C) ≡ (C ⊗ ) ◦ σk

C
≡ C

(t4)

(C1 ⊗ C2)⊗ C3 ≡ C1 ⊗ (C2 ⊗ C3)

C1

C2

C3

≡

C1

C2

C3

(t5)

(C2 ◦ C1)⊗ (C4 ◦ C3) ≡ (C2 ⊗ C4) ◦ (C1 ⊗ C3)

C1 C2

C3 C4

≡
C1 C2

C3 C4

(t6)

◦ ≡ ⊗

≡

(t7)

where id0 := and idk+1 := idk ⊗ , and σ0 := , σk+1 := (idk ⊗ ) ◦ (σk ⊗ ).

Figure 6.5: Definition of ≡ for raw circuits (either raw quantum circuits or raw optical circuits). Here
the symbol ⊗ stands for either ⊗ or ⊕.

To avoid ambiguity in the graphical representation of raw circuits one can use boxes like X

X

X

for ( X ⊗ X ) ⊗ X or
H

P (π/4)
for ◦ (( H ⊗ P (π/4) ) ◦ ). We also use

a box-free graphical representation that we interpret as a layer-by-layer description of a raw circuit,
more precisely we associate with any box-free graphical representation, a raw circuit of the form C =
(. . . ((L1 ◦ L2) ◦ L3) ◦ . . .) ◦ Lk where Li = (. . . ((gi,1 ⊗ gi,2)⊗ gi,3)⊗ . . .)⊗ gi,`i .

For instance, ((id1 ⊗ id1)⊗X) ◦ (CNot⊗H) is

H X

=
X

◦

H

Similarly, although the sequential and parallel composition are not associative, we sometimes use
parenthesis-free notations for products: namely, C1 ◦C2 ◦C3 ◦ . . .◦Ck and C1⊗C2⊗C3⊗ . . .⊗Ck denote
respectively (. . . ((C1 ◦ C2) ◦ C3) ◦ . . .) ◦ Ck and (. . . ((C1 ⊗ C2)⊗ C3)⊗ . . .)⊗ Ck.

We extend the notation QC ` · = · and LOPP ` · = · to raw circuits. For any raw quantum circuits
(resp. raw optical circuits) C1, C2, we write QC ` C1 = C2 (resp. LOPP ` C1 = C2) if C1 and C2 are
equivalent by the congruence defined in Figure 6.2, Figure 6.4 and Figure 6.5 (resp. Figure 5.12 and
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Figure 6.5).47

Note that there exists a derivation between two circuits if and only if there exists a derivation between
two of their representative raw circuits. Indeed, intuitively the only difference is that the derivation on
raw circuits is more fine-grained as the equivalence relation ≡ is made explicit.

6.2.2 Encoding Quantum Circuits Into Optical Ones
We are now ready to define the encoding of (raw) quantum circuits into (raw) linear optical circuits. For
dimension reasons, an n-qubit system is encoded into 2n modes. One can naturally choose to encode |x〉,
with x ∈ {0, 1}n, into the mode |x〉 where x =

∑n
i=1 xi2n−i is the usual binary encoding. Alternatively,

we use Gray codes to produce circuits with a simpler connectivity, in particular two adjacent modes
encode basis qubit states which differ on exactly one qubit.
Definition 6.40 (Gray code). Let Gn : C2n → C{0,1}n be the map |k〉 7→ |Gn(k)〉 where Gn(k) is the
Gray code of k, inductively defined by G0(0) = ε and

Gn(k) =
{

0Gn−1(k) if k < 2n−1,
1Gn−1(2n − 1− k) if k ≥ 2n−1.

For instance G3 is defined as follows:
0 7→ 000 4 7→ 110
1 7→ 001 5 7→ 111
2 7→ 011 6 7→ 101
3 7→ 010 7 7→ 100

In order to get around the fact that the encoding an n-qubit circuit into a 2n-mode optical circuit cannot
preserve the parallel composition, we proceed by “sequentialising” the circuit: roughly speaking, an n-
qubit circuit is seen as a sequential composition of layers, each layer being an n-qubit circuit made of
an elementary gate g acting on at most two qubits in parallel with the identity on all other qubits,
e.g. idk ⊗ g ⊗ idl. The encoding of such a layer, denoted Ek,l(g), is a 2n-mode optical circuit acting
non-trivially on potentially all the modes.

For instance, consider a 3-qubit layer which consists in applying P (ϕ) on the second qubit. Its
semantics is |x, y, z〉 7→ eiϕy |x, y, z〉. Such a circuit is encoded into an 8-mode optical circuit E1,1(P (ϕ))
made of 4 phase shifters acting on the modes p ∈ [2, 5] (those s.t. G3(p) = x1z). Indeed, the semantics

of E1,1(P (ϕ)) is |p〉 7→
{
eiϕ |p〉 if p ∈ [2, 5]
|p〉 otherwise

.

The encoding map is formally defined as follows:
Definition 6.41 (Encoding). Let E : QCraw → LOraw

PP be defined as follows: for any n-qubit circuit C,
E(C) = E0,0(C) where Ek,` is inductively defined as:

• Ek,`(C1 ⊗ C2) = Ek+n1,`(C2) ◦ Ek,`+n2(C1), where C1 (resp. C2) is acting on n1 (resp. n2) qubits;

• Ek,`(C2 ◦ C1) = Ek,`(C2) ◦ Ek,`(C1);
Let us define σk,n,` as a 2k+n+`-mode linear optical circuit made only of swaps (that is, without any
ϕ or θ ) such that Gn ◦ Jσk,n,`Kpp ◦ G

−1
n (|x, y, z〉) = |x, z, y〉48 for any x ∈ {0, 1}k, y ∈ {0, 1}n and

z ∈ {0, 1}`. We then define

Ek,`( ) = σk,`,2 ◦ σk+`,1,1 ◦ σk,2,`,

Ek,`( ) = ( )⊕2k+`
,

Ek,`( ) = ( )⊕2k+`+1
,

Ek,`( ϕ ) =
(

ϕ
)⊕2k+`

,

47In this context, the circuits depicted in Figures 6.2, 6.4 and 5.12 are interpreted as box-free graphical representations
of raw circuits.

48Where J·Kpp is defined in Definition 5.11.

160



6.2. Completeness

E(C0) = E0,0( ⊗ H )

= E2,0( H ) ◦ E0,1( )

= σ2,0,1 ◦

 π
4

−π
2

−π
2

−π
2

−π
2

π
4

⊕2

◦ σ2,1,0 ◦ σ0,1,2 ◦


 ◦ σ0,2,1

= id8 ◦

 π
4

−π
2

−π
2

−π
2

−π
2

π
4

⊕2

◦ id8 ◦

  ◦


 ◦
 

Figure 6.6: Encoding of the circuit discussed in Example 6.43.

where C⊕n means C n times in parallel: C⊕0 = and C⊕n+1 = C⊕n ⊕ C.
For the remaining generators, we define:

E0,0( H ) =
π
4

−π
2 −π

2
,

E0,0( P (ϕ) ) = ϕ ,

E0,0( ) = ,

and whenever (k, `) 6= (0, 0):

Ek,`( H ) = σk,`,1 ◦

 π
4

−π
2

−π
2

−π
2

−π
2

π
4

⊕2k+`−1

◦ σk,1,`,

Ek,`( P (ϕ) ) = σk,`,1 ◦

(
ϕ

ϕ

)⊕2k+`−1

◦ σk,1,`,

Ek,`( ) = σk,`,2 ◦



⊕2k+`−1

◦ σk,2,`.

Remark 6.42. Note that for any n-qubit circuit C, Ek,`(C) is a 2k+n+`-mode optical circuit. Also
note that σk,n,` is nothing but a permutation of wires. By Lemma 6.56 — which is independent of the
definition of E — any actual circuit satisfying the above property (Gn◦Jσk,n,`Kpp◦G

−1
n (|x, y, z〉) = |x, z, y〉)

is convenient for our purposes. A formal definition of σk,n,` is however given in Definition 6.50.

Example 6.43. Consider the simple circuit C0 =
H

. The encoding is as shown in Figure 6.6.49

49Note that we have made an abuse of notation in the two last steps in Figure 6.6, by writing the sequential products
without parentheses even though this does not comply with the convention given in Section 6.2.1. In the following, we will
similarly omit parentheses whenever this does not create ambiguity, in order to lighten the notations.

161



Chapter 6. A Complete Equational Theory for Quantum Circuits

Using the topological rules (Figure 6.5), one can simplify E(C0) into the circuit C1:
π
4

−π2

−π2

−π2

−π2
π
4

π
4

−π2

−π2

−π2

−π2
π
4

000

001

011

010

110

111

101

100

The encoding of quantum circuits into linear optical circuits preserves the semantics, up to Gray
codes.

Proposition 6.44. For any n-qubit quantum circuit C,

Gn ◦ JE(C)Kpp = JCK ◦Gn

Proof. By induction.

6.2.3 Decoding
Regarding the decoding, i.e. the translation back from linear optical circuits to quantum circuits, we use
the same sequentialisation approach. Note that such a decoding is defined only for optical circuits with
a power of two number of modes.

The decoding of a 2n-mode layer idk ⊕ g ⊕ idl is a n-qubit circuit denoted Dk,n(g). For instance
consider a 16-mode layer which consists in applying ϕ on the fourth mode. Its semantics is |p〉 7→{
eiϕ |p〉 if p = 3
|p〉 otherwise

. Such a circuit is decoded into a 4-qubit circuit D3,4( ϕ ) implementing the multi-

controlled phase ΛG4(3)s(ϕ), whose semantics is |x, y, z, t〉 7→
{
eiϕ |x, y, z, t〉 if xyzt = G4(3)
|x, y, z, t〉 otherwise

.

The decoding map is formally defined as follows:

Definition 6.45 (Decoding). Let D : LOraw
PP → QCraw be defined as follows: for any 2n-mode circuit

C, D(C) = D0,n(C) where for any n, k, ` with k + ` ≤ 2n and C : ` → `, Dk,n(C) is inductively defined
as follows:

• Dk,n(C1 ⊕ C2) = Dk+`1,n(C2) ◦Dk,n(C1), where C1 is acting on `1 modes;

• Dk,n(C2 ◦ C1) = Dk,n(C2) ◦Dk,n(C1);

The generators are treated as follows:

Dk,n( ) = idn,

Dk,n( ) = idn, Dk,n( ϕ ) = ΛGn(k)s(ϕ),
Dk,n( ) = Λxk,nyk,nX, Dk,n( θ ) = Λxk,nyk,nRX(−2θ),

where x2k,n := Gn−1(k), y2k,n := ε, x2k+1,n := w and y2k+1,n := 1.0q, where q ∈ {0, ..., n − 2} and
w ∈ {0, 1}n−q−2 are such that Gn(2k + 1) = wa1.0q for some a ∈ {0, 1}.

The definition of xk,n and yk,n is based on the following elementary properties of Gray codes, which
will be useful in the following:

Proposition 6.46 (Useful elementary properties of Gray codes).

162



6.2. Completeness

• Let n ∈ N, i ∈ {0, ..., n} and k = a2i + b, where a ∈ {0, ..., 2n−i − 1} and b ∈ {0, ..., 2i − 1}. Then

Gn(k) =
{
Gn−i(a)Gi(b) if a is even
Gn−i(a)Gi(2i − 1− b) if a is odd.

• For any n ≥ 1 and k ∈ {0, ..., 2n−1 − 1}, there exists a ∈ {0, 1} such that

Gn(2k) = Gn−1(k)a and Gn(2k + 1) = Gn−1(k)ā.

• For any n ≥ 2 and k ∈ {0, ..., 2n−1−1}, there exist a ∈ {0, 1}, q ∈ {0, ..., n−2} and w ∈ {0, 1}n−q−2

such that
Gn(2k + 1) = wa1.0q and Gn(2k + 2) = wā1.0q.

Example 6.47. We consider the optical circuit C1 obtained in Example 6.43. We can show that

D(C1) ≡
P (-π2 ) RX(-π2 ) P (-π2 )P (-π2 ) RX(-π2 ) P (-π2 )P (-π2 ) RX(-π2 ) P (-π2 )P (-π2 ) RX(-π2 ) P (-π2 )

Similarly to the encoding function, the decoding function preserves the semantics up to Gray codes.

Proposition 6.48. For any 2n-mode optical circuit C,

JD(C)K ◦Gn = Gn ◦ JCKpp .

Proof. The proof is by induction.

6.2.4 Quantum Circuit Completeness
The proof of completeness is based on the encoding/decoding of quantum circuits into optical circuits.
Intuitively, given two quantum circuits representing the same unitary map, one can encode them as
linear optical circuits. Since the encoding preserves the semantics and LOPP is complete, there exists a
derivation proving the equivalence of the encoded circuits. In order to lift this proof to quantum circuits,
it remains to prove that the decoding of an encoded quantum circuit is provably equivalent to the original
quantum circuit (Lemma 6.49), and that each axiom of LOPP can be mimicked in QC (Lemma 6.61).
Notice that since the encoding/decoding is defined on raw circuits, an extra step in the proof consists in
showing that the axioms of ≡ can also be mimicked in QC (Lemma 6.56).

6.2.4.1 D(E(C)) is equivalent to C

Examples 6.43 and 6.47 point out that composing encoding and decoding does not lead, in general, to
the original circuit, the decoded circuit being made of multi-controlled gates. However, we show that the
equivalence with the initial circuit can always be derived in QC:

Lemma 6.49. For any n-qubit raw quantum circuit C,

QC ` D(E(C)) = C.

Proof. We prove by structural induction on C that

∀k, `, QC ` D(Ek,`(C)) = idk ⊗ C ⊗ id`.

For any two n-qubit raw circuits C1, C2, one has

D(Ek,`(C2 ◦ C1)) = D(Ek,`(C2)) ◦D(Ek,`(C1))

and for any m-qubit raw circuit C3,

D(Ek,`(C1 ⊗ C3)) = D(Ek+n,`(C3)) ◦D(Ek,`+m(C1)).

Hence, it remains the base cases, which are proved as Lemma 6.53 below.
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Auxiliary Lemmas. We are going to address the base cases of the induction in three steps, taking
the form of three auxiliary lemmas. To state these auxiliary lemmas, we need to first give an explicit
definition of σk,n,`:

Definition 6.50. σk,n,` is defined by σk,0,` := ( )⊕2k+` and ∀n ≥ 2, σk,n,` := σnk,1,`+n−1, with

σk,1,` =
k+∏̀
j=k+1

PjQjPj

where

• given a family of N -mode circuits CA, ..., CB,
B∏
i=A

Ci := (. . . ((CB ◦ CB−1) ◦ CB−2) ◦ . . .) ◦ CA,

• M := k + `+ 1

• Pj is a raw optical circuit such that Gn ◦ JPjKpp ◦G
−1
n = idj−1 ⊗

r z
⊗ idM−j−1, defined as

Pj :=
2j−1∏
b=0

b mod 4∈{1,2}

2M−j−1−1∏
a=0

υM,j,b,a

• Qj is a raw optical circuit such that Gn ◦ JQjKpp ◦G
−1
n = idj−1 ⊗

r z
⊗ idM−j−1, defined as

Qj :=
2j−1−1∏
b=0

2M−j−3−1∏
a=0

υM,j−1,b,a

• υN,i,b,a is a raw optical circuit such that υN,i,b,a ≡

(2b+ 1)2N−i−1 − a− 1

(2b+ 1)2N−i−1 − 1

(2b+ 1)2N−i−1

(2b+ 1)2N−i−1 + a

0

N − 1

. It is

defined for any N ≥ 1, i ∈ {0, ..., N − 1}, b ∈ {0, ..., 2i − 1} and a ∈ {0, ..., 2N−i−1 − 1}, by finite
induction on a by

υN,i,b,0 :=
(2b+1)2N−i−1−1{

2N−(2b+1)2N−i−1−1{
,

and for a ∈ {1, ..., 2N−i−1 − 1},

υN,i,b,a := s−a ◦ s+a ◦ υN,i,b,a−1 ◦ s+a ◦ s−a,

where s+a :=
(2b+1)2N−i−1+a−1{

2N−(2b+1)2N−i−1−a−1{
and s−a :=

(2b+1)2N−i−1−a−1{

2N−(2b+1)2N−i−1+a−1{
.
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The three steps of the proof of the base cases of Lemma 6.49 are the following (note that Lemma 6.53
corresponds exactly to the base cases of Lemma 6.49):

Lemma 6.51. For any N ≥ 1, i ∈ {0, ..., N − 1}, b ∈ {0, ..., 2i − 1} and a ∈ {0, ..., 2N−i−1 − 1},

QC ` D(υN,i,b,a) = ΛGi(b)
GN−i−1(2N−i−1−a−1)X

where υN,i,b,a is defined in Definition 6.50, and given n ∈ N and k ∈ {0, ..., 2n − 1}, Gn(k) ∈ {0, 1}n
is the n-bit Gray code of k, defined in Definition 6.40. Note that GN−i−1(2N−i−1 − a − 1) differs from
GN−i−1(a) by only the first bit.

Lemma 6.52. For any k, `, n ∈ N,

QC ` D(σk,n,`) = idk ⊗ σn,`.

where σ0,0 := and σn,` := σnn+`−1, where σn+`−1 is defined in Figure 6.5.

Lemma 6.53. For any g ∈ { , , s(ϕ), H , P (ϕ) , , },

QC ` D(Ek,`(g)) = idk ⊗ g ⊗ id`.

To prove these lemmas, it is convenient to introduce the following notation:

Definition 6.54. Given x ∈ {0, 1}k, y ∈ {0, 1}` and G ∈ {s(ϕ), X,RX(θ), P (ϕ)}, we define

Λ̄xyG :=
∏

x′∈{0,1}k

y′∈{0,1}`

x′y′ 6=xy

Λx
′

y′G

where the product denotes a sequential composition taken in an arbitrary order.

Proof of Lemma 6.51. We proceed by induction on a.
It follows from the definition of D and the properties of the Gray code that

D(υN,i,b,0) def= D

 (2b+1)2N−i−1−1{

2N−(2b+1)2N−i−1−1{

 ≡ ΛGi(b)
GN−i−1(2N−i−1−1)X.

Assuming for some a ∈ {1, ..., 2N−i−1 − 1} that QC0 ` D(υN,i,b,a−1) = ΛGi(b)
GN−i−1(2N−i−1−a)X, by

definition of υN,i,b,a, one has

QC0 ` D(υN,i,b,a) = D(s−a) ◦D(s+a) ◦
(

ΛGi(b)
GN−i−1(2N−i−1−a)X

)
◦D(s+a) ◦D(s−a).

Because of the properties of Gray codes, GN−i−1(2N−i−1−a−1) differs from GN−i−1(2N−i−1−a) by
only one bit. That is, there exist k, ` ≥ 0 with k + ` = N − i− 2, x ∈ {0, 1}k, y ∈ {0, 1}` and α ∈ {0, 1},
such that

GN−i−1(2N−i−1 − a− 1) = xαy and GN−i−1(2N−i−1 − a) = xᾱy

where ᾱ := 1− α.
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It follows from the definition of D and the properties of the Gray codes that D(s−a) ≡ ΛGi(b).0xy X

and D(s+a) ≡ ΛGi(b).1xy X. Hence, by Propositions 6.17, 6.26 and 6.27, QC0 ` D(s−a) ◦ D(s+a) =

D(s+a) ◦D(s−a) =
X

Λx

Λy

ΛGi(b)

def= (σ1,i ⊗ idN−i−1) ◦
(
⊗ ΛGi(b)xy X

)
◦ (σi,1 ⊗ idN−i−1), so that

QC ` D(υN,i,b,a) = (σ1,i⊗idN−i−1)◦
(
⊗ ΛGi(b)xy X

)
◦
(

ΛεGi(b)xᾱyX
)
◦
(
⊗ ΛGi(b)xy X

)
◦(σi,1⊗idN−i−1)

with

QC `(
⊗ ΛGi(b)xy X

)
◦
(

ΛεGi(b)xᾱyX
)
◦
(
⊗ ΛGi(b)xy X

)
Propositions 6.38, 6.27 and 6.26=

(idi+k+1 ⊗X ⊗ id`) ◦
(
⊗ Λ̄Gi(b)xy X

)
◦
(

ΛεGi(b)xᾱyX
)
◦
(
⊗ Λ̄Gi(b)xy X

)
◦ (idi+k+1 ⊗X ⊗ id`)

Propositions 6.26 and 6.27=

(idi+k+1 ⊗X ⊗ id`) ◦
(
⊗ Λ̄Gi(b)xy X

)
◦
(
⊗ Λ̄Gi(b)xy X

)
◦
(

ΛεGi(b)xᾱyX
)
◦ (idi+k+1 ⊗X ⊗ id`)

Propositions 6.27 and 6.38=

(idi+k+1 ⊗X ⊗ id`) ◦
(

ΛεGi(b)xᾱyX
)
◦ (idi+k+1 ⊗X ⊗ id`) .

In other words,

QC ` D(υN,i,b,a) = (idi+k+1 ⊗X ⊗ id`) ◦
(

ΛGi(b)xᾱy X
)
◦ (idi+k+1 ⊗X ⊗ id`) .

By definition of ΛGi(b)xᾱy X and Equation (6.10), this implies that

QC ` D(υN,i,b,a) = ΛGi(b)xαy X

which, since xαy = GN−i−1(2N−i−1 − a− 1), is the desired property.

Remark 6.55. By defining υN,i,b,a in a less natural way using not only and but also ϕ and
θ , one could avoid using Proposition 6.38 and get the stronger result that QC0 ` D(υN,i,b,a) =

ΛGi(b)
GN−i−1(2N−i−1−a−1)X, which would in turn imply that the equalities of Lemmas 6.52 and 6.53, and

therefore that of Lemma 6.49, can also be taken modulo QC0 instead of QC.

Proof of Lemma 6.52. First, if n = 1, by definition (see Definitions 6.45 and 6.50), one has

D(σk,1,`) =
k+∏̀
j=k+1

PjQjPj
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where, with M := k + `+ 1, Pj :=
2j−1∏
b=0

b mod 4∈{1,2}

2M−j−1−1∏
a=0

D(υM,j,b,a) and Qj :=
2j−1−1∏
b=0

2M−j−3−1∏
a=0

D(υM,j−1,b,a).

By Lemma 6.51, this implies that for all j,

QC ` Pj =
2j−1∏
b=0

b mod 4∈{1,2}

2M−j−1−1∏
a=0

ΛGj(b)
GM−j−1(2M−j−1−a−1)X

It is easy to check that when a goes from 0 to 2M−j−1 − 1, GM−j−1(2M−j−1 − a− 1) takes all possible
values in {0, 1}M−j−1, once each, and that when b takes all possible values between 0 and 2j − 1 that are
congruent to 1 or 2 modulo 4, Gj(b) takes, once each, all values in {0, 1}j in which the last bit has value
1. Hence, it follows from Propositions 6.26, 6.27 and 6.10 that

QC ` Pj = idj−1 ⊗ ⊗ idM−j−1.

Again by Lemma 6.51, for all j,

QC ` Qj =
2j−1−1∏
b=0

2M−j−3−1∏
a=0

ΛGj−1(b)
GM−j(2M−j−a−1)X

Similarly, it is easy to check that when b goes from 0 to 2j−1 − 1, Gj−1(b) takes all values in {0, 1}j−1,
once each, and that when a goes from 0 to 2M−j−3, GM−j(2M−j − a− 1) takes, once each, all values in
{0, 1}M−j in which the first bit has value 1. Hence, it follows from Propositions 6.26, 6.27 and 6.10 that

QC ` Qj = idj−1 ⊗ ⊗ idM−j−1.

Thus,

QC ` D(σk,1,`) =
k+∏̀
j=k+1

idj−1 ⊗ ⊗ idM−j−1.

By Equation (6.h), this implies that

QC ` D(σk,1,`) =
k+∏̀
j=k+1

idj−1 ⊗ ⊗ idM−j−1 ≡ idk ⊗ σ1,`. (6.33)

Finally, if n > 1, then

D(σk,n,`)
def= D(σnk,1,`+n−1)
def= D(σk,1,`+n−1)n

(6.33)= (idk ⊗ σ1,`+n−1)n

≡ idk ⊗ σn,`.

Proof of Lemma 6.53. If g = or then the result follows directly from the definitions.
If g = s(ϕ), then it follows from the definitions of Ek,` and D that

D(Ek,`(s(ϕ))) =
∏

x∈{0,1}k+`

Λxs(ϕ)
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where we use the notation
∏

x∈{0,1}k+`

to denote the product without specifying the order of the factors.

By Propositions 6.26 and 6.27, this implies that

QC ` D(Ek,`(s(ϕ))) = idk+` ⊗ s(ϕ)

which is equal to idk ⊗ s(ϕ)⊗ id` by the topological rules of quantum circuits.

If g = P (ϕ) , then it follows from the definitions that if k = ` = 0,

D(E0,0( P (ϕ) )) = D( ϕ ) ≡ Λ1s(ϕ) = P (ϕ).

and if (k, `) 6= (0, 0),

D(Ek,`( P (ϕ) )) = D(σk,`,1) ◦D

( ϕ

ϕ

)⊕2k+`−1
 ◦D(σk,1,`)

with

D

( ϕ

ϕ

)⊕2k+`−1
 ≡ ∏

x∈{0,1}k+`

Λx1s(ϕ) =
∏

x∈{0,1}k+`

ΛxP (ϕ).

By Propositions 6.26 and 6.27, this product is equal modulo QC0 to idk+` ⊗ P (ϕ). Then, Lemma 6.52
together with topological rules of quantum circuits gives us the result.

If g = H , then it follows from the definitions that if k = ` = 0,

D(E0,0( H )) = D(
π
4

−π
2 −π

2
) ≡ Λ1s(−π2 ) ◦ ΛεεRX(−π2 ) ◦ Λ1s(−π2 )

= RX(−π2 )P (−π2 ) P (−π2 )

Proposition 6.35= H

and if (k, `) 6= (0, 0),

D(Ek,`( H )) = D(σk,`,1) ◦D


 π

4
−π

2

−π
2

−π
2

−π
2

π
4

⊕2k+`−1 ◦D(σk,1,`)

with

D


 π

4
−π

2

−π
2

−π
2

−π
2

π
4

⊕2k+`−1 ≡ ∏
x∈{0,1}k+`

 ∏
a∈{0,1}

Λxa1s(−π2 )

 ◦
 ∏
a∈{0,1}

ΛxaRX
(
−π2
) ◦

 ∏
a∈{0,1}

Λxa1s(−π2 )

 .

By Propositions 6.26 and 6.27, this product is equal modulo QC0 to idk+` ⊗ RX(−π2 )P (−π2 ) P (−π2 ) ,
which by Proposition 6.35 is equal modulo QC0 to H . Then, Lemma 6.52 together with topological
rules of quantum circuits gives us the result.

If g = , then it follows from the definitions that if k = ` = 0,

D(E0,0( )) = D
( )

≡ Λ1
εX
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which is equal to modulo QC0 by Proposition 6.10;
and if (k, `) 6= (0, 0),

D(Ek,`( )) = D(σk,`,2) ◦D





⊕2k+`−1 ◦D(σk,2,`)

with

D





⊕2k+`−1 ≡ ∏

x∈{0,1}k+`

Λx1X.

By Propositions 6.26 and 6.27, this product is equal modulo QC0 to idk+` ⊗ Λ1X, which by Propo-
sition 6.10 is equal modulo QC0 to idk+` ⊗ . Then, Lemma 6.52 together with topological rules of
quantum circuits gives us the result.

If g = , then it follows from the definitions that

D(Ek,2,`( )) = D(σk,`,2) ◦D(σk+`,1,1) ◦D(σk,2,`)

By Lemma 6.52, this is equal modulo QC to (idk ⊗ σ`,2) ◦ (idk+` ⊗ ) ⊗ (idk ⊗ σ2,`), which by the
topological rules of quantum circuits, is equal to idk ⊗ ⊗ id`.

6.2.4.2 Mimicking the Topological Rules

Note that in general, the decoding function does not preserve the topological equivalence. For in-

stance, with the raw circuits C1 =
θ

and C2 = θ , we have C1 ≡ C2 but D(C1) =

RX(-2θ)

X

X

X

X
and D(C2) =

RX(-2θ)
. Thus, the topological rules also have to be mimicked

in QC:

Lemma 6.56. For any 2n-mode raw optical circuits C1, C2, if C1 ≡ C2 then QC ` D(C1) = D(C2).

Ancillary Lemma and Useful Definitions The following lemma will be useful to treat one of the
cases in the proof of Lemma 6.56:

Lemma 6.57. For any raw optical circuits C1 : `1 → `1 and C2 : `2 → `2, and any k, `, n with ` ≥ `1
and k + ` ≤ 2n,

QC0 ` Dk+`,n(C2) ◦Dk,n(C1) = Dk,n(C1) ◦Dk+`,n(C2).

Proof. We proceed by structural induction on C1 and C2.

• If C1 = C ′′1 ◦ C ′1, then

Dk+`,n(C2) ◦Dk,n(C1) = Dk+`,n(C2) ◦ (Dk,n(C ′′1 ) ◦Dk,n(C ′1))

while
Dk,n(C1) ◦Dk+`,n(C2) = (Dk,n(C ′′1 ) ◦Dk,n(C ′1)) ◦Dk+`,n(C2)

so the result follows by Equation (t2) of quantum circuits and the induction hypothesis.

• The case C2 = C ′′2 ◦ C ′2 is similar to the previous one.
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• If C1 = C ′1 ⊕ C ′′1 with C ′1 : `′1 → `′1, then

Dk+`,n(C2) ◦Dk,n(C1) = Dk+`,n(C2) ◦ (Dk+`′1,n(C ′′1 ) ◦Dk,n(C ′1))

while
Dk,n(C1) ◦Dk+`,n(C2) = (Dk+`′1,n(C ′′1 ) ◦Dk,n(C ′1)) ◦Dk+`,n(C2)

so the result follows by Equation (t2) of quantum circuits and the induction hypothesis.

• The case C2 = C ′2 ⊕ C ′′2 is similar to the previous one.

• If C1 or C2 is or , then the results follows from Equation (t1) of quantum circuits.

• If C1, C2 ∈ { ϕ , θ , }, thenDk,n(C1) = ΛGn(k)s(ϕ), Λxk,nyk,nRX(−2θ) or Λxk,nyk,nX andDk+`,n(C2) =
ΛGn(k+`)s(ϕ), Λxk+`,n

yk+`,nRX(−2θ) or Λxk+`,n
yk+`,nX. Using the definitions of Gn(k), xk,n and yk,n, it is easy

to check that in any case, Dk,n(C1) and Dk+`,n(C2) satisfy the premises of either Proposition 6.27
or 6.30 and therefore commute.

Additionally, it will be useful to slightly generalise the notation of Definition 6.54:

Definition 6.58. Given x ∈ {0, 1}k, y ∈ {0, 1}` and z ∈ {0, 1}m, we define

Λ
x
y
z

:= Λx1y
z X, Λ

x
y
z

:= Λxy1zX, Λ̄
x
y
z

:=
∏

x′∈{0,1}k

y′∈{0,1}`

z′∈{0,1}m

x′y′z′ 6=xyz

Λx
′1y′
z′ X and Λ̄

x
y
z

:=
∏

x′∈{0,1}k

y′∈{0,1}`

z′∈{0,1}m

x′y′z′ 6=xyz

Λx
′

y′1z′X.

Finally, it will be useful, both for the proof of Lemma 6.56 and that of Lemma 6.61 below, to introduce
a notion of context and substitution. We actually need to formalise this notion only for optical circuits:

Definition 6.59 (Context). A N -mode raw context C[·]i with i ∈ N is inductively defined as follows:

• [·]i is a i-mode raw context,

• if C[·]i is a N -mode raw context and C is a M -mode raw optical circuit then C[·]i⊕C and C ⊕C[·]i
are N+M -mode raw contexts,

• if C[·]i is a N -mode raw context and C is a N -mode raw optical circuit then C[·]i ◦ C and C ◦ C[·]i
are N -mode raw contexts.

Definition 6.60 (Substitution). Given a N -mode raw context C[·]i and a i-mode raw circuit C, we define
the substituted circuit C[C] as the N -mode raw circuit obtained by replacing the hole [·]i by C in C[·]i.

Proof of Lemma 6.56. To prove Lemma 6.56, it suffices to prove that for each rule of Figure 6.5, of
the form C1 = C2 with C1, C2 ∈ LOraw

PP [i, i] (see Definition 1.1), and any 2n-mode raw context C[·]i, one
has QC ` D(C[C1]) = D(C[C2]). For this purpose, we prove a slightly more general result, namely that
for any k, n and any `-mode raw context C[·]i with k+ ` ≤ 2n, one has QC ` Dk,n(C[C1]) = Dk,n(C[C2]).
We proceed by induction on C[·]i:

• If C[·]i = C ◦ C′[·]i, then Dk,n(C[C1]) = Dk,n(C) ◦ Dk,n(C′[C1]) and Dk,n(C[C2]) = Dk,n(C) ◦
Dk,n(C′[C2]), so the result follows by induction hypothesis. The case C[·]i = C′[·]i ◦ C is similar.

• If C[·]i = C⊕C′[·]i with C : `1 → `1, thenDk,n(C[C1]) = Dk+`1,n(C′[C1])◦Dk,n(C) andDk,n(C[C2]) =
Dk+`1,n(C′[C2]) ◦Dk,n(C), so the result follows by induction hypothesis. The case C[·]i = C′[·]i⊕C
is similar.
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It remains to prove for each rule of Figure 6.5, of the form C1 = C2 with C1, C2 ∈ LOraw
PP [i, i], that for

any k, n with k + i ≤ 2n, one has QC ` Dk,n(C1) = Dk,n(C2).
For Equation (t2), for any C1, C2, C3 : `→ `,

Dk,n((C3 ◦ C2) ◦ C1) = (Dk,n(C3) ◦Dk,n(C2)) ◦Dk,n(C1)

and
Dk,n(C3 ◦ (C2 ◦ C1)) = Dk,n(C3) ◦ (Dk,n(C2) ◦Dk,n(C1)).

Both are equal according to Equation (t2) of quantum circuits.
For Equation (t5), for any optical circuits C1 : `1 → `1, C2 : `2 → `2 and C3 : `3 → `3,

Dk,n((C1 ⊕ C2)⊕ C3) = Dk+`1+`2,n(C3) ◦ (Dk+`1,n(C2) ◦Dk,n(C1))

and
Dk,n(C1 ⊕ (C2 ⊕ C3)) = (Dk+`1+`2,n(C3) ◦Dk+`1,n(C2)) ◦Dk,n(C1).

Again, both are equal according to Equation (t2) of quantum circuits.
For Equation (t1), for any `-mode optical circuit C, by definition of id` and Dk,n,

Dk,n(id` ◦ C) = (idn ◦ (idn ◦ (· · · ◦ (idn ◦ idn)) · · · )) ◦Dk,n(C)

with `+ 1 occurences of idn in the right-hand side. This is equal to Dk,n(C) according to Equation (t1)
of quantum circuits. Similarly, Dk,n(C ◦ id`) ≡ Dk,n(C).

For Equation (t3), for any `-mode optical circuit C,

Dk,n( ⊕ C) = Dk,n(C) ◦ id`

which is equal to Dk,n(C) according to Equation (t1) of quantum circuits. Similarly, Dk,n(C ⊕ ) ≡
Dk,n(C).

For Equation (t6), for any optical circuits C1, C2 : `→ ` and C3, C4 : m→ m,

Dk,n((C2 ◦ C1)⊕ (C4 ◦ C3)) = (Dk+`,n(C4) ◦Dk+`,n(C3)) ◦ (Dk,n(C2) ◦Dk,n(C1))

and
Dk,n((C2 ⊕ C4) ◦ (C1 ⊕ C3)) = (Dk+`,n(C4) ◦Dk,n(C2)) ◦ (Dk+`,n(C3) ◦Dk,n(C1)).

The result follows from Equation (t2) of quantum circuits and Lemma 6.57.
For Equation (t7), one has

Dk,n( ◦ ) = Λxk,nyk,nX ◦ Λxk,nyk,nX

which by Proposition 6.38, implies that

QC ` Dk,n( ◦ ) = idn.

On the other hand,
Dk,n( ⊕ ) = idn ◦ idn ≡ idn.

For Equation (t4), we proceed by induction on C.

• If C = C1 ◦ C2, then σk ◦ ( ⊕ (C1 ◦ C2)) ≡ (σk ◦ ( ⊕ C1)) ◦ ( ⊕ C2), and the derivation of the
equivalence does not use Equation (t4). Hence it follows from the paragraphs above that

QC ` Dk,n(σk ◦ ( ⊕ (C1 ◦ C2))) = Dk,n((σk ◦ ( ⊕ C1)) ◦ ( ⊕ C2)).

It follows similarly from those paragraphs that

QC ` Dk,n(((C1 ◦ C2)⊕ ) ◦ σk) = Dk,n((C1 ⊕ ) ◦ ((C2 ⊕ ) ◦ σk)).

The equality modulo QC of the two right-hand sides follows from the induction hypothesis, together
with the compatibility of Dk,n with Equation (t2) modulo QC, which is proved above.
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• If C = C1 ⊕ C2 with C1 : `1 → `1 and C2 : `2 → `2, then

σk ◦ ( ⊕ (C1 ⊕ C2)) ≡ (id`1 ⊕ (σ`2 ◦ ( ⊕ C2))) ◦ ((σ`1 ◦ ( ⊕ C1))⊕ id`2)

and the derivation of the equivalence does not use Equation (t4), so that by the paragraphs above
(together with Equation (t1) of quantum circuits),

QC ` Dk,n(σk ◦ ( ⊕ (C1 ⊕ C2))) = Dk+`1(σ`2 ◦ ( ⊕ C2)) ◦Dk,n(σ`1 ◦ ( ⊕ C1)).

The result follows by applying a similar transformation to the right-hand side of Equation (t4) and
applying the induction hypothesis.

• If C = or , then the result follows from Equations (t1) and (t3) of quantum circuits.

• If C = ϕ , let us write Gn(k) as xay with a ∈ {0, 1} and y = ε if k is even or y = 1.0q for some q
if k is odd. Note that Gn(k + 1) = xāy. Then by definition of Dk,n and Equation (6.23), if a = 0
then

QC ` Dk,n(σ1 ◦ ( ⊕ ϕ )) = ΛxyX ◦ ΛxyP (ϕ)

and

QC ` Dk,n(( ϕ ⊕ ) ◦ σ1) = (id|x| ⊗X ⊗ id|y|) ◦ ΛxyP (ϕ) ◦ (id|x| ⊗X ⊗ id|y|) ◦ ΛxyX.

By Propositions 6.26, 6.27 and 6.38, the following equalities are true modulo QC:

ΛxyX ◦ ΛxyP (ϕ) = (id|x| ⊗X ⊗ id|y|) ◦ Λ̄xyX ◦ ΛxyP (ϕ)
= (id|x| ⊗X ⊗ id|y|) ◦ ΛxyP (ϕ) ◦ Λ̄xyX
= (id|x| ⊗X ⊗ id|y|) ◦ ΛxyP (ϕ) ◦ (id|x| ⊗X ⊗ id|y|) ◦ ΛxyX

which gives us the result. The case a = 1 is similar.

• If C = θ , by the properties of the Gray code, exactly one bit differs between Gn(k) and Gn(k+1),
as well as between Gn(k + 1) and Gn(k + 2), and in exactly one of the two cases this is the last
bit that differs (namely between Gn(k) and Gn(k + 1) if k is even, and between Gn(k + 1) and
Gn(k + 2) if k is odd). Hence we can write Gn(k) as xayb with a, b ∈ {0, 1}, in such a way that
Gn(k + 2) = xāyb̄ and Gn(k + 1) = xayb̄ or xāyb depending on the parity of k. We treat the case
where k is even, the case with k odd being similar. Then

Dk,n(σ2 ◦ ( ⊕ θ )) ≡ Λx
yb̄
X ◦ ΛxayX ◦ Λx

yb̄
RX(−2θ)

and
Dk,n(( θ ⊕ ) ◦ σ2) ≡ ΛxayRX(−2θ) ◦ Λx

yb̄
X ◦ ΛxayX

so by Lemma 6.32 and Equation (6.10), it suffices to prove that for any θ,

QC ` Λxy1X ◦ Λx1yX ◦ Λxy1RX(θ) = Λx1yRX(θ) ◦ Λxy1X ◦ Λx1yX.

To prove this, one has, modulo QC (together with the topological rules of quantum circuits):

Λxy1X ◦ Λx1yX ◦ Λxy1RX(θ)

Propositions 6.38, 6.27,
6.17, 6.26 and 6.10= Λx1yXΛxy1RX(θ) Λ̄

x
y
ε
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Propositions 6.27 and 6.30= Λx1yXΛxy1RX(θ)Λ̄
x
y
ε

Propositions 6.38, 6.27,
6.17, 6.26 and 6.10= Λxy1RX(θ)Λ̄

x
y
ε

Λ̄
x
y
ε

Proposition 6.30= Λxy1RX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε

(6.e)= Λxy1RX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε

(6.h)= Λxy1RX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε

Proposition 6.17= Λx1yRX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε

(6.h)= Λx1yRX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε
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(6.10)(6.f)(6.12)= Λx1yRX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε

X X

Propositions 6.10, 6.26
and 6.27,

(6.10)(6.e)= Λx1yRX(θ)Λ̄
x
y
ε

Λ̄
x
y
ε

X X

Lemma 6.32,
(6.10)= Λx1yRX(θ)Λ̄

x
y
ε

Λ̄
x
y
ε

Propositions 6.10, 6.17,
6.26, 6.27 and 6.38= Λx1yRX(θ)Λ̄

x
y
ε Λx1yX

Proposition 6.30= Λx1yRX(θ)Λ̄
x
y
εΛx1yX

Propositions 6.10, 6.17,
6.26, 6.27 and 6.38= Λx1yRX(θ) ◦ Λxy1X ◦ Λx1yX.

• The case C = is similar to the preceding one, with RX(θ) replaced by X.

6.2.4.3 Mimicking the Rules of QC

Lemma 6.61. For any 2n-mode raw optical circuits C1, C2, if LOPP ` C1 = C2 then QC ` D(C1) =
D(C2).

Auxiliary Lemmas We first prove a few additional auxiliary properties, which will be useful in the
proof of Lemma 6.61 in particular to prove that the conditions on the angles in Equations (6.q) and (6.r)
do not prevent us from getting the result. Namely, multi-controlled versions of Equations (6.q), (6.l)
and (6.24), of the fact that RX(2π) is equivalent to a global phase of π, and an equality which is roughly
speaking the decoding of Rule 5.63 of PPRS.
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Lemma 6.62. The following equation can be derived in QC:

RX(α1) P (α2) RX(α3)

=

P (β1) RX(β2) P (β3)

P (β0) (6.34)

where the angles are the same as in Equation (6.q).

Proof.

RX(α1) P (α2) RX(α3)

≡
RX(α1) P (α2) RX(α3)

Propositions 6.18 and 6.23=
RX(α1)

P (α2)

RX(α3)

RX(0)

(6.r)=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

By uniqueness of the right-hand side in Equations (6.q) and (6.r), the δi are such that the last circuit

is equal to

RX(0)P (0)P (β1)

RX(β2)

RX(0)P (0) P (β3) P (β0)

P (0)
, where the βj are

computed in the same way as in Equation (6.q). It follows from Propositions 6.18 and 6.23 that this is
equal modulo QC0 to the right-hand side of Equation (6.34).

Lemma 6.63.

QC `

P (ϕ) XX

=

P (-ϕ)

P (ϕ)

Proof.
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P (ϕ) XX

Propositions 6.38, 6.27 and 6.26=

P (ϕ)X

Λ̄~1εX

X

Λ̄~1εX

Propositions 6.27 and 6.38=

P (ϕ) XX

Lemma 6.33=

P (-ϕ)

P (ϕ)

where ~1 denotes a list of appropriate length whose elements are all equal to 1.

Lemma 6.64.

QC0 `

RX(θ)P (π)

=

RX(-θ) P (π)

Proof.

RX(θ)P (π)

Propositions 6.23, 6.27 and 6.26,
(6.1)=

RX(θ)Z

Λ̄~1εP (-π)

Proposition 6.27=

RX(θ)Z

Λ̄~1εP (-π)

(6.24)=

RX(-θ) Z

Λ̄~1εP (-π)

(6.1),
Propositions 6.26, 6.27 and 6.23=

RX(-θ) P (π)
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Lemma 6.65. For any x ∈ {0, 1}k,

QC ` ΛxRX(2π) = Λxs(π)⊗

Proof.

ΛxRX(2π) (6.10), (6.a), Proposition 6.23 and Lemma 6.15= ΛxP (2π)
Λxs(-π)

H H

Propositions 6.39 and 6.23 and Equation (6.a)= Λxs(π)⊗

Lemma 6.66.

QC `

RX(θ)P (π)

=

RX(2π−θ)

P (π)

Proof.

RX(θ)P (π)

Lemma 6.64 and Proposition 6.39=

RX(-θ) P (-π)

Propositions 6.23 and 6.39=

RX(2π−θ) P (-π)RX(2π)

Lemma 6.65=

RX(2π−θ) P (-π)

P (π)

Proposition 6.18=

RX(2π−θ)

P (-π)P (π)

Propositions 6.26, 6.27 and 6.23=

RX(2π−θ)

P (π)

Note that in the last step, we have omitted to mention the use of Proposition 6.17 needed to apply
Proposition 6.26. In the proof of Lemma 6.61, we will similarly omit it in analogous situations.

177



Chapter 6. A Complete Equational Theory for Quantum Circuits

Proof of Lemma 6.61. By Lemma 6.56, to prove Lemma 6.61, it suffices to prove that for each rule
of Figure 5.12, of the form C1 = C2 with C1, C2 ∈ LOraw

PP [i, i] (see Footnote 47), and any 2n-mode
raw context C[·]i, one has QC ` D(C[C1]) = D(C[C2]). For this purpose, we prove a slightly more
general result, namely that for any k, n and any `-mode raw context C[·]i with k + ` ≤ 2n, one has
QC ` Dk,n(C[C1]) = Dk,n(C[C2]). We proceed by induction on C[·]i:

• If C[·]i = C ◦ C′[·]i, then Dk,n(C[C1]) = Dk,n(C) ◦ Dk,n(C′[C1]) and Dk,n(C[C2]) = Dk,n(C) ◦
Dk,n(C′[C2]), so the result follows by induction hypothesis. The case C[·]i = C′[·]i ◦ C is similar.

• If C[·]i = C⊕C′[·]i with C : `1 → `1, thenDk,n(C[C1]) = Dk+`1,n(C′[C1])◦Dk,n(C) andDk,n(C[C2]) =
Dk+`1,n(C′[C2]) ◦Dk,n(C), so the result follows by induction hypothesis. The case C[·]i = C′[·]i⊕C
is similar.

It remains to prove for each rule of Figure 5.12, of the form C1 = C2 with C1, C2 ∈ LOraw
PP [i, i], that for

any k, n with k+ i ≤ 2n, one has QC ` Dk,n(C1) = Dk,n(C2). Again by Lemma 6.56, it suffices to prove
that QC ` Dk,n(C ′1) = Dk,n(C ′2) for arbitrary C ′1 and C ′2 such that C ′1 ≡ C1 and C ′2 ≡ C2.

For Equation (5.A), one has Dk,n( 0 ) = ΛGn(k)s(0), Dk,n( 2π ) = ΛGn(k)s(2π) and Dk,n( ) =
idn. The three are equal modulo QC by Propositions 6.23 and 6.39.

For Equation (5.B), one has Dk,n( 0 ) = Λxk,nyk,nRX(0) (where xk,n and yk,n are defined in Defini-
tion 6.45) and Dk,n( ) = idn ◦ idn ≡ idn. The two are equal modulo QC by Proposition 6.23.

For Equation (5.C), one has Dk,n( ) = Λxk,nyk,nX, and Dk,n(
π
2
−π2

−π2 ) =

 ∏
j∈{k,k+1}

ΛGn(j)s(−π2 )

 ◦
Λxk,nyk,nRX(−π). Note that the definitions and the properties of Gray codes imply that

{Gn(k), Gn(k + 1)} = {xk,n0yk,n, xk,n1yk,n}. (6.35)

Therefore,

Dk,n(
π
2
−π2

−π2 ) = σ1,|xk,n| ◦

 ∏
a∈{0,1}

Λaxk,nyk,ns(−π2 )

 ◦ Λεxk,nyk,nRX(−π) ◦ σ|xk,n|,1

Propositions 6.26 and 6.27= σ1,|xk,n| ◦
(
⊗ Λxk,nyk,ns(−π2 )

)
◦ Λεxk,nyk,nRX(−π) ◦ σ|xk,n|,1

which by Proposition 6.38, Equation (6.28), and Proposition 6.23, is equal modulo QC to Λxk,nyk,nX.
For Equation (5.D), one hasDk,n( ϕ2ϕ1 ) = ΛGn(k)s(ϕ2)◦ΛGn(k)s(ϕ1) andDk,n( ϕ1+ϕ2 ) = ΛGn(k)s(ϕ1+

ϕ2). Both are equal modulo QC by Proposition 6.23.
For Equation (5.E), one has

Dk,n( θ
ϕ

ϕ
) = Λxk,nyk,nRX(−2θ) ◦

 ∏
j∈{k,k+1}

ΛGn(j)s(ϕ)


(6.35)= Λxk,nyk,nRX(−2θ) ◦

 ∏
a∈{0,1}

Λxk,nayk,ns(ϕ)



= σ1,|xk,n| ◦ Λεxk,nyk,nRX(−2θ) ◦

 ∏
a∈{0,1}

Λaxk,nyk,ns(ϕ)

 ◦ σ|xk,n|,1
Propositions 6.26 and 6.27= σ1,|xk,n| ◦ Λεxk,nyk,nRX(−2θ) ◦ ( ⊗ Λxk,nyk,ns(ϕ)) ◦ σ|xk,n|,1
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Lemma 6.25= σ1,|xk,n| ◦ ( ⊗ Λxk,nyk,ns(ϕ)) ◦ Λεxk,nyk,nRX(−2θ) ◦ σ|xk,n|,1

Propositions 6.26 and 6.27= σ1,|xk,n| ◦

 ∏
a∈{0,1}

Λaxk,nyk,ns(ϕ)

 ◦ Λεxk,nyk,nRX(−2θ) ◦ σ|xk,n|,1

=

 ∏
a∈{0,1}

Λxk,nayk,ns(ϕ)

 ◦ Λxk,nyk,nRX(−2θ)

(6.35)=

 ∏
j∈{k,k+1}

ΛGn(j)s(ϕ)

 ◦ Λxk,nyk,nRX(−2θ)

= Dk,n( θ
ϕ

ϕ
).

For Equation (5.F), one has

Dk,n( θ1
ϕ1 θ2 ) ≡ Λxk,nyk,nRX(−2θ2) ◦ ΛGn(k)s(ϕ1) ◦ Λxk,nyk,nRX(−2θ1)

and
Dk,n( β1 α1 β2

β3
) ≡ ΛGn(k+1)s(β3) ◦ ΛGn(k)s(β2) ◦ Λxk,nyk,nRX(−2α1) ◦ ΛGn(k)s(β1).

Note that for some ak ∈ {0, 1}, one has Gn(k) = xk,nakyk,n and Gn(k + 1) = xk,nakyk,n. Therefore,
by Proposition 6.18, for any ϕ ∈ R, one has QC ` ΛGn(k)s(ϕ) = Λxk,nyk,nP (ϕ) and QC ` ΛGn(k+1)s(ϕ) =
(id|xk,n|⊗X⊗id|yk,n|)◦Λ

xk,n
yk,nP (ϕ)◦(id|xk,n|⊗X⊗id|yk,n|), or conversely. Thus, up to using Equation (6.10)

and possibly Lemma 6.32, it suffices to prove that QC ` λn−1RX(−2θ2) ◦λn−1P (ϕ1) ◦λn−1RX(−2θ1) =
(idn−1 ⊗X) ◦ λn−1P (β3) ◦ (idn−1 ⊗X) ◦ λn−1P (β2) ◦ λn−1RX(−2α1) ◦ λn−1P (β1). One has

P (β3)P (β1) RX(-2α1) P (β2) XX

Lemma 6.33=

P (-β3)P (β1) RX(-2α1) P (β2)

P (β3)

Proposition 6.23=

P (β2−β3)P (β1) RX(-2α1)

P (β3)

Proposition 6.39=

P (β2−β3 mod 2π)P (β1) RX(-2α1)

P (β3)

Because of the conditions on the angles in the right-hand side of Equation (5.F), if α1 = 0 then the
angles of the last circuit satisfy the conditions so that it matches the right-hand side of Equation (6.34).
Hence, since it has the same semantics as λn−1RX(−2θ2)◦λn−1P (ϕ1)◦λn−1RX(−2θ1), both circuits are
equal according to Equation (6.34).

If α1 6= 0, then
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P (β2−β3 mod 2π)P (β1) RX(-2α1)

P (β3)

Propositions 6.23 and 6.39=

P (β2−β3 mod 2π)P (β1) RX(2π−2α1)

P (β3)

RX(2π)

Lemma 6.65=

P (β2−β3 mod 2π)P (β1) RX(2π−2α1)

P (β3)P (π)

Lemma 6.34 and Propositions 6.23 and 6.39=

P (β2−β3 mod 2π)P (β1) RX(2π−2α1)

P (β3+π mod 2π)

Because of the conditions on the angles in the right-hand side of Equation (5.F), one has α1 ∈ (0, π),
so that 2π − 2α1 ∈ (0, 2π), and if 2π − 2α1 = π then α1 = π

2 , so that β1 = 0. Hence, the angles of
the last circuit satisfy the conditions so that it matches the right-hand side of Equation (6.34). Again,
since it has the same semantics as λn−1RX(−2θ2) ◦ λn−1P (ϕ1) ◦ λn−1RX(−2θ1), both circuits are equal
according to Equation (6.34).

For Equation (5.G), by the properties of the Gray code, exactly one bit differs between Gn(k) and
Gn(k+1), as well as between Gn(k+1) and Gn(k+2), and in exactly one of the two cases this is the last
bit that differs (namely between Gn(k) and Gn(k+ 1) if k is even, and between Gn(k+ 1) and Gn(k+ 2)
if k is odd). Hence we can write Gn(k) as xayb with a, b ∈ {0, 1}, in such a way that Gn(k + 2) = xāyb̄
and Gn(k+ 1) = xayb̄ or xāyb depending on the parity of k. We treat the case where k is even, the case
with k odd being similar. One has

Dk,n

 θ1

θ2

θ3
ϕ1

 ≡ ΛxayRX(−2θ3) ◦ Λx
yb̄
RX(−2θ2) ◦ Λxaybs(ϕ1) ◦ ΛxayRX(−2θ1)

and

Dk,n

 α1

α2

α3

β2

β1 β3

β4

β5

β6

 ≡ Λxāyb̄s(β6) ◦ Λxayb̄s(β5) ◦ Λxaybs(β4) ◦ Λx
yb̄
RX(−2α3) ◦ Λxayb̄s(β3)

◦ΛxayRX(−2α2) ◦ Λx
yb̄
RX(−2α1) ◦ Λxaybs(β2) ◦ Λxayb̄s(β1).

Up to using Equation (6.10), we can assume that the components of x and y are all equal to 1. Up
to using additionally Lemma 6.32, we can assume that a = 1 and b = 0. Finally, up to deforming the
circuits and using Proposition 6.17, we can assume that y = ε. Thus, it suffices to prove that

QC ` Λx1RX(−2θ3) ◦ Λx1RX(−2θ2) ◦ Λx10s(ϕ1) ◦ Λx1RX(−2θ1) = Λx01s(β6) ◦ Λx11s(β5) ◦ Λx10s(β4)◦
Λx1RX(−2α3) ◦ Λx11s(β3) ◦ Λx1RX(−2α2) ◦ Λx1RX(−2α1) ◦ Λx10s(β2) ◦ Λx11s(β1)

where x = 1n−2.
The left-hand side is equal (up to using Proposition 6.18) to
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RX(-2θ1)

P (ϕ1) RX(-2θ2)

RX(-2θ3)

Propositions 6.23,
6.27 and 6.26=

RX(-2θ1)

P (-ϕ1) RX(-2θ2)

RX(-2θ3)

P (ϕ1)

Lemma 6.25=

RX(-2θ1)

P (-ϕ1) RX(-2θ2)

RX(-2θ3)

P (ϕ1)

≡
RX(-2θ1)

P (-ϕ1) RX(-2θ2)

RX(-2θ3)

P (ϕ1)

while the right-hand side is equal to

RX(-2α1)P (β2)P (β1)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5)

Propositions 6.23,
6.26 and 6.27=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5)P (ϕ1)

≡

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5)P (ϕ1)

Hence, it suffices to prove that

RX(-2θ1)

P (-ϕ1) RX(-2θ2)

RX(-2θ3)
=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5)

.

The left-hand side matches the left-hand side of Equation (6.r), hence it suffices to prove that the right-
hand side can be put in the form of the right-hand side of Equation (6.r) with the angles satisfying the
conditions. One has

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5)

Propositions 6.23
and 6.26=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5)P (-β4)

P (-β6)
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Propositions 6.18
and 6.23=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5−β6)P (-β4)

Propositions 6.23,
6.26 and 6.27=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5−β6)P (-β4)

Proposition 6.23=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5−β4−β6)

Propositions 6.18,
6.23, 6.26 and 6.27=

RX(-2α1)P (β2−ϕ1)P (β1−β2)

RX(-2α2)

RX(-2α3)P (β3) P (β4)

P (β6)

P (β5−β4−β6)

It remains to prove that any circuit of the form

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

can be transformed using the axioms of QC in such a way that the angles satisfy the conditions given in
Figure 6.4. We treat the conditions in the following order (note that some of the conditions of Figure 6.4
have been split into two parts):

• δ3 ∈ [0, 2π)

• δ4 ∈ [0, 2π)

• δ6 ∈ [0, 2π)

• if δ3 = 0 then δ2 = 0

• if δ3 6= 0 but δ4 = π then δ2 = 0

• if δ3 = 0 and δ4 = π then δ1 = 0

• if δ3 = π then δ1 = 0

• if δ4 = 0 then δ1 = δ2 = δ3 = 0

• if δ3 6= 0 then δ1 ∈ [0, π)

• if δ3 = 0 then δ1 ∈ [0, π)

• if δ6 = 0 then δ5 = 0

• if δ6 = π then δ5 = 0

• δ2 ∈ [0, π)

• δ5 ∈ [0, π)

• δ7, δ8, δ9 ∈ [0, 2π).
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For each of them, we prove that given a circuit satisfying the previous conditions, we can transform it
into a circuit satisfying also the considered condition, which implies that this condition can be assumed
without loss of generality.

If δ3 /∈ [0, 2π), then by Proposition 6.39, we can assume that it is in [0, 4π), and then if it is in [2π, 4π),
then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3−2π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

RX(2π)

Lemma 6.65=

RX(δ3−2π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Proposition 6.26=

RX(δ3−2π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π) P (π)

Proposition 6.27 and Lemma 6.64=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π) P (π)

Proposition 6.26=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Lemmas 6.25 and 6.34=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Proposition 6.23=

RX(δ3−2π)P (δ2)P (δ1)

RX(-δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8+π)

with δ3 − 2π ∈ [0, 2π). Hence, we can assume that δ3 ∈ [0, 2π).

The other conditions are treated in a similar way in Appendix D.2.
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6.2.4.4 Completeness Proof

We are now ready to prove the main result of this chapter.

Theorem 6.67 (Quantum circuit completeness). QC is a complete equational theory for quantum cir-
cuits: for any quantum circuits C1, C2, if JC1K = JC2K then QC ` C1 = C2.

Proof. Given two quantum circuits C1, C2 s.t. JC1K = JC2K, let C ′1 (resp. C ′2) be a raw quantum circuit,
representative of C1 (resp. C2). Thanks to Proposition 6.44 we have JE(C ′1)Kpp = JE(C ′2)Kpp. The
completeness of LOPP implies LOPP ` E(C ′1) = E(C ′2). By Lemma 6.61, we have QC ` D(E(C ′1)) =
D(E(C ′2)). Moreover Lemma 6.49 implies QC ` C ′1 = C ′2. From this derivation we obtain a derivation of
QC ` C1 = C2, where the steps corresponding to the equivalence relation ≡ are trivialised.
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Chapter 7

Coherent Control and
Distinguishability of Quantum
Channels via PBS-Diagrams

General quantum evolutions — a.k.a. quantum channels — are commonly represented as completely
positive trace-preserving (CPTP) maps. CPTP maps can naturally be composed in sequence and in
parallel. However, it has been realised that the description of quantum channels in terms of CPTP maps
is not appropriate for some particular setups involving coherent control [107, 4, 35, 97]. One indeed needs
some more information about their practical implementation to unambiguously determine the behaviour
of such setups, and it was proposed to complete the description of channels by so-called transformation
matrices [4], or vacuum extensions [35, 97].

In this chapter, we come back to the coherent control point of view of PBS-diagrams (that is, to the
approach of using diagrams primarily as an abstract tool for representing coherently controlled processes,
as opposite to the linear optical point of view adopted in Chapter 5), and study how they can be used
to coherently control quantum channels. We build upon the language of Chapter 3, and extend it to
allow for the control of more general quantum channels. As the description of channels as CPTP maps is
inadequate here, we propose to work with purified channels based on a unitary extension of Stinespring’s
dilation [124].

We address the question of the observational equivalence of purified channels. To do so, we use PBS-
diagrams to formalise three kinds of contexts: when the context is PBS-free, we recover that two purified
channels are indistinguishable if and only if they lead to the same CPTP map. When the context allows
for PBS but no negations, we recover the characterisation in terms of superoperators and transformation
matrices which was introduced for a particular setup [4]. When we allow for arbitrary contexts, we obtain a
characterisation of observational equivalence involving “second-level” superoperators and transformation
matrices. We finally open the discussion to more general coherent-control settings, and propose a refined
equivalence relation as a candidate for characterising channel (in)distinguishability in such scenarios.

7.1 PBS-Diagrams
PBS-diagrams were introduced in Chapter 3 as a language for coherent control of “pure” quantum evo-
lutions. They can be seen as describing practical scenarios where a flying particle goes through an
experimental setup, and is routed via polarising beam splitters. In addition to its polarisation, the parti-
cle carries some “data” register, whose state is described in some Hilbert space H, and on which a number
of “pure” linear (typically, unitary) operators are applied.

Here we shall enrich the pure PBS-diagram language so as to incorporate the coherent control of more
general quantum channels. To this purpose, we start by defining an abstract version of PBS-diagrams
that we call bare diagrams, and which we equip with a word path semantics describing the trajectory and
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change of polarisation of a particle that enters the diagram through some given input wire: the word path
semantics gives its new polarisation and position at the output of the diagram, together with a word over
some alphabet describing the sequence of bare gates — where the quantum channels we want to control
are located — crossed. Subscribing to the idea that any general quantum operation can be seen as a
unitary evolution of the system under consideration and its environment, we then define purified channels,
which can be coherently controlled in a similar way to the PBS-diagrams of Chapter 3. Replacing bare
gates with purified channels, we obtain an extension50 of the graphical language of Chapter 3, which we
call extended PBS-diagrams and which we equip with a quantum semantics obtained after discarding the
(inaccessible) environments of all gates.

7.1.1 Bare PBS-Diagrams
7.1.1.1 Syntax

The traced PROP of bare PBS-diagrams is generated by polarising beam splitters , polarisation flips
¬ , and bare gates a . Every bare gate is indexed by a unique label (here, a) used to identify the

gate in the diagram. In other word, a bare PBS-diagram is a G∗-diagram (as of Section 4.1) where all
wires are black and whose gates bear pairwise distinct, single-letter labels.

We define bare PBS-diagrams by a typing judgement Γ ` D : n, where Γ is the alphabet containing
all gate indices of the diagram,51 to guarantee that the diagrams are well-formed — in particular, that
the gate indices are unique — using a linear typing discipline:

Definition 7.1 (Bare PBS-diagram). A bare PBS-diagram Γ ` D : n (with n ∈ N) is inductively defined
as:

∅ ` : 0 ∅ ` : 1 ∅ ` ¬ : 1 ∅ ` : 2 ∅ ` : 2 {a} ` a : 1

Γ1`D1 :n Γ2`D2 :n Γ1∩Γ2 =∅
Γ1 ∪ Γ2 ` D2 ◦D1 : n

Γ1`D1 :n1 Γ2`D2 :n2 Γ1∩Γ2 =∅
Γ1 ∪ Γ2 ` D1 ⊕D2 : n1 + n2

Γ ` D : n+ 1
Γ ` Tr(D) : n

Examples of bare PBS-diagrams are given in Figure 7.1 below.
As original PBS-diagrams, bare PBS-diagrams have a structure of traced PROP52 and therefore are

defined up to deformation. Note in particular that the length of the wires does not matter. Physically,
if these diagrams were to be realised in practical setups, this would mean that the experiment should
be insensible to the time at which the particle would go through the various elements; if needed one
could always add (possibly polarisation-dependent) delay lines (e.g. ) to correct for a possible
time mismatch between different paths.

7.1.1.2 Word Path Semantics

The word path semantics of a bare PBS-diagram Γ ` D : n describes the trajectory of a particle which
enters it with a polarisation in the standard basis state c ∈ {V,H} (vertical or horizontal) and from a
definite position p ∈ [n] := {0, . . . , n−1}. It is identical to its path semantics when seen as a Γ∗-diagram:

Definition 7.2 (Word path semantics). Given a bare PBS-diagram Γ ` D : n, a polarisation c ∈ {V,H}
and a position p ∈ [n], let (D, c, p) w=⇒ (c′, p′) with w ∈ Γ∗ a word over Γ (or just (D, c, p) ⇒ (c′, p′) for
the empty word w = ε) be inductively defined as follows:

( , c, 0)⇒ (c, 0) ( ¬ ,H, 0)⇒ (V, 0) ( ¬ ,V, 0)⇒ (H, 0)
50Strictly speaking, the PBS-diagrams of Chapter 3 did not require the operations inside the gates to be unitary, while

here we impose such a restriction a priori. One could however also consider non-unitary operations in our framework here,
although one would lose our motivation based on the unitary extension of Stinespring’s dilation.

51We may write simply D : n, or even just D, when Γ is not relevant or is clear from the context. Note that we write
D : n instead of D : n → n in order to lighten the notation, since all diagrams considered in this chapter have their input
and output types equal.

52They do not strictly speaking form a traced PROP, since they cannot be freely composed in sequence or in parallel,
but they are contained in a traced PROP.
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a b
¬

a

¬¬ ¬
b

Figure 7.1: Two examples of bare PBS-diagrams, with the same word path semantics: (D,H, 0) abab==⇒
(H, 0) and (D,V, 0) ε=⇒ (V, 0).

( , c, p)⇒ (c, 1− p) ( ,V, p)⇒ (V, p) ( , H , p)⇒ (H, 1− p)

(
a , c, 0

) a=⇒ (c, 0) (D1, c, p)
w1=⇒ (c′, p′) (D2, c

′, p′) w2=⇒ (c′′, p′′)
(D2 ◦D1, c, p)

w1w2===⇒ (c′′, p′′)
(◦)

D1 : n1 p < n1 (D1, c, p)
w=⇒ (c′, p′)

(D1 ⊕D2, c, p)
w=⇒ (c′, p′)

(⊕1) D1 : n1 p ≥ n1 (D2, c, p−n1) w=⇒ (c′, p′)
(D1 ⊕D2, c, p)

w=⇒ (c′, p′+n)
(⊕2)

D : n+ 1 ∀i ∈ {0, . . . , k}, (D, ci, pi)
wi=⇒ (ci+1, pi+1)

(Tr(D), c0, p0) w0···wk=====⇒ (ck+1, pk+1)
(Tk)

with p0, pk+1 < n, ∀i ∈ {1, ..., k}, pi = n, and k ∈ {0, 1, 2}.

We denote by wDc,p ∈ Γ∗ the word, cDc,p ∈ {H,V} the polarisation, and pDc,p ∈ [n] the position s.t.

(D, c, p)
wDc,p==⇒ (cDc,p, pDc,p).

As before, the word path semantics is invariant modulo structural congruence (i.e. diagram deforma-
tion), and a particle cannot go through a feedback loop (or any other part of the diagram) twice with
the same polarisation, which justifies that the word path semantics is well-defined even with k going
only up to 2 in Rule (Tk) above. The formal proofs of these facts are similar to those given for the pure
PBS-diagram language (see the proof of Propositions 3.6 and 3.7), and the intuition is the same: if a
particle goes twice in a feedback loop with the same polarisation then it will loop forever; but because of
time symmetry this also means that the particle went though the feedback loop infinitely many times in
the past, which contradicts the fact that it entered through an input wire.

For similar reasons, each gate cannot appear more than twice along any path, or even in the family
of all the possible paths of a diagram. The formalism of bare PBS-diagrams is particularly well-suited to
formally express this property:

Proposition 7.3. Given a bare PBS-diagram Γ ` D : n, ∀a ∈ Γ, one has
∑

c∈{V,H},p∈[n]

|wDc,p|a ≤ 2, where

|w|a denotes the number of occurrences of a in the word w. Moreover, if D is ¬ -free then for any c
one has

∑
p∈[n]

|wDc,p|a ≤ 1.

Proof. We proceed by stuctural induction on D.

• If D = , , ¬ , or , then the sums are equal to 0 (they are in particular empty for
D = ), so the result is trivially true.

• If D = a , then one has wDV,0 = wDH,0 = a, so the result holds.

• If D = D2 ◦D1 with Γ1 ` D1 : n,Γ2 ` D2 : n,Γ1 ∩ Γ2 = ∅, then∑
c∈{V,H}
p∈[n]

|wDc,p|a =
∑

c∈{V,H}
p∈[n]

∣∣∣wD1
c,pw

D2

c
D1
c,p ,p

D1
c,p

∣∣∣
a

=
∑

c∈{V,H}
p∈[n]

|wD1
c,p |a +

∑
c∈{V,H}
p∈[n]

∣∣∣wD2

c
D1
c,p ,p

D1
c,p

∣∣∣
a
.
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Since the map (c, p) 7→ (cD1
c,p , p

D1
c,p) is a bijection, the sum above is equal to∑

c∈{V,H}
p∈[n]

|wD1
c,p |a +

∑
c∈{V,H}
p∈[n]

|wD2
c,p |a .

Since D1 and D2 have disjoint alphabets Γ1 and Γ2, at least one of the two sums is equal to 0, and
by induction hypothesis, the other one is no greater than 2.
Moreover, if D is ¬ -free then for any c ∈ {V,H},∑

p∈[n]

|wDc,p|a =
∑
p∈[n]

|wD1
c,p |a +

∑
p∈[n]

∣∣∣wD2

c
D1
c,p ,p

D1
c,p

∣∣∣
a
.

It is easy to see that since D1 is ¬ -free, it cannot change the polarisation so that cD1
c,p = c.

Moreover, the map (c, p) 7→ (c, pD1
c,p) is again a bijection, so that the sum above is equal to∑

p∈[n]

|wD1
c,p |a +

∑
p∈[n]

|wD2
c,p |a .

Since D1 and D2 have disjoint alphabets, at least one of the two sums is equal to 0, and by induction
hypothesis, the other one is no greater than 1.

• If D = D1 ⊕D2 with Γ1 ` D1 : n1,Γ2 ` D2 : n2 such that n1 + n2 = n,Γ1 ∩ Γ2 = ∅, then∑
c∈{V,H}
p∈[n]

|wDc,p|a =
∑

c∈{V,H}
p∈[n1]

|wDc,p|a +
∑

c∈{V,H}
n1≤p<n

|wDc,p|a =
∑

c∈{V,H}
p∈[n1]

|wD1
c,p |a +

∑
c∈{V,H}
p∈[n2]

|wD2
c,p |a .

Since D1 and D2 have disjoint alphabets Γ1 and Γ2, at least one of the two sums is equal to 0, and
by induction hypothesis, the other one is no greater than 2.
Moreover, if D is ¬ -free then similarly, for any c ∈ {V,H},∑

p∈[n]

|wDc,p|a =
∑
p∈[n1]

|wD1
c,p |a +

∑
p∈[n2]

|wD2
c,p |a .

Since D1 and D2 have disjoint alphabets, at least one of the two sums is equal to 0, and by induction
hypothesis, the other one is no greater than 1.

• If D = Tr(D′) with D′ : n+ 1, then for any c ∈ {V,H} and any p ∈ [n],53 the couple (cDc,p, pDc,p) is
the unique couple such that there exists a sequence of arrows (D′, c, p) w0==⇒ (c1, n), (D′, c1, n) w1==⇒
(c2, n), . . . , (D′, ck−1, n) wk−1===⇒ (ck, n), (D′, ck, n) wk==⇒ (cDc,p, pDc,p) (we additionally know that k ≤ 2,
although this does not change the proof). Given such a sequence, one has |wDc,p|a = |wD′c,p|a +
|wD′c1,n|a + · · ·+ |wD′ck,n|a.

Since the map (c′, p′) 7→ (cD′c′,p′ , pD
′

c′,p′) is a bijection, a given couple (c′, p′), now with p′ ∈ [n +
1], cannot appear more than once on the left of an arrow (i.e. as a polarisation and position
configuration entering the diagramD′) among the family of all possible such sequences. In particular
for p′ = n, it follows that the sum of all partial sums |wD′c1,n|a + · · · + |wD′ck,n|a above, for all
possible sequences (i.e. for all starting configurations c, p), is upper-bounded by

∑
c∈{V,H} |wD

′

c,n|a.
Therefore, ∑

c∈{V,H}
p∈[n]

|wDc,p|a ≤
∑

c∈{V,H}
p∈[n]

|wD
′

c,p|a +
∑

c∈{V,H}

|wD
′

c,n|a =
∑

c∈{V,H}
p∈[n+1]

|wD
′

c,p|a

53The argument that follows applies to n ≥ 1; for n = 0 the sums are again empty (as in the case of D = ), so that the
result trivially holds.
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which, by induction hypothesis, is no greater than 2.
Moreover, if D is ¬ -free then since the polarisation cannot change, one can proceed in the same
way for each of the two polarisations V andH separately. We similarly get that for any c ∈ {V,H},∑

p∈[n]

|wDc,p|a ≤
∑

p∈[n+1]

|wD
′

c,p|a

which, by induction hypothesis, is no greater than 1.
The converse of Proposition 7.3 is also true:

Proposition 7.4. For any family of words {wc,p}(c,p)∈{V,H}×[n] such that every letter appears at most
twice in the whole family, there exists a bare PBS-diagram D : n such that wc,p = wDc,p for all c, p.
Furthermore, if for any c ∈ {V,H}, every letter appears at most once in {wc,p}p∈[n], the bare PBS-
diagram D can be chosen ¬ -free.
Proof. We prove by induction on

∑
c,p |wc,p| (where |w| denotes the length of the word w) that there

exists D such that (D, c, p) wc,p==⇒ (c, p), which ensures the proposition.
We say that such a diagram realises the family W = {wc,p}(c,p)∈{V,H}×[n].

• If
∑
c,p |wc,p| = 0, the identity diagram ⊕n gives ( ⊕n, c, p) =⇒ (c, p), and therefore realises the

family W = {wc,p = ε}(c,p)∈{V,H}×[n] (the only one satisfying
∑
c,p |wc,p| = 0).

• If W = {wc,p}(c,p)∈{V,H}×[n] is such that wc0,p0 = a for some (c0, p0) and some label a, and wc,p
is the empty word otherwise (i.e. if

∑
c,p |wc,p| = 1), then the following diagrams realise W when

c0 = H and c0 = V, respectively:

a

p0

0

n− 1

p0 − 1

p0 + 1

a

p0

0

n− 1

p0 − 1

p0 + 1

• For any family W = {wc,p}(c,p)∈{V,H}×[n] with at least one nonempty word (i.e. with
∑
c,p |wc,p| ≥

1) such that every letter appears at most twice in the whole family, consider a nonempty wc0,p0 . It
can be written in the form ua with |a| = 1:

– If
∑
c,p |wc,p|a = 1, then composing a diagram D′ realising W ′ = {w′c,p}(c,p)∈{V,H}×[n] where

w′c0,p0
= u and w′c,p = wc,p otherwise (which exists by induction) with a diagram Da realising

(as in the previous case) W ′′ = {w′′c,p}(c,p)∈{V,H}×[n] such that w′′c0,p0
= a and w′′c,p is the

empty word otherwise, allows one to realise W .
– Otherwise, there exists a second occurrence of a in some wc1,p1 , that one can write in the form
wc1,p1 = vaw with a /∈ v.

∗ If p1 = p0 and c0 = c1 then ∃w̃, wc0,p0 = vaw̃a. Let D′ be a diagram on n + 1 wires
realising w′c0,p0

= v, w′c0,n = w̃, w′¬c0,n = ε (where ¬(V) = H,¬(H) = V) and w′c,p = wc,p
on the first n wires otherwise. The following diagrams realiseW when c0 = H and c0 = V,
respectively:

a

p0

D′

¬ a

p0

D′

¬
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∗ If p1 = p0 and c0 6= c1 then wc0,p0 = ua and wc1,p0 = vaw. Let D′ be a diagram on n+ 1
wires realising w′c0,p0

= u, w′c1,p0
= v, w′c0,n = ε, w′c1,n = w and w′c,p = wc,p on the first n

wires otherwise. The following diagram realises W :

a
p0

D′

∗ If p1 6= p0 and c0 = c1 then wc0,p0 = ua and wc0,p1 = vaw. Let D′ be a diagram on n+ 1
wires realising w′c0,p0

= u, w′c0,n = ε, w′c0,p1
= v, w′¬c0,n = w, and w′c,p = wc,p on the first

n wires otherwise. The following diagram realises W when c0 = H:

a

p1
D′

p0

¬ ¬

and the following diagram realises W when c0 = V:

a

p1
D′

p0

¬ ¬

∗ If p1 6= p0 and c0 6= c1, let D′ be a diagram on n+ 1 wires realising w′c0,p0
= u, w′c0,n = ε,

w′c1,p1
= v, w′c1,n = w, and w′c,p = wc,p on the first n wires otherwise. The following

diagram realises W with c0 = H:

a

p1
D′

p0
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and the following diagram realises W with c0 = V:

a

p1
D′

p0

Note that for the cases where p0 6= p1, although strictly speaking the last four pictures illustrate the
case where p0 < p1, they aim at representing the general case. If p1 < p0, then one should include a swap
between the two corresponding wires in order to connect them to the appropriate ports.

Note that this proof is constructive, although not deterministic. That is, by following the induction
steps, one can build a diagram realising a given family W , although, depending on how one follows these
steps (i.e. on which word wc0,p0 one singles out at each step), one may end up with different possible
diagrams. Moreover, the only cases where some ¬ are added are the cases where the letter a under
consideration appears twice for the same polarisation c0. Therefore, if every letter appears at most once
for each polarisation c, then any diagram built by unfolding the induction is ¬ -free. This proves the
second statement.

Example 7.5. By unfolding the proof of Proposition 7.4 with the family {wH,0 = abab, wV,0 = ε} one
can obtain the diagram of Figure 7.1 (right). Note that one does not always get the simplest possible
diagram in this way, for instance Figure 7.1 (left) shows a simpler diagram with the same word path
semantics.

7.1.2 Extended PBS-Diagrams
We will now introduce extended PBS-diagrams by filling every bare gate with the description of a quantum
channel. As recalled in the introduction of this chapter, however, defining the coherent control of general
channels (as we wish to do with PBS-diagrams) in an unambiguous way is not trivial. Here we propose to
do so through the notion of purified channels, which are an extension of Stinespring’s dilation of quantum
channels [124].

7.1.2.1 Purified Channels

A standard paradigm for quantum channels acting on a Hilbert space H is to describe them as CPTP
maps, or superoperators L(H) → L(H),54 where L(H) denotes the set of linear operators on H. As
exemplified e.g. in [107, 4], this representation is however ambiguous when it comes to describing quantum
coherent control: two quantum channels with the same superoperator can behave differently in a coherent-
control setting.

A possible way to overcome this issue is to “go to the Church of the larger Hilbert space”, according to
which any quantum channel can be interpreted as a pure quantum operation acting on both the quantum
system and an environment. Mathematically, this corresponds to Stinespring’s dilation theorem [124],
which states that any CPTP map acting on a Hilbert space H can be implemented with an isometry
V : H → H ⊗ E , where E denotes the Hilbert space attached to the environment, followed by a partial
trace of the latter. In this chapter, we will only consider the case where the Hilbert space H is finite-
dimensional. Then the environment E can also be taken of finite dimension. At least in this case, the
isometry V can be understood as encoding both the creation of the environment E and the evolution
of the joint system H ⊗ E . Indeed, when H is finite-dimensional, V can always be decomposed into an

54As this is the case of interest in PBS-diagrams (with H corresponding to the data register), we consider here channels
with the same input and output Hilbert spaces.
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environment initialisation |ε〉 ∈ E and a unitary evolution U : H⊗E → H⊗E such that V = U(IH⊗|ε〉),
where IH denotes the identity operator over H.

In our approach to defining coherent control for quantum channels, we will precisely abide by this
description in terms of unitary purifications, which we formalise as follows:

Definition 7.6 (Purified channel). Given a finite-dimensional Hilbert space H, a purified H-channel
(or simply purified channel, for short) is a triplet [U, |ε〉 , E ], where E is the local environment (finite-
dimensional) Hilbert space, |ε〉 ∈ E is the environment initial state, and U : H⊗ E → H⊗ E is a unitary
operator representing the evolution of the joint system. We denote the set of purified H-channels by C(H).

As seen above, it directly follows from Stinespring’s dilation theorem that any CPTP map L(H) →
L(H) can be represented by a purified H-channel, which is however not unique. Reciprocally, with
any purified H-channel [U, |ε〉 , E ], we naturally associate the CPTP map S(1)

[U,|ε〉,E] : L(H) → L(H) ::
ρ 7→ TrE

(
U(ρ ⊗ |ε〉〈ε|)U†

)
, where TrE denotes the partial trace over E , and which we shall represent

graphically, using the circuit notations of Section 2.3, as follows: S(1)
[U,|ε〉,E] = |ε〉

H

U
H

E .
One may however not trace out the environment straight away. In fact, decomposing Stinespring’s

dilation into an environment state initialisation and a unitary evolution of the joint system, as we did
above, allows one to apply the same channel several times in a coherent manner if a particle goes through
a gate several times. In that case we will consider that the same unitary is applied each time, without
re-initialising the environment state (which we assume to not evolve between two applications of the
channel).

Remark 7.7 (Remarks about the circuit notations). In this chapter, we actually futher extend the
circuits described in Section 2.3 by allowing the wires to represent not just qubits but any quantum
systems. Unless clear from the context, we label the wires with the corresponding state space. Note that,
following the literature, the definition of a coloured traced PROP given in Definition 1.6 requires that the
set of objects is freely generated, that is, that there is no non-trivial relations between them. Since for
instance H1⊗H2 can either be considered as a single colour H1⊗H2 or as a composite object H2

H1
, circuits

do no strictly speaking form a coloured traced PROP but a more general structure called a traced monoidal
category. However, this does not change the axioms, they still guarantee that circuits are defined up to
deformation, and the straightforward extension of the semantics keeps its properties, namely, it is still
compatible with deformation, and symbols can still be placed anywhere in a circuit without creating

ambiguity. In particular, we still have


∣∣∣∣∣∣∣ C

∣∣∣∣∣∣∣
 =


∣∣∣∣∣∣∣ C

∣∣∣∣∣∣∣
, which allows us to express the

semantics of any circuit using only the partial trace TrB : L(A ⊗ B,A′ ⊗ B) → L(A,A′) over the last
factor of a tensor product.

Additionally, in this chapter, since we use this kind of circuits only to graphically represent matrices
or linear maps, we will identify them with their semantics. Note that a priori, this could lead to ambiguity
with -free circuits since they can be interpreted both as their “pure” semantics, which is a matrix, or
as the associated CPTP map (of the form ρ 7→ UρU†). To avoid this ambiguity, we take the convention
that unless otherwise specified, a -free circuit represents a matrix. Note however that we will actually
never encounter the case where a -free circuit has to be interpreted as a CPTP map.

7.1.2.2 From Bare to Extended PBS-Diagrams

We are now in a position to define extended PBS-diagrams of type H(n), which are essentially bare PBS-
diagrams of type n, where the gate indices are replaced by purified H-channels. Hence, instead of bare
gates a , an extended PBS-diagram contains gates of the form U, |ε〉 , parametrised by a purified
channel [U, |ε〉 , E ] ∈ C(H) (where the Hilbert space E is not represented explicitly, in order not to overload
the diagrams). In other words, an extended PBS-diagram is the interpretation of a bare PBS-diagram in
a monoid of purified channels (see Definition 4.7, and Footnote 17 in Section 4.1).

Extended PBS-diagrams are inductively defined as follows:
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Definition 7.8 (Extended PBS-diagram). An extended PBS-diagram D : H(n) (with n ∈ N) is induc-
tively defined as:

:H(0) :H(1) ¬ :H(1) :H(2) :H(2) [U, |ε〉 , E ] ∈ C(H)
U, |ε〉 : H(1)

D1 : H(n) D2 : H(n)

D2 ◦D1 : H(n)
D1 : H(n1) D2 : H(n2)

D1 ⊕D2 : H(n1+n2)
D : H(n+1)

Tr(D) : H(n)

Extended PBS-diagrams are defined up to the same structural congruence as for bare PBS-diagrams,
that is, they form a traced PROP.55 It is convenient to explicitly define the map which, given a family
of purified channels, transforms a bare diagram into the corresponding extended PBS-diagram:56

Definition 7.9. Given a bare PBS-diagram Γ ` D′ : n and a family of purified H-channels G =
([Ua, |εa〉 , Ea])a∈Γ indexed by elements of Γ, let [D′]G : H(n) be the extended PBS-diagram inductively
defined as [ a ]([Ua,|εa〉,Ea]) = Ua, |εa〉 , ∀g ∈ { , , ¬ , , }, [g]∅ = g, [D′2 ◦ D′1]G1]G2 =
[D′2]G2 ◦ [D′1]G1 , [D′1 ⊕ D′2]G1]G2 = [D′1]G1 ⊕ [D′2]G2 and [Tr(D′)]G = Tr([D′]G), where ] is the disjoint
union.

For any extended PBS-diagram D : H(n), there exists a bare diagram Γ ` D′ : n and an indexed
family of purified H-channels G s.t. [D′]G = D. We call D′ an underlying bare diagram of D (which is
unique, up to relabelling of the gates).

7.1.2.3 Quantum Semantics

We now equip extended PBS-diagrams with a quantum semantics, which is a CPTP map acting on the
complete state of the particle that goes through the diagram, i.e. its joint polarisation, position and data
state. To describe the quantum semantics of an extended PBS-diagram D : H(n), it is convenient to rely
on an underlying bare diagram Γ ` D′ : n and a family of purified channels G s.t. [D′]G = D (so as to
keep track of the environment spaces and be able to identify them via the bare gate indices).

As we defined them, every purified channel comes with its local environment and a unitary evolution
acting on both the data register and its local environment. In order to define the overall evolution of
the diagram, we consider the global environment as the tensor product of these local environments, and
extend every unitary transformation to a global transformation acting on the data register and the global
environment:

Definition 7.10. Given an indexed family of purified H-channels G = ([Ua, |εa〉 , Ea])a∈Γ, let EG :=⊗
a∈Γ Ea, |εG〉 :=

⊗
a∈Γ |εa〉 ∈ EG, and ∀ a ∈ Γ, let V Ga := Ua

⊗
x∈Γ\{a} IEx ∈ L(H⊗ EG).

If a particle enters an extended PBS-diagram D with a definite polarisation and position in some basis
states |c〉 ∈ C{V,H} and |p〉 ∈ C[n], respectively, the sequence of transformations applied to the particle
and the global environment when the particle goes through the diagram can be deduced from the word
path semantics of the underlying bare diagram D′:

|c〉 ⊗ |p〉 ⊗ |ψ〉 ⊗ |εG〉 7→
∣∣∣cD′c,p〉⊗ ∣∣∣pD′c,p〉⊗ V GwD′c,p(|ψ〉 ⊗ |εG〉)

where wD′c,p, cD
′

c,p, and pD
′

c,p are given by the word path semantics, i.e. (D′, c, p)
wD
′

c,p==⇒ (cD′c,p, pD
′

c,p), and V Gw is
inductively defined as V Gε := IH⊗E and ∀a ∈ Γ,∀w ∈ Γ∗, V Gaw := V Gw V

G
a .

One can actually consider inputting a particle in an arbitrary initial state (i.e. including superpositions
of polarisation and position); the transformation applied by the diagram is then obtained from the one
above, by linearity. This leads us to define the following:

55Without caveat here, as an extended PBS-diagram can contain several identical channels (see Footnote 52).
56To clarify which kind of diagram we are dealing with, in this subsection we use primed names (e.g. D′) when referring

to bare PBS-diagrams, and nonprimed names for extended PBS-diagrams.
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Definition 7.11. Given a bare PBS-diagram Γ ` D′ : n and a family of purified H-channels G indexed
with Γ, let

UGD′ :=
∑

c∈{V,H},p∈[n]

∣∣∣cD′c,p〉〈c| ⊗ ∣∣∣pD′c,p〉〈p| ⊗ V GwD′c,p
The triplet [UGD′ , |εG〉 , EG ] is nothing but a purified (C{V,H} ⊗ C[n] ⊗ H)-channel, which describes

the action of the corresponding extended PBS-diagram on the complete state of the particle. Once the
particle exits the diagram, the environments of all purified channels are not accessible anymore. As is
well-known, the statistics of any “input/output test”, which consists in preparing an arbitrary input state
of the particle and measuring the output in an arbitrary basis, then only depends on the CPTP map
(the superoperator) induced by UGD′ above, with all environments initially prepared in the global state
|εG〉, and after tracing out all environment spaces — i.e. using circuit-like notations: UG

D′|εG〉
. This

superoperator thus precisely captures input/output (in)distinguishability: two quantum channels have
the same superoperator if and only if they are indistinguishable in any input/output test. This provides
the ground for our definition of the following quantum semantics:

Definition 7.12 (Quantum semantics). Given an extended PBS-diagram D : H(n), let JDK : L(C{V,H}⊗
C[n] ⊗H)→ L(C{V,H} ⊗ C[n] ⊗H) be the superoperator defined as

JDK := ρ 7→ TrEG (UGD′(ρ⊗ |εG〉〈εG |)UGD′
†) = UG

D′|εG〉

where Γ ` D′ : n is an underlying bare diagram and G is an indexed family of purified H-channels s.t.
[D′]G = D.

Note that the quantum semantics is preserved by the “only topology matters” structural congruence
on diagrams. Indeed, it is defined using only the family G and the word path semantics of its underlying
bare diagram D′, which is invariant modulo diagram deformation. It is clear that when deforming D we
do not have to change D′ and G, since it suffices to deform D′ accordingly.

7.2 Observational Equivalence of Purified Channels
In this section we address the problem of deciding whether two purified channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′]
can be distinguished in an experiment involving coherent control, within the framework of PBS-diagrams
just established. We introduce for that the notion of contexts, which are extended PBS-diagrams with
a “hole”: if for any context, filling its hole with [U, |ε〉 , E ] or [U ′, |ε′〉 , E ′] leads to diagrams with the
same quantum semantics, then the two purified channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′] are indistinguishable
within our framework, even with the help of the coherent control provided by extended PBS-diagrams.

7.2.1 Contexts
A context is an extended PBS-diagram with a hole, i.e. a (unique) particular empty gate, without any
purified channel specified a priori. Equivalently a context can be seen as a bare PBS-diagram partially
filled: all but one gates are filled with purified channels. Formally:

Definition 7.13 (Context). A context C[·] :H(n) (with n∈N) is inductively defined as follows:

• The hole gate · : H(1) is a context;

• If C[·] : H(n) is a context and D : H(n) is an extended PBS-diagram then D ◦ C[·] : H(n) and
C[·] ◦D : H(n) are contexts;

• If C[·] : H(n) is a context and D : H(m) is an extended PBS-diagram then D ⊕ C[·] : H(m+n) and
C[·]⊕D : H(n+m) are contexts;

• If C[·] : H(n+1) is a context then Tr(C[·]) : H(n) is a context.
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Like bare and extended PBS-diagrams, contexts are defined up to structural congruence.

Definition 7.14 (Substitution). For any context C[·] : H(n) and any purified H-channel [U, |ε〉 , E ], let
C[U, |ε〉 , E ] : H(n) be the extended PBS-diagram obtained by replacing the single hole · in C[·] by the
purified channel U, |ε〉 .

After some purified channel is plugged in, contexts allow one to compare the quantum semantics
JC[U, |ε〉 , E ]K and JC[U ′, |ε′〉 , E ′]K induced by different purified channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′]. We
consider in the following three subclasses of contexts, depending on the kind of coherent control one may
allow to distinguish purified channels: whether we exclude the use of PBS ( ), of polarisation flips
(“negations” ¬ ), or whether we allow both. This leads us to define the following equivalence relations:

Definition 7.15 (Observational equivalences). Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′],
we consider the three following refinements of observational equivalences (for i ∈ {0, 1, 2}):
[U, |ε〉 , E ] ≈i [U ′, |ε′〉 , E ′] if ∀C[·] ∈ Ci, JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K, where:

• C0 is the set of -free contexts C[·] : H(1);

• C1 is the set of ¬ -free contexts C[·] : H(1);

• C2 is the set of all contexts C[·] : H(1).

Note that contexts in C0 do not perform any coherent control; these consist in just a linear sequence
of gates and negations, possibly composed in parallel with closed loops (i.e. traces of such sequences),
including a hole gate somewhere. It is clear, by deformation of diagrams, that more general contexts can
always be described as follows:

Proposition 7.16. For any context C[·] ∈ C2 there exists an extended PBS-diagram D such that C[·] =

·D . Moreover if C[·] ∈ C1 then D can be chosen ¬ -free.

Remark 7.17. In Definition 7.15 we only consider contexts with a single input/output wire. This is
because we intend to use contexts to distinguish purified channels: if one can distinguish two purified
channels with a context of type H(n) but no context of type H(1), then intuitively this means that the extra
power comes from the preparation of the initial state and/or some particular measurement, which are not
represented in the context. Actually, except in the C0 case, allowing multiple input/output wires does not
increase the distinguishability power of the contexts (see Propositions 7.22 and 7.27).

7.2.2 Observational Equivalence Using PBS-Free Contexts
Let us start by characterising which purified channels are indistinguishable by -free contexts in C0.
Not surprisingly, we recover the usual indistinguishability by input/output tests, which is captured by
the fact that the two purified channels lead to the same superoperator:57

Definition 7.18 ((First-level) Superoperator). Given a purified H-channel [U, |ε〉 , E ], let S(1)
[U,|ε〉,E] :

L(H)→ L(H) :: ρ 7→ TrE
(
U(ρ⊗ |ε〉〈ε|)U†

)
be the (“first-level”) superoperator of [U, |ε〉 , E ]. Graphically,

S(1)
[U,|ε〉,E] := |ε〉 U

Theorem 7.19. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], [U, |ε〉 , E ] ≈0 [U ′, |ε′〉 , E ′] iff
they have the same (first-level) superoperator. Graphically,

[U, |ε〉 , E ] ≈0 [U ′, |ε′〉 , E ′] iff |ε〉 U = |ε′〉 U ′ (S1)
57In other words, if two purified channels can be distinguished using a -free context, then they could already be

distinguished with simply an input/output test (or with a trivial context · ).
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Proof. By considering the trivial context · , if [U, |ε〉 , E ] ≈0 [U ′, |ε′〉 , E ′] then in particular,
q

U, |ε〉
y

=
q

U ′, |ε′〉
y
, hence, S(1)

[U,|ε〉,E] = S(1)
[U ′,|ε′〉,E′].

Conversely, let us assume that S(1)
[U,|ε〉,E] = S(1)

[U ′,|ε′〉,E′]. Let C[·] ∈ C0. By deformation of diagrams one
can write it in one of the following two forms:

• C ′[·]⊕D, with D : H(0) and C ′[·] of the form
V1, |η1〉?? ?? ?? Vk, |ηk〉 ?? · ?? W1, |ζ1〉 ?? ?? W`, |ζ`〉 ??

for some purified channels [Vi, |ηi〉 ,Vi], [Wj , |ζj〉 ,Zj ] ∈ C(H), and where ?? denotes any sequence
of ¬ , possibly of length 0;

• D ⊕ C ′[·], with D : H(1) and C ′[·] : H(0).
In the latter case, the semantics does not depend on what is plugged in the hole, so that JC[U, |ε〉 , E ]K =

JC[U ′, |ε′〉 , E ′]K. In the former case,

JC[U, |ε〉 , E ]K =X ∗ ⊗ IC ⊗
(
S(1)

[W`,|ζ`〉,Z`] ◦ · · · ◦ S
(1)
[W1,|ζ1〉,Z1] ◦ S

(1)
[U,|ε〉,E] ◦ S

(1)
[Vk,|ηk〉,Vk] ◦ · · · ◦ S

(1)
[V1,|η1〉,V1]

)
=X ∗ ⊗ IC ⊗

(
S(1)

[W`,|ζ`〉,Z`] ◦ · · · ◦ S
(1)
[W1,|ζ1〉,Z1] ◦ S

(1)
[U ′,|ε〉′,E′] ◦ S

(1)
[Vk,|ηk〉,Vk] ◦ · · · ◦ S

(1)
[V1,|η1〉,V1]

)
= JC[U ′, |ε′〉 , E ′]K

where X ∗ is either the identity map over L(C{V,H}) if the total number of ¬ in C ′[·] is even, or the
linear map |c〉〈c′| 7→ |¬c〉〈¬c′| if the total number of ¬ in C ′[·] is odd, and IC is the identity map over
C. Hence, [U, |ε〉 , E ] ≈0 [U ′, |ε′〉 , E ′].

7.2.3 Observational Equivalence Using Negation-Free Contexts
Allowing contexts with PBS significantly increases their power to distinguish purified channels. In [4],
a particular kind of coherent control — namely, the “first half of a quantum switch” [34, 10, 68] — has
been considered, which can be rephrased using contexts of the form:

U, |ε〉

·

The authors proved that with these particular contexts, two purified channels leading to the same (first-
level) superoperator are indistinguishable if and only if they also have the same (first-level) transformation
matrix, which is defined as follows:58

Definition 7.20 ((First-level) Transformation matrix). Given a purified H-channel [U, |ε〉 , E ], let T (1)
[U,|ε〉,E] :=

(IH ⊗ 〈ε|)U(IH ⊗ |ε〉) ∈ L(H) be the (“first-level”) transformation matrix of [U, |ε〉 , E ]. Graphically,

T
(1)
[U,|ε〉,E] := U|ε〉 〈ε|

We extend this result to any ¬ -free context:
Theorem 7.21. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], [U, |ε〉 , E ] ≈1 [U ′, |ε′〉 , E ′] iff
they have the same (first-level) superoperator and the same (first-level) transformation matrix. Graphi-
cally,

[U, |ε〉 , E ] ≈1 [U ′, |ε′〉 , E ′] iff


|ε〉 U = |ε′〉 U ′

U|ε〉 〈ε|
= U ′|ε′〉 〈ε′|

(S1)

(T1)
58Originally, in [4], the transformation matrix was defined for a given unitary purification of a CPTP map S : L(H) →
L(H) in the form U : |ψ〉H⊗ |ε〉 7→

∑
iKi |ψ〉H⊗ |i〉E (where the Ki’s are Kraus operators of S, and where an environment

space E was introduced, with an orthonormal basis {|i〉E}i and an initial state |ε〉), as T :=
∑
i 〈ε| i〉E Ki. This is indeed

consistent with our Definition 7.20 here, as with these notations U(IH⊗|ε〉) =
∑
iKi⊗|i〉E , so that (IH⊗〈ε|)U(IH⊗|ε〉) =∑

i 〈ε| i〉E Ki = T .
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One can illustrate how the transformation matrices enter the game by considering for example the
following context :

·
. By plugging in [U, |ε〉 , E ], the extended PBS-diagram maps a pure input

state |V〉+|H〉√
2 ⊗ |ψ〉 ∈ C{V,H} ⊗ H (together with the environment initial state |ε〉 ∈ E) to the state

1√
2 |V〉 ⊗ |ψ〉 ⊗ |ε〉 + 1√

2 |H〉 ⊗ U(|ψ〉 ⊗ |ε〉), so that after tracing out the environment a cross term
1
2 |H〉〈V| ⊗ TrE

[
U(|ψ〉〈ψ| ⊗ |ε〉〈ε|)

]
= 1

2 |H〉〈V| ⊗ T
(1)
[U,|ε〉,E] |ψ〉〈ψ| appears.

We note also that the two conditions (S1) and (T1) are nonredundant, i.e. one does not imply the
other. Indeed, there exist cases where S(1)

[U,|ε〉,E] = S(1)
[U ′,|ε′〉,E′] but T

(1)
[U,|ε〉,E] 6= T

(1)
[U ′,|ε′〉,E′] (e.g. given any H,

E = E ′ = C, U = IH, U
′ = −IH and |ε〉 = |ε′〉 = 1), and cases where S(1)

[U,|ε〉,E] 6= S
(1)
[U ′,|ε′〉,E′] but

T
(1)
[U,|ε〉,E] = T

(1)
[U ′,|ε′〉,E′] (e.g. H = E = E ′ = C2, U = IH ⊗X,U ′ = X ⊗X and |ε〉 = |ε′〉 = |0〉).59

We are now going to prove at the same time Theorem 7.21 and the fact that allowing multiple
input/output wires does not increase the power of ¬ -free contexts, stated as the following proposition:

Proposition 7.22. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], one has [U, |ε〉 , E ] ≈1
[U ′, |ε′〉 , E ′] (that is, for any ¬ -free context C[·] : H(1), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K) if and only if
for any ¬ -free context C[·] : H(n), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K.

Namely, what we are going to prove is the following lemma:

Lemma 7.23. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], the following three statements
are equivalent:

(I) [U, |ε〉 , E ] ≈1 [U ′, |ε′〉 , E ′], that is, for any ¬ -free context C[·] : H(1), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K

(II) for any ¬ -free context C[·] : H(n), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K

(III) S(1)
[U,|ε〉,E] = S(1)

[U ′,|ε′〉,E′] and T
(1)
[U,|ε〉,E] = T

(1)
[U ′,|ε′〉,E′]

It is clear that it implies both Theorem 7.21 and Proposition 7.22. Indeed, Theorem 7.21 is exactly
(I)⇔ (III), while Proposition 7.22 is (I)⇔ (II).

Proof of Lemma 7.23. It is clear that (II) ⇒ (I). Therefore, what one has to prove is that (III) ⇒ (II)
(that is, the conditions given by Theorem 7.21 are sufficient even with contexts with mutiple input/output
wires) and that (I)⇒ (III) (or equivalently ¬(III)⇒ ¬(I), that is, these conditions are necessary).

Proof of Strong Sufficiency ((III) ⇒ (II)). Let us assume (III). Let C[·] : H(n) be any ¬ -
free context. Let Γ ` D : n be an underlying bare diagram of both C[U, |ε〉 , E ] and C[U ′, |ε′〉 , E ′].
Let G = ([Ux, |εx〉 , Ex])x∈Γ and G′ = ([U ′x, |ε′x〉 , E ′x])x∈Γ be such that [Ua, |εa〉 , Ea] = [U, |ε〉 , E ] and
[U ′a, |ε′a〉 , E ′a] = [U ′, |ε′〉 , E ′] for some a ∈ Γ, while [Ux, |εx〉 , Ex] = [U ′x, |ε′x〉 , E ′x] for all x ∈ Γ\{a}; and let
F = ([Ux, |εx〉 , Ex])x∈Γ\{a}.

Let c, c′ ∈ {V,H} and p, p′ ∈ [n]. By Proposition 7.3 one has |wDc,p|a ≤ 1 and |wDc′,p′ |a ≤ 1, so that
there are four cases:

• If |wDc,p|a = |wDc′,p′ |a = 1, then one can write wDc,p = uav and wDc′,p′ = u′av′ with u, v, u′, v′ ∈ (Γ\{a})∗.
Then for any ρ ∈ L(H):

JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗ TrEG

(
V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† )
59Where X =

(
0 1
1 0

)
.
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with (using the circuit notations defined in Section 2.3, and noting for instance that V Gu = V Fu ⊗ IE
and that V Ga = U ⊗ IEF )

TrEG (V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† ) = TrEF ,E
(
V Gv V

G
a V

G
u (ρ⊗ |εF 〉〈εF | ⊗ |ε〉〈ε|)V Gu′

†
V Ga
†
V Gv′
†)

= V Fu
ρ

|εF 〉
U V Fv

|ε〉
〈εF |
〈ε|

V Fu′
†

U†V Fv′
†

E

EF

H

= U V Fv

|ε〉〈ε|

U†V Fv′
†

EEF

H
σu,u′

= TrEF
(
V Fv TrE

(
(U ⊗ IEF )(σu,u′ ⊗ |ε〉〈ε|)(U† ⊗ IEF

)
V Fv′
†)

= TrEF
(
V Fv
(
S(1)

[U,|ε〉,E] ⊗ IEF
)
[σu,u′ ]V Fv′

†)
,

where IEF is the identity map over L(EF ) and σu,u′ = V Fu
ρ

|εF 〉〈εF |
V Fu′
†

EF

H

EF

H
.

Similarly,

JC[U ′, |ε′〉 , E ′]K (|c, p〉〈c′, p′|⊗ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗TrEF (V Fv (S(1)

[U ′,|ε′〉,E′] ⊗ IEF
)
[σu,u′ ]V Fv′

†)
.

Since S(1)
[U,|ε〉,E] = S(1)

[U ′,|ε′〉,E′], this is equal to JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ).

• If |wDc,p|a = 1 and |wDc′,p′ |a = 0, then one can write wDc,p = uav with u, v ∈ (Γ\{a})∗. Then for any
ρ ∈ L(H):

JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′∣∣⊗ TrEG

(
V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† )
with

TrEG (V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† ) = TrEF ,E
(
V Gv V

G
a V

G
u (ρ⊗ |εF 〉〈εF | ⊗ |ε〉〈ε|)V GwD

c′,p′

† )

= V Fu
ρ

|εF 〉
U V Fv

|ε〉
〈εF |
〈ε|

V F
wD
c′,p′

†
EF

H

E

= U V Fv|ε〉 〈ε|
σu,c′,p′EF

H

= TrEF
(
V Fv

(
T

(1)
[U,|ε〉,E] ⊗ IEF

)
σu,c′,p′

)
,

where σu,c′,p′ = V Fu
ρ

|εF 〉〈εF | EF

H

EF

H
V F
wD
c′,p′

† .
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Again, similarly, one has

JC[U ′, |ε′〉 , E ′]K (|c, p〉〈c′, p′| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗ TrEF

(
V Fv

(
T

(1)
[U ′,|ε′〉,E′] ⊗ IEF

)
σu,c′,p′

)
.

Since T (1)
[U,|ε〉,E] = T

(1)
[U ′,|ε′〉,E′], this is equal to JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ).

• The case |wDc,p|a = 0 and |wDc′,p′ |a = 1 is similar to the previous case.

• If |wDc,p|a = |wDc′,p′ |a = 0, then for any ρ ∈ L(H):

JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗ TrEG

(
V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† )
=

∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗ TrEF
(
V FwDc,p

(ρ⊗ |εF 〉〈εF |)V FwD
c′,p′

† )
=

∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗ TrEG′
(
V G
′

wDc,p
(ρ⊗ |εG′〉〈εG′ |)V G

′

wD
c′,p′

† )
= JC[U ′, |ε′〉 , E ′]K (|c, p〉〈c′, p′| ⊗ ρ).

We have thus proved that JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′|⊗ρ) = JC[U ′, |ε′〉 , E ′]K (|c, p〉〈c′, p′|⊗ρ) for all c, p, c′, p′ and ρ,
that is, [U, |ε〉 , E ] ≈1 [U ′, |ε′〉 , E ′].

Proof of Necessity (¬(III)⇒ ¬(I)).

• If S(1)
[U,|ε〉,E] 6= S

(1)
[U ′,|ε′〉,E′], then already with the trivial context · one can distinguish [U, |ε〉 , E ]

and [U ′, |ε′〉 , E ′]. Indeed, one has
q

U, |ε〉
y

= IC{V,H}⊗C ⊗ S
(1)
[U,|ε〉,E], whereas

q
U ′, |ε′〉

y
=

IC{V,H}⊗C ⊗ S
(1)
[U ′,|ε′〉,E′] (where IC{V,H}⊗C is the identity map over L(C{V,H} ⊗ C)).

• If T (1)
[U,|ε〉,E] 6= T

(1)
[U ′,|ε′〉,E′], then by considering the following context:

C[·] =
·

one gets in particular

JC[U, |ε〉 , E ]K (|H, 0〉〈V, 0| ⊗ IH) = |H, 0〉〈V, 0| ⊗ TrE
(
U(IH ⊗ |ε〉〈ε|)

)
= |H, 0〉〈V, 0| ⊗ T (1)

[U,|ε〉,E]

and similarly
JC[U ′, |ε′〉 , E ′]K (|H, 0〉〈V, 0| ⊗ IH) = |H, 0〉〈V, 0| ⊗ T (1)

[U ′,|ε′〉,E′].

Since T (1)
[U,|ε〉,E] 6= T

(1)
[U ′,|ε′〉,E′], this implies that [U, |ε〉 , E ] 6≈1 [U ′, |ε′〉 , E ′].

7.2.4 Observational Equivalence Using General Contexts
We will now see that allowing negations ( ¬ ) increases the power of contexts to distinguish purified
channels. To characterise the indistinguishability of purified channels with arbitrary contexts, we intro-
duce second-level superoperators and second-level transformation matrices:
Definition 7.24 (Second-level superoperator and transformation matrix). Given a purified H-channel
[U, |ε〉 , E ], let S(2)

[U,|ε〉,E] : L(H⊗2) → L(H⊗2) :: ρ 7→ TrE
(
U (2)(ρ ⊗ |ε〉〈ε|)U (2)†) be the “second-level”

superoperator and T (2)
[U,|ε〉,E] := (IH⊗2⊗〈ε|)U (2)(IH⊗2⊗|ε〉) ∈ L(H⊗2) be the “second-level” transformation

matrix of [U, |ε〉 , E ], where U (2) := (IH ⊗ U)(S⊗ IE)(IH ⊗ U) and S := |ψ1〉 ⊗ |ψ2〉 7→ |ψ2〉 ⊗ |ψ1〉 is the
swap operator. Graphically, U (2) = U U ,

S(2)
[U,|ε〉,E] := U|ε〉 U and T

(2)
[U,|ε〉,E] := U|ε〉 〈ε|U
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Theorem 7.25. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], [U, |ε〉 , E ] ≈2 [U ′, |ε′〉 , E ′] iff
they have the same (first-level) transformation matrix, the same second-level superoperator and the same
second-level transformation matrix. Graphically,

[U, |ε〉 , E ] ≈2 [U ′, |ε′〉 , E ′] iff



U|ε〉 〈ε|
= U ′|ε′〉 〈ε′|

U|ε〉 U = U ′|ε′〉 U ′

U|ε〉 〈ε|U = U ′|ε′〉 〈ε′|U ′

(T1)

(S2)

(T2)

The contexts used in the proof to show that the constraints (S2) and (T2) are required are of the

form ·V0, |η0〉 V1, |η1〉¬ and
·

V, 1
¬

, respectively, for some specific choices

of purified channels [V0, |η0〉 ,H⊗C2], [V1, |η1〉 ,H⊗C2] and [V, 1,C]. Hence, if either the second-level su-
peroperators or the second-level transformation matrices of two purified channels differ, then the channels
can be distinguished by using such contexts.

One may have expected the condition (S1) — i.e. that the two channels have the same first-level
superoperator — to also appear in Theorem 7.25 (as it did in the previous two cases). This would
however have been redundant, as can be seen from the following remark:

Remark 7.26. Two purified channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′] having the same second-level superop-
erator also have the same first-level superoperator, i.e. Condition (S2) implies (S1).

Proof.

(S2) ⇔ U|ε〉 U = U ′|ε′〉 U ′

⇒ U|ε〉 U = U ′|ε′〉 U ′

⇔
|ε〉 U =

|ε′〉 U ′

⇔ |ε〉 U = |ε′〉 U ′ ⇔ (S1)

We note, on the other hand, that the three remaining conditions (T1), (S2) and (T2) are nonredundant.
I.e. for each of the three there exist cases where only this condition is not satisfied, and where [U, |ε〉 , E ]
and [U ′, |ε〉′ , E ′] can be distinguished. E.g. with E = E ′ = C, U = IH, U

′ = −IH, |ε〉 = |ε′〉 = 1, only (T1)
fails to hold; with H = E = E ′ = C2, U = CNot, U ′ = (

√
Z ⊗ Z)CNot, |ε〉 = |ε′〉 = |0〉, only (S2) fails

to hold; and with H = E = E ′ = C2, U = IH ⊗X,U ′ = IH ⊗ ZX, |ε〉 = |ε′〉 = |0〉, only (T2) fails to be
satisfied.60

60Where Z =
(

1 0
0 −1

)
,
√
Z =

(
1 0
0 i

)
and CNot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.
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As we did for Theorem 7.21, we are going to prove Theorem 7.25 at the same time as the fact that
allowing multiple input/output wires in the contexts does not increase their power, stated as the following
proposition:

Proposition 7.27. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], one has [U, |ε〉 , E ] ≈2
[U ′, |ε′〉 , E ′] (that is, for any context C[·] : H(1), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K) if and only if for any
context C[·] : H(n), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K.

Namely, what we are going to prove is the following lemma:

Lemma 7.28. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], the following three statements
are equivalent:

(I) [U, |ε〉 , E ] ≈2 [U ′, |ε′〉 , E ′], that is, for any context C[·] : H(1), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K

(II) for any context C[·] : H(n), JC[U, |ε〉 , E ]K = JC[U ′, |ε′〉 , E ′]K

(III) T (1)
[U,|ε〉,E] = T

(1)
[U ′,|ε′〉,E′], S

(2)
[U,|ε〉,E] = S(2)

[U ′,|ε′〉,E′] and T
(2)
[U,|ε〉,E] = T

(2)
[U ′,|ε′〉,E′]

Again, it is clear that this lemma implies both Theorem 7.25 and Proposition 7.27. Indeed, Theo-
rem 7.25 is exactly (I)⇔ (III), while Proposition 7.27 is (I)⇔ (II).

Proof of Lemma 7.28. The structure of the proof is the same as for Theorem 7.21. It is clear that
(II)⇒ (I). Therefore, what one has to prove is that (III)⇒ (II) (that is, Conditions (T1), (S2) and (T2)
are sufficient even with contexts with mutiple input/output wires) and that (I) ⇒ (III) (or equivalently
¬(III)⇒ ¬(I), that is, the three conditions are necessary).

Proof of Strong Sufficiency ((III) ⇒ (II)). Let us assume (III). Let C[·] : H(n) be any con-
text. Let Γ ` D : n be an underlying bare diagram of both C[U, |ε〉 , E ] and C[U ′, |ε′〉 , E ′]. Let G =
([Ux, |εx〉 , Ex])x∈Γ and G′ = ([U ′x, |ε′x〉 , E ′x])x∈Γ be such that [Ua, |εa〉 , Ea] = [U, |ε〉 , E ] and [U ′a, |ε′a〉 , E ′a] =
[U ′, |ε′〉 , E ′] for some a ∈ Γ, while [Ux, |εx〉 , Ex] = [U ′x, |ε′x〉 , E ′x] for all x ∈ Γ\{a}; and let F =
([Ux, |εx〉 , Ex])x∈Γ\{a}.

Let c, c′ ∈ {V,H} and p, p′ ∈ [n]. By Proposition 7.3, the possible cases are the following:

• |wDc,p|a ≤ 1 and |wDc′,p′ |a ≤ 1

• (c, p) 6= (c′, p′), |wDc,p|a = 2 and |wDc′,p′ |a = 0

• (c, p) 6= (c′, p′), |wDc,p|a = 0 and |wDc′,p′ |a = 2

• (c, p) = (c′, p′) and |wDc,p|a = 2.

The first case can be treated exactly in the same way as in the proof of Lemma 7.23. To address the
other three cases, one can first note that by deformation, for any V ∈ L(H⊗ EF ),

U V U
E

EF

H

E

EF

H

=
U U V

E

EF

H

E

EF

H

.

• If (c, p) 6= (c′, p′), |wDc,p|a = 2 and |wDc′,p′ |a = 0, then one can write wDc,p = uavat with u, v, t ∈
(Γ\{a})∗. Then for any ρ ∈ L(H):

JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗ TrEG

(
V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† )
with
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TrEG (V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwD
c′,p′

† ) = TrEF ,E
(
V Gt V

G
a V

G
v V

G
a V

G
u (ρ⊗ |εF 〉〈εF | ⊗ |ε〉〈ε|)V GwD

c′,p′

† )

= V Fu
ρ

|εF 〉
U V Fv U V Ft

|ε〉
〈εF |
〈ε|

V F
wD
c′,p′

†
EF

H

E

= V Fu
ρ

|εF 〉
V Ft

|ε〉
〈εF |
〈ε|

V F
wD
c′,p′

†
EF

H

E U U V Fv

H

= V Fu
ρ

|εF 〉
V Ft

|ε〉
〈εF |

〈ε|

EF

H

U U V Fv

V F
wD
c′,p′

†

H

= TrEF ,H
(
σv,t

(
T

(2)
[U,|ε〉,E] ⊗ IEF

)
σu,c′,p′

)
,

where σv,t = V Ft
V Fv

H

EF

H

EF

H

H

and σu,c′,p′ = V Fu
ρ

|εF 〉〈εF |EF

H
V F
wD
c′,p′

†

H EF

H

H (and TrEF ,E := TrEF ◦ TrE , TrEF ,H := TrEF ◦

TrH; by convention we always take the partial trace over the last factor of the tensor product in
both the input and output spaces, so that there is no ambiguity about which copy of H is traced
out in the last formula).

Similarly,

JC[U ′, |ε′〉 , E ′]K (|c, p〉〈c′, p′|⊗ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗TrEF ,H

(
σv,t

(
T

(2)
[U ′,|ε′〉,E′] ⊗ IEF

)
σu,c′,p′

)
.

Since T (2)
[U,|ε〉,E] = T

(2)
[U ′,|ε′〉,E′], this is equal to JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ).

• The case (c, p) 6= (c′, p′), |wDc,p|a = 0 and |wDc′,p′ |a = 2 is similar to the previous case.

• If (c, p) = (c′, p′) and |wDc,p|a = 2, then one can again write wDc,p(= wDc′,p′) = uavat with u, v, t ∈
(Γ\{a})∗. Then for any ρ ∈ L(H):

JC[U, |ε〉 , E ]K (|c, p〉〈c, p| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc,p, pDc,p∣∣⊗ TrEG

(
V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwDc,p
† )

with
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TrEG (V G
wDc,p

(ρ⊗ |εG〉〈εG |)V GwDc,p
† ) = TrEF ,E

(
V Gt V

G
a V

G
v V

G
a V

G
u (ρ⊗ |εF 〉〈εF | ⊗ |ε〉〈ε|)V Gu

†
V Ga
†
V Gv
†
V Ga
†
V Gt
†)

= V Fu
ρ

|εF 〉
U V Fv U V Ft

|ε〉
〈εF |
〈ε|

EF

H

E

V Fu
†

U†V Fv
†

U†V Ft
†

=
V Fv

V Ft

|ε〉〈ε|

EF

H

E U†V Fv
†

U†
V Ft
†

U U

HH

σu,u

= V Fv

V Ft

|ε〉〈ε|

EF

H

E U†V Fv
†

U†
V Ft
†

U U

H

H

σu,u

= TrEF ,H,H
(
(σv,t⊗IH)TrE

[
(U (2)⊗IEF⊗H)(σ′u,u⊗|ε〉〈ε|)(U (2)⊗IEF⊗H)†

]
(σv,t⊗IH)†(IH⊗EF⊗S)

)
= TrEF ,H,H

(
(σv,t ⊗ IH)

(
S(2)

[U,|ε〉,E] ⊗ IEF⊗H
)
[σ′u,u] (σv,t ⊗ IH)†(IH⊗EF ⊗S)

)
,

where IEF⊗H is the identity map over L(EF⊗H), S = |ψ1〉⊗|ψ2〉 7→ |ψ2〉⊗|ψ1〉 is the swap operator

(here acting onH⊗H), σu,u = V Fu
ρ

|εF 〉〈εF |
V Fu
†

EF

H

EF

H
, σ′u,u =

σu,u

EF

H

H

H

EF

H

H

H

,

σv,t = V Ft
V Fv

H

EF

H

EF

H

H

, and U (2) =
U U

H

H

H

H

EE

as in Definition 7.24.

Again, similarly,

JC[U ′, |ε′〉 , E ′]K (|c, p〉〈c′, p′| ⊗ ρ) =
∣∣cDc,p, pDc,p〉〈cDc′,p′ , pDc′,p′ ∣∣⊗

TrEF ,H,H
(

(σv,t ⊗ IH)
(
S(2)

[U ′,|ε′〉,E′] ⊗ IEF⊗H
)
[σ′u,u] (σv,t ⊗ IH)†(IH⊗EF ⊗SH,H)

)
.

Since S(2)
[U,|ε〉,E] = S(2)

[U ′,|ε′〉,E′], this is equal to JC[U, |ε〉 , E ]K (|c, p〉〈c′, p′| ⊗ ρ).

Proof of Necessity (¬(III)⇒ ¬(I)).

• If T (1)
[U,|ε〉,E] 6= T

(1)
[U ′,|ε〉′,E′], then by Theorem 7.21, [U, |ε〉 , E ] and [U ′, |ε〉′ , E ′] can be distinguished

using a ¬ -free context C[·] : H(1), so in particular, [U, |ε〉 , E ] 6≈2 [U ′, |ε〉′ , E ′].
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• If S(2)
[U,|ε〉,E] 6= S

(2)
[U ′,|ε′〉,E′], then one can distinguish [U, |ε〉 , E ] and [U ′, |ε〉′ , E ′] as follows.

By assumption, there exists |ϕ〉 ∈ H⊗H s.t. ρ 6= ρ′, where ρ, ρ′ ∈ L(H⊗H) are defined as follows:

ρ = U|ε〉 U

|ϕ〉
{

ρ′ = U ′|ε′〉 U ′
|ϕ〉
{

Let then W0 be a unitary in L(H⊗2) such that W0 |00〉 = |ϕ〉.
Note, on the other hand, that matrices of the formW †1 (|0〉〈0|⊗IH)W1, for all unitariesW1 ∈ L(H⊗2),
span the whole space L(H⊗2).61 It follows that for ρ 6= ρ′ defined above, there exists a unitary W1

such that W1ρ
{

6= W1ρ′
{

.62

In order to distinguish the two purified channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], we then consider the
following context:

C[·] = ·V0, |η0〉 V1, |η1〉¬

where V0 = W0

X

, V1 = W1

X

, with W0,W1 just introduced and |η0〉 = |η1〉 = |0〉⊗ |0〉 ∈

H ⊗ C2.63

One then has

(〈H, 0| ⊗ IH)
(

JC[U, |ε〉 , E ]K (|H, 0〉〈H, 0| ⊗ |0〉〈0|
)

(|H, 0〉 ⊗ IH)

=
V0

|ε〉

U
|0〉
|η0〉

|η1〉

V1 V0 U V1

=
|ε〉

U
|0〉
|0〉

|0〉

UW0

X

W0

X|0〉

|0〉

W1

X

W1

X

61This can be seen for instance explicitly by noting that any |φ〉〈φ| = Vφ |00〉〈00|V †φ (which themselves span the whole
space, for some unitaries Vφ) can be decomposed onto vectors of the formW †1 (|0〉〈0|⊗IH)W1, as Vφ |00〉〈00|V †φ = Vφ[(|0〉〈0|⊗
IH)− 1

d

∑d−1
i=0 Vi(|0〉〈0| ⊗ IH)V †i + 1

d
S(|0〉〈0| ⊗ IH)S†]V †φ , where d is the dimension of H, with the unitaries Vi = IH⊗2 −

(|0〉 − |i〉)(〈0| − 〈i|)⊗ |0〉〈0|
(
such that Vi(|0〉〈0| ⊗ IH)V †i = |0〉〈0| ⊗ IH + (|i〉〈i| − |0〉〈0|)⊗ |0〉〈0|

)
and the swap operator S.

62Indeed: assume, by contradiction, that W1ρ
{

= W1ρ′
{

for all unitaries W1. Then in particular (by

projecting the output wire onto |0〉) one has Tr[ρW †1 (|0〉〈0| ⊗ IH)W1] = Tr[ρ′W †1 (|0〉〈0| ⊗ IH)W1] for all W1. Given, as just
noted, that the matrices W †1 (|0〉〈0| ⊗ IH)W1 span the whole space L(H⊗2), one concludes that ρ = ρ′ — in contradiction
with the fact that ρ 6= ρ′.

63Where, given W ∈ L(K), the controlled linear operation W
K K

C2 C2
is defined as W ⊗ |0〉〈0| + IK ⊗ |1〉 〈1|, and where

X =
(

0 1
1 0

)
.
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=
|ε〉

U
|0〉
|0〉

|0〉

UW0 W1

=
|ε〉 U

|0〉
|0〉

U

W0 W1

= W1ρ
{

6= W1ρ′
{

= (〈H, 0| ⊗ IH)
(

JC[U ′, |ε′〉 , E ′]K (|H, 0〉〈H, 0| ⊗ |0〉〈0|)
)

(|H, 0〉 ⊗ IH).

Hence JC[U, |ε〉 , E ]K 6= JC[U ′, |ε′〉 , E ′]K, and therefore [U, |ε〉 , E ] 6≈2 [U ′, |ε〉′ , E ′].

• If T (2)
[U,|ε〉,E] 6= T

(2)
[U ′,|ε〉′,E′], then let us first introduce the following lemma:

Lemma 7.29. Given two purified channels [U, |ε〉 , E ] and [U ′, |ε〉′ , E ′], T (2)
[U,|ε〉,E] = T

(2)
[U ′,|ε〉′,E′] if and

only if for any V ∈ L(H),

U|ε〉 〈ε|U
V = U ′|ε′〉 〈ε′|U ′

V
.

Proof.

U|ε〉 〈ε|U = U ′|ε′〉 〈ε′|U ′

⇔ ∀i, j, U|ε〉 U

|i〉 〈j|

〈ε|
= U ′|ε′〉 U ′

|i〉 〈j|

〈ε|

⇔ ∀i, j, U|ε〉 U
|i〉〈j|

〈ε|
= U ′|ε′〉 U ′

|i〉〈j|
〈ε|

⇔ ∀i, j, U|ε〉 U
|i〉〈j|

〈ε|
= U ′|ε′〉 U ′

|i〉〈j|
〈ε|

⇔ ∀V ∈ L(H), U|ε〉 〈ε|U
V = U ′|ε′〉 〈ε′|U ′

V

By this lemma, since unitary operators span the whole space L(H), if T (2)
[U,|ε〉,E] 6= T

(2)
[U ′,|ε〉′,E′] then

there exists a unitary operator V ∈ L(H) such that

U|ε〉 〈ε|U
V 6= U ′|ε′〉 〈ε′|U ′

V
.
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Then by considering the following context:

C[·] =
·

V, 1

¬

one gets

JC[U, |ε〉 , E ]K (|H, 0〉〈V, 0| ⊗ IH) = |H, 0〉〈V, 0| ⊗ U|ε〉 〈ε|U
V

whereas
JC[U ′, |ε′〉 , E ′]K (|H, 0〉〈V, 0| ⊗ IH) = |H, 0〉〈V, 0| ⊗ U ′|ε′〉 〈ε′|U ′

V
.

Hence JC[U, |ε〉 , E ]K 6= JC[U ′, |ε′〉 , E ′]K, which proves that [U, |ε〉 , E ] 6≈2 [U ′, |ε〉′ , E ′].

7.3 Observational Equivalence Beyond PBS-Diagrams
In this section, we define a new equivalence relation, inspired by the uniqueness (up to an isometry) of
Stinespring’s dilations, which subsumes the observational equivalences defined so far. For that let us first
introduce an isometry-based preorder over purified channels:
Definition 7.30. Given two purified H-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′], one has [U, |ε〉 , E ]/iso[U ′, |ε′〉 , E ′]
if there exists an isometry W :E→E ′ s.t. W |ε〉= |ε′〉 and (IH ⊗W )U=U ′(IH ⊗W ). In pictures:

|ε〉 W = |ε′〉 U
W

H H

E′E E = U ′
W

H H

E′E E′

Note that /iso is not an equivalence relation. It is not symmetric; moreover, its symmetric closure is
not transitive.64 This leads us to consider the following:
Definition 7.31 (Iso-equivalence). The iso-equivalence of purified channels is defined as the symmetric
and transitive closure of /iso: ≈iso := /∗iso.

The iso-equivalence is a candidate for characterising indistinguishability of purified channels in more
general coherent-control settings. Actually, if [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′] are two iso-equivalent purified
channels, then intuitively, in any coherent-control setting, [U, |ε〉 , E ] can be replaced by [U ′, |ε′〉 , E ′]
without changing the global behaviour. Indeed, the evolution of the environment associated with the
purified channel is roughly speaking the same (up to the isometry W ): initialised in the state W |ε〉(and
with the data register in the state |φ〉), the application of U ′ leads to the state U ′(IH ⊗W )(|φ〉 ⊗ |ε〉),
which is equal to (IH⊗W )U(|φ〉⊗ |ε〉). So applying U ′ somehow first cancels the application of W , then
applies U , and finally applies W again — which will be cancelled again by the next application of U ′,
and so on. The last application of W is absorbed when the environment is traced out. In pictures:

U ′|ε′〉 U ′ U ′. . .

. . .

= U ′ U ′ U ′|ε〉 W . . .

. . .

= U U ′ U ′|ε〉 W . . .

. . .

= . . . = U|ε〉 U U
W. . .

. . .

= U|ε〉 U U. . .

. . .

In the framework of PBS-diagrams, one can actually show that the iso-equivalence subsumes, but
does not coincide with the ≈2-equivalence (which in turn subsumes the ≈1- and ≈0-equivalences).

64Taking H = C, one has [1, 1,C] /iso [IC2 , |0〉 ,C2] (with W = |0〉) but ¬([IC2 , |0〉 ,C2] /iso [1, 1,C]) (as there is no
isometry from C2 to C). With the Pauli operator Z =

(
1 0
0 −1

)
one also has [1, 1,C] /iso [Z, |0〉 ,C2] (again with W = |0〉),

but [IC2 , |0〉 ,C2] and [Z, |0〉 ,C2] are not in relation since there is no unitary W such that WIC2 = ZW (as IC2 and Z have
distinct eigenvalues).
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Proposition 7.32. ≈iso ( ≈2 ( ≈1 ( ≈0.

Proof. [≈iso ⊆ ≈2] Since ≈2 is an equivalence relation it is enough to show that /iso ⊆ ≈2. If
[U, |ε〉 , E ] /iso [U ′, |ε′〉 , E ′], then the three conditions of Theorem 7.25 are satisfied, implying [U, |ε〉 , E ] ≈2
[U ′, |ε′〉 , E ′].
[≈2 6= ≈iso] We consider the following two purified C-channels: [X, |0〉 ,C3] and [XN, |0〉 ,C3] where
X = |x〉 7→ |x−1 mod 3〉 and N = |x〉 7→ (−1)x |x〉 are two (qutrit) unitary transformations. The two
purified channels are ≈2-equivalent as they satisfy the conditions of Theorem 7.25. In order to show
that they are not iso-equivalent, note that if two purified C-channels [U, |ε〉 , E ] and [U ′, |ε′〉 , E ′] are iso-
equivalent then for any k ≥ 0 one has 〈ε|Uk |ε〉 = 〈ε′|WUk |ε〉 = 〈ε′|U ′kW |ε〉 = 〈ε′|U ′k |ε′〉. Since
〈0|X3 |0〉 = 1 6= −1 = 〈0| (XN)3 |0〉, it follows that [X, |0〉 ,C] and [XN, |0〉 ,C] are indeed not iso-
equivalent.
[≈2 ( ≈1 ( ≈0] The inclusions are clear from the characterisations of Theorems 7.19, 7.21 and 7.25,
together with Remark 7.26. The fact that the inclusions are strict follows from the observations that the
various conditions appearing in these theorems are non-redundant.

In unpublished work, that we cannot expose here in details due to time constraints, we have considered
a natural extension of the language of extended PBS-diagrams, with a n-dimensional “polarisation” and
natural generalisations of negations and PBS. The observational equivalence ≈n is then characterised
by natural generalisations of Conditions (S1), (T1), (S2) and (T2). We have proved that two purified
channels are ≈n-equivalent for all n if and only if they are iso-equivalent.

Moreover, we have proved that the natural merge between the language of extended PBS-diagrams and
that of LOv-circuits (that is, the traced PROP generated by the generators of both languages — which
can be seen as the language of extended PBS-diagrams enriched with additional optical components,
or equivalently as the language of LOv-circuits enriched with purified channels and a trace operator),
equipped with a natural extension of the quantum semantics of extended PBS-diagrams — in which the
trace follows the physical intuition of the instant-travel trace described in Section 5.5.1 — provides a
coherent-control setting for purified channels in which the observational equivalence is precisely captured
by the iso-equivalence. In other words, LOv-circuits with instant-travel trace have the same distinguishing
power as PBS-diagrams with a control system of arbitrary dimension. Intuitively, by considering a context
of the same shape as the left-hand side of Equation (5.78), with the hole gate in the loop, the global
unitary evolution is an infinite sum whose terms correspond to all possible numbers of iterations of the
purified channel, and by varying the parameter of the beam splitter, one can extract enough information
about the terms of the series to decide the ≈n-equivalence of two purified channels for any n.

An open question is whether the iso-equivalence still characterises the observational equivalence in
other settings, for instance if in the language of LOv-circuits with purified channels and trace just men-
tioned, one considers a delayed trace semantics (see Section 5.5.2).
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Conclusion

The first goal of this PhD was to develop a formal framework for representing quantum computations
involving coherent control, studying their various properties and reasoning about them. Starting from
the observation that it is easy with optical schemes to perform coherent control of quantum operations,
the initial idea for doing so was to start from those optical implementations, and to abstract them into
a graphical language.

Essentially following this idea, a first contribution of this thesis is to start developing such a framework,
by introducing the PBS-calculus in Chapter 3, and its variants in Chapters 4 and 7. We have in particular
equipped these languages with semantics consistent with their physical interpretation, and provided
complete axiomatisations for the PBS-calculus and its coloured refinement.

A second contribution is to start using this framework, with the limited features it already offers, for
the study of coherent control. In particular, we have investigated the question of resource optimisation of
coherently controlled quantum computations in Chapter 4. We have also studied the distinguishability of
quantum channels in the presence of coherent control, by using PBS-diagrams to formalise and precisely
describe families of coherent control contexts, in Chapter 7.

The idea of starting from a class of linear optical setups to develop our framework has naturally
introduced another point of view on our graphical languages, which consists in seeing the diagrams as
primarily representing physical linear optical schemes. Taking this point of view, a third contribution
of this thesis is to introduce a graphical language, the LOv-calculus, for representing and reasoning on
photon-preserving linear optical circuits. We have equipped both this language and its fragment for
polarisation-preserving circuits (the LOPP-calculus) with complete equational theories. Additionally, we
have introduced a normal form for polarisation-preserving circuits, as a refinement of the universal form
of Reck et al. [114], This normal form makes it possible to represent any unitary transformation in a
unique way. We have also defined a strongly normalising and confluent rewriting system which puts any
polarisation-preserving circuit in this form.

Finally, as a last contribution, the complete equational theory found for polarisation-preserving linear
optical circuits has enabled us to find the first known complete equational theory for quantum circuits,
by exploiting a correspondence between their generators and multi-controlled gates of quantum circuits.

An obvious direction for future research is to increase the expressiveness of our languages, in particular
those dedicated to coherent control. Indeed, in the PBS-calculus and its variants, the fact that the
polarisation is of dimension 2, and that therefore a particle can pass at most twice at the same place,
somehow makes the language look like a programming language in which the only available loops are
for-loops bounded to 2 iterations, which additionally cannot be nested. Therefore, a natural extension
of these languages consists in allowing for a control state of arbitrary dimension. Note that then the
diagrams cannot be immediately interpreted as linear optical schemes anymore.

Another possible extension consists in adding generators such as those of the LOv-calculus, able to
create superpositions in the polarisation or the position (instead of just exploiting a preexisting super-
position in the input state of the particle). We have briefly discussed such an extension at the end of
Chapter 7, and we have seen that this makes superpositions of arbitrarily long evolutions possible, and
— at least if we do not take time into account — allows for distinguishing purified channels as efficiently
as allowing for a control state of arbitrary dimension. A natural question is to what extent this can be
compared to recursion or while-loop features.
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Developing extensions of our languages that allow for more general coherent control would naturally
raise the question of extending the study of resource optimisation made in Chapter 4 to those settings.
More generally, it would be interesting to consider resource optimisation in a language for quantum
control more expressive than the PBS-calculus, and to develop resource optimisation techniques for
quantum computations involving arbitrary quantum control.

Concerning the results of Chapter 7, other open questions raised by our work include equipping
extended PBS-diagrams with an equational theory, and lifting the observational equivalence to diagrams
themselves (that is, considering contexts with a bigger hole in which diagrams can be plugged).

Additionally, note that in our description of purified channels, the state of the environment does not
evolve by itself, but only when the particle goes through the channel and the unitary U is applied to
the joint system. In fact, under reasonable modeling hypotheses, as long as each channel is used at
most twice (as it was the case in Chapter 7), any free evolution of the environment between two uses
could be included in U ; however, introducing such an evolution could make a difference when considering
extensions of the language, if the channels are used more than twice, and the evolution is different between
different uses.

Concerning the LOv-calculus, as mentioned in Remark 5.10, its semantics can be straightforwardly
extended to the case of several photons. A direction for future work is to extend its syntax to allow for
sources and detectors of a non-zero number of photons. A natural question is then in particular to look
for a complete equational theory for the extended language. A more exploratory research direction is to
add support for features such as squeezed states or continuous variables.

Note that given a LOPRO
PP -circuit, it is actually possible to give an upper bound on the maximum

number of rewriting steps needed to reach a normal form. An open question is whether we can make this
upper bound tight enough to be useful in practice.

Note also that contrary to the PBS-calculus and the CPBS-calculus, we have not proved that the
axiomatisation of the LOv-calculus is minimal. Proving such a minimality result, or simplifying the
equational theory, is therefore a natural open question. Additionally, one can wonder whether Equa-
tion (5.G) can be simplified, for instance by removing the phases. Indeed, the two sides could then
directly be interpreted as two Euler decompositions of a rotation in three-dimensional space.

Concerning the complete equational theory for quantum circuits, an open question of interest is to
simplify the set of equations. In particular, Equation (6.r) is a family of equations acting on an unbounded
number of qubits. Such a family of equations is a natural byproduct of our proof technique: the decoding
of each axiom of LOPP produces an equation made of multi-controlled gates that has to be derived using
QC. In fact, one can even find surprising that Equation (6.r) is the only remaining equation with multi-
controlled gates. Nonetheless, it would be of interest to know whether it can be deduced from equations
on a bounded number of qubits. Note that the ZX-calculus has a complete axiomatisation with an Euler
equation only on one qubit [127].

Apart from Equation (6.r), note that some progress has already been made in simplifying the equa-
tional theory [36]. In particular, Equations (6.n) and (6.o) have been proved to be derivable in QC,
moreover without using Equation (6.r).

A natural application of the completeness result is to design procedures for quantum circuit optimi-
sation based on this equational theory. Note however that to use Equation (6.r), one has to decompose
a gate into multi-controlled gates. Since the number of multi-controlled gates in the decomposition is
exponential in the number of controls added, it might be difficult to keep such procedures tractable. This
is one of the motivations for simplifying Equation (6.r).

Another question for future work is to prove (upper or lower) bounds on the size of a derivation between
two given equivalent circuits, as well as a bound on the size of the intermediate quantum circuits. Proving
lower bounds might be useful for providing a verifiable quantum advantage, in particular if there exist
polysize quantum circuits requiring exponentially many rewrites [1].
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Appendix A

PBS-Diagrams and the
PBS-Calculus

A.1 Derivations of Ancillary Equations
A.1.1 Derivations of the Ancillary Equations of the Proof of Lemma 3.26.
It remains to prove Equations (3.12) to (3.22).

To prove Equation (3.17), we have, by Equation (3.5):

¬

¬ ¬ ¬

¬¬

¬

¬
=

¬

¬

¬

¬

by Equations (3.11) and (3.8), and inverse law, this implies that

=
¬

¬

¬

¬

which, together with Equation (3.5), implies Equation (3.17).

To prove Equation (3.12), we have:

U

V

¬ (3.11)=
U¬ ¬ ¬

¬ ¬ ¬ ¬

¬ ¬

V

(3.2)=
U¬ ¬ ¬

¬ ¬ ¬ ¬

¬ ¬

V

dinaturality=
U¬ ¬ ¬

¬ ¬ ¬

¬ ¬

V ¬

(3.5)=
¬U

V
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(3.17)=
¬U

V

naturality of
the swap,

inverse law=
V

U

¬

To prove Equation (3.16), we have:

¬

(3.11)=
¬

¬ ¬

¬

¬

¬

¬

(3.5)=
¬

¬

¬

To prove Equation (3.21), we have:

¬

(3.16)=
¬

¬

¬

(3.10)(3.11)=
¬

¬

To prove Equation (3.22), we have:

¬

¬

(3.11)=
¬

¬

¬

¬

¬

¬

(3.5),
naturality of

the swap=
¬

¬

(3.8)=
¬

¬

To prove Equation (3.18), we have:

inverse law,
(3.17)=

(3.9)=

(3.8)=
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To prove Equation (3.19), we have :

¬
(3.16)=

¬

¬

¬

(3.18)= ¬

¬¬

(3.17)= ¬

¬¬

naturality of
the swap,

inverse law= ¬

¬

¬

Ancillary Equations. To prove the remaining equations, we need some ancillary equations:

Lemma A.33. The following equations are consequences of the axioms of the PBS-calculus:

= (A.1)

= (A.2)

Proof. To prove Equation (A.1), we have:

inverse law,
naturality of

the swap,(3.17)=

(3.9)=

naturality of
the swap,(3.17),

inverse law=

The proof of Equation (A.2) is obtained by rotating the proof of Equation (3.18) by 180° (it uses
Equation (A.1) instead of Equation (3.9)).

To prove Equation (3.20), we have:
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inverse law,
(3.17)=

naturality of
the swap=

(A.2),
inverse law=

Ancillary Equations. To prove the remaining equations, we need additional ancillary equations:

Lemma A.34. The following equations are consequences of the axioms of the PBS-calculus:

= (A.3)

I

= (A.4)

U V

=
U

V
(A.5)

U

=

U

(A.6)

U

=

U

(A.7)

U

=
U

(A.8)

U

=
U

(A.9)

U V

=
UV

(A.10)
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VU
=

V U
(A.11)

VU

=
V U

(A.12)

Proof. The proof of Equation (A.3) is obtained by rotating the proof of Equation (3.20) by 180° (it uses
Equation (3.18) instead of Equation (A.2)).

To prove Equation (A.4), we have:

I

(3.4)=
I I

(3.1)=
I

(3.8)= I

(3.7)=

To prove Equation (A.5), we have:

U V

naturality of
the swap=

V

U

(3.20)=
U

V

dinaturality,
naturality of

the swap,
yanking=

U

V

To prove Equation (A.6), we have:

U

(3.17)=

U
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(A.2)=

U

inverse law=

U

To prove Equation (A.7), we have:

U

axioms of
the traced

PROP=

U

(A.3)=

U

inverse law=

U

To prove Equation (A.8), we have:

U

inverse law,(3.17),
naturality of

the swap=

U

(A.6)=

U

(3.17),
naturality of

the swap,
inverse law=

U

To prove Equation (A.9), we have:
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U

inverse law,(3.17),
naturality of

the swap=
U

(A.7)=

U

(3.17),
naturality of

the swap,
inverse law=

U

Equation (A.10) is a direct consequence of Equation (A.8).

To prove Equation (A.11), we have:

VU

(A.7)=
V

U

(3.4)=
U

V

V

(3.3)(3.6)=
V

V U

dinaturality=
V U

V

(A.1)=
V U

V
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dinaturality,
naturality of

the swap,
inverse law=

V

V U

(3.7)=
V U

To prove Equation (A.12), we have:

VU

(3.5)=
VU

¬ ¬

¬ ¬

¬ ¬

¬ ¬

dinaturality,
(3.2),(3.11)=

VU

¬ ¬

(A.11)=
¬ ¬

V U

(3.11),
dinaturality,

(3.2),(3.5)=
V U

Now we are ready to prove the last three equations:
To prove Equation (3.13), we have:

U

V (A.5)=
U V

(A.8)(A.9)=
U

V

(A.4)(A.5)(3.4)(3.1)=

U

I

I

V

Equation (3.14) is proved in the same way as Equation (3.13), using Equations (A.6) and (A.7) instead
of (A.8) and (A.9).
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To prove Equation (3.15), we have:

U

V V ′

U ′ (A.5)=
U ′ V ′VU

(A.10)=
U ′ V ′VU

(A.12)(A.11)=
U ′U V ′V

(A.5)=
U ′U

V ′V

A.1.2 Derivations of the Ancillary Equations of the Proof of Lemma 3.28.
To prove Equation (3.23), we have:

U

V
dinaturality=

U

V

(3.8)=
U

V

(3.7)=

To prove Equation (3.24), we have:

U

V

¬
dinaturality=

U

V

¬

(3.10)=

U

V

¬¬

dinaturality=

U

V

¬¬
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(3.2)(3.11)=

U

V

(3.4)=

U

V U

dinaturality=

U

U V

(3.3)(3.6)=
U

V U

(3.23)=

To prove Equation (3.25), we have:

U

V

(A.2)=
U

V

dinaturality=
U

V

(3.17),(3.8),
inverse law=

V

U

(3.7)(3.4)(3.1)=
I

V

To prove Equation (3.26), we have:

U

V

¬ (A.2)=
U

V

¬
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dinaturality=
U

V

¬

(3.17),(3.10),
naturality of

the swap,(3.17),
inverse law=

U

V

¬¬

dinaturality,
(3.2),(3.11)=

U

V

(3.4)=
U

V

V

(3.3)(3.6)=
V

V U

(3.25)=
I

V U

To prove Equation (3.27), we have:

U

V

(3.5)=
U

V

¬ ¬

¬ ¬

dinaturality,
(3.12),(3.11)=

V

U

¬ ¬

(3.25)=
¬ I

U

¬
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(3.12)(3.11)=
U

I

To prove Equation (3.28), we have:

U

V

¬
naturality of

the swap,
(3.5),(3.11)=

U

V

¬ ¬

¬

(3.12),
dinaturality=

U

V

¬ ¬

¬

(3.26)=
¬ I

UV

¬

(3.12)(3.11)=
UV

I

A.2 Proof of Equivalence Between the Two Diagrams of Fig-
ure 3.2 Using the PBS-Calculus

We need the following two ancillary equations:

Lemma A.35. The following equations are consequences of the axioms of the PBS-calculus:

¬

U

=
¬

U
(A.47)

¬

U

=
¬

U
(A.48)

Proof. To prove Equation (A.47), we have:

¬

U

(3.5)(3.11)=
¬

U¬¬

dinaturality,
(3.2),(3.11)=

¬

U

To prove Equation (A.48), we have:
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¬

U

(3.11),(3.2)
dinaturality=

¬ ¬

U

¬

¬¬

(3.5)=
¬

U

We have to transform the following diagram into the other one of Figure 3.2:

¬ ¬

U1 U2 U3

U1

U1

U2U3

U2

U3

.

First, we transform each gate into two loops using Equations (3.31) and (A.5):

Ui
(3.31)=

Ui

Ui

(A.5)=
Ui Ui

then we slide all loops to the right using Equations (A.6), (A.7), (A.8), (A.9), (A.47) and (A.48). We
get:

¬ ¬

U1

U1

U3U2U2

U3U2

U2U3

U3U1U1

U2

U3

U2U3 U1U1

.

Next, we transform the left part:

¬ ¬

(3.8),(3.11),
yanking=

inverse law,
(3.8),

naturality of
the swap=

(3.9)(A.1)= .
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Finally, using again Equations (A.6) to (A.9), (A.47) and (A.48), then (A.5) and (3.31), we slide the
loops into the diagram and merge them two by two to get the desired diagram:

U1

U2

U3 U1

U2

U3 U1

U2

U3

.
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Appendix B

Coloured PBS-Diagrams and
Resource Optimisation

B.1 Derivations of Equations (4.21) to (4.27)
Note that Equation (4.21) is a particular case of Equation (4.2) and that Equation (4.22) is a particular
case of Equation (4.19). To prove Equation (4.23), we derive a more general version, analogous to
Equations (4.2) and (4.19): for any monoid M and any U, V ∈ M,

U V
(4.9)(4.5)=

U

U

V

V

(4.2)(4.19)=
V U

V U

(4.5)(4.9)= V U

To prove Equation (4.24), we have:

U

U

v

h

(4.10)=
U

U

(4.5)=
U

To prove Equation (4.25), we have:

U

U
h

v
=

U

U

h
v

(4.24)= h
v

U
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(4.11)(4.12)=
U

To prove Equation (4.26), we have:

U

U

v

v

(4.7)(4.3)=
U

v

¬ U
v ¬

(4.24)=
¬¬

U

To prove Equation (4.27), we have:

U

U

h

h

(4.8)(4.3)=
U

h

¬ U
h ¬

(4.24)=
¬¬ U

B.2 Derivations of the Ancillary Equations Used in the PGT
procedure

We have to derive Equations (4.28) to (4.41) from the equations of Figure 4.4. In order to benefit from
some dependencies between the derivations, we treat the equations in the following order: (4.33), (4.28),
(4.29), (4.30), (4.31), (4.41), (4.32), (4.34), (4.35), (4.36), (4.37), (4.38), (4.39), (4.40).

For Equation (4.33), the derivation is the following:

¬

(4.11)=
¬

(4.4)=
¬

¬

(4.11)=
¬

¬

For Equation (4.28):

¬ ¬
(4.9)=

¬¬

(4.4)=
¬

¬

¬

(4.33)=
¬

¬

¬

¬
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(4.7)(4.8)(4.9)=

For Equation (4.29):

v
(4.1)= I v

(4.6)=

For Equation (4.30):

h
(4.8)= h

¬ ¬

dinaturality= v
¬ ¬

(4.7)= v

(4.29)=

For Equation (4.31):

(4.9)=

dinaturality=

(4.10)= h v

(4.30)(4.29)=

For Equation (4.41):

(4.11)=

(4.10)= v

h

For Equation (4.32):
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¬ (4.9)=
¬

(4.4)=
¬

¬

dinaturality=
¬

¬

(4.41)=

¬

¬ v h

= h
¬ ¬

(4.8)(4.31)=

For Equation (4.34):

¬ (4.9)=
¬

(4.4)=
¬

¬

(4.41)=
¬

¬

(4.12)=
¬

¬

For Equation (4.35):

¬
=

¬

(4.12)=
¬

(4.34)=
¬

¬

(4.12)=
¬

¬

For Equation (4.36):
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¬ (4.8)=
¬

¬

¬

(4.33)=
¬ ¬

For Equation (4.37):

¬ (4.7)=
¬

¬ ¬

(4.4)=
¬

¬

For Equation (4.38):

¬ (4.8)=
¬

¬

¬

(4.35)=
¬¬

For Equation (4.39):

¬ (4.7)=
¬

¬¬

(4.34)=
¬

¬

For Equation (4.40):

=

(4.16)=
h
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Appendix C

LOv-Calculus : A Graphical
Language for Photon-Preserving

Linear Optical Circuits

C.1 Useful Consequences of the Axioms
To prove Equation (5.19), we have:

θ1
ϕ1 θ2 (5.8)(5.3)(5.2)=

θ1

0

0 0

θ2

0

ϕ1

(5.18)= 0

0

α1

0

0

β1

0 0

β2

β3

0

(5.2)(5.3)(5.8)=
β1 α1 β2

β3

To prove Equation (5.20), we have:

θ1 θ2 (5.2)= θ1
0 θ2

(5.19)=
β1 α1 β2

β3

(5.19)=
0 0θ1+θ2
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(5.3)(5.2)= θ1+θ2

To prove Equation (5.23), we have (cf. Proposition 3.21):

¬ ¬ (5.8)(5.5)=
0

¬ ¬

0

(5.4)=
0

¬ ¬

0

¬

¬¬

¬

(5.7)=
0

¬ ¬

0¬¬

¬

(5.7)=
0

¬

0¬¬

¬

(5.5)=
0

¬

0¬¬

¬

(5.4)=
0 0

(5.5)(5.8)=

Equation (5.24) is a direct consequence of Equations (5.1) and (5.15).
To prove Equation (5.21), we have:

θ
ϕ

ϕ

(5.8)(5.3)=

0

0

0 0

θ

ϕ

ϕ

(5.18)= 0

0

α2

0

0

β2

0 0

β4

β5

0

(5.18)=

0

0

0 0

θ

ϕ

ϕ

(5.3)(5.8)= θ
ϕ

ϕ
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To prove Equation (5.22), we have:

θ

θ

(5.5)(5.23)=
¬

θ

θ
¬ ¬ ¬

(5.17)= θ

¬¬

Equation (5.25) is a direct consequence of Equations (5.9) and (5.10).
Equation (5.26) is a direct consequence of Equations (5.12) and (5.13).
Equation (5.27) is a direct consequence of Equations (5.10), (5.11), (5.17) and (5.25).
Equation (5.28) is a direct consequence of Equations (5.13), (5.14), (5.17) and (5.26).
To prove Equation (5.29), we have:

π
2 (5.17)=

¬¬

π
2

π
2

(5.2)(5.1)=
¬¬

π
2

π
2

−π2

−π2
π
2

π
2

=
¬¬ π

2

π
2¬

¬

(5.16)(5.24)=
¬¬ π

2

π
2¬

¬

(5.23)=
¬ π

2

π
2¬

¬

¬¬

¬

(5.4)(5.5)=
¬ π

2

π
2¬

(5.16)(5.24)=
π
2

π
2

To prove Equation (5.30), we have:

θ (5.2)(5.1)(5.29)=
π
2

−π2

−π2θ

(5.20)(5.20)(5.21)=
π
2

−π2

−π2 θ
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(5.29)(5.1)(5.2)= θ

Equation (5.31) is proved at the beginning of Appendix A.1.1 as Equation (3.17). The derivation only
uses Equations (3.5), (3.8) and (3.11), which correspond respectively to Equations (5.4), (5.5) and (5.23).

Equation (5.32) is a direct consequence of Equations (5.17), (5.30) and (5.31).
To prove Equation (5.33), we have:

θ

¬

¬
(5.17)=

¬

¬

¬¬
θ

θ

(5.23)=
¬

¬
θ

θ

(5.23)=
¬

¬ ¬¬
θ

θ

(5.32)= θ

¬

¬

To prove Equation (5.34), we have:

¬
θ

(5.8)(5.10)(5.22)= θ

00

¬

¬¬

(5.25)(5.23)= θ

00

¬

¬¬¬

¬ ¬

(5.4)= θ

00 ¬

¬

(5.30)= θ

0 0¬

¬

(5.31)(5.4)= θ

0 0

¬

¬ ¬ ¬

¬¬

(5.23)(5.26)= θ

0 0

¬

¬ ¬

(5.22)(5.10)(5.8)= ¬
θ
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Proof of Equation (5.35). To prove Equation (5.35), we need the following auxiliary equations, which
are consequences of Equations (5.4), (5.5), (5.6) and (5.7):

¬

¬
=

¬

¬
(C.1)

¬ ¬
=

¬

¬
(C.2)

= (C.3)

= (C.4)

= (C.5)

= (C.6)

¬

¬

=

¬

¬

¬

¬
(C.7)

¬

¬

=
¬

¬

¬

¬

(C.8)

Equations (C.3) and (C.4) have already been proved as Equations (A.3) and (A.2) respectively (note
that Equations (5.4), (5.5), (5.6), (5.7) and (5.23) correspond to Equations (3.5), (3.8), (3.9), (3.10) and
(3.11) of the PBS-calculus). Equations (C.1) and (C.2) are direct consequences of Equations (5.4) and
(5.23).

To prove Equation (C.5), we have:

(5.5)=

(5.6)=
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=

to prove Equation (C.6), we have:

(C.3)=

(C.4)=

=

(C.5)=

and to prove Equation (C.7), we have

¬

¬

(5.23)=

¬

¬

¬

¬

(C.1)=

¬

¬

¬

¬

(C.6)=

¬

¬

¬

¬

=

¬

¬

¬

¬
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(C.2)=
¬

¬

¬

¬

=

¬

¬

¬

¬

=

¬

¬

¬

¬

The last step is by mere deformation of the circuit, by exchanging the two PBS. To prove Equation
(C.8), we have:

¬

¬

¬

¬

(C.7)=
¬

¬

¬

¬

¬

¬

(5.23)=

¬

¬

Now we can prove Equation (5.35):

θ

θ

(5.17)(5.32)=

¬¬

¬¬
θ

θ

θ

θ

(C.7)=

¬

¬ ¬

¬

¬

¬

θ

θ

θ

θ

(C.8)=

¬

¬

¬

¬

¬

¬

¬

¬

θ

θ

θ

θ
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(5.34)(5.23)=

¬

¬

¬

¬

θ

θ

θ

θ

(5.17)(5.32)=

θ

θ

=

θ

θ

(5.31)=
θ

θ

C.2 Derivations of the Ancillary Equations of the Proof of Lemma
5.40

To prove Equation (5.67), we have:

¬0

ϕ (5.9)=
¬

ϕ

0 ϕ

(5.16)(5.24)=
¬0 ϕ

ϕ

To prove Equation (5.68), we have:

¬0

θ (5.10)=
¬0

θ

θ

(5.22)=
¬0

θ

¬ ¬

(5.5)(5.23)=
¬0

θ

To prove Equation (5.69), we have:

¬0

¬0

=

0

0

¬

¬
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(5.11)=

0

0

¬

¬

(C.6)=

0

0

¬

¬

=

0

0 ¬

¬

(5.31)=
¬0

¬0

To prove Equation (5.70), we have:

¬0

¬0

θ

=

0

θ

0

¬

¬

(5.27)=

0
θ

θ

0

¬

¬

(5.35)=

0
θ

θ

¬

¬

0

(5.33)=

0
θ

θ

0

¬

¬

=

0
θ

θ

0 ¬

¬

Equation (5.71) is by mere deformation.
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Appendix C. LOv-Calculus : A Graphical Language for Photon-Preserving Linear Optical Circuits

C.3 Equality of Unitary Transformations on a Subspace
In this section we show that if two unitary maps coincide on some subspaces then they are equal up to
unitaries on the orthogonal subspaces:

Lemma C.36. Let H be a Hilbert space, U,U ′ : H → H be two unitary maps, and let H = Hin
0 ⊕ Hin

1
and H = Hout

0 ⊕ Hout
1 be two decompositions of H into orthogonal subspaces. Given any subspace H′

of H, we denote by πH′ : H → H′ the orthogonal projector on H′ and by ιH′ : H′ → H the canonical
injection. If πHout

0
◦ U ◦ ιHin

0
= πHout

0
◦ U ′ ◦ ιHin

0
, then there exists two unitary maps Qin : Hin

1 → Hin
1 and

Qout : Hout
1 → Hout

1 such that U ′ = (I ⊕Qout) ◦ U ◦ (I ⊕Qin).

Proof. We denote U0 := U ◦ ιHin
0
, U00 := πHout

0
◦ U ◦ ιHin

0
and U01 := πHout

1
◦ U ◦ ιHin

0
. We also de-

fine analogous notations for U ′. Note that U0 and U ′0 are isometries. For any v, v′ ∈ Hin
0 , one has

〈v|v′〉 = 〈U0(v)|U0(v′)〉 = 〈U00(v)|U00(v′)〉 + 〈U01(v)|U01(v′)〉. Similarly, 〈v|v′〉 = 〈U ′00(v)|U ′00(v′)〉 +
〈U ′01(v)|U ′01(v′)〉. Since U00 = U ′00, this implies that

∀v, v′ ∈ Hin
0 , 〈U01(v)|U01(v′)〉 = 〈U ′01(v)|U ′01(v′)〉 . (C.9)

Let v1, ..., vd ∈ Hin
0 such that U01(v1), ..., U01(vd) is an orthonormal basis of the image U01(Hin

0 ) of U01.
By (C.9), U ′01(v1), ..., U ′01(vd) is an orthonormal basis of U ′01(Hin

0 ). Let Qout : Hout
1 → Hout

1 be any unitary
map such that ∀i ∈ {1, ..., d}, Qout(U01(vi)) = U ′01(v1). For any v ∈ Hin

0 , there exist λ1, ..., λd ∈ C such
that U01(v) =

∑d
i=1 λiU01(vi). Then by (C.9), ‖U ′01(v)−

∑d
i=1 λiU

′
01(vi)‖ = ‖U01(v)−

∑d
i=1 λiU01(vi)‖ =

0, so that U ′01(v) =
∑d
i=1 λiU

′
01(vi). Hence, Qout(U01(v)) = U ′01(v). Thus, U ′01 = Qout ◦ U01. Since

U0 = U00 + U01 and U ′0 = U ′00 + U ′01, this implies that U ′0 = (I ⊕Qout) ◦ U0.
In other words ∀v ∈ Hin

0 , U
′(v) = (I ⊕ Qout) ◦ U(v). Hence, U ′(Hin

0 ) = (I ⊕ Qout) ◦ U(Hin
0 ), so

that since Hin
0 and Hin

1 are the orthogonal complement of each other and U,U ′ are unitary, we also
have U ′(Hin

1 ) = (I ⊕ Qout) ◦ U(Hin
1 ) (which is the orthogonal complement of U ′(Hin

0 )). Let w1, ..., wk
be an orthonormal basis of Hin

1 , and for every i ∈ {1, ..., k}, let w′i := U ′
† ◦ (I ⊕ Qout) ◦ U(wi). The

fact that U ′(Hin
1 ) = (I ⊕ Qout) ◦ U(Hin

1 ) implies that w′1, ..., w′k is also an orthonormal basis of Hin
1 .

Let Qin : Hin
1 → Hin

1 be the unique unitary map such that for all i ∈ {1, ..., k}, Qin(w′i) = wi. Then
U ′ = (I ⊕Qout) ◦ U ◦ (I ⊕Qin), as desired.
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Appendix D

A Complete Equational Theory for
Quantum Circuits

D.1 Proofs of Equations (6.8) to (6.19)
Proof of Equation (6.8):

(6.e)=

(6.g)=

(6.e)=

Proof of Equation (6.9):

H

H (6.a)=
H

H

HH

(6.m)=
H

H P (π2 ) P (−π2 )

P (π2 )

(6.6)=
H

H P (π2 )

P (−π2 )P (π2 )

(6.m)=
H

H

H H

(6.a)=
H

H
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Note that the second use of Equation (6.m) relies on the fact that is defined as , and uses
a few topological rules.

Proof of Equation (6.7):

RX(θ) (6.a)=
H HP (θ)

H H

-θ/2

(6.9)=
H HP (θ)

H H

-θ/2

(6.6)=
H H

P (θ)H H

-θ/2

(6.9)=
H H

P (θ)H H

-θ/2

(6.a)=
RX(θ)

.

Proof of Equation (6.10):

X X
(6.d)= P (0)X X

(6.l)= P (0)
0

(6.b)(6.d)=

Proof of Equation (6.11):

(6.8)=

(6.g)=

=

=
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D.1. Proofs of Equations (6.8) to (6.19)

Proof of Equation (6.12):

X

(6.a)(6.2)=
H HZ

H H

(6.9)(6.1)=
P (π)H H

H H

(6.i)(6.9)=
P (π)H H

H H

(6.a)(6.2)=
X

Proof of Equation (6.13):

Z Z
(6.2)(6.a)= H H H HXX

(6.a)= H HXX

(6.10)= H H

(6.a)=

Proof of Equation (6.14):

=

(6.8)(6.g)=

(6.e)=

=

Proof of Equation (6.15):

243



Appendix D. A Complete Equational Theory for Quantum Circuits

Z

(6.2)(6.a)=
XH H

H H

(6.9)=
XH H

H H

(6.f)=
XH H

H HX

(6.9)=
XH H

H HX

(6.2)(6.a)=
Z

Z

Proof of Equation (6.16):

RX(θ)

(6.a)(6.3)=
H HP (θ)

-θ/2
H H

(6.9)=
H HP (θ)

H H
-θ/2

(6.i)=
H HP (θ)

H H
-θ/2

(6.9)=
H HP (θ)

H H
-θ/2

(6.a)(6.3)=
RX(θ)

Proof of Equation (6.17):

RX(0)
(6.3)= H HP (0)

0

(6.b)(6.d)= H H

(6.a)=

Proof of Equation (6.18):

RX(θ) RX(θ′)
(6.3)= H HP (θ) H HP (θ′)

-θ/2 -θ′/2
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(6.a)= H P (θ) HP (θ′)

-θ′/2-θ/2

(6.c)(6.k)= H P (θ + θ′) H

- θ+θ′2

(6.3)= RX(θ+θ′)

Proof of Equation (6.19):

HH H

X

H (6.a)=
HH H

X

H

H H H H

(6.9)(6.a)=
X H H H H

(6.m)=
X H HP (π2 ) P (−π2 )

P (π2 )

(6.6)(6.e)=
X H HP (π2 )

P (−π2 )P (π2 )

(6.i)=
X H HP (π2 )

P (−π2 )P (π2 )

(6.13)(6.15)=
X H HP (π2 )

P (−π2 )P (π2 ) Z Z

Z

(6.1)(6.k)(6.13)=
X H H

P (−π2 )

ZP (π2 )

P (π2 )

(6.i)=
X H H

P (−π2 )

ZP (π2 )

P (π2 )

(6.6)(6.i)=
X H H

P (−π2 )

ZP (π2 )

P (π2 )

(6.m)=
X H HZ

H H

(6.1)(6.i)=
X H HZ

H H

(6.2)(6.a)=
X H HX

H H
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(6.10)(6.9)=
H H

H H

(6.a)(6.e)=

It follows that

H (6.e)(6.a)=
HH H

X

D.2 End of the Proof of Lemma 6.61: Satisfying the Conditions
on the Angles

We have prove that we can assume without loss of generality that δ3 ∈ [0, 2π).

If δ4 /∈ [0, 2π), then by Proposition 6.39, we can ensure that it is in [0, 4π), and then if it is in [2π, 4π),
then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)RX(2π)

Lemma 6.65=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

Proposition 6.26=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

Propositions 6.27 and 6.23
and Lemma 6.64=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(-δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

Lemma 6.34,
Propositions 6.23 and 6.26=

RX(δ3)P (δ2)P (δ1)

RX(δ4−2π)

RX(-δ6)P (δ5) P (δ7) P (δ9+π)

P (δ8)
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with δ4 − 2π ∈ [0, 2π). Hence, we can assume additionally that δ4 ∈ [0, 2π).

If δ6 /∈ [0, 2π), then by Proposition 6.39, we can ensure that it is in [0, 4π), and then if it is in [2π, 4π),
then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6−2π)P (δ5) P (δ7) P (δ9)

P (δ8)

RX(2π)

Lemma 6.65=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6−2π)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

Lemma 6.34 and Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6−2π)P (δ5) P (δ7) P (δ9)

P (δ8+π)

with δ6 − 2π ∈ [0, 2π). Hence, we can assume additionally that δ6 ∈ [0, 2π).

If δ3 = 0 but δ2 6= 0, then:

RX(0)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Lemma 6.25=

P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.26=

P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ2)
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Propositions 6.27 and 6.23=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7) P (δ9)

P (δ8)

P (δ2)

Propositions 6.23 and 6.26=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7−δ2) P (δ9)

P (δ8)

P (δ2)

Propositions 6.18, 6.23, 6.26 and 6.27=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7−δ2) P (δ2+δ9)

P (δ8)

Proposition 6.23=

P (δ2+δ5)P (δ1)

RX(δ4)

RX(δ6) P (δ7−δ2) P (δ2+δ9)

P (δ8)

P (0) RX(0)

.

Hence, we can assume additionally that if δ3 = 0 then δ2 = 0.

If δ3 6= 0, and δ4 = π but δ2 6= 0, then:

RX(δ3)P (δ2)P (δ1)

RX(π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23 and Equation (6.28)=

RX(δ3)P (δ2)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 6.26=

RX(δ3)P (δ2)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )P (δ2)

Propositions 6.23 and 6.27=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )P (δ2)

Proposition 6.18=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

P (δ2)X X
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Lemma 6.34=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

P (δ2) XX

Lemmas 6.33 and 6.63=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

P (δ2)X X

Proposition 6.38=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (-π2 )

P (δ2)X

Propositions 6.18 and 6.23=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ2+δ5) P (δ7) P (δ9)

P (δ8)

P (-π2 )

X

Equation (6.28) and Proposition 6.23=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ2+δ5) P (δ7) P (δ9)

P (δ8)RX(π)

Proposition 6.23=

RX(δ3)P (δ1+δ2) RX(δ6)P (δ2+δ5) P (δ7) P (δ9)

P (δ8)RX(π)

P (0)

Hence, we can assume additionally that if δ4 = π then δ2 = 0 (note that by the previous assumption
we already had δ2 = 0 when δ3 = 0).

If δ3 = 0 and δ4 = π, then by assumption, δ2 = 0. If we do not have additionally that δ1 = 0, then:

RX(0)P (0)P (δ1)

RX(π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

P (δ1)

RX(π)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23 and Equation (6.28)=

P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )
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Proposition 6.18=
P (δ1)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Lemma 6.34=
P (δ1)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 6.38 and Lemmas 6.63 and 6.33=
P (δ1)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

X X

Proposition 6.18=

P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Proposition 6.27=

P (δ1)RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)X

P (-π2 )

Propositions 6.23 and 6.26 and Lemma 6.34=

RX(δ6)P (δ5) P (δ7−δ1) P (δ1+δ9)

P (δ8)X

P (-π2 )

Equation (6.28) and Proposition 6.23=

RX(δ6)P (δ5) P (δ7−δ1) P (δ1+δ9)

P (δ8)RX(π)

Proposition 6.23=

RX(δ6)P (δ5) P (δ7−δ1) P (δ1+δ9)

P (δ8)RX(π)

RX(0)P (0)P (0)

Hence, we can assume additionally that if δ3 = 0 and δ4 = π then δ1 = 0.

If δ3 = π but δ1 6= 0, then:

RX(π)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)
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Proposition 6.23 and Equation (6.28)=

XP (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Propositions 6.23, 6.26 and 6.27=

XP (δ2) P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Lemma 6.34=

XP (δ2) P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 6.38,
Lemmas 6.63 and 6.33=

XP (δ2) P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

X X

Proposition 6.18=

XP (δ2)

P (δ1) RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 6.27=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 6.18=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)

P (δ5)

P (δ7) P (δ9)

P (δ8)P (-π2 )

Propositions 6.23, 6.26 and 6.27=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)

P (δ5−δ1)

P (δ7) P (δ9)

P (δ8)P (-π2 )

Proposition 6.18=

XP (δ2)

P (δ1)RX(δ4)

RX(δ6)P (δ5−δ1) P (δ7) P (δ9)

P (δ8)P (-π2 )

Lemmas 6.25 and 6.34
and Proposition 6.23=

XP (δ2)

RX(δ4)

RX(δ6)P (δ5−δ1) P (δ7) P (δ9)

P (δ1+δ8)P (-π2 )
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Equation (6.28) and Proposition 6.23=

P (δ2)

RX(δ4)

RX(δ6)P (δ5−δ1) P (δ7) P (δ9)

P (δ1+δ8)

RX(π)P (0)

Hence, we can assume additionally that if δ3 = π then δ1 = 0.

If δ4 = 0 but (δ1, δ2, δ3) 6= (0, 0, 0), then:

RX(δ3)P (δ2)P (δ1)

RX(0)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

(6.34)=

P (δ2)P (δ1) P (δ7) P (δ9)

P (δ8)

P (β1) RX(β2) P (β3)

P (β0)

Lemma 6.34 and Proposition 6.23=

P (δ2)P (δ1) P (β3+δ7) P (δ9)

P (β0+δ8)

P (β1) RX(β2)

Proposition 6.26=

P (δ2)P (δ1) P (β3+δ7) P (δ9)

P (β0+δ8)

P (β1) RX(β2)P (δ2)

Propositions 6.27 and 6.23=

P (δ1+δ2+β1) P (β3+δ7) P (δ9)

P (β0+δ8)

RX(β2) P (δ2)

Propositions 6.23 and 6.26
and Lemma 6.34=

P (δ1+δ2+β1) P (β3+δ7−δ2) P (δ2+δ9)

P (β0+δ8)

RX(β2)

Proposition 6.23=

P (δ1+δ2+β1) P (β3+δ7−δ2) P (δ2+δ9)

P (β0+δ8)

RX(β2)RX(0)P (0)P (0)

RX(0)

where β0, β1, β2 and β3 satisfy the conditions given in Figure 6.4. In particular, β2 ∈ [0, 2π), so that
the previous assumptions are preserved. This implies that we can assume additionally that if δ4 = 0 then
δ1 = δ2 = δ3 = 0.
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If δ1 /∈ [0, π), then by Proposition 6.39, we can ensure that it is in [0, 2π), and then if it is in [π, 2π),
then, if δ3 6= 0:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)P (δ1−π)

Propositions 6.23, 6.26 and 6.27=

RX(δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)P (δ1−π)

Lemma 6.66=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Proposition 6.27=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Proposition 6.18=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)

P (δ5)

P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Propositions 6.23, 6.26 and 6.27=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)

P (δ5−π)

P (δ7) P (δ9)

P (δ8)

P (δ1−π)

P (π)

Lemmas 6.25 and 6.34
and Proposition 6.23=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)

P (δ5−π)

P (δ7) P (δ9)

P (δ8+π)

P (δ1−π)

Proposition 6.18=

RX(2π−δ3)P (δ2)

RX(δ4)

RX(δ6)P (δ5−π) P (δ7) P (δ9)

P (δ8+π)

P (δ1−π)

with δ1−π ∈ [0, π). Moreover, since δ3 6= 0, one has 2π−δ3 ∈ [0, 2π), so that the previous assumptions
are preserved.

And, still in the case where δ1 ∈ [π, 2π), if δ3 = 0, then by assumption, δ2 = 0, and one has:
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RX(0)P (0)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=
RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)P (δ1−π)

Proposition 6.18=
RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)P (π)

P (δ1−π)

Lemma 6.66=

P (π)

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

Proposition 6.27=

P (π)

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (δ1−π)

Propositions 6.23 and 6.26
and Lemma 6.34=

RX(2π−δ4)

RX(δ6)P (δ5) P (δ7−π) P (δ9+π)

P (δ8)

P (δ1−π)

Proposition 6.23=
RX(2π−δ4)

RX(δ6)P (δ5) P (δ7−π) P (δ9+π)

P (δ8)

RX(0)P (0)P (δ1−π)

with δ1 − π ∈ [0, π).

If δ6 = 0 but δ5 6= 0, then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(0)P (δ5) P (δ7) P (δ9)

P (δ8)
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Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5+δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5+δ7) P (δ9)

P (δ8)

RX(0)P (0)

Hence, we can assume additionally that if δ6 = 0 then δ5 = 0.

If δ6 = π but δ5 6= 0, then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(π)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23 and Equation (6.28)=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

X

P (-π2 )

Lemma 6.34=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

X

P (-π2 )

Proposition 6.38,
Lemmas 6.63 and 6.33=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

P (δ5) P (δ7) P (δ9)

P (δ8)

X

P (-π2 )

X X

Proposition 6.18=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5) P (δ7)

P (δ9)

P (δ8)

X

P (-π2 )

Propositions 6.27, 6.23 and 6.26=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5)P (δ7−δ5)

P (δ9)

P (δ8)

X

P (-π2 )
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Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)P (δ7−δ5)

P (δ9)X

P (-π2 )

Proposition 6.18=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)

P (δ7−δ5) P (δ9)X

P (-π2 )

Equation (6.28) and Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)

P (δ7−δ5) P (δ9)RX(π)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4) P (δ5+δ8)

P (δ7−δ5) P (δ9)RX(π)P (0)

Hence, we can assume additionally that if δ6 = π then δ5 = 0.

If δ2 /∈ [0, π), then by Proposition 6.39, we can ensure that it is in [0, 2π), and then if it is in [π, 2π),
then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

Proposition 6.26=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

Propositions 6.27
and 6.18=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

P (π) XX

Lemma 6.32=

RX(δ3)P (δ2−π)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

P (π) XX
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Lemma 6.66=

RX(δ3)P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

XX

P (π)

RX(2π−δ4)

Lemma 6.32
and Equation (6.10)=

RX(δ3)P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π) P (π)

RX(2π−δ4)

Lemma 6.66=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

RX(2π−δ4)

RX(2π−δ3)

P (π)

Proposition 6.27=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

P (π)

RX(2π−δ4)

RX(2π−δ3)

P (π)

Propositions 6.18,
6.27 and 6.26=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)RX(2π−δ4)

RX(2π−δ3)

P (π)

Lemmas 6.25 and 6.34
and Proposition 6.23=

P (δ2−π)P (δ1) RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8+π)RX(2π−δ4)

RX(2π−δ3)

with δ2 − π ∈ [0, π). Moreover, since δ2 6= 0, by assumption δ3 6= 0 and δ4 6= 0, so that 2π − δ3 and
2π − δ4 are still in [0, 2π) and the previous assumptions are preserved.

If δ5 /∈ [0, π), then by Proposition 6.39, we can ensure that it is in [0, 2π), and then if it is in [π, 2π),
then:

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5) P (δ7) P (δ9)

P (δ8)

Proposition 6.23=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(δ6)P (δ5−π) P (δ7) P (δ9)

P (δ8)

P (π)

Lemma 6.66=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(2π−δ6)P (δ5−π) P (δ7) P (δ9)

P (δ8)P (π)
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Propositions 6.18, 6.23, 6.26 and 6.27=

RX(δ3)P (δ2)P (δ1)

RX(δ4)

RX(2π−δ6)P (δ5−π) P (δ7−π) P (δ9)

P (δ8+π)

with δ5 − π ∈ [0, π). Moreover, since δ5 6= 0, by assumption δ6 6= 0, so that 2π − δ6 ∈ [0, 2π) and the
previous assumptions are preserved.

Finally, by Proposition 6.39 we can put δ7, δ8 and δ9 in [0, 2π) without modifying the other angles.
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Résumé
Dans le modèle usuel de calcul quantique, des opérations sur des données quantiques sont contrôlées de
manière essentiellement classique. Un contrôle lui aussi quantique est cependant possible, mais a été peu
étudié en comparaison. En particulier, il manque au contrôle quantique un formalisme permettant de
l’exprimer de manière simple afin de raisonner efficacement sur des processus l’impliquant.

La première contribution de cette thèse est de poser les fondations d’un cadre formel dédié au con-
trôle quantique, sous la forme d’un langage graphique. Notre principal résultat concernant ce langage
est l’introduction d’une théorie équationnelle complète, c’est à dire d’un ensemble d’équations permet-
tant de transformer un diagramme, par réécriture locale successive, en n’importe quel autre diagramme
représentant le même programme ou processus physique.

Une deuxième contribution est l’application de ce formalisme d’une part au problème de l’optimisation
des ressources dans les processus impliquant un contrôle quantique, et d’autre part à la caractérisation
de l’équivalence observationnelle des canaux de communication quantiques.

La troisième contribution de cette thèse est l’introduction d’un langage pour les circuits optiques
linéaires. Nous l’équipons d’une théorie équationnelle complète, ainsi que d’une forme normale simple,
accessible par un système de réécriture fortement normalisant et confluent.

La dernière contribution de cette thèse, peut-être la plus importante, est l’introduction d’une théorie
équationnelle complète pour le langage des circuits quantiques. Nous nous appuyons pour cela sur une
correspondance entre les circuits quantiques et les circuits optiques, qui nous permet de transférer la
théorie équationnelle déjà obtenue pour les circuits optiques.

Mots-clés: Informatique quantique, Langages graphiques, Contrôle quantique, Optique linéaire, Théories
équationnelles complètes.

Abstract
In the models of quantum computing usually considered, some quantum data is manipulated by

means of operations which are controlled in an essentially classical way. Controlling these operations in a
quantum way is actually possible, but has been much less studied. In particular, quantum control misses
a formalism in which one could represent it in a simple way in order to efficiently reason on processes
involving it.

The first contribution of this thesis is to lay the foundations of a formal framework dedicated to
quantum control, in the form of a graphical language. Our main result about this language is the
introduction of a complete equational theory, that is, a set of equations that makes it possible, by
successive local rewriting, to transform a given diagram into any other diagram representing the same
program or physical process.

A second contribution is to apply this formalism, on the one hand, to the problem of resource opti-
misation of processes involving quantum control, and on the other hand, to the characterisation of the
observational equivalence of quantum communication channels.

A third contribution of this thesis is to introduce a language for linear optical circuits. We equip this
language with a complete equational theory, together with a simple normal form, reachable via a strongly
normalising and confluent rewriting system.

The last contribution of this thesis, maybe the most significant one, is to introduce a complete equa-
tional theory for the language of quantum circuits. We obtain this result by exploiting a correspondence
between quantum circuits and optical circuits, which allows us to transfer the equational theory already
obtained for optical circuits.

Keywords: Quantum computing, Graphical languages, Quantum control, Linear optics, Complete equa-
tional theories.
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