
HAL Id: tel-04213675
https://theses.hal.science/tel-04213675v2

Submitted on 21 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wide and Local Area Wireless Network security based
on physical layer monitoring

Florent Galtier

To cite this version:
Florent Galtier. Wide and Local Area Wireless Network security based on physical layer monitoring.
Cryptography and Security [cs.CR]. Université Paul Sabatier - Toulouse III, 2023. English. �NNT :
2023TOU30017�. �tel-04213675v2�

https://theses.hal.science/tel-04213675v2
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ FÉDÉRALE
TOULOUSE MIDI-PYRÉNÉES

Délivré par :
l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 17/02/2023 par :
Florent Galtier

Sécurité des réseaux sans-fil courte et longue portée basée sur des
mécanismes de monitoring de la couche physique

JURY
Jean-François
LALANDE

Professeur des universités Rapporteur

Samia BOUZEFRANE Professeur des universités Rapporteur, Présidente
Mohamed KAÂNICHE Directeur de recherche Directeur de thèse
Guillaume AURIOL Maître de conférences Co-directeur de thèse
Vincent NICOMETTE Professeur des universités Examinateur
Florent BRUGUIER Maître de conférences Examinateur
Jose LOPES ESTEVES Ingénieur de recherche Examinateur
Gregory BLANC Maître de conférences Examinateur

École doctorale et spécialité :
EDSYS : Informatique 4200018

Unité de Recherche :
Laboratoire d’analyse et d’architecture des systèmes

Directeur(s) de Thèse :
Mohamed KAÂNICHE et Guillaume AURIOL

Rapporteurs :
Jean-François LALANDE et Samia BOUZEFRANE





i

Acknowledgments

I would first like to thank the consecutive directors of the LAAS-CNRS, Liviu
Nicu and Mohamed Kaâniche, for welcoming me during this thesis, and Helene
Waeselynck, current head of the TSF team (Tolérance aux fautes et Sûreté de
Fonctionnement informatique) in which I worked during those three years.

I would then like to express my gratitude towards my different supervisors,
Mohamed Kaâniche, Guillaume Auriol and Vincent Nicomette, for their constant
support, their help during the redaction of articles or of this manuscript, and during
the various experiments that were needed. They brought a lot to me during these
years, be it from a technical or human perspective.

I also want to thank the different examinators for this manuscript and for my
defence, Samia Bouzefrane, Jean-François Lalande, Florent Bruguier, José Lopes
Esteves and Gregory Blanc, for accepting to review my works.

I would also like to thank particularly Pascal Acco for his insights on signal
processing, that helped me a lot from a theoretical point of view in my different
works.

I don’t think I would have been able to make this without Romain Cayre and
Jonathan Roux, who preceeded me in the same team on the topic of the Internet of
Things, and especially Romain, with who I had the privilege to work during most
of my thesis, and whose motivation and ingenuity greatly fueled my own will to
continue working in this field.

Finally, I would like to offer my thanks to all the people that I met in this team
during those three years, and especially the other thesis students and interns, for
all the good times we had, that helped me stay motivated until the end.





Contents

List of Figures v

List of Tables vii

Introduction 1

1 Context and objectives of the thesis 5
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Evolution of network communications: the Internet of Things 5
1.1.2 Wireless networking protocols . . . . . . . . . . . . . . . . . . 7

1.2 IoT communication security . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Security terminology . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Low layers security . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Signal processing prerequisites 17
2.1 Digital modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Complex representation and constellations . . . . . . . . . . . . . . . 19
2.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Pulse-shaping filters and moment of decision . . . . . . . . . . . . . 22
2.5 The case of Orthogonal Frequency Division Multiplexing . . . . . . . 25
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Inter-protocolar pivotal attacks 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Multiprotocol devices . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Single-protocol devices . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Wazabee, diverting Bluetooth chips to attack ZigBee Networks . . . 33
3.3.1 Principles of the attack . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Compatibility conditions . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Frequency Shift Keying emitters . . . . . . . . . . . . . . . . 42
3.4.2 Amplitude Shift Keying emitters . . . . . . . . . . . . . . . . 45
3.4.3 Phase Shift Keying emitters . . . . . . . . . . . . . . . . . . . 45
3.4.4 Compatibility between OFDM and QAM . . . . . . . . . . . 45

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iv Contents

4 Wireless identification - PSD-based fingerprinting 49
4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Choice of the PSD-based fingerprinting . . . . . . . . . . . . 52
4.3 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Detailed description of the approach . . . . . . . . . . . . . . . . . . 54

4.4.1 Fingerprint creation . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 PSDs similarity analysis and clustering . . . . . . . . . . . . 57
4.4.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 First experiment . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Generalisation - second experiment . . . . . . . . . . . . . . . 64
4.5.4 Identical devices . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.5 Performances and Scalability . . . . . . . . . . . . . . . . . . 66

4.6 Extension to dynamic environments . . . . . . . . . . . . . . . . . . 68
4.6.1 Real-time and accuracy improvements . . . . . . . . . . . . . 69
4.6.2 Tool architecture . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Application to mobile telephony . . . . . . . . . . . . . . . . . . . . . 75
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Wireless protocol audit automatization 79
5.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Modulation detection and analysis . . . . . . . . . . . . . . . 81
5.2.2 Protocol grammar inference . . . . . . . . . . . . . . . . . . . 82

5.3 Theoretical components . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Physical Layer Identification . . . . . . . . . . . . . . . . . . 84
5.3.2 Link-layer identification . . . . . . . . . . . . . . . . . . . . . 89

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Core libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Modulation Managers . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Protocol Managers . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.4 Protocol structure analysis . . . . . . . . . . . . . . . . . . . 95

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.1 Validation on known protocols . . . . . . . . . . . . . . . . . 96
5.5.2 Blind estimation of random protocols . . . . . . . . . . . . . 98
5.5.3 Covert channel detection . . . . . . . . . . . . . . . . . . . . 99

5.6 Limitations and discussion . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Conclusion and perspectives 103

Bibliography 107



List of Figures

2.1 Temporal representation of a signal (frequency modulation) . . . . . 18
2.2 Representations of a QPSK modulated signal (ideal) . . . . . . . . . 20
2.3 Complex representation of a QPSK modulated signal (error on the

frequency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Comparison of two 2ASK signals with and without gaussian filter . . 23
2.5 Eye diagram for an ASK with gaussian filter . . . . . . . . . . . . . 24
2.6 Fourier Transform of a door of period 1

10000 seconds . . . . . . . . . . 25

3.1 Representation of a QPSK with semi-sinusoidal pulse-shaping . . . . 34
3.2 Representation of an O-QPSK with semi-sinusoidal pulse-shaping . . 34
3.3 Overlapping of Bluetooth and Zigbee channels . . . . . . . . . . . . 35
3.4 Transition equivalences between a QPSK and a 2FSK . . . . . . . . 43

4.1 Fingerprint creation and cluster computation . . . . . . . . . . . . . 54
4.2 Intrusion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 PSD for two distinct BLE devices (3 PDUs each) . . . . . . . . . . . 56
4.4 First experiment results visualisation - Setup B-1 . . . . . . . . . . . 62
4.5 First experiment results visualisation - Setup B-2 . . . . . . . . . . . 63
4.6 Visualisation of the data from the different BLE devices . . . . . . . 65
4.7 Visualisation of the data from identical ZigBee devices . . . . . . . . 66
4.8 Number of similarity computations estimation . . . . . . . . . . . . 67
4.9 Loopback for dynamic fingerprint updates . . . . . . . . . . . . . . . 69
4.10 Examples of cross-correlations with different filters . . . . . . . . . . 72
4.11 Modular tool architecture . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 The different steps of a full wireless protocol analysis . . . . . . . . . 80
5.2 Architecture of the Physical Layer identification . . . . . . . . . . . . 84
5.3 squelch example (with threshold) . . . . . . . . . . . . . . . . . . . . 85
5.4 Physical layer identification steps for a GFSK with 18 samples per

symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Tool architecture overview . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Results of our approach against hard-coded receivers in GFSK and

2-ASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Allowed and forbidden communication flows . . . . . . . . . . . . . . 99





List of Tables

3.1 Block/PN sequence correspondence table . . . . . . . . . . . . . . . 37
3.2 Correspondence table of PN sequences . . . . . . . . . . . . . . . . . 37
3.3 Reception and transmission primitives assessment results . . . . . . 40

4.1 Parameters of the different experiments . . . . . . . . . . . . . . . . 61
4.2 First experiments - results . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Different devices, BLE - results . . . . . . . . . . . . . . . . . . . . . 64
4.4 Same manufacturer, same model - results . . . . . . . . . . . . . . . 66
4.5 Same manufacturer, same model - BLE results for different numbers

of PDUs per device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Fingerprint creation measured times . . . . . . . . . . . . . . . . . . 68

5.1 Modulation parameters for BLE and ESB . . . . . . . . . . . . . . . 98
5.2 Parameters for the random protocol generation . . . . . . . . . . . . 98
5.3 Results of our approach for randomly generated protocols (without

superposition, SNR=20dB) . . . . . . . . . . . . . . . . . . . . . . . 99





Introduction

The massive addition of connectivity to multiple devices across houses, build-
ings and even companies, changes durably the structure of network environments,
forming an interconnected network of various devices, called the Internet of Things.
Be it for data collection, remote control, coordination, or even to add intelligence
to traditional tools, communication capabilities are progressively embedded in all
items of everyday life. Nowadays, this phenomenon ranges from connected fridges
or lightbulbs for home automation, to vehicular networks or health-related devices,
now able to communicate, often wirelessly, with each other. They form an unusual
type of environment, where everything becomes interconnected with various, het-
erogeneous communication protocols, and their mobility also adds dynamicity to
the environments in which they come and go.

Unfortunately, these devices, especially those for the public, are often developed
without consideration for their security, their manufacturers focusing more on the
addition of new functionalities. This makes wireless networks composed of multiple
of those items all the more difficult to analyse, monitor and protect. Moreover, their
mobility and connectivity can make them prime targets for attackers, as they can be
compromised in a low-security environment, for example at home, from an infected
personal computer, to then attack other, more secure environments in which they
are brought. The wireless nature of these networks also increases the risks, as the
communications become accessible to all in transmission range. As it increases
the attack surface of all networks in which they interconnect, it then becomes a
primordial issue to find new ways to secure connected devices, especially considering
some of their most critical use cases, such as connected healthcare devices. This is
especially true as those devices can also connect to more traditional networks, thus
bringing a possible aditional entry point into otherwise well-protected networks.

Some traditional security measures, such as authentication mechanisms or cryp-
tography, could be applied to such networks, especially when they do not depend on
the communication medium. For example, applying encryption to communications
is important in such networks, due to the ease of implementing passive eavesdrop-
ping attacks. However, some other traditional approaches are incompatible with
the particular nature of wireless networks, and with the fact that the devices often
only embark small microcontrollers having low computational power. For example,
network-based firewalls are hard to adapt to these networks, due to the difficulty of
blocking transmissions, and host-based firewalls would need to only perform light
packet analysis. Furthermore, the heterogeneity of the protocols they use can also
complicate the implementation of security measures. First, different protocols may
use different frequency ranges, sometimes far from each other (as an example, Blue-
tooth uses the 2.4-2.5GHz band, while some small transceivers use 868MHz, or
even 433MHz bands). Because of this, monitoring various protocols may require a
high number of listening equipments, to cover the entirety of the channels they use.



2 Introduction

Then, some of those protocols are proprietary, their specifications not being fully
available, making them harder to audit.

As traditional measures can be insufficient, new measures, adapted to the IoT,
were created. However, most of those solutions are limited to a single protocol’s
characteristics, thus complicating the securing of whole, heterogeneous networks.
Furthermore, limiting the protection, and especially the monitoring of an environ-
ment to measures for the protocols legitimately introduced in it overlook several
risks, such as sensitive data exfiltration via some other protocols. Moreover, those
methods are hard, if not impossible to design for proprietary protocols without pub-
lic specifications. Only a few methods are generic, and they often remain costly, and
need to be deployed on several frequency bands simultaneously. Indeed, it is cur-
rently impossible to monitor precisely all frequency bands with only one equipment,
because of the high sampling rate required to cover all protocols. Some methods
are able to watch wider bands by only registering reception power at a frequency
at a given time, sweeping over the monitored band, but then loose all information
on the data that was sent.

Numerous defense methods focus on the binary data that is transmitted. How-
ever, due to the simplicity of most IoT devices, attacks on the data, especially
impersonation attacks, are easy to perform, and hard to detect. Even worse, this
overlooks completely all threats related to the wireless medium.

Starting from these observations, this PhD was focused on the impact of the
wireless communication medium itself on security. We explored the risks, often
overlooked, of isolation breach between protocols in such environments. Then, we
designed new defensive approaches to counter them, and improve monitoring capa-
bilities by being able to analyse communications without making heavy assumptions
on their content.

This thesis is organized as follows: in the first chapter, we briefly present its
context, defining the wireless networks on which we worked, and the related security
implications. We also present in broad terms the offensive and defensive state of
the art in wireless networks.

Then, after introducing some important signal processing concepts in chapter
2, required to understand the implications of using a wireless medium, we explain
in chapter 3 how some devices can be used to communicate with protocols that
they were not designed to emit or receive. We present a practical example, realized
in common in Romain Cayre, called Wazabee[Cayre 2021b]. This attack allows us
to either receive or emit valid Zigbee frames while using Bluetooth Low Energy
transceivers, now present in most computers or mobile phones. Then, we present
the theory that would allow performing similar attacks with other kinds of protocols.

In chapter 4, we present our first defensive contribution, consisting in a low-cost
fingerprinting approach for wireless emitters[Galtier 2020]. This approach is able,
by receiving enough data with less precision than more costly approaches of the
state of the art, to differentiate devices by detecting imperfections in the frequency
profile of their emissions. This method aims in particular at countering spoofing
attacks, where the attacker takes the place and identity of a legitimate device, that



Introduction 3

are otherwise highly difficult to detect.
We then present our second defensive contribution in chapter 5, an approach to

automatically analyse wideband receptions in order to detect, identify and analyse
all wireless emissions it could contain. This method first identifies the modula-
tion in use and its parameters, then analyses the demodulated binary stream to
infer information about the packet structure. The method presented makes a min-
imal number of assumptions on the emissions, and is easily improvable with new
modulations thanks to a modular structure.

To conclude, after synthesizing the contributions presented in this manuscript,
we present the possible extensions and improvements that could be brought to them.





Chapter 1

Context and objectives of the
thesis

Contents
1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Evolution of network communications: the Internet of Things 5
1.1.2 Wireless networking protocols . . . . . . . . . . . . . . . . . . 7

1.2 IoT communication security . . . . . . . . . . . . . . . . . . . 7
1.2.1 Security terminology . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Low layers security . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . 15

In this chapter, we introduce the general context of this PhD, which mainly
focuses on the security of the wireless communication protocols of the Internet of
Things and especially the security of the lower layers of these protocols. We first
start by describing the evolution of the development of wireless networks in IoT
environments, then we focus on the security challenges raised by this evolution.
After that, we define the security terminology that is used all along this document
before presenting the existing attacks, defences and security challenges related to
the Physical Layer aspect of such communications. We finally motivate the research
work proposed in the thesis and its main contributions.

1.1 General context

1.1.1 Evolution of network communications: the Internet of
Things

In recent years, the development of easy-to-use and easy-to-deploy wireless protocols
has lead to a new phenomenon. Many devices, such as those that were already
connected with each others or with computers by wired links, but also devices that
were originally small appliances, manual tools or even objects that didn’t embed any
electronics, began to embed wirelessly communicating chips, and to interconnect
with each other. By analogy with the original meaning of the word Internet, which
originally referred to a network interconnecting machines, this phenomenon became
known as the Internet of Things.



6 Chapter 1. Context and objectives of the thesis

Nowadays, this idea of embedding communication capabilities into all objects
has lead to interconnecting devices with radically different applications, and crit-
icalities: from connected televisions, or lightbulbs, to alarms or tools, for which
security is a major concern.

Additionally, this allowed for new types of environments, fully integrating such
connected devices. First, they allow for better home automation, with all kinds
of devices and appliances connected to a smartphone or computer, leading to so-
called "smart homes". For example, it is now possible to install connected window
shutters or garage doors, that can be opened or closed remotely. Similarly, some
alarm systems can now also be remotely controlled using connected devices. More
recently, we witnessed the development of voice assistants, also allowing to control
various devices in the house. Moreover, many such devices appear everyday, with
various and sometimes heteroclit usages, spreading in now smart homes: connected
fridges, connected scales, connected flower pots... These devices and their intercon-
nection form complex communication environments, and the forecasts suggest that
the situation will continue to intensify in the next years, with more than 40 billion
devices expected by 2025 [European-Comission 2022].

Then, by applying this automation at a larger scale to buildings to manage
their energy consumption or production, it leads to "smart buildings". Those envi-
ronments include a large amount of heterogeneous devices, for multiple purposes,
from entertainment to physical security, interconnected through users’ phones, com-
puters or gateways. From a security point of view, these environments allow for
easier attacks and harder monitoring, due to the quantity and heterogeneity of the
emitters they contain, but the criticality of such attacks is limited.

Industry is also using such interconnected devices, for remotely-controlled tools,
maintenance or monitoring, for example in a production line. This kind of envi-
ronment, so-called "smart factory", is often more controlled, and contains known
protocols in smaller quantities, at least in a usual operating situation. This gen-
erally makes them easier to monitor, but they are sensitive to people entering the
environment with a device they own, introducing potential new, unmonitored and
vulnerable protocols.

Finally, a growing number of critical environments are also becoming increas-
ingly connected. For example, transportation means, such as cars or planes, now
have multiple short- or long-distance communication capabilities, to offer various
services to the passengers. Another example is the medical field, where hospitals
are also becoming more and more connected, for example to remotely monitor pa-
tients. Given the sensitivity of such environments and the possible consequences
of a compromise, it becomes critical to ensure sufficient security on the connected
devices and communication protocols they use.

To sum up, devices with interconnection capabilities, at various levels of criti-
cality, are emerging and spreading in all kinds of environments, whether at home
or in professional settings. They offer a new potential attack surface, especially
when they are embedded in their most critical applications: in the health domain,
for example with pacemakers, in the transportation domain, such as in smart cars



1.2. IoT communication security 7

or planes, whether during their manufacturing process or their use. It is therefore
necessary to study more in detail the different implications of their omnipresence
on the security of the information systems they communicate with.

1.1.2 Wireless networking protocols

The protocols used by such devices are as numerous as their various uses, if not
more. They range from short-range protocols for communication between small,
local devices and a controller, for example with the well-known Bluetooth or Zigbee
protocols, to long-range protocols for interconnecting devices through a Wide Area
Network, for example with mobile telephony or the LoRa protocol. The specifica-
tions of these protocols are defined by different kinds of entities, such as a group of
standard organizations for mobile telephony, a single dedicated one for Bluetooth,
or individual companies, as is the case for the LoRa or Enhanced ShockBurst pro-
tocols. Some device manufacturers even create their own simple protocol on top of
existing chips.

Moreover, the applicative protocols above can also completely differ from one
object to another, depending on the level of expertise and involvement of the manu-
facturer. Indeed, a large number of connected devices currently sold on the market
are developed by companies that were not originally involved in the software or
networking industries, to add new functionalities to their devices, mainly as selling
arguments. Therefore, a significant proportion of them are not aware of the security
issues involved with embedding such features.

As a consequence, we regularly see the reappearance of old vulnerabilities that
were discovered long before in more standard networks, along with the appear-
ance of whole new vulnerabilities directly linked to the new nature of such devices.
Even worse, the growing number of competing companies implementing connected
functionalities pushes them to add even more features, as fast as possible, thus ne-
glecting even more the security processes that should accompany the development
of their devices.

Thus, due to the heterogeneity, number and lack of security awareness in the
protocols that constitute this Internet of Things, it becomes all the more critical to
investigate the potential attacks that could target it, and the defences that address
them.

1.2 IoT communication security

In the following, we look at the different attacks and defence measures from the
perspective of the Physical, Link, Network and Application Layers of the OSI model.
Indeed, in the devices and protocols that we consider, when other layers are present,
they are rarely specific to the IoT, and use implementations that are independent
of it.

From the Application Layer perspective, as said in the previous section, the
IoT lags significantly behind more traditional networks in terms of experience in



8 Chapter 1. Context and objectives of the thesis

security. We can see manufacturers periodically re-introducing vulnerabilities such
as in house made cryptographical suites.

Let us take two examples of such vulnerabilities, presented in [Newlin 2016]. The
first one concerns the Logitech Unifying protocol. The Logitech Unifying protocol
chooses to XOR a mask generated with state-of-the-art AES with key-presses, but
1) apart from the key, all information entered into the AES block was known because
sent as cleartext in the packets, 2) it could be replayed, thus triggering decryption
with the same output of said AES block, and finally 3) the key-releases were coded
with a sequence of \x00 bytes. Therefore, an attack can wait for a key-release event,
and then inject encrypted key-presses by replaying the same values of the AES
block input as in the key-release, XORing the key to encrypt with the key-release
encrypted part, which, since the key-release is only 0s, was exactly the output
of the AES block. The second example concerns simpler vulnerabilities, already
seen before in more traditional networks, that re-appeared, such as with Microsoft
wireless keyboard protocols [Schroeder 2010]. Originally, this protocol encrypted
key-presses by XORing them with the address of the device, which was obviously
sent as plaintext in the transmissions. This could allow an attacker listening to the
communications to easily compute the mask from the known address, and decrypt
all transmissions.

More generally, the Application Layer of IoT networks is often simple, without
security measures such as encryption implemented, and greatly suffers from the lack
of knowledge and awareness of the manufacturers in information security.

The Network Layer is not widely represented in the IoT world ; indeed, most
protocols are limited to peer-to-peer communications. However, some exceptions
are notable: first, protocols connecting with a core-network, for example linked to
the more traditional "Internet", need to implement this layer. The most obvious
example would be mobile telephony, but we could also cite the 6LoWPAN protocol,
implementing IPv6 over IEEE 802.15.4 links, i.e. the same lower layers as Zigbee.
In this category, the aforementioned core-network often benefits from pre-existing
experience in security, and corresponds more to a traditional network than to the
communications in the scope of this thesis. Then, other protocols can build up
mesh networks, such as Zigbee or Bluetooth Mesh, based on Bluetooth Low Energy.
However, the Network part of these protocols is, to our knowledge, quite light, and
most of the security relies on the lower and upper layers. Indeed, the "mesh" aspect
in these networks is often light for complexity reasons, and is closely intertwined
with the lower-layer protocol. It should however be noted that, in the case of
Bluetooth Mesh, encryption is always active, which is not the case in more regular
Bluetooth Low Energy communications. To sum up, the security of the Network
Layer in the IoT is either closely linked to the security of a more traditional "core-
network", or heavily dependent on the lower layers.

Most of the specifications of the short-distance IoT protocols is focused on the
two lower layers, namely the Physical and Link Layers. As such, they include a
significant part of the innovative features and potential additional attack surface
that comes with the IoT. As we will develop further in the following, the Link Layer



1.2. IoT communication security 9

in particular can sometimes suffer from similar issues as the Application Layer, due
to the lack of experience of people using the protocols. One glaring example is
the fact that, despite the presence of cryptographical suites in the Bluetooth Low
Energy specification, and its now wide use as it is integrated in most computers
and phones nowadays, most applications of the protocol still do not activate the
encryption on their communications, or only use a weak one[Ryan 2013, Zuo 2019].
Let us note that this kind of vulnerability is inherent to the implementations and
integrations of the protocols, rarely to the protocols themselves when they are
not developed specifically for the devices by their manufacturer. However, some
protocols can be weak by themselves, at different levels. Some can be limited to the
simplest functionalities needed for communication, and hence not include security
measures, while some others are more mature from the security point of view,
containing more complex and hidden vulnerabilities. For example, we encountered
and experimented on small devices, such as connected outlets or doorbells, using
protocols that only carried commands in cleartext, without any form of security.

Finally, the specificity of the wireless protocols is its communication medium:
all communications are transported via electromagnetic waves, visible by anything
present in their way. This obviously eases the insertion of a potential attacker in the
communication, when they would have had to physically access cables to measure
the signal passing inside with wired communications. Moreover, the interferences
caused by such an attacker who would just listen to the communications can be
highly difficult to measure, rendering passive attacks nearly, if not completely, im-
possible to detect. This new medium also allows access to an external attacker, by
introducing a malicious emitter between the actors of a legitimate communication.
Additionally, the wireless nature of the transmissions can also bring entirely new
phenomena, due to the reflections of the waves on obstacles, interferences between
electronic components and antennas, or also the directionality of some transmis-
sions.

In this thesis, we focus more precisely on these two layers, which we refer to as
the "low layers" in the following.

Before entering into details of the security of these low layers, we first define in
the next subsection the security terminology that we adopt in this manuscript.

1.2.1 Security terminology

For the following, we need to define the security related vocabulary used in ourc
context. To do so, we define its different concepts according to [Laprie 1995], then
updated in [Avizienis 2004], first from the wider point of view of dependability, then
focusing on security.

1.2.1.1 Dependability

According to the applications of the system, different facets of dependability may
be highlighted. Thus, dependability can be broken down to different but comple-



10 Chapter 1. Context and objectives of the thesis

mentary properties:

• availability: readiness for usage

• reliability: service continuity

• safety: non-occurrence of catastrophic consequences for the environment

• confidentiality: non-occurrence of unauthorized disclosure of information

• integrity: non-occurrence of inadequate information alterations

• maintainability: ability to conduct repairs and introduce evolutions

• security: the combination of confidentiality, integrity and availability

A failure of the system occurs when the delivered service deviates from imple-
menting the system function, that is, from what the system is intended for. An
error is that part of the system state which may lead to a failure: an error affect-
ing the service is an indication of a failure occurring of which has occurred. The
adjudged or hypothesized cause of an error is a fault.

Development of a dependable system requires the combined use of a set of
methods that can be listed as follows:

• fault prevention: how to prevent the occurrence or introduction of faults

• fault tolerance: how to provide a service capable of implementing the system
function despite faults

• fault removal: how to reduce the presence (number, severity) of faults

• fault forecasting: how to estimate the presence, creation and consequences of
faults

1.2.1.2 Security

Security has for goal to protect a system against faults defined as intentionally harm-
ful. In the following, we will apply the dependability attributes defined previously
to the context of security.

The attributes of dependability can be specialized to security as follows:

• Availability: prevent unwanted information withholding

• Confidentiality: prevent unwanted information disclosure

• Integrity: prevent unwanted information modifications

The MAFTIA project [Powell 2001] addressed specifically the case of faults due
to human interaction for the security. In the following, we will also mainly focus
on this class of faults, and more precisely on the case of intrusions. Intrusions can



1.2. IoT communication security 11

be defined as an external and harmful fault, resulting from an attack managing to
exploit a vulnerability. Those vulnerabilities can be intentional, and thus participate
in the intrusion process, or accidental. The vulnerabilities, be them intentional or
not, contribute to the potential weakness of the system, and are thus important to
monitor to prevent malicious interactions.

Moreover, there can also be unintentional "attacks", external faults due to a
wrong usage of the system by a user. However, those faults, that can be critical
for the system, will fall outside the scope of this thesis, because often depending on
the user’s knowledge and formation.

The methods to make a system dependable can also be specialized for security
as follows:

• fault prevention: fault prevention can be split in preventing attacks, vul-
nerabilities or intrusions as a whole. Preventing attacks means dissuading
malicious users to attack the system, for example by law. Preventing vul-
nerabilities amounts to an introduction of security checks during the design
and development processes, for example via formal methods or user security
awareness. Preventing intrusions can be done through authentication meth-
ods, authorization, firewalls or by preventing attacks and vulnerabilities.

• fault tolerance: in our case, we focus primarily on intrusion tolerance. It
consists in building a system able to detect an intrusion, repair itself and
reconfigure while keeping the service available and/or protecting the data in-
tegrity during an attack. We could also mention redundancy or diversification
methods, which can ensure a certain level of security even when part of the
components are compromised.

• fault removal: in the case of intrusions, only vulnerability elimination remains
pertinent. Indeed, one cannot completely prevent the presence of attacks, and
if a vulnerability exists, an intrusion could always exploit it. However, com-
pletely eliminating all possible faults from a system remains a difficult, if not
impossible task depending on its complexity. Thus, the designers can try to
reduce the risks by applying, for example, verification, diagnosis or correc-
tion to their system. Verification refers to checking if the system satisfies
desired properties, diagnosis searches for the faults preventing from satisfy-
ing them, and correction then applies the necessary measures to satisfy the
missing properties.

• fault forecasting: finally, fault forecasting contains a set of methods to identify
vulnerabilities, attacks, potential intrusions on a system and measure the
impact of errors on the security attributes of the system, while reporting
those identifications.

In order to design methods for more dependable systems, we need to understand
two elements for the system to protect:



12 Chapter 1. Context and objectives of the thesis

• The attack model: defining the potential threats, to identify the system’s
vulnerabilities in order to propose appropriate solutions to prevent, tolerate,
remove or forecast malicious activities

• The attack surface: defining the attack vectors, i.e. the external access points
that could contain vulnerabilities potentially exploitable by an attacker to
perform an intrusion

1.2.2 Low layers security

1.2.2.1 Link Layer security

As explained above, the two layers that bring the most novelty and potential for
attacks and defence measures, compared to more traditional wired networks in the
IoT world and in wireless communications in general, are the Physical and Link
Layers of the OSI model.

Concerning the Link Layer only, there are several classes of vulnerabilities in
wireless communications. A first but important one, from the confidentiality point
of view, is the fact that many communications using short-distance wireless pro-
tocols do not use encryption. This may be to simplify the development of small
connected objects, or because of a lack of knowledge about the use or impact of
encryption on communications, with some manufacturers not understanding the
risk of eavesdropping, and others believing that encryption will decrease the speed
and/or availability of the link. However, as the wireless communication medium
is easily accessible for anyone with a compatible receiver, this lack of data pro-
tection allows full readability of everything sent by the device everywhere around
it. Despite its criticality, especially in a smart factory context, this vulnerability
is unfortunately widely spread, with some protocols leaving manufacturers free to
use encryption or not, and others not implementing Link Layer encryption, leaving
at least the metadata open for all to see. Let us note, however, that more mature
protocols such as those used for mobile telephony have been using strong encryption
since many years already.

Similarly, some communications, especially smaller-scale ones, do not imple-
ment authentication mechanisms. This is often the case for simple communicating
devices, but it is also possible, even in Bluetooth Low Energy, to only use the Link
Layer address of a device as an identification feature, or even accept connections
from any device. This leads to other vulnerabilities where any attacker, in the
direct vicinity of an object implementing such protocol, could connect to a device
as would a legitimate device, leading for example to a potential malicious takeover
of the device. The example of BLE is even more significant because most devices
on which one can connect broadcast beacon-like packets, and, often not being able
to accept more than one connection, completely stop emitting them when another
device connects to them, leading to a disappearance of the object and potential
Denial of Service just by an attacker establishing connections.



1.2. IoT communication security 13

To allow authentication, several methods exist. First, it is possible to use pre-
shared keys, for example with WiFi networks with a password. They can also be
embedded into the hardware, as with mobile telephony where a key specific to a user
is embedded in the SIM card, reducing the risk of a potential disclosure of the key.
The vulnerabilities of these methods are the same as for more traditional networks,
an attacker gaining access to a terminal being potentially able to extract the pre-
shared key from it, with varying levels of difficulty depending on how the key is
stored. Then, some protocols implement pairing procedures, allowing two devices
to exchange keys for later authentication and link encryption. A usual example of
this is the pairing between Bluetooth devices, where each device can ask for a code
displayed on the other one to check the user establishing the pairing has access to
both. However, in Bluetooth Low Energy, there also exist a pairing method called
"Just-Works". When, usually, the two devices would exchange temporary keys that
allow them to generate long term keys for later communications, "Just-Works" use
a hard-coded value of 0 instead. Sadly, as shown by Zuo et al. in [Zuo 2019],
where they built a tool to crawl free IoT apps on the Google Play Store, 61.3% of
the 18 000 applications they tested were using this method, showing its spread in
the IoT industry. Even if such weak pairing methods could allow protecting the
communications from a basic passive eavesdropping, it offers no security overall.

These kinds of vulnerabilities also make it easier to deploy Man-in-The-Middle
attacks, in which an attacker stands between two communicating devices, and com-
municates with each of them by impersonating the other, allowing the attacker to
either transparently forward packets, drop some or even modify some data. Fur-
thermore, data integrity in the IoT protocols is often only based on the use of Cyclic
Redundancy Checks (CRC), the algorithm being open in most cases, thus not pro-
viding any protection against message tampering. Their combination can lead to
vulnerabilities such as BTLEJuice[Cauquil 2016], where the attacker, having only
two BLE-compatible emitters, can 1) connect to some device connectable with one
of them, which then stops sending its beacon-like packets, 2) expose the second one
with the same address as the device to which the first one is connected, and start
sending the same beacons, while 3) identifying the services offered by the device,
to finally 4) wait for a connection by another device, showing it a clone of the first
one, to run a full Man-in-The-Middle.

1.2.2.2 Physical Layer security

The Physical Layer can also present vulnerabilities, inherent to the wireless na-
ture of the communications. Firstly, as said before, the communication medium is
available to everyone within transmission range, allowing for easier eavesdropping.
This characteristic also allows an attacker to directly interfere with the transmitted
signal, the best known example being jamming[Xu 2005]. This technique consists
in sending another signal during a legitimate transmission to prevent the legitimate
recipient from receiving the correct data. It ranges from the simpler continuous
jamming[Shintani 2020], where an attacker completely floods the channels used



14 Chapter 1. Context and objectives of the thesis

by the targeted protocol with a continuous and high-strength signal, to reactive
jamming[Nguyen 2014, Wilhelm 2011], where the jammer remains silent until it
recognizes a specific pattern, triggering the interfering signal. This type of attack is
easy to detect when used naively, by monitoring the received power on the channel
and suspiciously high bit-error-rates. Some works also make use of the difference in
error-rates between the jammed sections and the rest of the packet to detect reac-
tive jamming [Spuhler 2014]. However, they are hard to prevent, as the detection
occurs after the attack was already carried. In addition to detecting and stopping
the source of the attack, the ways to resist jamming would be either to change
channel, for example with channel hopping protocols like Bluetooth or protocols
that jump on loss of connection like Logitech Unifying, or to increase transmis-
sion power. However, this last measure can be energy-consuming and results in a
tug-of-war with the attacker to know who transmits the loudest. It would also be
possible to correct the errors by isolating the jamming signal and subtracting it or
by implementing error-correction codes, though these measures are dependent on
the predictability of the signal or the amount of errors it generates, respectively.

A more complex variant of this attack, called overshadowing [Wilhelm 2012],
consists in replacing the original signal with one chosen by the attacker. This
method could also be detected by monitoring the received power in search for an
abnormal increase, but if the attack is skilfully carried on, the amount of incorrectly
received packets will not increase.

Another threat, this time not directly over existing legitimate communications,
is the use of the wireless medium to exfiltrate data [Okhravi 2010]. This type of
attack, called a covert channel, requires monitoring the communication medium to
detect suspicious communications. However, this task is not trivial, especially when
the attacker uses frequencies that are not used by common protocols, or at least
the ones used in the considered environment.

1.2.2.3 Combined lower layers

Finally, it is also important to consider the combination of the two layers, or the
"low layers" as a whole, from a security point of view. Indeed, some threats or
defences exploit jointly relevant features of the physical communication medium
and the Link Layer characteristics of the protocol in use. A glaring example of
this is the recent vulnerability Injectable[Cayre 2021a]: in Bluetooth Low Energy, a
connection is divided into connection events, where one of the devices must transmit
at a precise timing. However, to cope with the potential inaccuracy of the clocks
of the two communicating devices, an error margin was introduced around this
timing, called "window widening". We then used this margin to transmit before the
legitimate device while impersonating it. This attack can successfully inject any
kind of packets into an existing communication, if we either sent our entire packet
before the legitimate one, or started sending before it, and the interference did not
introduce errors into our transmission.



1.3. Contributions of the thesis 15

1.3 Contributions of the thesis

In this thesis, we mainly focus on the security of the two lower layers of wireless com-
munications in their entirety. We first study them from an offensive point of view,
by exposing threats of pivoting attacks based on the similarity between low layers,
that are often disregarded. Then, we focus more on the defensive aspects related
to these layers, by proposing novel methods to monitor and analyse the wireless
communication medium from a low-layer perspective. Three main contributions
can be highlighted.

First, we explore a new attack model that comes from a class of methods known
in the signal processing community as Cross Technology Communications. This
class covers ways to communicate with a receiver designed for a protocol A, using
an emitter designed to transmit according to a different protocol B. As we will show,
joint research in both this domain and the security of wireless communication has
been minimal, and until recently no real methods that do not require cooperation
from the different parties, and thus appliable in an offensive context, have been
published. In chapter 3, we present joint work with Romain Cayre that led to the
design of Wazabee, a pivotal attack based on Bluetooth Low Energy chips to attack
Zigbee networks, also presented in his PhD thesis[Cayre 2022]. Furthermore, we
present some thoughts and possible future works on the possibility of implementing
similar attacks in other protocol pairs, to emphasize the need to consider such
threats in the attack surface of a wireless network.

Then, in chapter 4, we propose a novel method for identifying communicating
emitters based on the fingerprinting of Physical Layer emissions of each device. This
method, which is designed to be less expensive than most from the state-of-the-art
ones, allows for a better monitoring of a wireless network against potential identity
theft, which is an omnipresent threat in the IoT and wireless communications in
general.

Finally, in chapter 5, and to complement the previous method, we introduce
a new approach to automatically identify emissions in a wideband reception, and
recover the modulation used with its parameters, along with a maximum amount of
parameters on the Link Layer protocol above it. This allows for a full monitoring of
a wide frequency band, and to detect potential anomalies, such as covert channels
or pivotal attacks. Furthermore, this approach also helps to audit unknown wireless
networks, automatically retrieving most of the information needed by an expert to
properly analyse transmissions without having to manually analyze the physical
emissions and to implement protocol-specific approaches.





Chapter 2

Signal processing prerequisites

Contents
2.1 Digital modulations . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Complex representation and constellations . . . . . . . . . . 19
2.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Pulse-shaping filters and moment of decision . . . . . . . . . 22
2.5 The case of Orthogonal Frequency Division Multiplexing . 25
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

In this chapter, we introduce some background information on the basics of
signal processing that are necessary for a good understanding of this manuscript.
We first explain the general principles behind digital modulations, and their most
usual variants. Then, we detail the complex representation of a signal, essential
to better understand the usual representation of numerous modulations. Finally,
we briefly explain the issue of spectral efficiency, and the usual ways to address
it in signal processing, as well as the methods to demodulate the signal at the
right moment, based on the signal’s eye-diagram, which we will use later in the
manuscript.

Additionally, we also introduce a now widespread communication scheme, used
notably in WiFi or 5G networks: the Orthogonal Frequency Division Multiplexing,
or OFDM. This particular scheme embeds more information directly in the fre-
quential domain, which has consequences on the methods to analyse it, and limits
the use of traditional signal processing methods to treat it. Let us note that the
main contributions proposed in this manuscript are not designed to fit the specific
constraints of OFDM, notably because the connected objects we considered in this
PhD do not support this modulation scheme. However, we chose to describe the
OFDM scheme in this chapter because, as we discuss in the following, our different
contributions can still be adapted to support, to a certain extent, OFDM-based
protocols.

2.1 Digital modulations

A signal is often represented as a function of time, as in the example of figure 2.1.
This type of signal is in general of the form:

s(t) = A ∗ cos(2 ∗ π ∗ f ∗ t + φ) (2.1)



18 Chapter 2. Signal processing prerequisites

280 300 320 340 360 380
time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

vo
lta

ge

Figure 2.1: Temporal representation of a signal (frequency modulation)
2

with s(t) the signal at time t, A its amplitude, f its frequency and φ a phase offset,
which can be assimilated to a time delay.

The signal can then be modulated by coding information on one of its char-
acteristics, for example by varying its amplitude depending on the data to send.
Throughout this manuscript, we focus exclusively on digital modulations, meaning
that binary information is modulated over the signal. These are most of the time
only based on three main modulation schemes:

• Amplitude Shift Keying, or ASK : the information is coded over the
signal’s amplitude, hence resulting in the following formula :
sASK(t) = m(t) ∗ cos(2 ∗ π ∗ f ∗ t + φ), with m(t) the modulant, i.e. signal
containing the information to modulate. An example of such modulation is
shown in figure 2.4.

• Frequency Shift Keying, of FSK : the information is coded over shifts
in the signal’s frequency : sF SK(t) = A ∗ cos

(
2 ∗ π ∗ f(t) ∗ t + φ

)
. The

example of figure 2.1 is a frequency modulation, the frequency increasing
when modulating a "1" and decreasing when modulating a "0".

• Phase Shift Keying, or PSK : the information is coded over shifts in the



2.2. Complex representation and constellations 19

phase offset : sP SK(t) = A ∗ cos
(
2 ∗ π ∗ f ∗ t + φ(t)

)
. An example of such

modulation is shown in figure 2.2.

A digital modulation can be built on one of those schemes, such as with the
2FSK, modulating a "0" with a frequency and a "1" with another, use more possible
symbols to code more bits, such as with the Quadrature Phase Shift Keying, or
QPSK, using four different phase offsets to code either "00", "01", "10" or "11", or
even combine several of them, such as with the Quadrature Amplitude Modulations
family, or QAM, combining amplitude and phase modulations.

2.2 Complex representation and constellations

A sinusoidal signal as described in equation 2.1 can also be re-written using the
angle sum identity cos(a + b) = cos(a)cos(b) − sin(a)sin(b) as follows:

s(t) = A ∗ cos(2 ∗ π ∗ f ∗ t) cos(φ) − A ∗ sin(2 ∗ π ∗ f ∗ t) sin(φ) (2.2)

Or, by using the fact that sin(x) = cos(x + π
2 ):

s(t) = A ∗ cos(2 ∗ π ∗ f ∗ t) cos(φ) − A ∗ cos(2 ∗ π ∗ f ∗ t + π

2 ) sin(φ) (2.3)

In this equation, the A ∗ cos(φ) component is called in phase, as it is carried by
the original sine wave, and the A ∗ sin(φ) component is called quadrature, as it is
carried by a sine wave with a phase offset of π

2 , hence orthogonal to the first one.
These two orthogonal carriers can, for example, be used to transmit two symbols

at the same time. To represent signal samples, we then plot each one of them on
a two-dimensional plane, using by convention the in phase component, also called
I, as X coordinate, and the quadrature component, also called Q, as Y coordinate.
This is also called the complex representation of the signal, as it can also be seen
as the representation of I + i ∗ Q in the complex plane.

Using this representation is often easier to visualize phase modulations, the
phase being represented as the complex numbers’ arguments, as show in figure 2.2,
where we represented a QPSK-modulated signal first the same way as before, and
then the corresponding points in the complex domain. The complex representation
allows to see in a single picture all symbols, here the four different phases used by
a QPSK modulation. This figure showing an ideal case, what is shown on figure
2.2b is the theoretical set of symbols for the modulation, also called the modula-
tion’s constellation. On the temporal view, however, the phase shifts are visible,
but hard to decipher. In general, it is easier to identify a frequency modulation on
the temporal representation, a phase modulation on the complex representation,
an amplitude modulation being identifiable on both. However, the complex repre-
sentation as shown in figure 2.2b masks the temporal aspect, not allowing to see
the sequence of symbols. It is then also possible to represent the signal in three



20 Chapter 2. Signal processing prerequisites

dimensions, one being the time and the two others representing the in-phase and
quadrature components.

(a) Temporal representation (b) Complex representation

Figure 2.2: Representations of a QPSK modulated signal (ideal)

Figure 2.3: Complex representation of a QPSK modulated signal (error on the
frequency)

Another interest of this representation is that is allows to see the sine waves
as a rotation on the complex plane. Moreover, a frequency shift ∆f appears as a
multiplication of I + iQ by cos(2 ∗ π ∗ ∆f ∗ t) + i ∗ sin(2 ∗ π ∗ ∆f ∗ t), which can



2.3. Fourier Transform 21

also be written e2i∗π∗∆f∗t, which results in the addition of a rotation of frequency
∆f in this representation of the signal.

Proof. As shown in equation 2.3, the I and Q components are defined as the factors
of the cosine and sine functions in the signal decomposition, usually A ∗ cos(φ) and
A ∗ sin(φ).

If we add the frequency shift, the signal becomes:

s(t) = A ∗ cos
(
2 ∗ π ∗ f ∗ t + (2 ∗ π ∗ ∆f ∗ t + φ)

)
Hence the following new decomposition in in-phase and quadrature components:

s(t) = A∗cos(2∗π∗f∗t) cos(2∗π∗∆f∗t+φ)−A∗cos(2∗π∗f∗t+π

2 ) sin(2∗π∗∆f∗t+φ)

By using the identities cos(a + b) = cos(a) cos(b) − sin(a) sin(b) and sin(a + b) =
sin(a) cos(b) + cos(a) sin(b), and replacing A ∗ cos(φ) and A ∗ sin(φ) respectively by
I and Q for an easier reading, we can then develop the in-phase and quadrature
components of the new signal as follows:A ∗ cos(2 ∗ π ∗ ∆f ∗ t + φ) = I ∗ cos(2 ∗ π ∗ ∆f ∗ t) − Q ∗ sin(2 ∗ π ∗ ∆f ∗ t)

A ∗ sin(2 ∗ π ∗ ∆f ∗ t + φ) = I ∗ sin(2 ∗ π ∗ ∆f ∗ t) + Q ∗ cos(2 ∗ π ∗ ∆f ∗ t)

The complex representation of such a signal then becomes:

I∗cos(2∗π∗∆f ∗t)−Q∗sin(2∗π∗∆f ∗t)+i∗
(
I∗sin(2∗π∗∆f ∗t)+Q∗cos(2∗π∗∆f ∗t)

)
Which can be simplified as

(
I + iQ

)
∗

(
cos(2 ∗ π ∗ ∆f ∗ t) + i sin(2 ∗ π ∗ ∆f ∗ t)

)
,

or (I + iQ) ∗ e2i∗π∗∆f∗t .

For example, for the QPSK in figure 2.2b, where we simulated an emission and
reception at 3Hz, adding 0.03Hz on the emission side results in figure 2.3, where
this rotation is clearly visible, and might hinder correct demodulation after some
time.

2.3 Fourier Transform

One of the most useful tools in signal processing, along with other fields, is the
Fourier Transform. This operation allows to represent functions of time or space
from a frequential perspective. More precisely, it uses a decomposition of the signal
in a sum of sinusoids at different frequencies, giving a new signal represented as a
function of the frequeny. At each given frequency, the value of the Fourier transform
is a complex number with a magnitude equal to the amplitude of the corresponding
sine wave, and with an argument equal to its phase offset. Put more simply, if



22 Chapter 2. Signal processing prerequisites

TF (s)(f) if the value of the Fourier Transform of signal s at frequency f , s is the
sum, for each frequency f , of the terms TF (s)(f) ∗ exp2i∗π∗f∗t.

To be more precise, the Fourier Transform is defined as the following infinite
integral:

TF (s)(f) =
+∞∫

t=−∞

s(t) exp−2i∗π∗f∗t dt (2.4)

In computer science and digital signal processing, we work with discrete signals,
meaning we have data points separated by sampling periods. In this case, we use
the Discrete Fourier Transform, or DFT:

TF (s)(f) =
∑

k

s(k) exp−2i∗π∗f∗t(k) (2.5)

With t(k) the timestamp of the kth sample, and s(k) its value.
As we only have a finite number of points, we compute an approximation of

the Fourier Transform on those points. In this case, we obtain the same number of
points in the output as in the input, uniformly spread on the spectrum.

The spectrum covered by a Discrete Fourier Transform is defined by the sam-
pling rate of the input: indeed, as stated in the Nyquist-Shannon sampling theorem,
to correctly receive a signal that has a frequency f (relatively to the receiver’s cen-
tral frequency), one must use a sampling rate greater than 2 ∗ f . This also applies
to frequencies before the central frequency, meaning that using a sampling rate of
fs while listening on a central frequency fc, one can receive signals between fc − fs

2
and fc + fs

2 . The DFT then outputs N frequencies, ranging from fc − fs

2 to fc + fs

2 .
Finally, the Fast Fourier Transform, or FFT, is an optimized algorithm for

computing the Discrete Fourier Transform: as the DFT requires ordinarily to sum N

terms for N frequencies with an N -point signal, resulting in a quadratic complexity,
the FFT is able to obtain the same result in O(N log(N)). We will not go in more
detail into this optimization, as various versions exist and have different properties
on the input they accept.

2.4 Pulse-shaping filters and moment of decision

An important concept in signal processing is the spectral efficiency, which is related
to the width of the signal in the frequency domain. A less efficient, i.e. wider, signal
limits the number of channels that can be used simultaneously because of the space
it occupies, and requires that the equipment used by both the receiver and emitter
support such wide bands.

As we explained before, according to the Nyquist-Shannon sampling theorem
one can only receive frequencies between fc − fs

2 and fc + fs

2 . This means that a
less spectrally efficient signal requires higher sampling rates from the equipment
involved in the communications.



2.4. Pulse-shaping filters and moment of decision 23

(a) Temporal representation (b) Amplitude

(c) Fourier Transform

Figure 2.4: Comparison of two 2ASK signals with and without gaussian filter

This led to the creation of signals with shapes increasing their spectral efficiency.
Indeed, using simple shapes for the signal generates abrupt slopes when transition-
ing from a symbol to the next one, introducing high-frequency components in the
signal spectrum (one can imagine an abrupt transition from one value to another
as a nearly-vertical slope, which would then have a nearly infinite derivation). One
then needs shapes that can generate a continuous curve when symbols are put one
behind the other. One of the most used shapes is the Gaussian curve, obtained by
applying what is called a Gaussian filter to the original input to modulate, for exam-
ple in the Gaussian Frequency Shift Keying, or GFSK, used in numerous Internet
of Things protocols such as the well-known Bluetooth.

To illustrate, figure 2.4 shows the temporal representation of two signals, their
instantaneous frequencies, i.e. derivation of the temporal signal, and spectrum with-
out noise. Both signals modulate the same input, but the first one uses the frequency
modulating a symbol for its entire duration, while the other uses a Gaussian-shaped
input.

However, there is a drawback to using such pulse-shaping filters: during most
of the symbol period, the signal lies between several possible values, increasing the



24 Chapter 2. Signal processing prerequisites

Figure 2.5: Eye diagram for an ASK with gaussian filter

risk of wrong demodulation especially in the presence of noise. We therefore need
to choose the adequate sample in a given symbol period where the symbol currently
sent is the clearest. To help us to do so, we can use another representation that
allows us to see more clearly the different values the signal takes during each symbol
period, called an eye-diagram. This representation is built by representing all pairs
of symbols that were sent overlapping on a single time axis, as shown in figure 2.5
for the ASK with Gaussian filter of the previous example (here, as it is an amplitude
modulation, the amplitude is represented).

This figure takes the shape of two "eyes", hence the diagram name, and shows all
possible sequences of two symbols with the transitions between them. For example,
a series of "1" bits results in the curve that stays around an amplitude of 1, or a
"1" followed by a "0" passes through the first peak around 1, then by the center of
the figure to go to the second lower peak around 0.2. On this diagram, the points
where all curves focus on two positions show where the symbols are the clearest,
with the lowest risk of confusion between them. In our example, the moment of
decision is then around the tenth sample of each symbol period.



2.5. The case of Orthogonal Frequency Division Multiplexing 25

Figure 2.6: Fourier Transform of a door of period 1
10000 seconds

2.5 The case of Orthogonal Frequency Division Multi-
plexing

Nowadays, many wireless protocols, especially those designed for long-distance com-
munications, are abandoning the simple modulations described previously to favor
a more complex, but more efficient modulation scheme : the Orthogonal Frequency
Division Multiplexing, or OFDM. This scheme is used, among others, in WiFi (ex-
cept its older versions), satellite communications, and even in mobile telephony
with the downlink of 4G and 5G networks.

Its principle is to create series of fixed-length symbols, usually with a QAM,
assigning each one of them to a specific frequency before sending its inverse Fourier
Transform. By doing so, one then sends one symbol per period needed to send one
of these blocks on a large number of channels.

To understand the main idea behind OFDM, an important point is the impact
of the use of such blocks on the spectrum. The Fourier Transform is initially a
decomposition of sinusoidal waves extending on an infinite time axis, so reducing a
signal with some fixed frequential components to a given period of time T0, as it is
done in OFDM, has a direct impact on the spectrum of such block. As it is equiv-
alent to multiplying the theoretical infinite signal by a function g with value 1 only
during this period, its Fourier Transform is the result of the convolution between
the theoretical Fourier Transform and the Fourier Transform of this function, which
is known and is expressed by TF (g)(f) = T0 ∗ sin(π∗f∗T0)

π∗f∗T0
, represented in figure 2.6.

This kind of function is called a sinc function. The interesting fact with this func-
tion is that it reaches its maximum value around frequency 0, and then periodically
reaches 0 every 1

T0
. This makes it possible to calculate which frequencies can be

used by the channels, as each symbol is multiplied by a sinc : indeed, by choosing



26 Chapter 2. Signal processing prerequisites

to space them by a multiple of 1
T0

with T0 the length of the block in time, each sinc
reaches a maximum at the frequency where the symbol is, and does not interfere
with the others.

To give a more concrete example, the 4G downlink uses blocks containing 2048
samples at 30.72MHz, which means it can use channels spaced by 15KHz, which
would be inconceivable with other schemes.

To avoid interference between consecutive blocks, systems using OFDM choose
between two different methods:

• Guard periods: this technique consists in introducing fixed-length periods
of non-emissions between the blocks, to space them and reduce Inter-Symbol
Interferences (ISI). However, this technique requires to be able to find precisely
the period where the block was emitted in order to isolate it correctly and
recover its Fourier Transform, and the symbols behind it

• Cyclic prefixes: this technique consists in copying a fixed length portion
of the end of the block at its beginning. This way, the block plus prefix set
contain the same frequential components as the initial block. Thus, by taking
any slice of the size of the block inside this set, one should be able to retrieve
correctly the symbols in the Fourier Transform. However, light ISI might
happen in the beginning of the prefix and the end of the block, since there is
no period where nothing is emitted

The last important point we would like to highlight about OFDM concerns a
phenomenon known in signal processing as "channel selectivity": waves going from
a point A to a point B interacts differently with the environment depending on
their frequencies (due to refraction or reflection on obstacles for example); this
leads to non-uniform distortion through the spectrum, from the receiver point of
view. This phenomenon may alter the different symbols modulated with an OFDM
scheme, depending on their positions in the spectrum. Thus, OFDM systems have
introduced reference symbols in the emitted blocks: these symbols are fixed values
sent on specific sub-channels, sometimes only at regular intervals but not all the
time, and are defined in the protocol specifications. Then, the receiver uses the
difference between the theoretical reference symbols and the signals it received
in their place to estimate the distortion experienced by each of them. Then, by
interpolating between the reference symbols, it is able to estimate the distortion
introduced on the whole spectrum, in order to correct it.

As will be discussed later in this manuscript, these aspects, while beneficial
to reliable data transmission using this scheme, raise issues for protocol-agnostic
analysis of transmissions, as it would require prior knowledge of several parameters,
notably the values and positions of the reference symbols in use.

As, from the defensive point of view, we focused on such approaches, we do
not support this scheme natively in our monitoring and analysis approaches. Then,
from an offensive point of view, it offers interesting perspectives, even if difficult



2.6. Conclusion 27

to exploit. Thus, we discuss possible adaptations and improvements to support
OFDM-based protocols in the different chapters and the perspectives of this PhD.

2.6 Conclusion

In this chapter, we presented the necessary signal processing prerequisites for the
rest of this manuscript. We first briefly presented the main principles of the most
used digital modulations, namely frequency, amplitude and phase modulations. We
then explained the notions of complex representation and modulation constella-
tion, useful to understand the representations of various signals, in particular phase
modulations. Subsequently, we introduced the spectral efficiency issue, how it is
addressed by the use of pulse-shaping filters, and the crucial problem of the right
moments to demodulate a signal that ensues, using a representation called an eye-
diagram. Finally, we provided information about Orthogonal Frequency Division
Multiplexing, a scheme now widely used in telecommunications, notably in WiFi or
5G networks.

In the following, we present the three main contributions of this PhD, respec-
tively presented in Chapters 3, 4 and 5.





Chapter 3

Inter-protocolar pivotal attacks

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Multiprotocol devices . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Single-protocol devices . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Wazabee, diverting Bluetooth chips to attack ZigBee Net-
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Principles of the attack . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Compatibility conditions . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Frequency Shift Keying emitters . . . . . . . . . . . . . . . . 42
3.4.2 Amplitude Shift Keying emitters . . . . . . . . . . . . . . . . 45
3.4.3 Phase Shift Keying emitters . . . . . . . . . . . . . . . . . . . 45
3.4.4 Compatibility between OFDM and QAM . . . . . . . . . . . 45

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

In this chapter, we first present Wazabee[Cayre 2021b], a common work with
Romain Cayre, which is a new approach that allows using full-Zigbee capabilities
on Bluetooth devices, without any modifications on the devices or on the Zigbee
protocol stack. Then, after having explained the theoretical basis behind this ap-
proach, we present a reflection on a possible offensive use of such pivots, and which
protocols would be compatible in this way. We finally discuss the possible counter-
measures against such attacks, before presenting our own defensive measures in the
next chapters.

3.1 Introduction

The idea behind Wazabee came during the development of demodulators for both
the GFSK modulation used by the Bluetooth Low Energy, and the O-QPSK used
by several IEEE 802.15.4 based protocols, such as Zigbee or 6LoWPAN. Indeed,
to simplify its development, we decided to leverage the equivalence between the
O-QPSK and another modulation, called "Minimum Shift Keying" (MSK): the O-
QPSK adds a delay of half a symbol period to the quadrature component of a



30 Chapter 3. Inter-protocolar pivotal attacks

QPSK, thus only allowing transitions from adjacent symbols (for example, a "11"
could only become a "01" or a "10", before becoming a "00"), and the MSK codes the
information in shifts between adjacent symbols of a QPSK, the rotation direction
giving the bit to demodulate. Thus, by knowing or estimating the first QPSK
symbol of the O-QPSK, it is possible to demodulate it by first demodulating with
an MSK demodulator, then re-tracing the transitions from the first state to retrieve
the corresponding O-QPSK symbols.

Interestingly, according to diverse works in signal processing [Speth 2004], spe-
cific values of the distance between the two frequencies of a GFSK modulation give
an equivalence between it and a Gaussian Minimum Shift Keying (GMSK), a ver-
sion of the MSK where a gaussian filter was applied to the phase values to smoothen
the transitions. As we will precise further in the following, since the value of this
parameter for the Bluetooth Low Energy is close to the right one to get the equiv-
alence, we coded the GFSK demodulator as a GMSK modulator. Furthermore, to
simplify the development, we implemented a version ignoring the gaussian filter, by
taking the most probable transition value in each symbol period.

Thus, when we started developing the Zigbee demodulator, we were surprised
by the similarity of the two codes. As we will see later, this equivalence was al-
ready explored in the signal processing field of Cross Technology Communications
(CTC), where several methods were proposed to communicate between Zigbee and
Bluetooth Low Energy devices. However, these methods require some form of co-
operation between the devices, introducing modifications to the protocols to allow
them to connect, thus they could not be practically used in an offensive context.

However, the recently standardized Bluetooth 5 introduced new capabilities for
Bluetooth Low Energy, among which the possibility to increase the sample rate,
matching the one from Zigbee. Thus, we decided to make use of this new standard
to build Wazabee, an attack allowing to communicate with Zigbee networks from
Bluetooth Low Energy chips, without any cooperation from the attacked device.

3.2 Related work

In this section, we describe the different known possibilities to build a pivot inside
a wireless network. To do so, we first study the case of devices already supporting
several protocols, which can be attacked using one, then used with the other to
access another part of the network, and then highlight the possibility of using
single-protocol devices with low-layer equivalences to achieve a similar result.

3.2.1 Multiprotocol devices

A pivoting attack aims at taking advantage of the coexistence of multiple protocols
in the same environment in order to compromise new objects. The most natural
approach for this attack is to compromise an object supporting multiple radio com-
munication protocols, allowing to perform the attack using the provided API. As
an example, in [Bachy 2015], Bachy et al. compromise a smart-TV using HbbTV



3.2. Related work 31

communication protocol, then use it to reconfigure the firewall embedded in the
ADSL box using LAN protocols (Ethernet or WiFi).

Several hardware devices allow such attacks to be carried out. For instance,
Software Defined Radio devices are designed for a generic purpose, allowing com-
munications through multiple protocols, regardless of their modulation and fre-
quency bands. However, so far, these devices are only used for prototyping and
experimentation purposes.

There are also chips that integrate different wireless devices. For example,
B-L475E-IOT01A [IOT 2018], based on the STM32L4 microcontroller intended
for IoT devices, supports multiple wireless protocols (such as Bluetooth, WiFi or
NFC ). Similarly, the CC2652R[CC2 2019] from Texas Instruments is compliant to
multiple radio technologies in the ISM band. The compromise of such a chip greatly
facilitates the implementation of a pivoting attack targeting one of the wireless
protocols supported by the chip. However, such chips are expensive, and their use
is quite specific, which limits their deployment in IoT networks.

3.2.2 Single-protocol devices

Since most connected objects only embed one wireless device, the practical imple-
mentation of a pivoting attack is much more complex. We are not aware of existing
research specifically addressing this issue from an offensive perspective. However,
some contributions explored related topics. The most relevant contributions are
related to Cross-Technology Communications (CTC ) solutions, that are aimed at
providing a communication system between two single-protocol devices supporting
heterogeneous wireless communication protocols. However, to our knowledge these
contributions did not investigate the use of this technology in security or in an
offensive perspective. There are two main categories of CTC, named Packet-level
CTC and Physical Layer CTC.

The Packet-level CTC approach relies on some information linked to the pack-
ets. As an example, K. Chebrolu et al. use packet duration in order to transmit
data [Chebrolu 2009], while the FreeBee [Kim 2015] approach by S. Min Kim is
based on the time interval between beacon frames. From an offensive perspective,
these approaches could be interesting to exfiltrate some data, but they are not rel-
evant for pivoting attacks. Other limitations, such as a low data throughput, are
inherent to these approaches and hamper their practical use.

Physical Layer CTC approaches consist in emulating a technology using the
signal generated by another one. As an example, Z. Li et al. simulate a Zigbee
frame using a WiFi transceiver [Li 2017]. Similarly, W. Jiang et al. have presented
an approach named BlueBee [Jiang 2017], allowing to simulate Zigbee frames using
a BLE transceiver, and another approach called XBee [Jiang 2018], enabling to
receive Zigbee frames from a BLE receiver. However, these solutions have major
limitations that prevent their use in an offensive perspective. As an example, the
selection of a Zigbee channel by BlueBee is based on the channel hopping algorithm
of BLE connected mode, so it requires to establish a BLE connection with another



32 Chapter 3. Inter-protocolar pivotal attacks

BLE device. Similarly, adding a specific identifier before the data included in the
frame is needed in order to receive a Zigbee frame using XBee, so it requires the
cooperation of the Zigbee transmitter. These constraints can be easily addressed if
the use of CTC is legitimate and deliberate, however they prevent the use of these
solutions in a context of attack and especially for pivoting attacks. Our approach
overcomes these limits and provides a reliable two-way CTC that doesn’t require
the cooperation of other devices: as a consequence, it may be used in an offensive
context.

The Packet-in-Packet strategy [Goodspeed 2011b], proposed by T. Goodspeed
et al. consists in encapsulating a complete radio frame into an application-level
payload: a misidentification of the beginning of the encapsulating frame by the
receiver (e.g., due to interferences causing bitflips during the demodulation) can
lead to the interpretation of the encapsulated frame. This strategy is particularly
interesting for bypassing software checks performed at the protocol layer, and may
thus allow attackers to access and control the lower layers of the radio device. The
authors highlight a possible use of this attack to perform a pivoting attack, e.g., to
inject radio traffic corresponding to a wireless protocol different from the protocol
natively supported by the radio device, under certain specific conditions. However,
this strategy can only be applied to a limited number of protocols, and can only
be achieved if the modulations used have similar characteristics (frequency bands,
bandwidth, etc). For instance, M. Millian and V. Yadav discuss the possibility of en-
capsulating 802.15.4 traffic into 802.11 frames [Millian 2015]. However, they stress
the difficulty of such a strategy due to the differences between the two technologies.

T. Goodspeed has also discovered a vulnerability in the nRF24L01+ chip, that
facilitates sniffing and frame injection on a set of protocols (such as Bluetooth Low
Energy or Enhanced ShockBurst) using Gaussian Frequency Shift Keying modula-
tion. He was able to divert the use of a register dedicated to the address selection
to select an arbitrary preamble [Goodspeed 2011a]. Exploiting this vulnerability
allowed him to add a promiscuous mode for the Enhanced ShockBurst, which is not
natively supported by the chip. However, it is also possible to divert the use of this
register to detect specific preambles used by different wireless technologies, as long
as similar modulations and bit rates are used. This vulnerability has been used by
M. Newlin to develop a firmware aiming to add advanced sniffing capabilities for
the Enhanced ShockBurst and Mosart protocols to the nRF24 chip [Newlin 2016].

D. Cauquil has also disclosed a similar vulnerability in other Nordic Semicon-
ductors chips [Cauquil 2017b], and has developed a similar tool for the nRF51.
He was then able to implement communication primitives for a proprietary pro-
tocol not initially supported by the chip, allowing it to control a mini-drone
[Cauquil 2017c]. An implementation of these primitives has been integrated into
the radiobit [Cauquil 2017a] project.

These research works present some first techniques and experimental results
that illustrate the practical feasibility of pivoting attacks targeting wireless pro-
tocols. However, these techniques have several limitations which strongly restrict
their use: they require an active cooperation of other devices, or the modulation



3.3. Wazabee, diverting Bluetooth chips to attack ZigBee Networks 33

of the native protocol and the pivoting protocol must be similar and sometimes
depend on the use of specific chips (such as Nordic SemiConductors nRF24 and
nRF51 chips). Our main contribution is to present a pivoting attack strategy that
overcomes some of these constraints, allowing the implementation of communica-
tion primitives targeting a wireless technology using a modulation different from
the one natively supported by the chips that doesn’t require the cooperation of
other nodes, and that could possibly be generalised to multiple hardware devices
from different manufacturers.

3.3 Wazabee, diverting Bluetooth chips to attack Zig-
Bee Networks

3.3.1 Principles of the attack

3.3.1.1 From GFSK to GMSK

Our approach is based on the similarities between the modulations used by Blue-
tooth Low Energy (BLE) and IEEE 802.15.4 protocols, such as Zigbee.

First, BLE uses a GFSK modulation, that consists in coding bits by using two
symmetrical frequencies around the carrier, smoothing the transitions between two
bits by using a gaussian filter, as we explained in chapter 2. In terms of rotation
in the complex representation, it means the signal is either "rotating" clockwise or
counterclockwise at the same speed, once the carrier frequency is removed from it.

Interestingly, in a simple 2FSK, by comparing the sampling frequency of the
receiver and the rotation speeds, it is possible to estimate the position of the next
sample depending on the coded bit. The sign of the angle between consecutive
points could thus be used to demodulate the signal. For example, if the difference
between one of the coding frequencies and the carrier is equal to a quarter of the
sampling rate, it means that if the signal was "rotating" clockwise, the angle between
two consecutive samples would be −π

2 , and conversely if the signal was "rotating"
counterclockwise, it would be π

2 . In this specific case, the 2FSK becomes then
equivalent to an other modulation at this sampling rate: the Minimum Shift Keying.
As explained in the introduction of this chapter, the Minimum Shift Keying is a
modulation where the bits are coded by either a rotation of π

2 , or a rotation of −π
2

in the complex plane.
The ratio between the sample rate and the distance between coding frequencies

in a 2FSK is a known quantity, sometimes called modulation index. Let us note,
however, that the term "modulation index" is used in the different modulation
classes, thus with different meanings, and can even have different definitions for a
given modulation. Overall, the "modulation index" is a quantity used to compare
different modulations by characterizing them, and in particular the distance between
the symbols they use. In the following, we will use the most common definition of



34 Chapter 3. Inter-protocolar pivotal attacks

the modulation index m for a 2FSK:

m = ∆f

fs
(3.1)

with ∆f the difference between the two coding frequencies, and fs the sampling
frequency.

With this definition, as stated in the Bluetooth Core Specification
v5.3[Blu 2021], the modulation index of the GFSK used in Bluetooth Low Energy
is between 0.45 and 0.55. This means that the distance between the two coding
frequencies is about half the sample rate, i.e., the distance between one of them
and the carrier is approximately a quarter of the sample rate. Thus, looking at the
consecutive peaks of the gaussian shapes used for the different symbols, the angle
shift between two points is either π

2 or −π
2 , depending on the modulated bit. In

fact, according to the state of the art, this leads to a full equivalence between a
GFSK with a modulation index m = 0.5 and a GMSK.

3.3.1.2 From O-QPSK to MSK

Figure 3.1: Representation of a QPSK with semi-sinusoidal pulse-shaping

Figure 3.2: Representation of an O-QPSK with semi-sinusoidal pulse-shaping

Some IEEE 802.15.4 protocols, among which Zigbee and 6LoWPAN, use a same
Physical Layer based on an Offset Quadrature Phase Shift Keying, or O-QPSK.

The principle behind this modulation is to avoid abrupt transitions between a
phase and the symmetrical one across the origin of the complex plane, that can
occur with a standard QPSK (for example when coding "11" then "00", the signal



3.3. Wazabee, diverting Bluetooth chips to attack ZigBee Networks 35

jumps from a phase offset of π
4 to −3∗π

4 ). To do so, the O-QPSK adds a time offset
of half the symbol period to the quadrature component of the QPSK, as shown in
figures 3.1 and 3.2. By doing so, it then forces to only change one symbol at a time.

Thus, it virtually only uses rotations of π
2 or −π

2 during half symbol-periods, re-
sulting in a scheme similar to a Minimum Shift Keying. We can then, by estimating
which of the four symbols was the first one, build an equivalence between series of
these rotations and the sequence of states that was modulated in O-QPSK, making
it possible to use an MSK demodulator to receive such IEEE 802.15.4 protocols.
Moreover, as two communicating devices are not initially phase-synchronized, an
MSK equivalent of an O-QPSK transmission, considering the first state to be "00" for
example, is effectively received and correctly demodulated by an O-QPSK receiver,
which "corrects" its phase synchronization to detect the right Zigbee preamble, in-
dependently of the phase from which the MSK started.

3.3.1.3 Low layers compatibility

Figure 3.3: Overlapping of Bluetooth and Zigbee channels

Beyond the issue of the modulations, we needed to address three other issues:
the correspondence of the data rates between the protocols, the channel coding
of the two protocols, which introduces modifications to the data to send for link
reliability, and finally the frequencies used by the two protocols.

The IEEE 802.15.4 O-QPSK Physical Layer defines a data throughput of 250
kbps for emissions in the 2450, 915, 780 and 2380 MHz bands. However, this rate
defines the rate of "useful data", or data without channel coding. This Physical
Layer also uses a technique of Direct Sequence Spread Spectrum, or DSSS, more
precisely what they call a "16-ary quasi-orthogonal modulation technique", which
transforms each of the 16 possible sequences of 4 bits in the data to send in 16
larger symbols of 32 bits, nearly orthogonal to each other. Thus, the data rate used
on the wireless medium for these larger symbols is 2 Mbps.

The Bluetooth Low Energy protocol initially supported only a data rate of 1
Mbps with its LE 1M PHY; however, starting with the Bluetooth Core Specification



36 Chapter 3. Inter-protocolar pivotal attacks

v5, it added the optional LE Coded and LE 2M PHY, respectively a coded 250 kbps
link and a 2 Mbps alternative to the classic LE 1M.

Thus, LE 2M compatible BLE devices and Zigbee devices can communicate with
the same bit rate over the physical medium. However, this takes the Zigbee’s DSSS
into account, which hinders the possibility to control what Zigbee devices send to
communicate with a BLE receiver. As we will explain further in the following, we
chose to focus on communicating as both a Zigbee receiver and emitter with BLE
devices, and ignore the other direction because of this issue.

BLE devices also integrate a channel coding functionality called data whitening.
This method consists in generating a pseudo-random binary mask for the data to
send, known by the recipient of the communication, to XOR with it in order to
improve the spread of "1" and "0" bits in the data that is then sent. We found
two methods to bypass this measure, which we will explain further in the following:
pre-generating the same mask to XOR the data before the whitening, thus reverting
it, or, if possible, deactivate it with a low level control on the chip.

Finally, both Zigbee and BLE devices can communicate in the 2.4-2.5 GHz ISM
band. As we are focusing on using BLE devices to communicate in a Zigbee network,
we have to make them communicate on frequencies supported by Zigbee. A first
and easy way to do so is to use channels that already overlap between Zigbee and
BLE, shown on figure 3.3. Indeed, BLE uses 40 channels from 2402 MHz to 2480
MHz, 2MHz apart from each other, while, in the same band, the Zigbee channels
are 5 MHz apart from each other, from 2405 MHz to 2480 MHz. This means the
central frequencies 2410 + k ∗ 10 MHz, with k any integer from 0 to 7, are common
to both. Another way is to use a common feature of Bluetooth 5 compliant BLE
devices, which is to be able to select arbitrary frequencies in the 2.4-2.5 GHz band.

3.3.1.4 Re-implementing the Zigbee DSSS from a BLE device

All Zigbee devices, along with other IEEE 802.15.4 devices with similar lower layers,
use the same DSSS technique, transforming 4-bits sequences into 32-bits sequences,
called pseudo-random noise (PN) sequences, as shown in table 3.1. To communicate
with such devices from GFSK-based protocols, we thus need, for each sequence of
four bits of data, to first get the corresponding PN sequence, and then to compute
the MSK equivalent of such sequence. The final equivalence, giving which bit
sequence to send from an MSK device for each 4-bit sequence, can be found in
table 3.2.

3.3.2 Experimentation

It is important to validate the WazaBee attack on chips from different manufac-
turers. We have chosen two different chips: nRF52832 designed by Nordic Semi-
Conductors and CC1352-R1 designed by Texas instruments. In this section, we
describe the proof of concept implementations on these chips, then we present the
experiments conducted to evaluate our attack.



3.3. Wazabee, diverting Bluetooth chips to attack ZigBee Networks 37

Block PN Sequence
(b0b1b2b3) (c0c1 ... c30c31)

0000 11011001 11000011 01010010 00101110
1000 11101101 10011100 00110101 00100010
0100 00101110 11011001 11000011 01010010
1100 00100010 11101101 10011100 00110101
0010 01010010 00101110 11011001 11000011
1010 00110101 00100010 11101101 10011100
0110 11000011 01010010 00101110 11011001
1110 10011100 00110101 00100010 11101101
0001 10001100 10010110 00000111 01111011
1001 10111000 11001001 01100000 01110111
0101 01111011 10001100 10010110 00000111
1101 01110111 10111000 11001001 01100000
0011 00000111 01111011 10001100 10010110
1011 01100000 01110111 10111000 11001001
0111 10010110 00000111 01111011 10001100
1111 11001001 01100000 01110111 10111000

Table 3.1: Block/PN sequence correspondence table

Block PN Sequence - MSK encoding
b0b1b2b3 (m0m1 ... m29m30)

0000 1100000011101111010111001101100
1000 1001110000001110111101011100110
0100 0101100111000000111011110101110
1100 0100110110011100000011101111010
0010 1101110011011001110000001110111
1010 0111010111001101100111000000111
0110 1110111101011100110110011100000
1110 0000111011110101110011011001110
0001 0011111100010000101000110010011
1001 0110001111110001000010100011001
0101 1010011000111111000100001010001
1101 1011001001100011111100010000101
0011 0010001100100110001111110001000
1011 1000101000110010011000111111000
0111 0001000010100011001001100011111
1111 1111000100001010001100100110001

Table 3.2: Correspondence table of PN sequences

3.3.2.1 Wazabee with an nRF52832 chip

The first implementation of the attack was carried out on the nRF52832 chip. This
chip offers great flexibility in the configuration of the embedded radio component



38 Chapter 3. Inter-protocolar pivotal attacks

BLE 5.0 (and, in particular, is compliant with the LE 2M PHY layer). Its radio
API is quite close to the nRF51 one. This nRF51 API is well known to the security
community for having been massively hijacked in recent years in order to develop
offensive tools dedicated to BLE and Enhanced ShockBurst (BTLEJack, radiobit,
...). The prototype was implemented on a development board proposed by AdaFruit
integrating this chip, the Adafruit Feather nRF52 Bluefruit LE.

We present the main steps of the implementation of WazaBee attack on this chip.
The first step consists in writing an initialization function for the configuration of
the radio component to set up the attack in transmission and reception modes.
The first relevant register to examine is the FREQUENCY register. It expects an
integer value in MHz to which 2400 MHz is added to select the right frequency.

The data rate could be controlled through the register MODE. It is
possible to select the LE 2M PHY mode using the constant named RA-
DIO_MODE_MODE_Ble_2Mbit.

The detection pattern selection is an important step: in order to maximize
the number of frames detected, it is appropriate to use the PN sequence coded in
MSK corresponding to the symbol 0000, repeated 8 times to be compliant with
the preamble of an 802.15.4 frame. The chip can be configured in Big Endian, the
following table was generated from PN sequences coded in MSK (each having been
prefixed with a bit to 0 so it can easily be represented with a 4 bytes word):

static uint8_t SYMBOL_TO_CHIP_MAPPING[16][4] = {
{0x60,0x77,0xae,0x6c}, // 1100000011101111010111001101100 (0)
{0x4e,0x07,0x7a,0xe6}, // 1001110000001110111101011100110 (1)
// [...]
{0x78,0x85,0x19,0x31}}; // 1111000100001010001100100110001 (15)

The detection pattern selection is carried out via registers BASE0 and PREFIX0,
allowing to provide the first value of the table SYMBOL_TO_CHIP_MAPPING
as Access Address.

Registers PCNF0 and PCNF1 allow a global configuration of the radio compo-
nent. For example, they allow to deactivate the whitening, to configure a pattern
of 4 bytes (3 address bytes + 1 preamble byte) and to configure the recovery of raw
blocks, with a maximum size (i.e. 255 bytes) at the output of the demodulator.

Integrity checks are disabled via the CRCCNF register, using value 0.
The reception and the decoding of 802.15.4 frames are implemented in the RA-

DIO_IRQHandler interrupt handler corresponding to the radio component. These
two features apply an algorithm based on the Hamming distance using the table
previously described in order to find the symbols initially transmitted. Similarly,
the transmission primitive (corresponding to the send method) builds the sequence
to be transmitted by means of the correspondence table, then transmits the data
to the modulator.



3.3. Wazabee, diverting Bluetooth chips to attack ZigBee Networks 39

3.3.2.2 Wazabee with a CC1352-R1 chip

The second implementation was carried out on the CC1352-R1 chip manufactured
by Texas Instruments. The main motivation was to test the approach on a chip
offering less configuration possibilities than the nRF52 chip. The chip natively
supports several protocols, including BLE and 802.15.4. However, only the Blue-
tooth API was used for the implementation. This API being common to several
chips from Texas Instruments, the implementation of the attack should be similar
on other systems from the same manufacturer.

The configuration of the radio component can be done through several com-
mands. The command CMD _BLE5_RADIO_SETUP is used to initialize the
communication with the radio component. We used the default configuration, with
the exception of the pRegOverrideCommon property, which allows overwriting the
default configuration of certain registers of the radio component: it is used here to
allow the reception of frames up to 255 bytes, limited to 37 by default. This modi-
fication has been, among others, used by Sultan Qasim Khan for the development
of a Bluetooth sniffer named Sniffle [Qasim Khan 2019].

uint32_t pOverridesCommon[] =
{

HW_REG_OVERRIDE(0x5328,0x0000),
// Increases max RX packet length from 37 to 255
// Sets one byte firmware parameter at offset 0xA5 to 0xFF
(uint32_t)0x00FF8A53,
(uint32_t)0xFFFFFFFF

};
rfc_CMD_BLE5_RADIO_SETUP_t RF_cmdBle5RadioSetup =
{

.commandNo = 0x1820,

.status = 0x0000,
// ...
.pRegOverrideCommon = pOverridesCommon,
.pRegOverride1Mbps = 0,
.pRegOverride2Mbps = 0,
.pRegOverrideCoded = 0,

};

The reception configuration is carried out by means of the command
CMD_BLE5_GENERIC_RX. Frequency selection is made via the field channel,
which allows the selection of an arbitrary frequency (for example, the value 0x69 cor-
responds to 2405 MHz, i.e. channel 11 in Zigbee protocol). The LE 2M PHY layer
is activated by setting the value of the phyMode.mainMode field to 0x1. whiten-
ing can be disabled by providing an initialization value of 0 in the whitening.init
field. Packets are allowed to go up with an invalid CRC by specifying 0 in the
rxConfig.bAutoFlushCrcErr field. Finally, the chip has to be configured in Little



40 Chapter 3. Inter-protocolar pivotal attacks

Endian, so we provide the detection pattern 0x9b3af703 (corresponding to the PN
sequence coded in MSK of the symbol 0000, rewritten in Little Endian) in the field
pParam→accessAddress, corresponding to the Access Address. The symbol / PN
sequence correspondence table used is similar to the one implemented for nRF52,
but the sequences have been rewritten in Little Endian format. The decoding al-
gorithm is similar to the one implemented on the nRF52.

The transmission feature is available using the command
CMD_BLE5_ADV_AUX. During this step, an extended advertisement packet
with the succession of PN sequences is constructed. Then, this packet is transmit-
ted to the modulator. Its configuration is comparable to the previous command
CMD_BLE5_GENERIC_RX.

3.3.2.3 Assessment

Channels Valid reception rate Valid transmission rate
nRF52832 CC1352-R1 nRF52832 CC1352-R1

11 100% 100% 98% 100%
12 100% 100% 100% 100%
13 100% 100% 95% 100%
14 100% 100% 97% 100%
15 99% 100% 100% 100%
16 100% 97% 90% 100%
17 98% 99% 94% 96%
18 95% 100% 91% 95%
19 100% 100% 97% 100%
20 100% 100% 100% 100%
21 98% 100% 100% 100%
22 95% 98% 100% 100%
23 97% 96% 100% 100%
24 99% 100% 100% 100%
25 100% 100% 100% 100%
26 97% 100% 98% 100%

Table 3.3: Reception and transmission primitives assessment results

Two experiments were carried out in order to assess the reception and transmis-
sion primitives previously described. The first experiment, dealing with reception,
consisted in transmitting one hundred 802.15.4 frames with a payload including a
counter (incremented with each frame) using a Zigbee transmitter (AVR RZUSB-
Stick Atmel). The development board implementing the attack WazaBee, spaced
from the transmitter by a distance of 3 meters, received and decoded the corre-
sponding frames, then calculated the FCS corresponding to the received frame to
assess its integrity. For each Zigbee channel, the frames were classified into three cat-
egories: not received, received with integrity corruption, received without integrity



3.3. Wazabee, diverting Bluetooth chips to attack ZigBee Networks 41

corruption. The results are shown in table 3.3.
It can be seen that the reception primitive of WazaBee has a very satisfactory

reception rate for the two implementations on all channels, with an average of 98.625
% of the frames received without integrity corruption for the nRF52832 and 99.375
% for the CC1352-R1. In both cases, there is a slight decrease in the reception
rate for channels 17, 18, 21, 22 and 23, which can be explained by the interference
with WiFi channels 6 and 11, used in our experimental environment. It can also
be observed that the CC1352-R1 seems to present a more stable reception than
the nRF52832, without any integrity corruption on the frames received while the
nRF52832 missed 0.6875 % of the frames.

The transmission primitive was assessed under similar conditions: the develop-
ment board implementing WazaBee was configured to transmit one hundred frames
including a counter, and a 802.15.4 receiver (the RZUSBStick) was placed 3 meters
away. Each transmitted frame could also be classified into three categories: not
received, received with integrity corruption and received without integrity corrup-
tion. The experiment was performed on all Zigbee channels, and the corresponding
results are shown in the table 3.3.

In both cases and for all channels, the rate of transmitted frames received with-
out integrity corruption by the RZUSBStick is very satisfactory, with an average of
valid received frames of 97.5% for frames emitted by the nRF52832 and of 99.438 %
for the ones emitted by the CC1352-R1. We observe a similar phenomenon to the
one observed during the assessment of the reception primitive for channels 17 and
18, related to the simultaneous use of WiFi channel number 6 in our experimental
environment. The rate of frames received with some integrity corruptions is also
slightly higher for nRF82832 (with an average of 0.8125 % while the CC1352-R1
did not miss any frame).

3.3.3 Impact

We believe the impact of WazaBee attacks is critical, especially considering the IoT
context. Indeed, we demonstrated that it is possible to implement two transmission
and reception primitives on a BLE chip, allowing reliable communication with mul-
tiple wireless protocols based on the 802.15.4 standard. Indeed, the attack has been
mainly evaluated by targeting the Zigbee protocol, however Thread and 6LoWPAN
are also affected as they are based on the same lower layers.

Basically, WazaBee allows an attacker to perform a large variety of active or
passive attacks targeting these protocols, from a BLE chip. As many embedded
systems integrate a Bluetooth chip, this dramatically increases the attack surface
for systems using 802.15.4 protocols.

Currently, as the attack requires low level access to the radio component, this
limits the number of devices that could easily be used to implement it. However, we
managed to implement a subset of WazaBee attack primitives on an Android phone,
as described in [Cayre 2021c], resulting in a considerable increase of the number of
potentially exploitable devices. A jamming primitive could be implemented too,



42 Chapter 3. Inter-protocolar pivotal attacks

expanding the number of possible attacks.
With that in mind, two main offensive scenarios seem particularly critical:

• Pivoting attacks: WazaBee allows an attacker to target a 802.15.4 device
from a compromised BLE device. For example, an attacker could compro-
mise an employee’s BLE smart watch in the street. Then, they could use
it to perform pivoting attacks targeting 802.15.4 devices in its professional
environment.

• Covert-channel attacks: WazaBee could be used by an attacker after com-
promising a BLE device in order to exfiltrate sensitive data using unmonitored
protocols.

3.4 Compatibility conditions

Wazabee is not the only possible attack that leverages similarities between modu-
lations. To improve the coverage of the attack surface of a network using wireless
protocols, it can then be interesting to study the reception and emission communi-
cation capabilities of the devices outside their designated range.

In this section, we present theoretical compatibilities between usual classes of
modulations, and the impact on security that could ensue.

3.4.1 Frequency Shift Keying emitters

3.4.1.1 FSK to PSK

The Frequency Shift Keying is one of the most common modulations among IoT
devices, especially its GFSK variant, used for example in Bluetooth, BLE, or ANT1.
As shown in Wazabee, this type of modulation can be used to mimic an MSK, and
its equivalent O-QPSK, given that its modulation index is close enough to 0.5.
This is due to the fact that the GFSK uses two rotation directions, and that if
the modulation index is close to 0.5, two consecutive samples are separated by a π

2
angle.

This could be generalised by analysing which frequencies would be needed to
control the phase shifts between two samples, in order to reproduce other phase
modulations. For example, to reproduce a QPSK, one needs to be able to do
rotations of either π

2 , π, 3∗π
2 , or 2 ∗ π between two samples to replicate all needed

transitions. For example, and as shown in figure 3.4, it can be done with a 2FSK if
1) its symbol rate is four times the symbol rate of the QPSK, and 2) its modulation
index is approximately equal to 0.25. Indeed, in this case, the 2FSK allows us to
do four rotations of either π

4 or −π
4 when the QPSK would transmit a symbol. This

way, it is possible to reproduce π with four rotations in the same direction, 0 with
two times each direction, and ±π

4 with three rotations in one direction and one in
the other.

1ANT is another protocol of the IoT, often found in connected sportswear



3.4. Compatibility conditions 43

1101

00 10

QPSK 2FSK

1101

00 10

1101

00 10

1101

00 10

1101

00 10

1101

00 10

Figure 3.4: Transition equivalences between a QPSK and a 2FSK

In a more realistic setup, however, this attack suffers from several drawbacks,
that hinder its applicability:

• The FSK needs to use fairly high sample rates, compared to the sample rate
used by the QPSK. Using the technique described above, it must precisely be
a multiple of four times the QPSK’s sample rate



44 Chapter 3. Inter-protocolar pivotal attacks

• The FSK also needs to use a modulation index of 0.25, or even lower when
working with higher sample rates, which would allow for more symbols during
the modulation of a single QPSK one

• A wrong synchronization between the periods of the QPSK and the groups of
four periods for the 2FSK could be problematic. For example, imagining the
symbols we want to send in QPSK would result in a rotation of π, a rotation
of −π

2 , and finally a rotation of π
2 . We could code it with the sequence "0000-

0001-1110" in 2FSK. However, should the QPSK receiver be desynchronized
with our emitter by exactly half a QPSK symbol period, it would receive "...00-
0000-0111-10...", meaning a rotation of π and directly afterwards a rotation
of π

2 . To reduce the impact of this phenomenon, it could be possible to use
smaller steps than π

4 , and do series of "01", i.e. u-turns, once the QPSK symbol
we targeted is reached. However, this results in 1) a significantly higher sample
rate, as we are using even more 2FSK symbols during a QPSK symbol, and
2) a significantly lower modulation index, making the two frequencies of the
2FSK even closer, risking to confuse them in presence of noise

3.4.1.2 FSK to ASK

It would also theoretically be possible to use a Frequency Shift Keying modulation
to emit a signal for an Amplitude Shift Keying receiver, by overlapping one of the
two frequencies of the FSK with the carrier frequency of the ASK receiver. Two
issues are then to consider: the frequency variations introduced by the pulse-shaping
filter, which could bring the frequency outside the range of a potential filter on the
ASK receiver, and the interference with the other frequency of the FSK, if it is too
close and enters the range of the ASK receiver. By definition, these two issues are
incompatible with each other, and thus can be managed separately. However, both
depend on the window in which the ASK receiver is listening.

The first one depends on the protocol in use, because it often determines the
shape of the pulse-shaping filter. For example, BLE emitters always use a gaussian
filter. However, the exact shape of the gaussian filter, especially its width, is often
not fixed by the specifications. It is then necessary to study, for each specific
emitter, whether the variations between two identical bits would go outside the
listening range of the target receiver.

The second issue is closely related to the bandwidth of the emitter’s protocol,
and the modulation index it uses. The larger the bandwidth and the modulation
index, the larger is the distance between the two frequencies, limiting the risks of
interference from one on the reception of the other by an ASK receiver.

Overall, it could be extremely difficult to control precisely the amplitude that is
received by the ASK receiver, especially if it uses an unknown threshold to differen-
tiate its possible amplitudes. For example an ASK could theoretically count as a 0
any amplitude falling under 75% of the maximum amplitude. Let us note that this
case is rare, and a 2ASK will often consist in an On-Off Keying, or OOK, meaning
that one bit is coded by an emission, and the other by an absence of emission.



3.4. Compatibility conditions 45

3.4.2 Amplitude Shift Keying emitters

Amplitude Shift Keying emitters use a single sine wave at the carrier frequency,
modulating the transmission power. It is then difficult to use such modulation to
obtain precise phase shifts, as the phase offset of the sine wave is neither known nor
controllable, and the phase at a given moment is only given by this offset and the
frequency.

However, it is possible to combine several ASK-OOK, meaning modulations
where the binary input controls periods of emissions, to generate signals on several
frequencies, only emitting on the one we want to use for the FSK. This presents
two main difficulties: 1) the sampling rate for ASK emitters is often significantly
lower than the one from FSK emitters, as high rates are not needed to demodulate
correctly the signal, and 2) it is then necessary to control k ASK emitters to emit
an kFSK. Moreover, unlike the FSK, the ASK is not widely used in devices that
can be linked to a network or a computer, often being simple wireless devices with
a remote control. This makes ASK emitters unreliable as pivots for attacks.

3.4.3 Phase Shift Keying emitters

As we explained previously in Wazabee, there exist a specific kind of phase mod-
ulation called the Gaussian Minimum Shift Keying that can be assimilated to a
Gaussian Frequency Shift Keying. More generally, if the phase remains continuous,
shifting from a phase to the same phase ±π

2 allows to mimic a 2FSK with a mod-
ulation index of 0.5, which could also be extended to other modulation index by
varying the phase shift.

This means that with a QPSK and an MSK, since both use four points around
the trigonometric circle, it is possible to build an equivalent sequence of QPSK states
to reproduce the MSK, and by extension a 2FSK if the phase remains continuous
in the QPSK. Similarly, if the 2FSK would have used a modulation index of 0.25
for example, it would have been possible to reproduce it with an 8PSK, i.e. a PSK
with 8 equidistant phases, hence separated by π

4 gaps.

3.4.4 Compatibility between OFDM and QAM

The modulation used with OFDM to build its symbols is often, if not always, a
Quadrature Amplitude Modulation, or QAM. Indeed, it allows to combine phase
and amplitude modulations, without modifying the frequency if the transitions are
not continuous. This allows each channel to remain where it should be, without
interfering with its neighbours by breaking their orthogonality.

Thus, it should be theoretically possible to emit an OFDM with multiple QAMs,
or to emit QAMs with an OFDM. However, both methods are subject to heavy
limitations.

First, to emit an OFDM with multiple QAMs, one would need a QAM per chan-
nel in OFDM. However, as explained in section 2.5, this number can easily rise up
to thousands of channels. Moreover, OFDM also uses reference symbols, which will



46 Chapter 3. Inter-protocolar pivotal attacks

need to be reproduced on each corresponding channel. The use of corrupted QAMs
to attack an OFDM becomes then highly unrealistic, even without considering the
issue of synchronizing the multiple QAMs between themselves, and the impact of
their different positions on the received signal.

Then, to emit QAMs with an OFDM, one would need to ensure that channels
around each QAM channel are set to 0, to prevent interferences. Indeed, the OFDM
receiver is able to recover single symbols on individual frequencies by looking at the
entire spectrum at the right sample rate, during the right period, and using the ref-
erence symbols to correct the distortions introduced by the channel on the different
frequencies. Meanwhile, the QAM receiver will simply try to find QAM symbols on
a single frequency, with a sample rate that could break the orthogonality between
the channel in use and its neighbours. Thus, one should ensure the transmitting
channels are far enough from each other in this case, thus needing a low-level control
on the OFDM emitter to completely shut down several channels, even the reference
symbols if necessary. Another issue to cover in this case is the fact that the OFDM
will send a single QAM symbol during the entire duration of one of its blocks,
putting further restrictions on the symbol rates of the QAMs to attack.

3.5 Conclusion

In this chapter, we presented several theoretical equivalences or compatibilities
between modulations used in wireless communications, known as Cross Technology
Communication in the literature. However, these mechanisms are often disregarded
by or unknown to the security community. We then also showed the practical
applicability of Cross Technology Communications from an offensive perspective
with our new attack, Wazabee, between well-known protocols of the IoT.

The different insights we have given on the similarities between usual modula-
tions, even if mostly impractical, show that other attacks of the same kind could be
developed, should the conditions be met. Moreover, even if the corrupted transmit-
ter cannot communicate with other devices to realize a pivotal attack, it could also
be used as a covert channel, by sending seemingly noisy data with its modulation,
when in reality it is exfiltrating sensitive data using another modulation.

From a more general perspective, we think this type of attacks could become
critical due to their capabilities to pivot from a protocol to the other, possibly
breaking what would be otherwise thought as an isolation between two networks
with different security levels.

This shows the importance of taking such potential attacks into account when
analysing the attack surface of a wireless environment, and either designing pro-
tection systems able to detect communications from different protocols compatible
with those present in the environment, or protocol-agnostic systems.

In the next chapters, we present examples of methods to monitor or analyse
IoT communications based on their physical emissions rather than higher layers of
the protocols in use, first to identify the emitting devices, and then to analyse the



3.5. Conclusion 47

communications without prior knowledge on their content and used protocol.





Chapter 4

Wireless identification -
PSD-based fingerprinting

Contents
4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Choice of the PSD-based fingerprinting . . . . . . . . . . . . 52
4.3 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Detailed description of the approach . . . . . . . . . . . . . . 54

4.4.1 Fingerprint creation . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 PSDs similarity analysis and clustering . . . . . . . . . . . . 57
4.4.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 First experiment . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3 Generalisation - second experiment . . . . . . . . . . . . . . . 64
4.5.4 Identical devices . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.5 Performances and Scalability . . . . . . . . . . . . . . . . . . 66

4.6 Extension to dynamic environments . . . . . . . . . . . . . . 68
4.6.1 Real-time and accuracy improvements . . . . . . . . . . . . . 69
4.6.2 Tool architecture . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Application to mobile telephony . . . . . . . . . . . . . . . . 75
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

In this chapter, we present a spectrum-based fingerprinting method for IoT de-
vices, with the objective to be less expensive than existing techniques, and to reduce
the amount of information on the communications it needs. First, after briefly out-
lining the context and motivations of this approach, we present other methods and
related works about device identification in IoT networks in section 4.2. Then, we
explain, generally in section 4.3 and more into detail in section 4.4, the principles
and architecture of our initial approach, and the various experiments we ran to
validate it in section 4.5. We then present in section 4.6 some improvements that
were added to this first approach to make it more adapted to realistic conditions,



50 Chapter 4. Wireless identification - PSD-based fingerprinting

notably for real time execution. Finally, in section 4.8, we first discuss the exper-
iments we have carried out to apply this method to detect rogue base stations in
mobile telephony, as well as the various challenges posed by OFDM to spectrum-
based approaches such as ours in section 4.7, and then we address more broadly the
limitations and possible further improvements for future work .

4.1 Context

From a security perspective, wireless communications bring several new threats
specific to the nature of the transmission medium. Indeed, the increased link’s
availability to anyone equipped with a compatible transceiver greatly simplifies
eavesdropping, overshadowing and injection attacks.

However, along with this increase in attack surface, this new industry suffers
from a lack of maturity compared to the more traditional software industry and
wired networks, resulting in poorly protected protocols and a low use of security
measures, such as encryption or signatures.

This leads to the re-emergence of attacks that are known for a long time in
other computer science fields, such as spoofing attacks. Those rely on identity theft,
by injecting illegitimate communications while impersonating a legitimate device.
Unfortunately, such attacks are easy to perform in most short-distance wireless
networks, often only needing a change of MAC address on a standard transceiver
for the protocol to use, without being detected as an anomaly by the actors of a
communication.

As such, specific monitoring systems are needed to address these attacks, and
especially means of uniquely identifying devices. More specifically, one of the most
relevant defensive strategies to detect this type of active attacks is fingerprinting.
Indeed, this technique makes it possible to identify legitimate devices or communi-
cations based on their characteristics, be it from the behaviour of a suspicious node
or identifying features in the emissions on the lower layers.

4.2 Related works

This section describes some related works focusing on fingerprinting methods for
wireless devices.

A common approach is based on the analysis of the transient phase during
which the transmitter starts to communicate. Indeed, this transient phase exhibits
certain distinctive characteristics that are directly influenced by the components
involved and the manufacturing process of the transmitter. Some examples are
proposed in [Hall 2005, Ur Rehman 2012, Köse 2019]. Another relevant work by
Boris Danev’s [Danev 2011, Danev 2012] focusing on RFID devices fingerprinting,
relies on an analysis of the transient phase and of the response time together with
the identification of the modulation used by the device. These solutions that focus
on the analysis of the transient transmission phase are quite demanding in terms of



4.2. Related works 51

reception quality, and require the use of expensive receivers to collect a maximum
amount of information over a short period at the beginning of the transmission
of a frame, which is difficult in practice. Our objective being to propose a low-
cost approach, the solution explored in this paper is based on the monitoring and
acquisition of the entire signal, which requires less precision of the receiver to get the
same amount of data from the emitter. We also want to be able to recognise devices
without having to identify the specific modulation used as proposed by Danev.

Another approach, used in PARADIS [Brik 2008] for IEEE 802.11 devices, con-
sists in capturing the frames and their demodulated version, in order to create an
"ideal" version of the modulated signal and then compare it with the received signal
to capture specific artifacts that are inherent to the transmitter or the channel.
However, this approach is protocol-dependent and is difficult to generalise to other
modulation schemes and protocols. Based on our experience, capturing and pro-
cessing signals in real-time is challenging due to potential desynchronisation of the
received signal and the regenerated one.

Other state-of-the-art solutions use Physical Unclonable Functions (PUF)
to support device authentication and identification. They actually implement
"challenge-response" mechanisms related to the physical characteristics of the de-
vices, and cover much more than simple signal processing, as they are based on
any uniquely identifiable mechanism that can be linked to any physical object.
Some works are related to Radio-Frequency based PUF for IoT security, such as
the RF-PUF [Chatterjee 2019], an approach based on amplitude, phase and DC
offsets relatively to an "ideal signal" in protocols using a 16-Quadrature Amplitude
Modulation (16-QAM), e.g., such as for IEEE 802.11, and on classification with
a neural network to identify devices. These solutions are usually not generic and
costly and their efficiency is generally assessed by simulation.

Some interesting works focus on the characterization of the device behaviour
when faced with specific errors or alterations of the packets. For instance, in
[Ramsey 2015], the authors study the reception rate of different devices when packet
headers are modified, to uniquely identify devices based on their tolerance to those
modified packets. Some physical fingerprinting methods have been also proposed
for specific applications or devices, for example to distinguish two brands of mo-
bile phones in [Nouichi 2019], or in [Hasse 2013]. These methods focus on specific
protocols and on the differences they can detect among a given set of devices. Our
approach, however, aims to address all possible protocols.

In the general context of device fingerprinting, several studies focused on
upper-layers fingerprinting, analysing features such as counters, headers con-
tent and software or hardware specific parameters. For example, several fin-
gerprinting and anti-fingerprinting methods have been investigated in the con-
text of web-browsers in order to identify a user without the use of cookies
[Laperdrix 2019, Eckersley 2010, Boda 2011].

Our goal is to propose a new device fingerprinting approach that can efficiently
mitigate spoofing attacks that are not detected at the link-layer, while being inex-
pensive (e.g., not requiring high-quality receivers) and easy to deploy. Our approach



52 Chapter 4. Wireless identification - PSD-based fingerprinting

based on the PSD of the physical signal, sampling at a low rate the entire signal, is
designed to fulfil this objective.

4.2.1 Choice of the PSD-based fingerprinting

In this chapter, we present a novel method for fingerprinting IoT devices from their
Physical Layer communications that aims to address these limitations. Unlike the
existing solutions from the same category, which generally focus on the analysis of
the transient phase during which a device starts communicating, which requires the
use of high precision equipment, our method is based on the analysis of the entire
physical signals emitted by the devices without relying on expensive hardware, and
is validated and assessed experimentally in a variety of experimental conditions.

The proposed approach is designed to provide a complementary protection
against spoofing attacks in Smart buildings, factories or homes. It focuses on
analysing the Power Spectral Density (PSD) of physical signals to identify legit-
imate objects and use the fingerprints of these objects to detect potential intruders
in the wireless environment. These fingerprints allow each device to be uniquely
identified because they reflect the imperfections of hardware emitter components
which are specific to each device. PSD has been chosen instead of the most com-
monly used Fast Fourier Transform (FFT), particularly for its resilience to phase
offsets. The effectiveness of this technique is based on the difficulty for an attacker
to clone the imperfections of the hardware that produce the spectrum variations.
Indeed, to our knowledge, cloning such a fingerprint would require the use of a very
expensive transceiver capable of operating at very high sampling rates, while being
able to compensate for the impact of its own imperfections on the received and sent
signals, which implies building a complex model of the interferences it produces.

Overall, this approach presents several benefits:

• Low cost: it doesn’t require high quality receivers as it focuses on entire signals

• Generic: it supports the main modulation schemes traditionally used in smart
environments, with a minimum of information about the protocols in use

4.3 Approach overview

This section outlines the principles of our approach and our assumptions about the
targeted context and threat model.

Our approach is intended for use in a smart environment, in which the legitimate
connected devices to be monitored are deployed at specific locations of the environ-
ment, using heterogeneous wireless communication protocols, such as BLE, Zigbee,
WiFi, ... A possible generalization of our approach to IoT environments including
mobile objects, on which we started working, is discussed in Section 4.6. Typical
use cases include smart buildings equipped with many sensors aiming at optimizing
the energy consumption of the building, a smart factory in which some legitimate
connected devices are used to perform some specific tasks, or smart homes in which



4.3. Approach overview 53

different sensors of a physical intrusion detection system are deployed at different
locations. The proposed approach aims at detecting an attacker entering the smart
environment, carrying some connected devices implementing various wireless proto-
cols that they use to impersonate a legitimate device. We assume that the attacker
is able to run spoofing attacks targeting any layer above the link layer of the OSI
model. For that purpose, they may use a programmable dongle supporting the
targeted protocol, or an SDR (Software Defined Radio) to perform replay attacks
or to re-create a physical-layer signal corresponding to the link-layer data to be
transmitted. However, we assume that the attacker is not able to exactly replicate
the physical imperfections of the legitimate transmitter. Indeed, for replay attacks,
a high quality SDR would be required and, for a pure spoofing attack, the attacker
would also need high expertise in signal processing to be able to replicate such
imperfections while sending arbitrary data.

Our approach is designed to create physical fingerprints of the legitimate devices
in the environment, and then to detect potential intrusions by comparing with these
fingerprints captured signals that are identified at the link-layer as being transmitted
by one of the registered devices. It can be decomposed into three main steps:

1. Fingerprint creation: acquisition of Physical Protocol Data Unit (PDU) sig-
nals from each legitimate device, and computation of the PSDs associated to
these different signals. Each set of PSDs from a device constitutes its finger-
print. The fingerprints of all legitimate devices are then saved in a fingerprint
database.

2. Cluster computation and Device fingerprints similarity analysis: measurement
of the similarities between all the device fingerprints, then clustering of the
different PSDs, using a community detection algorithm. The similarity matrix
and the community for each PSD are then saved in an additional database,
called device communities database, for further analyses.

3. Intrusion detection: The PSD of each incoming signal whose address cor-
responds to a legitimate device is compared to the fingerprints previously
registered in the database in Step 1, by computing its similarity with each
fingerprint in order to estimate whether or not it belongs to a known commu-
nity.

This approach is illustrated in Figures 4.1 and 4.2. Fingerprint creation is first
performed off-line, for each legitimate device of the smart environment. These
fingerprints along with the device similarity matrix and the identified communities,
are saved respectively in the fingerprint and the device communities databases.
This fingerprint creation is performed inside the smart environment, including all
the legitimate devices at their dedicated location, by means of Software Defined
Radio (SDR) devices, purposely installed in the environment at strategic locations.
The intrusion detection is then performed on-line, by capturing the signals emitted
by the different connected devices of the smart environment (including possible



54 Chapter 4. Wireless identification - PSD-based fingerprinting

malicious devices carried by attackers entering the environment and impersonating
a legitimate device at link layer1) and comparing these signals to the previously
saved fingerprint. This comparison algorithm takes as inputs the similarity matrix
and the communities previously saved in the device communities database. Note
that it is easy to integrate new legitimate objects into the smart environment. This
simply consists in executing the two first steps described above in order to create the
fingerprint of this new object, and updating the similarity matrix and the clusters.

Figure 4.1: Fingerprint creation and cluster computation

4.4 Detailed description of the approach

In this section, we detail the different steps of our approach and their integration.
Subsection 4.4.1 explains the motivations for choosing the PSD for the creation of
fingerprints, and how these fingerprints are computed. Subsection 4.4.2 describes
the algorithms used to measure the similarity between PSDs and the methodology
to compute PSD clusters. Finally, subsection 4.4.3 describes how the intrusion
detection is performed for each incoming signal, based on these clusters and the
PSDs stored in the database.

1A device can be impersonated either by using its link-layer address if it exists, or by mimicking
its behaviour.



4.4. Detailed description of the approach 55

Figure 4.2: Intrusion detection

4.4.1 Fingerprint creation

4.4.1.1 Signal acquisition

To capture the signals transmitted by connected devices, a receiver that can support
all different types of modulations is required, while being affordable and easy to use
with a standard computer. This is why, we have chosen to use Software Defined
Radio (SDR) based devices such as the HackRF One [hac 2022] and the LimeSDR
Mini [lim 2022]. These SDR receivers can be set to operate at given frequency
and sampling rate, and transmit a stream of the captured signals to the computer
dedicated to processing them. They provide streams from which Physical PDUs
must be extracted. For this purpose, we used rising and falling amplitude edges
to detect PDUs, then tried to demodulate them according to the protocol studied.
When a valid PDU is found, the signal corresponding to its entire transmission is
then saved.

4.4.1.2 Power Spectral Density Analysis

In order to extract the frequency characteristics of a signal, a conventional approach
would be to use a Discrete Fourier Transform (or DFT). Indeed, the DFT is a
reversible transformation that converts a discrete signal in the time domain into an
amplitude distribution in the frequency domain, limiting the loss of information.
However, in our approach, we want to be able to deal with non perfect transmitters
that possibly produce different phase offsets for each transmission. As the frequency
is proportional to the derivative of the signal’s phase, non predictable phase offsets
lead to different spectral representations of a same device. As a consequence, the
DFT may be problematic for the construction of our fingerprints.

A more relevant approach, commonly used in signal processing, is based on
the Power Spectral Density, or PSD, of the signal. The PSD measures the power



56 Chapter 4. Wireless identification - PSD-based fingerprinting

distribution of the frequencies of an entire signal, but with a loss of time information
(unlike DFT, PSD is not a reversible transformation). It is calculated as follows:

PSD(s(t))(f) = DFT (s(t) · s∗(−t))(f)

the "·" operation being the convolution between signals and s∗ being the conjugate
form of the temporal signal s.

Among the interesting properties the PSD exhibits, the one we are interested in
is its independence from phase offset. PSD, like DFT, has the property of isolating
the spectral components of a signal. We assume that a specific object, in addition
to the frequencies related to the payload sent, exhibits specific transmission profiles
on different frequencies, which are highly dependent on its physical components and
the quality of the manufacturing. As illustrated in Figure 4.3, we believe the PSD
is a relevant candidate to efficiently isolate different emitters by their frequency
usage profile2. In this figure, two different Bluetooth Low Energy (BLE) devices
are analysed: a dongle and a lightbulb. The PSD curves correspond to three PDU
transmissions from each device. It can be seen that different PSD profiles are
associated to each BLE device.

We then decided to use PSD-based fingerprints of a device in our approach. To
build these fingerprints, we record a set of physical signals from the device, each
corresponding to the entire emission of a single PDU, then we compute the PSDs
of those signals and store them as the fingerprint of the device.

Figure 4.3: PSD for two distinct BLE devices (3 PDUs each)

2We discuss the experimental efficiency of our approach in Section 4.5.



4.4. Detailed description of the approach 57

4.4.2 PSDs similarity analysis and clustering

4.4.2.1 Similarities computation

Our approach is based on the measurement of similarities between pairs of PSDs.
For that purpose, we experimented several metrics:

• Metrics based on the occurrence of specific frequencies among top 10% fre-
quencies with highest measured power: The similarity measure corresponds
to the number of common frequencies in the top 10% of the PSD pair to be
compared.

• Metrics based on top 10% highest power frequencies, and the difference be-
tween their "rank": we proceed the same way as for the previous metric, taking
into account in addition the difference of "rank" of the common frequencies in
the sorted 10% of highest power, to compare their "importance" in the signal.

• Metrics based on top 10% highest power frequencies, and the maximal "rank"
of each one: instead of comparing the ranks, we take into account the highest
one in the pair to compare, to measure its maximal importance.

• Metrics based on the distance between the PSDs curves.

The first type of metrics aims at isolating the frequencies that are actually
specific to the devices, and compare their importance in the different signals. How-
ever, considering only the frequencies with the highest power may lead to ignoring
potential weaker parts of the signal’s spectrum, that are also characteristic of the
device. Similarly, isolating only the weakest parts would ignore relevant frequencies.
Therefore, we also experimentally explored the possibility to only use the "ranks"
over the entire frequency spectrum. However, with the whole spectrum or only a
part of it, the results were at best equivalent to those obtained with distance-based
metrics, and at worst equivalent to a random identification in the case of only
analysing the presence of these specific frequencies among the most powerful ones.
As a consequence, and also because of its simplicity, we opted for distance-based
metrics.

We tested several distances, such as the euclidean distance between PSDs, aver-
age and max by-frequency L1 and L2 distances, also called the Manhattan distance
and the Euclidean distance. We obtained the best results with the max by-frequency
L2 distances between PSDs as the distance between two PSDs defined as follows:

D(PSD1, PSD2) = max((PSD1(f) − PSD2(f))2) (4.1)

This distance was thus adopted in our approach. The next step consists in defining
a similarity measure to estimate the proximity between a given PSD and other
PSDs. Since our PSDs are normalised, the distance D is always between 0 and 1.
Hence, we decided to simply take 1 − D as our similarity measure. However, in
order to have a clear separation between similar and dissimilar PSDs, we decided



58 Chapter 4. Wireless identification - PSD-based fingerprinting

to amplify the differences by lowering the values close to 0, leading to the following
similarity measure:

S(PSD1, PSD2) = [1 − D(PSD1, PSD2)]amp (4.2)

Parameter amp is evaluated empirically for each protocol.

4.4.2.2 Community detection

The next step is then to create "clusters" of PSDs corresponding to the physical
PDUs from a given source. To visualize the similarity between PSDs, a graph is
generated in which each node is associated to one individual signal’s PSD, and the
edges between the nodes are labeled with a weight corresponding to the similarity
measure between the PSDs. A community detection algorithm is then applied in
order to group into clusters similar PSDs that are likely to correspond to commu-
nications from the same device.

Several community detection algorithms are proposed in the literature. Random
walk algorithms, such as walktrap [Pons 2006], randomly crawl a graph to compute,
for each pair of nodes, estimates of the probabilities to move from one to the other
in a given number of steps. Then, based on these probabilities and nodes degrees it
estimates the likelihood for each pair of nodes to be in a same community. Commu-
nities that are close according to a distance based on these probabilities and degrees
are then grouped iteratively, starting with each node in an independent community.
Another approach is based on k-means and k-medioids [Kaufmann 1987] algorithms,
which take as a parameter the number of clusters to build, start by randomly adding
nodes to clusters, then iteratively compute the center of each cluster (either a
barycenter for k-means, or the node considered as the most central for k-medioids)
and add again nodes to the cluster of the nearest center. Modularity-based al-
gorithms, such as Girvan-Newman [Girvan 2002] or the fast-greedy [Clauset 2005]
(which is faster in the case of sparse graphs), add nodes to individual clusters, then
merge iteratively the two clusters that maximise the modularity of the whole graph
(the modularity measures the quality of the partition based on the number of inter-
community and intra-community edges), forming a dendrogram with the successive
merges.

In our approach we chose the fast-greedy algorithm to build "communities" of
PSDs, each corresponding to a given object, for several reasons:

• Weights can be assigned to edges.

• It is quite fast. A graph with n nodes, m edges and a dendrogram describing
the community structure of depth d, results in a O(md log2 n) time complexity.
Indeed, in our case, since we have a near-complete graph m = O(n2), and the
dendrogram depth is in O(log2 n), the fast-greedy algorithm has a complexity
in O(n2 log2

2 n).

• It is deterministic, unlike random walk algorithms.



4.4. Detailed description of the approach 59

• In the implementation we used (see Section 4.5), it can estimate the number
of clusters to create, unlike k-means or k-medioids for which this number must
be provided by the end user. This would be difficult in our approach since,
even if the number of legitimate devices is known, the presence of outliers
could lead to the creation of additional clusters, whose number is unknown.

4.4.2.3 Cleaning and saving the data

The final step is to identify potential outliers, to avoid taking them into account in
the cluster databases, and to find out whether an incoming signal being analyzed
corresponds or not to one of the known devices. We define a PSD as correctly iden-
tified by the community detection algorithm if it is included in a cluster containing
a majority of the PSDs from the same device.

Three types of outliers can be distinguished:

• Unidentified signals: signals forming small external communities outside the
"main" communities containing a majority of signals from a device.

• Identified distant signals: signals included in the right community, but lo-
cated far from its other members.

• Wrongly identified signals: signals included in a wrong community.

We first address the issue of unidentified signals, forming small external commu-
nities, by removing the clusters with too few members which are likely to correspond
to outliers. For each experiment, we empirically defined a threshold below which
the cluster is considered too small, relatively to the number of signals per device in
the experiment.

Identified distant outliers which correspond to PSDs correctly identified in a
cluster but far from the other members of the cluster are also removed. These
are problematic because a signal from another source, with interferences from the
environment, may be close to those outliers, and hence could be recognised as
member of the same cluster. To identify these outliers, we measure, for each PSD,
its average similarity with the other PSDs of the same cluster. Then, we calculate,
for each one of them, the average similarity between a given PSD and the other
members of this cluster:

S(PSD, cluster) = 1
|cluster|

∑
P SDi∈cluster

S(PSD, PSDi) (4.3)

Assuming that the signals follow a normal distribution around the average,
and that most of the signals are legitimate, an assumption consistent with our
experimental results, we measure the standard deviation of these average similarities
σS in a given cluster, and remove the PSDs whose average similarity with the cluster
is too far from S, the average of the different S for this cluster defined as follows:



60 Chapter 4. Wireless identification - PSD-based fingerprinting

S(cluster) = 1
|cluster|

∑
P SDi∈cluster

S(PSDi, cluster) (4.4)

We chose to remove all PSDs that have less than 99.7% chances to be inside
the cluster according to the hypothesis of a normal distribution, which means the
PSDs whose associated S is below a threshold defined as follows:

threshold = S − 3 ∗ σS (4.5)

These S values, along with the average and standard deviation for each cluster,
are saved to be used subsequently for intrusion detection, as explained in 4.4.3.

After the removal of these outliers, we obtain a list of "clean" clusters and
the corresponding signals. Then, the following information is needed for intrusion
detection:

• The PSDs of the signals used for this step.

• The similarity matrix between the different PSDs.

• The cluster associated with each one of them (outliers are labeled as in an
"outlier cluster" numbered -1).

• The average and standard deviation of the average similarity between a PSD
and the rest of the cluster for each cluster.

4.4.3 Detection

The detection phase consists in analysing the signals captured in the operational
smart environment in order to estimate whether they come from a known legitimate
device or from an unknown one. A new incoming physical PDU is hence analysed
as follows:

• The signal corresponding to this PDU is isolated according to the approach
described in Section 4.4.1.1.

• The PSD of the signal, noted Ps is compared to the other ones (by computing
the similarity measure defined by equation 4.2).

• The average similarity for each PSD in each cluster is computed (except cluster
-1) as defined in equation 4.3.

• This average similarity S(Ps, cluster) is compared to the average S (as defined
in equation 4.4) and standard deviation σS of S previously saved for each
cluster, identifying possible clusters for the objects based on the proximity
of its average similarity to the reference one, using the threshold defined in
equation 4.5. If the PSD fits with more than one cluster, the most relevant
is selected according to the similarity to the reference average similarity and



4.5. Experiments 61

the standard deviation of those similarities. Otherwise we consider the signal
as an anomaly (that may correspond to an attack).

Note that we deliberately did not consider the approach that consists in re-
computing the clustering algorithm to obtain the cluster in which the new signal’s
PSD would be located. Indeed, this algorithm would take too much time whereas
our detection approach must be performed in real-time.

4.5 Experiments

This section presents several experiments we carried out in order to assess the
relevance of our approach. We first describe the experimental setup in Section
4.5.1. Section 4.5.2 is dedicated to the presentation of small scale experiments, 1)
using two devices sending the same data each at two different positions to evaluate
the impact of position on device recognition, and 2) using three different devices
at static positions, still sending the same data. Section 4.5.3 is dedicated to the
presentation of higher scale experiments on sets of 10 different devices, to evaluate
our performances with more emitters. Finally, in Section 4.5.4, we describe some
experiments carried out on sets of around 20 identical devices. A summary of the
different parameters used in all the experiments, which we further explain through
the following subsections, can be found in Table 4.1. The section ends with a
discussion about the scalability and the performances of our approach. Note that
the signals we captured, along with the similarity matrices and the results from our
clustering, can be found in [dat 2020].

Table 4.1: Parameters of the different experiments

experiment number of sets per set size set size number of signals total number of
devices device fingerprint testing per fingerprint signals for testing

B-1 2 2 133 67 26600 13400
B-2 3 1 67 33 20100 9900
D 10 1 67 33 67000 33000

E-Zigbee 20 1 67 33 134000 66000
E-BLE 18 1 67 33 120600 59400

4.5.1 Experimental setup

Our objective was to design a tool that would be easily accessible to researchers,
requiring more affordable hardware than the approaches based on high-precision
captures. Accordingly, we selected two different SDRs during our experiments, the
HackRF One and the Lime SDR Mini. The HackRF One is cheap and easy to
set up, therefore good for prototyping, while the Lime SDR Mini is a little more
expensive but offers better capture precision and stability. Our implementation
uses Python3 and the igraph[igr 2022] package for graph creation and management
as well as for the fast-greedy community detection algorithm. For all experiments,



62 Chapter 4. Wireless identification - PSD-based fingerprinting

the SDR device (HackRF One for testing, then LimeSDR for the final results) was
plugged into a laptop located at a specific position.

For our experiments, all incoming signals are demodulated to ensure that they
are generated from an identified device, before processing them by our approach.
Acquisition, demodulation and signal processing were all implemented in Python3
to ease prototyping. An alternative solution would be to use a compiled language
to improve real-time performances.

4.5.2 First experiment

For the first experiment, we considered a reduced set of BLE devices to assess,
at a small scale, the efficiency of our approach in creating distinct fingerprints for
different devices. For this experiment, we considered two different setups. For
each setup, the experiment consisted first in running the fingerprints creation and
PSD clustering steps of our approach and then in evaluating the efficiency of our
detection algorithm in the presence of illegitimate devices. In the first setup (B-1
in 4.1), a connected power outlet and a BLE embedded chip were used to transmit
the same data. Two different locations are also considered to capture the PDUs
sent by the two sources.

As illustrated in Figure 4.4, the PDUs from the outlet and those from the dongle
are perfectly separated into two distinct clusters, independent of the location of
the signal acquisition device, without errors and without any outlier found during
the cluster creation step. The nodes represent the PSDs and the edges represent
the similarities between PSDs, weighted by our similarity measure. The graph is
visualised using a positioning algorithm known as the spring layout, which positions
nodes on a graph by grouping "close" nodes relatively to the weight of edges linking
them, representing their similarities. This graph is only used for this visualisation
purpose, and is not used in the fingerprinting or intrusion detection algorithms.

Figure 4.4: First experiment results visualisation - Setup B-1



4.5. Experiments 63

In the second setup (B-2 in 4.1), we run a similar experiment with three dif-
ferent transceiver: the same BLE-connected power outlet and two different BLE
transceivers from different manufacturers (CSR, which is a BLE dongle, and BLE-
chip, which is a Raspberry Pi’s Broadcom embedded chip). The results of the
clustering algorithm are displayed in Figure 4.5, again showing a clear separation
between the different devices.

Figure 4.5: First experiment results visualisation - Setup B-2

In order to assess the detection efficiency of illegitimate devices, we collected 200
signals from each device, and adopted a 100-cross validation approach. The devices
are first separated into two sets, one playing the role of the legitimate device, the
other the role of the attacker (in the second setup of the experiment, we considered
one device as the attacker and two as legitimate).

At each iteration, the data set of each legitimate device is split in two parts:
two thirds of the data set are used to compute the fingerprints, similarities and
clusters, and the last third is used to assess the detection efficiency (to evaluate the
false positive rate). Similarly, one third of the data set associated to an attacker
device is used to run the detection algorithm and check whether the corresponding
PSDs are correctly included in new clusters, different from those associated to the
legitimate devices, or are considered as outliers. We chose to use only a third of
the attacker’s PDUs for each test to reduce the difference between legitimate and
non legitimate packet numbers. In this experiment, we used 100 signals in each set
(each position for each device), ran 100 iterations of this process, and decided to
consider a cluster to be too small if it contains less than 49 members. We used the
same values for those parameters in each of the following experiments.

The results obtained after running those 100 iterations are presented in Table
4.2. The metrics used are defined as follows:

• Accuracy: assesses the success rate of our algorithm, calculated with the
formula T P +T N

T otal .

• Precision: is related to the probability of false alarm, given by T P
T P +F P .

• Recall: is related to the non-detection probability, calculated with the formula
T P

T P +F N .



64 Chapter 4. Wireless identification - PSD-based fingerprinting

With TP/FP being the true/false positive rates, and TN/FN being the true/false
negative rates.

Table 4.2: First experiments - results

Metric B-1 B-2
Accuracy 91.73% 100%
Precision 83.46% 100%

Recall 100% 100%
TP 33000 33000
TN 27541 66000
FP 5459 0
FN 0 0

From this first experiment, we conclude that our approach is able to distin-
guish different objects on small sets. It can also be seen from the first setup of
the experiment that the position has a significant effect on the frequency profile of
the devices, but no significant impact on the efficiency of our approach to separate
different emitters. The sensitivity of the frequency profile to the position can be
explained by the impact of multipath-delay in wireless communications, especially
indoors, that generates Inter-Symbol Interferences (ISI) in the signals due to reflec-
tions on different surfaces, and hence depends on the positions of the emitter and
receiver and the surfaces present around them.

4.5.3 Generalisation - second experiment

In this experiment, we validated the approach at a larger scale, using ten differ-
ent BLE devices: 1) a Bluetooth USB dongle from Cambridge Silicon Radio, 2)
an iPhone, 3) a Samsung smartphone, 4) a raspberry pi 3B (using its Broad-
com BCM43438 WiFi/BLE chip), 5) a WiFi/Bluetooth embedded chip (Qual-
comm Atheros QCA6174), 6) an electrical outlet with a Texas Instruments (TI)
BLE transceiver, 7) 2 different connected lightbulb models, also using TI BLE
transceiver, 8) a thermometer using a TI BLE transceiver, and 9) a Bluetooth-
connected key ring (using a BK3231 chip).

The results of the clustering algorithm are displayed on Figure 4.6. Accuracy,
Precision and Recall results generated from 100 cross-validation assessments, with
the same proportions as the previous experiment, and selecting each time randomly
half of the emitters as intruders, are presented in Table 4.3.

Table 4.3: Different devices, BLE - results

Metric BLE different devices
Accuracy 91.50%
Precision 85.81%

Recall 98.01%



4.5. Experiments 65

Figure 4.6: Visualisation of the data from the different BLE devices

The visualisation of the PSDs and their similarities shows the presence of several
outliers, that form small clusters of one or two PSDs, but despite their presence, the
different devices are well isolated, their PSDs forming separate groups. The results
show that our approach is able to efficiently detect the "attackers" and recognise the
legitimate registered devices, though with a higher false positives rate compared to
the smaller-scale previous experiment. This is reflected by a lower precision (which
stems from the presence of outliers, or from the relative proximity between some
devices). Nevertheless, the overall efficiency of our approach to detect an intrusion
inside a smart environment containing diverse legitimate connected devices stays
high, with a recall rate over 98%.

4.5.4 Identical devices

In the last experiment, we tested our approach on sets of identical BLE and Zigbee
devices: 18 NRF52840 chips implementing BLE protocol and 20 XBee chips imple-
menting ZigBee protocol. The devices emit the same data from similar positions.
The results for the Zigbee and BLE cross-validations can be found in Table 4.4, and
the visualisation of the PSDs similarities for Zigbee devices is presented in Figure
4.7. Moreover, we can conclude that the LimeSDR gives indeed better results than
the HackRF in our Zigbee experiment, while they remain comparable for BLE.

Even though in both cases, our visualisation highlighted a potential collision
between two emitters (as shown in Figure 4.7 between xbee9 and xbee20 for Zigbee
devices), the overall performance of our algorithm in separating the devices and
detecting potential intruders, as reflected by accuracy, precision and recall measures,
remains high.

Moreover, it is important to underline that the attacker model used in this
experiment is quite pessimistic. Indeed, we consider that the attacker is able to



66 Chapter 4. Wireless identification - PSD-based fingerprinting

Table 4.4: Same manufacturer, same model - results

Metric Zigbee Zigbee BLE BLE
LimeSDR Mini Hackrf LimeSDR Mini Hackrf

Accuracy 93.74% 81.09% 94.12% 95.81%
Precision 96.86% 85.85% 95.87% 94.89%

Recall 87.62% 66.20% 92.67% 97.16%

Figure 4.7: Visualisation of the data from identical ZigBee devices

know or guess precisely the model of all legitimate devices, and is able to get a high
number of identical copies of each specific model, and to use them in approximately
the same location as the legitimate ones. This makes this kind of situation, and
hence these collisions quite unrealistic in usual smart environments. Moreover, even
in this pessimistic situation, our approach still exhibits fairly good detection results,
which, we believe reinforces its relevance.

4.5.5 Performances and Scalability

In this section we address the scalability of our approach and estimate the associated
performance overhead. Two main parameters are relevant for such analysis: the
number of devices N to be fingerprinted, and the number of PDUs or signals M

to be collected per device to create the associated fingerprints. The processing
time is directly proportional to the number of similarity computations needed to
run the community detection algorithm and create the fingerprints. This number
is equal to

(M∗N
2

)
= (M∗N)∗(M∗N−1)

2 = (M∗N)2−M∗N
2 . Additionally, when a new



4.5. Experiments 67

device is included in the environment and needs to be fingerprinted, considering
there were already (N − 1) fingerprints, the number of similarity computations is
given by

(M
2

)
+ (N − 1) ∗ M2 = (M−1)∗M

2 + (N − 1) ∗ M2 = (2∗N−1)∗M2−M
2 . Figure

4.8 plots (on a log-scale) the evolution of the number of similarity computations
with the number of devices, the number of PDUs per device varying between 10 to
100. Black curves correspond to the case where the fingerprints are computed for
the number of devices indicated on the x-axis, and blue curves correspond to the
case where a new device is added incrementally. It can be seen that for a given
number of devices, increasing the number of PDUs leads to a dramatic increase of
the number of similarities computed, and hence the processing time (the impact
is quadratic). Accordingly, an optimal tradeoffs needs to be achieved between the
number of devices and the number of PDUs.

Figure 4.8: Number of similarity computations estimation

The selection of the optimal number of PDUs should be based on the detection
efficiency of the proposed approach. Table 4.5 presents the results of our intrusion
detection algorithm in the case of the experiment with BLE devices presented in
Section 4.5.4, considering different numbers of PDUs per device, varying from 10,
20, 50 and 100, respectively.

The results of this experiment remain excellent with lower numbers of PDUs.
However, the results clearly depend on the experimental environment and more
experiments should be conducted in different environments to analyse the impact
of reducing the number of PDUs on the detection effectiveness. Therefore, we may
observe a higher variability in more noisy environments.

Additionally, Table 4.6 presents the average times, over 100 samples, to compute
the fingerprints measured in our different experiments with different numbers of



68 Chapter 4. Wireless identification - PSD-based fingerprinting

Table 4.5: Same manufacturer, same model - BLE results for different numbers of
PDUs per device

Metric 100 PDUs 50 PDUs 20 PDUs 10 PDUs
Accuracy 94.8% 95.4% 94.5% 95.5%
Precision 93.2% 95.5% 96.5% 95.0%

Recall 97.0% 95.3% 92.9% 96.9%

PDUs. These times remain significantly low even with 100 PDUs per device. Those
times were obtained with a laptop equipped with an i7-7700HQ (3.8GHz) and a
8GB RAM.

Table 4.6: Fingerprint creation measured times

#PDUs B-1 B-2 D E-BLE E-Zigbee
100 10.09s 10.34s 1mn 40s 2mn 12.30s 3m 34.21s
50 1.85s 1.84s 8.88s 11.56s 21.00s
20 1.13s 1.13s 1.83s 1.84s 4.51s
10 1.04s 1.03s 1.21s 1.12s 2.41s

Based on the numbers presented in Table 4.6, the estimated time to create the
fingerprints of 100 devices with 100 PDU per device is around 90 mn and it takes
only a few minutes to create incrementally the fingerprint of an additional device.
These times are significantly reduced to around 60 mn and 30 sec, respectively if
we only consider 50 PDUS per device.

4.6 Extension to dynamic environments

The approach as previously presented suffers from some drawbacks, we then decided
to work on improvements to tackle them. This approach is still a work in progress,
and no publications were currently made on them.

The main additions we made are:

• dynamic updates, or on-line updates, i.e. updates of the fingerprint
database while the detection intrusion is running by replacing the oldest fin-
gerprints by new ones if they are close enough from the corresponding cluster

• full real-time re-implementation in C to make full use of this new feature,
and to allow for real-life intrusion-detection experiments, and finally

• metrics and detection measures improvements from the signal process-
ing point of view, to improve our detection accuracy



4.6. Extension to dynamic environments 69

4.6.1 Real-time and accuracy improvements

In this section, we expose the different improvements made to our initial approach,
in order to address its main issues, namely its limitation to static environments
because of fingerprint shifts and its desynchronization over time for the same reason,
and to improve the detection accuracy.

4.6.1.1 Dynamic updates

Figure 4.9: Loopback for dynamic fingerprint updates

During our experiments, we realized the legitimate signals were progressively
shifting away from the initial fingerprints. This can be due to different factors in
the environment and the devices themselves, such as variations in temperature,
a drift in the frequency due to a clock desynchronization, or even addition and
removal of devices. This issue could, after some time, result in a gap between the
initially computed fingerprint and the device’s emissions sufficient to detect it as
an intruder.

As this shift occurs progressively, it can be compensated by following the modi-
fications in the emission profiles during real-time reception. Thus, we modified our
approach so that the fingerprint database would be updated during our intrusion
detection phase, registering the variations in the device’s emissions.



70 Chapter 4. Wireless identification - PSD-based fingerprinting

We do so by evaluating our confidence in negatives, i.e., frames not detected
as intruders, to check if we are almost sure that the frame is indeed from the
corresponding legitimate emitter. If so, we then remove the oldest PSD registered
in the corresponding cluster, and replace it with the new one, while updating the
similarity matrix accordingly. This mechanism as we implemented it is illustrated
in figure 4.9, updating the two databases of our approach during the intrusion
detection phase depending on the result of community estimation.

A possible issue with this mechanism would be an attacker trying to artificially
shift the fingerprint of a device in a direction of their choosing, by replaying frames
close enough from the current cluster repeatedly until they control entirely the
content of the cluster, for example to make an illegitimate emitter considered as
legitimate. However, to do so, the attacker would need two prerequisites: 1) a prior
knowledge of the content of the cluster at the moment they want to attack, and
2) the ability to create successive signals that are considered close enough from
the original cluster by the system, and that shift progressively in the direction
they want. Please note that filling the second condition would also mean that the
attacker would have already been able to bypass the system by creating signals
falling into the legitimate cluster.

While the first condition could realistically be met if the attacker uses a receiver
similar to the one used by the Intrusion Detection System (IDS) to create similar
fingerprints from their end, the second is significantly harder to meet. Indeed, to
perform this attack, the attacker needs to first generate an array of signals progres-
sively shifting to the position they want from the current position of the cluster,
and then emit the elements of the array one after the other in order to compensate
for the possible legitimate packets that are still sent, or emit less while blocking
the transmissions from the legitimate object. While it seems easy to perform in a
simulated environment, a simple interpolation between the starting PSDs and the
target ones allowing to create the array, it is in fact highly challenging to perform
in real conditions, first because of the possible mistakes made on the starting point
estimation, but also and above all because of the interferences the emitting hard-
ware adds to the signal. The attacker would then need to estimate the correction to
apply to the central frequency and the modifications on the spectrum of the frames
sent to compensate for this effect, additionally to the initial array generation. To
our knowledge, such attack would then require both high-end equipment and a high
level of expertise from the attacker.

4.6.1.2 Real-time implementation

Another limitation to our previous works was the fact that our Proof-of-Concept
implementation was not able to perform in real-time, the processing speed being far
too low compared to the frame reception rate. This was mainly due to the use of
Python, which we chose for its ease-of-use, but introduces a significant overhead to
the computations. We then re-implemented the initial Proof-of-Concept, with the
addition of the other improvements presented in this Section, in C. This allowed us



4.6. Extension to dynamic environments 71

to reduce the computing overhead enough to allow for a real-time use of the IDS,
and to use the dynamic fingerprint updates previously presented.

As we present further in section 4.6.2, the tool now follows a more modular
architecture, separating each unique function in a single process, each process com-
municating with the others with specific Unix FIFOs depending on their function.

4.6.1.3 Detection improvements

This new implementation of our approach includes multiple improvements, to better
receive the packets, to improve the detection accuracy, and to better separate the
different parts that make a fingerprint unique.

In an ideal world, the emitter and the receiver have their oscillators perfectly
synchronized, and emit or receive exactly on the right frequency for the channel
in use. However, those devices always exhibit inaccuracies in their oscillator fre-
quencies. This results in a frequency offset in the received signal on our receiver’s
end. Interestingly, a given emitter presents a specific shift profile compared to our
receiver, characterized by its average and variance.

Our first approach didn’t make full use of this error, even if it was appearing
in the resulting PSDs, the frequency shift resulting in a shift of the PSD. However,
the variability of this offset could also make the same object’s fingerprint quite
inaccurate, taking into account multiple shifted versions of similar PSDs. We then
decided to detect this frequency offset, by identifying the frequency offset compared
to our reception frequency, in order to 1) correct it before comparing the different
PSDs, and 2) take it into account in our similarity measure.

The identification of the central frequency is done by computing the signal’s
Fourier Transform (FT), and then getting the average of the frequencies, weighted
by the corresponding FT amplitudes, as follows:

f̂c =

∑
f

f ∗ S(f)∑
f

S(f) (4.6)

With f̂c the central frequency estimate and S the FT of the starting signal.
This allowed us to correct the frequency of the signal prior to computing its

PSD, in order to minimize its impact on the shape comparison of our algorithm.
However, even if it was introducing inaccuracies in this measure, the frequency
error remains an identifying feature for the emitters, we then needed to take it into
account in our similarity measure. To do so, we also registered, along with the
device’s fingerprint, the different corresponding frequency estimations, in order to
check, while receiving, whether the frequencies estimated for the received object
correspond to the ones that were registered. More precisely, we maintain a cyclic
buffer of frequency estimations for a given recognized cluster during the intrusion
detection phase, and once the buffer contains as many frequencies as the registered
one corresponding to the cluster, we compare the two distributions by using their



72 Chapter 4. Wireless identification - PSD-based fingerprinting

0 5 10 15 20 25 30 35
indices

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
ro

ta
tio

n 
sp

ee
d

(a) Wrong filter

0 5 10 15 20 25 30 35
indices

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

ro
ta

tio
n 

sp
ee

d

(b) Matching filter

Figure 4.10: Examples of cross-correlations with different filters



4.6. Extension to dynamic environments 73

cross-correlation. This gives an additional feature that could give away an attacker
that passed the PSD similarity test, but with a different frequency error repartition.
The choice of the cross-correlation to measure this similarity was mainly due to the
possible presence of frequency hopping, that did not allow for a simple comparison
of the actual values of the frequency errors.

We then also decided to change entirely the similarity computation with a new
version, also replacing the initial distance computation by a correlation computa-
tion, to minimize the impact of a possible remaining shift in the frequency do-
main. The new similarity measure is then defined as the maximum of the cross-
correlation between the two PSDs S = max(RP SD1,P SD2), with RP SD1,P SD2 the
cross-correlation between PSD1 and PSD2.

Finally, the demodulator of our initial approach was simply "demodulating" the
stream of IQ samples coming from the receiver trying to find valid data, using a
basic majority vote algorithm. For example, if the sample rate is three times the
symbol rate of a binary protocol we want to demodulate, we take the bits three by
three, and then check which bits are in majority in each group of three. However,
this algorithm loses a high number of packets, possibly allowing an attacker to send
attacks spread in time and possibly not be detected.

We then decided to improve the algorithm, by implementing a filter bench
containing various common pulse-shaping filters with different parameters. The
cross-correlation with each filter gives, for each index in the signal, a value whose
amplitude is higher if the signal contained a shape near the one of the filter at
this index. Moreover, the amplitude is also lowered if the signal had not the right
shape. One interesting thing is that, the cross-correlation being linear, if we choose
a pulse-shaping filter matching the one used for the emission, we get amplitude
peaks where the symbols are from the original signal, and reduce the impact of
the additive noise on the resulting signal since it doesn’t follow the shape of the
filter. We then represent the different cross-correlations as eye-diagrams, that we
presented in Chapter 2, to analyse the resulting signal-to-noise ratio. Examples of
eye-diagrams for a wrong filter and matching filter on a noisy signal can be seen in
figures 4.10a and 4.10b. The signal-to-noise ratio can be determined by computing
the average and variance of the eye’s amplitude at each index, a high average and
low variance meaning that the signal-to-noise ratio is high, and vice-versa. Since a
high noise can produce a high average amplitude, this average can’t be used alone.
We finally choose the filter that gave, for one of the indices in the corresponding
eye-diagram, the maximal signal-to-noise ratio, and take the index at which this
maximum was reached as the moment of decision for demodulating. This method,
used with common pulse-shaping filters, allows for a better demodulation of most
protocols, without prior knowledge on the filter’s specification.

4.6.2 Tool architecture

Finally, we worked on a cleaner and more maintainable and customizable architec-
ture for our tool.



74 Chapter 4. Wireless identification - PSD-based fingerprinting

PSD 
FIFO

L2 
FIFO

LTE 
FIFO

detect_pss

intrusion_detection

monitoring_*recup_dsps_*

sweep_LTE

basic_receiver

CSV

single_LTE

Figure 4.11: Modular tool architecture



4.7. Application to mobile telephony 75

One of the main issues that prevented a real-time use of our algorithm was
the initial implementation in Python, with eased greatly the development process,
but introduced a significant overhead due to the fact that Python is an interpreted
language. We then decided to do a new implementation in C/C++, allowing us to
drastically reduce this overhead and optimize from a very low-level perspective the
signal processing primitives needed for our algorithm.

This new implementation, illustrated in figure 4.11, works in different levels,
communicating by the means of UNIX FIFOs, the three main levels being:

• Packet detection and isolation: the modules on this level, detect_pss and
basic_receiver in the current state of the implementation, detect the presence
of packets in a stream. They then isolate the corresponding IQ samples,
compute their PSD, and store both the temporal signal and spectrum in a
FIFO called PSD FIFO

• Detection of data of interest: the modules on this level take the data sent
by the previous one, and analyse it depending on the protocol to monitor.
They are split in two categories, one saving the signals and PSDs in CSV files
to compute the fingerprint databases afterwards, the other forwarding them
in another FIFO called L2 FIFO for real-time intrusion detection

• Intrusion detection: this level takes the data forwarded by the previous
level in L2 FIFO to compare it with an existing fingerprint database, in order
to detect if the signal that was received corresponds to a known emitter

Additionally, the remaining level in 4.11, with sweep_LTE and single_LTE,
corresponds to specific processing steps made for fingerprinting 4G base stations,
that use the LTE technology. We discuss in more detail the experiments that were
run with 4G base stations in the next section.

4.7 Application to mobile telephony

As explained in 2.5, the recent mobile telephony technologies use a specific modu-
lation scheme, the Orthogonal Frequency Division Multiplexing. Due to its nature,
this scheme mixes the useful signal that carries data with the entirety of the spec-
trum, making it difficult to extract the impact of imperfections from data-carrying
samples without removing the data from it, hence the need for specific preprocess-
ing.

In our case, we made use of synchronization signals that are sent periodically by
4G base stations, called the Primary Synchronization Signals, or PSS. This signal
is used by 4G users to synchronize with specific time slots in the 4G emissions,
and have 3 possible shapes depending on the base station’s ID. To detect them,
we correlated the flow received from a base station with each of the 3 shapes, and
tried to detect a peak in the correlation’s amplitude. The presence of regular peaks
higher for one of the three shapes than for the others means than this specific PSS



76 Chapter 4. Wireless identification - PSD-based fingerprinting

was used, and allows us to isolate the sections of the signal containing the PSS, and
removing it by hand to reduce its impact. Those isolated sections were then used
as packets after being sent to the PSD FIFO.

We then ran a campaign of captures from various base stations in the sur-
roundings of our laboratory, to try to re-run the previous experiments on them.
The objective was to build a system that would be able to identify legitimate base
stations, and embark it in a portable equipment to detect rogue base stations.

However, this resulted initially in our approach only separating the base stations
in three different clusters, seemingly depending only on the PSS they used. Running
manually a second time our algorithm on one of these clusters alone allowed for
better results, but still with collisions between base stations, not allowing to fully
identify them.

Our hypothesis relatively to this issue is that our measures were too impacted by
a well-known phenomenon called channel-selectivity. This phenomenon translates
the different impact a transmission medium has on different frequencies, resulting
in a deformation of the spectrum, non-trivial to revert. The presence of those
deformations could suffice to modify the PSS enough for it to still be present in the
signal after having removed the theoretical one, but just not enough for us not to
detect it.

This issue is generally corrected by the introduction of reference symbols at
specific time and frequency slots in the OFDM flow, to which the receiver compares
what was received to estimate the overall deformation and revert it. At the time of
writing, the introduction of the correction to our algorithm depending on the 4G
reference symbols is still a work in progress.

4.8 Conclusion

In this chapter, we presented a novel, low-cost approach to uniquely identify wireless
emitters in a context of IoT networks, with minimal assumptions on the protocols
in use to maximize its coverage on the heterogeneous ecosystem of the IoT. This
method, using full packets as input to reduce the sample rate needed to get a
significant amount of data, has still shown excellent results in different experiments,
being able to differentiate emitters of the same model from the same manufacturer.

Our initial approach has been successfully tested in fairly static smart envi-
ronments, including smart sensors that are not supposed to move much. This
assumption corresponds to many real-life cases, such as smart buildings. However,
it still had issues with progressive desynchronization between the receiver and the
various emitters. Thus, we developed the improved version with dynamic finger-
prints, which is currently still under testing. This version, re-developed in C, also
aims to work in real-time, and introduce modularity to facilitate the modification
or addition of individual components for new protocols. The Proof-of-Concept im-
plementation is currently near completion, but requires validation experiments to
compare it with the previous version, and ensure it still works well in dynamic



4.8. Conclusion 77

environments.
Finally, it should be also noted that as the results of the fingerprinting are

sensitive to multi-path delay, the fingerprints creation and the execution of the
detection algorithm should be done in the same environment.





Chapter 5

Wireless protocol audit
automatization

Contents
5.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Modulation detection and analysis . . . . . . . . . . . . . . . 81
5.2.2 Protocol grammar inference . . . . . . . . . . . . . . . . . . . 82

5.3 Theoretical components . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Physical Layer Identification . . . . . . . . . . . . . . . . . . 84
5.3.2 Link-layer identification . . . . . . . . . . . . . . . . . . . . . 89

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Core libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Modulation Managers . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Protocol Managers . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.4 Protocol structure analysis . . . . . . . . . . . . . . . . . . . 95

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.1 Validation on known protocols . . . . . . . . . . . . . . . . . 96
5.5.2 Blind estimation of random protocols . . . . . . . . . . . . . 98
5.5.3 Covert channel detection . . . . . . . . . . . . . . . . . . . . 99

5.6 Limitations and discussion . . . . . . . . . . . . . . . . . . . . 100
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

In this chapter, we present an approach for modulation and protocol identifica-
tion and analysis, along with a tool implementing it and the experiments we ran
using it to assess its performances.

We first discuss the general state-of-the-art in the fields of modulation and
upper-layer protocol identification and analysis in section 5.2, and how it motivates
the creation of this new approach. We then explain the theoretical principles behind
each step of our approach, from the modulation analysis to the protocol format
inference, in section 5.3. Subsequently, we present a Proof-of-Concept tool we built
to implement this approach in section 5.4. Finally, we expose the results of the
different validation experiments we ran with this implementation in section 5.5,
and discuss them and the possible improvements for both our approach and tool in
5.6.



80 Chapter 5. Wireless protocol audit automatization

5.1 Context and objectives

Signal reception
(SDR)

ex : HackRF, USRP 

protocol identification
protocol grammar

analysis
ex : netzob, scapy 

modulation
identification and

analysis

protocol semantics
analysis

ex : upper layer and
behavioural analysis 

Figure 5.1: The different steps of a full wireless protocol analysis

Industrial and home networks are increasingly relying on wireless networks,
either to ease communication, to save space or reduce costs. However, such networks
are, by design, more exposed to security attacks than traditional wired networks,
due to the use of unconfined and open radio transmissions.

In such systems, attackers could easily eavesdrop on communications or even
create their own to inject malicious transmissions among legitimate ones. In wired
networks, such attacks can be mitigated by using robust communication systems
and by monitoring transmissions to detect potential anomalies. However, auditing
and monitoring wireless networks is hindered by the large number and heterogene-
ity of protocols, which can have radically different Physical Layers and use specific
channels to communicate, sometimes with the addition of channel hopping. More-
over, an attacker willing to stealthily exfiltrate data could communicate through a
custom protocol escaping the scrutiny of potential monitoring measures.

Because of this heterogeneity, auditing unknown wireless protocols requires te-
dious work for recognizing the modulation used, as well as its parameters, in order
to be able to recover the binary streams from the transmissions and perform the
analysis of the protocol.

This entire process is composed of four main steps, represented in figure 5.1,
that consist in:

• Signal reception: capturing the raw signal corresponding to the protocol
to analyse; this can be done with Software Defined Radios (SDR) and corre-
sponding software

• Modulation identification and analysis: identifying which modulation
the signal uses, and its different parameters in order to demodulate it

• Protocol identification and syntax analysis: identifying the Link Layer
protocol in use from the format of the demodulated binary stream

• Protocol semantics analysis: identifying the semantics of the protocol,
namely the meaning of its different packets in a complete communication and
their use for upper layers

The first step is already covered by the hardware available, and the fourth step
depends more on what is the objective of the analysis. The third step is covered by
the literature, but only partially, as we will precise further in the following section.
Finally, the second step is poorly covered, especially regarding generic approaches.



5.2. Related works 81

In this chapter, we focus on the second and third steps, proposing a tool that aims
to address the lack of a simple approach to automatically analyze wireless protocols,
by designing:

• a modulation identification and analysis module, suitable for different types
of modulations and easily extensible

• a dictionary of usual protocols and their modulations, for easier recognition
of known communication systems

• a link-layer binary analysis module, to extract useful fields from unknown
binary streams

More precisely, the tool we propose is able to detect transmissions and infer
their parameters and content, without making any assumption, by combining a
wideband receiver and different modulation detection algorithms able to estimate
the parameters used in the transmission. This tool can then be enriched with
grammar estimation modules to become an assistant for wireless protocol reverse-
engineering, or a covert channel attack detection system to identify exfiltrated data.

5.2 Related works

5.2.1 Modulation detection and analysis

Automated detection of transmissions has always been a major concern in security
because of its importance in the design of monitoring systems. Existing solutions
take full advantage of partial to complete knowledge of a set of protocols they want
to monitor in order to ease their detection and collect additional metadata about
the transmissions. They range from approaches that focus on a single protocol, and
whose goal is rather to detect attacks on upper layers, such as [Helluy-Lafont 2021],
to broader approaches that study different possibilities and perform a case disjunc-
tion based on protocol-dependent heuristics to identify the type of the emissions,
such as [Li 2015] or [Lakshminarayanan 2009]. These approaches are optimized for
the analysis of specific types of emissions, and are therefore the best choice for an
upper layer monitoring system. However, they do not allow detecting unknown pro-
tocols, especially outside pre-defined channels, making them vulnerable to covert
channel attacks based on knowledge of the monitored channels.

Other works focus on specification agnostic anomaly detection, such as
[Gimenez 2021] which performs an analysis based on an auto-encoder trained in
an attack-free environment to detect unusual activities in the monitored frequen-
cies. However, to our knowledge, these approaches suffer from the constraint to
make a trade-off between the accuracy of the detection and the amount of data to
be processed, which does not allow performing a deeper analysis of the anomaly
beyond the identification of its occurrence time and associated frequencies. The
method and tool presented in this chapter aim at addressing the limitations of both



82 Chapter 5. Wireless protocol audit automatization

of these types of approaches in the context of a more generalized covert channel
detection.

Our approach is composed of several main steps in order to retrieve the infor-
mation of interest from the signal: 1) detect when and on which frequency frames
are transmitted, 2) identify the modulation type, 3) retrieve information about the
modulation’s parameters and finally 4) analyse the binary demodulated stream to
extract information based on possible protocols for the studied modulation. The
first step (detection of frame transmission) is well-documented in the state of the
art, and one of the most common methods, which we also use, is based on an
amplitude threshold. Regarding the second step (identification of the modulation
type), several modulation detection techniques exist in the state of the art. Some
approaches such as [Chen 2008] or [Mototolea 2020] focus on specific modulations
and their unique characteristics to detect them. The main problem with these
approaches is that other modulation types are ignored, leading to false positives.
Also, as with other protocol detection methods, their focus on specific modulations
makes them unusable in a multiprotocol monitoring context, unless a number of
them are combined. Some other works are based on the comparison of the received
signals with models of the different modulations. For example in [Azim 2013] and
[Hao 2019], probabilistic models of the modulations are built, and then compared
to signals, using goodness-of-fit tests such as Kolmogorov-Smirnov. The main lim-
itation of this type of approach is the potential difficulty of building a model that
fits a specific modulation. In this chapter, we describe an approach based on the
detection of symbols in the signals by computing the autocorrelation of different
representations fitting different modulation types, allowing the addition of exten-
sions for new modulation types if needed. This method is simpler than building
models for goodness-of-fit tests, but it strongly depends on the hypothesis that a
stable periodicity can be highlighted by the autocorrelation of the signal with the
correct modulation representation.

Our approach applies to a wide range of classic digital modulations, such as
standard Frequency Shift Keying, Phase Shift Keying or Amplitude Shift Keying.

Compared to the state-of-the art, our detection approach makes minimal as-
sumptions about the signal, relying on state-of-the-art frame and channel detection
and a dictionary containing various modulation types and protocols to identify the
Physical Layer used and extract the raw bitstreams. Furthermore, its genericity
allows for the easy addition of new modulations and protocols, and the extracted
metadata can be used as a set of features for auditing unknown signals or detecting
covert channel emissions.

5.2.2 Protocol grammar inference

As explained by J. Duchêne in [Duchêne 2018], to audit properly a protocol, or to
understand what is the purpose of a suspect emission, only getting the modulation
information isn’t enough: even if it allows a monitoring system to detect abnormal
emissions, it won’t give enough information to an expert to understand a potential



5.2. Related works 83

attack, or to audit properly a protocol under study.
It is then needed to go further into the analysis, and to try understanding the

meaning of the packet content. From the modulation, we obtain the binary stream
corresponding to a packet, which means to get a full understanding of the protocol
we then need to study:

• the packet format, meaning its fields, their positions and possible values

• the syntax and semantics of the protocol itself, of a communication containing
several packets

However, each of these steps is difficult to perform in its own ways. The
first one requires the ability to distinguish the borders of the different fields, and
identify the type of values they took over a sample of packets. A large major-
ity of those are based on PI Project[Beddoe 2004], an approach from 2004 based
on the use of bioinformatics algorithms, Needleman Wunsch[Needleman 1970] and
UPGMA[Sokal 1958, Nei 1983], to detect similar portions of messages, estimated
as corresponding to similar fields. As we also made use of them, we will further
describe those two algorithms in 5.3.2.

Some of those works use specific field delimiters, known in advance, to segment
properly the fields without needing to estimate their positions and alignment with
Needleman Wunsch, such as Discoverer[Cui 2007], which separates the fields with
those delimiters before running specific heuristics to detect field interdependencies,
or ReverX[Antunes 2011], which uses the different values it found for the fields to
generate a finite automaton describing a language covering the packets it saw, taking
into account the possibility of loops in the automaton (to extend the possibilities
of the language). Our objective is to extract a maximum of information from
the binary streams got from the modulation identification part, without any prior
hypothesis on the protocol’s structure. Thus, we cannot integrate those approaches
into our work, since they would need to identify potential delimiters, which could
even not exist in the protocol currently analyzed.

We can also cite Roleplayer[Cui 2006], a tool to replay communications it regis-
tered, but in another environment, thus needing to adapt some fields in the packets,
such as the addresses. As a consequence, it needs to estimate with a high level of
precision where such fields are, and which values it should give them depending on
the environment. To do so, it first identifies the dynamic fields in the received trans-
missions, then the different roles, such as addresses or arguments, and finally which
values those fields should have in the new environment. However, this approach
makes several hypotheses on the protocol, and requires the operator to provide ad-
ditional information on the communications, such as the sending addresses in the
registered packets. It is therefore also incompatible with our hypotheses.

Finally, in [Bossert 2012b, Bossert 2014], Bossert et al. describe Netzob, cur-
rently one of the most advanced tools in this domain. It uses a variant of Mealy state
machines to model the protocol language, including information on the time between
messages, and the L* algorithm[Angluin 1987] to estimate the protocol’s grammar.



84 Chapter 5. Wireless protocol audit automatization

Modulation type identification 
(modulation dictionary) 

Packet detection in time and frequency domains

Software Defined
Radio

(receive the signal) 

Squelch
(find high-amplitude

zones)

Channel detection
(find signal

frequencies) 

Protocol detection 
 

Link layer analysis
 

Exfiltrated data analysis 
 

Fingerprinting 

Autocorrelation 
(check if the

modulation is present,
find symbol length) 

Demodulation
(get the bitstream) 

Modulation X 
( get a representation

of the potential
modulated stream) 

Filter bench
(find the pulse-shape
filter and decision ) 

Figure 5.2: Architecture of the Physical Layer identification

The authors released the tool as an open-source project on GitHub[Bossert 2012a].
However, the tool’s complexity and the lack of recent updates pushed us towards a
simpler and lighter approach.

5.3 Theoretical components

Our approach is split into three parts: analysing the Physical Layer, identifying
known protocols, and finally finding interesting fields in the binary stream if the
protocol is unknown.

5.3.1 Physical Layer Identification

The first step of our approach is based on a Physical Layer identification module,
which detects and analyses signals on the medium. This module runs on signals
received from a Software Defined Radio, or SDR, listening on a wide bandwidth
(and hence with a high sampling rate) in a specified band. The global architecture
of this Physical Layer identification is presented in figure 5.2.

In the remainder of this subsection, we explain more thoroughly the different
parts that compose it, namely the detection of emissions on the wireless medium,
the identification of the modulation type, and the estimation of its parameters.

5.3.1.1 Packet detection in time and frequency

First, we need to isolate the samples of interest in the whole signal, to reduce
the amount of data to be analyzed and identify the periods during which a signal
was emitted. To detect them, we use a state-of-the-art squelch to find rising and
falling edges in amplitude, as shown on Figure 5.3. The threshold used to detect an
above-noise amplitude needs to be estimated from a noise profile for the receiver
and environment in which it is used. This estimation can be done automatically,
by making a hypothesis on periods that contain only noise, for example using a



5.3. Theoretical components 85

0.000 0.001 0.002 0.003 0.004
time

0.00

0.02

0.04

0.06

0.08

am
pl

itu
de

Figure 5.3: squelch example (with threshold)

buffer at the start of the reception as reference by considering it improbable to get
a signal at this specific time, but we preferred to keep this part manual, as it is fast
and easy to perform, and more reliable this way since a human expert can more
easily identify noise in a small reception period before running our approach.

This amplitude detection step can be done at two different levels: either directly
on the host computer, integrated with the rest of the tool, or in the acquisition
hardware itself, for example by implementing it on the FPGA of an SDR. The first
option is simpler to implement and maintain, but imposes limits on the reception
sample rate, and therefore on the bandwidth, to allow the computer to process all
the incoming samples. A possible compromise, which is used in the current version
of our implementation, is to analyse pre-acquired signals offline, which allows the
full capabilities of the computer to be used to receive the signal, and thus acquire
it at the maximum supported sample rate. However, it obviously means that the
implementation as is can’t run in full-real time, and needs a delay to get full buffers
of samples before running the analysis modules.

Once we identified the time periods in which packets were sent, we need to
estimate the frequencies where the emissions occurred during each of these periods,
and the bandwidth they used.

First, we identify the presence of the different emissions, and the corresponding
central frequencies, by identifying significant peaks in the amplitude of the Fourier
Transform (FT) of a packet. A peak is defined as a prolonged sequence of high
amplitudes in the FT, and an amplitude being considered as "high" when it exceeds
a threshold determined from the noise profile of the acquisition hardware.

For each peak, we then estimate its width depending on the first and last am-
plitude above our threshold, and apply a given factor to it to ensure that no part of
the signal are cut afterwards. The central frequency is estimated from each peak by



86 Chapter 5. Wireless protocol audit automatization

computing a weighted average of the frequencies that constitute it: each frequency
is weighted by the corresponding amplitude in the FT, and the sum is then divided
by the sum of those amplitudes.

After correcting the central frequency, meaning that we re-centred the spectrum
around the identified frequency for a given emission, and thus put it in baseband,
we need to isolate it from the other simultaneous emissions. To do so, we use the
estimated bandwidth as a parameter for a state-of-the-art low-pass filter to remove
all other emissions from the signal. In our implementation, we used an order 5
Butterworth filter, and took twice the width estimated with the threshold as first
bandwidth estimation.

5.3.1.2 Modulation type identification

The next step of our approach is to identify the modulation that was used in each
of the emissions that were isolated. We then study, for each physical quantity that
can modulate information, namely phase, frequency and amplitude, the possible
presence of symbols for different modulations.

To verify that the signal uses a specific modulation, we chose the following
conditions:

• condition 1: the signal must be composed of a specific set of valid symbols
for the modulation, that are of equal length in time

• condition 2: the signal must contain at least two of such symbols, in signif-
icant proportions

The first condition ensures that the signal contains data modulated in the physical
quantity we are studying. For example when we try to find a Binary Frequency
Shift Keying (BFSK) modulation, it ensures that there is a sequence using two
different symbols of equal length embedded in the signal’s instantaneous frequency,
as shown in the example in Figure 5.4a.

To find such symbols, we need a representation of the signal corresponding to
the modulation under study. For example, for the binary versions of the three
basic modulations (amplitude, frequency and phase), these representations r(ti)
are defined as functions of the signal s(ti) as follows:

• BASK: the signal amplitude rBASK(ti) = |s(ti)|

• BPSK: the phase of the signal rBP SK(ti) = arg(s(ti))

• BFSK: the instantaneous rotation speed
rBF SK(ti) = arg(s(ti)) − arg(s(ti−1))

Our implementation uses a modulation dictionary, containing Python classes
implementing a method to get a representation for the corresponding modulation.

We then need to estimate precisely the symbol period to be able to demodulate.
The method we chose to do that is to detect periodicity in the modulated flow by



5.3. Theoretical components 87

0.00042 0.00044 0.00046 0.00048 0.00050 0.00052 0.00054
time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ro
ta

tio
n 

sp
ee

d

(a) example of symbol view

0.00042 0.00044 0.00046 0.00048 0.00050 0.00052 0.00054
time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ro
ta

tio
n 

sp
ee

d

(b) example of symbol projection

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
shift

1050

1100

1150

1200

1250

1300

1350

co
rre

la
tio

n

(c) example of symbol rate identification via
autocorrelation

Figure 5.4: Physical layer identification steps for a GFSK with 18 samples per
symbol

using an autocorrelation: the signal is compared to shifted versions of itself, and
the autocorrelation returns higher amplitudes for shift values that resulted in high
similarity, thus highlighting a possible periodicity. By checking the presence of pe-
riodic amplitude peaks in the autocorrelation, which can be found by running again
an autocorrelation on it, we can find out if there are repeated symbols in the signal.
Indeed, if the signal is periodic, the autocorrelation periodically shows high am-
plitudes, when the corresponding shift aligns symbols; then, a new autocorrelation



88 Chapter 5. Wireless protocol audit automatization

highlights the periodicity of the first one, which already "flattened" the noise since
it didn’t correlate with anything, to obtain a clean first peak value at the symbol
size.

Depending on the modulation, we apply a transformation to the representation
given by the corresponding class in order to represent in the same way all possible
symbols. In our example in Figure 5.4b, a BFSK usually uses two opposite rota-
tion speeds to modulate 0 or 1 bits, so when considering this modulation we study
the absolute value of the previously computed rotation speed1. Again, the differ-
ent classes implemented in our implementation contain a method to perform this
transformation for the three main modulation classes. The architecture of the ap-
proach allows to easily integrate other modulations by computing the corresponding
representation. We can then finally compute the autocorrelation of the resulting
signal to evaluate if it contains symbols of the modulation, and if so, estimate more
accurately its symbol period and bandwidth.

In the example in Figure 5.4c, the autocorrelation has a maximal value (ex-
cepting the value at 0, corresponding to a comparison between the signal and itself
without shift) at offset 18, corresponding to the number of samples per symbol that
we used to generate it.

The second condition ensures that we really received a signal from the mod-
ulation we are studying, and not another modulation which results in a constant
emission of the same symbol for the physical quantity under study. By default,
we consider that if 99.9% of the signal is modulating the same symbol, the second
condition is not met.

Finally, to demodulate the signal correctly, we need to identify the moment of
decision and reduce the impact of the noise. To do so, we used a set of usual pulse-
shaping filters, such as gaussian or semi-sinusoidal shapes with various parameters,
to correlate with the signal. If the signal was created using a given filter, the noise
is attenuated in the correlation with it, while keeping the useful parts of the signal.
Otherwise, if the filter is too far from the right one, it reduces the useful signal’s
part2 and lets more noise and less signal out. Moreover, a good knowledge of the
filter that was used is an identifying feature for the signal, and allows for a more
accurate estimation of the modulation parameters.

Additionally, we add metadata to the demodulated stream, in order to use it
later as a feature for communication detection. The final object corresponding to
a packet for a specific modulation contains:

• the timestamp at which the packet was detected

• the central frequency at which it was detected
1For clarity, the example shown is a GFSK, which corresponds to a BFSK where the symbols

have a gaussian shape, and which is the standard type of BFSK used in protocols such as BLE or
ESB.

2Examples of eye diagrams for a noisy signal can be found in figures 4.10b, with the correct
filter, and in figure 4.10a, with a less adapted filter that lets more of the noise and less of the signal
out



5.3. Theoretical components 89

• the estimated bandwidth

• the demodulated binary stream

• the modulation index (depending on the modulation, it characterises the dis-
tance between the different symbols, for example it characterises the distance
between the two modulating frequencies in a BFSK)3

5.3.2 Link-layer identification

After having analysed the Physical Layer, we get a set of demodulated streams
along with physical-layer metadata. The next step is to analyse together streams
that might use the same protocol in order to check if it corresponds to a known IoT
protocol, and if not to infer a maximum of information to simplify further analysis
by an expert.

5.3.2.1 Identification of known IoT protocols

Before analysing further the binary stream, we first need to know if it can already
be dissected as a known protocol. To do so, we built a protocol dictionary, in the
same way as we built the modulation dictionary previously described.

This dictionary contains, for each possible modulation from the previous step, a
list of protocols that could correspond with their dissectors, and methods to detect
if the dissected packet is valid or not. Then, for each of the packets that we isolated,
we pass them through the dictionary that matches its modulation to dissect it with
every possible protocol. If a protocol matches, its dissected version, along with the
protocol, are added to its metadata and no further analysis is done.

However, even if bases of dissectors for various protocols can be found, for
example with Scapy[sca 2022] in Python, it is more difficult to assess whether a
dissected packet is valid or not just from the dissector: indeed, it is possible to get
an impossible value for a given metadata field without impacting the rest of the
dissection, for example with opcodes, which could make the rest of the dissection
meaningless. It is then needed to implement, along with our approach, validation
heuristics based on the specifications of the different protocols to estimate whether
the packet is valid or not.

Therefore, we also considered the case where there was a dissector for a known
protocol, but no validation method, or only partial ones. In that case, the dissected
versions for each protocol that can be considered valid with the basic validation
methods, or for the protocols that don’t have validation methods, are added to the
metadata for the expert to check, and the packet is still forwarded to the rest of
the analysis in case none of the protocols were right.

3other definitions of the term exist, in this manuscript we focus on the distance between symbols



90 Chapter 5. Wireless protocol audit automatization

5.3.2.2 Detection of similar packets

To infer the possible fields of the unknown protocols that remain in our packet list,
we first need to regroup the packets by protocol, or at least estimate which packets
use the same one. A first step of this isolation is done thanks to the physical-
layer metadata, separating packets that use different modulations, or use different
communication channels. Let us note that this approach has the drawback of also
separating in several classes packets from a protocol implementing channel-hopping.
However, we still chose this approach because it would be easier to merge similar
protocols afterwards than analysing a list of packets that don’t use the same one,
hence interfering with our field detection.

The following parts of this step were heavily inspired by the works in the Net-
zob tool[Bossert 2012b, Bossert 2014]. As in their tool, we first decided to use a
bioinformatics algorithm called Needleman-Wunsch, used originally to align DNA
sequences between themselves.

This works by finding similar sequences at different positions in a packet, allow-
ing us to align fields whose value doesn’t change greatly over time in a packet even
if they are separated by variable-length fields. The similarity between packets is
determined thanks to an edition distance, similar to the Levenshtein distance algo-
rithm in the sense that it uses penalty scores for different edition types, replacement,
addition or deletion of a character.

It is then possible to regroup the different packets in clusters based on their
similarity with the score returned by the algorithm. As used in [Bossert 2012b,
Bossert 2014], we chose to use the UPGMA4 algorithm: each packet is first used
to constitute its own group, then we iteratively regroup the two closest clusters as
a single one, the distance between two clusters being defined as the average of the
distances between elements from each other. The algorithm stops iterating once the
closest clusters have a distance above a certain threshold. In our case, we used as
maximal distance between two clusters half the maximum of the distances between
packets.

5.3.2.3 Field classification by entropy

Once the packets are regrouped by similarity, we try to infer information on their
link-layer protocol, assuming they use the same one.

The first step is to classify the fields depending on their variability, which first
gives some high-level information on the packet structure, and allows optimizing
further analysis by eliminating impossible field types.

We define three main categories for the fields:

• Constant fields: fields whose value remains the same in all packets. It
could for example be a preamble, an address if only one object is emitting, or
a constant measure from a sensor

4Unweighted Pair Group Method with Arithmetic mean



5.3. Theoretical components 91

• Pseudo-random fields: fields whose entropy over time exceeds a certain
threshold, that is used as a parameter for the approach. It could for example
be an encrypted part of the packet, or highly variable applicative data.

• Variable fields: fields that vary in value between packets, but not enough
to fall in the previous category. It could for example be a sequence number,
a size field, or applicative data.

This step is simply done by looking at the aligned versions of the packets from
each group, and for each byte index, if the value remains the same, it is labelled as
constant, otherwise we compute its entropy to determine whether the field is to be
considered pseudo-random or not.

5.3.2.4 Field-by-field heuristics

We then implemented a variety of heuristics allowing for a better estimation of the
possible fields in each part of the packets. Let us note that the following list is
not exhaustive, and we give some insights for retrieving more information than the
current state of our approach in 5.3.2.5.

Length fields:

A first field that can be estimated easily is the length field, if present. Indeed,
when packets have variable-length fields, they also need to have another field con-
taining information of said length. We use the fact that the evolution of the field’s
value is proportional to the length of the field it describes, thus being correlated
with the packet size in the case where there are not two non-encapsulated variable-
length fields. If all variable length fields are encapsulated in each other, at least
the length field for the encapsulating field is correlated with the total length. Let
us note that, to our knowledge, there is no widespread IoT protocol using several
non-encapsulated variable-length fields in the same packet.

To find such length fields, we build vectors with the evolution of each field’s
value, and another one with the evolution of the packet’s lengths. Then, we compute
the correlation of each of the first vectors with this last one. The correlation allows
seeing the similarity between a vector and shifted versions of a second one. This
way, the correlation with shift 0 gives a high value for a field that would correspond
to a length field.

Sequence number fields:

Another type of fields that can be quickly estimated are the sequence numbers.
We considered that such fields can only stay at the same value, or be incremented
by a small amount between two consecutive packets. As such, we analysed the
evolution of each variable field, and tagged as a possible sequence number all of



92 Chapter 5. Wireless protocol audit automatization

those that followed such an evolution, taking the possible overflows into account
(for example, on a 1-byte field, a value going from 255 to 0 is considered as being
incremented by 1).

5.3.2.5 Heuristics evolution perspectives

Some other heuristics were thought of, even if not implemented yet in our works.
The first one is the detection of the packet header, thanks to the high-entropy and
length fields. This would work by estimating where the data begins, or at least a
maximum index for the data by finding the first high-entropy field in the packet
format, if there is any, hypothesizing that the header won’t contain such kind of
fields. Then, we also can find a minimum position for the end of the header by
making the hypothesis that the length is always in the header.

The first hypothesis is justified by the fact that a header contains metadata on
the packet (sequence numbers, length, address...), which shouldn’t change pseudo-
randomly over time. However, there are exceptions: if the CRC is inside the header,
it can show pseudo-random evolutions if the data is variable, and, depending on the
protocol, the flags could also show this kind of behaviour, especially if we look at
a few disconnected packets. Those kinds of fields then need to be detected before
using this heuristic on the data position. At the moment, we only know of ways
to detect and reverse the CRC by testing several CRC sizes on several sub-parts
of the packets, trying to determine by brute force the polynomial that is used, but
this approach is quite long and fastidious. Therefore, in the current state of our
approach, we cannot use this heuristic.

The second hypothesis, however, is coherent with what can be found in usual
protocols, as the length field needs to be before the variable-length fields in order
for a parser to be able to read them. Some protocols may be designed to be able
to read variable length data by putting a recognizable suffix to it, and using the
length field for another purpose, but this would impede the presence of the suffix
in the data, meaning pre-processing on it to remove the forbidden symbols. To
our knowledge, such protocols where the length field is after a variable-length fields
don’t exist, at least in commercial protocols.

5.4 Implementation

As shown in figure 5.5, our tool consists of four main components: a set of core
libraries, a modulation dictionary, a protocol dictionary for each modulation5, and
finally a protocol structure analysis module. The protocol and modulation dictio-
naries are composed of Protocol or Modulation Managers, which are classes imple-
menting the required primitives for a given protocol or modulation.

5BASK: Binary Amplitude Shift Keying, BFSK: Binary Frequency Shift Keying, QPSK:
Quadrature Phase Shift Keying (4 equidistant phase values)



5.4. Implementation 93

   
M

od
ul

at
io

n 
m

an
ag

em
en

t 

   
C

or
e 

lib
ra

rie
s 

SD
R

 re
ce

pt
io

n
Au

to
co

rre
la

tio
n

Fi
lte

r d
et

ec
tio

n
Am

pl
itu

de
-b

as
ed

de
te

ct
io

n 

* 1

M
et

ad
at

a
re

co
rd

in
g

...

   
Pr

ot
oc

ol
 m

an
ag

em
en

t 

*1

...

«i
nt

er
fa

ce
» 

Pr
ot

oc
ol

M
an

ag
er

ES
BM

an
ag

er
BL

EM
an

ag
er

«i
nt

er
fa

ce
» 

M
od

ul
at

io
nM

an
ag

er

BF
SK

M
an

ag
er

BA
SK

M
an

ag
er

Q
PS

KM
an

ag
er

   
  P

ro
to

co
l s

tr
uc

tu
re

 a
na

ly
si

s 

Al
ig

nm
en

t
C

lu
st

er
in

g

En
tro

py
 a

na
ly

si
s

Fi
el

d-
by

-fi
el

d
he

ur
is

tic
s 

Figure 5.5: Tool architecture overview



94 Chapter 5. Wireless protocol audit automatization

5.4.1 Core libraries

The core libraries of our implementation are split into five blocks. The first block
(SDR Reception) is a reception module implemented in C, using the SoapySDR
library for SDR control. This allows our code to be easily used with any SDR
compatible with this library. The module receives sample buffers before sending
them to the next block.

The following block (Amplitude-based detection) isolates by amplitude the re-
ceived frames. The IQ samples corresponding to the frames are analysed to isolate
the frequency channels in use, before being saved in a file for further offline pro-
cessing. The signal is then analysed by different Modulation Managers, presented
in more detail in Section 5.4.2.

Each Modulation Manager then passes the representation of the signal to the
Autocorrelation block, that aims at identifying the symbol period of a possible frame
that it would contain. If the symbol period that is estimated is stable enough, the
Modulation Manager then sends the signal representation along with the symbol
period to the Filter detection block.

The Filter detection block passes the signal representation through the filter
bench described in Section 5.3 to identify the filter shape minimizing the noise and
get the moment of decision to demodulate the signal. The demodulated stream
that results from this block is then sent to the Protocol Managers (as described in
5.4.3) that are linked with the current Modulation Manager.

Once the Protocol Managers have analyzed the binary stream, all the extracted
metadata are then saved by the Metadata recording block in a structure for further
use by different applications, such as the one presented in 5.5.3.

5.4.2 Modulation Managers

To be able to transparently manage different modulations, and to allow for an
easy enrichment of our tool with new modulations, we defined an interface called
"ModulationManager", that all Modulation Manager classes must implement. To
implement this interface, and be able to interact with the rest of the tool, those
classes need to implement four functions:

• get_label: a function without arguments that returns a string, which must
uniquely identify the modulation

• get_mod: a function that takes as input raw IQ samples, and returns its
representation depending on the corresponding modulation

• get_modulation_index: a function that takes as input the representation
from get_mod and returns a measure of the distance between the symbols
for the modulation, for further use as an identifying feature

• eye_diagram_precomputing: a function that projects the representation
from get_mod on two opposite symbols to discern the right moment of
decision in the eye-diagrams.



5.4. Implementation 95

All Modulation Managers must then be added to the modulation dictionary
from the tool to be used by the core libraries.

5.4.3 Protocol Managers

In order to validate the reception of frames from known protocols, we needed to be
able to analyse the binary streams respectively to different possible protocols, for
each modulation. We then created, similarly to the "ModulationManager" interface,
a "ProtocolManager" interface that all Protocol Manager classes must implement.
Those classes need to implement two methods, get_label, which is similar to the
one for Modulation Managers, and that also needs to return a uniquely identify-
ing string for the protocol, and check_protocol which takes as inputs the raw
binary stream extracted from the signal, the symbol rate that was identified and
the frequency on which the signal was detected. If the binary stream contains a
valid frame for the protocol, the function must then return a boolean with the value
True, a scapy [sca 2022] class that corresponds to the frame type and that can be
used later to compute the corresponding scapy packet, and the truncated binary
stream, in the form of a byte array. If not, it must then return a boolean with the
value False and two empty values (None in Python). In further evolutions of our
tool, we plan to introduce the possiblity of setting the boolean to False but still
set the other values, meaning that the packet could be dissected but it cannot be
said that the packet is really using this specific protocol. This will be later used
to decide whether to try to reverse the packet structures or not, as we will explain
further in 5.4.4.

For each Modulation Manager, we associate corresponding protocols6 in indi-
vidual protocol dictionaries. Once a modulation is identified and a binary stream
extracted, the stream is tested against all available protocols for the modulation.
If the binary stream matches a given protocol, its metadata are then augmented
with metadata returned by check_protocol. Further work will include an auto-
mated reverse engineering module to identify specific fields in binary streams that
appear to originate from the same communication, respectively to the already avail-
able metadata. This will allow an almost fully automated reverse engineering of
unknown wireless protocols, and may also aid in the detection of spoofing by iden-
tifying abnormal variations in the value of a specific field for example. Let us note
that, if a protocol that has not been implemented in scapy is added, it is possible
to add user-defined scapy dissectors to the tool in a dedicated directory.

5.4.4 Protocol structure analysis

In the case where the metadata doesn’t contain a clearly matching protocol, we
then need to run an analysis of the protocol structure, to get more information on
its fields.

6we have chosen to link modulations with protocols that use them, but our approach allows
linking any protocol manager to any modulation manager



96 Chapter 5. Wireless protocol audit automatization

Our protocol structure analysis runs in three steps:

• Alignment and clustering: using the same Needlman-Wunsch and UP-
GMA algorithms as in [Bossert 2012b, Bossert 2014], as we explained in
5.3.2.2, we align similar fields at the same indexes in similar packets, to get
clusters of packets that supposedly come from a same protocol, and the fields
they contain

• Entropy analysis: we compute the entropy of each field that we detected
across a same cluster of packets, to classify the field into our three categories:
constant, high-entropy or variable

• Field-by-field heuristics: we then analyse the fields depending on their
category, by passing them through various functions that test pre-defined
heuristics; this part is modular and easily improvable by the user

The metadata and binary stream for each packet that none of the protocol
managers considered as valid with enough certainty are passed through this module,
and the resulting metadata on the different fields is sent back to the metadata
recording module.

5.5 Experiments

This section describes the experiments conducted to validate our signal analysis
approach, and to implement basic defensive algorithms based on the results.

We first checked that the approach works as intended on well known wireless
protocols. We then evaluated the accuracy of the parameter estimation on randomly
generated wireless protocols. Finally, we demonstrated the usability of our approach
in defensive applications, by building on top of it a whitelist and blacklist-based
covert-channel detection.

All our experiments were conducted using an Ettus USRP B200mini as receiver,
and when needed, we used a LimeSDR USB to emit the signals.

5.5.1 Validation on known protocols

We first tested our approach against well known wireless protocols: 1) Bluetooth
Low Energy [Woolley 2019], or BLE, often used by sensors or for short wireless com-
mands, and integrated in most modern Bluetooth chips, and 2) Enhanced Shock-
Burst [Nordic-Semiconductors 2008], or ESB, used by several wireless keyboards.
These protocols were chosen because of the accessibility of their modulation param-
eters, as specified in table 5.1.

For this experiment, we sent frames with known parameters with both protocols
in a realistic environment with other emission sources, including BLE and Wi-
Fi communications. The signal was received by an USRP B200mini listening at
2405MHz with a sample rate of 10Msps, during 20 seconds. Note that, even if the



5.5. Experiments 97

x10

(a) Comparison of our approach against hard-coded
2FSK

(b) Comparison of our approach against hard-coded
2ASK

Figure 5.6: Results of our approach against hard-coded receivers in GFSK and 2-
ASK

duration of the capture is quite short, the trace collected actually contains several
hundreds of frames and is sufficiently rich to assess the relevance of our tool.

We first computed which frames a standard receiver could demodulate with a
correct CRC, to serve as a reference. We then compared the results of our approach
with these, by evaluating the difference between the number of frames that we
correctly received with the number of reference frames.

For BLE experiments, we received several hundreds of BLE signals from the
everyday environment of our laboratory, including phones, computers, and some
smaller devices such as connected outlets or smartwatches. The ESB experiments
were conducted only with a dongle and a corresponding mouse, the devices using
this protocol being limited to mouse, keyboards and dongles, and also included
several hundred received frames. The ratio of frames correctly decoded by our
approach over the frames correctly decoded by the hardcoded receiver is 94.83% for
BLE and 104.03% for ESB. These results show the relevance of our approach: the
demodulation performances of known protocols are close to those of the hardcoded
values. Our approach even allows to correctly demodulate some ESB frames that
the hardcoded receiver was unable to demodulate because these frames were too
far from the hardcoded values, either in frequency or in bitrate.



98 Chapter 5. Wireless protocol audit automatization

Table 5.1: Modulation parameters for BLE and ESB

protocol BLE ESB
modulation GFSK GFSK

band 2.4GHz ISM 2.4GHz ISM
bit rate 1/2Mbps 1/2Mbps

channel spacing 2MHz 1/2MHz

5.5.2 Blind estimation of random protocols

Table 5.2: Parameters for the random protocol generation

modulation type GFSK 2ASK
samples per symbol 7-20 200-400

number of configurations 25 25
frames per configuration 100 100

We then tested our approach on unknown protocols, with random parameters.
We generated frequency and amplitude modulations by randomizing the central
frequency in the band we were listening to, the bit rate and the modulation index,
registering the values for each emission. We generated 25 such configurations, and
100 frames for each of them. We finally simulated their emission in a random order,
with different Signal to Noise Ratio (SNR) values. The frequencies ranged from
431.42MHz to 436.42MHz, and the signal was at a constant 5Msps sampling rate,
with between 7 and 20 samples per symbol for the GFSK, covering classic values
of bit rate for this modulation, and between 200 and 400 for the 2ASK needing
longer symbols. For the GFSK experiment, the ratio between the inter-frequencies
distance and the bandwidth was between 0.25 and 0.75. For the 2ASK experiment,
the ratio between the inter-amplitude distance and the amplitude was between 0.5
and 1. Those parameters for each of the two experiments are summarized in table
5.2.

The metrics used to assess the quality of the reception are defined as follows:

• reception accuracy: proportion of frames that were demodulated correctly

• frequency error: error on the carrier estimation

• bit rate error: error on the bit-rate estimation

We simulated continuous emissions, where the signals were not emitted at the
same time. The results for an SNR of 20dB are presented in table 5.3. The confi-
dence intervals are computed at a 95% confidence level, assuming the distribution
of each value is a gaussian centred on the value’s mean. The results for all SNR
values tested between -40 and 40 dB are presented in figures 5.6a and 5.6b. Overall,
the results show a very good reception accuracy of our approach both for FSK and
ASK modulations. The frequency error and bit rate error are also very good since



5.5. Experiments 99

their value is at the maximum several Kb/s whereas the bandwidth and bitrate are
in the MHz range (which represents less than 1% error). As a consequence, the
desynchronization due to the bitrate error only appears in frames long enough for
the successive shifts to become significant, and the frequency error being negligible
compared to the bandwidth, it is not enough to hinder the demodulation process.
This is further demonstrated by the good reception accuracy, which shows that
these errors don’t generate significant bitflips.

Table 5.3: Results of our approach for randomly generated protocols (without su-
perposition, SNR=20dB)

modulation type FSK ASK
reception accuracy 107.35% 92.96%

frequency error 5089±58 Hz 4716±7335 Hz
bit rate error 365±1 bits/s 436±2058 bits/s

Figure 5.7: Allowed and forbidden communication flows

5.5.3 Covert channel detection

We implemented a covert channel detection mechanism on top of our implemen-
tation as a real-life example of a defense mechanism. Covert channel attacks are
critical as they may take several forms, while being quite easy to deploy and difficult
to detect in absence of a large-band monitoring system such as the one proposed
in this paper. For example, an attacker could visit a company and try to exfiltrate
confidential information using a device communicating with a protocol not used by
the company legitimate devices and thus likely not monitored. This scenario could
for example be deployed if an employee’s smartwatch is compromised outside their
company, then used when they return to work to collect and exfiltrate sensitive
data from their workplace.

For this experiment, we added a module that takes as input the metadata from
our approach, and a configuration file to specify what should raise an alert. The
configuration file uses "AUTHORIZED" and "ALERT" rules for a set of a modula-
tion or protocol, a set of frequencies and a bit-rate, as shown in Figure 5.7. The
rules are evaluated sequentially on each frame until the conditions for one of them
are met, or if none of them matches the frame, a default rule is applied.

We used this configuration file for an experiment in which we emitted ESB
frames with a commercial emitter (supposed to be illegitimate), along with BLE



100 Chapter 5. Wireless protocol audit automatization

frames (supposed to be legitimate) in several sequences of 10 seconds in the first
10MHz of the 2.4-2.5GHz band.

The results of this experiment confirm the relevance of our tool: out of 2446
ESB frames that were sent, 2116 frames raised alerts, thus with a detection rate of
86.5%. Even if some ESB frames were not correctly identified, this detection rate is
sufficient to actually identify the covert channel. Note that as our approach allows to
provide the demodulated binary streams corresponding to the frames transmitted,
it can also be used as a means of simultaneous detection of malicious payloads in
various protocols.

5.6 Limitations and discussion

Some modulation schemes use closely overlapping channels, like OFDM. This sit-
uation introduces new technical difficulties in the demodulation process, that need
to be addressed by specific mechanisms integrated in the specifications. Thus, our
approach, without prior knowledge of the communication scheme that was used and
the associated mechanisms, or their parameters, is not suitable for such schemes.

Several approaches have been studied to detect OFDM communications
and estimate their parameters, as presented in [Oularbi 2011], which sep-
arates them in four main categories: identification based on the inter-
frame spacing, with the help of the cyclic prefix[Oner 2007, Yucek 2007] or
not[Bouzegzi 2010, Punchihewa 2011], techniques modifying the emitters to add
detectable information[Sutton 2008, Maeda 2007], and techniques based on the pi-
lot symbols used by the scheme[Socheleau 2011, Jung 2006]. However, since our
objective is analysing the modulation without making any assumptions on the sig-
nal or modifying the communicating objects, we cannot use any of those methods
in our protocol-agnostic approach. Moreover, all these approaches do not allow re-
covering the bitstream from an OFDM signal in realistic conditions with unknown
protocols. Indeed, it would require to correct the channel selectivity of the wireless
medium, which is done by knowing the values sent as pilot or reference symbols,
thus introducing an assumption on the transmitted data. To our knowledge, none
of the existing approaches allows estimating the original versions of those pilot or
reference symbols. However, OFDM signals still carry specific characteristics, such
as the fixed-lengths blocks separated by cyclic prefixes or guard intervals, or refer-
ence symbols. Such characteristics could be detected by the use of methods relying
on cyclostationarity or autocorrelation to detect periodic repetitions, knowing usual
sample rates and OFDM block sizes. Therefore, an OFDM-specific detection mod-
ule could be built and integrated in our approach, even without going as far as to
demodulate the original data, for example for covert channel detection purposes.

Besides this specific point, we have identified several areas for future work.
During our experiments, we were limited in the wideness of the band we listened to
by our processing speed. However, as explained in section 5.3, it would have been
possible to maximize the efficiency of the hardware used by implementing the first



5.7. Conclusion 101

steps isolating the frames and channels in the SDR’s FPGA, which would allow to
only send to the computer host the isolated frames, reducing the risks of overflows
in the communication buffers between the two. Note also that this approach is
not designed to run fully in real-time, since we need to receive the entire frames
to analyse them, especially for the steps using the autocorrelation of the frame’s
signals. The performance of our approach can be improved by implementing the
frame and channel isolation into the SDR’s FPGA, which would reduce the amount
of data to send to the computer to allow for a larger band simultaneous reception.

Finally, we also plan to improve the protocol estimation with a basic reverse-
engineering module that can identify fields of interest even in unknown protocols,
to go further in the direction of an automated audit tool.

5.7 Conclusion

In this chapter, we presented a new, complete and easily extensible approach to ease
the work of wireless network auditors and to detect and analyse communications
on the wireless communication medium. In its current state, it is able to recognize
and demodulate the three basic modulation schemes, namely amplitude, frequency
and phase shift keying modulations, identify known protocols integrated in the well-
known python library Scapy, and analyse unknown protocols to identify some fields
of interest. Moreover, it can also identify unusual modulations, and estimate their
parameters efficiently. This assists greatly in the detection of custom protocols,
that can be used for example to stealthily exfiltrate data.

As stated before, this approach is, for the moment, unable to handle commu-
nications using OFDM as precisely as it could for simpler modulation schemes.
However, it is still possible to integrate protocol-specific OFDM modules to allow
receiving communications from known protocols using it, such as the most recent
mobile telephony downlink, satellite communications or WiFi standards.

The protocol-format reverse part is also still in an early stage, for the moment
being able to find length and sequence number fields. However, we worked on the-
oretical improvements that would allow getting more information from the packet,
including header-position inference.

In the end, this approach allows, in our opinion, to lay the first foundations
to fill the current lack of automated approaches covering the first phases of radio
emissions’ analysis, especially for the Physical Layer inference.





Conclusion and perspectives

Conclusion

In this thesis, we studied the security of IoT, and to some extent, of long-distance
wireless communications, from the prism of the Physical Layer. We chose this
research axis because of the relative youth of the domain, and the fact that we con-
sider transversal approaches between security and signal processing to be beneficial
to protect such networks. Indeed, the layers from Network to Application could be
covered by more generic approaches, designed for traditional networks, and the Link
layer can also be mostly covered by known measures. The Physical layer, however,
is particularly different in this context than in wired networks, expanding the at-
tack surface with vectors specific to these wireless communication means. However,
the lack of transversal studies with wireless signal processing can lead to wrong
assumptions on the risks of using such devices, resulting in insufficient securization.
Moreover, the lack of maturity that can still be seen in the IoT industry, combined
with the addition of more and more features, further expands the attack surface.
It then becomes necessary to highlight the issues in these networks from a security
point of view, and work on solutions to address them.

We first presented an attack focused nearly entirely on the Physical Layer, that
allows to pivot from the widely deployed Bluetooth Low Energy to attack Zigbee
networks, called Wazabee. We also showed that other modulations could be im-
pacted by pivotal attacks, by highlighting some theoretical compatibilities between
them. The numerous works in the field of Cross Technology Communications, even
if they often imply cooperation from the devices, also highlight the porosity of these
networks between themselves. These works, along with the practical applicability of
our attack Wazabee, that could even be embarked on mobile phones[Cayre 2021c],
show that one shouldn’t consider colocated wireless networks with different proto-
cols as isolated, on the sole basis that the protocols differ. Moreover, this highlights
the importance of taking the common communication medium into account when
analyzing the security of wireless networks, as it can have a significant impact on
the attack surface.

We then designed a new, low-cost fingerprinting approach for IoT devices, work-
ing with minimal prior knowledge on the protocols to monitor. Our approach uses
entire packets, instead of short periods where the components charge or discharge,
to extract characteristics from the spectrum of the emissions. This method thus
makes the trade-off of being able to use lower sample-rates to gain the same amount
of data, but becoming more sensitive to high variations in the environment or data
sent, in the absence of estimation of the part of the signal that carries useful data
to remove it. We showed experimentally that, despite this trade-off, our approach
is able to distinguish various emitters of standard IoT protocols, even if they are
from the same model of the same manufacturer. Monitoring methods similar to



104 Conclusion and perspectives

this one can be used to mitigate numerous attacks, notably spoofing attacks that
could even be undetectable from the higher layers. They allow, for example, to set
a whitelist of devices that communicate in the environment, and to check whether
emitters pretending to be one of them is indeed a legitimate object. We believe
such monitoring systems to be primordial in the surveillance of wireless networks,
as the simplicity of the protocols in use can often result in undetectable attacks,
that clone perfectly the few characteristics of legitimate devices of the network.

Finally, we presented an approach to identify communications on wide-band
signal receptions, analyzing automatically their modulation and a few interesting
features of their Link layer. This approach can be used either to detect suspicious
emissions in an entire frequency range and analysing what they may be carrying,
for example to detect covert channels exfiltrating sensitive data using unknown
protocols. It can also be used to help in the audit of wireless transceivers, by auto-
matically realizing the first steps of the identification of the channels, modulation
and several fields of interest in the protocol in use. Against attacks like Wazabee,
or other physical-layer based pivotal attacks, we believe such approaches to be
primordial to monitor efficiently the frequency range in which emitters may com-
municate in an environment, to detect emissions on unauthorized frequencies, or
suspicious emissions. Moreover, auditability is a critical property of secure systems,
but studying wireless networks can quickly become cumbersome, due to a lack of
generic tools, that leads to heavy development for each system. Our approach is
then part of a process to create generic tools that can work with the heterogeneity
of the IoT, minimizing this additional work to facilitate the audit and analysis of
wireless networks.

Future works

The attack scenario we presented in Chapter 3, along with the other modulation
similarities presented in the same chapter, are examples of possible pivots that could
be used from an offensive perspective. However, it doesn’t cover all possibilities,
and several other may exist, requiring additional monitoring in critical environ-
ments. It would then be interesting to work on the theory behind those similarities
to try to formalize what makes modulations compatible, and which attack scenarios
should be considered when introducing a given modulation in an environment. In
the current state of the IoT industry, the theoretical compatibilities presented in
this chapter remain less realistic, as the parameters needed for the modulations to
coincide raise some issues regarding the link reliability or the limitations of embed-
ded systems in terms of performances. However, in the future, some transceivers
might match these conditions, and allow to perform such attacks. Thus, it seems
important to us to carry out this analysis to prevent potential future attacks based
on such cross-technology communications.

The defensive contribution of this thesis work on two different aspects of wire-
less network monitoring: on one hand, the fingerprinting approach of Chapter 4



105

targets spoofing attacks, but needs a minimal protocol-dependant part to identify
the devices to monitor (for instance, the MAC address of the devices to monitor
must be manually provided). On the other hand, the automated analysis of Chapter
5 allows to extract information about a protocol’s parameters, to facilitate further
work by an expert to identify potential covert channel attacks or vulnerabilities in
the protocol. It could then also be possible to combine both approaches, by using
the fingerprinting behind the output of the automated analysis, the second giving
the needed information about devices to monitor to the first one. By doing so, it
could remove the need to develop additional protocol-specific modules in the finger-
printing approach, facilitating the introduction of new devices in an environment
to monitor against spoofing attacks. Indeed, the approach of chapter 5 could allow
to extract identifying information from the emission of a device. This would allow
to launch it in parallel with the registering phase of the fingerprinting approach,
to automatically register the fingerprint and be able to protect the device in the
intrusion detection phase.

For the different approaches presented in this manuscript, we need to receive
signal samples corresponding to frames to analyze them. To do so, we focused
only on Software Defined Radios sending the raw samples to a connected computer
doing all the processing. However, some parts of this processing, common to our two
approaches, and present in general when trying to get the raw signal corresponding
to frames in wireless networks, can be transferred directly onto the receiving chip:
indeed, most SDR embed an FPGA for signal reception, often programmable by
the user. We could then transfer the detection of packets and channels in the signal
directly on the FPGA, and only send the corresponding samples to the computer,
greatly reducing the amount of processing required on its end. This allows for a
better real-time compliance, as the computer has less data to process before getting
the next samples from the SDR, and also improves the performances in the parts
transferred to the FPGA. Dedicated chips could also be considered, while being less
practical, the chips being specifically designed for this purpose.

We are also working on versions of both approaches that would support, to a
certain extent, OFDM-based protocols. Indeed, in the recent years, OFDM has be-
come predominant in long-distance wireless communications, used in recent mobile
telephony such as 4G or 5G, recent WiFi standards, and even satellite communica-
tions. However, as stated in Chapters 4 and 5, it requires some adaptations from
the initial approaches.

For the fingerprinting approach, working with OFDM means being able to fully
recover and remove the "useful" data in the spectrum, to try to isolate the character-
istics of the environment and devices. To do so, it is then necessary to know which
OFDM protocol is in use, to first recover the reference symbols, then correct the
signal in accordance to their value, demodulate the signal and finally "re-modulate"
the data to create an ideal version of it. Then, we apply to this ideal version the
inverse of the correction we did using the reference symbols, to finally substract it
from the received signal. To detect and understand OFDM-based protocols, our
automated analysis approach needs to be able to correct the channel’s impact on the



106 Conclusion and perspectives

spectrum, by using the reference symbols of the protocol, and to know the OFDM
block size. Methods exist to determine automatically the block size, for example
by detecting the presence of cyclic prefixes and the distance with the copied part
of the signal, but, to our knowledge, no such method is able to recover the original
reference symbols protocol-agnostically. Then, it is necessary to introduce in our
approach an other dictionary, containing various OFDM protocols along with their
parameters and reference symbols, and testing the received signals against each
entry to detect valid emissions. However, this would only serve as a wide-band
receiver for those OFDM emissions, as all parameters our approach is designed to
reverse-engineer will already be known, as the protocol itself was identified.

Finally, our protocol analysis approach is currently limited to a few fields that
it can detect. In its current state, we are capable to detect possible length fields,
sequence numbers and low or high entropy sections. This gives a minimal number
of information, but is not enough to automatically determine which kind of data is
extracted by a covert channel for example. To improve this approach, it could be
augmented with new heuristics to find more information about the packet structure.
For example, some methods exist to reverse CRC polynomials, which could allow to
detect such fields in packets, and thus determine packet validity. It would also be
possible to use the position of fields known to be in the header, such as the length
or the sequence number, along with a low enough entropy, to detect the header’s
position, and by extension the payload section. The entropy analysis could also
be used to detect high-entropy sections, corresponding to pseudo-random data,
corresponding for example to an encrypted payload.

Overall, our defensive contributions aim to create a unified approach, with min-
imal interaction with an expert and minimal development cost, to counter Physical
Layer attacks such as those illustrated in our offensive work, independently from
the protocols in use.



Bibliography

[Angluin 1987] Angluin, D. Learning regular sets from queries and counterexamples.
Information and computation, vol. 75, no. 2, pages 87–106, 1987. (Cited in
page 83.)

[Antunes 2011] Antunes, J., Neves, N. and Verissimo, P. ReverX: Reverse engi-
neering of protocols. 2011. (Cited in page 83.)

[Avizienis 2004] Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. Basic
concepts and taxonomy of dependable and secure computing. IEEE transac-
tions on dependable and secure computing, vol. 1, no. 1, pages 11–33, 2004.
(Cited in page 9.)

[Azim 2013] Azim, A. W., Khalid, S. S. and Abrar, S. Modulation classification
based on modified Kolmogorov-Smirnov test. In 2013 IEEE 9th Interna-
tional Conference on Emerging Technologies (ICET), pages 1–6. IEEE, 2013.
(Cited in page 82.)

[Bachy 2015] Bachy, Y., Basse, F., Nicomette, V., Alata, E., Kaâniche, M., Cour-
rège, J. and Lukjanenko, P. Smart-TV Security Analysis: Practical Ex-
periments. In 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 497–504, June 2015. (Cited in
page 30.)

[Beddoe 2004] Beddoe, M. A. Network protocol analysis using bioinformatics algo-
rithms. Toorcon, vol. 26, no. 6, pages 1095–1098, 2004. (Cited in page 83.)

[Blu 2021] Bluetooth SIG. Bluetooth Core Specification, 7 2021. (Cited in page 34.)

[Boda 2011] Boda, K., Földes, Á. M., Gulyás, G. G. and Imre, S. User tracking on
the web via cross-browser fingerprinting. In Nordic conference on secure it
systems, pages 31–46. Springer, 2011. (Cited in page 51.)

[Bossert 2012a] Bossert, G., Guihéry, F., Hiet, G.et al. Netzob GitHub repository.
2012. [Online]. Available: https://github.com/netzob/netzob/tree/ma
ster/netzob. (Cited in page 84.)

[Bossert 2012b] Bossert, G., Guihéry, F., Hiet, G.et al. Netzob: un outil pour la
rétro-conception de protocoles de communication. In Actes du Symposium
sur la sécurité des technologies de l’information et des communications, vol-
ume 43, 2012. (Cited in pages 83, 90, and 96.)

[Bossert 2014] Bossert, G., Guihéry, F. and Hiet, G. Towards automated protocol
reverse engineering using semantic information. In Proceedings of the 9th
ACM symposium on Information, computer and communications security,
pages 51–62, 2014. (Cited in pages 83, 90, and 96.)

https://github.com/netzob/netzob/tree/master/netzob
https://github.com/netzob/netzob/tree/master/netzob


108 Bibliography

[Bouzegzi 2010] Bouzegzi, A., Ciblat, P. and Jallon, P. New algorithms for blind
recognition of OFDM based systems. Signal Processing, vol. 90, no. 3, pages
900–913, 2010. (Cited in page 100.)

[Brik 2008] Brik, V., Banerjee, S., Gruteser, M. and Oh, S. PARADIS : Physical
802 . 11 Device Identification with Radiometric Signatures. 2008. (Cited in
page 51.)

[Cauquil 2016] Cauquil, D. Btlejuice: The bluetooth smart mitm framework. DEF
CON, vol. 24, pages 4–7, 2016. (Cited in page 13.)

[Cauquil 2017a] Cauquil, D. Radiobit, a BBC Micro:Bit RF firmware, 2017. https:
//github.com/virtualabs/radiobit. (Cited in page 32.)

[Cauquil 2017b] Cauquil, D. Sniffing BTLE with the Micro:Bit. PoC or GTFO,
vol. 17, pages 13–20, 2017. (Cited in page 32.)

[Cauquil 2017c] Cauquil, D. Weaponizing the BBC Micro:Bit, 2017. https://me
dia.defcon.org/DEFCON25/DEFCON25presentations/DEFCON25-Damie
n-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf. (Cited in
page 32.)

[Cayre 2021a] Cayre, R., Galtier, F., Auriol, G., Nicomette, V., Kaâniche, M. and
Marconato, G. InjectaBLE: Injecting malicious traffic into established Blue-
tooth Low Energy connections. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 388–399.
IEEE, 2021. (Cited in page 14.)

[Cayre 2021b] Cayre, R., Galtier, F., Auriol, G., Nicomette, V., Kaâniche, M. and
Marconato, G. WazaBee: attacking Zigbee networks by diverting Bluetooth
Low Energy chips. In 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 376–387. IEEE, 2021.
(Cited in pages 2 and 29.)

[Cayre 2021c] Cayre, R., Marconato, G., Galtier, F., Kaâniche, M., Nicomette, V.
and Auriol, G. Cross-protocol attacks: weaponizing a smartphone by divert-
ing its Bluetooth controller. In Proceedings of the 14th ACM conference on
security and privacy in wireless and mobile networks, pages 386–388, 2021.
(Cited in pages 41 and 103.)

[Cayre 2022] Cayre, R. Offensive and defensive approaches for wireless communi-
cation protocols security in IoT. PhD thesis, INSA Toulouse, 2022. (Cited
in page 15.)

[CC2 2019] CC2652R Data Sheet, 2019. http://www.ti.com/lit/ds/symlink/
cc2652r.pdf. (Cited in page 31.)

 https://github.com/virtualabs/radiobit
 https://github.com/virtualabs/radiobit
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEF CON 25 - Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEF CON 25 - Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEF CON 25 - Damien-Cauquil-Weaponizing-the-BBC-MicroBit-UPDATED.pdf
http://www.ti.com/lit/ds/symlink/cc2652r.pdf
http://www.ti.com/lit/ds/symlink/cc2652r.pdf


Bibliography 109

[Chatterjee 2019] Chatterjee, B., Das, D., Maity, S. and Sen, S. RF-PUF: Enhanc-
ing IoT Security Through Authentication of Wireless Nodes Using In-Situ
Machine Learning. IEEE Internet of Things Journal, vol. 6, no. 1, pages
388–398, 2019. (Cited in page 51.)

[Chebrolu 2009] Chebrolu, K. and Dhekne, A. Esense: Communication through
Energy Sensing. In Proceedings of the 15th Annual International Conference
on Mobile Computing and Networking, MobiCom ’09, page 85–96, New
York, NY, USA, 2009. Association for Computing Machinery. (Cited in
page 31.)

[Chen 2008] Chen, Q., Wang, Y. and Bostian, C. W. Universal Classifier Synchro-
nizer Demodulator. In 2008 IEEE International Performance Computing
and Communications Conference (IPCCC), Los Alamitos, CA, USA, dec
2008. IEEE Computer Society. (Cited in page 82.)

[Clauset 2005] Clauset, A., Newman, M. and Moore, C. Finding community struc-
ture in very large networks. Physical review. E, Statistical, nonlinear, and
soft matter physics, vol. 70, page 066111, 01 2005. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevE.70.066111. (Cited in page 58.)

[Cui 2006] Cui, W., Paxson, V., Weaver, N. and Katz, R. H. Protocol-independent
adaptive replay of application dialog. In NDSS, 2006. (Cited in page 83.)

[Cui 2007] Cui, W., Kannan, J. and Wang, H. J. Discoverer: Automatic Protocol
Reverse Engineering from Network Traces. In USENIX Security Symposium,
pages 1–14, 2007. (Cited in page 83.)

[Danev 2011] Danev, B. Physical-Layer Identification of Wireless Devices. PhD
thesis, ETHZ, 2011. pages 25-90. (Cited in page 50.)

[Danev 2012] Danev, B., Zanetti, D. and Capkun, S. On physical-layer identifica-
tion of wireless devices. ACM Computing Surveys (CSUR), vol. 45, no. 1,
pages 1–29, 2012. (Cited in page 50.)

[dat 2020] Fingerprinting experiments datasets, 2020. (Cited in page 61.)

[Duchêne 2018] Duchêne, J., Le Guernic, C., Alata, E., Nicomette, V. and
Kaâniche, M. State of the art of network protocol reverse engineering tools.
Journal of Computer Virology and Hacking Techniques, vol. 14, no. 1, pages
53–68, 2018. (Cited in page 82.)

[Eckersley 2010] Eckersley, P. How unique is your web browser? pages 1–18, 2010.
(Cited in page 51.)

[European-Comission 2022] European-Comission. The next generation Internet of
Things, 2022. (Cited in page 6.)

https://dx.doi.org/10.1103/PhysRevE.70.066111


110 Bibliography

[Galtier 2020] Galtier, F., Cayre, R., Auriol, G., Kaâniche, M. and Nicomette, V.
A PSD-based fingerprinting approach to detect IoT device spoofing. In 2020
IEEE 25th Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 40–49. IEEE, 2020. (Cited in page 2.)

[Gimenez 2021] Gimenez, P.-F., Roux, J., Alata, E., Auriol, G., Kaâniche, M.
and Nicomette, V. RIDS: Radio intrusion detection and diagnosis system
for wireless communications in smart environment. ACM Transactions on
Cyber-Physical Systems, vol. 5, no. 3, pages 1–1, 2021. (Cited in page 81.)

[Girvan 2002] Girvan, M. and Newman, M. E. J. Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pages 7821–7826, 2002. [Online]. Available: https://www.
pnas.org/content/99/12/7821. (Cited in page 58.)

[Goodspeed 2011a] Goodspeed, T. Promiscuity is the nRF24L01+’s Duty, 2011.
(Cited in page 32.)

[Goodspeed 2011b] Goodspeed, T., Bratus, S., Melgares, R., Shapiro, R. and
Speers, R. Packets in packets: Orson Welles’ in-band signaling attacks for
modern radios. pages 7–7, 08 2011. (Cited in page 32.)

[hac 2022] HackRF One Official webpage, 2022. (Cited in page 55.)

[Hall 2005] Hall, J., Barbeau, M. and Kranakis, E. Radio Frequency Fingerprinting
for Intrusion Detection in Wireless Networks. IEEE Trans. Dependable
Secure Comput., 2005. (Cited in page 50.)

[Hao 2019] Hao, S., Wang, N., Sun, R., Liu, M., Dong, M. and Wang, H. Modulation
classification using a goodness of fit test. In Journal of Physics: Conference
Series, volume 1169, page 012068. IOP Publishing, 2019. (Cited in page 82.)

[Hasse 2013] Hasse, J., Gloe, T. and Beck, M. Forensic identification of GSM
mobile phones. In Proceedings of the first ACM workshop on Information
hiding and multimedia security, pages 131–140, 2013. (Cited in page 51.)

[Helluy-Lafont 2021] Helluy-Lafont, E. Sécurité et détection d’intrusion dans les
réseaux sans fil. PhD thesis, 2021. (Cited in page 81.)

[igr 2022] igraph project webpage, 2022. (Cited in page 61.)

[IOT 2018] B-L475E-IOT01A Data Brief, 2018. https://www.st.com/resource/
en/data_brief/b-l475e-iot01a.pdf. (Cited in page 31.)

[Jiang 2017] Jiang, W., Yin, Z., Liu, R., Li, Z., Kim, S. M. and He, T. BlueBee:
A 10,000x Faster Cross-Technology Communication via PHY Emulation.
In Proceedings of the 15th ACM Conference on Embedded Network Sensor
Systems, SenSys ’17, New York, NY, USA, 2017. Association for Computing
Machinery. (Cited in page 31.)

https://www.pnas.org/content/99/12/7821
https://www.pnas.org/content/99/12/7821
https://www.st.com/resource/en/data_brief/b-l475e-iot01a.pdf
https://www.st.com/resource/en/data_brief/b-l475e-iot01a.pdf


Bibliography 111

[Jiang 2018] Jiang, W., Kim, S. M., Li, Z. and He, T. Achieving Receiver-Side
Cross-Technology Communication with Cross-Decoding. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Net-
working, MobiCom ’18, page 639–652, New York, NY, USA, 2018. Associa-
tion for Computing Machinery. (Cited in page 31.)

[Jung 2006] Jung, Y.-H. and Lee, Y. H. Use of periodic pilot tones for identifying
base stations of FH-OFDMA systems. IEEE communications letters, vol. 10,
no. 3, pages 192–194, 2006. (Cited in page 100.)

[Kaufmann 1987] Kaufmann, L. and Rousseeuw, P. Clustering by Means of
Medoids. Data Analysis based on the L1-Norm and Related Methods, pages
405–416, 01 1987. (Cited in page 58.)

[Kim 2015] Kim, S. M. and He, T. FreeBee: Cross-Technology Communication via
Free Side-Channel. In Proceedings of the 21st Annual International Confer-
ence on Mobile Computing and Networking, MobiCom ’15, page 317–330,
New York, NY, USA, 2015. Association for Computing Machinery. (Cited
in page 31.)

[Köse 2019] Köse, M., Taşcioğlu, S. and Telatar, Z. RF Fingerprinting of IoT
devices based on transient energy spectrum. IEEE Access, vol. 7, pages
18715–18726, 2019. (Cited in page 50.)

[Lakshminarayanan 2009] Lakshminarayanan, K., Sapra, S., Seshan, S. and
Steenkiste, P. Rfdump: an architecture for monitoring the wireless ether.
In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, pages 253–264, 2009. (Cited in page 81.)

[Laperdrix 2019] Laperdrix, P., Bielova, N., Baudry, B. and Avoine, G. Browser
Fingerprinting: A survey. 05 2019. (Cited in page 51.)

[Laprie 1995] Laprie, J. Guide of dependability. 1995. (Cited in page 9.)

[Li 2015] Li, A., Dong, C., Tang, S., Wu, F., Tian, C., Tao, B. and Wang, H.
Demodulation-free protocol identification in heterogeneous wireless networks.
Computer Communications, vol. 55, pages 102–111, January 2015. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S014036
6414003041. (Cited in page 81.)

[Li 2017] Li, Z. and He, T. WEBee: Physical-Layer Cross-Technology Communica-
tion via Emulation. In Proceedings of the 23rd Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’17, page 2–14,
New York, NY, USA, 2017. Association for Computing Machinery. (Cited
in page 31.)

[lim 2022] LimeSDR Mini Official webpage, 2022. (Cited in page 55.)

https://linkinghub.elsevier.com/retrieve/pii/S0140366414003041
https://linkinghub.elsevier.com/retrieve/pii/S0140366414003041


112 Bibliography

[Maeda 2007] Maeda, K., Benjebbour, A., Asai, T., Furuno, T. and Ohya, T.
Recognition among OFDM-based systems utilizing cyclostationarity-inducing
transmission. In 2007 2nd IEEE International Symposium on New Frontiers
in Dynamic Spectrum Access Networks, pages 516–523. IEEE, 2007. (Cited
in page 100.)

[Millian 2015] Millian, M. C. and Yadav, V. Packet-in-packet Exploits on 802 . 15
. 4. 2015. (Cited in page 32.)

[Mototolea 2020] Mototolea, D., Youssef, R., Radoi, E. and Nicolaescu,
I. Non-Cooperative Low-Complexity Detection Approach for FHSS-
GFSK Drone Control Signals. IEEE Open Journal of the Commu-
nications Society, vol. 1, pages 401–412, 2020. [Online]. Available:
http://dx.doi.org/10.1109/OJCOMS.2020.2984312. (Cited in page 82.)

[Needleman 1970] Needleman, S. B. and Wunsch, C. D. A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, vol. 48, no. 3, pages 443–453, 1970. [Online].
Available: https://www.sciencedirect.com/science/article/pii/00
22283670900574. (Cited in page 83.)

[Nei 1983] Nei, M., Tajima, F. and Tateno, Y. Accuracy of estimated phylogenetic
trees from molecular data. Journal of molecular evolution, vol. 19, no. 2,
pages 153–170, 1983. (Cited in page 83.)

[Newlin 2016] Newlin, M. MouseJack : White Paper, 2016. https://github.com
/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Mar
c-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.wh
itepaper.pdf. (Cited in pages 8 and 32.)

[Nguyen 2014] Nguyen, D., Sahin, C., Shishkin, B., Kandasamy, N. and Dandekar,
K. R. A real-time and protocol-aware reactive jamming framework built
on software-defined radios. In Proceedings of the 2014 ACM workshop on
Software radio implementation forum, pages 15–22, 2014. (Cited in page 14.)

[Nordic-Semiconductors 2008] Nordic-Semiconductors. nRF24L01+ Product Spec-
ification v1.0, 2008. (Cited in page 96.)

[Nouichi 2019] Nouichi, D., Abdelsalam, M., Nasir, Q. and Abbas, S. IoT Devices
Security Using RF Fingerprinting. In 2019 Advances in Science and Engi-
neering Technology Int. Conferences (ASET), pages 1–7, 2019. (Cited in
page 51.)

[Okhravi 2010] Okhravi, H., Bak, S. and King, S. T. Design, implementation and
evaluation of covert channel attacks. In 2010 IEEE International Conference
on Technologies for Homeland Security (HST), pages 481–487. IEEE, 2010.
(Cited in page 14.)

https://dx.doi.org/10.1109/OJCOMS.2020.2984312
https://www.sciencedirect.com/science/article/pii/0022283670900574
https://www.sciencedirect.com/science/article/pii/0022283670900574
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf


Bibliography 113

[Oner 2007] Oner, M. and Jondral, F. On the extraction of the channel allocation
information in spectrum pooling systems. IEEE Journal on Selected Areas
in Communications, vol. 25, no. 3, pages 558–565, 2007. (Cited in page 100.)

[Oularbi 2011] Oularbi, M. R. Identification de systèmes OFDM et estimation de
la QoS: application à la radio opportuniste. PhD thesis, Ecole Nationale
Supérieure des Télécommunications de Bretagne-ENSTB . . . , 2011. (Cited
in page 100.)

[Pons 2006] Pons, P. and Latapy, M. Computing Communities in Large Networks
Using Random Walks. J. Graph Algorithms Appl., vol. 10, pages 191–218,
01 2006. [Online]. Available: http://dx.doi.org/10.7155/jgaa.00124. (Cited
in page 58.)

[Powell 2001] Powell, D., Stroud, R.et al. Malicious-and accidental-fault tolerance
for internet applications-Conceptual model and architecture. 2001. (Cited in
page 10.)

[Punchihewa 2011] Punchihewa, A., Bhargava, V. K. and Despins, C. Blind estima-
tion of OFDM parameters in cognitive radio networks. IEEE Transactions
on Wireless Communications, vol. 10, no. 3, pages 733–738, 2011. (Cited in
page 100.)

[Qasim Khan 2019] Qasim Khan, S. Sniffle: A sniffer for Bluetooth 5 (LE), 2019.
https://hardwear.io/netherlands-2019/presentation/sniffle-tal
k-hardwear-io-nl-2019.pdf. (Cited in page 39.)

[Ramsey 2015] Ramsey, B. W., Mullins, B. E., Temple, M. A. and Grimaila, M. R.
Wireless Intrusion Detection and Device Fingerprinting through Preamble
Manipulation. IEEE Transactions on Dependable and Secure Computing,
vol. 12, no. 5, pages 585–596, 2015. (Cited in page 51.)

[Ryan 2013] Ryan, M. Bluetooth: With Low Energy comes Low Security. 2013.
(Cited in page 9.)

[sca 2022] Scapy project homepage, 2022. (Cited in pages 89 and 95.)

[Schroeder 2010] Schroeder, T. and Moser, M. Practical ex-
ploitation of modern wireless devices. CanSecWest, Mar.
http://www.remoteexploit.org/content/keykeriki_v2_cansec_v1, vol. 1,
2010. (Cited in page 8.)

[Shintani 2020] Shintani, A. The Design, Testing, and Analysis of a Constant Jam-
mer for the Bluetooth Low Energy (BLE) Wireless Communication Protocol.
2020. (Cited in page 13.)

https://dx.doi.org/10.7155/jgaa.00124
https://hardwear.io/netherlands-2019/presentation/sniffle-talk-hardwear-io-nl-2019.pdf
https://hardwear.io/netherlands-2019/presentation/sniffle-talk-hardwear-io-nl-2019.pdf


114 Bibliography

[Socheleau 2011] Socheleau, F.-X., Houcke, S., Ciblat, P. and Aïssa-El-Bey, A. Cog-
nitive OFDM system detection using pilot tones second and third-order cy-
clostationarity. Signal processing, vol. 91, no. 2, pages 252–268, 2011. (Cited
in page 100.)

[Sokal 1958] Sokal, R. R. and Michener, C. D. A statistical method for evaluating
systematic relationships. Univ. Kansas, Sci. Bull., vol. 38, pages 1409–1438,
1958. (Cited in page 83.)

[Speth 2004] Speth, M., Madden, M., Hammes, M. and Neubauer, A. MLSE based
detection for GFSK signals with arbitrary modulation index. In Interna-
tional Zurich Seminar on Communications, 2004, pages 228–231. IEEE,
2004. (Cited in page 30.)

[Spuhler 2014] Spuhler, M., Giustiniano, D., Lenders, V., Wilhelm, M. and
Schmitt, J. B. Detection of reactive jamming in DSSS-based wireless commu-
nications. IEEE Transactions on Wireless Communications, vol. 13, no. 3,
pages 1593–1603, 2014. (Cited in page 14.)

[Sutton 2008] Sutton, P. D., Nolan, K. E. and Doyle, L. E. Cyclostationary signa-
tures in practical cognitive radio applications. IEEE Journal on selected areas
in Communications, vol. 26, no. 1, pages 13–24, 2008. (Cited in page 100.)

[Ur Rehman 2012] Ur Rehman, S., Sowerby, K. and Coghill, C. RF fingerprint
extraction from the energy envelope of an instantaneous transient signal.
In 2012 Australian Communications Theory Workshop (AusCTW), pages
90–95, 2012. (Cited in page 50.)

[Wilhelm 2011] Wilhelm, M., Martinovic, I., Schmitt, J. B. and Lenders, V. Short
paper: Reactive jamming in wireless networks: How realistic is the threat?
In Proceedings of the fourth ACM conference on Wireless network security,
pages 47–52, 2011. (Cited in page 14.)

[Wilhelm 2012] Wilhelm, M., Schmitt, J. B. and Lenders, V. Practical message
manipulation attacks in IEEE 802.15. 4 wireless networks. In MMB & DFT
2012 Workshop Proceedings, pages 29–31, 2012. (Cited in page 14.)

[Woolley 2019] Woolley, M. Bluetooth core specification v5. 1. In Bluetooth, 2019.
(Cited in page 96.)

[Xu 2005] Xu, W., Trappe, W., Zhang, Y. and Wood, T. The feasibility of launch-
ing and detecting jamming attacks in wireless networks. In Proceedings of
the 6th ACM international symposium on Mobile ad hoc networking and
computing, pages 46–57, 2005. (Cited in page 13.)

[Yucek 2007] Yucek, T. and Arslan, H. OFDM signal identification and transmis-
sion parameter estimation for cognitive radio applications. In IEEE GLOBE-
COM 2007-IEEE Global Telecommunications Conference, pages 4056–4060.
IEEE, 2007. (Cited in page 100.)



Bibliography 115

[Zuo 2019] Zuo, C., Wen, H., Lin, Z. and Zhang, Y. Automatic fingerprinting of
vulnerable ble iot devices with static uuids from mobile apps. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1469–1483, 2019. (Cited in pages 9 and 13.)





Abstract: We witnessed, in the last few years, the massive expansion of the
Internet of Things (IoT) to multiple everyday devices, in homes, buildings and fac-
tories. The inclusion of heterogeneous wireless transceivers in potentially critical
appliances and environments is then raising growing security and safety concerns.
However, according to the litterature, there is still room for improvement, especially
in off-the-shelf devices, often not implementing the different security measures of
the protocols they use. As such, numerous works focus on the improvement of the
global security and safety of the IoT, and more generally in the wireless communica-
tions often used by these devices. The subject of the Physical Layer security is often
disregarded, because of its complexity or the fact that it is less critical in more tra-
ditional wired networks. However, the wireless communication medium can have a
substantial impact on the attack surface because of its higher availability, since any-
one in radio range can listen to communications. It also brings new vulnerabilities,
that are specific to this kind of transmissions. Furthermore, the low complexity and
computational power of the devices in use often results in simple protocols, making
device cloning and injections more easy, and harder to detect from higher layers.
Thus, in this thesis, we decided to focus on the impact of the wireless Physical
Layer on network security, and highlight the importance of transversal approaches
between signal processing and cybersecurity. We first show the new dimension in-
troduced by the common wireless medium in offensive security, by showing a new
attack based on similarities in Physical Layers of two protocols to break the isolation
between them. This attack, Wazabee, allows Bluetooth Low Energy transceivers
to communicate seemlessly with Zigbee networks. We also show that the principle
behind it could be extended to other pairs of protocols, should the conditions be
met. This highlights the importance of a more protocol-agnostic monitoring of the
wireless medium, able to detect communications outside the legitimate protocols
of the environment, and to not consider co-existing wireless protocols as isolated.
Then, we propose two defensive contributions, to help secure wireless networks by
analysing the communications from a Physical Layer perspective. First, we present
a low-cost fingerprinting approach for wireless devices, to detect potential identity
theft attacks, i.e. attacks where an illegitimate device tries to take the place of a
legitimate one in the network. Then, we present an approach for automated wire-
less protocol audit, allowing to detect and analyze various protocols emitting in a
wide range of frequencies, with minimal assumptions on their nature. These two
approaches complete higher-layer security measures, to detect potential intruders
or covert channels in the environment, and to ease protocol analysis for security
experts.
Keywords: IoT, Internet of Things, Cybersecurity, Wireless networks, Software
Defined Radio, Signal Processing



Résumé : Nous assistons, depuis plusieurs années, à l’extension de l’Internet
des Objets à de nouveaux objets du quotidien, que ce soit dans les domiciles ou
sur le lieu de travail. L’ajout d’émetteurs hétérogènes dans de nombreux objets
et certains environnements sensibles pose de nombreux problèmes en termes de
sûreté et de sécurité. Les travaux récents montrent qu’il y a encore du chemin à
parcourir, notamment pour les objets grand-public, qui n’implémentent sou-
vent pas les mesures de sécurité définies dans les standards. Partant de ce
constat, de nombreux travaux s’intéressent aujourd’hui à la sécurité et à la
sûreté dans l’IoT, et plus généralement dans les réseaux sans-fil, souvent util-
isés par ces objets. Le sujet de la sécurisation de la couche physique est
souvent mis de côté, que ce soit pour sa complexité ou par comparaison avec
les réseaux filaires traditionnels, où elle a moins d’impact. Toutefois, la plus
grande accessibilité des réseaux sans-fil par tout ce qui se trouve à portée
radio en augmente considérablement la surface d’attaque. S’y ajoutent égale-
ment des vulnérabilités propres à ce type de transmissions, et la simplicité
de certains protocoles, due à la faible puissance de calcul des objets, rendant
des attaques telles que le clonage d’objet légitime plus aisées, et difficiles à
détecter depuis les couches supérieures. Dans cette thèse, nous nous sommes
donc concentrés sur l’impact de l’aspect sans-fil de la couche physique sur la
sécurité de ces réseaux, mettant en évidence l’intérêt d’approches transver-
sales entre traitement du signal et sécurité. Nous montrons d’abord l’impact
offensif du moyen de communication commun, en exposant une nouvelle at-
taque basée sur la similarité des couches physiques de deux protocoles. Cette
attaque, Wazabee, permet à des objets BLE de communiquer avec des objets
Zigbee. Nous montrons également que le principe de l’attaque pourrait être
étendu à d’autres paires de protocoles. Nous soulignons ainsi l’importance
de moyens de détection plus indépendants des protocoles déployés capables
de détecter des communications hors des canaux légitimes, et de ne pas con-
sidérer des réseaux sans-fil différents mais colocalisés comme isolés les uns
des autres. Enfin, nous présentons deux contributions défensives basées sur
l’analyse de ces réseaux depuis leur couche physique. Premièrement, nous
présentons une approche à bas coût d’identification d’émetteurs sans-fil, visant
des attaques usurpant l’identité d’émetteurs légitimes. Ensuite, nous présen-
tons une approche d’automatisation de l’audit de protocoles sans-fil, permet-
tant de détecter et d’analyser le contenu d’émissions sans-fil, avec un minimum
d’hypothèses sur leur nature. Ces deux approches complètent des mesures aux
couches supérieures, en permettant de détecter de potentielles intrusions ou
canaux cachés, et pour faciliter l’analyse des protocoles utilisés par les experts.
Mots clés : IoT, Internet des Objets, Cybersécurité, Réseaux sans-fil, Soft-
ware Defined Radio, Traitement du Signal



Abstract 119


