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Abstract

Machine learning algorithms are widely used in the recommender systems that drive newsfeeds,

streaming platforms, online marketplaces and social networking services. Their main purpose is

to provide users with personalized recommendations by predicting their preferences and sorting

available content based on those predictions. However, by selecting content from some producers

over others, recommendation algorithms decide who is visible and who is not. These decisions have

real ethical and societal implications, including the potential to overlook disadvantaged social groups

when suggesting profiles to employers, or the possibility of certain voices and cultures being under-

or over-represented on social media. It has therefore become crucial to ensure that these automated

decisions are unbiased and fair towards content producers, avoiding giving some groups an excessive

advantage or disadvantage. In addition to deciding which producers are visible, recommendation

algorithms also control the information and opportunities that users are exposed to, including job

and housing ads. Consequently, concerns have emerged about whether these algorithms provide

fair access to information and opportunities among their users.

This thesis seeks to address the limitations of current recommendation algorithms by developing

fairer systems that consider the welfare of both users and content producers. However, developing

fair algorithms presents several challenges, including the definition of appropriate fairness criteria

and the implementation of computationally efficient ranking algorithms that satisfy these criteria.

Drawing on the rich literature of social choice theory, we propose a conceptual framework to

assess the fairness of ranked recommendations, relying on established concepts for fair division

problems that have been relatively overlooked by the machine learning and recommender systems

communities. This framework guides the development of new recommendation methods that follow

the principles of fair division, and distribute exposure more equitably among content producers,

without compromising the quality of recommendations for users. These methods are supported by

theoretical results on the fairness properties, convergence guarantees and computational efficiency

of the proposed algorithms, as well as experimental evaluations on publicly available datasets.

Résumé en français

Les algorithmes d’apprentissage automatique (machine learning) sont largement utilisés dans les

systèmes de recommandation qui alimentent les plateformes de streaming, de commerce et les réseaux

sociaux. Leur principal objectif est de fournir aux utilisateurs des recommandations personnalisées

en prédisant leurs préférences et en triant les contenus disponibles en fonction de ces prédictions.

Cependant, en sélectionnant le contenu de certains producteurs plutôt que d’autres, les algorithmes

de recommandation décident de qui est visible ou non. Ces décisions ont de réelles implications

éthiques et sociales, comme les risques d’invisibilisation de groupes minoritaires ou défavorisés

dans la suggestion de profils à des employeurs, ou les problèmes de sous- ou surreprésentation de

certaines opinions et cultures sur les réseaux sociaux. Il est donc devenu crucial de garantir que
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ces décisions automatisées soient non biaisées et équitables envers les producteurs de contenu, en

évitant de donner à certains groupes un avantage ou un désavantage excessif. En plus de décider

quels producteurs sont visibles, les algorithmes de recommandation jouent également un rôle clé

dans la décision de quels utilisateurs sont exposés à certains contenus, notamment les contenus

associés à des opportunités économiques telles que les offres d’emploi et annonces immobilières.

Par conséquent, des préoccupations se posent quant à l’équité d’accès à ces opportunités parmi les

utilisateurs des systèmes de recommandation.

Cette thèse vise à adresser les limites des algorithmes de recommandation actuels en développant

des systèmes plus équitables qui tiennent compte à la fois des utilisateurs et des producteurs de

contenu. Cependant, le développement d’algorithmes équitables présente plusieurs défis, notamment

la définition de critères d’équité appropriés et l’implémentation efficace d’algorithmes de ranking qui

satisfont ces critères. En nous appuyant sur la riche littérature de la théorie du choix social, nous

proposons un cadre conceptuel pour évaluer l’équité des listes ordonnées de recommandations, à

partir de concepts établis pour les problèmes de partage équitable qui ont été peu étudiés en machine

learning et en recommandation. Dans ce cadre conceptuel, nous développons de nouvelles méthodes

de recommandation qui suivent les principes du partage équitable et distribuent l’exposition plus

équitablement entre les producteurs de contenu, sans compromettre la qualité des recommandations

pour les utilisateurs. Ces méthodes sont soutenues par des résultats théoriques sur la satisfaction

de propriétés d’équité, sur les garanties de convergence et l’efficacité algorithmique des algorithmes

proposés, ainsi que par des évaluations expérimentales sur des jeux de données publics.
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1.1 The societal impacts of recommender systems

Recommender systems are an integral part of modern digital platforms, serving up to billions of

users worldwide. These systems are present in online marketplaces, streaming services, content

sharing platforms, and online social media. They play a crucial role in organizing the vast amount of

available information by providing personalized recommendations to users for a variety of purposes,

such as browsing news articles, finding products, jobs, housing, or people to connect with.

In the era of machine learning and its increasing adoption in many applications that affect our

daily lives, recommender systems stand out as one of the most successful applications of machine

learning algorithms. Machine learning have been instrumental in leveraging the vast amounts of

data available on online platforms to personalize user experience and facilitate the discovery of new

and relevant items. These algorithms analyze statistical patterns in users’ past browsing behavior,

interactions with items, expressed preferences, and other characteristics to predict their future

interests. These predictions enable the retrieval of items to recommend with the aim of maximizing

user engagement, such as increasing the number of clicks, likes, reshares, or time spent on the

platform. Machine learning offers the promise of highly tailored recommendations that reflect

individual tastes and preferences, leading to higher user satisfaction and increased platform usage.
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it is crucial to carefully evaluate their societal implications and ensure that they do not unfairly

disadvantage any groups.

On the side of users, recommender systems are traditionally designed to provide them with the

most relevant items, a goal which seemingly aligns with their interests. However, concerns have

been raised about the impact of recommendation algorithms on users in recent years. Audits of

recommender systems have exposed disparities in the content delivered to various social groups of

users. For instance, Datta et al. [2015] found that equally qualified women received fewer online

ads for high-paying jobs than men. To prevent the risk of unfair delivery of opportunities across

users, significant efforts have been made to audit recommender systems for unintended biases or

discrimination against their users. These efforts call for the development of new recommendation

algorithms that provide fair access to information and opportunities to their users.

Given the real-world impacts of recommender systems on their users and item producers, fairness

in recommender systems has become a central topic in machine learning and information retrieval

research. Fairness in recommender systems can be examined from at least two different sides: the

item side and the user side. On the item side, the goal is to provide item producers a fair share of

exposure in the recommendations. On the user side, it is necessary to ensure that recommender

systems do not create or amplify unintended biases and provide recommendations that benefit

all users. There is a growing demand for recommender systems that simultaneously achieve both

goals, in order to sustain a healthy recommendation ecosystem that serves the interests of all their

stakeholders [Patro et al., 2020, Abdollahpouri et al., 2020]. The societal impact of recommender

systems is significant, and ensuring fairness for both users and item producers is crucial to avoid

perpetuating or amplifying existing biases and inequalities.

Fairness in recommender systems is a focal point in a broader and active debate on the societal

impacts of machine learning algorithms. As machine learning algorithms continue to gain traction

in our daily lives, there has been growing public concern about the potential of machine learning

models to introduce biases and discrimination in algorithmic decisions [Buolamwini and Gebru,

2018, Barocas and Selbst, 2016]. As a result, fairness has become a central topic in machine learning

research, particularly in the context of classification and supervised learning [Barocas et al., 2019].

With the potential for algorithms to perpetuate biases and discrimination in decision-making,

researchers have proposed a range of fairness metrics and methods to address these concerns in

various supervised learning tasks, including recidivism prediction, hiring, and credit scoring. These

methods aim to ensure that the algorithms do not perpetuate unfair practices, such as differences in

treatment or outcomes based on gender, race, or other protected characteristics. In this chapter, we

will delve into the key role of fairness in recommender systems within the expansive and constantly

evolving field of fair machine learning, and we will present our contributions to this critical area.

1.2 Fairness concerns in recommender systems

1.2.1 Sources of unfairness in recommender systems

Overview of recommender systems. The task of a recommender system is to provide each of

its users with a ranked list of items, which are selected from a large pool of candidate items (e.g.,

videos) provided by producers (e.g., video creators). The recommender system evaluates the quality

of the rankings with ground-truth relevance scores, which measure the value of an item to a user.

At a high level, recommendation algorithms rely on two steps to generate ranked recommendations:

1. Learning: Estimate the value of every item for each user. This is done with a machine learning

model that learns from past interactions of users with items, item features (e.g., category,
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might leave aside users with less common preference patterns. Because of this, the system may

incorrectly learn stereotypical user tastes, such as gendered associations between user preferences

and job categories. The ranking step then amplifies these biases by ordering items according to the

estimated values, resulting in poor recommendation performance for users with non-stereotypical

tastes [Ekstrand et al., 2018] or skews in the recommendation of certain content across sensitive

groups [Sweeney, 2013, Imana et al., 2021]. Moreover, in the case of advertising markets, skews

in ad delivery appear when the ranking decision accounts for the results of an auction in which

advertisers compete for the same group of users [Ali et al., 2019]. For example, job advertisers

must sometimes compete with product ads targeted at women, leading them to be shown to fewer

women than men.

1.2.2 Fair recommendation vs. fair classification

This section aims to draw parallels between the problem of fairness in recommender systems and the

more widely studied problem of fairness in classification tasks in machine learning. By making these

connections, we aim to introduce the specific nuances of the former problem to readers who may

already be familiar with the latter. While this serves as an introductory comparison to establish

the foundation of our framework for fair recommendation, a comprehensive review of the literature

on this topic is provided in Chapter 2.

Learning and decision-making in classification. Fairness in recommender systems is a critical

area of research within the broader field of fairness in machine learning, which garnered significant

attention in recent years. While recommender systems can be decomposed into a learning step and a

ranking step, many other machine learning applications also have these learning and decision-making

components [Kleinberg et al., 2018b, Kilbertus et al., 2020, Corbett-Davies et al., 2017]. The most

largely studied setting is fair (binary) classification, where the goal is to predict a binary label for

each individual, such as whether or not they will repay a loan, in order to assist a decision, such as

whether or not to accept a loan application. Other common examples are recidivism prediction and

hiring [Corbett-Davies and Goel, 2018, Barocas et al., 2019]. We discuss how fairness considerations

in the learning and decision steps of classification tasks relate to the fairness considerations in the

learning and ranking steps of recommender systems.

Let us consider a classical example in the fair machine learning literature, where a lender uses an

algorithm to determine whether or not to approve a loan application [Hardt et al., 2016a, Liu et al.,

2018]. In the learning step, a supervised learning algorithm produces a score for each individual

by estimating the probability that they belong to the positive class (i.e., the probability that they

repay the loan). This score is predicted by a probabilistic classifier that is trained on historical data.

Unfairness can arise in the learning step when the data used to train the model is not representative

of the population to which it is applied. The resulting model may not perform well on unseen

data that comes from a different population, or it may learn problematic associations between

sensitive attributes and outcomes. In the lending example, if the training data contains a majority

of unsuccessful loan applications from people of a certain race or socioeconomic background, the

resulting model may produce estimates that are biased against those groups. This can lead to unfair

outcomes where certain groups are systematically denied access to loans because of a systematic

underestimation of their creditworthiness. As discussed in the previous section, learning algorithms

aimed at predicting items’ values in recommender systems can also overestimate the value of popular

items because of the lack of user feedback for less popular items in historical data.

In the decision-making step, individuals are classified as positive or negative based on their
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predicted scores. In the lending example, the decision to accept a loan application is based on

whether the applicant is predicted as creditworthy, which is done by applying a threshold to the

estimated probability of repayment. The decision threshold can have significant fairness implications,

as it determines which individuals are deemed eligible for certain life opportunities or services.

In particular, when choosing group-specific (or group-agnostic) threshold policies, the resulting

distribution of positive outcomes may or may not lead to welfare gains for disadvantaged groups

[Kleinberg et al., 2018b, Corbett-Davies et al., 2017].

In recommender systems, ranking algorithms also make a decision on who receives positive

outcomes. The decision is more complex than binary classification thresholds in at least two ways.

First, it consists in producing one ranking of items for each user, instead of a simple threshold per

user. Second, it involves making complex trade-offs between the interests of various stakeholders

who value the recommendations differently: users seek rankings that best match their preferences,

while items seek high exposure – therefore, the notion of positive outcome is not absolute.

In this thesis, we focus on the fairness of the decision that occurs at the ranking stage of

recommender systems, more precisely on the social planning problem that consists in choosing a

trade-off between the utilities of users and items (we later clarify the definitions of utilities in Section

1.3). This is a similar stance to Kleinberg et al. [2018b] who claim that fairness considerations

should affect how the social planner uses the learned scores to make a decision, rather than the

choice of learning algorithm, in the context of binary decision problems (i.e., college admissions).

Fairness criteria in classification. Fairness criteria have been proposed for both the learning

and decision steps. The fairness of scores produced in the learning stage has been intensely studied in

classification. Criteria include calibration between groups and parity2 of predicted scores [Kleinberg

et al., 2016, Pleiss et al., 2017]. In the lending example, parity requires that the average credit score

is the same for all groups, while calibration requires that the probability of repaying a loan for a

given credit score is the same for all groups. In the fair recommendation literature, a few criteria

for the fairness of scores have been proposed [Yao and Huang, 2017, Islam et al., 2021], but several

authors highlighted the insuffiency of considering scores in isolation from the final decision, i.e. the

rankings [Beutel et al., 2019a, Singh and Joachims, 2018]. In particular, calibration of scores does

not trivially extends to the setting of recommender systems [Steck, 2018], because the impact of an

item’s score is only meaningful in comparison to the scores of other items [Beutel et al., 2019a].

A broad class of fairness criteria in the decision step of classification tasks aim at equalizing

outcomes across sensitive groups. Demographic parity requires equal probability of positive outcomes

across sensitive groups [Feldman et al., 2015, Zliobaite, 2015] and equality of opportunity [Hardt

et al., 2016b] (or equality of error rates [Zafar et al., 2017a, 2019]) aims at equalizing the probabilities

of positive outcomes for the positive class across groups. Geyik et al. [2019] propose a mapping of

demographic parity and equality of opportunity to the ranking setting. When items are partitioned

into sensitive groups, demographic parity requires that groups of items receive equal exposure in

the rankings, while equality of opportunity is similar to a popular merit-based criterion for rankings

that we present in Section 1.3.5.

Corbett-Davies et al. [2017], Hu and Chen [2020] insist on the cost for social welfare of seeking

parity of outcomes in classification problems, as it is possible to equalize outcomes across groups

by depriving individuals from positive outcomes without redistributing them to disadvantaged

individuals. In this thesis, we also demonstrate the undesirable consequences of enforcing fairness

constraints on item exposure (Chapter 3). However, we argue that reducing inequalities in the

distribution of outcomes is reasonable in the case of ranking, where the decision is allocative, because

2In classification, parity criteria are more often considered at the level of outcomes, i.e., of the decisions.
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it can lead to positive changes in social welfare. In contrast, decisions in most fair classification

problems are not allocative, because there is no budget on the number of positive classifications

[Zafar et al., 2019, 2017a, Hardt et al., 2016b, Agarwal et al., 2018]. In other words, these works

consider strict classification problems, rather than selection problems. In practice though, binary

accept/reject decisions are often budgeted: there is typically a fixed budget to spend in lending

problems, and a fixed number of slots in a college admissions. Budget considerations as in [Kleinberg

et al., 2018b, Emelianov et al., 2022] bring classification problems closer to recommender systems

where there is a fixed number of recommendation slots to allocate. In those budgeted settings,

it is desirable to redistribute outcomes, since a positive outcome that is taken from someone is

necessarily transferred to someone else. We present in the following section a main contribution

of this thesis, which is a framework for guiding the allocative decision of ranking in recommender

systems, rooted in distributive justice principles of social choice.

1.3 Social choice for fair recommendation

This section presents a core contribution of this thesis: a conceptual framework for fairness in

recommender systems that is grounded in social choice theory.

1.3.1 Fair allocation of exposure in recommender systems

As we previously discussed, at the ranking stage, recommender systems make a collective allocative

decision on which items receive exposure, and to which users they are exposed. Fairness in allocation

problems, or fair division, has a long history in social choice theory, which is a branch of economics

that studies collective decision-making processes based on the heterogeneous preferences of multiple

agents [Arrow et al., 2010, Moulin, 2003]. In this thesis, we approach fairness in recommender

systems as a new fair division problem, where the scarce resource to distribute is the amount of

content that the system can display to its users, i.e., the total available exposure. Different item

producers compete for a share of this limited resource. Our view is that the recommender is a

social planner whose goal is to provide ranked recommendations to users by fairly allocating the

exposure budget among item producers, while also taking into account the impact of the allocation

mechanism on user satisfaction. We build on the extensive research on fair division that has been

conducted in the past in social choice theory and cardinal welfare economics.

We use the term utility in its broad sense in cardinal welfare economics as a “measurement of

the higher-order characteristic that is relevant to the particular distributive justice problem at hand ”

[Moulin, 2003]. In our allocation problem, there are two types of agents – users and item producers

– who benefit differently from the rankings. Users value high quality rankings that best match their

preferences, and items benefit from a high number of views. As a result, we define user utility as a

ranking performance metric, and item utility as the expected number of views. We provide formal

definitions of user utility and item utility in the next section, and a discussion of these modelling

choices in Chapter 7. The allocation problem consists in choosing rankings by making trade-offs

between user utilities and item utilities. We refer to this allocation problem as the fair allocation

of exposure problem.

As discussed earlier, the traditional approach in recommender systems is to maximize average

user utility only, by sorting items by decreasing relevance for each user. However, this approach

can have undesirable effects, such as unfair winner-take-all effects and amplification of biases in

estimated scores, as described in Section 1.2.1. Therefore, our motivation for considering the

fairness of exposure allocation towards both users and item producers is to mitigate these negative
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consequences.

1.3.2 Formal setting and utility models

We formalize the notions of user and item utilities in the following recommendation setting.

Formal setting. We consider a setting in which there is a set of n users and m items (e.g., videos)

created by producers (e.g., video creators), and the recommender system must generate a top-K

ranking of items for each user. We denote by µij 2 [0, 1] the ground-truth value of item j for user

i. In practice, µij represents a relevance score, or the probability that the user positively engages

with the item (e.g., the probability of watching or liking a video). We denote by P 2 R
n⇥m⇥m a

ranking policy that defines a ranking for each user: Pijk is equal to 1 if j is recommended to user i

at position k, and 0 otherwise. The output of the recommender system is a ranking policy P .

Utility models. Following the academic literature on fairness of exposure [e.g. Singh and

Joachims, 2018, Wang and Joachims, 2021, Biega et al., 2018], we assume that users examine

ranked lists by following the position-based model [Craswell et al., 2008]. This model is based on the

intuition that users examine items in order of their ranking, and that the probability of examining

an item decreases as the item’s rank increases. The position-based model is defined by a set of

weights b 2 R
m
+ , where bk represents the probability that a user examines an item at position k. We

assume that the weights are non-increasing, i.e., b1 � . . . � bK and bk = 0 for any k > K. In the

position-based model, the user utility is measured with the following ranking performance metric:

User utility: ui(P ) =

mX

j=1

mX

k=1

µijPijkbk (1.1)

The user utility is higher when relevant items are ranked higher. When the weights are bk / 1
log2(1+k) ,

the user utility is the discounted cumulated gain (DCG) [Järvelin and Kekäläinen, 2002], a classical

ranking performance metric. Note that the utility of user i only depends on their own ranking Pi

and not the global ranking policy P .

Since the ranking policy also has an impact on the item producers, we also measure the exposure

of an item, which is its expected number of views across all users’ rankings in the position-based

model. Formally, the exposure of an item j 2 JmK is defined as:

Item exposure: vj(P ) =

nX

i=1

mX

k=1

Pijkbk.

Exposure is higher when the item appears in higher positions in more users’ rankings. We define

the item utility as the item exposure, and use the two terms interchangeably. To simplify the

presentation, we identify item producers with items, but the framework would be conceptually

equivalent by defining the exposure of a producer as the sum of the exposures of all the items

produced by the producer. We defer the discussion of the implications and limitations of these

utility models to Chapter 7, Section 7.2.3.1.

Note that unlike user utility, the exposure of an item j depends on the global ranking policy P ,

and not just the local ranking Pi of a given user i. Considering items’ exposures’ thus introduces a

coupling between the rankings, and requires handling the global ranking policy P .
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1.3.3 Maximizing welfare functions

The recommender system has to make a normative decision on how much utility should be

redistributed a) between users and items, and b) among each population, between the better-off

and the worse-off individuals. This involves a complex multidimensional trade-off. Boosting small

item producers by reducing the exposure of popular items is costly for average user utility. At the

same time, the least satisfied users should not bear that cost. It is therefore crucial to examine

who benefits or bears the cost of reducing inequalities of exposure among items. Our goal is to

provide a framework to assess the multi-dimensional trade-offs involved by a ranking policy, and to

generate rankings that achieve a variety of these trade-offs. The choice of a specific trade-off is left

to the designer of the recommender system.

We follow a general framework based on maximizing welfare functions in social choice [Moulin,

2003, Sen, 1970, Arrow, 1951]. Welfare functions specify an ordering of a set of alternatives P

by mapping a utility profile to a real value that represents the aggregate utility of all individuals

for a given alternative P 2 P. Socially preferred alternatives are those that maximize the welfare

function. For the fair allocation of exposure problem, we propose to find a ranking policy P within

a set of ranking policies P by maximizing a global welfare function F (P ), which is a weighted sum

of welfare functions for users and items:

F (P ) = (1� �)guser(u(P )) + �gitem(v(P )), (1.2)

where guser : Rn ! R and gitem : Rm ! R are strictly concave, increasing functions that respectively

aggregate the utilities of users and the utilities of items, and � 2 [0, 1] controls the trade-off between

the welfare of users and the welfare of items. The strength of the curvature of the concave welfare

function gitem (resp. guser) controls how much utility should be redistributed from better-off to

worse-off items (resp. users).

1.3.4 Distributive justice principles in welfare economics

In this thesis, we study two classes of welfare functions from cardinal welfare economics for the

choice of guser and gitem in F (P ) in Equation (1.2). We focus on additive concave welfare functions

in Chapter 3 and generalized Gini welfare functions in Chapter 4. We later introduce these classes

of welfare functions in their respective chapters, as well as in the background section on social choice

(Section 2.4). When using either of them in the global welfare function F (P ), we prove that the

ranking policies obtained by maximizing F (P ) simultaneously satisfy two fundamental social choice

properties. These properties are Pareto efficiency and the Pigou-Dalton transfer principle [Moulin,

2003], which we introduce for the problem of fair allocation of exposure in recommender systems.

Considering the whole population of users and items, these properties are defined as follows:

1. Pareto efficiency: It is not possible to improve the utility of an individual (user or item),

without decreasing the utility of another individual.

2. Pigou-Dalton transfer principle: At a given level of total utility, utility should be redis-

tributed as much as possible from the better-off to the worse-off individuals.

Pareto efficiency is an efficiency criterion that avoids undesirable rankings where everyone is

made worse-off. The Pigou-Dalton transfer principle is a distributive fairness criterion that allows

to sort through Pareto-efficient solutions. It favours rankings that redistribute exposure from highly

visible items to less visible items. Therefore, it promotes more equality among items, and it allows

to mitigate the winner-take-all effects of the traditional ranking solution, which we described in

Section 1.2.1. Furthermore, on the user side, since worst-off individuals are prioritized, the transfer
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principle makes sure that the least satisfied users do not bear the cost of boosting the exposure of

the least visible items.

The Pigou-Dalton transfer principle is equivalent to Lorenz efficiency, a criterion that we

introduce in Chapter 3 that combines these efficiency and fairness guarantees [Hardy et al., 1952,

Marshall et al., 1979]. The definition of the Lorenz efficiency criterion is based on the generalized

Lorenz curves of utility profiles, which are a graphical representation of the cumulative utility

detained by each fraction of a population, and are used in welfare economics to measure income

inequality [Shorrocks, 1983, Kolm, 1976]. We introduce them in more detail in the background

section (Section 2.4), and in Chapter 3 where we use generalized Lorenz curves to assess the fairness

of rankings obtained by various methods for users and items.

1.3.5 Assessment of merit-based fairness constraints

In the previous section, we introduced fundamental social choice properties, particularly the Pigou-

Dalton transfer principle (or equivalently, Lorenz efficiency), which had been overlooked by the fair

ranking literature. These properties provide a principled basis to assess the fairness of rankings for

users and items. In Chapter 3, we use their insights to examine the distributive fairness of existing

approaches to fair ranking.

In the literature on fairness of exposure in rankings, fairness for items is often measured by a

distance between the vector of items’ exposures’ (i.e., the item utility profile) and a target exposure

vector, which represents the ideal distribution of exposure among items in a recommender system

considered as fair [Diaz et al., 2020, Kletti et al., 2022a, Raj and Ekstrand, 2022]. A prominent

fairness notion in this recent literature is merit-based fairness which states that the exposure of an

item should be proportional to its merit – in these works the target exposure of an item is defined

as an increasing function of its average value to users, which is used to measure the merit of an

item [Biega et al., 2020, Diaz et al., 2020, Morik et al., 2020, Singh and Joachims, 2018, Biega

et al., 2018]. Starting from this merit-based fairness measure, authors either proposed to minimize

merit-based unfairness [Diaz et al., 2020, Biega et al., 2018], or optimize trade-offs between average

user utility and merit-based fairness [Kletti et al., 2022a, Morik et al., 2020, Biega et al., 2020], or

maximize user utility under merit-based fairness constraints [Singh and Joachims, 2018]3.

In Chapter 3, we assess these approaches in the light of distributive justice principles. Following

these works, we define the merit of an item j as qj =
Pn

i=1 µij . Let E = n kbk1 the total exposure

and Q =
Pm

j0=1 qj0 the total merit. Then the target of item j is qjE
Q , so that if for all items j the

exposure of j is equal to its target, then the ranking policy satisfies the merit-based fairness criterion

stating that the exposure of an item should be proportional to its merit. We assess approaches

which optimize the following trade-offs between total user utility and merit-based fairness, where

� > 0 is a trade-off parameter:

Fmerit(P ) =

nX

i=1

ui(P )� �

m

vuut
mX

j=1

✓
vj(P )� qjE

Q

◆2

(1.3)

We show in Chapter 3 (Proposition 2) that when increasing the strength of the penalty in favour of

the merit-based fairness criterion, this can lead to increase inequalities among items while decreasing

total user utility. In practice, in some recommendation problems, merit-based fairness can increase

the exposure of popular items (items j with high merit qj), leading to rich-gets-richer effects.

Although this is compatible with Pareto efficiency, it is a clear violation of the Pigou-Dalton transfer

3Note that Singh and Joachims [2018] consider merit-based fairness for items at the level of a single ranking,
while we (and the other works mentioned here) consider amortized fairness across the rankings of all users.
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principle, which promotes transfers of exposure from “rich” to “poor” items. This fundamental

fairness condition in social choice provides a more complete understanding of merit-based approaches,

by demonstrating that they may unintentionally lead to distributive unfairness.

1.3.6 Reciprocal recommendation

Reciprocal recommender systems. The recommendation framework that we discussed thus

far depicted “one-sided” recommendation, in the sense that only items are being recommended.

Our conceptual framework for fair allocation of exposure also applies to reciprocal recommendation

problems [Palomares et al., 2021]. Reciprocal recommender systems include the recommendation of

friends or dating partners in social networks, or the recommendation of job seekers to recruiters

and vice versa on job search platforms. The specificity of reciprocal recommender systems is that

users are also items that can be recommended to other users (the item per se is the user’s profile or

CV). Since items are also users, they have meaningful preferences on which users they should be

recommended to.

Ensuring fair recommendations in reciprocal recommender systems is a critical and complex issue.

In professional matching platforms, uncarefully addressed popularity biases or learned stereotypes

[Palomares et al., 2021, Geyik et al., 2019] can restrict the access of disadvantaged groups of eligible

candidates to job opportunities, whenever the recommender system fails to give them enough

exposure to the employers who are relevant to them, and to whom they would be relevant. Online

dating platforms are also questioned about the fairness of their recommendation algorithms, which

may exacerbate pre-existing biases in the dating market where users feel more entitled to express

preferences based on race or economic status [Zheng et al., 2018, Hutson et al., 2018].

The key to extend our recommendation framework to reciprocal recommendation tasks is to

redefine the utility of a user to account for the fact that (1) the user utility comes from both the

recommendation they receive and who they are recommended to, and (2) users have preferences

over who they are recommended to. In this setting, the set of users and the set of items are identical,

so we have n = m. Let us denote by µij the mutual preference value between two users i and

j. We follow the common assumption in the reciprocal recommendation literature that µij = µji

[e.g. Palomares et al., 2021]. For instance, when recommending CVs to recruiters, µij can be the

probability of an interview, while in dating, it can be that of a “match”. The two-sided utility of a

user i is then the sum of the utility ui(P ) derived by i from the recommendations received, and the

utility vi(P ) from being recommended to other users:

ui(P ) = ui(P ) + vi(P ) =
X

1i,jn

(µij + µji)P
|

ijb

where ui(P ) =

nX

j=1

µijP
|

ijb and vi(P ) =

nX

j=1

µijP
|

jib .

In other words, the two-sided utility of i is the sum of its user-side utility and its item-side utility.

Fair allocation of exposure in reciprocal recommender systems. In the reciprocal rec-

ommendation setting, since there are only users, the welfare objective F (P ) of Equation (1.2) is

simply a function that aggregates the two-sided utilities: F (P ) = g(u(P )), where g : Rn ! R is a

strictly concave, increasing function. In this setting, distributive fairness aims at improving the

utility of the worse-off users, and the recommender system must make trade-offs between the utility

of the worst-off users and total user utility. The curvature of g controls how much redistribution of

two-sided utility is desired from better-off users to worse-off users. In practice, the utility of the
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worse-off users can be improved by boosting their exposure, i.e. increasing their “item-side utility”.

As for non-reciprocal recommendation problems, we address both additive concave welfare

functions in Chapter 3 and generalized Gini welfare functions in Chapter 4 for the choice of g. We

show that in both cases, ranking policies P obtained by maximizing F (P ) satisfy Lorenz efficiency

(i.e., Pareto efficiency and the Pigou-Dalton transfer principle). We also show in Chapter 3 that

striving for equal utilities in reciprocal recommendation is Pareto inefficient as it can destroy

everyone’s utility. Finally, we discuss in Chapter 7 the similarities and differences between reciprocal

recommendation and matching problems.

Overall, our framework for fairness in recommender systems applies to both non-reciprocal and

reciprocal recommendation tasks. As discussed in the related work chapter (Chapter 2, Section

2.1), the latter problem received considerably less attention in the fair recommendation literature.

We believe that our framework for fair allocation of exposure in reciprocal recommendation tasks

can be useful to address critical fairness issues in this overlooked setting.

1.4 Algorithms for maximizing concave functions of rankings

This section discusses the algorithmic challenges of maximizing concave functions of rankings and

presents a high-level overview of our algorithmic contributions to overcome these challenges.

1.4.1 Batch and bandit settings

In this thesis, we consider either of two settings for recommender systems, which combine learning

and ranking in different ways.

1. The batch setting: There is a fixed, large batch of n users and a set of m items. First, the

recommender system operates the learning step off-line: it estimates the value of each item

for all the users in the batch, i.e., it produces a full matrix of estimated scores (µ̂ij) 1in
1jm

by

learning from historical interactions and contextual information. Then, the system proceeds to

the ranking step. It produces a global, static ranking policy P , i.e., one ranking of items per

user, based on the estimated values µ̂ij . Finally, the recommender system is able to produce

static measures of users’ satisfactions and items’ exposures from the ranking policy P .

2. The contextual bandit setting: This is an online setting where the system observes users

sequentially in sessions and learns from online interactions with users. We assume that the set

of items is still fixed over time. At each timestep t, the system observes a user and their features

xt 2 X ⇢ R
d, estimates the context-dependent values for the current user µ̂(xt), and produces

a ranking based on the current value model. The system updates the value model based on

the noisy feedback that the user gives on the ranking (e.g, which items of the ranking the user

examined and engaged with). The system measures user and item utilities dynamically over

timesteps. In summary, the contextual bandit setting consists in a sequence of learning and

ranking steps, where the learning step is based on the observed user features xt and past feedback

from users, and the ranking step is based on the current model of user preferences µ̂(xt).

In Chapters 3 and 4, we address the batch setting and focus on the ranking problem, assuming

that the ranking algorithm has access to a full matrix of user-item values (µij) 1in
1jm

. We do not

address the learning step of the batch setting in these chapters. Nonetheless, we do provide in

Appendix A.3.3 an excess risk bound, which provides guarantees on the true value of the ranking

objective when the algorithm uses estimated values (µ̂ij) 1in
1jm

, depending on the quality of the

estimation. In Chapter 5, we address the contextual bandit setting, where the recommender system
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balances exploration and exploitation to learn user preferences and rank items.

In the previous Section 1.3, we presented our conceptual framework and ranking objectives in

the batch setting. The batch setting is useful for disentangling the learning step from the ranking

step. This static setting allows to focus on the fairness of the allocative decision made in the ranking

step. Specifically, it facilitates the modeling of trade-offs involved in the ranking policy and enables

the definition of ideal objective functions for fair ranking by considering all users and items at once.

This separation between learning and decision-making allows to think about fairness in allocative

terms at the ranking stage, and to bring insights from the literature on fair division in social choice

- an area that has been relatively unexplored in the context of fair machine learning.

The drawback of the batch setting is that it is impractical for real-world recommender systems,

since it requires computing the rankings of all users at once, involving large computation and

memory costs. In practice, rankings are generated online as users enter new sessions and request

recommendations. It is much more efficient to compute the ranking of a single user at a time.

The contextual bandit setting enables this, in combination with online learning of user preferences.

However, the bandit setting is more challenging, as it requires to design algorithms that efficiently

balance exploration and exploitation while optimizing for complex fairness objectives.

1.4.2 Maximizing concave ranking objectives

Algorithmic challenge: Maximization of concave functions of rankings. As described

in Section 1.3.3, we propose in this thesis to find ranking policies P by maximizing global welfare

functions of the form of F (P ) (Equation (1.2)), where F is a concave function of the ranking policy

P . We choose to find P in the set P which is the convex hull of deterministic ranking policies, or

equivalently, the convex set of stochastic ranking policies. We follow the line of work on fair ranking

which also considers randomized rankings [e.g. Singh and Joachims, 2018], because they enable the

use of convex optimization techniques to generate the recommendations, which would otherwise

involve an intractable combinatorial optimization problem in the space of all users’ rankings.

Despite the convex relaxation to stochastic rankings, optimizing welfare functions of the form

of F (P ) is still computationally challenging, because ranking with fairness of exposure for items

requires to solve a global optimization problem in the space of rankings of all users. Indeed, recall

that the exposure of an item is the sum of its exposure to every users: vj(P ) =
Pn

i=1

Pm
k=1 Pijkbk,

which means that it is not possible a priori to decouple the global optimization problem into a

set of local optimization problems where Pi is found independently for each user i. In contrast,

the traditional solution for maximizing average user utility finds each Pi independently by sorting

items by decreasing values µij for each user i.

Generic algorithms for concave ranking objectives. In this thesis, we present computation-

ally efficient algorithms that optimize ranking objectives of the form of F (P ).

1. In the batch setting, our algorithms output a randomized ranking policy that can be represented

as a sparse convex combination of deterministic ranking policies.

2. In the contextual bandit setting, our algorithms produce one deterministic ranking at a time for

each user observed in sequence, associated with a stochastic context.

The main algorithmic contributions of this thesis start from the result of Theorem 5, which we

prove in Chapter 3. Our result states that iterations of the Frank-Wolfe algorithm [Frank and Wolfe,

1956] can be computed efficiently for concave functions of rankings in the position-based model,

with one decentralized sorting operation per user. Based on this result, we leverage Frank-Wolfe
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variants and their theoretical analyses to derive computationally efficient algorithms for ranking

that provably optimize various fair ranking objectives, in the batch setting and in the bandit setting.

While our efficient ranking algorithms are primarily motivated by the optimization of global

welfare functions of the form of F (P ) (Equation (1.2)), they apply to all concave functions of

users’ and items’ utilities, and not just welfare functions. This includes objectives with convex

item-side fairness penalties that have been proposed in the fair ranking literature. For example,

our algorithms also apply to the merit-based fairness objective of Eq. (1.3) that we presented in

Section 1.3.5.

1.5 Outline and contributions

We now present the outline of this thesis and summarize the contributions by chapter, which each

corresponds to an article published during the PhD.

—–

The first two chapters focus on the fairness of the ranking stage, in the batch setting.

Chapter 3: Fairness in rankings with additive concave welfare functions. We propose

to assess the fairness of rankings for users and items in recommender systems based on fundamental

distributive justice principles in welfare economics, based on Pareto efficiency and the Pigou-Dalton

transfer principle. We show that some popular approaches to fair ranking fail to satisfy those

principles. For example, merit-based fairness constraints can decrease user utility while increasing

inequalities of exposure among item producers, which goes against the transfer principle that aims

to reduce inequalities. To overcome the limitations of existing approaches, we propose a new

approach to generating fair rankings that is grounded in cardinal welfare economics. It consists

in maximizing additive concave welfare functions, which are a family of smooth welfare functions.

These welfare functions can be interpreted as sums of utilities of agents who have diminishing

returns. The property of diminishing returns for exposure means that “one additional view counts

more for items who have 10 views than who have 10 million views”, which is particularly relevant

for recommender systems. Rankings produced by maximizing such welfare functions satisfy Pareto

efficiency and the Pigou-Dalton transfer principle.

We also introduce the related tool of generalized Lorenz curves from welfare economics to assess

the fairness of rankings. Generalized Lorenz curves are a graphical representation that allows to

visualize the distribution of utilities among users and items, and in particular the utility of the

worst-off individuals, which we aim to improve. Using this representation, we can observe how

much utility is taken from the best-off to increase the utility of the worst-off individual users, when

varying the parameters of the additive welfare function.

Our conceptual framework is also the first one to simultaneously address fairness in non-reciprocal

and reciprocal recommendation problems. Reciprocal recommendation is a specific setting that has

been relatively overlooked by the fairness literature, and where users are also items. Their utility is

thus two-sided: they benefit from the recommendations they receive, and from being recommended

to other users. We show that the welfare function approach for non-reciprocal recommendation can

be extended to the reciprocal case by using our new notion of two-sided utility, in order to better

serve the worst-off users.

On the algorithmic side, global welfare functions that account for items’ exposures are challenging

to optimize, because the exposure of an item depends on the rankings of all users. Prior to our

work, existing methods addressed this challenge with heuristic approaches without any guarantees

or control over the achievable trade-offs. We propose a computationally efficient algorithm for
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fair ranking based on the Frank-Wolfe method [Frank and Wolfe, 1956]. The algorithm generates

a stochastic ranking policy as a weighted sum of deterministic ranking policies. This eliminates

the need for an additional Birkhoff-von-Neumann decomposition step [Birkhoff, 1940], which was

required in prior work using stochastic rankings [Singh and Joachims, 2018, Wang and Joachims,

2021]. Our algorithm is capable of optimizing any concave function of the utilities of the rankings,

which encompasses our additive welfare functions but also existing fair ranking criteria.

We simulate a music recommendation task based on data from Last.fm to evaluate the perfor-

mance of our algorithm. Our experiments confirm that merit-based fairness approaches are unable

to decrease item inequality and can exacerbate winner-take-all effects where popular items capture a

large fraction of the total exposure. In contrast, our approach based on maximizing additive welfare

functions obtains better trade-offs between total user utility and inequality of utilities among items

(measured by the Gini index or the standard deviation). Moreover, by varying the parameters of

the welfare function, we are able to drive item inequality close to zero. Finally, towards two-sided

fairness, our approach is able to generate a wide range of trade-offs between fairness for items and

fairness for users, measured by the utility of the 10% and 25% worst-off users.

Since our framework encompasses reciprocal recommendation problems, we also provide exper-

imental evaluation on a social recommendation task based on Twitter data. By maximizing an

additive concave welfare function of the two-sided utility of users, we are able to generate a wide

range of trade-offs between total utility and utility of the 10% worst-off.

Chapter 4: Fairness in rankings with generalized Gini welfare functions. We propose

an alternative fair ranking approach based on Generalized Gini welfare Functions (GGF), which

are a more expressive class of welfare functions than the previous additive welfare functions. A

drawback of GGFs compared to additive welfare functions is that they cannot be expressed as a sum

of utilities of agents with diminishing returns. Although we lose this intuitive interpretation, we

gain in expressivity since GGFs are able to directly express fairness criteria based on utility quantiles

(e.g. “maximize the utility of the 10% worse-off”). GGFs also cover more classical inequality

measures such as the Gini index, which is widely used in inequality measurement and more recently

in the literature on fairness in recommender systems. Although GGFs do not have an intuitive

interpretation as “sum of utilities with diminishing returns”, their main advantage is that they

generalize various existing fairness criteria for ranking. Emphasizing the generality of GGFs, we

also prove that all Lorenz-efficient rankings can be generated by maximizing GGFs.

The algorithmic challenge of optimizing GGFs is that they are nondifferentiable, and therefore

not amenable to vanilla Frank-Wolfe optimization. We propose to adapt a Frank-Wolfe variant for

nonsmooth problems [Lan, 2013] which uses the Moreau-Yosida envelope as smoothing technique

[Moreau, 1962, Yosida et al., 1965], and present a computationally efficient procedure to compute

the smooth approximation of GGFs.

We conduct experiments on movie and music recommendation tasks and compare our algorithm

that optimizes GGFs to previous recommendation methods, including our own approach based

on additive concave welfare functions from Chapter 3. As expected, we find that our GGF-based

approach obtains better trade-offs between total user utility and item inequality measured by the

Gini index. This is because GGFs can be instantiated to the Gini index and our Frank-Wolfe variant

allows for direct optimization of this non-differentiable measure. For two-sided fairness, we also

obtain superior trade-offs between the utility of the 25% worst-off users and the Gini index of items’

utilities, when instantiating the user-side GGF and item-side GGF to these criteria. Experiments

on a reciprocal recommendation task based on Twitter data demonstrate similar results when

optimizing trade-offs between the utility of the 25% worst-off users and total user utility.
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—–

The two previous chapters focus on the ranking problem to analyze its properties from a

fair allocation perspective, independently from potential biases arising at the learning stage. In

practice though, there are real-world limitations to the previous batch setting in which learning

and decision-making are decoupled, and one global decision is made for all users at once. Modern

recommender systems interact with users in an online manner: they learn the personalized items’

values from user feedback, and at the same time decide what content to show to the current user as

they request recommendations. Contextual bandits are a popular paradigm to model this joint

learning-and-decision-making setting in personalized recommender systems [Li et al., 2010].

Chapter 5: Fair ranking in the contextual bandit setting. We address the problem of

fair ranking with contextual bandits, which is the paradigm of choice for online personalized

recommender systems that learn to generate recommendations from user feedback. We present

a generic algorithm that works for many fair ranking objectives, including the smooth welfare

functions of Chapter 3 and the nonsmooth welfare functions of Chapter 4. This is the first algorithm

with regret guarantees for fair ranking in the contextual bandit setting. Moreover, the algorithm is

computationally fast and has an intuitive interpretation: At each timestep, the algorithm gives

an adaptive boosts to items that received low exposure in past recommendations, and the boost

depends on the gradient of the fair ranking objective.

In fact, we provide an extensive treatment of the more general problem of contextual bandits

with concave rewards (cbcr) [Agrawal et al., 2016], which is a multi-objective bandit problem.

In cbcr, there is a vector of multiple rewards that depends on a stochastic context, and the

trade-off between the rewards is defined by a concave function. This cbcr setting covers a variety

of problems beyond fair ranking, including optimizing multiple user engagement metrics (e.g., clicks,

streaming time) in recommender systems. Prior theoretical works addressed simpler versions of

cbcr with simple policy spaces: Agrawal and Devanur [2014], Busa-Fekete et al. [2017] focus

on the non-contextual setting where policies are distributions over actions, and Agrawal et al.

[2016] address a restriction of cbcr to a finite policy space. We remove these restrictions and

present regret guarantees for the general cbcr problem by proving a reduction of cbcr to classical

scalar-reward contextual bandits. Our proof is based on a geometric interpretation of cbcr as

an optimization problem over the convex set of all achievable expected rewards, and leverages

techniques from theoretical analyses of Frank-Wolfe algorithms in constrained convex optimization.

On the experimental side, we simulate an online ranking task based on music recommendation

data. We observe that compared to heurisic contextual bandit algorithms for fair ranking, algorithms

using our reduction reach the highest value of the fair ranking objective as the number of timesteps

increases. This shows the advantage of a principled bandit algorithm compared to heuristics without

theoretical guarantees. When the fair ranking objective is a trade-off between average user utility

and item inequality, our reduction-based bandit algorithm obtains higher average utility than

existing bandit algorithms, at all levels of inequality between items.

—–

In Chapters 3 and 4, we addressed the problem of social planning in recommender systems,

where we seek to trade-off users’ and items’ utilities for the design of two-sided fair rankings. In

Chapter 6, we take a different perspective: we address the audit of recommender systems, and

focus on user-side fairness. This work was mostly conducted at the beginning of the PhD program,

motivated by the large resonance of audits for user fairness in ad systems. For instance, Datta

et al. [2015] found that women received fewer online ads for high-paying jobs than equally qualified

men, while Imana et al. [2021] observed gender-based disparities in ad delivery rates for different
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companies proposing similar jobs. Our contribution to this research stream is a complement to

existing audits for user fairness. We start from the observation that existing audits do not control

for disparities that are in line with user preferences. To strengthen the conclusions of these audits,

we propose to test for the preference-based criterion of envy-freeness, which stipulates that no user

should prefer their recommendations to those of other users. Envy-freeness is a fairness criterion

that was first studied in fair division [Foley, 1967], and it thus has similar roots to the main

conceptual framework of this thesis. However, it leads to a different assessment in the context of

recommender systems, and the choice of fairness criterion depends on the motivating application.

In the previous Chapters 3 and 4, our work was motivated by applications where item producers

are not advertisers paying for users’ attention, but rather content creators claiming a fair share of

exposure on the platform. Typical examples are online video sharing platforms and music streaming

services. Since item-side fairness is a key concern in these applications, we designed algorithms that

improve the exposures of small items across the rankings of all users. We also aimed to ensure that

the users whose rankings are impacted by boosting small items are not those for whom the boosts

are the most costly. We addressed two-sided fairness in the sense of improving the exposure of the

worst-off items, while also prioritizing the utilities of the worst-off users. The ranking algorithms

that we developed in the previous chapters are not guaranteed to pass the audit for envy-freeness of

Chapter 6, because optimal ranking policies for objectives that include a concave item fairness term

are not envy-free for users in general. For example, if users Alice and Bob both want to receive

job ads from a popular company, but the designer promotes less popular employers by boosting

their ads in Bob’s recommendations, then Bob will be envious of the recommendations of Alice.

In practice though, we recommend that our audit for envy-freeness is used in applications where

user-side fairness is the main concern and item-side fairness is not a priority, such as in ad systems.

Overall, our perspective in Chapter 6 is that of an auditor who is solely focused on assessing

fairness for users, without considerations of whether user-side unfairness is a consequence of other

objectives. We argue that the audit perspective is as important as that of the designer, given the

significant role played by audits for user fairness in raising awareness about the need for fairness

in recommender systems. Moreover, designers can use the evaluations produced by auditors as

additional diagnoses to improve their systems. In fact, existing audits have led to settlements that

drove online platforms to change their recommendation algorithms to comply with new requirements

for user fairness [Bogen et al., 2023].

Chapter 6: User fairness as envy-freeness. In Chapter 6, we propose to assess the fairness

of recommender systems for their users with the criterion of envy-freeness from fair division in

social choice theory. Transposed to the recommendation setting, envy-freeness states that each user

should prefer their recommendations to those of other users. For example, in a job recommender

system where two users Alice and Bob seek taxi driver roles [Ali et al., 2019], if Bob is the only

one to receive ads for driver jobs, then the system is deemed unfair by the envy-freeness criterion.

Compared to our previous welfare function approach that relied on comparing utilities across users,

envy-freeness avoids the difficult assumption of interpersonal comparisons of utilities. Indeed, in

the envy-freeness criterion, different recommendations are compared from the perspective of the

same user (e.g., Alice).

We present a formal analysis of the properties of envy-freeness as a user-side fairness criterion

for recommender systems, and show its compatibility with optimal recommendations. We also show

its incompatibility with item-side merit-based fairness constraints.4 We also present a probabilistic

4In Chapter 6, the result is proved for merit-based fairnesss constraints applied at the level of each user, rather
than across users.
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relaxation of envy-freeness, in order to remove the quadratic dependence on the number of users

and make the certification of envy-freeness tractable.

Compared to the previous chapters where we took the perspective of the designer of the recom-

mender system as a social planner, in this chapter we take the perspective of an internal auditor of

the recommender system. Auditing envy-freeness in recommender systems is technically challenging,

because it requires probing users’ preferences for the recommendations of others, in order to reliably

answer the counterfactual questions: “would user Alice prefer the recommendations of Bob?”. Our

algorithmic contribution is that we cast the problem of certifying envy, or the absence thereof, as

a new form of pure exploration bandit problem, with conservative exploration constraints. The

conservative exploration constraints prevent the audit from significantly deteriorating recommenda-

tion performance for users, when switching their recommendations with those of other users. We

present OCEF, an auditing algorithm with theoretical guarantees on its sample complexity and

the satisfaction of the conservative exploration constraints. We experimentally confirm that the

OCEF algorithm is able to certify envy-freeness on two recommendation tasks, while maintaining a

performance close to the audited recommender system.

—–

We conclude the thesis in Chapter 7, where we recapitulate the main contributions of this

thesis and present additional contributions. This chapter also includes a critical examination of

the limitations imposed by our modeling choices, as well as a discussion of the insights gained and

questions that remain open.

18



Chapter 2

Related work

Contents

2.1 Fairness in rankings and recommender systems . . . . . . . . . . . . 19

2.1.1 Normative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Frank-Wolfe algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Background on Frank-Wolfe and algorithms for fair ranking . . . . . . . 24

2.2.2 Frank-Wolfe with smoothing . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Bandit algorithms for fair and multi-objective recommender systems 27

2.3.1 Fairness of exposure in bandits . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Bandits with concave rewards . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Pure exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Background on fair division in social choice . . . . . . . . . . . . . . 30

2.4.1 Cardinal welfarism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Inequality indices, welfare functions and Lorenz curves . . . . . . . . . . 33

2.4.3 Envy-free allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Social choice and welfare for fair machine learning . . . . . . . . . . 37

In this chapter, we present a comprehensive overview of the various literature related to this

thesis. The main chapters of the thesis also include their own specific related work sections from

the original publications.

2.1 Fairness in rankings and recommender systems

Fairness in machine learning Fairness in machine learning is an active research area that has

gained increasing attention in recent years [Barocas et al., 2019, Corbett-Davies and Goel, 2018,

Oneto and Chiappa, 2020, Kusner and Loftus, 2020, Mitchell et al., 2021, Chouldechova and Roth,

2020, Kamiran and Calders, 2009]. This field of study started from the realization that machine

learning algorithms, if not designed and implemented carefully, can produce biased outcomes that

disproportionately affect sensitive groups of people. This can perpetuate existing inequalities in the

distribution of the benefits and harms of machine learning applications, and reinforce societal biases

and stereotypes in learned representations. A large part of this literature has been first focused on

classification and scoring tasks [Mitchell et al., 2021, Chouldechova, 2017, Kleinberg et al., 2016].

The domain of fairness in machine learning is organized along two main axes. The first axis

is whether fairness is oriented towards individuals or groups defined by sensitive or protected

attributes, such as race, gender, age, or socioeconomic status [Barocas and Selbst, 2016]. Group
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fairness considers differences in average outcomes between salient social groups of people, usually

to prevent discriminatory decisions [Barocas and Selbst, 2016, Feldman et al., 2015, Hardt et al.,

2016a]. Individual fairness means that the algorithm should treat individuals fairly regardless of

their group membership, often by considering a similarity measure between individuals [Dwork

et al., 2012, Bower et al., 2021]. In Chapters 3,4,5 we measure the distributive fairness of outcomes

at the level of individuals, without notion of similarity. We made this presentation choice to make

the framework simpler, but as discussed in Appendix A.2, our framework can be expanded to groups

using aggregate measures. On the other hand, the fairness criterion of envy-freeness, which we

adapt to personalized recommender systems in Chapter 6, is primarily oriented towards individuals.

The second axis of fairness in machine learning is whether fairness is a question of parity or

preference-based. Parity means that predictions, or prediction errors, should be the same between

groups or individuals. Preference-based fairness means that predictions are allowed to be different

as long as they faithfully reflect the preferences of all parties involved [Ustun et al., 2019, Kim

et al., 2018, Zafar et al., 2017b]. In this thesis, we consider preference-based notions of fairness for

users, because they are aligned with personalization: They allow for different recommendations

to different users, as long as these recommendations are in line with the preferences of users. In

Chapters 3 and 4, we consider preference-based fairness for users as improving the utility of the

worst-off users (following the Pigou-Dalton transfer principle from social choice), using a utility

measure that depends on users’ preferences (defined in Eq. (1.1), Section 1.2.1). In Chapter 6, we

consider envy-freeness, another preference-based fairness criterion for users, also derived from fair

division in social choice. Envy-freeness ensures that no user prefers the recommendations of others.

Fairness of exposure in recommender systems A large part of the literature on fairness in

machine learning, especially at the beginning of its rapid expansion, focused on classification and

regression tasks. Fairness in ranking and recommendation systems is a growing subfield of fairness

in machine learning, which directly involves multiple stakeholders [Burke et al., 2018, Abdollahpouri

et al., 2020]. In this literature review, we put more emphasis on exposure-based fairness, which is

a line of work on fairness in rankings for recommendation and retrieval systems that intervenes

on the exposure or attention given to items, depending on their position bias. In the context of

recommender systems, fairness has been considered from the perspective of both users and item

producers, as these two stakeholders have different interests and goals which are mediated by

the recommender system. The work of this thesis addresses two-sided, exposure-based fairness in

rankings for recommender systems.

On the user side, the question of fairness in rankings originated from independent audits on

recommender systems or search engines, which showed that results could exhibit bias against salient

social groups by representing or exagerating stereotypes [Mattioli, 2012, Sweeney, 2013, Kay et al.,

2015, Hannak et al., 2014, Mehrotra et al., 2017, Lambrecht and Tucker, 2019, Datta et al., 2015,

Asplund et al., 2020, Ali et al., 2019, Vlasceanu and Amodio, 2022]. In Chapter 6, we propose

to complement these audits with an alternative user-side fairness criterion, namely envy-freeness.

By measuring disparities which are aligned with user preferences, audits for envy-freeness can

strengthen the conclusions of audits for recommendation parity. In the literature, another common

goal for user-side fairness is to prevent disparities in recommendation performance across sensitive

groups of users [Mehrotra et al., 2017, Ekstrand et al., 2018]. For example, it is important to ensure

that recommender systems do not systematically recommend lower-quality or less relevant items to

disadvantaged users. In Chapters 3 and 4, we seek a similar goal without requiring strict equality

of recommendation performance, but rather by improving recommendation performance for the

worst-off users.
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On the item side, there is an active stream of research on ranking algorithms that promote

fairness for individual or sensitive groups of items [Celis et al., 2017b, Burke et al., 2018, Biega et al.,

2018, Singh and Joachims, 2018, Morik et al., 2020, Zehlike and Castillo, 2020, Kletti et al., 2022a,b,

Beutel et al., 2019a, Narasimhan et al., 2020, Heuss et al., 2022, Diaz et al., 2020, Oosterhuis,

2021, García-Soriano and Bonchi, 2021, Sarvi et al., 2022], for example when ranking resumes of

job applicants (items) to recruiters (users) [Geyik et al., 2019] or ranking music tracks (items) to

listeners (users) [Mehrotra et al., 2018]. The goal is often to prevent winner-take-all effects, combat

popularity bias [Abdollahpouri et al., 2019b], promote smaller producers [Liu et al., 2019, Mehrotra

et al., 2018] or diverse representation [Zehlike et al., 2022a]. A branch of this literature aims

to ensure a minimal proportion of items from sensitive groups are shown in the top-K positions

of a ranking [Asudeh et al., 2019, Celis et al., 2017b, Zehlike et al., 2017]. In the other stream

of fairness of exposure, authors proposed methods that redistribute exposure across (groups of)

producers, either towards equal exposure, or equal ratios of exposure to a measure of merit [Singh

and Joachims, 2018, Biega et al., 2018, Diaz et al., 2020, Kletti et al., 2022a]. These approaches

may be applied either within the recommendation list of each user [Singh and Joachims, 2018,

Yang and Stoyanovich, 2017, Celis and Vishnoi, 2017, Zehlike et al., 2017], or on average over all

users (in the literature, this is referred to as amortized fairness of exposure) [Biega et al., 2018,

Beutel et al., 2019a, Kletti et al., 2022a, Usunier et al., 2022, Prost et al., 2022]. Section 3.3 of

Chapter 3 is devoted to the assessment of these exposure-based approaches in our welfare-based

framework, through the lens of distributive justice. Our framework focuses on the case of amortized

exposure, which is more computationally challenging because it couples the rankings of all the users.

Moreover, the works that focused on “within-list” fairness are often motivated by recruitment, college

admissions and search engines, rather than personalized recommendation [Singh and Joachims,

2018, Celis et al., 2017b, Asudeh et al., 2019, Zehlike et al., 2017]. We assess the fairness of some

of these approaches in Appendix A.8. In the fair ranking literature, inequalities among items are

often measured by the classical Gini index [Morik et al., 2020, Mansoury et al., 2021b, Wang et al.,

2023, Ge et al., 2021]. We study a generalized version of this inequality measure in Chapter 4, and

address the challenge of directly optimizing this nondifferentiable measure over the space of ranking

policies.

Some authors consider fairness for both users and items, often by applying existing user or item

fairness criteria simultaneously to both sides, such as [Basu et al., 2020, Wu et al., 2021b, Wang

and Joachims, 2021, Naghiaei et al., 2022, Wu et al., 2022b]. We address the problem of two-sided

fairness in ranked recommendations in Chapters 3 and 4. Section 6.3.3 of Chapter 6 of this thesis

discusses the compatibility of envy-freeness as user-side fairness criterion with usual item-side

fairness criteria. Patro et al. [2020] also considers envy-freeness in a two-sided fairness framework,

while [Deldjoo et al., 2021] propose to use generalized cross-entropy to measure unfairness among

sensitive groups of users and items. [Wu et al., 2022a] recently considered two-sided fairness in

recommendation as a multi-objective problem, where each objective corresponds to a different

fairness notion, either for users or items. Other works consider additional stakeholders and interests,

such as platform revenue [Burke et al., 2018, Abdollahpouri et al., 2020, Abdollahpouri and Burke,

2019, Gharahighehi et al., 2021].

Finally, we highlight that the majority of works that address fairness of exposure for items focus

on the position-based model [Singh and Joachims, 2018, Morik et al., 2020, Zehlike and Castillo,

2020, Biega et al., 2018, Oosterhuis, 2021], where the exposure of an item only depends on its rank.

The linear structure of the position-based model is algorithmically convenient, because it allows to

express user utilities and item exposures as linear quantities. In this thesis, we follow these works

and propose computationally efficient algorithms for fair ranking that leverage this linear structure.
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Only a few works consider exposure in more general cascade models [Craswell et al., 2008] and

dynamic bayesian network models [Chuklin et al., 2015, Chapelle and Zhang, 2009]. These works

often propose heuristic algorithms focusing on empirical insights [Biega et al., 2020, Mansoury

et al., 2022, Jeunen and Goethals, 2021], except for Kletti et al. [2022b] who propose a theoretical

algorithm for Pareto optimal trade-offs between user utility and item-side fairness, in a single-user

setting.

Fairness in reciprocal recommendation Most of the works mentioned above consider usual

one-sided recommendation settings, such as music or movie recommendation, where items and

users are separate entities, and only items are being recommended. In reciprocal recommender

systems [Pizzato et al., 2013], such as dating applications or friends recommendation, users are

recommended to other users. Reciprocal recommender systems received comparatively less attention

in the fairness literature, to the exception of [Jia et al., 2018, Xia et al., 2015, Paraschakis and

Nilsson, 2020]. In Chapters 3 and 4, we present the first generic framework to jointly address

one-sided and reciprocal recommendation. Xia et al. [2019] aim at equalizing user utility between

groups, which suffers from the problems discussed in Section 3.3 of Chapter 3: Striving for perfectly

equal user utilities can lead to lower utility for everyone, and even zero utility. Jia et al. [2018]

generate rankings using a welfare function approach, but optimizing only the utility of users being

recommended, while we introduce a notion of two-sided utility which also accounts for a user’s

satisfaction of the recommendations they receive. Paraschakis and Nilsson [2020] postprocess

rankings to correct for inconsistencies between estimated and declared preferences of users. We do

not aim at correcting biases in preference estimates through post-processing. In contrast, we aim at

fair trade-offs between utilities, under the assumption that biases in the preference estimates have

been addressed earlier in the recommendation pipeline. Fairness is also studied in the context of

ridesharing applications [Wolfson and Lin, 2017, Lesmana et al., 2019, Nanda et al., 2020], but they

address matching rather than ranking problems.

For exhaustive surveys on fairness in ranked recommendations, we refer to [Zehlike et al., 2022a,b,

Patro et al., 2022, Deldjoo et al., 2022, Wang et al., 2023, Ekstrand et al., 2022, Abdollahpouri

et al., 2020, Li et al., 2022, Chen et al., 2023].

2.1.1 Normative analysis

Overall, the focus of the thesis work has been on the algorithmic aspects of fair recommendation as

an allocation problem, aiming to develop solutions that are robust and applicable across various

scenarios, independent of our specific normative reasons. Most technical papers on fairness in

recommender systems, including the ones we published over the course of the PhD program, do not

explicitly discuss the underlying normative framework. We aim to bridge this gap in this section by

providing a normative analysis of our approach to fairness in recommender systems. This normative

analysis draws on the classification frameworks of normative judgements proposed by Zehlike et al.

[2022a].

Classification frameworks of Zehlike et al. [2022a]. In this survey article on fairness in

ranking, existing fairness interventions are examined beyond mere technical considerations and

analyzed into the underlying value framework and socio-technical context. The authors explore four

normative dimensions, each contributing to a comprehensive understanding of fairness in ranking.

The first dimension pertains to the notion of group structure, which encompasses factors such

as the number of sensitive groups involved, their cardinality and how multiple sensitive attributes
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are handled. Under this category, the survey analyzes various approaches to ensure fairness across

groups in recommender systems.

The second dimension is about bias types, including preexisting biases and technical biases (e.g.,

position bias), which can influence the outcomes of recommender systems.

The third dimension revolves around different worldviews adopted when defining fairness, as

proposed in the taxonomy of Friedler et al. [2016]. One such perspective is the “What You See

Is What You Get” (WYSIWYG) worldview, which advocates that observable scores accurately

reflect the true merit of individuals. The survey discusses “merit-based fairness” (presented in

Section 1.3.5) as an example of an approach aligned with this worldview. On the other hand, the

“We are All Equal” (WAE) viewpoint suggests that any disparities observed are a result of biased

observations rather than inherent differences.

The fourth dimension explores the concept of Equal Opportunity (EO), which is a broad

philosophical doctrine aimed at rectifying morally irrelevant circumstances in accessing opportunities.

Within this dimension, the survey distinguishes between different version of EO. Formal EO focuses

on fair competitions where candidates are evaluated solely based on their qualifications, rejecting

any irrelevant attributes but not addressing disparities due to prior disadvantages. Formal-plus

EO extends this by considering how certain attributes can lead to disparities in qualifications.

Substantive EO takes a broader view, considering lifetime opportunities and attempting to mitigate

the impact of arbitrary factors on relevant qualifications. Luck-egalitarian EO and Rawls’ Fair EO

are examples of substantive EO approaches, aiming to make people’s future prospects comparable

and improve outcomes for the most disadvantaged, respectively.

Normative analysis of our approach We now apply the classification framework of Zehlike

et al. [2022a] to our approach of fair allocation of exposure in recommender systems.

First, we do not consider fairness towards explicit groups in our framework, but rather distributive

fairness at the level of individuals, following the paradigm of fair division. We discuss how to extend

our approach to fairness across groups in Section 7.2.1.

Second, we focus on exposure-based fairness in recommender systems, which compares individual

items based on position bias, which is a type of technical bias. If we consider exposure at the level

of sensitive groups as in Appendix A.2 (following existing works on fairness of exposure [Singh and

Joachims, 2018]), then our techniques can be used to mitigate preexisting biases in the observed

data that affect the scoring model, and lead to unequal exposure across groups of items.

On the axis of worldview, the approach undertaken in our work can be categorized as “We Are All

Equal” (WAE), to some extent. In contrast to merit-based approaches to fairness in recommender

systems, we strive to equalize outcomes for items without defining a notion of merit. Still, we avoid

giving too much exposure to items that are irrelevant to some users in their rankings by considering

global recommendation objectives as trade-offs between user welfare and item welfare. While we

do not define talent or merit explicitly, our approach ensures that item producers with similar

relevance receive comparable exposure. On the user side, our welfare-based approach do not strictly

equalize user utilities, but rather redistribute utility among users regardless of any measure of their

“merit”, and without destroying total utility.

Lastly, our work relates to the priority view or prioritarianism in political philosophy, which

asserts that “social welfare orderings should give explicit priority to the worse off” [Temkin, 1993,

Arneson, 2000, Parfit, 2018]. Prioritarianism is a concept distinct from Equal Opportunity and is

often seen in contrast to strict egalitarianism. Prioritarianism is often associated to concave welfare

functions in economics [Fleurbaey, 2015], which provide social welfare orderings that give explicit

priority to the worst off individuals, and where the strength of the curvature controls the degree
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of priority. The absolute view of prioritarianism considers that the importance of an individual

should not depend on their relative position. This view aligns with the additively separable concave

welfare functions from welfare economics that we consider in Chapter 3. In contrast, the relative

view of prioritarianism considers the utility of individuals in relation to others: This includes

non-additive welfare function such as the genaralized Gini welfare function that we study in Chapter

4 [Fleurbaey, 2015]. In our research, EO is not a primary consideration, as the main axiom in

welfarism and social choice is anonymity, which conflicts with considering explicit attributes to

identify individuals’ circumstances. Since the main presentation of our fair allocation framework

does not involve explicitly choosing groups, the language of Equal Opportunity is difficult to apply.

The closest to our approach is Rawls’ Fair EO, particularly in the aspect of trading-off between user

welfare and exposure redistribution among items. This allows us to ensure that items of similar

relevance receive comparable exposure, without defining a measure of “merit” or “effort”. This

compromise aligns with the Rawlsian Fair EO principle, which advocates for equal prospects of

success among equally talented individuals, irrespective of arbitrary circumstances.

2.2 Frank-Wolfe algorithms

The backbone of the algorithmic contributions of this thesis is the family of Frank-Wolfe algorithms

[Frank and Wolfe, 1956]. In this thesis, we show that they provide computationally efficient

algorithms for fair ranking in the position-based model. In Chapter 3, we show how to use a

vanilla Frank-Wolfe algorithm to generate rankings with smooth concave welfare functions in the

batch setting, using only one top-K sorting operation per user of the batch at each iteration of the

algorithm. In Chapter 4, we design an efficient smoothing method for the class of Generalized Gini

welfare functions, which are non-differentiable, and we show how to apply a Frank-Wolfe variant

for nonsmooth objectives from Lan [2013]. This section provides background on the Frank-Wolfe

algorithms and smoothing techniques that we used for the batch setting, and situates our algorithmic

contributions with respect to related techniques and existing algorithms for fair ranking.

We also use Frank-Wolfe in Chapter 5, to generate rankings with smooth and nonsmooth concave

welfare functions in the contextual bandit setting, obtaining a fast algorithm that delivers fair

rankings at the same cost as standard ranking-by-sorting algorithms. We discuss related approaches

in the dedicated section on bandits with concave rewards (Section 2.3.2).

2.2.1 Background on Frank-Wolfe and algorithms for fair ranking

Background on Frank-Wolfe. The Frank-Wolfe algorithm [Frank and Wolfe, 1956], also known

as the conditional gradient method, is an iterative optimization algorithm used for solving con-

strained convex optimization problems. Although it has been extensively used in machine learning

applications, such as structured output prediction and low-rank matrix completion [Jaggi, 2013], to

the best of our knowledge, it has not been used for ranking prior to the work of this thesis.

Consider a convex optimization problem of the form:

max
P2P

F (P ), (2.1)

where F is a smooth and concave function defined over a compact convex set P . The Frank-Wolfe

algorithm generates a sequence of solutions P (t) iteratively, where P (t) is the solution obtained

after t iterations. The algorithm iteratively computes P̃ by solving the following linear optimization
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problem:

P̃ = argmax
P2P

hP |rF (P (t))i, (2.2)

where rF (P (t)) is the gradient of F evaluated at P (t).

The algorithm then updates the solution by performing a convex combination of the current

solution and the newly obtained solution, i.e.,

P (t) = (1� �(t))P (t�1) + �(t)P̃,

where �(t) = 2
t+2 [Clarkson, 2010]. Notably, the algorithm always remains in the feasible region

without the need for any additional projection step.

The Frank-Wolfe algorithm is particularly useful for simplex-type constraints [Clarkson, 2010].

In this case, each P̃ computed in the linear subproblem of (2.2) is a single element of the simplex.

The Frank-Wolfe algorithm then constructs a solution that has a sparse representation.

An algorithmic contribution: Frank-Wolfe for fair ranking. The Frank-Wolfe algorithm

is best used when argmaxP2PhP |rF (P (t))i (Eq. (2.2)) can be computed efficiently. In Chapter 3,

we show that this is the case when P is the set of stochastic ranking policies. More precisely, we

prove that the inner loop of Frank-Wolfe consists in computing one ranking for each user, which

can be obtained with a straightforward top-K sort operation per user, when:

• P is the convex hull of tensors P where each slice Pi is a permutation matrix for one user i1,

• and the concave objective F depends on user and item utilities defined in a position-based model

with non-increasing weights.

Recalling that m is the number of items and K the number of ranking slots, each iteration of the

Frank-Wolfe algorithm has a O(m+K lnK) time cost per user (as formally stated in Proposition 5

of Chapter 3 and Proposition 11 of Chapter 4). Importantly, this provides us with an algorithm

that decentralizes the computation of rankings across users, while the main technical challenge

brought by item-side fairness of exposure is the coupling of the users’ rankings (since the exposure

of an item is calculated across all rankings). This result also guides us towards the development of

fast ranking algorithms in the online setting where users are served one at a time, which we present

in Chapter 5.

Moreover, the algorithm outputs a sparse representation of a stochastic ranking policy, as a

convex combination of deterministic ranking policies. Standard Frank-Wolfe convergence results

guarantee that the algorithm finds an ✏-optimal solution of the problem in (2.1) at a sublinear rate

[Jaggi, 2013, Clarkson, 2010].

Comparison with existing algorithms for fairness of exposure in rankings. The usage

of stochastic rankings was initiated by Singh and Joachims [2018] in the context of fairness in

rankings to make inference a convex optimization problem. Singh and Joachims [2018] however

considered a notion of item fairness applied within the ranking of each user separately, while

we consider amortized fairness across users, similarly to [Morik et al., 2020, Biega et al., 2018,

Kletti et al., 2022a]. Thus, they did not need to infer globally optimal ranking policies, and their

optimization problem involved m2 variables with m items, which was tractable in their case. In the

amortized fairness setting, the optimization problem of Singh and Joachims [2018] would involve

n⇥m2 variables where n is a typically large number of users. Our Frank-Wolfe approach is thus

more efficient for amortized fairness in the batch setting.

1Or equivalently, the convex set of tensors P where each slice Pi is a bistochastic matrix for user i.
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Moreover, the usage of stochastic rankings usually requires a post-processing stage in order

to sample deterministic rankings. Singh and Joachims [2018] use the Birkhoff-von Neumann

decomposition [Birkhoff, 1940], which decomposes a bistochastic matrix as a convex sum of

permutations, with at most (m� 1)2 + 1 members in the decomposition, and Kletti et al. [2022a]

propose an improved decomposition with m terms only. With the Frank-Wolfe algorithm, we remove

the need for an additional decomposition step since Frank-Wolfe directly constructs a weighted

sum of deterministic ranking policies.

In the line of works considering amortized fairness of exposure over multiple rankings, Wang

and Joachims [2021], Kletti et al. [2022a] do not consider personalized ranking policies with one

(stochastic) ranking for each user. Since the number of users is not an input variable in their

problem settings, they do not seek algorithms that are scalable with respect to this variable. Biega

et al. [2018] focus on amortized fairness across a fixed number n of rankings, and thus face the

challenge of finding a global solution for the n rankings that are coupled by the items’ exposures’,

similarly to us. They bypass this challenge by solving a linear program for each ranking separately,

but this heuristic offers no global guarantee on items’ exposures across rankings. In contrast, our

Frank-Wolfe approach provably finds ✏-optimal solutions to global optimization problems that

consider the rankings of all users. In an online ranking setting, Morik et al. [2020] propose an

algorithm for amortized fairness across rankings which ensures that a specific item-side disparity

measure converges to zero. However, their algorithm cannot be used to optimize intermediate trade-

offs between average user utility and item-side fairness, or two-sided fairness objectives. Moreover

they do not provide guarantees on the users’ utilities’. In contrast, the Frank-Wolfe algorithm

provably maximizes concave functions that express a wide range of fairness-aware objectives as

trade-offs between users’ and items’ utilities, including the merit-based fairness criterion of Biega

et al. [2018], Morik et al. [2020].

Finally, Patro et al. [2020] consider a recommendation setting that is similar to our batch

setting, where the recommender systems produces one personalized list of items for each users,

with two-sided fairness considerations. Our Frank-Wolfe approach improves over their method in

three ways. First, they considered unordered lists, while we consider the more challenging task

of finding ranked lists, which increases the search space. Second, the complexity of their round

robin algorithm is O(nmK), and it is neither amenable to paralellization across the n users, nor

adaptable to an online setting where users are observed in sequence. In contrast, our Frank-Wolfe

algorithm decentralizes the top-K ranking operations for each user, and we adapt it to the online

bandit setting in Chapter 5. Third, Patro et al. [2020]’s algorithm is limited to specific fairness

criteria, while Frank-Wolfe allows for a broader variety of fairness-aware objectives.

2.2.2 Frank-Wolfe with smoothing

In Chapter 4, we propose to optimize welfare functions based on generalized Gini welfare functions

(GGFs) [Weymark, 1981], which are ordered weighted averages of utilities, parameterized by a

vector of non-increasing weights. Since these concave functions are non-differentiable, they cannot

be optimized using the previous vanilla Frank-Wolfe algorithm. The technical contribution of

Chapter 4 builds on nonsmooth convex optimization methods [Nesterov, 2005, Shamir and Zhang,

2013], and in particular variants of the Frank-Wolfe algorithm [Frank and Wolfe, 1956, Jaggi, 2013]

for nonsmooth problems [Lan, 2013, Yurtsever et al., 2018, Ravi et al., 2019, Thekumparampil

et al., 2020a]. The recent algorithm of [Thekumparampil et al., 2020a] is a Frank-Wolfe variant

that uses the Moreau envelope like us. Its number of first-order calls is optimal, but this is at the

cost of a more complex algorithm with inner loops that make it slow in practice. In our case, since
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the calculation of the gradient is not a bottleneck, we use the simpler algorithm of Lan [2013],

which applies Frank-Wolfe to the Moreau-Yosida envelope [Moreau, 1962, Yosida et al., 1965] of the

nonsmooth objective.

The technical contribution of Chapter 4 is also related to the literature on differentiable ranking,

which includes a large body of work on approximating learning-to-rank metrics [Chapelle and

Wu, 2010, Taylor et al., 2008, Adams and Zemel, 2011], and recent growing interest in designing

smooth ranking modules [Grover et al., 2019, Cuturi et al., 2019, Blondel et al., 2020] for end-to-end

differentiation pipelines. The closest method to the algorithm that we present in Chapter 4 is the

differentiable sorting operator of Blondel et al. [2020]. Blondel et al. [2020] use a regularization

term to smooth the linear formulation of sorting. The regularized form can itself be written as a

projection to a permutahedron, which can be efficiently computed using a well-known reduction

to isotonic regression [Negrinho and Martins, 2014, Lim and Wright, 2016]. The problem they

address is different since they differentiate the multi-dimensional sort operation, but eventually

the techniques are similar to the ones we use because the smoothing is done in a similar way. In

our case, the projection onto a permutahedron appears in the gradient of the GGF, rather than

the GGF itself, which is important to unlock the result of Proposition 10. This is the key to fast

Frank-Wolfe iterations in our optimization problem over stochastic ranking policies. Moreover, the

weights of the GGF are also important in our case as they affect the Frank-Wolfe convergence

guarantee, while Blondel et al. [2020] assign equal weights to utilities.

2.3 Bandit algorithms for fair and multi-objective recommender

systems

In Chapter 5, we focus on the problem of online learning with bandit feedback and multiple

rewards, where the desired trade-off between the rewards is defined by a known concave objective

function. This problem is referred to as bandits with concave rewards (bcr) [Agrawal and Devanur,

2014]. We provide regret guarantees for the contextual setting of bcr (cbcr), where the vector

of multiple rewards depends on a stochastic context. This setting is particularly relevant to fair

machine learning in recommender systems and online allocation problems, where the overall welfare

is naturally expressed as a (known) concave function of the (unknown) utilities of the agents

[Moulin, 2003, Berthet and Perchet, 2017, Do et al., 2021c]. We review the literature on fairness in

bandit-based recommendation in Section 2.3.1 and the literature on bandits with multiple rewards

in Section 2.3.2.

Finally, we discuss the pure exploration bandit setting in Section 2.3.3, which is different from

minimizing regret and is useful for the fairness certification problem of Chapter 6.

2.3.1 Fairness of exposure in bandits

In Chapter 5, we address the question of fairness of exposure in the contextual bandit setting, which

is a popular paradigm for recommender systems that learn to generate personalized recommendations

from online interations with users [Li et al., 2010, Lattimore and Szepesvári, 2020]. On the one

hand, contextual bandit algorithms have been mostly developed to maximize a single scalar reward.

In the case of recommendation, this reward usually corresponds to a proxy of user satisfaction

based on engagement signals (e.g., clicks, shares, likes, etc.), and it thus ignores the impact of

recommendations on item producers. On the other hand, most of the item-side fairness literature,

which we reviewed in Section 2.1, focused on a static ranking setting, either without learning [Geyik

et al., 2019, Beutel et al., 2019a, Yang and Stoyanovich, 2017, Singh and Joachims, 2018, Patro
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et al., 2022, Kletti et al., 2022a, Diaz et al., 2020, Do and Usunier, 2022, Wu et al., 2022b] or with

learning-to-rank [Bower et al., 2021, Singh and Joachims, 2019, Zehlike and Castillo, 2020].

Existing work on fairness of exposure in stochastic bandits focused on local exposure constraints

on the probability of pulling an arm at each timestep, either in the form of lower/upper bounds

[Celis et al., 2018b] or merit-based exposure targets [Wang et al., 2021a]. In contrast, we consider

amortized exposure over time, in line with prior work on fair ranking [Biega et al., 2018, Morik et al.,

2020, Usunier et al., 2022], along with fairness trade-offs defined by concave objective functions

which are more flexible than fairness constraints [Zehlike and Castillo, 2020, Do et al., 2021c, Usunier

et al., 2022, Wu et al., 2022a]. Moreover, these works [Celis et al., 2018b, Wang et al., 2021a] do

not address combinatorial actions, while ours applies to ranking in the position-based model, which

is more practical for recommender systems [Lagrée et al., 2016, Singh and Joachims, 2018]. The

methods of [Patil et al., 2020, Chen et al., 2020] aim at guaranteeing a minimal cumulative exposure

over time for each arm, but they also do not apply to ranking. In contrast, [Xu et al., 2021, Li

et al., 2019] consider combinatorial bandits with fairness, but they do not address the contextual

case, which limits their practical application to recommender systems. Mansoury et al. [2021a],

Jeunen and Goethals [2021] propose heuristic algorithms for fairness in ranking in the contextual

bandit setting, highlighting the problem’s importance for real-world recommender systems, but

these algorithms lack theoretical guarantees. In Chapter 5, we introduce the first principled bandit

algorithms for this problem with provably vanishing regret.

Finally, several works on fairness in bandits focus on hiring rather than personalized recommen-

dation [Joseph et al., 2016, Liu et al., 2017, Schumann et al., 2019b]. These works study criteria

that are different from fairness of exposure since the goals and tasks involved are distinct.

2.3.2 Bandits with concave rewards

Several recent works on the societal impact of recommender systems and machine learning algorithms

have advocated for the optimization of multiple rewards, instead of focusing on a single reward

[Mehrotra et al., 2020, Stray et al., 2021, Vamplew et al., 2018]. The desired trade-off between

the rewards is typically defined by a known concave function f , which is set by the practitioner

depending on the application context [Mehrotra et al., 2020]. In the multi-objective bandit literature,

the optimization of a known concave function of different rewards is known as Bandits with Concave

Rewards (bcr) [Agrawal and Devanur, 2014]. Chapter 5 is dedicated to the contextual setting of

bcr (cbcr), where the vector of multiple rewards depends on a stochastic context.

The main challenge of cbcr is that the set of stationary policies are all mappings from a

continuous context set to distributions over actions. In the non-contextual (bcr), which has

been previously studied by Agrawal and Devanur [2014], and by Busa-Fekete et al. [2017] for the

special case of Generalized Gini indices, policies are distributions over actions. These approaches

perform a direct optimization in policy space, which is not possible in the contextual setup without

restrictions or assumptions on optimal policies. Agrawal et al. [2016] study a setting of cbcr

where the goal is to find the best policy in a finite set of policies. Because they rely on explicit

search in the policy space, they do not resolve the main challenge of the general cbcr setting we

address in Chapter 5. Cheung [2019], Siddique et al. [2020], Mandal and Gan [2022], Geist et al.

[2021] address multi-objective reinforcement learning with concave aggregation functions, a problem

more general than stochastic contextual bandits. In particular, Cheung [2019] use a Frank-Wolfe

approach for this problem. However, these works rely on a tabular setting (i.e., finite state and

action sets) and explicitly compute policies, which is not possible in our setting where policies are

mappings from a continuous context set to distributions over actions. Our work is the only one
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amenable to contextual bandits with concave rewards by removing the need for an explicit policy

representation. Finally, compared to previous Frank-Wolfe approaches to bandits with concave

rewards, e.g. [Agrawal and Devanur, 2014, Berthet and Perchet, 2017], our analysis is not limited

to confidence-based exploration/exploitation algorithms.

cbcr is also related to the broad literature on bandit convex optimization (BCO) [Flaxman

et al., 2004, Agarwal et al., 2011, Hazan et al., 2016, Shalev-Shwartz et al., 2012]. In BCO, the

goal is to minimize a cumulative loss of the form
PT

t=1 `t(⇡t), where the convex loss function `t is

unknown and the learner only observes the value `t(⇡t) of the chosen parameter ⇡t at each timestep.

Existing approaches to BCO perform gradient-free optimization in the parameter space. While

bcr considers global objectives rather than cumulative ones, similar approaches have been used in

non-contextual bcr [Berthet and Perchet, 2017] where the parameter space is the convex set of

distributions over actions. As we previously highlighted, such parameterization does not apply to

cbcr because direct optimization in policy space is infeasible.

cbcr is also related to multi-objective optimization [Miettinen, 2012, Drugan and Nowe, 2013],

where the goal is to find all Pareto-efficient solutions. (C)bcr, focuses on one point of the Pareto

front determined by the concave aggregation function f , which is more practical in our application

settings where the decision-maker is interested in a specific (e.g., fairness) trade-off.

2.3.3 Pure exploration

We also leverage the multi-armed bandit paradigm for the online certification problem of Chapter

6, in which an auditor must collect user feedback to certify the preference-based fairness criterion

of envy-freeness. However, unlike in Chapter 5, we focus on a pure exploration problem, rather

than the regret minimization setting. The regret minimization problem deals with the exploration-

exploitation trade-off, where bandit algorithms aim to achieve a cumulative performance at any

time that is as close as possible to the optimal achievable performance [Robbins, 1952, Auer et al.,

2002, Bubeck and Cesa-Bianchi, 2012]. In contrast, in the online certification setting, the goal is

not to design a recommender system with cumulative performance guarantees, but rather to audit

and evaluate an existing recommender system. We model this audit as a pure exploration problem,

where the bandit algorithm must present a certificate regarding the arms after an exploration phase

that should be as short as possible, and without taking cumulative performance into account. In

our case, the certificate indicates whether an arm is better than the baseline, which is the audited

recommender system.

The conservative exploration setting [Wu et al., 2016, Garcelon et al., 2020a], which was

introduced for the regret minimization problem, adds the constraint that the anytime average

performance should not be far worse than that of a special arm called the baseline. In Chapter 6,

the baseline is the current recommender system, and the other “arms” are other users’ personalized

recommendations. The goal is to output a certificate indicating if an arm is better than the

baseline, while not deteriorating performance compared to the baseline. We thus use a mix of pure

exploration and conservative constraints.

In pure exploration, the most studied task is best-arm identification [Even-Dar et al., 2006,

Gabillon et al., 2012, Audibert and Bubeck, 2010, Garivier and Kaufmann, 2016]. In Chapter 6, the

problem is not to find the best arm but rather to decide whether an arm is better than the baseline,

which is less demanding. The online certification problem is closer to threshold bandits [Locatelli

et al., 2016], where the goal is to identify the set of arms with higher reward than a fixed threshold.

Combinatorial pure exploration bandits [Chen et al., 2014] and multiple testing [Jamieson and Jain,

2018] address similar problems.
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The differences with these settings, in addition to the conservative constraint, are twofold. First,

they assume the threshold is known, i.e., the baseline performance is known, which we do not.

Second, they aim at finding all arms that are better than the threshold, rather than deciding if

there is such an arm. Although ideas from these works may be valuable in our context, we focused

on ideas from best-arm identification methods [Audibert and Bubeck, 2010] to keep our proposed

auditing algorithm and its analysis as simple as possible.

2.4 Background on fair division in social choice

Social choice theory is the study of collective decision-making based on the preferences of agents

over alternatives [Arrow et al., 2010]. Fair division is one of the main branches of social choice,

which addresses the allocation of resources among several agents in a manner that satisfies efficiency

and fairness criteria [Moulin, 2003]. While the majority of this literature was first developed in

microeconomics, it benefited from recent developments in computer science, with the rise of the

field of computational social choice.

Fairness notions have been thoroughly examined from the perspective of distributive justice

[Sen, 1970, Roemer, 1996]. The social choice literature proposed a variety of ways to translate these

notions into mathematical definitions, and analyse their properties. In this section, we provide

background on important fairness and efficiency criteria for allocation problems in social choice, in

which the conceptual framework developed in this thesis is grounded. We discuss their axiomatic

foundations and properties, as well as their interpretations in the context of recommender systems.

We refer to [Moulin, 2003] for comprehensive overviews of fair division, and to [Bouveret et al.,

2016] for a recent survey of fair division in computational social choice.

2.4.1 Cardinal welfarism

Fair division is a social choice problem in which an alternative (or an allocation) is chosen from a

set of feasible alternatives based on the individual preferences of a group of agents.

Problem definition. Classical fair division problems can be classified into two types, based on

the nature of goods involved: either indivisible goods (e.g., books) or divisible goods (e.g., a cake).

The inputs of a fair division problem are the set of agents, the set of goods, and the preferences of

the agents over the goods, which are expressed as numerical values in cardinal welfare economics

(rather than ordinal preferences). The output is an allocation of goods to the agents which specifies

which (share of) goods are given to which agents (“who gets what” ).

Let us now describe the inputs and outputs of our problem of fair allocation of exposure in

recommender systems, focusing on the non-reciprocal setting2. We have the following inputs:

• The set of agents are the users and the items;

• The good with limited availability is the total exposure in the rankings (or equivalently, the slots

in every users’ ranking);

• Users have heterogeneous preferences over items, quantified by the relevance scores µij , and they

obtain higher utility when higher exposure is given to relevant items in their own ranking. Items

all have the same preference for high exposure (or equivalently, slots in higher positions in all

users’ rankings).

2We also address the special case of reciprocal recommendation where items have preferences over users, in
Chapters 3 and 4.
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The output is a ranking policy that defines one ranking of items per user, and it is chosen from a

set of alternatives which is the set of stochastic ranking policies. A ranking policy specifies which

users’ attention is given to which items. In fair division terms, it allocates to each item a share

of total exposure, and to each user a ranking of items. Although the inputs and outputs are not

standard for fair division, fair recommendation can still be framed as a fair division problem.3

Normative properties. The most important property is the criterion of Pareto efficiency.

According to Moulin [2003], in distributive justice, “its desirability is undisputed”. In words, an

allocation is Pareto-efficient if there is no other feasible allocation that would make at least one

agent strictly better off while not making any of the others worse off.

We formally define Pareto-efficiency and Lorenz-efficiency by introducing the following notation.

In this section, we denote by n the total number of agents, A a generic alternative and A the

set of alternatives (which would be the set of stochastic ranking policies P in the fair allocation

of exposure problem). We denote by U = {(ui(A))
n
i=1 : A 2 A} the set of achievable utility

profiles. Let u,v 2 R
n two utility profiles. We write u ⌫P v if 8i 2 JnK, ui � vi. We say that u

Pareto-dominates v, noted u �P v, if u ⌫P v and 9i, ui > vi. Given U ✓ R
n, u 2 U is said to be

Pareto-efficient in U if no v 2 U Pareto-dominates u, i.e., if 8v 2 U ,¬(v �P u). Similarly, A 2 A

is said to be Pareto-efficient if u(A) is Pareto-efficient.

We now describe the criterion of Lorenz efficiency which is at the core of the framework of

Chapter 3. Let (u"
i )

n
i=1 (resp. (v"i )

n
i=1) be the values in u (resp. v) sorted in ascending order, i.e.,

u(1)  . . .  u(n). We write u ⌫L v if 8k 2 JnK, u"
1 + . . . + u"

k � v"i + . . . + v"k. We say that u

Lorenz-dominates v, denoted by u �L v, if u ⌫L v and 9k, u"
1 + . . .+ u"

k > v"i + . . .+ v"k. u 2 U is

said to be Lorenz-efficient in U if 8v 2 U ,¬(v �L u) [Shorrocks, 1983]. Similarly, A 2 A is said to

be Lorenz-efficient if u(A) is Pareto-efficient. Note that Lorenz efficiency implies Pareto efficiency.

The Lorenz dominance preorder is closely related to the mathematical notion of majorization

[Hardy et al., 1952]. The definition of majorization is in fact the same as Lorenz dominance, except

that the utilities are sorted in decreasing order instead of increasing order.

Cardinal social welfare functions. Given a set of possible alternatives A, a cardinal social

welfare function or more simply, a welfare function4 F maps the utility profile (ui(A))ni=1 for A 2 A

to a real value that represents the aggregate preference of all individuals for the alternative A.

Socially preferred alternatives are those which maximize F over U = {(ui(A))
n
i=1 : A 2 A}.

We now describe useful properties of social welfare functions F which relate to the efficiency

of their maximizers. Let F : dom(F ) ✓ R
n ! R and (u,v) 2 dom(F )2. F is monotonic if

u ⌫P v ) F (u) � F (v). F is Schur-concave if
Pn

i=1 ui =
Pn

i=1 vi and u ⌫L v =) F (u) � F (v).

These extend to natural strict criteria of strict monotonicity (u �P v =) F (u) > F (v)) and

strict Schur-concavity (
P

i ui =
P

i vi and u �L v =) F (u) > F (v)). Given U ✓ dom(F ), the

definitions imply that for every u 2 argmaxv2U F (v), if F is monotonic, then u is Pareto-efficient,

and if F is both monotonic and strictly Schur-concave, then u is Lorenz-efficient [Shorrocks, 1983,

Thistle, 1989].

3At an abstract level, recommendation is also reminiscent of many-to-one matchings, which are also largely
studied in social choice. The output of a many-to-one matching would be an assignment of a set of items (“many”)
to a user (“one”). However, these matchings problems do not deal with exposure or users’ attention as a scarce
resource, while the primary goal of recommender systems is to support users with limited attention. We discuss the
relationship between matching and recommendation in more detail in Chapter 7.

4An alternative naming is collective utility function as in [Moulin, 2003]. These functions induce a social welfare

ordering, which is a binary relation over utility vectors that is reflexive, transitive and complete. In the social choice
literature, the term welfare function is sometimes used for social welfare ordering, while we use it to refer to a
collective utility function, following the common usage of “utilitarian welfare function” or “Nash welfare function”.
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The axiomatic approach. The axiomatic approach to cardinal welfare economics specifies

desirable properties of social welfare functions based on the axioms of symmetry, continuity,

independence of unconcerned agents and independence to scale, defined in [Moulin, 2003].

A fundamental result of axiomatic cardinal welfare economics is that welfare functions F : Rn
+ !

R [ {�1} that satisfy monotonicity, symmetry, continuity, independence of unconcerned agents

and independence to scale are additive and have the following form for ↵ 2 R:

W↵(u) =

nX

i=1

 (ui;↵) where  (x;↵) =

8
>>><
>>>:

x↵ if ↵ > 0

log(x) if ↵ = 0

�x↵ if ↵ < 0

. (2.3)

In Chapter 3, we propose to find ranking policies by maximizing these additive welfare functions.

More precisely, we maximize trade-offs between the welfare of users and the welfare of items, where

the welfare on each side is defined by a function of the form of W↵(u).

Fairness: the Pigou-Dalton transfer principle and Lorenz efficiency. The fundamental

axiom of fairness in cardinal welfare economics is the Pigou-Dalton transfer principle. It states that

social welfare increases when we redistribute utility from a better-off individual to a worse-off, keeping

others’ utilities and the overall sum of utilities constant. This transfer principle is mathematically

equivalent to Schur-concavity, which holds for welfare functions of the form (2.3) above when ↵  1

[Hardy et al., 1952, Marshall et al., 1979, Muirhead, 1902]. Since ↵ = 1 corresponds to the pure

utilitarian welfare function, which is neutral with respect to mean-preserving redistributions of

utilities, the Pigou-Dalton principle holds strictly for strictly Schur-concave functions, and thus

for ↵ < 1 in (2.3). Then, socially preferred alternatives are Lorenz-efficient, which follows the

fundamental concept underlying the welfarist measurement of inequalities [Shorrocks, 1983, Hardy

et al., 1952]: a distribution of utility u which Lorenz-dominates a distribution v with the same

mean is seen as more equitable since a larger share of utility is held by the worse-off individuals.

Assessing recommender systems in light of the Pigou-Dalton transfer principle (or with Lorenz

efficiency) is useful to prohibit rich-gets-richer effects and promote less visible item producers. Since

it favours utility transfers to the worst-off, it prevents ranking policies that unfairly put the burden

of item-side redistrbution on the worst-off users.

Utilitarianism with diminishing returns. An alternative point of view that yields the same

social preferences is to consider that ui(A) is not the underlying utility of i, but rather the amount

of “value” received under A, and the true underlying utility of i exhibits diminishing returns with

respect to ui(A). Assuming the same diminishing marginal utility curve for every individual, social

welfare functions of the form (2.3) are then utilitarian social welfare functions, where ↵ controls

the diminishing marginal utility (see e.g., the discussion by Atkinson et al. [2015]). From either

perspective (non-utilitarian/equity or utilitarian/diminishing marginal utility), Lorenz-efficiency of

profiles (ui(A))
n
i=1 is the refinement of Pareto-efficiency that leads to socially preferred outcomes.

In other words, Lorenz-efficiency allows to choose between Pareto-efficient solutions.

The concept of diminishing returns is especially applicable to recommender systems. This is

because item producers experience diminishing returns as they receive more exposure to users: “One

extra view counts less for a producer with 10 million views than for one with only 10 views.” This

concept aligns with the goal of promoting smaller item producers and making them sustainable.
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2.4.2 Inequality indices, welfare functions and Lorenz curves

An important class of fairness criteria aims to quantify the level of economic inequality caused by a

given alternative. These criteria are based on inequality indices, which are often associated with

welfare functions. In Chapter 4, we apply the class of generalized Gini welfare functions to the fair

ranking problem, which are linked to the widely used Gini index for measuring inequality.

In this section, we present inequality indices and how they relate to welfare functions. Then we

present the Gini index and other inequality indices, and discuss their properties. The Lorenz curve,

a graphical representation of utility profiles, is also discussed, as is its connection to the Gini index.

For a more detail survey on inequality measures, we refer the reader to Cowell [2000] for the theory

of inequality measures in welfare economics and to Chakravarty et al. [2009] for an extensive survey

of measures used in practice.

2.4.2.1 Inequality indices and welfare functions

Inequality indices are functions that measure the level of inequality in a population, in particular

inequality of wealth or income. An important perspective on inequality is that more inequality in a

society causes a loss of social welfare [Atkinson, 1970]. In this view, choosing an inequality index is

similar to selecting a welfare function: it involves making a normative judgment.

Inequality indices like the well-known Gini index are often associated with welfare functions. In

practice, inequality indices are typically used as evaluation measures, while welfare functions are

used to decide on an allocation. In Chapter 4, we focus on the Gini index, which is also commonly

used in recommendation papers to measure unfairness, and we maximize its associated welfare

function, which we present in the following subsection.

The formal connection between inequality indices and welfare function is made in [Atkinson,

1970, Cowell, 2000]. In the following, we consider a generic population of n individuals and their

utilities u 2 R
n. An inequality index takes as input a utility profile u and outputs a measure

I(u) 2 R. The welfare function W : Rn
+ ! R associated to an inequality index I is an increasing

function of the mean of utilities ū = 1
n

Pn
i=1 ui, and a decreasing function of the inequality measure

I(u). It is often formulated as: W (u) = ū(1 � I(u)). Conversely, it is possible to define an

inequality index from a welfare function W as follows:

I(u) =

8
<
:
1� W (u)

ū
if u 6= 0

0 otherwise.

The inequality index I(u) thus represents the proportion of loss of welfare due to inequality.

The concavity of the welfare function represents the degree of aversion to inequality of the evaluator.

As for the choice of welfare function, choosing an index to measure inequality involves a normative

judgement, since various choices can produce different conclusions.

A fundamental difference between inequality indices and their associated welfare function is the

absence of normalization by the mean of utilities. As elaborated by Atkinson [1970] and discussed

in the context of recommender systems in Chapter 3, inequality indices only focus on the shape of a

utility profile, not on its mean. This implies that it is possible to decrease the value of an inequality

index by making everyone worse-off, which is undesirable. The absence of normalization in the

welfare function prevents this degenerate behavior. This is why inequality indices are used for

evaluation rather than decision-making, while decisions are made by maximizing welfare functions.

We follow this practice in Chapters 3 an 4.
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2.4.2.2 Generalized Gini indices

The Gini index [Gini, 1921] is a well-known inequality index used in cardinal welfare economics. It

is often calculated as [Yitzhaki and Schechtman, 2013]:

Gini(u) =
1

n2ū

nX

i=1

nX

j=1

|ui � uj | with ū =
1

n

nX

i=1

ui.

Note that in addition to the Gini index being a well-known measure of inequality, the sum of

absolute pairwise differences previously appeared routinely in papers on fairness of exposure [Morik

et al., 2020] as measures of “unfairness”, even though these papers do not explicitly mention the

relationship with the Gini index.

The (Generalized) Lorenz curve The Gini index has many definitions. One of the most

commonly used is based on the Lorenz curve, which plots cumulative fractions of utility owned by

individuals ordered from those with less utility (the worse-off) to those with highest utility (the

better-off). Formally, let u" be the values of u sorted in increasing order, i.e., u"
1  ...  u"

n and let

U 2 R
n be the cumulative sum of u", i.e., Ui = u"

1 + ...+ u"
i . The Lorenz curve of u is i/n 7! Ui

kuk1

(note that kuk1 = Un, so the end point of the curve is 1). Then the Gini index is equal to 1-2*A

where A is the area under the Lorenz curve:

Gini(u) = 1� 2

n kuk1

nX

i=1

Ui.

An example of Lorenz curve is given Fig. 2.1 (left). It provides a representation of how utility is

distributed across the population. When there is perfect equality of utility, the Lorenz curve is

a straight line from (0, 0) to (1, 1). On the other hand, the stronger the curvature, the more the

utility is concentrated on the better-off individuals.

Generalized Lorenz curves are, which are at the core of Chapters 3 and 4, are Lorenz curves

without the normalization by mean utility, i.e. the curve i/n 7! Ui [Shorrocks, 1983] (Figure 2.1

right). Unlike Lorenz curves, generalized Lorenz curves uniquely characterize the distribution of

utility in the population [Shorrocks, 1983], by taking into account the actual amount of utility

possessed by each fraction of the population. Importantly, they make it possible to visualize which

fractions of the population, ordered from worse-off to better-off, benefit the most from an allocation.

In Chapter 3, we propose to diagnose the fairness of rankings by looking at the generalized

Lorenz curves of users and items to visualize “who gets what”. In particular, it allows to visualize

how strongly our ranking methods redistribute utility from better-off to worst-off users or items,

and to show that some existing ranking methods reduce the utility of the worst-off.

The welfare function of the Gini index The welfare function associated to the Gini index is

the un-normalized value 1
n

Pn
i=1 Ui. It can be written as the area under the generalized Lorenz

curve, or equivalently as an ordered weighted average (OWA, [Yager, 1988]):

WGini(u) =
1

n

nX

i=1

Ui =
nX

i=1

n� i+ 1

n
u"
i . (2.4)

This formula clarifies that the utility of the worse-off (u"
i for small i) accounts for more than the

utility of the better-off. Note that the right-hand side of the formula above is called an ordered

weighted average because the weight associated to a coordinate in u depends on its rank after
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Figure 2.1: (Left) Lorenz curves and (Right) Generalized Lorenz curves of two income profiles
y and y0, from the original paper of [Shorrocks, 1983]. Because of Lorenz curves are normalized
by mean income, they do not favour an income profile over the other since the two intersect. In
contrast, Generalized Lorenz curves show that y0 is preferrable to y because the cumulative income
is higher for all fractions of the population, from the worst-off individuals to the whole population.
In other words, the income profile y0 Lorenz-dominates y.

sorting in increasing order.

Generalized Gini welfare functions Welfare functions and inequality measures alike define

normative judgements on how less inequality is desired. These values are often described in terms

of redistribution or transfers from better-off to worse-off individuals in the population. The welfare

function of the classical Gini index (2.4) gives equal weight to the cumulative share of each fraction

of the population, in the sense that each point of the generalized Lorenz curve Ui has equal weight

(2.4) (which corresponds to giving more weight to worse-off individuals of the population, where

the weight is a linear function of the rank, as shown by the weight n�i+1
n assigned to u"

i ).

Since generalized Lorenz curves uniquely characterizes the distribution of utility in the population

[Shorrocks, 1983], a natural way to formulate normative judgements in terms of redistribution

is by assigning weights to each point of the Lorenz curve. This family of welfare function is

called Generalized Gini welfare Functions (GGFs, [Weymark, 1981]), which can be written as

an OWA of utilities [Yager, 1988]. Given a vector w of non-increasing positive weights, s.t.

35



Chapter 2. Related work

w1 = 1 � . . . � wn � 0, and using the convention wn+1 = 0, the GGFs are defined as:

gw(u) =
nX

i=1

(wi � wi+1)Ui =
nX

i=1

wiu
"
i .

The fact that the weights w are non-increasing imply that wi � wi+1 � 0, and also that WGini is

concave [Yager, 1988]. It is clear also that gw(u) is increasing with respect to each coordinate in u.

This guarantees that maximizing WGini generates solutions that are Pareto-efficient and that WGini

is monotonic with respect to the dominance of generalized Lorenz curves.

Inequality indices as special cases of Generalized Gini The Bonferroni and De Vergottini

indices are two classical inequality indices, for which the associated welfare functions are special

instantiations of Generalized Gini welfare Functions [Aristondo et al., 2013]. The Bonferroni index

[Bonferroni, 1941] compares the overall income mean to the income means of the poorest individuals

in the population to assess inequality. The De Vergottini index [De Vergottini, 1950] supplements

the information given by the Bonferroni index by comparing the overall income mean to the income

means of the population’s wealthiest individuals. Unlike the classical Gini index, the Bonferroni

and De Vergottini indices are sensitive to the precise location of utility transfers within the ordered

utility profile. The Bonferroni welfare functions is a GGF with weights wi =
Pn

j=n�i+1
1
jn , while

the De Vergottini welfare functions is a GGF with weights wi =
Pn

j=i
1
jn [Aristondo et al., 2013].

Top wealth shares [Piketty and Saez, 2003] and quantile ratios [Burkhauser et al., 2009,

Neves Costa et al., 2019] are other widely used examples of inequality measures based quan-

tiles of utilities. A commonly used quantile ratio is the D9/D1 index which is the ratio of the

90th and 10th percentile values, and allows to compare the incomes of the wealthiest and poorest

individuals of the population. GGFs also allow to express normative criteria based on utility

quantiles, using e.g. wi = 1 if i  bqnc for the bottom q-th quantile.

2.4.2.3 Additively decomposable inequality indices

While the family of Generalized Gini indices provides an expressive framework for measuring

inequality, there are several alternative inequality measures with interesting properties. A class of

indices of interest are generalized entropy indices [Shorrocks, 1980], which are defined as:

E↵(u) =

8
>>><
>>>:

1
n↵(↵�1)

Pn
i=1

⇥�
ui

ū

�↵ � 1
⇤
, if ↵ 6= 0, 1

� 1
n

Pn
i=1 ln(

ui

ū
), if ↵ = 0

1
n

Pn
i=1

ui

ū
ln(ui

ū
), if ↵ = 1.

Several well-known inequality indices belong to the class of generalized entropy indices from

[Shorrocks, 1980]. For example, E1(u) is the Theil index, and E2(u) is half the squared coefficient

of variation. Note that the coefficient of variation is a normalized standard deviation, which is what

we use to compute utility/inequality trade-offs in Chapter 3. Generalized Entropy indices are also

related to the Atkinson index of [Atkinson, 1970], which is defined from a welfare function.

The appealing property of generalized entropy indices is that they are additively decomposable,

meaning that they can be decomposed into a within-group and a between-group inequality term.

In contrast, generalized Gini indices do not satisfy additive decomposability in general [Shorrocks,

1980]. Existing work on group fairness in ranking and recommendation define group utilities by

averaging the utilities in the group, and measure unfairness by the Gini index [Morik et al., 2020].

The resulting measure does not account for within-group inequalities, while using an additively

36



Chapter 2. Related work

decomposable inequality measure on the utility profile would provide a decomposition into within-

group and between-group fairness. Speicher et al. [2018] advocate for this property in the context

of fair machine learning. We propose a simple treatment of group fairness in Appendix A.2 that

we discuss in more detail in Chapter 7, but we do not address the question of within-group vs.

between-group fairness.

2.4.3 Envy-free allocations

The concepts from cardinal welfare economics that we presented in the previous section – i.e. welfare

functions, inequality indices, Pareto and Lorenz dominance – are applicable to various social choice

problems, including the allocation of private goods (e.g., a piece of cake) or public goods (e.g., a

public road) [Le Breton and Weymark, 2011]. In this section, we discuss fairness criteria that are

specific to allocation problems for private goods. As we discuss in Chapter 6, these criteria can be

used to conceptualize user fairness in personalized recommender systems, where the personalized

ranking assigned to a user can be seen as a private good.

Envy-freeness, which is usually credited to [Foley, 1967], is a desirable property in the fair

division of private goods, in which a resource or a set of items must be divided among multiple

agents. An allocation is said to be envy-free if no agent prefers the share of resource or bundle of

items of another agent to their own, i.e., there is no envy. An extensive discussion of the axiomatic

foundations of envy-freeness is found in [Thomson, 2011].

Another fairness criterion in fair division is proportionality, which is satisfied if each agent

receives a share that they value at least as much as 1/n of the total resource’s value to them. In

the classical setting of additive utilities, envy-freeness implies proportionality [Thomson, 2011].

Unlike the welfare function approach described previously, envy-freeness can be defined in terms

of ordinal preferences. Furthermore, it does not involve interpersonal comparison of utilities across

agents, since different bundles are assessed by the preferences of the same agent. The latter property

is interesting for recommender systems, since user utilities can be difficult to compare as they are

based on patterns that differ across users (e.g., rating or browsing habits).

In Chapter 6, we propose envy-freeness as a fairness criterion for personalized recommendation,

and analyse its properties and its relationship to other criteria for fair recommendation. The only

agents that we consider in that chapter are the users.

The personalized recommendation setting is different from classical fair division in several ways.

First, in recommender systems, the same item can be shown to an unrestricted number of users,

whereas in fair division, a single good can be given to at most one agent. Second, the true user

preferences in recommender systems are unknown and must be estimated from noisy feedback,

while in fair division problems, the agents’ preferences are known to the decision-maker. We address

the technical challenge of exploring user preferences to certify envy-freeness in Chapter 6.

2.5 Social choice and welfare for fair machine learning

Recently, there has been growing interest in building connections between fairness in machine

learning and social choice theory [Heidari et al., 2018, Ustun et al., 2019, Balcan et al., 2018, Gölz

et al., 2019, Hossain et al., 2020, Chakraborty et al., 2019, Finocchiaro et al., 2021, Saito and

Joachims, 2022], and welfare economics in particular [Speicher et al., 2018, Hu and Chen, 2020,

Kleinberg et al., 2018b, Zimmer et al., 2021, Hossain et al., 2021]. In line with Hu and Chen

[2020], who focused on classification tasks and parity constraints, we argue that the principle of

Pareto efficiency should be part of fairness assessments. In Chapter 3, we are the first to propose
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concave welfare functions and Lorenz efficiency to address two-sided fairness in recommendation. In

particular, by introducing Lorenz efficiency, which combines Pareto efficiency and the Pigou-Dalton

principle, we provide a refinement of Pareto efficiency which helps choosing ranking policies among

Pareto-efficient solutions with a more complete assessment of “who gets what”.

Among the recently proposed connections between fair machine learning and economic concepts,

some authors proposed to use inequality indices to quantify and mitigate unfairness [Speicher et al.,

2018, Heidari et al., 2018, Lazovich et al., 2022], take an axiomatic perspective [Gölz et al., 2019,

Cousins, 2021, Williamson and Menon, 2019] or apply welfare economics principles [Hu and Chen,

2020, Rambachan et al., 2020]. In particular, the Generalized Gini welfare Functions (GGFs) that we

study in Chapter 4, were recently applied to fair multi-agent reinforcement learning, with multiple

reward functions [Busa-Fekete et al., 2017, Siddique et al., 2020, Zimmer et al., 2021]. These

works consider sequential decision-making problems without ranking, and their GGFs aggregate

the objectives of a few agents (typically n < 20), while in our ranking problem, there are as many

objectives as there are users and items.

The integration of social choice concepts into fair machine learning is also useful for defining

preference-based fairness criteria. Specifically, since social choice deals with fair decision-making

based on the heterogeneous preferences of agents, its concepts are particularly suitable to personalized

recommendation systems that aim to account for user preferences. In Chapter 6, we propose the

social choice criterion of envy-freeness as a preference-based fairness criterion for personalized

recommendation, which ensures that no user would prefer the recommendation received by another

user. Envy-freeness was also studied as a user-side fairness criterion in Patro et al. [2020], but

without addressing the challenge of measuring envy under noisy feedback. Saito and Joachims

[2022] recently used it for item-side fairness in a model that considers the utilities of items beyond

a mere preference for high exposure.

Preference-based fairness criteria have been discussed in several other aspects by the machine

learning community. The framework of envy-free classification [Balcan et al., 2018] focuses on

classification problems with a known auxiliary utility function of predictions. The recent work

on preference-informed individual fairness [Kim et al., 2019] combines the notions of distance-

based individual fairness of Dwork et al. [2012] and envy-freeness, but requires access to both user

preferences and a measure of similarity between individuals. In Chapter 6, we address a personalized

recommendation setting, where the preferences of users are unknown and must be estimated by the

auditor to estimate envy from noisy feedback.

Notice that while the original frameworks of preference-based fairness for classification are defined

at the level of groups [Zafar et al., 2017b, Ustun et al., 2019, Hossain et al., 2020, Suriyakumar

et al., 2022], it is more challenging to define group envy-freeness when the recommendations are

personalized. This is because in the classification setting, there is only one classifier per group,

while in our case we have a recommendation policy per individual in the group. In our personalized

recommendation setting, we would need a non-trivial definition to capture what it means for a

group of users to be “envious of the recommendations of another group”, since there is no single

group-level recommendation.
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This chapter is the article Two-sided fairness in rankings via Lorenz dominance, published at

NeurIPS 2021 (see [Do et al., 2021c]). In this chapter, we approach fair recommendation as a fair

division problem where the scarce resource is the total exposure and the agents are the users and

items. We propose a conceptual framework for fairness in ranked recommendations grounded in

cardinal welfarism in social choice. This chapter provides a basis for the design of fair ranking

objectives, on which we rely in the next chapters that will focus on algorithmic challenges and

online learning.

We introduce generalized Lorenz curves to the fair ranking problem, which are graphical

representations of the distribution of utility among users and items. We formalize the criterion

of Lorenz efficiency for fairness in rankings, which is satisfied by rankings with non-dominated

generalized Lorenz curves. It ensures that rankings are Pareto-efficient and that they are maximally

redistributive at a given level of overall utility (i.e., they follow the Pigou-Dalton transfer principle).

This framework provides a better understanding of existing criteria for fairness in rankings, and shows

that existing approaches amplify rich-gets-richer effects or destroy utility instead of redistributing

it, in violation of Lorenz efficiency. We propose a principled approach to generate fair rankings

by maximizing additive concave welfare functions of the utility profiles of users and items. The
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curvature of the welfare function for users (resp. items) controls the degree of redistribution among

users (resp. items).

In this chapter, we consider a batch setting, and focus on the ranking problem. We do not address

the problem of learning the values µij and assume they are given as input to the recommender

system. Nonetheless, we provide in Appendix A.3.3 an excess risk bound on the true welfare of the

ranking obtained when using estimates µ̂ij .

In the batch setting, ranking with item-side fairness is challenging because items’ utilities

depend on the rankings of all users, requiring global inference. Previous methods that preceded

the publication of this work addressed this issue with heuristic methods without guarantees or

control on the achievable trade-offs. We show how the Frank-Wolfe algorithm can be leveraged for

tractable fair ranking in the position-based model.

Our method can be applied to both one-sided and reciprocal recommendation tasks, such as

music or movie recommendation, and dating or social recommendation, respectively. By proposing

the first unified framework for these two settings, we provide a new opportunity to investigate the

fairness of rankings in reciprocal recommender systems, an area that has received relatively little

attention in prior research.

The modelling choices made in this chapter are further discussed in Chapter 7.

Note that this chapter uses the notation of the original publication, which is different than the

notation of Chapter 1. This is because at the time of writing the article, we aimed at minimal changes

between one-sided and reciprocal recommendation settings. We also use the term “quality-weighted

exposure” instead of “merit-based exposure” to refer to a prior item-side fairness criterion.

Abstract

We consider the problem of generating rankings that are fair towards both users and item producers

in recommender systems. We address both usual recommendation (e.g., of music or movies) and

reciprocal recommendation (e.g., dating). Following concepts of distributive justice in welfare

economics, our notion of fairness aims at increasing the utility of the worse-off individuals, which we

formalize using the criterion of Lorenz efficiency. It guarantees that rankings are Pareto-efficient, and

that they maximally redistribute utility from better-off to worse-off, at a given level of overall utility.

We propose to generate rankings by maximizing concave welfare functions, and develop an efficient

inference procedure based on the Frank-Wolfe algorithm. We prove that unlike existing approaches

based on fairness constraints, our approach always produces fair rankings. Our experiments also

show that it increases the utility of the worse-off at lower costs in terms of overall utility.

3.1 Introduction

Recommender systems have a growing impact on the information we see and on our life opportunities,

as they help us browse news articles, find a new job, house, or people to connect with. While the

objective of recommender systems is usually defined as maximizing the quality of recommendations

from the user’s perspective, the recommendations also have an impact on the recommended “items”.

News outlets rely on exposure to generate revenue, finding a job depends on which recruiter

gets to see our resume, and the effectiveness of a dating application also depends on who we are

recommended to—and if we are being recommended, then someone else is not. Two-sided fairness

in rankings is the problem of generating personalized recommendations by fairly mediating between

the interests of users and items. It involves a complex multidimensional trade-off. Fairness towards
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item producers requires boosting the exposure of small producers (e.g., to avoid winner-take-all

effects and popularity biases [Abdollahpouri et al., 2019b]) at the expense of average user utility.

Fairness towards users aims at increasing the utility of the least served users (e.g., so that least

served users do not support the cost of item-side fairness), once again at the expense of average

user utility. The goal of this paper is to provide an algorithmic framework to generate rankings that

achieve a variety of these trade-offs, leaving the choice of a specific trade-off to the practitioner.

The leading approach to fairness in rankings is to maximize user utility under constraints of

equal item exposure (or equal quality-weighted exposure) [Singh and Joachims, 2018, Biega et al.,

2018] or equal user satisfaction [Basu et al., 2020]. When these constraints imply an unacceptable

decrease in average user utility, so-called “trade-offs between utility and fairness” [Zehlike and

Castillo, 2020, Singh and Joachims, 2019] are obtained by relaxing the fairness constraints, leading

to the optimization of a trade-off between average user utility and a measure of users’ or items’

inequality.

Thinking about fairness in terms of optimal utility/inequality trade-offs has, however, two

fundamental limitations. First, the optimization of a utility/inequality trade-off is not necessarily

Pareto-efficient from the point of view of users and items: it sometimes chooses solutions that

decrease the utility of some individuals without making anybody else better off. We argue that

reducing inequalities by decreasing the utility of the better-off is not desirable if it does not benefit

anyone. The second limitation is that focusing on a single measure of inequality does not address the

question of how inequality is reduced, and in particular, which fraction of the population benefits

or bears the cost of reducing inequalities.

In this paper, we propose a new framework for two-sided fairness in rankings grounded in the

analysis of generalized Lorenz curves of user and item utilities. Widely used to study efficiency

and equity in cardinal welfare economics [Shorrocks, 1983], these curves plot the cumulative utility

obtained by fractions of the population ordered from the worst-off to the best-off. A curve that

is always above another means that all fractions of the populations are better off. We define fair

rankings as those with non-dominated generalized Lorenz curves for users and items. First, this

definition guarantees that fair rankings are Pareto-efficient. Second, examining the entirety of the

generalized Lorenz curves provides a better understanding of which fractions of the population benefit

from an intervention, and which ones have to pay for it. We present our general framework based

on Lorenz dominance in usual recommendation settings (e.g., music or movie recommendation),

and also show how extend it to reciprocal recommendation tasks such as dating applications or

friends recommendation, where users are recommended to other users.

We present a new method for generating rankings based on the maximization of concave welfare

functions of users’ and items’ utilities. The parameters of the welfare function control the relative

weight of users and items, and how much focus is given to the worse-off fractions of users and items.

We show that rankings generated by maximizing our welfare functions are fair for every value of

the parameters. Our framework does not aim at defining what parameters are suitable in general —

rather, the choice of a specific trade-off depends on the application.

From an algorithmic perspective, two-sided fairness is challenging because items’ utilities depend

on the rankings of all users, requiring global inference. Previous work on item-side fairness addressed

this issue with heuristic methods without guarantees or control on the achievable trade-offs. We

show how the Frank-Wolfe algorithm can be leveraged to make inference tractable, addressing both

our welfare maximization approach and existing item-side fairness penalties.

We demonstrate that our welfare function approach enjoys stronger theoretical guarantees than

existing methods. While it always generates rankings with non-dominated generalized Lorenz

curves, many other approaches do not. We show that one of the main criteria of the literature,
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called equity of attention by Biega et al. [2018], can lead to decrease user utility, while increasing

inequalities of exposure between items. Moreover, equal user satisfaction criteria in reciprocal

recommendation can lead to decrease the utility of every user, even the worse-off. Our notion of

fairness prevents these undesirable behaviors. We report experimental results on music and friend

recommendation tasks, where we analyze the trade-offs obtained by different methods by looking at

different points of their Lorenz curves. Our welfare approach generates a wide variety of trade-offs,

and is, in particular, more effective at improving the utility of worse-off users than the baselines.

We present our formal framework in Section 3.2. We discuss the theoretical properties of previous

approaches in Section 3.3, and present our ranking algorithm in Section 3.4. Our experiments are

described in Section 3.5, and the related work is discussed in Section 3.6.

3.2 Two-sided fairness via Lorenz dominance

3.2.1 Formal framework

Terminology and notation. We identify an item with its producer, so that “item utility” means

“item producer’s utility”. The main paper focuses on fairness towards individual users and items.

We describe in Appendix A.2 the extension of our approach to sensitive groups of users or items.

|X | denotes the cardinal of the set X . Given n 2 N, we denote by JnK = {1, . . . , n}. The set of

users N is identified with {1, ..., |N |} and the set of items I is identified with {|N |+1, ..., n} where

n = |N |+ |I|. For (i, j) 2 N ⇥ I, we denote by µij the value of item j to user i.

A (deterministic) ranking � : I ! J|I|K is a one-to-one mapping from items j to their rank �(j).

Following [Singh and Joachims, 2018], we use stochastic rankings because they allow us to perform

inference using convex optimization (see Section 3.4). The recommender system produces one

stochastic ranking per user, represented by a 3-way ranking tensor P where Pijk is the probability

that j is recommended to i at rank k. We denote by P the set of ranking tensors.

Utilities of users and items are defined through a position-based model, as in previous work [Singh

and Joachims, 2018, Biega et al., 2018, Wu et al., 2021b]. Let v 2 R
|I|, where vk is the exposure

weight at rank k. We assume that lower ranks receive more exposure, so that 8k 2 J|I|� 1K, vk �
vk+1 � 0.1 Given a user i and a ranking �i, the user-side utility of i is the sum of the µijs weighted

by the exposure weight of their rank �i(j): ui(�i) =
P

j2I v�i(j)µij . Given an item j, the item-side

utility of j is the sum over users i of the exposure of j to i. These definitions extend to stochastic

rankings by taking the expectation over rankings, written in matrix form:2

user-side utility: ui(P ) =
X

j2I

µijPijv item-side utility (exposure): uj(P ) =
X

i2N

Pijv

We denote by u(P ) = (ui(P ))ni=1 the utility profile for P , and by U = {u(P ) : P 2 P} the set of

feasible profiles. For u 2 U , uN = (ui)i2N and uI = (ui)i2I denote the utility profiles of users and

items respectively.

Two-sided fairness in rankings. In practice, values of µij are not known to the recommender

system. Ranking algorithms use an estimate µ̂ of µ based on historical data. We address here the

problem of inference: the task is to compute the ranking tensor given µ̂, with the goal of making

fair trade-offs between (true) user and item utilities. Notice that the user-side utility depends only

on the ranking of the user, but for every item, the exposure depends on the rankings of all users.

1We use a user-independent v for simplicity. Considering user-dependent weights is straightforward.
2We consider Pij as a row vector in the formula, so that Pijv =

P|I|
k=1 Pijkvk.
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holds when all utilities are comparable. In our case where there are users and items, we propose

the following welfare function parameterized by ✓ = (�,↵1,↵2):3

8u 2 R
n
+ : W✓(u) = (1� �)

X

i2N

 (ui,↵1) + �
X

j2I

 (uj ,↵2) with  (x,↵) =

8
>>><
>>>:

x↵ if ↵ > 0

log(x) if ↵ = 0

�x↵ if ↵ < 0

.

Inference is carried out by maximizing W✓ (an efficient algorithm is proposed in Section 3.4):

(ranking procedure) P ⇤ 2 argmax
P2P

W✓(u(P )) (3.1)

In W✓, � 2 [0, 1] controls the relative weight of users and items. The motivation for the specific

choice of  is that it appears in scale invariant welfare functions [Moulin, 2003], but other families

can be used as long as the functions are increasing and concave. Monotonicity implies that maxima

of W✓ are Pareto-efficient. For ↵1 < 1 and ↵2 < 1, W✓ is strictly concave. Then, W✓ exhibits

diminishing returns, which is the key to Lorenz efficiency: an increment in utility for a worse-off

user/item increases welfare more than the same increment for a better-off user/item. The effect of

the parameters is shown in Fig. 3.1 (left): For item fairness we obtain more item equality by using

↵1 < 1 (here, ↵1 = 0.5) and incrasing � (see blue solid vs orange dashed curve). The parameter ↵2

controls user fairness: smaller values yield more user utility for the worse-off users at the expense

of total utility, with similar item exposure curve (green dotted vs orange dahsed curves). Let

Θ = {(�,↵1,↵2) 2(0, 1)⇥ (�1,1)2}. For every ✓ 2 Θ,W✓ is strictly concave, and users and items

have non-zero weight. We then have (the result is a straightforward consequence of diminishing

returns, see Appendix A.3):

Proposition 1. 8✓ 2 Θ, 8P ⇤ 2 argmax
P2P

W✓(u(P )), P ⇤ is Lorenz-efficient.

Relationship to inequality measures A well-known measure of inequality is the Gini index,

defined as 1� 2⇥AULC, where AULC is the area under the Lorenz curve. The difference between

Lorenz and generalized Lorenz curves is that the former is normalized by the cumulative utility.

This difference is fundamental: we can decrease inequalities while dragging everyone’s utility to

0. However, this would lead to dominated generalized Lorenz curves. Interestingly, for item-side

fairness, the cumulative exposure is a constant and thus trade-offs between user utility and item

exposure inequality are not really problematic. However, for user-side fairness, the total utility is

not constant and reducing inequalities might require dragging the utility of some users down for

the benefit of no one.

Additional theoretical results In App. A.3.2, we show that as ↵1,↵2 ! �1, utility profiles

tend to leximin-optimal solutions [Moulin, 2003]. Leximin optimality corresponds to increasing

the utility of the worst-off users/items one a a time, similarly to a lexical order. In App. A.3.3,

we present an excess risk bound, which provides theoretical guarantees on the true welfare when

computing rankings based on estimated preferences, depending on the quality of the estimates.

3Wθ(u) = �1 if α  0 and 9i, ui = 0. In practice, we use ψ(x+ η,α) for η > 0 to avoid this case.
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3.2.3 Extension to reciprocal recommendation

In reciprocal recommendation problems such as dating, the users are also items. The notion of

fairness simplifies to increasing the utility of the worse-off users, which can in practice be done by

boosting the exposure of worse-off users. Our framework above applies readily by taking N = I and

n = |N |. The critical step however is to redefine the utility of a user to account for the fact that (1)

the user utility comes from both the recommendation they receive and who they are recommended

to, and (2) users have preferences over who they are recommended to.

To define this two-sided utility, let us denote by µij the mutual preference value between i and j,

and our examples follow the common assumption that µij = µji (see e.g., Palomares et al. [2021]).

For instance, when recommending CVs to recruiters, µij can be the probability of interview, while

in dating, it can be that of a “match”. The two-sided utility is then the sum of the user-side utility

and item-sided utility of the user:

user-side utility
(j recommended to i)z }| {
ui(P ) =

X

j2I

µijPijv

item-side utility
(i recommended to j)z }| {

vi(P ) =
X

j2N

µijPjiv

(two-sided) utilityz }| {
ui(P ) = ui(P ) + vi(P )

With this definition of two-sided utility, our previous framework can be readily applied using N = I.

A (two-sided) utility profile u 2 U is Lorenz-efficient if there is no u0 2 U such that u0 �L u. The

welfare function simplifies to W✓(u) =
Pn

i=1  (ui,↵), and Proposition 1 also holds true in this

setting: maximizing the welfare function always yields Lorenz-efficient rankings.

Fig. 3.1 (right) illustrates how decreasing ↵ increases utilities for the worse-off users at the

expense of total utility. It also shows a Lorenz-dominated (unfair) profile, in which all fractions

from the worst-off to the better-off users have lower utility.

From now on, we refer to one-sided recommendation for non-reciprocal recommendation.

3.3 Comparison to utility/inequality trade-off approaches

As stated in the introduction, leading approaches to fairness in ranking are based on utility/inequality

trade-offs. We describe here the representative approaches we consider as baselines in our ex-

periments. We then present theoretical results illustrating the undesirable behavior of some of

them.

3.3.1 Objective functions

One-sided recommendation In one-sided recommendation, the leading approach is to define

exposure-based criteria for item fairness [Singh and Joachims, 2018, Biega et al., 2018]. The

first criterion, equality of exposure, aims at equalizing exposure across items. The second one,

quality-weighted exposure4, which is advocated by many authors, defines the quality of an item as

the sum of user values qj =
P

i2N µij and aims for item exposure proportional to quality. The

motivation of quality-weighted exposure is to take user utilities into account in the extreme case

where the constraint is strictly enforced. Interestingly, as we show later, this approach has bad

properties in terms of trading off user and item utilities.

4We use here the terminology of [Wu et al., 2021b]. This criterion has also been called “disparate treatment”
[Singh and Joachims, 2018], “merit-based fairness” [Singh and Joachims, 2019] and “equity of attention” [Biega et al.,
2018].
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In our experiments, we use the standard deviation as a measure of inequality. Denoting by

E = |N | kvk1 the total exposure and by Q =
P

j2I qj the total quality:

quality-weighted
exposure F qua

� (u) =
X

i2N

ui � �
p
Dqua(u) with Dqua(u) =

1

|I|

X

j2I

⇣
uj �

qjE

Q

⌘2

.

equality of
exposure F�(u) =

X

i2N

ui � �
p

D(u) with D(u) =
1

|I|

X

j2I

⇣
uj �

1

|I|

X

j02I

uj0

⌘2

.

Some authors use D0(u) =
P

(j,j0)2I2 |
uj

qj
� uj0

qj0
| instead of

p
Dqua [Singh and Joachims, 2019,

Morik et al., 2020, Basu et al., 2020]. Dqua and D0 have qualitatively the same behavior. We

propose Dqua(u) as a computationally efficient alternative to D0, since it involves only a linear

number of terms and
p
Dqua is convex and differentiable except on 0.

Reciprocal recommendation For reciprocal recommendation, we consider as competing ap-

proach a trade-off between total (two-sided) utility and inequality of utilities, as measured by the

standard deviation:

equality of
utility F�(u) =

X

i2N

ui � �
p
D(u) with D(u) =

1

n

X

j2I

⇣
uj �

1

n

X

j02I

uj0

⌘2

.

3.3.2 Inequity and inefficiency of some of the previous approaches

We point out here to two deficiencies of previous approaches.

First, for one-sided recommendation, we show that in some cases, compared to the welfare

approach with any choice of the parameter ✓ 2 Θ, quality-weighted exposure leads to the undesirable

behavior of decreasing user utility while increasing inequalities of exposure between items. This

is formalized by the proposition below, which uses the following notation: for ✓ 2 Θ, let u✓ =

argmax
u2U

W✓(u), and for � > 0, let Uqua
� = argmax

u2U
F qua
� (u).

Proposition 2. The following claims hold irrespective of the choice of uqua,� 2 Uqua
� .

For every d 2 N⇤ and every N 2 N⇤, there is a one-sided recommendation problem, with d+ 1

items and N(d+ 1) users, such that 8✓ 2 Θ, we have:

�
9� > 0,u✓N �L u

qua,�
N and u✓I �L u

qua,�
I

�
and lim

�!1

P
i2N uqua,�

iP
i2N u✓i

���!
d!1

5

6
.

Second, in reciprocal recommendation, striving for pure equality can even lead to 0 utility for

every user, even that of the worst-off user. More precisely, we show that in some cases, compared

to the welfare approach with any choice of parameter ✓ 2 Θ, there exists � > 0 such that equality

of utility has lower utility for every user, eventually leading to 0 utility for everyone in the limit

� !1.

Proposition 3. For � > 0, let Ueq
� = argmaxu2U F�(u). The claim below holds irrespective of the

choice of ueq,� 2 Ueq
� . Let n � 5. There is a reciprocal recommendation task with n users such that:

8✓ 2 Θ,u✓, 9� > 0 : 8i 2 JnK, u✓i > ueq,�
i and lim

�!1

X

i2N

ueq,�
i = 0.

Proofs and additional results All proofs are deferred to App. A.4, where we provide several

additional results regarding the use of quality-weighted exposure and equality of exposure in
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reciprocal recommendation: We show in Prop. 25 that there are cases where both approaches lead

to user utility profiles with Lorenz-dominated curves, and significantly lower total user utility than

the welfare approach for any choice of the parameters.

3.4 Efficient inference of fair rankings with the Frank-Wolfe

algorithm

We now present our inference algorithm for (3.1). Appendix A.5 contains the proofs of this section

and describes a similar approach for the objective functions of the previous section. From an

abstract perspective, the goal is to find a maximum P ⇤ such that:

P ⇤ 2 argmax
P2P

W (P ) with W (P ) =

nX

i=1

Φi

✓ nX

j=1

µij(Pij + Pji)v

◆

where for every i, Φi : R+ ! R is concave increasing, µij � 0 and v is a vector of non-negative

non-increasing values. Since W is concave and P is defined by equality constraints, the problem

above is a convex optimization problem. However, this is a global optimization problem over the

rankings of all users, so a naive approach would require |N ||I|2 parameters and 2|N ||I| linear

constraints. The same problem arises with the penalties of previous work. In the literature, authors

either considered applying the item-fairness constraints to each ranking individually [Singh and

Joachims, 2018, Basu et al., 2020], which leads to inefficiencies with our definition of utility (see

Appendix A.8), or resort to heuristics to compute the rankings one by one without guarantees on

the trade-offs that are achieved [Morik et al., 2020, Biega et al., 2018].

Our approach is based on the Frank-Wolfe algorithm [Frank and Wolfe, 1956], which was

previously used in machine learning in e.g., structured output prediction or low-rank matrix

completion [Jaggi, 2013], but to the best of our knowledge not for ranking. Denoting hX |Y i =
P

ijk XijkYijk the dot product between tensors, the algorithm creates iterates P (t) by first computing

P̃ = argmaxP2PhP |rW (P (t))i and then updating P (t) = (1� �(t))P (t�1) + �(t)P̃ with �(t) = 2
t+2

[Clarkson, 2010]. Starting from an initial solution5, the algorithm always stays in the feasible

region without any additional projection step. Our main contribution of this section is to show that

argmaxP2PhP |rW (P (t))i can be computed efficiently, requiring only one sort operation per user

after computing the utilities. In the result below, for a ranking tensor P and a user i, we denote by

S(Pi) the support of Pi in ranking space.6

Theorem 4. Let µ̃ij = Φ0
i

�
ui(P

(t))
�
µij + Φ0

j

�
uj(P

(t))
�
µji. Let P̃ such that:

8i 2 N , 8�̃i 2 S(P̃i): �̃i(j) < �̃i(j
0) =) µ̃ij � µ̃ij0 . Then P̃ 2 argmax

P2P
hP |rW (P (t))i.

Moreover, it produces a compact representation of the stochastic ranking as a weighted sum of

permutation matrices. The number of iterations of the algorithm allows to control the trade-off

between memory requirements and accuracy of the solution. Using previous convergence results for

the Frank-Wolfe algorithm [Clarkson, 2010], assuming each Φ00
i is bounded, we have:

Proposition 5. Let B = max
i2JnK

kΦ00
i k1 and U = max

u2U
kuk22. Let K be the maximum index of a

nonzero value in v (or |I|). Then 8t � 1,W (P (t)) � max
P2P

W (P )�O(BU
t ). Moreover, for each user,

an iteration costs O(|I| lnK) operations and requires O(K) additional bytes of storage.

5In our experiments, we initialize with the utilitarian ranking (Proposition 21).
6Formally, S(Pi) =

�

σ : I ! J|I|K
�

�σ is one-to-one, and 8j 2 I, Pijσ(j) > 0
 

.
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using matrix factorization. The experimental protocol is detailed in App. A.6.4. We also present in

App. A.6.5 additional experiments using the Epinions dataset Richardson et al. [2003]. The results

are qualitatively similar.

Our main baseline is equal utility (eq. utility) defined in Section 3.3. We also compare to

quality-weighted exposure, and equality of exposure as baselines that ignore the reciprocal nature

of the task. The results are summarized in Fig. 3.4:

• Example of trade-offs obtained by varying ↵ are plotted in Fig. 3.4a. As ↵ decreases, the utility

increases for the worse-off users at the expense of better-off users. We note that increasing the

utility of worse-off users has a massive cost on total user utility: looking at the exact numbers we

observe that ↵ = �5 has more than doubled the cumulative utility of the 10% worse off users

compared to ↵ = 1 (120 vs 280), but at the cost of more than 60% of the total utility (17k vs

6.4k). Fig. A.2 in Appendix A.6.4 contains plots of the trade-offs achieved by the other methods.

• qua.-weighted and eq. exposure are dominated by welf on a large range of hyperparameters. An

example is given in Fig. 3.4b, where welf ↵ = 0.5 already dominates some of their models, even

though in this region of ↵ there is little focus on worse-off users. More generally, all values of

� � 0.1 for qua.-weighted and eq. exposure lead to rankings with dominated curves. This is

expected since they ignore the reciprocal nature of the task.

• eq. utility is dominated by welf near strict equality as illustrated in Fig. 3.4c: for large values of

�, it is not possible to increase the utility of the worse off users, and eq. utility only drags utility

of better-off users down.

• welf is more effective at increasing utility of the worse-off users as can be seen in Fig. 3.4e-g,

which plots the total utility as a function of the cumulative utility at different points of the

Lorenz curve (10%, 20%, 50% worse-off users respectively). For total utilities larger than 50% of

the maximum achievable, welf significantly dominates eq. utility in terms of utility of worse-off

users (10% and 25%) at a given level of total utility. welf also dominates eq. utility on the 50%

worse-off users (Fig. 3.4h) in the interesting region where the total utility is within 20% of the

maximum.

• More inequality is not necessarily unfair As shown in Fig. 3.4d, we see that for the same utility for

the 10% worse-off users, welf models have higher inequalities than eq. utility. As seen before, this

higher inequality is due to a higher total utility (and higher total utilities for the 25% worse-off

users. The analysis of these Lorenz curves allow us to conclude that these larger inequalities are

not due to unfairness. They arise because welf optimizes the utility of the worse-off users at lower

cost in terms of average utility than eq. utility.

3.6 Related work

The question of fairness in rankings originated from independent audits on recommender systems or

search engines, which showed that results could exhibit bias against relevant social groups [Sweeney,

2013, Kay et al., 2015, Hannak et al., 2014, Mehrotra et al., 2017, Lambrecht and Tucker, 2019]

Our work follows the subsequent work on ranking algorithms that promote fairness of exposure for

individual or sensitive groups of items [Celis et al., 2017b, Burke, 2017, Biega et al., 2018, Singh

and Joachims, 2018, Morik et al., 2020, Zehlike and Castillo, 2020]. The goal is often to prevent

winner-take-all effects, combat popularity bias [Abdollahpouri et al., 2019b] or promote smaller

producers [Liu et al., 2019, Mehrotra et al., 2018]. Section 3.3 is devoted to the comparison with

this type of approaches. Most of these works use a notion of fairness oriented towards items only.

Towards two-sided fairness, Wang and Joachims [2020] promote user-side fairness using concave

functions of user utilities, similarly to us. Other works use equality constraints to define user-side
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Lorenz curves of user and item utilities, and develop a new conceptual and algorithmic framework

for fair ranking. The generality of the approach is showcased on several recommendation tasks,

including reciprocal recommendation.

The expected positive societal impact of this work is to provide more principled approaches

to mediating between several parties on a recommendation platform. Yet, we did not address

several questions that are critical for the deployment of our approach. In particular, true user

preferences are often not directly available, and we only observe proxies to them, such as clicks or

likes. Second, interpersonal comparisons of utilities are critical in this work. It is thus necessary to

make sure that the proxies we choose lead to meaningful comparisons of utilities between users.

Third, estimating preferences or their proxies is itself not trivial in recommendation because of

partial observability. The true fairness of our approach is bound to a careful analysis of (at least)

these additional steps.
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This chapter is the article Optimizing generalized Gini indices for fairness in rankings, published

at SIGIR 2022 (see [Do and Usunier, 2022]). This chapter uses the notation of the original article,

which is the same as the notation of Chapter 1.

In this chapter, we build on the previous conceptual framework and propose an alternative

approach to additive welfare functions that also produces Lorenz-efficient rankings. We introduce

the maximization of Generalized Gini welfare Functions (GGFs) for fair ranking, which allows to

generate all Lorenz-efficient rankings. In contrast, maximizing additive concave welfare functions

produces Lorenz-efficient rankings, but not all of them in general. While additive welfare functions

have an intuitive interpretation as utilitarianism with diminishing returns, GGFs can express

fairness criteria based on utility quantiles and classical inequality measures like the Gini index.

On the technical side, this chapter addresses the challenge of optimizing GGFs, in the batch

setting. Since GGFs are nondifferentiable, we cannot use the Frank-Wolfe algorithm of the previous
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chapter which was limited to smooth functions. To overcome this, we introduce a Frank-Wolfe variant

that uses the Moreau-Yosida envelope as a smoothing technique, and present a computationally

efficient procedure for computing the smooth approximation of GGFs.

The limitations of the modelling choices made in this chapter are further discussed in Chapter 7.

Abstract

There is growing interest in designing recommender systems that aim at being fair towards item

producers or their least satisfied users. Inspired by the domain of inequality measurement in

economics, this paper explores the use of generalized Gini welfare functions (GGFs) as a means

to specify the normative criterion that recommender systems should optimize for. GGFs weight

individuals depending on their ranks in the population, giving more weight to worse-off individuals

to promote equality. Depending on these weights, GGFs minimize the Gini index of item exposure to

promote equality between items, or focus on the performance on specific quantiles of least satisfied

users. GGFs for ranking are challenging to optimize because they are non-differentiable. We resolve

this challenge by leveraging tools from non-smooth optimization and projection operators used

in differentiable sorting. We present experiments using real datasets with up to 15k users and

items, which show that our approach obtains better trade-offs than the baselines on a variety of

recommendation tasks and fairness criteria.

4.1 Introduction

Recommender systems play an important role in organizing the information available to us, by

deciding which content should be exposed to users and how it should be prioritized. These decisions

impact both the users and the item producers of the platform. While recommender systems are

usually designed to maximize performance metrics of user satisfaction, several audits recently

revealed potential performance disparities across users [Sweeney, 2013, Datta et al., 2015, Ekstrand

et al., 2018, Mehrotra et al., 2017]. On the side of item producers, the growing literature on fairness

of exposure aims to avoid popularity biases [Abdollahpouri et al., 2019b] by reducing inequalities in

the exposure of different items [Singh and Joachims, 2018], or aiming for equal exposure weighted

by relevance [Diaz et al., 2020, Biega et al., 2018, Morik et al., 2020]. In most cases, the approaches

proposed for user- and item-side fairness aim to reduce inequalities.

In this paper, we propose a new approach to fair ranking based on Generalized Gini welfare

Functions (GGFs, [Weymark, 1981]) from the economic literature on inequality measurement

[Cowell, 2000]. GGFs are used to make decisions by maximizing a weighted sum of the utilities

of individuals which gives more weight to those with lower utilities. By prioritizing the worse-off,

GGFs promote more equality.

The normative appeal of GGFs lies in their ability to address a multiplicity of fairness criteria

studied in the fair recommendation literature. Since GGFs include the well-known Gini inequality

index as a special case [Gini, 1921], they can be used to optimize trade-offs between exposure

inequality among items and user utility, a goal seeked by many authors [Morik et al., 2020, Zehlike

and Castillo, 2020]. GGFs also conveniently specify normative criteria based on utility quantiles

[Do et al., 2021c]: for instance, it is possible to improve the utility of the 10% worse-off users

and/or items with GGFs, simply by assigning them more weight in the objective. Moreover, using

techniques from convex multi-objective optimization, we show that GGFs cover all ranking policies

that satisfy Lorenz efficiency, a distributive justice criterion which was recently introduced for
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two-sided fairness in rankings [Do et al., 2021c].

The difficulty of using GGFs as objective functions for fairness in ranking stems from their

non-differentiability, which leads to computational challenges. Indeed, ranking with fairness of

exposure requires the solution of a global optimization problem in the space of (randomized)

rankings of all users, because the exposure of an item is the sum of its exposure to every users.

The Frank-Wolfe algorithm [Frank and Wolfe, 1956] was shown to be a computationally efficient

method for maximizing globally fair ranking objectives, requiring only one top-K sort operation

per user at each iteration [Do et al., 2021c]. However, vanilla Frank-Wolfe algorithms only apply to

objective functions that are differentiable, which is not the case of GGFs.

We propose a new algorithm for the optimization of GGFs based on extensions of Frank-Wolfe

algorithms for non-smooth optimization [Lan, 2013, Yurtsever et al., 2018, Thekumparampil et al.,

2020a]. These methods usually optimize smoothed surrogate objective functions, while gradually

decreasing a smoothing parameter, and a common smoothing technique uses the Moreau envelope

[Moreau, 1962, Yosida et al., 1965]. Our main insight is that the gradient of the Moreau envelope

of GGFs can be computed in O(n log n) operations, where n is the number of users or items. This

result unlocks the use of Frank-Wolfe algorithms with GGFs, allowing us to efficiently find optimal

ranking policies while optimizing GGFs.

We showcase the performances of the algorithm on two recommendations tasks of movies and

music, and on a reciprocal recommendation problem (akin to dating platforms, where users are

recommended to other users), with datasets involving up to 15k users and items. Compared to

relevant baselines, we show that our algorithm successfully yields better trade-offs in terms of user

utility and inequality in item exposure measured by the Gini index. Our approach also successfully

finds better trade-offs in terms of two-sided fairness when maximizing the lower quantiles of user

utility while minimizing the Gini index of item exposure.

In the remainder of the paper, we first describe our recommendation framework. We then

present the family of generalized Gini welfare functions and its relationship to previously proposed

fairness criteria in ranking. In Sec. 4.3 we provide the details of our algorithm and the convergence

guarantees. Our experimental results are reported in Sec. 4.4, and an extension to reciprocal

recommendation problems is discussed in Sec. 4.5. We position our approach with respect to the

related work in Sec. 4.6, and Sec. 4.7 concludes the paper and discusses the limitations of our work.

4.2 Fair ranking with Generalized Gini functions

4.2.1 Recommendation framework

We consider a recommendation scenario with n users, and m items, and K recommendation slots.

µij 2 [0, 1] denotes the value of item j for user i (e.g, a “liking” probability), and we assume the

values µ are given as input to the system. The goal of the system is to produce a ranked list of items

for each of the n users. Following previous work on fair rankings [e.g. Singh and Joachims, 2018],

we consider randomized rankings because they enable the use of convex optimization techniques

to generate the recommendations, which would otherwise involve an intractable combinatorial

optimization problem in the space of all users’ rankings. A randomized ranking for user i is

represented by a bistochastic matrix Pi 2 R
m⇥m, where Pijk is the probability that item j is

recommended to user i at position k. The recommender system is characterized by a ranking policy

P = (Pi)
n
i=1. We denote the convex set of ranking policies by P.

We use the term utility in its broad sense in cardinal welfare economics as a “measurement of

the higher-order characteristic that is relevant to the particular distributive justice problem at hand ”
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[Moulin, 2003]. Similarly to Patro et al. [2020], Wang and Joachims [2021], Do et al. [2021c], we

define the utility of a user as the ranking performance, and the utility of an item as its average

exposure to users, which are formalized in (4.1) below. Utilities are defined according to the

position-based model [Biega et al., 2018, Morik et al., 2020, Do et al., 2021c] with weights b 2 R
m
+ .

The weight bk is the probability that a user examines the item at position k, and we assume that

the weights are non-increasing. Since there are K recommendation slots, we have b1 � . . . � bK

and bk = 0 for any k > K. The user and item utilities are then:

User utility: ui(P ) =

mX

j=1

µijP
>
ij b Item exposure: vj(P ) =

nX

i=1

P>
ij b. (4.1)

We follow a general framework where the ranking policy P is found by maximizing a global welfare

function F (P ), and the welfare function is a weighted sum of welfare functions for users and items:

F (P ) = (1� �)guser(u(P )) + �gitem(v(P )), (4.2)

where guser : Rn ! R and gitem : Rm ! R respectively aggregate the utilities of users and item

exposures and � 2 [0, 1] specifies the relative weight of users and items.

4.2.2 Generalized Gini welfare functions

In this work, we focus on the case where gitem and guser are based on Generalized Gini welfare

Functions (GGFs) [Weymark, 1981]). A GGF gw : Rn ! R is a function parameterized by a vector

w 2 R
n of non-increasing positive weights such that w1 = 1 � . . . � wn � 0, and defined by a

weighted sum of its sorted inputs, which is also called an ordered weighted averaging operator

(OWA) [Yager, 1988]. Formally, let x 2 R
n be a utility vector and denote by x" the values of x

sorted in increasing order, i.e., x"
1  ...  x"

n. Then:

gw(x) =

nX

i=1

wix
"
i .

Let Vn = {w 2 R
n : w1 = 1 � . . . � wn � 0} be the set of admissible weights of GGFs. Given

w1 2 Vn, w2 2 Vm and � 2 (0, 1), we define the two-sided GGF as the welfare function (4.2) with

guser = gw1 and gitem = gw2 :

F�,w1,w2(P ) = (1� �)gw1

�
u(P )

�
+ �gw2

�
(v(P )

�
. (4.3)

With non-increasing, non-negative weights w, OWA operators are concave [Yager, 1988]. The

maximization of F�,w1,w2(P ) (4.3) is thus a convex optimization problem (maximization of a

concave function over the convex set of ranking policies). GGFs address fairness from the point of

view of distributive justice in welfare economics [Moulin, 2003], because they assign more weight to

the portions of the population that have the least utility. Compared to a standard average, a GGF

thus promotes more equality between individuals.

Relationship to the Gini index GGFs are welfare functions so they follow the convention that

they should be maximized. Moreover, if wi > 0 for all i, gw is increasing with respect to every

individual utilities, which ensures that maximizers of GGFs are Pareto-optimal [Moulin, 2003]. The

Gini index of x, denoted Gini(x) is associated to the GGF gw(x) with wi = (n�i+1)/n [for formulas
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of Gini index, see Yitzhaki and Schechtman, 2013]:

Gini(x) = 1� 2

kxk1

nX

i=1

n� i+ 1

n
x"
i (4.4)

=
1

n2x

nX

i=1

nX

j=1

|xi � xj | with x =
1

n

nX

i=1

xi.

The second equality gives a more intuitive formula as a normalized average of absolute pairwise

differences. The Gini index is an inequality measure, and therefore should be minimized, but, more

importantly, it is normalized by the sum of utilities kxk1, which means that in general minimizing

the Gini index does not yield Pareto-optimal solutions. The importance of this normalization is

discussed by e.g., Atkinson [1970], and by [Do et al., 2021c] in the context of fairness in rankings.

Yet, when x is a vector of item exposures x = v(P ), the normalization is not important because

the total exposure is constant. It is then equivalent to minimize the Gini index of item exposures

or to maximize its associated GGF.

Multi-objective optimization of Lorenz curves An alternative formula for gw(x) is based

on the generalized Lorenz curve1 [Shorrocks, 1983] of x, which is denoted X and is defined as the

vector of cumulative sums of sorted utilities:

gw(x) =

nX

i=1

w0
iXi where w0

i = wi � wi+1 and Xi = x"
1 + . . .+ x"

i . (4.5)

We used the convention wn+1 = 0. Notice that since the weights w are non-increasing, we have

that w0
i � 0. Thus, family of admissible OWA weights w yield weights w0 that are non-negative

and sum to 1. This formula offers the interpretation of GGFs as positively weighted averages of

points of the generalized Lorenz curves. Every GGF thus corresponds to a scalarization of the

multi-objective problem of maximizing every point of the generalized Lorenz curve [Geoffrion, 1968,

Miettinen, 2012]. We get back to this interpretation in the next subsections.

4.2.3 GGFs for fairness in rankings

To give concrete examples of the relevance of GGFs for fairness in rankings, we provide here

two fairness evaluation protocols that have been previously proposed and fall under the scope of

maximizing of GGFs as in Eq. (4.3).

Trade-offs between user utility and inequality in item exposure The first task consists in

mitigating inequalities of exposure between (groups of) items, and appears in many studies [Singh

and Joachims, 2018, Zehlike and Castillo, 2020, Wu et al., 2021b]. This leads to a trade-off between

the total utility of users and inequality among items, and such inequalities are usually measured

by the Gini index (as in [Morik et al., 2020, Biega et al., 2018]). Removing the dependency on P

to lighten the notation, a natural formulation of this trade-off uses the two-sided GGF (4.3) by

setting w1 = (1, . . . , 1) and w2 =
�
m�j+1

m

�m
j=1

, which yields:

guser(u) =
1

n

nX

i=1

ui gitem(v) =

mX

j=1

m� j + 1

m
v"j . (4.6)

1Lorenz curves are normalized so that the last value is 1, while generalized Lorenz curves are not normalized.
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As stated in the previous section, for item exposure, maximizing gitem is equivalent to minimizing

the Gini index. The Gini index for gitem has been routinely used for evaluating inequality in item

exposure [Morik et al., 2020, Biega et al., 2018] but there is no algorithm to optimize general

trade-offs between user utility and the Gini index of exposure. Morik et al. [2020] use the Gini index

of exposures in the context of dynamic ranking (with the absolute pairwise differences formula

(4.4)), where their algorithm is shown to asymptotically drive gitem(v) to 0, equivalent to �! 1 in

(4.2). However, their algorithm cannot be used to converge to the optimal rankings for other values

of �. Do et al. [2021c] use as baseline a variant using the standard deviation of exposures instead of

absolute pairwise difference because it is easier to optimize (it is smooth except on 0). In contrast,

our approach allows for the direct optimization of the welfare function (4.2) with this instantiation

of gitem given by eq. (4.6).

Several authors [Morik et al., 2020, Biega et al., 2018] used merit-weighted exposure2 v0
j(P ) =

v(P )/µj where µj = 1
n

Pn
i=1 µij is the average value of item j across users, rather than the

exposure itself. We keep the non-weighted exposure to simplify the exposition, but our method

straightforwardly applies to merit-weighted exposure. Note however that the sum of weighted

exposures is not constant, so using (4.6) with merit-weighted exposures is not strictly equivalent to

minimizing the Gini index.

Two-sided fairness Do et al. [2021c] propose to add a user-side fairness criterion to the trade-

off above, to ensure that worse-off users do not bear the cost of reducing exposure inequalities

among items. Their evaluation involves multi-dimensional trade-offs between specific points of the

generalized Lorenz curve. Using the formulation (4.5) of GGFs, trade-offs between maximizing

the cumulative utility at a specific quantile q of users and total utility can be formulated using a

parameter ! 2 [0, 1] as follows:

guser(u) =

nX

i=1

w0
iUi with w0

bqnc = ! and w0
n = 1� !, (4.7)

where all other values of w0
i = 0. In our experiments, we combine this guser with the Gini index for

gitem for two-sided fairness.

4.2.4 Generating all Lorenz-efficient solutions

In welfare economics, the fundamental property of concave welfare functions is that they are

monotonic with respect to the dominance of generalized Lorenz curves [Atkinson, 1970, Shorrocks,

1983, Moulin, 2003], because this garantees that maximizing a welfare function performs an optimal

redistribution from the better-off to the worse-off at every level of average utility. In the context of

two-sided fairness in rankings, Do et al. [2021c] formalize their fairness criterion by stating that a

ranking policy is fair as long as the generalized Lorenz curves of users and items are not jointly

dominated. In this section, we show that the family of GGFs F�,w1,w2(P ) (4.3) allows to generate

every ranking policy that are fair under this definition, and only those. The result follows from

standard results of convex multi-objective optimization [Geoffrion, 1968, Miettinen, 2012]. We give

here the formal statements for exhaustivity.

Let x and x0 two vectors in R
n
+. We say that x weakly-Lorenz-dominates x0, denoted x ⌫L x0,

when the generalized Lorenz curve of x is always at least equal to that of x0, i.e., x ⌫L x0 ()
8i,Xi � X 0

i. We say that x Lorenz-dominates x0, denoted x �L x0 if x ⌫L x0 and x 6= x0, i.e.,

if the generalized Lorenz curve of x is strictly larger than that of x0 on at least one point. The

2also called “equity of attention” [Biega et al., 2018], “disparate treatment” [Singh and Joachims, 2018]
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criterion that generalized Lorenz curves of users and items are not jointly-dominated is captured by

the notion of Lorenz-efficiency :

Definition 2 (Do et al. [2021c]). A ranking policy P 2 P is Lorenz-efficient if there is no P 0 2 P

such that either [u(P 0) ⌫L u(P ) and v(P 0) �L v(P )] or [v(P 0) ⌫L v(P ) and u(P 0) �L u(P )].

We now present the main result of this section:

Proposition 6. Let Θ = (0, 1)⇥ Vn ⇥ Vm.

1. Let (�,w1,w2) 2 Θ, where w1 and w2 have strictly decreasing weights, and P ⇤ 2 argmaxP2P F�,w1,w2(P ).

Then P ⇤ is Lorenz-efficient.

2. If P is Lorenz-efficient, then there exists (�,w1,w2) 2 Θ such that P 2 argmaxP2P F�,w1,w2(P ).

Proof. The proof uses standard results on convex multi-objective optimization from [Geoffrion,

1968, Miettinen, 2012]. Written in the form (4.5), the GGFs corresponds to the scalarization

of the multi-objective problem of jointly maximizing the generalized Lorenz curves of users and

items, which is a problem with n+m objectives. Indeed, each objective function is a point of the

generalized Lorenz curve (U (P ),V (P )). Each objective Ui(P ) is concave because it corresponds to

an OWA operator with non-increasing weights ρ with ⇢i0 = {i0i}, applied to utilities, which are

linear functions of the ranking policy. Each objective Vi(P ) is similarly concave. Moreover, we are

optimizing over the convex set of stochastic ranking policies P . The multi-objective problem is then

concave, which means that the maximizers of all weighted sums of the objectives (U(P ),V (P ))

with strictly positive weights are Pareto-efficient. Reciprocally every Pareto-efficient solution is a

solution of a non-negative weighted sum of the objectives (U (P ),V (P )), where the weights sum to

1 [Miettinen, 2012].

The result follows from the observation that the Lorenz-efficiency of P , defined as the Lorenz-

efficiency of (u(P ),v(P )), is equivalent to the Pareto-efficiency of its joint user-item Lorenz curves

(U(P ),V (P )). This is because the Lorenz dominance relation between vectors x,x0 is defined as

Pareto dominance in the space of their generalized Lorenz curves X,X 0.

Additive welfare functions vs GGFs Do et al. [2021c] use additive concave welfare functions

to generate Lorenz-efficient rankings. Let �(x,↵) = x↵ if ↵ > 0, �(x,↵) = log(x) if ↵ = 0 and

�(x,↵) = �x↵ if ↵ < 0. Do et al. [2021c] use concave welfare functions of the form:

guser(u) =
nX

i=1

�(ui,↵1) gitem(v) =
mX

j=1

�(vj ,↵2) (4.8)

Where ↵1 (resp. ↵2) specifies how much the rankings should redistribute utility to worse-off users

(resp. least exposed items).

Additive separability plays an important role in the literature on inequality measures [Dalton,

1920, Atkinson, 1970, Cowell, 1988], as well as in the study of welfare functions because additive

separability follows from a standard axiomatization [Moulin, 2003]. However, this leads to a

restricted class of functions, so that varying ↵1,↵2 and � in (4.8) cannot generate all Lorenz-efficient

solutions in general. The GGF approach provides a more general device to navigate the set of

Lorenz-efficient solutions, with interpretable parameters since they are weights assigned to points

of the generalized Lorenz curve.
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4.3 Optimizing Generalized Gini Welfare

In this section, we provide a scalable method for optimizing two-sided GGFs welfare functions (4.3)

F�,w1,w2 . The challenge of optimizing GGFs is that they are nondifferentiable since they require

sorting utilities. We first describe why existing approaches to optimize GGFs are not suited to

ranking in Sec. 4.3.1. We then show how to efficiently compute the gradient of the Moreau envelope

of GGFs in Sec. 4.3.2 and present the full algorithm in Sec. 4.3.3.

4.3.1 Challenges

In multi-objective optimization, a standard approach to optimizing OWAs is to solve the equivalent

linear program derived by Ogryczak and Śliwiński [2003]. Because the utilities depend on 3d-tensors

P 2 P in our case, the linear program has O(n ·m2) variables and constraints, which is prohibitively

large in practice. Another approach consists in using online subgradient descent to optimize GGFs,

like [Busa-Fekete et al., 2017, Mehrotra et al., 2020]. This is not tractable in our case because it

requires to project iterates onto the parameter space, which in our case involves costly projections

onto the space of ranking policies P. On the other hand, the Frank-Wolfe algorithm [Frank and

Wolfe, 1956] was shown to provide a computationally efficient and provably convergent method to

optimize over P [Do et al., 2021c]. However, it only applies to smooth functions, and Frank-Wolfe

with subgradients may not converge to an optimal solution [Nesterov, 2018].

We turn to Frank-Wolfe variants for nonsmooth objectives, since Frank-Wolfe methods are

well-suited to our structured ranking problem [Do et al., 2021c, Jaggi, 2013, Clarkson, 2010]. More

precisely, following [Lan, 2013, Yurtsever et al., 2018, Thekumparampil et al., 2020a], our algorithm

uses the Moreau envelope of GGFs for smoothing. The usefulness of this smooth approximation

depends on its gradient, which computation is in some cases intractable [Chen et al., 2012]. Our

main technical contribution is to show that the gradient of the Moreau envelope of GGFs can be

computed in O(n log n) operations.

4.3.2 The Moreau envelope of GGFs

In the sequel, kzk denotes the `2 norm. Moreover, a function L : X ✓ R
n ! R is C-smooth if it

is differentiable with C-Lipschitz continuous gradients, i.e., if 8x,x0 2 X , krL(x)�rL(x0)k 
C kx� x0k .

4.3.2.1 Definition and properties

Let us fix weights w 2 V and focus on maximizing the GGF gw. Let h(z) := �gw(z) to obtain a

convex function (this simplifies the overall discussion). The function h is kwk-Lipschitz continuous,

but non-smooth. We consider the smooth approximation of h given by its Moreau envelope [Parikh

and Boyd, 2014] defined as:

h�(z) = min
z02Rn

h(z0) +
1

2�
kz � z0k2 .

It is known that h�(z)  h(z)  h�(z)+ �
2 kwk

2 and that h� is 1
�
-smooth [see e.g., Thekumparampil

et al., 2020a]. The parameter � thus controls the trade-off between the smoothness and the quality

of the approximation of h.
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Algorithm 1: Computation of ΠC(w̃)

input :GGF weights w 2 R
n, z 2 R

n

output :Projection of z onto the permutahedron C(w̃).
1 w̃  �(wn, ..., w1) and �  argsort(z)
2 x PAV(z� � w̃)
3 y  z + x

σ
�1

4 Return y.

4.3.2.2 Efficient computation of the gradient

We now present an efficient procedure to compute the gradient of f�(P ) := h�(u(P )).

Given an integer n 2 N, let JnK := {1, . . . , n} and let Sn denotes the set of permutations of JnK.

For x 2 R
n, and � 2 Sn, let us denote by xσ = (x�(1), ..., x�(n)). Furthermore, let C(x) denote

the permutahedron induced by x, defined as the convex hull of all permutations of the vector x:

C(x) = conv{xσ : � 2 Sn}. Finally, let ΠX (z) := argmin
z02X

kz � z0k2 . denote the projection onto a

compact convex X . The following proposition formulates rf� as a projection onto a permutahedron:

Proposition 7. Let w̃ = �(wn, ..., w1). Let P 2 P. Then for all (i, j, k) 2 JnK⇥ JmK2, we have:

@f�

@Pijk
(P ) = yiµijbk where y = ΠC(w̃)

✓
u(P )

�

◆
. (4.9)

Proof. Let prox�h(z) = argmin
z02Rn

�h(z) + 1
2kz0 � zk2 denote the proximal operator of �h. Denoting

by u⇤ the adjoint of u, it is known that rf�(P ) = 1
�
u⇤(u(P )� prox�h(u(P )) [Parikh and Boyd,

2014].

We first notice that since w are non-increasing, the rearrangement inequalities [Hardy et al.,

1952] gives: h(z) = � min
�2Sn

w|

σ
z = max

�2Sn

�w|

σ
z. Thus, h is the support function of the convex set

C(w̃), since:

h(z) = max
�2Sn

�w|

σ
z = sup

y2C(w̃)

y|z.

Then the Fenchel conjugate of h is the indicator function of C(w̃), and its proximal is the projection

ΠC(w̃) [Parikh and Boyd, 2014]. By Moreau decomposition, we get prox(z) = z � �ΠC(w̃) (z/�) ,

and thus:

rf�(P ) = u⇤ �
ΠC(w̃) (u(P )/�)

�
.

The result follows from the definition of u(P ) =
⇣P

j,k µijPijkbk

⌘n

i=1
.

Overall, computing the gradient of the Moreau envelope boils down to a projection onto the

permutahedron C(w̃). This projection was shown by several authors to be reducible to isotonic

regression:

Proposition 8 (Reduction to isotonic regression [Negrinho and Martins, 2014, Lim and Wright,

2016, Blondel et al., 2020]). Let � 2 Sn that sorts z decreasingly, i.e. z�(1) � . . . � z�(n). Let x be

a solution to isotonic regression on zσ � w̃, i.e.

x = argmin
x0

1...x0
n

1

2
kx0 � (zσ � w̃)k2

Then we have: ΠC(w̃)(z) = z + x
σ

�1 .
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Following these works, we use the Pool Adjacent Violators (PAV) algorithm for isotonic regression,

which gives a solution in O(n) iterations given a sorted input Best et al. [2000]. The algorithm for

computing the projection is summarized in Alg. 1 where we use the notation argsort(z) = {� 2
Sn : z�(1) � . . . � z�(n)} for permutations that sort z 2 R

n in decreasing order. Including the

sorting of u(P )
�

, it costs O(n log n) time and O(n) space.

Remark 1. Our method is related to the differentiable sorting operator of Blondel et al. [2020],

which uses a regularization term to smooth the linear formulation of sorting. The regularized form

can itself be written as a projection to a permutahedron. The problem they address is different since

they differentiate the multi-dimensional sort operation, but eventually the techniques are similar

because the smoothing is done in a similar way.

Remark 2. We computed the gradient of f�(P ) = h�(u(P )) with user utilities. The gradient

of f�(P ) = h�(v(P )) using item exposures is computed similarly: @f�

@Pijk
(P ) = yjbk with y =

ΠC(w̃)

⇣
v(P )
�

⌘
.

4.3.3 Frank-Wolfe with smoothing

We return to the optimization of the two-sided GGF objective (4.3). In this section, we fix the

parameters (�,w1,w2) and consider the minimization of f := �F�,w1,w2 over P. For � > 0

we denote by h�1 and h�2 the Moreau envelopes of �gw1 and �gw2 respectively. The smooth

approximation of f is then:

f�(P ) := (1� �)h�1 (u(P )) + �h�2 (v(P )).

Our algorithm FW-smoothing (Alg. 2) for minimizing f uses the Frank-Wolfe method for

nonsmooth optimization from Lan [2013]3. Given a sequence (�t)t�1 of positive values decreasing to

0, the algorithm constructs iterates P (t) by applying Frank-Wolfe updates to f�t at each iteration

t. More precisely, FW-smoothing finds an update direction with respect to rf�t by computing:

Q(t) = argmin
P2P

hP |rf�t(P (t�1))i. (4.10)

The update rule is P (t) = P (t�1) + 2
t+2

�
Q(t) � P (t�1)

�
.

Before giving the details of the computation of (4.10), we note that applying the convergence

result of Lan [2013], and denoting DP = max
P,P 02P

kP � P 0k the diameter of P, we obtain4:

Proposition 9 (Th. 4, [Lan, 2013]). With �0 = 2DPb1
kwk and �t =

�0p
t
, FW-smoothing obtains the

following convergence rate:

f(P (T ))� f(P ⇤)  2DPb1kwkp
T

.

Efficient computation of the update direction For smooth welfare functions of user utilities

and item exposures, the update direction (4.10) can be computed with only one top-K sorting

operation per user [Do et al., 2021c]. In our case, the update is given by the following result, where

top-K(z) = {� 2 Sn : z�(1) � . . . � z�(K) and 8k � K, z�(K) � z�(k)} is the set of permutations

that sort the k largest elements in z.
3Lan [2013] uses the smoothing scheme of Nesterov [2005] which is in fact equal to the Moreau envelope (see

[Beck and Teboulle, 2012, Sec. 4.3]).
4In more details, the convergence guarantee of Lan [2013] uses the operator norm of u and v, which we

bound as follows: ku(P )k2 
P

i

P

j,k(µijPijkbk)
2  b21 kPk2, because µij 2 [0, 1] bk 2 [0, b1], and similarly

kv(P )k2  b21 kPk2.
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Algorithm 2: FW-smoothing. Alg. 1 is used for y1 and y2.

input : values (µij), # of iterations T , smoothing seq. (�t)t
output : ranking policy P (T )

1 Initialize P (0) such that P
(0)
i sorts µi in decreasing order

2 for t=1, . . . , T do

3 Let y1 = ΠC(w̃1)

✓
u(P (t�1))

�t

◆
and y2 = ΠC(w̃2)

✓
v(P (t�1))

�t

◆

4 for i=1, . . . , n do
5 µ̃ij = (1� �) y1i µij + �y2j
6 �̃i  top-K(�µ̃i) // Update direction (4.10)
7 end

8 Let Q(t) 2 P such that Q
(t)
i represents �̃i

9 P (t)  (1� 2
t+2 )P

(t�1) + 2
t+2Q

(t) .
10 end
11 Return P (T ).

Proposition 10. Let µ̃ defined by µ̃ij = (1� �) y1i µij + �y2j where y1 = ΠC(w̃1)

�
u(P (t�1))/�t

�
and

y2 = ΠC(w̃2)

�
v(P (t�1))/�t

�
.

For all i 2 JnK, let �̃i 2 top-K(�µ̃i) and Q
(t)
i a permutation matrix representing �̃i. Then

Q(t) 2 argmin
P2P

hP |rf�t(P (t�1))i.

Proof. Using the expression of the gradient of the Moreau envelope derived in Proposition 7, eq.

(4.9), we have:

@f�t

@Pijk
(P (t�1)) = (1� �) @

@Pijk
(h�t

1 (u(P (t�1))) + �
@

@Pijk
(h�t

2 (v(P (t�1)))

And thus @f�t

@Pijk
(P (t�1)) = µ̃ij ⇥ bk. The result then follows from [Do et al., 2021c, Lem. 3] and is a

consequence of the rearrangement inequality Hardy et al. [1952]: Q(t) is obtained by sorting µ̃ij in

increasing order, or equivalently, by sorting �µ̃ij in decreasing order.

Since the computation of the gradient of Moreau envelopes costs O(n lnn+ n lnm) operations

using Alg. 1, then by Prop. 10 at each iteration, the cost of the algorithm is dominated by the

top-K sort per user, each of which has amortized complexity of O(m+K lnK):

Proposition 11. Each iteration costs O(nm+ nK lnK) operations. The total amount of storage

required is O(nKT ).

In conclusion, FW-smoothing has a cost per iteration similar to the standard Frank-Wolfe

algorithm for ranking with smooth objective functions. The cost of the non-smoothness of the

objective function is a convergence rate of 1/
p
T , while the Frank-Wolfe algorithm converges in

O(1/T ) when the objective is smooth [Clarkson, 2010].

Moreover, the algorithm produces a sparse representation of the stochastic ranking policy as

a weighted sum of permutation matrices. In other words, this gives us a Birkhoff-von-Neumann

decomposition [Birkhoff, 1940] of the bistochastic matrices for free, avoiding the overhead of an

additional decomposition algorithm as in existing works on fair ranking [Singh and Joachims, 2018,

Wang and Joachims, 2021, Su et al., 2021].
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4.4 Experiments

We first present our experimental setting for recommendation of music and movies, together with

the fairness criteria we explore and the baselines we consider. These fairness criteria have been

chosen because they were used in the evaluation of prior work, and they exactly correspond to

the optimization of a GGF. We thus expect our two-sided GGF F�,w1,w2 to fare better than the

baselines, because they allow for the optimization of the exact evaluation criterion. We provide

experimental results that demonstrate this claim in Sec. 4.4.2. Note that the GGFs are extremely

flexible as we discussed in Sec. 4.2.1, so our experiments can only show a few illustrative examples

of fairness criteria that can be defined with GGFs. In Sec. 4.4.3, we show the usefulness of

FW-smoothing compared to the simpler baseline of Frank-Wolfe with subgradients.

4.4.1 Experimental setup

Our experiments are implemented in Python 3.9 using PyTorch5. For the PAV algorithm, we use

the implementation of Scikit-Learn.6

4.4.1.1 Data and evaluation protocol

We present experiments on two recommendation tasks, following the protocols of [Do et al., 2021c,

Patro et al., 2020]. First, we address music recommendation with Lastfm-2k from Cantador et al.

[2011] which contains real listening counts of 2k users for 19k artists on the online music service

Last.fm7. We filter the 2, 500 items having the most listeners. In order to show how the algorithm

scales, we also consider the MovieLens-20m dataset Harper and Konstan [2015], which contains

ratings in [0.5, 5] of movies by users, and we select the top 15, 000 users and items with the most

interactions.

We use an evaluation protocol similar to Patro et al. [2020], Do et al. [2021c], Wang and Joachims

[2021]. For each dataset, a full user-item preference matrix (µi,j)i,j is obtained by standard matrix

factorization algorithms8 from the incomplete interaction matrix, following the protocol of [Do

et al., 2021c]. Rankings are inferred from these estimated preferences. The exposure weights b

are the standard weights of the discounted cumulative gain (DCG) (also used in e.g., Singh and

Joachims [2018], Biega et al. [2018], Morik et al. [2020]): 8k 2 JKK, bk = 1
log2(1+k) .

The generated µij are used as ground truth to evaluate rankings, in order to decouple the

fairness evaluation of the ranking algorithms from the evaluation of biases in preference estimates

(which are not addressed in the paper). The results are the average of three repetitions of the

experiments over different random train/valid/test splits used to generate the µij .

4.4.1.2 Fairness criteria

We remind two fairness tasks studied in the ranking literature and presented in Section 4.2.3,

and describe existing approaches proposed to address them, which we consider as baselines for

comparison with our two-sided GGF (4.3) F�,w1,w2 .

Task 1: Trade-offs between user utility and inequality between items We use the two-

sided GGF F�,w1,w2 instantiated as in Eq. (4.6), i.e., with w1 = (1, . . . , 1) and w2
j = m�j+1

m . This

corresponds to a trade-off function between the sum of user utilities and a GGF for items with the

5http://pytorch.org
6https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/isotonic.py
7https://www.last.fm/
8Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).
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Gini index weights, where the trade-off is controlled by varying � 2 (0, 1). We remind though that

unlike the standard Gini index, the GGF is un-normalized (see eq. (4.4), Sec 4.2.2).

We use three baselines for this task.

First, since the Gini index is non-differentiable, [Do et al., 2021c] proposed a differentiable

surrogate using the standard deviation (std) instead, which we refer to as eq. exposure:

F eq(P ) =

nX

i=1

ui(P )� �

m

vuuut
mX

j=1

0
@vj(P )� 1

m

mX

j0=1

vj0(P )

1
A

2

Second, Patro et al. [2020] address the trade-off of Task 1, since they compare various recom-

mendation strategies based on the utility of users and the Lorenz curves of items (see [Patro et al.,

2020, Fig. 1]), recalling that the standard Gini index is often defined as 1� 2A where A is the area

under the Lorenz curve [Yitzhaki and Schechtman, 2013]. Their fairness constraints are slightly

different though, as their algorithm FairRec9 guarantees envy-freeness for users, and a minimum

exposure of �nkbk
m for every item, where � is the user-item tradeoff parameter.

Finally, we use the additive welfare function (4.8) (refered to as welf) with the recommended

values ↵1 2 {�2, 0, 1} and ↵2 = 0 [Do et al., 2021c], and varying � 2 (0, 1) as third baseline. We

only report the result of ↵1 = 1 since it obtained overall better performances on this task.

Task 2: Two-sided fairness We consider trade-offs between the cumulative utility of the q

fraction of worst-off users, where q 2 {0.25, 0.5}, and inequality between items measured by the

Gini index, as in [Do et al., 2021c]. For this task, we instantiate the two-sided GGF F�,w1,w2 as

follows: the GGF for users is given by Eq. (4.7) with parameters (q,!) in {0.25, 0.5}⇥{0.25, 0.5, 1},

and the GGF for items uses the Gini index weights wj =
m�j+1

m . We generate trade-offs between

user fairness and item fairness by varying � 2 (0, 1).

The baseline approach for this task is welf, the additive welfare function (4.8), still with the

recommended values ↵1 2 {�2, 0, 1} and ↵2 = 0 and varying � 2 (0, 1). We only report the results

of ↵1 = �2 as they obtained the best performances on this task.

4.4.2 Results

We now present experiments that illustrate the effectiveness of the two-sided GGF approach on

Task 1 and 2.

For each fairness method, Pareto frontiers are generated by varying �. Since Patro et al. [2020]’s

algorithm FairRec does not scale, we compare to FairRec only on Lastfm-2k.

We optimize F�,w1,w2 using FW-smoothing with �0 = 100 and T = 5k for Lastfm-2k, and

�0 = 1000 and T = 50k for MovieLens. Fwelf and F eq are optimized with the Frank-Wolfe method

of [Do et al., 2021c] for T = 1k and T = 5k iterations respectively for Lastfm-2k and MovieLens.

This is the number of iterations recommended by [Do et al., 2021c], while we need more interactions

for FW-smoothing because its convergence is O( 1p
T
) rather than O( 1

T ) because of non-smoothness.

We first focus on Lastfm-2k. On Task 1, Fig. 4.1a, the GGF (red + curve) obtains the best

trade-off between total utility of users and Gini inequality between items, compared to FairRec and

eq. exposure. It fares better than eq. exposure (orange ⇥) on this task because eq. exposure reduces

inequality between items by minimizing the std of exposures, while GGF with weights w2
j = m�j+1

m

9[Patro et al., 2020] consider unordered recommendation lists with a uniform attention model. We transform
them into ordered lists using the order output by FairRec, and adapt the item-side criterion of minimal exposure to
the position-based model.
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More precisely, FW-subgradient is also equivalent to using subgradients of �gw1 and �gw2 in

Line 3 of Alg. 2, instead of rf�t(P (t)), ignoring the smoothing parameters �t. FW-subgradient is

simpler than FW-smoothing, but it is not guaranteed to converge [Nesterov, 2018]. The goal of this

section is to assess whether the smoothing is necessary in practice.

We focus on the two-sided GGF (4.6) of Task 1 on Lastfm-2k and MovieLens, using FW-

subgradient and FW-smoothing with different values of �0. Figure 4.1d depicts the objective

value as a function of the number of iterations, averaged over three seeds (the colored bands

represent the std), on Lastfm-2k. We observe that FW-subgradient (blue dotted curve) plateaus at

a suboptimum. In contrast, FW-smoothing converges (orange dotted and green dash-dot curves),

and the convergence is faster for larger �0. On MovieLens (Fig 4.1h), FW-subgradient converges to

the optimal solution, but it is still slower than FW-smoothing with �0 = 1000.

In conclusion, even though FW-subgradient reaches the optimal performance on Movielens for

this set of parameters, it is still possible that FW-subgradient plateaus at significantly suboptimal

solutions. The use of smoothing is thus not only necessary for theoretical convergence guarantees,

but also in practice. In addition, FW-smoothing has comparable computational complexity to

FW-subgradient since the computation cost is dominated by the sort operations in Alg. 2.

4.5 Reciprocal recommendation

4.5.1 Extension of the framework and algorithm

We show that our whole method for fair ranking readily applies to reciprocal recommendation tasks,

such as the recommendation of friends or dating partners, or in job search platforms.

Reciprocal recommendation framework The recommendation framework we discussed thus

far depicted “one-sided” recommendation, in the sense that only items are being recommended.

In reciprocal recommendation problems [Palomares et al., 2021], users are also items who can be

recommended to other users (the item per se is the user’s profile or CV), and they have preferences

over other users.

In this setting, n = m and µij denotes the mutual preference value between i and j (e.g., the

probability of a “match” between i and j). Following [Do et al., 2021c], we extend our previous

framework to reciprocal recommendation by introducing the two-sided utility of a user i, which

sums the utility ui(P ) derived by i from the recommendations it gets, and the utility vi(P ) from

being recommended to other users:

ui(P ) = ui(P ) + vi(P ) =
X

i,j

(µij + µji)P
|

ijb

where ui(P ) =

nX

j=1

µijP
|

ijb and vi(P ) =

nX

j=1

µijP
|

jib .

Objective and optimization The two-sided GGF objective (4.3) in reciprocal recommendation

simply becomes one GGF of two-sided utilities, and it is specified by a single weighting vector w:

max
P2P

{Fw(P ) := gw(u(P ))}. (4.11)

The choice of w controls the degree of priority to the worse-off in the user population. We show

in our experiments in Section 4.5.2 that in reciprocal recommendation too, the GGF objective can

be adequately parameterized to address existing fairness criteria.
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First, similarly to eq. exposure, to bypass the nonsmoothness of the Gini index, [Do et al., 2021c]

optimize a surrogate with std, named eq. utility:

F eq(P ) =

nX

i=1

ui(P )� �

n

vuut
nX

i=1

 
ui(P )� 1

n

nX

i0=1

ui0(P )

!2

.

Second, the welfare function welf (4.8) of [Do et al., 2021c] is used in reciprocal recommendation

as a single sum: Fwelf (P ) =
Pn

i=1 �(ui(P ),↵) where � is defined in Sec. 4.2.3. We study welf as

baseline by varying ↵, which controls the redistribution of utility in the user population.

Task 2: Trade-offs between total utility and utility of the worse-off The main task

studied by [Do et al., 2021c] with welf is to trade-off between the total utility and the cumulative

utility of the q fraction of worse-off users. For this task, we instantiate the GGF with (4.7), with

fixed quantile q = 0.25 and we vary ! to generate trade-offs between total utility and cumulative

utility of the 25% worst-off.

We compare it to the welf baseline where ↵ is varied as in [Do et al., 2021c].

4.5.2.2 Fairness trade-offs results

Results We now demonstrate that in reciprocal recommendation too, GGF is the most effective

approach in addressing existing fairness criteria. We optimize the GGF Fw(P ) using FW-smoothing

with �0 = 10 for T = 50k iterations, and optimize Fwelf and F eq using Frank-Wolfe for T = 5k

iterations.

Figure 4.2 depicts the trade-offs obtained by the competing approaches on the fairness tasks 1

and 2, on the Twitter dataset. Fig. 4.2a illustrates the superiority of GGF (green ⇤) on Task 1,

despite good performance of the baselines eq. utility (orange ⇥) and welf (blue �). As in one-sided

recommendation with eq. exposure, the reason why eq. utility achieves slightly worse trade-offs on

this fairness task is because it minimizes the std as a surrogate to the Gini index, instead of the

Gini index itself as GGF does. For Task 2, on Fig.4.2b, we observe that GGF with parameterization

(4.7) (green ⇤) is the most effective. This is because unlike the welf approach (blue �) of Do et al.

[2021c] who address this fairness task, this form of GGF is exactly designed to optimize for utility

quantiles.

4.6 Related work

Algorithmic fairness Fairness in ranking and recommendation systems is an active area of

research. Since recommender systems involve multiple stakeholders [Burke, 2017, Abdollahpouri

et al., 2020], fairness has been considered from the perspective of both users and item producers.

On the user side, a common goal is to prevent disparities in recommendation performance across

sensitive groups of users [Mehrotra et al., 2017, Ekstrand et al., 2018]. On the item side, authors

aim to prevent winner-take-all effects [Abdollahpouri et al., 2019b] by redistributing exposure across

groups of producers, either towards equal exposure, or equal ratios of exposure to relevance [Singh

and Joachims, 2018, Biega et al., 2018, Diaz et al., 2020, Kletti et al., 2022a], sometimes measured

by the classical Gini index [Morik et al., 2020, Wilkie and Azzopardi, 2014].

Some authors consider fairness for both users and items, often by applying existing user or

item criteria simultaneously to both sides, such as [Basu et al., 2020, Wu et al., 2021b, Wang

and Joachims, 2021]. [Patro et al., 2020, Do et al., 2022a] instead discuss two-sided fairness with
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envy-freeness as user-side criterion, while [Deldjoo et al., 2021] propose to use generalized cross

entropy to measure unfairness among sensitive groups of users and items. [Wu et al., 2021a] recently

considered two-sided fairness in recommendation as a multi-objective problem, where each objective

corresponds to a different fairness notion, either for users or items. Similarly, Mehrotra et al. [2020]

aggregate multiple recommendation objectives using a GGF, in a contextual bandit setting. In

their case, the aggregated objectives represent various metrics (e.g., clicks, dwell time) for various

stakeholders. Unlike these two works [Wu et al., 2021a, Mehrotra et al., 2020], in our case the

multiple objectives are the individual utilities of each user and item, and our goal is to be fair

towards each entity by redistributing utility. To our knowledge, we are the first to use GGFs as

welfare functions of users’ and items’ utilities for two-sided fairness in rankings.

Reciprocal recommender systems received comparatively less attention in the fairness literature,

to the exception of [Jia et al., 2018, Xia et al., 2015, Paraschakis and Nilsson, 2020]. The closest to

our work is the additive welfare approach of [Do et al., 2021c], which addresses fairness in both

one-sided and reciprocal recommendation, and is extensively discussed in the paper, see Sec. 4.2.1.

In the broader fair machine learning community, several authors advocated for economic concepts

[Finocchiaro et al., 2020], using inequality indices to quantify and mitigate unfairness [?Speicher

et al., 2018, Heidari et al., 2018, Lazovich et al., 2022], taking an axiomatic perspective [Gölz et al.,

2019, Cousins, 2021, Williamson and Menon, 2019] or applying welfare economics principles [Hu and

Chen, 2020, Rambachan et al., 2020]. GGFs, in particular, were recently applied to fair multi-agent

reinforcement learning, with multiple reward functions [Busa-Fekete et al., 2017, Siddique et al.,

2020, Zimmer et al., 2021]. These works consider sequential decision-making problems without

ranking, and their GGFs aggregate the objectives of a few agents (typically n < 20), while in our

ranking problem, there are as many objectives as there are users and items.

Nonsmooth convex optimization and differentiable ranking Our work builds on nons-

mooth convex optimization methods [Nesterov, 2005, Shamir and Zhang, 2013], and in particular

variants of the Frank-Wolfe algorithm [Frank and Wolfe, 1956, Jaggi, 2013] for nonsmooth problems

[Lan, 2013, Yurtsever et al., 2018, Ravi et al., 2019, Thekumparampil et al., 2020a]. The recent

algorithm of [Thekumparampil et al., 2020a] is a Frank-Wolfe variant which uses the Moreau

envelope like us. Its number of first-order calls is optimal, but this is at the cost of a more complex

algorithm with inner loops that make it slow in practice. In our case, since the calculation of the

gradient is not a bottleneck, we use the simpler algorithm of Lan [2013], which applies Frank-Wolfe

to the Moreau envelope of the nonsmooth objective.

Our technical contribution is also related to the literature on differentiable ranking, which

includes a large body of work on approximating learning-to-rank metrics [Chapelle and Wu, 2010,

Taylor et al., 2008, Adams and Zemel, 2011], and recent growing interest in designing smooth

ranking modules [Grover et al., 2019, Cuturi et al., 2019, Blondel et al., 2020] for end-to-end

differentiation pipelines. The closest method to ours is the differentiable sorting operator of Blondel

et al. [2020], which also relies on isotonic regression. The differences between our approaches are

explained in Remark 1.

4.7 Conclusion

We proposed generalized Gini welfare functions as a flexible method to produce fair rankings.

We addressed the challenges of optimizing these welfare functions by leveraging Frank-Wolfe

methods for nonsmooth objectives, and demonstrated their efficiency in ranking applications.
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Our framework and algorithm applies to both usual recommendation of movies or music, and to

reciprocal recommendation scenarios, such as dating or hiring.

Generalized Gini welfare functions successfully address a large variety of fairness requirements

for ranking algorithms. On the one hand, GGFs are effective in reducing inequalities, since they

generalize the Gini index in economics. Optimizing them allows to meet the requirements of equal

utility criteria, largely advocated by existing work on fair recommendation [Singh and Joachims,

2018, Basu et al., 2020, Patro et al., 2020, Wu et al., 2021b]. On the other hand, GGFs effectively

increase the utility of the worse-off, which is usually measured by quantile ratios in economics, and

has been recently considered as a fairness criterion in ranking [Do et al., 2021c].

Our approach is limited to fairness considerations at the stage of inference. It does not address

potential biases arising at other parts of the recommendation pipeline, such as in the estimation

of preferences. Moreover, we considered a static model, which does not accounts for real-world

dynamics, such as responsiveness in two-sided markets [Su et al., 2021], feedback loops in the

learning process [Bottou et al., 2013], and the changing nature of the users’ and items’ populations

[Morik et al., 2020] and preferences [Kalimeris et al., 2021]. Addressing these limitations, in

combination with our method, are interesting directions for future research.
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Fair ranking in the contextual bandit

setting
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This chapter is the article Contextual bandits with concave rewards, and an application to fair

ranking, published at ICLR 2023 (see [Do et al., 2023]). In this chapter, we address fair ranking in the

contextual bandit setting, which we first described in Section 1.4.1 of Chapter 1. In the contextual

bandit setting, rankings are computed one at a time as the users request recommendations, and

user preferences are learned online through sequential interactions. This setting is more practical

than the batch setting, since it is more efficient to compute the ranking of the current user, instead

of all the users in a large batch, as in the previous chapters.

In this paper, we address a more generic contextual bandit problem with multiple rewards,

where the trade-off between the rewards is defined by a known concave function f . This bandit

problem, called Contextual Bandits with Concave Rewards (cbcr), encompasses our fair ranking

problem, but also the optimization of multiple metrics on online platforms. Our work provides the

first general solution to cbcr that does not impose restrictions on the policy space. This was made

possible through a novel use of theoretical analyses of Frank-Wolfe algorithms, which allowed us

to prove a reduction to scalar-reward contextual bandits. Motivated by fairness in rankings, we

show how cbcr applies to fairness-aware objectives for ranking in Section 5.4, and derive the first

algorithm with regret guarantees for fair ranking in the contextual bandit setting.

In the application of cbcr to fair ranking (Section 5.4), we solely focus on ranking objectives

with item-side fairness, while the previous chapters addressed two-sided fairness. More precisely,

we only consider trade-offs between item-side fairness and average user utility, which is the average

73



Chapter 5. Fair ranking in the contextual bandit setting

of user rewards over contexts. Addressing user-side fairness would require explicitly encoding user

identifiers in the context vector xt and keeping track of user activity. This would require a lot

of additional formalism just for the fair ranking application, at the cost of clarity for the rest of

the paper which core matter is our solution to the general cbcr problem. For insights on how

to integrate user fairness in an online setting, we refer to [Usunier et al., 2022] which addresses

two-sided fairness in online ranking, without learning.

Abstract

We consider contextual bandits with concave rewards (cbcr), a multi-objective bandit problem

where the desired trade-off between the rewards is defined by a known concave objective function,

and the reward vector depends on an observed stochastic context. We present the first algorithm

with provably vanishing regret for cbcr without restrictions on the policy space, whereas prior

works were restricted to finite policy spaces or tabular representations. Our solution is based

on a geometric interpretation of cbcr algorithms as optimization algorithms over the convex

set of expected rewards spanned by all stochastic policies. Building on Frank-Wolfe analyses in

constrained convex optimization, we derive a novel reduction from the cbcr regret to the regret of

a scalar-reward bandit problem. We illustrate how to apply the reduction off-the-shelf to obtain

algorithms for cbcr with both linear and general reward functions, in the case of non-combinatorial

actions. Motivated by fairness in recommendation, we describe a special case of cbcr with rankings

and fairness-aware objectives, leading to the first algorithm with regret guarantees for contextual

combinatorial bandits with fairness of exposure.

5.1 Introduction

Contextual bandits are a popular paradigm for online recommender systems that learn to generate

personalized recommendations from user feedback. These algorithms have been mostly developed

to maximize a single scalar reward which measures recommendation performance for users. Recent

fairness concerns have shifted the focus towards item producers whom are also impacted by the

exposure they receive [Biega et al., 2018, Geyik et al., 2019], leading to optimize trade-offs between

recommendation performance for users and fairness of exposure for items [Singh and Joachims,

2019, Zehlike and Castillo, 2020]. More generally, there is an increasing pressure to insist on the

multi-objective nature of recommender systems [Vamplew et al., 2018, Stray et al., 2021], which

need to optimize for several engagement metrics and account for multiple stakeholders’ interests

[Mehrotra et al., 2020, Abdollahpouri et al., 2019a]. In this paper, we focus on the problem of

contextual bandits with multiple rewards, where the desired trade-off between the rewards is defined

by a known concave objective function, which we refer to as contextual bandits with concave

rewards (cbcr). Concave rewards are particularly relevant to fair recommendation, where several

objectives can be expressed as (known) concave functions of the (unknown) utilities of users and

items [Do et al., 2021c].

Our cbcr problem is an extension of bandits with concave rewards (bcr) [Agrawal and

Devanur, 2014] where the vector of multiple rewards depends on an observed stochastic context. We

address this extension because contexts are necessary to model the user/item features required for

personalized recommendation. Compared to bcr, the main challenge of cbcr is that optimal policies

depend on the entire distribution of contexts and rewards. In bcr, optimal policies are distributions

over actions, and are found by direct optimization in policy space [Agrawal and Devanur, 2014,
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Berthet and Perchet, 2017]. In cbcr, stationary policies are mappings from a continuous context

space to distributions over actions. This makes existing bcr approaches inapplicable to cbcr

because the policy space is not amenable to tractable optimization without further assumptions or

restrictions. As a matter of fact, the only prior theoretical work on cbcr is restricted to a finite

policy set [Agrawal et al., 2016].

We present the first algorithms with provably vanishing regret for cbcr without restriction on

the policy space. Our main theoretical result is a reduction where the cbcr regret of an algorithm

is bounded by its regret on a proxy bandit task with single (scalar) reward. This reduction shows

that it is straightforward to turn any contextual (scalar reward) bandits into algorithms for cbcr.

We prove this reduction by first re-parameterizing cbcr as an optimization problem in the space of

feasible rewards, and then revealing connections between Frank-Wolfe (FW) optimization in reward

space and a decision problem in action space. This bypasses the challenges of optimization in policy

space.

To illustrate how to apply the reduction, we provide two example algorithms for cbcr with

non-combinatorial actions, one for linear rewards based on LinUCB [Abbasi-Yadkori et al., 2011],

and one for general reward functions based on the SquareCB algorithm [Foster and Rakhlin, 2020]

which uses online regression oracles. In particular, we highlight that our reduction can be used

together with any exploration/exploitation principle, while previous FW approaches to bcr relied

exclusively on upper confidence bounds [Agrawal and Devanur, 2014, Berthet and Perchet, 2017,

Cheung, 2019].

Since fairness of exposure is our main motivation for cbcr, we show how our reduction also

applies to the combinatorial task of fair ranking with contextual bandits, leading to the first

algorithm with regret guarantees for this problem, and we show it is computationally efficient. We

compare the empirical performance of our algorithm to relevant baselines on a music recommendation

task.

Related work. Agrawal et al. [2016] address a restriction of cbcr to a finite set of policies,

where explicit search is possible. Cheung [2019] use FW for reinforcement learning with concave

rewards, a similar problem to cbcr. However, they rely on a tabular setting where there are few

enough policies to compute them explicitly. Our approach is the only one to apply to cbcr without

restriction on the policy space, by removing the need for explicit representation and search of

optimal policies.

Our work is also related to fairness of exposure in bandits. Most previous works on this topic

either do not consider rankings [Celis et al., 2018b, Wang et al., 2021a, Patil et al., 2020, Chen et al.,

2020], or apply to combinatorial bandits without contexts [Xu et al., 2021]. Both these restrictions

are impractical for recommender systems. Mansoury et al. [2021a], Jeunen and Goethals [2021]

propose heuristics with experimental support that apply to both ranking and contexts in this space,

but they lack theoretical guarantees. We present the first algorithm with regret guarantees for fair

ranking with contextual bandits. We provide a more detailed discussion of the related work in

Appendix B.1.

5.2 Maximization of concave rewards in contextual bandits

Notation. For any n 2 N, we denote by JnK = {1, . . . , n}. The dot product of two vectors x and

y in R
n is either denoted x|y or using braket notation hx | yi, depending on which one is more

readable.

Setting. We define a stochastic contextual bandit [Langford and Zhang, 2007] problem with

D rewards. At each time step t, the environment draws a context xt ⇠ P , where x 2 X ✓ R
q
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and P is a probability measure over X . The learner chooses an action at 2 A where A ✓ R
K

is the action space, and receives a noisy multi-dimensional reward rt 2 R
D, with expectation

E[rt|xt, at] = µ(xt)at, where µ : X ! R
D⇥K is the matrix-value contextual expected reward

function.1 The trade-off between the D cumulative rewards is specified by a known concave function

f : RD ! R [ {±1}. Let A denote the convex hull of A and ⇡ : X ! A be a stationary policy,2

then the optimal value for the problem is defined as f⇤ = sup⇡:X!A f
⇣
Ex⇠P

⇥
µ(x)⇡(x)

⇤⌘
.

We rely on either of the following assumptions on f :

Assumption A. f is closed proper concave3 on R
D and A is a compact subset of RK . Moreover,

there is a compact convex set K ✓ R
D such that

• (Bounded rewards) 8(x, a) 2 X ⇥A, µ(x)a 2 K and for all t 2 N⇤, rt 2 K with probability 1.

• (Local Lipschitzness) f is L-Lipschitz continuous with respect to k.k2 on an open set containing

K.

Assumption B. Assumption A holds and f has C-Lipschitz-continuous gradients w.r.t. k.k2 on

K.

The most general version of our algorithm, described in Appendix B.4, removes the need for the

smoothness assumption using smoothing techniques. We describe an example in Section 5.3.3. In

the rest of the paper, we denote by DK = sup
z,z02K

kz � z0k2 the diameter of K, and use C̃ = C
2 D

2
K.

We now give two examples of this problem setting, motivated by real-world applications in

recommender systems, and which satisfy Assumption A.

Example 3 (Optimizing multiple metrics in recommender systems.). Mehrotra et al. [2020]

formalized the problem of optimizing D engagement metrics (e.g. clicks, streaming time) in a

bandit-based recommender system. At each t, xt represents the current user’s features. The system

chooses one arm among K, represented by a vector at in the canonical basis of RK which is the

action space A. Each entry of the observed reward vector (rt,i)
D
i=1 corresponds to a metric’s value.

The trade-off between the metrics is defined by the Generalized Gini Function: f(z) =
PD

i=1 wiz
"
i ,

where (z"i )
D
i=1 denotes the values of z sorted increasingly and w 2 R

D is a vector of non-increasing

weights.

Example 4 (Fairness of exposure in rankings.). The goal is to balance the traditional objective of

maximizing user satisfaction in recommender systems and the inequality of exposure between item

producers [Singh and Joachims, 2018, Zehlike and Castillo, 2020]. For a recommendation task with

m items to rank, this leads to a problem with D = m + 1 objectives, which correspond to the m

items’ exposures, plus the user satisfaction metric. The context xt 2 X ⇢ R
md is a matrix where

each xt,i 2 R
d represents a feature vector of item i for the current user. The action space A is

combinatorial, i.e. it is the space of rankings represented by permutation matrices:

A =
�
a 2 {0, 1}m⇥m : 8i 2 JmK,

mX

k=1

ai,k = 1 and 8k 2 JmK,

mX

i=1

ai,k = 1
 

(5.1)

For a 2 A, ai,k = 1 if item i is at rank k. Even though we use a double-index notation and call a a

permutation matrix, we flatten a as a vector of dimension K = m2 for consistency of notation.

1Notice that linear structure between µ(xt) and at is standard in combinatorial bandits [Cesa-Bianchi and Lugosi,
2012] and it reduces to the usual multi-armed bandit setting when A is the canonical basis of RK .

2In the multi-armed setting, stationary policies return a distribution over arms given a context vector. In the
combinatorial setup, π(x) 2 A is the average feature vector of a stochastic policy over A. For the benchmark, we are
only interested in expected rewards so there is to need to specify the full distribution over A.

3This means that f is concave and upper semi-continuous, is never equal to +1 and is finite somewhere.
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We now give a concrete example for f , which is concave as usual for objective functions in

fairness of exposure [Do et al., 2021c]. It is inspired by Morik et al. [2020], who study trade-offs

between average user utility and inequality4 of item exposure:

f(z) = zm+1| {z }
user utility

�� 1

2m

mX

i=1

mX

j=1

|zi � zj |

| {z }
inequality of item exposure

where � > 0 is a trade-off parameter. (5.2)

The learning problem. In the bandit setting, P and µ are unknown and the learner can only

interact online with the environment.Let hT =
�
xt, at, rt

�
t2JT�1K

be the history of contexts, actions,

and reward observed up to time T � 1 and �0 > 0 be a confidence level, then at step t a bandit

algorithm A receives in input the history ht, the current context xt, and it returns a distribution

over actions A and selects an action at ⇠ A(ht, xt, �
0). The objective of the algorithm is to minimize

the regret

RT = f⇤ � f(ŝT ) where ŝT =
1

T

TX

t=1

rt.

Note that our setting subsumes classical stochastic contextual bandits: when D = 1 and f(z) =

z, maximizing f(ŝT ) amounts to maximizing a cumulative scalar reward
PT

t=1 rt. In Lem. 32

(App. B.3.3), we show that alternative definitions of regret, with different choices of comparator

or performance measure, would yield a difference of order O(1/
p
T ), and hence not substantially

change our results.

5.3 A general reduction-based approach for cbcr

In this section we describe our general approach for cbcr. We first derive our key reduction from

cbcr to a specific scalar-reward bandit problem. We then instantiate our algorithm to the case

of linear and general reward functions for smooth objectives f . Finally, we extend to the case of

non-smooth objective functions using Moreau-Yosida regularization [Rockafellar and Wets, 2009].

5.3.1 Reduction from cbcr to scalar-reward contextual bandits

There are two challenges in the cbcr problem: 1) the computation of the optimal policy

sup
⇡:X!A

f
⇣
Ex⇠P

⇥
µ(x)⇡(x)

⇤⌘
even with known µ; 2) the learning problem when µ is unknown.

1: Reparameterization of the optimization problem. The first challenge is that optimiz-

ing directly in policy space for the benchmark problem sup⇡:X!A f
⇣
Ex⇠P

⇥
µ(x)⇡(x)

⇤⌘
is intractable

without any restriction, because the policy space includes all mappings from the continuous context

space X to distributions over actions. Our solution is to rewrite the optimization problem as a

standard convex constrained problem by introducing the convex set S of feasible rewards:

S =

⇢
Ex⇠P

⇥
µ(x)⇡(x)

⇤����⇡ : X ! A

�
so that f⇤ = sup

⇡:X!A

f
⇣
Ex⇠P

⇥
µ(x)⇡(x)

⇤⌘
= max

s2S
f(s).

Under Assumption A, S is a compact subset of K (see Lemma 30 in App. B.3) so f attains its

maximum over S. We have thus reduced the complex initial optimization problem to a concave

optimization problem over a compact convex set.

4Gini(z1, . . . , zm) = 1
2m

Pm
i=1

Pm
j=1 |zi � zj | is an unnormalized Gini coefficient.
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2: Reducing the learning problem to scalar-reward bandits. Unfortunately, since P

and µ are unknown, the set S is unknown. This precludes the possibility of directly using standard

constrained optimization techniques, including gradient descent with projections onto S. We consider

Frank-Wolfe, a projection-free optimization method robust to approximate gradients [Lacoste-Julien

et al., 2013, Kerdreux et al., 2018]. At each iteration t of FW, the update direction is given by the

linear subproblem: argmaxs2Shrf(zt�1) | si, where zt�1 is the current iterate. Our main technical

tool, Lemma 12, allows to connect the FW subproblem in the unknown reward space S to a workable

decision problem in the action space (see Lemma 36 in Appendix B.5 for a proof):

Lemma 12. Let Et

⇥
.
⇤

be the expectation conditional on ht. Let zt 2 K be a function of contexts,

actions and rewards up to time t. Under Assumption A, we have:

8t 2 N⇤,Et

⇥
max
a2A
hrf(zt�1) |µ(xt)ai

⇤
= max

s2S
hrf(zt�1) | si.

For all � 2 (0, 1], with probability at least 1� �, we have:

TX

t=1

⇣
max
s2S
hrf(zt�1) | si �max

a2A
hrf(zt�1) |µ(xt)ai

⌘
 LDK

p
2T ln(��1).

Lemma 12 shows that FW for cbcr operates closely to a sequence of decision problems of the

form (maxa2Ahrf(zt�1) |µ(xt)ai)Tt=1. However, we have yet to address the problem that P and

µ are unknown. To solve this issue, we introduce a reduction to scalar-reward contextual

bandits. We can notice that solving for the sequence of actions maximizing
PT

t=1hrf(zt�1) |µ(xt)ai
corresponds to solving a contextual bandit problem with adversarial contexts and stochastic rewards.

Formally, using zt = ŝt
5, we define the extended context x̃t = (rf(ŝt�1), xt), the average scalar

reward µ̃(x̃t) = rf(ŝt�1)
|µ(xt) and the observed scalar reward r̃t = hrf(ŝt�1) | rti. This fully

defines a contextual bandit problem with scalar reward. Then, the objective of the algorithm is to

minimize the following scalar regret :

Rscal
T =

TX

t=1

max
a2A

µ̃(x̃t)
|a�

TX

t=1

r̃t =
TX

t=1

max
a2A
hrf(ŝt�1) |µ(xt)ai �

TX

t=1

hrf(ŝt�1) | rti. (5.3)

In this framework, the only information observed by the learning algorithm is h̃t :=
�
x̃t0 , at0 , r̃t0

�
t02Jt�1K

.

This regret minimization problem has been extensively studied [see e.g., Slivkins, 2019, Chap. 8

for an overview]. The following key reduction result6 relates Rscal
T to RT , the regret of the original

cbcr problem:

Theorem 13. Under Assmpt. B, for every T 2 N⇤ and � > 0, algorithm A satisfies, with prob.

� 1� �:

RT = f⇤ � f(ŝT ) 
Rscal

T + LDK

p
2T ln(1/�) + C̃ ln(eT )

T
.

The reduction shown in Thm. 13 hints us at how to use or adapt scalar bandit algorithms

for cbcr. In particular, any algorithm with sublinear regret will lead to a vanishing regret for

cbcr. Since the worst-case regret of contextual bandits is Ω(
p
T ) [Dani et al., 2008], we obtain

5For simplicity, we presented our reduction with zt = ŝt but other choices of zt are possible (see Appendix B.4).
The important point is that the reduction works without restricting zt to S.

6In practice, this result is used in conjunction with an upper bound R
scal

(T, δ0) on Rscal
T

that holds with probability

� 1 � δ0, which gives RT  R
scal

(T, δ0)/T + O(
p

ln(1/δ)/T ) with probability at least 1 � δ � δ0 using the union
bound.
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near minimax optimal algorithms for cbcr. We illustrate this with two algorithms derived from

our reduction in Sec. 5.3.2.

Proof sketch of Theorem 13: cbcr and Frank-Wolfe algorithms (full proof in Appendix B.5). Although

the set S is not known, the standard telescoping sum argument for the analysis of Frank-Wolfe

algorithms (see Lemma 37 in Appendix B.5, and e.g., [Berthet and Perchet, 2017, Lemma 12] for

similar derivations) gives that under Assumption B, denoting gt = rf(ŝt�1):

TRT 
TX

t=1

max
s2S
hgt | s� rti+ C̃ ln(eT ).

The result is true for every sequence (rt)t2JT K 2 KT , and only tracks the trajectory of ŝt in

reward space. We introduce now the reference of the scalar regret:

TRT =

TX

t=1

�
max
s2S
hgt | si �max

a2A
hgt |µ(xt)ai

�
+

TX

t=1

max
a2A
hgt |µ(xt)a� rti

| {z }
=Rscal

T

+C̃ ln(eT ) (5.4)

Lemma 12 bounds the leftmost term, from which Theorem 13 immediately follows using (5.4).

5.3.2 Practical application: Two algorithms for multi-armed cbcr

To illustrate the effectiveness of the reduction from cbcr to scalar-reward bandits, we focus on

the case where the action space A is the canonical basis of RK (as in Example 3). We first study

the case of linear rewards. Then, for general reward functions, we introduce the FW-SquareCB

algorithm, the first example of a FW-based approach combined with an exploration principle other

than optimism. This shows our approach has a much broader applicability to solve (c)bcr than

previous strategies.

From LinUCB to FW-LinUCB (details in Appendix B.7). We consider a cbcr with

linear reward function, i.e., µ(x) = ✓x where ✓ 2 R
D⇥d (recall we have D rewards) and x 2 R

d⇥K ,

where d is the number of features. Let ✓̃ := flatten(✓) and gt = rf(ŝt�1). Using [.; .] to denote

the vertical concatenation of matrices, the expected reward for action a in context x at time t can

be written hgt |µ(x)ai = g|t ✓xa = h✓̃ | x̃tai where x̃t 2 R
Dd⇥K is the extended context with entries

x̃t = [gt,0xt; . . . ; gt,Dxt] 2 R
Dd⇥K . This is an instance of a linear bandit problem, where at each

time t, action a is associated to the vector x̃ta and its expected reward is h✓̃ | x̃tai. As a result, we

can immediately derive a LinUCB-based algorithm for linear cbcr by leveraging the equivalence

FW-LinUCB(ht, xt, �
0) = LinUCB(h̃t, x̃t, �

0) . LinUCB’s regret guarantees imply Rscal
T = O(d

p
T )

with high probability, which, in turn give a O(1/
p
T ) for RT .

From SquareCB to FW-SquareCB (details in Appendix B.8). We now consider a cbcr

with general reward function µ(x). The SquareCB algorithm [Foster and Rakhlin, 2020] is a

randomized exploration strategy that delegates the learning of rewards to an arbitrary online

regression algorithm. The scalar regret of SquareCB is bounded depending on the regret of the

base regression algorithm.

For FW-SquareCB, we have access to an online regression oracle µ̂t, an estimate of µ which is a

function of ht, which has regression regret bounded by Roracle(T ). The exploration strategy of FW-

SquareCB follows the same principles as SquareCB: let gt = rf(ŝt�1) and denote µ̂
t
= g|t µ̂t(xt),
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Table 5.1: Regret bounds depending on assumptions and base algorithm A, for multi-armed bandits
with K arms (in dimension d for LinUCB). See Appendix B.7 and B.8 for the full details.

Algorithm
(FW-<bandit>)

Assumptions
(informal)

Bound on RT

(simplified, using δ0 = δ)

FW-LinUCB µ(x)a = θxa for θ 2 R
D⇥d, x 2 R

d⇥K
LDKdD ln

�

(1 + TLDK
dD

)/δ
�

p
T

FW-SquareCB
T
X

t=1

k[k
⇤

µ̂t(xt)at � µ(xt)at
2
2  Roracle(T )

L
q

K
�

Roracle(T ) +D2
K ln(T/δ)

�

p
T

so that µ̂|

t
a = hgt | µ̂t(xt)ai. Let At = FW-SquareCB(ht, xt, �

0) defined as

8a 2 A,At(a) =

8
><
>:

1

K+�t

�
µ̂⇤

t
�µ̂|

t
a
� if a 6= at

1�P
a2A
a 6=at

At(a) if a = at

where at 2 argmax
a2A

µ̂|

t
a and µ̂⇤

t
= µ̂

t
at

Then FW-SquareCB has RT in O(
p
Roracle(T )/

p
T ) with high probability.

5.3.3 The case of nonsmooth f

When f is nonsmooth, we use a smoothing technique where the scalar regret is not measured using

rf(ŝt�1), but rather using gradients of a sequence (ft)t2N of smooth approximations of f , whose

smoothness decrease over time [see e.g., Lan, 2013, for applications of smoothing to FW ]. We

provide a comprehensive treatment of smoothing in our general approach described in Appendix

B.4, while specific smoothing techniques are discussed in Appendix B.6.

We now describe the use of Moreau-Yosida regularization [Rockafellar and Wets, 2009, Def.

1.22]: ft(z) = maxy2RD

⇣
f(y)�

p
t+1
2�0
ky � zk22

⌘
. It is well-known that ft is concave and L-Lipschitz

whenever f is, and ft is
p
t+1
�0

-smooth (see Lemma 38 in Appendix B.6). A related smoothing

method was used by Agrawal and Devanur [2014] for (non-contextual) bcr. Our treatment of

smoothing is more systematic than theirs, since we use a smoothing factor �0/
p
t+ 1 that decreases

over time rather than a fixed smoothing factor that depends on a pre-specified horizon. Our regret

bound for cbcr is based on a scalar regret Rscal,sm
T where rft�1(ŝt�1) is used instead of rf(ŝt�1):

Rscal,sm
T =

TX

t=1

max
a2A
hrft�1(ŝt�1) |µ(xt)ai �

TX

t=1

hrft�1(ŝt�1) | rti.

Theorem 14. Under Assumptions A, for every z0 2 K, every T � 1 and every � > 0, �0 > 0,

Algorithm A satisfies, with probability at least 1� � � �0:

RT 
Rscal,sm

T

T
+

LDKp
T

⇣DK

L�0
+ 3

L�0
DK

+

r
2 ln

1

�

⌘
.

The proof is given in Appendix B.6. Taking �0 = DK

L leads to a simpler bound where
DK

L�0
+ 3L�0

DK
= 4.
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Algorithm 3: FW-LinUCBRank: linear contextual bandits for fair ranking.

input : �0 > 0,� > 0, ŝ0 2 K V0 = �Id, y0 = 0d, ✓̂0 = 0d

1 for t = 1, . . . do
2 Observe context xt ⇠ P

3 8i, v̂t,i  ✓̂
|

t�1xt,i + ↵t

�
�0

3

�
kxt,ikV �1

t�1
// UCB on vi(xt) (def. of ↵t in Lem. 49, App. B.9)

4 at  top-k{ @f
@zm+1

(ŝt�1)v̂t,i +
@f
@zi

(ŝt�1)}
m
i=1 // FW linear optimization step

5 Observe exposed items et 2 {0, 1}m and user feedback ct 2 {0, 1}m

6 Update ŝt  ŝt�1 +
1
t (rt � ŝt�1)

7 Vt  Vt�1 +

mX

i=1

et,ixt,ix
|

t,i, yt  yt�1 +

mX

i=1

ct,ixt,i and ✓̂t  V �1
t yt // regression

8 end

5.4 Contextual ranking bandits with fairness of exposure

In this section, we apply our reduction to the combinatorial bandit task of fair ranking, and obtain

the first algorithm with regret guarantees in the contextual setting. This task is described in

Example 4 (Sec. 5.2). We remind that there is a fixed set of m items to rank at each timestep t,

and that actions are flattened permutation matrices (A is defined in Ex. 4, Eq. (5.1)). The context

xt ⇠ P is a matrix xt = (xt,i)i2JmK where each xt,i 2 R
d represents a feature vector of item i for

the current user.

Observation model. The user utility u(xt) is given by a position-based model with position

weights b(xt) 2 [0, 1]m and expected value for each item v(xt) 2 [0, 1]m. Denoting u(xt) the flattened

version of v(xt)b(xt)
| 2 R

m⇥m, the user utility is [Lagrée et al., 2016, Singh and Joachims, 2018]:

hu(xt) | ai =
mX

i=1

vi(xt)

mX

k=1

ai,kbk(xt).

In this model, bk(xt) 2 [0, 1] is the probability that the user observes the item at rank k. The

quantity
Pm

k=1 ai,kbk(xt) is thus the probability that the user observes item i given ranking a. We

denote k = maxx2X kb(x)k0  m the maximum rank that can be exposed to any user. In most

practical applications, k ⌧ m. As formalized in Assumption D below, the position weights bk(x)

are always non-increasing with k since the user browses the recommended items in order of their

rank. We use a linear assumption for item values, where DX and D✓ are known constants:

Assumption C. sup
x2X
kxk2  DX and 9✓ 2 R

d, k✓k2  D✓ s.t. 8x 2 X , 8i 2 JmK, vi(x) = ✓|xi.

We propose an observation model where values vi(x) and position weights b(x) are unknown.

However, we assume that at each time step t, after computing the ranking at, we have two types of

feedback: first, et,i 2 {0, 1} is 1 if item i has been exposed to the user, and 0 otherwise. Second

ct,i 2 {0, 1} which represents a binary like/dislike feedback from the user. We have

E[et,i
��xt, at

⇤
=

mX

k=1

a
t,i,kbk(xt) E

⇥
ct,i|xt, et,i] =

8
<
:
vi(xt) if et,i = 1

0 if et,i = 0

This observation model captures well applications such as newsfeed ranking on mobile devices

or dating applications where only one post/profile is shown at a time. What we gain with this

model is that b(x) can depend arbitrarily on the context x, while previous work on bandits in the

position-based model assumes b known and context-independent [Lagrée et al., 2016].7

7When b is unknown, depends on the context x, and we do not observe et, several approaches have been proposed
to estimate the position weights [see e.g., Fang et al., 2019]. Incorporating these approaches in contextual bandits for
ranking is likely feasible but out of the scope of this work.
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Fairness of exposure. There are D = m+1 rewards, i.e., µ(x) 2 R
(m+1)⇥m2

. Denoting µi(x)

the ith-row of µ(x), seen as a column vector, each of the m first rewards is the exposure of a specific

item, while the m+ 1-th reward is the user utility:

8i 2 JmK, hµi(x) | ai =
mX

k=1

ai,kbk(x) and µm+1(x) = u(x)

The observed reward vector rt 2 R
D is defined by 8i 2 JmK, rt,i = et,i and rt,m+1 =

Pm
i=1 ct,i. Notice

that E
⇥
rt,m+1

��xt

⇤
= u(xt). Let K be the convex hull of {z 2 {0, 1}m+1 :

Pm
i=1 zi  k and zm+1 

Pm
i=1 zi},

we have DK 
p
k
p
k + 2  k+1 and rt 2 K with probability 1. The objective function f : RD ! R

makes a trade-off between average user utility and inequalities in item exposure (we gave an example

in Eq. (5.2)). The remaining assumptions of our framework are that the objective function is

non-decreasing with respect to average user utility. This is not required but it is natural (see

Example 4) and slightly simplifies the algorithm.

Assumption D. The assumptions of the framework described above hold, as well as Assumption

B. Moreover, 8z 2 K @f
@zm+1

(z) > 0, and 8x 2 X , 1 � b1(x) � . . . � bk(x) = . . . = bm(x) = 0.

Algorithm and results. We present the algorithm in the setting of linear contextual bandits,

using LinUCB [Abbasi-Yadkori et al., 2011, Li et al., 2010] as scalar exploration/exploitation

algorithm in Algorithm 3. It builds reward estimates based on Ridge regression with regularization

parameter �. As in the previous section, we focus on the case where f is smooth but the extension

to nonsmooth f is straightforward, as described in Section 5.3. Appendix B.9 provides the analysis

for the general case.

As noted by Do et al. [2021c], Frank-Wolfe algorithms are particularly suited for fair ranking in

the position-based model. This is illustrated by line 4 of Alg. 3, where for ũ 2 R
m, top-k(ũ) outputs

a permutation (matrix) of JmK that sorts the top-k elements of ũ. Alg. 3 is thus computationally

fast, with a cost dominated by the top-k sort. It also has an intuitive interpretation as giving items

an adaptive bonus depending on rf (e.g., boosting the scores of items which received low exposure

in previous steps). The following result is a consequence of [Do et al., 2021c, Theorem 1]:

Proposition 15. Let t 2 N⇤ and µ̂t such that 8i 2 JmK, µ̂t,i = µi(xt) and µ̂t,m+1 = v̂tb(xt)
| viewed

as a column vector, with v̂ defined in line 3 of Algorithm 3. Then, under Assumption D, at defined

on line 4 of Algorithm 3 satisfies: hrf(ŝt�1) | µ̂tati = argmax
a2A

hrf(ŝt�1) | µ̂tai.

The proposition says that even though computing at as in line 4 of Alg. 3 does not require

the knowledge of b(xt), we still obtain the optimal update direction according to µ̂t. Together

with the usage of the observed reward rt in FW iterates (instead of e.g., µ̂tat as would be done by

Agrawal and Devanur [2014]), this removes the need for explicit estimates of µ(xt). This is how our

algorithm works without knowing the position weights b(xt), which are then allowed to depend on

the context.

The usage of v̂t to compute at follows the usual confidence-based approach to explore/exploitation

principles for linear bandits, which leads to the following result (proven in Appendix B.9):

Theorem 16. Under Assumptions B, C and D, for every �0 > 0, every T 2 N⇤, every � � D2
Xk,

with probability at least 1� �0, Algorithm 3 has scalar regret bounded by

Rscal
T = O

✓
L
p
Tk

p
d ln(T/�0)

⇣p
d ln(T/�0) +D✓

p
�+

q
k/d

⌘◆
.

Thus, considering only d, T, k and � = �0 Alg. 3 has regret RT  O
�dk ln(T/�)p

T

�
w.p. at least 1� �.
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LinUCBRank. We refer to this baseline as Unbiased-LinUCBRank. Finally, the FairLearn(c,↵)

algorithm [Patil et al., 2020] enforces as fairness constraint that the pulling frequency of each arm

be � c, up to a tolerance ↵. We implement as third baseline a simple adaptation of FairLearn to

contextual bandits and ranking.

Dynamics. Figure 5.1 (middle) represents the values of f over time achieved by the competing

algorithms, for fixed � = 1. As expected, compared to the fairness-aware and -unaware baselines,

our algorithm FW-LinUCBRank reaches the best values of f . Interestingly, Unbiased-LinUCBRank

also obtains high values of f on the first 104 rounds, but its performance starts decreasing after

more iterations. This is because Unbiased-LinUCBRank is not guaranteed to converge to an optimal

trade-off between user fairness and item inequality.

At convergence. We analyse the trade-offs achieved after 5 · 106 rounds between user utility

and item inequality measured by the Gini index. We vary � in the objective f of Eq. (5.2) for

FW-LinUCBRank and the strength c in FairLearn(c,↵), with tolerance ↵ = 1. In Fig. 5.1 (right),

we observe that compared to FairLearn, FW-LinUCBRank converges to much higher user utility at

all levels of inequality among items. In particular, it achieves zero-unfairness at little cost for user

utility.

5.6 Conclusion

We presented the first general approach to contextual bandits with concave rewards. To illustrate

the usefulness of the approach, we show that our results extend randomized exploration with

generic online regression oracles to the concave rewards setting, and extend existing ranking bandit

algorithms to fairness-aware objective functions. The strength of our reduction is that it can

produce algorithms for cbcr from any contextual bandit algorithm, including recent extensions of

SquareCB to infinite compact action spaces [Zhu and Mineiro, 2022, Zhu et al., 2022] and future

ones.

In our main application to fair ranking, the designer sets a fairness trade-off f to optimize. In

practice, they may choose f among a small class by varying hyperparameters (e.g. � in Eq. (5.2)).

An interesting open problem is the integration of recent elicitation methods for f [e.g., Lin et al.,

2022] in the bandit setting. Another interesting issue is the generalization of our framework to

include constraints [Agrawal and Devanur, 2016]. Finally, we note that the deployment of our

algorithms requires to carefully design the whole machine learning setup, including the specification

of reward functions [Stray et al., 2021], the design of online experiments [Bird et al., 2016], while

taking feedback loops into account [Bottou et al., 2013, Jiang et al., 2019, Dean and Morgenstern,

2022].

84



Chapter 6

User fairness as envy-freeness

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Envy-free recommendations . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 ✏-envy-free recommendations . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.3 Compatibility of envy-freeness . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4 Probabilistic relaxation of envy-freeness . . . . . . . . . . . . . . . . . . 91

6.4 Certifying envy-freeness . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Auditing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2 The equivalent bandit problem . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.3 The OCEF algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.5 Full audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.1 Sources of envy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.2 Evaluation of the auditing algorithm . . . . . . . . . . . . . . . . . . . . 97

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

This chapter is the article Online certification of preference-based fairness for personalized

recommender systems, published at AAAI 2022 (see [Do et al., 2022a]).

In Chapters 3 and 4, we considered the problem of the designer of a recommender systems who

is concerned with two-sided fairness for users and items. In this chapter, we shift our focus to

auditing recommender systems and prioritizing user-side fairness. This work was inspired by the

growing concerns raised by audits for user fairness in advertising systems, such as the gender-based

disparities observed in ad delivery rates for different companies proposing similar jobs [Imana et al.,

2021, Lambrecht and Tucker, 2019, Datta et al., 2015]. Our contribution to this research is a

complement to existing audits, most of which do not control for disparities that align with user

preferences. To address this limitation, we proposed to test for the preference-based criterion of

envy-freeness, which stipulates that no user should prefer their recommendations to those of other

users. For example, in a job ad system where two users Alice and Bob are interested in taxi driver

roles [Ali et al., 2019], if Bob is the only one to receive ads for driver jobs, then the system is

deemed unfair by the envy-freeness criterion.

Envy-freeness is a fairness criterion that has roots in fair division. In the context of recommender

systems, it leads to different assessments than our previous framework which was also rooted in fair
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division, but approached fairness as redistribution of utility, following the Pigou-Dalton transfer

principle. One advantage of envy-freeness is that it avoids the challenge of interpersonal comparisons

of utilities across users, which are difficult due to the different scaling of performance metrics used

to measure user utilities (since users have different browsing or rating patterns). Comparing and

aggregating user utilities is necessary in the design of recommender systems, where practitioners

traditionally maximize measures of performance on average over users, and in the design of two-sided

fair recommender systems, where designers need to make trade-offs between users’ and items’

utilities. In contrast, interpersonal comparisons can be avoided for the auditor, who only seeks

reliable evaluations of how the system serves some users compared to others.

In the previous chapters 3 and 4, we designed ranking algorithms to improve the exposure of

small items while prioritizing the utilities of the worst-off users. These algorithms produce rankings

which are suboptimal for average user utility, since one of the main motivations of two-sided

fairness in rankings is to mitigate the winner-take-all effects of the user-side optimal rankings.

In contrast, we show that envy-freeness is compatible with providing optimal recommendations

for users. Further, our previous two-sided fair ranking algorithms may not pass the audit for

envy-freeness, as optimal ranking policies for objectives that include a concave item fairness term

are not envy-free for users in general. For example, promoting less popular employers by boosting

their ads in one user’s recommendations may lead this user to envy another user who receives

recommendations of popular employers. In contrast, our perspective in this chapter is that of an

auditor solely focused on assessing fairness for users, regardless of whether user-side unfairness is a

consequence of other objectives, such as item-side fairness.

We argue that the audit perspective is just as important as that of the designer, given the

significant role played by audits for user fairness in raising awareness about the need for fairness in

recommender systems. In fact, existing audits have led to settlements that drove online platforms

to change their ad recommendation algorithms to comply with new requirements for user fairness

[Bogen et al., 2023]. Moreover, designers can use the evaluations produced by auditors as additional

diagnoses to improve their systems. If an internal auditor detects envy in a recommender system,

then the designer can examine whether removing user envy would lead to increased inequalities

on the item side, and assess whether this trade-off is acceptable with respect to the objective set

for item fairness. In practice though, we recommend that our audit for envy-freeness be used in

applications where user-side fairness, rather than item-side fairness, is the main concern, such as in

the line of work on auditing ad delivery systems.

On the algorithmic side, the auditing problem is completely different from the designer’s problem.

We cast the audit for envy-freeness as a pure exploration bandit problem, since the goal is to

provide high-confidence envy-freeness certificates from as few samples as possibles. This is different

from Chapter 5 where the designer addresses a regret minimization problem, in order to deliver

recommendations while balancing exploration and exploitation. The auditing algorithm OCEF that

we introduce in this chapter is meant as an auditing tool, not a recommendation strategy.

We also note the following presentation differences with the previous chapters:

1. Recommendation policies are distributions over single items. We do not consider rankings.

2. We use the original notation of the article, which is different from the rest of the thesis since we

address a different problem.

3. In the formal analysis of the compatibility between envy-freeness and item-side fairness criteria in

Section 6.3.3, we consider fairness criteria within the recommendations of a single user (“within

list”), rather than across users. Moreover, compared to Chapter 3, we use the terminology “equity

of exposure” instead of “quality-weighted exposure”, and “parity of exposure” instead of “equal
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exposure”.

Abstract

Recommender systems are facing scrutiny because of their growing impact on the opportunities we

have access to. Current audits for fairness are limited to coarse-grained parity assessments at the

level of sensitive groups. We propose to audit for envy-freeness, a more granular criterion aligned

with individual preferences: every user should prefer their recommendations to those of other

users. Since auditing for envy requires to estimate the preferences of users beyond their existing

recommendations, we cast the audit as a new pure exploration problem in multi-armed bandits.

We propose a sample-efficient algorithm with theoretical guarantees that it does not deteriorate

user experience. We also study the trade-offs achieved on real-world recommendation datasets.

6.1 Introduction

Recommender systems shape the information and opportunities available to us, as they help us

prioritize content from news outlets and social networks, sort job postings, or find new people to

connect with. To prevent the risk of unfair delivery of opportunities across users, substantial work

has been done to audit recommender systems Sweeney [2013], Asplund et al. [2020], Imana et al.

[2021]. For instance, Datta et al. [2015] found that women received fewer online ads for high-paying

jobs than equally qualified men, while Imana et al. [2021] observed different delivery rates of ads

depending on gender for different companies proposing similar jobs.

The audits above aim at controlling for the possible acceptable justifications of the disparities,

such as education level in job recommendation audits. Yet, the observed disparities in recommenda-

tion do not necessarily imply that a group has a less favorable treatment: they might as well reflect

that individuals of different groups tend to prefer different items. To strengthen the conclusions of

the audits, it is necessary to develop methods that account for user preferences. Audits for equal

satisfaction between user groups follow this direction [Mehrotra et al., 2017], but they also have

limitations. For example, they require interpersonal comparisons of measures of satisfaction, a

notoriously difficult task [Sen, 1999].

We propose an alternative approach to incorporating user preferences in audits which focuses

on envy-free recommendations: the recommender system is deemed fair if each user prefers their

recommendation to those of all other users. Envy-freeness allows a system to be fair even in the

presence of disparities between groups as long as these are justified by user preferences. On the

other hand, if user B systematically receives better opportunities than user A from A’s perspective,

the system is unfair. The criterion does not require interpersonal comparisons of satisfaction, since

it relies on comparisons of different recommendations from the perspective of the same user. Similar

fairness concepts have been studied in classification tasks under the umbrella of preference-based

fairness [Zafar et al., 2017b, Kim et al., 2019, Ustun et al., 2019]. Envy-free recommendation is the

extension of these approaches to personalized recommender systems.

Compared to auditing for recommendation parity or equal satisfaction, auditing for envy-freeness

poses new challenges. First, envy-freeness requires answering counterfactual questions such as

“would user A get higher utility from the recommendations of user B than their own?”, while

searching for the users who most likely have the best recommendations from A’s perspective. This

type of question can be answered reliably only through active exploration, hence we cast it in

the framework of pure exploration bandits Bubeck et al. [2009]. To make such an exploration
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possible, we consider a scenario where the auditor is allowed to replace a user’s recommendations

with those that another user would have received in the same context. Envy, or the absence thereof,

is estimated by suitably choosing whose recommendations should be shown to whom. While this

scenario is more intrusive than some black-box audits of parity, auditing for envy-freeness provides

a more compelling guarantee on the wellbeing of users subject to the recommendations.

The second challenge is that active exploration requires randomizing the recommendations,

which in turn might alter the user experience. In order to control this cost of the audit (in terms of

user utility), we follow the framework of conservative exploration Wu et al. [2016], Garcelon et al.

[2020a], which guarantees a performance close to the audited system. We provide a theoretical

analysis of the trade-offs that arise, in terms of the cost and duration of the audit (measured in the

number of timesteps required to output a certificate).

Our technical contributions are twofold. (1) We provide a novel formal analysis of envy-free

recommender systems, including a comparison with existing item-side fairness criteria and a

probabilistic relaxation of the criterion. (2) We cast the problem of auditing for envy-freeness as a

new pure exploration problem in bandits with conservative exploration constraints, and propose a

sample-efficient auditing algorithm which provably maintains, throughout the course of the audit, a

performance close to the audited system.

We discuss the related work in Sec. 6.2. Envy-free recommender systems are studied in Sec.

6.3. In Sec. 6.4, we present the bandit-based auditing algorithm. In Sec. 6.5, we investigate the

trade-offs achieved on real-world datasets.

6.2 Related work

Fair recommendation The domain of fair machine learning is organized along two orthogonal

axes. The first axis is whether fairness is oriented towards groups defined by protected attributes

Barocas and Selbst [2016], or rather oriented towards individuals Dwork et al. [2012]. The second

axis is whether fairness is a question of parity (predictions [or prediction errors] should be invariant

by group or individual) Corbett-Davies and Goel [2018], Kusner et al. [2017], or preference-based

(predictions are allowed to be different if they faithfully reflect the preferences of all parties) Zafar

et al. [2017b], Kim et al. [2019], Ustun et al. [2019]. Our work takes the perspective of envy-freeness,

which follows the preference-based approach and is aimed towards individuals.

The literature on fair recommender systems covers two problems: auditing existing systems,

and designing fair recommendation algorithms. Most of the auditing literature focused on group

parity in recommendations Hannak et al. [2014], Lambrecht and Tucker [2019], and equal user

utility Mehrotra et al. [2017], Ekstrand et al. [2018], while our audit for envy-freeness focuses on

whether personalized results are aligned with (unknown) user preferences. On the designing side,

Patro et al. [2020], Ilvento et al. [2020] cast fair recommendation as an allocation problem, with

criteria akin to envy-freeness. They do not address the partial observability of preferences, so they

cannot guarantee user-side fairness without an additional certificate that the estimated preferences

effectively represent the true user preferences. Our work is thus complementary to theirs.

While we study fairness for users, recommender systems are multi-sided Burke [2017], Patro

et al. [2020], thus fairness can also be oriented towards recommended items Celis et al. [2017b],

Biega et al. [2018], Geyik et al. [2019].

Multi-armed bandits In pure exploration bandits Bubeck et al. [2009], Audibert and Bubeck

[2010], an agent has to identify a specific set of arms after exploring as quickly as possible, without

performance constraints. Our setting is close to threshold bandits Locatelli et al. [2016], ? where
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the goal is to find arms with better performance than a given baseline. Outside pure exploration,

in the regret minimization setting, conservative exploration Wu et al. [2016] enforces the anytime

average performance to be not too far worse than that of a baseline arm.

In our work, the baseline is unknown – it is the current recommender system – and the other

“arms” are other users’ policies. The goal is to make the decision as to whether an arm is better

than the baseline, while not deteriorating performance compared to the baseline. We thus combine

pure exploration and conservative constraints.

Existing work on fairness in exploration/exploitation Joseph et al. [2016], Jabbari et al. [2017],

Liu et al. [2017] is different from ours because unrelated to personalization.

Fair allocation Envy-freeness was first studied in fair allocation Foley [1967] in social choice.

Our setting is different because: a) the same item can be given to an unrestricted number of users,

and b) true user preferences are unknown.

6.3 Envy-free recommendations

6.3.1 Framework

There are M users, and we identify the set of users with JMK = {1, . . . ,M}. A personalized

recommender system has one stochastic recommendation policy ⇡m per user m. We denote by

⇡m(a|x) the probability of recommending item a 2 A for user m 2 JMK in context x 2 X . We assume

that X and A are finite to simplify notation, but this has no impact on the results. We consider a

synchronous setting where at each time step t, the recommender system observes a context xm
t ⇠ qm

for each user, selects an item amt ⇠ ⇡m(.|xm
t ) and observes reward rmt ⇠ ⌫m(amt |xm

t ) 2 [0, 1].

We denote by ⇢m(a|x) the expected reward for user m and item a in context x, and, for any

recommendation policy ⇡, um(⇡) is the utility of m for ⇡:

um(⇡) = Ex⇠qmEa⇠⇡(.|x)Er⇠⌫m(a|x) [r]

=
X

x2X

X

a2A

qm(x)⇡(a|x)⇢m(a|x)
(6.1)

We assume that the environment is stationary : the context and reward distributions qm and ⌫m,

as well as the policies ⇡m are fixed. Even though in practice policies evolve as they learn from user

interactions and user needs change over time, we leave the study of non-stationarities for future

work. The stationary assumption approximately holds when these changes are slow compared

to the time horizon of the audit, which is reasonable when significant changes in user needs or

recommendation policies take e.g., weeks. Our approach applies when items a are single products

as well as when items are structured objects such as rankings. Examples of (context x, item a)

pairs include: x is a query to a search engine and a is a document or a ranking of documents, or x

is a song chosen by the user and a a song to play next or an entire playlist. Remember, our goal is

not to learn the user policies ⇡m, but rather to audit existing ⇡ms for fairness.

6.3.2 ✏-envy-free recommendations

Existing audits for user-side fairness in recommender systems are based on two main criteria:

1. recommendation parity : the distribution of recommended items should be equal across (groups

of) users,
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2. equal user utility : all (groups of) users should receive the same utility, i.e. 8m,n, um(⇡m) =

un(⇡n).

There are two ways in which these criteria conflict with the goal of personalized recommender

systems to best accomodate user preferences. First, recommendation parity does not control for

disparities that are aligned with user preferences. Second, equal user utility drives utility down

as soon as users have different best achievable utilities. To address these shortfalls, we propose

envy-freeness as a complementary diagnosis for the fairness assessment of personalized recommender

systems. In this context, envy-freeness requires that users prefer their recommendations to those of

any other user:

Definition 5. Let ✏�0. A recommender system is ✏-envy-free if: 8m,n 2 [M ] : um(⇡n) 
✏+ um(⇡m).

Envy-freeness, originally studied in fair allocation Foley [1967] and more recently fair classification

Balcan et al. [2018], Ustun et al. [2019], Kim et al. [2019], stipulates that it is fair to apply different

policies to different individuals or groups as long as it benefits everyone. Following this principle, we

consider the personalization of recommendations as fair only if it better accommodates individuals’

preferences. In contrast, we consider unfair the failure to give users a better recommendation when

one such is available to others.

Unlike parity or equal utility, envy-freeness is in line with giving users their most preferred

recommendations (see Sec. 6.3.3). Another improvement from equal user utility is that it does not

involve interpersonal utility comparisons.

Envy can arise from a variety of sources, for which we provide concrete examples in our

experiments (Sec. 6.5.1).

Remark 3. We discuss an immediate extension of envy-freeness from individuals to groups of

users in App. C.2, in the special case where groups have homogeneous preferences and policies.

Defining group envy-free recommendations in the general case is nontrivial and left for future work.

6.3.3 Compatibility of envy-freeness

Optimal recommendations are envy-free. 1 Let ⇡m,⇤ 2 argmax⇡ u
m(⇡) denote an optimal

recommendation policy for m. Then the optimal recommender system (⇡m,⇤)m2M is envy-free

since: um(⇡m,⇤) = max⇡ u
m(⇡) � um(⇡n,⇤). In contrast, achieving equal user utility in general can

only be achieved by decreasing the utility of best-served users for the benefit of no one. It is also

well-known that achieving parity in general requires to deviate from optimal predictions [Barocas

et al., 2018].

Envy-freeness vs. item-side fairness Envy-freeness is a user-centric notion. Towards multi-

sided fairness [Burke, 2017], we analyze the compatibility of envy-freeness with item-side fairness

criteria for rankings from Singh and Joachims [2018], based on sensitive categories of items (denoted

A1, ...,AS). Parity of exposure prescribes that for each user, the exposure of an item category

should be proportional to the number of items in that category. In Equity of exposure2, the exposure

of item categories should be proportional to their average relevance to the user.

The optimal policies under parity and equity of exposure constraints, denoted respectively by

(⇡m,par)Mm=1 and (⇡m,eq)Mm=1, are defined given user m and context x as:

1App.C.1 shows the difference between envy-freeness and optimality certificates.
2Singh and Joachims [2018] use the terminology of demographic parity (resp. disparate treatment) for what we

call parity (resp. equity) of exposure. Our use of “equity” follows Biega et al. [2018].
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(parity) ⇡m,par(.|x) = argmax
p:A![0,1]P

a
p(a)=1

X

a2A

p(a)⇢m(a|x)

u.c. 8s 2 JSK,
X

a2As

p(a) =
|As|

|A|
. (6.2)

Optimal policies under equity of exposure are defined similarly3, but the constraints are 8s, P
a2As

p(a) =
P

a2As

⇢m(a|x)

P
a2A

⇢m(a|x) .

We show their relation to envy-freeness:

Proposition 17. With the above notation:

• the policies (⇡m,par)Mm=1 are envy-free, while

• the policies (⇡m,eq)Mm=1 are not envy-free in general.

Optimal recommendations under parity of exposure are envy-free because the parity constraint

(6.2) is the same for all users. Given two users m and n, ⇡m,par is optimal for m under (6.2) and

⇡n,par satisfies the same constraint, so we have um(⇡m,par) � um(⇡n,par).

In contrast, the optimal recommendations under equity of exposure are, in general, not envy-free.

A first reason is that less relevant item categories reduce the exposure of more relevant categories:

a user who prefers item a but who also likes item b from another category envies a user who

only liked item is a. Note that amortized versions of the criterion and other variants considering

constraint averages over user/contexts [Biega et al., 2018, Patro et al., 2020] have similar pitfalls

unless envy-freeness is explictly enforced, as in Patro et al. [2020] who developed an envy-free

algorithm assuming the true preferences are known. For completeness, we describe in App.C.1 a

second reason why equity of exposure constraints create envy, and an edge case where they do not.

6.3.4 Probabilistic relaxation of envy-freeness

Envy-freeness, as defined in Sec. 6.3.2, (a) compares the recommendations of a target user to those

of all other users, and (b) these comparisons must be made for all users. In practice, as we show,

this means that the sample complexity of the audit increases with the number of users, and that all

users must be part of the audit.

In practice, it is likely sufficient to relax both conditions on all users to give a guarantee for

most recommendation policies and most users. Given two small probabilities � and �, the relaxed

criterion we propose requires that for at least 1� � fraction of users, the utility of users for their

own policy is in the top-�% of their utilities for anyone else’s policy. The formal definition is given

below. The fundamental observation, which we prove in Th. 19 in Sec. 6.4.5, is that the sample

complexity of the audit and the number of users impacted by the audit are now independent on

the total number of users. We believe that these relaxed criteria are thus likely to encourage the

deployment of envy-free audits in practice.

Definition 6. Let ✏, �,��0. Let UM denote the discrete uniform distribution over JMK. A user

m is (✏, �)-envious if:

Pn⇠UM

⇥
um(⇡m) + ✏ < um(⇡n)

⇤
> �.

3The original criterion [Singh and Joachims, 2018, Eq. 4] would be written in our case as 8s, s0 2
JSK, 1

|As|

P

a2As
p(a) = 1

|As0 |

P

a2As0
p(a), which is equivalent to (6.2). A similar remark holds for the equity

constraint.
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Algorithm 4: OCEF algorithm. ⇠t (line 4) evaluates the conservative exploration constraint
and is defined in (6.4). Values for �k(t) and confidence bounds µ

k
and µk are given in Lemma

53.
input :Confidence parameter �, conservative exploration parameter ↵, envy parameter ✏
output : envy or ✏�no-envy

1 S0  JKK // all arms except 0
2 for t=1, . . . do
3 Choose `t from St�1 // e.g., unif.sample
4 if �0(t�1)> min

k2St�1

�k(t�1) or ⇠t<0 then kt  0

5 else kt  `t
6 Observe context xt ⇠ q, show at ⇠ ⇡kt(.|xt) and observe rt ⇠ ⌫(at|xt) // i.e., pull arm kt and

update conf.intervals with Lem.53
7 St  

�
k 2 St�1 : µk(t) > µ

0
(t) + ✏

 

8 if 9k 2 St, µk
(t) > µ0(t) then return envy

9 if St = ; then return ✏-no-envy
10 end

use µ0 for the utility of the user for their policy (i.e., um(⇡m)). Because the audit is a special form

of bandit problem, following the bandit literature, an index of a user is called an arm, and arm 0 is

the baseline.

Objectives and evaluation metrics We present our algorithm OCEF (Online Certification

of Envy-Freeness) in the next subsection. Given ✏ > 0 and ↵ � 0, OCEF returns either envy or

✏-no-envy and has two objectives:

1. Correctness: if OCEF returns envy, then 9k, µk > µ0. If OCEF returns ✏-no-envy then

max
k2JKK

µk  µ0 + ✏.

2. Recommendation performance: during the audit, OCEF must maintain a fraction 1�↵ of the

baseline performance. Denoting by ks 2 {0, . . . ,K} the arm (group index) chosen at round s,

this requirement is formalized as a conservative exploration constraint Wu et al. [2016]:

8t, 1
t

tX

s=1

µks
� (1� ↵)µ0 . (6.3)

We focus on the fixed confidence setting, where given a confidence parameter � 2 (0, 1) the

algorithm provably satisfies both objectives with probability 1 � �. In addition, there are two

criteria to assess an online auditing algorithm:

1. Duration of the audit: the number of time-steps before the algorithm stops.

2. Cost of the audit: the cumulative loss of rewards incurred. Denoting the duration by ⌧ , the cost

is ⌧µ0 �
P⌧

s=1 µks
.

It is possible that the cost is negative when there is envy. In that case, the audit increased

recommendation performance by finding better recommendations for the group.

We note the asymmetry in the return statements of the algorithm: envy does not depend on ✏.

This asymmetry is necessary to obtain finite worst-case bounds on the duration and the cost of

audit, as we see in Theorem 18.

Our setting had not yet been addressed by the pure exploration bandit literature, which mainly

studies the identification of (✏-)optimal arms [Audibert and Bubeck, 2010]. Auditing for envy-

freeness requires proper strategies in order to efficiently estimate the arm performances compared

to the unknown baseline. Additionally, by making the cost of the audit a primary evaluation

93



Chapter 6. User fairness as envy-freeness

criterion, we also bring the principle of conservative exploration to the pure exploration setting,

while it had only been studied in regret minimization [Wu et al., 2016]. In our setting, conservative

constraints involve nontrivial trade-offs between the duration and cost of the audit. We now present

the algorithm, and then the theoretical guarantees for the objectives and evaluation measures.

6.4.3 The OCEF algorithm

OCEF is described in Alg. 4. It maintains confidence intervals on arm performances (µk)
K
k=0. Given

the confidence parameter �, the lower and upper bounds on µk at time step t, denoted by µ
k
(t) and

µk(t), are chosen so that with probability at least 1� �, we have 8k, t, µk 2 [µ
k
(t), µk(t)]. In the

algorithm, �k(t) = (µk(t)� µ
k
(t))/2. As Jamieson et al. [2014], we use anytime bounds inspired by

the law of the iterated logarithm. These are given in Lem. 53 in App. C.5.

OCEF maintains an active set St of all arms in JKK (i.e., excluding the baseline) whose

performance are not confidently less than µ0+✏. It is initialized to S0 = JKK (line 1). At each round

t, the algorithm selects an arm `t 2 St (line 3). Then, depending on the state of the conservative

exploration constraint (described later), the algorithm pulls kt, which is either `t or the baseline

(lines 4-6). After observing the reward rt, the confidence interval of µ`t is updated, and all active

arms that are confidently worse than the baseline plus ✏ are de-activated (line 7). The algorithm

returns envy if an arm k is confidently better than the baseline (line 8), returns ✏-no-envy if there

are no more active arms, (line 9) or continues if neither of these conditions are met.

Conservative exploration To deal with the conservative exploration constraint (6.3), we follow

Garcelon et al. [2020a]. Denoting At = {s  t : ks 6= 0} the time steps at which the baseline

was not pulled, we maintain a confidence interval such that with probability � 1 � �, we have

8t > 0,
��P

s2At
(µks

� rs)
��  Φ(t). The formula for Φ is given in Lem. 55 in App. C.5. This

confidence interval is used to estimate whether the conservative constraint (6.3) is met at round t

as follows. First, let us denote by Nk(t) the number of times arm k has been pulled until t, and

notice that (6.3) is equivalent to
P

s2At
µks
� ((1 � ↵)t � N0(t))µ0 � 0. After choosing `t (line

3), we use the lower bound on
P

s2At
µks

and the upper bound for µ0 to obtain a conservative

estimate of (6.3). Using ⌧ = t� 1, this leads to:

⇠t =
X

s2A⌧

rs � Φ(t) + µ
`t
(⌧) + (N0(⌧)� (1� ↵)t)µ0(⌧) . (6.4)

Then, as long as the confidence intervals hold, pulling `t does not break the constraint (6.3) if

⇠t � 0. The algorithm thus pulls the baseline arm when ⇠t < 0. To simplify the theoretical analysis,

OCEF also pulls the baseline if it does not have the tightest confidence interval (lines 4-6).

6.4.4 Analysis

The main theoretical result of the paper is the following:

Theorem 18. Let ✏ 2 (0, 1], ↵ 2 (0, 1], � 2 (0, 1
2 ) and ⌘k = max(µk � µ0, µ0 + ✏ � µk) and hk =

max(1, 1
⌘k
). Using µ, µ and Φ given in Lemmas 53 and 55 (App. C.5), OCEF achieves the following

guarantees with probability � 1� �:
• OCEF is correct and satisfies the conservative constraint on the recommendation performance

(6.3).

• The duration is in O

✓ KX

k=1

hk log
�K log(Khk/�⌘k)

�

�

min(↵µ0, ⌘k)

◆
.
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• The cost is in O

✓ X

k:µk<µ0

(µ0�µk)hk

⌘k
log

�K log(Khk/�⌘k))
�

�◆
.

The important problem-dependent quantity ⌘k is the gap between the baseline and other arms k.

It is asymmetric depending on whether the arm is better than the baseline (µk�µ0) or the converse

(µ0 � µk + ✏) because the stopping condition for envy does not depend on ✏. This leads to a worst

case that only depends on ✏, since ⌘k = max(µk � µ0, µ0 � µk + ✏) � ✏
2 , while if the condition was

symmetric, we would have possibly unbounded duration when µk = µ0 + ✏ for some k 6= 0. Overall,

ignoring log terms, we conclude that when ↵µ0 is large, the duration is of order
P

k
1
⌘2
k

and the cost

is of order
P

k
1
⌘k

. This becomes
P

k
1

↵µ0⌘k
and

P
k

1
⌘k

when ↵µ0 is small compared to ⌘k. This

means that the conservative constraint has an impact mostly when it is strict. It also means that

when either ↵µ0 ⌧ ⌘k or ⌘2k ⌧ ⌘k the cost can be small even when the duration is fairly high.

6.4.5 Full audit

Exact criterion To audit for envy-freeness on the full system, we apply OCEF to all M users

simultaneously and with K = M , meaning that the set of arms corresponds to all the users’ policies.

By the union bound, using �0 = �
M instead of � in OCEF’s confidence intervals, the guarantees of

Theorem 18 hold simultaneously for all users.

For recommender systems with large user databases, the duration of OCEF thus becomes less

manageable as M increases. We show how to use OCEF to certify the probabilistic criterion with

guarantees that do not depend on M .

Probabilistic criterion The AUDIT algorithm for auditing the full recommender system is

described in Alg. 5. AUDIT samples a subset of users and a subset of arms for each sampled

user. Then it applies OCEF to each user simultaneously with their sampled arms. It stops either

upon finding an envious user, or when all sampled users are certified with ✏-no envy. Again there

is a necessary asymmetry in the return statements of AUDIT to obtain finite worst-case bounds

whether or not the system is envy-free.

The number of target users M̃ and arms K in Alg. 5 are chosen so that ✏-envy-freeness

w.r.t. the sampled users and arms translates into (✏, �,�)-envy-freeness. Combining these random

approximation guarantees with Th. 18, we get:

Theorem 19. Let M̃ =
l
log(3/�)

�

m
and K =

l
log(3M̃/�)

log(1/(1��))

m
. With probability 1 � �, AUDIT is

correct, it satisfies the conservative constraint (6.3) for all M̃ target users, and the bounds on

duration and cost from Th. 18 (using �

3M̃
instead of �) are simultaneously valid.

Importantly, in contrast to naively using OCEF to compare all users against all, the audit for

the probabilistic relaxation of envy-freeness only requires to query a constant number of users and

policies that does not depend on the total number of users M . Therefore, the bounds on duration

and cost are also independent of M , which is a drastic improvement.

6.5 Experiments

We present experiments describing sources of envy (Sec. 6.5.1) and evaluating the auditing algorithm

OCEF on two recommendation tasks (Sec. 6.5.2).

We create a music recommendation task based on the Last.fm dataset from Cantador et al.

[2011], which contains the music listening histories of 1.9k users. We select the 2500 items most

listened to, and simulate ground truth user preferences by filling in missing entries with a popular
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particular, on envy-free configurations, the cost of the audit is positive and grows when relaxing

the conservative constraint, while it is negative and decreasing with ↵ when there is envy. More

details are provided in App. C.4.2.

6.6 Conclusion

We proposed the audit of recommender systems for user-side fairness with the criterion of envy-

freeness. The auditing problem requires an explicit exploration of user preferences, which leads

to a formulation as a bandit problem with conservative constraints. We presented an algorithm

for this problem and analyzed its performance experimentally. In future work, we plan to extend

envy-freeness to heterogeneous groups of users, in order to generalize existing definitions of preference-

based fairness to personalized predictions.
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7.1 Summary of contributions

This thesis makes both conceptual and algorithmic contributions.

In this thesis, we developed a conceptual framework based on distributive justice principles from

social choice theory to assess the fairness of ranked recommendations. We approach recommendation

as a fair allocation problem where the designer makes trade-offs between the utilities of the users

and items. Within this framework, we proposed a principled approach to generate fair rankings by

maximizing concave welfare functions of users’ and items’ utilities. In Chapter 3, we started with

additive concave welfare functions, which encode the intuition of diminishing marginal utilities, and

then treated in Chapter 4 the case of generalized Gini welfare functions, which have a more complex

form but are more expressive. The perspective of social choice also gives a better understanding of

existing ranking approaches, in which we show that popular merit-based approaches can lead to

undesirable distributive unfairness (Chapter 3).

Along with the conceptual framework of this thesis, we made several algorithmic contributions,

built around Frank-Wolfe methods. We addressed the challenge of optimizing concave functions of

stochastic ranking policies, which can be used to express many objectives for fair and multi-objective

recommendation. We first showed how to efficiently leverage Frank-Wolfe methods in the batch

setting, for ranking in the position-based model in Chapter 3. Then we showed how to extend this

approach to the case of the non-differentiable GGFs in Chapter 4. In Chapter 5, we addressed the

problem of fair ranking in the contextual bandit setting, and presented the first bandit algorithm

with regret guarantees for the problem. All the algorithms developed in this thesis are supported

by theoretical guarantees on their convergence and complexity. We also evaluated our algorithms

against relevant benchmarks on simulated environments based on public datasets such as MovieLens,

Last.fm and Twitter data, which include up to 15k users and items.

In addition to proposing new methods for designing recommender systems that are fair towards
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both users and items, we also addressed a different auditing problem, which is focused on user-side

fairness in Chapter 6. Motivated by prominent audits for parity in the delivery of job ads, we

propose an audit for envy-freeness, which provides more refined conclusions but is more technically

challenging. We address this technical challenge by developing a sample-efficient pure exploration

bandit algorithm for the task, that does not significantly degrade recommendation performance for

the users sampled for the audit.

As we will discuss in the last section, our research leaves several open questions. These include a

more detailed treatment of two-sided fairness at the group level, more general modeling of user and

item utilities, and the incorporation of real-world dynamics that affect user and item preferences

and behaviors. Additionally, while our work focuses on the perspective of fair division, the field

of social choice offers valuable insights for the recommendation community that warrant further

exploration. Addressing these challenging questions in conjunction with our contributions can

lead to exciting research avenues. Despite the remaining open questions, our research has made

significant strides in improving the current state-of-the-art in fairness for recommender systems.

We have gained a better understanding of the limitations of equality and merit-based constraints

on exposure, as well as how to design principled ranking objectives. Our results have led to the

development of efficient algorithms that can be practically implemented, serving as a stepping stone

towards the development of principled approaches to fairness in recommender systems in more

complex settings. We hope that our work will inspire further progress in this field.

7.2 Discussion

In this final section, we discuss additional relevant topics that we did not include in the main body

of this thesis, but to which we contributed. These topics are group fairness (Section 7.2.1) and other

perspectives from social choice (Section 7.2.2). Then we discuss the limitations of our framework

and open questions (Section 7.2.3), and the challenges of implementing fair recommender systems

in practice (Section 7.2.4).

7.2.1 Towards group fairness

We described our framework for fair allocation of exposure at the level of individuals. Our framework

can be extended to groups, following prior work on fair ranking which considered the utility of a

group as the sum or the average of utilities of its members [Singh and Joachims, 2018, Morik et al.,

2020, Singh and Joachims, 2019]. We provide the technical details of this extension in Appendix

A.2, using the sum to aggregate utilities. In Appendix A.2, we define Lorenz efficiency at the

level of group utilities, and show that maximizing additive concave welfare functions of group-level

utilities yields Lorenz-efficient ranking policies. Note that this extension also allows to consider

item-side fairness at the level of item producers instead of single items, by defining the utility of a

producer as the sum or mean of their items’ utilities.

However, this treatment of groups by adding up individual utilities is not the only method to

assess fairness at the level of groups and has some limitations. In particular, it does not account for

individual differences inside groups. Considerations for both individual differences within groups

and redistribution between groups have been extensively studied in the economic literature on

equality of opportunity [Roemer and Trannoy, 2016, Roemer, 1996], which has inspired several

works on algorithmic fairness [Hardt et al., 2016b, Heidari et al., 2019, Arif Khan et al., 2022].

Another perspective is the economic literature on inequality measurement, where the decomposition

of inequality into a within-group term and between-group term was studied through the property
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of additive decomposability [Cowell, 2011], and was recently discussed in the context of fair machine

learning [Speicher et al., 2018, Williamson and Menon, 2019]. The future implementation of these

principles to two-sided fairness in recommendation are a promising extension of our efforts to

integrate distributive justice principles into the assessment and design of recommender systems.

In all cases, fairness at the level of groups is predicated on access to a discrete sensitive attribute

of users and/or items. Consequently, the practical application of group fairness notions is restricted

by real-world constraints on the direct usage of sensitive attributes. Such restrictions exist when the

sensitive attribute is not available, when collecting or inferring information about group membership

is illegal, or when the delineation of groups into discrete categories is impractical or unethical

[Tomasev et al., 2021, Andrus and Villeneuve, 2022]. Addressing group fairness without access to

sensitive attributes is considered a key open problem for practical applications of fairness-aware

measures and algorithms [Holstein et al., 2019, Veale and Binns, 2017, Andrus and Villeneuve, 2022,

Kallus et al., 2022]. In a recent work [Liu et al., 2023], we leverage homophily in social networks to

derive group fairness measures for recommender systems that do not rely on discrete group labels,

while satisfying a notion of additive decomposability of inequality measures.

7.2.2 Opportunities of social choice for modern selection problems

Election problems Social choice problems fall into two broad categories: public outcomes (e.g.,

elections) and private outcomes (e.g., fair division) [Arrow et al., 2010, Donaldson and Weymark,

1988]. In this thesis, we focused on personalized recommender systems, in which the outcomes

are private. Indeed, for users, the rankings are personal, and for items, the amount of exposure

received by an item is not shared with other items. This motivated us to leverage fair division as a

conceptual framework for personalized recommender systems. In non-personalized search engines

and group recommender systems (e.g., lists of “Trending topics” or “Top restaurants in Paris”), the

recommendations are the same for all users, and hence the outcome is public, from the perspective

of users. In this non-personalized setting, concepts from fair public decision-making in social choice

present interesting opportunities.

During the PhD program, we also made contributions to this branch of social choice where

outcomes are public. In [Do et al., 2021a, 2022b], we addressed committee elections, a popular class

of social choice problems where the public outcome is a subset of individuals elected from a larger

pool of candidates [Lackner and Skowron, 2020]. In committee elections, fairness is often understood

as a form of proportional representation, meaning that the elected committee is representative of

the population of voters [Lackner and Skowron, 2020]. While proportionality is mainly considered

with respect to the preferences of voters, a few recent works have considered representation based

on demographic attributes [Lang and Skowron, 2018, Celis et al., 2017a, Bredereck et al., 2018].

The connection between voting problems and group recommender systems has already received

significant attention in the computational social choice literature [Skowron et al., 2016a,b] and in

the literature on diversity in information retrieval [Dang and Croft, 2012], and has been studied in

fair recommendation more recently [Chakraborty et al., 2019, Allouah et al., 2022]. This connection

is often made by casting users as voters and items as candidates. In Appendix D, we included a

contribution made to the social choice literature, in which we address a specific committee election

problem (see [Do et al., 2021a]). In that piece of work, we focused on designing algorithms for

selecting committees that satisfy a proportional representation criterion with respect to multiple

demographic attributes, in online settings.

Although we did not develop a formal connection between recommender systems and the

committee selection problem addressed in Appendix D, several prominent concepts and tools
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independently developed in the two fields are closely related. The proportionality criteria developed

in the committee election literature are in fact similar to some diversity and fairness criteria

developed in the recommender systems and information retrieval literature. For instance, intent-

based diversification of search results consists in finding a set of items that covers the various

intents behind a specific query (e.g., the query “jaguar” can have the animal or the car brand as

intent) [Chapelle et al., 2011]. This problem can be seen as a voting problem where each item

is a candidate and each intent is a voter. As a matter of fact, a few works on proportionality in

committee elections also use query ambiguity in search engines as a motivating example [Skowron

et al., 2016b].

Another example is the problem of proportional representation of political parties based on

representation targets in party-list elections [Lang and Skowron, 2018]. Existing rules for electing a

committee (i.e., an assembly) are closely related to some metrics proposed for fair ranking with

respect to sensitive groups of items. The D’Hondt rule is mathematically similar to the KL-metric

for fair ranking proposed in [Yang and Stoyanovich, 2017, Geyik et al., 2019], and the Hamilton

rule is the `1 metric of [Yang and Stoyanovich, 2017]. Leveraging deeper connections between

proportionality in committee elections and fairness and diversity in information retrieval is a

promising avenue for future research.

Matching Matching problems are also widely studied in game theory and social choice, and

fall in the category of private outcomes [Gale and Shapley, 1962]. In the fair machine learning

literature, a few recent works explore fairness in matchings when a centralized matching algorithm

uses noisy estimates of agents’ merit as input [Castera et al., 2022, Devic et al., 2023].

While the conventional examples of matching problems in social choice are college admissions

and hospital-resident matching, two-sided matching markets are widespread in online platforms for

job search, dating and friend recommendation. In this thesis, we modelled these applications as

ranking tasks in reciprocal recommender systems, because their main purpose is to filter profiles

among an overloaded candidate space, in order to support users with limited attention. The

rankings produced by the recommender system assist users in finding other users. Users then act

autonomously to match with each other. For example, on a job search platform, a recruiter can

decide to connect with a candidate that was recommended to them, and the candidate can accept

or decline the invitation to connect. Unlike in more traditional matching problems such as college

admissions, the matching itself is not computed by the algorithm.

Nonetheless, the matching literature is still relevant in the context of reciprocal recommender

systems, since it focuses more explicitly on the actual capacity constraints of agents (e.g., the

actual number of slots in a university program or the headcount of a recruiter), while recommender

systems focus on their limited attention on the online platform.

7.2.3 Limitations of recommendation as fair allocation

7.2.3.1 Challenges of defining utilities

Challenges of measuring user preferences and utility. Our framework for fair allocation

of exposure in recommender systems is based on careful definition and measurement of the users’

preference values µij . It does not address potential biases arising at other parts of the recommen-

dation pipeline, such as in the learning stage. These include selection bias (e.g., users only give

feedback on items that were recommended to them) [Marlin and Zemel, 2009], position bias (e.g.,

users tend to click on items that are shown first) [Craswell et al., 2008], and estimation bias (e.g.,

in the learning model used to produce estimates µ̂ij) [Chen et al., 2023]. These can create feedback
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loops that reinforce suboptimalities in the learning of µij if exploration is not sufficient [Bottou

et al., 2013].

Beyond the challenges of producing unbiased engagement predictions, measuring the true values

of items to users is a fundamentally difficult task because of the lack of observable ground truth.

In our experimental analysis, we followed the common practice of online platforms which rely on

engagement signals such as clicks, likes, and play counts to measure the values µij , which are the

main signals available at large scale. However, there may be a mismatch between these engagement

signals and the true unobservable user preferences. Furthermore, those signals differ in strength, e.g.

a like is probably more informative of a user’s preference than a click. Several methods have been

proposed by researchers in academia and industry to overcome these challenges. These include the

use of surrogates of long-term user value [Wang et al., 2022], and of measurement theory in social

sciences to provide a more principled approach to measuring value from existing signals [Milli et al.,

2021, Jacobs and Wallach, 2021]. Other works proposed psychologically-grounded models of user

preferences and behaviour [Curmei et al., 2022, Kleinberg et al., 2022].

Moreover, we assumed a stationary model of user preferences µij . This stationarity assumption

ignores the feedback loops involved in recommender sytems. These include feedback loops caused by

the impact of the recommender system on users’ preferences themselves [Adomavicius et al., 2013,

Kalimeris et al., 2021, Carroll et al., 2022, Jiang et al., 2019, Warlop et al., 2018], and the patterns

of consumption used to estimate them [Anderson et al., 2020]. An interesting direction would be

the incorporation in our work of some recently proposed dynamic models of user preferences in

recommender systems [Dean and Morgenstern, 2022, Curmei et al., 2022, Jiang et al., 2019].

Note that fair classification problems also suffer from measurement issues [Suresh and Guttag,

2019, Corbett-Davies and Goel, 2018, Kilbertus et al., 2020, Kleinberg et al., 2018a]. In the bank

loan example of Section 1.2.2, repaid/default outcomes are only observed for individuals whose

loan application was accepted. Kilbertus et al. [2020] emphasize the importance of focusing on fair

decisions rather than on predictions, especially in settings where data availability depends on past

decisions. We take a similar stance for recommendation problems by focusing on the fairness of

rankings, even in the presence of imperfect measures of µij .

Challenges of defining item producer utility. Following the academic literature on fairness

of exposure [Kletti et al., 2022b, Singh and Joachims, 2018, Biega et al., 2018, Diaz et al., 2020], we

identified item producers with their items and defined the item utility as the expected number of

views received by an item, i.e., its exposure. In order to define an item producer’s utility, we suggest

to follow the TREC fair ranking track [Biega et al., 2020], wherein the producer’s utility is the

cumulative utility of their items. These modeling choices aim at simplifying the formal framework

and the presentation of our approach and results.

The definition of an item’s utility as its expected number of views comes with certain limitations

that need to be considered carefully in real-world contexts. There are various settings where what

item producers seek is not mere exposure but active engagement with their content. These include

streaming platforms, where artists value the number of playcounts, or social media platforms, where

people seek user interaction in the form of likes and shares. In such situations, it could be more apt

to define an item’s utility as the expected positive engagement received (i.e., number of likes), as

opposed to just views. This aligns with the concept of utility as “impact” proposed by Saito and

Joachims [2022], as well as the conditions for long-term sustainability of item producers considered

in [Mladenov et al., 2020, Zhan et al., 2021].

However, there are also circumstances where the expected exposure is a reasonable proxy for

item-side utility. Consider a business such as a shop or restaurant listed on a mapping application
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like Google Maps. In such a scenario, the number of views could be a satisfactory measure of item

utility, as users cannot engage more beyond views at the recommendation stage to contribute to the

establishment’s success. These variations highlight the difficulty of crafting a universally applicable

measure of item utility, and the importance of taking the application context into account.

Transitioning the definition of item utility from views to engagement does not poses significant

changes on the algorithmic side. Our Frank-Wolfe algorithms can still be used to efficiently optimize

concave welfare functions of users’ and items’ utilities, since the item utility still has a similar linear

form as in the case of utility-as-exposure. In fact, this definition of item utility bears resemblance

to our notion of utility in the reciprocal recommendation setting, where our Frank-Wolfe variants

can also be used in an efficient way.

The shift from views to engagement more importantly alters the implications of fairness for

items. The redistribution of engagement among items, as opposed to redistributing exposure,

necessitates a significant boost for items that have no relevance to the majority of users. Moreover,

the pursuit of engagement equality among items, as opposed to exposure, could impose a substantial

burden on the user side. This has been highlighted by LinkedIn’s research [Basu et al., 2020],

demonstrating that it may inadvertently lead to the intensified recommendation of less relevant

items. In our approach, where we promote trade-offs over strict equality constraints, such a change

would necessitate careful adjustment of the trade-off parameters, in order to decrease inequality in

item utilities at a reasonable cost for user welfare. Consequently, when item utilities are defined in

terms of engagement rather than exposure, it may be appropriate to consider alternative notions

of fairness beyond mere redistribution. For instance, Saito and Joachims [2022] advocates for

envy-freeness as a criterion for item-side fairness, when engagement metrics take precedence over

views. This choice avoids the degenerate behaviour of redistributing engagement across items.

The definition of utilities requires a nuanced understanding of what users and item produc-

ers’ actually value, while also keeping in mind the consequences of different definitions on the

recommender systems’ stakeholders.

7.2.3.2 Fixed exposure in the position-based model

We followed the literature on fairness of exposure which defines exposure in the position-based

user model (PBM) [Singh and Joachims, 2018, Sapiezynski et al., 2019, Biega et al., 2018, Zehlike

and Castillo, 2020], where the probability that a user observes an item only depends on its rank.

Fairness of exposure in cascade models [Craswell et al., 2008] and in more general dynamic bayesian

network models [Chapelle and Zhang, 2009] is more challenging from an algorithmic perspective.

Indeed, these general exposure models do not have the linear structure of the PBM which enabled

linear programming formulations [Singh and Joachims, 2018] and the computational efficiency of

the Frank-Wolfe-based algorithms developed in this thesis. While the PBM is still widely used for

its manageability and the (normalized) DCG metric [Järvelin and Kekäläinen, 2002], there has been

interest in evaluating fairness of exposure in rankings in cascade models, as in the TREC 2019 fair

ranking track [Biega et al., 2020]. It is only recently that an algorithm with optimality guarantees

was proposed for fair trade-offs in general dynamic bayesian network models [Kletti et al., 2022b].

From a fair division perspective, cascade models challenge the notion of exposure as a fixed

quantity to allocate. In the PBM, the total exposure is fixed and equal to E = n kbk1 where n is

the number of users bk is the weight associated to the rank k. In practice though, the system has

an impact on the actual budget of exposure to allocate, since the number of viewed items varies

dynamically depending on whether the user keeps browsing the ranked list. In cascade models,

the rank at which a user stops browsing depends on whether items ranked at higher positions are
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relevant to the user. Therefore, the number of exposed items depends on the ranking (via the

interdependence of the values of ranked items).1

It is not clear how to assess the fairness of the allocation of exposure when exposure is a dynamic

quantity. In theory, it is possible to increase the total exposure available by showing irrelevant

items in the highest positions of the ranking, in order to keep a patient user captive and have

more exposure to give to small items. In practice though, the user’s patience is likely to decrease

in the long run. Jeunen and Goethals [2021], who propose a heuristic for item-side fairness in a

cascade model, make a similar observation in their experiments. They find that shuffling the items

in the first positions yields different user utility/item inequality trade-offs, depending on the user’s

openness to randomization. We also suspect that the effectiveness of fairness-aware ranking policies

in cascade models depends on how much patience users have, and this likely varies depending on

their satisfaction from past recommendations.

7.2.3.3 Fairness beyond fair division

Fairness is a complex, multi-faceted, contextual and much debated upon concept, and fair division

is only one way to frame it. We focused on the perspective of fair division because of its historical

importance, its strong foundations in decades of research in social choice, and its relevance to the

problem of making trade-offs between the interests of the stakeholders of recommender systems.

However, there are many other ways to frame fairness which could help improve recommender

systems. In Section 7.2.1, we suggested that other economic models of distributive justice, such

as the theory of equality of opportunity, could provide a better treatment of groups of items and

users in recommender systems. Fair division is historically not concerned with groups, and does

not explicitly address the historical and societal disadvantage of social groups [Moulin, 2003]. In

contrast, in the theory of equality of opportunity of Roemer [1996], outcomes are redistributed

after correcting for arbitrary circumstances that are not in the control of individuals (e.g., race or

socio-economic background). Several works proposed to connect doctrines of equality of opportunity

with group-level fairness notions in machine learning [Heidari et al., 2019, Zehlike et al., 2022a,

Arif Khan et al., 2022], but the adaptation of these frameworks to user-side and item-side fairness

in recommender systems remains an open issue.

Finally, distributive justice is one fundamental axis of theories of justice that has been considered

as separate and complementary to recognition justice [Fraser and Honneth, 2003]. In the context

of fair machine learning, this distinction has been discussed in terms of distributive harms and

representational harms [Binns, 2017, Barocas et al., 2017]. Distributive harms are about the

fair distribution of outcomes of machine learning applications, while representational harms are

concerned with biases and stereotypes in learned representations, such as gendered associations in

word embeddings [Bolukbasi et al., 2016]. In the context of recommender systems, this thesis deals

with the former axis, through explicit anchoring in distributive justice principles. However, fairness

in rankings as in [Zehlike et al., 2017, Yang and Stoyanovich, 2017, Geyik et al., 2019, Singh and

Joachims, 2018] is often motivated by the mitigation of representational harms [Binns, 2017]. The

difference between our work and these works on fair ranking is that we consider the distribution

of exposure across the lists of multiple users, while they consider exposure within a single ranked

list. Fair ranking within lists can be seen as a way to promote diverse representation within a

1Using the notation of Chapter 1: In the cascade model with weights b, given a deterministic ranking policy P, the

exposure of an item j is: vj(P ) =
n
X

i=1

m
X

k=1

Pijkbk
Y

r<k

(1� µ|

i Pi:r). The total exposure is: E(P ) =
n
X

i=1

m
X

k=1

bk
Y

r<k

(1�

µ|

i Pi:r), where µ|

i Pi:r is the value of the item at rank r for user i in the ranking policy P . The total exposure to
allocate thus depends on the ranking policy P .
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ranking, by matching group-based representation targets [Zehlike et al., 2022a]. This brings the

purpose of fair ranking within lists closer to topic-based diversification [Zhai et al., 2015, Ziegler

et al., 2005], although they have been considered as separate problems in the literature [Burke et al.,

2018, Zehlike et al., 2017, Yang et al., 2019]. In our case (as well as in [Biega et al., 2018, Kletti

et al., 2022a, Diaz et al., 2020, Morik et al., 2020]), we provide exposure guarantees for (groups of)

items across lists, because the utility that an item derives from a recommender system is its overall

exposure. These guarantees of fair distribution of utility in the overall recommender system do not

a priori translate into guarantees of fair representation or diversity within each of the lists. This

makes existing work on within-list fairness and diversity complementary to ours, from a conceptual

perspective. From an algorithmic perspective, our approach deals with the within-list setting simply

by considering a separate objective function for each user (as explained in Appendix A.8).

7.2.4 Practical challenges of real-world recommender systems

Several industry practitioners highlighted the challenges of integrating academic research on fairness

into production systems [Bakalar et al., 2021, Holstein et al., 2019, Beutel et al., 2019b]. This

section discusses some of the remaining gaps between the normative question addressed in this

thesis (“how should the system trade-off between the interests of users and item producers?”) and

the practical challenges of implementing and evaluating algorithms that respond to it.

Dynamics of recommender systems In the framework of this thesis, we assumed that several

aspects of the environment were static, such as the set of items (or item producers) and the

preferences and engagement patterns of users. These assumptions can be challenging in practice

because they ignore the impact of the recommender system on the environment. We previously

mentioned the effect of recommendations on user preferences in Section 7.2.3. Recommendations

also impact users’ perception of the platform, affecting user retention in the long run through

complex mechanisms. It is thus important to consider this long-term impact when designing

fairness-aware recommendation strategies, through models of leaving/returning behaviour [Wu

et al., 2017, Jing and Smola, 2017, Ben-Porat et al., 2022, Chandar et al., 2022], surrogate measures

of long-term user experience [Wang et al., 2022], and models of user trust [Cen et al., 2022]. Some

works also discussed how recommendations affect the long-term dynamics of content production

[Mladenov et al., 2020, Zhan et al., 2021]. Recent work also proposed game-theoretic frameworks

for recommender systems, which model the strategic behaviour of item producers [Hron et al., 2023,

Ben-Porat and Tennenholtz, 2018].

Because of feedback loops, static fairness interventions can fail to improve global welfare in the

long run [Akpinar et al., 2022, Peysakhovich et al., 2023]. A few works use reinforcement learning

to account for the recommendations’ impact on the environment with long-term fairness constraints

[Ge et al., 2021, Yu et al., 2022]. An interesting direction would be to build upon simulation studies

and open-sourced environments that have been proposed to model feedback loops and long-term

effects in recommender systems [Ie et al., 2019, Yao et al., 2021, Krauth et al., 2020, Huang et al.,

2020, Rohde et al., 2018, Bountouridis et al., 2019, Zhan et al., 2021]. Another possible direction is

the use of causal inference methods to tackle feedback loops in recommender systems [Bottou et al.,

2013, Schnabel et al., 2016, Sinha et al., 2016, Wang et al., 2020, Krauth et al., 2022].

Multi-stage recommendation pipelines Real-world recommender systems are part of pipelines

that are more complex than the one described in Section 1.2.1. As documented by existing platforms

[Twitter, 2023, YouTube, 2021, Instagram, 2022], those pipelines include more components, such as

108



Chapter 7. Conclusion

a candidate sourcing stage, where a few thousand recent items are extracted from a pool of hundreds

of million items, before the learning stage. Several recent works have studied the interaction of

multiple components in a multi-stage pipeline [Hron et al., 2021, Wang et al., 2021b], emphasizing

the implications of unfair candidate sourcing on the ranking stage [Wang and Joachims, 2023,

Bower et al., 2022].

Choice of trade-off in practice In the fair ranking problem, the designer decides on a specific

welfare function F to optimize. In practice, this can be accomplished by varying hyperparameters

within a predefined class of welfare objectives (i.e., by varying � and the hyperparameters of guser,

gitem in Eq. (1.2)). The task of choosing a trade-off between different metrics in recommender

systems is a general problem that practitioners face [Kohavi et al., 2009, Gunawardana et al.,

2012]. The gold standard for evaluating and choosing a recommendation algorithm based on overall

evaluation criteria (OEC) is the use of online controlled experiments [Kohavi et al., 2009], which

must be carefully designed with awareness of their social and ethical implications [Bird et al., 2016].

Beyond the fairness trade-offs involving users and items that we specifically address in this

thesis, other trade-offs, objectives, and stakeholders are also relevant in the design of recommender

systems. Practitioners must consider the interests of the platform itself: For example, when revenue

is drawn from advertising, the trade-off between revenue and user experience is a common concern

[l’Ecuyer et al., 2017]. Platform policies and regulations also require compliance with additional

ethical and regulatory principles, such as privacy [McSherry and Mironov, 2009] and integrity

[Kalimeris et al., 2021, Facebook, 2020, YouTube, 2021]. Moreover, the overall performance of

recommender systems that drive the choice of an algorithm is often measured by OECs which are

more focused on long-term goals, such as daily or monthly active users. These metrics are typically

prioritized over offline metrics like DCG, that we use to measure user utility in this thesis [Kohavi

et al., 2012].

The task of balancing multiple OECs in recommender systems is akin to a macroeconomic

problem. The framework developed in this thesis focuses on the microeconomic problem of

deciding which users get to see which items. It is one piece of the bigger picture: The overall

performance of the system is the result of the interaction between the microeconomic decisions and

the macroeconomic dynamics of the system.
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Appendix A

Appendix of Chapter 3

A.1 Outline of the appendix

These appendices are structured as follows:

• In Appendix A.2, we present how our fairness framework can be applied to sensitive groups of

users or categories of items.

• In Appendix A.3, we present a deeper analysis of the trade-offs achieved by the welfare approach.

We also provide a theoretical guarantee relating the true welfare obtained by maximizing the

welfare using estimated preferences, depending on the quality of the estimates.

• In Appendix A.4, we present the proofs for the theoretical results comparing our results and

previous criteria of fairness in rankings. In addition, in Appendix A.4.3, we describe how to extend

the criteria of equality of exposure and quality-weighted exposure in a reciprocal recommendation

setting. This is the extension used in our experiments on reciprocal recommendation. In

Proposition 25, we present an additional result regarding the inefficiency of these criteria in

reciprocal recommendation.

• In Appendix A.5, we present the more general version of the Frank-Wolfe algorithm, which we

use both to optimize the welfare function over stochastic rankings, as well as the penalty-based

baselines. This appendix also contains the proofs of the results in Section 3.4. In addition, this

appendix contains fundamental lemmas that are used in other appendices.

• Appendix A.6 gives the details of the experiments presented in Section 3.5, as well we many

additional experiments (two additional, larger scale datasets on one-sided recommendation, and

an additional dataset for reciprocal recommendation)

• Appendix A.7 briefly discusses the difference between the penalty we use in our implementation

of the baseline approaches and an alternative penalty used by some authors.

• Finally, Appendix A.8 discusses the difference between applying item-side fairness criteria for

every ranking, compared to what we do in the paper, which defines item-side utility as an

aggregate over the rankings of all users.

A.2 Fairness towards sensitive groups rather than individuals

In all the paper we focus on fairness towards individual users and items rather than groups of

users or items. Prior work [Singh and Joachims, 2018, Morik et al., 2020, Singh and Joachims,

2019] considered the utlity of a group as the sum or the average utility of its members. Using

this definition of group utility, our framework dirrectly extends to groups rather than individuals.
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In this section we describe the case of one-sided recommendation with groups of users and item

categories. The case of reciprocal recommendation (with user groups only) is similar but simpler.

Let S = (sp)
|S|
p=1 be (possibly overlapping) user groups, i.e., 8p 2 J|S|K, sp ✓ N and [p2J|S|Ksp =

N . Similarly, let C = (cq)
|C|
q=1 be (possibly overlapping) item categories, i.e., 8q 2 J|C|K, cq ✓ I

and [q2J|C|Kcq = I. On the user side, such groups would typically correspond to demographic

groups considered sensitive for the application at hand [Sweeney, 2013]. On the item side, groups

can represent a single producer for the case where we want to be fair to producers based on the

aggregate utility they obtain from their products [Mehrotra et al., 2018], or demographic groups as

well [Kay et al., 2015].

In all cases, we redefine the user-side utility for groups and the item-side utility for categories:

ugr
sp(P ) =

X

i2sp

ui(P ) ucat
cq (P ) =

X

j2cq

uj(P )

Let ugr(P ) = (ugr
sp(P ))

|S|
p=1 and ucat(P ) = (ucat

cq (P ))
|C|
q=1 be the utility profiles of user groups and item

categories associated to P respectively. The two-sided Lorenz efficiency for groups and categories is

defined as:

Definition 7. Let S be a set of user groups and C a set of item categories. Let P 2 P. P is

(S, C)-Lorenz-efficient if there is no P 0 2 P such that either condition holds:

1. ugr(P 0) ⌫L ugr(P ) and ucat(P 0) �L ucat(P ), or

2. ucat(P 0) ⌫L ucat(P ) and ugr(P 0) �L ugr(P ).

The welfare function associated to (S, C), still parametrized by ✓ = (�,↵1,↵2) 2 Θ, is defined as

W gr
✓ (P ) = (1� �)

X

s2S

 (ugr
s (P ),↵1) + �

X

c2C

 (ucat
c (P ),↵2)

The welfare function follows the general form of objective function used for the algorithm in

Appendix A.5, so the optimization of W gr
✓ requires similar computational complexity as W✓.

Finally, the extension of Proposition 1 is straightforward. Its proof is similar to the proof

presented in Appendix A.3.

Proposition 20. 8✓ 2 Θ, 8P ⇤ 2 argmax
P2P

W gr
✓ (P ), P ⇤ is (S, C)-Lorenz-efficient.

Note that this way of treating groups is not necessarily optimal. In particular, in does not

account for within-group fairness. The separate consideration of within-group and between-group

fairness has been studied extensively in the literature on equality of opportunity [Roemer and

Trannoy, 2016], which has inspired several works on algorithmic fairness [Hardt et al., 2016b, Heidari

et al., 2019]. Yet, how to apply these principles to two-sided fairness in recommendation is still

open, and is left as future work.

A.3 More on welfare functions

This appendix provides an in-depth analysis of the trade-offs that are achievable by the welfare

approach. We first pove the proposition of Section 3.2.2, and analyze the utilitarian rankings

(obtained with ↵1 = ↵2 = 1). We then analyze how to obtain leximin optimal solutions on the side

of the items in Appendix A.3.2, as mentioned in Section 3.2.2. Finally, we prove Theorem 24 in

Appendix A.3.3, which provides a regret bound relating the true welfare achieved when maximizing
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welfare on estimated preferences. Some results in this section use Lemma 27 of Appendix 3.4, which

is proved in Appendix 3.4.

Throughout the appendices, we use the more general version of item utilities (two-sided

preferences), described at the end of Section 3.2.1. Moreover, to clarify the notation, we remind that

a ranking tensor is a three-way tensor P where Pijk is the probability that item j is recommended

to user i at rank k. We consider P as an n⇥ n⇥ |I| tensor, where irrelevant entries are set to 0.

With this notation, the utility for both users and items can be written with the same formula:

8i 2 JnK, ui(P ) =

nX

j=1

µij(Pij + Pji)v.

Note that this formula also corresponds to the two-sided utility in reciprocal recommendation. In

general, the results in this appendix can be extended to reciprocal recommendation with minimal

changes to their proofs, using N = I = JnK and the formula above for the utility.

A.3.1 Lorenz efficiency and utilitarian ranking

We first prove Proposition 1:

Proposition 1. 8✓ 2 Θ, 8P ⇤ 2 argmax
P2P

W✓(u(P )), P ⇤ is Lorenz-efficient.

Proof. It is well known that if Φ is increasing and strictly concave, then F (u) =
Pn

i=1 Φ(ui) is

monotonic with respect to Lorenz dominance [Shorrocks, 1983, Thistle, 1989]: u �L u0 =)
F (u) > F (u0).

In the case of W✓, for every ✓ = (�,↵1,↵2) 2 Θ, both  (.,↵1) and  (.,↵2) are strictly concave

by the definition of Θ (recall that in Θ, we have ↵1,↵2 < 1).

The partial function1 u0
N 7!W✓((uI ,u

0
N )) is, up to a constant, of the form of F and likewise

for the partial function u0
I 7!W✓((u

0
I ,uN )). We now prove the result by contradiction. Assume

that u 2 argmaxu2U W✓(u) is not Lorenz-efficient. Then there is u0 2 U such that (u0
N ⌫L uN

and u0
I �L uI) or (u0

N �L uN and u0
I ⌫L uI). Let us assume (u0

N ⌫L uN and u0
I �L uI), the

other case is dealt with similarly. We then have:

W✓(u
0) �W✓((u

0
I ,uN )) (because u0

N ⌫L uN )

> W✓((uI ,uN )) (because u0
I �L uI)

which contradicts the maximality of u.

The analogous for Proposition 1 for reciprocal recommendation is a direct consequence of

standard results that concave welfare functions are monotonic with respect to Lorenz dominance

[Shorrocks, 1983, Thistle, 1989].

Utilitarian ranking Proposition 21 below generalizes to two-sided utilities the well-known result

that maximizing user-side utility is achieved by sorting j 2 I by decreasing µij (see e.g., [Cossock

and Zhang, 2008]). For a ranking tensor P and a user i, we denote by S(Pi) the support of Pi in

ranking space.2 We remind that �(j) is the rank of item j, and that lower ranks are better. For a

user i and item j, we use µji = 1.

1We denote by (uI ,u
0

N ) the vector R
d such that (uI ,u

0

N )i = ui if i 2 I and (uI ,u
0

N )i = u0

i if i 2 N .
2Formally, S(Pi) =

�

σ : I ! J|I|K
�

�σ is one-to-one, and 8j 2 I, Pijσ(j) > 0
 

.
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Proposition 21 (Utilitarian ranking). Assume 8k 2 Jn� 1K, vk > vk+1 � 0 and let

P ⇤ 2 argmax
P2P

W 1
2 ,1,1

(P ) = argmax
P2P

X

i2JnK

ui(P ).

1. 8i 2 N , 8� 2 S(P ⇤
i ) : �(j) < �(j0) =) µ̃ij � µ̃ij0 with µ̃ij = µij + µji.

2. If 8(i, j) 2 JnK2, µij = µji, then µ̃ij � µ̃ij0 () µij � µij0 .

When mutual preferences are symmetric (i.e., µij = µji), the utilitarian ranking is the same

as the usual sort by decreasing µij . This also obviously holds when we consider exposue as item

utility (µji = 1). This means that without considerations of two-sided fairness (↵1,↵2 < 1), the

optimal ranking for two-sided utilities is the same as the usual ranking. This might explain why

the two-sided utility has never been studied before, even in reciprocal recommendation [Palomares

et al., 2021].

For the proof of Proposition 21, the main part is the following lemma:

Lemma 22. Let F (u(P )) =
nP

i=1

ui(P ) and µ̃ij = µij + µji. Assume 8k 2 Jn� 1K, vk � vk+1 � 0.

If P ⇤ 2 P is such that 8� 2 S(P ⇤
i ), 8j, j0, �(j) < �(j0) =) µ̃ij � µ̃ij0 then P ⇤ 2 argmax

P2P
u(P ).

Moreover, if 8k 2 Jn� 1K, vk > vk+1 � 0, then the reciprocal is true.

Proof. Notice that, thanks to the completion of P with zeros on irrelevant entries and formula A.3,

F (u(P )) can be rewritten as:

F (u(P )) =

nX

i=1

ui(P ) =

nX

i=1

nX

j=1

µij(Pij + Pji)v =

nX

i=1

nX

j=1

(µij + µji)Pijv

where the last equality is obtained by swapping i and j in the second sum, which is possible since i

and j span the same range.

The result is then a direct consequence of Lemma 27 in Appendix A.5, using Aij = µij +µji.

The first of statement of Proposition 21 assumes that the exposure weights v are non-negative

and strictly decreasing as per the second point of Lemma 22. Lemma 22 above gives the statement

for the more general case of non-increasing v.

Proof of Proposition 21. The first statement is the consequence of Lemma 22 above, noticing that

F (u(P )) in Lemma 22 always has the same argmax. The second statement is obvious from the

assumptions.

A.3.2 Item-side leximin optimality

The most egalitarian trade-off achievable by our method is described by the leximin order [Sen,

1979]. Given two utility profiles u and u0, u�lex u
0 if U is greater than U 0 according to the

lexicographic order.3 The leximin optimal profile is egalitarian in the sense that it maximizes

the utility of individuals in sequence, from the worse-off to the better-off. Depending on the set

of feasible profiles, this may not lead to equal utility for everyone, but any further reduction of

inequality can only be achieved by making people worse off for the benefit of no other, in violation

of Pareto-dominance.

The proposition below formalizes how leximin optimal solutions on the side of items are found.

It shows that item-side leximin solutions are obtained by having ↵2 ! �1 and �! 1 at the same

3Formally, u>lex u
0 if (9k 2 JdK s.t. 8i < k, Ui = U 0

i and Uk > U 0

k
). u�lex u

0 () ¬(u0 �lex u).
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time. The proposition gives a formal statement of the rate at which � should converge to 1 relative

to ↵.

In the statement of the proposition, given two functions F and G, we use F (↵) �
↵!�1

G(↵) as a

shorthand for F (↵) � G(↵) for ↵ sufficiently small.4.

Proposition 23. Let U item
lex = {u 2 U : 8u0 2 U ,uI �lex u

0
I} and let u⇤ = argmax

u2U item
lex

P
i2N

 (ui,↵1).

8⌘ > max(1, ku⇤
Ik1), 8u 2 U : W1�⌘↵,↵1,↵(u

⇤) �
↵!�1

W1�⌘↵,↵1,↵(u).

This means that among the leximin-optimal item-side utility profiles, ↵1 still controls the redis-

tribution profile on the user side, since it is possible that |U item
lex | > 1 in one-sided recommendation.

A similar result holds for user-side item leximin.

Proof. Let u⇤ = argmax
u2U item

lex

P
i2N

 (ui,↵1) and u 2 U . Let ✓ = (�,↵1,↵) and take ↵ < min(0,↵1).

Let (j1, j2, . . . , j|I|) be the ranking of u⇤
I in increasing order: u⇤

j1
 . . . u⇤

j|I|
. Likewise, let

(j01, j
0
2, . . . , j

0
|I|) be the ranking of uI in increasing order: uj01

 . . .  uj0
|I|

.

Let m = max{k 2 J|I|K [ {0} : 8`  k, u⇤
j`

= uj0
`
} + 1, be the last index (+1) such that the

smallest values of u⇤ and u are equal (m = 1 if the smallest values are different).

Let C(↵) = W1�⌘↵,↵1,↵(u
⇤)�W1�⌘↵,↵1,↵(u).

Let K =
P

i2N

�
 (u⇤

i ,↵1)�  (u0
i,↵1)

�
.

case 1: m = |I| + 1. Then C(↵) = (1 � ⌘↵)K � 0 since u⇤
I = uI and u⇤ maximizes the

user-side welfare.

case 2: m < |I|. Then, we have uj0m
< u⇤

jm
by the leximin optimality of u⇤

I . We then have:

C(↵) = (1� ⌘↵)K + ⌘↵
X

j2I

�(u⇤
j )
↵ + (uj)

↵

= �(1� ⌘↵)
�
u⇤
jm

�↵⇣ K

1� ⌘↵
� ⌘

u⇤
jm

�↵

| {z }
�����!
↵!�1

0

+1 +
X

k>m

� u⇤
jk

u⇤
jm

�↵

| {z }
�����!
↵!�1

0

�
�uj0m

u⇤
jm

�↵

| {z }
�����!
↵!�1

+1

�
X

k>m

�uj0m

u⇤
jm

�↵

| {z }
�0

⌘

which implies lim
↵!�1

C(↵) = +1 and thus the desired result.

A.3.3 Guarantees when performing inference with estimated preferences

In practice, inference is carried out on an estimate µ̂ of µ, meaning that, denoting û the resulting

estimated utility5 the system output P̂ = argmaxP2P W✓(û(P )). The following result extends

surrogate regret bounds that exist in classification [Bartlett et al., 2006, Zhang et al., 2004] and

learning to rank [Cossock and Zhang, 2008, Ravikumar et al., 2011, Agarwal, 2014]to the case

of welfare functions and global stochastic rankings. It makes the link between the quality of the

estimate µ̂ and an optimality guarantee for u(P̂ ) (i.e., the true welfare of the ranking inferred on

the estimated values). We prove the result for ✓ = ( 12 ,↵,↵) for ↵  1 to simplify notation.6

Theorem 24. Let ↵  1 and ✓ = ( 12 ,↵,↵) 2 Θ. Let µ̂ 2 R
|N |⇥|I|
+ , P̂ = argmaxP2P W✓(û(P )),

and P ⇤ = argmaxP2P W✓(u(P )).

4Formally, F (α) �
α!�1

G(α) () 9α0 2 R, 8α  α0, F (α) � G(α).

5We have ûi(P ) =
P

j2I µ̂ijPijv for i 2 N .
6The dependency on µ̂ in B(µ̂) is because ψ0(.,α) is not bounded in general. In practice, we use ψ(x+ η,α) for a

small η > 0 to avoid the singular point at 0, in which case B < ψ0(η,α).
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Let furthermore B(µ̂) = max
�
maxi2JnK  

0(ui(P̂ ),↵),maxi2JnK  
0(ûi(P

⇤),↵)
�
. We have:

W✓(u(P
⇤))�W✓(u(P̂ ))  4B(µ̂)

q
n kvk22

s X

(i,j)2N⇥I

(µ̂ij � µij)2.

The existing results closest to our Theorem 24 are Theorem 2 of [Cossock and Zhang, 2008].

Here the result is substantially more difficult to prove because of the concave function and the fact

that utilities are two-sided, calling for considering the rankings of multiple users at once.

Proof. We have:

W✓(u(P
⇤))�W✓(u(P̂ )) = W✓(u(P

⇤))�W✓(û(P̂ ))| {z }
�W✓(û(P⇤)

+W✓(û(P̂ ))�W✓(u(P̂ ))

W✓(u(P
⇤))�W✓(û(P

⇤))| {z }
=C1

+W✓(û(P̂ ))�W✓(u(P̂ ))| {z }
=C2

Let B1(µ̂) = maxi2JnK  
0(ûi(P

⇤),↵).

We first prove:

C1  2B1(µ̂)

q
n kvk22

s X

(i,j)2JnK2

(µ̂ij � µij)2. (A.1)

To prove (A.1), we start by using the concavity of  (.,↵) for ↵  1. Let Φ(.) = 1
2 (.,↵). We have:

C1 =

nX

i=1

�
Φ(u(P ⇤))� Φ(û(P ⇤))

⌘


nX

i=1

Φ
0(ûi(P

⇤))
�
u(P ⇤))� û(P ⇤)

�

thus C1 
nX

i=1

nX

j=1

Φ
0(ûi(P

⇤))(µij � µ̂ij)(P
⇤
ij + P ⇤

ji)v

=

nX

i=1

nX

j=1

�
Φ

0(ûi(P
⇤))(µij � µ̂ij) + Φ

0(ûj(P
⇤))(µji � µ̂ji)| {z }

=Aij

�
P ⇤
ijv

where, similarly to the proof of Lemma 22, we swapped the indexed (i, j) in the Φ0(ûi(P
⇤))µijP

⇤
ji)v,

which is possible because i and j span the same range in the sum.

Notice that the terms AijP
⇤
ijv are all zero except if i 2 N and j 2 I (because P ⇤

ijk = 0 otherwise).

For i 2 N , let �i be a ranking which ranks (Aij)j2I in decreasing order, i.e., �i(j) < �i(j
0) =)

Aij � Aij0 . Using Lemma 27 in Appendix A.5, we have:

C1  max
P2P

X

i2N

X

j2I

AijPijv =
X

i2N

X

j2I

Aijv�i(j)

Now let V = [v�i(j)]i2N
j2I

. By Cauchy-Shwarz inequality and denoting kXkF =
qP

ij X
2
ij the Frobe-

nius norm of matrix X, we have kV kF =
q

n kvk22 and kAkF  B1(µ̂)(kµ� µ̂kF +
��µ> � µ̂>��

F
),

leading to:

C1 
q
n kvk22 kAkF  2B1(µ̂)

q
n kvk22 kµ� µ̂kF

which proves (A.1).
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Similarly, using B2(µ̂) = maxi2JnK  
0(ui(P̂ ),↵) and the same arguments as above, we obtain:

C2 
q
n kvk22 kAkF  2B2(µ̂)

q
n kvk22 kµ� µ̂kF

which yields the desired result.

A.4 Comparison to utility/inequality trade-offs

In this appendix, we provide the proofs of Section 3.3, and describe more precisely how we applied

quality-weighted exposure and equality of exposure in reciprocal recommendation.

A.4.1 One-sided recommendation: quality-weighted exposure

We prove here Proposition 2 of Section 3.3. The result shows that in some cases, compared to

any choice of the parameter ✓ 2 Θ of the welfare approach, quality-weighted exposure leads to the

undesirable behavior of decreasing user utility while increasing inequalities of exposure between

items. Figure A.1 gives an example.

Proposition 2. The following claims hold irrespective of the choice of uqua,� 2 Uqua
� .

For every d 2 N⇤ and every N 2 N⇤, there is a one-sided recommendation problem, with d+ 1

items and N(d+ 1) users, such that 8✓ 2 Θ, we have:

�
9� > 0,u✓N �L u

qua,�
N and u✓I �L u

qua,�
I

�
and lim

�!1

P
i2N uqua,�

iP
i2N u✓i

���!
d!1

5

6
.

Proof. We prove it for N = 1, the more general case is just obtained by repeating the pattern with

d+ 1 items and d+ 1 users.

Let i1, ..., id+1 be the indexes of the users and j1, ..., jd+1 the indexes of the items. The preferences

have the following pattern:

8k 2 Jd+ 1K, µikjk = 1 8k 2 JdK, µikjd+1
=

1

2

all other µij (for user i and item j) are set to 0 (note that we are in a problem with one-sided

preferences, which means µji = 1 for every item j and user i.

We consider a task with a single recommendation slot (v1 = 1, v2 = . . . = v|I| = 0). On that

problem, the optimal ranking for every ✓ 2 Θ is to show item jk to user ik, which leads to perfect

equality in terms of item exposure, and maximizes every user utility. It is thus leximin optimal for

both users and items for every ✓ 2 Θ.

Then, the qualities are equal to:

8k 2 JdK, qjk = 1 qjd+1
=

1

2
d+ 1

the target exposure is thus tjk = d+1
3
2d+1

for k 2 JdK and tjd+1
= (d+ 1)

1
2d+1
3
2d+1

.

Since the problem is symmetric in the users i1, ..., id, by the concavity of F qua
� (u(P )) with

respect to P , there is an optimal ranking described by a single probability p as:

8k 2 JdK, Pikjk = 1� p Pikjd+1
= p Pid+1jd+1

= 1
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Note that for such a P , 8k 2 JdK, uqua,�
ik

(P ) = 1� 1
2p, and it is clearr that there is � > 0 such that

p > 0, which then implies u✓ �L u
qua,�
N and u✓ �L u

qua,�
I .

Now, as � !1, p is such that exposure equals its target, which leads to the following equation:

dp+ 1 = (d+ 1)
1
2d+ 1
3
2d+ 1

.

We thus get p = d+1
d

d+2
3d+2 � 1

d ���!d!1
1
3 , which gives the result uqua,�

ik
(P ) = 1� 1

2p ���!
p! 1

3

5
6 .

Notice that similarly to Proposition 3, the result does not depend on the choice of uqua,� because

the sum of user utilities converges.

A.4.2 Reciprocal recommendation: equality of exposure

We now prove Proposition 3.

Proposition 3. For � > 0, let Ueq
� = argmaxu2U F�(u). The claim below holds irrespective of the

choice of ueq,� 2 Ueq
� . Let n � 5. There is a reciprocal recommendation task with n users such that:

8✓ 2 Θ,u✓, 9� > 0 : 8i 2 JnK, u✓i > ueq,�
i and lim

�!1

X

i2N

ueq,�
i = 0.

Proof. The example is given in Figure A.1. We still consider a recommendation task with a single

recommendation slot.

Let us rename the users by i1, i2, ..., i5. The preference patterns are µi1i2 = µi1i3 = 1 and

µi4i5 = 1. Apart from µij = µji, other µijs are 0. In this proof, we show that ueq,�
i1

= 2ueq,�
i2

for

every �, which implies that ueq,�
i1
����!
�!1

0 because 0 utility for every user is feasible. On this task,

the leximin ranking also maximizes the sum of users utilities (as shown in Figure A.1), so the

optimal ranking is the same for every ✓ 2 Θ, and every user has a two-sided utility of at least 1.5.

Since F�(u) is stricly Schur-concave for � > 0, i2 and i3 always have the same utility in an

optimal utility profile (because they play a symmetric role). i4 and i5 also have the same utility.

Note that the interest of i4 and i5 in that problem is to make it possible to recommend them to i1,

which has 0 value.

Similarly to the problem in one-sided recommendation, the only way to decrease the penalty

is to reduce the utility of i1, i4, i5. However, reducing the utility of i1 can only be done by either

recommending i4 or i5 to i1, or recommending i4/i5 to i2/i3. In all cases, decreasing i1’s utility

decreases i2/i3’s utilities.

More precisely, because of the symmetries and the concavity of F�(u(P )) with respect to P , for

every � > 0, there is an optimal ranking tensor described by three probabilities p, q, q0 such that:7

Pi1i2 =Pi1i3 =
1

2
p Pi2i1 =Pi3i1 =q Pi4i5 =Pi5i4 =q0

Pi1i4 =Pi1i5 =
1

2
(1� p) Pi2i3 =Pi2i4 =Pi2i5 =

1

3
(1� q) Pi4i1 =Pi4i2 =Pi4i3 =

1

3
(1� q0)

Pi3i2 =Pi3i4 =Pi3i5 =
1

3
(1� q) Pi5i1 =Pi5i2 =Pi5i3 =

1

3
(1� q0)

7Since there is a single recommendation slot, we identify Pij1 with Pij
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In all cases, the two-sided utility are

ui1(P ) = p|{z}
Pi1i2

µi1i2
+Pi1i3

µi1i3
user-side utility

+ 2q|{z}
Pi2i1

µi2i1
+Pi3i1

µi3i1
item-side utility

and ui2(P ) = q +
1

2
p

Thus, in an optimal ranking for F�(u), we must have ui1(P ) = 2ui2(P ). Equality, which is achieved

at � !1 can then only be at 0 utility for every user (since 0 is feasible).

The task used in the proof contains only 5 users. Any number of users can be added to the

group {i4, i5}, with a “complete” preference profile (µij = 1 for all pair i, j in that group).

The Lorenz efficiency of our welfare approach guarantees that it cannot exhibit the undesirable

behaviors of equality or quality-weighted exposure penalties described in Propositions 2 and 25.

A.4.3 Equality of exposure and quality-weighted exposure in reciprocal

recommendation

In one-sided recommendation with one-sided preferences, equality of exposure is the same as equality

of utility. More generally, let ej(P ) =
P

i2N Pijv the total exposure of item j. Equality of exposure

is defined by:

F expo
� (P ) =

X

i2N

ui(P )� �
vuut
X

j2I

⇣
ej(P )� |N |

|I|
kvk1

⌘2

In one-sided recommendation, parity of exposure is relatively well behaved because the exposure

target |N |
|I| kvk1 is constant. Driving towards equality can thus not lead to a decrease of the

total exposure budget, which was the problem with equality of utility in settings with two-sided

preferences (driving towards equality of utility leads to a decrease of total utility), as we described

in Section 3.3.

The formula allows us to extend parity of exposure in the next section and in our experiments,

since it is also valid in reciprocal recommendation. Likewise, the formula of quality-weighted

exposure that is also valid in reciprocal recommendation is given by:

F qua
� (P ) =

X

i2N

ui(P )� �
sX

j2I

⇣
ej(P )� qjE

Q

⌘2

.

The result below shows that equality of exposure and quality-weighted exposure lead to ineffi-

ciencies in reciprocal recommendation settings:

Proposition 25. For every n 2 N⇤, there is a reciprocal recommendation task with n users such

that:

8✓ 2 Θ, 9� > 0 : u✓ �L uexpo,� and u✓ �L uqua,� .

Moreover, lim
�!1

X

i2N

uexpo,�
i =

2

n

X

i2N

u✓i and lim
�!1

X

i2N

uqua,�
i =

2 + n

2n

X

i2N

usum
i .

Proof. An example of extreme case is with n users when there is a “leader” who is the only possible

match with other users. We consider a single recommendation slot. The preferences are:

8j 2 {2, . . . , n}, µ1j = µj1 = 1 8(i, j) 2 {2, . . . , n}2, µij = 0.
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A.5 A generic Frank-Wolfe algorithm for ranking

In this section, we present a general form of our algorithm presented in Section 3.4, as well as the

proofs of the claims.

Let F : Rn ! R, concave, and we want to find

P ⇤ 2 argmax
P2P

F (u(P )). (A.2)

Let hX |Y i = P
ijk XijkYijk be the dot product between three-way tensors, and let r(F �u)(P )

be the gradient of P 7! F (u(P )) taken at P , i.e., (r(F � u))ijk = @F�u
@Pijk

Starting from P (0) 2 P (in our experiments we always use a utilitarian ranking P (0) 2
argmaxP2P

Pn
i=1 ui(P )), the Frank-Wolfe algorithm alternates two steps for t � 1:

1. let P̃ 2 argmaxP2PhP |r(F � u)(P t�1)i
2. P (t) = (1� �(t))P (t�1) + �(t)P̃ with �(t) = 2

t+2

The stepsize 2
t+2 is from Clarkson [2010, Section 3], which avoids a line search and in our experiments

seemed to yield acceptable results. Irrespective of the step size, the fundamental results which

allows to use Frank-Wolfe in the setting of (A.2) are the two following lemmas:

Lemma 26. Recall that ui(P ) =
Pn

i=1 µij(Pij + Pji)v. Let @F
@ui

denote the derivative of F with

respect to its i-th argument and @F
@ui

(u(P )) the value of this derivative at u(P ).

Then, 8i 2 N , 8j 2 I, 8k 2 J|I|K, we have:

@F � u
@Pijk

(P ) =
⇣
µij

@F

@ui

�
u(P )

�
+ µji

@F

@uj

�
u(P )

�⌘
vk.

Proof. The result is a consequence of the chain rule:

@F � u
@Pijk

(P ) =
nX

p=1

@F

@up
(u(P ))

@up(P )

@Pijk

With

up(P ) =
nX

q=1

µpq

|I|X

r=1

(Ppqr + Pqpr)vk.

Thus @up(P )
@Pijk

= (µij {p=i} + µji {p=j})vk, which gives the desired result.

Lemma 27. Let A be an n⇥ n matrix with Aij 2 R (not necessarily non-negative). Let v 2 R
|I|

with non-negative and non-increasing entries, i.e., 8k 2 J|I|� 1K, vk � vk+1 � 0. Let K be the last

index such that vK > 0 (or K = |I| if there is no such index).

Let P 2 P such that:

8i, 8�i 2 S(Pi), 8(j, j0) 2 I2 :
⇣
�i(j)  K and �i(j) < �i(j

0) =) Aij � Aij0

⌘
.

And let X be the n⇥ n⇥ |I| tensor defined as Xijk = Aijvk.

Then P 2 argmaxP2PhP |Xi.
Moreover, if 8k 2 J|I|� 1K, vk > vk+1 � 0, then for every P 2 argmaxP2PhP |Xi, we have:

8i, 8�i 2 S(Pi), 8(j, j0) 2 I2 :
⇣
�i(j) < �i(j

0) =) Aij � Aij0

⌘
.

Proof. The result stems from the rearrangement inequality (also known as the Hardy-Littlewood in-

equality [Hardy et al., 1952]), which states that for two vectors a 2 R
n
+, and b 2 R

n, argmax⌫
Pn

j=1 a⌫(j)bj ,
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where ⌫ spans the permutations of JnK, is the set of permutations such that b is ordered similarly

to (a⌫(i))
n
i=1. If the aks are non-increasing, then every permutation that sorts b in decreasing

order is in the argmax. We need the reciprocal statement for the second part of our Lemma: if

the ais are strictly decreasing, then only the permutations that sort b in decreasing order are in

argmax⌫
Pn

j=1 a⌫(j)bj . Note that these arguments are well-known in learning to rank [see, e.g.,

Cossock and Zhang, 2008].

In our case, notice that

hP |Xi =
X

i2N

⇣X

j2I

AijPijkvk

⌘

The maximization over P can then be performed over each user i (and thus each bistochastic matrix

Pi separately). Now, if Pi is such that every �i 2 S(Pi) orders Aij in decreasing order, then by the

rearrangement inequality �i 2 argmax⌫
P

j2I Aijv⌫(j). Notice that if only the K first elements of v

are non-zero, we only need a top-K ranking. This gives us the first part of the thoerem.

The second part of the theorem follows from the reciprocal of the rearrangement inequality,

since for Pi to be an optimal stochastic ranking for
P

j2I AijPijkvk, every permutation �i in its

support must be in argmax⌫
P

j2I Aijv⌫(j).

A.5.1 Proof of Theorem 4

Lemma 26 and 27 together are sufficient to give algorithms for the inference of stochastic rankings

using our welfare function (3.1) and using the penalties of Section 3.3, by computing the partial

derivatives @F
@ui

. The main result of Section 3.4, which we prove now, instantiates this principle for

the welfare function approach:

Theorem 4. Let µ̃ij = Φ0
i

�
ui(P

(t))
�
µij + Φ0

j

�
uj(P

(t))
�
µji. Let P̃ such that:

8i 2 N , 8�̃i 2 S(P̃i): �̃i(j) < �̃i(j
0) =) µ̃ij � µ̃ij0 . Then P̃ 2 argmax

P2P
hP |rW (P (t))i.

Proof. Notice that with W (P ) = F (u(P )) =
Pn

i=1 Φi(ui(P )), then @F
@ui

(u(P )) = Φ0
i(ui(P )). By

Lemma 26, we have that hP |rF (P (ti) is of the form hP |Xi with Xijk = Aijvk with Aij = µ̃ij , so

the result is implied by Lemma 27.

A.5.2 Proof of Proposition 5

Proposition 5. Let B = max
i2JnK

kΦ00
i k1 and U = max

u2U
kuk22. Let K be the maximum index of a

nonzero value in v (or |I|). Then 8t � 1,W (P (t)) � max
P2P

W (P )�O(BU
t ). Moreover, for each user,

an iteration costs O(|I| lnK) operations and requires O(K) additional bytes of storage.

Proof. Note that P is a simplex over ranking tensors containing one deterministic ranking for each

user. Using [Clarkson, 2010, Section 3], the Frank-Wolfe algorithm with our step-size converges in

O
�
CW

t

�
, where, using [Clarkson, 2010, Equation 11] and denoting by r2W the Hessian of W , we

have

CW  sup
u,u02U
ũ2U

�1

2
(u� u0)>r2W (ũ)(u� u0)  B

2
sup

u,u02U

ku� u0k22  2BU.

where we used ku� u0k22  2 kuk22 + 2 ku0k22.
For the computation cost, we use Lemma 27, which is more precise than Theorem 4, to see that

finding the argmax only requires a top-K ranking. While technically any P 2 P should contain a

whole bistochastic matrix, it is not necessary to store a completion of the top-K rankings because
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they have no impact on the utility. As such, storing each P̃ only costs O(K) bytes per user, which

contain the indices of the top-K items in the ranking found by Theorem 2.

Computing the two-sided utilities costs O(|N ||I|), and thus O(|I|) per user. Moreover, comput-

ing the top-K ranking costs O(|I| lnK) in the worst case, with a streaming method that maintains

a min-heap of the top-K elements seen so far, and finish with sorting the top-K elements.

Notice that for faster average performance, the top-K sort can be performed using a fast selection

algorithm (such as quickselect), to obtain the top-K elements with O(|I|) expected time complexity,

and then sorting, yielding O(|I|+K lnK) expected time complexity per user at each iteration.
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A.6 Additional experimental results

Our experiments are fully implemented in Python 3.9 using PyTorch9. We provide the code as

supplementary material. We compare our welfare maximization approach with the fairness penalties

presented in Section 3.3.

We also compare ourselves to the algorithm FairRec from Patro et al. [2020] (referred to as

Patro et al. in the figures and description), who consider envy-freeness as user-side fairness criterion,

and max-min share of exposure as item-side fairness criterion. Envy-freeness states that every user

should prefer their recommendation list to that of any other user. The max-min exposure criterion

on the item side means that each user should receive an exposure of at least � E
|I| , where � is a

parameter allowing to control how much exposure is guaranteed to items. We vary this parameter

in our experiments to show the trade-offs achieved by Patro et al.. Since Patro et al. does not

produce rankings, we took the recommendation list with the given order as a ranked list.

A.6.1 One-sided recommendation: Lastfm-2k dataset

We describe in this section the details of the experiments presented in Section 3.5.1. We use

a dataset from the online music service Last.fm10. In the main paper, we presented results on

Lastfm-2k from Cantador et al. [2011] which contains real play counts of 2k users for 19k artists,

and was used by Patro et al. [2020] who also study two-sided fairness in recommendation. We

filter the top 2, 500 items most listened to. Following Johnson [2014], we pre-process the raw

counts with log-transformation. We split the dataset into train/validation/test sets, each including

70%/10%/20% of the user-item play counts. We create three different splits using three random

seeds. One-sided preferences are estimated using the standard matrix factorization algorithm11

of Hu et al. [2008] trained on the train set, with hyperparameters selected on the validation set

by grid search. The number of latent factors is chosen in [16, 32, 64, 128], the regularization in

[0.1, 1., 10., 20., 50.], and the confidence weighting parameter in [0.1, 1., 10., 100.]. The estimated

preferences we use are the positive part of the resulting estimates.

Rankings are inferred from these estimated preferences. The exposure weights we use in the

computation of utilities are the standard weights of the discounted cumulative gain (DCG) (also used

in e.g., Singh and Joachims [2018], Biega et al. [2018], Morik et al. [2020]): 8k 2 J|I|K, vk = 1
log2(1+k) .

For each ranking approach, the Frank-Wolfe algorithm is run with 5000 iterations to make sure we

are close to convergence, and the number of recommendation slots is set to 40.

We evaluate rankings on estimated preferences, considered as ground truth, following many works

on fair recommendation [Singh and Joachims, 2018, Patro et al., 2020, Wang and Joachims, 2020, Wu

et al., 2021b]. This is because the goal is to evaluate the fairness of ranking algorithms themselves,

rather than biases in preference estimates. All results are averaged over three random seeds. To ob-

tain various trade-offs, for welf we vary � in [0.001, 0.01, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.3, 0.325, 0.35]

and [0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0.95, 0.99, 0.999]. For Patro et al. we vary � in

[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] and [0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1],

and for other methods we vary � in [0.001, 0.005, 0.01, 0.015, 0.0175, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06]

and [0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 70, 100].

Item-side fairness Figure A.2 presents the various trade-offs achieved by each method in one-

sided recommendation, as discussed in Section 3.5.1. We observe that only qua.-weighted is unable

9http://pytorch.org
10https://www.last.fm/
11Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).
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same factor). Since both penalties drive towards equality, it is straightforward to show that the

results of Section 3.3 as � !1 also apply to D0(u).

A.8 Exposure constraints at the level of every ranking

The notions of fairness of exposure are sometimes defined with item-side constraints defined at the

level of every ranking [Singh and Joachims, 2018, Basu et al., 2020]. We give here the examples of

constraints for equality of exposure and quality-weighted exposure:

equality of
exposure P expo 2 argmax

P2P

X

i2N

ui(P ) u.c. 8(i, j) 2 N ⇥ I, Pijv =
kvk1
|I|

quality-weighted
exposure P qua 2 argmax

P2P

X

i2N

ui(P ) u.c. 8(i, j) 2 N ⇥ I, Pijv =
µij kvk1P
j02I µij0

The advantage of this formulation is that it leads to optimization problems that can be solved

locally for every user, since there is no dependency between user rankings through item utility

anymore.

However, applying the exposure criterion at the level of every ranking effectively applies a

different notion of fairness. In our setting, this corresponds to defining a separate recommendation

task for every user, i.e., taking |N | = 1. The welfare function then mediates, within a single ranking,

between the user utility and the utility of the different items.

When evaluated on exposures aggregated over all users, as we do in the paper, applying the

fairness constraints at the level of individual rankings can lead to drastic reductions of user utility for

no benefit in terms of total item exposure. This is summarized in the following result, which shows

that there exists problems for which the optimal rankings for every ✓ 2 Θ satisfy the constraints of

equality of exposure and quality-weighted exposure as we define them in Section 3.3, but when

applying the constraints at the level of every ranking, it has the effect of reducing user utility. In

the proposition, we use the notation of the objective function for parity of exposure F� and F qua
� of

Section 3.3.

Proposition 28. For every d 2 N⇤ and every N 2 N⇤, there is a one-sided recommendation task

with d+ 1 items and N(d+ 1) users such that, 8✓ 2 Θ:

8u✓ 2 argmaxu2U W✓(u), 8� > 0 we have: u✓ 2 argmax
u2U

F�(u) and u✓ 2 argmax
u2U

F qua
� (u), and

X

i2N

ui(P
expo) =

2

d+ 1

X

i2N

u✓i and
X

i2N

ui(P
qua) = (

1

2
+

1

d
)
X

i2N

u✓i .

In other words, applying the constraints at the level of every ranking might lead to a drastic

decrease of user utilities, even in tasks where satisfying the constraints on average over users (as we

do in this paper) does not conflict with the optimal ranking.

Proof. We describe the problem with N = 1, the general case is obtained by repeating the preference

pattern. Let us consider a task with d+ 1 users, d+ 1 items and a single recommendation slot. Let

i1, . . . , id+1 be the user indexes, and j1, . . . , jd+1 the item indexes. The preferences are defined as:

8k 2 Jd+ 1K, µikjk = 1 8j 6= jk, µikj =
1

d
.
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All items have the same quality. For every ✓ 2 Θ, u✓ is given by the utilitarian ranking, which gives

probability 1 to item jk for user ik, which leads to optimal user utility u✓i = 1 and equal exposure

to every item u✓j = 1. Since the quality is the same for all items (equal to 1 + d 1
d ), the ranking for

u✓ satisfies both equality of exposure and quality-weighted exposure constraints. Thus, for every

� > 0, u✓ 2 argmaxu2U F�(u) and u✓ 2 argmaxu2U F qua
� (u).

On the other hand, satisfying equality of exposure at the level of every ranking requires

P expo
ij = 1

d+1 for every user i and item j, which leads to ui(P
expo) = 1

d+1 + d⇥ 1
d ⇥ 1

d+1 = 2
d+1 for

every user.

For quality-weighted exposure for every ranking, it leads to:

8k 2 Jd+ 1K, P qua
ikjk

=
1

2
8j 6= jk, P

qua
ikj

=
1

d

and thus a user utility ui(P
qua) = 1

2 + d⇥ 1
d ⇥ 1

d = 1
2 + 1

d .

Notice that in the examples of the proof, the global exposure of items is constant in P expo and

P qua, as well as in the ranking given by optimal welfare. So from the point of view of our definitions

of utility, applying the constraints at the level of every ranking only decreased user utility for the

benefit of no items. Yet, we re-iterate that applying item-side fairness at the level of every ranking

might be meaningful in some contexts. The goal of this section is to highlight the difference between

using global and local definitions of item utilities.
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B.1 Related work

The non-contextual setting of bandits with concave rewards (bcr) has been previously studied by

Agrawal and Devanur [2014], and by Busa-Fekete et al. [2017] for the special case of Generalized

Gini indices. In bcr, policies are distributions over actions. These approaches perform a direct

optimization in policy space, which is not possible in the contextual setup without restrictions or

assumptions on optimal policies. Agrawal et al. [2016] study a setting of cbcr where the goal is to

find the best policy in a finite set of policies. Because they rely on explicit search in the policy

space, they do not resolve the main challenge of the general cbcr setting we address here. Cheung

[2019], Siddique et al. [2020], Mandal and Gan [2022], Geist et al. [2021] address multi-objective

reinforcement learning with concave aggregation functions, a problem more general than stochastic

contextual bandits. In particular, Cheung [2019] use a FW approach for this problem. However,

these works rely on a tabular setting (i.e., finite state and action sets) and explicitly compute

policies, which is not possible in our setting where policies are mappings from a continuous context

set to distributions over actions. Our work is the only one amenable to contextual bandits with

concave rewards by removing the need for an explicit policy representation. Finally, compared

to previous FW approaches to bandits with concave rewards, e.g. [Agrawal and Devanur, 2014,

Berthet and Perchet, 2017], our analysis is not limited to confidence-based exploration/exploitation

algorithms.

cbcr is also related to the broad literature on bandit convex optimization (BCO) [Flaxman

et al., 2004, Agarwal et al., 2011, Hazan et al., 2016, Shalev-Shwartz et al., 2012]. In BCO, the

goal is to minimize a cumulative loss of the form
PT

t=1 `t(⇡t), where the convex loss function `t is

unknown and the learner only observes the value `t(⇡t) of the chosen parameter ⇡t at each timestep.

Existing approaches to BCO perform gradient-free optimization in the parameter space. While

bcr considers global objectives rather than cumulative ones, similar approaches have been used in

non-contextual bcr [Berthet and Perchet, 2017] where the parameter space is the convex set of

distributions over actions. As we previously highlighted, such parameterization does not apply to

cbcr because direct optimization in policy space is infeasible.

cbcr is also related to multi-objective optimization [Miettinen, 2012, Drugan and Nowe, 2013],

where the goal is to find all Pareto-efficient solutions. (C)bcr, focuses on one point of the Pareto

front determined by the concave aggregation function f , which is more practical in our application

settings where the decision-maker is interested in a specific (e.g., fairness) trade-off.

In recent years, the question of fairness of exposure attracted a lot of attention, and has been

mostly studied in a static ranking setting [Geyik et al., 2019, Beutel et al., 2019a, Yang and
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Stoyanovich, 2017, Singh and Joachims, 2018, Patro et al., 2022, Zehlike et al., 2021, Kletti et al.,

2022a, Diaz et al., 2020, Do and Usunier, 2022, Wu et al., 2022b]. Existing work on fairness of

exposure in bandits focused on local exposure constraints on the probability of pulling an arm

at each timestep, either in the form of lower/upper bounds [Celis et al., 2018b] or merit-based

exposure targets [Wang et al., 2021a]. In contrast, we consider amortized exposure over time, in

line with prior work on fair ranking [Biega et al., 2018, Morik et al., 2020, Usunier et al., 2022],

along with fairness trade-offs defined by concave objective functions which are more flexible than

fairness constraints [Zehlike and Castillo, 2020, Do et al., 2021c, Usunier et al., 2022]. Moreover,

these works [Celis et al., 2018b, Wang et al., 2021a] do not address combinatorial actions, while ours

applies to ranking in the position-based model, which is more practical for recommender systems

[Lagrée et al., 2016, Singh and Joachims, 2018]. The methods of [Patil et al., 2020, Chen et al.,

2020] aim at guaranteeing a minimal cumulative exposure over time for each arm, but they also do

not apply to ranking. In contrast, [Xu et al., 2021, Li et al., 2019] consider combinatorial bandits

with fairness, but they do not address the contextual case, which limits their practical application

to recommender systems. [Mansoury et al., 2021a, Jeunen and Goethals, 2021] propose heuristic

algorithms for fairness in ranking in the contextual bandit setting, highlighting the problem’s

importance for real-world recommender systems, but they lack theoretical guarantees. Using our

FW reduction with techniques from contextual combinatorial bandits [Lagrée et al., 2016, Li et al.,

2016, Qin et al., 2014], we obtain the first principled bandit algorithms for this problem with

provably vanishing regret.

B.2 More on experiments

Our experiments are fully implemented in Python 3.9.

B.2.1 Ranking cbcr: Application to fairness of exposure in rankings

with bandit feedback

B.2.1.1 Details of the environment and algorithms

Environment Following [Patro et al., 2020] who also address fairness in recommender systems,

we use the Last.fm music dataset1 from [Cantador et al., 2011], which includes the listening

counts of 1, 892 users for the tracks of 17, 632 artists, which we identify as the items. For the first

environment, which we presented in Section 5.5 and which we call Lastfm-50 here, we extract the

top n = 50 users and m = 50 items having the most interactions. In order to examine algorithms

at larger scale, we also design another environment, Lastfm-2k, where we keep all n = 1.9k users

and the top m = 2.5k items having the most interactions. In both cases, to generate contexts and

rewards, we follow a protocol similar to other works on linear contextual bandits [Garcelon et al.,

2020b, Li et al., 2016]. Using low-rank matrix factorization with d0 latent factors2, we obtain user

factors uj 2 R
d0

and item factors vi 2 R
d0

for all j, i 2 JnK ⇥ JmK. We design the context set as

X = {flatten(ujv
|

i ) : j, i 2 JnK⇥ JmK} ⇢ R
d, where d = d02. At each time step t, the environment

draws a user jt uniformly at random from JnK and sends context xt = flatten(ujtv
|

i ). Given a

context xt and item i, clicks are drawn from a Bernoulli distribution: ct,i ⇠ B(u|

jt
vi).

We set k̄ = 10, and for the position weights, we use the standard weights of the discounted

cumulative gain (DCG): 8k 2 Jk̄K, bk = 1
log2(1+k) and bk̄+1, . . . , bm = 0.

1https://www.last.fm, the dataset is publicly available for non-commercial use.
2Using the Python library Implicit, MIT License: https://implicit.readthedocs.io/
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[Do et al., 2021c]:

(Gini) f item(s) =
mX

j=1

m� j + 1

m
s"j (eq. expo) f item(s) = � 1

m

vuuut
mX

j=1

0
@sj �

1

m

mX

j0=1

sj0

1
A

2

Since Gini is nonsmooth, we apply the FW-LinUCBRank algorithm for nonsmooth f with Moreau-

Yosida regularization, presented in Section 5.3.3 and detailed in Appendix B.6.1 (we use �0 = 1 in

our experiments). To compute the gradient of the Moreau envelope ft, we use the algorithm of Do

and Usunier [2022] which specifically applies to generalized Gini functions and top-k ranking.

We also study additive concave welfare functions [Do et al., 2021c, Moulin, 2003] where ↵ is a

parameter controlling the degree of redistribution of exposure to the worse-off items:

(Welf) f item(s) =

mX

j=1

s↵j , ↵ > 0

B.2.1.2 Additional results

We now present additional results, which are obtained by repeating each simulation with 10 different

random seeds.

Dynamics For the three objectives described, Figure B.1 represents the values of the user and

item objectives (left and middle), and the value of the objective f (right) over time, achieved by the

competing algorithms on Lastfm-50. We set � = 0.5 for all objectives and for welf, we set ↵ = 0.5.

We observe that with this value of �, the item objective f item is given more importance in f than

the user utility.

We observe that for Gini and welf, FW-LinUCBRank achieves the highest value of f across

timesteps. This is because unlike LinUCBRank, it accounts for the item objective f item. In both

cases, Unbiased-LinUCBRank achieves a high value of f over time but starts decreasing, after

104 iterations for Gini and 5.105 iterations for welf. This is because Unbiased-LinUCBRank is

not designed to converge towards an optimum of f . For eq. exposure, when � = 0.5, Unbiased-

LinUCBRank obtains surprisingly better values of f than FW-LinUCBRank. Therefore, depending

on the objective to optimize and the timeframe, Unbiased-LinUCBRank can be chosen as an

alternative to FW-LinUCBRank. However, due to its lack of theoretical guarantees, it is more

difficult to understand in which cases it may work, and for how many iterations. Furthermore,

unlike Unbiased-LinUCBRank, FW-LinUCBRank can be chosen to optimise a wide variety of

functions by varying the tradeoff parameter � in all objectives, and ↵ in welf to control the degree

of redistribution. Unbiased-LinUCBRank does not have such controllability and flexibility.

Figure B.2 shows the objective values for Gini and welf on Lastfm-2k. We observe similar results

where FW-LinUCBRank converges more quickly than its competitors (⇡ 5, 000 iterations for Gini

and ⇡ 500 iterations for welf) and obtains the highest values of f. For the first 105 iterations of

optimizing Gini, Unbiased-LinUCBRank obtains significantly lower values than FW-LinUCBRank

on welf.

Fairness trade-off for fixed T On the larger Lastfm-2k dataset, we study the tradeoffs between

user utility and item inequality obtained by FW-LinUCBRank and FairLearn on Figure B.3 after

T = 106 rounds. The Pareto frontiers are obtained as follows: FW-LinUCBRank optimises for Gini,

in which we vary �, and for FairLearn we vary the constraint value c at fixed ↵ = 1. Figure 5.1 in

Section 5.5 of the main paper illustrated the same Pareto frontier but for 5⇥ more iterations and
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Environments Since the Spotify dataset of Mehrotra et al. [2020] is not publicly available, we

only focus on their simulated, controlled environments. We reproduced these environments exactly

as described in Appendix A of their paper. For completeness, we restate the protocol here: we draw

a hidden parameter ✓ 2 R
D⇥d uniformly at random in [0, 1], and each element of a context-arm

vector xt,k is drawn from N ( 1d ,
1
d2 ). Given a context xt and arm kt, the D-dimensional reward is

generated as a draw from N (✓xt,kt
, 0.01(✓xt,kt

)2). We choose d = 10 in the data generation and

� = 0.1 in the Ridge regression, as recommended by Mehrotra et al. [2018].

In Section 5.5 of the main body, we varied the number of objectives D 2 {5, 20} and set K = 50.

Here we also experiment with K = 200 to see the effect of varying the number of arms. The GGF

weights are set to wj =
1

2j�1 . Each simulation is repeated with 100 different random seeds.

Results The extended results, with more arms and algorithms, are depicted in Figure B.4. We

observe that FW-✏-greedy achieves similar performance to the baseline MOLinCB, with small

exploration ✏ = 0.01. FW-SquareCB also achieves comparable performance to MOLinCB when

there is little exploration, i.e. with �0 = 104 rather than 103. This is coherent with our observation

in Section 5.5 that FW-LinUCB obtains better performance when there is very little exploration

on this environment from Mehrotra et al. [2018]. Note that there is no forced exploration in their

algorithm MOLinCB. Overall, we obtain qualitatively similar results when K = 200 compared to

K = 50.

B.3 Proofs of Section 5.2

In this section we give the missing details of Section 5.2. For completeness, we remind the definitions

of Lipschitz-continuity and super-gradients in the next subsection. Then, we start in Section B.3.2

the analysis of the structure of the set S defined in Section 5.3 of the main paper, and more precisely

its support function g 7! maxs2S g|s. This contains new lemmas that are fundamental for the

analysis throughout the paper, in particular in the proof of Lemma 32, which is given in Section

B.3.3.

B.3.1 Brief reminder on Lipschitz functions and super-gradients

We remind the following definitions. Let D and D0 be two integers, and f a function f : RD ! R
D0

.

We have:

• (Lipschitz continuity) f is L-Lipschitz continuous with respect to k.k2 on a set Z ✓ R
D if

8z, z0 2 Z, kf(z)� f(z0)k2  L kz � z0k2 .

• (super-gradients) If f : RD ! R[{±1}, a super-gradient of f at a point z 2 R
D where f(z) 2 R

is a vector g such that for all z0 2 R
D, f(z0)  f(z) + hg | z0 � zi.

We remind the following results when f : RD ! R [ {±1} is a proper closed concave function:

• f has non-empty set of super-gradients at every point z where f(z) 2 R,

• if f is L-Lipschitz on Z ✓ R
D and Z is open, then for every z 2 Z and every super-gradient g of

f at z, we have kgk2  L.

The assumption of Lipschitz-continuity of f on a set Z implicitly implies the assumption that Z is

in the domain of f .
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Remark 4 (About our Lipschitzness assumptions). We use Lipschitzness over an open set con-

taining K in Assumption A because we use boundedness of the super-gradients of f . In fact, a more

precise alternative would be to require that super-gradients are bounded uniformly on K by L. We

choose the Lipschitz formulation because we believe it is more natural.

As a side note, in assumption B, we use Lipschitzness of the gradients on K, not on an open set

containing K. This is because smoothness in used in the ascent lemma (see Eq. B.5), which uses

Inequality 4.3 of Bottou et al. [2018], the proof of which directly uses Lipschitz-continuity of the

gradients on K [Bottou et al., 2018, Appendix B], without relying on an argument of boundedness

of gradients.

B.3.2 Preliminaries: the structure of the set S

We denote by x1:T = (x1, . . . , xT ) a sequence of contexts of length T . Let

S =

⇢
Ex⇠P

⇥
µ(x)⇡(x)

⇤����⇡ : X ! A

�

8x1:T 2 X T ,S(x1:T ) =

⇢
1

T

TX

t=1

µ(xt)⇡(xt)

����⇡ : X ! A

�

It is straightforward to show that S(x1:T ) =

⇢
1
T

PT
t=1 µ(xt)⇡t

����(⇡1, . . . ,⇡T ) 2 A
T
�

. These sets are

particularly relevant because of the following equality, for every f : RD ! R [ {±1}:

f⇤ = sup
⇡:X!A

f
⇣
Ex⇠P

⇥
µ(x)⇡(x)

⇤⌘
= sup

s2S
f(s) (B.1)

and f+
T = sup

(⇡t)t2JTK2A
T

f
⇣ 1

T

TX

t=1

µ(xt)⇡t

⌘
= sup

s2S(x1:T )

f(s).

We study in this section the structure of these sets. We provide here the part of Assumption A

that is relevant to this section:

Assumption Ã. A is a compact subset of RK and there is a compact convex set K ✓ R
D such

that 8(x, a) 2 X ⇥A, µ(x)a 2 K.

We remind the following basic results from convex sets in Euclidian spaces that we use throughout

the paper without reference:

Lemma 29. Let A be a compact subset of RK . We have:

• [Rockafellar and Wets, 2009, Corollary 2.30] The convex hull A of a, denoted by A, is compact.

• For every w 2 R
K ,max

a2A
w|a = max

a2A
w|a.

The following lemma allows us to use maxima instead of suprema over S and S(x1:T ). The

proof of this lemma is deferred to Appendix B.10.1.

Lemma 30. Under Assumption Ã, S is compact and 8T 2 N⇤, 8x1:T 2 X T ,S(x1:T ) is compact.

The next result regarding the support functions of S and S(x1:T ) is the key to our approach:

Lemma 31. Let w 2 R
D and T 2 N⇤. Under Assumption Ã, we have

Ex1:T⇠PT

h
max

s2S(x1:T )
w|s

i
= max

s2S
w|s.
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Moreover, for every � 2 (0, 1], we have with probability at least 1� �:

max
s2S(x1:T )

w|s  max
s2S

w|s+ kwk2 DK

r
2 ln ��1

T
.

The inequality max
s2S

w|s  max
s2S(x1:T )

w|s+ kwk2 DK

r
2 ln ��1

T
also holds with probability 1� �.

Proof. The first result is a direct consequence of the maximization of linear functions over the

simplex. Using (B.1) with f(s) = w|s and the linearity of expectations, we have

max
s2S

w|s = max
⇡:X!A

Ex⇠P

⇥
w|µ(x)⇡(x)

⇤
.

The optimal policy given w, denoted by ⇡w is thus obtained by optimizing for every x the dot

product between w|µ(x) 2 R
K and ⇡(x) 2 A ✓ R

K . Since, for each x, it is a linear optimization,

we can find an optimizer in A (see Lemma 29), which gives:

max
s2S

w|s = Ex⇠P

⇥
w|µ(x)⇡w(x)| {z }

⌘w(x)

⇤
where ⇡w(x) 2 argmax

a2A
w|µ(x)a,

where in the equation above we mean that ⇡w is a measurable selection of x 7! argmaxa2A w|µ(x)a.

For the same reason, we have max
s2S(x1:T )

w|s =
1

T

TX

t=1

⌘w(xt). We obtain

Ex1:T⇠PT

h
max

s2S(x1:T )
w|s

i
= Ex1:T⇠PT

h 1
T

TX

t=1

⌘w(xt)
i
= Ex⇠P

⇥
⌘w(x)

⇤
= max

s2S
w|s.

which is the first equality.

For the high-probability inequality, let Xt = ⌘w(xt) � Ex⇠P

⇥
⌘w(x)

⇤
. Since the (xt)t2JT K are

independent and identically distributed (i.i.d.), the variables (Xt)t2JT K are also i.i.d., and we have

|Xt|  w|

⇣
µ(xt)⇡

w(xt)| {z }
2K

�Ex⇠P

⇥
µ(x)⇡w(x)

⇤
| {z }

2K

⌘
 kwk2 DK and E

⇥
Xt

⇤
= 0.

Given � 2 (0, 1], Hoeffding’s inequality applied to 1
T

PT
t=1 Xt gives, with probability at least 1� �:

max
s2S(x1:T )

w|s�max
s2S

w|s =
1

T

TX

t=1

Xt  kwk2 DK

r
2 ln ��1

T
.

The reverse equation is obtained by applying Hoeffding’s inequality to � 1
T

PT
t=1 Xt.

B.3.3 Proof of Lemma 32

Lemma 32. Under Assumption A, 8T 2 N⇤, 8� 2 (0, 1], we have, with probability at least 1� �:

���f+
T � f⇤

���  LDK

s
2 ln 4e2

�

T
where f+

T = max
(⇡1,...,⇡T )2A

T
f
⇣ 1

T

TX

t=1

µ(xt)⇡t

⌘
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We also have, with probability 1� � over contexts, actions, and rewards:

��f(sT )� f(ŝT )
��  LDK

r
2 ln(2e2��1)

T
where sT =

1

T

TX

t=1

µ(xt)at.

The first statement shows that the performance of the optimal non-stationary policy over T

steps converges to f⇤ at a rate O(1/
p
T ). Furthermore, measuring the algorithm’s performance by

expected rewards instead of observed rewards would also amount to a difference of order O(1/
p
T ).

This choice would lead to what is commonly referred to as a pseudo-regret. Since the worst-case

regret of bcr is Ω(1/
p
T ) [Bubeck and Cesa-Bianchi, 2012], the previous lemma shows that the

alternative definitions of regret would not substantially change our results.

Proof. We start with the first inequality.

We first prove that w.p. greater than 1� �/2, we have f+
T  f⇤ + LDK

q
2 ln 2

�

T .

Since f is continuous on K and since S ✓ K and S is compact by Lemma 30, there is

s⇤ 2 S such that f⇤ = f(s⇤). Similarly, since S(x1:T ) is compact, there is s⇤T such that f(s⇤T ) =

maxs2S(x1:T ) f(s). Using (B.1), we need to prove that with probability at least 1� �/2, we have

f(s⇤T )  f(s⇤) + LDK

q
2 ln 2

�

T .

Using the concavity of f , let g⇤ be a supergradient of f at s⇤. We have

f(s⇤T )  f(s⇤) + hg⇤ | s⇤T � s⇤i
 f(s⇤) + max

s2S(x1:T )
hg⇤ | s� s⇤i

=) w.p. � 1� �/2 : f(s⇤T )  f(s⇤) + max
s2S
hg⇤ | s� s⇤i

| {z }
0 by def. of s⇤

+ kg⇤k2 DK

s
2 ln 2

�

T
(by Lemma 31)

 f(s⇤) + LDK

s
2 ln 2

�

T
. (by the Lipschitz assumption)

We now prove f⇤  f+
T + LDK

q
2 ln 4e2

�

T with probability at least 1� �/2.
Let ⇡⇤ 2 argmax⇡:X!A f

⇣
Ex⇠P

⇥
µ(x)⇡(x)

⇤⌘
(an optimal policy exists by Lemma 30). Denote

by (Xt = µ(xt)⇡
⇤(xt))t2JT K a sequence of independent and identically distributed random variables

obtained by sampling xt ⇠ P .

We have |Xt � EXt|  DK and EXt = s⇤. By the Lipschitz property of f , we obtain

f(s⇤)  f(
1

T

TX

t=1

Xt) + L k[k
i 1
T

TX

t=1

Xt � s⇤

2

.

Using the version of Azuma’s inequality for vector-valued martingale with bounded increments of

Hayes [2005, Theorem 1.8] to obtain, for every ✏ > 0:

P

⇣ 1

DK
k[k

i 1
T

TX

t=1

Xt � s⇤

2

� ✏
⌘
 2e2e�T ✏2/2.

Setting �
2 = 2e2e�T ✏2/2 and solving for ✏ gives, with probability at least 1� �/2:

f⇤  f(
1

T

TX

t=1

Xt) + LDK

s
2 ln 4e2

�

T
 f+

T + LDK

s
2 ln 4e2

�

T
.
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For the second inequality: using L-Lipschitzness of f , the inequality is a direct consequence of

the lemma below, which is itself a direct consequence of [Hayes, 2005, Theorem 1.8].

In the following lemma and its proof, we use the two following filtrations:

• F = (Ft)t2N⇤
where Ft is the �-algebra generated by (x1, a1, r1, . . . , xt�1, at�1, rt�1, xt),

• F = (FT )T2N⇤
where FT is the �-algebra generated by (x1, a1, r1, . . . , xt�1, at�1, rt�1, xt, at).

Our setup implies that the process (at)t2N⇤
is adapted to F while (rt)t2N⇤

is adapted to F.

Lemma 33. Under Assumption A, if the actions (a1, . . . , aT ) define a process adapted to (FT )T2N,

then, for every T 2 N, for every �, with probability 1� �, we have:

ksT � ŝT k2  DK

s
2 ln 2e2

�

T

Proof. Let XT =
PT

t=1 rt � µ(xt)at. We have kXT �XT�1k2  DK, and (XT )T2N is a martingale

adapted to (FT )T2N satisfying X0 = 0. We can then use the version of Azuma’s inequality for

vector-valued martingale with bounded increments of Hayes [2005, Theorem 1.8] to obtain, for

every ✏ > 0:

P

⇣
k[k

iXT

DK 2

� ✏
⌘
 2e2e�✏

2/(2T ).

Solving for ✏ gives the desired result.

B.4 The general template Frank-Wolfe algorithm

Algorithm 6: Generic Frank-Wolfe algorithm for cbcr.

input: initial point z0 2 K, Approx. RLOO confidence parameter �0

1 for t = 1 . . . T do
2 Observe xt ⇠ P
3 Pull at ⇠ A(ht, xt, �

0) // Explore/exploit step
4 Observe reward rt 2 K, update temporal average of observed rewards ŝt
5 Let ⇢t = U(ht+1, �

0) // Generic Frank-Wolfe update
6 Update zt = zt�1 +

1
t

�
⇢t � zt�1

�

7 end

A more general framework The analysis of the next sections is done within a more general

famework than that of the main paper, which is described in Algorithm 6. Similarly to the main

paper, the action is drawn according to at ⇠ A(ht, xt, �
0) (Line 3 of Alg. 6). However, we allow

for a generic choice of Frank-Wolfe iterate with respect to which we compute (an extension of)

the scalar regret (presented in (B.2) below). The update direction is denoted by ⇢t and is chosen

according to a function U(ht+1, �
0), a companion function from A(ht, xt, �

0). Note that the update

direction is chosen given ht+1 = (ht, (xt, at, rt)), the history after the actions and rewards have

been taken.

The proofs of the main paper apply to the special case of Alg. 6 where 8t � 1, ⇢t = rt.

We then have the FW iterate zt in Line 6 of the algorithm satisfy 8t � 1, zt = ŝt.

The reason we study this generalization is to show how our analysis applies in cases where

the FW iterate is not the observed reward. In prior work on (non-contextual) bcr, Agrawal and
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Devanur [2014, Algorithm 4] use an upper-confidence approach and use the upper confidence on the

expected reward as update direction. The generalization made by introducing U(ht+1, �
0) compared

to the main paper allows for our analysis to encompass their approach.

We need to update Assumptions A and B to account for the fact that ⇢t is used in place of rt.

Assumption A0. f is closed proper concave on R
D and A is a compact subset of RK . Moreover,

there is a compact convex set K ✓ R
D such that

• (Bounded rewards and iterates) For all t 2 N⇤, rt 2 K and ⇢t 2 K with probability 1.

• (Local Lipschitzness) f is L-Lipschitz continuous with respect to k.k2 on an open set containing

K.

Assumption B0. Assumption A0 holds and f has C-Lipschitz-continuous gradients w.r.t. k.k2 on

K.

In Assumption A we added µ(xt)at 2 K for clarity, but it is not necessary since µ(xt)at 2 K

with probability 1 is implied by rt 2 K with probability 1. The difference between Assumption

A0 and Assumption A is to make sure that the updates ⇢t, and thus the iterates zt belong to K

and are in the domain of definition of f . Notice that in the special case of ⇢t = rt, Assumption

A0 reduces to Assumption A and, similarly, Assumption B reduces to Assumption B0. We use the

term smooth as a synonym of Lipschitz-continuous gradients.

Analysis for (possibly) non-smooth objective functions We are going to present a single

analysis that encompasses both the case where f is smooth (Assumption B of the main paper),

and the case where f may not be smooth, which we briefly discussed in Section 5.3.3. In order

for our analysis to be agnostic to the type of smoothing used and to also encompass the case

where f is smooth, we propose the following assumption, where (ft)t2N is a sequence of smooth

approximations of f :

Assumption E. Assumption A0 holds and 9(�0, L,M1,M2) 2 R
4
+ such that (ft)t2N satisfy:

1. 8t 2 N, ft : R
D ! R [ {±1} is proper closed concave on R

D,

2. 8t 2 N, ft is differentiable on K with supz2K krft(z)k2  L, and ft is
p
t+1
�0

-smooth on K,

3. 8t 2 N⇤, 8z 2 K, |ft(z)� ft�1(z)|  M1

t
p
t

and |ft(z)� f(z)|  M2p
t
.

Notice that any function f satisfying Assumption B with coefficient of smoothness C satisfies

Assumption E with �0 = 1/C, M1 = M2 = 0. Regarding non-smooth f , we discuss in more details

in Appendix B.6 specific methods to perform this smoothing, including the Moreau envelope used

in Section 5.3.3.

The generalization of the scalar regret takes into account both the approximation functions

(ft)t2N and the general update zt:

Rgen
T =

TX

t=1

max
a2A
hrft�1(zt�1) |µ(xt)ai �

TX

t=1

hrft�1(zt�1) | ⇢ti+ LT kzT � ŝT k2 . (B.2)

The general regret bound then takes the following form, where we distinguish between smooth and

non-smooth f . Recall that C̃ = CD2
K/2.

Theorem 34. Under Assumptions B0, using 8T 2 N, fT = f .

For every T 2 N, every z0 2 K, every � > 0, Algorithm 6 satisfies, with probability at least 1� �:

RT 
Rgen

T + LDK

q
2T ln 1

�
+ C̃ ln(eT )

T
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Theorem 35. Under Assumptions E, for every z0 2 K, every T � 1 and every � > 0, Algorithm 6

satisfies, with probability at least 1� �:

RT 
Rgen

T

T
+

D2
K

�0
+ 4M1 + 2M2 + LDK

q
2 ln 1

�p
T

The proofs are given in Appendix B.5.

The worst-case regret of contextual bandits is Ω(
p
T ) [Bubeck and Cesa-Bianchi, 2012, Dani

et al., 2008, Lattimore and Szepesvári, 2020], which gives a lower bound for the worst-case regret of

cbcr in Ω( 1p
T
). The dependencies on the problem parameters are all directly derived from the

regret bounds Rgen
T of the underlying scalar bandit algorithm (LinUCB, SquareCB, etc.). Therefore

we obtain cbcr algorithms that are near minimax optimal as soon as Rgen
T  O(

p
T ). The residual

terms O( 1p
T
) terms are tied to the use of Azuma’s inequality (Lemma 36) and FW analysis (using

Lipschitz and smoothness parameters), and the dependencies to these parameters match usual

convergence guarantees in optimization [Jaggi, 2013, Clarkson, 2010, Lan, 2013]. As we rely on

a worst-case analysis in deriving our reduction guarantees, it remains an open question whether

problem-dependent optimal bounds could be recovered as well.

We make three remarks in order:

Remark 5 (Why we need a specific result for smooth f). The result for C-smooth f has a

better dependency than the general result using �0 = 1/C (ln(eT ) instead of
p

T ), which makes a

fundamental difference in practice if the smoothness coefficient is close to
p
T . This is why we keep

the two results separate.

Remark 6 (Comparison to the smoothing as used by Agrawal and Devanur [2014]). Agrawal and

Devanur [2014, Thm 5.4] present an analysis for non-smooth f where, at a high-level, they run the

smooth algorithm using fT instead of a sequence (ft)t2N, and then apply the convergence bound for

smooth f . Our analysis has two advantages:

1. Anytime bounds: our approach does not require the horizon to be known in advance.

2. Better bound: they obtain a bound on
p
lnT/T by suitably choosing the smoothing parameter,

whereas we obtain a bound of 1/
p
T . In practice, it may not make a difference if

Rgen
T

T is itself inp
lnT/T , but the advantage of our approach is clear as far as the analysis of FW for (c)bcr is

concerned.

Remark 7 (About the confidence parameter �0 in A(ht, xt, �
0) and U(ht+1, �

0)). In practice,

exploration/exploitation algorithms need a confidence parameter that defines the probability of

their regret guarantee. For instance, in confidence-based approaches, it is the probability with

which the confidence intervals are valid at every time step. In our case, it means that explicit

upper bounds on Rgen
T are of the form R

gen
(T, �0) which hold with probability 1 � �0, where �0is

the confidence parameter in A(ht, xt, �
0). Using the union bound, we obtain bounds of the form

RT  R
gen

(T, �0)/T +O
�q ln(1/�)

T

�
that are valid with probability 1� � � �0.

Note the difference in the roles of � and �0: � is not a parameter of the algorithm, it is only

here to account for the randomization over contexts.

B.5 Proofs for Section 5.3 and Appendix B.4

This section contains the proofs for the results of Section 5.3. All the proofs are made for the more

general framework described in Appendix B.4. The framework of the paper can be recovered as the

special case 8t 2 N, ⇢t = rt and zt = ŝt.
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Proof of Lemma 12. Lemma 12 is the special case of Lemma 36 when f is smooth. Note that every

f satisfying Assumption A satisfies the assumptions of Lemma 36.

Proof of Theorem 13. Thm. 13 is a special case of Theorem 34 of Appendix B.4, using 8t 2 N, ⇢t =

rt and zt = ŝt. The proof of Theorem 34 is given in Section B.5.1.

Lemma 36. Assume that 8T, fT is differentiable on K with 8z 2 K, krfT (z)k2  L. Then, for

every z 2 K, we have:

Ex⇠P

⇥
max
a2A
hrft�1(z) |µ(x)ai

⇤
= max
⇡:X!A

Ex⇠P

⇥
hrft�1(z) |µ(x)⇡(x)i

⇤
= max

s2S
hrft�1(zt�1) | si.(B.3)

Assume furthermore that zt is a function of contexts, actions and rewards up to time t. Let

a⇤t 2 argmax
a2A

hrft�1(zt�1) |µ(xt)ai. For all � 2 (0, 1], with probability at least 1� �, we have:

TX

t=1

max
s2S
hrft�1(zt�1) | s� µ(xt)a

⇤
t i  LDK

r
2T ln

1

�
(B.4)

Proof. Let z 2 K. We first prove (B.3). The first equality in (B.3) comes from the maximization

over functions over the simplex with a linear objective: define

⇡⇤
t : X 7! A such that ⇡⇤

t (x) 2 argmax
a2A

hrft�1(zt�1) |µ(x)ai,

using some arbitrary tie-breaking rule when the argmax is not unique. We have, for every policy ⇡:

Ex⇠P

⇥
hrft�1(z) |µ(x)⇡(x)i

⇤
 Ex⇠P

⇥
max
a2A
hrft�1(z) |µ(x)ai

⇤

=) max
⇡:X!A

Ex⇠P

⇥
hrft�1(z) |µ(x)⇡(x)i

⇤
 Ex⇠P

⇥
hrft�1(z) |µ(x)⇡

⇤
t (x)i

⇤
.

On the other hand, it is clear that

Ex⇠P

⇥
hrft�1(z) |µ(x)⇡

⇤
t (x)i

⇤
 max
⇡:X!A

Ex⇠P

⇥
hrft�1(z) |µ(x)⇡(x)i

⇤
,

and we get the first equality of (B.3).

The second equality in (B.3) holds by the definition of S since for every policy ⇡, we have

Ex⇠P

⇥
hrft�1(z) |µ(x)⇡(x)i

⇤
= hrft�1(z) |Ex⇠P

⇥
µ(x)⇡(x)

⇤
i.

We now prove (B.4). Let
�
Et

⇥
.
⇤�

t�1
be the conditional expectations with respect to the filtration

eF = (eFt)t�1 where Ft is the �-algebra generated by (x0
t, a

0
t, r

0
t)t02Jt�1K, i.e., contexts, actions and

rewards up to time t� 1, so that we have:

Et

⇥
hrft�1(zt�1) |µ(xt)⇡

⇤
t (xt)i

⇤
= Ex⇠P

⇥
hrft�1(zt�1) |µ(x)⇡

⇤
t (x)i

⇤
.

Using (B.3) gives Et

⇥
hrft�1(zt�1) |µ(xt)⇡

⇤
t (xt)i

⇤
= max

s2S
hrft�1(zt�1) | si, from which we obtain

max
s2S
hrft�1(zt�1) | s� µ(xt)a

⇤
t i

= Et

⇥
hrft�1(zt�1) |µ(xt)⇡

⇤
t (xt)i

⇤
� hrft�1(zt�1) |µ(xt)⇡

⇤
t (xt)i

XT =
PT

t=1 maxs2Shrft�1(zt�1) | s � µ(xt)a
⇤
t i thus defines a martingale adapted to F, and,
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using X0 = 0, we have, for all t:

|Xt �Xt�1|  L sup
s2S
x2X
a2A

ks� µ(x)ak2  L sup
z,z02K

kz � z0k2  LDK.

The results then follows from Azuma’s inequality.

The next lemma is the main technical tool of the paper. The proof is not technically difficult

given the previous result, using the telescoping sum approach of the proof of Lemma 12 of Berthet

and Perchet [2017] and organizing the residual terms.

Lemma 37. Under Assumption E, denote 8t 2 N, f⇤
t = max

s2S
ft(s), and R̃t(z) = f⇤

t � ft(z).

Let C(T ), F
⇤
(T ) in R [ {+1} such that, 8T 2 N⇤, we have:

TX

t=1

D2
K

2

Ct�1

t
 C(T ),

TX

t=1

t
�
R̃t(zt)� R̃t�1(zt)

�
 F

⇤
(T )

And let B(T ) = C(T ) + F
⇤
(T ). Then, for all z0 2 K, 8T, 8� > 0, 8�0 > 0, Algorithm 6 satisfies,

with probability at least 1� �:

f⇤
T � fT (ŝT ) 

B(T ) +Rgen
T + LDK

q
2T ln 1

�

T

Proof. We start with the standard ascent lemma using bounded curvature on K [Bottou et al.,

2018, Inequality 4.3], denoting C̃
T
=

D2
K

2 CT :

ft�1(zt) � ft�1(zt�1) +
1

t
hrft�1(zt�1) | ⇢t � zt�1i �

C̃
t�1

t2

f⇤
t�1 � ft�1(zt)  f⇤

t�1 � ft�1(zt�1)�
1

t
hrft�1(zt�1) | ⇢t � zt�1i+

C̃
t�1

t2

Let us denote by gt = rft�1(zt�1) and let a⇤t 2 argmaxa2Ahgt |µ(xt)ai. We first decompose the

middle term:

hgt | ⇢t � zt�1i = max
s2S
hgt | s� zt�1i �max

s2S
hgt | s� µ(xt)a

⇤
t i � hgt |µ(xt)a

⇤
t � ⇢ti

� f⇤
t�1 � ft�1(zt�1)�max

s2S
hgt | s� µ(xt)a

⇤
t i

| {z }
↵t

�hgt |µ(xt)a
⇤
t � ⇢ti| {z }

⇢t

(by (B.5) below)

Where the last inequality uses the concavity of ft: for all s⇤t�1 2 argmaxs2S ft�1(s), we have:

f⇤
t�1 � ft�1(zt�1)  hrft�1(zt�1) | s

⇤
t�1 � zt�1i  max

s2S
hrft�1(zt�1) | s� zt�1i (B.5)

and thus we get

f⇤
t�1 � ft�1(zt) 

�
f⇤
t�1 � ft�1(zt�1)

�
(1� 1

t
) +

1

t
(↵t + ⇢t) +

C̃
t�1

t2

=) tR̃t(zt)  (t� 1)R̃t�1(zt�1) + ↵t + ⇢t +
C̃

t�1

t
+ t

�
R̃t(zt)� R̃t�1(zt)

�

=) TR̃T (zT ) 
TX

t=1

↵t +

TX

t=1

⇢t +

TX

t=1

t
�
R̃t(zt)� R̃t�1(zt)

�
+

TX

t=1

C̃
t�1

t

177



Chapter B. Appendix of Chapter 5

Using the Lipschitz property for fT , we finally obtain

TR̃T (ŝT ) 
TX

t=1

↵t +

TX

t=1

⇢t + TL kzT � ŝT k2
| {z }

LDK

p
2T ln(1/�)+Rgen

T

w.p. �1�� by (B.2) and Lemma 36.

+

TX

t=1

t
�
R̃t(zt)� R̃t�1(zt)

�

| {z }
F

⇤
(T )

+

TX

t=1

C̃
t�1

t
| {z }
C(T )

Which is the desired result.

B.5.1 proofs of the main results

We now prove the results of Appendix B.4.

Proof of Theorem 34. First, notice that since f differentiable on K (since it is smooth) and since

both zT and 1
T

PT
t=1 µ(xt)at are in K, using 8t, ft = f , we have RT = f⇤ � f(ŝT ) = f⇤

T � fT (ŝT ).

Using the notation of Lemma 37, we then have C(T ) = 0 and D(T ) = 0. Also:

TX

t=1

D2
K

2

Ct

t
=

TX

t=1

C̃

t
 C̃(ln(t) + 1)

The result then follows from Lemma 37.

Proof of Theorem 35. Using the notation of Lemma 37, we specify C(T ), F
⇤
(T ) in turn.

TX

t=1

D2
K

2

Ct�1

t
=

TX

t=1

D2
K

2�0
p
t
 D2

K

�0

p
T .

For F
⇤
(T ), we decompose R̃t(zt)� R̃t�1(zt) into two terms:

R̃t(zt)� R̃t�1(zt) = f⇤
t � f⇤

t�1 + ft�1(zt)� ft(zt) 
2M1

t
p
t

Using
PT

t=1
1p
t
 2
p
T , we obtain F

⇤
(T )  2M1

PT
t=1

t
t
p
t
 4M1

p
T . Lemma 37 gives

f⇤
T � fT (ŝT )  Rgen

T +

D2
K

�0
+ 4M1 + LDK

p
2 ln(��1/2)

p
T

(B.6)

To finish the proof, notice that:

��f⇤ � f(ŝT )�
�
f⇤
T � fT (ŝT )

���  2 sup
z02K

|fT (z
0)� f(z0)|  2M2p

T
. (B.7)

The result follows from (B.6) and (B.7) using:

RT = f⇤ � f(ŝT )  f⇤
T � fT (ŝT ) +

2M2p
T

.

B.6 Smooth approximations of non-smooth functions

We discuss here in more details two specific smoothing techniques: the Moreau envelope, also called

Moreau-Yosida regularization in Section B.6.1, then randomized smoothing in Section B.6.2. As in
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Appendices B.4 and B.5, we focus on the general framework described in Algorithm 6.

Proof of Theorem 14. Usinh Theorem 35 above and Lemma 39 below gives the result since

D2
K

�0
+ 4M1 + 2M2 =

D2
K

�0
+ 3L2�0 = LDK

�DK

L�0
+ 3

L�0
DK

�
.

B.6.1 Smoothing with the Moreau envelope

For functions that are non-smooth, we propose first a smoothing technique based on the Moreau

envelope, following the approach described by Lan [2013]. Let f : RD ! R [ {±1} be a closed

proper concave function. The Moreau envelope (or Moreau-Yosida regularization) of f with

parameter �T [Rockafellar and Wets, 2009, Def. 1.22] is defined as

f̃�(z) = max
y2RD

⇣
f(y)� 1

2�
ky � zk22

⌘
.

For � > 0, let the proximal operator prox� = argmaxy2RD f̃�(y). The basic properties of the

Moreau envelope [Rockafellar and Wets, 2009, Th. 2.26] are that if f : RD ! R [ {±1} is an

upper semicontinuous, proper concave function then f̃� is concave, finite everywhere, continuously

differentiable with 1
�
-Lipschitz gradients. We also have that the proximal operator prox� is

well-defined (the argmax is attained in a single point) and we have

rf̃�(z) =
1

�

�
z � prox�(z)

�
.

It is immediate to prove the following inequalities for every z 2 R
n and every � > 0:

f(z)  f̃�(z)  f(prox�(z)).

The following properties of the Moreau envelope (See [Yurtsever et al., 2018, Appendix A.1]

and [Thekumparampil et al., 2020b, Lemma 1]) are key to the main results:

Lemma 38. Let � > 0, f : RD ! R [ {±1} be a proper closed concave function, and Z ✓ R
D be

a convex set such that f is locally L-Lipschitz-continuous on Z. Then:

• 8z 2 Z such that prox�(z) 2 Z, we have
��z � prox�(z)

��  L� and:

f̃�(z)�
L2�

2
 f(z)  f̃�(z).

• 8z 2 Z such that prox�(z) 2 Z, 8� > 0 and �0 > 0, we have:

f̃�  f̃�0 +
1

2

⇣ 1

�0 �
1

�

⌘
k[k

⇤
z � prox�(z)

2

2
 L2�

2

⇣ �
�0 � 1

⌘

We reformulate the lemma above in the language of Appendix B.4:

Lemma 39. Under Assumption A, assuming furthermore that f is L-Lipschitz on R
D.

Let ft = f̃�t
with �t =

�0p
t+1

. Then f and (ft)t2N satisfy Assumption E with the corresponding

values of �0 and L, M2 = L2�0

2 and M1 = L2�0

2 .

Proof. By Lemma 38, ft is L-Lipschitz on R
D for every t, and we have M2 = L2�0

2 . Moreover,

Lemma 38 also gives 0  ft�1(z)� ft(z)  L2�0

2t (
p
t+ 1�

p
t)  L2�0

2t
p
t
. and thus M1 = L2�0

2 .
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B.6.2 Randomized smoothing

We now describe the randomized smoothing technique [Lan, 2013, Nesterov and Spokoiny, 2017,

Duchi et al., 2012, Yousefian et al., 2012], which consists in convolving f with a probability density

function Λ. Following Lan [2013] who combines Frank-Wolfe with randomized smoothing for

nonsmooth optimization, we present our results with Λ as the random uniform distribution in

the `2-ball {z 2 R
D : kzk2  1} . Let � > 0 and ⇠ a random variable with density Λ. Then the

randomized smoothing approximation of f is defined as:

f�(z) := EΛ[f(x+ �⇠)] =

Z

RD

f(x+ �y)Λ(y)dy. (B.8)

Following [Lan, 2013, Duchi et al., 2012], we abuse notation and take the “gradient” of f inside

integrals and expectation below, because f is almost-everywhere differentiable since it is concave.

We restate the following well-known properties of randomized smoothing (see e.g., [Yousefian et al.,

2012, Lemma 8]):

Lemma 40. Let � > 0 and f� be defined as in Eq. (B.8).

• 8z 2 K, f(z)  f�(z)  f(z) + L�.

• f� is L-Lipschitz continuous over K.

• f� is continuously differentiable and its gradient is L
p
D
�

-Lipschitz continuous.

• 8z 2 K,rf�(z) = E[rf(z + �⇠)].

We obtain the following results, stated in the language of Theorem 35 of Appendix B.4.

Lemma 41. Under Assumption A, assuming furthermore that f is L-Lipschitz on R
D.

For t � 1, let ft = f�t
with �t =

D
1
4 DKp
t+1

, and let �0 =
p
DDK

L .

Then f and (ft)t2N satisfy Assumption E with the corresponding values of �0 and L, M2 =

LD
1
4DK and M1 = 2LD

1
4DK.

Proof. By Lemma 40, ft is L-Lipschitz on R
D for every t, so that ft has L-bounded gradient.

Moreover, with this definition of �0, ft is
p
t+1
�0

-smooth.

We have M2 = LD
1
4DK because:

|ft(z)� f(z)| = |E[f(z + �t⇠)]� E[f(z)]|  E[|f(z + �t⇠)� f(z)|]  E[kL�t⇠k2] 
LD

1
4DKp
t

We also have M1 = 2LD
1
4DK because:

|ft�1 � ft|  E[|f(x+ �t�1⇠)� f(x+ �t⇠)|]  L |�t�1 � �t|E[k⇠k2]

= LD
1
4DK(

1p
t
� 1p

t+ 1
)  2LD

1
4DK

t
3
2

.

B.7 FW-LinUCB: upper-confidence bounds for linear ban-

dits with K arms

In this section, we have:
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Algorithm 7: FW-linUCB: linear cbcr with K arms.

input : �0 > 0,� > 0, ŝ0 2 K V0 = �IdD, y0 = 0dD, ✓̂0 = 0dD

1 for t = 1, . . . do
2 Observe context xt ⇠ P , xt 2 R

d⇥K

3 gt  rft�1(ŝt�1), x̃t  [gt,0xt; . . . ; gt,Dxt]

4 8i 2 JKK, ût,i  ✓̂
|

t�1x̃t,i + ↵t

�
�0

2

�
kx̃t,ikV �1

t�1
// see (B.10) and (B.11) for def. of k.kV �1

t�1
and

↵t.
5 at  argmaxa2A ûta
6 Observe reward rt, let r̃t = g|t rt
7 Update ŝt  ŝt�1 +

1
t (rt � ŝt�1)

8 Vt  Vt�1 + (x̃tat)(x̃tat)
|, yt  yt�1 + r̃tx̃tat and ✓̂t  V �1

t yt // regression

9 end

• a finite action space A which is the canonical basis of RK , i.e., we focus on the multi-armed

bandit setting

• X ✓ R
d⇥K , where d is the dimension of the feature space. Given x 2 X , the feature representation

of arm a 2 A is given by the matrix-vector product xa,

• Given a matrix ✓ 2 R
D⇥d, we denote by k✓kF the frobenius norm of ✓, i.e., k✓kF = kflatten(✓)k2.

In addition, we make here the following linear assumption on the rewards:

Assumption F. There is ✓ 2 R
D⇥d such that k✓kF  D✓ such that 8x 2 X , µ(x)a = ✓xa.

Moreover, there is DX > 0 such that sup
x2X
a2A

kxak2  DX .

We perform the analysis under Assumption E, which is the more general we have. In particular,

we assume that we have access to a sequence (ft)t2JT K of smooth approximations of f . We focus on

the special case of Algorithm 6 that is described in the main paper, i.e., where ⇢T = rt.

The algorithm. As hinted in Section 5.3.2, FW-LinUCB applies the LinUCB algorithm [Abbasi-

Yadkori et al., 2011], designed for scalar-reward contextual bandits with adversarial contexts and

stochastic rewards, to the following extended rewards and contexts, where we use [.; .] to denote the

vertical concatenation of matrices and gt = rft�1(ŝt�1):

• x̃t 2 R
Dd⇥K is the extended context with entries x̃t = [gt,0xt; . . . ; gt,Dxt] 2 R

Dd⇥K , so that the

feature vector of action a at time t is x̃ta;

• r̃t = g|t rt is the scalar observed reward,

• ✓̃ = flatten(✓) 2 R
dD is the ground-truth parameter vector and µ̃(x) = ✓̃|x̃t is the average reward

function.

Notice that under assumption A and F, denoting

eX =
�
[gt,0xt; . . . ; gt,Dxt] : kgk2  L, x 2 X

 
and D eX = max

x̃2 eX
a2A

kx̃ak2 , (B.9)

we have 8t, x̃t 2 eX with probability 1 and D eX  LDX . Moreover, |r̃t � µ̃(xt)at|  LDK, which

implies in particular that for every t 2 JT K, r̃t is LDK/2-subgaussian.

Given this notation, the FW-LinUCB algorithm is LinUCB applied to the scalar-reward bandit

problem above. The algorithm is summarized in Algorithm 7 for completeness, where � is the

regularization parameter of the ridge regression, ✓̂t is the current regression parameters, the matrix

Vt and the vector yt are incremental computations of the relevant matrices to compute ✓̂t. The
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crucial part of the algorithm is Line 3 which defines an upper confidence bound on µ̃(xt)a, denoted

by ût 2 R
K and defined by:

8i 2 JKK, ût,i = ✓̂
|

t�1x̃t,i + ↵t(�
0/2) kx̃t,ikV �1

t�1
where kx̃t,ikV �1

t�1
=
q
x̃|

t,iV
�1
t�1x̃t,i,(B.10)

and ↵t is defined according to Theorem 2 of Abbasi-Yadkori et al. [2011]:

↵t(�
0) =

LDK

2

s

dD ln
⇣1 + TD2

eX /�

�0

⌘
+
p
�D✓. (B.11)

Under Assumption E, we have with probability � 1� �0/2: 8t 2 N⇤, ûta � µ̃(xt)a [Abbasi-Yadkori

et al., 2011, Theorem 2].

The result. Let d̃ = dD. The regret bound of LinUCB [Abbasi-Yadkori et al., 2011, Theorem 3]

and Azuma inequality give:

Theorem 42. Under Assumption E, for every T 2 N⇤, for every �0 > 0, Algorithm 7 satisfies,

with probability at least 1� �0:

Rscal
T 4

q
T d̃ log(1 + TD eX /d̃)

⇣p
�D✓ +

LDK

2

q
2 ln(2/�0) + d̃ ln

�
1 + TD eX /(�d̃)

�⌘

+ LDK

p
2 ln(2/�0).

Proof. Recall that as noted in (5.3) We decompose the scalar regret Rscal
T into a pseudo regret and

a residual term:

Rscal
T =

TX

t=1

max
a2A

µ̃(x̃t)
|a�

TX

t=1

µ̃(x̃t)
|at

| {z }
pseudo-regret

+
TX

t=1

�
µ̃(x̃t)

|at � r̃t
�

| {z }
Xt

The pseudo-regret term is bounded using Theorem 3 by Abbasi-Yadkori et al. [2011]. The result

applies as-is, except that they assume rewards |✓|x̃t|  1, which is not the case here. The bound is

still valid without changes, as in our case we have |maxa2A µ̃(x̃t)
|a� µ̃(x̃t)

|at|  LDK. The steps

in the proof where they use the assumption |✓|x̃t|  1 is below Equation 7 [Abbasi-Yadkori et al.,

2011, Appendix C], which in our notation and our assumption can be written as:

max
a2A

µ̃(x̃t)
|a� µ̃(x̃t)

|at  min
⇣
2↵t(�

0/2) kx̃tatkV �1
t�1

, LDK

⌘

 2↵t(�
0/2)min(kx̃tatkV �1

t�1
, 1)

where the first inequality comes from Abbasi-Yadkori et al. [2011] and the second one is true in

our case because 2↵t(�
0) � LDK. From here on, the proof of Abbasi-Yadkori et al. [2011]’s regret

bound follows the same as the original result.4 Theorem 3 from Abbasi-Yadkori et al. [2011] gives

us the first term of the regret bound of the theorem, which is true with probability at least 1� �0/2
in our case because we use ↵t(�

0/2).

For the rightmost term, let F =
�
Ft

�
t2N⇤

be the filtration where Ft is the �-algebra generated by

(x1, a1, r1, . . . , xt�1, at�1, rt�1, xt, at). Then (Xt)t2N⇤
is a martingale difference sequence adapted to

F with |Xt|  LDK. By Azuma’s inequality, we have
PT

t=1 Xt  LDK

q
2Tk ln 2

�0
with probability

4In short, they have different bounds, one involving the varance of rt and the other one involving average rewards
µ̃(x̃). We assume rewards rT are uniformly bounded in K, so we do not have to deal with two different quantities in
our bounds and have LDK everywhere.
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Algorithm 8: FW-SquareCB: contextual bandits with concave rewards and regression oracles

input : initial point ŝ0 2 K, exploration parameters (�t)t2N. A is the canonical basis of RK .
1 for t = 1 . . . do
2 Observe xt ⇠ P
3 Compute µ̂t(xt) using RegSq // see (B.12)
4 Let gt = rft�1(ŝt�1) and µ̂

t
= g|t µ̂t(xt) 2 R

K

5 Let at 2 argmax
a2A

µ̂|

t
a and µ̂⇤

t
= µ̂

t
at // use arbitrary tie breaking rule

6 Let 8a 2 A,At(a) =

8
><
>:

1

K+�t

�
µ̂⇤

t
�µ̂|

t
a
� if a 6= at

1�P
a2A
a 6=at

At(a) if a = at
// Exploration/exploitation step

7 Draw at ⇠ At // Action taken at time step t

8 Observe reward rt and update ŝt = ŝt�1 +
1
t (rt � ŝt�1)

9 end

1� �0/2. The final result holds using a union bound.

Bound of Table 5.1. The bound is obtained by keeping the main dependencies in T, d̃, L and DK,

ignoring the dependencies in � and D✓, and using the fact that D eX  LDK (as described below

(B.9)).

B.8 FW-SquareCB: cbcr with general reward fuctions

The SquareCB algorithm was recently proposed by Foster and Rakhlin [2020] for zero-regret

contextual multi-armed bandit with general reward functions, based on the notion of online regression

oracles. They propose, for single-reward contextual bandits with adversarial contexts and stochastic

rewards, a generic randomized exploration scheme that delegates learning to an online regression

algorithm. Their exploration/exploitation strategy then has (bandit) regret bounded as a function

of the online regret of the regression algorithm. In this section, we extend the SquareCB approach

to the case of cbcr. The main interest of this section is that by building on the work of Foster

and Rakhlin [2020], we obtain at nearly no cost an algorithm for general reward functions for

multi-armed cbcr problems.

This section shows how to extend this algorithm to our setting of concave rewards. To simplify

the notation, we consider the case of finite K with atomic actions, i.e., |A| = K. Our algorithm is

based on an oracle for multi-dimensional regression RegSq, which provides approximate values for

µ:

8T, 8x 2 X , µ̂T (x) = RegSq
�
x, (x1, a1, r1, . . . , aT�1, rT�1)

�
. (B.12)

The key assumption is that the problem is realizable and that RegSq has bounded regret:

Assumption G. There is a function T 7! Roracle(T ) 2 R, non-decreasing in T ,5 and Φ, a class

of functions from X to R
D⇥K such that, for every T 2 N:

1. (Realizability) µ 2 Φ,

5Monotonicity of Roracle is not required in [Foster and Rakhlin, 2020]. We use it in (B.14) below to deal with
time-dependent γt. Meaningful Roracle(T ) are non-decreasing with T since they bound a cumulative regret.
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2. (Regret bound) For every (xt, at, rt)t2JT K,2 (X ⇥A⇥K)T , we have:

TX

t=1

k[k
⇤
µ̂t(xt)at � rt

2
2 � inf

�2Φ

TX

t=1

k[k
⇤
�(xt)at � rt

2
2  Roracle(T ).

3. For every (xt, at, rt)t2JT K 2 (X ⇥A⇥K)T , µ̂T (xT )aT 2 K.

Assumption G is the counterpart for multidimensional regression of Assumptions 1 and 2a of

Foster and Rakhlin [2020], which are the basis of the original SquareCB algorithm.

Remark 8 (The “informal” assumption used in Table 5.1). Notice that in Table 5.1, we describe

an “informal” version of this assumption, which reads
PT

t=1 k[k
⇤
µ̂t(xt)at � µ(xt)at

2
2  Roracle(T ),

which is the counterpart for multi-dimensional regression of Assumption 2b by Foster and Rakhlin

[2020]. Our choice in the table was to simplify the presentation, as this assumption is shorter. Our

analysis is also valid under this alternative assumption. Our proofs are made under Assumption G

because it is more widely applicable (more discussion of these assumptions can be found in [Foster

and Rakhlin, 2020]).

Algorithm 8 describes how SquareCB principles apply to our framework. We use the framework

of the main paper, or, equivalently, the special case of Algorithm 6 where 8t 2 N, ⇢t = rt and

zt = ŝt. Note that the algorithm is parameterized by (�t)t2N⇤
instead of the desired confidence

level �0 to make the analysis more general. Theorem 43 gives a formula for �t as a function of the

desired confidence �0. As for the previous sections, we describe the algorithm for the general case of

smooth approximations of f , using rft�1 rather than rf in Line 4 of the algorithm.

At time step t, the regression oracle provides an estimate of µ(xt), then the algorithm computes

At, with a larger probability for the action which maximizes a 7! hrf(ŝt�1) | µ̂t(xt)ai. The exact

formula for these probabilities At follow the original SquareCB algorithm, with the exception that

we use an iteration-dependent �t instead of a constant �.6

The main result of this section is the following (see Section B.8.2 and the next section for

intermediate lemmas):

Theorem 43. Let �0 > 0. For every t 2 N⇤, let �t = 2
L

r
tK

Roracle(t)+8D2
K ln 4t2

�0

. Then, under

Assumptions E and G, Algorithm 8 satisfies, with probability at least 1� �0 :

Rgen
T  4L

r
KT

�
Roracle(T ) + 8D2

K ln
4T 2

�0
�
+ LDK

r
2T ln

2

�0

Recall that Assumption B is a special case of E when ⇢t = rt, as we are here. Thus, the bound

on Rgen
T is the same irrespective of whether we use the algorithm for smooth f (in which case

Rscal
T = Rgen

T ) or with smooth approximations (in which case Rscal,sm
T = Rgen

T ). This is because only

the Lipschitzness of (ft)t2N is used in the analysis of Rgen
T for FW-SquareCB.

The following result is a direct corollary of Theorem 43, and gives the order of magnitude we

obtain for smooth f . Obtaining a similar for smooth approximations of f , using Theorem 35 instead

of Theorem 34 is straightforward.

Proof of the FW-SquareCB regret bound of Table 5.1. We apply the bound obtained by Theorem

6Throughout the paper, we chose to provide anytime bounds rather than bounds that depend on horizon-dependent
parameters. The analysis with fixed γ is easier.
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43 within the bound of Theorem 34, using �0 := 2�/3 and � := �/3. We obtain:

RT 
4L

q
KT

�
Roracle(T ) + 8D2

K ln 12t2

�

�
+ 2LDK

q
2T ln 3

�
+ C̃ ln(eT )

T
.

The bound given in the theorem uses the sub-additivity of
p
. to group the terms in

p
ln ��1 for

better readability.

The proof of Theorem 43 is decomposed into two subsections: in the next subsection, we make

the necessary adaptations to the SquareCB analysis to account for multi-dimensional regression.

This proof follows essentially the same steps as the original analysis of SquareCB. There are only

two changes:

• We use multi-dimensional regression instead of scalar regression, while we need to bound a scalar

regret. There is an additional step to go from the scalar regret to the multi-dimensional regression,

but it turns out there is no added difficulty (see first line of the proof of Lemma 46).

• For coherence with the overall bounds of the paper, we use an anytime analysis using an increasing

sequence of (�t)t2JT K, instead of a fixed exploration parameter � that needs be tuned for a specific

horizon determined a priori. This introduces a bit more difficulty, where the main tool is Lemma

47. Our choice of anytime bound is more for coherence in the presentation of the paper than an

intended contribution.

Nonetheless, what we gain with our anytime bound is that the exploration parameter � does not

depend on a fixed horizon. What we lose, however, is that we need a high-probability bound on

cumulative errors based on Roracle(t) that is valid for every t (see Lemma 46), while the “fixed

gamma” case only requires this bound to hold for the horizon T . This is the reason for the lnT

factor in our bound, which is not present in the original paper.

In the next sections, we use the following notation:

gt = rft�1(ŝt�1), µ
t
= g|t µt(xt), µ⇤

t
= max

a2A
µ
t
a,

µ̂
t
= g|t µ̂t(xt), µ̂⇤

t
= max

a2A
µ̂
t
a.

B.8.1 Adaptation of SquareCB proof to cbcr

In the SquareCB paper, Foster and Rakhlin [2020] study high probability bounds on a different type

of regret, based on average rewards associated to the actions µ(xt)at rather than observed rewards

rt. However, this difference has little influence since we can start with the following inequality,

which is similar to [Foster and Rakhlin, 2020, Lemma 2].

Lemma 44. Under Assumption E, for every T 2 N⇤, every �0 > 0, Algorithm 8 satisfies

TX

t=1

�
µ⇤
t
� g|t rt

�


TX

t=1

Ea⇠At

⇥
µ⇤
t
� µ|

t
a
⇤
+ LDK

p
2T ln(1/�0).

Proof. The proof is by Azuma’s inequality. Let F = (Ft)t2N⇤
be the filtration where Ft is the �-

algebra generated by (x1, a1, r1, . . . , xt�1, at�1, rt�1, xt), and let us denote XT =
PT

t=1 Ea⇠At

⇥
µ|

t
a
⇤
�

g|t rt. Then, (XT )T2N is a martingale adapted to filtration F and satisfies |Xt �Xt�1|  LDK. We

obtain the result by noticing that XT =
PT

t=1

�
µ⇤
t
� g|t rt

�
�PT

t=1 Ea⇠At

⇥
µ⇤
t
� µ|

t
a
⇤

and applying

Azuma’s inequality to XT .

Notice that the difference between [Foster and Rakhlin, 2020, Lemma 2] and our Lemma 44 is that
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we consider the randomization over actions and rewards, while they only consider the randomization

over actions because they study average rewards. However, since it does not change the upper

bound on the variations of the martingale, this additional randomness does not change the bound.

The next step is the fundamental step in the proof of the original SquareCB algorithm. Even

though the notation differ slightly from the original paper, the proof is the same as in [Foster and

Rakhlin, 2020, Appendix B]:

Lemma 45. [Foster and Rakhlin, 2020, Lemma 3] For every t 2 N⇤, the choice of �t and A(ht, xt, �
0)

of Algorithm 8 guarantees:

Ea⇠At

⇥
µ⇤
t
� µ|

t
a
⇤
 2K

�t
+
�t

4
Ea⇠At

⇥�
µ̂|

t
a� µ|

t
a
�2⇤

.

The last step of these preliminary lemmas is to relate the cumulative expected error to the

oracle regret bound. We use here the same proof as [Foster and Rakhlin, 2020, Lemma 2]. We then

have:

Lemma 46. Under Assumption E, for every �0 > 0, Algorithm 8 satisfies, w.p. at least 1� �0:

8T 2 N⇤,
TX

t=1

Ea⇠At

⇥�
µ̂|

t
a� µ|

t
at
�2⇤  2L2Roracle(T ) + 16L2D2

K ln
2T 2

�0

Proof. We first notice that
PT

t=1 Ea⇠At

⇥�
µ̂|

t
a� µ|

t
at
�2⇤  L2

PT
t=1 Ea⇠At

⇥
k[k

⇤
µ̂(xt)a� µ(xt)a

2
2

⇤
.

We then apply the same steps as in the proof of [Foster and Rakhlin, 2020, Lemma 2] to
PT

t=1 Ea⇠At

⇥
k[k

⇤
µ̂(xt)a� µ(xt)a

2
2

⇤
(which we do not reproduce here) to obtain: for every ev-

ery T 2 N, every �0T > 0, with probability at least 1� �0T :

TX

t=1

Ea⇠At

⇥�
µ̂|

t
a� µ|

t
at
�2⇤  2L2Roracle(T ) + 16L2D2

K ln
1

�0T

Let �0 > 0. Applying a union bound and taking �0t =
�0

2t2 so that
PT

t=1 �
0
t  ⇡2

12 �
0  �0, we obtain

the desired result.

Notice the log T factor in the bound, which appears because the bound is valid for all time steps.

This is because we propose anytime convergence bounds, with the exploration parameter that

decreases with time, whereas [Foster and Rakhlin, 2020] only prove their result in the case where

the exploration parameter is chosen for a specific horizon.

As the main first step for the final result, we need these two lemmas which are the main technical

steps to our anytime bound. The proof is deferred to Appendix B.10.2

Lemma 47. Let (�t)t2N 2 R
T
+ be a sequence of non-negative numbers, denote ΛT =

PT
t=1 �t and

let (ΛT )T2N such that 8T 2 N,ΛT > 0 and ΛT � ΛT .

TX

t=1

�tp
Λt

 2

q
ΛT .

We get the following corollary

Lemma 48. Let R0
oracle(T, �

0) = 2L2Roracle(T ) + 16L2D2
K ln 2T 2

�0
. Under the conditions of Lemma

46, assume that there is �0 > 0 such that 8t 2 JT K, �t = �0

q
t

R0

oracle(t,�
0) . Then, for every �0 > 0,
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Algorithm 8 satisfies, w.p. at least 1� �0:

TX

t=1

�tEa⇠At

⇥�
µ̂|

t
a� µ|

t
a
�2⇤  2�0

q
TR0

oracle(T, �
0). (B.13)

Proof. Using �t  �0
q

T
R0

oracle(t,�
0) , the sum on the left hand side of (B.13) has the form of Lemma

47 multiplied by �0
p
T , with probability 1� �0 by Lemma 46. The result thus follows from applying

both Lemmas.

B.8.2 Final result

Proof of Theorem 43. Notice that the value of �t given in the theorem is equal to

�t = 2

s
2tK

R0
oracle(t, �

0/2)
.

Using this formula, we have

TX

t=1

2K

�t
=

r
K

2

TX

t=1

r
R0

oracle(t, �
0/2)

t

r

R0
oracle(T, �

0/2)K

2

TX

t=1

1p
t

(B.14)


q
2KTR0

oracle(T, �
0/2).

Where the first line comes from the monotonicity of Roracle(T ) of Assumption G.

Using Lemmas 45 and 48, we thus have, with probability 1� �0/2:

TX

t=1

Ea⇠At

⇥
µ⇤
t
� µ|

t
a
⇤
 2

q
2KTR0

oracle(T, �
0/2).

Using a union bound and Lemma 44, we obtain, with probability at least 1� �0:

TX

t=1

�
µ⇤
t
� g|t rt

�
 2

q
2KTR0

oracle(T, �
0/2) + LDK

r
2T ln

2

�0
.

B.9 FW-LinUCBRank: cbcr for fair ranking with linear con-

textual bandits

In this section and following the previous sections, we analyze Algorithm 9 under Assumption E,

which is more general than the bound proposed in the main paper, which used Algorithm 3 under

Assumption B. The only difference in the algorithms is the use of ft�1 instead of f in Line 4 of

Algorithm 9. This allows us to provide the algorithm for both smooth and non-smooth objective

functions f .

The bound is decomposed into two parts: we describe the results for online regression within

our observation model for ranking in the next subsection. Then we dive into the final result.
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Algorithm 9: FW-linUCBRank: linear contextual bandits for fair ranking.

input : �0 > 0,� > 0, ŝ0 2 K V0 = �Id, y0 = 0d, ✓̂0 = 0d

1 for t = 1, . . . do
2 Observe context xt ⇠ P

3 8i, v̂t,i  ✓̂
|

t�1xt,i + ↵t

�
�0

3

�
kxt,ikV �1

t�1
// UCB on vi(xt), see Lem. 49 for def. of ↵t

4 at  top-k{ @ft�1

@zm+1
(ŝt�1)v̂t,i +

@ft�1

@zi
(ŝt�1)}

m
i=1 // FW linear optimization step

5 Observe exposed items et 2 {0, 1}m and user feedback ct 2 {0, 1}m

6 Update ŝt  ŝt�1 +
1
t (rt � ŝt�1)

7 Vt  Vt�1 +

mX

i=1

et,ixt,ix
|

t,i, yt  yt�1 +

mX

i=1

ct,ixt,i and ✓̂t  V �1
t yt // regression

8 end

B.9.1 Results for online linear regression (from [Li et al., 2016])

Even though our linear contextual bandit setup is different from e.g., [Lagrée et al., 2016] for

ranking, the availability of the feedback et,i, which tells us whether item i has been exposed, makes

the analysis of the online linear regression similar to the general setup of linear bandits. Our

approach builds on the confidence intervals developed by Li et al. [2016], which expands the analysis

of confidence ellipsoids for linear regression of Abbasi-Yadkori et al. [2011] to cascade user models

in rankings.

Each ct,i is 1
2 -subgaussian (because Bernoulli), and is conditionally independent of the other

random variables conditioned and on et,i and xt,i. The incremental linear regression of line 7 of

Algorithm 9 is the same as [Abbasi-Yadkori et al., 2011]. Our observation model satisfies the

conditions of the analysis of confidence ellipsoids of Li et al. [2016], from which we obtain:

Lemma 49. Under the probabilistic model described in Section 5.4, and under Assumption C. Let

�0 > 0 and � � D2
Xk, and let

↵T (�
0) =

1

2

s
ln

✓
det(VT )

V0�02

◆
+
p
�D✓.

Then, under Assumption C and with the notation of Algorithm 9, we have:

• ( [Li et al., 2016, Lemma 4.2]) with probability � 1� �0, for all T � 0, ✓ lies in the confidence

ellipsoid:

CT = {✓̃ 2 R
d :

���✓̂T � ✓̃
���
VT

 ↵T (�
0)}

• ( [Li et al., 2016, Lemma 4.4]):

↵T (�
0)  1

2

s

2 ln

✓
1

�0

◆
+ d ln

✓
1 +

TD2
Xk

�d

◆
+
p
�D✓.

These results stem from [Li et al., 2016, Lemma A.4 and A.5] that claim that, with the

assumptions of Lemma 49, the following inequality holds with probability 1:

TX

t=1

mX

i=1

kxt,ik2V �1
t�1

et,i  2 ln
detVT

det(V0)
 2d ln

⇣
1 +

TD2
Xk

�d

⌘
.

Notice that terms equivalent to DX and D✓ do not appear in [Li et al., 2016] because they

assume they are  1. The D2
X term comes from a modification necessary in [Li et al., 2016, Lemma
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A.4] while D✓ is required by the initial confidence bound proved by Abbasi-Yadkori et al. [2011].

The term k plays the constant C� of [Li et al., 2016].

B.9.2 Guarantees for FW-LinUCB

We start by writing an alternative to Assumption D for the case where f is not smooth to carry

out our analysis with as little assumptions on f as possible:

Assumption D0. The assumptions of the framework of Sec. 5.4 hold, as well as Ass. E. Moreover,

8t 2 N, 8z 2 K @ft
@zm+1

(z) > 0, and 8x 2 X , 1 � b1(x) � . . . � bk(x) = . . . = bm(x) = 0.

Lemma 50. Under Assumptions D0 and C Let T > 0, �0 > 0 and � � D2
Xk. Then for every �0 > 0,

Algorithm 9 satisfies, with probability at least 1� �0:

Rgen
T  2L↵T (�

0/3)
p
Tk

0
@
r
2 ln(

3

�0
) +

s

2d ln

✓
1 +

TD2
Xk

�d

◆1
A+ LDK

r
2T ln

3

�0
.

where ↵T is defined in Lemma 49.

Proof. Let gt = rft�1(ŝt�1), and a⇤t 2 argmaxa2Ahgt |µ(xt)a � rti. Let furthermore �0 > 0.

Assume the algorithm uses ↵t(�
0/3), so that Ct = {✓̃ 2 R

d :
���✓̂t � ✓̃

���
Vt

 ↵t(�
0/3)}.

Let us define µ̂t similarly to Proposition 15, i.e., 8t 2 N⇤, µ̂t such that 8i 2 JmK, µ̂t,i = µi(xt)

and µ̂t,m+1 = v̂tb(xt)
| viewed as a column vector, with v̂ defined in line 3 of Algorithm 9. We have:

TX

t=1

max
a2A
hgt |µ(xt)a� rti =

TX

t=1

hgt |µ(xt)a
⇤
t � µ̂tati| {z }

:=At

+

TX

t=1

hgt | µ̂tat � µ(xt)ati| {z }
:=Bt

+

TX

t=1

hgt |µ(xt)at � rti| {z }
:=Xt

Step 1: Upper bound on
PT

t=1 At via optimism Let t � 0. For ✓̃ 2 R
d, denote µ✓̃(x) 2 R

D⇥K

(recall D = m+ 1), the average reward function where parameters ✓̃ replace ✓. We first show that

for every a 2 A, we have max✓̃2Ct
hgt |µ✓̃(xt)ai  hgt | v̂tai, where v̂t is given in Line 3 of Algorithm

9.

Given a 2 A, let us denote by mat(a) the view of a as an m⇥m permutation matrix (instead

of an m2-dimensional column vector). Recalling that xt is a m⇥ d matrix and gt 2 R
m+1, let us

denote by gt,1:m the vector containing the first m dimensions of gt. We have:

hgt |µ✓̃(xt)ai = g|t,1:mmat(a)b(xt) + gt,m+1✓̃
|x|

tmat(a)b(xt), (B.15)

therefore:

max
✓̃2Ct

hgt |µ✓̃(xt)ai = g|t,1:mmat(a)b(xt) + gt,m+1 max
✓̃2CT

�
gt,m+1✓̃

|x|

tmat(a)b(xt)
⌘

 g|t,1:mmat(a)b(xt) + gt,m+1v̂
|

t mat(a)b(xt) = hgt | µ̂tai.

The first equality is because gt,m+1 � 0. The second equality is deduced by direct calculation from

the definition of Ct in Lemma 49, which gives v̂t,i = max✓̃2Ct
✓̃|xt,i.

By Proposition 15 we have that at defined at Line 4 of Algorithm 9 maximizes hgt | µ̂tai over a.

We thus have maxa2A max✓̃2Ct
hgt |µ✓̃(xt)ai  hgt | µ̂tati.
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By Lemma 49, we have ✓ 2 Ct for all t � 0 with probability 1� �0/3. Therefore, with probability

1� �0/3, we have for all t � 0: hgt |µ✓(xt)a
⇤
t i  hgt | µ̂tati. Noting that µ✓(xt) = µ(xt) by definition

of ✓, we obtain that 8t, At  0 and thus
PT

t=1 At  0 with probability 1� �0/3.

Step 2: Upper bound on
PT

t=1 Bt using linear bandit techniques Let at,i 2 R
m denote

the i-th row of mat(at), which contains only 0s except a 1 at the rank of item i in a. Since µ̂t and

µ(xt) only differ in the last dimension, which is the user utility, we have, using (B.15):

Bt = gt,m+1

�
(v̂t � v(xt))

|mat(at)b(xt)
�
= gt,m+1

mX

i=1

�
v̂t,i � vi(xt)

�
a|t,ib(xt)

Denoting et,i = a|t,ib(xt) 2 R the expected exposure of item i in ranking at given context xt, we

have:

Bt = gt,m+1| {z }
2[0,L]

mX

i=1

�
v̂t,i � vi(xt)

�
et,i  L

mX

i=1

⇣
(✓̂t�1 � ✓)|xt,i + ↵t(�

0/3) kxt,ikV �1
t�1

⌘
et,i

 L

mX

i=1

⇣���✓̂t�1 � ✓
���
Vt�1

kxt,ikV �1
t�1

+ ↵t(�
0/3) kxt,ikV �1

t�1

⌘
et,i (by Cauchy-Schwarz)

By Lemma 49, we have, with probability 1� �0/3:
���✓̂t�1 � ✓

���
Vt�1

 ↵t(�
0/3), and thus:

Bt  2L↵t

⇣�0
3

⌘ mX

i=1

kxt,ikV �1
t�1

et,i

= 2L↵t

⇣�0
3

⌘✓⇣ mX

i=1

kxt,ikV �1
t�1

(et,i � et,i)
⌘

| {z }
X0

t

+
⇣ mX

i=1

kxt,ikV �1
t�1

et,i

⌘◆

We first deal with the sum over t of the right-hand side, using et,i 2 {0, 1}:

TX

t=1

mX

i=1

kxt,ikV �1
t�1

et,i =

TX

t=1

mX

i=1

(kxt,ikV �1
t�1

et,i)⇥ et,i



vuut
TX

t=1

mX

i=1

e2t,i

vuut
TX

t=1

mX

i=1

(kxt,ik2V �1
t�1

e2t,i) (by Cauchy-Schwarz)


p
Tk

s

d ln
⇣
1 +

TD2
Xk

�d

⌘
. (by B.9.1)

For the left-hand term, we have that
�PT

t=1 X
0
t

�
T2N⇤

is a martingale adapted to the filtration

F = (FT )T2N⇤
where FT is the �-algebra generated by (x1, a1, r1, . . . , xT�1, aT�1, rT�1, xT , aT ),

with
��X 0

t

��  DXkp
�

. Thus, with probability at least 1� �0/3, we have

TX

t=1

mX

i=1

mX

i=1

kxt,ikV �1
t�1

(et,i � et,i) 
DXkp
�

r
2T ln

3

�0

r
2Tk ln

3

�0
.
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Where the last inequality comes from the assumption � � D2
Xk. We conclude this step by saying

that with probability 1� 2�0/3, we have:

TX

t=1

Bt  2L↵t

⇣�0
3

⌘p
Tk

✓r
2 ln

3

�0
+

s

d ln
⇣
1 +

TD2
Xk

�d

⌘◆
.

Step 3: Upper bound on
PT

t=1 Xt using Azuma’s inequality Following the same arguments

as in the proof of Thm. 42, let F =
�
Ft

�
t2N⇤

be the filtration where Ft is the �-algebra generated by

(x1, a1, r1, . . . , xt�1, at�1, rt�1, xt, at). Then (Xt)t2N is a martingale difference sequence adapted to

F with |Xt|  LDK, so that
PT

t=1 Xt  L
q
2Tk ln 3

�0
with probability 1� �0/3.

The final result is obtained using a union bound, considering that Step 1 and Step 2 use the

same confidence interval given by Lemma 49 which is valid w.p. � 1� �0/3, Step 2 uses an addition

Azuma inequality valid w.p. 1� �0/3, and step 3 uses an additional Azuma inequality which valid

with probability � 1� �0/3.

Theorem 16. Under Assumptions B, C and D, for every �0 > 0, every T 2 N⇤, every � � D2
Xk,

with probability at least 1� �0, Algorithm 3 has scalar regret bounded by

Rscal
T = O

✓
L
p
Tk

p
d ln(T/�0)

⇣p
d ln(T/�0) +D✓

p
�+

q
k/d

⌘◆
.

Thus, considering only d, T, k and � = �0 Alg. 3 has regret RT  O
�dk ln(T/�)p

T

�
w.p. at least 1� �.

Proof. Let � > 0 and use �0 := 3�/4 and � := �/4 in the bound on RT obtained by applying Lemma

50 and Theorem 34. Notice that Using � � D2
Xk and DK = O(k), we have:

R
scal

(T, 3�/4) = O

✓
L↵T (�)

q
Tkd ln(T/�) + Lk

p
T ln(1/�)

◆

and ↵T (�) = O
⇣p

d ln(T/�) +D✓

p
�
⌘
.

We thus get

R
scal

(T, �) = O

✓
L
p

Tk
p
d ln(T/�)

⇣p
d ln(T/�) +D✓

p
�
⌘
+ Lk

p
T ln(1/�)

◆

= O

✓
L
p
Tk

p
d ln(T/�)

⇣p
d ln(T/�) +D✓

p
�+

q
k/d

⌘◆

For the smooth case, the total bound adds O(Lk
p
T ln(1/�) + C̃ lnT

T ). A bound on the complete

regret is thus

RT = O

✓
L
p
Tk

p
d ln(T/�)

⇣p
d ln(T/�) +D✓

p
�+

q
k/d+ C̃

lnT

T

◆

B.10 Additional technical lemmas

B.10.1 Proof of Lemma 30 (S is compact)

Lemma 30. Under Assumption Ã, S is compact and 8T 2 N⇤, 8x1:T 2 X T ,S(x1:T ) is compact.
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Proof. We start with S(x1:T ). Let x1:T 2 X T . We notice that S(x1:T ) is the image of A
T

by

the continuous mapping � : (RK)T ! R
D defined by �(a1, ..., aT ) = 1

T

PT
t=1 µ(xt)at. Since A

is compact, A
T

is compact as well. S(x1:T ) is thus the image of a compact set by a continuous

function, and is therefore compact.

For the set S, we provide a proof here using Diestel’s theorem (see [Yannelis, 1991]). Consider

the set-valued map defined by G : X ! {B | B ✓ R
D}

G(x) := µ(x)A := {µ(x)a | a 2 A}.

Then, S can be written as the Aumann integral of G over X w.r.t P , i.e.

S =

Z

X

G dP :=

⇢Z

X

g dP
��� g 2 G

�
, (B.16)

where G ✓ L1(X , P ) is the collection of all P -integrable selections of G, i.e. the collection of all

P -integrable functions g : X ! R such that g(x) 2 G(x) for P -a.e x 2 X .

Now, since A is compact, convex and nonempty, the values of the set-valued function G

are nonempty, convex, and compact. Moreover, since supx2X ,a2A kµ(x)ak2 < +1 because

8x, a, µ(x)a 2 K, the set-valued function G is P -integrably bounded in the sense of [Yannelis,

1991, Section 2.2]. It then follows from Diestel’s Theorem [Yannelis, 1991, Theorem 3.1] that

the collection G of P -integrable selections of G is weakly compact in L1(X , P ). Finally, since

g 7!
R
X g dP is a weakly continuous mapping from L1(X , P ) to R

D, and S ✓ R
D is the image of G

under this mapping (refer to the correspondence (B.16)), we deduce that S is weakly compact as a

subset of RD, and therefore compact since R
D is finite-dimensional.

B.10.2 Proof of Lemma 47

Lemma 47. Let (�t)t2N 2 R
T
+ be a sequence of non-negative numbers, denote ΛT =

PT
t=1 �t and

let (ΛT )T2N such that 8T 2 N,ΛT > 0 and ΛT � ΛT .

TX

t=1

�tp
Λt

 2

q
ΛT .

Proof. First, we treat the case where �0 > 0. Then 8t 2 JT K,Λt > 0. We thus have

TX

t=1

�tp
Λt


TX

t=1

�tp
Λt

We now prove that the right-hand term is  pΛT . Let us observe that, for every ↵ � 0,� > ↵:

1

2

↵p
�

p
� �

p
� � ↵,

which is proved using
p
� � p� � ↵ =

R �
��↵

1
2
p
s
ds � ↵ 1

2
p
�
. Using the telescoping sum (with

Λ0 = 0):

TX

t=1

�tp
Λt

 2

TX

t=1

⇣p
Λt �

p
Λt � �t| {z }
=Λt�1

⌘
= 2

p
ΛT  2

q
ΛT ,

we obtain the desired result.

More generally, if �0 = 0, there are two cases:
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1. if 8T 2 JT K,�t = 0 then the result is true;

2. otherwise, let T0 = min{t 2 JT K : �t > 0}. Using the result above, we have:

TX

t=1

�tp
Λt

=
TX

t=T0

�tp
Λt

 2

q
ΛT .
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Appendix of Chapter 6

C.1 (In-)Compatibility of envy-freeness

C.1.1 Envy-freeness vs. optimality certificates

We showed in Section 6.3.3 that envy-freeness is compatible with optimal predictions. To understand

the differences between a certificate of envy-freeness and a certificate of optimality, let us denote by

Π⇤ = {⇡ : 9u satisfying (6.1) ,⇡ 2 argmax⇡0 u(⇡0)} the set of potentially optimal policies. If the set

of users policies approximately covers the set of potentially optimal policies Π⇤, then an envy-free

system is also optimal. Formally, let D(⇡,⇡0) such that |u(⇡)� u(⇡0)|  D(⇡,⇡0). It is easy to see

that if max
⇡2Π⇤

min
m2M

D(⇡,⇡m)  ✏̃, then ✏-envy-freeness implies ✏+ ✏̃-optimality.

In practice, the space of optimal policies is much larger than the number of users (for instance,

there are |A||X | optimal policies in our setting), so that auditing for envy is tractable in cases where

auditing for optimality is not.

C.1.2 Envy-freeness vs. equity of exposure

We remind the definition of optimal policies with equity of exposure constraints from Section 6.3.3:

(equity) ⇡m,eq(.|x) = argmax
p:A![0,1]P

a
p(a)=1

X

a2A

p(a)⇢m(a|x)

u.c. 8s 2 JSK,
X

a2As

p(a) =

P
a2As

⇢m(a|x)

P
a2A

⇢m(a|x)

The constraints should be ignored when
P
a2A

⇢m(a|x) = 0.

Following Proposition 17 from Section 6.3.3, we describe here a second source of envy when

using optimal policies with equity of exposure constraints. By the linearity of the optimization

problem for ⇡m,eq, the policy assigns to the best item in a category the exposure of the entire

category. It implies that categories with high average relevance have more exposure than categories

with few but highly relevant items. Table C.1 gives an example with two users and two categories

of items where both users envy each other with the optimal recommendations under equity of

exposure constraints.

In some degenerate cases though, equity of exposure policies are envy-free.
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item cat. 1 item cat. 2 utilities

(item idx) 1 2 3 4 u1 u2

(rewards)
⇢
1 1 0 0.8 0.7

⇢
2 0.8 0.7 1 0

(policies)
⇡
1,eq 0.4 0 0.6 0 0.88 0.92

⇡
2,eq

0.6 0 0.4 0 0.92 0.88

Table C.1: Example where the optimal recommendations under item-side equity of exposure
constraints are not user-side fair because both users envy each other. There are 4 items, 2 item
categories and 2 users. User 1 envies user 2 since u1(⇡2,eq) > u1(⇡1,eq). Also, u2(⇡1,eq) > u2(⇡2,eq).

Lemma 51. If for all contexts x 2 X , each user m 2 JMK only likes a single item category Asm ,

i.e. 8a 2 A \ Asm , ⇢m(a|x) = 0, then the policies (⇡m,eq)Mm=1 are envy-free.

Proof. We set contexts x aside to simplify notation, but the generalization is straightforward.

We actually prove a stronger result than the lemma: if each user m only likes a single item,

then (⇡m,eq)Mm=1 = (⇡m,⇤)Mm=1, where ⇡m,⇤ is the optimal unconstrained policy for m.

Let ams = argmaxa2As
⇢m(a) be the favorite item in category As for user m, then the optimal

equity of exposure constrained policies has the following analytical expression:

8s 2 S, 8a 2 As, ⇡m,eq(a) = {a=am
s }

P
a2As

⇢m(a0)

P
a02A

⇢m(a0)
,

and we thus have:

um(⇡m,eq) =
X

s2JSK

⇢m(ams )

P
a2As

⇢m(a)

P
a2A

⇢m(a)
.

If each user m 2 JMK only likes a single item category sm 2 JSK, i.e. 8a 2 A \ Asm , ⇢m(a) = 0,

then

P
a2As

⇢m(a)

P
a2A

⇢m(a) = {s=sm}.

Then um(⇡m,eq) = ⇢m(amsm) = maxa2A ⇢
m(a).

Then ⇡m,eq is the optimal unconstrained policy for user m, meaning the whole system is envy-free

(cf. Sec 6.3.2).

From Eq. C.1.2, we actually note that (⇡m,eq)Mm=1 = (⇡m,⇤)Mm=1 if and only if each user m

equally values their favorite items in each category they like, i.e. 8m, 9 > 0, 8s 2 S, ⇢m(ams ) >

0) ⇢m(ams ) = .

C.2 Extension to group envy-freeness

We briefly discuss an extension of envy-free recommendation to groups, since most of the literature

on fair machine learning focuses on systematic differences between groups. Certifying envy-freeness

at the level of groups rather than individuals also relaxes the criterion because it requires less

exploration. Let us assume we are given a partition G of the users into disjoint groups. For

g, g0 2 G, we define the group utility of g with respect to g0 as:

U(g, g0) =
1

|g|

X

m2g

um

✓
1

|g0|

X

n2g0

⇡n

◆
.
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Definition 8. Given ✏�0, the recommender system is ✏-group-envy-free if: 8g, g0 2 G, U(g, g0) 
U(g, g) + ✏ .

Group envy-freeness is equivalent to envy-freeness when each group is a singleton. When

we have prior knowledge that user preferences and policies are homogeneous within each group,

✏-envy-freeness translates to ✏0-group envy-freeness, with ✏0 ⇡ ✏, and the reciprocal is also true:

Proposition 52. Let ✏, ✏̃ > 0, and assume that for all groups and all pairs of users m,n in the same

group g, we have sup
x2X
k⇡m(.|x)� ⇡n(.|x)k1  ✏̃ and sup

x2X
k⇢m(.|x)� ⇢n(.|x)k1  ✏̃. Then, ✏-group

envy-freeness implies (✏+ 4✏̃)-envy-freeness.

The result is natural since when all groups have users with homogeneous preferences and

policies, groups and users are a similar entity as regards the assessment of envy-freeness. The proof

is straightforward and omitted. When groups have heterogeneous policies, the “average policy”
1
|g|

P
n2g ⇡

n is uninformative because it does not represent any user’s policy. Defining a notion of

group utility in the general case is thus nontrivial and left for future work.

C.3 Sources of envy

In this section, we first list a few possible sources of envy in recommender systems. Then we provide

the details of experiments1 which showcase one of these sources, namely model mispecification

(App. C.3.2).

C.3.1 Examples of sources of envy

Model mispecification Recommender systems often rely on strong modeling assumptions and

multi-task learning, with methods such as low-rank matrix factorization Koren et al. [2009]. The

limited capacity of the models (e.g., a rank that is too low) or incorrect assumptions might leave

aside users with less common preference patterns. Appendix C.3.2 gives a more detailed example

on two simulated recommendation tasks.

Misaligned incentives A recommender system might have incentives to recommend some items

to specific users, e.g., sponsored content. Envy appears when there is a mismatch between users

who like these items and users to whom they are recommended.

Measurement bias Many hybrid recommender systems rely on user interactions together with

user-side data Burke [2002]. This includes side-information such as browsing history on third-party,

partner websites. Envy arises in these settings if there is measurement bias Suresh and Guttag

[2019], e.g., if the side information is unevenly collected for all users (e.g., browsing patterns are

different across users and partners are aligned with the patterns of a user groups only).

Operational constraints Regardless of incentives, recommendations might need to obey addi-

tional constraints. As described in Proposition 17, the item-side fairness constraint of equity of

exposure is an example of possible source of (user-side) envy. The user-side fairness constraint of

equal utility also creates envy, as we showed in Sec. 6.5.1.

1For all our experiments, we used Python and a machine with Intel Xeon Gold 6230 CPUs, 2.10 GHz, 1.3 MiB of
cache.
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In the following, we provide the details of our experiments from Sec. 6.5.1 where we showcase

examples of environments with envy based on movie and music recommendation tasks.

In these experiments, we measure envy based on the quantity:

∆
m = max

�
max
n2JMK

um(⇡n)� um(⇡m), 0
�

In line with Chevaleyre et al. [2017], we consider two ways of measuring the degree of envy:

• the average envy experienced by users: 1
M

P
m2JMK

∆m,

• the proportion of ✏-envious users: 1
M

P
m2JMK

{∆m>✏}.

C.3.2 Setup of the experiments on envy from model mispecification

We describe in this section the details of the experiments on envy from mispecification presented in

Section 6.5.1. We used Lastfm-2k [Cantador et al., 2011], a dataset from the online music service

Last.fm2 which contains real play counts of 2k users for 19k artists, and was used by Patro et al.

[2020] who also study envy-freeness as a user-side fairness criterion. We filter the top 2, 500 items

most listened to. Following Johnson [2014], we pre-process the raw counts with log-transformation.

We split the dataset into train/validation/test sets, each including 70%/10%/20% of the user-item

listening counts. We create three different splits using three random seeds. We estimate relevance

scores for the whole user-item matrix using the standard matrix factorization algorithm3 of Hu

et al. [2008] trained on the train set, with hyperparameters selected on the validation set by grid

search with DCG@40 as metric. The number of latent factors is chosen in [16, 32, 64, 128], the

regularization in [0.01, 0.1, 1., 10.], and the confidence weighting parameter in [0.1, 1., 10., 100.]. The

resulted matrix of estimated relevance scores serves as the ground truth preferences.

We also address movie recommendation using the MovieLens-1M dataset Harper and Konstan

[2015], which contains 1 million ratings on a 5-star scale from approximately 6000 users and 4000

movies. We extract a 2000 ⇥ 2500 user ⇥ items matrix, keeping users and items with the most

rating. We transform MovieLens ratings into an implicit feedback dataset similar to Last.fm. Since

setting ratings < 3 are usually considered as negative Wang et al. [2018], we set ratings < 3 to

zero, resulting in a dataset with preference values among {0, 3, 3.5, 4, 4.5, 5}. We then use the same

algorithm as for Last.fm to obtain relevance scores that we use to simulate ground truth preferences.

We then simulate a recommender system’s estimation of preferences using low-rank matrix

completion4 Bell and Sejnowski [1995] on a training sample of 70% of the whole “ground truth”

preferences, with hyperparameter selection on a 10% validation sample. Here, the regularization

is chosen in [0.001, 0.01, 0.1, 1.], and the confidence weighting parameter in [0.1, 1., 10., 100.]. The

estimated preference scores are given as input to the recommendation policies.

The recommendation policies we consider are softmax distributions over the predicted scores

with fixed inverse temperature. These policies recommend a single item, drawn from the softmax

distribution.

We generate binary rewards using a Bernoulli distribution with expectation given by our ground

truth. We consider no context in these experiments, so that the policies and rewards only depend

on the user and the item.

Figure 6.2 in Sec. 6.5.1 was generated by varying the number of latent factors in the recom-

mender system’s preference estimation model. For each number of latent factors in the range

2http://www.lastfm.com
3Using the Python library Implicit: https://github.com/benfred/implicit (MIT License).
4Using the implementation of https://github.com/gbolmier/funk-svd (MIT License).
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[1, 2, 4, 8, 16, 32, 64, 128, 256], a new model was trained on the train set with hyperparameter selection

on the validation set. The degrees of envy are measured on the whole ground truth preference

matrix.

C.3.3 Envy from equal user utility constraints

We provide the full details of the experiments on envy from equal user utility presented in Sec. 6.5.1

from the main paper. The goal of these experiments is to show that in contrast to envy-freeness,

enforcing equal user utility (EUU) degrades user satisfaction and creates envy between users. We

remind from Sec. 6.3.2 that the fairness constraint of EUU is defined as:

8m,n 2 JMK, um(⇡m) = un(⇡n),

or equivalently:

8m 2 JMK, um(⇡m) =
1

M

X

n2JMK

un(⇡n).

Equal user utility is enforced by adding a penalty to the maximization of user utilities. Optimal

EUU policies are found by maximizing the following concave objective function, where the parameter

b > 0 controls the strength of the penalty:

(EUU) ⇡euu
b = argmax

p:A![0,1]M

8m,
P

a
pm(a)=1

X

m2JMK

um(pm)� b
p

D(p)

with D(p) =
X

m2JMK

✓
um(pm)� 1

M

X

n2JMK

un(pn)

◆2

.

We infer EUU policies using the Frank-Wolfe algorithm Frank and Wolfe [1956] with the

ground truth preferences given as input. The parameter of the penalty is set to b = 50. We also

generate the unconstrained optimal policies (OPT) based on the ground truth (recall that these are

um(⇡m,⇤) = max⇡ u
m(⇡) � um(⇡n,⇤)).

A comparison of EUU and OPT is provided in Table 6.1 in Sec. 6.5.1, with the following

evaluation measures : total utility (higher is better), average envy and proportion of 0.05-envious

users (lower is better). The results on both dataset confirm the claim that enforcing EUU penalties

deteriorates total utility and creates envy between users, while illustrating the known property that

OPT policies are compatible with envy-freeness.

C.4 OCEF experiments

C.4.1 Bandit experiments

We performed experiments on toy bandit environments to assess the performance of our algorithm

OCEF on various configurations, which were also considered in Jamieson and Nowak [2014]. The

four bandits instances have 10 arms. They are Bernoulli variables with means equal to

1) µ0 = 0.6 and µk = 0.3 for k 2 J9K,

2) µ0 = 0.3, µ1 = 0.6 and µk = 0.3 for k = 2..9,

3) µk = 0.7� 0.7 ⇤
�

k
10

�0.6
, k = 0, ..., 9, and the baseline is µ0,
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the arm played.

Lemma 53. Let � 2 (0, 1). Assume the rewards are �-subgaussian.

Let ! 2 (0, 1), ✓ = log(1 + !)
�

!�
2(2+!)

� 1
1+! .

Let Nk(t) =

tX

s=1

{ks=k} bµk(t) =

Pt
s=1 rs {ks=k}

Nk(t)

�k(t) =

s
2�2(1 +

p
!)2(1 + !)

Nk(t)
⇥
s

log

✓
2(K + 1)

✓
log((1 + !)Nk(t))

◆

µ
k
(t) = bµk(t)� �k(t) µk(t) = bµk(t) + �k(t)

Then,

P

h
8t > 0, 8k 2 JKK, µk 2 [µ

k
(t);µk(t)]

i
� 1� �

2
.

Notice that the choice of ✓ makes sure that �k is well defined as long as Nk(t) > 0. We use

the convention that when Nk(t) = 0, �k(t) is strictly larger than when Nk(t) = 1 to ensure �k is

strictly decreasing with Nk. Also, when Nk(t) = 0, we set bµk(t) = 0.

Following Garcelon et al. [2020a], our lower bound on the conservative constraint relies on

Freedman’s martingale inequality Freedman [1975].

Lemma 54. Assume all rewards are �-subgaussian. Let At = {s  t : ks 6= 0} be the number of

times a non-baseline arm k 6= 0 has been pulled up to time t. Let �(t) = �

q
2|At�1| log

� 6|At�1|2

�

�
+

2
3 log

� 6|At�1|
2

�

�
.

Then, 8� > 0,

P

2
48t > 0,

����
X

s2At�1

(µks
� rs)

����  �(t)

3
5 � 1� �

2
.

As in Lemma 53, we use the convention �(t) = 0 when |At�1| = 0.

Lemma 55. Let � 2 (0, 1).

Let Φ(t) = min
�PK

k=1 �k(t� 1)Nk(t� 1),�(t)
�
, with �(t) defined in Lemma 54. Let E be the

event under which all confidence intervals are valid, i.e.:

E = E1 \ E2 with

E1 =
�
8k 2 {0, . . . ,K}, 8t > 0, µk(t) 2 [µ

k
(t);µk(t)

 

E2 =
�
8t > 0,

����
X

s2At�1

(µks
� rs)

����  Φ(t)
 
.

Then P [E ] � 1� �.

Proof. By Lemma 53, P [E1] � 1� �
2 . By the lemma above, with probability 1� �

2 , we have for all

t > 0,
��P

s2At�1
(µks

� rs)
��  �(t).
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Then, notice that

����
X

s2At�1

(µks
� rs)

���� =
����

KX

k=1

Nk(t� 1)(µk � bµk(t� 1))

����.

Hence under E1 we also have:

����
X

s2At�1

(µks
� rs)

���� 
KX

k=1

Nk(t� 1)�k(t� 1).

Therefore,

E = E1 \ E2 = E1 \
⇢�� X

s2At�1

(µks
� rs)

��  �(t)
�
,

and thus, by a union bound, we have: P [E ] � 1� �.

C.5.1.2 Theorems

We now provide our complete theoretical guarantees for correctness (Theorem 56), duration

(Theorem 57) and cost (Theorem 58), which we then prove in App. C.5.2 and C.5.3. From these

results, we derive Theorem 18 in the main paper, which we prove in App. C.5.4.

Theorem 56 (Correctness). With probability at least 1� �:
1. OCEF satisfies the safety constraint (6.3) at every time step,

2. if OCEF outputs ✏-no-envy then the user m is not ✏-envious, and if it outputs envy, then m is

envious.

We denote log+(.) = max(1, log(.)).

Theorem 57 (Duration). Let ⌘k = max(µk � µ0, µ0 + ✏� µk), � 2 (0, 1), ✓ = log(2)
q

�
6 , and

8k 6= 0, Hk = 1 +
64

⌘2k
log

✓2(K + 1) log+
� 128(K+1)

✓⌘2
k

�

✓

◆
,

H0 = max

✓
max
k2JKK

Hk,
6K + 2

↵µ0
+

KX

k=1

256 log
⇣

2(K+1) log(2Hk)
✓

⌘

↵µ0⌘k

◆
.

With probability at least 1� �, OCEF stops in at most ⌧ steps, with

⌧ 
KX

k=0

Hk .

Finally, we define the cost of exploration as the potential reward lost because of exploration

actions, in our case the cumulative reward lost, on average over users in the group:

Ct = tµ0 �
tX

s=1

µks
. (C.1)

In the worst case, the following bound holds:
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Theorem 58 (Cost of exploration). Under the assumptions and notation of Theorem 57, let ⌧ be

the time step where OCEF stops. With probability 1� �, we have:

C⌧ 
X

k:µk<µ0

(µ0 � µk)Hk

Certification of the exact criterion for all users The audit of the full system for the exact

envy-freeness criterion consists in running OCEF for every user. Since we are making multiple

tests, we need to use a tighter confidence parameter for each user so that the confidence intervals

simultaneously hold for all users.

Corollary 59 (Online certification). With probability at least 1� �, running OCEF simultaneously

for all M users, each with confidence parameter �0 = �
M , we have:

1. for all m 2 [M ] OCEF satisfies the constraints (6.3),

2. all users for which OCEF returns ✏-NO ENVY are not ✏-envious of any other users, and all

users for which OCEF returns ENVY are envious of another user.

3. For every user, the bounds on the duration of the experiment and the cost of exploration given

by Theorems 57 and 58 (using �/M instead of �) are simultaneously valid.

For the certification of the probabilistic envy-freeness criterion, we refer to Theorem 19 in the

main paper, which we prove in App. C.5.5.

C.5.2 Proof of Theorem 56

Proof. We assume that event E holds true. Then all confidence intervals are valid, i.e., for all

k = 0, ...,K, µ
k
(t)  µk  µk(t), and

P
s2At�1

µks
�P

s2At�1
rs � Φ(t).

Let Zt be the safety budget, defined as Zt =
Pt

s=1 µks
� (1� ↵)µ0t, so that the conservative

constraint (6.3) is equivalent to 8t, Zt � 0. We have Zt =
P

s2At�1
µks

+µkt
+(N0(t�1)�(1�↵)t)µ0.

Therefore, ⇠t (eq. (6.4)) is a lower bound on the safety budget Zt if `t is played. By construction of

the algorithm, the safety constraint (6.3) is immediately satisfied since a pull that could violate it

is not permitted.

By the validity of confidence intervals under E , if OCEF stops because of the first condition,

then 9k, µk > µ0. Therefore 0 is not ✏-envious of k and OCEF is correct.

If OCEF stops because of the second condition, i.e., 8k, µk(t)  µ
0
(t) + ✏, then 8k, µk  µ0 + ✏.

Therefore 0 is not envious and OCEF is correct.

Since P [E ] � 1� �, OCEF satisfies the safety constraint and is correct with probability � 1� �.

C.5.3 Proofs of Theorem 57 and Theorem 58

Notation For conciseness, we use K̃ = K + 1, and

 k(t) = 2�2(1 +
p
!)2(1 + !) log

 
2K̃

✓
log((1 + !)Nk(t))

!
,

so that �k(t) =

s
 k(t)

Nk(t)
.

We shall also use Γ! = 2�2(1 +
p
!)2(1 + !). We use the convention  k(t) = 0 when Nk(t) = 0,

and set �k(t) to some value strictly larger than when Nk(t) = 1.
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We remind that ! 2 (0, 1), ✓ = log(1 + !)
�

!�
2(2+!)

� 1
1+! and ⌘k = max(µk � µ0, µ0 + ✏ � µk).

We denote by ⌘min = mink2JKK ⌘k.

Finally, we notice that under event E (as defined in Sec. C.5.1.1), we have for all k 2 {0, . . . ,K}

and all t:

µk + 2�k(t) � µk(t) � µk � µ
k
(t) � µk � 2�k(t). (C.2)

Lemma 60. Under event E, for every k 2 JKK, if k is pulled at round t, then 4�k(t) � ⌘k.

Proof of Lemma 60. Since k is pulled at t, the two following inequalities hold:

µk(t� 1) > µ
0
(t� 1) + ✏ (C.3)

µ
k
(t� 1)  µ0(t� 1) (C.4)

We prove them by contradiction. If (C.3) does not hold, then k should be discarded from the active

set at time t� 1, and therefore cannot be pulled at t. Likewise, if (C.4) does not hold, then the

algorithm stops at t� 1, so k cannot be pulled at t.

Using (C.3) and (C.2), we have:

µk + 2�k(t� 1) � µk(t� 1) > µ
0
(t� 1) + ✏ � µ0 � 2�0(t� 1) + ✏.

Since 0 was not pulled at time t, we also have �0(t� 1)  �k(t� 1), hence 4�k(t� 1) � µ0 + ✏�µk.

Using (C.4) and (C.2) we have µk � 2�k(t)  µ0 + 2�0(t) and since �0(t)  �k(t), we obtain

4�k(t� 1) � µk � µ0.

In the following lemma, we recall that we denote log+(.) = max(1, log(.)).

Lemma 61. Under event E, 8⌧ > 0, 8k 2 JKK, we have

Nk(⌧)  Hk with

Hk = 1 +
32�2(1 +

p
!)2(1 + !)

⌘2k
⇥ log

✓2(K + 1) log+
� 64(K+1)�2(1+

p
!)2(1+!)2

✓⌘2
k

�

✓

◆

Proof. Let ⌧ > 0, k 2 JKK, and let t  ⌧ be last time step before ⌧ at which k was pulled. If such

a t does not exist, then Nk(⌧) = 0 and the result holds. In all cases, we have Nk(t) = Nk(⌧).

We consider t > 0 from now on.

By Lemma 60, we have 4�k(t � 1) � ⌘k, and thus Nk(t � 1)  16 k(t�1)
⌘2
k

, which writes, if

Nk(t) > 0:

Nk(t� 1)  16 k(t� 1)

⌘2k

 16Γ!
⌘2k

log

 
2K̃

✓
log ((1 + !)Nk(t� 1))

!
.

(C.5)

Using 1
t log

⇣
log((1+!)t)

Ω

⌘
� c) t  1

c log
⇣

log((1+!)/cΩ)
Ω

⌘
(see Equation (1) in Jamieson et al. [2014])

with Ω = ✓

2K̃
and c =

⌘2k
16Γ!

, we obtain

Nk(t� 1)  16Γ!
⌘2k

log
�2K̃
✓

log
� (1 + !)32K̃Γ!

✓⌘2k

��
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Since Nk(t) = Nk(t� 1) + 1, using log+ instead of log inside to deal with the case Nk(t� 1) = 0

gives the desired result.

Lemma 62. Under event E, at every time step ⌧ , we have

N0(⌧)  max

✓
max
k2JKK

Hk,
6K + 2

↵µ0
+

KX

k=1

64�2(1 +
p
!)2(1 + !) log

⇣
2(K+1) log((1+!)Hk)

✓

⌘

↵µ0⌘k

◆

Proof. Let ⌧ > 0 and t  ⌧ the last time 0 was pulled before ⌧ . We assume t > 0.

Case 1: 0 was pulled because �0(t� 1) > mink2JKK �k(t� 1).

Then N0(⌧) = N0(t� 1) + 1  1 + max
k 6=0

Nk(t� 1).

By lemma 60, we thus have N0(⌧)  maxk2JKK Hk.

Case 2: 0 was pulled because ⇠t < 0. Here the proof follows similar steps as that of Theorem 5

in Wu et al. [2016].

X

s2At�1

rs � Φ(t)+µ
`t
(t�1)

+ (N0(t�1)� (1� ↵)t)µ0(t�1) < 0

We drop µ
`t
(t�1), replace t by

PK
k=0 Nk(t� 1) + 1 and rearrange terms to obtain:

↵N0(t� 1)µ0(t� 1)  (1� ↵)µ0(t� 1)

+ (1� ↵)
KX

k=1

Nk(t� 1)µ0(t� 1)�
X

s2At�1

rs + Φ(t) (C.6)

Since we have �0(t� 1)  �k(t� 1) (otherwise we would be in case 1), and At�1 =
PK

k=1 Nk(t� 1),

we bound the the sum over arms in (C.6):

KX

k=1

Nk(t� 1)µ0(t� 1)


KX

k=1

Nk(t� 1)(µ0 + 2�0(t� 1))


KX

k=1

Nk(t� 1)(µ0 + 2�k(t� 1))

=
X

s2At�1

µ0 +
KX

k=1

2�k(t� 1)Nk(t� 1).

Using Lemma 55, we also bound �Ps2At�1
rs �

P
s2At�1

µs + Φ(t) (under E).

Plugging this into (C.6) gives:

↵N0(t� 1)µ0(t� 1)  (1� ↵)µ0(t� 1)

+ 2(1� ↵)
KX

k=1

Nk(t� 1)�k(t� 1)

+
X

s2At�1

((1� ↵)µ0 � µks
) + 2Φ(t).
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Recall that Φ(t) = min(
PK

k=1 Nk(t � 1)�k(t � 1),�(t)), and therefore Φ(t)  PK
k=1 Nk(t �

1)�k(t� 1).

Using µ0 � µks
 ⌘ks

and
P

s2At�1
⌘ks

=
PK

k=1 Nk(t� 1)⌘k, we obtain:

↵N0(t� 1)µ0(t� 1)  (1� ↵)µ0(t� 1)

+

KX

k=1

✓
(⌘k � ↵µ0)Nk(t� 1)

+ 4
p
Ψk(t� 1)Nk(t� 1)

◆
.

We bound fk := (⌘k � ↵µ0)Nk(t� 1) + 4
p
Ψk(t� 1)Nk(t� 1).

Since (C.5) Nk(t� 1)  16 k(t�1)
⌘2
k

+ 1 , and ⌘k � ↵µ0  ⌘k, we have

fk 
16 k(t� 1)

⌘k
+ ⌘k + 4

s
16 k(t� 1)2

⌘2k
+  k(t� 1)

Using
p
(xz )

2 + x  x
z + z

2 for x � 0, z > 0, with x = 4 k(t� 1) and z = ⌘k, we obtain:

fk 
16 k(t� 1)

⌘k
+

16 k(t� 1)

⌘k
+ 3⌘k

 32 k(t� 1)

⌘k
+ 3⌘k.

Using  k(t� 1) = Γ! log
⇣

2K̃
✓

log((1 + !)Nk(t� 1))
⌘

if Nk(t) > 0 and Nk(t� 1)  Hk by Lemma

61, we obtain

fk 
32Γ!
⌘k

log

 
2K̃

✓
log ((1 + !)Hk)

!
+ 3⌘k .

This bound is also valid when Nk(t) > 0.

Going back to (C.6), and since µ0  µ0(t� 1) under E , we have (notice ⌘k  2 since µk 2 [0, 1]

and ✏ 2 [0, 1]):

↵N0(t� 1)µ0 (1� ↵)µ0(t� 1) + 6K

+

KX

k=1

32Γ!
⌘k

log

 
2K̃

✓
log ((1 + !)Hk)

!
.

(C.7)

To bound the first term of the right-hand side, let us first notice that the final result holds

if N0(t � 1)  maxk2JKK Hk. So we can assume N0(t � 1) > maxk2JKK Hk from now on. By the

definition of the Hks (see above (C.5)), this implies N0(t� 1) > 16 0(t�1)
⌘2min

, which in turn implies

4�0(t� 1)  ⌘min.

We thus use µ0(t� 1)  µ0 + 2�0(t� 1)  µ0 +
⌘min

2  2, which gives the final result.

The result directly follows from (C.7).

The proof of Theorem 57 follows from ⌧ =
PK

k=1 Nk(⌧) + N0(⌧), by setting ! = 1 for ease

of reading, and � = 1
2 since Bernoulli variables are 1

2 -subgaussian (using Hoeffding’s inequality

Hoeffding [1963]).

We prove Corollary 59 from Theorem 56 and Theorem 57.

We now prove Theorem 58:
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Proof. Since playing the baseline is neutral in the cost of exploration, it can be re-written as:

C⌧ =
KX

k=1

(µ0 � µk)Nk(⌧) 
X

k:µk<µ0

(µ0 � µk)Nk(⌧),

where ⌧ is the time the algorithm stops. Using Lemma 61 to upper bound Nk(⌧), we obtain the

result.

Corollary 59 simply follows from the fact that by applying each algorithm with confidence �/M ,

the confidence intervals are then simultaneously valid for all users with probability 1� �, so all the

correctness/duration/cost proofs holds for all groups simultaneously with probability 1� �. For the

statistical guarantees on certifying the probabilistic envy-freeness criterion, we provide the proof of

Theorem 19 in App. C.5.5.

C.5.4 Proof of Theorem 18

Theorems 56, 57, and 58 are summarized in Theorem 18 in the main paper. We restate Theorem

18 and prove it below:

Theorem. Let ✏ 2 (0, 1], ↵ 2 (0, 1], � 2 (0, 1
2 ) and

⌘k = max(µk � µ0, µ0 + ✏� µk) and hk = max(1,
1

⌘k
).

Using µ, µ and Φ given in Lemmas 53 and 55, OCEF achieves the following guarantees with

probability at least 1� �:
• OCEF is correct and satisfies the conservative constraint on the recommendation performance

(6.3).

• The duration is in O

✓ KX

k=1

hk log
�K log(

Khk
�⌘k

)

�

�

min(↵µ0, ⌘k)

◆
.

• The cost is in O

✓ X

k:µk<µ0

(µ0�µk)hk

⌘k
log

�K log(
Khk
�⌘k

)

�

�◆
.

Proof. With � 2 (0, 1
2 ), let ✓ = log(2)

q
�
6 . Then Theorems 57 and 58 hold for (�, ✓).

Duration We first show that:

Hk = O

✓
hk

⌘k
log

�Khk

�⌘k

�◆
, (C.8)

log(Hk) = O

✓
log

�Khk

�⌘k

�◆
. (C.9)

Recall from Th. 57 that Hk is defined as:

Hk = 1 +
64

⌘2k
log

✓2(K + 1) log+
� 256(K+1)

✓⌘2
k

�

✓

◆

We replace the log+ term from Th. 57 by log
�
Khk

�⌘k

�
> 0, because Khk

�
� 3 as soon as K � 2.
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We thus have

Hk = 1 +O

✓
1

⌘2k
log

✓
K

�
log

�Khk

�⌘k

�

| {z }
=B

◆◆
, (C.10)

Using log(x)  x) x log(x)  x2 for x � 0, and the fact that log
�
Khk

�⌘k

�
� 0, we have:

B  log

✓
Khk

�⌘k
log

�Khk

�⌘k

�◆
 2 log

�Khk

�⌘k

�
.

Since 1 + 1
⌘2
k

 2hk

⌘k
, eq. (C.8) holds.

We now bound log(Hk):

log(Hk) = O

✓
log

⇣hk

⌘k
log

�Khk

�⌘k

�⌘◆

= O

✓
log

⇣Khk

�⌘k
log

�Khk

�⌘k

�⌘◆

= O

✓
log

⇣Khk

�⌘k

⌘◆

where the last line comes from Khk

�⌘k
log

�
Khk

�⌘k

�

�
Khk

�⌘k

�2
.

Therefore, eq. (C.9) holds.

Now, let

Γ =
6K + 2

↵µ0
+

KX

k=1

128 log
⇣

2(K+1) log(2Hk)
✓

⌘

↵µ0⌘k
,

so that H0 = max(maxk2JKK Hk,Γ).

We have:

Γ = O

✓
K

↵µ0
+

KX

k=1

hk

↵µ0
log

�K log(Hk)

�

�◆

= O

✓ KX

k=1

hk

↵µ0
log

�K log(Hk)

�

�◆

= O

✓ KX

k=1

hk

↵µ0
log

�K log(Khk

�⌘k
)

�

�◆
,

where the second equality is because K =
PK

k=1 1 
PK

k=1 hk, and the last equality uses eq. (C.9).

Combining this with eq. (C.8) we have:

H0 = O

✓ KX

k=1

hk

min(↵µ0, ⌘k)
log

�K log(Khk

�⌘k
)

�

�◆
.

Using eq. (C.8) again to bound ⌧ = H0 +
PK

k=1 Hk, , we get the desired bound for duration.
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Cost For the cost, we remind the bound given in Th. 58:

C⌧ 
X

k:µk<µ0

(µ0 � µk)Hk

= O

✓ X

k:µk<µ0

(µ0 � µk)hk

⌘k
log

⇣K
�
log

�Khk

�⌘k

�⌘◆

using (C.10) and 1 + 1
⌘2
k

= O(hk

⌘k
).

C.5.5 Proof of Theorem 19

We restate Theorem 19 which summarizes the guarantees for the audit of the probabilistic envy-

freeness criterion with AUDIT, and we prove it below:

Theorem. Let ✏, �,� 2 (0, 1], � 2 (0, 1
2 ). Let M̃ =

l
log(3/�)

�

m
and K =

l
log(3M̃/�)

log(1/(1��))

m
. With

probability at least 1� �,
• AUDIT satisfies the conservative constraint (6.3) for all M̃ audited users,

• the bounds on duration and cost from Th. 18 (using �

3M̃
instead of �) are simultaneously valid,

• if AUDIT outputs (✏, �,�)-envy-free, then the recommender system is (✏, �,�)-envy-free, and if

it outputs not-envy-free, then 9(m,n), um(⇡m) < um(⇡n).

Proof. The first point is a consequence of Theorem 56 and the second point is a consequence of

Theorems 57 and 58. Since we apply OCEF to each target user with confidence �

3M̃
, by the union

bound the confidence intervals are simultaneously valid for all M̃ target users with probability

1� �
3 . Therefore, with probability at least 1� �

3 , the conservative constraint is satisfied for all M̃

users and the bounds on cost and duration hold simultaneously for all M̃ users.

We now prove the third bullet point in two steps.

Step 1 We show that the value of K = log(3M̃/�)
log(1/(1��)) is chosen to guarantee the following result:

with probability 1� �

3M̃
, if for a user we have µ0 + ✏ � max

k2JKK
µk, then the user is not (✏, �)-envious.

First, we apply the theorem on random subset selection from (Schölkopf and Smola [2002],

Theorem 6.33), which guarantees that with probability 1 � (1 � �)K , the arm with maximal

reward among the K arms is in the (1 � �)-quantile range of all possible M arms. Solving for

(1� �)K = �

3M̃
, we get that when K =

l
log(3M̃/�)

log(1/(1��))

m
, the arm with maximal reward among the K

is in the (1� �) quantile range with probability 1� �

3M̃
. This means that if for a target user m, we

have um(⇡m) + ✏ = µ0 + ✏ � max
k2JKK

µk, then with probability 1� �

3M̃
, we also have:

Pn⇠UM
[um(⇡m) + ✏ � um(⇡n)] � 1� �,

meaning the user is not (✏, �)-envious. By a union bound over the M̃ target users, the property

holds simultaneously for all M̃ target users with probability 1� �
3 .

Step 2 We now show that the number of users to audit M̃ =
l
log(3/�)

�

m
is chosen to guarantee

that if none of the M̃ sampled users are (✏, �)-envious, then this holds true for an (1� �) fraction

of the whole population with probability 1� �
3 .

Let �0 = �
3 . Denoting q the probability that a user is not (✏, �)-envious, we want to guarantee

that q � 1 � � with probability at least 1 � �0, using M̃ Bernoulli trials where p := 1 � q is the

probability of success.
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Let B̄(M̃, k, �0) denote the largest p0 such that the probability of observing k or more successes is

at least 1��0 (i.e., B̄(M̃, k, �0) is the binomial tail inversion). By definition, we have p  B̄(M̃, 0, �0).

Using the property that B̄(M̃, 0, �0)  log(1/�0)

M̃
(see e.g., Langford [2005]), we can guarantee that

p  � as soon as log(1/�0)

M̃
 �. Solving for M̃ , we obtain that M̃ =

l
log(1/�0)

�

m
=

l
log(3/�)

�

m
is

sufficient to guarantee p  �, or equivalenly q � 1� � with probability 1� �
3 .

We combining Step 1 and 2 by a union bound: if for M̃ users and K arms, we have µ0 + ✏ �
max
k2JKK

µk, then with probability 1 � 2�
3 , an (1 � �) fraction of the whole population is not (✏, �)-

envious – or equivalently, the recommender system is (✏, �,�)-envy-free. Since OCEF is correct

with probability 1� �
3 when outputting that µ0 + ✏ � max

k2JKK
µk (i.e., ✏-no-envy), the union bound

guarantees with probability 1�� that AUDIT is correct when outputting (✏, �,�)-envy-free. Since

OCEF is correct with probability � 1�� when outputting envy, then so is AUDIT when outputting

not-envy-free, which achieves the proof of the third bullet point.
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Appendix D

Online selection of diverse

committees

Abstract

Citizens’ assemblies need to represent subpopulations according to their proportions in the general

population. These large committees are often constructed in an online fashion by contacting

people, asking for the demographic features of the volunteers, and deciding to include them or not.

This raises a trade-off between the number of people contacted (and the incurring cost) and the

representativeness of the committee. We study three methods, theoretically and experimentally: a

greedy algorithm that includes volunteers as long as proportionality is not violated; a non-adaptive

method that includes a volunteer with a probability depending only on their features, assuming

that the joint feature distribution in the volunteer pool is known; and a reinforcement learning

based approach when this distribution is not known a priori but learnt online.

D.1 Introduction

Forming a representative committee consists in selecting a set of individuals, who agree to serve,

in such a way that every part of the population, defined by specific features, is represented

proportionally to its size. As a paradigmatic example, the Climate Assembly in the UK and the

Citizens’ Convention for Climate in France brought together 108 and 150 participants respectively,

representing sociodemographic categories such as gender, age, education level, professional activity,

residency, and location, in proportion to their importance in the wider society. Beyond citizens’

deliberative assemblies, proportional representation often has to be respected when forming an

evaluation committee, selecting a diverse pool of students or employees, and so on.

Two key criteria for evaluating the committee formation process are the representativeness of the

final selection and the number of persons contacted (each of these incurring a cost). The trade-off

is that the higher the number of people contacted, the more proportional the resulting committee.

A first possibility is to use an offline strategy (as for the UK assembly): invitations are sent to a

large number of people (30,000), and the final group is selected among the pool of volunteers. An

alternative setting which is common in hiring is to consider an online process: the decision-maker

is given a stream of candidates and has to decide at each timestep whether or not to admit the

candidate to the final committee. This work focuses on the latter setting.

A further difficulty is that the distribution of volunteers is not necessarily known in advance. For
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example, although the target is to represent distinct age groups proportionally to their distribution

in the wider population, it may be the case that older people are predominant among volunteers.

Multi-attribute proportional representation in committee selection in an off-line setting usually

assumes full access to a finite (typically large) database of candidates. This assumption is impractical

in a variety of real-world settings: first, the database does not exist beforehand and constructing it

would require contacting many more people than necessary; second, in some domains, the decision to

hire someone should be made immediately so that people don’t change their mind in the meantime

(which is typical in professional contexts).

An online strategy must achieve a good trade-off between sample complexity, i.e. the number of

timesteps needed to construct a full committee, and the quality of the final committee, as measured

by its distance to the target distribution.

We focus on the online setting. We introduce a new model and offer three different strategies,

which rely on different assumptions on the input (and the process). The greedy strategy selects

volunteers as long as their inclusion does not jeopardize the size and representation constraints; it

does not assume any prior distribution on the volunteer pool. The nonadaptive strategy, based on

constrained Markov decision processes, repeatedly chooses a random person, and decides whether

to include or not a volonteer with a probability that depends only on their features; it assumes the

joint distribution in the volunteer pool is known; it can be parallelised. Finally, the reinforcement

learning strategy assumes this distribution is not known a priori but can be learnt online.

Which of these strategies are interesting depends on domain specificities. For each, we study

bounds for expected quality and sample complexity, and perform experiments using real data from

the UK Citizens’ Assembly on Brexit.

The outline of the paper is as follows. We discuss related work in Section D.2, define the problem

in Section D.3, define and study our three strategies in Sections D.3.2, D.4 and D.5, analyse our

experiments in Section D.6 and conclude in Section D.7.

D.2 Related work

Diversity and representation in committee (s)election The problem of selecting a diverse

set of candidates from a candidate database, where each candidate is described by a vector of

attribute values, has been considered in several places. In Lang and Skowron [2018], the goal is to

find a committee of a fixed size whose distribution of attribute values is as close as possible to a

given target distribution. In Celis et al. [2018a], Bredereck et al. [2018], each candidate has a score,

obtained from a set of votes, and some constraints on the proportion of selected candidates with

a given attribute value are specified; the goal is to find a fixed-size committee of maximal score

satisfying the constraints. In the same vein, Aziz [2019] considers soft constraints, and Bei et al.

[2020] do not require the size of the committee to be fixed.1

Our online setting shifts the difficulty of the multi-attribute representation problem from

computational complexity analyses, to the need for probabilistic guarantees on the tradeoffs between

sample complexity and achieved proportionality.

Representative and fair sortition Finding a representative committee (typically, a panel of

citizens) with respect to a set of attributes, using sortition, is the topic of at least two recent papers.

Benadè et al. [2019] show that stratification (random selection from small subgroups defined by

1Note that diversity and proportional representation are often used with a different meaning in multiwinner
elections, namely, in the sense that each voter should feel represented in an elected committee, regardless of attributes.
A good entry to this literature is the survey Faliszewski et al. [2017].
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attribute values, rather than from the larger group) only helps marginally. Flanigan et al. [2020] go

further and consider this three-stage selection process: (1) letters are sent to a large number of

random individuals (the recipients); (2) these recipients answer whether they agree to participate,

and if so, give their features; those individuals constitute the pool; (3) a sampling algorithm is

used to select the final panel from the pool. As the probability of willingness to participate is

different across demographic groups, each person is selected with a probability that depends on

their features, so as to correct this self-selection bias. This guarantees that the whole process be fair

to all individuals of the population, with respect of going from the initial population to the panel.2

The main differences between this work and ours are: (1) (once again) our process is online; (2)

we do not consider individual fairness, only group representativeness; (3) we care about minimizing

the number of people contacted. Moreover, unlike off-line processes, our process can be applied

in contexts where hiring a person just interviewed cannot be delayed; this may not be crucial for

citizens’ assemblies (although someone who volunteers at first contact may change their mind if

the delay until the final selection is long), but this is definitely so when hiring a diverse team of

employees.

Online selection problems Generalized secretary problems Babaioff et al. [2008] are optimal

stopping problems where the goal is to hire the best possible subset of persons, assuming that

persons arrive one at a time, their value is observed at that time, and the decision to hire or not

them must be taken immediately. The problem has been generalized to finding a set of items

maximizing a submodular value function Bateni et al. [2013], Badanidiyuru et al. [2014] While the

latter models do not deal with diversity constraints, Stoyanovich et al. [2018] aims at selecting a

group of people arriving in a streaming fashion from a finite pool, with the goal of optimizing their

overall quality subject to diversity constraints. The common point with our approach is the online

nature of the selection process. The main differences are that they consider only one attribute, the

size of the pool is known, and yet more importantly, what is optimized is the intrinsic quality values

of the candidates and not the number of persons interviewed. Closer to our setting is Panigrahi

et al. [2012] who consider diversity along multiple features in online selection of search results,

regardless of item quality. They only seek to maximise diversity, and do not consider trade-offs

with the number of items observed.

The diverse hiring setting of Schumann et al. [2019a] is very different. At each time step, the

decision-maker chooses which candidate to interview and only decides on which subset to hire

after multiple rounds, whereas in our setting, candidates arrive one by one and decisions are made

immediately.

D.3 Formal setting

D.3.1 Problem definition

Let X = X1⇥ ...⇥Xd be the product space of d finite domains, each of size Di = |Xi|, and where we

identify Xi with JDiK = {1, ..., Di}. Each candidate is represented by a characteristic vector x 2 X

with d features. Let xi 2 Xi denote the value of the i-th feature. For each i 2 JdK, we consider a

target vector ⇢i 2 (0, 1)Di with
PDi

j=1 ⇢
i
j = 1.

The candidate database is infinite and the horizon as well. At each timestep t � 1, the agent

observes a candidate xt drawn i.i.d. from a stationary distribution p over X , i.e. xt ⇠ p. The

2Fairness guarantees are pushed further in following (yet unpublished) work by the authors: see https://youtu.

be/x_1Ce1kT7vc.
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gender \ age S J
M 1/2� ✏0 1/4
F 1/4 ✏0

Table D.1: Example candidate distribution p with 2 binary features.

decision-maker must immediately decide between two actions: accept or reject the candidate, which

we respectively denote as at = 1 and at = 0.

The goal is to select a committee C of K candidates that matches the target vectors as closely

as possible, while minimizing the number of candidates screened.

For some set C, let �(C) 2 Qd
i=1[0, 1]

Di be the representation profile of C, where �ij(C) =
|{x2C:xi=j}|

|C| . We define the representation loss as k�(C)� ⇢k1 = maxi2JdK,j2JDiK |�
i
j(C)� ⇢ij |. We

evaluate how much C matches the target ⇢ by the `1 metric, because it is harsher than `1, `2 on

committees that are unacceptable in our applications (e.g. committees with no women that achieve

perfect representation on all other categories than gender).

Let Ct = {xt0 : t
0  t, at0 = 1} denote the set of all accepted candidates at the end of step t.

The agent stops at ⌧ , where ⌧ is the first time when K candidates have been accepted, i.e. the

total number of candidates screened. The agent following a (possibly randomized) algorithm ALG

must minimize the sample complexity E
p,ALG[⌧ ].

Importantly, we consider two settings: whether the candidate distribution p is known or unknown.

Remark 9. In this model, we simply ignore non-volunteers, since the agent only needs to make de-

cisions for volunteers, which from now on we call candidates. The joint distribution of characteristic

vectors in the population of candidates is p.

D.3.2 Greedy strategy

We describe a first simple strategy. In Greedy, the agent greedily accepts any candidate as long as

the number of people in the committee with xi = j does not exceed the quota d⇢ijKe+ ✏K
(Di�1) for

any i, j, where ✏ > 0 is some tolerance parameter for the representation quality.

Proposition 63. The representation loss incurred by Greedy is bounded as follows:

k�(C⌧ )� ⇢k1 
a.s.

�maxi2[d] Di � 1

K
+ ✏).

The proof and pseudocode are included in App. E.1.

This method is simple to interpret and implement, and can even be used when the candidate

distribution p is unknown. However, in the following example, we see that Greedy may be inefficient

because it requires interacting with an arbitrarily large number of candidates to recruit a full

committee.

Example 9. Let ✏0 > 0,⌧ 1. There are 2 binary features, gender and age, with domains

Xgender = {M,F} and Xage = {S, J}. The candidates are distributed as p given in Table D.1. We

want a committee of size K = 4 (e.g., a thesis committee) and the target is ⇢gender = (1/2, 1/2) and

⇢age = (3/4, 1/4).

Let A be the event that in the first 3 timesteps, the agent observes candidates with char-

acteristic vectors {FS,MS,MS} in any order. Then Greedy accepts all of them, i.e. A =

{C3 = {FS,MS,MS}}. We have: P [A] = 1/4(1/2� ✏0)2 ⇥ 3! = 3/2(1/2� ✏0)2 � 3/2
�
1/3
�2

= 1/6.

Under event A, Greedy can only stop upon finding FJ in order to satisfy the representation

constraints. Therefore, ⌧ |A follows a geometric distribution with success probability ✏0, hence its
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expectation is 1/✏0, and E
p,Greedy[⌧ ] � E [⌧ |A] ⇥ P [A] = 1/6✏0. Therefore, the sample complexity of

Greedy in this example is arbitrarily large.

This example shows the limits of directly applying a naive strategy to our online selection

problem, where the difficulty arises from considering multiple features simultaneously, even when

there are only 2 binary features. We further discuss the strengths and weaknesses of Greedy, and

its sensitivity to the tolerance ✏ in our experiments in Section D.6.

The greedy strategy is adaptive, in the sense that decisions are made based on the current

candidate and candidates accepted in the past. In the following section, we present, with theoretical

guarantees, an efficient yet non-adaptive algorithm based on constrained MDPs for the setting in

which the candidate distribution is known. We then adapt this approach to the case when this

distribution is unknown, using techniques for efficient exploration / exploitation in constrained

MDPs relying on the principle of optimism in the face of uncertainty.

D.4 p is known: constrained MDP strategy

In this section, we assume the distribution p is known, and we place ourselves in the limit where

we would select a committee of infinite size, and aim to maximize the rate at which candidates

are selected, under the constraint that the proportion of accepted candidates per feature value

is controlled by ⇢. One advantage of this approximation is that the optimal policy is stationary,

thus simple to represent. Moreover, as stationary policies can be very well parallelized, in the

case where multiple candidates can be interviewed simultaneously. To apply this approach to the

finite-size committee selection problem, one needs to interrupt the agent when K candidates have

been selected. We showcase a high probability bound of O(
p
1/K) on the representation loss, which

guarantees that for large enough values of K, the resulting committee is representative.

From now on, we assume that any feature vector can be observed, i.e., p(x) > 0 for all x, so

that proportional representation constraints can be satisfied.

D.4.1 Our model

Fundamentally, our problem could be seen as a contextual bandit with stochastic contexts xt ⇠ p

and two actions at = 0 or 1. However, the type of constraints incurred by proportional representation

are well studied in constrained MDPs (CMDPs) Altman [1999], whereas the contextual bandits

literature focused on other constraints (e.g., knapsack constraints Agrawal and Devanur [2016]).

We show how we can efficiently leverage the CMDP framework for our online committee selection

problem.

Formally, we introduce an MDP M = (X ,A, P, r), where the set of states is the d-dimensional

candidate space X , the set of actions is A = {0, 1}, and the (deterministic) reward is r(x, a) = {a=1}.

The transition kernel P , which defines the probability to be in state x0 given that the previous state

was x and the agent took action a, is very simple in our case: we simply have P (x0|x, a) = p(x0)

since candidates are drawn i.i.d regardless of the previous actions and candidates.

We consider the average reward setting in which the performance of a policy ⇡ : X ⇥A! [0, 1]

is measured by its gain gp,⇡, defined as:

gp,⇡(x) = lim
T!1

1

T
E
p,⇡

"
TX

t=1

r(xt, at)

����x1 = x

#
.

We simply write gp,⇡ := g⇡ when the underlying transition is p without ambiguity.
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We include proportional representation constraints following the framework of CMDPs, where

the set of allowed policies is restricted by a set of additional constraints specified by reward functions.

In our case, for i 2 JdK, j 2 JDiK, we introduce rij(x, a) = {xi=j,a=1}, and let ⇠ij = rij � ⇢ijr be

the reward function for the constraint indexed by i, j. Similarly to the gain, we define hi
j
⇡
=

limT!1
1
T E

⇡
hPT

t=1 ⇠
i
j(xt, at)

i
. The CMDP is defined by:

max
⇡

{g⇡ | 8i 2 JdK, 8j 2 JDiK, h
i
j

⇡
= 0}. (D.1)

Given the simplicity of the transition kernel, and since the MDP is ergodic by the assumption

p > 0, the gain is constant, i.e. 8x 2 X , g⇡(x) = g⇡, and problem (D.1) is well defined. From now

on, we only write g⇡ and ⇠ij
⇡
. Moreover, the optimal policy for the CMDP (D.1) is denoted ⇡⇤ and

is stationary Altman [1999].

Lemma 64. g⇡ is the selection rate under policy ⇡:

g⇡ =
X

x

p(x)⇡(x, 1) = P
p,⇡[a = 1]

Moreover, if ⇡ is feasible for CMDP (D.1), then:

8i 2 [d], 8j 2 JDiK,P
p,⇡[xi = j|a = 1] = ⇢ij .

Lemma 64 implies that (a) ⇡⇤ maximises the selection rate of candidates, and (b) the constraints

of (D.1) force candidates x with xi = j to be accepted in proportions given by ⇢ij .

The CMDP can be expressed as the linear program:

max
⇡2R

X⇥A
+

X

x,a

⇡(x, a)p(x)r(x, a)

u.c. 8x 2 X ,
X

a

⇡(x, a) = 1

8i, j,
X

x,a

⇡(x, a)p(x)⇠ij(x, a) = 0.

(D.2)

Notice that problem (D.2) is feasible by the assumption that 8x 2 X , p(x) > 0. Next we

study how well the proportional selection along features is respected when we shift from infinite to

finite-sized committee selection.

D.4.2 Theoretical guarantees

We analyze the CMDP-based strategy where at each timestep, the agent observes candidates xt ⇠ p,

decides to accept xt by playing at ⇠ ⇡⇤(.|xt) and stops when K candidates have been accepted.

We later refer to it as CMDP for brevity.

First, we formally relate the gain g⇡ that we optimize for in (D.1) to the quantity of interest

E
p,⇡[⌧ ].

Lemma 65. For any stationary policy ⇡, Ep,⇡[⌧ ] = K
g⇡ .

Lemma 65 is a direct consequence of the fact that ⌧ +K follows a negative binomial distribution

with parameters K and 1� g⇡, which are respectively the number of successes and the probability

of failure, i.e. of rejecting a candidate under ⇡. Note that this is only true because in our case

the transition structure of the MDP ensures constant gain. A quick sanity check shows that if the
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Algorithm 10: RL-CMDP algorithm.
input : confidence �, committee size K, targets ⇢
output : committee C⌧

1 t 0, C0  ;;
2 while |Ct| < K do
3 for episode l = 1, 2, ... do
4 ⌧l = t+ 1;
5 ⇡l  sol. of (D.3) via the extended LP (D.4);
6 while nt(xt) < 2n⌧l�1(xt) do
7 t t+ 1, Execute ⇡l;
8 end
9 end

10 end
11 return Ct

agent systematically accepts all candidates, i.e. g⇡ = 1, then E
p,⇡[⌧ ] = K, and that maximizing g⇡

is equivalent to minimizing E
p,⇡[⌧ ].

We exhibit a bound on the representation loss of CMDP which follows the optimal stationary

policy ⇡⇤ of CMDP (D.1). Let d̃ =
Pd

i=1(Di � 1). (d̃ = d when all features are binary.)

Proposition 66. Let ⇡⇤ be an optimal stationary policy for CMDP (D.1). Let � > 0. Then,

P
p,⇡⇤

2
4k�(C⌧ )� ⇢k1 

s
log( 2d̃

�
)

2K

3
5 � 1� �.

All proofs of this section are available in Appendix E.2.1.

The upper bound on the representation loss of CMDP decreases with the committee size inp
1/K. This shows that the stationary policy ⇡⇤ works well for larger committees, although it acts

independently from previously accepted candidates. The intuition is that for larger committees,

adding a candidate has less impact on the current representation vector.

Example 10. We take the same attributes and same distribution as in Table D.1, with ✏0 = 1/6.

Here, the target vectors are ⇢gender = (1/2, 1/2) and ⇢age = (1/2, 1/2): an ideal committee contains as

many women as men, as many senior as junior.

With the optimal policy for LP (D.2), each time the current volunteer is a senior male, we

select him with probability 1/2; all other volunteers are selected with probability 1. The expected final

composition of the pool is 30% of junior male, 30% of senior female, 20% of junior female and 20%

of senior male. As the policy selects in average 5/6 of the volunteers, the expected time until we

select K candidates is E
p,⇡⇤

[⌧ ] = (6/5)K. More details can be found in App. E.5.

D.5 p is unknown: optimistic CMDP strategy

We now tackle the committee selection problem when the candidate distribution p is unknown and

must be learned online. Let g⇤ = g⇡
⇤

be the value of (D.1), which is the optimal gain of the CMDP

when the distribution p is known. We evaluate a learning algorithm by:

1. the performance regret: R(T ) =
PT

t=1(g
⇤ � r(xt, at)),

2. the cost of constraint violations:

Rc(T ) = maxi,j
��PT

t=1 ⇠
i
j(xt, at)

��.
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We propose an algorithm that we call RL-CMDP (Reinforcement Learning in CMDP, Alg. 10).

It is an adaptation of the optimistic algorithm UCRL2 Jaksch et al. [2010], and it also builds on

the algorithm OptCMDP proposed by Efroni et al. [2020] for finite-horizon CMDPs. Learning

in average-reward CMDPs involves different challenges, because there is no guarantee that the

policy at each episode has constant gain. It does not matter in our case, since as we noted in Sec.

D.4, the simple structure of the transition kernel ensures constant gain, and does not require to

use the Bellman equation. The few works on learning in average-reward CMDPs make unsuitable

assumptions for our setting Zheng and Ratliff [2020], Singh et al. [2020].

RL-CMDP proceeds in episodes, which end each time the number of observations for some

candidate x doubles. During each episode l, observed candidates xt are accepted on the basis of a

single stationary policy ⇡l.

Let ⌧l denote the start time of episode l and El = [⌧l, ⌧l+1]. Let nt(x) =
Pt

t0=1 {xt0=x} and

N(t) = |Ct�1| =
Pt�1

t0=1 {at0=1}. Let N i
j(t) =

Pt�1
t0=1 {xi

t0
=j,at0=1} be the number of accepted

candidates x such that xi = j before t.

At each episode l, the algorithm estimates the true candidate distribution by the empirical

distribution p̂l(x) =
n⌧l�1(x)

⌧l�1 and maintains confidence sets Bl on p. As in UCRL2, these are built

using the inequality on the `1-deviation of p and p̂l from Weissman et al. [2003]:

Lemma 67. With probability � 1� �
3 ,

kp̂l � pk1 

s
2|X | log

�
6|X |⌧l(⌧l � 1)/�

�

⌧l � 1
:= �l

Let Bl = {p̃ 2 ∆(X ) : kp̂l � p̃k1  �l} be the confidence set for p at episode l. The associated

set of compatible CMDPs is then {M̃ = (X ,A, p̃, r, ⇠) : p̃ 2 Bl}. At the beginning of each episode,

RL-CMDP finds the optimum of:

max
⇡2Π,p̃2Bl

{gp̃,⇡ | 8i, j, hi
j

p̃,⇡
= 0}. (D.3)

Extended LP In order to optimize this problem, we re-write (D.3) as an extended LP. Following

Rosenberg and Mansour [2019] and the CMDP literature, we introduce the state-action occupation

measure µ(x, a) = ⇡(x, a)p(x) and variables �(x) to linearize the `1 constraint induced by the

confidence set:

max
µ2R

X⇥A

�2R
X

X

x,a

µ(x, a)r(x, a)

u.c. µ � 0,
X

x,a

µ(x, a) = 1

8x,
X

a

µ(x, a)  p̂l(x) + �(x)

8x,
X

a

µ(x, a) � p̂l(x)� �(x)

8x, a,
X

y

�(y)  µ(x, a)�l

8i, j,
X

x,a

µ(x, a)⇠ij(x, a) = 0.

(D.4)

The last constraint is the proportional representation constraint. The second to fourth constraints

enforce the compatibility of µ with the `1 confidence set. We retrieve the distribution as p̃l(x) =
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P
a µ(x, a), and the policy as:

⇡l(x, a) =

8
<
:

µ(x,a)
p̃l(x)

if p̃l 6= 0

1
2 otherwise .

Precisely, if some p̃l(x) = 0, we may set the policy ⇡l(a|x) arbitrarily. Since the MDP induced by p̃

is still weakly communicating, and in particular any policy is unichain, the optimal gain in this

CMDP is not affected.

We now provide regret and representativeness guarantees.

Theorem 68. With probability � 1� �, the regret of RL-CMDP satisfies:

R(T ) = O
�p

|X |T log(|X |T/�)
�

Rc(T ) = O
�p

|X |T log(|X |T/�)
�
.

Moreover, with probability 1� �, the representation loss of RL-CMDP at horizon T satisfies:

k�(CT )� ⇢k1 = O

0
@ 1

g⇤

s
|X | log

�
|X |T/�

�

T

1
A .

The full proof is in Appendix E.2.2. It relies on decomposing regret over episodes, bounding

the error on p which decreases over episodes as the confidence sets are refined, and leveraging

martingale inequalities on the cumulative rewards.

Since R(T )
T = g⇤ � N(T )

T , it means that with high probability, the difference between the optimal

selection rate and the selection rate of RL-CMDP decreases in
p

log(T )/T w.r.t. the horizon T .

The representation loss decreases at the same speed, meaning that the agent should see enough

candidates to accurately estimate p, and accept candidates at little cost for representativeness.

Compared to the bound from Proposition 66, the cost of not knowing p on representativeness is

a
p

|X | log(|X |) factor. This is due to the estimation of p in the worst case, which is controlled by

Lemma 67. As we show in our experiments (Sec. D.6), the impact of |X | on performance regret

(and in turn on sample complexity) is not problematic in our typical citizens’ assembly scenario:

since there are only a handful of features, our algorithm selects candidates quickly in practice

(though representativeness is weakened by not knowing p). For specific structures of p, we obtain

bounds with better scaling in |X |, by controlling each entry of p with Bernstein bounds Maurer and

Pontil [2009], instead the `1-norm. For completeness, we describe this alternative in Appendix E.3.

Interestingly, the representation loss is also inversely proportional to g⇤, the optimal selection

rate in the true CMDP. The reason is that the CMDP constraints do not control the ratios

�ij(CT ) =
Ni

j (T )

N(T ) , but N i
j(T ) instead (by definition of Rc(T ) and ⇠ij). If N(T ) is small, i.e. due to a

small selection rate g, then Ri
j(T ) = |N i

j(T )� ⇢ijN(T )| is small, but not necessarily |
Ni

j (T )

N(T ) � ⇢ij |:
the committee is too small to be representative.

D.6 Experiments

The goal of these experiments is to answer the following: (Q1) In practice, for which range of

committee sizes do our strategies achieve satisfying sample complexity and representation loss? (Q2)

What is the cost of not knowing the distribution p for the sample complexity and representation

loss?
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Experimental setting To answer these questions, we use summary data from the 2017 Citizens’

Assembly on Brexit. The participants were recruited in an offline manner: volunteers could express

interest in a survey, and then 53 citizens were drawn from the pool of volunteers using stratified

sampling, in order to construct an assembly that reflects the diversity of the UK electorate. We use

summary statistics published in the report Renwick et al. [2017] to simulate an online recruitment

process.

There are d = 6 features: the organisers expressed target quotas for 2 ethnicity groups, 2 social

classes, 3 age groups, 8 regions, 2 gender groups and 2 Brexit vote groups (remain, leave). The

report also includes the number of people contacted per feature group (e.g., women, or people who

voted to remain) and the volunteering rate for each feature group, which we use as probability

of volunteering given a feature group. We use Bayes’ rule to compute the probabilities of feature

groups among volunteers, and use them as the marginal distributions Pr[xi = j|volunteers] (since

we only consider the population of volunteers). Since we only have access to the marginals, we

compute the joint distribution as if the features were independent, although our model is agnostic

to the dependence structure of the joint distribution. In Appendix E.4.2, we present additional

experiments with non-independent features, using a real dataset containing demographic attributes.

The results are qualitatively similar.

We study Greedy with tolerance ✏ = 0.02, 0.05. We run experiments for K = 50, 100, 150, 250, 500, 1000,

averaged over 50 simulations. More details are found in App. E.4.1.

(A1) We compare Greedy and CMDP, when the distribution p is known. Figure D.1 shows that the

greedy strategy with ✏ = 0.05 requires 10 times more samples than CMDP, and its representation loss

is higher as soon as K � 250. Greedy with lower tolerance ✏ = 0.02 achieves better representation

than CMDP for smaller committees (K  100), but the margin quickly decreases with K. However,

even for small committees, it requires about 100 times more samples, which is prohibitively expensive.

Figure D.1 shows that for CMDP, the sample complexity grows linearly in the committee size, with a

reasonable slope (we need to find ⌧ ⇡ 500 volunteers for a committee of size K ⇡ 200).

(A2) To corroborate the previously discussed effect of |X | when p is unknown, we evaluate

RL-CMDP on different configurations: (1) using only the features ethnicity, social class, and gender

(d = 3, |X | = 8), (2) using all features except regions (d = 5, |X | = 48). Fig. D.2 shows that

unlike CMDP which has full knowledge of p, it is for large committee sizes that RL-CMDP reaches low

representation loss (below 0.05 for K � 1500 in the configuration(1)). This is because RL-CMDP

needs to collect more samples to estimate p, as discussed in Th. 68. For known p, the CMDP

approach achieves the same representativeness for middle-sized committees (repr. loss  0.05 for

K ⇡ 250). Hence, comparing the cases of known (Fig. D.1) and unknown distribution p (Fig. D.2),

the ignorance of p is not costly for sample complexity, but rather for the representation loss which

decreases more slowly.

Consistently with Th. 68, we observe that the representation loss is higher when X is larger

(d = 5). For small and middle-sized committees, the loss of RL-CMDP is much worse than Greedy’s

which also works for unknown p. For large committees though, the margin is only 0.05 when

K & 2000 and ⌧ ⇡ 3500 for RL-CMDP (which is ⇥3 more sample efficient than Greedy). In

absolute terms, the theoretical regret bounds have a large constant
p
|X |. This constant is likely

unavoidable asymptotically because it comes from Lem. 67, but our experiments suggest that in

the non-asymptotic regime, RL-CMDP performs better than the bound suggests.

222





Chapter D. Online selection of diverse committees

224



Appendix E

Appendix of Online selection of

diverse committees

E.1 Details of the algorithms

For precision, we provide the pseudocode of Greedy in Alg. 11, and the CMDP-based strategy in Alg.

12.

We also prove the bound on the representation loss of Greedy from Proposition 63 in Section

D.3.2.

Proof. For all i, j, we have by the if-condition and the termination condition:

�ij(C⌧ ) =
N i

j(⌧)

K

d⇢ijKe
K

+
✏

Di � 1

 ⇢ij +
1

K
+

✏

Di � 1
(E.1)

 ⇢ij +
Di � 1

K
+ ✏. (E.2)

For i 2 JdK, for j0 2 JDiK, we have:

⇢ij0 = 1�
X

j 6=j0

⇢ij , �ij0(C⌧ ) = 1�
X

j 6=j0

�ij(C⌧ ).

Combining these observations with (E.1):

�ij0(C⌧ ) � 1�
X

j 6=j0

�
⇢ij +

1

K
+

✏

Di � 1

�

= 1�
X

j 6=j0

⇢ij �
Di � 1

K
� ✏

= ⇢ij0 �
Di � 1

K
� ✏.

Combining this lower bound with the upper bound (E.2), we have for all i 2 JdK, j0 2 JDiK,���ij0(C⌧ )� ⇢ij0
��  Di�1

K + ✏, which gives the result.
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Algorithm 11: Greedy algorithm.

input : tolerance ✏, committee size K, targets ⇢
output : committee C⌧

1 t 0, C0  ;;
2 while |Ct| < K do
3 t t+ 1;
4 Observe xt ⇠ p;
5 if 8i, j,N i

j(t) + {xi
t=j}  d⇢ijKe+ ✏K

Di�1 then
6 Ct  Ct�1 [ {xt} ; // accept xt

7 8i, j, N i
j(t� 1) N i

j(t) + {xi
t=j}

8 end
9 end

10 return Ct

Algorithm 12: CMDP-based strategy.

input : optimal policy ⇡⇤ of (D.1), committee size K
output : committee C⌧

1 t 0, C0  ;;
2 while |Ct| < K do
3 t t+ 1, observe xt ⇠ p and play at ⇠ ⇡⇤(.|xt) ;
4 if at = 1 then Ct  Ct [ {xt};
5 end
6 return Ct

E.2 Proofs

E.2.1 Proofs of Section D.4

Proof of Lemma 64.

Proof. We have:

X

x,a

⇡(x, a)p(x)rij(x, a) = E x⇠p
a⇠⇡(·|x)

⇥
rij(x, a)

⇤

= P
p,⇡[a = 1, xi = j],

and g⇡ =
X

x,a

⇡(x, a)p(x)r(x, a) = E x⇠p
a⇠⇡(.|x)

[r(x, a)]

= P
p,⇡[a = 1].

The ratio of these two quantities is equal to ⇢ij by the last constraint of (D.2). It is also equal to

P[xi = j|a = 1], which gives the result.

Note that it also holds true for j = JDiK, since

P[xi = Di|a = 1] = 1�
X

j02JDi�1K

P[xi = j0|a = 1] and

⇢iDi
= 1�

X

j02JDi�1K

⇢ij0 .
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Proof of Proposition 66.

Proof. For any t > 0, we have

�ij(Ct) =

Pt
s=1 {xi

s=j,as=1}Pt
s=1 {as=1}

.

and by Lemma 64, we have:

E
⇥

{xi=j}|a = 1
⇤
= ⇢ij .

Let �0 > 0. Conditionally on any T � K, (a1, ..., aT ) 2 {0, 1}T s.t. a1+ ...+aT = K and aT = 1,

the draws of xi
t|at = 1 are independent and thus, by Hoeffding’s inequality Hoeffding [1994], we

have:

P

2
4|�ij(CT )� ⇢ij | �

s
log( 2

�0
)

2N(T )

����a1, ..., aT

3
5 � 1� �0

= P

2
4|�ij(CT )� ⇢ij | �

s
log( 2

�0
)

2K

����a1, ..., aT

3
5 .

Summing up over all such sequences (a1, ..., aT ), we obtain that:

P

2
4|�ij(C⌧ )� ⇢ij | �

s
log( 2

�0
)

2K

3
5 � 1� �0.

The result follows from applying a union bound over all i 2 JdK, j 2 JDi � 1K (there are d̃ such (i, j)

pairs) and choosing �0 = �/d̃.

E.2.2 Proof of Theorem 68

The following lemma states a standard and useful inequality, which is similar to Lem. 19 in Jaksch

et al. [2010].

Lemma 69. Recall that L is the random number of episodes ran by RL-CMDP up until horizon T .

We have:

LX

l=1

|El|p
⌧l � 1

 2
p
T .

Proof. The proof is similar to that of Lem. 13 in Zanette and Brunskill [2019]: we see El as the

“derivative” of ⌧l. Formally, let us define:

F (x) =

bxcX

l=1

|El|+ |Edxe|(x� bxc)

f(x) := F 0(x) = |Edxe|.

227



Chapter E. Appendix of Online selection of diverse committees

We first observe that for any integer l 2 N, f(l) = |El| and F (l) = ⌧l. Secondly, we have

F (x) 
bxcX

l=1

|El|+ |Edxe| =

dxeX

l=1

|El| = F (dxe),

and thus:
f(dxe)p
F (dxe)� 1

 f(x)p
F (x)� 1

.

We derive our bound as follows:

LX

l=1

|El|p
⌧l � 1

=
LX

l=1

f(l)p
F (l)� 1

=

Z L

1

f(dxe)p
F (dxe)� 1

dx


Z L

1

f(x)p
F (x)� 1

dx = 2(
p

F (L)� 1)

= 2(
p
⌧L � 1)  2

p
T .

We introduce the following notation: for f : X ⇥A! R, let f⇡(x) :=
P

a f(x, a)⇡(x, a). For

all t > 0, let lt denote the episode number at time t. The following useful lemma is based on a

martingale argument.

Lemma 70. Let f : X ⇥A! R. Let �0 > 0. We have:

P

"
TX

t=1

(hf⇡lt , pi � f(xt, at)) 
p
2T log(1/�0)

#
� 1� �0

P

"
TX

t=1

��hf⇡lt , pi � f(xt, at)
�� 

p
2T log(2/�0)

#
� 1� �0.

Proof. We define the filtration Ft = �(x1, a1, ..., xt, at) and we first show that the sequence defined

by Mt = hf⇡lt , pi � f(xt, at) is a martingale difference sequence w.r.t. Ft. E [Mt] <1 since the

rewards are bounded. Next, the proof that E [Mt|Ft�1] = 0 relies on the fact that lt, and in turn

the stationary policy ⇡lt , are Ft�1�measurable.

Therefore,

E
⇥
hf⇡lt , pi

��Ft�1

⇤
= hf⇡lt , pi.

We also have:

E
⇥
f(xt, at)

��Ft�1

⇤
= E

"
X

x,a

f(x, a) {(xt,at)=(x,a)}

����Ft�1

#

=
X

x,a

f(x, a)⇡lt(x, a) = hf⇡lt , pi.

Subtracting the two expressions above, we get E [Mt|Ft�1] = 0. (Mt)t is thus a Martingale

difference sequence, such that �1 Mt  1. The result follows from Azuma-Hoeffding’s inequality.

We now prove Theorem 68.
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Proof. We define E = E1 \ E2 \ E3 to be the “good event”, with:

E1 = {8l � 1, p̃l 2 Bl},

E2 = {
TX

t=1

(hr⇡lt , pi � r(xt, at)) 
p
2T log(3/�)},

E3 =

8
<
:8i, j,

TX

t=1

��h⇠ij
⇡lt , pi � ⇠ij(xt, at)

�� 

s

2T log
�6d̃
�

�
9
=
; .

By Lemma 67, we have

P [9l � 1, p̃l 2 Bl] � 1� �

3
. (E.3)

Combining (E.3) with Lemma 70 and using union bounds, P [E ] � 1� �. From now on, we assume

that the good event E holds true.

Performance regret We start by upper bounding the performance regret R(T ). Let ∆l =
P

t2El
(g⇤� r(xt, at)) be the regret of episode l. Let (⇡l, p̃l) be the solution of the optimistic CMDP

(D.3) at episode l. Since (⇡⇤, p) is feasible for (D.3), then g⇤  gp̃l,⇡l . We also note that

gp̃l,⇡l =
X

x,a

r(x, a)p̃l(x)⇡l(x, a) =
X

x

r⇡l(x)p̃l(x).

Therefore, we have:
∆l 

X

t2El

(gp̃l,⇡l � r(xt, at))

=
X

t2El

(
X

x

r⇡l(x)p̃l(x)� r(xt, at))

=
X

t2El

X

x

r⇡l(x)(p̃l(x)� p(x))

+
X

t2El

(
X

x

r⇡l(x)p(x)� r(xt, at))

Using Hölder’s inequality and the fact that krk1 = 1, the first term can be bounded by

|El|kp̃l � pk1. By validity of the confidence intervals under event E :

kp̃l � pk1  2�l 
2
q
2|X | log

�
6|X |T (T � 1)/�

�
p
⌧l � 1

Summing up over episodes l = 1, ..., L:

R(T )  2

r
2|X | log

�6|X |T (T � 1)

�

� LX

l=1

|El|p
⌧l � 1

+

TX

t=1

(
X

x

r⇡lt (x)p(x)� r(xt, at)).

We bound the first sum using Lemma 69. The second term can be bounded as in Lemma 70

because E2 holds true. This gives us the resulting bound which holds under E :

R(T )  4

r
|X | log

�6|X |T (T � 1)

�

�
T +

r
2T log

�3
�

�
.
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Cost of constraint violations The proof for the cost of constraint violations is very similar.

Let us bound Ri
j(T ) :=

PT
t=1 |⇠

i
j(xt, at)| for all i, j. We briefly drop the sub/superscripts i, j.

At each episode l, since (⇡l, p̃l) is a solution of (D.3), we have hp̃l,⇡l = 0, and thus
P

x,a ⇠(x, a)⇡l(x, a)p̃l(x) =P
x ⇠

⇡l(x)p̃l(x) = 0. Therefore, we have:

�����

TX

t=1

⇠(xt, at)

����� =
�����

LX

l=1

� X

t2El

⇠(xt, at)�
X

x

⇠⇡l(x)p̃l(x)
�
�����


����

LX

l=1

X

t2El

X

x

⇠⇡l(x)(p(x)� p̃l(x))

+
LX

l=1

� X

t2El

⇠(xt, at)�
X

x

⇠⇡l(x)p(x)
�����


LX

l=1

X

t2El

�����
X

x

⇠⇡l(x)(p(x)� p̃l(x))

�����

+

�����

LX

l=1

� X

t2El

⇠(xt, at)�
X

x

⇠⇡l(x)p(x)
�
�����


LX

l=1

|El|k⇠⇡lk1kp� p̃lk1

+

�����

TX

t=1

✓
⇠(xt, at)�

X

x

⇠⇡lt (x)p(x)

◆����� ,

where the first part of the last inequality is again by Hölder’s inequality. Similarly to the performance

regret, the first term is bounded using the validity of confidence intervals under the good event

E and Lemma 69, and the second term is bounded by the martingale argument using Lemma 70.

Hence, under E we have for any i, j:

Ri
j(T )  4

r
|X | log

�6|X |T (T � 1)

�

�
T +

s

2T log
�6d̃
�

�
.

And thus the same bounds holds for Rc(T ) = maxi,j R
i
j(T ).

Representation loss We may now derive the bound on representation loss.

Let f(T ) = O
�p

|X | log(|X |T/�)
�
. The regret bounds imply that with 1� �:

R(T ) =g⇤T �N(T )  f(T )) N(T ) � g⇤T � f(T )

Rc(T )

N(T )
=max

i,j

�����
N i

j(T )

N(T )
� ⇢ij

N(T )

N(T )

����� 
f(T )

N(T )

i.e., k�(CT )� ⇢k1 
f(T )

N(T )
.
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Therefore, using N(T ) � 1, we have:

k�(CT )� ⇢k1 
f(T )

max(1, g⇤T � f(T ))

= O

✓s
|X | log(|X |T/�)

g⇤2T

◆
.

E.3 Alternative to RL-CMDP with Bernstein bounds

We present RL-CMDP-B, an alternative to RL-CMDP which uses Bernstein empirical bounds Maurer

and Pontil [2009].

At each episode l, the algorithm estimates the distributions by p̂l(x) =
n⌧l�1(x)

⌧l�1 and maintains

confidence intervals [p
l
(x), pl(x)]. These are built using Bernstein’s empirical inequality Maurer and

Pontil [2009], which implies that there exists constants B1, B2 such that with probability � 1� �
3 ,

for each l � 1 and x 2 X ,

|p(x)� p̂l(x)|  B1

s
�̂2
l (x) log(

6|X |⌧l
�

)

1 ^ (⌧l � 1)
+B2

log( 6|X |⌧l
�

)

1 ^ (⌧l � 1)
, (E.4)

where �̂l(x) =
p
p̂l(x)(1� p̂l(x)).

Following e.g. Efroni et al. [2020], we re-write (D.3) as an extended LP by introducing the

state-action occupation measure µ(x, a) = ⇡(x, a)p(x).

max
µ2RX⇥A

X

x,a

µ(x, a)r(x, a)

u.c. µ � 0,
X

x,a

µ(x, a) = 1

8x,
X

a

µ(x, a)  pl(x)

8x,
X

a

µ(x, a) � p
l
(x)

8i, j,
X

x,a

µ(x, a)⇠ij(x, a) = 0.

The second to fourth constraints enforce the compatibility of µ with the confidence intervals.

Controlling each entry of p with Bernstein bounds instead of the `1-norm allows for a simpler

optimization problem than the extended LP (D.4). We get the following regret bound:

Theorem 71 (Regret guarantees). With probability � 1� �, the regret of RL-CMDP-B satisfies:

R(T ) = O
�p

|X |T log(|X |T/�) + |X | log(|X |T/�)2
�

Rc(T ) = O
�p

|X |T log(|X |T/�) + |X | log(|X |T/�)2
�
.

With probability � 1� �, the representation loss satisfies:

k�(CT )� ⇢k1

= O

0
@ 1

g⇤

s
|X | log

�
|X |T/�

�

T
+

|X | log(|X |T/�)2

g⇤T

1
A .
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When using Bernstein bounds, the representation loss carries O(|X | log(|X |T/�)2). This factor

but has a bigger scaling with |X |, but decreases rapidly in log(T )2

T .

The Bernstein version of RL-CMDP may be advantageous for some candidate distributions p. For

example, if the support S of p is very small compared to X , the first term in the Bernstein empirical

inequality (E.4) is equal to zero for all x outside the support. Therefore, the representation loss

scales as:

k�(CT )� ⇢k1

= O

0
@ 1

g⇤

s
|S| log

�
|S|T/�

�

T
+

|X | log(|X |T/�)2

g⇤T

1
A ,

where |S| ⌧ |X |. Thus, the second term with fast decrease in log(T )2

T controls the bound on

representation loss.

E.3.1 Proofs

The following lemma states a useful inequality akin to Lemma 69.

Lemma 72. We have:

LX

l=1

|El|

⌧l � 1
 log(T )

Proof. The proof is similar to Lem. 13 in Zanette and Brunskill [2019]. Using the same notation as

in the proof of Lemma 69,

LX

l=1

|El|

⌧l � 1
=

LX

l=1

f(l)

F (l)� 1
=

Z L

1

f(dxe)
F (dxe)� 1

dx


Z L

1

f(x)

F (x)� 1
dx = log(F (L)� 1)

= log(⌧L � 1)  log T.

We now prove Theorem 71.

Proof. We re-use the same steps and notation as for the proof of Theorem 68.

Here instead, E1 is the event such that the confidence intervals are valid (E.4). Under the

high-probability good event E = E1 \ E2 \ E3, we thus have:

|⇡l(x)� p(x)| .
q

p̂l(x)(1�p̂l(x))b�,T
⌧l�1 +

b�,T
⌧l�1

where b�,T = log( 6|X |T
�

).

In the following, the first inequality is by validity of the Bernstein confidence intervals under E ,
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and the second inequality is by Cauchy-Schwarz’s inequality:

X

t2El

X

x

r⇡l(x)(p̃l(x)� p(x))


X

t2El

X

x

r⇡l(x)

s
p̂l(x)(1� p̂l(x))b�,T

⌧l � 1

+
X

t2El

b�,T
⌧l � 1

X

x

r⇡l(x)

| {z }
|X |


X

t2El

vuuut
(
X

x

1� p̂l(x))

| {z }
|X |

(
X

x

p̂l(x)r
⇡l(x)b�,T )

| {z }
b�,T

r
1

⌧l � 1

+
X

t2El

|X |b�,T
⌧l � 1

(E.5)

By Lemmas 69 and 72, we have:

q
|X |b�,T

LX

l=1

|El|p
⌧l � 1

 2
q
|X |b�,TT

|X |b�,T

LX

l=1

|El|

⌧l � 1
 |X |b�,T log(T ).

Summing up over episodes in inequality (E.5) and plugging in the above inequalities gives the

desired bound by following the steps of the proof of Theorem 68.

E.4 Experiments

E.4.1 Details on the Brexit experiments

We provide in Table E.1 the target vectors (⇢ij)i,j and marginal distributions (Pp[xi = j])i,j extracted

from the Citizens’ Assembly on Brexit report Renwick et al. [2017].1 The report includes the

volunteering rates for each feature group, i.e. Pr[volunteer|xi = j]. To compute the marginal

distributions (Pr[xi = j|volunteer])i,j , we thus use Bayes’ rule to compute the probability of each

feature group among the volunteer population2, that is:

P
p[xi = j] = Pr[xi = j|volunteer]

=
Pr[volunteer|xi = j] Pr[xi = j]

Pr[volunteer]
.

We often have ⇢ij 6= P
p[xi = j]. For example, compared to the age target, we are less likely to

find younger people ( 34 years old) among volunteers. For gender, while the target was gender

parity, we are much less likely to find women than men in the volunteer population.

1https://citizensassembly.co.uk/wp-content/uploads/2017/12/Citizens-Assembly-on-Brexit-Report.

pdf, pages 28-32.
2In doing so, we notice that the probability of finding non-voter volunteers is almost zero, hence we only consider

“remain” and “leave” for the feature Brexit vote. Indeed, the report states “The only target that proved impossible to
meet was that for non-voters in the 2016 referendum.” p.28.
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Résumé de la thèse en français
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Résumé

Les algorithmes d’apprentissage automatique (machine learning) sont largement utilisés dans les

systèmes de recommandation qui alimentent les plateformes de streaming, de commerce et les réseaux

sociaux. Leur principal objectif est de fournir aux utilisateurs des recommandations personnalisées

en prédisant leurs préférences et en triant les contenus disponibles en fonction de ces prédictions.

Cependant, en sélectionnant le contenu de certains producteurs plutôt que d’autres, les algorithmes

de recommandation décident de qui est visible ou non. Ces décisions ont de réelles implications

éthiques et sociales, comme les risques d’invisibilisation de groupes minoritaires ou défavorisés

dans la suggestion de profils à des employeurs, ou les problèmes de sous- ou surreprésentation de

certaines opinions et cultures sur les réseaux sociaux. Il est donc devenu crucial de garantir que

ces décisions automatisées soient non biaisées et équitables envers les producteurs de contenu, en

évitant de donner à certains groupes un avantage ou un désavantage excessif. En plus de décider

quels producteurs sont visibles, les algorithmes de recommandation jouent également un rôle clé

dans la décision de quels utilisateurs sont exposés à certains contenus, notamment les contenus

associés à des opportunités économiques telles que les offres d’emploi et annonces immobilières.

Par conséquent, des préoccupations se posent quant à l’équité d’accès à ces opportunités parmi les
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utilisateurs des systèmes de recommandation.

Cette thèse vise à adresser les limites des algorithmes de recommandation actuels en développant

des systèmes plus équitables qui tiennent compte à la fois des utilisateurs et des producteurs de

contenu. Cependant, le développement d’algorithmes équitables présente plusieurs défis, notamment

la définition de critères d’équité appropriés et l’implémentation efficace d’algorithmes de ranking qui

satisfont ces critères. En nous appuyant sur la riche littérature de la théorie du choix social, nous

proposons un cadre conceptuel pour évaluer l’équité des listes ordonnées de recommandations, à

partir de concepts établis pour les problèmes de partage équitable qui ont été peu étudiés en machine

learning et en recommandation. Dans ce cadre conceptuel, nous développons de nouvelles méthodes

de recommandation qui suivent les principes du partage équitable et distribuent l’exposition plus

équitablement entre les producteurs de contenu, sans compromettre la qualité des recommandations

pour les utilisateurs. Ces méthodes sont soutenues par des résultats théoriques sur la satisfaction

de propriétés d’équité, sur les garanties de convergence et l’efficacité algorithmique des algorithmes

proposés, ainsi que par des évaluations expérimentales sur des jeux de données publics.

F.1 Les impacts sociétaux des systèmes de recommandation

Les systèmes de recommandation font partie intégrante des plateformes numériques modernes,

desservant jusqu’à des milliards d’utilisateurs dans le monde entier. Ces systèmes sont présents

sur les places de marché en ligne, les services de streaming, les plateformes de partage de contenu

et les médias sociaux en ligne. Ils jouent un rôle crucial dans l’organisation de la vaste quantité

d’informations disponibles en fournissant des recommandations personnalisées aux utilisateurs à

diverses fins, comme la navigation d’articles d’actualité, la recherche de produits, d’emplois, de

logements ou de personnes avec lesquelles se connecter.

À l’ère de l’apprentissage automatique et de son adoption croissante dans de nombreuses appli-

cations qui affectent notre vie quotidienne, les systèmes de recommandation se démarquent comme

l’une des applications les plus réussies des algorithmes d’apprentissage automatique. L’apprentissage

automatique a été instrumental pour exploiter les vastes quantités de données disponibles sur les

plateformes en ligne pour personnaliser l’expérience utilisateur et faciliter la découverte de nouveaux

items pertinents. Ces algorithmes analysent les modèles statistiques du comportement de navigation

passé des utilisateurs, les interactions avec les items, les préférences exprimées et d’autres carac-

téristiques pour prédire leurs intérêts futurs. Ces prédictions permettent la récupération d’items

à recommander dans le but de maximiser l’engagement des utilisateurs, comme l’augmentation

du nombre de clics, de likes, de partages ou de temps passé sur la plateforme. L’apprentissage

automatique offre la promesse de recommandations hautement personnalisées qui reflètent les goûts
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et les préférences individuelles, conduisant à une plus grande satisfaction des utilisateurs et à une

utilisation accrue de la plateforme.

Cependant, au-delà de la promesse d’une augmentation de l’engagement des utilisateurs, les

algorithmes de recommandation ont des conséquences sociales profondes. Avec le pouvoir de décider

qui est visible et qui ne l’est pas, ces algorithmes ont un impact significatif sur les producteurs

d’items (Figure 1.1). Par exemple, les organes de presse dépendent de leur exposition sur les fils

d’actualité pour générer des revenus auprès des lecteurs, tandis que les créateurs sur les plateformes

de partage de contenu et les artistes sur les plateformes de streaming dépendent des spectateurs et

des auditeurs pour rester durables. De même, l’attractivité des commerçants comme les restaurants

et les magasins dépend largement de leur exposition aux clients potentiels dans les recommandations

locales de Google Maps. Le succès d’un chercheur d’emploi sur les plateformes de recherche d’emploi

comme LinkedIn dépend du recruteur qui arrive à voir son CV, et l’efficacité d’une application de

rencontres dépend également des utilisateurs à qui le profil de quelqu’un est recommandé.

En déterminant quels producteurs d’items sont visibles ou non, les systèmes de recommandation

prennent des décisions qui posent de réelles préoccupations éthiques et sociales. Celles-ci incluent

les risques de négliger ou de désavantager les chercheurs d’emploi de groupes sous-représentés

[Geyik et al., 2019], d’amplifier les biais raciaux dans les applications de rencontres [Hutson et al.,

2018] et de surreprésenter les groupes démographiques, culturels ou politiques sur les médias

sociaux et les résultats de recherche. Par exemple, des recherches ont montré que les femmes sont

systématiquement sous-représentées dans les résultats de recherche pour diverses professions [Kay

et al., 2015]. Nous fournissons un nouvel exemple de cela à la Figure 1.2, où les résultats de la

recherche pour le terme “DJ” montrent principalement des DJs masculins. D’autres recherches sur

Twitter ont montré que leur algorithme de recommandation favorisait le contenu des politiciens et

des médias d’extrême droite sur le contenu de gauche [Huszár et al., 2022], une découverte qui a reçu

une grande couverture médiatique1. Les systèmes de recommandation ont également le potentiel

de favoriser de manière disproportionnée les créateurs et les artistes établis sur les plateformes de

partage de contenu, conduisant à la marginalisation et à l’éventuel déclin de ceux qui sont plus

petits et qui ne reçoivent pas assez d’exposition pour réussir [Mehrotra et al., 2018]. Pour atténuer

l’impact potentiellement négatif des systèmes de recommandation sur les producteurs d’items, il est

crucial d’évaluer soigneusement leurs implications sociétales et de s’assurer qu’ils ne désavantagent

pas injustement certains groupes.

Du côté des utilisateurs, les systèmes de recommandation sont traditionnellement conçus pour

leur fournir les items les plus pertinents, un objectif qui semble en adéquation avec leurs intérêts.

Cependant, des inquiétudes ont été soulevées ces dernières années quant à l’impact des algorithmes

1voir par exemple, The Guardian https://www.theguardian.com/technology/2021/oct/22/

twitter-admits-bias-in-algorithm-for-rightwing-politicians-and-news-outlets
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de recommandation sur les utilisateurs. Des audits des systèmes de recommandation ont révélé

des disparités dans le contenu livré à divers groupes sociaux d’utilisateurs. Par exemple, Datta

et al. [2015] a découvert que les femmes également qualifiées recevaient moins de publicités en ligne

pour des emplois bien rémunérés que les hommes. Pour prévenir le risque de livraison inéquitable

d’opportunités à travers les utilisateurs, des efforts significatifs ont été faits pour auditer les systèmes

de recommandation pour des biais involontaires ou de la discrimination envers leurs utilisateurs.

Ces efforts appellent au développement de nouveaux algorithmes de recommandation qui offrent un

accès équitable à l’information et aux opportunités à leurs utilisateurs.

Étant donné les impacts réels des systèmes de recommandation sur leurs utilisateurs et les

producteurs d’items, l’équité dans les systèmes de recommandation est devenue un sujet central

dans la recherche en apprentissage automatique et en récupération de l’information. L’équité dans

les systèmes de recommandation peut être examinée d’au moins deux côtés différents : le côté

des items et le côté des utilisateurs. Du côté des items, l’objectif est de fournir aux producteurs

d’items une part équitable de l’exposition dans les recommandations. Du côté des utilisateurs, il

est nécessaire de s’assurer que les systèmes de recommandation ne créent pas ou n’amplifient pas

de biais involontaires et fournissent des recommandations qui bénéficient à tous les utilisateurs. Il

y a une demande croissante pour des systèmes de recommandation qui atteignent simultanément

ces deux objectifs, afin de maintenir un écosystème de recommandation sain qui sert les intérêts

de toutes les parties prenantes [Patro et al., 2020, Abdollahpouri et al., 2020]. L’impact sociétal

des systèmes de recommandation est significatif, et assurer l’équité pour les utilisateurs et les

producteurs d’items est crucial pour éviter de perpétuer ou d’amplifier les biais et les inégalités

existants.

L’équité dans les systèmes de recommandation est un point focal dans un débat plus large et

actif sur les impacts sociétaux des algorithmes d’apprentissage automatique. Alors que les modèles

d’apprentissage automatique continuent de gagner en traction dans notre vie quotidienne, il y a eu

une préoccupation publique croissante quant au potentiel des modèles d’apprentissage automatique

à introduire des biais et de la discrimination dans les décisions algorithmiques [Buolamwini and

Gebru, 2018, Barocas and Selbst, 2016]. Par conséquent, l’équité est devenue un sujet central

dans la recherche en apprentissage automatique, en particulier dans le contexte de la classification

et de l’apprentissage supervisé [Barocas et al., 2019]. Face au potentiel des algorithmes pour

perpétuer les biais et la discrimination dans la prise de décision, les chercheurs ont proposé une

série de métriques et de méthodes d’équité pour répondre à ces préoccupations dans diverses

tâches d’apprentissage supervisé, y compris la prédiction de la récidive, l’embauche et la notation

de crédit. Ces méthodes visent à garantir que les algorithmes ne perpétuent pas des pratiques

injustes, telles que les différences de traitement ou de résultats basées sur le sexe, la race ou d’autres
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caractéristiques protégées. Dans ce chapitre, nous nous pencherons sur le rôle clé de l’équité dans

les systèmes de recommandation au sein du vaste et constamment évolutif champ de l’apprentissage

automatique équitable, et nous présenterons nos contributions à ce domaine critique.

F.2 Problèmes d’équité dans les systèmes de recommanda-

tion

F.2.1 Sources d’inéquité dans les systèmes de recommandation

Aperçu des systèmes de recommandation La tâche d’un système de recommandation est de

fournir à chacun de ses utilisateurs une liste d’items classés, qui sont sélectionnés à partir d’un vaste

ensemble d’items candidats (par exemple, des vidéos) fournis par des producteurs (par exemple, des

créateurs de vidéos). Le système de recommandation évalue la qualité des classements à l’aide de

“vrais” scores de pertinence, qui mesurent la valeur d’un item pour un utilisateur. À un niveau élevé,

les algorithmes de recommandation s’appuient sur deux étapes pour générer des recommandations

classées :

1. Apprentissage (Learning): Estimer la valeur de chaque item pour chaque utilisateur. Cette

opération est réalisée à l’aide d’un modèle d’apprentissage automatique qui s’appuie sur les

interactions passées des utilisateurs avec les items, les caractéristiques des items (par exemple,

la catégorie, la date de publication) et les caractéristiques de l’utilisateur (par exemple, l’âge, le

pays).

2. Classement (Ranking): Choisir un classement des K meilleurs items pour chaque utilisateur

en fonction des scores estimés. Il en résulte une politique de classement personnalisée, dans le

cadre de laquelle des listes d’items différentes sont recommandées à différents utilisateurs en

fonction de leurs préférences prédites.

Traditionnellement, l’étape de classement consiste simplement à trier les items par scores

décroissants pour chaque utilisateur. Lorsque le système de recommandation dispose des véritables

scores de pertinence, cette stratégie est optimale pour maximiser les mesures de classement standard,

telles que le discounted cumulated gain (DCG) [Järvelin and Kekäläinen, 2002], qui mesure la qualité

des classements du point de vue de l’utilisateur. Toutefois, il ne tient pas compte des producteurs

d’items qui sont exposés dans les classements. Comme nous l’avons vu précédemment, il s’agit

d’une question d’équité cruciale, car la visibilité accordée aux producteurs d’items (ou l’absence de

visibilité) a des conséquences sociales réelles.

L’objectif principal de cette thèse est d’aborder la question de l’équité dans l’étape de classement

des systèmes de recommandation. L’étape de classement est une étape cruciale au cours de laquelle
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le système de recommandation décide quels items seront recommandés à quels utilisateurs, une fois

que les préférences de ces derniers ont été estimées. Il s’agit d’une décision collective qui a un impact

à la fois sur les utilisateurs et sur les producteurs d’items. Par conséquent, notre objectif est de

veiller à ce que l’étape de classement tienne compte des intérêts des utilisateurs et des producteurs

d’items, et les équilibre de manière équitable.

Sources d’inéquité. L’étape de classement, ou la combinaison des étapes d’apprentissage et de

classement, peut avoir des conséquences involontaires et indésirables de différentes manières. L’étape

de classement peut produire des effets de "winner-take-all", où certains groupes de producteurs

d’items s’emparent de toute l’exposition disponible. Dans la solution de classement traditionnelle,

qui consiste simplement à classer les items en fonction de leur score, même de petites différences

de score entraînent de grandes différences d’exposition entre les producteurs d’items. Il en résulte

un effet de longue traîne où quelques items populaires tendent à dominer les positions les plus

élevées du classement, laissant de côté un grand nombre d’items moins populaires avec peu ou

pas d’exposition (figure 1.3). Cet effet de longue traîne peut être problématique pour les petits

producteurs, car ils luttent pour gagner en visibilité ou en reconnaissance, ce qui exacerbe encore la

distribution en loi de puissance de l’exposition [Abdollahpouri et al., 2019b]. En outre, des biais

systématiques dans l’estimation des préférences peuvent résulter de l’apprentissage de stéréotypes

ou de biais de popularité [Mehrotra et al., 2018]. Ces biais à l’étape de l’apprentissage peuvent

être amplifiés par l’étape du classement, où les items des groupes défavorisés dont les valeurs sont

systématiquement sous-estimées ne sont finalement pas présentés aux utilisateurs (figure 1.2).

La combinaison de l’apprentissage et du classement peut également conduire à des résultats

injustes du côté des utilisateurs. Au cours de l’étape d’estimation, les systèmes de recommandation

s’appuient souvent sur des hypothèses de modélisation solides et sur l’apprentissage multitâche

pour faire face à la rareté des données par utilisateur, avec des méthodes telles que la factorisation

matricielle de faible rang [Koren et al., 2009]. La capacité limitée des modèles ou des hypothèses

incorrectes peuvent laisser de côté les utilisateurs dont les schémas de préférence sont moins courants.

De ce fait, le système peut apprendre à tort les goûts stéréotypés des utilisateurs, tels que les

associations sexuées entre les préférences des utilisateurs et les catégories d’emploi. L’étape de

classement amplifie alors ces biais en classant les items en fonction des valeurs estimées, ce qui

se traduit par de mauvaises performances en matière de recommandation pour les utilisateurs

ayant des goûts non stéréotypés [Ekstrand et al., 2018] ou par des biais dans la recommandation

de certains contenus pour des groupes sensibles [Sweeney, 2013, Imana et al., 2021]. En outre,

dans le cas des marchés publicitaires, des biais dans la diffusion des publicités apparaissent lorsque

la décision de classement tient compte des résultats d’une vente aux enchères dans laquelle les
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annonceurs sont en concurrence pour le même groupe d’utilisateurs [Ali et al., 2019]. Par exemple,

les annonceurs d’offres d’emploi sont parfois en concurrence avec des annonces de produits ciblant

les femmes, ce qui fait qu’elles sont diffusées à moins de femmes que d’hommes.

F.2.2 Recommandation équitable vs. classification équitable

Apprentissage et prise de décision en matière de classification L’équité dans les systèmes

de recommandation est un domaine de recherche essentiel dans le cadre plus large de l’équité dans

l’apprentissage automatique, qui a fait l’objet d’une attention particulière ces dernières années. Si

les systèmes de recommandation peuvent être décomposés en une étape apprentissage et une étape

classement, de nombreuses autres applications d’apprentissage automatique comportent également

ces composantes apprentissage et prise de décision [Kleinberg et al., 2018b, Kilbertus et al., 2020,

Corbett-Davies et al., 2017]. Le cadre le plus étudié est celui de la classification équitable (binaire),

où l’objectif est de prédire une étiquette binaire pour chaque individu, par exemple s’il remboursera

ou non un prêt, afin d’aider à la prise d’une décision, comme l’acceptation ou le refus d’une demande

de prêt. D’autres exemples courants sont la prédiction de la récidive et l’embauche [Corbett-Davies

and Goel, 2018, Barocas et al., 2019]. Nous examinons comment les considérations d’équité dans

les étapes d’apprentissage et de décision des tâches de classification sont liées aux considérations

d’équité dans les étapes d’apprentissage et de classement des systèmes de recommandation.

Considérons un exemple classique dans la littérature sur l’apprentissage automatique équitable,

où un prêteur utilise un algorithme pour déterminer s’il doit ou non approuver une demande de prêt

[Hardt et al., 2016b, Liu et al., 2018]. Dans l’étape apprentissage, un algorithme d’apprentissage

supervisé produit un score pour chaque individu en estimant la probabilité qu’il appartienne à

la classe positive (c’est-à-dire la probabilité qu’il rembourse le prêt). Ce score est prédit par un

classificateur probabiliste formé sur la base de données historiques. Des injustices peuvent survenir

lors de l’étape d’apprentissage lorsque les données utilisées pour former le modèle ne sont pas

représentatives de la population à laquelle il est appliqué. Le modèle qui en résulte peut ne pas être

performant sur des données inédites provenant d’une population différente, ou il peut apprendre

des associations problématiques entre des attributs sensibles et des résultats. Dans l’exemple du

prêt, si les données d’apprentissage contiennent une majorité de demandes de prêt infructueuses

émanant de personnes d’une certaine race ou d’un certain milieu socio-économique, le modèle

résultant peut produire des estimations biaisées en défaveur de ces groupes. Cela peut conduire

à des résultats injustes où certains groupes se voient systématiquement refuser l’accès aux prêts

en raison d’une sous-estimation systématique de leur solvabilité. Comme nous l’avons vu dans la

section précédente, les algorithmes d’apprentissage visant à prédire la valeur des items dans les

systèmes de recommandation peuvent également surestimer la valeur des items populaires en raison
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de l’absence de retour d’information de la part des utilisateurs pour les items moins populaires dans

les données historiques.

Dans l’étape de prise de décision, les individus sont classés comme positifs ou négatifs sur la

base de leurs scores prédits. Dans l’exemple du prêt, la décision d’accepter une demande de prêt

est basée sur le fait que le demandeur est prédit comme étant solvable, ce qui est fait en appliquant

un seuil à la probabilité estimée de remboursement. Le seuil de décision peut avoir des implications

importantes en termes d’équité, car il détermine quels individus sont considérés comme éligibles

pour certaines opportunités ou services de la vie. En particulier, lors du choix de politiques de

seuil spécifiques à un groupe (ou agnostiques), la distribution des résultats positifs qui en résulte

peut ou non conduire à des gains de bien-être pour les groupes défavorisés [Kleinberg et al., 2018b,

Corbett-Davies et al., 2017].

Dans les systèmes de recommandation, les algorithmes de classement prennent également

une décision sur les bénéficiaires des résultats positifs. Cette décision est plus complexe que les

seuils de classification binaires, et ce pour au moins deux raisons. Premièrement, elle consiste à

produire un classement des items pour chaque utilisateur, au lieu d’un simple seuil par utilisateur.

Deuxièmement, elle implique des compromis complexes entre les intérêts des différentes parties

prenantes qui apprécient différemment les recommandations : les utilisateurs recherchent les

classements qui correspondent le mieux à leurs préférences, tandis que les items recherchent une

forte exposition - par conséquent, la notion de résultat positif n’est pas absolue.

Dans cette thèse, nous nous concentrons sur l’équité de la décision qui se produit à l’étape du

classement des systèmes de recommandation, plus précisément sur le problème de planification

sociale qui consiste à choisir un compromis entre les utilités des utilisateurs et des items (nous

clarifions plus tard les définitions des utilités dans la section 1.3). Cette position est similaire à celle

de Kleinberg et al. [2018b] qui affirme que les considérations d’équité devraient affecter la manière

dont le planificateur social utilise les scores appris pour prendre une décision, plutôt que le choix de

l’algorithme d’apprentissage, dans le contexte des problèmes de décision binaires (c’est-à-dire les

admissions à l’université).

Critères d’équité dans la classification. Des critères d’équité ont été proposés pour les étapes

d’apprentissage et de décision. L’équité des résultats obtenus lors de l’étape d’apprentissage a

fait l’objet d’études approfondies dans le domaine de la classification. Les critères comprennent

calibration entre les groupes et parité2 des scores prédits [Kleinberg et al., 2016, Pleiss et al., 2017].

Dans l’exemple du prêt, la parité exige que le score de crédit moyen soit le même pour tous les

groupes, tandis que l’étalonnage exige que la probabilité de remboursement d’un prêt pour un score

2Dans la classification, les critères de parité sont plus souvent considérés au niveau des résultats, c’est-à-dire des
décisions.
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de crédit donné soit la même pour tous les groupes. Dans la littérature sur la recommandation

équitable, quelques critères d’équité des scores ont été proposés [Yao and Huang, 2017, Islam et al.,

2021], mais plusieurs auteurs ont souligné l’insuffisance de considérer les scores indépendamment de

la décision finale, c’est-à-dire les classements [Beutel et al., 2019a, Singh and Joachims, 2018]. En

particulier, l’étalonnage des scores ne s’étend pas trivialement aux systèmes de recommandation

[Steck, 2018], car l’impact du score d’un item n’est significatif que par rapport aux scores d’autres

items [Beutel et al., 2019a].

Les critères d’équité dans l’étape de décision des tâches de classification visent généralement

à égaliser les résultats entre les groupes sensibles. La parité démographique exige une probabilité

égale de résultats positifs parmi les groupes sensibles [Feldman et al., 2015, Zliobaite, 2015] et

l’égalité des chances [Hardt et al., 2016b] (ou égalité des taux d’erreur [Zafar et al., 2017a, 2019])

visent à égaliser les probabilités de résultats positifs pour la classe positive à travers les groupes.

Geyik et al. [2019] proposent une mise en correspondance de la parité démographique et de l’égalité

des chances dans le cadre du classement. Lorsque les items sont répartis en groupes sensibles, la

parité démographique exige que les groupes d’items bénéficient d’une exposition égale dans les

classements, tandis que l’égalité des chances est similaire à un critère populaire basé sur le mérite

pour les classements que nous présentons dans la section 1.3.5.

Corbett-Davies et al. [2017], Hu and Chen [2020] insistent sur le coût pour le bien-être social de

la recherche de la parité des résultats dans les problèmes de classification, car il est possible d’égaliser

les résultats entre les groupes en privant les individus de résultats positifs sans les redistribuer aux

individus défavorisés. Dans cette thèse, nous démontrons également les conséquences indésirables

de l’application de contraintes d’équité sur l’exposition aux items (chapitre 3). Toutefois, nous

soutenons que la réduction des inégalités dans la distribution des résultats est raisonnable dans

le cas du classement, où la décision est allocative, parce qu’elle peut conduire à des changements

positifs dans le bien-être social. En revanche, les décisions prises dans la plupart des problèmes

de classification équitable ne sont pas allocatives, car il n’y a pas de budget sur le nombre de

classifications positives [Zafar et al., 2019, 2017a, Hardt et al., 2016b, Agarwal et al., 2018]. En

d’autres termes, ces travaux portent sur des problèmes de classification stricte plutôt que sur des

problèmes de sélection. En pratique cependant, les décisions binaires d’acceptation/refus sont

souvent budgétisées : il y a typiquement un budget fixe à dépenser dans les problèmes de prêt, et

un nombre fixe de places dans les admissions à l’université. Les considérations budgétaires comme

dans [Kleinberg et al., 2018b, Emelianov et al., 2022] rapprochent les problèmes de classification des

systèmes de recommandation où il y a un nombre fixe de créneaux de recommandation à allouer.

Dans ces contextes budgétisés, il est souhaitable de redistribuer les résultats, car un résultat positif

qui est retiré à quelqu’un est nécessairement transféré à quelqu’un d’autre. Nous présentons dans la
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section suivante, la principale contribution de cette thèse, qui est un cadre pour guider la décision

d’attribution du classement dans les systèmes de recommandation, ancré dans les principes de

justice distributive du choix social.

F.3 Le choix social pour la recommandation équitable

Cette section présente une contribution clé de cette thèse : un cadre conceptuel pour l’équité dans

les systèmes de recommandation qui est ancré dans la théorie du choix social.

F.3.1 Répartition équitable de l’exposition dans les systèmes de recom-

mandation

Comme nous l’avons déjà discuté, à l’étape du classement, les systèmes de recommandation prennent

une décision allocative collective sur quels items reçoivent de l’exposition, et à quels utilisateurs

ils sont exposés. L’équité dans les problèmes d’allocation, ou la division équitable, a une longue

histoire dans la théorie du choix social, qui est une branche de l’économie qui étudie les processus

de prise de décision collective basés sur les préférences hétérogènes de plusieurs agents [Arrow et al.,

2010, Moulin, 2003]. Dans cette thèse, nous abordons l’équité dans les systèmes de recommandation

comme un nouveau problème de division équitable, où la ressource rare à distribuer est la quantité

de contenu que le système peut afficher à ses utilisateurs, c’est-à-dire l’exposition totale disponible.

Différents producteurs d’items sont en compétition pour une part de cette ressource limitée. Notre

point de vue est que le recommandeur est un planificateur social dont le but est de fournir des

recommandations classées aux utilisateurs en répartissant équitablement le budget d’exposition

parmi les producteurs d’items, tout en tenant compte de l’impact du mécanisme d’allocation sur

la satisfaction de l’utilisateur. Nous nous appuyons sur les nombreuses recherches sur la division

équitable qui ont été menées dans le passé dans la théorie du choix social et l’économie du bien-être

cardinal.

Nous utilisons le terme utilité dans son sens large dans l’économie du bien-être cardinal comme

une “mesure de la caractéristique de haut niveau qui est pertinente pour le problème particulier de

justice distributive en question” [Moulin, 2003]. Dans notre problème d’allocation, il y a deux types

d’agents – les utilisateurs et les producteurs d’items – qui bénéficient différemment des classements.

Les utilisateurs apprécient les classements de haute qualité qui correspondent le mieux à leurs

préférences, et les items bénéficient d’un grand nombre de vues. Par conséquent, nous définissons

l’utilité de l’utilisateur comme une mesure de performance du classement, et l’utilité de l’item

comme le nombre de vues attendu. Le problème d’allocation consiste à choisir des classements en

faisant des compromis entre les utilités des utilisateurs et celles des items. Nous nous référons à ce
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problème d’allocation comme le problème de la répartition équitable de l’exposition.

Comme nous l’avons déjà discuté, l’approche traditionnelle dans les systèmes de recommandation

est de maximiser uniquement l’utilité moyenne de l’utilisateur, en classant les items par pertinence

décroissante pour chaque utilisateur. Cependant, cette approche peut avoir des effets indésirables,

tels que des effets injustes de type “winner-take-all” et l’amplification des biais dans les scores estimés,

comme décrit dans la Section 1.2.1. Par conséquent, notre motivation à prendre en compte l’équité

de la répartition de l’exposition envers les utilisateurs et les producteurs d’items est d’atténuer et

empêcher ces conséquences négatives.

F.4 Plan détaillé et contributions

Nous présentons maintenant le plan de cette thèse et résumons les contributions par chapitre, qui

correspondent chacun à un article publié pendant la thèse.

—–

Les deux premiers chapitres, le chapitre 3 et le chapitre 4, se concentrent sur l’équité de l’étape

de classement, dans un modèle de recommandation statique.

Chapitre 3 : L’équité dans les classements avec des fonctions de bien-être concaves

additives. Nous proposons d’évaluer l’équité des classements pour les utilisateurs et les items dans

les systèmes de recommandation sur la base des principes fondamentaux de justice distributive de

l’économie du bien-être, fondés sur l’efficacité de Pareto et le principe de transfert de Pigou-Dalton.

Nous montrons que certaines approches populaires du classement équitable ne satisfont pas à ces

principes. Par exemple, les contraintes d’équité basées sur le mérite peuvent diminuer l’utilité de

l’utilisateur tout en augmentant les inégalités d’exposition entre les producteurs d’items, ce qui va

à l’encontre du principe de transfert qui vise à réduire les inégalités. Pour surmonter les limites des

approches existantes, nous proposons une nouvelle approche pour générer des classements équitables

qui est fondée sur l’économie du bien-être. Elle consiste à maximiser les fonctions de bien-être

concaves additives, qui sont une famille de fonctions de bien-être lisses. Ces fonctions de bien-être

peuvent être interprétées comme des sommes d’utilités d’agents qui ont des rendements décroissants.

La propriété des rendements décroissants pour l’exposition signifie qu’“une vue supplémentaire

compte plus pour les items qui ont 10 vues que pour ceux qui ont 10 millions de vues”, ce qui

est particulièrement pertinent pour les systèmes de recommandation. Les classements obtenus en

maximisant ces fonctions de bien-être satisfont à l’efficacité de Pareto et au principe de transfert de

Pigou-Dalton.

Nous introduisons également l’outil connexe des courbes de Lorenz généralisées, issu de l’économie

du bien-être, pour évaluer l’équité des classements. Les courbes de Lorenz généralisées sont une
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représentation graphique qui permet de visualiser la distribution des utilités entre les utilisateurs et

les items, et en particulier l’utilité des individus les plus mal lotis, que nous cherchons à améliorer.

Grâce à cette représentation, nous pouvons observer la quantité d’utilité prélevée sur les individus

les mieux lotis pour augmenter l’utilité des individus les moins bien lotis, lorsque l’on fait varier les

paramètres de la fonction de bien-être additive.

Notre cadre conceptuel est également le premier à aborder simultanément l’équité dans les

problèmes de recommandation réciproque et non réciproque. La recommandation réciproque

est un cadre spécifique qui a été relativement négligé par la littérature sur l’équité et dans

lequel les utilisateurs sont également des items. Leur utilité est donc double : ils bénéficient des

recommandations qu’ils reçoivent et du fait d’être recommandés à d’autres utilisateurs. Nous

montrons que l’approche de la fonction de bien-être pour la recommandation non réciproque peut

être étendue au cas réciproque en utilisant notre nouvelle notion d’utilité bilatérale, afin de mieux

servir les utilisateurs les plus mal lotis.

Du point de vue algorithmique, il est difficile d’optimiser les fonctions de bien-être globales qui

tiennent compte de l’exposition des items, car l’exposition d’un item dépend des classements de tous

les utilisateurs. Avant notre travail, les méthodes existantes relevaient ce défi avec des approches

heuristiques sans aucune garantie ou contrôle sur les compromis réalisables. Nous proposons un

algorithme efficace en termes de calcul pour un classement équitable basé sur la méthode Frank-

Wolfe [Frank and Wolfe, 1956]. L’algorithme génère une politique de classement stochastique sous

la forme d’une somme pondérée de politiques de classement déterministes. Cela élimine la nécessité

d’une étape supplémentaire de décomposition de Birkhoff-von-Neumann [Birkhoff, 1940], qui était

nécessaire dans les travaux antérieurs utilisant des classements stochastiques [Singh and Joachims,

2018, Wang and Joachims, 2021]. Notre algorithme est capable d’optimiser toute fonction concave

des utilités des classements, ce qui englobe nos fonctions de bien-être additives, mais aussi les

critères de classement équitable existants.

Nous simulons une tâche de recommandation musicale basée sur les données de Last.fm pour

évaluer la performance de notre algorithme. Nos expériences confirment que les approches d’équité

basées sur le mérite sont incapables de réduire l’inégalité entre les items et peuvent exacerber les

effets “winner-take-all” lorsque les items populaires capturent une grande partie de l’exposition

totale. En revanche, notre approche basée sur la maximisation des fonctions de bien-être additives

permet d’obtenir de meilleurs compromis entre l’utilité totale de l’utilisateur et l’inégalité des

utilités entre les items (mesurée par l’indice de Gini ou l’écart-type). En outre, en faisant varier les

paramètres de la fonction de bien-être, nous sommes en mesure de rapprocher l’inégalité entre les

items de zéro. Enfin, en ce qui concerne l’équité bilatérale, notre approche est capable de générer

un large éventail de compromis entre l’équité pour les items et l’équité pour les utilisateurs, mesurée
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par l’utilité des utilisateurs les plus mal lotis (10 % et 25 %).

Comme notre cadre englobe les problèmes de recommandation réciproque, nous fournissons

également une évaluation expérimentale sur une tâche de recommandation sociale basée sur des

données Twitter. En maximisant une fonction de bien-être concave additive de l’utilité bilatérale

des utilisateurs, nous sommes en mesure de générer un large éventail de compromis entre l’utilité

totale et l’utilité des 10% les plus défavorisés.

Chapitre 4 : Équité dans les classements avec les fonctions de bien-être de Gini

généralisées. Nous proposons une autre approche de classement équitable basée sur les fonctions

de bien-être de Gini généralisées (GGF), qui constituent une classe de fonctions de bien-être plus

expressive que les fonctions de bien-être additives précédentes. L’un des inconvénients des fonctions

de bien-être de Gini généralisées par rapport aux fonctions de bien-être additives est qu’elles ne

peuvent pas être exprimées comme une somme d’utilités d’agents à rendements décroissants. Bien

que nous perdions cette interprétation intuitive, nous gagnons en expressivité puisque les GGF sont

capables d’exprimer directement des critères d’équité basés sur les quantiles d’utilité (par exemple,

"maximiser l’utilité des 10 % les moins bien lotis"). Les GGF couvrent également des mesures

d’inégalité plus classiques telles que l’indice de Gini, qui est largement utilisé dans la mesure des

inégalités et, plus récemment, dans la littérature sur l’équité dans les systèmes de recommandation.

Bien que les GGF n’aient pas d’interprétation intuitive en tant que somme d’utilités à rendements

décroissants, leur principal avantage est qu’ils généralisent divers critères d’équité existants pour le

classement. En soulignant la généralité des GGF, nous prouvons également que tous les classements

Lorenz efficaces peuvent être générés en maximisant les GGF.

Le défi algorithmique de l’optimisation des GGF est qu’ils sont non différentiables et ne peuvent

donc pas faire l’objet d’une optimisation par l’algorithme de Frank-Wolfe classique. Nous proposons

d’adapter une variante de Frank-Wolfe pour les problèmes non lisses [Lan, 2013] qui utilise l’enveloppe

de Moreau-Yosida comme technique de lissage [Moreau, 1962, Yosida et al., 1965], et nous présentons

une procédure efficace sur le plan du calcul pour calculer l’approximation lisse des GGF.

Nous menons des expériences sur des tâches de recommandation de films et de musique et

comparons notre algorithme qui optimise les GGF aux méthodes de recommandation précédentes,

y compris notre propre approche basée sur les fonctions de bien-être concaves additives du chapitre

3. Comme prévu, nous constatons que notre approche basée sur les GGF permet d’obtenir de

meilleurs compromis entre l’utilité totale de l’utilisateur et l’inégalité des items mesurée par l’indice

de Gini. En effet, les GGF peuvent être instanciés en fonction de l’indice de Gini et notre variante

de Frank-Wolfe permet une optimisation directe de cette mesure non différentiable. Pour l’équité

bilatérale, nous obtenons également des compromis supérieurs entre l’utilité des 25 % d’utilisateurs
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les plus mal lotis et l’indice de Gini des utilités des items, lorsque les GGF côté utilisateur et côté

item sont instanciés en fonction de ces critères. Des expériences sur une tâche de recommandation

réciproque basée sur des données Twitter montrent des résultats similaires lors de l’optimisation des

compromis entre l’utilité des 25 % d’utilisateurs les plus mal lotis et l’utilité totale de l’utilisateur.

—–

Les deux chapitres précédents se concentrent sur le problème de classement pour analyser

ses propriétés depuis une perspective d’allocation équitable, en découplant les biais potentiels

qui peuvent survenir lors de l’apprentissage. Cependant, il y a des limitations pratiques à la

configuration batch précédente, dans laquelle l’apprentissage et la prise de décisions sont découplés,

et une seule décision globale est prise pour tous les utilisateurs en même temps. Les systèmes de

recommandation modernes interagissent avec les utilisateurs de manière en ligne : ils apprennent

les valeurs personnalisées des items à partir des commentaires des utilisateurs, tout en décidant en

temps réel ce contenu à afficher au utilisateur actuel. Les bandits contextuels sont un paradigme

populaire pour modéliser ce contexte d’apprentissage et de prise de décisions personnalisées dans

les systèmes de recommandation [Li et al., 2010].

Chapitre 5 : Classement équitable dans le contexte du bandit contextuel. Nous traitons

le problème de classement équitable dans le contexte du bandit contextuel, qui est le paradigme

choisi pour les systèmes de recommandation personnalisés en ligne qui apprennent à générer

des recommandations à partir des commentaires des utilisateurs. Nous présentons un algorithme

générique qui fonctionne pour de nombreux objectifs de classement équitable, y compris les fonctions

de bien-être lisses de Chapitre 3 et les fonctions de bien-être non lisses de Chapitre 4. Ceci est le

premier algorithme avec des garanties de regret pour le classement équitable dans le contexte du

bandit contextuel. De plus, l’algorithme est rapide et a une interprétation intuitive : à chaque

étape, l’algorithme donne un bonus adaptatif aux items qui ont reçu une faible exposition dans les

recommandations précédentes, et le bonus dépend du gradient de l’objectif de classement équitable.

En fait, nous fournissons un traitement approfondi du problème plus général des bandits

contextuels avec des récompenses convexes (cbcr) [Agrawal et al., 2016], qui est un problème de

bandit multi-objectif. Dans cbcr, il y a un vecteur de plusieurs récompenses qui dépend d’un

contexte aléatoire, et le trade-off entre les récompenses est défini par une fonction concave. Ce setting

de cbcr couvre une variété de problèmes au-delà du classement équitable, notamment l’optimisation

de plusieurs métriques d’engagement utilisateur (par exemple, clics, temps de streaming) dans les

systèmes de recommandation. Des works théoriques antérieurs ont traité des versions simplifiées

de cbcr avec des espaces de politiques simples : Agrawal and Devanur [2014], Busa-Fekete et al.

[2017] se concentrent sur le setting non contextuel où les politiques sont des distributions sur les
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actions, et Agrawal et al. [2016] traitent une restriction de cbcr à un espace de politiques fini.

Nous supprimons ces restrictions et présentons des garanties de regret pour le problème général de

cbcr en prouvant une réduction de cbcr à des bandits contextuels classiques avec des récompenses

scalaires. Notre preuve repose sur une interprétation géométrique de cbcr comme un problème

d’optimisation sur l’ensemble convexe de tous les récompenses espérées atteignables, et utilise des

techniques d’ analyse théorique de Frank-Wolfe en optimisation convexe avec contraintes.

Sur le plan expérimental, nous simulons une tâche de classement en ligne basée sur des données

de recommandation de musique. Nous observons que par rapport à des algorithmes de bandit

contextuel heuristiques pour le classement équitable, les algorithmes utilisant notre réduction

atteignent la plus haute valeur de l’objectif de classement équitable à mesure que le nombre

d’étapes augmente. Cela montre l’avantage d’un algorithme de bandit avec garanties comparé à des

héuristiques sans garanties théoriques. Lorsque l’objectif de classement équitable est un trade-off

entre l’utilité moyenne de l’utilisateur et l’inégalité entre les items, notre algorithme de bandit

obtenu par réduction obtient une utilité moyenne supérieure à celle des algorithmes de bandit

existants à tous les niveaux d’inégalité entre les items.

—–

Dans les chapitres 3 et 4, nous avons étudié le problème de la planification sociale dans les

systèmes de recommandation, où l’on cherche à faire trade-off entre les utilités des utilisateurs et

des items pour concevoir des classements équitables à deux faces. Dans le chapitre 6, nous prenons

une perspective différente : nous nous concentrons sur la certification de ces systèmes, et nous

nous focalisons sur l’équité pour les utilisateurs. Ce travail a été principalement mené au début du

programme de doctorat, motivé par la grande résonance des audits pour l’équité côté utilisateurs

dans les systèmes de publicité en ligne. Par exemple, Datta et al. [2015] ont constaté que les femmes

recevaient moins de publicités en ligne pour des emplois bien rémunérés par rapport à des hommes

également qualifiés, tandis que Imana et al. [2021] ont observé des disparités liées au genre dans

les taux de livraison de publicités pour différentes entreprises proposant des emplois similaires.

Notre contribution à cette recherche est un complément aux audits existants de l’équité côté

utilisateurs. Nous partons de l’observation que les audits existants ne contrôlent pas les disparités

qui sont en accord avec les préférences des utilisateurs. Pour renforcer les conclusions de ces audits,

nous proposons de tester un critère basé sur les préférences, l’envy-freeness, qui stipule qu’aucun

utilisateur ne devrait préférer les recommandations de ses pairs aux siennes. L’envy-freeness est

un critère d’équité qui a été étudié pour la première fois dans la théorie du partage équitable

de ressources [Foley, 1967], et il a des racines similaires à celles du cadre conceptuel principal

de cette thèse. Cependant, il mène à une évaluation différente dans le contexte des systèmes de

recommandation, et le choix du critère d’équité dépend de l’application.
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Dans les chapitres précédents 3 et 4, notre travail était motivé par des applications où les

producteurs d’items ne sont pas des annonceurs payant pour l’attention des utilisateurs, mais

plutôt des créateurs de contenu revendiquant une juste part de l’exposition sur la plateforme. Les

exemples typiques sont les plateformes de partage de vidéos en ligne et les services de streaming de

musique. Dans ces applications, l’équité côté items est une préoccupation clé, et nous avons conçu

des algorithmes qui améliorent les expositions des petits items à travers les classements de tous les

utilisateurs. Nous avons également cherché à garantir que les utilisateurs dont les classements sont

impactés par la promotion des petits items ne sont pas ceux pour lesquels les boosts sont les plus

coûteux. Nous avons abordé l’équité bilatérale en améliorant l’exposition des items les plus mal lotis,

tout en priorisant les utilités des utilisateurs les plus mal lotis. Les politiques de classement que

nous avons développées dans les chapitres précédents ne sont pas garanties d’être envy-free pour les

utilisateurs en général, car les politiques de classement optimales pour des objectifs qui comprennent

un terme concave de fairness pour les items ne sont pas envy-free pour les utilisateurs en général.

Par exemple, si les utilisateurs Alice et Bob ont tous les deux envie de recevoir des publicités d’une

entreprise populaire, mais que le concepteur promeut les employeurs moins populaires en boostant

leurs publicités dans les recommandations de Bob, alors Bob sera envieux des recommandations

d’Alice. En pratique, nous recommandons que notre certification de l’envy-freeness est utilisée dans

les applications où l’équité côté utilisateur est la principale préoccupation et où l’équité pour les

items n’est pas une priorité, comme dans les systèmes de publicité.

Globalement, notre perspective dans le Chapitre 6 est celle d’un auditeur qui se concentre

uniquement sur l’évaluation de l’équité pour les utilisateurs, sans tenir compte de la question de

savoir si l’inéquité du côté des utilisateur est une conséquence d’autres objectifs. Nous soutenons

que la perspective de l’audit est aussi importante que celle du concepteur, compte tenu du rôle

significatif joué par les audits d’équité pour les utilisateurs pour sensibiliser à la nécessité d’équité

dans les systèmes de recommandation. De plus, les concepteurs peuvent utiliser les évaluations

produites par les auditeurs comme des diagnostics supplémentaires pour améliorer leurs systèmes.

En fait, les audits existants ont conduit à des accords qui ont poussé les plateformes en ligne à

modifier leurs algorithmes de recommandation pour se conformer aux nouvelles exigences d’équité

des utilisateurs [Bogen et al., 2023].

Chapitre 6: L’équité pour les utilisateurs comme absence d’envie. Dans le Chapitre 6,

nous proposons d’évaluer l’équité des systèmes de recommandation pour leurs utilisateurs avec le

critère de envy-freeness (absence d’envie) issu de la division équitable en théorie du choix social.

Transposé au contexte de la recommandation, le critère envy-freeness stipule que chaque utilisateur

devrait préférer ses recommandations à celles des autres utilisateurs. Par exemple, dans un système
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de recommandation d’emploi où deux utilisateurs, Alice et Bob, cherchent des postes de chauffeur

de taxi [Ali et al., 2019], si Bob est le seul à recevoir des annonces pour des emplois de chauffeur,

alors le système est jugé inéquitable par le critère envy-freeness. Comparé à notre précédente

approche de fonction de bien-être qui reposait sur la comparaison des utilités entre les utilisateurs,

le critère envy-freeness évite l’hypothèse difficile des comparaisons interpersonnelles des utilités. En

effet, dans le critère envy-freeness, différentes recommandations sont comparées du point de vue du

même utilisateur (par exemple, Alice).

Nous présentons une analyse formelle des propriétés du envy-freeness comme critère d’équité

du côté des utilisateurs pour les systèmes de recommandation, et nous montrons sa compatibilité

avec les recommandations optimales. Nous montrons également son incompatibilité avec les

contraintes d’équité basées sur le mérite du côté de l’objet.3 Nous présentons également une

relaxation probabiliste du envy-freeness, afin de supprimer la dépendance quadratique sur le nombre

d’utilisateurs et de rendre la certification du envy-freeness réalisable.

Par rapport aux chapitres précédents où nous avons pris la perspective du concepteur du système

de recommandation en tant que planificateur social, dans ce chapitre, nous adoptons la perspective

d’un auditeur interne du système de recommandation. Auditer envy-freeness dans les systèmes

de recommandation est techniquement difficile, car cela nécessite de sonder les préférences des

utilisateurs pour les recommandations des autres, afin de répondre de manière fiable aux questions

contrefactuelles : “est-ce que l’utilisateur Alice préférerait les recommandations de Bob?”. Notre

contribution algorithmique est que nous formulons le problème de la certification de l’envie, ou de son

absence, comme une nouvelle forme de problème de bandit d’exploration pure, avec des contraintes

d’exploration conservatrices. Les contraintes d’exploration conservatrices empêchent l’audit de

détériorer de manière significative les performances de recommandation pour les utilisateurs, lors de

l’échange de leurs recommandations avec celles des autres utilisateurs. Nous présentons OCEF, un

algorithme d’audit avec des garanties théoriques sur sa complexité d’échantillonnage et le respect

des contraintes d’exploration conservatrices. Nous confirmons expérimentalement que l’algorithme

OCEF est capable de certifier envy-freeness sur deux tâches de recommandation, tout en maintenant

une performance proche de celle du système de recommandation audité.

—–

Nous concluons la thèse dans le Chapitre 7, où nous récapitulons les principales contributions

de cette thèse et présentons des contributions supplémentaires. Ce chapitre comprend également

un examen critique des limites imposées par nos choix de modélisation, ainsi qu’une discussion sur

les enseignements tirés et les questions qui restent ouvertes.

3Dans le Chapitre 6, le résultat est prouvé pour les contraintes d’équité basées sur le mérite appliquées au niveau
de chaque utilisateur, plutôt qu’entre les utilisateurs.
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F.5 Conclusion

Cette thèse apporte à la fois des contributions conceptuelles et algorithmiques.

Dans cette thèse, nous avons développé un cadre conceptuel basé sur les principes de justice

distributive de la théorie du choix social pour évaluer l’équité des recommandations classées. Nous

abordons la recommandation comme un problème d’allocation équitable où le concepteur fait des

compromis entre les utilités des utilisateurs et des items. Dans ce cadre, nous avons proposé une

approche fondée pour générer des classements équitables en maximisant les fonctions de bien-être

concaves des utilités des utilisateurs et des items. Dans le Chapitre 3, nous avons commencé par des

fonctions de bien-être concaves additives, qui codent l’intuition de l’utilité marginale décroissante,

puis nous avons traité dans le Chapitre 4 le cas des fonctions de bien-être de Gini généralisées, qui

ont une forme plus complexe mais sont plus expressives. La perspective du choix social permet

également de mieux comprendre les approches de classement existantes, où nous montrons que les

approches méritoires populaires peuvent conduire à une inéquité distributive indésirable (Chapitre

3).

En plus du cadre conceptuel de cette thèse, nous avons apporté plusieurs contributions algorith-

miques, basées sur les méthodes de Frank-Wolfe. Nous avons relevé le défi d’optimiser les fonctions

concaves des politiques de classement stochastiques, qui peuvent être utilisées pour exprimer de

nombreux objectifs pour la recommandation équitable et multi-objective. Nous avons d’abord

montré comment utiliser efficacement les méthodes de Frank-Wolfe dans le cadre de la batch, pour le

classement dans le modèle basé sur la position au Chapitre 3. Ensuite, nous avons montré comment

étendre cette approche au cas des GGF non différentiables au Chapitre 4. Au Chapitre 5, nous

avons abordé le problème du classement équitable dans le cadre du bandit contextuel, et présenté

le premier algorithme de bandit avec des garanties de regret pour le problème. Tous les algorithmes

développés dans cette thèse sont soutenus par des garanties théoriques sur leur convergence et leur

complexité. Nous avons également évalué nos algorithmes par rapport à des benchmarks pertinents

sur des environnements simulés basés sur des jeux de données publics tels que MovieLens, Last.fm

et Twitter, qui comprennent jusqu’à 15k utilisateurs et items.

En plus de proposer de nouvelles méthodes pour concevoir des systèmes de recommandation

qui sont équitables envers les utilisateurs et les items, nous avons également abordé un problème

différent d’audit, qui est axé sur l’équité côté utilisateur au Chapitre 6. Motivés par des audits

importants pour l’égalité dans la distribution des annonces d’emploi, nous proposons un audit pour

l’absence d’envie, qui fournit des conclusions plus affinées mais qui est plus techniquement difficile.

Nous relevons ce défi technique en développant un algorithme de bandit d’exploration pure efficient

en termes d’échantillons pour la tâche, qui ne dégrade pas de manière significative les performances

de recommandation pour les utilisateurs échantillonnés pour l’audit.
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Chapter F. Résumé de la thèse en français

Notre recherche laisse plusieurs questions ouvertes. Celles-ci comprennent un traitement plus

détaillé de l’équité bilatérale au niveau du groupe, une modélisation plus générale des utilités des

utilisateurs et des items, et l’intégration de dynamiques réelles qui affectent les préférences et les

comportements des utilisateurs et des items. De plus, bien que notre travail se concentre sur la

perspective de la division équitable, le domaine du choix social offre des perspectives précieuses pour

la communauté des recommandations qui méritent une exploration plus approfondie. Répondre

à ces questions difficiles en conjonction avec nos contributions peut ouvrir des voies de recherche

passionnantes. Malgré les questions restées ouvertes, notre recherche a fait des progrès significatifs

dans l’amélioration de l’état de l’art actuel en matière d’équité pour les systèmes de recommandation.

Nous avons mieux compris les limites des contraintes d’égalité et de mérite sur l’exposition, ainsi

que la manière de concevoir des objectifs de classement principiels. Nos résultats ont conduit

au développement d’algorithmes efficaces qui peuvent être mis en œuvre pratiquement, servant

de tremplin pour le développement d’approches principielles de l’équité dans les systèmes de

recommandation dans des contextes plus complexes. Nous espérons que notre travail inspirera de

nouveaux progrès dans ce domaine.
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