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Abstract: Chance-constrained optimization is a powerful math-
ematical framework that addresses decision-making problems
in the presence of uncertainty. It provides a systematic ap-
proach to handle random parameters or uncertain variables,
allowing decision-makers to account for the likelihood of vi-
olating certain constraints while optimizing an objective func-
tion. The core idea behind chance-constrained optimization is
to ensure that the probability of constraint violation remains
below a specified threshold. This threshold represents the
acceptable level of risk or confidence level for the decision-
maker. In chance-constrained optimization, uncertain param-
eters can have known or unknown distributions. When the
distribution of uncertain parameters is known, probability dis-
tributions such as Normal (Gaussian), elliptical, normal mean-
variance mixture or discrete distribution with support based
on historical data can be utilized to represent the uncertainty.
In many practical situations, the distribution of uncertain pa-
rameters may be unknown or difficult to estimate accurately.
In such cases, the distribution of uncertain parameters is as-

sumed to belong to an uncertainty set, which leads to a spe-
cific problem, called distributionally robust chance-constrained
optimization. Chance-constrained optimization has significant
applications in game theory and Markov Decision Processes
(MDPs). In this dissertation, we first present a theoretical result
of the convexity of chance-constrained optimization. Next, we
gstudy two specific models of game theory and MDPs involving
chance-constrained optimization, known as chance-constrained
games (CCGs) and distributionally robust chance-constrained
Markov decision processes (DRCCMDPs). We consider differ-
ent assumptions on the distribution of uncertain parameters.
In CCGs, under certain conditions, we show the existence of a
Nash equilibrium of the game. DRCCMDPs can be modelled as
a distributionally robust chance-constrained optimization prob-
lem, where a decision maker is interested in maximizing the ex-
pected discounted value of a reward function. Under certain
conditions, we reformulate the optimization problem equiva-
lently as a deterministic problem, which can be solved efficiently
by commercial solvers.

Titre: Optimisation sous Contraintes en Probabilité : Applications en Théorie des Jeux et Processus de Décision Markovien
Mots clés: Programmation stochastique, Optimisation convexe, Jeux, Chaines de Markov

Résumé: L'optimisation sous contraintes en probabilité est un
cadre mathématique puissant qui aborde les problémes de
prise de décision en présence d'incertitude. Il fournit une ap-
proche systématique pour gérer des parameétres aléatoires ou
des variables incertaines, permettant aux décideurs de tenir
compte de la probabilité de violation de certaines contraintes
tout en optimisant une fonction objectif. Lidée centrale de
I'optimisation sous contrainte aléatoire est de garantir que la
probabilité de violation de contrainte reste inférieure a un seuil
spécifié. Ce seuil représente le niveau de risque acceptable ou
le niveau de confiance pour le décideur. Dans l'optimisation
sous contraintes en probabilité, les paramétres incertains peu-
vent avoir des distributions connues ou inconnues. Lorsque
la distribution des paramétres incertains est connue, des dis-
tributions de probabilité telles que normale (gaussienne), el-
liptique, mélange moyenne-variance normale ou distribution
discrete avec support basé sur des données historiques peu-
vent étre utilisées pour représenter l'incertitude. Dans de nom-
breuses situations pratiques, la distribution de paramétres in-
certains peut étre inconnue ou difficile a estimer avec préci-
sion. Dans de tels cas, la distribution des parametres incer-
tains est supposée appartenir a un ensemble d'incertitudes,

ce qui conduit a un probléme spécifique, appelé optimisation
distributionnellement robuste avec contraintes en probabilité.
L'optimisation sous contraintes en probabilité a des applica-
tions significatives dans la théorie des jeux et les processus de
décision Markoviens (MDP). Dans cette thése, nous présentons
d'abord un résultat théorique de la convexité de l'optimisation
sous contraintes en probabilité. Ensuite, nous étudions deux
modeéles spécifiques de théorie des jeux et de MDP impliquant
une optimisation sous contraintes en probabilité, connus sous
le nom de jeux contraints par le hasard (CCG) et de processus
de décision Markoviens avec des contraintes robustes sur le
plan distribution (DRCCMDP). Nous considérons différentes hy-
potheses sur la distribution des paramétres incertains. Dans les
CCG, sous certaines conditions, nous montrons I'existence d'un
équilibre de Nash du jeu. Les DRCCMDP peuvent étre modélisés
comme un probléme d'optimisation sous contraintes robustes
sur le plan distribution, dans lequel un décideur souhaite max-
imiser la valeur actualisée attendue d'une fonction de récom-
pense. Sous certaines conditions, nous reformulons le prob-
léme d'optimisation de maniere équivalente comme un prob-
léeme déterministe, qui peut étre résolu efficacement par des
solveurs commerciaux.
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Résumé

L'optimisation sous contraintes en probabilité, également connue sous le nom
d'optimisation stochastique ou d’ optimisation probabiliste, est un domaine de I'optimisation
qui traite des problémes d'optimisation dans lesquels certaines variables sont soumises
a des incertitudes probabilistes. Ces incertitudes sont souvent modélisées a l'aide
de distributions de probabilité, ce qui rend les solutions optimales dépendantes de
la probabilité. Voici quelques concepts clés liés a I'optimisation sous contraintes en
probabilité:

1. Fonction objective probabiliste : Dans I'optimisation sous contraintes en proba-
bilité, 1a fonction objective a maximiser ou minimiser dépend de variables aléa-
toires. Par conséquent, au lieu d'optimiser une seule valeur, vous cherchez a
optimiser une fonction objective qui intégre les probabilités associées a dif-
férentes valeurs possibles des variables aléatoires.

2. Contraintes probabilistes : Les contraintes dans ce contexte sont également
probabilistes. Cela signifie que les valeurs des variables de décision doivent
satisfaire certaines propriétés probabilistes, telles que des inégalités proba-
bilistes ou des équations probabilistes.

3. Méthodes de résolution : Plusieurs méthodes sont utilisées pour résoudre les
problémes d'optimisation sous contraintes en probabilité. Les méthodes de
Monte Carlo, les méthodes d'approximation stochastique, et les méthodes de
programmation stochastique sont quelques-unes des approches couramment
utilisées.

4. Analyse de sensibilité probabiliste : Une fois que vous avez obtenu une so-
lution optimale dans le contexte probabiliste, il est important d'effectuer une
analyse de sensibilité pour évaluer comment cette solution change en fonction
des variations des paramétres probabilistes. Cela peut aider a comprendre la
robustesse de la solution optimale par rapport a l'incertitude.

5. Analyse de sensibilité probabiliste : Une fois que vous avez obtenu une so-
lution optimale dans le contexte probabiliste, il est important d'effectuer une
analyse de sensibilité pour évaluer comment cette solution change en fonction
des variations des parametres probabilistes. Cela peut aider a comprendre la
robustesse de la solution optimale par rapport a l'incertitude.

6. Applications : L'optimisation sous contraintes en probabilité est utilisée dans
divers domaines, notamment la gestion de portefeuille financier, la conception
de produits sous incertitude, la planification de la chaine d' approvisionnement,
la gestion de projets, la gestion des ressources naturelles, et bien d'autres.

L'optimisation sous contraintes en probabilité est un puissant cadre mathématique
qui aborde les problémes de prise de décision en présence d'incertitude. Il fournit
une approche systématique pour traiter les parametres aléatoires ou variables in-
certaines, permettant aux décideurs de tenir compte de la probabilité de violation de



certaines contraintes tout en optimisant une fonction objectif dépend de variables
aléatoires, ce qui signifie que le résultat n'est pas fixe, mais suit une distribution de
probabilité. L'idée centrale derriére I'optimisation sous contraintes en probabilité
est de s'assurer que la probabilité de violation des contraintes reste en dessous d'un
seuil spécifié. Ce seuil représente le niveau de risque acceptable ou le niveau de con-
fiance souhaité pour le décideur. Par exemple, sion essaye de minimiser les co(ts de
production tout en respectant des contraintes de qualité, la qualité de la production
peut varier de maniére aléatoire. L'optimisation stochastique utilise des concepts de
probabilité et de statistiques pour modéliser l'incertitude et la variabilité. On peut
utiliser des distributions de probabilité pour représenter les variables aléatoires et
estimer les statistiques telles que la moyenne, la variance, etc. Différentes méthodes
peuvent étre utilisées pour résoudre des problémes d'optimisation sous contraintes
en probabilité. L'une des approches courantes est la programmation stochastique,
qui consiste a discrétiser le probléme en plusieurs scénarios possibles, puis a ré-
soudre un probléme d'optimisation déterministe pour chaque scénario. Une autre
approche est d'utiliser la simulation Monte Carlo pour échantillonner les variables
aléatoires et évaluer la performance de différentes solutions possibles. Cela permet
d'estimer la distribution de probabilité de la fonction objectif et des contraintes, ce
qui peut étre utilisé pour prendre des décisions éclairées.

Dans l'optimisation sous contraintes en probabilité, les parametres incertains
peuvent avoir des distributions connues ou inconnues, ce qui influence la maniére
dont vous abordez le probléme. Voici une explication plus détaillée de ces deux cas

1. Distributions connues: Dans certains cas, on peut avoir une connaissance
précise des distributions de probabilité qui décrivent les parametres incertains.
Ces distributions sont généralement connues ou estimées a partir de don-
nées empiriques. Les distributions de probabilité couramment utilisées in-
cluent la distribution normale (gaussienne), la distribution uniforme, la dis-
tribution exponentielle, la distribution de Poisson, etc. Lorsque les distribu-
tions sont connues, vous pouvez les incorporer directement dans le modéle
d'optimisation pour tenir compte de l'incertitude. Cela peut se faire a l'aide
de techniques telles que la programmation linéaire stochastique (PLS), la pro-
grammation linéaire en nombres entiers stochastique (PLNE), ou d'autres méth-
odes d'optimisation probabiliste.

2. Distributions inconnues: Dans d'autres situations, les distributions de prob-
abilité des parametres incertains peuvent étre inconnues, mal définies ou dif-
ficiles a estimer a partir des données disponibles. Dans de tels cas, vous pou-
vez utiliser des méthodes d'optimisation sous contraintes en probabilité ro-
bustes, qui cherchent a trouver des solutions optimales qui sont robustes face
al'incertitude, quelle que soit la distribution précise des paramétres incertains.
Les approches robustes cherchent & minimiser ou maximiser la fonction objec-
tive sous les pires conditions possibles, souvent en utilisant des ensembles de
scénarios ou des techniques de programmation robuste.

Enfonction dela connaissance qu'on a sur les distributions de probabilité des paramétres
incertains, on choisit la méthode d'optimisation appropriée. Les approches déter-
ministes classiques supposent des valeurs fixes pour les parameétres, tandis que



les méthodes d'optimisation sous contraintes en probabilité prennent en compte
I'incertitude associée a ces paramétres, ce qui peut conduire a des décisions plus
prudentes et plus adaptées aux situations réelles.

L'optimisation sous contraintes en probabilité trouve des applications importantes
dans la théorie des jeux et les processus de décision markoviens lorsque les dé-
cideurs doivent prendre en compte l'incertitude probabiliste dans leurs choix. Voici
comment ces applications peuvent étre abordées:

« Théorie des jeux sous incertitude: Dans la théorie des jeux, les joueurs pren-
nent des décisions en fonction des actions de leurs adversaires. Lorsque les
informations disponibles sont probabilistes (par exemple, lorsque les adver-
saires sont considérés comme rationnels mais avec une certaine incertitude
sur leurs choix), 'optimisation sous contraintes en probabilité peut étre utilisée
pour déterminer les stratégies optimales. Par exemple, dans les jeux d'équilibre
de Nash sous incertitude, les joueurs optimisent leur espérance de gain en ten-
ant compte de la distribution de probabilité des choix adverses.

* Processus de décision markovien sous incertitude: Les processus de dé-
cision markoviens (MDP) sont couramment utilisés pour modéliser des prob-
lémes de décision séquentielle dans des environnements incertains. Lorsque
les parameétres du MDP sont incertains, 'optimisation sous contraintes en prob-
abilité peut étre utilisée pour déterminer des politiques de décision robustes.
Par exemple, dans le contexte de la gestion des stocks, lorsque la demande
future est incertaine, un MDP sous incertitude peut étre résolu en optimisant
'espérance du rendement tout en respectant des contraintes de probabilité
sur les niveaux de stock.

+ Applications en économie et en finance: L'optimisation sous contraintes
en probabilité est également pertinente dans le domaine de I'économie et de
la finance, ou les agents prennent des décisions en présence d'incertitudes
sur les rendements, les taux de change, les prix des actifs, etc. Des modéles
d’optimisation sous contraintes en probabilité sont utilisés pour la gestion de
portefeuille, la gestion des risques et la prise de décision en finance.

Dans cette thése, nous présentons d'abord un résultat théorique sur la convexité
de l'optimisation sous contraintes en probabilité. Ensuite, nous étudions deux mod-
eles spécifiques de la théorie des jeux et des MDPs impliquant 'optimisation sous
contraintes en probabilité, connus sous le nom de jeux sous contraintes en probabil-
ité (CCGs) et processus de décision Markovien sous contraintes en probabilité a ro-
bustesse distributionnelle (DRCCMDPs). Nous considérons différentes hypotheses
sur la distribution des parametres incertains. Dans les CCGs, sous certaines condi-
tions, nous démontrons I'existence d'un équilibre de Nash du jeu. Les DRCCMDPs
peuvent étre modélisés comme un probléme d'optimisation sous contraintes en
probabilité a robustesse distributionnelle, ou un décideur cherche a maximiser la
valeur actualisée attendue d'une fonction de récompense. Sous certaines condi-
tions, nous reformulons le probleme d'optimisation de maniére équivalente en un
probléme déterministe, qui peut étre résolu efficacement par des solveurs connus.
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Chapter 1: Introduction

1.1. An overview and motivation

Chance-constrained optimization is a mathematical framework used to handle uncertainty in optimization
problems. It addresses situations where decision-making must consider the probability of constraints being
violated, rather than treating them as hard constraints. In traditional optimization, constraints are typically
assumed to be deterministic, meaning they must be satisfied exactly. However, in many real-world scenar-
ios, there is inherent uncertainty due to various factors such as measurement errors, model inaccuracies,
or external disturbances. Chance-constrained optimization provides a systematic approach to incorporate
this uncertainty into the decision-making process. The motivation behind chance-constrained optimization
is to strike a balance between the robustness of the solution and the feasibility of the problem. It recognizes
that satisfying all constraints with certainty might be overly conservative and result in suboptimal solutions.
By allowing constraints to be violated within certain bounds or probabilities, chance-constrained optimiza-
tion provides a more flexible approach. The key idea is to reformulate the deterministic constraints into
probabilistic constraints. Instead of requiring a constraint to hold for all possible values of the uncertain pa-
rameters, chance-constrained optimization seeks to ensure that the constraints are satisfied with a specified
probability, often referred to as the confidence level or risk tolerance.

In chance-constrained optimization, there are two main types of constraints: individual chance constraints
and joint chance constraints. Individual chance constraints are constraints that apply to each constraint sep-
arately. They specify the probability that a single constraint is violated. For example, consider a production
planning problem where the demand for a product is uncertain [159]. An individual chance constraint could
be formulated to ensure that the probability of demand exceeding the available supply is below a certain
threshold. Individual chance constraints provide a more localized view of constraint satisfaction, focusing on
the probability of violating each constraintindependently. Joint chance constraints involve multiple uncertain
variables and specify the probability that a combination of events violates the constraints. These constraints
consider the joint behavior of multiple constraints simultaneously. Joint chance constraints capture the inter-
actions and dependencies among different constraints and provide a more comprehensive view of constraint
satisfaction. For example, in a portfolio optimization problem, joint chance constraints may be used to ensure
that the overall portfolio risk, defined as the probability of exceeding a specified loss threshold, remains be-
low a certain level [132]. These constraints consider the combined behavior of all assets in the portfolio. The
choice between individual and joint chance constraints depends on the specific problem and the relationship
between the constraints. If the constraints are independent and there are no interactions among them, indi-
vidual chance constraints can be applied separately. However, when there are dependencies or correlations
among the constraints, joint chance constraints are more appropriate as they capture the collective behavior
and provide a more accurate representation of the overall system risk.

Chance-constrained optimization can be used to model several problems in real applications. In health-
care resource allocation, chance-constrained optimization can be used to determine optimal staffing levels
and resource allocation while considering uncertain patient arrival rates and treatment demands [213]. By
incorporating chance constraints, hospitals can ensure that the probability of inadequate staffing or exceed-
ing resource capacity remains within acceptable limits, balancing patient service levels and operational costs.
Chance-constrained optimization is also applicable to inventory management in retail, where demand for
products is uncertain, and stockouts can lead to lost sales and dissatisfied customers [135]. Retailers can
utilize chance-constrained optimization to determine optimal inventory levels, reorder points, and replen-



ishment policies while considering demand variability. The chance constraints help ensure a desired ser-
vice level and minimize the probability of stockouts. Another application of chance-constrained optimization
can be found in water resources management problems [65]. Chance-constrained optimization can assist
in drought mitigation by optimizing water allocation strategies during periods of low water availability. By
incorporating chance constraints, water managers can allocate water supplies among different users while
considering uncertain inflows and drought conditions. The chance constraints help maintain the probabil-
ity of meeting critical water demands within specified levels. An important application of chance-constrained
optimization is in portfolio risk management for insurance companies [112]. Chance-constrained optimization
is relevant to insurance companies for portfolio risk management, where the uncertainty lies in the occur-
rence of insurance claims. Insurers can use chance-constrained optimization to determine optimal invest-
ment and risk transfer strategies while considering the likelihood of claims exceeding certain thresholds. The
chance constraints enable insurers to control the probability of severe losses or financial instability. Recently,
chance-constrained optimization has been utilized in environmental impact assessment and renewable en-
ergy integration projects to ensure compliance with environmental regulations [16, 68]. When integrating
renewable energy sources into the power grid, chance-constrained optimization can help in determining op-
timal generation and transmission capacities while considering uncertainty in renewable energy availability
and grid stability requirements. The chance constraints ensure that the probability of violating environmental
or operational constraints remains within acceptable limits.

In chance-constrained optimization, the feasibility set refers to the set of feasible solutions that satisfy the
specified chance constraints. It represents the region of the decision space where the probability of violating
the constraints remains below the specified threshold or confidence level. The size and shape of the fea-
sibility set depend on various factors, including the uncertainty structure, the chosen confidence level, and
the specific form of the probabilistic constraints. In general, as the confidence level becomes more stringent,
the feasibility set tends to shrink, resulting in a more conservative solution space with a lower probability of
constraint violation. Conversely, relaxing the confidence level expands the feasibility set, allowing for more
risk and potential violations. The feasibility set can take various forms depending on the specific optimization
problem. In some complex scenarios, the feasibility set may exhibit irregular shapes, making the optimiza-
tion problem more challenging to solve. Finding the boundaries of the feasibility set can be computationally
demanding, as it requires estimating or characterizing the joint probability distribution of the uncertain vari-
ables. This often involves statistical methods, such as Monte Carlo simulation or scenario generation, to
sample from the uncertain parameter space and estimate the probabilities of violating the constraints. Un-
derstanding the feasibility set is crucial in chance-constrained optimization, as it provides insights into the
trade-offs between feasibility and optimality. Decision-makers can examine the shape and size of the fea-
sibility set to evaluate the robustness of their solutions and make informed decisions based on their risk
preferences. By exploring the feasibility set, they can assess the impact of different confidence levels on the
feasible solution space and determine the appropriate risk-reward trade-offs for their optimization problem.

The convexity of the feasibility set in chance-constrained optimization is a desirable property because it
enables the use of efficient convex optimization techniques to find globally optimal solutions. It depends on
the specific formulation of the probabilistic constraints and the underlying uncertainty structure. In some
cases, the feasibility set can exhibit convexity, while in other cases, it may be non-convex. To determine the
convexity of the feasibility set, we need to examine the structure of the probabilistic constraints and their re-
lationship to the decision variables. In general, if the probabilistic constraints are linear or can be expressed
as linear functions of the decision variables, and the underlying uncertainty is characterized by a known or
tractable probability distribution, the resulting feasibility set is likely to be convex. Linear chance constraints
with normally distributed uncertainty are a common example where the feasibility set is convex. If the proba-
bilistic constraints are non-convex, one possible approach is to employ convex relaxation techniques. Convex
relaxations involve approximating the original non-convex chance constraints with convex approximations



or relaxations. By replacing the original non-convex constraints with their convex counterparts, one can con-
struct a convex optimization problem that provides an approximate solution within a certain error tolerance.
In some cases, it may be challenging to analytically prove the convexity of the feasibility set. In such situations,
numerical validation methods can be employed. These methods involve sampling from the uncertain param-
eter space and solving the chance-constrained optimization problem for different combinations of samples.
By examining the resulting solutions, one can gain insights into the shape and behavior of the feasibility set. If
the majority of sampled solutions lie in a convex region, it provides evidence for the convexity of the feasibility
set.

In chance-constrained optimization, the probabilistic constraints are typically formulated based on as-
sumed or estimated probability distributions. However, in practice, the true underlying distribution may
be unknown or subject to estimation errors. Distributionally robust chance-constrained optimization is a
considered as an extension of traditional chance-constrained optimization that addresses uncertainties in
the probability distribution itself. Distributionally robust chance-constrained optimization seeks to provide
solutions that are robust to uncertainties in the probability distribution by considering a set of possible dis-
tributions rather than relying on a specific distribution. It aims to find solutions that perform well under
the worst-case scenario within a given uncertainty set of probability distributions. The motivation behind
distributionally robust optimization is to hedge against model misspecification and estimation errors by opti-
mizing decisions that are robust across a range of plausible distributions. It provides a way to make decisions
that are more resilient and less sensitive to the choice of probability distribution. To implement distribution-
ally robust chance-constrained optimization, one typically considers a family of probability distributions that
represents the uncertainty in the true distribution. This family is often defined by a set of moment or distri-
butional constraints. The optimization problem then aims to find solutions that satisfy the chance constraints
for all possible distributions within the uncertainty set, ensuring robustness against the worst-case scenario.

The choice of the uncertainty set is a critical aspect of distributionally robust chance-constrained optimiza-
tion and should be carefully considered based on the problem at hand and the available information. Vari-
ous approaches exist for defining uncertainty sets, each offering different trade-offs between conservatism
and computational tractability. There are two common approaches to construct uncertainty sets, which are
moment-based uncertainty sets and statistical-based uncertainty sets. Moment-based uncertainty sets refer
to uncertainty sets that are defined based on moment or statistical properties of the uncertain variables[35].
These sets specify bounds or constraints on the moments of the uncertain variables, such as mean, variance,
or higher-order moments. For example, a moment-based uncertainty set may restrict the mean of the uncer-
tain variable to lie within a certain range or limit the variance to be below a specific threshold. They provide
a deterministic characterization of the uncertainty based on moment information. Statistical distance-based
uncertainty sets are defined based on a measure of statistical distance between the true distribution and
a reference distribution. Instead of relying on specific moment constraints, these sets focus on the overall
distributional discrepancy or similarity between the true distribution and the reference distribution. These
uncertainty sets consider a range of plausible distributions that are close to the true distribution according
to the chosen statistical distance measure. Common statistical distances used to define such sets include
the Wasserstein distance[76], Kullback-Leibler divergence, or total variation distance[22, 117]. Both moment-
based and statistical distance based uncertainty sets have their advantages and applications, depending on
the problem context and available information. Moment-based sets provide a more deterministic represen-
tation based on specific moment constraints, while statistical distance based uncertainty sets allow for a more
flexible and data-driven characterization of uncertainty based on statistical distances.

Our research aims to incorporate chance-constrained optimization and distributionally robust chance-
constrained optimization into two distinct but interconnected areas: random games and Markov decision
processes (MDPs). Both random games and MDPs belong to the broader category of stochastic games due
to their inherent stochastic nature and the presence of uncertainties in their dynamics. Stochastic games
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are a class of game theory models that capture strategic interactions among multiple decision-makers in an
uncertain environment. In these games, the outcomes of players' actions and interactions are influenced by
probabilistic factors, such as random events, uncertain states, or stochastic transitions. The incorporation of
randomness and uncertainties distinguishes stochastic games from their deterministic counterparts.

Random games involve strategic interactions among multiple decision-makers, where uncertainties arise
from the actions and outcomes of other players, which are subject to random events or uncertainties. In these
games, each player’s decision-making is influenced not only by the actions of other players but also by the ran-
dom outcomes or uncertainties associated with the game environment. This adds complexity and challenges
to the decision-making process, as players must anticipate and react to the uncertain behaviors of others.
Examples of random games include games with incomplete information, where players have limited knowl-
edge about the strategies or payoffs of others, games with random payoffs, where the outcomes depend
on probabilistic events, or games with stochastic elements that introduce uncertainty and randomness into
players’ strategies and resulting outcomes. The presence of uncertainties in random games necessitates the
use of advanced optimization techniques, such as chance-constrained or distributionally robust optimization,
to effectively handle the risks and uncertainties inherent in these strategic interactions. These techniques al-
low decision-makers to explicitly account for the probabilities of constraint violations and manage the risks
associated with uncertain actions and outcomes, leading to more informed and robust decision-making in
the context of random games strategies and outcomes.

Markov Decision Processes (MDPs) can be seen as a specific type of stochastic game, characterized by the
interaction between a single decision-maker and a stochastic environment over time. In MDPs, the decision-
maker’s actions directly influence the transitions between states and the corresponding rewards. However,
these transitions and rewards are subject to uncertainties, reflecting the stochastic nature of the environ-
ment. The presence of uncertainties in MDPs stems from random events or probabilistic dynamics that im-
pact the decision-making process and subsequent outcomes. These uncertainties introduce challenges as the
decision-maker must carefully balance the trade-offs between exploration and exploitation to optimize long-
term rewards while navigating the uncertain dynamics of the environment. By leveraging chance-constrained
or distributionally robust optimization techniques in MDPs, decision-makers can explicitly account for the un-
certainties, manage risks, and make informed decisions that maximize expected rewards while controlling
the probability of constraint violations. Such approaches enhance the robustness and reliability of decision-
making in MDPs, enabling effective navigation of the stochastic elements inherent in the environment.

In the context of chance-constrained optimization, when considering strategic interactions among multi-
ple decision-makers in a game-theoretic framework, we encounter a specific class of problems known as
chance-constrained games (CCGs). CCGs combine the principles of chance-constrained optimization and
game theory to address decision-making problems under uncertainty within a competitive or cooperative
setting. The study of CCGs offers valuable insights into the complexities of decision-making in dynamic and
uncertain environments with strategic interactions. One of the important notions in CCGs is the equilibrium
point, specifically the Nash equilibrium. A Nash equilibrium represents a stable state in the game where no
player has an incentive to unilaterally deviate from their chosen strategy given the strategies of the other
players. In CCGs, the Nash equilibrium captures the strategic behavior of decision-makers in the presence
of chance constraints. It identifies a set of strategies where each player’s strategy is optimal, taking into ac-
count both their own objectives and the constraints imposed by the chance events. At a Nash equilibrium,
no player can improve their own outcome by independently changing their strategy, given the strategies of
other players and the chance constraints. The concept of Nash equilibrium in CCGs provides insights into
the equilibrium strategies that decision-makers adopt under uncertainty and strategic interactions. It helps
in understanding the stability and robustness of the system and provides a benchmark for evaluating the
performance of different strategies. Analyzing the Nash equilibrium in CCGs involves studying the interplay
between players’ strategies, the impact of chance constraints on their decision-making, and the resulting out-
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comes. An important method to find a Nash equilibrium is the best-response algorithm. The best-response
algorithm is an iterative process that allows players in a CCG to update their strategies in a sequential manner,
aiming to converge to a Nash equilibrium. The algorithm involves each player choosing a strategy that opti-
mizes their objective function, taking into account the strategies of other players and the chance constraints.
It is important to note that the best-response algorithm does not guarantee convergence to a Nash equilib-
rium in all cases. Convergence may depend on the specific structure of the game, the players’ objectives, and
the chance constraints involved. For this reason, the convexity of chance constraints has several benefits in
the context of finding a Nash equilibrium. Convex optimization problems have desirable properties that fa-
cilitate convergence. Solving a sequence of convex optimizations increases the likelihood of reaching a Nash
equilibrium due to the convexity of the problem formulation. However, it is important to note that the con-
vexity assumption of chance constraints is not always valid in all scenarios. In some cases, chance constraints
may have non-convex formulations due to the nature of the underlying probabilistic constraints or the struc-
ture of the problem. In such situations, alternative optimization techniques or relaxation approaches may be
employed to handle the non-convexity to approximate Nash equilibria in CCGs.

Combining the principles of distributionally robust chance constraints with Markov Decision Processes
(MDPs) offers a powerful framework for decision-making under uncertainty with robustness considerations.
This integration results in a specific class of problems referred to as distributionally robust chance-constrained
Markov decision processes (DRCCMDPs). In DRCCMDPs, the decision-maker’s actions aim not only to optimize
expected rewards but also to adhere to probabilistic constraints on system properties, considering the un-
certainty in the underlying probability distributions. These chance constraints ensure that the probability of
violating specific conditions or thresholds remains within acceptable levels throughout the decision-making
process. By incorporating distributionally robust optimization techniques, DRCCMDPs account for uncertain-
ties in the probability distributions and provide robustness guarantees against a set of plausible distributions.
The combination of distributionally robust chance constraints with MDPs enables decision-makers to make in-
formed decisions that balance reward optimization and robustness under uncertain environments. By explic-
itly considering the uncertainty in the underlying probability distributions, DRCCMDPs allow decision-makers
to develop strategies that are robust against worst-case scenarios, ensuring satisfactory performance even
in the presence of distributional uncertainty. The combination of distributionally robust chance constraints
with MDPs enables decision-makers to make informed decisions that balance reward optimization and ro-
bustness under uncertain environments. By explicitly considering the uncertainty in the underlying probabil-
ity distributions, DRCCMDPs allow decision-makers to develop strategies that are robust against worst-case
scenarios, ensuring satisfactory performance even in the presence of distributional uncertainty. When ap-
plying distributionally robust principles to Markov Decision Processes (MDPs), there are two main ways to
consider uncertainty: reward uncertainty and transition probabilities uncertainty. In distributionally robust
MDPs with reward uncertainty, the uncertainty lies in the rewards associated with different states and actions
in the MDP. Traditional MDPs assume known reward distributions, but in practice, these distributions may be
uncertain or difficult to estimate accurately. Distributionally robust MDPs with reward uncertainty aim to find
policies that perform well under a set of plausible reward distributions. The decision-maker seeks policies
that are robust against worst-case scenarios. They consider a family of possible reward distributions within a
given ambiguity set and optimize policies that perform well under the worst-case distribution. This approach
accounts for uncertainty in reward estimates and ensures that the selected policy is less sensitive to varia-
tions in the true reward distribution. In distributionally robust MDPs with transition probabilities uncertainty,
the uncertainty lies in the transition probabilities that dictate how the MDP evolves from one state to another.
In real-world scenarios, it is common for transition probabilities to be uncertain, especially when there are
external factors or environmental changes that affect the system dynamics. Distributionally robust MDPs
with transition probabilities uncertainty aim to find policies that are robust against uncertainties in the tran-
sition probabilities. The study and application of distributionally robust MDPs with either reward uncertainty
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or transition probabilities uncertainty contribute to developing decision-making strategies that are resilient
to uncertainties in the MDP model. These techniques find applications in various domains, including finance,
resource management, robotics, and many others, where uncertainties in rewards or transition probabilities
are prevalent and need to be accounted for to ensure effective decision-making.

1.2 . Mathematical framework

We consider the following deterministic optimization problem

min  c¢(x)
subjectto (i) h(z,&) >0
(i) z € Q. (1.1)

where cis a convex real function, Q@ is a closed convex subset of R”?, h: R" x R™ — R® is a multi-dimensional
real function such that each component h;, ¢ = 1,...,n is a convex function, =z € Q is an n—dimensional
decision vector, and ¢ € R™ is an m—dimensional parameter vector. The optimization problem (1.1) is a
convex constrained optimization, which can be solved efficiently by convex solvers.

The transition from constrained optimization to chance-constrained optimization is motivated by the need
to incorporate uncertainty and risk management into decision-making processes. While constrained opti-
mization focuses on optimizing objectives subject to deterministic constraints, chance-constrained optimiza-
tion introduces a probabilistic perspective to handle uncertainties more explicitly. By taking into account of
the uncertainty of ¢, we consider the following chance-constrained optimization

min  ¢(z)
subjectto (i) P(h(z,&) >0)>1—¢
(i) z € Q, (1.2)

where £ : Q — R™ is a random vector defined on a probability space (22, .4,P) and ¢ € [0, 1]. The constraint (i)
of (1.2) is called an individual chance constraint if s = 1 and a joint chance constraint if s > 1.

Afundamentalissue in chance-constrained problems is the characterization of the convexity properties of
chance constraints. The main question is whether these chance constraints preserve convexity, allowing for
efficient optimization techniques and reliable solutions. Significant progress has been made in understanding
the convexity properties of chance constraints under certain assumptions. For instance, if the underlying
random variables are independent and have known probability distributions, chance constraints can often be
reformulated as convex constraints using techniques such as chance constrained reformulation or scenario
approximation. These reformulations allow for efficient optimization using convex optimization methods. For
joint chance constraints case, researchers have explored conditions under which joint chance constraints can
be convex, especially when specific assumptions are made about the distributions or dependencies among
the random variables. In some cases, the convexity of joint chance constraints can be established based on
properties of the underlying distributions, such as log-concavity or specific covariance structures.

In chance-constrained optimization, uncertainties are typically represented by probabilistic constraints
that specify a required probability of constraint satisfaction. However, the specific probability distribution
underlying the uncertain parameters is often assumed to be known, which may not reflect the true dis-
tribution accurately or may be difficult to estimate in practice. Distributionally robust chance-constrained
optimization takes a more conservative and robust approach by considering a set of possible distributions
or ambiguity sets instead of assuming a single known distribution. The ambiguity set represents a range of
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potential distributions that the uncertain parameters may follow. We consider the following distributionally
robust chance-constrained optimization

min  ¢(x)
subjectto (i) Firé%IP’(h(x,g) >0)>1—c¢

(i) z € Q, (1.3)

where F is the distribution of £, D is a given uncertainty set of potential distributions of £. The constraint
(i) of (1.3) implies the constraint (i) of (1.2) if the true distribution of ¢ belongs to the uncertainty set D. Con-
structing a well-defined and appropriate uncertainty set is crucial in distributionally robust optimization to
ensure reliable and meaningful results. The choice of uncertainty set affects the robustness of the optimiza-
tion model and the trade-off between conservativeness and computational tractability. Two commonly used
approaches have been proposed in the literature to construct uncertainty sets, based on either moments
of the random variable or statistical distance between a nominal distribution and the true distribution of
the random variable. A moment-based uncertainty set is constructed based on statistical moments of the
uncertain parameters, such as mean and covariance. This type of uncertainty set is defined by specifying a
range or bound on the moments of the uncertain distribution. The bounds can be determined from historical
data, expert knowledge, or conservative estimates. A statistical distance-based uncertainty set is constructed
based on the concept of statistical distances or divergences. These measures quantify the dissimilarity or
discrepancy between probability distributions. The idea behind statistical distance-based uncertainty sets
is to define a set of distributions that are close to a reference distribution according to a chosen statistical
distance measure. The reference distribution is often derived from observed data or prior knowledge, and
the uncertainty set encompasses distributions that are within a specified distance from the reference.

The mathematical framework of chance-constrained games combines elements from chance-constrained
optimization and game theory to analyze decision-making problems under uncertainty within a competitive
or cooperative setting. It involves defining the players' decision spaces, their objectives, the uncertainty in the
system, and the chance constraints that govern their actions. The framework can be formulated as follows:

* Players: Given n decision-makers or players in the game denoted by the index i € {1,2,...,n}.

+ Decision Spaces: Each player i has a decision space denoted by S;, which represents the feasible set of
strategies or actions available to that player.

+ Objective Functions: Each player i has an objective function denoted by f;(-), which quantifies their
individual preferences or goals. The objective functions may involve maximizing or minimizing certain
criteria, such as utility, profit, cost, or social welfare.

+ Uncertainty: Uncertainty is represented by a probability distribution or a set of plausible distributions
that capture the randomness or variability in the system. The uncertainty may arise from uncertain
payoffs, incomplete information, or stochastic elements influencing players’ decisions and outcomes.

+ Chance Constraints: Chance constraints define probabilistic bounds on players’ actions or outcomes.
These constraints ensure that the probability of violating specific conditions or thresholds remains
within acceptable levels throughout the decision-making process. Chance constraints can be formu-
lated as constraint (i) of (1.2) or constraint (i) of (1.3) if the underlying distribution is assumed to be
unknown.

+ Equilibrium Concept: Nash equilibrium is used to capture the stable states in the game. A Nash equilib-
rium is a set of strategies for all players in which no player can unilaterally improve their payoff given
the strategies of others
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The mathematical framework of distributionally robust chance-constrained Markov decision processes
(DRCCMDPs) combines elements from distributionally robust optimization, chance-constrained optimization,
and Markov decision processes to model decision-making under uncertainty within a dynamic and sequential
framework. It involves formulating the decision spaces, the transition dynamics, the objective functions,
and the chance constraints while accounting for uncertainty in the underlying probability distributions. The
framework can be formulated as follows:

Decision Spaces: Each state s € S in the MDP is associated with a decision space denoted by A, which
represents the feasible set of actions available to the decision-maker.

Transition Dynamics: The transition dynamics (or transition probabilities) describe the probabilistic evo-
lution of the MDP from one state to another based on the chosen actions. The transition probabilities
are fixed or uncertain and represented by a set of plausible distributions or ambiguity sets.

Objective Function: Objective function is the expected reward, where the decision maker aims to maxi-
mize this function.

Uncertainty in Reward or Transition Probabilities: The uncertainty in reward or transition probabilities
is modeled using distributional ambiguity sets. These ambiguity sets capture a range of plausible dis-
tributions that represent the uncertainty. They can be defined based on moment-based or statistical
distance-based approaches.

Chance Constraints: Chance constraints are imposed on the system properties to ensure that the prob-
ability of violating specific conditions or thresholds remains within acceptable levels throughout the
decision-making process. The chance constraints consider the uncertainty. In this framework, we con-
sider chance constraints of the form (i) of (1.3).

1.3 . Contribution and Outline of the Dissertation

We highlight some contributions of this dissertation to the field of chance-constrained optimization, with
specific applications in random games and Markov decision processes (MDPs). The key contributions of this
research are as follows:

1.

Convexity Analysis of Chance-Constrained Optimization: We provide a rigorous proof of the con-
vexity of chance-constrained optimization problems when incorporating a random technology matrix
into joint chance constraints. Our analysis is inspired by previous works in the literature [100, 49], which
extends the understanding of the convexity properties of chance constrained optimization with random
technology matrix. We assume that the row vectors of the random matrix follows a multivariate ellipti-
cal distribution and the dependence between them are captured by a Gumbel-Hougaard copula, which
belongs to the class of Archimedean copulas. Under certain conditions, we prove the convexity of the
feasibility set. By establishing the convexity of the optimization problem, one can enable the utilization
of efficient convex optimization techniques, enhancing the tractability of the solution methods.

. Application in Random Games: First, we consider a general n—players chance-constrained game

framework, which can be adapted to different practical scenarios. Specifically, the strategy sets of each
player are defined by joint chance constraints, incorporating a random technology matrix. We assume
that the distribution of the row vectors of the technology matrix is known and we study two distinct
cases: one where the row vectors of the random technology matrix follow an elliptical distribution, and
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another where they follow a normal mean-variance mixture distribution. In both cases, we prove the ex-
istence of a Nash equilibrium for the game. This result demonstrates that, under certain assumptions,
players can reach a stable strategic equilibrium even in the presence of chance constraints. We propose
an algorithm, namely best-response algorithm to find a Nash equilibrium and present an application in
the competition of two firms in financial market. A disadvantage of the best-response algorithmis that it
does not always guarantee the convergence to a Nash equilibrium. To ensure the convergence to a Nash
equilibrium in situations where the best-response algorithm may not guarantee it, we introduce a ded-
icated chapter that focuses on a specific game model. This model offers the assurance of the existence
and uniqueness of a Nash equilibrium, along with the convergence of our algorithm to this equilibrium.
Our study specifically delves into the framework of two-player zero-sum games, where the strategy sets
of each player are defined by distributionally robust linear chance constraints with random technology
matrix, i.e., we lack knowledge about the true distribution of the row vectors and we assume that they
are only known to belong to some uncertainty set. In this scenario, we not only establish the existence
of a Nash equilibrium but go further by demonstrating that the Nash equilibrium is unique and it can
be obtained as the optimal solution of a primal-dual pair of second-order cone programmings, which
can be solved efficiently by convex solvers.

3. Application in Markov decision processes: We extend the application of chance-constrained opti-
mization to the domain of Markov decision processes (MDPs). We introduce a model called the dis-
tributionally robust chance-constrained MDP, which incorporates distributionally robust chance con-
straints into the MDP formulation. We consider two important sources of uncertainty: reward uncer-
tainty and transition probabilities uncertainty. By integrating distributionally robust chance constraints
into these components, we enable decision-makers to make robust decisions that account for the asso-
ciated uncertainties. To handle the uncertainty in the distributionally robust chance constrained MDP,
we construct two types of uncertainty sets. The first approach utilizes first and second moments of the
uncertain parameters to define the uncertainty sets. These moments capture statistical properties of
the uncertain distributions and provide a concise representation of uncertainty. The second approach
utilizes phi-divergence and Wasserstein statistical distance measures to construct the uncertainty sets.
This approach quantifies the dissimilarity between the true distribution and an assumed nominal distri-
bution, allowing decision-makers to capture the range of plausible distributions. In all cases, we refor-
mulate the optimization problem equivalently as deterministic optimization problems using the duality
theory. These reformulations enable efficient and tractable solutions using well-known solvers such as
Mosek and Gurobi.

The rest of the dissertation is organized as follows. In Chapter 2, we review important works related to chance-
constrained optimization, distributionally robust chance-constrained optimization, and their applications in
random games and Markov decision processes. We present the main results of the dissertation in Chapters
3-6. We conclude the primary contributions of this dissertation and develop a discussion on open issues and
potential directions for future research in Chapter 7.

16



Chapter 2 :Literature review

2.1. Chance-constrained optimization

The paper entitled "Chance-Constrained Programming" (CCP) by Charnes and Cooper published in 1959
in the journal Management Science [40], is one of the pioneering works in the field of chance-constrained
optimization. The paper presented the basic framework of chance-constrained programming and discussed
various aspects, including mathematical formulations, solution methods, and interpretation of results. The
concept of chance constraints introduced in this paper has been extended and further developed in sub-
sequent research in various fields, including finance, engineering, transportation, and environmental man-
agement, where decision-making under uncertainty is crucial. Charnes and Cooper [41] presented a novel
approach to optimization problems, focusing on linear fractional programming. They proposed a method to
transform fractional objective functions into linear ones, then making use of linear programming techniques.
Charnes and Cooper [42] introduced the concept of data envelopment analysis (DEA) as a method for mea-
suring the efficiency of decision-making units. The CCP problem has been analyzed from others authors,
i.e., Naslund and Whinston [162], who considered a decision making model for investment in the stock mar-
ket. Kataoka [122] and van de Panne and Pop [237] proposed a solution method for individual, or single row
normal constraints. In [122], the author considered a transportation type problem, which can be solved by
iteration of linear programming, while [237] considered an application of linear programming in determining
the optimal composition of castle feed. They reformulated the constraints as chance constraints, which can
be solved using one of Zoutendijk's methods of feasible directions. Miller and Wagner [156] explored the
model of joint constraints involving independent random variables on right-hand side. By utilizing statistical
hazard function they identified conditions under which the resulting problem is convex (increasing hazard
rate). To address this, they developed three algorithms that leverage the linearization of logarithmic chance
constraints. Jagannathan [111] went beyond the assumption of independence for the random variables on the
right-hand side, and further explored scenarios where the random coefficient matrix is independent (with a
common row variance).

In general, evaluating the probability associated with chance constraints is computationally challenging.
As a result, researchers have proposed numerous equivalent reformulations or approximations to handle
chance constraints more effectively. These alternative formulations aim to simplify the computational com-
plexity and enable tractable solutions for chance-constrained optimization problems. There are several com-
monly used methods to solve chance constraints in optimization problems, e.g., convex approximations,
reformulation techniques, sample average approximation (SAA), scenario approximation, Bernstein approx-
imation.

Reformulation techniques is a basic tool in handling chance constraints effectively in optimization prob-
lems. These techniques aim to transform the original chance constraints into alternative formulations that
are easier to analyze and solve. For the individual linear chance constraints, the chance constraint can be
reformulated equivalently as second-order cone programming (SOCP) constraint under certain assumption
(the random variables follows elliptical or radial distribution) [185, 111, 90].

In case of linear joint chance constraints, it is hard to derive a tractable reformulation if the random vari-
ables are continuous. For this reason, several convex approximations have been proposed to deal with this
case. Chengetal. [49] proposed SOCP approximations based on piecewise linear approximations in indepen-
dent row matrix case. To deal with the dependent rows case, Cheng et al. [48] used Archimedean copula to
derive SOCP approximations. In the case where the random variables follow finite distributions, Luedtke and
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Ahmed [150] proposed a novel approach by constructing a mixed integer linear programming reformulation
for linear joint chance constraints. Vielma et al. [240] explores the use of mixed integer linear programming
to model and solve chance constrained optimization. The paper presents practical applications and case
studies , which could span various domains such as finance, supply chain management, transportation, or
energy systems.

These abovementioned cases are some very particular cases where we can get exact reformulations or
convex approximations of the chance constraints. However, such situation is rare, especially when the chance
constraintis nonlinear [67, 130, 192]. The scenario approach, relying on Monte Carlo sampling techniques, pro-
vides a computationally tractable way to handle uncertainties by generating a set of representative scenarios
and evaluating the feasibility of constraints based on these scenarios, that allows for solving chance con-
strained problems using standard deterministic optimization techniques. This approach has been studied in
[33, 36, 53] and extended by Nemirovski and Shapiro [164]. They developed a solution methodology using
scenario approximation techniques to addresse joint linear chance constrained problems. Under certain con-
ditions, they proved that the solution of the approximation problem aligns with the feasibility of the original
problem, ensuring a high probability of constraint satisfaction. Hong et al. [106] proposed sequential convex
approximations to solve nonlinear joint chance constraints. Luedtke and Ahmed [149] studied some condition
of the sample size and probability level such that a solution obtained by the approximation problem guar-
antees feasibility for the original problem. [165] introduced the Bernstein approximation technique, which
is a method for approximating probability distributions or functions by using Bernstein polynomials. Their
work on the Bernstein approximation has found applications in various areas, including chance constrained
optimization, stochastic programming, and machine learning.

SAA method involves approximating the chance constraints using a finite number of samples drawn from
the uncertain parameters. The problem is then transformed into a deterministic optimization problem that
can be solved using standard techniques, where the accuracy of the approximation depends on the number
of samples used. Several papers have been studied in the literature concerning SAA method [143, 6, 126, 209].
Recently, Chengetal. [47] proposed partial SAA method to solve joint chance constraints. The main advantage
of this approach is the approximation problem is still a continuous optimization with continuous variables.

A novel method, called Bicriteria approximation to solve chance-constrained covering problems refers
to an approach that seeks to approximate solutions for such problems with multiple conflicting objectives
or criteria. In chance-constrained covering problems, the goal is to find a set of cover elements that satisfy
certain coverage requirements while also satisfying probabilistic constraints on the coverage probability. [261]
proposed a bicriteria approximation scheme to derive a tractable convex relaxation of a chance constrained
problem, which can be further extended to the distributionally robust setting. Adam et al. [1] proposed to
solve joint chance constrained problems using regularization and Benders’ decomposition. Deng et al. [59]
studied scenario grouping and decomposition algorithms for chance-constrained programs

Another direction in solving chance-constrained optimization is establishing bounds by leveraging deter-
ministic analytical approximations of chance constraints. By employing this approach, bounds can be derived
based on mathematical techniques that provide deterministic approximations of the probabilistic constraints.
An useful tool to derive bounds for individual chance constraints is based on extensions of Chebyshev in-
equality (see for instance [28, 105, 181]). For joint chance constraints, several papers proposed tight bounds
to derive deterministic equivalent approximations [144, 225]. Recently, bounds based on nonlinear program-
ming (NLP) problems, which can be solved by NLP solvers, have been proposed to derive approximations for
nonlinear chance constrained optimzation [78]. Karimi et al. [121] proposed a novel partial sample average
approximation (PSAA) framework to solve the two types of chance-constrained linear matrix inequality prob-
lems with random technology matrix and with random right-hand side. Ahmed et al. [5] proposed two new
Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity
constraints. Xie and Ahmed [260] studied quantile cuts and their closure for chance constrained optimization
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problems over a finite distribution. Zhang et al. [270] proposed new valid inequalities and formulations for
the static joint chance-constrained lot-sizing problem. Recently, Liu et al. [145] studied chance-constrained
DRO in geometric optimization.

Recently, a novel method to chance-constrained optimization based on reformulations using partial KKT
conditions and the use of dynamical neural network has been studied in the literature [227, 251]. Siham and
Lisser [227] studied linear problems with joint chance constraints with dependent row vectors and the de-
pendence is modeled by Gumbel-Hougaard copula. They proposed an ordinary differential equations (ODA)
reformulation based on partial KKT conditions and used dynamical neural networks to solve. Dawen and
Lisser [254] generalized this method to solve some class of nonlinear chance-constrained optimizations.

Chance-constrained optimization has a wide range of applications across various fields, e.g., supply chain

planning and inventory management [190, 135], risk budgeting multi-portfolio [112, 137], production planning
[159], hydro reservoir management [233, 9, 25], gas transport management [84, 75, 2, 196] , electricity spot
market modeling [98, 96], environmental management [93, 191, 65], renewable energy management [32, 68,

, 10, ], transportation and logistics [13, 14], risk management [4, 175, 12, , 112, 136], critical path network

[212]

2.2. Analytical properties of chance constraints

Convexity properties play a crucial role in chance-constrained optimization. The primary focus is on con-
vex chance constraints, where the feasible region defined by the constraints forms a convex set. This property
is desirable because it allows for efficient optimization algorithms and guarantees global optimality. Convex
chance constraints can often be formulated using convex functions, such as the cumulative distribution func-
tion (CDF) or quantile functions. Motivated by Arrow and Enthoven [11] about quasi-concave programming,
Prékopa [184] studied joint constraints with dependency by introducing quasi-concave constraint function.
Prékopa [185] first introduced the notion of log-concave measures and this concept was further developped
in his paper in 1972 [186]. Prékopa [187] introduced some useful applications of log-concave measures in
stochastic programming models. The notion of log-concave measures was generalized to a— concave mea-
sures by Borel [29] and Brascamp and Lieb [31], which is further developped by Norkin and Roenko [173] with
applications in probability optimization and fuzzy optimization. The property of a—concave has been shown
adequately for many prominent distributions by the abovementioned papers and also applicable in some
continuous distribution case, such as multivariate gamma in Prékopa and Szantai [191]. Dentcheva et al. [61]
generalized the definition of a— concave measures on a set, which was used for extending optimality and
duality theory in their paper in 2002 [62]. By employing a similar concept of Q-radial distribution, Calafiore
and El Ghaoui [35] reformulated individual chance constraints as second-order cone constraints.

While significant progress has been made in reformulating individual chance constraints, addressing the
issue of convexity remains a considerable challenge, particularly when dealing with joint chance-constrained
problems. However, various extensions have been explored to address this issue. Prékopa et al. [193] pos-
tulated that a joint linear chance constrained problem is convex when the rows are assumed to follow in-
dependent normal distributions, with an additional condition that the covariance matrices of these rows are
proportional to each other. Henrion and Strugarek [100] proved the convexity of joint chance constraints with
independent random variables separated from decision vectors. To handle the dependent case, Henrion and
Strugarek [101] introduced r—decreasing densities concept and the theory of copula, while Houda [107] used
a variation to the mixing coefficient. Lagoa et al. [130] showed the convexity in the case where the random
variables have log-concave and symmetric distribution. Some recent papers provide insights into the convex-
ity properties of chance-constrained optimization problems and offer various convex relaxation techniques
for handling different types of random variables and [229, 235, 7].
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Optimality conditions and differentiability play crucial roles in analyzing and solving chance-constrained
optimization problems. The notion of p-efficient points is an important concept in multi-objective optimiza-
tion. It refers to a specific subset of solutions in the objective space that cannot be improved simultane-
ously in all objectives by any other feasible solution. This concept was first introduced in Prékopa [194],
which was extensively analyzed later in several frameworks, [61] (probabilistically constrained stochastic pro-
gramming with discrere distributions), [62] (integer programming problems), [24] (probabilistic set-covering
problem), [24] (stochastic integer problems), [188] (linear problems), [60] (nonlinear problems). Lejeune and
Noyan [134]proposed a novel method to generate p-efficient points of probabilistically constrained prob-
lems, in which the random variables are finitely distributed by solving mixed-integer programming. Klein
Haneveld [125] introduced related measures of violation and conditional expectation constraints. Several
algorithms have been proposed to calculate the probability distribution function, e.g., algorithms for multi-
variate normal distribution (without gradients) [226, 54, 80, 81] and algorithms based on a gradient calculation
[228, 99, 231, 232, 94].

Calmness is a concept used in the field of mathematical optimization, especially in the study of constraint
systems. It captures a form of stability for these systems. This concept is closely related to the notion of
Lipschitz continuity in calculus, but in the context of set-valued mappings. Calmness is a useful property
because it gives us some guarantees about the behavior of the constraint system. Itis particularly importantin
the context of robust optimization and stochastic optimization, where the decision variables or the constraints
may be subject to some uncertainty. If the constraint system is calm, then it means that small changes or
perturbations will not significantly disrupt the optimal solution. The calmness property of a multifunction
was first introduced in Rockafellar [201]. A few years later, analytical properties as well as its applications

have been extensively studied in [95, 91, 92, 97].
A new research direction is to study properties of chance constraints (e.g., closedness, convexity, Lipschitz
continuity, differentiability) in infinite dimension and application to PDE constrained optimization [73, 72, 79].

Pérez-Aros and Henrion [231], van Ackooij and Pérez-Aros [236] studied generalized differentiation of probust
functions, i.e., probability functions acting on generalized semi-infinite inequality systems. Grandon et al. [85]
investigated analytical properties of chance under continuous random distributions, e.g., weak sequential
semi-continuity, Lipschitz continuity and differentiability of the probability function. Recently, the sample
average approximation has been applied to PDE-constrained optimization problems for approximating risk-
neutral optimization problems [157].

2.3 . Distributionally robust chance constrained optimization

In numerous real applications, it is frequently encountered that decision-makers have access to only par-
tial information regarding the underlying distribution, primarily relying on historical data. Substituting the
actual distribution with an estimated one may lead to an optimal solution that is highly likely to be infeasible
in practical applications. For this reason, distributionally robust optimization (DRO) is a powerful and flexible
framework for decision-making under uncertainty. It provides a principled approach to handle uncertainties
in the distribution of uncertain parameters or data, allowing decision-makers to account for the inherent
ambiguity in their optimization models.

There are two common approaches for constructing uncertainty sets of the underlying distribution in dis-
tributionally robust optimization based on either its moments information or statistical distance between
the true distribution and a given reference distribution. Initial uncertainty sets for the underlying distribution
are typically constructed based on precise moment information of the random parameter [83, 44,

, 1. Calafiore and El Ghaoui [35] presented a notable reformulation of a distributionally robust |nd|V|d-
ual linear chance-constrained problem, transforming it into a SOCP problem. This reformulation provided a
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more tractable and efficient approach to solving the problem, allowing decision-makers to effectively handle
uncertainty while optimizing their objectives. Zymler et al. [276] made significant contributions to the field by
introducing an approximation approach for distributionally robust joint chance constraints problems. Their
methodology involved approximating the problem as a tractable semidefinite programming (SDP) problem.
Notably, they demonstrated that the proposed SDP formulation serves as a reformulation when dealing with
individual chance constraints. This advancement provides a computationally efficient and practical solution
for handling joint chance constraints in a distributionally robust setting. Li et al. [139] presents a novel ap-
proach for incorporating ambiguous risk constraints into optimization problems. The authors introduce a
methodology for constructing ambiguity sets that capture the uncertainty in the distribution while consider-
ing the available moment and unimodality information. The paper investigates the formulation and proper-
ties of these ambiguous risk constraints and proposes solution methodologies, considering both linear and
nonlinear settings. The contributions of this paper lie in the development of a framework that combines
moment and unimodality information to handle ambiguous risk constraints.

Delage and Ye [57] considers an ambiguity set defined by the first and second order moments of the uncer-
tain parameters (unknown moments). The unknown first and second order moments are characterized by an
elliptical constraintand a linear matrix inequality. The authors highlight the practical implications of their work
by applying distributionally robust optimization to data-driven problems. Cheng et al. [46] studies ambiguity
set with known first moment and unknown second moment to address the distributionally robust optimiza-
tion of the stochastic knapsack problem. Yang and Xu [264] made a significant contribution by demonstrating
the tractability of distributionally robust chance-constrained optimization under certain conditions. Specifi-
cally, they showed that if the uncertainty set can be characterized by its mean and variance within a given set,
and the constraint function exhibits concavity with respect to the decision variables and quasi-convexity with
respect to the uncertain parameters, then the resulting optimization problem is tractable. Their results offer
practical implications, indicating that under specific assumptions on the uncertainty set and constraint func-
tion, efficient solution methodologies can be developed to solve the optimization problem. Xie and Ahmed
[259]proved the convexity of a distributionally robust joint chance constraints optimization problem under
certain conditions. Specifically, they showed that when the uncertainty set is specified by convex moment
constraints, the resulting joint chance constraints optimization problem is convex.

An alternative approach to constructing uncertainty sets in distributionally robust optimization is based
on statistical distance measures. Rather than relying solely on moment information, this approach consid-
ers the dissimilarity or distance between probability distributions. The choice of statistical distance measure
and the construction of appropriate ambiguity sets is important. One commonly employed approach for
data-driven uncertainty sets in distributionally robust optimization is based on phi-divergence and Wasser-
stein distance. phi-divergence measures, such as Kullback-Leibler divergence, Jensen-Shannon divergence, or
Hellinger distance, quantify the difference between two distributions based on their probability densities. On
the other hand, the Wasserstein distance, also known as the earth mover’s distance, measures the minimum
cost required to transform one distribution into another. Ben-Tal et al. [22] introduce and analyze a robust
optimization framework based on phi-divergence. Hu and Mehrotra [108] investigated distributionally robust
individual chance constrained optimization problems, where the uncertainty set of the probability distribu-
tion is defined using the Kullback-Leibler divergence, a specific case of phi-divergence. Jiang and Guan [117]
made a novel result for distributionally robust joint linear chance constrained optimization problems with
phi-divergence based uncertainty sets. They established that a distributionally robust joint linear chance con-
straint can be equivalently reformulated as a chance constraint with a perturbed risk level, which allows for a
more tractable formulation and solution of the distributionally robust problem. Recently, Esfahani and Kuhn
[158], Zhao and Guan [271] in their works showed that when the uncertainty set is defined using the Wasser-
stein distance, the distributionally robust expected utility optimization problem can be tractably solved under
certain conditions. Gao and Kleywegt [76] introduce a distributionally robust stochastic optimization frame-
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work that incorporates the Wasserstein distance and propose a deterministic reformulation by using duality
theory. This work influenced and shed light on subsequent research in the field on utilization of the Wasser-
stein distance, e.g, [113, 114, 115]. On the other hand, Hanasusanto et al. [88] analyzed the computational
complexity of the distributionally robust joint linear chance constrained program, considering the Wasser-
stein distance as the measure of distributional dissimilarity. By proving the problem’s strong NP-hardness,
they demonstrated that finding an optimal solution to this problem is computationally challenging.

An extension version of distributionally robust optimization (DRO) is DRO with decision-dependent un-
certainty. DRO with decision-dependent uncertainty provides a framework to address uncertainty that is
influenced by the decision variables in an optimization problem. By considering the relationship between
decisions and uncertainty, it enables decision-makers to make robust and informed choices that account for
the possible values of the uncertain parameters. Recently, [174] introduced this new class of DRO, where
the ambiguity sets are constructed based on the total variation distance and the Wasserstein metrics. Luo
and Mehrotra [151] studied this model in five types of ambiguity sets, with finite support and continuous sup-
port cases. Kettunen and Lejeune [123] derived decision-dependent stochastic programming formulations
for data-driven project portfolio selection. Basciftci et al. [19] considered a DRO framework under decision-
dependent stochastic demand in a facility location problem.

Recently, DRO has been extensively studied in various different frameworks. Duchi and Namkoong [64]
developed and analyzed a DRO framework that learns a model providing good performance against pertur-
bations to the data-generating distribution in statistics and machine learning. Bertsimas et al. developed
a framework for solving an adaptive distributionally robust linear optimization problem. Zhu et al. [275]
proposed a novel model that generelizes the common DRO models, based on kernel. They proposed a gen-
eralized duality theorem and stochastic optimization methods to solve this new class of DRO. Chen et al.
[45] considered a DRO with infinitely constrained ambiguity sets. They proved that the DRO might not lead
to tractable reformulation, then they proposed a method that solve a sequence of tractable distributionally
robust optimization subproblems—each of which considers a relaxed and finitely constrained ambiguity set.
Levy et al. [138] studied a distributionally robust optimization approaches for a one-stage stochastic mini-
mization problem.

DRO has found applications in various fields, e.g., electricity and electrified transportation planning [86,

], portfolio optimization [63], multi-item newsvendor problems [88], carbon emissions in transportation
[265], energy management [37, 1, machine scheduling [177], sustainable development [116, 16], renewable
energy [270], reverse scheduling [27, 1, autonomous vehicle [89], hub location problem [266], production
planning [87], hybrid vehicle routing problem [266].

2.4 . Chance-constrained games

The publication of Cournot's seminal book "Researches into the Mathematical Principles of the Theory
of Wealth" in 1838 [50] marked a turning point in the widespread adoption of equilibrium concepts under
market conditions. Building upon Cournot's work, Von Neumann'’s study of saddle point equilibrium for two-
player zero-sum games [244] further contributed to this line of research. In 1950, Nash demonstrated the
existence of a Nash equilibrium, a point at which no player has an incentive to unilaterally deviate, in finite
strategic games [160]. This result ignited extensive exploration of general strategic games in the literature
[18, 55, 69], despite the practical limitations of the theory of Nash equilibrium in deterministic setups. This
limitation arises when dealing with real-world applications involving random payoffs and strategy sets.

To handle random payoffs, the expectation function [200] has become a commonly used tool, particularly
for risk-neutral cases. However, for risk-averse games, alternative payoff criteria based on risk measures
such as Conditional Value-at-Risk (CVaR) [120, ] and chance constraint programming [214, 216] have been
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studied. Singh et al. [214] investigated finite strategic games with elliptically distributed payoff vectors and
established the existence of a Nash equilibrium. The equivalence between a Nash equilibrium of a chance-
constrained game (CCG), as studied in [214], and the global optimal solution of a specific mathematical pro-
gram is stated in [216].

While the aforementioned games consider random payoff functions and deterministic strategy sets, many
applications involve strategy sets with chance constraints. For example, risk constraints in portfolio optimiza-
tion [112] and resource constraints in stochastic shortest path problems [49] often employ strategy sets with
chance constraints. Consequently, games with chance-constrained strategy sets have been introduced in
the literature [178, 179, 180, 217, 219]. Singh and Lisser [217] investigated a two-player zero-sum game with
individual chance constraints, showing that the saddle point equilibrium problem is equivalent to a primal-
dual pair of second-order cone programs when the random constraint vectors follow elliptically symmetric
distributions. Singh et al. [219] extended the study to an n-player general-sum game with individual chance
constraints under elliptically symmetric distributions, demonstrating the equivalence between a Nash equi-
librium problem and the global optimization of a nonlinear optimization problem.

Motivated by these results, Peng et al. [179] established the existence of a Nash equilibrium for n-player
general-sum games with joint chance-constrained strategy sets. The random constraint vectors were as-
sumed to be independently normally distributed or follow a mixture of elliptical distributions [180]. When the
probability distributions are not fully known and belong to a given distributional uncertainty set, Peng et al.
[178] formulated the random constraints for each player as a distributionally robust joint chance constraint.
They considered several uncertainty sets, including density-based and two-moments-based sets, with one
of them having nonnegative support. The authors demonstrated the existence of a Nash equilibrium for a
distributionally robust chance-constrained game under each uncertainty set.

In the aforementioned works [178, , ], it was assumed that the random constraint vectors are in-
dependently distributed. However, in real-world applications, random variables often exhibit dependence.
To study the dependence structure of random variables, the concept of copulas was introduced by Sklar in
1959 [221] as a solution to a probability problem raised by Fréchet in the context of random metric spaces.
Copulas are functions used to separate the marginal distributions from the given dependent structure of a
multivariate distribution. Henrion and Strugarek [100] introduced the concept of log-exp concavity of copulas
to examine the convexity of dependent joint chance constraints in the case of elliptically distributed random
constraint vectors. Nguyen et al. [166] studied the convexity of elliptically distributed linearly dependent joint
chance constraints using copulas. Some eventual convexity results for joint chance constraints without using
copulas are provided in [235].

A novel method based on ordinary differential equation (ODA) reformulation and dynamical neural net-
work to find a Nash equilibrium of chance constrained games has been recently studied extensively in the
works of Dawen and Lisser [253, 252, 256, 255]. They applied the method to find a Nash equilibrium in various
framework, e.g., matrix games, two-players zero-sum games and general n— players games.

2.5. Chance-constrained Markov decision processes

The Markov decision process (MDP) serves as a powerful mathematical framework for determining an
optimal dynamic policy within a long-term environment characterized by uncertainty. MDP finds its impor-
tance in machine learning and artificial intelligence [51, 224, , ] with wide applications in various
fields, including natural language processing (NLP) and |nformat|on retrieval [77], healthcare system [223],
computer networking and systems [246], runtime monitors problem [118], robotics and autonomous sys-
tems [15, 128, 133, 146], blockchain security and cryptography [141], ecology and evolution [38], mobile health
(mHealth) and digital health [142], risk management and financial analytics [21] and more.
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In MDPs, the sourse of randomness arises from two main perspectives: reward and transition probabili-
ties. Reward randomness in MDPs refers to the presence of uncertainty or variability in the rewards received
by the agent as it interacts with the environment. To handle reward randomness, various techniques can
be employed, including exploration [17, ], risk management [131], reinforcement learning [247, , 1
probabilistic model [129].

Transition probabilities randomness in MDPs refers to the presence of uncertainty or variability in the
probabilities of transitioning between states based on the agent's chosen actions. It introduces a stochastic
element into the dynamics of the system, making the state transitions probabilistic rather than deterministic.
Transition probabilities randomness can arise from several factors, including noisy, partial observations or
unknown dynamics [127]. Various techniques can be employed to handle transition probabilities randomness,
including exploration methods [250, 74] or sensitivity analysis [119].

Most of the research efforts in addressing this uncertainty have primarily focused on robust Markov Deci-
sion Processes (MDPs), where the rewards or transition probabilities are assumed to belong to a pre-defined
uncertainty set [110, 172, , , ]. However, it has been observed that the robust MDP approach of-
ten leads to conservative policies [56]. To overcome this issue, Delage and Mannor introduced the concept
of a chance-constrained Markov decision process (CCMDP) [56], where the controller aims to achieve the
expected discounted reward with a certain confidence level.

In their work, Delage and Mannor considered the cases of random rewards and random transition prob-
abilities separately and demonstrated that a CCMDP can be reformulated as a second-order cone program-
ming (SOCP) problem when the running reward vector follows a multivariate normal distribution and the
transition probabilities are precisely known. However, when the transition probabilities follow a Dirichlet
distribution and the running rewards are precisely known, the CCMDP problem becomes computationally
intractable, necessitating the use of approximation methods to compute optimal policies.

Varagapriya et al. [239] extended the concept of CCMDP by considering a CMDP problem with a joint
chance constraint, where the running cost vectors are random vectors and the transition probabilities are
known. They proposed two SOCP-based approximation methods that provide upper and lower bounds to
the CMDP problem, specifically when the cost vectors follow multivariate elliptical distributions and the de-
pendence among the constraints is driven by a Gumbel-Hougaard copula (Varagapriya et al. [238]). Xia et al.
studied distributionally robust chance-constrained Markov decision processes with known transition proba-
bilities and random reward vector belongs to a Kullbach-Leibler distance ball, centered at an elliptical refer-
ence distribution.
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Chapter 3 :Convexity of Linear Joint Chance Constrained Optimization

In this chapter, we study the convexity of the linear joint chance constraints. Specifically, we consider the
scenario where the constraint row vectors follow an elliptical distribution. To model the dependence among
the rows, we adopt a family of Archimedean copulas, specifically the Gumbel-Hougaard copulas. Under cer-
tain mild assumptions, we establish the eventual convexity of the feasibility set.

3.1. Introduction

We consider the following linear optimization with joint chance constraints

min ¢z

subjectto P{Vz<D}>p
T € Q. (3.1

where @ is a closed convex subset of R" such that ¢ < ||z|| < d,, for any z € Q, || - || denotes the Euclidean
norm, ¢ and é, are strictly positive real numbers, D = [Dy,...,Dg]" € RX is a deterministic vector, V =
[v1,...,vk] " isa random matrix with size K x n, where vy, is a random vector in R”, forany £ = 1,2,..., K and
€ (0,1). We denote S(p) the feasibility set of (3.1). Let J = {1,2,...,K}.
The convexity of chance constraints as well as the analytical properties of the probability function play an
important role in convex optimization which are difficult issues and scarcely studied in the literature. This
problem was first introduced by Prékopa [189]. He considers the following chance constraints

P(h(z,£) > 0) > p, (3.2)

where z € R" is a decision vector, £ : Q@ — R™ is a random vector defined on a probability space (22, A, P),
h:R"xR™ — R*andp € [0, 1] is a given probability threshold. Theorem 10.2.1in [189] states that the feasibility
set of (3.2) is convex if Po ¢~ of ¢ is a log-concave probability measure on R™ and the components of k are
quasi-concave. Henrion and Strugarek [100] studied a particular form of (3.2) by taking h(x,&) = g(x) — &,
where g : R™ — R™. Hence, they consider the following form

P(¢ < g(x)) > p, (3.3)

where they suppose that the components of ¢ are independent. They prove that if the cumulative distribution
functions of the components of ¢ have r— decreasing densities and the components of g are r— concave, the
feasibility set of (3.3) is convex. Henrion and Strugarek [101] generalized this result to the case where the
components of ¢ are dependent. He uses the theory of copulas to model the dependence of the components
of ¢&. Marti [153] studied the differentiation of probability functions by an integral transformation method. The
derivatives of the probability function can be obtained by applying an integral transformation to its integral
representation. Some basic results on the differentiability of a probability function were studied by Kibzun
et al. [124]. They proposed new formulations of the gradient of probability functions in different forms, i.e.,
integral over the surface, volume, or sum of surface and volume integrals. Lobo et al. [147] studied some
applications of second-order cone program leading to a new approach for solving chance constraints. A
more developed direction was initialized by Henrion and Strugarek [100] which gave a full description of the
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structure (not only the convexity) of a one-row linear optimization with a chance constraint by introducing a
new notion of r-decreasing function. Henrion and Strugarek [100] studied the convexity in the case where the
constraints are independent. To deal with the dependent case, Henrion and Strugarek [101], Cheng et al. [48]
and Van Ackooij [229] used the theory of copulas to model the dependence of the constraints. They supposed
that the distribution of the constraint row vectors are elliptically distributed. Under high probability threshold
p, they prove the convexity of S(p). Hong et al. [106] proposed to solve joint chance-constrained programs
by sequential convex approximations. They proved that the solutions of the sequence of approximations
converge to a Karush-Kuhn-Tacker (KTT) point of the original problem. Farshbaf-Shaker et al. [73] proved
some properties of chance constraints in infinite dimensions. They supposed that the feasibility set belongs
to a Banach space. Under mild conditions, they proved regularity properties of the probability function with
an application to PDE constrained optimization. Wim van Ackooij and Malick [235] studied the convexity of
the feasibility set in a general framework by using the radial representation of elliptical distributions.

The convexity of chance constraints has been used to show the existence of a Nash equilibrium in chance-
constrained games [167, , ]. Nguyen et al. [167] assume that the random constraint vectors follow
elliptical distributions and show that there exists a Nash equilibrium of the chance-constrained game. Peng
et al. [179], [180] show a similar result by assuming that the random constraint vectors follow either Normal
distributions or mixture of elliptical distributions.

The convexity of chance constraints could significantly impact the fields of operations research, logistics,
supply chain management, financial risk management, and many others, by providing more effective ways
to handle uncertainties. Here are some of the advantages and potential real-world applications.

+ Efficient Solution Methods: If chance constraints are shown to be convex, more efficient solution
methods (such as interior-point methods) can be applied to solve the problem, saving time and com-
putational resources. This is particularly useful in large-scale stochastic optimization problems where
computational efficiency is critical.

* Quality of Solution: Convex problems have the property that any local optimum is also a global opti-
mum. Therefore, if the chance constraints are convex, we have the guarantee that if a local optimum is
also a global optimum. This leads to better decision making in practical situations.

* Robustness and Certainty: Convexity of chance constraints allows for a higher level of robustness and
certainty in the solutions obtained. Convex problems are less susceptible to changes in the data. This
is especially beneficial in real-world scenarios where data can often change.

* Modelling Flexibility: The convexity of chance constraints could increase the modeling flexibility, al-
lowing researchers and practitioners to model complex, real-world situations more accurately.

Chance constraints can be used in operations research to handle the uncertainty in decision-making pro-
cesses. Here are a few concrete examples

* In supply chain optimization problems, there can be uncertainty in demand, transportation costs, and
delivery times. Using chance constraints, a supply chain manager could design a distribution network
so that the probability of meeting customer demand is at least a certain percentage. This ensures that
the supply chain is robust enough to meet demand under varying conditions, which could reduce costs
associated with stockouts or overstocking.

+ In portfolio optimization, an investor may wish to ensure that the probability of the portfolio’s return
falling below a certain level is minimized. This can be formulated as a chance constraint optimization
problem, where the objective is to maximize the expected return subject to a chance constraint on the
portfolio’s return.
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* In renewable energy planning, power production from sources like wind and solar is uncertain. Chance
constraints can be used to ensure that a certain level of power demand is met with a high probability,
given the uncertainty in renewable energy production. For example, an energy planner might need to
decide how much backup capacity to maintain, given the uncertainty in wind power production.

* In hospital resource allocation, chance constraints can be used to make sure there's a high probability
of having enough resources (beds, doctors, nurses, medical supplies) to meet patient demand. For
example, a hospital could use chance constraints to decide how many operating rooms to keep open,
given the uncertainty in the number of surgeries that will need to be performed.

In this chapter, we study the convexity of the feasible set S(p) when the row vectors v; follow an elliptical
distribution and the dependence of the random constraint vectors is captured by a Gumbel-Hougaard copula.
We derive a new reformulation of the joint chance constraints and prove the convexity of S(p) under mild
conditions. Our main contributions can be summarized as follows:

+ Compared with [101] and [229], we consider the chance constraints with random matrix.
+ Compared with the convexity results in [100, 1, we consider the dependent rows with copula.

+ Chengetal. [48] consider the joint chance constraints defined in (3.1).They assume that the dependence
of the row vectors v;", i € J follows a copula independently of z (cf. Assumption 2.21 [48]). In our

7

research, we prove the convexity of S(p) without this strong assumption.

This chapter is organized as follows. In Section 3.2, we recall some basic concepts and preliminary results.
We propose a new reformulation of the joint chance constraints in Section 3.2.1. Next, we present some
theoretical results in Section 3.2.2 and Section 3.3 which are useful to prove the convexity of the feasibility
set S(p) in Section 3.4 and show some numerical results. We conclude the chapter in Section 3.5.

3.2. Basic concepts and preliminary results

In this section, we recall some useful definitions and propositions for our subsequent analysis.

Definition 3.1. An n-dimensional random vector X follows a spherical distribution if there exists a function U :
R — R such that the characteristic function ¢x (t) of X is given by

dx(t) =B X) = w(tTt).
The function VU is called a characteristic generator of the spherical distribution.

Definition 3.2. An n-dimensional random vector U follows an elliptical distribution with location parameter u,
positive definite scale matrix ¥ and characteristic generator ¥ (in short U ~ Ellip(u, 2, V), if we have the following
representation

U=p+ AX,

where X follows a spherical distribution with a characteristic generator ¥, A € R"*" such that AAT = ¥ and
w € R™ = implies that the both sides have the same distribution.
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The probability density function of all the distributions from elliptical family does not always exist. When-
ever it exists, it is of the form

ul6) = e (Ve-n=6-0).

where gqen is @ nonnegative function called radial density and ¢ > 0 is a normalization factor which makes fy
a probability density function.

Definition 3.3. AfunCtion f : Q — (O,—}-oo) Is r-concave on a set Q C RS fOf agiven re (—OO,+OO) I:ffor any
r,y € Qandy € [0,1],

Flyz+ 1 —y)y) > [yf(@)" + (1 —y)f(y)"], when r 0,

flyz + (1 —y)y) > f(x)?f(y)' Y, otherwise.

Definition 3.4. A real function f : R — R is r-decreasing for some real number r € R, if f is continuous on
(0,400) and there exists some strictly positive real number t* such that the function ¢ — t" f(t) is strictly decreasing
on (t*, +o0).

Table 3.1 presents some 1-dimensional spherical distributions with r-decreasing densities for some values
of » and their thresholds ¢t* [167].

Distribution Radial density T t
Normal e Tu >0 NG
1,2\~ (1+v)/2
v > 0,v integer vi=r
—Tal —
Laplace e . r>0 =
2(N—-1) —qu“®
Kotz type u € ) >2(1—-—N 2</m
yp q,s>0,N> 1 > ) 2gs
o\ N
(+5) o
Pearson type VIl m 0<r<2N \/;
m>0,N > 1

Table 3.1: Typical 1-dimensional spherical distributions with r-decreasing densities and their thresholds ¢*.

Definition 3.5. A function C : [0,1)% — [0,1] is a K-dimensional copula if C is a joint CDF of a K-dimensional
random vector, on the unit cube [0,1]%, whose marginals are uniformly distributed on [0, 1].

Proposition 3.1 (Sklar's Theorem). Let F : RE — [0,1] be a joint CDF of a K-dimensional random vector and
Fy, ..., Fg are the marginal CDFs. Then, there exists a K-dimensional copula C such that

F(z) =C (Fi(z1),...,Frk(zK)).
Moreover, if F; is continuous for any i =1,..., K, then C is uniquely given by
Clu) = F (F ), . P V().

Proposition 3.2 (Fréchet-Hoeffding upper bound). For any K—dimensional copula C and u = [uy, ..., uk]" €
[0,1]%, we have

C(’U,) < C]\/[(’u) = k:min Ug; -

FRREE)
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Definition 3.6. A K-dimensional copula C is strictly Archimedean if there exists a continuous and strictly decreas-
ing function ¢ : (0,1] — [0,+o0), such that ¢(1) = 0, lim;—04¥(t) = +oo, and for any K-dimensional vector
u=(uy,...,ux) € [0,1]%, we have

K
Clu) = (Z wmn) .
=1

The function v is called a generator of the copula C.

Table 3.2 presents a selection of some strictly Archimedean copulas with their generators [167].

Type of copula Parameter § | Generator vy(t)
Independent - -log(t)
Gumbel-Hougaard 0>1 [~ log(t)]°
Frank 6>0 —log ("';9;_‘11)
Clayton 0>0 (" -1)
Joe 0>1 —log[l — (1 —t)7]

Table 3.2: Selected types of strictly Archimedean copulas.

Definition 3.7. A function f : R — R is K-monotonic on an open interval I C R for some positive integer K > 2,
if the following three conditions hold.

1. f is differentiable up to the order (K — 2) on I,

2. The derivatives of f satisfy
k dk
—1)F— > <k<K-
(-DF 2 f(H) 20, 0<k<K -2,

foranytel,

3. The function t — (—1)K=24_2 £+ is nonincreasing and convex on I.

dtK—2

Proposition 3.3 (Theorem 2.2, [155]). Let ) : (0,1] — [0, +00) be a strictly decreasing function such that (1) = 0
and lim;_,o ¥ (t) = +oo. Then, ¢ is the generator of a K-dimensional strictly Archimedean copula if and only if the
inverse function 1)(~1) is K—monotonic on (0, +o0o) and continuous on [0, 4+co).

3.2.1. Reformulation of the probability function
Assume that the random vectors v; ~ Ellip(u;, 2;, ¥;), for any i € J. Let
_va—ulTx _Di—,u;»'—x

i(z) == ﬁ» gi(w) = ﬁ

Using the notations in (3.4), the chance constraint in (3.1) can be rewritten as follows

(3.4)

P{&(z) < gi(z), i € J} > p.
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It is well known that &;(z) follows 1—dimensional spherical distribution with characteristic generator ¥, [71].
Our aim is to reformulate this function in order to study the convexity of S(p). By Sklar's Theorem, we have
that, there exists a copula C, such that

CulF1(g1(2)), - .-, Fx(9x ()] = p, (3.5)
where C, is the K— dimensional copula of the K-dimensional random vector &(z) = [&1(z), ..., ¢k (2)] T and
F; is the cumulative distribution function of ¢;(z), fori = 1,..., K. In [48], the authors assume that C, does

not depend on z, i.e., there exists a copula C such that C, = C, for any z € Q (cf. Assumption 2.21 [48]). We
study the general case, where C, is a copula, which depends on z. Assume that for any z € Q, C, is a strictly
Archimedean copula with generator ¢,.. Then, the constraint (3.5) can be rewritten as follows

K
W <Z %(Fi(gz-(x)))) > p. (3-6)
=1
Using the decreasing monotonicity of ¢,, (3.6) is equivalent to
K
D vu(Filgi(2))) < ¢u(p) (3.7)
i=1
By adding auxiliary variables {y; > 0, i € J}, we reformulate (3.7) into individual chance constraints [49, 48].

Since v, is positive, (3.7) is equivalent to the following constraints

(1) o (Fi(g:(2))) < yita(p), i€ J,

(i) y; >0, i€ (3.8)
(iff) 32,2, v = 1.
This means that if z* € S(p) then there exists y* = [y,...,y%] " € R¥ such that (z*, y*) satisfies constraints

(3.8). On the other hand, if (z*,y*) is a feasible solution for constraints (3.8) and z* € @Q, then z* € S(p).
Moreover, for z* € S(p), we can choose y* in order to satisfy constraints (3.8) as

yo— e (Filgi(a)
Soims e (Fy(g5(24))
Using the decreasing monotonicity of the generator «,, constraints (3.8) can be written as follows

(i) Fi(gi(z)) > ¥5 P (yba(p)), i€ J,

(iif) i 9 = 1.

In the rest of the chapter, we assume that the following assumption holds.

, Yield (3.9)

Assumption 3.1. C, is a Gumbel-Hougaard copula, for any x € Q, i.e., the generator 1, is given by

Palt) = (—log )7, (3.1)
forany (z,t) € Q x (0,1], where x(z) : Q — (0,1] is a strictly positive function.

Remark 3.1. Our aim is to show the concavity of F;(g;) w.r.t « and the joint convexity ofzbf{l) (yive (p)) w.r.t (y;, ).
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3.2.2. Concavity of F;(g:(-))

In this section, we will show our main result in Lemma 3.2 that under Assumption 3.2, F;(g;(-)) is a concave
function on S(p). Define an index set I* C J such that u; # 0 for any i € I* and u; = 0 otherwise. Define a
set of real numbers {r; |i € J} such that

r; > 1, ifi e I#,
ri =1, ifi ¢ I
Assumption 3.2. (i) The cumulative distribution function F; has (r; +1)— decreasing densities with the thresholds

tf, foranyi e J.
(ii) p > p*, where

% 1 r; +1
p :max{2a§%5}§Fi( — meluzl> max F;[t; (m+1)]}, (3.12)

where X\; min iS the smallest eigenvalue of the positive definite matrix %, for any i € J.

Lemma 3.1. /f Assumption 3.2 holds, then

Conv(S(p)) C [ &,

Jjeiw

where

o = {oeQ| Dy~ o> B il
and Conv(S(p)) is the convex hull of S(p). Moreover, foranyi=1,2,...,K, g; > 0 and g; is (—r;)— concave on any
convex subset Q of ;<.
Proof. Leti e I and zy € S(p). It follows from the constraint (3.5) that
Cuo [F1(91(20))s - - - Fr (9K (z0))] = p. (3.13)
By applying Proposition 3.2, we get F;(g;(x0)) > p, Vi € J, which in turn implies by Assumption 3.2 that

. i+ 1
Fi(gi(z0)) >p* > F; ( —

Zm.nnuzn) Vied

Since F;(-) is an increasing function, we have

ri+1
gi(x0)> - 1 zmmH/j"LH

which implies that

D Ml o > 1 zmmHMZH l‘gzi.ﬁo.

Therefore, S(p) C (¢, . For each j € I, &/ is a convex set which implies that Conv(S(p)) C N, /. We
prove the second part of Lemma 3.1 by considering the following two cases:
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Case 1: Let i ¢ I#, then y; = 0. By Assumption 3.2, we have p > 1. Let zy € S(p). By applying Proposition 3.2
on (3.13), we have

Fi(gi(x0) > p > % (3.14)

Since, F; is the CDF of a 1-dimensional real-valued random variable which is symmetric at 0, F;(0) = 3. From
(3.14) we get g;(zo) > 0 which in turn implies that D; — (u;) "z > 0. Since u; = 0, we get D; > 0. In conclusion,
the proof follows directly from Lemma 3 of [48].

Case 2: Let i ¢ I*. It follows from Lemma 2 of [48] that the function

)Tz "
ho= <D(—)<u>>

is a convex function on N, . Therefore, for any y,z € Q" C ;. @’ and X € [0,1], we have

jern
fily+ (1= 2)z] < AMfi(y) + (1= A) fi(2). (3.15)
Note that g;(z) = (fi(x)):T1 on Q. From (3.15), we can write

—1

gl + (1 =Nz > (i)™ + (1= N(gi(2)) ) 7 .
Itis clear that g; > 0 on (;; /. Hence, g; is (—r;)-concave on Q". O
Using Lemma 3.1, we prove the following lemma.
Lemma 3.2. If Assumption 3.2 holds, then F;(g;(-)) is concave on Conv(S(p)), for anyi € J.

Proof. Using Lemma 3.1, g; is (—r;)— concave and g; > 0 on Conv(S(p)), forany: € J. Hence, for any a € [0, 1]
and z1,z2 € S(p), we have

gilazy + (1 — a)as) > [ag; " (x1) + (1 — a)g; " (x2)] 7. (3.16)
As x; € S(p) and p > p*, the constraint (3.5) implies that
Ca, [F1(91(21)), - - -, Fr (9K (21))] > p,
which in turn implies from Proposition 3.2 and Assumption 3.2 that
Fi(gi(z1)) > p* > Fi[t;(ri + 1)], V i € J.
Since, F;(-) is monotonically increasing, we get
gi(x1) > t7(r; +1) >0,

which implies that 0 < g;(z1)™" < (¢} (r; + 1))~ ", for any 7 € J. Similarly, we obtain the same inequality for
z9. By taking F; on both sides of (3.16),

Fi(gi(azy + (1= a)z2)) > Fi(lag; ™ (z1) + (1 = a)g; " (22)] 7). (317)
Since F;(-) has (r; + 1)—decreasing density, from Lemma 3.1 of [100], the function ¢ — F; (t_%> is concave on
(0, (t¥)~"). Therefore, we can write
Fi(lagy ™ (21) + (1= a)g; ™ (22)]7%) > aFy(gi(w1)) + (1 = a) Fi(gi (2)). (3.18)
From (3.17) and (3.18), we deduce that

(Fi(gi(azy + (1 — a)x2)) = a((Fi(gi(21))) + (1 — a) (Fi(gi(x2))) -
Therefore, F;(gi(-)) is concave on Conv(S(p)). O
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3.3 . Convexity of 1\ (y;4. (p))

Let U(z,y;) = é_l)(yiwx(p)). The main result of this section is Lemma 3.7 which shows that under As-
sumption 3.3, U is jointly convex. In this section, we assume that the feasibility set S(p) is non empty. Let ¢
be a real number such that 0 < ¢ < 1. Define an index set I” ¢ J such that D; > 0 foranyi € I” and D; <0
otherwise. For any i € J, let

D; Il 1

< < (\/ )\i,r;in 5I vV )\i,min ql ’ if ic ID,

o
= B [
i i 1
log | F; + -

( i), Ve

log p

where \; may is the largest eigenvalue of the positive definite matrix X;, for any ¢ € J. Let j := mini<;<x (G})
and hy:=1— (K —1) hy.

Lemma 3.3. 0 < h < hy < 1. Moreover, given x € S(p) and y; refers to (3.9). Hence, iy < y; < hy, forany i € J.
Proof. Letz € S(p) and

V. [Fi(gi(7))]
il e Fy(g5(x)]

where 1, (.) refers to (3.11). Itis easy to see that ) |, y; = 1 and y; > 0, for any i € J. We prove that y; > G;,
for any i € J. Consider two cases as follows:
Case 1: i € IP. It follows from the Cauchy-Schwarz inequality that

yi = , Viel, (319)

| = i x| < lpill [fe]], Vi€ J. (3-20)
By the property of maximal/minimal eigenvalue, we have

\ )\i,maxHxH >y CUTZi«T > \ /\i,mionH- (3-21)

Since = € S(p), it follows from the constraint (3.7) that

K
0< > walFj(g;(2))] < tal(p). (3.22)
j=1

From (3.4), (3.20) - (3.21) and the fact that ||z|| > 4, we get

D, —ui D, i
o) < | —miz] L+ leall

< + < .
VTS \/J;TZiac VAumind v/ Aimin

As F; is increasing and ¢, is decreasing, we get

D; [ 12]|
Yo (Fi(gi())) > Ya <F (W& + m)) . (3.23)

33



From (3.19), (3.22) and (3.23), we have

el i) & (n (s 22)) )

i 2= = (3.24)
Y Vap) log p
Since 0 < y; < 1, the following condition holds
log (F( D il ))
O < \/)\z,mln5l \/Az,mm < 1’
logp -
which in turn implies by (ii) of Assumption 3.3 that
. D; [eeall 1 . D; [ 1
e <F (\/Avxm‘n‘S i \/*f»min)) " > 8 <F (\/Atvmm‘S i Wmin)) ey (3.25)
log p log p

Then, if follows from (3.24) and (3.25) that y; > G;.
Case 2:i € J\IP. In this case, D; < 0. Then, by (3.20), (3.21) and = < §,, we have

Di i
ol

gi(z) < .
RV4 )\i,max(Su vV >\i,min
It follows the similar proof procedure as Case 1thaty; > G;.
Therefore, combining the results in Case 1and Case 2, we have y; > h > 0, foranyi € J. Since, .., yi = 1,
we get

yi=1l— > y<1—(K—1)h=hy<L (3.26)
JEJ. G0

Hence, 0 < iy <y; < hy < 1,foranyi e J. O

It follows from Lemma 3.3 that h, hy belong to (0, 1). Therefore, we can define

©1 = ¢ (log hy) (logp) M.

log hy)?
05 = % + max ([1 +loghy (1 + (logp) M)]?, [1 +1logh ¢ (1 +logp)]?).
|
wi= 22 (3-27)
1

Remark 3.2. Since ¢} > 0, then w is well-defined. Moreover, w does not depend on (x, y;).

In order to show the convexity of U, we first show that the Hessian matrix of U is positive semidefinite.
The following lemma is a reformulation of the positive semidefiniteness of the Hessian matrix of U.

Lemma 3.4. The positive semidefiniteness of the Hessian matrix of U on the convex set Q x [ly, hy] is equivalent
to the positive semidefiniteness of the following n—dimensional symmetric matrix

82

9 ] !
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for any (@, 91) € @ x [ln, h], where
92U

2%U 22U
8:0 Ox10xTo e 0x10xy,
2°U 22U 22U
Ox2011 2 ttt Oxo0my 9 9 T
H,U = . . . ) Vﬁ:(awl""’am") .
2°U 2°U 2°U
O0x,0x1 Oxn,0xy " ox2

Proof. The Hessian matrix of U at a point (z,y;) is an (n + 1)-dimensional symmetric matrix which has the

form {é g] where A = H,U(z,y;), B = vm%U(z,yi), C=BT",D= %U(x, y;). The main idea of the proof

is based on the Schurs complement. It suffices to show that 2U(ac y;) > 0, for any (z,y;) € @ X [y, hy]. In
fact, for U(z, y;) = 5V (yitbs (p)), we have

2

U)W a0

Since ¢, (t) = (—log t) , we deduce that

¢;-1><t>=e—t““”% WD) (1) = e () [m(@)t ) — ) + 1)

Using the above formulations, ¢, (p) > 0 and ( é_l))”(t) > 0, for any ¢ > 0. Hence, %}U(m,yi) > 0, for any
(z, i) € Q x [l hy]. O
Assumption 3.3. We assume that

(p=et

(i0<q<k(z)<1, foranyz € Q.

(iiil) Hy(2) —w e k(2)(Vak(z)) T is a positive semidefinite matrix for any = € Q, where H,.(z) is the Hessian matrix
of k(x) ; v.k(x) Is the gradient vector of k().

Lemma 3.5. Let

Wl(zvyi) = H(I) (logyl) [H(I) — 14+ ( )(1ng) H(.L):| '
If Assumption 3.3 holds, then o1 (xz,y;) > ¢7 > 0, for any (z,y;) € Q x [, hy], where ©7 refers to (3.27).
PrOOf. Since 0 < Y < h,u <1, then

(—logyi) = (—loghy) > 0. (3:29)
As 0 < hy <y; < 1land0 < k(z) < 1, we deduce that 1 > y”(””) >qy; > h > 0. Notethat1 > —logp > 0
(because e~ < p < 1 by (i) of Assumption 3.3). Then, 1 > —(logp) y; m@) > —(logp) by > 0. Since 0 < k(z) <

1 and 1+ (logp) ™ >0, we have

1 - k(z) — k(x) log(p).y;™ =1 — k(z)(1 + log p.y[™)

> 1— (1+logpy ™) = —(logp) i > —(logp) b >0, (3.30)

for any (z,y;) € Q x [, hy]. Moreover, by (ii) of Assumption 3.3, we have
k() >¢ >0, Ve €Q. (3.31)
Therefore, it suffices to multiply term by term the inequalities (3.29)-(3.31) to complete the proof. O
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Lemma 3.6. Let wa(z, i) = () log(ys)*(1 + (logp) y™)) [1 = w(x) — w(x) (logp) y""

r(x)

2
+ (1 + k(z) (logy;) + (logp) (logy:) y; H(l‘)) . If Assumption 3.3 holds, 0 < pa(x,y;) < @3, forany (z,y;) €
Q X [h, hy), where 3 refers to (3.27).

Proof. Since p > e~1, then 0 > logp > —1. Using 0 < ") < 1, we have 0 < 1+ (logp) 5 < 1. Moreover, as
0 < k(z) < 1,then0 < k(z) (1+(logp) ¥ ™) < 1. Let s := x(z) (1+(log p) y*)). By applying the Cauchy-Schwarz
inequality, we deduce that s(1 — s) <  (the equality holds if and only if s = 1). Hence,

()1 + (logp) 1) [1 = ) (1 + (log) 47)] < 7,

which in turn implies that

0 < (1+ (logp) 5 ™) [1 = x(a) (1 + (logp) y7™)] < - Hl(x) < 4%' (3.32)
Since 1 > y; > h; > 0, we have 0 > logy; > log hy. Then,
0 < (logy;)* < (log ). (3-33)
Moreover,
0 < r(z) <1. (3-34)
By multiplying term by term the inequalities (3.32)- (3.34), we get
0 < ra) log(y)? (1 + (logp) y™) [1 = () = () (logp) 5| < “fﬁ') (335)
for any (z,y;) € Q x [, hy]. By Assumption 3.3, we have
o< qg<k(x)<l1, (o< —loghy < —logy; < —logh,
(iii) 0 < 1+logp < 1+ (logp) y* <1+ (logp) hi. (3.36)

Note that the condition (iii)(3.36) holds since logp < 0 and 1 > yf(‘”) > hy. By multiplying (i) — (iii) of (3.36) term
by term, we get

~loghy (1 + (logp) ly) > —(logy:) k(z)(L + (logp) yi' ™) > —(log hu) ¢ (1 + logp),
which is equivalent to
1+ (log hn) (14 (logp) hy) < 1+ (logy;) w(x)(1 + (logp) y™)) < 1+ (log hu) e(1 + logp),

which in turn implies that

0 < [1+ (logys) £(x)(1 + (logp) 5]
< max ((1+ (log ) (1+ (logp) h))?, (1 + (log hu) ¢ (1 +1logp))?) - (3-37)

Adding (3.35) and (3.37) together, completes the proof. O
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Lemma 3.7. If Assumption 3.3 holds, then U is jointly convex on Q x [hy, hy).

Proof. Using Lemma 3.4, it suffices to show the positive semidefiniteness of N(z,y;) in (3.28) for any (z,y;) €
Q x [h1, hy). Since ¥, (t) = (—logt) =, we have p{ V(1) = e=t"“". Then, we can write

—logp) 5(=)

7{’%( 1 }K(l) ()
Uz, yi) =e =ph . (3.38)
We calculate explicitly the partial derivatives of U as follows

L0 w(2) () —
(i) 5,-U @) = Qogp) p " () 57"

2 K(x
(ii (%QU (,95) = r(x) (log p) y= 72 pi"" () — 1 + w() (log(p) v ™).

)

(iil) Vo Uz, 9:) = (logp) p (logi) v v ().
(iv) vx% (2 10) =

(3

w(x)

n(r) 1

(logp) y7 ™" p ' [1 + k() (logys) + (log p) (log i) ¥ w(@)] T k().

V) HoU(w,y,) =
Py (log p) (log i) [He(z) + (log y; + (log i) (logp) 45 ™) Va (x) (Vari(z)) T].

Hence, we obtain the following formulations

2
Kk(x "”I)
() 57U ) % HoU(w ) = la)log Py, 7% (log ) 1227

[%(m) — 1+ w(x) (logp) 5f | [Ha(@) + Vor(@)(Far(@) T (log i + (log y:) (logp) )]
T
(ii) <Vmain(x,yi)) (vmaayiU(m,yi)> = (logp)? ¥ 2 r(a)— 2p2 @
(1+ () (o5 ) + (logp) (logye) 17 s(2))” 7 w(w)(Ten(a)) (3.39)

Note that (log p)? yf”(ﬁ")_sz vi”isa positive common factor of o 557 U(z,y;)x H,U(x,y;) and (Vza%U(% yi)) (Vma%U(% yi)\
Then, it follows from (3.28) and (3.39) that the positive semldeﬂnlteness of N(x,y;) is equivalent to the positive ’
semidefiniteness of the following matrix

M(z,y;) =
A(w) = 1+ k(z) (10gp) 4| [He(@) + Turl@)(7r(2)) T 0gy: + (log y:) (logp) )]

2
x k(z) (log ys) — (1+ w(x) (log i) + (logp) (l0g y:) y ' k(2))” Vi w(@) (Vrla)) T
Note that M (z,y;) can be rewritten as follows

M(z,y;) = @1(x,y:) He(x) — 02(2,5:) Vo r(2)(Vak(z))T,
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where ¢;(z,y;) and ¢a(z, y;) refer to Lemmas 3.5 and 3.6. By (iii) of Assumption 3.3, we have H,(z) — w v,
k(2)(vVer(z)) T is a positive semidefinite matrix for any z € @, where w refers to (3.27)). Since ¢%, 5 > 0, itis
clear thatw > 0. Moreover, v.x(z)(v7.#(z)) " is a positive semidefinite matrix. Hence, H, () is also a positive
semidefinite matrix. By Lemmas 3.5 and 3.6, we have that ¢ (x,y;) > ¢ > 0and pa(x,y;) < ¢35, for any
(z,yi) € Q x [hy, hy]. Then,

M (z,yi) = p1Hu(x) = 05 Vo 6(2)(Vaki(2)) T = 0,

which completes the proof. O

3.4 . Convexity of the feasibility set S(p)

We showed that if Assumption 3.2 holds, then F;(g¢;(-)) is concave on Conv(S(p)), for any i € J. Moreover,
given arbitrarily a real number ¢ such that 0 < ¢ < 1, if Assumption 3.3 holds, then U is jointly convex on
Q x [hy, hy]. We will apply these results to prove the convexity of the feasibility set S(p).

Theorem 3.1. /f Assumptions 3.2 and 3.3 hold and the feasibility set S(p) is non empty, then S(p) is a convex set.

Proof. Foranyzy,zs € S(p)and 3 € [0, 1], we show that z* := Bx1+(1—8)z2 € S(p). Infact, lety' = (yi,...,yk)
and y? := (vi,...,y%), where y; and y2, i € J, are the corresponding values of y; defined in (3.9) w.r.t z; and
x9, respectively. It follows from Lemma 3.3 that i < y}, y? < hy, for any i € J. Moreover, by Lemmas 3.2 and
3.7, we have F;(g;(+)) is concave on Conv(S(p)) and U(-,-) is jointly convex on @ x [k, hy]. Then, for any i € J,
we have

Fi(gi(z")) > BFi(gi(x1)) + (1 — B)Fi(gi(x2))
> B95Y (9iYer (0) + (1= B) 05V (y7der (p) = BU (21, 97) + (1 = B)U (22, 47)
> U(a", By} + (1= B)yd) = 0= ((By! + (1= B)yd)ie- (0))
which in turn implies that (z*, By + (1 — 8)y?) satisfies (3.10). Then, z* € S(p). O

We are interested in finding an example which fits all the Assumptions in Theorem 3.1. In the following,
we will study a specific case which fits Assumption 3.3 and Assumption 3.2.

3.4.1. An example of the function «
In this section, we give an example of x which satisfies all the conditions in Assumption 3.3.

Remark 3.3. /t is not necessary to verify the condition (i) of Assumption 3.3 since e~! ~ 0.37 and we consider high
value of the probability threshold p.

Lemma 3.8. Let d be a real number such that d < ¢ and q : Q — R be a real-valued function which satisfies the
two following conditions.

1. q is twice continuously differentiable and convex on Q.
2. log(c) — d) < q(x) <log [min (1,1 —d)], for any = € Q, where w refers to (3.27).

Then, k(z) := e4®) + d is a function which satisfies Assumption 3.3.
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Proof. Firstwe verify the condition (ii) of Assumption 3.3, which can be implied by the assumption log(¢—d) <
q(z) < log(1—d). Since g(z) < log(1), we have e?® < 1 foranyz € Q. Let k*(z) := ). We have the following
formulation

K* (@) Ho k™ () — Vak* (2)(Vak™(2)) T

H, log(x"(x)) = ek : (3.40)

where H,log(x*(-)) is the Hessian matrix of the function log(x*(-)). As ¢ is a convex function on @ and
log(k*(.)) = q(.), we deduce that H,(log(x*(z))) is a positive semidefinite matrix for any z € Q. It follows
from (3.40) that x*(z)H,k*(x) — Var*(z)(VLk*(x)) " is a positive semidefinite matrix. Since 0 < x*(x) and
Ve (2)(Vek*(z)) T is positive semidefinite, we deduce that H,x*(x) is positive semidefinite, for any = € Q.
Moreover, x*(z) < 1, which implies that

L (0) — G @) ar (@)

is a positive semidefinite matrix. On the other hand, since x(z) = x*(z) + d, then Hyx*(z) = H,x(z) and

Vzr(x) = vak(z),V 2 € Q. Therefore, the condition (iii) of Assumption 3.3 holds. O

Next, we take an example function ¢ which meets the two conditions in Lemma 3.8.

Lemma 3.9. Let ¢(z) = W + zwhere L > 0,z € R are real numbers such that

1 1 . 1
log(q —d) < Z5|2 +2z2< 553 + 2z <log [mln (w’ 1— d)} , (3.41)

where 6, 0| are defined in (3.1). Then, q(x) satisfies the two conditions in Lemma 3.8.

2 2
Proof. The first condition is trivial. Since %‘ + z = mingeq ¢(x) and % + z = maxgeq ¢(x), it is clear that the
second condition holds. O

x| |2

By Lemma 3.8 and Lemma 3.9, the function x(z) = e~ =~ ** + d which satisfies (3.41) fits all conditions in
Assumption 3.3. It suffices to choose appropriate parameters L, z and d. In fact, (3.41) is a mild condition. Let
d be an arbitrary real number in (¢ — %7 ¢). As d < ¢ and ¢ < 1, We have that log(¢; — d) is well defined and

st 0 < o i (1)

62-o8f
log[min(%,l—d)]—IOg(Cl_d) ’

(1 1 1
log [mm <w’ 1-— d)} —log(¢ —d) > (Léa + z) - <L5|2 + z) > 0.

Let z be an arbitrary real number in [log(q —d) — % log [min (2,1 —d)] — %] . We deduce from this condition
that

Let L be an arbitrary real number in [ —l—oo). We deduce from this condition that

log(c) — d) < 162 + .
%55 + z <log [min (%, 1-— d)] .

Therefore, we can verify that this set of ¢(x), d, L, z satisfy (3.41).
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3.4.2 . Numerical experiments
To verify the r—decreasing property of a differentiable density f(¢), we check whether the derivative of
t" f(t) is strictly negative for ¢ > t*(r) > 0, which is equivalent to r.f(¢t) + ¢t.f'(¢t) < 0, foranyt > t*(r). The
thresholds for some typical 1—-dimensional spherical distributions are given in Table 3.1.
In this section, we study values of p* as defined in (3.12). All the numerical results are performed using
Python 3.8.8 on a PCwith Intel i5 CPU (2.4 GHz), RAM 16G, 512G SSD. Assume that for anyj € J, F; hasthe same

density. For the sake of illustration, we set /\j 2 small enough such that F; (““)\ 2 ||u7;|\> < Flti(ry + 1)]

r;—17',min
and take max (4, F;[t; (r; + 1)]) as an upper bound of p*. We show in Table 3.3 the bounds of p* for some
typical elliptical dlstrlbutlons We consider the case with n = 2 and K = 2, i.e. we have have 2 constraints

*

Distribution P

Normal 0.92

Student's ¢ with 2— degrees of freedom | 0.84
Student's t with 3— degrees of freedom | 0.87
Student’s ¢ with 4— degrees of freedom | 0.88
Laplace 0.88

Table 3.3: Selected 1-dimensional elliptical distributions with r-decreasing densities and the value of the
threshold p* respectively.

and 2-dimensional decision variable. The parameters are taken as follows: p = 0.95,¢ = 0.9,D, = 1,Dy =
0.85, 11 = (1,20) ", e = (7,2) 7,6 = 0.2,0, = 1.5,%; = 3 x Iy, and Xy = 30 x I, where I, is the 2 x 2-identity
matrix. hy and hy are calculated as in Section 3.3. ¢7,¢5 and w are calculated by (3.27). Letd = ¢ — 55,

_ 6507 — in(L.1-d)— % 1ti i i
= log(mm(%71_d)‘)_10g(c‘_d) and z = log (min (£,1—d)) — 3. Itis easy to see that this set of parameters fits

the conditions in Lemma 3.8 and Lemma 3.9.
In our simulations, we consider the probability function

fproba w( 2 <Z¢x 7 )a

where v, is defined in (3.11), F} is the cumulative distribution function of a 1— dimensional standard Student’s
t distribution with 3—degrees of freedom and F; is the cumulative distribution function of a 1— dimensional
standard Student’s ¢ distribution with 4—degrees of freedom, = = (z;,22) " where z;, 2, € [~1,1]. Figure 3.1
shows the surface of function z = fyropa(2) on the domain [—1,1] and Figure 3.2 shows its contour lines with
four different levels 0.6,0.7,0.8 and 0.9, respectively.

3.5 . Conclusion

In this chapter, we studied the convexity of joint chance constraints in the case of elliptical distributions.
Further, we modeled the dependence of random variables in different rows by a Gumbel-Hougaard copula.
We come up with new convexity results of the feasibility set. We simulated our theoretical result by showing
the surface plot of the probability function with its contour lines. It is very clear that the feasibility set is
eventually a convex set under high value of the probability level. Further research can be dedicated to other
families of copulas.

This chapter corresponds to a paper submitted to Results in Control and Optimization.
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Figure 3.1: Surface plot of the probability function foropa 0N [—1,1]%.
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Figure 3.2: Contour line of the probability function furoba With 4 levels (0.6,0.7,0.8,0.9).
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Chapter 4 :General n-players Chance-Constrained Games

In this chapter, we study an n-player game with random payoffs and continuous strategy sets. The payoff
function of each player is defined by its expected value and the strategy set of each player is defined by a
joint chance constraint. The random constraint vectors defining the joint chance constraint are dependent
and follow either elliptically symmetric distributions or Normal mean-variance mixture distributions. The
Archimedean copula is used to capture the dependence among random constraint vectors. We propose a
reformulation of the joint chance constraint of each player. Under mild assumptions on the players’ payoff
functions and 1-dimensional spherical distribution functions, we show that there exists a Nash equilibrium
of the game.

This chapter builds upon the foundation established in the previous chapter, which focused on exploring
the convexity properties of linear joint chance constraints. In the present chapter, we delve into the concept
of the feasibility set's convexity and its significance in proving the existence of a Nash equilibrium. By estab-
lishing the convexity of the feasibility set, we establish a crucial link between the theoretical insights gained
from studying linear joint chance constraints and the practical implications related to the existence of a Nash
equilibrium.

4.1. Introduction

The publication of the seminal book Researches into the Mathematical Principles of the Theory of Wealth
by Cournot in 1838 was the trigger for the widespread use of the equilibrium under market conditions [50].
Later, the saddle point equilibrium for a two player zero-sum game of Von Neumann [244] follows on this
work. In 1950, Nash [160] showed that for a finite strategic game there exists an equilibrium point, known as a
Nash equilibrium, from which there is no incentive for any player to deviate unilaterally. Despite its practical
limitation, the general strategic games are extensively studied in the literature [18, 55, 69]. The theory of Nash
equilibrium in deterministic setup faces challenges especially when it comes to deal with real applications with
random payoffs and strategy sets.

The most commonly used tool to deal with random payoffs is the expectation function [200] which is
more appropriate for risk neutral cases. The risk averse games are studied by considering an alternative
payoff criterion based on risk measure CVaR [120, ] and chance constraint programming [214, 216]. In
[214], the authors studied a finite strategic game where the payoff vector of each player is elliptically dis-
tributed, and showed the existence of a Nash equilibrium. The equivalence between a Nash equilibrium of a
chance-constrained game (CCG), considered in [214], and the global optimal solution of a certain mathemati-
cal program is stated in [216].

In the above referred games, the players’ payoff functions are random while the strategy sets are de-
terministic. However, the strategy sets containing chance constraints are often considered in various appli-
cations, e.g., risk constraints in portfolio optimization problem [112] and resource constraints in stochastic
shortest path problem [49]. Recently, the games with chance constraint based strategy sets are introduced
in the literature [178, , , 217, 219]. Singh and Lisser [217] considered a 2-player zero-sum game with indi-
vidual chance constraints and showed that a saddle point equilibrium problem is equivalent to a primal-dual
pair of second order cone programs when the random constraint vectors follow elliptically symmetric distri-
bution. Singh et al. [219] considered an n-player general-sum game with individual chance constraints under
elliptically symmetric distributions and showed that a Nash equilibrium problem is equivalent to the global
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optimization of a nonlinear optimization problem.

In the wake of these results, Peng et al. [179] showed the existence of Nash equilibrium for the n-player
general-sum games where the strategy profile set of each player is defined by a joint chance constraint, and
the random constraint vectors are either independently normally distributed or follow a mixture of ellipti-
cal distributions [180]. When the probability distributions are not completely known and belong to a given
distributional uncertainty set, Peng et al. [178] formulated the random constraints of each player as a dis-
tributional robust joint chance constraint. They consider several uncertainty sets, namely a density based
uncertainty set and four two-moment based uncertainty sets where one of them has a nonnegative support.
They show that there exists a Nash equilibrium of a distributionally robust chance constrained game for each
uncertainty set.

In [178, 179, 180], the authors assume that the random constraint vectors are independently distributed.
However, the random variables are usually dependent in real world applications. In order to study the de-
pendence structure of random variable, the concept of copula was introduced by Abe Sklar in 1959 [221], as a
solution to a probability problem stated by Maurice Fréchet in the context of random metric spaces. Copulas
are functions used to distinguish the marginal distributions from a given dependent structure based mul-
tivariate distribution. Henrion and Strukgarek [100] introduced the notion of log-exp concavity of copula to
investigate the convexity of elliptically distributed dependent joint chance constraints. In [166], the authors
studied the convexity of elliptically distributed linear dependent joint chance constraint using copulas. Some
eventual convexity results for joint chance constraint without using copulas are given in [235]. We refer the
reader to [163] for a detailed introduction to the theory of copulas.

In this chapter, we extend the results of [179, 180] to the general case where the payoff function is random
and the strategy profile set of each player is defined by elliptically distributed dependent joint chance con-
straints. We derive a new reformulation of joint chance constraint with dependent random constraint vectors
and show that there exists a Nash equilibrium of the game under mild conditions on the payoff functions.

The rest of this chapter is organized as follows. Section 4.2 contains the definition of an n-player CCG. In
Section 4.3, we prove the existence of a Nash equilibrium of the CCG under elliptical distributions. Section
4.4 explains why we study another class of distribution, which is the class of normal mean-variance mixture
distribution. We prove the existence of a Nash equilibrium in this framework in Section 4.5. Algorithm and
numerical results are given in Section 4.6. We conclude this chapter by Section 4.7.

In the first part, we study the case, where the random constraint vectors defining the joint chance con-
straint are dependent and follows elliptically symmetric distributions.

4.2 . Chance-Constrained Game

We consider an n-player CCG, where H = {1,2,..,n} is the set of players. Let S* C R% be the strategy set
of player i which is a non-empty, convex and compact set. The product set S = []""_, S* denotes the set of
strategy profiles of all the players. For eachi € H, S~ = H;;l i S7 denotes the set of strategy vectors of
all players j, j # i. A strategy profile z = (z',22,...,2") € S is represented as (z°,z~") where z* denotes
the strategy of player i and =% denotes the vector of strategies of the players other than player i. In many
real life applications, the strategy sets are restricted by random linear constraints, e.g., i) the constraints
on total random electricity loss, energy generation and reserve arising in electricity market [178, 199], ii) risk
constraints in financial market [180]. In this chapter, we consider the case where the random linear constraints
are formulated as a joint chance constraint. The strategy set of player i, i € H, is further restricted by the
following joint chance constraint

P(V'a' < D') > ay, (4.1)
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where «; € [0,1] is a given probability level, D* = (D*!,..., D"5)T ¢ REi is a deterministic vector and V? =
[vel ., VuEiTis a K; x d; random matrix, where V** denotes the k™ row of matrix V* and T denotes the
transposition. Let J* = {1,2,..., K;} denotes the index set of i!" player's constraints. The feasible strategy
set of player i is defined as

={2' e S |P(V'z' < D) > oy} .

We assume that for each i € H, S¢,_ is a non-empty set. Let o = («;);cn be the confidence level vector and

=1, S¢, be the set of all fea5|ble strategy profiles. The payoff function of each player is defined using
random varlables For each z € S,, the payoff of player i is given by f;(z, (), where ¢ is an m-dimensional
random vector. We use expected value approach to model the payoff function of each player. Therefore, the
payoff function of player i is given by

pi(x) = E[fi(z,{)], Yz eS,.

We assume that the CCG is of complete information, i.e., the payoff function, the strategy set of each player,
and the confidence level vector a are known to all the players.

Definition 4.8. A strategy profile y* is a Nash equilibrium of the CCG at confidence level vector « if for each i € H
piy™,y™") = pi(at ™), Va' €S

The existence of a Nash equilibrium for a non-cooperative game in various setup has been extensively
studied in the literature. It is mainly based on fixed point theorems which require the payoff function of a
player i to be a continuous function of the strategies of all the players and a concave function of the strate-
gies of player i for every fixed strategy profiles of all other players. Under Assumption 4.4 given below, the
abovementioned continuity and concavity properties hold [180].

Assumption 4.4. For each player i, i € H, the following conditions hold:
1. f;(-,2=% ¢) is a concave function of x for every (x=%,¢) € S~% x R™,
2. fi(+) is a continuous function.

3. pi(x) is finite valued for every z € S.

4.3 . Existence of Nash Equilibrium with Elliptical Distributed Row Vectors

For each i € H, we assume that Vi* ~ Ellip(u®*, S0k Uik) k€ J' Let A, ;. min be the smallest eigenvalue
of the positive definite matrix X**. Define, S, = Si \ {0}, then for 2’ € S’ , let

(Vi,k)Txi _ (Mi,,k)Txi
(xi)TEi,kxi
Di,k o (‘ui,k:)Txi
(xi)TEi,kxi

£ (af) =

)

RCOE (4.2)

It is well known that ¢*(z?) follows 1-dimensional spherical distribution with characteristic generator ¥#*
[71]. Using the abovementioned notations, the constraint (4.1) can be written as

P{&F (") < g™ (a'), ke T} >a. (4.3)
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By Proposition 3.1, (4.3) can be equivalently written as
CL [(F™ o g ) (a), ..., (FK5 0 g2 K0) (27)] > ay, (4.4)

where C?, is the K;-dimensional copula of the random vector (¢%(z%))%, ; F** is the CDF of ¢ (2%) and o
denotes the function composition.
Assumption 4.5. There exists a K;-dimensional copula C* such that C', = C", for all z* € S, and C" is a K-

dimensional strictly Archimedean copula with a generator 1; such that the inverse function wlg’l) is 4-monotonic
on (0,400).

Remark 4.4. The 4-monotonicity of w ) ensures that w( U js twice differentiable. It follows from Proposition 3.3
that 4-monotonicity condition holds if K; > 4.

Under Assumption 4.5, we can equivalently write (4.4) as

CU(F o ght) ('), .., (FP 0 g™ ) (2")] 2 0. (4.5)

Proposition 4.4. If z* € Sgl and Assumption 4.5 holds, the joint chance constraint (4.1) is equivalent to

(i) (F"* o g"*)(2") > o Dy ()], ke,

i) Zyi,kzla yir >0, kelJ'. (4.6)
keJ?

Proof. Letz’ € Si . Under Assumption 4.5, the joint chance constraint (4.1) is equivalent to (4.5). It is enough
to show the equwalence between (4.5) and (4.6). Since, C* is strictly Archimedean copula, (4.5) is equivalent
to

Y Wio F¥ o g*)(a') < gi(as). (4.7)

keJi
Define a K;-dimensional vector y; = (y;.1, .-, yi.x;) € [0, 1]% such that
(1 0 F'F o gih) (a)
> e (W 0 Fi 0 i) (a)
Since w‘ is non-increasing, it follows that (=, ;) satisfies (4.6). Conversely, we assume (z, ;) satisfies (4.6).

By adding all the constraints (i) of (4.6) after applying ;(-) on both sides, we can say that z? satisfies (4.7)
which is equivalent to (4.5). O

kelJt.

Yik =

The convexity of the feasible strategy set 57, plays a very important role in showing the existence of a
Nash equilibrium. We show that there exists a; € [0,1] such that S}, is a convex set, for all a; € (o, 1]. For
each i € H, define anindex set IV = {k € J* | u** # 0} and a set of real numbers {r** | k € J'} such that

PR 1, ifkeI® )
, (4.8)

rok =1, ifke¢ I,
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Lemma 4.10. Let Assumption 2 holds and for each k € J¢, the CDF F%* has (rt* + 1)-decreasing density with
a threshold t7,, where r** is defined by (4.8) and t;  refers to Definition 3.4. Then, S, is a convex set, for all
a; € (af, 1), where

&; = max {27 kIg?(}f) P (7,1 k 1)\1 k, mm”:uz7 |> 72%%}§F1,k(ti,k)} . (4.9)

In order to prove Lemma 4.10, we need the three following lemmas.
Lemma 4.11. Let o; € (3,1] and o' € Si, . Then, D** > (u*)Ta?, for all k € J°.

Proof. Let z € S¢ . By applying Proposition 3.2 on (4.5), we get
(FF o gk (2%) > oy > % (4.10)

Since, F** is the CDF of an 1-dimensional real-valued random variable which is symmetric at 0, F-¥(0) = 3
From (4.10), we get ¢g"*(z%) > 0 which in turn implies that D" > (p"F)T?. O

Lemma 4.12. Let r', ... "% be the real numbers defined by (4.8) and for each k € IV, define

i i i i i P+l S
Qbk = {x €S| DV —pl a2t > Tl)\z o min (m’)TE’vkml} .
Then,
Conv(S, ) c ) @,
kel®
forall o; € (af*, 1], where
ok 1 i,k T i +1
% :maX{2,]§Iel?(}i()F’ (Tzk 1)\zkm|n||p’ )}7 (4-11)

and Conv represents the convex hull. Moreover, for any convex subset Q** of (¢ ;) "* such that 0 ¢ Q", g**(2)
is defined and (—r**)-concave on Q“*, for all k € J*.

Proof. Letk € IV and 2? € Si, . By applying Proposition 3.2 on (4.5), we get

(Fi’k o gi’k)(xi) > .

From the definition of o;* given in (4.11), we have
ik dky i o ik (TR ik
5 g") (") > i 2 F*7 | ﬁmm.nllu ) - (4.12)

Since, F%(.) is a non-decreasing function, from (4.12) we have
i i i + Ly i NTSV ki
D — (YTt > T Iy (T
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Therefore, S, C M0 Q9F. For each k € I, Q¥F is a convex set which implies that Conv(S:,) C
Nier: 27F. We prove the second part of Lemma 4.12 by considering two cases as below:

Case 1: Let k ¢ I(V, then p*F = 0. From the definition of o;*, we have ; > 1. From Lemma 4.11, D** > 0.
In this case, the proof follows directly from Lemma 3 of [48].

Case 2: Let k € I’. It follows from Lemma 2 of [48] that the function

” (1) TSk i "
[ ) <D2 k (,ui,k)Txi
is defined and a convex function on N, ;) Q*. Therefore, for any y,z € Q** and X € [0, 1], we have
P+ (=02 S AFy) + (1= A f4(z) (4.13)

Note that g**(x?) = (fivk(a:"))ﬁ on Q“*. From (4.13), we can write

—1

+ (1= N (g E) )

ik

gy + (1= N2 = (Mg ()
Hence, g** is defined and (—r"*)-concave on Q%" . O
Lemma 4.13. Let Assumption 4.5 holds. Then, wf’l) [y:.x%:(aq)] is a convex function of y; 1, for all o; € [0,1].

Proof. Let U(y; x) = wf_l)(yi7kz/)i(o¢i)). If ¢ (a;) = 0, the proof is trivial because U(y; ) = 1, for all y; . € [0, 1].
Let ¢;(c;) > 0. The second-order differentiation of U(y; 1) is given by

d?@U(yi,k> = itaa))? x (477 ratilon)

1
for all y; , € (0,1]. Since, ¢\~ " is 4-monotonic on (0, +c), (wz(’l)) > 00n (0, +c0). This implies 2, U(yZ k) >
0, for all y; 1, € (0,1]. Therefore, U(y; ) is a convex function of y; ;, on (0, 1]. The convexity of U on [0 1} follows
from the continuity of U at 0. O
We present the proof of Lemma 4.10 using the results of Lemma 4.11, Lemma 4.12 and Lemma 4.13.

Proof of Lemma 4.10. Let a; € (o, 1], A € [0,1] and z1, z, € S),,. We need to show that Az 4 (1 — )z, € S, .
Case 1: Let z; = 0 or z; = 0. Without loss of generality, we assume that z, = 0. This gives D*¥ > 0, for all
k € J¢, which in turn implies that

P(Vidzy < DY) >P(Vizy < DY) > oy

Hence, Az1 + (1 — )22 € S, .
Case 2: Let z; # 0, 23 # 0 and Az; + (1 — M)z, = 0. Inthis case, 2 = 321 € SZ and z; € Sl It follows

from Lemma 4.11 that

. A—1 . . .
()2 > TD”“, (W) T2 < DV Ve Ji.

This implies that D** > 0, for all k € J*. Therefore, Az; + (1 = A\)z; =0€ S}, .
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Case 3: Let 21 # 0, 22 # 0 and 0 € Seg(z1, 22),
where Seg(z1, z2) = {21 + l(22 — z1),0 < < 1}. Then, the points on the line segment Seg(z1, z2) are either be-
long to Seg(z1,0) or Seg(0, z2). It follows from Case 1that Seg(z1,0) and Seg(0, z;) are subset of 57, . Therefore,
Az1 + (1 — )\)22 S Sgéi, forall A [0, 1] .

Case 4: Let z; # 0, 2o # 0 such that 0 ¢ Seg(z, 22). Itis clear that Seg(z1, 22) C Conv(Sgi). From Lemma
4.12, g*%(-) is defined and (—r%*)-concave on Seg(z1, z2). Therefore,

1

Y [g"%)]_”’k) o (4.14)

i,k

gi’k(/\m +(1=XN)z) > ()\ [gi’k(zl)} B

Since, z; € Sgi, from Lemma 4.1 ¢**(21) > 0 and it follows from (4.5) that
C(F*! o g"N)(21), ..., (F¥5i 0 g2 KoY (21)] > af .
By using Proposition 3.2 and the definition of o from (4.9), we get
FUE(ghh () > af > FUR () -

This implies that v v
0< g™ (z0)™" < (tip)™"

Similarly,
i,k

0< g™ (z)™"" < (t4) 7"
By applying the non-decreasing function F%*(.) on both sides of (4.14), we can write

(F"* 0 g"F) A2y 4+ (1 — A)z] >

Pk (A G )] (N g7 ()] _> ] . (4.15)

Since, F“*(-) has (r“* + 1)-decreasing density, from Lemma 3.1 of [100], the function ¢ + F®* (t’ﬁ) is

i,k .
concave on (O, ()" ) Therefore, we can write

i,k

(/\ [gi’k(mﬂ o+ (I1=X) [gi,k(zz)] wﬁk)wk]

> A[(F"F 0 g"*)(z1)] + (1= X) [(F™" 0 g"F)(2)] (4.16)

Fi,k?

From (4.15) and (4.16), we have
(Fi’k o gi’k)[/\zl + (1 — )\)22] >
A(F™ 0 g"")(z20)] + (1= A) [(F"* 0 g"*)(22)] -

This implies that the composition function (F* o g*¥)(.) is a concave function over Seg(z1, z»). It follows from
Lemma 4.13 that ¢§_1)(yi7k¢i(ai)) is a convex function of y; ,. Because z1, 2, € S‘Qi and from Proposition 4.4,

Si, and (4.6) are equivalent, then there exists vectors (y},)res: and (y?,)re,: such that (zl, (yz-l’k)keJi> and
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(2’2, (yf,k)keji) are feasible points of (4.6). Using the fact that (F"*¥ o g*)(-) is a concave function and y{ ()
is a convex function, we can say that the convex combination of points (zl, (y}’k)kep) and (ZQ, (y?’k)keﬂ) is

also a feasible point of (4.6). Again from the equivalence of Sgl_ and (4.6), \z1 + (1 — M)z € S“g which in turn
implies that Az + (1 — \)z2 € 57, .
]

Next, we prove that S, is a closed set.
Lemma 4.14. The feasible strategy set S}, of player i is a closed set.

Proof. Note that the closeness of S, follows directly from the upper semi continuity of the probability func-
tion z¢ — P(V'z® < D*). The proof is given by Proposition 3.1in [202]. O

The feasible strategy set S/, is a compact set because it is a closed subset of the compact set S, see
Lemma 4.14. Finally, we show that there exists a Nash equilibrium of the CCG.

Theorem 4.2. Consider an n-player CCG defined in Section 4.2, where
1. Assumptions 4.4, 4.5 hold.
2. Foreachiec Hand k € J', Vi* ~ Ellip(utF, 0F k) where $4F s a positive definite matrix.

3. Foreachi e H and k € J', assume that the CDF F"*(-) has (r"* 4 1)-decreasing density with a threshold t; ,,
where ¥ is defined by (4.8) and ti ). refers to Definition 3.4.

Then, there exists a Nash equilibrium of the CCG, for any o € (a3,1] x ... x (o, 1], where «f, i € H, Is defined by
(4.9).

Proof. Leta € (af,1] x ... x (o, 1]. Under Assumption 4.4, the payoff function p;(z¢, 2~%) is a concave function
of z¢, for every =% € S~%, and a continuous function of z. It follows from Lemma 4.10 that the feasible strategy
set 5., ,i € H,is a convex set, for all a; € (aj,1]. For eachi € H, S/, is a compact set. Then, the existence of
a Nash equilibrium of the CCG follows from Theorem 4 of [69]. O

In the second part, we study the case, where the random constraint vectors are independent and follow
normal mean-variance mixture distributions. This part extends the previous part by considering a wider range
of distributions of row vectors in the technology random matrix. Specifically, we delve into the context of non-
symmetric distributions, introducing a specific class known as normal mean-variance mixture distributions.
By exploring this broader class of distributions, we aim to enhance our understanding of the underlying
probabilistic nature and its implications in the context of our research.

4.4 . Motivation and Basic Concepts

We study the chance constrained games model defined in Chapter 3.5. To the best of our knowledge,
the random constraint vectors in the CCGs are often assumed to be elliptically distributed or follow a mix-
ture of elliptical distributions. These families include many known distributions, e.g., Normal distributions,
t-distributions, Laplace distributions, Kotz-type distributions, Pearson distributions and all of them are sym-
metric distributions. However, it is interesting to consider the case where the distribution of the constraint
vectors is not symmetric since symmetric distributions are generally not suitable for some practical situations.
In power system scheduling problems, both wind power forecast errors and load forecasting errors are not
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normally distributed [104], and can be better fitted by generalized hyperbolic (GH) distributions. This family
includes non-symmetric distributions which are used to model many financial applications [66, 20, 197]. In
this chapter, we study an n— player CCG where the strategy profile set of each player is defined by a joint
chance constraint. We assume that the random constraint vectors are independent and follow normal mean-
variance mixture distributions which generalize the family of GH distributions. We derive a new reformulation
of the joint chance constraints and show that there exist a Nash equilibrium under mild assumptions. Next,
we present some basic definitions, which are useful in our subsequent analysis.

Definition 4.9. An n-dimensional random vector U follows a normal mean-variance mixture distribution with
parameters (u, v, X, W), i.e., U ~ NMVM(p,~, X, W), if we have the following representation:

U~ p+yW+VWE2Z,

where: (i) Z is an n-dimension standard Gaussian distribution with mean vector .z = 0 and covariance matrix
Yz =1,, where 1, is the n x n identity matrix.
(i) W is a positive random variable with a density function independent of Z.
(iij) ¥ € R"™*™ js an n x n positive definite matrix and £z € R"*™ js an n x n matrix such that £z (£z)" = %,
(iv) pand ~ are n-dimensional real vectors and ~ implies that the both sides have the same distribution.

Normal mean-variance mixture distributions are generally not symmetric. They are symmetric if and only
if v = 0 [154]. We present in Figure 4.3, the density functions of an 1—dimensional normal mean-variance
mixture distribution, where W is an exponential distribution with parameter A = 2, p = —10, ¥ = 2.25,
with different values of ~. The family of GH distributions is known as a special case of normal mean-variance
mixture distributions. We have the following definition.

Definition 4.10. An n—dimensional random vector U follows a GH distribution with parameters (11,7, %, X, ¥, A),
ie., U~ GH(u, 7,2, x, ¥, A) if U ~ NMVM(p,~y, %, W), where W ~ N~ (X, x,v) follows a generalized inverse Gaus-
sian (GIG) distribution whose density function with respect to the measure of Lebesgue is:

fotw) = G exp (= (™" + 00) ) Loy 1)

where Cy is a constant, 1 denotes the indicator function and

x>0,>0 if A<0,
x>0,%>0 if A=0,
x>0,%>0 if A>0.

In the following section, we study the existence of a Nash equilibrium of the CCG where the random
constraint vectors follow normal mean-variance mixture distributions.

4.5 . Existence of Nash Equilibrium with Normal Mean-Variance Mixture Distributed Row Vectors
For each player i € H, we assume that the row vectors of V¥ follow normal mean-variance mixture

distributions, i.e., Vi¥ ~ NMVM(u®* ~5F $ok Wik) k€ J'. Moreover, the row vectors V** are mutually
independent and the support of W#* is an open interval (w;"", w;*), where 0 < w"* < wi* < oco. Let S}, =
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Si.\ {0}, then for 2? € S7 , let

gi,k(xi Wi,k) _ *(Ii)T'Yi’k ik Db — (Ii)THi’k
’ (xv)TEzkl.v VW ik \/(l.i)TEi,k:mi’
ZT((Ei,k)%)Txi

(') = (4.17)

(Ii)TEi,in ’

where Z refers to Definition 4.9. It is well known that ¢%*(z?) follows 1-dimensional standard Gaussian distri-
bution [71], for any i € H and k € J*. Using the independence of the row vectors V¥, the constraint (4.1) can
be written as

H P{(v’b,k‘)TI’L S Di,k} Z a;,

keJt
which implies that
ik ) ) __7T((nik INT i Dok _ (28T ik
] P (e oy 4 Vi 22 D - W) i) (4.18)
keJi (LI}z)TELk.IZ (xZ)TZ%kx’L (xl)TEz,kmz

Using the notations in (4.17), we rewrite (4.18) as follows
I1 P& < g™ (@', W) > ai. (4.19)
keJi
Thanks to the law of expectation in probability theory, (4.19) is equivalent to
H Ewmk (EZ (1{51‘,,1«(wi)ggz,k(wi)wi,k)} ‘ Wl’k)) > ;. (4.20)
keJi
Note that Z and W%* are independent random variables, which in turn implies that ¢:*(z*) and W%* are
independent as well. Therefore,
Ez (Ligr@ggor@weny | W) = Bz (Ligr@nggor@wen)y) -

Let ® be the cumulative distribution function of an 1—dimensional standard Gaussian distribution. Then, the
above expectation can be written as

Ez (1{§i,k(wi)ggi,k(xi7wi,k)}) = (gi’k(:ﬂi, Wi’k)) .
Hence, the constraint (4.20) is equivalent to
H Eyyi (cI) (gi’k(xi,Wi’k))) > . (4.21)
keJi
By taking logarithm of (4.21), we have the following equivalent constraint
Z log (]EWk (<I> (gi’k(xi7 W”‘)))) > log(ay). (4.22)
keJt

The main idea for the proof of existence of Nash equilibrium is based on the Kakutani fixed-point theorem,
which requires the convexity of the feasible strategy set S, . We show that there exists a real number o €
[0,1) such that S, is convex, for all o; € (a}, 1], where o} is defined in the following assumption.
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Assumption 4.6. foralli € H, let

e Al S

) = max ® .
g keJi (Jm ’ )

zk ; i k k
e _ ! e S, el Iyl ™ — i)
ol = mae | = | A it N

i i . . 7

o ik min VirmmyJuw* iy wi®

a§3)=§€na}]x<1> .uk L Il (wd | ) 7

where || - || denotes the Euclidean norm and \; i, min is the smallest eigenvalue of the positive definite matrix Yok,

Let o = max(o\, 0'? o®). Assume that o; € (af, 1), foralli € H.
The main result of this section is the following lemma.

Lemma 4.15. Let Assumption 4.6 holds. Then, Si, is a convex set, for all i € H.
In order to prove Lemma 4.15, we need the following lemmas.

Lemma 4.16. Let Assumption 4.6 holds. Assume that «* € S¢, , for all i € H. Then, D% > (1)
and k € Jt.

T2, foralli € H

Proof. For eachi € H, letai € 5. . Since Eyux [® (¢7% (2", W"*))] € [0,1] and oy > oV, for any k € J¢, the

constraint (4.21) implies that
Eyyix [® (gi’k(xi,Wi’k))] > agl).
It follows from the definition of ¢** in (4.17) that

iNT ik ik (T ik
Eyyi.i [@ (W\/W@k D= (@) n )1 > oV,

(Iz)TEz,kIz \/Wz k:\/ TE’L kmz

Due to the three following inequalities

() (@) *] < [l

we deduce that

(i) 1/ (z%) Tzlkaﬂ>\/)\7kmm\|x|\2, (i) v <\/wu ,

(T Ak ik .
@) fyar| < Al ik
Y, (IZ)TEl’kIZ V /\i,k,min

From (4.23) and (4.25), by applying the increasing monotonicity of ®, we get

Di,k' (0T, i,k
ol [k (') p = o),
V/Aik,min VWik,/(z1) TSk g

Itis clear from the definition of a§1> in Assumption 4.6 that the following condition holds

<

Epyi

ik -
o) > & ( ”Z,J'Zi ﬁwa,k> |
\ Niyk,min
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which in turn implies that

ik - Dbk ()T ik
EW$F<IWIh ik (z') "

Vi, min VWEE /(@) TSk i

If D% — (29)Tpi* <0, (4.26) implies that

> ¢ M\/wﬁ’k ) (4.26)
\/)\i,k,min

Epyi

¥l ik Iv"*l2 ik
| 2wl | > e [ A Jwli
(\/ )\i,k,min ! vV )\i,k,min !
which derives a contradiction due to the increasing monotonicity of ®. Therefore, D*¥ — (z!)Tyt* > 0. O

bk wi*), we have

Lemma 4.17. Fori € H, letz' € Si . Then, for any k € J* and 2* € [w;", w;;

ik ik ik
& VZ gi’k(sci,zi’k)+|‘ry |2 (wy w ) > a;.

i,k [ ik -
w \/)\i,k,min w,

Proof. Foric Handk € Ji, letz’ € S% and z% € [w]"*, wi"]. Itis clear from the definition of g** in (4.17) that

Ewi,k

the following condition holds for any W* € [w"*, w{"]
gi,k(xi7wi,k) _ v zbk gi,k(xi’zi,k) n (xi)T’Yi’k (Zlk - Wi’k) _
VIV ik (27) TSk i NG

By applying the inequalites (i) — (iii) of (4.24) and the fact that | 25k —WF| < wﬁk—wl’k we deduce the following
inequality

()t CM_WM)<MmeM—M%

\/(xi)TZi,kxi VW ik mm
which in turn implies that
gt W) < ;;kkgi’k(xi,z“k) + ||¢’k/\|2(wﬁ;’“ wl,ck) VIR €t wy]. (4.27)
' ¥ i,k,min\/wT’
Taking the expectation value Ey .« (®(-)) on both sides of (4.27), we get
Eupos [0 (g5 W] < By [0 [ 225 gt ) 4 0l — wi)

Since Eyyox [® (g"F (2%, WHF))] € [0,1], for any k € J*, the constraint (4.21) implies that
By [<I> (gi,k(mi,wi,k))] > a,
which in turn implies that

My — w™)

Vv Ziikkgiyk(xi’zi’k) + H’y
i, i
4 vV )\i,k,min\/ w;’k
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Lemma 4.18. Let Assumption 4.6 holds. Then, for all i € H
Conv(Si,) C () 2,
keJi

where Conv represents the convex hull and

Dz k 7 i,k
( z) i,k | / + ( - ZC no
ik i,k ik >4 (‘Ti)TEi’kxi7
QiJc _ xi c Sz H’V ||2 / i H/’L HQ (428)
V ’L k, mm V ’L k, mm \/
YWk € fwpt, wi).
Proof. Fori € H,leta’ € S. . It follows from Lemma 4.17 that for any 2% € [w]"*, wi"]
N ik ) i,k i,k wz k
Eyie |® \/Lkg“k(a«”,z oy Dt Z 7)) (4.29)
we V4 i,k,min\/ w|’
Since a; > a ), the constraint (4.29) implies that
/ ik ) i,k ik
]EW'i,k' (I) \/%gl7k<x17 Z ) + H’Y ( 'lU| ) > a’EQ).
W~ AV4 i,k,min\/ "~U|’
It follows from the definition of aEQ) in Assumption 4.6 that the following condition holds
4/ wik ik ik ik ik ik
o > o ‘ ||7 |l2 [witk + " ]2 - L Il (wy w| )
\/wlh Ai k. min vV )\i,k,min\/ wr’ vV z,k,mln\/ w|
which in turn implies that
ik o ik i,k i,k
Eyir [ | —= —g"* (2", 2"") + [ o™ = i)
we \/ )\i,k,min\/wf
4y wiF ik : ik LK (R — R
- sl el Il ) 450)

u
ik SN ; [ ik [ ik
w) i,k,min iV Az‘,k,min w, \ /\z‘,k,min w,

If g»* (2, 20F) <0, the constraint (4.30) implies that

; ik ik
[7oF] |2 (wy™ — w™)

\V /\i,k:,min \/ w|“C
4 1k i,k ik ik i,k wzk
" ||W 2 fik el ||7 ||2(wg )

ik i,k
\/ W’ Z k min VvV Ai,k,min\/ w, \/ i,k,min*\/ w|
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which derives a contradiction due to the increasing monotonicity of ®. Therefore, g'*(z¢, 2*) > 0. Then, the
following inequality holds for any Wi+ & [wi*, wi"]

Vzbk . wa’k . L
Wi kgﬁ,k(xz7 Zz,k) S gz,k(xz’ Zz,k). (431)

It follows from (4.30) and (4.31) that

i,k i ik ik
P U)U gi,k(xi7zi,k)+ Hq/ 7k||2(wu _U.)| )
\/ wr’k vV )\i,k,min\/ w;’k
o |Vl s el ) (et — ) 32
i \/ i ! [ [ '
w;’k )\i,k,mln VvV )\i,kmin w, " vV Ai,k,min w, "
By applying the increasing monotonicity of ®, (4.32) is equivalent to the following inequality
. o i,k - ik
gz,k(xz, Zl,k‘) >4 Hz |2 /wfjk + H:u ||2 : ) (433)
V Aik,min /)\i,k,min /wr’k
Since (4.33) holds for any 2* € [w"*, w;*] and 2" € S, , we get
Se © ) Q%% (4.34)
keJ?
Note that Q%* is a convex set. Then, by taking the convex hull on both side of (4.34),
Conv (Sg) c )"
keJt
O

Lemma 4.19. Let Assumption 4.6 holds. Then, for any convex subset Q" of (N, ¥ suchthat0 ¢ Q°, g*(z*, WF)
is defined and (—2)-concave w.r.t z* on Q', for all i € H, k € J* and Wo* € [w)* wi*]
Proof. Forz' € Q" and W* € [w", wi¥], let fiF(af, Wik) = It follows from the definition of g
in (4.17) that

1
(g7 % (@t R

fi’k(l'i, Wi,k) — (({Ei)TEi’k(Ei).Mi,k(xi, Wi’k)il,
where M; i (z?, WikF) = WiF[(2%) Ty k]2 4 A [DBF — (27)T k)2 +-2[(28) Ty 5 F][(2%) T pF — D*F]. In order to simplify
the notation, for the rest of the proof, we write M; . (resp. f**) instead of M; j(z*, W"F) (resp. f*(z*, WiF))
. Itiis clear that the (—2)— concavity of g** is equivalent to the convexity of f“* on Q. In order to prove
the convexity of f%*, we prove that the Hessian matrix of f“* w.r.t z'is positive semidefinite on Q?, for any
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Wik ¢ [ Lk ““] Let v, f** be the gradient vector of f&* w.r.t =z and H,: f** be the Hessian matrix of f*
w.r.t z. Let h(z?) = (z*)T2%"*2%, The gradient vector of A is given as follows

Vaih(z?) = 250kt

and the gradient vector of M; , w.r.t z'is given as follows

ik
Vi Mi e = 2[W5F (@) Ty"F 4 (28)Tph — D). <72,k + Wi,k> .

Since f** = h(z%).M; !, the gradient vector of f¥ w.r.tz* can be written as follows

T,

Vi [ = Vaih(2'). M+ h(2'). 700 (M7)).

We can write M, ! = uo M, s, where u(z) = 1. By the chain rule of composite function in calculus, the gradient
vector of M, ! is given by

VI’ ( i, k;l) U/( ) VI’ i,k

-1 7, 1, %, 1, 7 ,ui’k
= 3 2R T D (5 ),

[ i,k zk]

which in turn implies that, for any (z!, Wi*) € @ x LWy
i f’i,k’ — 2M7:k121,kw1
. . . . i,k
= 2RI )T DL (35 (4.35)

Note that the Hessian matrix of f“* w.r.t 2* can be written equivalently as follows
i k)T

Then, it suffices to derive the term on the right of (4.35) by 2. Letv(z) = X, r(z') = T2’ s(2') =
WEE (29 Tk 4 (29)TptF — D*, then the gradient vector of % w.r.t 2% is given by

Vi fOF = 2.M;k1.r(ac1) —2wo M, .h(z").s(x"). (’yl’k + g/zk> . (4.36)

Deriving both sides of (4.36) by x?, we get

Hyi f7F = 2.7 (M) [r(@)]" + 2.M 3L g (2

) ) ) i,k
—2.vo M, .h(z"). 7z s(z). <’yl’k + I;L/Zk)

T

Wik
ik \ T

1
lek) =A+B+C+D+E,

—2.Vgi (vo My).h(x").s(x"). (7”k + >

—2wo My Vi h(z").s(x"). (’yi’k +
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where
=2 vwl ( zk:l) [r(xi)]Tv B_2M k sz T( )

) ) ) i,k T
C = —2wvoM,.h(z"). 7. s(z'). (’y“k + 5”)’“) )

i,k T
D = —-2.57, (vo M, ).h(z").s(z"). ('Vlk+ Iﬁ:/zk) ’

E=—-2vo0M,y. Vg h(z').s(z*). ('y”k + §/1k> .

We can verify that the following equations hold

, _ -1 , _ ik .
(i) Vai (M) = - -2s(2"). <w’k + 75 ) , Vair(z') = %"
;k) Mzk W ,k:
(il) Var s(x') = WHhyF 4yt guih(ah) = 2800
(i) Vi (vo Myg) =0 (M; ). Vui M,

= 35, 2 T D4, (4 + 252)
- 2t (7 ).
which in turn imply that
. j/zgf) (,Yi,k n If;;;;) (@)TSF, B = in’k’
o _?\ng) (W7k,yzk + M‘,k) ) (,yi,k n Iﬁ;ﬁ}q)-r,
D:gmﬁgjﬂ)(ﬂh%$i>(¢$+£Z)T,E:_ﬁgégmﬂ(¢x+

Note that s?(x%) = WHF M, ;.. Then, D = 8h(’“ ) S(WhkyER ik (yiv’“ 4o
of foF w.r.t z* can be rewritten as
H,f**=A+B+C+D+E

_ —4s(ah)
- M7, W““

Ezk z( zk)T+

) ) T
2 6h(x?) . - , ik

Zz,k Wl,k i,k i,k ) i,k i )

T T, (WS )
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By multiplying the above equation by M, " , we get

T
(M, ) i, i, ik i i, i o
5 Ho [ = My S5 4 Bh(a ) (W E 4 ) (4 4 oo
— 28($Z) Wszlk 2( zk)T_|_ T /,Li’k(aji)TEi’k —|—Ei’k$i(’yi’k)T+’yi’k(xi)TEi’k:| ) (437)
We prove that the quadratic form of H,. f** at z* € R% is positive, for any z* € R% and (z/, WiF) € Q' x
[wi*,wi™, e,

(z)TH, %2 > 0. (4.38)

In fact, by taking the quadratic from of (4.37) at z¢, we have

(M) o o , : o 1 o \2
(ZZ)T 2, .qu‘,fl’k i Mi,k(ZZ)TELkZl + 3h(£L’l) (\/W((ZZ)T’YLIC) + — ((Zz)Tﬂz,k)>
s (TS ()T T ) 4.3

Note that the following inequalities hold

() sy ()T ()T 4 g T
(@S ()T o
(ii) |(z1) T2k 2] < \/(Zi)TZi,kZi \/(xi)TEi,kxi

1 X
(lll) ’(,)/zk)'l'z7+ WZk(Mzk T z‘ <‘ 1k)TZz‘+ Wlk’ 1k T z

i,k)TZi

b

) (4.40)

where (i) and (iii) are trivial. In order to prove (i), let e; = (2/)T(S4F)2, ey = (2¢)T(2%) 2, then (ii) is rewritten
as

lex(e2)"] < [lex]l2]le2l2,

which is known as the Cauchy-Schwarz inequality. It follows from (i) — (iii) of (4.40) that
_ 48(1.1)((Z1)T217k$z) ((,yl,k)TZz + Wi’k (uz,k)TZz>

> —4|s(x’)|.\/(ZZ)TEZ’kZ’\/(l’z)TE“kwl. <|(,yz,k)TZz| + Wi,k| z k T z|) (4.41)

Then, from (4.39) and (4.41), we get

(M 1)
2

_ 4|S(lﬂ)|\/(Zz)Tzzkzz\/(xl)Txlkxz (|(72k)T21’ + I/Vlzk| i, k T 10

2
(=) Hyi foF2" 2 Mg (2')TS"02" + 3h(a) (V Wik () TyF) + 1,<(zi>w*’“>>
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. - . T . . . ; 2 . . . .
Note that |s(z")| = /W"FM,, and 3h(z") ( Wik ((29)Ty0k) 4 ﬁ((zﬂ%”“)) > 0, which in turn implies
that

(Zl)T( ;k) .Hzifz’kzz 2 Mi,k(ZZ)TEZ’kZZ
— 4~/ M; k\/(Zi)TEi,kzi\/(xi)TZi,kxi \/”fi,kl(,yi,k)Tzil + #‘(’ui,k‘)TZi‘ (4.42)
) Wik ' '

Assume that z* # 0. Dividing both sides of (4.42) by ((2*) 2% 2%)((2%)TS"*27), we have
(2 )T(Mzk H i fiki
((ZZ)TEZ ki )((Il)TEl kxz)

My M; i, T
= (2)Toikyi (z0)Txikgi

1
VIWik

(") (u*)Tz

\/(Zi)TEi,kzi \/(zi)TEi,kZi

Note that m = [g"* (2!, WF)]2. Since ' € Q" and Q' is a subset of N, . ,; 2%, then &' € Q**, for any

k € J'. Then, for any Wik € [w"*, wi"], it follows from the definition of Q** in (4.28) that

) : (4.43)

gi,k(xi’ Wi,k) >0
Therefore, we can write ﬁﬁ = g“* (2!, WF) and (4.43) is equivalent to the following inequality

()T (M'iz,k)Q H,i fikzi
() TSk 20 [(27) TR Far]

i,k\T o1 0, k\T o1
: ; . ) ) ) i ) 1 )
Z [gz,k(zz,wz,k)]2 _4gz,k(zz,Wz,k) “/Wl’k (74 ) Z : : (,LL' ) Z : )
\/(ZZ)TEZ,ICZZ \/Wz,k \/(zz)Tzz,kzz
It is easy to see that the following inequalities hold

g A I el 1P 1 N [ P

\/ TZ’ kil — \/)\i,k,min-||zi||2 \/ )\i,k,min’
S P T P | V7 1P

\/ 2 TE”’Czl ~ VieminlZle Ak min

1 1
(|||)\/7<\E,W<W,
which in turn implies that
1 k)T
VIWik

(") 2
\/zTEi)kz

(’yi’k)TZ

Wik
N

||7”“||2 i gt 1
by (4.44)
z k,min vV 1,k,m|n A/ w
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Then, from (4.43) and (4.44), we get
zTi(M"é’“)Z Hyi ik
(ZTEi,kZ) [(xz)Tszxz]

k(0 T T "]l gt 1
> gl,k(x7.7 Wz,k) 2 4gl’k($l, wh k I Lo (4.45)
[ ] i m.nr Vkemn Jui* )

Since 2 € Q% for any k € J?, the term on the right-hand side of (4.45) is positive, which implies that
(2T Hy: fo*2* > 0. O

Using the abovementioned lemmas, we prove Lemma 4.15.

Proof. of Lemma 4.15) Let a; € (o, 1], A € [0,1] and y1,y2 € Si.. We will show that Ay; + (1 — Ay € Si,..
Consider 4 cases as follows:
Case 1: Let y5; = 0 or y» = 0. Without loss of generality, we assume that y, = 0. We deduce that D** > 0 for
all k € J¢, which implies that

P(ViAy; < DY) > P(Viy, < DY) > a.

Therefore, Ay, + (1 — A)yz € S,
Case 2: Let y; # 0, yo # 0and Ay; + (1 — A)yz = 0. In this case, yo = 3y1 € 5%, and y; € S¢, . It follows from
Lemma 4.16 that

. A—1_. . ) .
()T > S5 =DM, ()T < DY, vk e T

This implies that D" > 0 for all k € J. Hence, Ayy + (1 = A)y2 =0 € S}, .
Case 3: Lety; # 0, y2 # 0and 0 € Seg(y1,y2), where

Seg(y1,y2) = {y1 +1(y2 —v1),0 <1 < 1}.

Then, for any point z € Seg(y1,y2), either z € Seg(y1,0) or = € Seg(0,y2). It follows from Case 1 that Seg(y, 0)
and Seg(0,y2) are subset of S?, . Therefore, Ay, + (1 — Xy, € S7,, forall X € [0,1].

Case 4: Let y; # 0, y2 # 0 such that 0 ¢ Seg(y1,y2). Itis clear that Seg(y1,y2) C Conv(ggi). From Lemmas 4.18
and 4.19, g* (-, W**) is defined and (—2)-concave on Seg(y1, y2), for all Wi* & [w/"*, w{"], which implies that

1

9y + (1= Nyz2, W) = (Mg" (1), W) 72 4 (1= N) (9"  (y2), W) 72) 2. (4.46)

Since, y1 € Sl and o; > a( ) , using Lemma 4.17, forany z € [ ik f;k}, the following condition holds

ik i,k i,k
- lé( Va0l ot ))] > o,
we VvV zk:mln\/w|

Moreover, it follows from the definition of az(.g) in Assumption 4.6 that

3wk
a§3) > ® ( u H’Y

<”‘ wm)
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which in turn implies that

ik i,k i,k
. ’ w —w
quk & I\/I//ikgz,k(ybz) + ||'}/ ||2( u |k )
e ¢§@_HWﬂmwf%k>_
If ¥ (21, 2) <0, (4.47) implies that

ik ik ik i,k ik ik ik
o [ Il —wi)) o (V3 bl — )}
iV /\i,k,min\/ ’LU|Z7]C A/ ’wr’k \/m\/ 'LU|Z7]C

which derives a contradiction by the increasing monotonicity of ¢. Therefore, "% (y1,2) > 0. For any Wik ¢
[wi*, wi"], we have

(4.47)

1,k
ﬁ kg"’“(ylw) < j g"*(y1, 2). (4.48)

From (4.47) and (4.48), for any z € [w;"*, w;"], we get

[ ok ; ik ik [ 2,0k ; ik ik
@( wy ik |[7"F ]2 (wi™ — wy )) ><I>( B [ * |2 (wg™ — w) ))

T NN e
which in turn implies that
0< "M, W) 2 < 2 VI € g, )
Similarly,
0< gi,k(y27wi,k)f2 < é’ VIVEE ¢ [wlzk,wﬁk]
By applying the non-decreasing function ®(-) on both side of (4.46), we can write
@ (9" (g1 + (1= Ny, W) >
& (A" (1, W) 72 4 (1= \)(g™* (o, W) 72) F) YWk € [, ] (4.49)

Since, ®(-) is the cumulative distribution function of a standard Normal distribution, it follows from Proposi-
tion 4.1 of [100] that @(-) has r-decreasing density, for any » > 0 and t* = /r, where t* refers to Definition 3.4.

By choosing r = 3, it follows from Lemma 3.1 of [100], the function ¢t — @ (t—%) is concave on (0, %). Therefore,
for any Wi* ¢ [w)*, wi"], we obtain

@ (g™ (51, W) 72 4+ (1= X) (g™ (32, W) %))
> A (@ (9" (g1, W) + (1= 2) (P (9" (2, W) - (4.50)
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For any Wik € [w)*,w(*], it follows from (4.49) and (4.50) that

D (g"F (A1 + (1 — Ny, WHF)) >
A (@ (g7 (1, W) + (1= A) (@ (9" (2, W), (4.51)

which implies that & (¢**(-, W**)) is a concave function on Seg(y:,2), for any Wo* € [w/* w;*]. By taking
the expectation value Ey, ... on both sides of (4.51), we deduce that

Ewir [@ (g% (Mg + (1 = Ny, WHH))] >
Ao [8 (6 (0, W9)]) + (1) (Bt 25 (. W4))]) 4s2)

which in turn implies that the function Eyy..x [®@ (¢%%(-, W**))] is a concave function on Seg(yi, y2). It follows
from the discussion in Definition 2.1 of [100] that log-concavity is a weaker property than concavity. Therefore,
Ewr [® ("% (-, Wh))] is also a log-concave function on Seg(y1,y2). Then, Ay; + (1 — A)yz € S, . O

It follows from Lemma 3.5 [167] that the closeness of Sgi is a consequence of Proposition 3.1in [202]. Since
St is a subset of S¢, which is a compact set, we deduce that S, is a compact set. S*. We show that there
exists a Nash equilibrium of the CCG by the following theorem.

Theorem 4.3. Consider an n-player CCG defined in Section 4.2, where
1. Assumptions 4.4 and 4.6 hold.

2. For each i € H, we assume that Vi:F ~ NMV M (ub*, ~4* S0k Wik) and the vectors Vi* are mutually
independent, k c J'.

Then, there exists a Nash equilibrium of the CCG for any o € (a7, 1] x ... x (a;;, 1], where {«; }, . ; refers to Assump-
tion 4.6.

Proof. The proof follows the same arguments as the proof of Theorem 3.1 [167]. O

4.6 . Algorithm and Numerical Results

In this section, we assume that the strategy set of each player is strictly positive, i.e., S* C Rdar, where Riﬁr
denotes the subset of R% with strictly positive components. We consider a 2— player CCG defined in Section
4.2. Let z? € S2_ be a feasible point of the second player. Then, the optimization problem of the first player
is written as

[P1] max p(zt,2?)
st. z'es),. (4.53)
The set of optimal solutions of [P1] which is also called the best response set of the first player, is given by
BRi(a?) = {z" | pi(z',2%) 2 pi(a',2?), Va' €5, } (4.54)
Similarly, let z! € S} , the optimization problem of the second player is written as

[P2] max po(xt,x?)
st. 2°€S2,. (4.55)
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The best response set of the second player, is given by
BRy(x') = {7* | pa(a',3%) 2 pa(a’,2?), Va® € 87, } (4.56)

It is clear that if z'* € BRy(2?*) and 2** € BRa(z'*), then (z!*,22*) is a Nash equilibrium of the CCG. We
propose the best response algorithm given in Algorithm 1. If Algorithm 1 stops, (z'*, 2%*) is a Nash equilibrium

Algorithm 1 Best response algorithm

Step1 : Select initial feasible point 2*® € S2_ for player 2, set k = 0 and choose a tolerance parameter
e> 0.

Step2 : Solve the optimization problem [P1] with 22 = 22(*) and obtaint an optimal solution z'*) ¢
BRy(x2®).

Step3 : Solve the optimization problem [P2] with z! = 2'(*) and obtain an optimal solution z2*+1 ¢
BRy(2'R)), If |po(at ) 22(R)) — py(22R) 22(k+1))| < ¢, stop the algorithm and set (2!, 2%*) = (2'(®) 22(),
Otherwise, set k := k + 1 and go back to Step2.

of the CCG. The question when Algorithm 1 cycles is still open. Using Algorithm 1, at each step, the first
player wants to solve his optimization problem [P1], for 2 € 52, and the second player wants to solve his
optimization problem [P2], for z* € S}, . We present a reformulation of the optimization problem [P1], for 2% €
S2_. The optimization problem [P2] is written similarly. For each z* € S2 , using (4.22), we can reformulate
[P1] equivalently as

max pl(ml,xz),

st (i) Z log (Eyi.x [@ (¢"F (2!, WHH))]) > log(an),

(i) 2! € S*. (4.57)
By introducing auxiliary variables z':*, we rewrite (4.57) as follows

max pl(xlvl'Q)v
s.t. (i) Epprie [(I) (gl’k(xl,lek))] > ezl,k7
(i) D 2bF > log(ay),

keJt
(iii) 2% <0, VEk € J',
(iv) z' € S*. (4.58)

The optimization problem (4.58) is intractable due to the expectation term Ey1,x. Therefore, we solve ap-
proximately (4.58) by using the partial sampling technique. Here, we draw N'* i.i.d samples wi™*,... 7w]1\}]f,k
of the univariate distribution of W, Thanks to these samples, we get an approximation of the expectation
value by using Monte-Carlo method. We solve (4.58), where the constraint (i) is replaced by the following

constraint

L [@ (gl’k(xl,wtl’k)” > e (4.59)



Let C* (z', WhF) = @ (g™F (2!, WHF)). Itis clear that C* is a continuous function. Moreover, C*(z*,") is up-
per bounded by the identity function L ety which is an integrable function. Using Theorem 7.48, [208],
Eywe [CF (-, WF)] is continuous and the average sample converges to Eyy1. [C* (-, WF)] w.p.1uniformly on

S1. Using Theorem 5.3, [208], by solving optimization problems, where the constraint (i) of (4.58) is replaced
by the constraint (4.59), we obtain a sequence of optimal values, which converges to the optimal value of

(4.58) when the number of samples goes to infinity. By introducing new auxiliary variables y;**, the constraint
(4.59) is equivalent to the following constraints

(i) @ (" (@' i) = uh,

N1k
(i) Yyt > Nk

t=1
(i) yi* >0, Vke J', 1 <t < NVF, (4.60)

Then, the optimization problem [P1] can be rewritten as
max p1(zt, %),

st () ® (g (@ wh)) =
Nl,k
(i) Do wt = N
t=1
(i) > 2" > log(an),
keJ?t
(iv) 2% <0, yi" >0, Vk e J', 1 <t < NVF 2l e st (4.61)

From (4.51) in the proof of Lemma 4.15, if Assumption 4.6 holds, ® (¢"*(-, W**)) is a concave function on any
segment, which does not contain zero. Since S* ¢ R%, itis clear that ® (gl’k(-, w}’k)) is a concave function on

St foranyt=1,...,N"* ke J.. Hence, (4.61) is a convex optimization. Similarly, the optimization problem
[P2] can be rewritten as

max pa(xt, %),
T

st () @ (g% wih)) = g2,
N2,k
(i) >yt = N
t=1
(i) > 2** >log(az),
keJ?
(iv) 22F <0, 927 >0, Vk e J2, 1 <t < N?¥ 2% ¢ 52, (4.62)

For numerical resutls, we consider a competition model of two firms in a same financial market. Let J =
{1,..., K} be the set of portfolios and A, be the set of assets in portfolio k, for k € J. We assume that
both firms invest in the same set of portfolios J and the portfolios are pairwise disjoint. Each firm i invests
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its money in the assets. Let z}; be the amount of money that firm i invests in asset j of portfolio . Let

be the strategy vector of

), = (Jiij)jeAk be the investment vector of firm i in portfolio k and z* = (z}), _,

firm 4. The strategy set of firm i (or the set of investments) is defined as

5t =< a2 Z zj; < B', wj; > €, forany ke J, j € Ay o,
JEAg, keJ

where B’ is the budget of firm i and ¢ ; is the minimal amount required that firm i must invest in asset
j of portfolio k. It is clear that S? is a convex and compact set with strictly positive components, for any
i = 1,2. The vector (2!, 22) € S* x S? represents a strategy profile (or an investment profile) of both firms. Let

Li = (L}U) p be a random loss vector of firm i from portfolio k. Then, for a given investment vector =%,
JEAK

the random loss incurred by firm i from portfolio & is (L:)"z%. Let Di be the maximal loss level of firm i from
portfolio k£ and firm 7 wants to keep its random loss below this level at probability level «;, i.e.,

P{(x};)TL}; <Di ke J} >y, Vi=1,2.
Hence, the strategy set of firm i is defined as

i = {x €5 ]P{(J;Z)TLZ <Di ke J} > ai}
We assume that foranyi = 1,2and k € J, the random loss vector L, follows a normal mean-variance mixture
distribution. Let R} = — L} be the random return vector of firm i from portfolio k. We consider the case where
each firm wants to minimize their transaction cost which is incurred due to trades from multiple firms. The
transaction cost of a firm usually also depends on the investment of other firms [132]. Therefore, for a given
strategy profile (z!, 2?), we consider the quadratic transaction cost as follows

TC(x!, %) = > (x) + 23) " (z} + 23),
kedJ

where TC'(z!, 22) is the transaction cost of firm i at strategy profile (z!,22), the positive semidefinite matrix
Qi represents the market impact of portfolio k£ on firm i whose entry at position (r, s) is the impact of the
liquidity of asset r on the liquidity of asset s. The same formulation of transaction cost has been considered
in [132]. The payoff function of firm i is defined as follows

u' (2!, 2?) = <Z E(R}C)Tx2> —TC' (2!, 2%),

keJ

where Y, ., E(R})Tz} is the expected return of firm i at strategy profile (z',2?). It is clear that the payoff
function of firm ¢ is a continuous function of the strategy profile and concave w.r.t its strategy vector, for
every fixed strategy vector of the other firm.

In our case study, we consider two firms with three portfolios where each portfolio consists three assets,
i.e, J ={1,2,3} and A, = {1,2,3}, for any k € J. We assume that the random loss vectors follows normal
mean-variance mixture distributions, i.e., forany i = 1,2 and k € J, L} ~ NMVM(u"F, % Sk Wik) where
pbF is an 3 x 1 vector taken on [—0.25,0]® and v** is a 3 x 1 vectors taken on [0,0.025]3. X% is a 3 x 3 positive
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definite matrix with all eigen values belong to [5, 10] and high values on the main diagonal. In order to generate
i, we use the following formula

on__AAT
N 3 X maX(].,)\max)

+'6 X L%

where A is a 3 x 3 random matrix whose all the entries are real numbers belonging to [0,1], Amax is the
largest eigenvalue of the semidefinite positive matrix ATAT, B is a real number taken on [5,9] and I3 is 3 x 3
identity matrix. We take negative values of location parameters p** and high values on the main diagonal of
covariance matrix $%* because firms gain positive return in expectation if they decide to invest but they have
to make risky decision. W#* follows an uniform distribution with support in [wf’k, wi¥], where wf’k is taken on
[0.85,1] and w" is taken on [1, 1.15]. For the above choice of parameters, the threshold levels (a7);= o always
belong to [0.96,0.98]. Then, we take the probability levels a; = a2 = 0.985 such that Assumption 4.6 holds.
The other parameters are given by B' = B* = 10, ¢;; = ¢;; = 0.1, Dy =1, Dj = 1.5, Qj is a 3 x 3 positive
definite matrix, generated by the following formula

_ BBT

Qi
k 3 )

where Bis a 3 x 3 random matrix whose all the entries are real numbers belonging to [0, 1]. Then, the payoff
function of two firms are calculated by

) = = [ < el it 450

keJ keJ

All the numerical results below are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4
GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We generate an instance of the above competition model
and compute the Nash equilibrium using best response algorithm. In order to find the best response of each
player, we solve convex optimization problems (4.61) and (4.62) using cp solver in CVXOPT, with number of

data points in Monte-Carlo method N* = N%* = 50. The data points {w;k, j= 1,...,N’?v’“} are uniformly

generated on [w,i’k, w&’k]Ni'k. The algorithm converges to a Nash equilibrium point (z'*, 2%*) given by

2" = [(0.48,0.51,0.63), (0.47,0.31,0.55), (0.67,0.25, 0.4)] ,
22* =[(0.52,0.31,0.73), (0.57,0.54,0.57), (0.47,0.55,0.3)] ,

and the total CPU time is 91 seconds. Figure 4.4 shows that best response algorithm converges for the above
instance because the payoffs of both firms converge after a few iterations. We also present the time analysis
by considering a larger model with 50 portfolios and each portfolio has 50 assets. The parameters are similarly
generated as above. We generate 20 instances and for each instance, the best response algorithm converges
to a Nash equilibrium. The average total CPU time is 1897.1 seconds. The total CPU time of each instance are
represented in Figure 4.5.

4.7 . Conclusion

We study an n— player non-cooperative CCG, where the strategy set of each player is defined by a joint
chance constraint. The random constraint vectors are either dependent and follow elliptical distributions or
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Figure 4.4: Convergence of payoffs to a Nash equilibrium.
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Figure 4.5: Total CPU time of 20 instances of CCG model with 50 portfolios and 50 assets in each portfolios.

independent and follow normal mean-variance mixture distributions. We derive a new reformulation of the
feasible strategy set of each player and show the existence of a Nash equilibrium under mild assumptions on
the payoff of each player and the probability levels. We compute a Nash equilibrium of a competition of two
firms in financial market with randomly generated data using best-response algorithm. It is clear from our
time analysis that a Nash equilibrium can be computed efficiently in a large model up to 50 portfolios and
each portfolio contains up to 50 assets.

This chapter corresponds to the reference [167] and a paper submitted to Applied Mathematics and Com-
putation.
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Chapter 5:Distributionally Robust Chance-Constrained Zero-Sum Games

In this chapter, we consider a two-player zero-sum game with random linear chance constraints whose
distributions are known to belong to moment based uncertainty sets or statistical distance based uncertainty
sets. We propose a reformulation of the chance constraints using distributionally chance-constrained opti-
mization framework. We show that there exists a saddle point equilibrium of the game, which is the optimal
solution of a primal-dual pair of second-order cone programs. As an application, we present a competition
of two firms in financial market to simulate our theoretical results.

This chapter serves as a valuable addition to the previous chapters. In the preceding chapters, we focused
on establishing the existence of Nash equilibrium and presented an algorithm that, while effective, did not
guarantee convergence to an equilibrium point. However, in this chapter, we make significant progress by
demonstrating that the equilibrium point is indeed unique. Furthermore, we introduce a novel approach for
computing this equilibrium point by solving a primal-dual pair of second-order cone programming (SOCP)
problems. By employing this method, we not only ensure the convergence to a unique equilibrium point but
also provide a practical and efficient computational solution.

5.1. Introduction

In many real life applications, the strategy sets are restricted by random linear constraints. By assuming
that the probability of these random linear constraints is at least more than a certain probability level, we
have a chance constraint. The distribution of random factors in chance constraints can be known exactly or
unknown, which leads to different approaches to define a game. The true distribution of random factors is
usually assumed to be elliptically distributed, which includes many known distributions, e.g., Gaussian dis-
tribution, Laplace distribution, Kotz distribution or Pearson distribution. Otherwise, in unknown distribution
case, the true distribution of random factors is assumed to belong to an uncertainty set, where only partial in-
formation of the distribution is known based on historical data and we call such games distributionally robust
chance-constrained games. A two-player zero-sum game is modeled using continuous strategy sets, where
the sum of two players’ payoffs is zero. Consequently, it is defined using a single payoff function, where one
player plays the role of maximizer and another player plays the role of minimizer. More commonly, a zero-
sum game is introduced with a payoff matrix, where the rows and the columns are the actions of player 1and
player 2, respectively. A Saddle Point Equilibrium (SPE) is the solution concept to study the zero-sum games
and it exists in the mixed strategies [243].

In the conference paper [168], we considered a two player zero-sum game with continuous strategy set,
where the payoff function has a special form and the strategies of each player are modeled using random
linear constraints reformulated as distributionally robust chance constraints. We proposed an SOCP refor-
mulation of distributionally robust chance constraints under two uncertainty sets based on the partial infor-
mation about the mean vectors and covariance matrices of the random constraint vectors. We showed the
existence of an SPE and characterized it as the optimal solution of a primal-dual pair of SOCPs. The confer-
ence paper has some shortcomings, e.g., the payoff function has a quadratic form, the uncertainty sets are
mainly constructed based on moments from historical data and it lacks of numerical results which allow us
to compare different uncertainty sets. As an extended version of [168], our contribution is as follows:

* We study a more general framework as compared to [168] by considering two types of uncertainty sets
based on either the partial information on the mean vectors and covariance matrices of the random
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constraint vectors (moment based uncertainty sets) or the statistical distance between their true distri-
bution and a nominal distribution (statistical based uncertainty sets). We show that in both cases, there
exists an SPE of the game and an SPE problem is equivalent to a primal-dual pair of SOCPs.

+ As an application, we present a competition problem of two firms in financial market and we show our
numerical results using randomly generated data to compare different uncertainty sets considered in
the chapter.

We keep the same form of payoff function as considered in the conference paper, since we need a different
game model for different form of payoff function, which would break the uniformity of our results. We might
consider this point in future works.

The rest of this chapter is organized as follows. We present related works in Section 5.2. The definition
of a distributionally robust zero-sum game is given in Section 5.3. Section 5.4 presents the reformulation of
distributionally robust chance constraints as second order cone constraints under different uncertainty sets.
Section 5.5 outlines a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game. Sec-
tion 5.6 presents a competition of two firms in financial market as and shows numerical results. Conclusion
and future works are presented in Section 5.7.

5.2 . Related work

In this section, we introduce previous studies on chance-constrained games. Dantzig and later Adler
showed the equivalence between linear programming problems and two-player zero-sum games [3][52].
Charnes [39] generalized the zero-sum game considered in [243] by introducing linear inequality constraints
on the mixed strategies of both the players and called it a constrained zero-sum game. An SPE of a constrained
zero-sum game can be obtained from the optimal solutions of a primal-dual pair of linear programs [39].
Singh and Lisser [218] considered a stochastic version of constrained zero-sum game considered by Charnes
[39], where the mixed strategies of each player are restricted by random linear inequality constraints, which
are modelled using chance constraints. When the random constraint vectors follow a multivariate elliptically
symmetric distribution, the zero-sum game problem is equivalent to a primal-dual pair of Second-Order Cone
Programs (SOCPs) [218]. Nash equilibrium is the generalization of SPE and it is used as a solution concept
for the general-sum games [160] [161]. Under certain conditions on payoff functions and strategy sets, there
always exists a Nash equilibrium [55]. The general-sum games under uncertainties are considered in the
literature [200, 214, 215, 211, 219], which capture both risk neutral and risk averse situations. Liu et al. [145]
studied chance-constrained DRO in geometric optimization. To the best of our knowledge, the distribution-
ally robust chance-constrained approach has been widely studied in the literature but still not completed in
game setup. In this chapter, we want to apply different approaches in the literature to define uncertainty sets
in a distributionally robust chance-constrained game and compare the performance of these approaches by
simulation using randomly generated data models.

5.3. The model

We consider a two player zero-sum game, where each player has continuous strategy set. Let C! € RE1xm,
C? € RE2xn gl ¢ RE1 and d? € RX2, We consider X = {z e R™ |Clz =d', x> 0}and Y = {y ¢ R" | C?y =
d?, y > 0} as the strategy sets of player 1 and player 2, respectively. We assume that X and Y are compact
sets. Letu : X x Y — R be a payoff function associated to the zero-sum game and we assume that player 1
(resp. player 2) is interested in maximizing (resp. minimizing) u(z,y) for a fixed strategy y (resp. z) of player
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2 (resp. player 1). For a given strategy pair (z,y) € X x Y, the payoff function u(z,y) is given by
u(z,y) = Gy +g'z+hly, (5.1)

where G € R™*", g € R™ and h € R™. The first term of (5.1) results from the interaction between both the
players whereas the second and third term represents the individual impact of player 1 and player 2 on the
game, respectively. The strategy sets are often restricted by random linear constraints, which are modeled
using chance constraints. The chance constraint based strategy sets appear in many practical problems, e.g.,
risk constraints in portfolio optimization [112]. In this chapter, we consider the case, where the strategies of
player 1 satisfy the following random linear constraints,

(ai)TISb%}’ k:1727"'7p7 (5‘2)
whilst the strategies of player 2 satisfy the following random linear constraints
(af)'y =07, 1=1,2,....q. (53)

Let Z; = {1,2,...,p} and Z, = {1,2,...,q} be the index sets for the constraints of player 1 and player 2,
respectively. For each k € Z; and | € Iy, the vectors a; and a? are random vectors defined on a probability
space (€2, F,P). We consider the case, where the only information we have about the distributions of a} and
a? is that they belong to some uncertainty sets D}, and D7, respectively. The uncertainty sets Di and D?, are
constructed based on the partially available information on the distributions of a}, and a?, respectively. Using
the worst case approach, the random linear constraints (5.2) and (5.3) can be formulated as distributionally
robust chance constraints given by

. I\T 1 1
T ((ak) < bk) >al, VkeT, (5.4)
and
. 2\T 2 2
P ((—al) y < —bl) >a2, Ve, (5.5)

where o}, and o7 are the confidence levels of player 1 and player 2 for kth and /th constraints, respectively,
and F!, F? are the distributions of a} and a}. Therefore, for a given o! = (af)rez, and o? = (a?)iez,. the
feasible strategy sets of player 1 and player 2 are given by

St = X inf P{(a)z<bl}>al VkeZ .6

« {l‘ € | k}rel ;{ {(ak) € k} Qs 1}5 (5 )
and

522 = cY inf P —(12 T < —b2 > (k2, Vielss. .7

a {y | FI%EDLQ {( l) Y= l} i 2} (5 )

We call the zero-sum game with the strategy set S!, for player 1 and the strategy set S2, for player 2 as a
distributionally robust zero-sum game. We denote this game by Z,. A strategy pair (z*,y*) € S., x 52, is
called an SPE of the game Z,, at a = (o, a?) € [0,1]7 x [0, 1], if

u(z,y*) < u(x*,y*) <u(z*,y), Vo e Sk, ye 2. (5.8)

als
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5.4 . Reformulation of distributionally robust chance constraints

We consider five different uncertainty sets based on the partial information about the mean vectors and
covariance matrices of the random constraint vectors a, i = 1,2, k € Z; and four different uncertainty
sets based on the statistical distance between the distribution of ai and a nominal distribution. For each
uncertainty set, the distributionally robust chance constraints (5.4) and (5.5) are reformulated as second-
order cone (SOC) constraints.

5.4.1. Moment based Uncertainty Sets
We consider five moment based uncertainty sets defined as follows.

Uncertainty set with known mean and known covariance matrix

In some situations, we do not know exactly the true distribution of the random constraint vectors a}, for all
k € Z;, i = 1,2. We can only obtain some information of the underlying distribution from historical data.
For example, by observing a sufficiently large number of data, we deduce the values of mean vector and
covariance matrix of ai approximated by the sample mean x and the sample covariance matrix X¢. We
consider an uncertainty set, which includes all distributions F with mean vector .} and covariance matrix i,
defined as follows ‘ .

The distribution of aj, is F},
F; E [a}] = pj, , (5.9)

Covla}] = X},

D' (1, =)

We assume that for each i = 1,2 and k € I, the true distribution of aj, belongs to the uncertainty set
D" (ui, i) and the matrix X is a postive definite matrix. This uncertainty set has been widely considered in
the literature, e.g., [83]. We present an SOC reformulation of the constraints (5.4) and (5.5) by the following
lemma.

Lemma 5.20. The constraints (5.4) and (5.5) are equivalent to (5.10) and (5.11), respectively, given by

1

o 1
(k) x4 [ 7=y [l (B0 2l 2 < b,
—al
Vkel, (5.10)
2T aj 2\4 2
_(/’Lk) y+ 1 2||(Zk)2y|‘2g_bka
— a2
Vkel. (5.11)

Remark 5.5. An SOC constraint is the set of points = € R™ such that the following inequality holds
| Az + bl < 'z +d,

where A € R™*™ js an m x n real matrix, b € R™ jsanm x 1 realvector, ¢ € R"isann x 1 realvectorandd c Ris
a real number, | - ||2 denotes the Euclidean norm. It is clear that (5.10) and (5.11) are equivalent to SOC constraints.
An SOC reformulation is useful since optimization problems with SOC constraints can be solved efficiently by known
algorithms in polynomial time.
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Proof. Using the one-sided Chebyshev inequality, we have

1- <<u,£>1Tz—b,£>2 )
N FETe
inf  P{(ap)'z < b} = qif (u)Te < by,
FleD) (u,%)
0, otherwise.

The bound of one-sided Chebyshev inequality can be achieved by a two-point distribution given by equation
(2) of [203]. For the case (u})"= > bi,

inf P{a}cx < b,lc} =0,
1 1,1
Fk. EDk (sz)

which makes constraint (5.4) infeasible for any a; > 0. Therefore, for z € S} , the condition (u})™> < b}
always holds and the constraint (5.4) is equivalent to
1 S ol
T+ (a7 — 02/ @ 2fa) =

The above inequality can be reformulated as (5.10). Similarly, we can show that (5.5) is equivalent to (5.11). O

Uncertainty set with known mean and unknown covariance matrix

For alli = 1,2 and k € Z;, we consider the case, where the mean vector of the random vector a}, is known
exactly (approximated by the sample mean y}) but the covariance matrix is unknown due to several reasons,
e.g., the lack of data. We assume that it is only known to belong to a positive semidefinite cone defined with
a linear matrix inequality as follows

Covlay] = ;%%
where vi > 0 is a strictly positive real number, ¢ is a positive definite matrix, for the given matrices B;
and Bs, By X By implies that B, — By is a positive semldeﬂmte matrix. In practical applications, we usually
approximate the matrix X} by the sample covariance matrix. The parameter ; is used in controlling the
uncertainty level, i.e., high vaIue of ~;, implies a large number of distributions in the uncertainty set, which

deals uncertain factors in a more secure way. We consider un uncertainty set, which includes all distributions
F} with mean vector yj, and covariance matrix satisfied the above constraint as follows

S | The distribution of aj, is F
D (ks Zk) =  Fi E [ap] = 1 : (5.12)
Covla] < 713,

This uncertainty set is considered in [46]. We assume that for each i = 1,2 and k € Z;, the true distribution
of a}, belongs to the uncertainty set Dy’ (1}, ;). We present an SOC reformulation of the constraints (5.4)
and (5.5) by the following lemma.

Lemma 5.21. The constraints (5.4) and (5.5) are equivalent to (5.13) and (5.14), respectively, given by

l""\/’yk

VkeT, (5.13)

;
H Si)zell2 < b,
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2
« 1
= 1)y + R T I ED) Pyl < -,
k

Vkel. (5.14)
Proof. Based on the structure of uncertainty set (5.12), the constraint (5.4) can be written as

inf inf P{(a})Tz < b} > al,
(u,T)eu} Fliepilc’i(#«,z) {( k) > k} > oy
where -
Uy = {2 [p= w2 2020}
Here, the inner infimum is taken over all distributions with same value of mean vector and covariance ma-

trix. The outer infimum is taken over all couples (u, X)) satisfying the conditions in (5.12). Using the similar
arguments as in the Lemma 5.20, the constraint (5.4) is equivalent to

blli‘ — (:ullc)Tx > allc (5 15)
max Vziyz | l—ap ’
S=yist

The above inequality (5.15) can be reformulated as (5.13). Similarly, we can show that (5.5) is equivalent to
(5.14). 0

Uncertainty set with unknown mean and unknown covariance matrix

For all i = 1,2 and k € Z;, we consider the case, where both mean vector and covariance matrix of ai are
unknown. From historical data, we obtain the sample mean pi and the sample covariance matrix . We
deal the uncertainty level in a secure way by assuming that the mean vector and the covariance matrix of
ai are not exactly the same as its sample mean and sample covariance matrix. The mean vector lies in an
ellipsoid of size 4, > 0 centered at x|, defined by the following constraint

i iy T (yi)~! i i i
(Elak] = mi)  (Zk)  (Elay] — pk) < i,
and the covariance matrix of a, lies in a positive semidefinite cone defined as follows
Covlar] = 2Tk

where ~;, > 0 and X} is a positive definite matrix. The parameters ~;, and +;, are used in controlling the
uncertainty level. If v¢, = 0, the mean vector is exactly the same as its sample mean. We consider un un-
certainty set, which includes all distributions F}. with mean vector and covariance matrix satisfied the above

constraints as follows . 4
The distribution of aj, is F}

i T (yiy—1
Dt mhy = m | )| ()

} ) ) 16
x (Elai] — i) < i, (5.16)

Covlay] = 74 %%

The uncertainty set (5.16) is considered in [57]. We assume that for each i = 1,2 and k € Z;, the true distri-
bution of a}, belongs to the uncertainty set Dy (ui, 2% ). We present an SOC reformulation of the constraints
(5.4) and (5.5) by the following lemma.
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Lemma 5.22. The constraints (5.4) and (5.5) are equivalent to (5.17) and (5.18), respectively, given by

tye+ (T2 Pl ) b, <

Vkel, (5.17)
e (kg i) [ <ot
VkeI. (5.18)

Proof. Based on the structure of the uncertainty set (5.16), the constraint (5.4) can be written as

inf inf ]P’{a,lcx < b,lc} > aj,
(w,2)eU} FleDy (u,5)

where

- R NS A St 1
U%:{(M’Z)l (£_</’;]l£2)211€(2k) (b= 1k) <V }

Using the similar arguments as in the Lemma 5.20, the constraint (5.4) is equivalent to

by + vi(z) - ol (5.19)
1)2(1-) 1 — ozk
where
min —p'x
vi(z) =< * (5.20)

T -1
st (w—m) (Z2) (n—m) <
max z'Yx
@) =3 Yo
S Y = Va2
Let 5 > 0 be a Lagrange multiplier associated with the constraint of optimization problem (5.20). By ap-
plying the KKT conditions, the optimal solution of (5.20) is given by p = puj + YA L and the associated

\/W
Lagrange multiplier is given by g = 145 ~. Therefore, the corresponding optimal value vy (z) = —(u})Tz —
k1l
VA VE S x. Since, uTSu < uTv,Shu, then, va(z) = v},2"Ska. Therefore, using (5.19), (5.4) is equivalent to
(5.17). Similarly, we can show that (5.5) is equivalent to (5.18). O

Polytopic uncertainty set

For all: = 1,2 and k € Z;, we consider the case, where both mean vector and covariance matrix of the
random vector aj, are unknown. From historical data, we consider M samples i.i.d of the random vector
ai. We obtain M sample means p,,...,u.,, and M sample covariance matrix D) EPRRRR Y SVE where ¥ ; is
positive definite, for any j = 1,..., M. We consider polytopes U,; = ConVv(ujy, tyas - - - Hipy) @aNd Ugi =
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Conv(X},, %, ..., 3%,,), where Conv denotes the convex hull. We assume that the mean vector and the co-
variance matrix of a} are known to belong to polytopes U,: and Us;:, respectively. We consider an uncertainty

set, which includes all distributions F} defined as follows

' The distribution of a}, is F}
DY (uh, 23) = { Fy Ela}] €U, - (5.21)
Covlay] € Us;

The uncertainty set (5.21) is considered in [83]. We assume that for each i = 1,2 and k € Z;, the true distri-
bution of a}, belongs to the uncertainty set D, (i, £i). We present an SOC reformulation of the constraints
(5.4) and (5.5) by the following lemma.

Lemma 5.23. The constraints (5.4) and (5.5) are equivalent to (5.22) and (5.23), respectively, given by

lu’ktj $+ || ka 2x‘|2<bka

Vi=1,.... M, w=1,...,.M, k €1, (5.22)

uk_] y+ H ka yHQS_bia
Vj—l,...,M,w—l,...,M,kEIQ. (5.23)

Remark 5.6. Lemma 5.23 shows that the constraint (5.4) (resp. (5.5)) is equivalent to a system of M? constraints
in (5.22) (resp. (5.23)).

Proof. Based on the structure of uncertainty set (5.21), the constraint (5.4) can be written as

inf inf  P{(a})’z <bL} > af,
(n.D)el} FreDy ' (1,3)

where X
Ui ={(nx) |nety sety}.

Using the similar arguments as in the Lemma 5.20, the constraint (5.4) can be reformulated as

min (b,lC — uTx)

MEU}A O/l
k 'k
= /7 T (5.24)
max vz'Xz -«
YeUs

The above inequality (5.24) can be reformulated as

b k)" [ ol
\/xTEiwx “\V1l-af’

Vi=1,...,M,w=1,...,M, ke,

which is equivalent to (5.22). Similarly, we can show that (5.5) is equivalent to (5.23). O
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Uncertainty set with componentwise bounds on mean vector and covariance matrix

For all i = 1,2 and k € Z,, we consider the case, where the mean vector and the covariance matrix of aj,
are unknown. We obtain from historical data, a sample mean vector p and a sample covariance matrix Xi.
We do not approximate the mean vector and the covariance matrix of a!, by its sample mean vector and
sample covariance matrix, but we deal the uncertainty level by a more secure way. For each j =1,...,m, we
assume that the jt"-component of the mean vector of a}, lies in a ball of radius e, x(j) > 0, centered at the

jth-component of the sample mean vector p%, which can be reformulated as follows
pi, = € r < Elag] < pj + €,y

where Eft.,k = (EL,k(l)’ ce e@k(m)) is an m x 1 vector and the above inequalities are understood componen-

twise. Similarly, foreach 5 = 1,...,mand w = 1,...,m, we assume that the (j,w)— entry of the covariance
matrix of aj, lies in a ball of radius €, ;. (j,w) > 0, centered at the (j, w)— entry of the sample covariance matrix

¥¢, which can be reformulated as follows

A Eiz,k: < Coviay] < pj, + eiil,lw
where €, ; = €, ;(j, W) 1<jw<m IS aN m x m matrix. Let g = pj, — €, ., i = ptj, + €, 40 Zh_ =T, — &, and
Y = X}, + €4 ;.. We consider an uncertainty set, which includes all distributions F} defined as follows

o | The distribution of aj, is F}.
DY (i, 5h) = § Fé | i < Blaj] < iy, , (5.25)
¥_ < Covlay] < ¥,

Since Xj is a positive definite matrix, we can take e}, , > 0 such that for any matrix H, if £}, _ < H <¥j_, then
H is a positive definite matrix. We define a set of vectors S} as follows
Sp=A{n €R™ [u(j) = - () orpi (7), Vj = 1,...,m},

where i(j) is the j'— component of 1, u}_(j)isthe j"— componentof i} _, and p}. (j) is the j""— component
of . For example, if yj. = (1,2)7, ui, = (5,6)7, then S is a set of 4 vectors {(1,5)", (1,6),(2,5)7,(2,6)"}.
We define a set of covariance matrix 73} as follows

Tkl = {E | Z(.]?w) = lec—(jvw) Orzllc—i-(jaw)v 1<jw< m} ,

Similarly, we define a set of vectors 57 and a set of covariance matrix 72. The uncertainty set (5.25) is consid-
eredin [83]. We assume thatfor eachi = 1,2and k € Z,, the true distribution of a{, belongs to the uncertainty

set DZ” (1i,%%). We present an SOC reformulation of the constraints (5.4) and (5.5) by the following lemma.

Lemma 5.24. The constraints (5.4) and (5.5) are equivalent to (5.26) and (5.27), respectively, given by

1
« 1
()z +4 7 _’“al (=12 alls < by,
k

Vurte S, S eT ke, (5.26)
2T O‘i 2\1 2
— )Ty T 1) Pyl < -2,
k
Vp?eSE Y eT? kel (5.27)
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Remark 5.7. Note that S} is a set of 2™ vectors and T} is a set of 2m* matrix. Then, Lemma 5.24 shows that the
constraint (5.4) is equivalent to a system of 2™ x om® constraints in (5.26), for any k € T, and the constraint (5.5)
is equivalent to a system of 2 x 2" constraints in (5.27), for any k € Ts.

Proof. Based on the structure of the uncertainty set (5.25), the constraint (5.4) can be written as

inf inf Plajz <bp} > ap
(12U FreDl (u,5) { } ’

where

y L <p<ul
ul{ ’E‘Mk‘——ﬂ_ukﬂn }
R SEVES N

Using the similar arguments as in the Lemma 5.20, the constraint (5.4) is equivalent to

1 1
htnle) 5 [ (5.28)
Uz(x) 1 — Ozk

where

min —uTa:
vi(z) =< # ) .
Stopp. S p < ppy,

max z' Y
1)2(;5) = by} )
sty <¥<3..

Note that the objective functions —n"z and 2"z are linear functions w.r.t u (resp. X). Then, it is clear that
the optimal values v;(z) and vz(z) hold only when ¢ € S} and X € T}'. Then, the constraint (5.4) can be
reformulated as (5.26). Similarly, we can show that (5.5) is equivalent to (5.27). O

5.4.2 . Statistical Distance Based Uncertainty Sets

In this section, we define uncertainty sets using a metric called ¢—divergence. Forany: = 1,2 and k € Z,,
the decision makers (the two players in the game) believe that the true distribution of a}, oscillates around a
Normal distribution of mean vector x and covariance matrix X%, where xi and i are sample mean vector
and sample covariance matrix obtained from historical data. We assume that the true distribution of a}, lies
in a ball of radius 6%, centered at a nominal distribution v} and the distance between these two distributions
is given by ¢—divergence metric. The nominal distribution v} is assumed to be Normal distributed of mean
vector u¢ and covariance matrix Xi.

Definition 5.11. The ¢—divergence distance between two measures 1. and v with densities f,, and f,, respectively,
with support in R"™ is defined as follows:

o) = [ o (445) e

where 1y = m and ro = n.

There are different types of qb—divergences‘ distance, we refer to [22] and [176] for different choices of
function ¢. We consider an uncertainty set D"’ defined as follows

DY = {Fi € M+ | I,(F,vi) <6}, (5-29)
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where M+ is the set of all probability measures on R":, with r; = m, 7o = n, and 6 > 0. This uncertainty set
is considered in [117]. We assume that for each i = 1,2 and k € Z;, the true distribution of a belongs to the
uncertainty set D" (ui, %1).

Definition 5.12. The conjugate of the function ¢ is a function ¢* : R — R U +oo such that
¢*(s) = sup{st — o(t)}.
t>0
We study some special cases of p—divergences, which are summarized in Table 5.4. The data of Table 5.4

Table 5.4: List of selected ¢—divergences with their conjugate respectively

Divergence o(t),t >0 *(s)
Kullback-Leibler tlog(t) —t + 1. e’ —1
—1, s < —1,
Variation distance [t —1]. s, -1<s<1,
400, s> 1.
Modified x2 - distance (t —1)2 -, <%
s+ 7 s> =2
Hellinger dist i1y o s<h
ellinger distance (Vt—1)° too, s> 1

are taken from [22]. The following lemma provides the first reformulation of the constraints (5.4) and (5.5).

Lemma 5.25. The constraint (5.4) is equivalent to

sup {fE(NB)} > oy, (5.30)

A>0,8€R

where f1(\, B) = B — AL — \¢* (%H’) P, (M}) — A¢* (g) [1 - IPV;(M;)}, and M} = {¢ e R™ | ¢Tz < bL}. The
constraint (5.5) is equivalent to

sup  {fi (N, B)} > aj,
A>0,8€R

where f2(\, ) = B — A2 — \o* (%%) P,z (M2) — A¢* (g) [1 ~P, (M,f)}, and M2 = {¢ e R" | ¢Tx < B2}

Proof. For k € Z;, consider the following optimization problem

The above problem is rewritten as

= juf [ Lp©F©d

st () [ 1,000 ( = 1(2)>d£<9i,

(i) [ Fede=1 (531
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where the infimum value is taken over all positive measures on R™. The Lagrangian dual of (5.31) can be
written as follows

vb= suw {B—A9i+Finf / gé(x,m},

A>0,8€R (£)>0

where gi(\, 8) = 1, ()F (&) — BE(E) + Af,1 () ( FE) ) d¢, X is the dual variable of the constraint (i) and

19
k
B is the dual variable of the constraint (ii). Since 6} > 0, the Slater's condition holds, then the strong duality
holds, i.e., v = vf. The rest of the proof follows from Theorem 1 [117]. O

We present an SOC reformulation of the constraints (5.4) and (5.5) by the following lemma.
Lemma 5.26. The constraints (5.4) and (5.5) are equivalent to (5.32) and (5.33), respectively, given by:
(uh)o+ @D [H(0E 1 )] || (51 P 2| <k,

VkeT, (5.32)

)y + D [HE 1 - od)] | (5D) o], < 02,
Vk € L. (5.33)

where ®(—1) js the quantile of the standard Normal distribution and H is a function whose value is given in Table
5.5.

Table 5.5: List of selected ¢—divergences with the function f respectively

Divergence H(f,¢) = 0, €
. . —61—c_ 0>0
Kullback-Leibler infreo) =g D<e<1
L . 0>0
_ (2
Variation distance l—e+3 0<e<1
Modified x? - distance 1 eq YOPHA0(—D)-(1-200 =0 1
20+2 ) 0<e<s3
—B+VA
2 ? P
where B = —(2— (2 —0)%)ec — 2222, 2V~
Hellinger distance ( . (2 )2)6 2 022
C= (z]a) AT 0<e<l1
A=B*-4C=02-02[4-(2-0)*]c(1—¢),

Proof. Using Lemma 5.25, we prove that the constraint (5.4) is equivalent to
P, (M}) > H(6},1 - ap). (5.34)

Since v} follows a Normal distribution with mean vector p;. and covariance matrix %}, it is well known that
(5.34) is equivalent to the SOC constraint (5.32). We refer to Propositions 2, 3, and 4, [117] for the proof of
the cases Kullback-Leibler, Variation distance and Modified x? - distance. We present the proof of Hellinger
case. Fori = 1,2 and k € Z;, it suffices to calculate the value of sup,.¢ e {f,i()\,ﬁ)} with Hellinger distance
divergence. We consider two cases as follows
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+ Case1: ¥ <1 B <\ Wehave

Therefore,

swp {0 5)} =
A>0,8€R
) )\2 52 )
P . (M — \6:.
Ny TR W T ) S S

Since A >0and 8 < )\, lety = X — 3, we deduce that

sup  {fi(\,5)}

A>0,8€R
P, (M) 1 .
= sup N ) A2 -6 — )
A>0,7>0 { (7(7 + 1) Y ( k) 7

- }/) +A(2—6%)—~. Note that 0 < P, (M}) <1land~ > 0. Therefore, Q(\,7) is

Let (2, 7) = A2 ( 0
etQ(A,y) = y(v+1)
a second-order polynomial of A and the coefficient of A? is negative. It is well known that the maximum

value of a second order function f(z) = az? + bz + cwitha < 0is ¢ — % and it holds at 2 = 2. Hence,

the maximum value of Q(A,~) holds at \* = % Since 0 < 2, itis clear that A* > 0. Then, the
vi Wk

optimal value of supy. seg { f£(A, 3)} holds when A = A* and we have

sup {fi(\B)}

A>0,8€R

_ 3 (2—0;)*v(y+1)
_ili%{ o 4(7+1—IP’1,£(M,§))}' (5.35)

Letu=~v+1-— IP’V;-C(M;), thenu>1-P, (M}). Rewriting (5.35) as a function of u, we have:

sup {fi(AB)} = sup  F(u),

A>0,8€R u>1-P ; (M})
k

b
= sup {au + -+ c} s
u>1—IPV)iC(M,i) U

where a = (W - 1) ;
=0, (MD(®, (M)=1)

X (2-65)2(2P,; (M})—1) / b .
c=1-=P,(M;)+ T . Note that e < 0 and b < 0. We have: F' (u) = a — ;5. Hence, it
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can be shown that F is decreasing on (u*, +c0), increasing on (—u*,u*) and decreasing on (—oco, —u*),

where u* = \/g Or,

u* :\/WIP’ (M1 =P, (M})). (5.36)
4—(2—01)2 Wk ViR

We have F(u*) = —2v/ab + c. We consider 2 cases as follows

Ttu <1-P, (M}). Since F is decreasing on (u*, +00), it is also decreasing on (1 -P,; (M}), 4+00). Hence,

SUPy> 1P, () F(u) = 0, where the optimal value holds whenu — 1 —P,; (M}) < v — 0, which violates

(5.30).

220 >1-P, (M}) > 0. Then, the optimal value of SUPy> 1P, (M) F(u) holds when u = w*. Therefore,

sup {fi(\B)} = F(u*) = —2Vab + c.

A>0,8€R

Then, (5.30) is equivalent to

L \/ - (1 _ <2—46>) B,y (M{)(1 — P, (M)

_ )2 ) _ pi)2 )
> (1- B m o + B -, (537

By taking square on both side of (5.37), we obtain a second order inequality of P, (K) as follows
) 7\2 ) i
P, (My)” + BP,: (M) + C >0,

where B, C are defined in Table 5.5. By solving the equality 22 + Bz + C = 0, we have two solutions
Zmin < Tmax Where zmin = *B;ﬂ, Tmax = %. It is clear that (5.37) is equivalent to either P, (M}) >

max OF P, (M}) < min. Since 6}, < 2 — /2, we deduce that 1 — % < 0. Therefore, we have

—_H1)2 _piN2 _
<1<2 ) )xmm+(2 P o)

_fi)2 _ 02
> (1_M> xmax+w_(1_a§c)- (5.38)

2 4

On the other hand, we have

_2 ¢ (2 —49;;)2 (1 it —49;;>2> o)

e [(1- B LR ),

2 4
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where £ = zmin Or © = Tmax. Note that — \/(2 02 (1 2= 97)2) z(1 —z) < 0. Using (5.38), we deduce

that
(2 - 9’ 2 (2 - 9’
-2 1- xmax(l - xmax)
(2 - 9 2 2—6)2 -
and

- 2\/(2 _462)2 (1 _ 2 _4%)2> Zmin(1 — Zmin)
(B s By

Or xmax Satisfies (5.37) while zin does not satisfy (5.37). Then, (5.37) is equivalent to P% (M}) > Tmax-

(B _
o (5) =+

which implies that supy~ ¢ ser { fi (X, 8) } = —oc, which violates (5.30).

* Case2:1< £ & )\ < B Wehave

5.4.3 . Second Order Cone Reformulation

In this section, we summarize our SOC reformulation results from Lemmas 5.20, 5.21, 5.22, 5.23, 5.24, and
5.26. They show that in all cases of uncertainty sets defined in Sections 5.4.1 and 5.4.2, the feasible strategy
sets (5.6) and (5.7) can be written as

Sta = {o € X | (k)T + ko | (Tha) bl < 01,
vj:1727---7N1,’LU:1,2,...,P1,kEIl}7 (5.39)
and
Sez = {y €Y | =)y + ka2 ll(52,) 2wll> < —b7,

Vj:1,2,...,N2,w:1,2,...,P2,ZGIQ.}. (5.40)

« If the uncertainty set is defined by (5.9), then Koi = \/ 1fii and Ny =P, =Ny =P, =1,foralli =1,2,
k
ke 1,

* If the uncertainty set is defined by (5.12), then «,; =
i=1,2, kel

1fizma”d Ny =P =Ny = P, = 1, for all
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* Ifthe uncertainty set is defined by (5.16), then ,; = (, / 1(_"—&\/7};2 + \/y;'d) and Ny =P, =N, =P, =1,
foralli =1,2, keI,

« If the uncertainty set is defined by (5.21), then Kai =1/ 1f2 and Ny =P, =Ny, =P, = M, foralli =1,2,
k
kel,.

+ Ifthe uncertainty set is defined by (5.25), then ,,; = 4/ 12‘%!1. and Ny = 2™ P, = 2m*) N, = 2n P, = 2(n"),
foralli =1,2, keI,
+ If the uncertainty set is defined by (5.29), then r,; = D [H(6;,1—al)]and Ny = P, = N = P, =1,
where H and -1 are defined in Lemma 5.26.
We assume that the strategy sets (5.39) and (5.40) satisfy the strict feasibility condition given by Assumption
5.7.
Assumption 5.7. 1. There exists an z € S!, such that the inequality constraints of S, defined by (5.39) are
strictly satisfied.
2. There exists an y € S2, such that the inequality constraints of 52, defined by (5.40) are strictly satisfied.

The conditions given in Assumption 5.7 are Slater's condition, which are sufficient for strong duality in a
convex optimization problem. We use these conditions in order to derive equivalent SOCPs for the zero-sum
game Z,.

5.5 . Existence and characterization of Saddle Point Equilibrium

In this section, we show that there exists an SPE of the game Z, if the distributions of the random con-
straint vectors of both the players belong to the uncertainty sets defined in Sections 5.4.1and 5.4.2. We further
propose a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game Z,.

Theorem 5.4. Consider the game Z,, where the distributions of the random constraint vectors ai, k € T;, i = 1,2,
belong to the uncertainty sets described in Sections 5.4.1 and 5.4.2. Then, there exists an SPE of the game for all
a € (0,1)? x (0,1)4.

Proof. Let o € (0,1)? x (0,1)%. For uncertainty sets described in Sections 5.4.1and 5.4.2, the strategy sets S!,
and 52, are given by (5.39) and (5.40), respectively. Itis easy to see that S}, and S2, are convex and compact
sets. The function u(z,y) is a bilinear and continuous function. Hence, there exists an SPE from the minimax
theorem [243]. O

5.5.1. Equivalent Primal-Dual Pair of Second-Order Cone Programs
From the minimax theorem [243], (z*,y*) is an SPE for the game Z,, if and only if

x* € argmax min u(x,y), (5.41)
zeSt, 96322

y* € argmin max u(z,y). (5.42)
yeS2, z€S,
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We start with the optimization problem

min max u(x
uESz zESl ( y)
By introducing auxiliary variables t}cjw, the inner optimization problem max,c¢1 u(z,y) can be equivalently
written as
max ' Gy + g’z +h'y

J,,tk]w

s.t.

(Z) 71‘1—”]16]' 7Ho¢i ||tll€ju)||2+b]1<: > 07

Vi=1,2....,N, w=1,2...,P, k€T,

(ZZ) tllcjw - (Ellcw)§'r = 0?

Vi=1,2... N, w=12....P, ke,

(iii) Clz=d', z, >0, Vr=1,2,...,m. (5.43)
(51

Let \! = (A}ww + Ok @Nd v! be the Lagrange multipliers of constraints (i), (ii), and equality constraints given
in the constraint (ii¢) of (5.43), respectively. Here, forany j = 1,...,Nj,w =1,..., P,k € I3, A}ww is a real
number, 4} . isanm x1realvector, and v! is a K; x 1 real vector. Then, the Lagrangian dual problem of the
SOCP (5.43) can be written as
min max {J;TGy +g'x+hTy
A1>0, 6;]@, vl x>0, t!

Nl 1
+ 303D (= @k = ko [kl + B1)

k€Z; j=1 w=1
+ 0 (g — (k) F2) | + 01T - Cl ).

By reformulating the objective function of the above optimization problem as the sum of two functions such
that one depends on z and other depends on t; ;,,, we have

kjw

A1 207gllcjw7ul >0

min max< x' [Gy —(CHTW +g

- ZZZ Mgutthy + (Sha)? 61,)]
k€Z; j=1 w=1
N1 Py

Fmax 303 |Gk i = Kag M [l |

hiw kez, j=1w=1

+hly+@HTd + ) i i Ambk>

k€T j=1 w=1
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The first term of the objective function is a function of =

IT |:Gy _ (Cl)lel +g
N1 Py

=200 ki + (lecw>% 51@@)] (5.44)

keI, j=1w=1
The above term is unbounded on the domaine = > 0, unless the following condition holds

N1 P

Gy - Z Z Z (/\llcjw:ullﬁj + (EI{:w)% 6lijw)

ke, j=1 w=1
—(CHTW! +g<o.

When the above condition holds, it is clear that the maximum value of (5.44) is zero and it holds at x = 0. The
second term of the objective function is a function of ¢},

Z Z Z |: 6k]w tkjw K’ai/\llcjw HtllcijQ:| (545)

keZ; j=1 w=1

The above term is unbounded on the domaine ¢ ;,, € R™, unless the following condition holds

Haliij < Hai)‘llcjw7
VkEIhj:l,Q...,Nl,U):1,2...,P1.

When the above condition holds, it is clear that the maximum value of (5.45) is zero and it holds at t}m =0.
Then, the Lagrangian dual problem of the SOCP (5.43) can be written as

N1 Py

.. nin (PTy+ T + YYD Ajubt)

1 1
Ok jw¥ k€T, j=1 w=1

s.t. (1) Gy-— Z Z Z /\k]w/ukj ka) 61%]’111}

k€T, j=1 w=1
—(CHTv' +g <o,
(@) 10kl < Fat Akju:
Vkel,j=12...,Nj,w=1,2..., P.

Under Assumption 5.7, the Lagrangian dual problem of (5.43) has zero duality gap [30], which implies
that the above optimization problem is equivalent to the problem max,cs1 u(z,y). Hence, the problem
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minge g2, MaxXest u(z,y) is equivalent to the following SOCP

N, P,

: T INT 1 1 g1

, i hy+ ) 'd + E E E Ak Dk
YV Okjwr Mejw= keT; j=1w=1

s.t.
N1 Py

() Gy— 33 huinh; + (Sha) * o]

k€T, j=1w=1
— (€Y +g <0,
(1) 0kj0ll < Kat Mejuws
VkEL,j:I,Z..,Nl, w:1,2...,P1,
1
(@) — (i) "y + ra2 l(Z7,) 20l < =07,
Vj:].,Q,...,NQ, w:172,...,P2, ZGIQ,
(iv) C*y=4d* y,>0,Vs=1,2,...,n, (5.46)

where the constraints (ii7) and (iv) are due to the fact that y € 5%, and the representation of 52, in (5.40).
Similarly, problem max,c g1 mingeg2 u(x,y) is equivalent to the following SOCP

N» P
max gz+ (WHTd* - E E E )\lgjwb?
x, v2, 82 A2 >0 "
Jw Jw €Ty j=1 w=1
s.t.

No P .

@) Gz=3 3 > [ = Ajuniy + (£)® 6]
leIszl w=1

— (W2 +h>0,
(“) ||5l2jw|| S Hozlz)‘lgjuﬂ )‘l2ju; 2 Oa
V1l els, J=12,....,No, w=1,2,..., Ps,
1
(@d) (1)@ + Kap ||(Zhw) 22l < b,
ijl,Q,...,NQ, w=12,...,Ps, kEIl,
(iv) Clz=d', z,>0,Vr=12,...,m. (5.47)

It follows from the duality theory of SOCPs that (5.46) and (5.47) form a primal-dual pair of SOCPs [30]. Next,
we show that the equivalence between the optimal solutions of (5.46)-(5.47) and an SPE of the game Z,,.

Theorem 5.5. Consider the zero-sum game Z,, where the feasible strategy sets of player 1 and player 2 are given
by (5.39) and (5.40), respectively. Let Assumption 5.7 holds. Then, for a given « € (0,1)? x (0,1)9, (z*,y*) is an SPE
of the game Z,, if and only if there exists (v'*,6;%,,, AL5,, > 0) and (v**, 675, AT, > 0) such that (y*, v'*, 6%, Akb.,)

and (z*,v**, 6%, A\l,) are optimal solutions of (5.46) and (5.47), respectively.

Proof. Let (z*,y*) be an SPE of the game Z,,. Then, z* and y* are the solutions of (5.41) and (5.42), respec-

tively. Therefore, there exists (v'*, 3%, Ak%,, > 0) and (v**, 67, A\, > 0) such that (y*,v'*,6;%,, AL%,,) and
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(x*, v 612;0, Afj*w) are optimal solutions of (5.46) and (5.47) respectively. On the other hand, let (y*, v'* 6,%;‘7”, A,lc;w)

and (z*,v?*, 6%, \?* ) be optimal solutions of (5.46) and (5.47), respectively. Under Assumption 5.7, (5.46) and

ljw?r Mjw

(5.47) are strlctly feasible. Therefore, strong duality holds for primal-dual pair (5.46)-(5.47). Then, we have

g:r + 2* Td2 Zii)‘ljw

€T, j=1 w=1
Ny Py

=Ty + ()T YT AL (5.48)
ke, j=1 w=1

Consider the constraint (i) of (5.46) at optimal solution (y*, v'*, 6}, A}%,,) and multiply it by 7, forany z € S},

kjw’ ‘kjw
we have
l‘TGy* +gT[L‘ < Z,T(OI)TVH
1 1
+ Z Z Z |::E :U‘kj kjw +z (El{:w) (;kjw . (549)
keZ; j=1 w=1
By using the Cauchy-Schwartz inequality, forany ke Z;, j = 1,2...,N;, w=1,2..., P;, we have
JCT(leew) 5k]w < ||(Ekw)2'r” ”(SkaHQ'
Using the constraint (i7) of (5.47), the above constraint implies that
* 1 *
(1‘ )T(Ellsw) 5k]w < ||(Ellew)2x”2“ia,{)‘i'jw
Since z € S}, we have
Clz =d".
Then, the constraint (5.49) implies that
xTGy* +ng S (Vl*)le
1 1
1 *
+ Z Z Z |:$T/’ij)\]€jw (lecw)2m”2ﬁai)‘llcjwi| ’
keZ, j=1 w=1
which in turn implies by using the constraint (ii7) of (5.47) that
R S L 3D 3 ST}
k€I, j=1 w=1

Then, for any z € S!,, we have

:cTGy* +ng+hTy* < hTy* + (Vl*)le
N1 P

YD Aubi (5.50)

k€Z; j=1 w=1
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Similarly, for any y € 52,, we have

(x*)TGy +g'z* + hTy 2 gz

)+ Z Z A b (5.51)

€5 j=1 w=1

Take z = z* and y = y* in (5.50) and (5.51), then from (5.48), we get

Ny Py
u(®,y") =hly"+ @) Td + >N NLb

keIl j=1lw=1

=g'a" + )+ ) Z Z AL b7 - (5.52)

€S j=1 w=1

It follows from (5.50), (5.51), and (5.52) that

u(z,y*) < u(x*,y*) <u(z*,y), Vo e S, ye S,

which in turn implies that (z*, y*) is an SPE of the game Z,. O

5.6 . Numerical results

5.6.1. Competition in Financial Market

In this section, we consider a competition of two firms in financial market. They invest in the same set
of portfolios. Let P = {1,2,..., Np} be the set of portfolios. Let A; be the set of assets in the portfolio j.
Assume that the sets A; and Ak are disjoint, for any j # k. Let x;, = (x;);jea, be the investment vector of
firm 1 in portfolio & and yr = (ykj)jea, be theinvestment vector of firm 2 in portfolio k. Let x = (z)rep and
y = (yr)rep be the investment vector of firm 1 (resp. firm 2). The set of investments X of firm 1 is defined as
follows

x‘ S wy =WhVieALkePy,
JEAL

and the set of investments Y of firm 2 is defined as follows

Y = y‘ S oy =WEVic A, kePy,
JEA

where W} is the total investment of firm i in portfolio &, for anyi = 1,2 and k € P. Let L}, = (Lj;)jea, be
a random loss vector of firm ¢ from portfolio k. Then, for a given investment vector z; and yy, the total loss
of firm 1 (resp. firm 2) caused by portfolio k is defined as (L})Tz, (resp. (L})Ty:). Each firm wants to make
sure that their random loss is below a maximal allowable loss level with high probability. This condition is
modeled by the following inequality

P {(L;)Txk < b}c} > al, (5.53)



and
P {(L?)Tyz < b?} > af, (5.54)

where b are deterministic vectors and «j, are confidence levels, i = 1,2, k € P. We assume that the true
distribution of random loss vectors is unknown, but only known to belong to some uncertainty set Dj, defined
in Section 5.4. Then, the feasible strategy sets of two firms are given by

inf P{L” <b1}> L vkeP,
FEED; (Li) @i < by p 2

and .
: 2 2 2
FI%E%?P{(LZ) y < bl} >a2, VieP.
We assume that the total profit of both firm is zero, i.e., for each profile of strategies (z,y) € X x Y, if
firm 1 gains a profit u(x,y), then firm 2 gains a profit —u(z,y). Firm 1 wants to maximize v w.r.t =z, for
y € 52, and firm 2 wants to minimize u w.rt y, for z € S!,. We assume that u has the form (5.1), i.e.,
u(z,y) =2'Gy+ g’z + hly.

In order to find an SPE of (5.8), we solve the two SOCP problems (5.46) and (5.47) using coneqp solver in
CVXOPT. We compare the uncertainty sets defined in Section (5.4) with the true model, in which we assume
that the true distribution of random loss vectors is known and follows Gaussian distribution. In this case, it
is well known that the constraints (5.53) and (5.54) are equivalent to SOC constraints [90]. An SPE in true
model can be computed by solving an SOCP reformulation [218].

5.6.2 . Case Study

All the numerical results below are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4
GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We consider two firms investing in a portfolio consists of
four assets, i.e.,, P = {1} and A; = {1,2,3,4}. We generate randomly the vectors g and h in (5.1) in [-3, 3]* by
the command "numpy.random.uniform(-3,3,size=(4,1))". The matrix G in (5.1) is randomly generated by the com-
mand "numpy.random.uniform(-3,3,size=(4,4))". We take the confidence levels of two firms as a! = a? = 0.9,
the total investment of two firms in the portfolio Wil and W? are randomly generated on |20, 80] by the com-
mand "numpy.random.uniform(20,80)". The maximal allowable loss levels of two firms b and b2 are randomly
generated on [100,500] by the command "numpy.random.uniform(100,500)". The probability distribution of
the loss of two firms L1 and L? are assumed to be Normal distributions with mean vector ui (resp. p?) and
covariance matrix X} (resp. 7). The mean vectors are randomly generated on [8, 12]* using the command
"numpy.random.uniform(8,12, size=(4,1))". The covariance matrix are defined as follows

. AAT
D= +L,Vi=12
where Ais a4x4 random matrix whose all entries belong to [0, 1] generated by the command "A=numpy.random.random(siz
and I, denotes 4 x 4 identity matrix. For any i = 1,2, we define sample mean vector y’,,,.,. and X

sample
by generating randomly a sample of 100 observations &, ..., ¢, which follow Normal distribution with
mean vector x4 and covariance matrix 3¢. To do that, we generate a standard Gaussian vector by the com-
mand "x=numpy.random.normal(o,1,4)". We generate a Gaussian vector with mean vector i and ¢ by taking
¢ = Bx+puj, where Bis the Cholesky factorization of ©{. To get the Cholesky factorization of a matrix, we use

the command "numpy.linalg.cholesky". The sample mean vector 4., ,. and the covariance matrix X are

sample
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defined as follows

) 1 100 )
uzample = m ; f;,
100
. . . . ) T
E;ample = % Z(&; - :U/;ample)(fé - M;ample) :
j=1

Now, we define other parameters for each model. For the uncertainty set (5.12), we take 4% = 1.1, for any
i = 1,2. For the uncertainty set (5.16), we take 4%, = 4i, = 1, for any i = 1,2. We take the uncertainty set (5.21)
similarly as the uncertainty set (5.9) by choosing M = 1. For the uncertainty set (5.25), we take the radius
vector ¢, ; = (0.1,0.1,0.1,0.1)* and the radius matrix e}, ; = 0.1 x Iy, for any i = 1,2, where I, is 4 x 4 identity
matrix. For the uncertainty set (5.29), we take #% = 0.05, for any i = 1, 2.

For the above instance, we compute an SPE of the true model, where the true distribution of random loss
vectors L1 and L? follow Gaussian distributions with mean vector p1 (resp. p2) and covariance matrix 1 (resp.

¥2). We obtain an SPE (z*, y*) given by

z* = (18.91,19.45,19.45,20.22)",
y* = (19.01,20.15,20.45,18.71)".

The profit of firm 1 for this instance is u(z*,y*) = —275.52. Now, we calculate an SPE of the models defined
in Section (5.4). For the uncertainty sets (5.9), (5.12), (5.16), (5.21) and (5.25), we take u} = Hiampze and i =

3 ampler TOr @any 4 = 1,2. For the uncertainty set (5.29), we assume that the nominal distribution v} follows
a Gaussian distribution with mean vector y!,, .. and covariance matrix %%, .. We compare the optimal

profit value of firm 1 in above models with the optimal profit value of firm 1 in the true model. The results
are given in Table 5.6. We can see that for this instance, the models defined by ¢—divergence give better
solution than the models defined by moments since the optimal profit value in ¢—divergence uncertainty
sets approximates well the optimal profit value in true model. We also present the time analysis for a large

Table 5.6: List of optimal profit values u(xz*, y*)

True model

Known Mean
Known Covariance

Known Mean
Unknown Covariance

Unknown Mean
Unknown Covariance

Polytopic

-257.52

-221.1

-222.5

-224.8

-221.11

Componentwise
Bounds

Kullback
Leibler

Variation
Distance

Modified
x? - distance

Hellinger Distance

223.3

-255.1

-256.23

-255.8

-253.9

numbers of assets size model by considering the number of assets between 100 and 1000. For each case of
number of assets, we randomly generate 10 instances of the known mean known covariance model, where
the parameters are defined similarly as above and we calculate the average running time (in seconds) to solve
the two optimization problems (5.46) and (5.47). The results are given in Figure 5.6.

It is clear from Figure 5.6 that our optimization problems can be solved efficiently in high dimension up to
1000 assets.

5.7 . Conclusion

We study a more general two player zero-sum game than the model considered in [168] under various
moment based and statistical based uncertainty sets. We propose a reformulation of the chance constraints
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Figure 5.6: CPU time (in seconds) to solve (5.46) and (5.47) in known mean known covariance cases with different number
of assets.

using distributionally chance-constrained optimization framework and show that there exists a mixed strat-
egy SPE of the game. Under Slater’s condition, the SPE of the game can be obtained from the optimal solutions
of a primal-dual pair of SOCPs. We present a competition of two firms in financial market as an application to
figure out out theoretical results. The numerical experiments are performed using randomly generated data
on the game up to 1000 assets and it is clear from our time analysis that the SOCPs problems can be computed
efficiently. For our future works, we will study tractable reformulation of the zero-sum game problem with
different payoff structure in a different game model and apply the game problem in a different application
to the competition in financial market considered in this chapter.
This chapter correspond to the reference [170].
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Chapter 6 :Distributionally Robust Chance-Constrained Markov Deci-
sion Processes

Markov decision process (MDP) is a decision making framework where a decision maker is interested in
maximizing the expected discounted value of a stream of rewards received at future stages at various states
which are visited according to a controlled Markov chain. Many algorithms including linear programming
methods are available in the literature to compute an optimal policy when the rewards and transition prob-
abilities are deterministic. In this chapter, we consider two types of MDP problems where either transition
probabilities are known and the reward vector is a random vector whose distribution is partially known or
the reverse holds true. We formulate the MDP problem using distributionally robust chance-constrained op-
timization framework under various types of moment based uncertainty sets, and statistical-distance based
uncertainty sets defined using ¢-divergence and Wasserstein distance metric. In the random reward case, for
each type of uncertainty set, we consider the case where the random reward vector has either a full support
or a nonnegative support. We prove that the distributionally robust chance-constrained optimization can be
reformulated as deterministic optimization using duality theory, which can be solved using Gurobi, Mosek,
nonlinear nonconvex solver Baron or BNB solver in YALMIP toolbox of Matlab. As an application, we study a
machine replacement problem and illustrate numerical experiments on randomly generated instances.

This chapter offers a comprehensive investigation into the field of distributionally robust chance-constrained
Markov Decision Processes (MDPs). To the best of our knowledge, the specific framework of distributionally
robust chance-constrained MDPs with random transition probabilities has not been previously explored in
the existing literature. By addressing this research gap, we contribute novel insights and results to the field,
paving the way for further advancements in this area.

6.1. Introduction

An MDP is a decision making framework to model the performance of a stochastic system which evolves
over time according to a controlled Markov chain. We consider the case where the system has a finite number
of states. At time ¢ = 0, the system is at some initial state sy € S, according to an initial distribution ~, and a
decision maker chooses an action ag € A(sg), where A(so) denotes the set of finite number of actions available
to the decision maker at state so. As a consequence a reward R(so, ap) is earned and at time ¢ = 1, the system
moves to a new state s; with probability p(s, ao, s1). The same thing repeats at time ¢t = 1 and it continues for
the infinite horizon. The decision taken at time ¢, which could be deterministic or randomized, may depend
on the history h; at time ¢, where h; = (so, a0, s1,---,5:—1,a:—1, 5¢). Let H; be the set of all possible histories at
time ¢. A history dependent decision rule f; at time ¢ is defined as f,(h;) € p(A(s;)) for every history h; with
final state s;, where p(A(s;)) denotes the set of probability distributions on the action set A(s;). A sequence
of history dependent decision rules f* = (f,)°, is called a history dependent policy. A history dependent
policy (f:)22, is called a stationary policy if there exists a decision rule f such that f; = f for all t. We denote
a stationary policy, with some abuse of notations, by f and define f = (f(s))ses such that f(s) € p(A(s)) for
every s € S. As per a stationary policy f, whenever the Markov chain visits state s, the decision maker chooses
an action a with probability f(s,a). We denote the set of all history dependent and stationary policies by
POy p and POg, respectively. A history dependent policy f* € POy p defines a probability measure P over

the state and action trajectories, and E/" denotes the expectation operator corresponding to the probability
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measure P{h. For a given policy f", the expected discounted reward at a discount factor a € (0, 1) is defined
as [8,195]

V(") =01-aE" (Za R( Xt,At)>

t=0

=> > JR(s, a), (6.1)

s€ES acA(s)

where X, and 4, represent the state and the action at time ¢, respectively. The set {g(f";s,a)}s,q) is called a
set of occupation measures defined by

g(fM:s,a) = (1— a)ZatPfh(Xt =s,Ar=a),VseS, ac As). (6.2)
t=0

When the running rewards and the transition probabilities are stationary, i.e., R(X; = s, As = a) = R(s,a) and
P(Xi11 =5|X: =s,A: = a) = p(s,a, s') for all t, we can restrict to stationary policies without loss of optimality
[8, 1951

In practice, the MDP model parameters R(-) and p(-) are not known in advance and are estimated from his-
torical data. This leads to errors in the optimal policies [152]. Most efforts to take into account this uncertainty
focused on the study of robust MDPs where the rewards or the transition probabilities are known to belong
to a prespecified uncertainty set [110, 172, , , 1. However, Delage and Mannor [56] showed that the
robust MDP approach usually leads to conservative policies. For this reason, a chance-constrained Markov de-
cision process (CCMDP) was introduced in [56], where the controller obtains the expected discounted reward
with certain confidence. In [56], the case of random rewards and random transition probabilities are con-
sidered separately and it is shown that a CCMDP is equivalent to a second-order cone programming (SOCP)
problem when the running reward vector follows a multivariate normal distribution and the transition prob-
abilities are exactly known. When the transition probabilities follow Dirichlet distribution and the running
rewards are exactly known, the CCMDP problem becomes intractable and the optimal policies can be com-
puted using approximation methods. Varagapriya et al. [239] considered a CMDP problem with joint chance
constraint where the running cost vectors are random vectors and the transition probabilities are known.
They proposed two SOCP based approximations which give upper and lower bounds to the CMDP problem
if the cost vectors follow multivariate elliptical distributions and the dependence among the constraints is
driven by a Gumbel-Hougaard copula.

In many practical situations, it is often the case that only partial information about the underlying distribu-
tion is available based on historical data. In that case, a distributionally robust approach, is used to model the
uncertainties, which assumes that the true distribution belongs to an uncertainty set based on its partially
available information. Such an approach has been used in modelling the uncertainties of many optimization
and game problems [117, 145, 215]. There are at least two popular ways to construct an uncertainty set for
the distribution of the uncertain parameters. The first one is based on the partial information on moments
of the true distribution and the second one is based on the statistical distance between the true distribution
and a nominal distribution. The moment-based uncertainty sets assume certain conditions on the first two

moments [46, 57, 1. The statistical distance-based uncertainty sets contain all the distributions which lie
inside a ball of small radius and center at a nominal distribution which is usually considered to be an empir-
ical distribution or a normal distribution [158, 117]. To define a distance between the distributions, either a
¢—divergence [22, 117] or Wasserstein distance metric is used [158, 76, 1.

In this chapter, we consider an infinite horizon MDP with discounted payoff criterion defined in Section
6.1 where the source of randomness comes from reward or transition probabilities. The distribution of the
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random vector is not completely known and it is assumed to belong to a given uncertainty set. We formulate
the random vectpr with a distributionally robust chance constraint which guarantees the maximum reward
for a given policy with at least a given level of confidence. We call this class of MDP as a distributionally
robust chance-constrained Markov decision process (DRCCMDP). The random reward vector has either a full
support or a nonnegative support. We consider both moment and statistical distance based uncertainty sets.
The main contributions of the chapter are as follows.

1. We consider three different types of uncertainty sets based on the moments of the random reward
vector and the random transition probabilities. For the case of random rewards, we demonstrate that
the DRCCMDP problem can be reformulated as Second-Order Cone Programs (SOCPs) and copositive
optimizations. The SOCPs can be effectively solved using the Gurobi solver, while the copositive opti-
mizations can be approximately relaxed as Semi-Definite Programs (SDPs) and solved using the Mosek
solver. Regarding random transition probabilities, we propose reformulations using Mixed-Integer Lin-
ear Programming (MILPs) or Mixed-Integer Semi-Definite Programming (MISDPs). The MILPs can be
solved using the Gurobi solver, while the MISDPs can be handled by the Branch-and-Bound (BNB) solver
available in the YALMIP toolbox of Matlab, which might be time consuming.

2. We explore four distinct types of ¢-divergences to construct uncertainty sets based on statistical dis-
tances. Specifically, in the case of random rewards, we propose reformulations using SOCPs. On the
other hand, for the case of random transition probabilities, we suggest reformulations using MILPs.

3. When utilizing the Wasserstein distance metric to define a statistical distance-based uncertainty set for
the random reward case, we consider the nominal distribution to be an empirical distribution. In the
random reward case, where the uncertainty set has full support or nonnegative support, we establish
that the DRCCMDP problem can be reformulated as two equivalent problem formulations. The first for-
mulation corresponds to a Mixed Integer Second-Order Cone Programming (MISOCP) problem, which
can be efficiently solved using the Gurobi solver. The second formulation corresponds to a biconvex
optimization problem, which can be addressed using the nonlinear nonconvex solver Baron, without
any guarantee of running time.

4. We illustrate our theoretical results on a machine replacement problem.

The chapter is organized as follows. In Section 6.2, we define a DRCCMDP under a discounted payoff cri-
terion for the case random reward. we developed uncertainty sets using two distinct approaches: moment-
based and statistical distance-based. The moment-based approach (Section 6.2.1) considered various scenar-
ios, including known mean with known covariance, known mean with unknown covariance, and unknown
mean with unknown covariance. On the other hand, the statistical distance-based approach employed phi-
divergence (Section 6.2.2) and Wasserstein distance 6.2.3 to construct the uncertainty sets. Furthermore,
we investigated two types of supports: full support and nonnegative support. By exploring these different
combinations, we were able to capture a wide range of possible scenarios and provide a comprehensive
analysis of the problem at hand. Section 6.3 defines a DRCCMDP under a discounted payoff criterion for the
case random transition probabilities, also using two approaches, moment-based (Section 6.3.1) and statistical
distance-based (Section 6.3.2). We conduct a thorough analysis by comparing and evaluating the implications
and outcomes of different approaches and uncertainty sets in the context of a machine replacement problem
and present numerical results in Section 6.4 . We conclude the chapter in Section 6.5.

6.2 . Distributionally robust chance constrained Markov decision process with random reward
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We consider an infinite horizon MDP defined in Section 6.1, with a finite state space S, finite action spaces
A(s), s € S, an initial distribution v, where }___s~(s) = 1, 7(s) > 0, a discount factor o € (0,1), where the
transition probabilities are exactly known and the running reward vector is a random vector defined on a
probability space (€2, F,P) which is denoted as R. Therefore, for each realization w € Q, R(s, a,w) represents
areal valued reward received at state s when an action « is taken. We assume that the random vector R does
not vary with time. Since the reward R is a random vector, transition probabilities p are exactly known, for a
given policy f", the expected discounted reward defined by (6.1) becomes a random variable and we denote
it by V(f", R). Consider the case where the controller is interested in a maximum discounted reward which
can be obtained with at least a given confidence level (1 — €), where e € (0,1). This leads to the following
optimization problem

(CCMDP-R) sup y
y€R, fhePOs

st. P (V(fh, R) > y) >1—e (6.3)

Lemma 6.27. Given a policy f* and transition probabilities p. Then, the following system of equations has unique
solution p € RIF|

() Cses, acae (5:0) (3(5',5) = ap(s,a,8)) = (1= a)y(s), V&' € 5,
(i) (s, 0) (ZaeA(s) p(s,a)) =p(s,a), Vs€S, ac As), (6.4)
(iii)) p(s,a) =2 0, Vs € 5, a € A(s), D ,ca(s) P(s:a) >0, Vs ES.

Moreover, the unique solution p of (6.4) is the occupation measure defined by (6.2).

Proof. The proofis given in Theorem 3.1 and Theorem 3.2, [8]. O

Using Lemma 6.27, we can represent the optimization problem (6.3) equivalently as follows

sup Yy
yeR, fhe POg
st. (i) Pp (pTR > y) >1—¢, (ii) pis the unique solution of (6.4). (6.5)

We define the set of occupation measures as

o {p eRM [ S p(s,0)(3(5',5) — ap(s,a,8)) = (1= a)y(s), V5’ €5,

(s,a)eK

p(s,a) >0,VseS, ac Als), Z p(s,a) >0, Vse S},
a€A(s)

where K = {(s,a) | s € S, a € A(s)}. Then, we can represent the optimization problem (CCMDP-R) in term of
decision vector (y, p) as follows

sup  y
yER, p
st. (i) P (pTR > y) >1-¢ (i) peQ, (6.6)
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and the optimal policy f” is given by

fh(s,a) = p=(s,a) ,Vs€S, ae Als),
(ZaeA(s) p* (870‘))

where p, is the optimal solution of (6.6). If then vector R follows a multivariate normal distribution, the
optimization problem (6.6) is equivalent to an SOCP problem [56]. The above result can be generalized for
elliptically symmetric distributions because the linear chance constraint (i) present in (6.6) is equivalent to a
second order cone constraint [90].

However, in most practical situations, we only have partial information about the underlying probability
distributions. Such situations can be handled with the distributionally robust optimization approach, i.e., we
assume that the distribution of 2 belongs to an uncertainty set. This leads to the following DRCCMDP problem

sup  y
st. (i) inf P (pTR > y) >1—¢ (i)peQ, (6.7)

where F is the distribution of R and D is a given uncertainty set. Note that Pr(p"R <y — 0) < Pr(p'R < y) <
Pr(p'R < y) for every 6 > 0. Therefore, we can replace suppcp Pr (pTR < y) by suppep Pr (pTR < y) Then,
problem (6.7) is equivalent to the following problem

sup Yy

s.t. (i) sup Pg (pTR < y) <e (i) pe Q. (6.8)
FeD

In the following sections, we study different types of uncertainty sets of R which are defined using i) partial

information of moments of R, ii) ¢-divergence distance, and iii) Wasserstein distance. For each uncertainty

set, we consider the cases of full and nonnegative supports of R. We derive equivalent reformulations of

DRCCMDP problem (6.7) (or (6.8) equivalently) for each uncertainty set.

6.2.1. Moment based uncertainty sets

Let 1 € RI®l be the mean vector and ¥ = 0 be a IKC| x |K| positive definite matrix. We consider 3 types of
moment based uncertainty sets of the distribution of R defined as follows:

1. Uncertainty set with known mean and known covariance matrix: The uncertainty set of the distri-
bution of R in this case is defined by

E(L{pegy) = 1,
Dl (‘Pv/% Z) = F S M+ ]E(R) = W, ) (69)

E[(R—p)(R—p)7] =%

2. Uncertainty set with known mean and unknown covariance matrix: The uncertainty set of the
distribution of R in this case is defined by

E({{Rew}) =1,

D2((P7/1'72760) = Fe M+ E(RA) = W, A 5 (6.10)
E[(R — p)(R — )] = 603
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3. Uncertainty set with unknown mean and unknown covariance matrix: The uncertainty set of the
distribution of R in this case is defined by

Do, 1, ,01,0) =q Fe M" | [E -l <é1, s (6.11)

where ¢ c RIXl is the support of & which we assume to be a convex set, M+ is the set of all probability
measures on RIXl with Borel c—algebra, §; > 0,82,80 > 1, u € Rl(¢); RI(¢) denotes the relative interior of
@. The notation A < B implies that B — A is a positive semidefinite matrix and 1., denotes the indicator
function. For a good overview of moment-based uncertainty sets, we refer to [140].

DRCCMDP with moment based uncertainty sets under full support

We consider the case when the random vector R has full support, i.e., ¢ = RIXI, We show that the DRCCMDP
problem is equivalent to an SOCP problem.

Theorem 6.6. Consider the DRCCMDP problem (6.7) where the distribution of R belongs to the uncertainty sets
defined by (6.9), (6.10), (6.11), and the support ¢ = RI*I, Then, the DRCCMDP (6.7) can be reformulated equivalently
as the following SOCP problem

max Yy
st (i) pTp— kB2 pll2 >y, (i) pe Q, (6.12)
where || - ||2 denotes the Euclidean norm and « is a real number whose value for each uncertainty set is given in

Table 6.7.

Table 6.7: Value of x for moment based uncertainty set

Uncertainty set | D =Di(p,u,2) | D =Da(p,pu,%,00) | D="Ds(p,u,%,0d1,02)

. /$ \/<1—:>6o \/<1—:)62 +VE

Proof. The proof follows from the fact that for each uncertainty set the distributionally robust chance con-
straint (i) of (6.7) is equivalent to a second-order cone constraint. The uncertainty set (6.9) has been widely

studied in the literature [34, 83]. For the uncertainty sets (6.10) and (6.11), it can be proved using similar ar-
guments used in Lemma 3.1 and Lemma 3.2 of [168] which are based on the one-sided Chebyshev inequality
[145]. O

DRCCMDP with moment based uncertainty sets under nonnegative support

We consider the case where the support of the random vector R is a nonnegative orthant of |K|-dimensional

Euclidean space, i.e., ¢ = R‘f‘. We show that the DRCCMDP problem (6.8) is equivalent to a copositive opti-
mization problem.

Theorem 6.7. Consider a DRCCMDP problem (6.8) with ¢ = R'ff‘. Then, the following results hold.
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1. If the distribution of R belongs to the uncertainty set defined by (6.9), the DRCCMDP problem (6.8) is equivalent
to the following copositive optimization problem

max Yy
st. (i) —t—QoX —q'pu < se,
-0 _1la40
(i) 20+ Q1Y ¢ coplti,

o -Q ‘ *%(YﬂLQﬂJFP \ IK|+1
G+ 7 [ == iQu—s—y) <F
(iviQeS®l s >0, pe Q. (6.13)

2. If the distribution of R belongs to the uncertainty set defined by (6.10), the DRCCMDP problem (6.8) is equiv-
alent to the following copositive optimization problem

max Yy
st. () —t—p'g—p'Qu+ 66X 0 Q < se,
i) (g T2 € copin,
2
. Q _ | 3(=a+p) — Qu) |K|+1
(iii) \%(—cj—Fp)T—uTQ ‘ B S— / e COP ,
iv)Qes™ s>0,peca (6.14)

3. Ifthe distribution of R belongs to the uncertainty set defined by (6.11), the DRCCMDP problem (6.8) is equivalent
to the following copositive optimization problem

max y
st (i) 7+t < se,

(i) £ > (65 + pp") 0 Q + p'g + /61|23 ( + 2Qu)| o,

o (Q | 3(@+p)) IKl+1
M G ) ST
v QesM s>0,peg, (6.15)

where COP™IF1 = I pr e SIKIFL | 2TMz >0, Vo € R‘f'“}, S™ is the set of all real symmetric matrix of size
n x n, ST is the set of positive semidefinite matrices of size n x n, o denotes the Frobenius inner product and

denotes a block matrix (or a partitioned matrix).

In order to prove the first result of Theorem 6.7, we need the following lemma.
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Lemma 6.28. Consider an optimization problem

sup ]P’F(pTR <vy), (6.16)
FeDy(p,p,X)

where ¢ = R‘f‘. If the feasible set of (6.16) is non-empty, the dual of (6.16) is given by
inf —t—QoX—q'p
St () Lyreeyy + 06 +E7QE-287Qu+ pQu+1 <0, vE R,
(i) Q € S*I,
and the strong duality holds.

Proof. Consider the optimization problem

vp(p, X) = sup /l{pTng}dF(R)

Fec+t
st (i) /dF(R) — 1, (i) /(R—u)(]%—,u)TdF(R) -y,
[ P
(i) / RAF(R) = p, 6.17)
%)
where C* is the set of all positive measures on R‘f'. The dual problem of (6.17) is given by
vp(p,X) =inf —t—QoX—q'p
St (i) Lyrecy) +d"€+€7QE — 26T Qu+ 1 Qu+t <0, V€ e Rl

(i) Q € SIX, (6.18)

where, g, and Q are the dual variables associated with the constraints (i), (ii) and (iii) of (6.17), respectively. In
Theorem 3.4 of [46], under the assumption p € Rl(p), the authors show that the Dirac distribution §,, lies in the
relative interior of the distributional uncertainty set which implies that the weaker condition of Proposition
3.4 of [207] holds. However, it is not trivial to find a strictly feasible point inside our distributional uncertainty
set. Let (t},Q7, ¢} )jen be a sequence of feasible solutions of (6.18) such that

5 = QoY — ¢ — vp(u, X), asj — oc. (6.19)

Foreach j € N, letr} = max(0, ;) — ¢;, where max(0, ;) denotes a |K|-dimensional vector with i component

equal to the maximum value between 0 and the i" component of qj. foreveryi=1,...,|K|. Lete; be astrictly
positive decreasing sequence such thate;r; — 0 componentwise and ¢; — 0, when j — co. Letz; = ¢;I, where

I denotes the vector with all components equal to 1. Then, r5Tz; — 0 as j — oc. For each j € N, consider the
following conic optimization problem

vd(p,X) = sup /l{pTRSy}dF(R)
Fect Jop

st (i) /dF(R) ~ 1, (il /(R— W)(R - wTdF(R) = 5,

(iii) p < / RAF(R) < p+ z;. (6.20)
%)
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The dual problem of (6.20) is given by
vé(u, Y=inf —t—-QoX+(r—h)u+rlz;
st () Lgmeayy + (h—1)T€+61QE =267 Qu+ p'Qu+1t <0, v e R,
(ii) h,r e R @ € SIFI, (6.21)

where ¢, @, r and h are the dual variables of the constraint (i), (ii) and (iii) of (6.20), respectively. The vector
(t,Q,h,r) suchthatt = t;,Q = Q}, h = max(0,g;), r = r; is a feasible solution of (6.21). Hence,

vé(u, Y) <~ —Qjo¥ — q;‘Tu + T;ij, vjeN. (6.22)

Since the feasibility set of (6.16) is non-empty, there exists a nonnegative distribution F* such that E(F*) = u
and Cov(F*) = X. Let F} be a distribution with support ¢; := {¢| £ € RE,¢ > %, componentwise}, defined

by
* €Ly
Fr(€) = Fj(¢+ ), VEeR),
Itis clear that F} is a feasible solution of (6.20) and ¢; C RI(¢). Hence, F; belongs to the relative interior of the
distributional uncertainty set which implies that strong duality holds, i.e., v} (u, X) = v} (i, X) for all j € N. Since
the objective function of (6.20) is a continuous function of F and z; — 0 as j — oo, then v} (i, X) — vp(, X) as

j — oc. Therefore, it is sufficient to prove that v/, (1, %) — vp(u, ¥) as j — oco. It is clear that the feasible sets
of (6.21) and (6.18) are equivalent and objective function of (6.21) has additional positive term. Therefore,

vy (1, ) > vp(1, %), ¥ j € N. (6.23)
Using (6.19), (6.22) and (6.23) and the fact that roxj — 0as j — oo, we have v{)(u, ¥) = ovp(p,X)asj — oco. O

Proof of Theorem 6.7. 1. Let the distribution of R belongs to the uncertainty set D; (¢, i1, ©). Using Lemma
6.28, the optimization problem (6.8) is equivalent to the following problem
sup y
st. (i) —t—QoX—q'pn<e,
(i) a'€ + €'QE— 2 Qu+ ' Qu+1 <0, Ve R,
(iii) 1+ ¢"¢ +€TQ¢ — 26T Qu+ " Qu+t <0, Ve e R, pTe <y,
(iv)Q e S pe Q.
(6.24)

The constraint (ii) of (6.24) is equivalent to:
€ DUE )T 20, veerl,

where U € SIKI+1 such that
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Here, (¢7,1) denotes the row vector of size 1 x (|K| + 1) with the last component equals 1 and the first
|| components are the components of £&. The above inequality can be rewritten as

2 Uz>0,Vze ]lelﬂ, llz|l2 = 1.

Using Proposition 5.1 in [102], we deduce that the constraint (ii) of (6.24) is equivalent to U € COP/®I*1,
The constraint (iii) of (6.24) is equivalent to:

—1+ (" DUE )T >0, vee RN, pTe <y, (6.25)

Define,
Sp = grer]gi}lc‘ I}}g())( ‘C()\vfa U7 P y)
. el (6.26)
SD—Iilga(ég]gilq ( agv ap7y)'

where L\, &, U, p,y) = =1+ (€L, DHUET, DT + Xp"¢ — y). In [46], the authors use the Sion’s minimax
theorem [220] to interchange the minimum and the maximum. However, since ¢ is not compact, we
cannot apply the Sion’s minimax theorem directly in this case. We show that ¢ can be restricted to a
compact set without loss of optimality. For a given U and p, we have

<
sp < max L(A,0,U,p,y)

= max(—t —p'Qu— Ay —1) = ~t —pTQu—1< 0 (6.27)
Therefore, using the min-max inequality sp < sp < co. Let U; = U + I jx+1 and p; = p + o1, for every
i € N, where I 4, denotes the identity matrix of size || 4 1, 1 denotes the vector with all components
equal to 1. Itis clear from the construction that p; > 0 componentwise. Since, L is a continuous function
w.r.t U and p, we have

LONE Ui, piy) =25 LN E U, pyy), VEeRM A >0,

Since, the min and max operators preserve the continuity, we have

gg]gilq 1}\1238( ‘C()\7 ga Uia Pis y) — EIGI]E‘?C‘ 1}\123‘())( E()\, ga U7 Py y)

‘ilﬁégggg& E(/\7£,Umpz,y)—>r§1§§£rer£‘gl L& U, p,y).
+ +

This implies that, if sp = sp holds for any U;, p;, i € N, it also holds for U, p. For an arbitrary U; and p;, let
the the optimal solutions of minimax and maximin problems defined by (6.26) are (&, Ap) and (¢p, Ap),
respectively. We prove that & and &p are bounded, i.e., there exists Tp > 0 and Tp > 0 depending on
U, pi and y such that ||¢p||2 < Yp and ||¢p||2 < Tp. Itis clear that \p = 0 and p[& —y < 0. Hence, we have

sp=—1+ (&, 1)U, 1),

1 1
= =1+ (&, DU )" + 5[l +

? .
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From constraint (ii) of (6.24), it follows that (&5, 1)U (&5, 1)T > 0. Therefore, if ||&p|]2 — oo, sp — o0.
Therefore, ||£p]|2 is bounded by some real number Yp > 0 which depends on U;,p; and y. As € € R‘f'

and p; > 0, componentwise, we have
liminf A(€)(p]€ —y) >0,

[1€]]2—00

for any \(¢) > 0. Then,

sp=—1+ (ggv 1)Ul(gga 1)T + )‘D(p-zrgD - y)a
1 1
=1+ (&, DU, D" + FlIgoll3 + 57 + do(piéo — v).

It is clear that 2 ||¢p||3 — oo and the other terms are lower bounded by some nonnegative number.
Therefore, sp — oo when ||ép|l2 — oo. Hence, ||¢p]|2 is bounded by some real number Tp > 0 which
depends on U;, p; and y. Let T = max(Yp, Tp). Then, (6.26) is equivalent to

Sp = min max ﬁ(/\7 57 Uiv pia y)'
ger!F gl <y AZ0

$p = max min LONEU P y).
220 ger\FJlgll2<r
Note that the set {5 | €€ R'f', [1€]]2 < T} is compact. Therefore, from Sion's minimax theorem sp = sp
for every U, p;, i € N. For any ¢ such that p'¢ > y, it is easy to see that

max L& U, p,y) =00

The condition sp < co gives p'¢ <y and A = 0 which in turn implies that

sp=min  £(0,{,U,p,y) > 0.
pTELy
Therefore, (6.25) is equivalent to sp > 0. Then, there exists a sequence of nonnegative numbers A; > 0
and a decreasing sequence of positive numbers 6; > 0, such that §; — 0 as j — oo, for which the
following condition holds

(6.28)

— 1+ (€ D)UE )T+ 70T E—y) > —0;, VERN jeN,
)\j >0,VjeN.

For each j € N, define
Fea(t;) = {(U,p,y,0) | =1+ (", DU, )T+ A(p'€ —y) = ~6;, A > 0}.
The feasible region defined by (6.28) is equivalent to (| Fea(6;). For any i < j, Fea(f;) C Fea(;).
JEN

Therefore, Fea(6;) | (N Fea(f;) as j — co. The feasible set Fea(§,) as j — oo is given by
1€N

|K|
{(el Z(E )T >0, vee R, (6.29)

A>0,
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-Q | —3q+Qu+Xip o
. Using similar arguments as
3¢ +uTQ+ AT | —t—pTQu—1-1y) 8 8

above, the constraint (6.29) is equivalent to

where Z € S+l gnd 7 = (

Z e copFI+t x>0, (6.30)

This implies that the constraint (iii) of (6.24) is equivalent to (6.30). Hence, DRCCMDP problem (6.8) can
be rewritten as follows

max Yy

s.t. (V) —t—-QoX —q'u<e,

y —Q —2q+ Qu |KC|+1

] e COP ,

) —3d" +0'Q [ —t— 4 Qu

o [ -Q | 54+ QutAp IK|+1

i € COP ,

i) \—3d +10Q+ " | —t—pQu—-1-)y)

(iv)QeS* x>0, pe Q. (6.31)

The optimization problem (6.31) is a bilinear copositive optimization problem, where the source of
bilinearity comes from the term Ap. Note that we can restrict the feasibility set of (6.31) to A > 0,
smce if A =0, elther the fea5|b|I|ty set of (6.31) is empty or the optimal value of (6.31) is infinity. Let

X =5, 1= A, Q= A, q = ¥, we obtain the copositive optimization problem (6.13)

. Let the distribution of R belongs to the uncertainty set Dy (¢, u, 3, dg). From Theorem 3.4 [46], the dual
of the optimization problem supycp Pr (pTR < y) can be written as

inf (—t—p'qg—p'Qu+8%0Q)
St (1) Lireayy +1+q7€—TQE+247Q <0, VE e R
(i) Q e SI*,

and the strong duality holds. The rest of the proof follows from the similar arguments used for the case
of the uncertainty set D (¢, pt, ).

. If the distribution of R belongs to the uncertainty set Ds(p, i, X, 01, 62), using Lemma 1 of [57] the dual
of problem supzcp Pr (pTR < y) is given by
inf (r+41t)
st () r>1gecy,y —EQE—€Tq, VERY,
(i) t > (822 + up") 0 Q + p'q + /61|22 (¢ + 2Qu) |2,
(i) @ € S'Kl

and strong duality holds. Again, the rest of the proof follows using similar arguments used in the case
of Dl(@,,LL,Z)
O
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6.2.2 . Uncertainty set with ¢ -divergence distance
We consider an uncertainty set defined using statistical distance metric called ¢-divergence. In such un-
certainty set, a nominal distribution is known to the decision maker based on the available estimated data.
The decision maker believes that the true distribution of R belongs to a ball of radius 6, and centered at a
nominal distribution v and the distance between the true distribution and v is given by a ¢-divergence. We
show that the DRCCMDP problem (6.7) is equivalent to an SOCP problem for various ¢-divergences.

Definition 6.13. The ¢—divergence distance between two probability measures v, and v, with densities f,, and
fuas respectively, and support ¢ is given by

L (ra,m) = L ¢ (jﬁ: Eg) Fun (€)1,

For different choices of ¢, we refer to [22] and [ ]l Letv e M™T be a nominal distribution with a density
function f,. The uncertainty set of the distribution of R based on ¢-divergence is defined by

D4(1/, 9¢) = {F €M™ | I¢(F, l/) < 0¢}, (6.32)
where 6, > 0.
Definition 6.14. The conjugate of ¢ is a function ¢* : R — R U oo Such that

¢*(r) =sup{rt — ¢(t)}, Vr e R.
t>0

We study 4 cases of ¢—divergences whose conjugates are given in Table 5.4.

Theorem 6.8. Consider the DRCCMDP problem (6.7) under the uncertainty set defined by (6.32) for the ¢-divergences
listed in Table 5.5. If the reference distribution v is a normal distribution with mean vector p,, and positive definite
covariance matrix X, the DRCCMDP problem (6.7) is equivalent to the following SOCP problem

max Yy
st (i) ' — SV (B, IS pll2 > v, (i) p € O, (6.33)

where ®(—1) js the quantile of the standard normal distribution and the values of 6,, € and f(64,¢) for different
¢-divergences are given in Table 5.5.

Proof. The proof follows from the same arguments as the proof of Lemma 5.26. O

6.2.3 . Uncertainty set with Wasserstein distance

We consider an uncertainty set defined using statistical distance metric called Wasserstein distance. We
show that the DRCCMDP problem (6.8) is tractable if the reference distribution v follows a discrete distri-
bution whose scenarios are taken from historical data. We refer to Villani [241, ] for more details of the
Wasserstein distance metric.

Let ¢ be a closed, convex subset of RI*l and p € [1,00). Let B(y) denotes the Borel o— algebra on ¢. Let
P(p) be the set of all probability measures defined on B(¢) and P,(y¢) denote the subset of P(y) with finite
p— moment and it is defined as

Poly) = {MGP(@ | /g _IlE = &llu(de) < oo for some ¢ e sﬁ}~
@

It follows from the triangle inequality that the above definition of P,(¢) does not depend on &.
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Definition 6.15 (Wasserstein distance). The Wasserstein distance W, (., v) between vy, v, € P, () is defined by
1
W,(vi,v9) = inf / z—z||5 da:,dz) ,
sonm = (e sl

where P,, .,(¢ x ¢) denotes the set of all probability measures defined on B(yp x ¢) such that the marginal laws
are vy and vs.

The uncertainty set using Wasserstein distance is defined by

D5(907V7p7 QW) = {F € ,PIJ(QO) | WP(F> V) < GW}? (634)
where v € P,(¢) and 6y > 0.

Lemma 6.29. Consider an optimization problem

sup Pr(p'R < y). (6.35)
FeDs(p,v,p,0w)

Then, the dual problem of (6.35) is given by

inf {A9€V - / Zn€1£ Mz = 2|5 = 1racin] l/(d.’L‘)} , (6.36)
%)

A>0

such that the strong duality holds and the optimal values of the primal and the dual problems are finite.

Proof. Let E be a Polish space with metric d, P(E) be the set of Borel probability measures on =, v € P(E)
and ¥ € L'(v), where L!(v) represents the L! space of v - measurable functions. It follows from Theorem 1
of [76] that the following strong duality holds

Mesg?z){/a\l’(f)u(df) | Wp(p,v) < HW}

= nt = [t o) - w©lvido | < . (637

AER,A>0

provided the growth factor given by Definition 4 of [76] is finite. We apply this result in our case by choosing
E = ¢, d as an Euclidean metric and ¥(£) = 1,7,y for all £ € ¢. For this choice of ¥(¢), it is easy to see
from Definition 4 of [76] that the growth factor is zero. Since {5 cp|pe< y} is a closed set, it is a Borel
measurable set. Hence, it is clear that ¥ € L!(v) for all v € P(y). Then, (6.37) reduces to

sup Pr pTR <y) = inf {)\GPW — / inf [N[¢—€[5 -1 v(d¢ }
FED5(§0,V,p,9w) ( ) A>0 Jo fcp [ || HQ {PTESQ}] ( )
O

We consider the case when p = 1 and v is a data-driven reference distribution, i.e., it is a discrete distri-
bution with H scenarios &1, ...,&, where & € ¢, for every i = 1,..., H. Using Lemma 6.29, we propose a
deterministic reformulation of the DRCCMDP problem (6.8).
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Lemma 6.30. /f the distribution ofR belongs to the uncertainty set defined by (6.34), the DRCCMDP (6.8) can be
reformulated equivalently as the following deterministic problem

sup Yy
1 H
st (i) 0w — > gi <le,
=1

(i) inf ||&—zla>14g,Vi=1,..., H,
2€p,pT2<y

(i)l >0,peQ, 9, <0,Vi=1,...,H. (6.38)
Proof. Using Lemma 6.29, since v is a discrete distribution with H scenarios &1, ..., &, the constraint (i) of (6.8)
can be equivalently written as

H
1 . -

i=1

By introducing auxiliary variables t;, i = 1, ..., H, the above constraint can be rewritten as

M Mw — L5 ti<e, A>0 (6.39)
L - . -39
(ii) inf.e, [A||gi —2llo - 1{;;@}} >t Vi=1,... H.
The constraint (ii) of (6.39) is equivalent to the following two constraints
(?%ﬁ%¢M@f*d@2t“Vi:1P”,H, (6.40)
(i) infey, oy All§i — 22 —1>8;, Vi=1,... H.

Since A > 0, inf.c, \||& — 2||2 = 0. Then, the constraint (i) of (6.40) is equivalentto t; < 0, foreveryi=1,..., H.

Moreover, if A = 0, from the constraint (ii) of (6.40), t; < —1, for every i = 1,..., H, which in turn implies
—% Zilti > 1. This violates the constraint (i) of (6.39). Hence, A > 0. Letl = % and g; = % for every
i=1,...,H. Therefore, the constraint (i) of (6.8) is equivalent to the following constraints

(i) 0w — 4 SiL1 93 < le,

(“) inszLp,pngy ng - ZHQ >+ gi, Vi=1,..., H, (6.41)

(iii)1 >0, 9, <0,Vi=1,...,H.
This implies that the DRCCMDP (6.8) is equivalent to (6.38). O

The constraint (ii) of (6.38) includes inf term which makes it difficult to solve the problem directly. We
show that the optimization problem (6.38) is equivalent to a MISOCP problem and a biconvex optimization
problem for the case of full support and nonnegative support, respectively.

DRCCMDP under Wasserstein distance based uncertainty set with full support

Lemma 6.31. If o = RIX,

péi—y
l[ol]2

inf Hé—zHg:max 0, ,Vi=1,... H.
pT2<y
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Proof. Foreachi=1,..., H, we consider two cases as follows:

Case 1: Let p'¢; < y. In this case, it is clear that inf,r <, ||€; — 2||2 = 0 and the optimal value holds at z = &;.
Case 2: Let p'¢; > y. An optimal solution z* of inf v, ||€; — 2|2 is such that p"z* = y. Because if p'2* < y,
there exists a point z; on the line segment of z* and gl such that p'zy = y and 1€ — 2*[]2 > ||& — 20|2 which
gives a contradiction. Hence, we can write inf 1., [|§ — 2||2 = inf r,_, ||& — z[|2. Using the KKT conditions, it
is easy to show that an optimal solution 2* satisfies

I = =)o = ”fm
O
Using Lemma 6.31, we have the following result.
Lemma 6.32. The optimization problem (6.38) is equivalent to the following optimization problem
sup Yy
1 H
st () fow — Zb < te,
(ii) maX(O pTE; — ) > bt Vi=1,..., H,
(i) llpll2 < B, t>0, 8>0,pe Q, b;<0,Vi=1,..., H. (6.42)

Proof. Using Lemma 6.31, the constraint (ii) of problem (6.38) can be written as

Té
max (0,'0 & y) >l+4+g;,Vi=1,...,H.

[Ipll2

Let 3 > 0 be an auxiliary variable. Then, under the transformations ¢ = 31, b; = Bg;, foreveryi =1,...,H, itis
easy to see that (6.38) is equivalent to (6.42). O

It is clear that a vector (y, p, B, (b;)L,,t) such thatp € Q, 8 = ||p||2,b; = 0, foreveryi=1,... H,t = "?W||p|\2

and y = min;—;__y(p'&;) — %Wllpllg is a feasible solution of (6.42). Therefore, the optimal solutions of (6.42)
and the following optimization problem are the same

sup Yy
1 H
st (i) BOw — T Zbi < te,
=1
(ii) max (o,pTé,» —y) > b4+t Vi=1,... H,
> Ow
> i Ty - 222
(i) y = min (p7&) = =llpll2;
We reformulate problem (6.43) as an MISOCP problem. In order to do that, we define a constant M =

("TW +2max;=1,__H |\§~i|\2) for which the following result holds.
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Lemma 6.33. For every feasible solution of (6.43), M > |y — p"&| foralli=1,... H.

Proof. Let (y,p) be a feasible solution of (6.43) which implies that the constraint (i) of (6.8) holds. Since,
reference distribution v belongs to uncertainty set (6.34), we have

H
1 N
=3 ey =P (PR <y) <e (6.44)
=1
It follows from (6.44) that there exists &; such that p'¢; > y which implies that

y < max (p&) < max [pT&|+ fllpl\z (6.45)

.....

Moreover, from the constraint (iii) of (6.43), we have

vz min (576) ~ “Llplls 2~ max_157E] ~ "ol (6.46)

..........

Using (6.45), (6.46), Cauchy-Schwartz inequality and the fact that p is a probability measure, we have
ly—p'&l < M.
O

Theorem 6.9. Consider the DRCCMDP problem (6.8). We assume that the distribution of R belongs to the un-
certainty set defined by (6.34) and ¢ = RI*I. Then, the DRCCMDP problem (6.8) is equivalent to the following
MISOcCP

max y

H
1
st (i) fw — 4 Zb,- < te,

(i) Mn; > b; +t Vi=1,...,H,

(iii) (1—ni)+p§i—y>b»+t,Vizl,...,H,

(ivyn; € {0,1},Vi=1,...,H,

(V)||p||2<6t>OB>OpEQb <0,Vi=1,...,H. (6.47)

Proof. Since, the distribution of R belongs to the uncertainty set defined by (6.34), the DRCCMDP prob-
lem (6.8) is equivalent to (6.43). We show that (6.43) and (6.47) are equivalent. It is clear that a vector
(y, p,b’,(b )1 L)L t)such that p € Q, B = ||pll2.b; = 0, t = 2%||p||o, 7 = 1, for every i = 1,...,H, and
a(p'&) — GTWHpHQ is a feasible solution of (6.47). Therefore, the optimal solution of (6.47) does

.....

y > min (p"&) — ?fllpllm (6.48)

=1,...,

to the feasible region of (6.47). Now, it is enough to show that the constraint (ii) of (6.43) is equivalent to
(ii) — (iv) of (6.47). Let the constraint (ii) of (6.43) be satisfied, i.e.,

max(07pT§:i—y)Zbi—l—t,Vi:l,...,H. (6.49)
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Foreachi=1,..., H, we consider two cases as follows:
Case 1: If max (0, prE — y) = 0, by choosing n; = 0, (6.49) is equivalent to the constraint (ii) of (6.47). Moreover,

using Lemma 6.33, M > |y — p'&;|. Therefore,
M=) +p6—y>M—|y—p'&|>0>bi+t.

Case 2: If max (O,pTéi - y) = pTéi — g, by choosing n; = 1, (6.49) is equivalent to the constraint (iii) of (6.47).
Moreover, using Lemma 6.33, we have
My =M > p'& —y > b; +t.

This implies that there exists ; € {0,1} such that (ii) — (iv) of (6.47) are satisifed. Conversely, suppose (ii) — (iv)
of (6.47) has a feasible solution. If n; = 1, the constraint (iii) of (6.47) implies the constraint (ii) of (6.43). If
n; = 0, the constraint (ii) of (6.47) implies the constraint (ii) of (6.43). O

DRCCMDP under Wasserstein distance based uncertainty set with nonnegative support
Lemma 6.34. Let p = R'ff' and consider an optimization problem

inf  ||& — 2| (6.50)

2E€p,pT2<y

The dual problem of (6.50) is given by
max  Ai(p'& —y) — (&
st [[Gi—Nplla < 1, G e RIEL N >0,
such that the strong duality holds.

Proof. The optimization problem inf — z||2 can be reformulated as following SOCP problem

zeRIF pTz<y ng

min ¢
st. plz<y, t> & — 2|2, zEle‘. (6.51)
The Lagrangian dual problem of (6.51) is given by

maXK min © ‘C(t7p7za)‘i7ﬁ7<i)a
Xi>0,¢:€R g0 tER zERIK]

where L(t, 2, Mi, 8,¢) =t +Xi(p" 2 —y) — T 2+ B(||& — 2||2 — t). The inner minimization problem can be written
as

J(Xi; G, ) = min {t(l —B) + Bll& — zll2 + Xip'z — ([ 2 — )\iy} . (6.52)

teR,zeRIKI
It is easy to see that J(\;,(;, 8) = —oc if 8 # 1 and it implies that the dual objective function value is —co. By

using the strong duality of a primal-dual pair of SOCPs, the objective function value of primal problem is —oo,

i.e., inf__pixi pTe<y [|& — z||2 = —oo Which is a contradiction. Therefore, 8 = 1 and using a change of variable
FlpTa<

21 =& — 2, we have

J(Ni, iy 1) = min {||21||2 + (G — )\ip)TZ1} +N(pE —y) - (G
z1 ERIKI
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The above minimization problem is unbounded unless ||¢; — A\ipllo < 1 and it leads to the following dual
problem of (6.51).

max /\-(pTé —y) — C-Téi
st |G = Nipll2 <1, A > 0,6 € RIS (6.53)
0

Theorem 6.10. Consider the DRCCMDP problem (6.8). We assume that the distribution of R belongs to the un-

certainty set defined by (6.34) and ¢ = R!M. Then, the DRCCMDP (6.8) is equivalent to the following biconvex
optimization problem

max ¥y
s.t. Gw—f2g1<l€

(i) Ai(p" &—Z/)—Cifizl—l—gi,Vz':l,...,H,
(i) |G — Nipll2 <1, Vi=1,...,H,

(V) A >0,GeRN 150 g:<0,peQ Vi=1,...,H. (6.54)

Proof. The proof follows directly from Lemma 6.30 and Lemma 6.34. O

6.3 . Distributionally robust chance constrained Markov decision process with random transition
probabilities

In this section, we consider an MDP framework defined in Section 6.1, with a finite state space S, finite
action spaces A(s), s € S, an initial distribution v, where 3 __4v(s) = 1, 7(s) > 0, a discount factor a € (0,1),
a running reward vector R and transition probabilities p, where the running reward vector R is exactly known
and the transition probabilities p are random variables. For each triple (state, action, state) s’ € S, a €
A(s), s € S, we assume that the p(s,a,s’) is an 1— dimensional random variable defined on a probability
space (Q, F,P). Therefore, for each realization w € €, the term p(s, a,s’)(w) is a real number in [0, 1] which
represents the probability of moving to a new state s/, where the decision maker chooses action « at actual
state s. Assume that p follows a discrete distribution F),, whose support is taken by the set of historical data
on the transition probabilities. Denote this set by ¢, = {p1,p2,...,ps}. Foreach s’ € S, let j(s') be a |K|—
dimensional random vector defined as follows

B(s')(s,a) = (', 5) — ap(s, a,8'), Vs € S, a € A(s). (6.55)

Let p = (p(s')scs) be a|S| x |K|—-dimensional random vector. Then, the distribution of p is a discrete distri-
bution with support ¢; = {p1,...,ps}, where p;(s,a,s") = d(s',s) — ap;(s,a,s'), forany s’,s € S, a € A(s), j =
.,J. We focus our attention on the set of stationary policies POg, where the policy does not depend on
time ¢. Let POp C POg be a subset of the set of stationary policies.
For a policy f* € POp and a realization w € 2, we define the occupation measure (s, a)) (s5,a) (W) bY

oo

(s, a)(w) = (1—a)S P

() Xy =s5,Ar=a),VseS ac A(s). (6.56)
t=0
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where the probability function P;f(:) is defined by the policy f* and the transition probabilites p(w). Since the
transition probabilities are random variables, it is clear that /i = (1(s, a))(s,q) IS @ |K|—dimensional random
vector, whose distribution is defined on the same probability space (9, F,P). For each realization w, the
expected discounted reward denoted by V(f", p)(w) is given as follows

V(" p)(w) = (1—aIEf (ZaRXt,At)>

t=0

:Z Z m(s,a)(w)R(s,a). (6.57)

s€S acA(s)

It is clear that V(f",p) is an 1—dimensional random variable, defined on (Q, F,P) and the distribution of
V(f",p) depends on the distribution of 5 and we denote this distribution by F;. Define our optimization
problem as follows

(CCMDP-TP) sup y
yeR, fhePOp
st. P, (V(f",0) >y) > 1—¢ (6.58)

where the controller is interested in maximizing the expected discounted reward which can be obtained with
at least a given confidence level (1 — ¢). In most of the practical situations, we only have partial information
about the underlying probability distributions of p based on historical data of the transition probabilities p
.Such situations can be handled with the distributionally robust optimization approach, where the decision
maker believes that the distribution of p belongs to some uncertainty set D;. To ensure that the chance
constraint P(V(f",p) > y) > 1 — € holds, we assume that it holds for any distribution which belongs to the
uncertainty set. This leads to the following optimization problem

(DRCCMDP-TP) sup Y
yeR, fhe POp
h 5 _
st inf Py (V(/".0)2y) 21— (6.59)

The optimization problem DRCCMDP-TP is challenging to solve since V (", p) is a complex nonlinear function
of transition probabilities p. To handle it, we first reformulate (6.58) by considering the occupation measure
m defined by (6.56) as an auxiliary decision variable of our optimization problem.

Using Lemma 6.27, the equations (6.56) can be rewritten equivalently as follows

() m(w)Tp(s") = (1 —a)y(s'), Vs €8, VweQ
(i) f(s,a) (ZGGA(S m(w)(s, )) m(w)(s,a), Vs €S, a€ A(s), Vw e Q

(iii) m(w) € R m(w)(s,a) >0, Vs € S, a € A(s), Yaea(s) Mw)(s,a) >0,
Vwe, VseSb,

(6.60)
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which can be reformulated equivalently as follows
() E[(r(w)Tp(s") — (1 — a)y(s ))]—0 Vs es,
(ii)E{(fh s,a ( acA(s) M(w)(s a))]ﬁz(w)(s,a))ﬂ =0,Vses, ac Als)

(iii) oy C X = {p|peR'< p(s,a) >0,Vs €S, ac As), (6.61)

Daca(s) P(s,a) >0, Vs € S},

where @y, is the support of the distribution Fy;, of 7. Then, the optimization problem DRCCMDP-TP can be
rewritten as follows

sup y
yER, frePOp

s.t. (i) 1nf ]P’mp)(ATR>y)>1—e,

(II)Emp m V(s 1—a)7(s’)>2]:0,V8’€S’,
2
(iil) B 5) ( s, a ( m(w)(s, a))] — m(w)(s,a)) =0,
a€A(s)
VseS, ae A(s

The support ¢, is the set of all solutions of (6.56), where f* € POp and p € @p. TO ease our notations, we
define real functions g;(s) : RI®l x RISIXIKI 5 R and go(s,a) : RIFI x RISXIKI 5 R such that

a1(s") (@, 25) = (J;;xﬁ(s’) —(1— a)’y(s’))z, Vs es, (6.62)
and
g2(s,a) (1, p) = (fh(s,a) ( > m(s,a)) m(s,a)) ,Vs€eS, ae A(s), (6.63)
a€A(s)

for any z;, € RIX, 25 € RISIKL Let g1 = (91(5) yes @nd g2 = (92(5,)) e, aca(s)- USiNg the abovementioned
notations, the optimization problem DRCCMDP-TP can be rewritten shortly as follows

sup y
(yeR, fh€POpD)

s.t. (l) F:IEI%[) E(m,ﬁ) [1{mTR2y}] >1—¢

where 1 denotes the indicator function, E;, 5 is the expectation function w.r.t the joint distribution of
(m, p). In the following sections, we study different ways to define the uncertainty set D; by using i) partial
information of moment and ii) ¢-divergence distance. We derive equivalent reformulations of the DRCCMDP-
TP problem (6.64) for each uncertainty set.
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6.3.1. Moment based uncertainty sets

In some situations, the true distributions of p is unknown in advance. We can only get partial information
of the underlying distributions based on historical data. By observing sufficiently large number of data, we
can estimate the first moment (expected value) and the second moment (covariance matrix) of the random
variable by their sample mean and sample covariance matrix. We assume that the distribution of p belongs
to an uncertainty set based on its first moment and second moment. These moments are estimated from

historical data of transition probabilities. Let u € RISI*IXI e the sample mean vector and % € S/°I*1*l be

the sample covariance matrix of p, where Sﬂx"q denotes the set of |K| x |K| definite positive matrices. We
consider 3 types of moment based uncertainty sets defined as follows

1. Uncertainty set with known mean and known covariance matrix:

() E(1gpep,y) =1
Dy = Fp| (DE(p=p ) (6.65)
(D E[(p—p)(p—p)T] =%

2. Uncertainty set with known mean and unknown covariance matrix:

(i) E(l{ﬁesoﬁ}) =1
Dy ={ F;| (VE®) =p : (6.66)
() E[(p— 1) — )] = 662

3. Uncertainty set with unknown mean and unknown covariance matrix:

() E(1ipep,y) = 1
Dy=S F;| (i) [E®p) — ]TZ(—”[ (

) } < 517 ) (667)
(i) E[(p — ) (p — p)T] = 628

Here, F}; € /\/l+ where MJr is the set of all positive measures on ¢; with Borel o—algebra, 6; > 0,02,p > 1,
Uy € RI(<pp) ( ) denotes the relative interior of . The notation A < B implies that B — A is a positive
semidefinite matrix. Note that E [1,,1z>, 0] > E [137r5,y] = E [1{mTR2y}] for every 6 > 0. Therefore, we

canreplace E [1;;,7p5y)] BY E [1(,37r>y3] in (6.64). Then, the constraint (i) of (6.64) can be rewritten as

(i) sup Engp) [1pntreyy] <€ (6.68)
FﬁE’Dﬁ

We consider the following optimization problem

FSEI% Eginp) [Lmmr<y})

where the uncertainty set D; is defined by one of three uncertainty sets abovementioned. We consider the
following assumption, which is necessary for our subsequent analysis.

Assumption 6.8. The support of the true distribution of 1 (resp. p) belongs to Rl(¢s,) (resp.RI(¢p) ).
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In order to ease our notations, we consider the following functions

Al(ta q, Q? T) = (1 - a)Q <Z 7'1(81)’}/(8/)2> —t— qT/j/ - Q oX + /J/TQ/JH

s’esS

Z ro(s,a)

s€S, a€A(s)

Ba(t,q.Q.r.6) = > ni(s) l (&) — 201~ () (En) es() | +

s'eS

a€A(s) a€A(s)

(s, a)? (25m8a> 2fhsa(25msa)§msa)+§( )]

+t+q' &+ QG — 21 QEp,

AZ (ta q, Q7 T) = (1 - a)Q (Z Tl(sl)’)/(SI)Q) —t— qT:u + Q o 602 - MTQ//L’

s'eS

B2(t7 7, Q,r, f) = Z 7,1(5/) [ (&Tﬁﬁﬁ(s’))z - 2(1 - O‘)’Y(Sl)(fﬁL)Tgﬁ(s’) +

s'eS

Z ra(s,a)

sSES, a€A(s)

2
(mesa) —2fhsa(mesa)gmsaﬂ—{( )]
a€A(s) a€A(s)

+t+q' & — Q% + 21 Q8

As(t,q,Q,r) = (1 — ) (Z 7‘1(8%(8’)2> —t+Qo6Y —q'p+p Qu

s'eS

2(q —2Qu)||,

Bs(t,0,Q.r.6) = 3 ni(s) [ (heatsh) —20 - a><gm>fsﬁ<s’>]

s'es
2
a)2<z fm(s,a)) —2f"(s,a) (Z Emsa)
a€A(s) a€A(s)

+t+ g6 — 6Q8,

+ > ra(s,a) | (s

sES, acA(s)

&n(s,a) + &, (s, a)

where t € R, ¢ € RISXIKI @ ¢ SISIXIKI (¢4 €5) € pm x @p, 71 € RISI ry € RIEI GISIXIKD js the set of
all real symmetric matrix of size (|S| x |K|) x (|S] x |K|), o denotes the Frobenius inner product, || || is the
Euclidean norm, r = (r1,72), £ = (&m,&p). Using these notations, by applying conic duality theory [207], we
reformulate (6.69) equivalently as a deterministic optimization problem in each case of uncertainty set. We
have the following lemma.
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Lemma 6.35. Let Assumption 6.8 holds. Consider the optimization problem (6.69). If the true distribution of p
belongs to the uncertainty set D;, j = 1,...,3, then the optimization problem (6.69) is equivalent to the following
deterministic problem

inf  A;(t,q,Q,7r
(t,3,Q.7) i(6:4.Q.m)

S.t. (I) 1{§;R§y} + B,](t?qa Qa T7 f) S Oa vf = (g’ﬁlafﬁ) S @ﬁ% X §0ﬁ7 (6-70)

where Q; € SISIXIKI, if j = 1.and @ e S, if j = 2.3, where 5I151%IKI s the set of symmetric matrices of size
(1S > K1) > (|S] = |K]).

Proof. First, we prove the case, where the true distribution of p belongs to the uncertainty set D, defined by
(6.65). The Lagrangian function of the optimization problem (6.69) is written as follows

2

L [E t,q,Q, (7”1')?:1} =Eip) Lpnrreyy) + O "1 Egnp (9 (1, )
=1

+t iy (Lpepny) = 1)+ (B () — 1) + Qo (B (6 — )6 — )"~ T) (6.71)

wheret € R, ¢ ¢ RISIXIKI @ € SISXIKI v s' € S ry e RISl F = (Fp, Fp) € ME x M, ry € RIFL The primal
problem (6.69) and its dual problem can be rewritten shortly as follows

P) sup inf L |F,t,q,Q, (r; 2
(P) up  inf [ 7, Q, ( )1_1]

. 2
(D) (t,zlgflcg,r) bl;p/i [F,t,q,Q, (Ti)izl} (6.72)
Note that (6.65) is a conic optimization problem. Due to Assumption 6.8, the true distribution of (1, p) lies
in the relative interior of the distributional set. Hence, the primal problem (P) in (6.72) is strictly feasible and
the strong duality holds (the weaker version of Assumption 3.4 holds) [207]. We represent the Lagrangian
function as the form E [u (11, p)] + v, where u : RI®l x RISIXIKI 5 R is a real function and v does not depend
on (m,p). If there exists & = (£m,&p) € om X @p such that u(§;.&) > 0, then supp £ = oo, which implies
that the optimal value of the dual problem (D) is co. Otherwise, the optimal value of the dual problem (D)
is v and this holds when u (&,&;) < 0, for any & = (§,&5) € ©m X @p. On the other hand, we can verify
that v is the objective function of the optimization problem (6.70) and the condition w (¢4,,&;) < 0, for any
&m € om, & € pp is equivalent to the constraint (i) of (6.70). Therefore, the conic optimization problem (6.69)
and the deterministic optimization problem (6.70) are equivalent.

The proof of the case, where the true distribution p belongs to the uncertainty set D, defined by (6.66) is
similar by considering the following Lagrangian function

2
L |:F7 ta dp, Q;fn (Ti)?=1:| = IE(’rﬁ,ﬁ) [1{mTR§y}} + ZT-{E(ﬁL,]}) (gl(map)) +Ix

i=1
<E(,;L,,a><1{ﬁem> - 1) 0" (B (6) = 1) + Qo (80 ~ By [(6— )5~ )] (6.73)
where Q € Sf‘x"q, where S‘f‘x"q is the set of positive semidefinite matrices of size (|K| x |K|) x (|K]| x |K|)

and the other parameters are defined equivalently as (6.71).
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Finally, we prove the case, where the true distribution of p belongs to the uncertainty set D5 defined by (6.67).
It follows from [57] that the constraint (ii) in (6.67) is equivalent to Z* € Sfxl’q“ , Where

by | E@®) — )

.
Z=E®o) " | & )

Then, the Lagrangian function has the following form

2
L {FNZZ,Q, (Ti)?:1:| = Egnp) [1pntr<yr] + ZTIE(m,ﬁ)(Qi(mﬁ))

i=1

t By (Lipeon) = 1) + 202" +Qo (525~ Egaugy (- (b~ )] ) (6.74)
where 7 € SIPIEHL 7 = 2] Z , U e SISy e RISXIKL > 0, and the other parameters are

defined equivalently as (6.73). The primal problem (6.69) and its dual problem can be rewritten as follows
(P) bl}p(t inf )E [Ft Z,Q, (7"1)Z 1}

(D) “ éné Y st;pﬁ [F t,7,Q, (ri)> 1} (6.75)

Due to Assumption 6.8, the strong duality holds. We can simplify the dual problem (D) in (6.75) by solving the
optimization problem w.r.t Z, while fixing the other variables. The dual problem (D) in (6.75) can be rewritten
as follows

inf [(1 —a)? (Z T (8/)’}/(8/)2> —t+XoU — 20"+ 61h+ Qo &% — ,uTQ,u]

t
(t,q,Q,r) oes

SURTEPSSED BEAC [(5 (s ))2—2(1—a>v<s'><5mﬂaﬁ<s’>]

RS =
+ Z ro(s,a) | f(s,a)? ( Z fm(s,a)> — 2" ( Z Emnl(s a)
a€A(s) a€A(s)

SES, acA(s)
Emn(s,0) + &5, (s,0) | +1+ 2076 — (@Tanﬁ - QMTQ5ﬁ> <0, (6.76)
forany & € v, & € @p Where
U v
Z=Gr 1w =" (6.77)

If h = 0, due to (6.77), we have v = 0. Then, U = 0 is the optimal solution of (6.70). Otherwise, if h > 0, by
applying Schur’'s complement, (6.77) is equwalent to U = tovv'. Since ¥ = 0, we deduce that U = fuvo' is the
optimal solution of (6.70). By replacing U = + o' in the objective function of (6.70), we minimize the function

Fvv' o X + héy, for h > 0. The optimal solution of this optimization problem is i = ”%}”” Let ¢ = 2(v + Qu).
Then, the optimization problem (6.76) reduces to the form (6.70). O
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To deal with the indicator function in (6.70), we can introduce an auxiliary binary decision variable z,, =
1{5;39,} € {0,1}. We have the following lemma.

Lemma 6.36. Let Assumption 6.8 holds. Consider the DRCCMDP-TP (6.64). Let M = 1|T,C|R, where 1 denotes
|KC|—dimensional vector with all components equal to 1. Then, if the true distribution of p belongs to the uncertainty
setD;, j =1,...,3, then the DRCCMDP-TP optimization problem (6.64) is equivalent to the following deterministic
problem

sup
(yeR, frePOp)

s.t. (I) Aj(t,(LQ,T’) S €, (“) Te,s, + Bj(tv%Qara 5) S 07 (”I) Yy — gI?LR § M‘T&m?
QeSS fi=1, Qes™ ifj=23 ve=(6n6) € o x v (6.78)

Proof. First, we prove that any feasible solution y of (6.64) and (6.78) must belong to [0, M]. In fact, it is clear
that for y < 0, the constraint (i) of (6.64) and the constraint (iii) of (6.78) are redundant, while for y > M, they
are always infeasible, which in turn implies that 0 < y < M.

Using Lemma 6.35, we need prove that the constraint (i) of (6.70) is equivalent to the constraints (ii) and iii
of (6.78). Let (y,t,q,Q,r, &) be a feasible solution of (i) of (6.70). By taking z¢,, = 1{§;R<y}, we get a feasible
solution of (ii) and (iii) of (6.78). On the other hand, let (y.t, ¢, Q,, &, x¢,, ) be a feasible solution of (ii) and (iii) of
(6.78). If z¢,, = 0, we deduce that 1{EI;LR§,U} = 0, which implies that (ii) of (6.78) implies (i) of (6.70). Otherwise,

the proof is trivial. O

Note that ¢; is a finite support, while ¢,;, can be an infinite support due to the set of policies POp. The de-
terministic optimization problem (6.78) is in fact a mixed-integer nonlinear optimization problem with infinite
constraints, which is challenging to solve. One can resort to discretization methods by using a meshgrid on
[0,1]/%! and restricting the set of policies on the meshgrid, that makes the support ¢, to be finite. However,
the method only works with very small size problems and the number of constraints increases exponentially
w.r.t the number of states in our MDP problem. To make the problem solvable, we restrict the set of ran-
domized policies to the set of deterministic policies, i.e., POp is the set of f* € {0, 1}'K|, such that f"(s,a) =0
orl,foranys e S, a € A(s). Itis clear that the set of deterministic policies POp contains exactly || elements.
The support ¢, is the set of solutions of (6.4), which in turn implies that ¢, is a finite support. Then, (6.78) is
a mixed-integer with finite nonconvex constraints, where the source of nonconvexity comes from the terms
r2(s,a) f'(s,a)? and ra(s,a) f(s,a), s € S, a € A(s) in the formulation of B;, j = 1,...,3. Since f"(s,a) = 0 or
1, then fh(s,a)? = f"(s,a). Let z(s,a) = f"(s,a)ra2(s,a). Assume that there exists a large number 7' > 0 such
that -7 < ry(s,a) < T, for any s € S,a € A(s). Then, using McCormick inequalities, by introducing auxiliary
variable z(s,a) = f"(s,a)r2(s,a) € [-T,T), the functions B;, j = 1,...,3 are linear w.r.t decision variables
with additional four linear constraints as follows

(i) z(s,a) + Tf"(s,a) >0, Vs €S, ac Als),
(i) 2(s,a) — Tf"(s,a) <0, Vs €S, ac As),
(iii) 2(s,a) + M f"(s,a) — ro(s,a) =T <0, Vs € S, a € A(s),
(iv) 2(s,a) — Tf"(s,a) —ra(s,a) + M >0, Vs €S, ac Als).
Then, if POp is the set of deterministic policies, the optimization problem DRCCMDP-TP is equivalent to a

mixed-integer linear programming (MILP) in case of uncertainty set D; and a mixed-integer semi definite
programming (MISDP) (due to the constraint Q > 0) in case of uncertainty set D, and Ds.
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6.3.2 . Uncertainty set with ¢ -divergence distance
In this section, we define a ¢— divergence based uncertainty set for the distribution of p. We assume that
a nominal distribution of p is known to the decision maker based on historical data of transition probabilities.
Denote this distribution by v € M7 . The decision maker believes that the true distribution of j, with sup-
port ¢, belongs to a ¢— d|vergence baII centered at a nominal distribution. The definition of ¢—divergence
distance between two discrete probability measures 4, and v, with support ¢, is given by

o(v1,12) Z]: < b ) va(Dj),

j=1

where vy (p;) (resp. v2(p;)) is the weight of v (resp. 1») on the j — th atom p; of ;. The uncertainty set of the
distribution of p based on ¢-divergence is defined by

Dy = {Fﬁ € M;fﬁ | I4(Fp,v) < 9¢},

where 64 > 0. We have the following lemma.

Lemma 6.37. The optimization problem (6.59) with uncertainty set D, = Da, is equivalent to the following opti-
mization problem

sup Yy
y€ER, fhePOp

st. Py, (V(f"5) = y) = f(0s,€), (6.79)
where f(0,,¢€) is defined in Table 5.5.

Proof. The proof follows the same arguments as random reward case, where we replace a continuous nom-
inal distribution with a density function by a discrete nominal distribution. O

Remark 6.8. In random reward case, V(f",-) is a linear function of reward R, then by assuming that R follows a
Normal distribution, (6.79) can be reformulated equivalently as a SOCP. However, the problem is more challenging
in random transition probabilities case.

By introducing the occupation measure as an auxiliary random variable, (6.79) is equivalent to the follow-
ing optimization problem

sup Y
y€R, fhePOp

s.t. (I) E(m,ﬁ) [l{mTRZy}] > f(0¢a 6)7
where p follows the nominal distribution v with support ¢;. In general case, when POp = POyp, the op-
timization problem (6.80) is very challenging to solve. One way is to discretize the set of stationary policies

POgp by a finite number of policies. By restricting POgp on this finite set, the support ¢, is also a finite
set. Assume that ¢; = {m,...,7hy}. Then, one can represent the joint distribution of (v, p) as a set of
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zi; €[0,1], 2yj >0, VueU jeJ, > jeg Tuj = 1. The optimization problem (6.80) is rewritten as follows

sup Yy
yER, fPePOp, x

s.t. (|) Z '/Eujl{’thRzy} > f(9¢, 6),

uel, jeJ

(i) D zujgilin.p;) =0, i=1,2,
uel, jeJ

(i) Y wuy =1, 205 >0. (6.81)
uel, jeJ

The optimization problem (6.81) is intractable due to a huge number of nonconvex constraints in the con-
straints (ii). To make the problem tractable, we restrict the set of policies to deterministic policies, i.e., we
assume that

POp ={f"| f"(s,a)=00r1,Vse S, acAs)}.

Foranyu € U, letz, = 11 g>,y Then, (6.81) is equivalent to the following mixed-integer optimization problem

sup Yy
yeR, fhePOp, z, z
st () Y. @ujza > f0s,6), (i) IR —y < Mz,, 2z, € {0,1}
uel, jeJ
(i) > wujgilie,p;) =0,i=1,2, (iv) D muy=1, 24 >0, (6.82)
uwel, jeJ uel, jeJ

where M = 1|T,C‘R. The optimization problem (6.82) is a mixed-integer programming with nonconvex con-
straints, where the source of nonconvexity comes from the bilinear terms z,;z, and xujfh(s, a). Since z,, and
f"(s,a) are binary variables and z, € [0,1], by introducing auxiliary variables g,; = .;z, and hy;(s,a) =
7,5 f"(s,a), one can apply McCormick inequalities to obtain an equivalent mixed-integer linear programming
form of (6.82) with additional linear constraints

Guj > 07 Guj < Lujy  Guj < Zus Guj > Loy + 2y — 17

hu;j(s,a) >0, huj(s,a) < @y, hyj(s,a) < fh(s,a), huj(s,a) > @y, + fh(s,a) —1.

6.4 . Machine replacement problem

In this section, we present a series of numerical results to compare the approaches discussed earlier.
These comparisons aim to evaluate the performance and efficiency of the different reformulations and solvers
in solving the respective problems. By conducting these comparisons, we can gain insights into the strengths
and limitations of each approach and make informed decisions based on the specific problem characteris-
tics. All the numerical results below are performed using Matlab and Python 3.8.8 on an Intel Core i5-1135G7,
Processor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD.

6.4.1. Comparison between moment-based and statistical distance-based approaches, full support and

121



nonnegative support

We consider a machine replacement problem where a machine in a factory has a life-time of N years. At
every stage a maintenance of the machine is scheduled but a factory owner can decide whether to repair or
do not repair the machine. There is a high probability that the machine behaves like a new one if it is being
repaired and its life gets reduced by a year if it is not being repaired. The factory owner incurs maintenance
cost if he decides to repair the machine. It can be modelled as an MDP problem where the life of a machine
represents the state of underlying Markov chain, i.e., there are N +1 states. The first state represents a brand
new machine. At each state there are two actions: i) "repair", ii) "do not repair". The transition probabilities of
the Markov chain with respect to each action is given by Figure 7.1. The maintenance cost corresponding to
every state-action pair is not exactly known and is realised after the decision is made. Therefore, itis modelled
with a random variable. We assume that for every state action pair (s, a), the maintenance cost is defined
as é(s,a) = K + Z(s,a), where K represents the fixed cost and Z(s,a) represents a variable cost which is a
random variable. The machine generates a revenue L(s, a) at state-action pair (s,a) and the profit for each
(s,a) € K is given by

R(s,a) = L(s,a) — K — Z(s,a). (6.83)

The factory owner is interested in maximizing the expected discounted profit. We assume that the factory
owner has a finite number of the same machines which are modelled using the same Markov chain. There-
fore, we compute the optimal repair policy with respect to a single machine and the same repair policy can
be applied for all other machines. We compare the performance of DRCCMDP for each uncertainty set with

(0.1) (0.1) (0.1) (0.1) (1)

Figure 6.7: Machine replacement MDP with two actions: "repair" (with solid lines) and "do not repair" (with dashed lines)

the CCMDP model (6.6) where the distribution of R is assumed to be a normal distribution. In our numerical
experiments, we set the number of states to 10, the threshold value € = 0.1, the discount parameter a = 0.85
and the initial distribution of states ~ to be uniformly distributed. For the above instance, |[K| = 20 and R is a
20 x 1 random vector with mean vector y given by

u(s,a) = L(s,a) 7K7:U‘Z(Saa)v (6.84)

where 1, is the mean vector of the random cost vector Z. We take K = 10, the function L and the mean
cost u1;, corresponding to each state-action pair are summarized in Table 6.8. The covariance matrix ¥ of R
is randomly generated using the following formula
AAT
YX="—"r+D 6.8

20 + 20, ( 5)
where Ais a 20x20 random matrix whose all the entries are real numbers belonging to [0, 1], and Dy is a 20x 20
diagonal matrix with Dy (10,10) = 4, D20(20,20) = 9, Doo(4,:) = 1, for every ¢ # 10,20 and all other entries
equal to zero. We use the above 1 and X for all the moment based uncertainty sets. For ¢-divergence based
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Table 6.8: Random cost Z and Revenue L

Action(a) | "Repair” | DO MOt | ipgpaipn | "Do O Table 6.9: Other parameters

State(s) wp(s,1) | EPAT O L1y | "EPAN
AN 15(s,2) ’ L(s,2)

1 10 o} 30 30 Known mean 50 = 0.9

2 10.1 [} 30 20.9 unknown covariance 0 ’

3 10.2 0 30 29.8 Unknown mean 5 =6 =1

4 10.3 o 30 29.7 unknown covariance | ' T 7

5 10.4 9] 30 29.6 ¢—divergence 0, = 0.01

6 10.5 o] 30 29.5 L Ow = 0.01

= o6 o 0 204 Wasserstein distance I — 1000

8 10.7 0 30 20.3

9 10.8 0 30 29.2

10 10.9 5 30 29.1

uncertainty set, we take the nominal distribution v as a normal distribution with mean p,, = p and covariance
matrix ¥, = ¥ where p and X are defined by (6.84) and (6.85), respectively. For Wasserstein distance based
uncertainty set, we take the number of observations H = 1000. The scenarios (&;)/Z, are randomly generated
by taking & = Bz + u,, Where z is a standard normal vector, w, is defined by (6.84) and B is the Cholesky
factorization of X, defined by (6.85). We summarize the other parameters related to all the uncertainty sets
in Table 6.9.

Table 6.10: Optimal policies of CCMDP-R and DRCCMDP-R with full and nonnegative supports

Optimal | CCMDP k?(')'\;g‘:ﬁg; k?gﬁ:'?ﬁ:; u:l?rilos\;g?r?;n ¢—divergence | ¢p—divergence

olicies | Gaussian . X : (Modified x?) (variation)
State(s) (01-p) known covariance | unknown covariance | unknown covariance (01-p) (01-p)
PP (p-p) (p-p) (p-p) PP PP
1 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
2 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
3 (0, 1) (o, 1) (0, 1) (0, 1) (0, 1) (0, 1)
4 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
5 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
6 (0,1) (0, 1) (0,1) (0,1) (0,1) (0,1)
7 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
8 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

9 (0, 1) (0.64, 0.36) (0.64, 0.36) (0.6, 0.4) (0.27, 0.73) (0.05, 0.95)

10 (0.9, 0.1) (0.91, 0.09) (0.91, 0.09) (0.91, 0.09) (0.9, 0.1) (0.9, 0.1)

We compute an optimal policy of the CCMDP-R problem (6.6), where R follows a normal distribution with
mean vector and covariance matrix defined by (6.84) and (6.85), by solving an equivalent SOCP problem [56].
The optimal policies of the DRCCMDP-R problem for all the uncertainty sets are computed by solving the
proposed equivalent optimization problems. We present the optimal policies of CCMDP-R and DRCCMDP-R
with full support and nonnegative support in Tables 6.10 and 6.11, where p is the probability of "repair" action
and 1 —p s the probability of "do not repair" action. Itis clear from Tables 6.10 and 6.11 that the optimal repair
policy corresponding to all the uncertainty sets for first eight states is same. At state 9 the probability of repair
is greater than the probability of do not repair for moment based uncertainty sets whereas for statistical
distance based uncertainty sets the probability of repair is less than the probability of do not repair. This
shows that the statistical distance based uncertainty sets give better optimal policy as compared to moment
based uncertainty sets and the nonnegative support uncertainty sets give better optimal policy as compared
to full support uncertainty sets. At the last state, the optimal policy is to choose repair action with a very high
probability for all the uncertainty sets.

6.4.2 . Comparisons in terms of running time between different reformulations methods
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Table 6.11: Optimal policies of CCMDP-R and DRCCMDP-R with full and nonnegative supports (continued)

Nonnegative Nonnegative Nonnegative

¢—divergence ¢—divergence | Full support Khown mean Known mean unknown mean Nonnegative
(Kullbach-Leibler) (Hellinger) Wasserstein K ; K " K N Wasserstein

() PAP) PAP) nown covariance | unknown covariance | unknown covariance (o)

(p1-p) (P.1-p) (p1-p)

(0, 1) (0, 1) (0,1) (0, 1) (0, 1) (0,1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0,1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0,1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(0, 1) (0, 1) (0,1) (0, 1) (0, 1) (0,1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0,1) (0, 1)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0.25, 0.75) (0.28, 0.72) (0.02, 0.98) (0.62, 0.38) (0.62, 0.38) (0.59, 0.41) (0.01, 0.99)

(0.9, 0.1) (0.9, 0.1) (0.9, 0.1) (0.91, 0.09) (0.91, 0.09) (0.91, 0.09) (0.9, 0.1)

We consider a machine replacement model with fixed reward and random transition probabilities. The
reward vector is given by

R(s,a) = L(s,a) — K — u(s,a), (6.86)

where K =10 and L, u are given in Table 6.8. Transition probabilities p are |S| x |K|— random variable, which
follows an uniform distribution on ¢,. We simulate J = 100 data points of ¢,. The other parameters are
taken similarly as random reward model. We present the time analysis by considering the number of states
for all uncertainty sets between 100 and 1000. All the parameters are taken similar to the case of 10 states.
We utilize different solvers for solving the optimization problems described as follows:

+ Gurobi solver: We use Gurobi solver to solve SOCP (6.12) with k = / 1?, the MISOCP (6.47) and the MILP
in case of uncertainty set D; of random transition probabilities.

* Mosek solver: To solve SDP relaxation of the copositive optimization copositive optimization problem
(6.13), we employ Mosek solver. The SDP relaxation is a common approach to approximate copositive
optimization problems.

+ Baron solver: For the biconvex optimization problem biconvex optimization problem (6.54), we utilize
the Baron solver. Baron is a nonlinear nonconvex solver that is well-suited for handling such problems.

* BNB solver in YALMIP toolbox of Matlab: The MISDP optimization for uncertainty set D, in random
transition probabilities is solved using the Branch-and-Bound (BNB) solver available in the YALMIP tool-
box of MATLAB. This solver is specifically designed to handle mixed-integer semidefinite programming
problems.

The results obtained from these solvers are presented in Figure 7.2. The figure illustrates that the CPU time
is generally similar for both the SOCP and MILP formulations. However, solving MISOCP and SDP problems
typically requires more CPU time. Additionally, MISDP and biconvex optimization problems tend to have sig-
nificantly longer computation times. Overall, the figure highlights the differences in computational efficiency
among the different optimization approaches and solvers, demonstrating that the CPU time required varies
based on the specific problem formulation and solver employed.

6.5 . Conclusion
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Figure 6.8: CPU time (in seconds) vs number of states

We study a DRCCMDP problem under various moment and statistical distance based uncertainty sets
defined using ¢-divergence and Wasserstein distance metric in two cases: random reward and random tran-
sition probabilities. We propose equivalent SOCP, MISOCP, copositive optimization problem, biconvex opti-
mization problem, MILP, MISDP depending on the choice of the uncertainty set, for the DRCCMDP problem.
All these optimization problems except biconvex optimization problems and MISDP can be solved efficiently
using known optimization solvers. We perform numerical experiments, using the optimization solvers in
python, on a machine replacement problem using randomly generated data. The numerical experiments are
performed on the DRCCMDP problem up to 1000 states and it is very clear from our time analysis that these
problems can be solved very efficiently.

This chapter correspond to the reference [169].
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Chapter 7 :Conclusions and Perspectives

7.1. Conclusions

In conclusion, this thesis has delved into the study of convexity properties in chance constrained opti-
mization and their applications in random games and Markov decision processes (MDPs). The research has
explored various aspects related to these topics, yielding important results and insights. The study of chance
constrained optimization and its applications remains an attractive research area. The following notable re-
search results were obtained

+ We studied on the study of linear joint chance constraints with a random technology matrix. We assume
that the constraint row vectors follows an elliptical distribution and the dependence among the rows is
modelled by Gumbel-Hougaard copulas. Building upon previous work, particularly the paper by Cheng
et al. [48], we extended the analysis to provide a deeper understanding of the convexity properties
in a more specific setting. Under certain assumptions, primarily relating to the probability level, we
established the convexity of the feasibility set for the considered linear joint chance constraints. This
result demonstrates the inherent structural properties of the problem, highlighting the potential for
developing efficient solution approaches.

+ Convexity result of chance constraints can be applied to show the existence of a Nash equilibrium in
a chance-constrained game. We studied an n—players chance-constrained game with random payoffs
and continuous strategy sets. Each player's payoff function was defined by its expected value, while
their strategy sets were defined by joint chance constraints. These joint chance constraints incorporated
dependent random constraint vectors that followed elliptically symmetric distributions. To capture the
dependence among these random constraint vectors, we employed the Archimedean copula. Our main
contribution was the proposal of a reformulation for the joint chance constraint of each player based on
the family of Archimedean copulas to model the dependence between the row vectors of the technology
matrix. The paper emphasizes the importance of the convexity of the feasibility set in the context of the
n-player game with random payoffs and joint chance constraints. This convexity property plays a crucial
role in establishing the existence of a Nash equilibrium in the paper. Next, we extended the study of
the n-player chance-constrained game with elliptically distributed assumption. Specifically, we focused
on a slight extension of the distribution of row vectors in the technology matrix. We assume that the
row vectors follow a normal mean-variance mixture distribution, which belongs to a broader class of
distributions, allows us to better capture the characteristics of real-world data and applications. To find
a Nash equilibrium, we proposed a best-response algorithm. This algorithm sequentially solves convex
optimization problems to determine the optimal strategies for each player. By iteratively updating the
strategies based on the bestresponse to the strategies of other players, we aimed to converge to a stable
Nash equilibrium (not guarantee). We applied the game to model a financial competition scenario,
showcasing the usefulness of the approach in real-life applications.

+ We consider a two-player zero-sum game with random linear chance constraints. These chance con-
straints are characterized by distributions that belong to either moment based uncertainty sets or sta-
tistical distance based uncertainty sets. The main result of this chapter is the demonstration of the exis-
tence of a saddle point equilibrium of the game. This equilibrium represents the optimal solution where
neither player can unilaterally deviate from their strategy to improve their payoff, given the strategy of
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the opponent, also known as Nash equilibrium. This result is significant as it establishes the unique
equilibrium point, ensuring the stability of the game under the considered random linear chance con-
straints. To compute this saddle point equilibrium, we propose a novel approach based on solving a
primal-dual pair of second-order cone programming (SOCP) problems. By formulating the game as a
primal-dual pair of SOCPs, we exploit the duality theory to efficiently find the equilibrium point. This
approach offers computational tractability and guarantees the convergence to the saddle point equilib-
rium.

+ We study MDP problems of two types: one where the transition probabilities are known and the reward
vector is arandom vector with a partially known distribution, and the other where the reverse holds true.
To handle the uncertainty in these MDP problems, we adopt the framework of distributionally robust
chance-constrained optimization. We consider different types of moment based uncertainty sets and
statistical-distance based uncertainty sets. These uncertainty sets are defined using phi-divergence and
Wasserstein distance metric. We investigate two scenarios within the random reward case: one where
the random reward vector has a full support, and another where it has a nonnegative support. To solve
the distributionally robust chance-constrained optimization problems, we show that they can be refor-
mulated as deterministic optimization problems using duality theory. This reformulation enables us to
leverage existing optimization solvers such as Gurobi, Mosek, the nonlinear nonconvex solver IPOPT
or BNB solver in YALMIP toolbox of Matlab. By solving the deterministic reformulations, we can obtain
optimal solutions to the distributionally robust chance-constrained MDP problems. As an application
of the proposed framework, we study a machine replacement problem, which serves as an illustra-
tive example to showcase the effectiveness of our approach. We conduct numerical experiments on
randomly generated instances, demonstrating the applicability and robustness of the distributionally
robust chance-constrained optimization framework in solving real-world decision problems.

7.2 . Perspectives

In this thesis dissertation, several perspectives and future directions can be considered to further expand
and advance the research in the field. The following prospects highlight potential areas of exploration and
development:

+ A promising direction for future research involves expanding the existing framework of convexity re-
sults in chance-constrained optimization to encompass a broader range of cases. This expansion can
be achieved by exploring several avenues, such as considering different types of copulas, alternative
distributional assumptions, or incorporating nonlinear chance constraints. By investigating these di-
rections, the applicability and generality of the convexity result can be extended, enabling its effective
utilization in diverse scenarios. In particular, exploring different types of copulas can provide valuable
insights into the relationship between random variables and the dependence structure among them.
This exploration can lead to a deeper understanding of the impact of copulas on the convexity proper-
ties of chance-constrained optimization problems. Additionally, incorporating alternative distributional
assumptions allows for a more comprehensive analysis of the convexity result, accounting for a wider
range of probability distributions and their associated characteristics. Another promising avenue for re-
search involves considering nonlinear chance constraints. Nonlinear chance constraints capture more
complex relationships between decision variables and uncertainties, and their investigation can signifi-
cantly enhance the flexibility and practicality of chance-constrained optimization models. By examining
the convexity properties of these constraints, researchers can identify new solution techniques and de-
velop innovative optimization algorithms tailored to handle nonlinear chance constraints effectively.
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Furthermore, investigating the analytic properties of chance constraints, such as the differentiability of
the probability function, offers a rich area for exploration. Understanding the differentiability character-
istics provides insights into the behavior and structure of chance constraints, enabling the development
of specialized solution methodologies. By leveraging this knowledge, researchers can design novel al-
gorithms and techniques that exploit the differentiability properties, ultimately leading to improved
solution quality and efficiency. By pursuing these research directions, the understanding of convexity
in the context of chance constraints can be advanced. This advancement not only broadens the theo-
retical foundations of chance-constrained optimization but also paves the way for novel applications in
decision-making under uncertainty. Ultimately, these research efforts contribute to the development
of more robust and effective optimization frameworks that account for uncertainties in real-world sce-
narios.

Our potential research in chance-constrained games is exploring the existence of a Nash equilibrium
in the case of dependent row vectors in the normal mean-variance mixture distribution is an intrigu-
ing and open research direction with significant potential. Currently, the assumption of independence
among the row vectors provides tractable analysis and serves as a fundamental basis for studying Nash
equilibria. However, incorporating dependence among the row vectors introduces a new level of com-
plexity to the problem formulation. By considering dependent row vectors in the normal mean-variance
mixture distribution, researchers can delve into the intricacies of interdependencies and their impact
on the existence of Nash equilibria. This direction opens up avenues for investigating the relationship
between dependence structures, such as correlation or covariance, and the emergence of equilibrium
solutions. It also allows for the exploration of how different forms of dependence can influence strategic
decision-making and equilibrium outcomes. Addressing the challenges posed by dependent row vectors
requires the development of novel analytical techniques and solution methodologies. Research efforts
can focus on adapting existing game-theoretic frameworks to accommodate dependence or introduc-
ing new mathematical tools specific to the analysis of dependent row vectors. These advancements
will enable a deeper understanding of the behavior and properties of Nash equilibria in settings with
complex interdependencies. Furthermore, exploring the existence of Nash equilibria in the presence
of dependent row vectors has practical implications across various domains. For example, in finance,
considering dependence among asset returns can provide valuable insights into portfolio optimization,
risk management, and market equilibrium. In social networks, understanding the influence of intercon-
nections among individuals can shed light on strategic interactions and the emergence of equilibrium
behavior.

Applying chance-constrained games and Markov decision processes models in other fields of applica-
tion can open up new avenues for research and practical implementations. Some potential fields where
our models can be applied are energy systems, transportation and logistics, environmental manage-
ment and healthcare systems. In energy systems, the application of our models to energy systems
could enable more efficient and effective management of power generation and distribution. The in-
herent uncertainty of renewable energy sources, like wind or solar power, lends itself to the chance-
constrained models. Optimal decision making can be enhanced by applying these models to problems
like grid balancing, where unpredicted changes in energy supply and demand can be managed effi-
ciently. Additionally, these models could be used for strategic investment planning in the energy sector.
Transportation and logistics represent a vast area for potential application of our models. The complex-
ity of decision-making in this field, influenced by a multitude of stochastic factors like traffic, weather
conditions, and customer demand, aligns well with our game and MDP models. This could lead to in-
novations in areas like route optimization, delivery scheduling, and fleet management. Moreover, the
emergence of autonomous vehicles could benefit significantly from the predictive and adaptive capa-
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bilities of our models. Environmental management is increasingly becoming an important field due to
the heightened awareness of climate change. Our models could help policymakers and environmental
scientists make better decisions under uncertainty, such as the optimal allocation of resources for pol-
lution control or wildlife conservation efforts. The models could also be used to predict and adapt to the
uncertain impact of climate change on various ecosystems, thereby aiding in the creation of more robust
conservation strategies. In healthcare systems, our models could be instrumental in improving patient
outcomes and healthcare delivery by enabling more effective decision-making under uncertainty. This
could range from optimizing patient scheduling in hospitals, making decisions about treatment plans
under uncertain patient responses, to managing the supply chain of vital medicines and medical equip-
ment. Furthermore, with the rise of personalized medicine, these models could be used to make better
individualized treatment decisions based on each patient’s unique health parameters.

In the current era of digital transformation, we're witnessing an unprecedented proliferation of data
across various industries. This data explosion presents both challenges and opportunities. The chal-
lenges lie in handling the vast volumes of complex data and deriving meaningful insights from it. The
opportunities arise from the potential of using this data to make more informed decisions, improve pro-
cesses, and ultimately, enhance the overall efficiency of systems. By integrating machine learning (ML)
into chance-constrained optimization, we can create models that not only handle large and complex
data but also learn from it. These models will continuously improve their performance, adapting to new
data and evolving trends. This will result in optimization models that are both dynamic and resilient, pro-
viding reliable solutions even in the face of changing environments. On the other hand, the integration
of ML and optimization has the potential to bring theoretical models closer to real-world applications. By
utilizing ML's capacity to handle real-world complexities, we can develop chance-constrained optimiza-
tion models that are not only theoretically sound but also practically applicable. This could drastically
expand the scope of chance-constrained optimization, opening up new fields of application.
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