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Abstract: Chance-constrained optimization is a powerful math-ematical framework that addresses decision-making problemsin the presence of uncertainty. It provides a systematic ap-proach to handle random parameters or uncertain variables,allowing decision-makers to account for the likelihood of vi-olating certain constraints while optimizing an objective func-tion. The core idea behind chance-constrained optimization isto ensure that the probability of constraint violation remainsbelow a specified threshold. This threshold represents theacceptable level of risk or confidence level for the decision-maker. In chance-constrained optimization, uncertain param-eters can have known or unknown distributions. When thedistribution of uncertain parameters is known, probability dis-tributions such as Normal (Gaussian), elliptical, normal mean-variance mixture or discrete distribution with support basedon historical data can be utilized to represent the uncertainty.In many practical situations, the distribution of uncertain pa-rameters may be unknown or difficult to estimate accurately.In such cases, the distribution of uncertain parameters is as-

sumed to belong to an uncertainty set, which leads to a spe-cific problem, called distributionally robust chance-constrainedoptimization. Chance-constrained optimization has significantapplications in game theory and Markov Decision Processes(MDPs). In this dissertation, we first present a theoretical resultof the convexity of chance-constrained optimization. Next, wegstudy two specific models of game theory and MDPs involvingchance-constrainedoptimization, knownas chance-constrainedgames (CCGs) and distributionally robust chance-constrainedMarkov decision processes (DRCCMDPs). We consider differ-ent assumptions on the distribution of uncertain parameters.In CCGs, under certain conditions, we show the existence of aNash equilibrium of the game. DRCCMDPs can be modelled asa distributionally robust chance-constrained optimization prob-lem, where a decision maker is interested in maximizing the ex-pected discounted value of a reward function. Under certainconditions, we reformulate the optimization problem equiva-lently as a deterministic problem, which can be solved efficientlyby commercial solvers.

Titre: Optimisation sous Contraintes en Probabilité : Applications en Théorie des Jeux et Processus de Décision Markovien 
Mots clés: Programmation stochastique, Optimisation convexe, Jeux, Chaines de Markov

Résumé: L’optimisation sous contraintes en probabilité est uncadre mathématique puissant qui aborde les problèmes deprise de décision en présence d’incertitude. Il fournit une ap-proche systématique pour gérer des paramètres aléatoires oudes variables incertaines, permettant aux décideurs de tenircompte de la probabilité de violation de certaines contraintestout en optimisant une fonction objectif. L’idée centrale del’optimisation sous contrainte aléatoire est de garantir que laprobabilité de violation de contrainte reste inférieure à un seuilspécifié. Ce seuil représente le niveau de risque acceptable oule niveau de confiance pour le décideur. Dans l’optimisationsous contraintes en probabilité, les paramètres incertains peu-vent avoir des distributions connues ou inconnues. Lorsquela distribution des paramètres incertains est connue, des dis-tributions de probabilité telles que normale (gaussienne), el-liptique, mélange moyenne-variance normale ou distributiondiscrète avec support basé sur des données historiques peu-vent être utilisées pour représenter l’incertitude. Dans de nom-breuses situations pratiques, la distribution de paramètres in-certains peut être inconnue ou difficile à estimer avec préci-sion. Dans de tels cas, la distribution des paramètres incer-tains est supposée appartenir à un ensemble d’incertitudes,

ce qui conduit à un problème spécifique, appelé optimisationdistributionnellement robuste avec contraintes en probabilité.L’optimisation sous contraintes en probabilité a des applica-tions significatives dans la théorie des jeux et les processus dedécision Markoviens (MDP). Dans cette thèse, nous présentonsd’abord un résultat théorique de la convexité de l’optimisationsous contraintes en probabilité. Ensuite, nous étudions deuxmodèles spécifiques de théorie des jeux et de MDP impliquantune optimisation sous contraintes en probabilité, connus sousle nom de jeux contraints par le hasard (CCG) et de processusde décision Markoviens avec des contraintes robustes sur leplan distribution (DRCCMDP). Nous considérons différentes hy-pothèses sur la distribution des paramètres incertains. Dans lesCCG, sous certaines conditions, nous montrons l’existence d’unéquilibre deNash du jeu. Les DRCCMDPpeuvent êtremodéliséscomme un problème d’optimisation sous contraintes robustessur le plan distribution, dans lequel un décideur souhaite max-imiser la valeur actualisée attendue d’une fonction de récom-pense. Sous certaines conditions, nous reformulons le prob-lème d’optimisation de manière équivalente comme un prob-lème déterministe, qui peut être résolu efficacement par dessolveurs commerciaux.
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Résumé
L’optimisation sous contraintes en probabilité, également connue sous le nomd’optimisation stochastiqueoud’ optimisationprobabiliste, est undomainede l’optimisationqui traite des problèmesd’optimisationdans lesquels certaines variables sont soumisesà des incertitudes probabilistes. Ces incertitudes sont souvent modélisées à l’aidede distributions de probabilité, ce qui rend les solutions optimales dépendantes dela probabilité. Voici quelques concepts clés liés à l’optimisation sous contraintes enprobabilité:
1. Fonction objective probabiliste : Dans l’optimisation sous contraintes en proba-bilité, la fonction objective àmaximiser ouminimiser dépend de variables aléa-toires. Par conséquent, au lieu d’optimiser une seule valeur, vous cherchez àoptimiser une fonction objective qui intègre les probabilités associées à dif-férentes valeurs possibles des variables aléatoires.
2. Contraintes probabilistes : Les contraintes dans ce contexte sont égalementprobabilistes. Cela signifie que les valeurs des variables de décision doiventsatisfaire certaines propriétés probabilistes, telles que des inégalités proba-bilistes ou des équations probabilistes.
3. Méthodes de résolution : Plusieurs méthodes sont utilisées pour résoudre lesproblèmes d’optimisation sous contraintes en probabilité. Les méthodes deMonte Carlo, les méthodes d’approximation stochastique, et les méthodes deprogrammation stochastique sont quelques-unes des approches courammentutilisées.
4. Analyse de sensibilité probabiliste : Une fois que vous avez obtenu une so-lution optimale dans le contexte probabiliste, il est important d’effectuer uneanalyse de sensibilité pour évaluer comment cette solution change en fonctiondes variations des paramètres probabilistes. Cela peut aider à comprendre larobustesse de la solution optimale par rapport à l’incertitude.
5. Analyse de sensibilité probabiliste : Une fois que vous avez obtenu une so-lution optimale dans le contexte probabiliste, il est important d’effectuer uneanalyse de sensibilité pour évaluer comment cette solution change en fonctiondes variations des paramètres probabilistes. Cela peut aider à comprendre larobustesse de la solution optimale par rapport à l’incertitude.
6. Applications : L’optimisation sous contraintes en probabilité est utilisée dansdivers domaines, notamment la gestion de portefeuille financier, la conceptionde produits sous incertitude, la planification de la chaîne d’ approvisionnement,la gestion de projets, la gestion des ressources naturelles, et bien d’autres.

L’optimisation sous contraintes en probabilité est un puissant cadre mathématiquequi aborde les problèmes de prise de décision en présence d’incertitude. Il fournitune approche systématique pour traiter les paramètres aléatoires ou variables in-certaines, permettant aux décideurs de tenir compte de la probabilité de violation de
3



certaines contraintes tout en optimisant une fonction objectif dépend de variablesaléatoires, ce qui signifie que le résultat n’est pas fixe, mais suit une distribution deprobabilité. L’idée centrale derrière l’optimisation sous contraintes en probabilitéest de s’assurer que la probabilité de violation des contraintes reste en dessous d’unseuil spécifié. Ce seuil représente le niveau de risque acceptable ou le niveau de con-fiance souhaité pour le décideur. Par exemple, si on essaye deminimiser les coûts deproduction tout en respectant des contraintes de qualité, la qualité de la productionpeut varier demanière aléatoire. L’optimisation stochastique utilise des concepts deprobabilité et de statistiques pour modéliser l’incertitude et la variabilité. On peututiliser des distributions de probabilité pour représenter les variables aléatoires etestimer les statistiques telles que lamoyenne, la variance, etc. Différentesméthodespeuvent être utilisées pour résoudre des problèmes d’optimisation sous contraintesen probabilité. L’une des approches courantes est la programmation stochastique,qui consiste à discrétiser le problème en plusieurs scénarios possibles, puis à ré-soudre un problème d’optimisation déterministe pour chaque scénario. Une autreapproche est d’utiliser la simulation Monte Carlo pour échantillonner les variablesaléatoires et évaluer la performance de différentes solutions possibles. Cela permetd’estimer la distribution de probabilité de la fonction objectif et des contraintes, cequi peut être utilisé pour prendre des décisions éclairées.Dans l’optimisation sous contraintes en probabilité, les paramètres incertainspeuvent avoir des distributions connues ou inconnues, ce qui influence la manièredont vous abordez le problème. Voici une explication plus détaillée de ces deux cas:
1. Distributions connues: Dans certains cas, on peut avoir une connaissanceprécise des distributions de probabilité qui décrivent les paramètres incertains.Ces distributions sont généralement connues ou estimées à partir de don-nées empiriques. Les distributions de probabilité couramment utilisées in-cluent la distribution normale (gaussienne), la distribution uniforme, la dis-tribution exponentielle, la distribution de Poisson, etc. Lorsque les distribu-tions sont connues, vous pouvez les incorporer directement dans le modèled’optimisation pour tenir compte de l’incertitude. Cela peut se faire à l’aidede techniques telles que la programmation linéaire stochastique (PLS), la pro-grammation linéaire ennombres entiers stochastique (PLNE), ou d’autresméth-odes d’optimisation probabiliste.
2. Distributions inconnues: Dans d’autres situations, les distributions de prob-abilité des paramètres incertains peuvent être inconnues, mal définies ou dif-ficiles à estimer à partir des données disponibles. Dans de tels cas, vous pou-vez utiliser des méthodes d’optimisation sous contraintes en probabilité ro-bustes, qui cherchent à trouver des solutions optimales qui sont robustes faceà l’incertitude, quelle que soit la distribution précise des paramètres incertains.Les approches robustes cherchent àminimiser oumaximiser la fonction objec-tive sous les pires conditions possibles, souvent en utilisant des ensembles descénarios ou des techniques de programmation robuste.

En fonctionde la connaissance qu’on a sur les distributions deprobabilité des paramètresincertains, on choisit la méthode d’optimisation appropriée. Les approches déter-ministes classiques supposent des valeurs fixes pour les paramètres, tandis que
4



les méthodes d’optimisation sous contraintes en probabilité prennent en comptel’incertitude associée à ces paramètres, ce qui peut conduire à des décisions plusprudentes et plus adaptées aux situations réelles.L’optimisation sous contraintes enprobabilité trouvedes applications importantesdans la théorie des jeux et les processus de décision markoviens lorsque les dé-cideurs doivent prendre en compte l’incertitude probabiliste dans leurs choix. Voicicomment ces applications peuvent être abordées:
• Théorie des jeux sous incertitude: Dans la théorie des jeux, les joueurs pren-nent des décisions en fonction des actions de leurs adversaires. Lorsque lesinformations disponibles sont probabilistes (par exemple, lorsque les adver-saires sont considérés comme rationnels mais avec une certaine incertitudesur leurs choix), l’optimisation sous contraintes en probabilité peut être utiliséepour déterminer les stratégies optimales. Par exemple, dans les jeux d’équilibrede Nash sous incertitude, les joueurs optimisent leur espérance de gain en ten-ant compte de la distribution de probabilité des choix adverses.
• Processus de décision markovien sous incertitude: Les processus de dé-cision markoviens (MDP) sont couramment utilisés pour modéliser des prob-lèmes de décision séquentielle dans des environnements incertains. Lorsqueles paramètres duMDP sont incertains, l’optimisation sous contraintes enprob-abilité peut être utilisée pour déterminer des politiques de décision robustes.Par exemple, dans le contexte de la gestion des stocks, lorsque la demandefuture est incertaine, un MDP sous incertitude peut être résolu en optimisantl’espérance du rendement tout en respectant des contraintes de probabilitésur les niveaux de stock.
• Applications en économie et en finance: L’optimisation sous contraintesen probabilité est également pertinente dans le domaine de l’économie et dela finance, où les agents prennent des décisions en présence d’incertitudessur les rendements, les taux de change, les prix des actifs, etc. Des modèlesd’optimisation sous contraintes en probabilité sont utilisés pour la gestion deportefeuille, la gestion des risques et la prise de décision en finance.

Dans cette thèse, nous présentons d’abord un résultat théorique sur la convexitéde l’optimisation sous contraintes en probabilité. Ensuite, nous étudions deux mod-èles spécifiques de la théorie des jeux et des MDPs impliquant l’optimisation souscontraintes en probabilité, connus sous le nomde jeux sous contraintes en probabil-ité (CCGs) et processus de décision Markovien sous contraintes en probabilité à ro-bustesse distributionnelle (DRCCMDPs). Nous considérons différentes hypothèsessur la distribution des paramètres incertains. Dans les CCGs, sous certaines condi-tions, nous démontrons l’existence d’un équilibre de Nash du jeu. Les DRCCMDPspeuvent être modélisés comme un problème d’optimisation sous contraintes enprobabilité à robustesse distributionnelle, où un décideur cherche à maximiser lavaleur actualisée attendue d’une fonction de récompense. Sous certaines condi-tions, nous reformulons le problème d’optimisation de manière équivalente en unproblème déterministe, qui peut être résolu efficacement par des solveurs connus.
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Chapter 1 : Introduction

1.1 . An overview and motivation

Chance-constrained optimization is amathematical framework used to handle uncertainty in optimizationproblems. It addresses situations where decision-making must consider the probability of constraints beingviolated, rather than treating them as hard constraints. In traditional optimization, constraints are typicallyassumed to be deterministic, meaning they must be satisfied exactly. However, in many real-world scenar-ios, there is inherent uncertainty due to various factors such as measurement errors, model inaccuracies,or external disturbances. Chance-constrained optimization provides a systematic approach to incorporatethis uncertainty into the decision-making process. The motivation behind chance-constrained optimizationis to strike a balance between the robustness of the solution and the feasibility of the problem. It recognizesthat satisfying all constraints with certainty might be overly conservative and result in suboptimal solutions.By allowing constraints to be violated within certain bounds or probabilities, chance-constrained optimiza-tion provides a more flexible approach. The key idea is to reformulate the deterministic constraints intoprobabilistic constraints. Instead of requiring a constraint to hold for all possible values of the uncertain pa-rameters, chance-constrained optimization seeks to ensure that the constraints are satisfied with a specifiedprobability, often referred to as the confidence level or risk tolerance.In chance-constrained optimization, there are twomain types of constraints: individual chance constraintsand joint chance constraints. Individual chance constraints are constraints that apply to each constraint sep-arately. They specify the probability that a single constraint is violated. For example, consider a productionplanning problem where the demand for a product is uncertain [159]. An individual chance constraint couldbe formulated to ensure that the probability of demand exceeding the available supply is below a certainthreshold. Individual chance constraints provide a more localized view of constraint satisfaction, focusing onthe probability of violating each constraint independently. Joint chance constraints involvemultiple uncertainvariables and specify the probability that a combination of events violates the constraints. These constraintsconsider the joint behavior of multiple constraints simultaneously. Joint chance constraints capture the inter-actions and dependencies among different constraints and provide amore comprehensive view of constraintsatisfaction. For example, in a portfolio optimization problem, joint chance constraintsmay be used to ensurethat the overall portfolio risk, defined as the probability of exceeding a specified loss threshold, remains be-low a certain level [132]. These constraints consider the combined behavior of all assets in the portfolio. Thechoice between individual and joint chance constraints depends on the specific problem and the relationshipbetween the constraints. If the constraints are independent and there are no interactions among them, indi-vidual chance constraints can be applied separately. However, when there are dependencies or correlationsamong the constraints, joint chance constraints are more appropriate as they capture the collective behaviorand provide a more accurate representation of the overall system risk.Chance-constrained optimization can be used to model several problems in real applications. In health-care resource allocation, chance-constrained optimization can be used to determine optimal staffing levelsand resource allocation while considering uncertain patient arrival rates and treatment demands [213]. Byincorporating chance constraints, hospitals can ensure that the probability of inadequate staffing or exceed-ing resource capacity remains within acceptable limits, balancing patient service levels and operational costs.Chance-constrained optimization is also applicable to inventory management in retail, where demand forproducts is uncertain, and stockouts can lead to lost sales and dissatisfied customers [135]. Retailers canutilize chance-constrained optimization to determine optimal inventory levels, reorder points, and replen-
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ishment policies while considering demand variability. The chance constraints help ensure a desired ser-vice level and minimize the probability of stockouts. Another application of chance-constrained optimizationcan be found in water resources management problems [65]. Chance-constrained optimization can assistin drought mitigation by optimizing water allocation strategies during periods of low water availability. Byincorporating chance constraints, water managers can allocate water supplies among different users whileconsidering uncertain inflows and drought conditions. The chance constraints help maintain the probabil-ity of meeting critical water demands within specified levels. An important application of chance-constrainedoptimization is in portfolio riskmanagement for insurance companies [112]. Chance-constrained optimizationis relevant to insurance companies for portfolio risk management, where the uncertainty lies in the occur-rence of insurance claims. Insurers can use chance-constrained optimization to determine optimal invest-ment and risk transfer strategies while considering the likelihood of claims exceeding certain thresholds. Thechance constraints enable insurers to control the probability of severe losses or financial instability. Recently,chance-constrained optimization has been utilized in environmental impact assessment and renewable en-ergy integration projects to ensure compliance with environmental regulations [16, 68]. When integratingrenewable energy sources into the power grid, chance-constrained optimization can help in determining op-timal generation and transmission capacities while considering uncertainty in renewable energy availabilityand grid stability requirements. The chance constraints ensure that the probability of violating environmentalor operational constraints remains within acceptable limits.In chance-constrained optimization, the feasibility set refers to the set of feasible solutions that satisfy thespecified chance constraints. It represents the region of the decision space where the probability of violatingthe constraints remains below the specified threshold or confidence level. The size and shape of the fea-sibility set depend on various factors, including the uncertainty structure, the chosen confidence level, andthe specific form of the probabilistic constraints. In general, as the confidence level becomes more stringent,the feasibility set tends to shrink, resulting in a more conservative solution space with a lower probability ofconstraint violation. Conversely, relaxing the confidence level expands the feasibility set, allowing for morerisk and potential violations. The feasibility set can take various forms depending on the specific optimizationproblem. In some complex scenarios, the feasibility set may exhibit irregular shapes, making the optimiza-tion problem more challenging to solve. Finding the boundaries of the feasibility set can be computationallydemanding, as it requires estimating or characterizing the joint probability distribution of the uncertain vari-ables. This often involves statistical methods, such as Monte Carlo simulation or scenario generation, tosample from the uncertain parameter space and estimate the probabilities of violating the constraints. Un-derstanding the feasibility set is crucial in chance-constrained optimization, as it provides insights into thetrade-offs between feasibility and optimality. Decision-makers can examine the shape and size of the fea-sibility set to evaluate the robustness of their solutions and make informed decisions based on their riskpreferences. By exploring the feasibility set, they can assess the impact of different confidence levels on thefeasible solution space and determine the appropriate risk-reward trade-offs for their optimization problem.The convexity of the feasibility set in chance-constrained optimization is a desirable property because itenables the use of efficient convex optimization techniques to find globally optimal solutions. It depends onthe specific formulation of the probabilistic constraints and the underlying uncertainty structure. In somecases, the feasibility set can exhibit convexity, while in other cases, it may be non-convex. To determine theconvexity of the feasibility set, we need to examine the structure of the probabilistic constraints and their re-lationship to the decision variables. In general, if the probabilistic constraints are linear or can be expressedas linear functions of the decision variables, and the underlying uncertainty is characterized by a known ortractable probability distribution, the resulting feasibility set is likely to be convex. Linear chance constraintswith normally distributed uncertainty are a common example where the feasibility set is convex. If the proba-bilistic constraints are non-convex, one possible approach is to employ convex relaxation techniques. Convexrelaxations involve approximating the original non-convex chance constraints with convex approximations
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or relaxations. By replacing the original non-convex constraints with their convex counterparts, one can con-struct a convex optimization problem that provides an approximate solution within a certain error tolerance.In some cases, it may be challenging to analytically prove the convexity of the feasibility set. In such situations,numerical validationmethods can be employed. Thesemethods involve sampling from the uncertain param-eter space and solving the chance-constrained optimization problem for different combinations of samples.By examining the resulting solutions, one can gain insights into the shape and behavior of the feasibility set. Ifthemajority of sampled solutions lie in a convex region, it provides evidence for the convexity of the feasibilityset.In chance-constrained optimization, the probabilistic constraints are typically formulated based on as-sumed or estimated probability distributions. However, in practice, the true underlying distribution maybe unknown or subject to estimation errors. Distributionally robust chance-constrained optimization is aconsidered as an extension of traditional chance-constrained optimization that addresses uncertainties inthe probability distribution itself. Distributionally robust chance-constrained optimization seeks to providesolutions that are robust to uncertainties in the probability distribution by considering a set of possible dis-tributions rather than relying on a specific distribution. It aims to find solutions that perform well underthe worst-case scenario within a given uncertainty set of probability distributions. The motivation behinddistributionally robust optimization is to hedge against model misspecification and estimation errors by opti-mizing decisions that are robust across a range of plausible distributions. It provides a way tomake decisionsthat are more resilient and less sensitive to the choice of probability distribution. To implement distribution-ally robust chance-constrained optimization, one typically considers a family of probability distributions thatrepresents the uncertainty in the true distribution. This family is often defined by a set of moment or distri-butional constraints. The optimization problem then aims to find solutions that satisfy the chance constraintsfor all possible distributions within the uncertainty set, ensuring robustness against the worst-case scenario.The choice of the uncertainty set is a critical aspect of distributionally robust chance-constrained optimiza-tion and should be carefully considered based on the problem at hand and the available information. Vari-ous approaches exist for defining uncertainty sets, each offering different trade-offs between conservatismand computational tractability. There are two common approaches to construct uncertainty sets, which aremoment-based uncertainty sets and statistical-based uncertainty sets. Moment-based uncertainty sets referto uncertainty sets that are defined based on moment or statistical properties of the uncertain variables[35].These sets specify bounds or constraints on the moments of the uncertain variables, such as mean, variance,or higher-order moments. For example, a moment-based uncertainty set may restrict themean of the uncer-tain variable to lie within a certain range or limit the variance to be below a specific threshold. They providea deterministic characterization of the uncertainty based on moment information. Statistical distance-baseduncertainty sets are defined based on a measure of statistical distance between the true distribution anda reference distribution. Instead of relying on specific moment constraints, these sets focus on the overalldistributional discrepancy or similarity between the true distribution and the reference distribution. Theseuncertainty sets consider a range of plausible distributions that are close to the true distribution accordingto the chosen statistical distance measure. Common statistical distances used to define such sets includethe Wasserstein distance[76], Kullback-Leibler divergence, or total variation distance[22, 117]. Both moment-based and statistical distance based uncertainty sets have their advantages and applications, depending onthe problem context and available information. Moment-based sets provide a more deterministic represen-tation based on specificmoment constraints, while statistical distance based uncertainty sets allow for amoreflexible and data-driven characterization of uncertainty based on statistical distances.Our research aims to incorporate chance-constrained optimization and distributionally robust chance-constrained optimization into two distinct but interconnected areas: random games and Markov decisionprocesses (MDPs). Both random games and MDPs belong to the broader category of stochastic games dueto their inherent stochastic nature and the presence of uncertainties in their dynamics. Stochastic games
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are a class of game theory models that capture strategic interactions among multiple decision-makers in anuncertain environment. In these games, the outcomes of players’ actions and interactions are influenced byprobabilistic factors, such as random events, uncertain states, or stochastic transitions. The incorporation ofrandomness and uncertainties distinguishes stochastic games from their deterministic counterparts.Random games involve strategic interactions among multiple decision-makers, where uncertainties arisefrom the actions and outcomes of other players, which are subject to randomevents or uncertainties. In thesegames, each player’s decision-making is influenced not only by the actions of other players but also by the ran-dom outcomes or uncertainties associated with the game environment. This adds complexity and challengesto the decision-making process, as players must anticipate and react to the uncertain behaviors of others.Examples of random games include games with incomplete information, where players have limited knowl-edge about the strategies or payoffs of others, games with random payoffs, where the outcomes dependon probabilistic events, or games with stochastic elements that introduce uncertainty and randomness intoplayers’ strategies and resulting outcomes. The presence of uncertainties in random games necessitates theuse of advanced optimization techniques, such as chance-constrained or distributionally robust optimization,to effectively handle the risks and uncertainties inherent in these strategic interactions. These techniques al-low decision-makers to explicitly account for the probabilities of constraint violations and manage the risksassociated with uncertain actions and outcomes, leading to more informed and robust decision-making inthe context of random games strategies and outcomes.Markov Decision Processes (MDPs) can be seen as a specific type of stochastic game, characterized by theinteraction between a single decision-maker and a stochastic environment over time. In MDPs, the decision-maker’s actions directly influence the transitions between states and the corresponding rewards. However,these transitions and rewards are subject to uncertainties, reflecting the stochastic nature of the environ-ment. The presence of uncertainties in MDPs stems from random events or probabilistic dynamics that im-pact the decision-making process and subsequent outcomes. These uncertainties introduce challenges as thedecision-maker must carefully balance the trade-offs between exploration and exploitation to optimize long-term rewards while navigating the uncertain dynamics of the environment. By leveraging chance-constrainedor distributionally robust optimization techniques inMDPs, decision-makers can explicitly account for the un-certainties, manage risks, and make informed decisions that maximize expected rewards while controllingthe probability of constraint violations. Such approaches enhance the robustness and reliability of decision-making in MDPs, enabling effective navigation of the stochastic elements inherent in the environment.In the context of chance-constrained optimization, when considering strategic interactions among multi-ple decision-makers in a game-theoretic framework, we encounter a specific class of problems known aschance-constrained games (CCGs). CCGs combine the principles of chance-constrained optimization andgame theory to address decision-making problems under uncertainty within a competitive or cooperativesetting. The study of CCGs offers valuable insights into the complexities of decision-making in dynamic anduncertain environments with strategic interactions. One of the important notions in CCGs is the equilibriumpoint, specifically the Nash equilibrium. A Nash equilibrium represents a stable state in the game where noplayer has an incentive to unilaterally deviate from their chosen strategy given the strategies of the otherplayers. In CCGs, the Nash equilibrium captures the strategic behavior of decision-makers in the presenceof chance constraints. It identifies a set of strategies where each player’s strategy is optimal, taking into ac-count both their own objectives and the constraints imposed by the chance events. At a Nash equilibrium,no player can improve their own outcome by independently changing their strategy, given the strategies ofother players and the chance constraints. The concept of Nash equilibrium in CCGs provides insights intothe equilibrium strategies that decision-makers adopt under uncertainty and strategic interactions. It helpsin understanding the stability and robustness of the system and provides a benchmark for evaluating theperformance of different strategies. Analyzing the Nash equilibrium in CCGs involves studying the interplaybetween players’ strategies, the impact of chance constraints on their decision-making, and the resulting out-
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comes. An important method to find a Nash equilibrium is the best-response algorithm. The best-responsealgorithm is an iterative process that allows players in a CCG to update their strategies in a sequentialmanner,aiming to converge to a Nash equilibrium. The algorithm involves each player choosing a strategy that opti-mizes their objective function, taking into account the strategies of other players and the chance constraints.It is important to note that the best-response algorithm does not guarantee convergence to a Nash equilib-rium in all cases. Convergence may depend on the specific structure of the game, the players’ objectives, andthe chance constraints involved. For this reason, the convexity of chance constraints has several benefits inthe context of finding a Nash equilibrium. Convex optimization problems have desirable properties that fa-cilitate convergence. Solving a sequence of convex optimizations increases the likelihood of reaching a Nashequilibrium due to the convexity of the problem formulation. However, it is important to note that the con-vexity assumption of chance constraints is not always valid in all scenarios. In some cases, chance constraintsmay have non-convex formulations due to the nature of the underlying probabilistic constraints or the struc-ture of the problem. In such situations, alternative optimization techniques or relaxation approaches may beemployed to handle the non-convexity to approximate Nash equilibria in CCGs.Combining the principles of distributionally robust chance constraints with Markov Decision Processes(MDPs) offers a powerful framework for decision-making under uncertainty with robustness considerations.This integration results in a specific class of problems referred to as distributionally robust chance-constrainedMarkov decision processes (DRCCMDPs). In DRCCMDPs, the decision-maker’s actions aimnot only to optimizeexpected rewards but also to adhere to probabilistic constraints on system properties, considering the un-certainty in the underlying probability distributions. These chance constraints ensure that the probability ofviolating specific conditions or thresholds remains within acceptable levels throughout the decision-makingprocess. By incorporating distributionally robust optimization techniques, DRCCMDPs account for uncertain-ties in the probability distributions and provide robustness guarantees against a set of plausible distributions.The combination of distributionally robust chance constraintswithMDPs enables decision-makers tomake in-formed decisions that balance reward optimization and robustness under uncertain environments. By explic-itly considering the uncertainty in the underlying probability distributions, DRCCMDPs allow decision-makersto develop strategies that are robust against worst-case scenarios, ensuring satisfactory performance evenin the presence of distributional uncertainty. The combination of distributionally robust chance constraintswith MDPs enables decision-makers to make informed decisions that balance reward optimization and ro-bustness under uncertain environments. By explicitly considering the uncertainty in the underlying probabil-ity distributions, DRCCMDPs allow decision-makers to develop strategies that are robust against worst-casescenarios, ensuring satisfactory performance even in the presence of distributional uncertainty. When ap-plying distributionally robust principles to Markov Decision Processes (MDPs), there are two main ways toconsider uncertainty: reward uncertainty and transition probabilities uncertainty. In distributionally robustMDPswith reward uncertainty, the uncertainty lies in the rewards associated with different states and actionsin theMDP. Traditional MDPs assume known reward distributions, but in practice, these distributionsmay beuncertain or difficult to estimate accurately. Distributionally robust MDPs with reward uncertainty aim to findpolicies that perform well under a set of plausible reward distributions. The decision-maker seeks policiesthat are robust against worst-case scenarios. They consider a family of possible reward distributions within agiven ambiguity set and optimize policies that perform well under the worst-case distribution. This approachaccounts for uncertainty in reward estimates and ensures that the selected policy is less sensitive to varia-tions in the true reward distribution. In distributionally robust MDPs with transition probabilities uncertainty,the uncertainty lies in the transition probabilities that dictate how theMDP evolves from one state to another.In real-world scenarios, it is common for transition probabilities to be uncertain, especially when there areexternal factors or environmental changes that affect the system dynamics. Distributionally robust MDPswith transition probabilities uncertainty aim to find policies that are robust against uncertainties in the tran-sition probabilities. The study and application of distributionally robust MDPs with either reward uncertainty
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or transition probabilities uncertainty contribute to developing decision-making strategies that are resilientto uncertainties in the MDPmodel. These techniques find applications in various domains, including finance,resource management, robotics, and many others, where uncertainties in rewards or transition probabilitiesare prevalent and need to be accounted for to ensure effective decision-making.
1.2 . Mathematical framework

We consider the following deterministic optimization problem
min c(x)

subject to (i) h(x, ξ) ≥ 0

(ii) x ∈ Q. (1.1)
where c is a convex real function, Q is a closed convex subset of Rn, h : Rn×Rm → Rs is a multi-dimensionalreal function such that each component hi, i = 1, . . . , n is a convex function, x ∈ Q is an n−dimensionaldecision vector, and ξ ∈ Rm is an m−dimensional parameter vector. The optimization problem (1.1) is aconvex constrained optimization, which can be solved efficiently by convex solvers.The transition from constrained optimization to chance-constrained optimization ismotivated by the needto incorporate uncertainty and risk management into decision-making processes. While constrained opti-mization focuses on optimizing objectives subject to deterministic constraints, chance-constrained optimiza-tion introduces a probabilistic perspective to handle uncertainties more explicitly. By taking into account ofthe uncertainty of ξ, we consider the following chance-constrained optimization

min c(x)

subject to (i) P (h(x, ξ) ≥ 0) ≥ 1− ϵ

(ii) x ∈ Q, (1.2)
where ξ : Ω → Rm is a random vector defined on a probability space (Ω,A,P) and ϵ ∈ [0, 1]. The constraint (i)of (1.2) is called an individual chance constraint if s = 1 and a joint chance constraint if s > 1.A fundamental issue in chance-constrained problems is the characterization of the convexity properties ofchance constraints. The main question is whether these chance constraints preserve convexity, allowing forefficient optimization techniques and reliable solutions. Significant progress has beenmade in understandingthe convexity properties of chance constraints under certain assumptions. For instance, if the underlyingrandom variables are independent and have known probability distributions, chance constraints can often bereformulated as convex constraints using techniques such as chance constrained reformulation or scenarioapproximation. These reformulations allow for efficient optimization using convex optimizationmethods. Forjoint chance constraints case, researchers have explored conditions under which joint chance constraints canbe convex, especially when specific assumptions are made about the distributions or dependencies amongthe random variables. In some cases, the convexity of joint chance constraints can be established based onproperties of the underlying distributions, such as log-concavity or specific covariance structures.In chance-constrained optimization, uncertainties are typically represented by probabilistic constraintsthat specify a required probability of constraint satisfaction. However, the specific probability distributionunderlying the uncertain parameters is often assumed to be known, which may not reflect the true dis-tribution accurately or may be difficult to estimate in practice. Distributionally robust chance-constrainedoptimization takes a more conservative and robust approach by considering a set of possible distributionsor ambiguity sets instead of assuming a single known distribution. The ambiguity set represents a range of
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potential distributions that the uncertain parameters may follow. We consider the following distributionallyrobust chance-constrained optimization
min c(x)

subject to (i) inf
F∈D

P (h(x, ξ) ≥ 0) ≥ 1− ϵ

(ii) x ∈ Q, (1.3)
where F is the distribution of ξ, D is a given uncertainty set of potential distributions of ξ. The constraint(i) of (1.3) implies the constraint (i) of (1.2) if the true distribution of ξ belongs to the uncertainty set D. Con-structing a well-defined and appropriate uncertainty set is crucial in distributionally robust optimization toensure reliable and meaningful results. The choice of uncertainty set affects the robustness of the optimiza-tion model and the trade-off between conservativeness and computational tractability. Two commonly usedapproaches have been proposed in the literature to construct uncertainty sets, based on either momentsof the random variable or statistical distance between a nominal distribution and the true distribution ofthe random variable. A moment-based uncertainty set is constructed based on statistical moments of theuncertain parameters, such as mean and covariance. This type of uncertainty set is defined by specifying arange or bound on themoments of the uncertain distribution. The bounds can be determined from historicaldata, expert knowledge, or conservative estimates. A statistical distance-based uncertainty set is constructedbased on the concept of statistical distances or divergences. These measures quantify the dissimilarity ordiscrepancy between probability distributions. The idea behind statistical distance-based uncertainty setsis to define a set of distributions that are close to a reference distribution according to a chosen statisticaldistance measure. The reference distribution is often derived from observed data or prior knowledge, andthe uncertainty set encompasses distributions that are within a specified distance from the reference.Themathematical framework of chance-constrained games combines elements from chance-constrainedoptimization and game theory to analyze decision-making problems under uncertainty within a competitiveor cooperative setting. It involves defining the players’ decision spaces, their objectives, the uncertainty in thesystem, and the chance constraints that govern their actions. The framework can be formulated as follows:

• Players: Given n decision-makers or players in the game denoted by the index i ∈ {1, 2, ..., n}.
• Decision Spaces: Each player i has a decision space denoted by Si, which represents the feasible set ofstrategies or actions available to that player.
• Objective Functions: Each player i has an objective function denoted by fi(·), which quantifies theirindividual preferences or goals. The objective functions may involve maximizing or minimizing certaincriteria, such as utility, profit, cost, or social welfare.
• Uncertainty: Uncertainty is represented by a probability distribution or a set of plausible distributionsthat capture the randomness or variability in the system. The uncertainty may arise from uncertainpayoffs, incomplete information, or stochastic elements influencing players’ decisions and outcomes.
• Chance Constraints: Chance constraints define probabilistic bounds on players’ actions or outcomes.These constraints ensure that the probability of violating specific conditions or thresholds remainswithin acceptable levels throughout the decision-making process. Chance constraints can be formu-lated as constraint (i) of (1.2) or constraint (i) of (1.3) if the underlying distribution is assumed to beunknown.
• Equilibrium Concept: Nash equilibrium is used to capture the stable states in the game. A Nash equilib-rium is a set of strategies for all players in which no player can unilaterally improve their payoff giventhe strategies of others
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The mathematical framework of distributionally robust chance-constrained Markov decision processes(DRCCMDPs) combines elements from distributionally robust optimization, chance-constrained optimization,andMarkov decision processes tomodel decision-making under uncertainty within a dynamic and sequentialframework. It involves formulating the decision spaces, the transition dynamics, the objective functions,and the chance constraints while accounting for uncertainty in the underlying probability distributions. Theframework can be formulated as follows:
• Decision Spaces: Each state s ∈ S in the MDP is associated with a decision space denoted by A, whichrepresents the feasible set of actions available to the decision-maker.
• Transition Dynamics: The transition dynamics (or transition probabilities) describe the probabilistic evo-lution of the MDP from one state to another based on the chosen actions. The transition probabilitiesare fixed or uncertain and represented by a set of plausible distributions or ambiguity sets.
• Objective Function: Objective function is the expected reward, where the decision maker aims to maxi-mize this function.
• Uncertainty in Reward or Transition Probabilities: The uncertainty in reward or transition probabilitiesis modeled using distributional ambiguity sets. These ambiguity sets capture a range of plausible dis-tributions that represent the uncertainty. They can be defined based on moment-based or statisticaldistance-based approaches.
• Chance Constraints: Chance constraints are imposed on the system properties to ensure that the prob-ability of violating specific conditions or thresholds remains within acceptable levels throughout thedecision-making process. The chance constraints consider the uncertainty. In this framework, we con-sider chance constraints of the form (i) of (1.3).
1.3 . Contribution and Outline of the Dissertation

We highlight some contributions of this dissertation to the field of chance-constrained optimization, withspecific applications in random games and Markov decision processes (MDPs). The key contributions of thisresearch are as follows:
1. Convexity Analysis of Chance-Constrained Optimization: We provide a rigorous proof of the con-vexity of chance-constrained optimization problems when incorporating a random technology matrixinto joint chance constraints. Our analysis is inspired by previous works in the literature [100, 49], whichextends the understanding of the convexity properties of chance constrained optimization with randomtechnology matrix. We assume that the row vectors of the random matrix follows a multivariate ellipti-cal distribution and the dependence between them are captured by a Gumbel-Hougaard copula, whichbelongs to the class of Archimedean copulas. Under certain conditions, we prove the convexity of thefeasibility set. By establishing the convexity of the optimization problem, one can enable the utilizationof efficient convex optimization techniques, enhancing the tractability of the solution methods.
2. Application in Random Games: First, we consider a general n−players chance-constrained gameframework, which can be adapted to different practical scenarios. Specifically, the strategy sets of eachplayer are defined by joint chance constraints, incorporating a random technology matrix. We assumethat the distribution of the row vectors of the technology matrix is known and we study two distinctcases: one where the row vectors of the random technology matrix follow an elliptical distribution, and
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another where they follow a normalmean-variancemixture distribution. In both cases, we prove the ex-istence of a Nash equilibrium for the game. This result demonstrates that, under certain assumptions,players can reach a stable strategic equilibrium even in the presence of chance constraints. We proposean algorithm, namely best-response algorithm to find a Nash equilibrium and present an application inthe competition of two firms in financial market. A disadvantage of the best-response algorithm is that itdoes not always guarantee the convergence to aNash equilibrium. To ensure the convergence to aNashequilibrium in situations where the best-response algorithm may not guarantee it, we introduce a ded-icated chapter that focuses on a specific game model. This model offers the assurance of the existenceand uniqueness of a Nash equilibrium, along with the convergence of our algorithm to this equilibrium.Our study specifically delves into the framework of two-player zero-sum games, where the strategy setsof each player are defined by distributionally robust linear chance constraints with random technologymatrix, i.e., we lack knowledge about the true distribution of the row vectors and we assume that theyare only known to belong to some uncertainty set. In this scenario, we not only establish the existenceof a Nash equilibrium but go further by demonstrating that the Nash equilibrium is unique and it canbe obtained as the optimal solution of a primal-dual pair of second-order cone programmings, whichcan be solved efficiently by convex solvers.
3. Application in Markov decision processes: We extend the application of chance-constrained opti-mization to the domain of Markov decision processes (MDPs). We introduce a model called the dis-tributionally robust chance-constrained MDP, which incorporates distributionally robust chance con-straints into the MDP formulation. We consider two important sources of uncertainty: reward uncer-tainty and transition probabilities uncertainty. By integrating distributionally robust chance constraintsinto these components, we enable decision-makers to make robust decisions that account for the asso-ciated uncertainties. To handle the uncertainty in the distributionally robust chance constrained MDP,we construct two types of uncertainty sets. The first approach utilizes first and second moments of theuncertain parameters to define the uncertainty sets. These moments capture statistical properties ofthe uncertain distributions and provide a concise representation of uncertainty. The second approachutilizes phi-divergence and Wasserstein statistical distance measures to construct the uncertainty sets.This approach quantifies the dissimilarity between the true distribution and an assumed nominal distri-bution, allowing decision-makers to capture the range of plausible distributions. In all cases, we refor-mulate the optimization problem equivalently as deterministic optimization problems using the dualitytheory. These reformulations enable efficient and tractable solutions using well-known solvers such asMosek and Gurobi.

The rest of the dissertation is organized as follows. In Chapter 2, we review importantworks related to chance-constrained optimization, distributionally robust chance-constrained optimization, and their applications inrandom games and Markov decision processes. We present the main results of the dissertation in Chapters3-6. We conclude the primary contributions of this dissertation and develop a discussion on open issues andpotential directions for future research in Chapter 7.
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Chapter 2 :Literature review

2.1 . Chance-constrained optimization

The paper entitled "Chance-Constrained Programming" (CCP) by Charnes and Cooper published in 1959in the journal Management Science [40], is one of the pioneering works in the field of chance-constrainedoptimization. The paper presented the basic framework of chance-constrained programming and discussedvarious aspects, including mathematical formulations, solution methods, and interpretation of results. Theconcept of chance constraints introduced in this paper has been extended and further developed in sub-sequent research in various fields, including finance, engineering, transportation, and environmental man-agement, where decision-making under uncertainty is crucial. Charnes and Cooper [41] presented a novelapproach to optimization problems, focusing on linear fractional programming. They proposed a method totransform fractional objective functions into linear ones, thenmaking use of linear programming techniques.Charnes and Cooper [42] introduced the concept of data envelopment analysis (DEA) as a method for mea-suring the efficiency of decision-making units. The CCP problem has been analyzed from others authors,i.e., Naslund and Whinston [162], who considered a decision making model for investment in the stock mar-ket. Kataoka [122] and van de Panne and Pop [237] proposed a solution method for individual, or single rownormal constraints. In [122], the author considered a transportation type problem, which can be solved byiteration of linear programming, while [237] considered an application of linear programming in determiningthe optimal composition of castle feed. They reformulated the constraints as chance constraints, which canbe solved using one of Zoutendijk’s methods of feasible directions. Miller and Wagner [156] explored themodel of joint constraints involving independent random variables on right-hand side. By utilizing statisticalhazard function they identified conditions under which the resulting problem is convex (increasing hazardrate). To address this, they developed three algorithms that leverage the linearization of logarithmic chanceconstraints. Jagannathan [111] went beyond the assumption of independence for the random variables on theright-hand side, and further explored scenarios where the random coefficient matrix is independent (with acommon row variance).In general, evaluating the probability associated with chance constraints is computationally challenging.As a result, researchers have proposed numerous equivalent reformulations or approximations to handlechance constraints more effectively. These alternative formulations aim to simplify the computational com-plexity and enable tractable solutions for chance-constrained optimization problems. There are several com-monly used methods to solve chance constraints in optimization problems, e.g., convex approximations,reformulation techniques, sample average approximation (SAA), scenario approximation, Bernstein approx-imation.Reformulation techniques is a basic tool in handling chance constraints effectively in optimization prob-lems. These techniques aim to transform the original chance constraints into alternative formulations thatare easier to analyze and solve. For the individual linear chance constraints, the chance constraint can bereformulated equivalently as second-order cone programming (SOCP) constraint under certain assumption(the random variables follows elliptical or radial distribution) [185, 111, 90].In case of linear joint chance constraints, it is hard to derive a tractable reformulation if the random vari-ables are continuous. For this reason, several convex approximations have been proposed to deal with thiscase. Cheng et al. [49] proposed SOCP approximations based on piecewise linear approximations in indepen-dent row matrix case. To deal with the dependent rows case, Cheng et al. [48] used Archimedean copula toderive SOCP approximations. In the case where the random variables follow finite distributions, Luedtke and
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Ahmed [150] proposed a novel approach by constructing a mixed integer linear programming reformulationfor linear joint chance constraints. Vielma et al. [240] explores the use of mixed integer linear programmingto model and solve chance constrained optimization. The paper presents practical applications and casestudies , which could span various domains such as finance, supply chain management, transportation, orenergy systems.These abovementioned cases are some very particular cases where we can get exact reformulations orconvex approximations of the chance constraints. However, such situation is rare, especially when the chanceconstraint is nonlinear [61, 130, 192]. The scenario approach, relying onMonte Carlo sampling techniques, pro-vides a computationally tractable way to handle uncertainties by generating a set of representative scenariosand evaluating the feasibility of constraints based on these scenarios, that allows for solving chance con-strained problems using standard deterministic optimization techniques. This approach has been studied in[33, 36, 53] and extended by Nemirovski and Shapiro [164]. They developed a solution methodology usingscenario approximation techniques to addresse joint linear chance constrained problems. Under certain con-ditions, they proved that the solution of the approximation problem aligns with the feasibility of the originalproblem, ensuring a high probability of constraint satisfaction. Hong et al. [106] proposed sequential convexapproximations to solve nonlinear joint chance constraints. Luedtke and Ahmed [149] studied some conditionof the sample size and probability level such that a solution obtained by the approximation problem guar-antees feasibility for the original problem. [165] introduced the Bernstein approximation technique, whichis a method for approximating probability distributions or functions by using Bernstein polynomials. Theirwork on the Bernstein approximation has found applications in various areas, including chance constrainedoptimization, stochastic programming, and machine learning.SAA method involves approximating the chance constraints using a finite number of samples drawn fromthe uncertain parameters. The problem is then transformed into a deterministic optimization problem thatcan be solved using standard techniques, where the accuracy of the approximation depends on the numberof samples used. Several papers have been studied in the literature concerning SAAmethod [143, 6, 126, 209].Recently, Cheng et al. [47] proposedpartial SAAmethod to solve joint chance constraints. Themain advantageof this approach is the approximation problem is still a continuous optimization with continuous variables.A novel method, called Bicriteria approximation to solve chance-constrained covering problems refersto an approach that seeks to approximate solutions for such problems with multiple conflicting objectivesor criteria. In chance-constrained covering problems, the goal is to find a set of cover elements that satisfycertain coverage requirementswhile also satisfying probabilistic constraints on the coverage probability. [261]proposed a bicriteria approximation scheme to derive a tractable convex relaxation of a chance constrainedproblem, which can be further extended to the distributionally robust setting. Adam et al. [1] proposed tosolve joint chance constrained problems using regularization and Benders’ decomposition. Deng et al. [59]studied scenario grouping and decomposition algorithms for chance-constrained programsAnother direction in solving chance-constrained optimization is establishing bounds by leveraging deter-ministic analytical approximations of chance constraints. By employing this approach, bounds can be derivedbasedonmathematical techniques that provide deterministic approximations of the probabilistic constraints.An useful tool to derive bounds for individual chance constraints is based on extensions of Chebyshev in-equality (see for instance [28, 105, 181]). For joint chance constraints, several papers proposed tight boundsto derive deterministic equivalent approximations [144, 225]. Recently, bounds based on nonlinear program-ming (NLP) problems, which can be solved by NLP solvers, have been proposed to derive approximations fornonlinear chance constrained optimzation [78]. Karimi et al. [121] proposed a novel partial sample averageapproximation (PSAA) framework to solve the two types of chance-constrained linear matrix inequality prob-lems with random technology matrix and with random right-hand side. Ahmed et al. [5] proposed two newLagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativityconstraints. Xie and Ahmed [260] studied quantile cuts and their closure for chance constrained optimization
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problems over a finite distribution. Zhang et al. [270] proposed new valid inequalities and formulations forthe static joint chance-constrained lot-sizing problem. Recently, Liu et al. [145] studied chance-constrainedDRO in geometric optimization.Recently, a novel method to chance-constrained optimization based on reformulations using partial KKTconditions and the use of dynamical neural network has been studied in the literature [227, 251]. Siham andLisser [227] studied linear problems with joint chance constraints with dependent row vectors and the de-pendence is modeled by Gumbel-Hougaard copula. They proposed an ordinary differential equations (ODA)reformulation based on partial KKT conditions and used dynamical neural networks to solve. Dawen andLisser [254] generalized this method to solve some class of nonlinear chance-constrained optimizations.Chance-constrained optimization has a wide range of applications across various fields, e.g., supply chainplanning and inventory management [190, 135], risk budgeting multi-portfolio [112, 137], production planning[159], hydro reservoir management [233, 9, 25], gas transport management [84, 75, 2, 196] , electricity spotmarket modeling [98, 96], environmental management [93, 191, 65], renewable energy management [32, 68,171, 10, 268], transportation and logistics [13, 14], riskmanagement [4, 175, 12, 204, 112, 136], critical path network[212]
2.2 . Analytical properties of chance constraints

Convexity properties play a crucial role in chance-constrained optimization. The primary focus is on con-vex chance constraints, where the feasible region defined by the constraints forms a convex set. This propertyis desirable because it allows for efficient optimization algorithms and guarantees global optimality. Convexchance constraints can often be formulated using convex functions, such as the cumulative distribution func-tion (CDF) or quantile functions. Motivated by Arrow and Enthoven [11] about quasi-concave programming,Prékopa [184] studied joint constraints with dependency by introducing quasi-concave constraint function.Prékopa [185] first introduced the notion of log-concave measures and this concept was further developpedin his paper in 1972 [186]. Prékopa [187] introduced some useful applications of log-concave measures instochastic programming models. The notion of log-concave measures was generalized to α− concave mea-sures by Borel [29] and Brascamp and Lieb [31], which is further developped by Norkin and Roenko [173] withapplications in probability optimization and fuzzy optimization. The property of α−concave has been shownadequately for many prominent distributions by the abovementioned papers and also applicable in somecontinuous distribution case, such as multivariate gamma in Prékopa and Szàntai [191]. Dentcheva et al. [61]generalized the definition of α− concave measures on a set, which was used for extending optimality andduality theory in their paper in 2002 [62]. By employing a similar concept of Q-radial distribution, Calafioreand El Ghaoui [35] reformulated individual chance constraints as second-order cone constraints.While significant progress has been made in reformulating individual chance constraints, addressing theissue of convexity remains a considerable challenge, particularly when dealing with joint chance-constrainedproblems. However, various extensions have been explored to address this issue. Prékopa et al. [193] pos-tulated that a joint linear chance constrained problem is convex when the rows are assumed to follow in-dependent normal distributions, with an additional condition that the covariance matrices of these rows areproportional to each other. Henrion and Strugarek [100] proved the convexity of joint chance constraints withindependent random variables separated from decision vectors. To handle the dependent case, Henrion andStrugarek [101] introduced r−decreasing densities concept and the theory of copula, while Houda [107] useda variation to the mixing coefficient. Lagoa et al. [130] showed the convexity in the case where the randomvariables have log-concave and symmetric distribution. Some recent papers provide insights into the convex-ity properties of chance-constrained optimization problems and offer various convex relaxation techniquesfor handling different types of random variables and [229, 235, 7].
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Optimality conditions and differentiability play crucial roles in analyzing and solving chance-constrainedoptimization problems. The notion of p-efficient points is an important concept in multi-objective optimiza-tion. It refers to a specific subset of solutions in the objective space that cannot be improved simultane-ously in all objectives by any other feasible solution. This concept was first introduced in Prékopa [194],which was extensively analyzed later in several frameworks, [61] (probabilistically constrained stochastic pro-gramming with discrere distributions), [62] (integer programming problems), [24] (probabilistic set-coveringproblem), [24] (stochastic integer problems), [188] (linear problems), [60] (nonlinear problems). Lejeune andNoyan [134]proposed a novel method to generate p-efficient points of probabilistically constrained prob-lems, in which the random variables are finitely distributed by solving mixed-integer programming. KleinHaneveld [125] introduced related measures of violation and conditional expectation constraints. Severalalgorithms have been proposed to calculate the probability distribution function, e.g., algorithms for multi-variate normal distribution (without gradients) [226, 54, 80, 81] and algorithms based on a gradient calculation[228, 99, 231, 232, 94].Calmness is a concept used in the field of mathematical optimization, especially in the study of constraintsystems. It captures a form of stability for these systems. This concept is closely related to the notion ofLipschitz continuity in calculus, but in the context of set-valued mappings. Calmness is a useful propertybecause it gives us someguarantees about the behavior of the constraint system. It is particularly important inthe context of robust optimization and stochastic optimization, where thedecision variables or the constraintsmay be subject to some uncertainty. If the constraint system is calm, then it means that small changes orperturbations will not significantly disrupt the optimal solution. The calmness property of a multifunctionwas first introduced in Rockafellar [201]. A few years later, analytical properties as well as its applicationshave been extensively studied in [95, 91, 92, 97].A new research direction is to study properties of chance constraints (e.g., closedness, convexity, Lipschitzcontinuity, differentiability) in infinite dimension and application to PDE constrained optimization [73, 72, 79].Pérez-Aros and Henrion [231], van Ackooij and Pérez-Aros [236] studied generalized differentiation of probustfunctions, i.e., probability functions acting on generalized semi-infinite inequality systems. Grandon et al. [85]investigated analytical properties of chance under continuous random distributions, e.g., weak sequentialsemi-continuity, Lipschitz continuity and differentiability of the probability function. Recently, the sampleaverage approximation has been applied to PDE-constrained optimization problems for approximating risk-neutral optimization problems [157].
2.3 . Distributionally robust chance constrained optimization

In numerous real applications, it is frequently encountered that decision-makers have access to only par-tial information regarding the underlying distribution, primarily relying on historical data. Substituting theactual distribution with an estimated one may lead to an optimal solution that is highly likely to be infeasiblein practical applications. For this reason, distributionally robust optimization (DRO) is a powerful and flexibleframework for decision-making under uncertainty. It provides a principled approach to handle uncertaintiesin the distribution of uncertain parameters or data, allowing decision-makers to account for the inherentambiguity in their optimization models.There are two common approaches for constructing uncertainty sets of the underlying distribution in dis-tributionally robust optimization based on either its moments information or statistical distance betweenthe true distribution and a given reference distribution. Initial uncertainty sets for the underlying distributionare typically constructed based on precise moment information of the random parameter [83, 44, 183, 35,139, 276]. Calafiore and El Ghaoui [35] presented a notable reformulation of a distributionally robust individ-ual linear chance-constrained problem, transforming it into a SOCP problem. This reformulation provided a
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more tractable and efficient approach to solving the problem, allowing decision-makers to effectively handleuncertainty while optimizing their objectives. Zymler et al. [276] made significant contributions to the field byintroducing an approximation approach for distributionally robust joint chance constraints problems. Theirmethodology involved approximating the problem as a tractable semidefinite programming (SDP) problem.Notably, they demonstrated that the proposed SDP formulation serves as a reformulation when dealing withindividual chance constraints. This advancement provides a computationally efficient and practical solutionfor handling joint chance constraints in a distributionally robust setting. Li et al. [139] presents a novel ap-proach for incorporating ambiguous risk constraints into optimization problems. The authors introduce amethodology for constructing ambiguity sets that capture the uncertainty in the distribution while consider-ing the available moment and unimodality information. The paper investigates the formulation and proper-ties of these ambiguous risk constraints and proposes solution methodologies, considering both linear andnonlinear settings. The contributions of this paper lie in the development of a framework that combinesmoment and unimodality information to handle ambiguous risk constraints.Delage and Ye [57] considers an ambiguity set defined by the first and second ordermoments of the uncer-tain parameters (unknownmoments). The unknown first and second ordermoments are characterized by anelliptical constraint and a linearmatrix inequality. The authors highlight the practical implications of theirworkby applying distributionally robust optimization to data-driven problems. Cheng et al. [46] studies ambiguityset with known first moment and unknown second moment to address the distributionally robust optimiza-tion of the stochastic knapsack problem. Yang and Xu [264] made a significant contribution by demonstratingthe tractability of distributionally robust chance-constrained optimization under certain conditions. Specifi-cally, they showed that if the uncertainty set can be characterized by its mean and variance within a given set,and the constraint function exhibits concavity with respect to the decision variables and quasi-convexity withrespect to the uncertain parameters, then the resulting optimization problem is tractable. Their results offerpractical implications, indicating that under specific assumptions on the uncertainty set and constraint func-tion, efficient solution methodologies can be developed to solve the optimization problem. Xie and Ahmed[259]proved the convexity of a distributionally robust joint chance constraints optimization problem undercertain conditions. Specifically, they showed that when the uncertainty set is specified by convex momentconstraints, the resulting joint chance constraints optimization problem is convex.An alternative approach to constructing uncertainty sets in distributionally robust optimization is basedon statistical distance measures. Rather than relying solely on moment information, this approach consid-ers the dissimilarity or distance between probability distributions. The choice of statistical distance measureand the construction of appropriate ambiguity sets is important. One commonly employed approach fordata-driven uncertainty sets in distributionally robust optimization is based on phi-divergence and Wasser-stein distance. phi-divergencemeasures, such as Kullback-Leibler divergence, Jensen-Shannon divergence, orHellinger distance, quantify the difference between two distributions based on their probability densities. Onthe other hand, the Wasserstein distance, also known as the earth mover’s distance, measures the minimumcost required to transform one distribution into another. Ben-Tal et al. [22] introduce and analyze a robustoptimization framework based on phi-divergence. Hu andMehrotra [108] investigated distributionally robustindividual chance constrained optimization problems, where the uncertainty set of the probability distribu-tion is defined using the Kullback-Leibler divergence, a specific case of phi-divergence. Jiang and Guan [117]made a novel result for distributionally robust joint linear chance constrained optimization problems withphi-divergence based uncertainty sets. They established that a distributionally robust joint linear chance con-straint can be equivalently reformulated as a chance constraint with a perturbed risk level, which allows for amore tractable formulation and solution of the distributionally robust problem. Recently, Esfahani and Kuhn[158], Zhao and Guan [271] in their works showed that when the uncertainty set is defined using the Wasser-stein distance, the distributionally robust expected utility optimization problem can be tractably solved undercertain conditions. Gao and Kleywegt [76] introduce a distributionally robust stochastic optimization frame-
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work that incorporates the Wasserstein distance and propose a deterministic reformulation by using dualitytheory. This work influenced and shed light on subsequent research in the field on utilization of the Wasser-stein distance, e.g, [113, 114, 115]. On the other hand, Hanasusanto et al. [88] analyzed the computationalcomplexity of the distributionally robust joint linear chance constrained program, considering the Wasser-stein distance as the measure of distributional dissimilarity. By proving the problem’s strong NP-hardness,they demonstrated that finding an optimal solution to this problem is computationally challenging.An extension version of distributionally robust optimization (DRO) is DRO with decision-dependent un-certainty. DRO with decision-dependent uncertainty provides a framework to address uncertainty that isinfluenced by the decision variables in an optimization problem. By considering the relationship betweendecisions and uncertainty, it enables decision-makers to make robust and informed choices that account forthe possible values of the uncertain parameters. Recently, [174] introduced this new class of DRO, wherethe ambiguity sets are constructed based on the total variation distance and the Wasserstein metrics. Luoand Mehrotra [151] studied this model in five types of ambiguity sets, with finite support and continuous sup-port cases. Kettunen and Lejeune [123] derived decision-dependent stochastic programming formulationsfor data-driven project portfolio selection. Basciftci et al. [19] considered a DRO framework under decision-dependent stochastic demand in a facility location problem.Recently, DRO has been extensively studied in various different frameworks. Duchi and Namkoong [64]developed and analyzed a DRO framework that learns a model providing good performance against pertur-bations to the data-generating distribution in statistics and machine learning. Bertsimas et al. developeda framework for solving an adaptive distributionally robust linear optimization problem. Zhu et al. [275]proposed a novel model that generelizes the common DRO models, based on kernel. They proposed a gen-eralized duality theorem and stochastic optimization methods to solve this new class of DRO. Chen et al.[45] considered a DRO with infinitely constrained ambiguity sets. They proved that the DRO might not leadto tractable reformulation, then they proposed a method that solve a sequence of tractable distributionallyrobust optimization subproblems—each of which considers a relaxed and finitely constrained ambiguity set.Levy et al. [138] studied a distributionally robust optimization approaches for a one-stage stochastic mini-mization problem.DRO has found applications in various fields, e.g., electricity and electrified transportation planning [86,148], portfolio optimization [63], multi-item newsvendor problems [88], carbon emissions in transportation[265], energy management [37, 205], machine scheduling [177], sustainable development [116, 16], renewableenergy [270], reverse scheduling [27, 140], autonomous vehicle [89], hub location problem [266], productionplanning [87], hybrid vehicle routing problem [266].
2.4 . Chance-constrained games

The publication of Cournot’s seminal book "Researches into the Mathematical Principles of the Theoryof Wealth" in 1838 [50] marked a turning point in the widespread adoption of equilibrium concepts undermarket conditions. Building upon Cournot’s work, Von Neumann’s study of saddle point equilibrium for two-player zero-sum games [244] further contributed to this line of research. In 1950, Nash demonstrated theexistence of a Nash equilibrium, a point at which no player has an incentive to unilaterally deviate, in finitestrategic games [160]. This result ignited extensive exploration of general strategic games in the literature[18, 55, 69], despite the practical limitations of the theory of Nash equilibrium in deterministic setups. Thislimitation arises when dealing with real-world applications involving random payoffs and strategy sets.To handle random payoffs, the expectation function [200] has become a commonly used tool, particularlyfor risk-neutral cases. However, for risk-averse games, alternative payoff criteria based on risk measuressuch as Conditional Value-at-Risk (CVaR) [120, 200] and chance constraint programming [214, 216] have been
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studied. Singh et al. [214] investigated finite strategic games with elliptically distributed payoff vectors andestablished the existence of a Nash equilibrium. The equivalence between a Nash equilibrium of a chance-constrained game (CCG), as studied in [214], and the global optimal solution of a specific mathematical pro-gram is stated in [216].While the aforementioned games consider randompayoff functions and deterministic strategy sets, manyapplications involve strategy sets with chance constraints. For example, risk constraints in portfolio optimiza-tion [112] and resource constraints in stochastic shortest path problems [49] often employ strategy sets withchance constraints. Consequently, games with chance-constrained strategy sets have been introduced inthe literature [178, 179, 180, 217, 219]. Singh and Lisser [217] investigated a two-player zero-sum game withindividual chance constraints, showing that the saddle point equilibrium problem is equivalent to a primal-dual pair of second-order cone programs when the random constraint vectors follow elliptically symmetricdistributions. Singh et al. [219] extended the study to an n-player general-sum game with individual chanceconstraints under elliptically symmetric distributions, demonstrating the equivalence between a Nash equi-librium problem and the global optimization of a nonlinear optimization problem.Motivated by these results, Peng et al. [179] established the existence of a Nash equilibrium for n-playergeneral-sum games with joint chance-constrained strategy sets. The random constraint vectors were as-sumed to be independently normally distributed or follow amixture of elliptical distributions [180]. When theprobability distributions are not fully known and belong to a given distributional uncertainty set, Peng et al.[178] formulated the random constraints for each player as a distributionally robust joint chance constraint.They considered several uncertainty sets, including density-based and two-moments-based sets, with oneof them having nonnegative support. The authors demonstrated the existence of a Nash equilibrium for adistributionally robust chance-constrained game under each uncertainty set.In the aforementioned works [178, 179, 180], it was assumed that the random constraint vectors are in-dependently distributed. However, in real-world applications, random variables often exhibit dependence.To study the dependence structure of random variables, the concept of copulas was introduced by Sklar in1959 [221] as a solution to a probability problem raised by Fréchet in the context of random metric spaces.Copulas are functions used to separate the marginal distributions from the given dependent structure of amultivariate distribution. Henrion and Strugarek [100] introduced the concept of log-exp concavity of copulasto examine the convexity of dependent joint chance constraints in the case of elliptically distributed randomconstraint vectors. Nguyen et al. [166] studied the convexity of elliptically distributed linearly dependent jointchance constraints using copulas. Some eventual convexity results for joint chance constraints without usingcopulas are provided in [235].A novel method based on ordinary differential equation (ODA) reformulation and dynamical neural net-work to find a Nash equilibrium of chance constrained games has been recently studied extensively in theworks of Dawen and Lisser [253, 252, 256, 255]. They applied themethod to find a Nash equilibrium in variousframework, e.g., matrix games, two-players zero-sum games and general n− players games.
2.5 . Chance-constrained Markov decision processes

The Markov decision process (MDP) serves as a powerful mathematical framework for determining anoptimal dynamic policy within a long-term environment characterized by uncertainty. MDP finds its impor-tance in machine learning and artificial intelligence [51, 224, 43, 267, 274] with wide applications in variousfields, including natural language processing (NLP) and information retrieval [77], healthcare system [223],computer networking and systems [246], runtime monitors problem [118], robotics and autonomous sys-tems [15, 128, 133, 146], blockchain security and cryptography [141], ecology and evolution [38], mobile health(mHealth) and digital health [142], risk management and financial analytics [21] and more.
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In MDPs, the sourse of randomness arises from two main perspectives: reward and transition probabili-ties. Reward randomness in MDPs refers to the presence of uncertainty or variability in the rewards receivedby the agent as it interacts with the environment. To handle reward randomness, various techniques canbe employed, including exploration [17, 245], risk management [131], reinforcement learning [247, 109, 269],probabilistic model [129].Transition probabilities randomness in MDPs refers to the presence of uncertainty or variability in theprobabilities of transitioning between states based on the agent’s chosen actions. It introduces a stochasticelement into the dynamics of the system, making the state transitions probabilistic rather than deterministic.Transition probabilities randomness can arise from several factors, including noisy, partial observations orunknowndynamics [127]. Various techniques canbe employed to handle transition probabilities randomness,including exploration methods [250, 74] or sensitivity analysis [119].Most of the research efforts in addressing this uncertainty have primarily focused on robust Markov Deci-sion Processes (MDPs), where the rewards or transition probabilities are assumed to belong to a pre-defineduncertainty set [110, 172, 238, 248, 249]. However, it has been observed that the robust MDP approach of-ten leads to conservative policies [56]. To overcome this issue, Delage and Mannor introduced the conceptof a chance-constrained Markov decision process (CCMDP) [56], where the controller aims to achieve theexpected discounted reward with a certain confidence level.In their work, Delage and Mannor considered the cases of random rewards and random transition prob-abilities separately and demonstrated that a CCMDP can be reformulated as a second-order cone program-ming (SOCP) problem when the running reward vector follows a multivariate normal distribution and thetransition probabilities are precisely known. However, when the transition probabilities follow a Dirichletdistribution and the running rewards are precisely known, the CCMDP problem becomes computationallyintractable, necessitating the use of approximation methods to compute optimal policies.Varagapriya et al. [239] extended the concept of CCMDP by considering a CMDP problem with a jointchance constraint, where the running cost vectors are random vectors and the transition probabilities areknown. They proposed two SOCP-based approximation methods that provide upper and lower bounds tothe CMDP problem, specifically when the cost vectors follow multivariate elliptical distributions and the de-pendence among the constraints is driven by a Gumbel-Hougaard copula (Varagapriya et al. [238]). Xia et al.studied distributionally robust chance-constrained Markov decision processes with known transition proba-bilities and random reward vector belongs to a Kullbach-Leibler distance ball, centered at an elliptical refer-ence distribution.
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Chapter 3 :Convexity of Linear Joint Chance Constrained Optimization

In this chapter, we study the convexity of the linear joint chance constraints. Specifically, we consider thescenario where the constraint row vectors follow an elliptical distribution. To model the dependence amongthe rows, we adopt a family of Archimedean copulas, specifically the Gumbel-Hougaard copulas. Under cer-tain mild assumptions, we establish the eventual convexity of the feasibility set.
3.1 . Introduction

We consider the following linear optimization with joint chance constraints
min c⊤x

subject to P {V x ≤ D} ≥ p

x ∈ Q. (3.1)
where Q is a closed convex subset of Rn such that δl ≤ ||x|| ≤ δu, for any x ∈ Q, || · || denotes the Euclideannorm, δl and δu are strictly positive real numbers, D = [D1, . . . , DK ]⊤ ∈ RK is a deterministic vector, V =
[v1, . . . , vK ]⊤ is a randommatrix with sizeK×n, where vk is a random vector in Rn, for any k = 1, 2, . . . ,K and
p ∈ (0, 1). We denote S(p) the feasibility set of (3.1). Let J = {1, 2, . . . ,K}.The convexity of chance constraints as well as the analytical properties of the probability function play animportant role in convex optimization which are difficult issues and scarcely studied in the literature. Thisproblem was first introduced by Prékopa [189]. He considers the following chance constraints

P(h(x, ξ) ≥ 0) ≥ p, (3.2)
where x ∈ Rn is a decision vector, ξ : Ω → Rm is a random vector defined on a probability space (Ω,A,P),
h : Rn×Rm → Rs and p ∈ [0, 1] is a given probability threshold. Theorem 10.2.1 in [189] states that the feasibilityset of (3.2) is convex if Po ξ−1 of ξ is a log-concave probability measure on Rm and the components of h arequasi-concave. Henrion and Strugarek [100] studied a particular form of (3.2) by taking h(x, ξ) = g(x) − ξ,where g : Rn → Rm. Hence, they consider the following form

P(ξ ≤ g(x)) ≥ p, (3.3)
where they suppose that the components of ξ are independent. They prove that if the cumulative distributionfunctions of the components of ξ have r− decreasing densities and the components of g are r− concave, thefeasibility set of (3.3) is convex. Henrion and Strugarek [101] generalized this result to the case where thecomponents of ξ are dependent. He uses the theory of copulas to model the dependence of the componentsof ξ. Marti [153] studied the differentiation of probability functions by an integral transformationmethod. Thederivatives of the probability function can be obtained by applying an integral transformation to its integralrepresentation. Some basic results on the differentiability of a probability function were studied by Kibzunet al. [124]. They proposed new formulations of the gradient of probability functions in different forms, i.e.,integral over the surface, volume, or sum of surface and volume integrals. Lobo et al. [147] studied someapplications of second-order cone program leading to a new approach for solving chance constraints. Amore developed direction was initialized by Henrion and Strugarek [100] which gave a full description of the
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structure (not only the convexity) of a one-row linear optimization with a chance constraint by introducing anew notion of r-decreasing function. Henrion and Strugarek [100] studied the convexity in the case where theconstraints are independent. To deal with the dependent case, Henrion and Strugarek [101], Cheng et al. [48]and Van Ackooij [229] used the theory of copulas tomodel the dependence of the constraints. They supposedthat the distribution of the constraint row vectors are elliptically distributed. Under high probability threshold
p, they prove the convexity of S(p). Hong et al. [106] proposed to solve joint chance-constrained programsby sequential convex approximations. They proved that the solutions of the sequence of approximationsconverge to a Karush-Kuhn-Tacker (KTT) point of the original problem. Farshbaf-Shaker et al. [73] provedsome properties of chance constraints in infinite dimensions. They supposed that the feasibility set belongsto a Banach space. Under mild conditions, they proved regularity properties of the probability function withan application to PDE constrained optimization. Wim van Ackooij and Malick [235] studied the convexity ofthe feasibility set in a general framework by using the radial representation of elliptical distributions.The convexity of chance constraints has been used to show the existence of a Nash equilibrium in chance-constrained games [167, 179, 180]. Nguyen et al. [167] assume that the random constraint vectors followelliptical distributions and show that there exists a Nash equilibrium of the chance-constrained game. Penget al. [179], [180] show a similar result by assuming that the random constraint vectors follow either Normaldistributions or mixture of elliptical distributions.The convexity of chance constraints could significantly impact the fields of operations research, logistics,supply chain management, financial risk management, and many others, by providing more effective waysto handle uncertainties. Here are some of the advantages and potential real-world applications.

• Efficient Solution Methods: If chance constraints are shown to be convex, more efficient solutionmethods (such as interior-point methods) can be applied to solve the problem, saving time and com-putational resources. This is particularly useful in large-scale stochastic optimization problems wherecomputational efficiency is critical.
• Quality of Solution: Convex problems have the property that any local optimum is also a global opti-mum. Therefore, if the chance constraints are convex, we have the guarantee that if a local optimum isalso a global optimum. This leads to better decision making in practical situations.
• Robustness and Certainty: Convexity of chance constraints allows for a higher level of robustness andcertainty in the solutions obtained. Convex problems are less susceptible to changes in the data. Thisis especially beneficial in real-world scenarios where data can often change.
• Modelling Flexibility: The convexity of chance constraints could increase the modeling flexibility, al-lowing researchers and practitioners to model complex, real-world situations more accurately.
Chance constraints can be used in operations research to handle the uncertainty in decision-making pro-cesses. Here are a few concrete examples
• In supply chain optimization problems, there can be uncertainty in demand, transportation costs, anddelivery times. Using chance constraints, a supply chain manager could design a distribution networkso that the probability of meeting customer demand is at least a certain percentage. This ensures thatthe supply chain is robust enough to meet demand under varying conditions, which could reduce costsassociated with stockouts or overstocking.
• In portfolio optimization, an investor may wish to ensure that the probability of the portfolio’s returnfalling below a certain level is minimized. This can be formulated as a chance constraint optimizationproblem, where the objective is to maximize the expected return subject to a chance constraint on theportfolio’s return.
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• In renewable energy planning, power production from sources like wind and solar is uncertain. Chanceconstraints can be used to ensure that a certain level of power demand is met with a high probability,given the uncertainty in renewable energy production. For example, an energy planner might need todecide how much backup capacity to maintain, given the uncertainty in wind power production.
• In hospital resource allocation, chance constraints can be used to make sure there’s a high probabilityof having enough resources (beds, doctors, nurses, medical supplies) to meet patient demand. Forexample, a hospital could use chance constraints to decide how many operating rooms to keep open,given the uncertainty in the number of surgeries that will need to be performed.
In this chapter, we study the convexity of the feasible set S(p) when the row vectors vi follow an ellipticaldistribution and the dependence of the random constraint vectors is captured by aGumbel-Hougaard copula.We derive a new reformulation of the joint chance constraints and prove the convexity of S(p) under mildconditions. Our main contributions can be summarized as follows:
• Compared with [101] and [229], we consider the chance constraints with random matrix.
• Compared with the convexity results in [100, 235], we consider the dependent rows with copula.
• Cheng et al. [48] consider the joint chance constraints defined in (3.1).They assume that the dependenceof the row vectors v⊤i , i ∈ J follows a copula independently of x (cf. Assumption 2.21 [48]). In ourresearch, we prove the convexity of S(p) without this strong assumption.

This chapter is organized as follows. In Section 3.2, we recall some basic concepts and preliminary results.We propose a new reformulation of the joint chance constraints in Section 3.2.1. Next, we present sometheoretical results in Section 3.2.2 and Section 3.3 which are useful to prove the convexity of the feasibilityset S(p) in Section 3.4 and show some numerical results. We conclude the chapter in Section 3.5.
3.2 . Basic concepts and preliminary results

In this section, we recall some useful definitions and propositions for our subsequent analysis.
Definition 3.1. An n-dimensional random vector X follows a spherical distribution if there exists a function Ψ :
R → R such that the characteristic function ϕX(t) of X is given by

ϕX(t) = E(eit
⊤X) = Ψ(t⊤t).

The function Ψ is called a characteristic generator of the spherical distribution.

Definition 3.2. An n-dimensional random vector U follows an elliptical distribution with location parameter µ,
positive definite scale matrix Σ and characteristic generator Ψ (in short U ∼ Ellip(µ,Σ,Ψ)), if we have the following
representation

U=̂µ+AX,

where X follows a spherical distribution with a characteristic generator Ψ, A ∈ Rn×n such that AA⊤ = Σ and
µ ∈ Rn; =̂ implies that the both sides have the same distribution.
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The probability density function of all the distributions from elliptical family does not always exist. When-ever it exists, it is of the form
fU (z) =

c√
det(Σ)

gden
(√

(z − µ)⊤Σ−1(z − µ)

)
,

where gden is a nonnegative function called radial density and c > 0 is a normalization factor which makes fUa probability density function.
Definition 3.3. A function f : Q → (0,+∞) is r-concave on a set Q ⊂ Rs for a given r ∈ (−∞,+∞) if for any
x, y ∈ Q and y ∈ [0, 1],

f(yx+ (1− y)y) ≥ [yf(x)r + (1− y)f(y)r]
1
r , when r ̸= 0,

f(yx+ (1− y)y) ≥ f(x)yf(y)1−y, otherwise.

Definition 3.4. A real function f : R → R is r-decreasing for some real number r ∈ R, if f is continuous on
(0,+∞) and there exists some strictly positive real number t∗ such that the function t 7→ trf(t) is strictly decreasing
on (t∗,+∞).

Table 3.1 presents some 1-dimensional spherical distributions with r-decreasing densities for some valuesof r and their thresholds t∗ [167].
Distribution Radial density r t∗

Normal e−
1
2
u2

r > 0
√
r

t

(
1 + 1

ν
u2

)−(1+ν)/2
,

ν > 0, ν integer 0 < r < ν + 1
√

rν
ν+1−r

Laplace e−|u| r > 0 r√
2

Kotz type u2(N−1)e−qu2s

,
q, s > 0, N > 1

2

r > 2(1−N) 2s

√
2(N−1)+r

2qs

Pearson type VII
(
1 + u2

m

)−N

,

m > 0, N > 1
2

0 < r < 2N
√

rm
2N−r

Table 3.1: Typical 1-dimensional spherical distributions with r-decreasing densities and their thresholds t∗.
Definition 3.5. A function C : [0, 1]K → [0, 1] is a K-dimensional copula if C is a joint CDF of a K-dimensional
random vector, on the unit cube [0, 1]K , whose marginals are uniformly distributed on [0, 1].
Proposition 3.1 (Sklar’s Theorem). Let F : RK → [0, 1] be a joint CDF of a K-dimensional random vector and
F1, . . . , FK are the marginal CDFs. Then, there exists a K-dimensional copula C such that

F (z) = C (F1(z1), . . . , FK(zK)) .

Moreover, if Fi is continuous for any i = 1, . . . ,K, then C is uniquely given by

C(u) = F
(
F

(−1)
1 (u1), . . . , F

(−1)
K (uK)

)
.

Proposition 3.2 (Fréchet-Hoeffding upper bound). For any K−dimensional copula C and u = [u1, . . . , uK ]⊤ ∈
[0, 1]K , we have

C(u) ≤ CM (u) = min
k=1,...,K

uk.

28



Definition 3.6. AK-dimensional copula C is strictly Archimedean if there exists a continuous and strictly decreas-
ing function ψ : (0, 1] → [0,+∞), such that ψ(1) = 0, limt→0 ψ(t) = +∞, and for any K-dimensional vector
u = (u1, . . . , uK) ∈ [0, 1]K , we have

C(u) = ψ(−1)

(
K∑
i=1

ψ(ui)

)
.

The function ψ is called a generator of the copula C.

Table 3.2 presents a selection of some strictly Archimedean copulas with their generators [167].
Type of copula Parameter θ Generator ψθ(t)Independent - -log(t)Gumbel-Hougaard θ ≥ 1 [− log(t)]θ

Frank θ > 0 − log
(

e−θt−1
e−θ−1

)
Clayton θ > 0 1

θ
(tθ − 1)Joe θ ≥ 1 − log[1− (1− t)θ]

Table 3.2: Selected types of strictly Archimedean copulas.
Definition 3.7. A function f : R → R is K-monotonic on an open interval I ⊆ R for some positive integer K ≥ 2,
if the following three conditions hold:

1. f is differentiable up to the order (K − 2) on I ,

2. The derivatives of f satisfy

(−1)k
dk

dtk
f(t) ≥ 0, 0 ≤ k ≤ K − 2,

for any t ∈ I ,

3. The function t 7→ (−1)K−2 dK−2

dtK−2 f(t) is nonincreasing and convex on I .

Proposition 3.3 (Theorem 2.2, [155]). Let ψ : (0, 1] → [0,+∞) be a strictly decreasing function such that ψ(1) = 0
and limt→0 ψ(t) = +∞. Then, ψ is the generator of a K-dimensional strictly Archimedean copula if and only if the
inverse function ψ(−1) is K−monotonic on (0,+∞) and continuous on [0,+∞).

3.2.1 . Reformulation of the probability function
Assume that the random vectors vi ∼ Ellip(µi,Σi,Ψi), for any i ∈ J . Let

ξi(x) :=
v⊤i x− µ⊤

i x√
x⊤Σix

, gi(x) :=
Di − µ⊤

i x√
x⊤Σix

. (3.4)
Using the notations in (3.4), the chance constraint in (3.1) can be rewritten as follows

P {ξi(x) ≤ gi(x), i ∈ J} ≥ p.
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It is well known that ξi(x) follows 1−dimensional spherical distribution with characteristic generator Ψi [71].Our aim is to reformulate this function in order to study the convexity of S(p). By Sklar’s Theorem, we havethat, there exists a copula Cx such that
Cx[F1(g1(x)), . . . , FK(gK(x))] ≥ p, (3.5)

where Cx is the K− dimensional copula of the K-dimensional random vector ξ(x) = [ξ1(x), . . . , ξK(x)]⊤ and
Fi is the cumulative distribution function of ξi(x), for i = 1, . . . ,K. In [48], the authors assume that Cx doesnot depend on x, i.e., there exists a copula C such that Cx = C, for any x ∈ Q (cf. Assumption 2.21 [48]). Westudy the general case, where Cx is a copula, which depends on x. Assume that for any x ∈ Q, Cx is a strictlyArchimedean copula with generator ψx. Then, the constraint (3.5) can be rewritten as follows

ψ(−1)
x

(
K∑
i=1

ψx(Fi(gi(x)))

)
≥ p. (3.6)

Using the decreasing monotonicity of ψx, (3.6) is equivalent to
K∑
i=1

ψx(Fi(gi(x))) ≤ ψx(p) (3.7)
By adding auxiliary variables {yi ≥ 0, i ∈ J}, we reformulate (3.7) into individual chance constraints [49, 48].Since ψx is positive, (3.7) is equivalent to the following constraints

(i) ψx(Fi(gi(x))) ≤ yiψx(p), i ∈ J,

(ii) yi ≥ 0, i ∈ J,

(iii) ∑K
i=1 yi = 1.

(3.8)

This means that if x∗ ∈ S(p) then there exists y∗ = [y∗1 , . . . , y
∗
K ]⊤ ∈ RK such that (x∗, y∗) satisfies constraints(3.8). On the other hand, if (x∗, y∗) is a feasible solution for constraints (3.8) and x∗ ∈ Q, then x∗ ∈ S(p).Moreover, for x∗ ∈ S(p), we can choose y∗ in order to satisfy constraints (3.8) as

y∗i =
ψx∗(Fi(gi(x

∗)))∑K
j=1 ψx∗(Fj(gj(x∗)))

, ∀ i ∈ J. (3.9)
Using the decreasing monotonicity of the generator ψx, constraints (3.8) can be written as follows

(i) Fi(gi(x)) ≥ ψ
(−1)
x (yiψx(p)), i ∈ J,

(ii) yi ≥ 0, i = 1, . . . ,K,

(iii) ∑K
i=1 yi = 1.

(3.10)

In the rest of the chapter, we assume that the following assumption holds.
Assumption 3.1. Cx is a Gumbel-Hougaard copula, for any x ∈ Q, i.e., the generator ψx is given by

ψx(t) = (− log t)
1

κ(x) , (3.11)
for any (x, t) ∈ Q× (0, 1], where κ(x) : Q→ (0, 1] is a strictly positive function.

Remark 3.1. Our aim is to show the concavity of Fi(gi)w.r.t x and the joint convexity of ψ(−1)
x (yiψx(p))w.r.t (yi, x).
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3.2.2 . Concavity of Fi(gi(·))In this section, we will show our main result in Lemma 3.2 that under Assumption 3.2, Fi(gi(·)) is a concavefunction on S(p). Define an index set Iµ ⊂ J such that µi ̸= 0 for any i ∈ Iµ and µi = 0 otherwise. Define aset of real numbers {ri | i ∈ J} such that {
ri > 1, if i ∈ Iµ,

ri = 1, if i /∈ Iµ.

Assumption 3.2. ( i) The cumulative distribution function Fi has (ri+1)− decreasing densities with the thresholds
t∗i , for any i ∈ J .
( ii) p > p∗, where

p∗ = max

{
1

2
,max
j∈Iµ

Fi

(
ri + 1

ri − 1
λ
− 1

2

i,min||µi||
)
,max

i∈J
Fi[t

∗
i (ri + 1)]

}
, (3.12)

where λi,min is the smallest eigenvalue of the positive definite matrix Σi, for any i ∈ J .

Lemma 3.1. If Assumption 3.2 holds, then

Conv(S(p)) ⊂ ⋂
j∈Iµ

Ωj ,

where

Ωj =

{
x ∈ Q | Dj − µ⊤

j x >
rj + 1

rj − 1
λ
− 1

2

j,min||µj ||
√
x⊤Σjx

}
,

and Conv(S(p)) is the convex hull of S(p). Moreover, for any i = 1, 2, . . . ,K, gi > 0 and gi is (−ri)− concave on any
convex subset Qi of

⋂
j∈Iµ Ωj .

Proof. Let i ∈ I and x0 ∈ S(p). It follows from the constraint (3.5) that
Cx0

[F1(g1(x0)), . . . , FK(gK(x0))] ≥ p. (3.13)
By applying Proposition 3.2, we get Fi(gi(x0)) ≥ p, ∀i ∈ J , which in turn implies by Assumption 3.2 that

Fi(gi(x0)) > p∗ ≥ Fi

(
ri + 1

ri − 1
λ
− 1

2

i,min||µi||
)
, ∀i ∈ J

Since Fi(·) is an increasing function, we have
gi(x0) >

ri + 1

ri − 1
λ
− 1

2

i,min||µi||,

which implies that
Di − µ⊤

i x0 >
ri + 1

ri − 1
λ
− 1

2

i,min||µi||
√
x⊤0 Σix0.

Therefore, S(p) ⊂
⋂

j∈I Ω
j . For each j ∈ I , Ωj is a convex set which implies that Conv(S(p)) ⊂

⋂
j∈I Ω

j . Weprove the second part of Lemma 3.1 by considering the following two cases:
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Case 1: Let i /∈ Iµ, then µi = 0. By Assumption 3.2, we have p > 1
2 . Let x0 ∈ S(p). By applying Proposition 3.2on (3.13), we have

Fi(gi(x0) ≥ p >
1

2
. (3.14)

Since, Fi is the CDF of a 1-dimensional real-valued random variable which is symmetric at 0, Fi(0) =
1
2 . From(3.14) we get gi(x0) > 0 which in turn implies that Di − (µi)

⊤x0 > 0. Since µi = 0, we get Di > 0. In conclusion,the proof follows directly from Lemma 3 of [48].
Case 2: Let i ∈ Iµ. It follows from Lemma 2 of [48] that the function

fi(x) =

( √
(x)⊤Σix

Di − (µi)⊤x

)ri

is a convex function on ⋂j∈I Ω
j . Therefore, for any y, z ∈ Qi ⊆

⋂
j∈Iµ Ωj and λ ∈ [0, 1], we have

fi[λy + (1− λ)z] ≤ λfi(y) + (1− λ)fi(z). (3.15)
Note that gi(x) = (fi(x))

−1
ri on Qi. From (3.15), we can write

gi[λy + (1− λ)z] ≥
(
λ(gi(y))

−ri + (1− λ)(gi(z))
−ri
)−1

ri .

It is clear that gi > 0 on ⋂j∈I Ω
j . Hence, gi is (−ri)-concave on Qi.

Using Lemma 3.1, we prove the following lemma.
Lemma 3.2. If Assumption 3.2 holds, then Fi(gi(·)) is concave on Conv(S(p)), for any i ∈ J .
Proof. Using Lemma 3.1, gi is (−ri)− concave and gi > 0 on Conv(S(p)), for any i ∈ J . Hence, for any a ∈ [0, 1]and x1, x2 ∈ S(p), we have

gi(ax1 + (1− a)x2) ≥ [ag−ri
i (x1) + (1− a)g−ri

i (x2)]
− 1

ri . (3.16)
As x1 ∈ S(p) and p > p∗, the constraint (3.5) implies that

Cx1
[F1(g1(x1)), . . . , FK(gK(x1))] > p∗,

which in turn implies from Proposition 3.2 and Assumption 3.2 that
Fi(gi(x1)) > p∗ ≥ Fi[t

∗
j (ri + 1)], ∀ i ∈ J.

Since, Fi(·) is monotonically increasing, we get
gi(x1) > t∗i (ri + 1) > 0,

which implies that 0 < gi(x1)
−ri < (t∗i (ri + 1))−ri , for any i ∈ J . Similarly, we obtain the same inequality for

x2. By taking Fi on both sides of (3.16),
Fi(gi(ax1 + (1− a)x2)) ≥ Fi([ag

−ri
i (x1) + (1− a)g−ri

i (x2)]
− 1

ri ). (3.17)
Since Fi(·) has (ri +1)−decreasing density, from Lemma 3.1 of [100], the function t 7→ Fi

(
t
− 1

ri

) is concave on
(0, (t∗i )

−ri). Therefore, we can write
Fi([ag

−ri
i (x1) + (1− a)g−ri

i (x2)]
− 1

ri ) ≥ aFi(gi(x1)) + (1− a)Fi(gi(x2)). (3.18)
From (3.17) and (3.18), we deduce that

(Fi(gi(ax1 + (1− a)x2)) ≥ a ((Fi(gi(x1))) + (1− a) ((Fi(gi(x2))) .

Therefore, Fi(gi(·)) is concave on Conv(S(p)).
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3.3 . Convexity of ψ(−1)
x (yiψx(p))

Let U(x, yi) := ψ
(−1)
x (yiψx(p)). The main result of this section is Lemma 3.7 which shows that under As-sumption 3.3, U is jointly convex. In this section, we assume that the feasibility set S(p) is non empty. Let clbe a real number such that 0 < cl ≤ 1. Define an index set ID ⊂ J such that Di > 0 for any i ∈ ID and Di ≤ 0otherwise. For any i ∈ J , let

Gi =



( log

(
Fi

(
Di√
λi,min δl

+
||µi||√
λi,min

))
log p

) 1

cl
, if i ∈ ID,

( log

(
Fi

(
Di√

λi,max δu +
||µi||√
λi,min

))
log p

) 1

cl
, if i ∈ J\ID,

where λi,max is the largest eigenvalue of the positive definite matrix Σi, for any i ∈ J . Let hl := min1≤j≤K(Gj)and hu := 1− (K − 1) hl.
Lemma 3.3. 0 < hl ≤ hu < 1. Moreover, given x ∈ S(p) and yi refers to (3.9). Hence, hl ≤ yi ≤ hu, for any i ∈ J .

Proof. Let x ∈ S(p) and
yi =

ψx[Fi(gi(x))]∑K
j=1 ψx[Fj(gj(x))]

, ∀ i ∈ J, (3.19)
where ψx(.) refers to (3.11). It is easy to see that∑i∈J yi = 1 and yi ≥ 0, for any i ∈ J . We prove that yi ≥ Gi,for any i ∈ J . Consider two cases as follows:
Case 1: i ∈ ID. It follows from the Cauchy-Schwarz inequality that

| − µ⊤
i x| ≤ ||µi|| ||x||, ∀ i ∈ J. (3.20)

By the property of maximal/minimal eigenvalue, we have√
λi,max||x|| ≥

√
x⊤Σix ≥

√
λi,min||x||. (3.21)

Since x ∈ S(p), it follows from the constraint (3.7) that
0 <

K∑
j=1

ψx[Fj(gj(x))] ≤ ψx(p). (3.22)
From (3.4), (3.20) - (3.21) and the fact that ||x|| ≥ δl, we get

gi(x) ≤
Di√
x⊤Σix

+
| − µ⊤

i x|√
x⊤Σix

≤ Di√
λi,minδl

+
||µi||√
λi,min .

As Fi is increasing and ψx is decreasing, we get
ψx(Fi(gi(x))) ≥ ψx

(
Fi

(
Di√
λi,minδl

+
||µi||√
λi,min

))
. (3.23)
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From (3.19), (3.22) and (3.23), we have

yi ≥
ψx

(
Fi

(
Di√
λi,minδl +

||µi||√
λi,min

))
ψx(p)

=

( log

(
Fi

(
Di√
λi,minδl +

||µi||√
λi,min

))
log p

) 1
κ(x)

. (3.24)
Since 0 ≤ yi ≤ 1, the following condition holds

0 <

log

(
Fi

(
Di√
λi,minδl +

||µi||√
λi,min

))
log p

≤ 1,

which in turn implies by (ii) of Assumption 3.3 that
( log

(
Fi

(
Di√
λi,minδl +

||µi||√
λi,min

))
log p

) 1
κ(x)

≥

( log

(
Fi

(
Di√
λi,minδl +

||µi||√
λi,min

))
log p

) 1
cl
= Gi. (3.25)

Then, if follows from (3.24) and (3.25) that yi ≥ Gi.
Case 2: i ∈ J\ID. In this case, Di ≤ 0. Then, by (3.20), (3.21) and x ≤ δu, we have

gi(x) ≤
Di√

λi,maxδu +
||µi||√
λi,min .

It follows the similar proof procedure as Case 1 that yi ≥ Gi.Therefore, combining the results in Case 1 and Case 2, we have yi ≥ hl > 0, for any i ∈ J . Since,∑i∈J yi = 1,we get
yi = 1−

∑
j∈J.j ̸=i

yj ≤ 1− (K − 1) hl = hu < 1. (3.26)
Hence, 0 < hl ≤ yi ≤ hu < 1, for any i ∈ J .

It follows from Lemma 3.3 that hl, hu belong to (0, 1). Therefore, we can define
φ∗
1 := cl (log hu) (log p) hl.

φ∗
2 :=

(log hl)2
4cl +max

(
[1 + log hl (1 + (log p) hl)]2, [1 + log hl cl (1 + log p)]2

)
.

ω :=
φ∗
2

φ∗
1

. (3.27)
Remark 3.2. Since φ∗

1 > 0, then ω is well-defined. Moreover, ω does not depend on (x, yi).

In order to show the convexity of U , we first show that the Hessian matrix of U is positive semidefinite.The following lemma is a reformulation of the positive semidefiniteness of the Hessian matrix of U .
Lemma 3.4. The positive semidefiniteness of the Hessian matrix of U on the convex set Q × [hl, hu] is equivalent
to the positive semidefiniteness of the following n−dimensional symmetric matrix

N(x, yi) =
∂2

∂y2i
U(x, yi)×HxU(x, yi)−

(
▽x

∂

∂yi
U(x, yi)

)(
▽x

∂

∂yi
U(x, yi)

)⊤

, (3.28)
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for any (x, yi) ∈ Q× [hl, hu], where

HxU =



∂2U
∂x2

1

∂2U
∂x1∂x2

. . . ∂2U
∂x1∂xn

∂2U
∂x2∂x1

∂2U
∂x2

2
. . . ∂2U

∂x2∂xn

. . . . . .

. . . . . .
∂2U

∂xn∂x1

∂2U
∂xn∂x2

. . . ∂2U
∂x2

n

 , ▽x =
(

∂
∂x1

, . . . , ∂
∂xn

)⊤
.

Proof. The Hessian matrix of U at a point (x, yi) is an (n + 1)-dimensional symmetric matrix which has the
form

[
A B
C D

]
, where A = HxU(x, yi), B = ▽x

∂
∂yi

U(x, yi), C = B⊤,D = ∂2

∂y2
i
U(x, yi). The main idea of the proof

is based on the Schur’s complement. It suffices to show that ∂2

∂y2
i
U(x, yi) > 0, for any (x, yi) ∈ Q × [hl, hu]. In

fact, for U(x, yi) = ψ
(−1)
x (yiψx(p)), we have

∂2

∂y2i
U(x, yi) = [ψx(p)]

2(ψ(−1)
x )′′(yiψx(p)).

Since ψx(t) = (− log t)
1

κ(x) , we deduce that
ψ(−1)
x (t) = e−tκ(x)

, (ψ(−1)
x )′′(t) = e−tκ(x)

tκ(x)−2κ(x)
[
κ(x)tκ(x) − κ(x) + 1

]
.

Using the above formulations, ψx(p) > 0 and (ψ
(−1)
x )′′(t) > 0, for any t > 0. Hence, ∂2

∂y2
i
U(x, yi) > 0, for any

(x, yi) ∈ Q× [hl, hu].
Assumption 3.3. We assume that
(i) p ≥ e−1.
(ii) 0 < cl ≤ κ(x) ≤ 1, for any x ∈ Q.
(iii)Hκ(x)−ω▽x κ(x)(▽xκ(x))

⊤ is a positive semidefinite matrix for any x ∈ Q, whereHκ(x) is the Hessian matrix
of κ(x) ;▽xκ(x) is the gradient vector of κ(x).
Lemma 3.5. Let

φ1(x, yi) := κ(x) (log yi)
[
κ(x)− 1 + κ(x)(log p) y

κ(x)
i

]
.

If Assumption 3.3 holds, then φ1(x, yi) ≥ φ∗
1 > 0, for any (x, yi) ∈ Q× [hl, hu], where φ∗

1 refers to (3.27).
Proof. Since 0 < yi ≤ hu < 1, then

(− log yi) ≥ (− log hu) > 0. (3.29)
As 0 < hl ≤ yi < 1 and 0 < κ(x) ≤ 1, we deduce that 1 ≥ y

κ(x)
i ≥ yi ≥ hl > 0. Note that 1 ≥ − log p > 0

(because e−1 ≤ p < 1 by (i) of Assumption 3.3). Then, 1 ≥ −(log p) y
κ(x)
i ≥ −(log p) hl > 0. Since 0 < κ(x) ≤

1 and 1 + (log p) y
κ(x)
i ≥ 0, we have

1− κ(x)− κ(x) log(p).y
κ(x)
i = 1− κ(x)(1 + log p.y

κ(x)
i )

≥ 1− (1 + log p.y
κ(x)
i ) = −(log p) y

κ(x)
i ≥ −(log p) hl > 0, (3.30)

for any (x, yi) ∈ Q× [hl, hu]. Moreover, by (ii) of Assumption 3.3, we have
κ(x) ≥ cl > 0, ∀ x ∈ Q. (3.31)

Therefore, it suffices to multiply term by term the inequalities (3.29)-(3.31) to complete the proof.
35



Lemma 3.6. Let φ2(x, yi) := κ(x) log(yi)
2(1 + (log p) y

κ(x)
i )

[
1− κ(x)− κ(x) (log p) y

κ(x)
i

]
+
(
1 + κ(x) (log yi) + (log p) (log yi) y

κ(x)
i κ(x)

)2
. If Assumption 3.3 holds, 0 < φ2(x, yi) ≤ φ∗

2, for any (x, yi) ∈
Q× [hl, hu], where φ∗

2 refers to (3.27).
Proof. Since p ≥ e−1, then 0 > log p ≥ −1. Using 0 < y

κ(x)
i < 1, we have 0 < 1 + (log p) y

κ(x)
i < 1. Moreover, as

0 < κ(x) ≤ 1, then 0 < κ(x) (1+(log p) y
κ(x)
i ) < 1. Let s := κ(x) (1+(log p) y

κ(x)
i ). By applying the Cauchy-Schwarzinequality, we deduce that s(1− s) ≤ 1

4 (the equality holds if and only if s = 1
2 ). Hence,

κ(x)(1 + (log p) y
κ(x)
i )

[
1− κ(x) (1 + (log p) y

κ(x)
i )

]
≤ 1

4
,

which in turn implies that
0 < (1 + (log p) y

κ(x)
i )

[
1− κ(x) (1 + (log p) y

κ(x)
i )

]
≤ 1

4 κ(x)
≤ 1

4 cl . (3.32)
Since 1 > yi ≥ hl > 0, we have 0 > log yi ≥ log hl. Then,

0 < (log yi)
2 ≤ (log hl)2. (3.33)

Moreover,
0 < κ(x) ≤ 1. (3.34)

By multiplying term by term the inequalities (3.32)- (3.34), we get
0 < κ(x) log(yi)

2(1 + (log p) y
κ(x)
i )

[
1− κ(x)− κ(x) (log p) y

κ(x)
i

]
≤ (log hl)2

4 cl , (3.35)
for any (x, yi) ∈ Q× [hl, hu]. By Assumption 3.3, we have

(i) 0 < cl ≤ κ(x) ≤ 1, (ii) 0 < − log hu ≤ − log yi ≤ − log hl,
(iii) 0 ≤ 1 + log p ≤ 1 + (log p) y

κ(x)
i ≤ 1 + (log p) hl. (3.36)

Note that the condition (iii)(3.36) holds since log p < 0 and 1 ≥ y
κ(x)
i ≥ hl. By multiplying (i)− (iii) of (3.36) termby term, we get

− log hl (1 + (log p) hl) ≥ −(log yi) κ(x)(1 + (log p) y
κ(x)
i ) ≥ −(log hu) cl (1 + log p),

which is equivalent to
1 + (log hl) (1 + (log p) hl) ≤ 1 + (log yi) κ(x)(1 + (log p) y

κ(x)
i ) ≤ 1 + (log hu) cl(1 + log p),

which in turn implies that
0 ≤ [1 + (log yi) κ(x)(1 + (log p) y

κ(x)
i )]2

≤ max
(
(1 + (log hl) (1 + (log p) hl))2, (1 + (log hu) cl (1 + log p))2

)
. (3.37)

Adding (3.35) and (3.37) together, completes the proof.
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Lemma 3.7. If Assumption 3.3 holds, then U is jointly convex on Q× [hl, hu].
Proof. Using Lemma 3.4, it suffices to show the positive semidefiniteness of N(x, yi) in (3.28) for any (x, yi) ∈
Q× [hl, hu]. Since ψx(t) = (− log t)

1
κ(x) , we have ψ(−1)

x (t) = e−tκ(x) . Then, we can write
U(x, yi) = e

−
{
yi(− log p)

1
κ(x)

}κ(x)

= py
κ(x)
i . (3.38)

We calculate explicitly the partial derivatives of U as follows
(i) ∂

∂yi
U(x, yi) = (log p) py

κ(x)
i κ(x) y

κ(x)−1
i .

(ii) ∂2

∂y2i
U(x, yi) = κ(x) (log p) y

κ(x)−2
i py

κ(x)
i [κ(x)− 1 + κ(x) (log(p) y

κ(x)
i ].

(iii) ▽x U(x, yi) = (log p) py
κ(x)
i (log yi) y

κ(x)
i ▽x κ(x).

(iv) ▽x
∂

∂yi
U(x, yi) =

(log p) y
κ(x)−1
i py

κ(x)
i [1 + κ(x) (log yi) + (log p) (log yi) y

κ(x)
i κ(x)] ▽x κ(x).

(v) HxU(x, yi) =

py
κ(x)
i y

κ(x)
i (log p) (log yi) [Hκ(x) + (log yi + (log yi) (log p) y

κ(x)
i ) ▽x κ(x)(▽xκ(x))

⊤].

Hence, we obtain the following formulations
(i) ∂2

∂y2i
U(x, yi)×HxU(x, yi) = κ(x)(log p)2y

2 κ(x)−2
i (log yi) p

2 y
κ(x)
i ×[

κ(x)− 1 + κ(x) (log p) y
κ(x)
i

] [
Hκ(x) +▽xκ(x)(▽xκ(x))

⊤(log yi + (log yi) (log p) y
κ(x)
i )

]
.

(ii)
(
▽x

∂

∂yi
U(x, yi)

)(
▽x

∂

∂yi
U(x, yi)

)⊤

= (log p)2 y
2 κ(x)−2
i p2 y

κ(x)
i ×(

1 + κ(x) (log yi) + (log p) (log yi) y
κ(x)
i κ(x)

)2
▽x κ(x)(▽xκ(x))

⊤. (3.39)
Note that (log p)2 y2κ(x)−2

i p2 y
κ(x)
i is a positive common factor of ∂2

∂y2
i
U(x, yi)×HxU(x, yi) and(▽x

∂
∂yi

U(x, yi)
)(

▽x
∂

∂yi
U(x, yi)

)⊤.
Then, it follows from (3.28) and (3.39) that the positive semidefiniteness ofN(x, yi) is equivalent to the positivesemidefiniteness of the following matrix

M(x, yi) =[
κ(x)− 1 + κ(x) (log p) y

κ(x)
i

] [
Hκ(x) +▽xκ(x)(▽xκ(x))

⊤(log yi + (log yi) (log p) y
κ(x)
i )

]
× κ(x) (log yi)−

(
1 + κ(x) (log yi) + (log p) (log yi) y

κ(x)
i κ(x)

)2
▽x κ(x)(▽xκ(x))

⊤.

Note thatM(x, yi) can be rewritten as follows
M(x, yi) = φ1(x, yi) Hκ(x)− φ2(x, yi) ▽x κ(x)(▽xκ(x))

⊤,
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where φ1(x, yi) and φ2(x, yi) refer to Lemmas 3.5 and 3.6. By (iii) of Assumption 3.3, we have Hκ(x) − ω ▽x

κ(x)(▽xκ(x))
⊤ is a positive semidefinite matrix for any x ∈ Q, where ω refers to (3.27)). Since φ∗

1, φ
∗
2 > 0, it isclear that ω > 0. Moreover,▽xκ(x)(▽xκ(x))

⊤ is a positive semidefinite matrix. Hence,Hκ(x) is also a positivesemidefinite matrix. By Lemmas 3.5 and 3.6, we have that φ1(x, yi) ≥ φ∗
1 > 0 and φ2(x, yi) ≤ φ∗

2, for any
(x, yi) ∈ Q× [hl, hu]. Then,

M(x, yi) ⪰ φ∗
1Hκ(x)− φ∗

2 ▽x κ(x)(▽xκ(x))
⊤ ⪰ 0,

which completes the proof.
3.4 . Convexity of the feasibility set S(p)

We showed that if Assumption 3.2 holds, then Fi(gi(·)) is concave on Conv(S(p)), for any i ∈ J . Moreover,given arbitrarily a real number cl such that 0 < cl ≤ 1, if Assumption 3.3 holds, then U is jointly convex on
Q× [hl, hu]. We will apply these results to prove the convexity of the feasibility set S(p).
Theorem 3.1. If Assumptions 3.2 and 3.3 hold and the feasibility set S(p) is non empty, then S(p) is a convex set.

Proof. For any x1, x2 ∈ S(p) and β ∈ [0, 1], we show that x∗ := βx1+(1−β)x2 ∈ S(p). In fact, let y1 := (y11 , . . . , y
1
K)and y2 := (y21 , . . . , y

2
K), where y1i and y2i , i ∈ J , are the corresponding values of y∗i defined in (3.9) w.r.t x1 and

x2, respectively. It follows from Lemma 3.3 that hl ≤ y1i , y
2
i ≤ hu, for any i ∈ J . Moreover, by Lemmas 3.2 and3.7, we have Fi(gi(·)) is concave on Conv(S(p)) and U(·, ·) is jointly convex on Q× [hl, hu]. Then, for any i ∈ J ,we have

Fi(gi(x
∗)) ≥ βFi(gi(x1)) + (1− β)Fi(gi(x2))

≥ β ψ(−1)
x1

(
y1i ψx∗(p)

)
+ (1− β) ψ(−1)

x2

(
y2i ψx∗(p)

)
= βU(x1, y

1
i ) + (1− β)U(x2, y

2
i )

≥ U(x∗, βy1i + (1− β)y2i ) = ψ
(−1)
x∗

(
(βy1i + (1− β)y2i )ψx∗(p)

)
,

which in turn implies that (x∗, βy1 + (1− β)y2) satisfies (3.10). Then, x∗ ∈ S(p).
We are interested in finding an example which fits all the Assumptions in Theorem 3.1. In the following,we will study a specific case which fits Assumption 3.3 and Assumption 3.2.

3.4.1 . An example of the function κ
In this section, we give an example of κ which satisfies all the conditions in Assumption 3.3.

Remark 3.3. It is not necessary to verify the condition (i) of Assumption 3.3 since e−1 ≈ 0.37 and we consider high
value of the probability threshold p.

Lemma 3.8. Let d be a real number such that d < cl and q : Q → R be a real-valued function which satisfies the
two following conditions.

1. q is twice continuously differentiable and convex on Q.

2. log(cl − d) ≤ q(x) ≤ log
[
min

(
1
ω , 1− d

)]
, for any x ∈ Q, where ω refers to (3.27).

Then, κ(x) := eq(x) + d is a function which satisfies Assumption 3.3.
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Proof. First we verify the condition (ii) of Assumption 3.3, which can be implied by the assumption log(cl−d) ≤
q(x) ≤ log(1−d). Since q(x) ≤ log( 1

ω ), we have eq(x) ≤ 1
ω , for any x ∈ Q. Let κ∗(x) := eq(x). We have the followingformulation

Hx log(κ
∗(x)) =

κ∗(x)Hxκ
∗(x)−▽xκ

∗(x)(▽xκ
∗(x))⊤

κ∗(x)2
, (3.40)

where Hx log(κ
∗(·)) is the Hessian matrix of the function log(κ∗(·)). As q is a convex function on Q and

log(κ∗(.)) = q(.), we deduce that Hx(log(κ
∗(x))) is a positive semidefinite matrix for any x ∈ Q. It followsfrom (3.40) that κ∗(x)Hxκ

∗(x) − ▽xκ
∗(x)(▽xκ

∗(x))⊤ is a positive semidefinite matrix. Since 0 < κ∗(x) and
▽xκ

∗(x)(▽xκ
∗(x))⊤ is positive semidefinite, we deduce that Hxκ

∗(x) is positive semidefinite, for any x ∈ Q.Moreover, κ∗(x) ≤ 1
ω , which implies that

1

ω
Hxκ

∗(x)−▽xκ
∗(x)(▽xκ

∗(x))⊤

is a positive semidefinite matrix. On the other hand, since κ(x) = κ∗(x) + d, then Hxκ
∗(x) = Hxκ(x) and

▽xκ
∗(x) = ▽xκ(x),∀ x ∈ Q. Therefore, the condition (iii) of Assumption 3.3 holds.
Next, we take an example function q which meets the two conditions in Lemma 3.8.

Lemma 3.9. Let q(x) = ||x||2
L + z where L > 0, z ∈ R are real numbers such that

log(cl − d) ≤ 1

L
δ2l + z ≤ 1

L
δ2u + z ≤ log

[
min

(
1

ω
, 1− d

)]
, (3.41)

where δl, δl are defined in (3.1). Then, q(x) satisfies the two conditions in Lemma 3.8.
Proof. The first condition is trivial. Since δ2l

L + z = minx∈Q q(x) and δ2u
L + z = maxx∈Q q(x), it is clear that thesecond condition holds.

By Lemma 3.8 and Lemma 3.9, the function κ(x) = e
||x||2

L +z + d which satisfies (3.41) fits all conditions inAssumption 3.3. It suffices to choose appropriate parameters L, z and d. In fact, (3.41) is a mild condition. Let
d be an arbitrary real number in (cl − 1

ω , cl). As d < cl and cl ≤ 1, We have that log(cl − d) is well defined and
log(cl − d) ≤ log

[
min

(
1

ω
, 1− d

)]
.

Let L be an arbitrary real number in
[

δ2u−δ2l
log[min( 1

ω ,1−d)]−log(cl−d)
,+∞

)
. We deduce from this condition that

log

[
min

(
1

ω
, 1− d

)]
− log(cl − d) ≥

(
1

L
δ2u + z

)
−
(
1

L
δ2l + z

)
> 0.

Let z be an arbitrary real number in [log(cl − d)− δ2l
L , log

[
min

(
1
ω , 1− d

)]
− δ2u

L

]. We deduce from this condition
that {

log(cl − d) ≤ 1
Lδ

2l + z.
1
Lδ

2u + z ≤ log
[
min

(
1
ω , 1− d

)]
.

Therefore, we can verify that this set of q(x), d, L, z satisfy (3.41).
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3.4.2 . Numerical experiments
To verify the r−decreasing property of a differentiable density f(t), we check whether the derivative of

trf(t) is strictly negative for t > t∗(r) > 0, which is equivalent to r.f(t) + t.f ′(t) < 0, for any t > t∗(r). Thethresholds for some typical 1−dimensional spherical distributions are given in Table 3.1.In this section, we study values of p∗ as defined in (3.12). All the numerical results are performed usingPython 3.8.8 on a PCwith Intel i5 CPU (2.4 GHz), RAM 16G, 512G SSD. Assume that for any j ∈ J , Fj has the same
density. For the sake of illustration, we set λ− 1

2

j,min small enough such that Fi

(
ri+1
ri−1λ

− 1
2

i,min||µi||
)
≤ Fi[t

∗
i (ri + 1)]

and take max
(
1
2 , Fi[t

∗
i (ri + 1)]

) as an upper bound of p∗. We show in Table 3.3 the bounds of p∗ for sometypical elliptical distributions. We consider the case with n = 2 and K = 2, i.e. we have have 2 constraints
Distribution p∗Normal 0.92Student’s t with 2− degrees of freedom 0.84Student’s t with 3− degrees of freedom 0.87Student’s t with 4− degrees of freedom 0.88Laplace 0.88

Table 3.3: Selected 1-dimensional elliptical distributions with r-decreasing densities and the value of thethreshold p∗ respectively.
and 2-dimensional decision variable. The parameters are taken as follows: p = 0.95, cl = 0.9, D1 = 1, D2 =
0.85, µ1 = (1, 20)⊤, µ2 = (7, 2)⊤, δl = 0.2, δu = 1.5,Σ1 = 3 × I2, and Σ2 = 30 × I2, where I2 is the 2 × 2-identitymatrix. hl and hu are calculated as in Section 3.3. φ∗

1, φ
∗
2 and ω are calculated by (3.27). Let d = cl − 1

2ω ,
L =

δ2u−δ2l
log(min( 1

ω ,1−d))−log(cl−d)
and z = log

(
min

(
1
ω , 1− d

))
− δ2u

L . It is easy to see that this set of parameters fits
the conditions in Lemma 3.8 and Lemma 3.9.In our simulations, we consider the probability function

fproba(x) = ψ(−1)
x

(
2∑

i=1

ψx(Fi(gi(x)))

)
,

where ψx is defined in (3.11), F1 is the cumulative distribution function of a 1− dimensional standard Student’s
t distribution with 3−degrees of freedom and F2 is the cumulative distribution function of a 1− dimensionalstandard Student’s t distribution with 4−degrees of freedom, x = (x1, x2)

⊤ where x1, x2 ∈ [−1, 1]. Figure 3.1shows the surface of function z = fproba(x) on the domain [−1, 1] and Figure 3.2 shows its contour lines withfour different levels 0.6, 0.7, 0.8 and 0.9, respectively.
3.5 . Conclusion

In this chapter, we studied the convexity of joint chance constraints in the case of elliptical distributions.Further, we modeled the dependence of random variables in different rows by a Gumbel-Hougaard copula.We come up with new convexity results of the feasibility set. We simulated our theoretical result by showingthe surface plot of the probability function with its contour lines. It is very clear that the feasibility set iseventually a convex set under high value of the probability level. Further research can be dedicated to otherfamilies of copulas.This chapter corresponds to a paper submitted to Results in Control and Optimization.
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Figure 3.1: Surface plot of the probability function fproba on [−1, 1]2.

Figure 3.2: Contour line of the probability function fproba with 4 levels (0.6, 0.7, 0.8, 0.9).
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Chapter 4 :General n-players Chance-Constrained Games

In this chapter, we study an n-player game with random payoffs and continuous strategy sets. The payofffunction of each player is defined by its expected value and the strategy set of each player is defined by ajoint chance constraint. The random constraint vectors defining the joint chance constraint are dependentand follow either elliptically symmetric distributions or Normal mean-variance mixture distributions. TheArchimedean copula is used to capture the dependence among random constraint vectors. We propose areformulation of the joint chance constraint of each player. Under mild assumptions on the players’ payofffunctions and 1-dimensional spherical distribution functions, we show that there exists a Nash equilibriumof the game.This chapter builds upon the foundation established in the previous chapter, which focused on exploringthe convexity properties of linear joint chance constraints. In the present chapter, we delve into the conceptof the feasibility set’s convexity and its significance in proving the existence of a Nash equilibrium. By estab-lishing the convexity of the feasibility set, we establish a crucial link between the theoretical insights gainedfrom studying linear joint chance constraints and the practical implications related to the existence of a Nashequilibrium.
4.1 . Introduction

The publication of the seminal book Researches into the Mathematical Principles of the Theory of Wealthby Cournot in 1838 was the trigger for the widespread use of the equilibrium under market conditions [50].Later, the saddle point equilibrium for a two player zero-sum game of Von Neumann [244] follows on thiswork. In 1950, Nash [160] showed that for a finite strategic game there exists an equilibrium point, known as aNash equilibrium, from which there is no incentive for any player to deviate unilaterally. Despite its practicallimitation, the general strategic games are extensively studied in the literature [18, 55, 69]. The theory of Nashequilibrium in deterministic setup faces challenges especially when it comes to deal with real applicationswithrandom payoffs and strategy sets.The most commonly used tool to deal with random payoffs is the expectation function [200] which ismore appropriate for risk neutral cases. The risk averse games are studied by considering an alternativepayoff criterion based on risk measure CVaR [120, 200] and chance constraint programming [214, 216]. In[214], the authors studied a finite strategic game where the payoff vector of each player is elliptically dis-tributed, and showed the existence of a Nash equilibrium. The equivalence between a Nash equilibrium of achance-constrained game (CCG), considered in [214], and the global optimal solution of a certain mathemati-cal program is stated in [216].In the above referred games, the players’ payoff functions are random while the strategy sets are de-terministic. However, the strategy sets containing chance constraints are often considered in various appli-cations, e.g., risk constraints in portfolio optimization problem [112] and resource constraints in stochasticshortest path problem [49]. Recently, the games with chance constraint based strategy sets are introducedin the literature [178, 179, 180, 217, 219]. Singh and Lisser [217] considered a 2-player zero-sum game with indi-vidual chance constraints and showed that a saddle point equilibrium problem is equivalent to a primal-dualpair of second order cone programs when the random constraint vectors follow elliptically symmetric distri-bution. Singh et al. [219] considered an n-player general-sum game with individual chance constraints underelliptically symmetric distributions and showed that a Nash equilibrium problem is equivalent to the global
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optimization of a nonlinear optimization problem.In the wake of these results, Peng et al. [179] showed the existence of Nash equilibrium for the n-playergeneral-sum games where the strategy profile set of each player is defined by a joint chance constraint, andthe random constraint vectors are either independently normally distributed or follow a mixture of ellipti-cal distributions [180]. When the probability distributions are not completely known and belong to a givendistributional uncertainty set, Peng et al. [178] formulated the random constraints of each player as a dis-tributional robust joint chance constraint. They consider several uncertainty sets, namely a density baseduncertainty set and four two-moment based uncertainty sets where one of them has a nonnegative support.They show that there exists a Nash equilibrium of a distributionally robust chance constrained game for eachuncertainty set.In [178, 179, 180], the authors assume that the random constraint vectors are independently distributed.However, the random variables are usually dependent in real world applications. In order to study the de-pendence structure of random variable, the concept of copula was introduced by Abe Sklar in 1959 [221], as asolution to a probability problem stated by Maurice Fréchet in the context of randommetric spaces. Copulasare functions used to distinguish the marginal distributions from a given dependent structure based mul-tivariate distribution. Henrion and Strukgarek [100] introduced the notion of log-exp concavity of copula toinvestigate the convexity of elliptically distributed dependent joint chance constraints. In [166], the authorsstudied the convexity of elliptically distributed linear dependent joint chance constraint using copulas. Someeventual convexity results for joint chance constraint without using copulas are given in [235]. We refer thereader to [163] for a detailed introduction to the theory of copulas.In this chapter, we extend the results of [179, 180] to the general case where the payoff function is randomand the strategy profile set of each player is defined by elliptically distributed dependent joint chance con-straints. We derive a new reformulation of joint chance constraint with dependent random constraint vectorsand show that there exists a Nash equilibrium of the game under mild conditions on the payoff functions.The rest of this chapter is organized as follows. Section 4.2 contains the definition of an n-player CCG. InSection 4.3, we prove the existence of a Nash equilibrium of the CCG under elliptical distributions. Section4.4 explains why we study another class of distribution, which is the class of normal mean-variance mixturedistribution. We prove the existence of a Nash equilibrium in this framework in Section 4.5. Algorithm andnumerical results are given in Section 4.6. We conclude this chapter by Section 4.7.In the first part, we study the case, where the random constraint vectors defining the joint chance con-straint are dependent and follows elliptically symmetric distributions.
4.2 . Chance-Constrained Game

We consider an n-player CCG, where H = {1, 2, .., n} is the set of players. Let Si ⊂ Rdi be the strategy setof player i which is a non-empty, convex and compact set. The product set S =
∏n

i=1 S
i denotes the set ofstrategy profiles of all the players. For each i ∈ H, S−i =

∏n
j=1 ; j ̸=i S

j denotes the set of strategy vectors of
all players j, j ̸= i. A strategy profile x = (x1, x2, . . . , xn) ∈ S is represented as (xi, x−i) where xi denotesthe strategy of player i and x−i denotes the vector of strategies of the players other than player i. In manyreal life applications, the strategy sets are restricted by random linear constraints, e.g., i) the constraintson total random electricity loss, energy generation and reserve arising in electricity market [178, 199], ii) riskconstraints in financialmarket [180]. In this chapter, we consider the casewhere the random linear constraintsare formulated as a joint chance constraint. The strategy set of player i, i ∈ H , is further restricted by thefollowing joint chance constraint

P(V ixi ≤ Di) ≥ αi , (4.1)
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where αi ∈ [0, 1] is a given probability level, Di = (Di,1, ..., Di,Ki)T ∈ RKi is a deterministic vector and V i =
[V i,1, ..., V i,Ki ]T is a Ki × di random matrix, where V i,k denotes the kth row of matrix V i and T denotes thetransposition. Let J i = {1, 2, . . . ,Ki} denotes the index set of ith player’s constraints. The feasible strategyset of player i is defined as

Si
αi

=
{
xi ∈ Si | P(V ixi ≤ Di) ≥ αi

}
.

We assume that for each i ∈ H , Si
αi
is a non-empty set. Let α = (αi)i∈H be the confidence level vector and

Sα =
∏n

i=1 S
i
αi
be the set of all feasible strategy profiles. The payoff function of each player is defined usingrandom variables. For each x ∈ Sα, the payoff of player i is given by fi(x, ζ), where ζ is an m-dimensionalrandom vector. We use expected value approach to model the payoff function of each player. Therefore, thepayoff function of player i is given by

pi(x) = E[fi(x, ζ)], ∀ x ∈ Sα .

We assume that the CCG is of complete information, i.e., the payoff function, the strategy set of each player,and the confidence level vector α are known to all the players.
Definition 4.8. A strategy profile y∗ is a Nash equilibrium of the CCG at confidence level vector α if for each i ∈ H

pi(y
i∗, y−i∗) ≥ pi(x

i, y−i∗), ∀ xi ∈ Si
αi
.

The existence of a Nash equilibrium for a non-cooperative game in various setup has been extensivelystudied in the literature. It is mainly based on fixed point theorems which require the payoff function of aplayer i to be a continuous function of the strategies of all the players and a concave function of the strate-gies of player i for every fixed strategy profiles of all other players. Under Assumption 4.4 given below, theabovementioned continuity and concavity properties hold [180].
Assumption 4.4. For each player i, i ∈ H , the following conditions hold:

1. fi(·, x−i, ζ) is a concave function of xi for every (x−i, ζ) ∈ S−i × Rm.

2. fi(·) is a continuous function.

3. pi(x) is finite valued for every x ∈ S.

4.3 . Existence of Nash Equilibrium with Elliptical Distributed Row Vectors

For each i ∈ H , we assume that V i,k ∼ Ellip(µi,k,Σi,k,Ψi,k) , k ∈ J i. Let λi,k,min be the smallest eigenvalueof the positive definite matrix Σi,k. Define, S̃i
αi

= Si
αi

\ {0}, then for xi ∈ S̃i
αi
, let

ξi,k(xi) =
(V i,k)Txi − (µi,k)Txi√

(xi)TΣi,kxi
,

gi,k(xi) =
Di,k − (µi,k)Txi√

(xi)TΣi,kxi
. (4.2)

It is well known that ξi,k(xi) follows 1-dimensional spherical distribution with characteristic generator Ψi,k

[71]. Using the abovementioned notations, the constraint (4.1) can be written as
P
{
ξi,k(xi) ≤ gi,k(xi) , k ∈ J i

}
≥ αi . (4.3)
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By Proposition 3.1, (4.3) can be equivalently written as
Ci

xi

[
(F i,1 ◦ gi,1)(xi), ..., (F i,Ki ◦ gi,Ki)(xi)

]
≥ αi , (4.4)

where Ci
xi is the Ki-dimensional copula of the random vector (ξi,k(xi))Ki

k=1 ; F i,k is the CDF of ξi,k(xi) and ◦denotes the function composition .
Assumption 4.5. There exists a Ki-dimensional copula Ci such that Ci

xi = Ci, for all xi ∈ Si, and Ci is a Ki-
dimensional strictly Archimedean copula with a generator ψi such that the inverse function ψ(−1)

i is 4-monotonic
on (0,+∞) .

Remark 4.4. The 4-monotonicity of ψ(−1)
i ensures that ψ(−1)

i is twice differentiable. It follows from Proposition 3.3
that 4-monotonicity condition holds if Ki ≥ 4 .

Under Assumption 4.5, we can equivalently write (4.4) as
Ci[(F i,1 ◦ gi,1)(xi), ..., (F i,Ki ◦ gi,Ki)(xi)] ≥ αi . (4.5)

Proposition 4.4. If xi ∈ S̃i
αi
and Assumption 4.5 holds, the joint chance constraint (4.1) is equivalent to

(i) (F i,k ◦ gi,k)(xi) ≥ ψ
(−1)
i [yi,kψi(αi)] , k ∈ J i ,

(ii)
∑
k∈Ji

yi,k = 1 , yi,k ≥ 0 , k ∈ J i . (4.6)

Proof. Let xi ∈ S̃i
αi
. Under Assumption 4.5, the joint chance constraint (4.1) is equivalent to (4.5). It is enoughto show the equivalence between (4.5) and (4.6). Since, Ci is strictly Archimedean copula, (4.5) is equivalentto ∑

k∈Ji

(ψi ◦ F i,k ◦ gi,k)(xi) ≤ ψi(αi) . (4.7)
Define a Ki-dimensional vector yi = (yi,1, ..., yi,Ki

) ∈ [0, 1]Ki such that
yi,k =

(ψi ◦ F i,k ◦ gi,k)(xi)∑
j∈Ji(ψi ◦ F i,j ◦ gi,j)(xi)

, k ∈ J i .

Since ψ−1
i is non-increasing, it follows that (xi, yi) satisfies (4.6). Conversely, we assume (xi, yi) satisfies (4.6).By adding all the constraints (i) of (4.6) after applying ψi(·) on both sides, we can say that xi satisfies (4.7)which is equivalent to (4.5) .

The convexity of the feasible strategy set Si
αi

plays a very important role in showing the existence of aNash equilibrium. We show that there exists α∗
i ∈ [0, 1] such that Si

αi
is a convex set, for all αi ∈ (α∗

i , 1]. Foreach i ∈ H , define an index set I(i) = {k ∈ J i | µi,k ̸= 0} and a set of real numbers {ri,k | k ∈ J i} such that{
ri,k > 1 , if k ∈ I(i) ,

ri,k = 1, if k /∈ I(i) .
(4.8)
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Lemma 4.10. Let Assumption 2 holds and for each k ∈ J i, the CDF F i,k has (ri,k + 1)-decreasing density with
a threshold t∗i,k, where ri,k is defined by (4.8) and t∗i,k refers to Definition 3.4. Then, Si

αi
is a convex set, for all

αi ∈ (α∗
i , 1], where

α∗
i := max

{
1

2
, max
k∈I(i)

F i,k

(
ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µi,k||
)
,max
k∈Ji

F i,k(t∗i,k)

}
. (4.9)

In order to prove Lemma 4.10, we need the three following lemmas .
Lemma 4.11. Let αi ∈ ( 12 , 1] and xi ∈ S̃i

αi
. Then, Di,k > (µi,k)Txi, for all k ∈ J i .

Proof. Let xi ∈ S̃i
αi
. By applying Proposition 3.2 on (4.5), we get

(F i,k ◦ gi,k)(xi) ≥ αi >
1

2
. (4.10)

Since, F i,k is the CDF of an 1-dimensional real-valued random variable which is symmetric at 0, F i,k(0) = 1
2 .From (4.10), we get gi,k(xi) > 0 which in turn implies that Di,k > (µi,k)Txi.

Lemma 4.12. Let ri,1, ..., ri,Ki be the real numbers defined by (4.8) and for each k ∈ I(i), define

Ωi,k :=

{
xi ∈ Si | Di,k − µTi,kxi > ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µi,k||
√

(xi)TΣi,kxi
}
.

Then,

Conv(S̃i
αi
) ⊂

⋂
k∈I(i)

Ωi,k,

for all αi ∈ (α∗∗
i , 1], where

α∗∗
i = max

{
1

2
, max
k∈I(i)

F i,k

(
ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µi,k||
)}

, (4.11)
and Conv represents the convex hull. Moreover, for any convex subsetQi,k of

⋂
k∈I(i) Ωi,k such that 0 /∈ Qi,k, gi,k(xi)

is defined and (−ri,k)-concave on Qi,k, for all k ∈ J i .

Proof. Let k ∈ I(i) and xi ∈ S̃i
αi
. By applying Proposition 3.2 on (4.5), we get

(F i,k ◦ gi,k)(xi) ≥ αi .

From the definition of α∗∗
i given in (4.11), we have

F i,k(gi,k)(xi)) > α∗∗
i ≥ F i,k

(
ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µi,k||
)
. (4.12)

Since, F i,k(·) is a non-decreasing function, from (4.12) we have
Di,k − (µi,k)Txi > ri,k + 1

ri,k − 1
λ
− 1

2

i,k,min||µi,k||
√
(xi)TΣi,kxi .

46



Therefore, S̃i
αi

⊂
⋂

k∈I(i) Ωi,k. For each k ∈ I(i), Ωi,k is a convex set which implies that Conv(S̃i
αi
) ⊂⋂

k∈Ii Ωi,k. We prove the second part of Lemma 4.12 by considering two cases as below:
Case 1: Let k /∈ I(i), then µi,k = 0. From the definition of α∗∗

i , we have αi >
1
2 . From Lemma 4.11, Di,k > 0.In this case, the proof follows directly from Lemma 3 of [48] .

Case 2: Let k ∈ Ii. It follows from Lemma 2 of [48] that the function

f i,k(xi) =

( √
(xi)TΣi,kxi

Di,k − (µi,k)Txi
)ri,k

is defined and a convex function on ⋂k∈I(i) Ωi,k. Therefore, for any y, z ∈ Qi,k and λ ∈ [0, 1], we have
f i,k[λy + (1− λ)z] ≤ λf i,k(y) + (1− λ)f i,k(z) . (4.13)

Note that gi,k(xi) = (f i,k(xi)) −1

ri,k on Qi,k. From (4.13), we can write
gi,k[λy + (1− λ)z] ≥

(
λ(gi,k(y))−ri,k + (1− λ)(gi,k(z))−ri,k

) −1

ri,k

.

Hence, gi,k is defined and (−ri,k)-concave on Qi,k .
Lemma 4.13. Let Assumption 4.5 holds. Then, ψ(−1)

i [yi,kψi(αi)] is a convex function of yi,k, for all αi ∈ [0, 1] .

Proof. Let U(yi,k) = ψ
(−1)
i (yi,kψi(αi)). If ψi(αi) = 0, the proof is trivial because U(yi,k) = 1, for all yi,k ∈ [0, 1].Let ψi(αi) > 0. The second-order differentiation of U(yi,k) is given by

d2

dy2i,kU(yi,k) = [ψi(αi)]
2 ×

(
ψ
(−1)
i

)′′
(yi,kψi(αi)) ,

for all yi,k ∈ (0, 1]. Since, ψ(−1)
i is 4-monotonic on (0,+∞), (ψ(−1)

i

)′′
≥ 0 on (0,+∞). This implies d2

dy2
i,k
U(yi,k) ≥

0, for all yi,k ∈ (0, 1]. Therefore, U(yi,k) is a convex function of yi,k on (0, 1]. The convexity of U on [0, 1] followsfrom the continuity of U at 0 .
We present the proof of Lemma 4.10 using the results of Lemma 4.11, Lemma 4.12 and Lemma 4.13.

Proof of Lemma 4.10. Let αi ∈ (α∗
i , 1], λ ∈ [0, 1] and z1, z2 ∈ Si

αi
. We need to show that λz1 + (1− λ)z2 ∈ Si

αi
.

Case 1: Let z1 = 0 or z2 = 0. Without loss of generality, we assume that z2 = 0. This gives Di,k ≥ 0, for all
k ∈ J i, which in turn implies that

P(V iλz1 ≤ Di) ≥ P(V iz1 ≤ Di) ≥ αi .

Hence, λz1 + (1− λ)z2 ∈ Si
αi
.

Case 2: Let z1 ̸= 0, z2 ̸= 0 and λz1 + (1 − λ)z2 = 0. In this case, z2 = −λ
1−λz1 ∈ S̃i

αi
and z1 ∈ S̃i

αi
. It followsfrom Lemma 4.11 that

(µi,k)Tz1 > λ− 1

λ
Di,k , (µi,k)Tz1 < Di,k , ∀ k ∈ J i .

This implies that Di,k ≥ 0, for all k ∈ J i. Therefore, λz1 + (1− λ)z2 = 0 ∈ Si
αi
.
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Case 3: Let z1 ̸= 0, z2 ̸= 0 and 0 ∈ Seg(z1, z2),where Seg(z1, z2) = {z1 + l(z2 − z1), 0 ≤ l ≤ 1}. Then, the points on the line segment Seg(z1, z2) are either be-long to Seg(z1, 0) or Seg(0, z2). It follows from Case 1 that Seg(z1, 0) and Seg(0, z2) are subset of Si
αi
. Therefore,

λz1 + (1− λ)z2 ∈ Si
αi
, for all λ ∈ [0, 1] .

Case 4: Let z1 ̸= 0, z2 ̸= 0 such that 0 /∈ Seg(z1, z2). It is clear that Seg(z1, z2) ⊂ Conv(S̃i
αi
). From Lemma4.12, gi,k(·) is defined and (−ri,k)-concave on Seg(z1, z2). Therefore,

gi,k(λz1 + (1− λ)z2) ≥
(
λ
[
gi,k(z1)

]−ri,k

+ (1− λ)
[
gi,k(z2)

]−ri,k
)− 1

ri,k

. (4.14)
Since, z1 ∈ S̃i

αi
, from Lemma 4.11 gi,k(z1) > 0 and it follows from (4.5) that

Ci[(F i,1 ◦ gi,1)(z1), ..., (F i,Ki ◦ gi,Ki)(z1)] > α∗
i .

By using Proposition 3.2 and the definition of α∗
i from (4.9), we get

F i,k(gi,k(z1)) > α∗
i ≥ F i,k(t∗i,k) .

This implies that
0 < gi,k(z1)

−ri,k < (t∗i,k)
−ri,k .

Similarly,
0 < gi,k(z2)

−ri,k < (t∗i,k)
−ri,k .

By applying the non-decreasing function F i,k(·) on both sides of (4.14), we can write
(F i,k ◦ gi,k)[λz1 + (1− λ)z2] ≥

F i,k

[(
λ
[
gi,k(z1)

]−ri,k

+ (1− λ)
[
gi,k(z2)

]−ri,k
)− 1

ri,k

]
. (4.15)

Since, F i,k(·) has (ri,k + 1)-decreasing density, from Lemma 3.1 of [100], the function t 7→ F i,k
(
t−

1

ri,k

) is
concave on (0, (t∗i,k)−ri,k

). Therefore, we can write
F i,k

[(
λ
[
gi,k(z1)

]−ri,k

+ (1− λ)
[
gi,k(z2)

]−ri,k
)− 1

ri,k

]
≥ λ

[
(F i,k ◦ gi,k)(z1)

]
+ (1− λ)

[
(F i,k ◦ gi,k)(z2)

]
. (4.16)

From (4.15) and (4.16), we have
(F i,k ◦ gi,k)[λz1 + (1− λ)z2] ≥
λ
[
(F i,k ◦ gi,k)(z1)

]
+ (1− λ)

[
(F i,k ◦ gi,k)(z2)

]
.

This implies that the composition function (F i,k ◦ gi,k)(·) is a concave function over Seg(z1, z2). It follows fromLemma 4.13 that ψ(−1)
i (yi,kψi(αi)) is a convex function of yi,k. Because z1, z2 ∈ S̃i

αi
and from Proposition 4.4,

S̃i
αi

and (4.6) are equivalent, then there exists vectors (y1i,k)k∈Ji and (y2i,k)k∈Ji such that (z1, (y1i,k)k∈Ji

) and
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(
z2, (y

2
i,k)k∈Ji

) are feasible points of (4.6). Using the fact that (F i,k ◦ gi,k)(·) is a concave function and ψ(−1)
i (·)

is a convex function, we can say that the convex combination of points (z1, (y1i,k)k∈Ji

) and (z2, (y2i,k)k∈Ji

) is
also a feasible point of (4.6). Again from the equivalence of S̃i

αi
and (4.6), λz1 + (1− λ)z2 ∈ S̃i

αi
, which in turnimplies that λz1 + (1− λ)z2 ∈ Si

αi
.

Next, we prove that Si
αi
is a closed set .

Lemma 4.14. The feasible strategy set Si
αi
of player i is a closed set .

Proof. Note that the closeness of Si
αi
follows directly from the upper semi continuity of the probability func-tion xi 7→ P(V ixi ≤ Di). The proof is given by Proposition 3.1 in [202] .

The feasible strategy set Si
αi

is a compact set because it is a closed subset of the compact set Si, seeLemma 4.14. Finally, we show that there exists a Nash equilibrium of the CCG .
Theorem 4.2. Consider an n-player CCG defined in Section 4.2, where

1. Assumptions 4.4, 4.5 hold .

2. For each i ∈ H and k ∈ J i, V i,k ∼ Ellip(µi,k,Σi,k,Ψi,k), where Σi,k is a positive definite matrix .

3. For each i ∈ H and k ∈ J i, assume that the CDF F i,k(·) has (ri,k +1)-decreasing density with a threshold t∗i,k,
where ri,k is defined by (4.8) and t∗i,k refers to Definition 3.4 .

Then, there exists a Nash equilibrium of the CCG, for any α ∈ (α∗
1, 1] × ... × (α∗

n, 1], where α∗
i , i ∈ H , is defined by(4.9) .

Proof. Let α ∈ (α∗
1, 1]× ...× (α∗

n, 1]. Under Assumption 4.4, the payoff function pi(xi, x−i) is a concave functionof xi, for every x−i ∈ S−i, and a continuous function of x. It follows from Lemma 4.10 that the feasible strategyset Si
αi
, i ∈ H , is a convex set, for all αi ∈ (α∗

i , 1]. For each i ∈ H , Si
αi
is a compact set. Then, the existence ofa Nash equilibrium of the CCG follows from Theorem 4 of [69] .

In the second part, we study the case, where the random constraint vectors are independent and follownormalmean-variancemixture distributions. This part extends the previous part by considering awider rangeof distributions of row vectors in the technology randommatrix. Specifically, we delve into the context of non-symmetric distributions, introducing a specific class known as normal mean-variance mixture distributions.By exploring this broader class of distributions, we aim to enhance our understanding of the underlyingprobabilistic nature and its implications in the context of our research.
4.4 . Motivation and Basic Concepts

We study the chance constrained games model defined in Chapter 3.5. To the best of our knowledge,the random constraint vectors in the CCGs are often assumed to be elliptically distributed or follow a mix-ture of elliptical distributions. These families include many known distributions, e.g., Normal distributions,t-distributions, Laplace distributions, Kotz-type distributions, Pearson distributions and all of them are sym-metric distributions. However, it is interesting to consider the case where the distribution of the constraintvectors is not symmetric since symmetric distributions are generally not suitable for somepractical situations.In power system scheduling problems, both wind power forecast errors and load forecasting errors are not
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normally distributed [104], and can be better fitted by generalized hyperbolic (GH) distributions. This familyincludes non-symmetric distributions which are used to model many financial applications [66, 20, 197]. Inthis chapter, we study an n− player CCG where the strategy profile set of each player is defined by a jointchance constraint. We assume that the random constraint vectors are independent and follow normal mean-variancemixture distributionswhich generalize the family of GH distributions. We derive a new reformulationof the joint chance constraints and show that there exist a Nash equilibrium under mild assumptions. Next,we present some basic definitions, which are useful in our subsequent analysis.
Definition 4.9. An n-dimensional random vector U follows a normal mean-variance mixture distribution with
parameters (µ, γ,Σ,W ), i.e., U ∼ NMVM(µ, γ,Σ,W ), if we have the following representation:

U ∼ µ+ γW +
√
WΣ

1
2Z,

where: (i) Z is an n-dimension standard Gaussian distribution with mean vector µZ = 0 and covariance matrix
ΣZ = In, where In is the n× n identity matrix.

(i) W is a positive random variable with a density function independent of Z.
(iii) Σ ∈ Rn×n is an n× n positive definite matrix and Σ

1
2 ∈ Rn×n is an n× nmatrix such that Σ 1

2 (Σ
1
2 )T = Σ.

(iv) µ and γ are n-dimensional real vectors and ∼ implies that the both sides have the same distribution.

Normal mean-variance mixture distributions are generally not symmetric. They are symmetric if and onlyif γ = 0 [154]. We present in Figure 4.3, the density functions of an 1−dimensional normal mean-variancemixture distribution, where W is an exponential distribution with parameter λ = 2, µ = −10, Σ = 2.25,with different values of γ. The family of GH distributions is known as a special case of normal mean-variancemixture distributions. We have the following definition.
Definition 4.10. An n−dimensional random vector U follows a GH distribution with parameters (µ, γ,Σ, χ, ψ, λ),
i.e., U ∼ GH(µ, γ,Σ, χ, ψ, λ) if U ∼ NMVM(µ, γ,Σ,W ), whereW ∼ N−(λ, χ, ψ) follows a generalized inverse Gaus-
sian (GIG) distribution whose density function with respect to the measure of Lebesgue is:

fU (w) = CU .w
λ−1. exp

(
−1

2
(χw−1 + ψw)

)
.1[0,+∞)(w),

where CU is a constant, 1 denotes the indicator function and

χ > 0, ψ ≥ 0 if λ < 0,

χ > 0, ψ > 0 if λ = 0,

χ ≥ 0, ψ > 0 if λ > 0.

In the following section, we study the existence of a Nash equilibrium of the CCG where the randomconstraint vectors follow normal mean-variance mixture distributions.
4.5 . Existence of Nash Equilibrium with Normal Mean-Variance Mixture Distributed Row Vectors

For each player i ∈ H , we assume that the row vectors of V i,k follow normal mean-variance mixturedistributions, i.e., V i,k ∼ NMVM(µi,k, γi,k,Σi,k,W i,k), k ∈ J i. Moreover, the row vectors V i,k are mutuallyindependent and the support of W i,k is an open interval (wi,kl , wi,ku ), where 0 < wi,kl ≤ wi,ku < ∞. Let S̃i
αi

=
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(a) (b)

(c) (d)
Figure 4.3: (a) γ = 0, (b) γ = 2, (c) γ = 4, (d) γ = 6.
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Si
αi

\ {0}, then for xi ∈ S̃i
αi
, let
gi,k(xi,W i,k) =

−(xi)Tγi,k√
(xi)TΣi,kxi

√
W i,k +

Di,k − (xi)Tµi,k

√
W i,k

√
(xi)TΣi,kxi

,

ξi,k(xi) =
ZT((Σi,k)

1
2 )Txi√

(xi)TΣi,kxi
, (4.17)

where Z refers to Definition 4.9. It is well known that ξi,k(xi) follows 1-dimensional standard Gaussian distri-bution [71], for any i ∈ H and k ∈ J i. Using the independence of the row vectors V i,k, the constraint (4.1) canbe written as ∏
k∈Ji

P
{
(V i,k)Txi ≤ Di,k

}
≥ αi,

which implies that
∏
k∈Ji

P

(
W i,k√

(xi)TΣi,kxi
(xi)Tγi,k +

√
W i,k

ZT((Σi,k)
1
2 )Txi√

(xi)TΣi,kxi
≤ Di,k − (xi)Tµi,k√

(xi)TΣi,kxi

)
≥ αi. (4.18)

Using the notations in (4.17), we rewrite (4.18) as follows∏
k∈Ji

P
(
ξi,k(xi) ≤ gi,k(xi,W i,k)

)
≥ αi. (4.19)

Thanks to the law of expectation in probability theory, (4.19) is equivalent to∏
k∈Ji

EW i,k

(
EZ

(
1{ξi,k(xi)≤gi,k(xi,W i,k)} | W i,k

))
≥ αi. (4.20)

Note that Z and W i,k are independent random variables, which in turn implies that ξi,k(xi) and W i,k areindependent as well. Therefore,
EZ

(
1{ξi,k(xi)≤gi,k(xi,W i,k)} | W i,k

)
= EZ

(
1{ξi,k(xi)≤gi,k(xi,W i,k)}

)
.

Let Φ be the cumulative distribution function of an 1−dimensional standard Gaussian distribution. Then, theabove expectation can be written as
EZ

(
1{ξi,k(xi)≤gi,k(xi,W i,k)}

)
= Φ

(
gi,k(xi,W i,k)

)
.

Hence, the constraint (4.20) is equivalent to∏
k∈Ji

EW i,k

(
Φ
(
gi,k(xi,W i,k)

))
≥ αi. (4.21)

By taking logarithm of (4.21), we have the following equivalent constraint∑
k∈Ji

log
(
EW i,k

(
Φ
(
gi,k(xi,W i,k)

)))
≥ log(αi). (4.22)

The main idea for the proof of existence of Nash equilibrium is based on the Kakutani fixed-point theorem,which requires the convexity of the feasible strategy set Si
αi
. We show that there exists a real number α∗

i ∈
[0, 1) such that Si

αi
is convex, for all αi ∈ (α∗

i , 1], where α∗
i is defined in the following assumption.
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Assumption 4.6. For all i ∈ H , let

α
(1)
i = max

k∈Ji
Φ

(
||γi,k||2√
λi,k,min

√
wi,ku

)
.

α
(2)
i = max

k∈Ji
Φ

4
√
wi,ku√
wi,kl

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 .
α
(3)
i = max

k∈Ji
Φ


√
3wi,ku√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ,

where || · ||2 denotes the Euclidean norm and λi,k,min is the smallest eigenvalue of the positive definite matrix Σi,k.
Let α∗

i = max(α
(1)
i , α

(2)
i , α

(3)
i ). Assume that αi ∈ (α∗

i , 1], for all i ∈ H .
The main result of this section is the following lemma.

Lemma 4.15. Let Assumption 4.6 holds. Then, Si
αi
is a convex set, for all i ∈ H .

In order to prove Lemma 4.15, we need the following lemmas.
Lemma 4.16. Let Assumption 4.6 holds. Assume that xi ∈ S̃i

αi
, for all i ∈ H . Then, Di,k > (µi,k)Txi, for all i ∈ H

and k ∈ J i.
Proof. For each i ∈ H , let xi ∈ S̃i

αi
. Since EW i,k

[
Φ
(
gi,k(xi,W i,k)

)]
∈ [0, 1] and αi > α

(1)
i , for any k ∈ J i, theconstraint (4.21) implies that

EW i,k

[
Φ
(
gi,k(xi,W i,k)

)]
> α

(1)
i .

It follows from the definition of gi,k in (4.17) that
EW i,k

[
Φ

(
−(xi)Tγi,k√
(xi)TΣi,kxi

√
W i,k +

Di,k − (xi)Tµi,k

√
W i,k

√
(xi)TΣi,kxi

)]
> α

(1)
i . (4.23)

Due to the three following inequalities
(i) |(xi)Tγi,k| ≤ ||xi||2||γi,k||2, (ii)√(xi)TΣi,kxi ≥

√
λi,k,min||xi||2, (iii) √W i,k ≤

√
wi,ku , (4.24)

we deduce that ∣∣∣∣∣ −(xi)Tγi,k√
(xi)TΣi,kxi

√
W i,k

∣∣∣∣∣ ≤ ||γi,k||2√
λi,k,min

√
wi,ku . (4.25)

From (4.23) and (4.25), by applying the increasing monotonicity of Φ, we get
EW i,k

[
Φ

(
||γi,k||2√
λi,k,min

√
wi,ku +

Di,k − (xi)Tµi,k

√
W i,k

√
(xi)TΣi,kxi

)]
> α

(1)
i .

It is clear from the definition of α(1)
i in Assumption 4.6 that the following condition holds

α
(1)
i ≥ Φ

(
||γi,k||2√
λi,k,min

√
wi,ku

)
,
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which in turn implies that
EW i,k

[
Φ

(
||γi,k||2√
λi,k,min

√
wi,ku +

Di,k − (xi)Tµi,k

√
W i,k

√
(xi)TΣi,kxi

)]
> Φ

(
||γi,k||2√
λi,k,min

√
wi,ku

)
. (4.26)

If Di,k − (xi)Tµi,k ≤ 0, (4.26) implies that
EW i,k

[
Φ

(
||γi,k||2√
λi,k,min

√
wi,ku

)]
> Φ

(
||γi,k||2√
λi,k,min

√
wi,ku

)
,

which derives a contradiction due to the increasing monotonicity of Φ. Therefore, Di,k − (xi)Tµi,k > 0.
Lemma 4.17. For i ∈ H , let xi ∈ S̃i

αi
. Then, for any k ∈ J i and zi,k ∈ [wi,k

l , wi,k
u ], we have

EW i,k

Φ
 √

z√
W i,k

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ≥ αi.

Proof. For i ∈ H and k ∈ J i, let xi ∈ S̃i
αi
and zi,k ∈ [wi,kl , wi,ku ]. It is clear from the definition of gi,k in (4.17) that

the following condition holds for anyW i,k ∈ [wi,kl , wi,ku ]

gi,k(xi,W i,k) =

√
zi,k√
W i,k

gi,k(xi, zi,k) +
(xi)Tγi,k√
(xi)TΣi,kxi

(
zi,k −W i,k

√
W i,k

)
.

By applying the inequalites (i)−(iii) of (4.24) and the fact that |zi,k−W i,k| ≤ wi,ku −wi,kl , we deduce the followinginequality
(xi)Tγi,k√
(xi)TΣi,kxi

(
zi,k −W i,k

√
W i,k

)
≤

||γi,k||2(wi,ku − wi,kl )√
λi,k,min

√
wi,kl

which in turn implies that
gi,k(xi,W i,k) ≤

√
zi,k√
W i,k

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

, ∀W i,k ∈ [wi,kl , wi,ku ]. (4.27)
Taking the expectation value EW i,k (Φ(·)) on both sides of (4.27), we get

EW i,k

[
Φ
(
gi,k(xi,W i,k)

)]
≤ EW i,k

Φ
 √

zi,k√
W i,k

gi,k(xi, z) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 .
Since EW i,k

[
Φ
(
gi,k(xi,W i,k)

)]
∈ [0, 1], for any k ∈ J i, the constraint (4.21) implies that

EW i,k

[
Φ
(
gi,k(xi,W i,k)

)]
≥ αi,

which in turn implies that
EW i,k

Φ
 √

zi,k√
W i,k

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ≥ αi.
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Lemma 4.18. Let Assumption 4.6 holds. Then, for all i ∈ H

Conv(S̃i
αi
) ⊂

⋂
k∈Ji

Ωi,k,

where Conv represents the convex hull and

Ωi,k =


xi ∈ Si

∣∣∣∣∣∣∣∣∣∣∣∣∣

−(xi)Tγi,k
√
W i,k +

Di,k − (xi)Tµi,k

√
W i,k

||γi,k||2√
λi,k,min

√
wi,k
u +

||µi,k||2√
λi,k,min

1√
wi,k
l

> 4
√

(xi)TΣi,kxi,

∀W i,k ∈ [wi,k
l , wi,k

u ].


, (4.28)

Proof. For i ∈ H , let xi ∈ S̃i
αi
. It follows from Lemma 4.17 that for any zi,k ∈ [wi,kl , wi,ku ]

EW i,k

Φ
 √

zi,k√
W i,k

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 > αi. (4.29)

Since αi > α
(2)
i , the constraint (4.29) implies that

EW i,k

Φ
 √

zi,k√
W i,k

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 > α
(2)
i .

It follows from the definition of α(2)
i in Assumption 4.6 that the following condition holds

α
(2)
i ≥ Φ

4
√
wi,ku√
wi,kl

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 .
which in turn implies that

EW i,k

Φ
 √

zi,k√
W i,k

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl


> Φ

4
√
wi,ku√
wi,kl

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 . (4.30)
If gi,k(xi, zi,k) ≤ 0, the constraint (4.30) implies that

Φ

 ||γi,k||2(wi,ku − wi,kl )√
λi,k,min

√
wi,kl


> Φ

4
√
wi,ku√
wi,kl

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ,
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which derives a contradiction due to the increasing monotonicity of Φ. Therefore, gi,k(xi, zi,k) > 0. Then, thefollowing inequality holds for anyW i,k ∈ [wi,kl , wi,ku ]

√
zi,k√
W i,k

gi,k(xi, zi,k) ≤

√
wi,ku√
wi,kl

gi,k(xi, zi,k). (4.31)

It follows from (4.30) and (4.31) that

Φ


√
wi,ku√
wi,kl

gi,k(xi, zi,k) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl


> Φ

4
√
wi,ku√
wi,kl

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 . (4.32)

By applying the increasing monotonicity of Φ, (4.32) is equivalent to the following inequality

gi,k(xi, zi,k) > 4

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

√
wi,kl

 . (4.33)

Since (4.33) holds for any zi,k ∈ [wi,kl , wi,ku ] and xi ∈ S̃i
αi
, we get

S̃i
αi

⊂
⋂
k∈Ji

Ωi,k. (4.34)
Note that Ωi,k is a convex set. Then, by taking the convex hull on both side of (4.34),

Conv(S̃i
αi

)
⊂
⋂
k∈Ji

Ωi,k.

Lemma4.19. Let Assumption 4.6 holds. Then, for any convex subsetQi of
⋂

k∈Ji Ωi,k such that 0 /∈ Qi, gi,k(xi,W i,k)

is defined and (−2)-concave w.r.t xi on Qi, for all i ∈ H , k ∈ J i andW i,k ∈ [wi,kl , wi,ku ].

Proof. For xi ∈ Qi andW i,k ∈ [wi,kl , wi,ku ], let f i,k(xi,W i,k) = 1
(gi,k(xi,W i,k))2

. It follows from the definition of gi,k
in (4.17) that

f i,k(xi,W i,k) = ((xi)TΣi,kxi).Mi,k(x
i,W i,k)−1,

whereMi,k(x
i,W i,k) =W i,k[(xi)Tγi,k]2+ 1

W i,k [D
i,k−(xi)Tµi,k]2+2[(xi)Tγi,k][(xi)Tµi,k−Di,k]. In order to simplifythe notation, for the rest of the proof, we writeMi,k (resp. f i,k) instead ofMi,k(x

i,W i,k) (resp. f i,k(xi,W i,k)). It is clear that the (−2)− concavity of gi,k is equivalent to the convexity of f i,k on Qi. In order to provethe convexity of f i,k, we prove that the Hessian matrix of f i,k w.r.t xi is positive semidefinite on Qi, for any
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W i,k ∈ [wi,kl , wi,ku ]. Let▽xif i,k be the gradient vector of f i,k w.r.t xi and Hxif i,k be the Hessian matrix of f i,kw.r.t xi. Let h(xi) = (xi)TΣi,kxi. The gradient vector of h is given as follows
▽xih(xi) = 2Σi,kxi,

and the gradient vector ofMi,k w.r.t xi is given as follows
▽xiMi,k = 2[W i,k(xi)Tγi,k + (xi)Tµi,k −Di,k].

(
γi,k +

µi,k

W i,k

)
.

Since f i,k = h(xi).M−1
i,k , the gradient vector of f i,k w.r.txi can be written as follows

▽xif i,k = ▽xih(xi).M−1
i,k + h(xi).▽xi (M−1

i,k ).

We can writeM−1
i,k = u◦Mi,k,where u(x) = 1

x . By the chain rule of composite function in calculus, the gradient
vector ofM−1

i,k is given by
▽xi (M−1

i,k ) = u′(Mi,k).▽xi Mi,k

=
−1

M2
i,k

.2[W i,k(xi)Tγi,k + (xi)Tµi,k −Di,k].

(
γi,k +

µi,k

W i,k

)
,

which in turn implies that, for any (xi,W i,k) ∈ Qi × [wi,kl , wi,ku ]

▽xi f i,k = 2M−1
i,k Σ

i,kxi

− 2M−2
i,k .h(x

i).[W i,k(xi)Tγi,k + (xi)Tµi,k −Di,k].

(
γi,k +

µi,k

W i,k

)
. (4.35)

Note that the Hessian matrix of f i,k w.r.t xi can be written equivalently as follows
Hxif i,k = ▽xi

[(
▽xif i,k

)T]
.

Then, it suffices to derive the term on the right of (4.35) by xi. Let v(x) = 1
x2 , r(xi) = Σi,kxi, s(xi) =

W i,k(xi)Tγi,k + (xi)Tµi,k −Di,k, then the gradient vector of f i,k w.r.t xi is given by
▽xif i,k = 2.M−1

i,k .r(x
i)− 2.v ◦Mi,k.h(x

i).s(xi).

(
γi,k +

µi,k

W i,k

)
. (4.36)

Deriving both sides of (4.36) by xi, we get
Hxif i,k = 2.▽xi (M−1

i,k ).[r(x
i)]T + 2.M−1

i,k .▽xi r(xi)

− 2.v ◦Mi,k.h(x
i).▽xi s(xi).

(
γi,k +

µi,k

W i,k

)T

− 2.▽xi (v ◦Mi,k).h(x
i).s(xi).

(
γi,k +

µi,k

W i,k

)T

− 2.v ◦Mi,k ▽xi h(xi).s(xi).

(
γi,k +

µi,k

W i,k

)T
= A+B + C +D + E,
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where
A = 2.▽xi (M−1

i,k ).[r(x
i)]T, B = 2.M−1

i,k .▽xi r(xi),

C = −2.v ◦Mi,k.h(x
i).▽xi s(xi).

(
γi,k +

µi,k

W i,k

)T
,

D = −2.▽xi (v ◦Mi,k).h(x
i).s(xi).

(
γi,k +

µi,k

W i,k

)T
,

E = −2.v ◦Mi,k.▽xi h(xi).s(xi).

(
γi,k +

µi,k

W i,k

)T
.

We can verify that the following equations hold
(i) ▽xi (M−1

i,k ) =
−1

M2
i,k

.2s(xi).

(
γi,k +

µi,k

W i,k

)
, ▽xir(xi) = Σi,k,

(ii) ▽xi s(xi) =W i,kγi,k + µi,k, ▽xih(xi) = 2Σi,kxi

(iii) ▽xi (v ◦Mi,k) = v′(Mi,k).▽xi Mi,k

=
−2

M3
i,k

.2[W i,k(xi)Tγi,k + (xi)Tµi,k −Di,k].

(
γi,k +

µi,k

W i,k

)
=

−2

M3
i,k

.2s(xi).

(
γi,k +

µi,k

W i,k

)
,

which in turn imply that
A =

−4s(xi)

M2
i,k

(
γi,k +

µi,k

W i,k

)
(xi)TΣi,k, B =

2

Mi,k
Σi,k,

C =
−2h(xi)

M2
i,k

.
(
W i,kγi,k + µi,k

)
.

(
γi,k +

µi,k

W i,k

)T
,

D =
8h(xi)s2(xi)

M3
i,k

(
γi,k +

µi,k

W i,k

)(
γi,k +

µi,k

W i,k

)T
, E =

−4s(xi)

M2
i,k

Σi,kxi
(
γi,k +

µi,k

W i,k

)T
.

Note that s2(xi) =W i,kMi,k. Then,D = 8h(xi)
M2

i,k
.
(
W i,kγi,k + µi,k

)
.
(
γi,k + µi,k

W i,k

)T. Therefore, the Hessian matrix
of f i,k w.r.t xi can be rewritten as

Hxif i,k = A+B + C +D + E

=
−4s(xi)

M2
i,k

[
1

W i,k
Σi,kxi(µi,k)T + 1

W i,k
µi,k(xi)TΣi,k +Σi,kxi(γi,k)T + γi,k(xi)TΣi,k

]

+
2

Mi,k
Σi,k +

6h(xi)

M2
i,k

(
W i,kγi,k + µi,k

)
.

(
γi,k +

µi,k

W i,k

)T
.
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By multiplying the above equation by M2
i,k

2 , we get
(Mi,k)

2

2
.Hxif i,k =Mi,kΣ

i,k + 3h(xi)(W i,kγi,k + µi,k)

(
γi,k +

µi,k

W i,k

)T

− 2s(xi)

[
1

W i,k
Σi,kxi(µi,k)T + 1

W i,k
µi,k(xi)TΣi,k +Σi,kxi(γi,k)T + γi,k(xi)TΣi,k

]
. (4.37)

We prove that the quadratic form of Hxif i,k at zi ∈ Rdi is positive, for any zi ∈ Rdi and (xi,W i,k) ∈ Qi ×
[wi,kl , wi,ku ], i.e.,

(zi)THxf
i,kzi ≥ 0. (4.38)

In fact, by taking the quadratic from of (4.37) at zi, we have
(zi)T (Mi,k)

2

2
.Hxif i,kzi =Mi,k(z

i)TΣi,kzi + 3h(xi)

(√
W i,k((zi)Tγi,k) + 1√

W i,k
((zi)Tµi,k)

)2

− 4s(xi)((zi)TΣi,kxi)

(
(γi,k)Tzi + 1

W i,k
(µi,k)Tzi

)
. (4.39)

Note that the following inequalities hold
(i) − 4s(xi)((zi)TΣi,kxi)

(
(γi,k)Tzi + 1

W i,k
(µi,k)Tzi

)
≥ −4|s(xi)|.|(zi)TΣi,kxi|.

∣∣(γi,k)Tzi + 1

W i,k
(µi,k)Tzi∣∣,

(ii) |(zi)TΣi,kxi| ≤
√
(zi)TΣi,kzi

√
(xi)TΣi,kxi,

(iii) ∣∣(γi,k)Tzi + 1

W i,k
(µi,k)Tzi∣∣ ≤ ∣∣(γi,k)Tzi∣∣+ 1

W i,k

∣∣(µi,k)Tzi∣∣, (4.40)
where (i) and (iii) are trivial. In order to prove (ii), let e1 = (zi)T(Σi,k)

1
2 , e2 = (xi)T(Σi,k)

1
2 , then (ii) is rewrittenas

|e1(e2)T| ≤ ∥e1∥2∥e2∥2,

which is known as the Cauchy-Schwarz inequality. It follows from (i)− (iii) of (4.40) that
− 4s(xi)((zi)TΣi,kxi)

(
(γi,k)Tzi + 1

W i,k
(µi,k)Tzi

)
≥ −4|s(xi)|.

√
(zi)TΣi,kzi

√
(xi)TΣi,kxi.

(∣∣(γi,k)Tzi∣∣+ 1

W i,k

∣∣(µi,k)Tzi∣∣) . (4.41)
Then, from (4.39) and (4.41), we get

(zi)T (Mi,k)
2

2
.Hxif i,kzi ≥Mi,k(z

i)TΣi,kzi + 3h(xi)

(√
W i,k((zi)Tγi,k) + 1√

W i,k
((zi)Tµi,k)

)2

− 4
∣∣s(xi)∣∣√(zi)TΣi,kzi

√
(xi)TΣi,kxi

(∣∣(γi,k)Tzi∣∣+ 1

W i,k

∣∣(µi,k)Tzi∣∣) .
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Note that |s(xi)| =
√
W i,kMi,k and 3h(xi)

(√
W i,k((zi)Tγi,k) + 1√

W i,k
((zi)Tµi,k)

)2
≥ 0, which in turn implies

that
(zi)T (Mi,k)

2

2
.Hxif i,kzi ≥Mi,k(z

i)TΣi,kzi

− 4
√
Mi,k

√
(zi)TΣi,kzi

√
(xi)TΣi,kxi

(√
W i,k|(γi,k)Tzi|+ 1√

W i,k
|(µi,k)Tzi|

)
. (4.42)

Assume that zi ̸= 0. Dividing both sides of (4.42) by ((zi)TΣi,kzi)((xi)TΣi,kxi), we have
(zi)T (Mi,k)

2

2 .Hxif i,kzi

((zi)TΣi,kzi)((xi)TΣi,kxi)

≥ Mi,k

(xi)TΣi,kxi
− 4

√
Mi,k

(xi)TΣi,kxi

(
√
W i,k

∣∣∣∣∣ (γi,k)Tzi√
(zi)TΣi,kzi

∣∣∣∣∣+ 1√
W i,k

∣∣∣∣∣ (µi,k)Tzi√
(zi)TΣi,kzi

∣∣∣∣∣
)
. (4.43)

Note that Mi,k

(xi)TΣi,kxi = [gi,k(xi,W i,k)]2. Since xi ∈ Qi and Qi is a subset of ⋂k∈Ji Ωi,k, then xi ∈ Ωi,k, for any
k ∈ J i. Then, for anyW i,k ∈ [wi,kl , wi,ku ], it follows from the definition of Ωi,k in (4.28) that

gi,k(xi,W i,k) > 0.

Therefore, we can write√ Mi,k

(xi)TΣi,kxi = gi,k(xi,W i,k) and (4.43) is equivalent to the following inequality
(zi)T (Mi,k)

2

2 .Hxif i,kzi

((zi)TΣi,kzi)[(xi)TΣi,kxi]

≥
[
gi,k(xi,W i,k)

]2 − 4gi,k(xi,W i,k)

(
√
W i,k

∣∣∣∣∣ (γi,k)Tzi√
(zi)TΣi,kzi

∣∣∣∣∣+ 1√
W i,k

∣∣∣∣∣ (µi,k)Tzi√
(zi)TΣi,kzi

∣∣∣∣∣
)
.

It is easy to see that the following inequalities hold
(i)
∣∣∣∣∣ (γi,k)Tzi√

(zi)TΣi,kzi

∣∣∣∣∣ ≤ ||γi,k||2.||zi||2√
λi,k,min.||zi||2 =

||γi,k||2√
λi,k,min ,

(ii)
∣∣∣∣∣ (µi,k)Tzi√

(zi)TΣi,kzi

∣∣∣∣∣ ≤ ||µi,k||2.||zi||2√
λi,k,min.||zi||2 =

||µi,k||2√
λi,k,min ,

(iii) √W i,k ≤
√
wi,ku ,

1√
W i,k

≤ 1√
wi,kl

,

which in turn implies that
√
W i,k

∣∣∣∣ (γi,k)Tz√
zTΣi,kz

∣∣∣∣+ 1√
W i,k

∣∣∣∣ (µi,k)Tz√
zTΣi,kz

∣∣∣∣ ≤ ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

1√
wi,kl

. (4.44)
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Then, from (4.43) and (4.44), we get
zT (Mi,k)

2

2 .Hxif i,kz

(zTΣi,kz)[(xi)TΣi,kxi]

≥ [gi,k(xi,W i,k)]2 − 4gi,k(xi,W i,k)

 ||γi,k||2√
λi,k,min

√
wi,ku +

||µi,k||2√
λi,k,min

1√
wi,kl

 . (4.45)

Since xi ∈ Ωi,k, for any k ∈ J i, the term on the right-hand side of (4.45) is positive, which implies that
(zi)THxif i,kzi ≥ 0.

Using the abovementioned lemmas, we prove Lemma 4.15.
Proof. of Lemma 4.15) Let αi ∈ (α∗

i , 1], λ ∈ [0, 1] and y1, y2 ∈ Si
αi
. We will show that λy1 + (1 − λ)y2 ∈ Si

αi
.Consider 4 cases as follows:

Case 1: Let y1 = 0 or y2 = 0. Without loss of generality, we assume that y2 = 0. We deduce that Di,k ≥ 0 forall k ∈ J i, which implies that
P(V iλy1 ≤ Di) ≥ P(V iy1 ≤ Di) ≥ αi.

Therefore, λy1 + (1− λ)y2 ∈ Si
αi
.

Case 2: Let y1 ̸= 0, y2 ̸= 0 and λy1 + (1− λ)y2 = 0. In this case, y2 = −λ
1−λy1 ∈ S̃i

αi
and y1 ∈ S̃i

αi
. It follows fromLemma 4.16 that

(µi,k)Ty1 > λ− 1

λ
Di,k, (µi,k)Ty1 < Di,k, ∀ k ∈ J i.

This implies that Di,k ≥ 0 for all k ∈ J i. Hence, λy1 + (1− λ)y2 = 0 ∈ Si
αi
.

Case 3: Let y1 ̸= 0, y2 ̸= 0 and 0 ∈ Seg(y1, y2), where
Seg(y1, y2) = {y1 + l(y2 − y1), 0 ≤ l ≤ 1} .

Then, for any point x ∈ Seg(y1, y2), either x ∈ Seg(y1, 0) or x ∈ Seg(0, y2). It follows from Case 1 that Seg(y1, 0)and Seg(0, y2) are subset of Si
αi
. Therefore, λy1 + (1− λ)y2 ∈ Si

αi
for all λ ∈ [0, 1].

Case 4: Let y1 ̸= 0, y2 ̸= 0 such that 0 /∈ Seg(y1, y2). It is clear that Seg(y1, y2) ⊂ Conv(S̃i
αi
). From Lemmas 4.18

and 4.19, gi,k(·,W i,k) is defined and (−2)-concave on Seg(y1, y2), for allW i,k ∈ [wi,kl , wi,ku ], which implies that
gi,k(λy1 + (1− λ)y2,W

i,k) ≥
(
λ(gi,k(y1),W

i,k)−2 + (1− λ)(gi,k(y2),W
i,k)−2

)− 1
2 . (4.46)

Since, y1 ∈ S̃i
αi
and αi > α

(3)
i , using Lemma 4.17, for any z ∈ [wi,kl , wi,ku ], the following condition holds

EW i,k

Φ
 √

z√
W i,k

gi,k(y1, z) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 > α
(3)
i .

Moreover, it follows from the definition of α(3)
i in Assumption 4.6 that

α
(3)
i ≥ Φ


√

3wi,ku√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ,

61



which in turn implies that
EW i,k

Φ
 √

z√
W i,k

gi,k(y1, z) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl


> Φ


√

3wi,ku√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 . (4.47)

If gi,k(z1, z) ≤ 0, (4.47) implies that
Φ

 ||γi,k||2(wi,ku − wi,kl )√
λi,k,min

√
wi,kl

 > Φ


√

3wi,ku√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ,

which derives a contradiction by the increasing monotonicity of Φ. Therefore, gi,k(y1, z) ≥ 0. For any W i,k ∈
[wi,kl , wi,ku ], we have

√
z√

W i,k
gi,k(y1, z) ≤

√
wi,ku√
wi,kl

gi,k(y1, z). (4.48)

From (4.47) and (4.48), for any z ∈ [wi,kl , wi,ku ], we get

Φ


√
wi,ku√
wi,kl

gi,k(y1, z) +
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 > Φ


√

3wi,ku√
wi,kl

+
||γi,k||2(wi,ku − wi,kl )√

λi,k,min
√
wi,kl

 ,

which in turn implies that
0 < gi,k(y1,W

i,k)−2 <
1

3
, ∀W i,k ∈ [wi,kl , wi,ku ].

Similarly,
0 < gi,k(y2,W

i,k)−2 <
1

3
, ∀W i,k ∈ [wi,kl , wi,ku ].

By applying the non-decreasing function Φ(·) on both side of (4.46), we can write
Φ
(
gi,k

(
λy1 + (1− λ)y2,W

i,k
))

≥

Φ
((
λ(gi,k(y1,W

i,k))−2 + (1− λ)(gi,k(y2,W
i,k))−2

)− 1
2

)
, ∀W i,k ∈ [wi,kl , wi,ku ]. (4.49)

Since, Φ(·) is the cumulative distribution function of a standard Normal distribution, it follows from Proposi-tion 4.1 of [100] that Φ(·) has r-decreasing density, for any r > 0 and t∗ =
√
r, where t∗ refers to Definition 3.4.

By choosing r = 3, it follows from Lemma 3.1 of [100], the function t 7→ Φ
(
t−

1
2

) is concave on (0, 13 ). Therefore,
for anyW i,k ∈ [wi,kl , wi,ku ], we obtain

Φ
((
λ(gi,k(y1,W

i,k))−2 + (1− λ)(gi,k(y2,W
i,k))−2

)− 1
2

)
≥ λ

(
Φ
(
gi,k(y1,W

i,k)
))

+ (1− λ)
(
Φ
(
gi,k(y2,W

i,k)
))
. (4.50)
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For anyW i,k ∈ [wi,kl , wi,ku ], it follows from (4.49) and (4.50) that
Φ
(
gi,k(λy1 + (1− λ)y2,W

i,k)
)
≥

λ
(
Φ
(
gi,k(y1,W

i,k)
))

+ (1− λ)
(
Φ
(
gi,k(y2,W

i,k)
))
, (4.51)

which implies that Φ (gi,k(·,W i,k)
) is a concave function on Seg(y1, y2), for any W i,k ∈ [wi,kl , wi,ku ]. By takingthe expectation value EW i,k on both sides of (4.51), we deduce that

EW i,k

[
Φ
(
gi,k(λy1 + (1− λ)y2,W

i,k)
)]

≥
λ
(
EW i,k

[
Φ
(
gi,k

(
(y1,W

i,k
))])

+ (1− λ)
(
EW i,k

[
Φ
(
gi,k

(
(y2,W

i,k
))])

, (4.52)
which in turn implies that the function EW i,k

[
Φ
(
gi,k(·,W i,k)

)] is a concave function on Seg(y1, y2). It followsfrom the discussion in Definition 2.1 of [100] that log-concavity is a weaker property than concavity. Therefore,
EW i,k

[
Φ
(
gi,k(·,W i,k)

)] is also a log-concave function on Seg(y1, y2). Then, λy1 + (1− λ)y2 ∈ Si
αi
.

It follows from Lemma 3.5 [167] that the closeness of Si
αi
is a consequence of Proposition 3.1 in [202]. Since

Si
αi

is a subset of Si, which is a compact set, we deduce that Si
αi

is a compact set. Si. We show that thereexists a Nash equilibrium of the CCG by the following theorem.
Theorem 4.3. Consider an n-player CCG defined in Section 4.2, where

1. Assumptions 4.4 and 4.6 hold.

2. For each i ∈ H , we assume that V i,k ∼ NMVM(µi,k, γi,k,Σi,k,W i,k) and the vectors V i,k are mutually
independent, k ∈ J i.

Then, there exists a Nash equilibrium of the CCG for any α ∈ (α∗
1, 1]× . . .× (α∗

n, 1], where {α∗
i }i∈H refers to Assump-

tion 4.6.

Proof. The proof follows the same arguments as the proof of Theorem 3.1 [167].
4.6 . Algorithm and Numerical Results

In this section, we assume that the strategy set of each player is strictly positive, i.e., Si ⊂ Rdi
++, where Rdi

++denotes the subset of Rdi with strictly positive components. We consider a 2− player CCG defined in Section4.2. Let x2 ∈ S2
α2

be a feasible point of the second player. Then, the optimization problem of the first playeris written as
[P1] max p1(x

1, x2)

s.t. x1 ∈ Si
α1
. (4.53)

The set of optimal solutions of [P1] which is also called the best response set of the first player, is given by
BR1(x

2) =
{
x̄1 | p1(x̄1, x2) ≥ p1(x

1, x2), ∀ x1 ∈ Si
α1

} (4.54)
Similarly, let x1 ∈ S1

α1
, the optimization problem of the second player is written as

[P2] max p2(x
1, x2)

s.t. x2 ∈ S2
α2
. (4.55)
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The best response set of the second player, is given by
BR2(x

1) =
{
x̄2 | p2(x1, x̄2) ≥ p2(x

1, x2), ∀ x2 ∈ S2
α2

} (4.56)
It is clear that if x1∗ ∈ BR1(x

2∗) and x2∗ ∈ BR2(x
1∗), then (x1∗, x2∗) is a Nash equilibrium of the CCG. Wepropose the best response algorithm given in Algorithm 1. If Algorithm 1 stops, (x1∗, x2∗) is a Nash equilibrium

Algorithm 1 Best response algorithm
Step1 : Select initial feasible point x2(0) ∈ S2

α2
for player 2, set k = 0 and choose a tolerance parameter

ϵ > 0.
Step2 : Solve the optimization problem [P1] with x2 = x2(k) and obtaint an optimal solution x1(k) ∈
BR1(x

2(k)).
Step3 : Solve the optimization problem [P2] with x1 = x1(k) and obtain an optimal solution x2(k+1) ∈
BR2(x

1(k)). If |p2(x1(k), x2(k)) − p2(x
1(k), x2(k+1))| < ϵ, stop the algorithm and set (x1∗, x2∗) = (x1(k), x2(k)).Otherwise, set k := k + 1 and go back to Step2.

of the CCG. The question when Algorithm 1 cycles is still open. Using Algorithm 1, at each step, the firstplayer wants to solve his optimization problem [P1], for x2 ∈ S2
α2

and the second player wants to solve hisoptimization problem [P2], for x1 ∈ Si
α1
. We present a reformulation of the optimization problem [P1], for x2 ∈

S2
α2
. The optimization problem [P2] is written similarly. For each x2 ∈ S2

α2
, using (4.22), we can reformulate

[P1] equivalently as
max
x1

p1(x
1, x2),

s.t. (i) ∑
k∈J1

log
(
EW 1,k

[
Φ
(
g1,k(x1,W 1,k)

)])
≥ log(α1),

(ii) x1 ∈ S1. (4.57)
By introducing auxiliary variables z1,k, we rewrite (4.57) as follows

max
x1

p1(x
1, x2),

s.t. (i) EW 1,k

[
Φ
(
g1,k(x1,W 1,k)

)]
≥ ez

1,k

,

(ii) ∑
k∈J1

z1,k ≥ log(α1),

(iii) z1,k ≤ 0, ∀ k ∈ J1,

(iv) x1 ∈ S1. (4.58)
The optimization problem (4.58) is intractable due to the expectation term EW 1,k . Therefore, we solve ap-proximately (4.58) by using the partial sampling technique. Here, we draw N1,k i.i.d samples w1,k

1 , . . . , w1,k
N1,kof the univariate distribution ofW 1,k. Thanks to these samples, we get an approximation of the expectationvalue by using Monte-Carlo method. We solve (4.58), where the constraint (i) is replaced by the followingconstraint

1

N1,k

N1,k∑
t=1

[
Φ
(
g1,k(x1, w1,k

t )
)]

≥ ez
1,k

. (4.59)
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Let Ck
(
x1,W 1,k

)
= Φ

(
g1,k(x1,W 1,k)

). It is clear that Ck is a continuous function. Moreover, Ck(x1, ·) is up-per bounded by the identity function 1(w1,kl ,w1,ku ) which is an integrable function. Using Theorem 7.48, [208],
EW 1,k

[
Ck
(
·,W 1,k

)] is continuous and the average sample converges toEW 1,k

[
Ck
(
·,W 1,k

)]w.p.1 uniformly on
S1. Using Theorem 5.3, [208], by solving optimization problems, where the constraint (i) of (4.58) is replacedby the constraint (4.59), we obtain a sequence of optimal values, which converges to the optimal value of(4.58) when the number of samples goes to infinity. By introducing new auxiliary variables y1,kt , the constraint(4.59) is equivalent to the following constraints

(i) Φ(g1,k(x1, w1,k
t )
)
≥ y1,kt ,

(ii) N1,k∑
t=1

y1,kt ≥ N1,k.ez
1,k

,

(iii) y1,kt ≥ 0, ∀ k ∈ J1, 1 ≤ t ≤ N1,k. (4.60)
Then, the optimization problem [P1] can be rewritten as

max
x1

p1(x
1, x2),

s.t. (i) Φ(g1,k(x1, w1,k
t )
)
≥ y1,kt ,

(ii) N1,k∑
t=1

y1,kt ≥ N1,k.ez
1,k

,

(iii) ∑
k∈J1

z1,k ≥ log(α1),

(iv) z1,k ≤ 0, y1,kt ≥ 0, ∀ k ∈ J1, 1 ≤ t ≤ N1,k, x1 ∈ S1. (4.61)
From (4.51) in the proof of Lemma 4.15, if Assumption 4.6 holds, Φ (gi,k(·,W i,k)

) is a concave function on any
segment, which does not contain zero. Since S1 ⊂ Rd1

++, it is clear thatΦ
(
g1,k(·, w1,k

t )
) is a concave function on

S1, for any t = 1, . . . , N1,k, k ∈ J1. Hence, (4.61) is a convex optimization. Similarly, the optimization problem
[P2] can be rewritten as

max
x2

p2(x
1, x2),

s.t. (i) Φ(g2,k(x2, w2,k
t )
)
≥ y2,kt ,

(ii) N2,k∑
t=1

y2,kt ≥ N2,k.ez
2,k

,

(iii) ∑
k∈J2

z2,k ≥ log(α2),

(iv) z2,k ≤ 0, y2,kt ≥ 0, ∀ k ∈ J2, 1 ≤ t ≤ N2,k, x2 ∈ S2. (4.62)
For numerical resutls, we consider a competition model of two firms in a same financial market. Let J =
{1, . . . ,K} be the set of portfolios and Ak be the set of assets in portfolio k, for k ∈ J . We assume thatboth firms invest in the same set of portfolios J and the portfolios are pairwise disjoint. Each firm i invests
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its money in the assets. Let xikj be the amount of money that firm i invests in asset j of portfolio k. Let
xik =

(
xikj

)
j∈Ak

be the investment vector of firm i in portfolio k and xi =
(
xik
)
k∈J

be the strategy vector of
firm i. The strategy set of firm i (or the set of investments) is defined as

Si =

xi | ∑
j∈Ak, k∈J

xikj ≤ Bi, xikj ≥ ϵikj , for any k ∈ J, j ∈ Ak

 ,

where Bi is the budget of firm i and ϵikj is the minimal amount required that firm i must invest in asset
j of portfolio k. It is clear that Si is a convex and compact set with strictly positive components, for any
i = 1, 2. The vector (x1, x2) ∈ Si ×S2 represents a strategy profile (or an investment profile) of both firms. Let
Li
k =

(
Li
kj

)
j∈Ak

be a random loss vector of firm i from portfolio k. Then, for a given investment vector xik,
the random loss incurred by firm i from portfolio k is (Li

k)
Txik. LetDi

k be the maximal loss level of firm i fromportfolio k and firm i wants to keep its random loss below this level at probability level αi, i.e.,
P
{
(xik)

TLi
k ≤ Di

k, k ∈ J
}
≥ αi, ∀ i = 1, 2.

Hence, the strategy set of firm i is defined as
Si
αi

=
{
xi ∈ Si | P

{
(xik)

TLi
k ≤ Di

k, k ∈ J
}
≥ αi

}
We assume that for any i = 1, 2 and k ∈ J , the random loss vector Li

k follows a normal mean-variancemixturedistribution. LetRi
k = −Li

k be the random return vector of firm i from portfolio k. We consider the case whereeach firm wants to minimize their transaction cost which is incurred due to trades from multiple firms. Thetransaction cost of a firm usually also depends on the investment of other firms [132]. Therefore, for a givenstrategy profile (x1, x2), we consider the quadratic transaction cost as follows
TCi(x1, x2) =

∑
k∈J

(x1k + x2k)
TΩi

k(x
1
k + x2k),

where TCi(x1, x2) is the transaction cost of firm i at strategy profile (x1, x2), the positive semidefinite matrix
Ωi

k represents the market impact of portfolio k on firm i whose entry at position (r, s) is the impact of theliquidity of asset r on the liquidity of asset s. The same formulation of transaction cost has been consideredin [132]. The payoff function of firm i is defined as follows
ui(x1, x2) =

(∑
k∈J

E(Ri
k)

Txik
)

− TCi(x1, x2),

where ∑k∈J E(Ri
k)

Txik is the expected return of firm i at strategy profile (x1, x2). It is clear that the payofffunction of firm i is a continuous function of the strategy profile and concave w.r.t its strategy vector, forevery fixed strategy vector of the other firm.In our case study, we consider two firms with three portfolios where each portfolio consists three assets,i.e, J = {1, 2, 3} and Ak = {1, 2, 3}, for any k ∈ J . We assume that the random loss vectors follows normalmean-variance mixture distributions, i.e., for any i = 1, 2 and k ∈ J , Li
k ∼ NMVM(µi,k, γi,k,Σi,k,W i,k), where

µi,k is an 3× 1 vector taken on [−0.25, 0]3 and γi,k is a 3× 1 vectors taken on [0, 0.025]3. Σi,k is a 3× 3 positive
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definitematrixwith all eigen values belong to [5, 10] andhigh values on themain diagonal. In order to generate
Σi,k, we use the following formula

Σi,k =
AAT

3×max (1, λmax) + β × I3,

where A is a 3 × 3 random matrix whose all the entries are real numbers belonging to [0, 1], λmax is thelargest eigenvalue of the semidefinite positive matrix AAT
3 , β is a real number taken on [5, 9] and I3 is 3 × 3identity matrix. We take negative values of location parameters µi,k and high values on the main diagonal ofcovariance matrix Σi,k because firms gain positive return in expectation if they decide to invest but they haveto make risky decision. W i,k follows an uniform distribution with support in [wi,kl , wi,ku ], where wi,kl is taken on

[0.85, 1] and wi,ku is taken on [1, 1.15]. For the above choice of parameters, the threshold levels (α∗
i )i=1,2 alwaysbelong to [0.96, 0.98]. Then, we take the probability levels α1 = α2 = 0.985 such that Assumption 4.6 holds.The other parameters are given by B1 = B2 = 10, ϵ1kj = ϵ2kj = 0.1, D1

k = 1, D2
k = 1.5, Ωi

k is a 3 × 3 positivedefinite matrix, generated by the following formula
Ωi

k =
BBT
3

,

where B is a 3× 3 randommatrix whose all the entries are real numbers belonging to [0, 1]. Then, the payofffunction of two firms are calculated by
ui(x1, x2) = −

[∑
k∈J

(µi,k)Txik
]
−
∑
k∈J

(x1k + x2k)
TΩi

k(x
1
k + x2k).

All the numerical results below are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We generate an instance of the above competition modeland compute the Nash equilibrium using best response algorithm. In order to find the best response of eachplayer, we solve convex optimization problems (4.61) and (4.62) using cp solver in CVXOPT, with number of
data points in Monte-Carlo method N1,k = N2,k = 50. The data points {wi,k

j , j = 1, . . . , N i,k
} are uniformly

generated on [wi,kl , w1,ku ]N
i,k . The algorithm converges to a Nash equilibrium point (x1∗, x2∗) given by
x1∗ = [(0.48, 0.51, 0.63), (0.47, 0.31, 0.55), (0.67, 0.25, 0.4)] ,

x2∗ = [(0.52, 0.31, 0.73), (0.57, 0.54, 0.57), (0.47, 0.55, 0.3)] ,

and the total CPU time is 91 seconds. Figure 4.4 shows that best response algorithm converges for the aboveinstance because the payoffs of both firms converge after a few iterations. We also present the time analysisby considering a largermodelwith 50 portfolios and eachportfolio has 50 assets. The parameters are similarlygenerated as above. We generate 20 instances and for each instance, the best response algorithm convergesto a Nash equilibrium. The average total CPU time is 1897.1 seconds. The total CPU time of each instance arerepresented in Figure 4.5.
4.7 . Conclusion

We study an n− player non-cooperative CCG, where the strategy set of each player is defined by a jointchance constraint. The random constraint vectors are either dependent and follow elliptical distributions or
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Figure 4.4: Convergence of payoffs to a Nash equilibrium.
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Figure 4.5: Total CPU time of 20 instances of CCG model with 50 portfolios and 50 assets in each portfolios.

independent and follow normal mean-variance mixture distributions. We derive a new reformulation of thefeasible strategy set of each player and show the existence of a Nash equilibrium under mild assumptions onthe payoff of each player and the probability levels. We compute a Nash equilibrium of a competition of twofirms in financial market with randomly generated data using best-response algorithm. It is clear from ourtime analysis that a Nash equilibrium can be computed efficiently in a large model up to 50 portfolios andeach portfolio contains up to 50 assets.This chapter corresponds to the reference [167] and a paper submitted to Applied Mathematics and Com-putation.
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Chapter 5 :Distributionally Robust Chance-ConstrainedZero-SumGames

In this chapter, we consider a two-player zero-sum game with random linear chance constraints whosedistributions are known to belong tomoment based uncertainty sets or statistical distance based uncertaintysets. We propose a reformulation of the chance constraints using distributionally chance-constrained opti-mization framework. We show that there exists a saddle point equilibrium of the game, which is the optimalsolution of a primal-dual pair of second-order cone programs. As an application, we present a competitionof two firms in financial market to simulate our theoretical results.This chapter serves as a valuable addition to the previous chapters. In the preceding chapters, we focusedon establishing the existence of Nash equilibrium and presented an algorithm that, while effective, did notguarantee convergence to an equilibrium point. However, in this chapter, we make significant progress bydemonstrating that the equilibrium point is indeed unique. Furthermore, we introduce a novel approach forcomputing this equilibrium point by solving a primal-dual pair of second-order cone programming (SOCP)problems. By employing this method, we not only ensure the convergence to a unique equilibrium point butalso provide a practical and efficient computational solution.
5.1 . Introduction

In many real life applications, the strategy sets are restricted by random linear constraints. By assumingthat the probability of these random linear constraints is at least more than a certain probability level, wehave a chance constraint. The distribution of random factors in chance constraints can be known exactly orunknown, which leads to different approaches to define a game. The true distribution of random factors isusually assumed to be elliptically distributed, which includes many known distributions, e.g., Gaussian dis-tribution, Laplace distribution, Kotz distribution or Pearson distribution. Otherwise, in unknown distributioncase, the true distribution of random factors is assumed to belong to an uncertainty set, where only partial in-formation of the distribution is known based on historical data and we call such games distributionally robustchance-constrained games. A two-player zero-sum game is modeled using continuous strategy sets, wherethe sum of two players’ payoffs is zero. Consequently, it is defined using a single payoff function, where oneplayer plays the role of maximizer and another player plays the role of minimizer. More commonly, a zero-sum game is introduced with a payoffmatrix, where the rows and the columns are the actions of player 1 andplayer 2, respectively. A Saddle Point Equilibrium (SPE) is the solution concept to study the zero-sum gamesand it exists in the mixed strategies [243].In the conference paper [168], we considered a two player zero-sum game with continuous strategy set,where the payoff function has a special form and the strategies of each player are modeled using randomlinear constraints reformulated as distributionally robust chance constraints. We proposed an SOCP refor-mulation of distributionally robust chance constraints under two uncertainty sets based on the partial infor-mation about the mean vectors and covariance matrices of the random constraint vectors. We showed theexistence of an SPE and characterized it as the optimal solution of a primal-dual pair of SOCPs. The confer-ence paper has some shortcomings, e.g., the payoff function has a quadratic form, the uncertainty sets aremainly constructed based on moments from historical data and it lacks of numerical results which allow usto compare different uncertainty sets. As an extended version of [168], our contribution is as follows:
• We study a more general framework as compared to [168] by considering two types of uncertainty setsbased on either the partial information on the mean vectors and covariance matrices of the random

70



constraint vectors (moment based uncertainty sets) or the statistical distance between their true distri-bution and a nominal distribution (statistical based uncertainty sets). We show that in both cases, thereexists an SPE of the game and an SPE problem is equivalent to a primal-dual pair of SOCPs.
• As an application, we present a competition problem of two firms in financial market and we show ournumerical results using randomly generated data to compare different uncertainty sets considered inthe chapter.

We keep the same form of payoff function as considered in the conference paper, since we need a differentgamemodel for different form of payoff function, which would break the uniformity of our results. We mightconsider this point in future works.The rest of this chapter is organized as follows. We present related works in Section 5.2. The definitionof a distributionally robust zero-sum game is given in Section 5.3. Section 5.4 presents the reformulation ofdistributionally robust chance constraints as second order cone constraints under different uncertainty sets.Section 5.5 outlines a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game. Sec-tion 5.6 presents a competition of two firms in financial market as and shows numerical results. Conclusionand future works are presented in Section 5.7.
5.2 . Related work

In this section, we introduce previous studies on chance-constrained games. Dantzig and later Adlershowed the equivalence between linear programming problems and two-player zero-sum games [3][52].Charnes [39] generalized the zero-sum game considered in [243] by introducing linear inequality constraintson themixed strategies of both the players and called it a constrained zero-sumgame. An SPEof a constrainedzero-sum game can be obtained from the optimal solutions of a primal-dual pair of linear programs [39].Singh and Lisser [218] considered a stochastic version of constrained zero-sum game considered by Charnes[39], where the mixed strategies of each player are restricted by random linear inequality constraints, whichare modelled using chance constraints. When the random constraint vectors follow a multivariate ellipticallysymmetric distribution, the zero-sum game problem is equivalent to a primal-dual pair of Second-Order ConePrograms (SOCPs) [218]. Nash equilibrium is the generalization of SPE and it is used as a solution conceptfor the general-sum games [160] [161]. Under certain conditions on payoff functions and strategy sets, therealways exists a Nash equilibrium [55]. The general-sum games under uncertainties are considered in theliterature [200, 214, 215, 211, 219], which capture both risk neutral and risk averse situations. Liu et al. [145]studied chance-constrained DRO in geometric optimization. To the best of our knowledge, the distribution-ally robust chance-constrained approach has been widely studied in the literature but still not completed ingame setup. In this chapter, we want to apply different approaches in the literature to define uncertainty setsin a distributionally robust chance-constrained game and compare the performance of these approaches bysimulation using randomly generated data models.
5.3 . The model

We consider a two player zero-sum game, where each player has continuous strategy set. LetC1 ∈ RK1×m,
C2 ∈ RK2×n, d1 ∈ RK1 and d2 ∈ RK2 . We consider X = {x ∈ Rm | C1x = d1, x ≥ 0} and Y = {y ∈ Rn | C2y =
d2, y ≥ 0} as the strategy sets of player 1 and player 2, respectively. We assume that X and Y are compactsets. Let u : X × Y → R be a payoff function associated to the zero-sum game and we assume that player 1(resp. player 2) is interested in maximizing (resp. minimizing) u(x, y) for a fixed strategy y (resp. x) of player
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2 (resp. player 1). For a given strategy pair (x, y) ∈ X × Y , the payoff function u(x, y) is given by
u(x, y) = xTGy + gTx+ hTy, (5.1)

where G ∈ Rm×n, g ∈ Rm and h ∈ Rn. The first term of (5.1) results from the interaction between both theplayers whereas the second and third term represents the individual impact of player 1 and player 2 on thegame, respectively. The strategy sets are often restricted by random linear constraints, which are modeledusing chance constraints. The chance constraint based strategy sets appear in many practical problems, e.g.,risk constraints in portfolio optimization [112]. In this chapter, we consider the case, where the strategies ofplayer 1 satisfy the following random linear constraints,
(a1k)

Tx ≤ b1k, k = 1, 2, . . . , p, (5.2)
whilst the strategies of player 2 satisfy the following random linear constraints

(a2l )
Ty ≥ b2l , l = 1, 2, . . . , q. (5.3)

Let I1 = {1, 2, . . . , p} and I2 = {1, 2, . . . , q} be the index sets for the constraints of player 1 and player 2,respectively. For each k ∈ I1 and l ∈ I2, the vectors a1k and a2l are random vectors defined on a probabilityspace (Ω,F ,P). We consider the case, where the only information we have about the distributions of a1k and
a2l is that they belong to some uncertainty sets D1

k and D2
l , respectively. The uncertainty sets D1

k and D2
l , areconstructed based on the partially available information on the distributions of a1k and a2l , respectively. Usingthe worst case approach, the random linear constraints (5.2) and (5.3) can be formulated as distributionallyrobust chance constraints given by

inf
F 1

k∈D1
k

P
(
(a1k)

Tx ≤ b1k

)
≥ α1

k, ∀ k ∈ I1, (5.4)
and

inf
F 2

l ∈D2
l

P
(
(−a2l )Ty ≤ −b2l

)
≥ α2

l , ∀ l ∈ I2, (5.5)
where α1

k and α2
l are the confidence levels of player 1 and player 2 for kth and lth constraints, respectively,and F 1

k , F 2
l are the distributions of a1k and a2l . Therefore, for a given α1 = (α1

k)k∈I1 and α2 = (α2
l )l∈I2 , thefeasible strategy sets of player 1 and player 2 are given by

S1
α1 =

{
x ∈ X| inf

F 1
k∈D1

k

P{(a1k)Tx ≤ b1k} ≥ α1
k, ∀ k ∈ I1

}
, (5.6)

and
S2
α2 =

{
y ∈ Y | inf

F 2
l ∈D2

l

P{(−a2l )Ty ≤ −b2l } ≥ α2
l , ∀ l ∈ I2

}
. (5.7)

We call the zero-sum game with the strategy set S1
α1 for player 1 and the strategy set S2

α2 for player 2 as adistributionally robust zero-sum game. We denote this game by Zα. A strategy pair (x∗, y∗) ∈ S1
α1 × S2

α2 iscalled an SPE of the game Zα at α = (α1, α2) ∈ [0, 1]p × [0, 1]q , if
u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), ∀ x ∈ S1

α1 , y ∈ S2
α2 . (5.8)
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5.4 . Reformulation of distributionally robust chance constraints

We consider five different uncertainty sets based on the partial information about the mean vectors andcovariance matrices of the random constraint vectors aik, i = 1, 2, k ∈ Ii and four different uncertaintysets based on the statistical distance between the distribution of aik and a nominal distribution. For eachuncertainty set, the distributionally robust chance constraints (5.4) and (5.5) are reformulated as second-order cone (SOC) constraints.
5.4.1 . Moment based Uncertainty Sets

We consider five moment based uncertainty sets defined as follows.
Uncertainty set with known mean and known covariance matrix

In some situations, we do not know exactly the true distribution of the random constraint vectors aik, for all
k ∈ Ii, i = 1, 2. We can only obtain some information of the underlying distribution from historical data.For example, by observing a sufficiently large number of data, we deduce the values of mean vector andcovariance matrix of aik approximated by the sample mean µi

k and the sample covariance matrix Σi
k. Weconsider an uncertainty set, which includes all distributions F i

k with mean vector µi
k and covariance matrix Σi

kdefined as follows
D1,i

k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣∣∣∣
The distribution of aik is F i

k

E
[
aik
]
= µi

k

Cov[aik] = Σi
k

 , (5.9)
We assume that for each i = 1, 2 and k ∈ Ii, the true distribution of aik belongs to the uncertainty set
D1,i

k

(
µi
k,Σ

i
k

) and thematrix Σi
k is a postive definite matrix. This uncertainty set has been widely considered inthe literature, e.g., [83]. We present an SOC reformulation of the constraints (5.4) and (5.5) by the followinglemma.

Lemma 5.20. The constraints (5.4) and (5.5) are equivalent to (5.10) and (5.11), respectively, given by
(µ1

k)
Tx+

√
α1
k

1− α1
k

||(Σ1
k)

1
2x||2 ≤ b1k,

∀ k ∈ I1, (5.10)

− (µ2
k)

Ty +

√
α2
k

1− α2
k

||(Σ2
k)

1
2 y||2 ≤ −b2k,

∀ k ∈ I2. (5.11)
Remark 5.5. An SOC constraint is the set of points x ∈ Rn such that the following inequality holds

∥Ax+ b∥2 ≤ cTx+ d,

whereA ∈ Rm×n is anm×n real matrix, b ∈ Rm is anm×1 real vector, c ∈ Rn is an n×1 real vector and d ∈ R is
a real number, ∥ · ∥2 denotes the Euclidean norm. It is clear that (5.10) and (5.11) are equivalent to SOC constraints.
An SOC reformulation is useful since optimization problems with SOC constraints can be solved efficiently by known
algorithms in polynomial time.
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Proof. Using the one-sided Chebyshev inequality, we have

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
(a1k)

Tx ≤ b1k
}
=



1− 1

1+
((µ1

k
)Tx−b1

k
)2

(xTΣ1
k
x)

,

if (µ1
k)

Tx ≤ b1k,

0, otherwise.
The bound of one-sided Chebyshev inequality can be achieved by a two-point distribution given by equation(2) of [203]. For the case (µ1

k)
Tx > b1k,

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
a1kx ≤ b1k

}
= 0,

which makes constraint (5.4) infeasible for any α1 > 0. Therefore, for x ∈ S1
α1
, the condition (µ1

k)
Tx ≤ b1kalways holds and the constraint (5.4) is equivalent to

1− 1

1 + ((µ1
k)

Tx− b1k)
2/(xTΣ1

kx)
≥ α1

k.

The above inequality can be reformulated as (5.10). Similarly, we can show that (5.5) is equivalent to (5.11).
Uncertainty set with known mean and unknown covariance matrix

For all i = 1, 2 and k ∈ Ii, we consider the case, where the mean vector of the random vector aik is knownexactly (approximated by the sample mean µi
k) but the covariance matrix is unknown due to several reasons,e.g., the lack of data. We assume that it is only known to belong to a positive semidefinite cone defined witha linear matrix inequality as follows
Cov[aik] ⪯ γikΣ

i
k,

where γik > 0 is a strictly positive real number, Σi
k is a positive definite matrix, for the given matrices B1and B2, B1 ⪯ B2 implies that B2 − B1 is a positive semidefinite matrix. In practical applications, we usuallyapproximate the matrix Σi

k by the sample covariance matrix. The parameter γik is used in controlling theuncertainty level, i.e., high value of γik implies a large number of distributions in the uncertainty set, whichdeals uncertain factors in a more secure way. We consider un uncertainty set, which includes all distributions
F i
k with mean vector µi

k and covariance matrix satisfied the above constraint as follows
D2,i

k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣∣∣∣
The distribution of aik is F i

k

E
[
aik
]
= µi

k

Cov[aik] ⪯ γikΣ
i
k

 . (5.12)
This uncertainty set is considered in [46]. We assume that for each i = 1, 2 and k ∈ Ii, the true distributionof aik belongs to the uncertainty set D2,i

k

(
µi
k,Σ

i
k

). We present an SOC reformulation of the constraints (5.4)and (5.5) by the following lemma.
Lemma 5.21. The constraints (5.4) and (5.5) are equivalent to (5.13) and (5.14), respectively, given by

(µ1
k)

Tx+
√
γ1k

√
α1
k

1− α1
k

||(Σ1
k)

1
2x||2 ≤ b1k,

∀ k ∈ I1, (5.13)
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− (µ2
k)

Ty +
√
γ2k

√
α2
k

1− α2
k

||(Σ2
k)

1
2 y||2 ≤ −b2k,

∀ k ∈ I2. (5.14)
Proof. Based on the structure of uncertainty set (5.12), the constraint (5.4) can be written as

inf
(µ,Σ)∈U1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
(a1k)

Tx ≤ b1k
}
≥ α1

k,

where
U1
k =

{
(µ,Σ)

∣∣µ = µ1
k,Σ ⪯ γikΣ

i
k

}
.

Here, the inner infimum is taken over all distributions with same value of mean vector and covariance ma-trix. The outer infimum is taken over all couples (µ,Σ) satisfying the conditions in (5.12). Using the similararguments as in the Lemma 5.20, the constraint (5.4) is equivalent to
b1k − (µ1

k)
Tx

max
Σ⪯γ1

kΣ
1
k

√
xTΣx ≥

√
α1
k

1− α1
k

. (5.15)

The above inequality (5.15) can be reformulated as (5.13). Similarly, we can show that (5.5) is equivalent to(5.14).
Uncertainty set with unknown mean and unknown covariance matrix

For all i = 1, 2 and k ∈ Ii, we consider the case, where both mean vector and covariance matrix of aik areunknown. From historical data, we obtain the sample mean µi
k and the sample covariance matrix Σi

k. Wedeal the uncertainty level in a secure way by assuming that the mean vector and the covariance matrix of
aik are not exactly the same as its sample mean and sample covariance matrix. The mean vector lies in anellipsoid of size γik1 ≥ 0 centered at µi

k defined by the following constraint(
E[aik]− µi

k

)⊤ (
Σi

k

)−1 (E[aik]− µi
k

)
≤ γik1,

and the covariance matrix of aik lies in a positive semidefinite cone defined as follows
Cov[aik] ⪯ γik2Σ

i
k.

where γik2 > 0 and Σi
k is a positive definite matrix. The parameters γik1 and γik2 are used in controlling theuncertainty level. If γik1 = 0, the mean vector is exactly the same as its sample mean. We consider un un-certainty set, which includes all distributions F i

k with mean vector and covariance matrix satisfied the aboveconstraints as follows

D3,i
k (µi

k,Σ
i
k) =


F i
k

∣∣∣∣∣∣∣∣∣∣∣∣

The distribution of aik is F i
k(

E[aik]− µi
k

)⊤ (
Σi

k

)−1

×
(
E[aik]− µi

k

)
≤ γik1,

Cov[aik] ⪯ γik2Σ
i
k


, (5.16)

The uncertainty set (5.16) is considered in [57]. We assume that for each i = 1, 2 and k ∈ Ii, the true distri-bution of aik belongs to the uncertainty set D3,i
k

(
µi
k,Σ

i
k

). We present an SOC reformulation of the constraints(5.4) and (5.5) by the following lemma.
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Lemma 5.22. The constraints (5.4) and (5.5) are equivalent to (5.17) and (5.18), respectively, given by
(µ1

k)
Tx+

(√
α1
k

1− α1
k

√
γ1k2 +

√
γ1k1

)∥∥∥(Σ1
k

) 1
2 x
∥∥∥
2
≤ b1k,

∀ k ∈ I1, (5.17)

− (µ2
k)

Ty +

(√
α2
k

1− α2
k

√
γ2k2 +

√
γ2k1

)∥∥∥(Σ2
k

) 1
2 y
∥∥∥
2
≤ −b2k,

∀ k ∈ I2. (5.18)
Proof. Based on the structure of the uncertainty set (5.16), the constraint (5.4) can be written as

inf
(µ,Σ)∈Ũ1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
a1kx ≤ b1k

}
≥ α1

k,

where
Ũ1
k =

{
(µ,Σ)

∣∣∣∣ (µ− µ1
k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1k1,

Σ ⪯ γ1k2Σ
1
k.

}
.

Using the similar arguments as in the Lemma 5.20, the constraint (5.4) is equivalent to
b1k + v1(x)√

v2(x)
≥

√
α1
k

1− α1
k

, (5.19)
where

v1(x) =

min
µ

−µTx
s.t. (µ− µ1

k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1k1,

(5.20)

v2(x) =

{
max
Σ

xTΣx
s.t. Σ ⪯ γ1k2Σ

1
k.

Let β ≥ 0 be a Lagrange multiplier associated with the constraint of optimization problem (5.20). By ap-
plying the KKT conditions, the optimal solution of (5.20) is given by µ = µ1

k +

√
γ1
k1Σ

1
kx√

xTΣ1
kx

and the associated
Lagrange multiplier is given by β =

√
xTΣ1

kx

4γ1
k1

. Therefore, the corresponding optimal value v1(x) = −(µ1
k)

Tx −√
γ1k1
√
xTΣ1

kx. Since, uTΣu ≤ uTγ1k2Σ1
ku, then, v2(x) = γ1k2x

TΣ1
kx. Therefore, using (5.19), (5.4) is equivalent to(5.17). Similarly, we can show that (5.5) is equivalent to (5.18).

Polytopic uncertainty set

For all i = 1, 2 and k ∈ Ii, we consider the case, where both mean vector and covariance matrix of therandom vector aik are unknown. From historical data, we consider M samples i.i.d of the random vector
aik. We obtain M sample means µi

k1, . . . , µ
i
kM and M sample covariance matrix Σi

k1, . . . ,Σ
i
kM , where Σi

kj ispositive definite, for any j = 1, . . . ,M . We consider polytopes Uµi
k

= Conv(µi
k1, µ

i
k2, . . . , µ

i
kM ) and UΣi

k
=
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Conv(Σi
k1,Σ

i
k2, . . . ,Σ

i
kM ), where Conv denotes the convex hull. We assume that the mean vector and the co-variancematrix of aik are known to belong to polytopes Uµi

k
and UΣi

k
, respectively. We consider an uncertainty

set, which includes all distributions F i
k defined as follows

D4,i
k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣∣∣∣
The distribution of aik is F i

k

E
[
aik
]
∈ Uµi

k

Cov[aik] ∈ UΣi
k

 . (5.21)

The uncertainty set (5.21) is considered in [83]. We assume that for each i = 1, 2 and k ∈ Ii, the true distri-bution of aik belongs to the uncertainty set D4,i
k

(
µi
k,Σ

i
k

). We present an SOC reformulation of the constraints(5.4) and (5.5) by the following lemma.
Lemma 5.23. The constraints (5.4) and (5.5) are equivalent to (5.22) and (5.23), respectively, given by

(µ1
kj)

Tx+

√
α1
k

1− α1
k

||(Σ1
kw)

1
2x||2 ≤ b1k,

∀ j = 1, . . . ,M, w = 1, . . . ,M, k ∈ I1, (5.22)

− (µ2
kj)

Ty +

√
α2
k

1− α2
k

||(Σ2
kw)

1
2 y||2 ≤ −b2k,

∀ j = 1, . . . ,M, w = 1, . . . ,M, k ∈ I2. (5.23)
Remark 5.6. Lemma 5.23 shows that the constraint (5.4) (resp. (5.5)) is equivalent to a system ofM2 constraints
in (5.22) (resp. (5.23)).
Proof. Based on the structure of uncertainty set (5.21), the constraint (5.4) can be written as

inf
(µ,Σ)∈Û1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
(a1k)

Tx ≤ b1k
}
≥ α1

k,

where
Û1
k =

{
(µ,Σ)

∣∣∣µ ∈ Uµ1
k
,Σ ∈ UΣ1

k

}
.

Using the similar arguments as in the Lemma 5.20, the constraint (5.4) can be reformulated as
min

µ∈U
µ1
k

(
b1k − µTx)

max
Σ∈U

Σ1
k

√
xTΣx ≥

√
α1
k

1− α1
k

. (5.24)

The above inequality (5.24) can be reformulated as
b1k − (µ1

kj)
Tx√

xTΣ1
kwx

≥

√
α1
k

1− α1
k

,

∀ j = 1, . . . ,M, w = 1, . . . ,M, k ∈ I1,

which is equivalent to (5.22). Similarly, we can show that (5.5) is equivalent to (5.23).
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Uncertainty set with componentwise bounds on mean vector and covariance matrix

For all i = 1, 2 and k ∈ Ii, we consider the case, where the mean vector and the covariance matrix of aikare unknown. We obtain from historical data, a sample mean vector µi
k and a sample covariance matrix Σi

k.We do not approximate the mean vector and the covariance matrix of aik by its sample mean vector andsample covariance matrix, but we deal the uncertainty level by a more secure way. For each j = 1, . . . ,m, weassume that the jth-component of the mean vector of aik lies in a ball of radius ϵiµ,k(j) ≥ 0, centered at the
jth-component of the sample mean vector µi

k, which can be reformulated as follows
µi
k − ϵiµ,k ≤ E[aik] ≤ µi

k + ϵiµ,k,

where ϵiµ,k =
(
ϵiµ,k(1), . . . , ϵ

i
µ,k(m)

) is an m× 1 vector and the above inequalities are understood componen-
twise. Similarly, for each j = 1, . . . ,m and w = 1, . . . ,m, we assume that the (j, w)− entry of the covariancematrix of aik lies in a ball of radius ϵiΣ,k(j, w) ≥ 0, centered at the (j, w)− entry of the sample covariance matrix
Σi

k, which can be reformulated as follows
Σi

k − ϵiΣ,k ≤ Cov[aik] ≤ µi
k + ϵiΣ,k,

where ϵiΣ,k = ϵiΣ,k(j, w)1≤j,w≤m is anm×mmatrix. Let µi
k− = µi

k − ϵiµ,k,µi
k+ = µi

k + ϵiµ,k, Σi
k− = Σi

k − ϵiΣ,k, and
Σi

k+ = Σi
k + ϵiΣ,k. We consider an uncertainty set, which includes all distributions F i

k defined as follows
D5,i

k (µi
k,Σ

i
k) =

F i
k

∣∣∣∣∣∣
The distribution of aik is F i

k

µi
k− ≤ E[aik] ≤ µi

k+,
Σi

k− ≤ Cov[aik] ≤ Σi
k+

 , (5.25)
Since Σi

k is a positive definite matrix, we can take ϵiΣ,k > 0 such that for any matrixH , if Σi
k− ≤ H ≤ Σi

k+, then
H is a positive definite matrix. We define a set of vectors S1

k as follows
S1
k =

{
µ ∈ Rm |µ(j) = µ1

k−(j)orµ1
k+(j), ∀ j = 1, . . . ,m

}
,

where µ(j) is the jth− component of µ, µ1
k−(j) is the jth− component of µ1

k−, and µ1
k+(j) is the jth− componentof µ1

k+. For example, if µ1
k− = (1, 2)T,µ1

k+ = (5, 6)T, then S1
k is a set of 4 vectors {(1, 5)T, (1, 6)T, (2, 5)T, (2, 6)T}.We define a set of covariance matrix T 1

k as follows
T 1
k =

{
Σ |Σ(j, w) = Σ1

k−(j, w)orΣ1
k+(j, w), 1 ≤ j, w ≤ m

}
,

Similarly, we define a set of vectors S2
k and a set of covariance matrix T 2

k . The uncertainty set (5.25) is consid-ered in [83]. We assume that for each i = 1, 2 and k ∈ Ii, the true distribution of aik belongs to the uncertaintyset D5,i
k

(
µi
k,Σ

i
k

). We present an SOC reformulation of the constraints (5.4) and (5.5) by the following lemma.
Lemma 5.24. The constraints (5.4) and (5.5) are equivalent to (5.26) and (5.27), respectively, given by

(µ1)Tx+

√
α1
k

1− α1
k

||(Σ1)
1
2x||2 ≤ b1k,

∀ µ1 ∈ S1
k, Σ

1 ∈ T 1
k , k ∈ I1, (5.26)

− (µ2)Ty +

√
α2
k

1− α2
k

||(Σ2)
1
2 y||2 ≤ −b2k,

∀ µ2 ∈ S2
k, Σ

2 ∈ T 2
k , k ∈ I2. (5.27)
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Remark 5.7. Note that S1
k is a set of 2m vectors and T 1

k is a set of 2m2 matrix. Then, Lemma 5.24 shows that the
constraint (5.4) is equivalent to a system of 2m × 2m

2 constraints in (5.26), for any k ∈ I1 and the constraint (5.5)
is equivalent to a system of 2n × 2n

2 constraints in (5.27), for any k ∈ I2.

Proof. Based on the structure of the uncertainty set (5.25), the constraint (5.4) can be written as
inf

(µ,Σ)∈Ū1
k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
a1kx ≤ b1k

}
≥ α1

k,

where
Ū1
k =

{
(µ,Σ)

∣∣∣∣ µ1
k− ≤ µ ≤ µ1

k+,
Σ1

k− ≤ µ ≤ Σi
k+.

}
.

Using the similar arguments as in the Lemma 5.20, the constraint (5.4) is equivalent to
b1k + v1(x)√

v2(x)
≥

√
α1
k

1− α1
k

, (5.28)
where

v1(x) =

{
min
µ

−µTx
s.t. µ1

k− ≤ µ ≤ µ1
k+,

v2(x) =

{
max
Σ

xTΣx
s.t. Σ1

k− ≤ Σ ≤ Σi
k+.

Note that the objective functions −µTx and xTΣx are linear functions w.r.t µ (resp. Σ). Then, it is clear thatthe optimal values v1(x) and v2(x) hold only when µ ∈ S1
k and Σ ∈ T 1

k . Then, the constraint (5.4) can bereformulated as (5.26). Similarly, we can show that (5.5) is equivalent to (5.27).
5.4.2 . Statistical Distance Based Uncertainty Sets

In this section, we define uncertainty sets using a metric called ϕ−divergence. For any i = 1, 2 and k ∈ Ii,the decision makers (the two players in the game) believe that the true distribution of aik oscillates around aNormal distribution of mean vector µi
k and covariance matrix Σi

k, where µi
k and Σi

k are sample mean vectorand sample covariance matrix obtained from historical data. We assume that the true distribution of aik liesin a ball of radius θik, centered at a nominal distribution νik and the distance between these two distributionsis given by ϕ−divergence metric. The nominal distribution νik is assumed to be Normal distributed of meanvector µi
k and covariance matrix Σi

k.
Definition 5.11. The ϕ−divergence distance between two measures µ and ν with densities fµ and fν , respectively,
with support in Rri is defined as follows:

Iϕ(µ, ν) =

∫
Rri

ϕ

(
fµ(ξ)

fν(ξ)

)
fν(ξ)dξ.

where r1 = m and r2 = n.

There are different types of ϕ−divergences distance, we refer to [22] and [176] for different choices offunction ϕ. We consider an uncertainty set Dϕ,i
k defined as follows

Dϕ,i
k =

{
F i
k ∈ M+ | Iϕ(F i

k, ν
i
k) ≤ θik

}
, (5.29)
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whereMi+ is the set of all probability measures on Rri , with r1 = m, r2 = n, and θik > 0. This uncertainty setis considered in [117]. We assume that for each i = 1, 2 and k ∈ Ii, the true distribution of aik belongs to theuncertainty set Dϕ,i
k

(
µi
k,Σ

i
k

).
Definition 5.12. The conjugate of the function ϕ is a function ϕ∗ : R → R ∪+∞ such that

ϕ∗(s) = sup
t≥0

{st− ϕ(t)} .

We study some special cases of ϕ−divergences, which are summarized in Table 5.4. The data of Table 5.4
Table 5.4: List of selected ϕ−divergences with their conjugate respectively

Divergence ϕ(t), t ≥ 0 ϕ∗(s)Kullback-Leibler t log(t)− t+ 1. es − 1

Variation distance |t− 1|. −1, s ≤ −1,
s, −1 ≤ s ≤ 1,
+∞, s > 1.

Modified χ2 - distance (t− 1)2. −1, s ≤ −2,

s+ s2

4
, s > −2.

Hellinger distance (
√
t− 1)2. s

1−s
, s < 1,

+∞, s ≥ 1.

are taken from [22]. The following lemma provides the first reformulation of the constraints (5.4) and (5.5).
Lemma 5.25. The constraint (5.4) is equivalent to

sup
λ>0,β∈R

{
f1k (λ, β)

}
≥ α1

k, (5.30)
where f1k (λ, β) = β − λθ1k − λϕ∗

(
−1+β

λ

)
Pν1

k
(M1

k ) − λϕ∗
(

β
λ

) [
1− Pν1

k
(M1

k )
]
, andM1

k =
{
ξ ∈ Rm | ξTx ≤ b1k

}
. The

constraint (5.5) is equivalent to
sup

λ>0,β∈R

{
f2k (λ, β)

}
≥ α2

k,

where f2k (λ, β) = β − λθ2k − λϕ∗
(

−1+β
λ

)
Pν2

k
(M2

k )− λϕ∗
(

β
λ

) [
1− Pν2

k
(M2

k )
]
, andM2

k =
{
ξ ∈ Rn | ξTx ≤ b2k

}
.

Proof. For k ∈ I1, consider the following optimization problem
vPk = inf

F 1
k∈Dϕ,1

k

P
(
(a1k)

Tx ≤ b1k

)
.

The above problem is rewritten as
vkP = inf

F≥0

∫
Rm

1M1
k
(ξ)F (ξ)dξ

s.t. (i)

∫
Rm

fν1
k
(ξ)ϕ

(
F (ξ)

fν1
k
(ξ)

)
dξ ≤ θ1k,

(ii)

∫
Rm

F (ξ)dξ = 1, (5.31)
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where the infimum value is taken over all positive measures on Rm. The Lagrangian dual of (5.31) can bewritten as follows
vkD = sup

λ≥0,β∈R

{
β − λθ1k + inf

F (ξ)≥0

∫
Rm

g1k(λ, β)

}
,

where g1k(λ, β) = 1M1
k
(ξ)F (ξ) − βF (ξ) + λfν1

k
(ξ)ϕ

(
F (ξ)
f
ν1
k
(ξ)

)
dξ, λ is the dual variable of the constraint (i) and

β is the dual variable of the constraint (ii). Since θ1k > 0, the Slater’s condition holds, then the strong dualityholds, i.e., vkP = vkD. The rest of the proof follows from Theorem 1 [117].
We present an SOC reformulation of the constraints (5.4) and (5.5) by the following lemma.

Lemma 5.26. The constraints (5.4) and (5.5) are equivalent to (5.32) and (5.33), respectively, given by:
(µ1

k)
Tx+Φ(−1)

[
H(θ1k, 1− α1

k)
] ∥∥∥(Σ1

k

) 1
2 x
∥∥∥
2
≤ b1k,

∀ k ∈ I1, (5.32)

− (µ2
k)

Ty +Φ(−1)
[
H(θ2k, 1− α2

k)
] ∥∥∥(Σ2

k

) 1
2 y
∥∥∥
2
≤ −b2k,

∀ k ∈ I2. (5.33)
where Φ(−1) is the quantile of the standard Normal distribution and H is a function whose value is given in Table
5.5.

Table 5.5: List of selected ϕ−divergences with the function f respectively
Divergence H(θ, ϵ) = θ, ϵ

Kullback-Leibler infx∈(0,1)
e−θx1−ϵ−1

x−1

θ > 0
0 < ϵ < 1

Variation distance 1− ϵ+ θ
2

θ > 0
0 < ϵ < 1

Modified χ2 - distance 1− ϵ+

√
θ2+4θ(ϵ−ϵ2)−(1−2ϵ)θ

2θ+2
,

θ > 0
0 < ϵ < 1

2

Hellinger distance
−B+

√
∆

2
,

where B = −(2− (2− θ)2)ϵ− (2−θ)2

2
,

C =
(

(2−θ)2

4
− ϵ

)2

,

∆ = B2 − 4C = (2− θ)2
[
4− (2− θ)2

]
ϵ(1− ϵ),

0 < θ < 2−
√
2

0 < ϵ < 1

Proof. Using Lemma 5.25, we prove that the constraint (5.4) is equivalent to
Pν1

k
(M1

k ) ≥ H(θ1k, 1− α1
k). (5.34)

Since ν1k follows a Normal distribution with mean vector µ1
k and covariance matrix Σ1

k, it is well known that(5.34) is equivalent to the SOC constraint (5.32). We refer to Propositions 2, 3, and 4, [117] for the proof ofthe cases Kullback-Leibler, Variation distance and Modified χ2 - distance. We present the proof of Hellingercase. For i = 1, 2 and k ∈ Ii, it suffices to calculate the value of supλ>0,β∈R
{
f ik(λ, β)

} with Hellinger distancedivergence. We consider two cases as follows
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• Case 1: β
λ < 1 ⇔ β < λ. We have

ϕ∗
(
β

λ

)
=

β

λ− β
,

ϕ∗
(
β − 1

λ

)
=

β − 1

λ+ 1− β
.

Therefore,
sup

λ>0,β∈R

{
f ik(λ, β)

}
=

sup
λ>0,β∈R

Pνi
k
(M i

k)
λ2

(λ− β)(λ− β + 1)
+

β2

β − λ
− λθik.

Since λ > 0 and β < λ, let γ = λ− β, we deduce that
sup

λ>0,β∈R

{
f ik(λ, β)

}
= sup

λ>0,γ>0

{
λ2

(
Pνi

k
(M i

k)

γ(γ + 1)
− 1

γ

)
+ λ(2− θik)− γ

}
.

LetQ(λ, γ) = λ2
(

P
νi
k
(Mi

k)

γ(γ+1) − 1
γ

)
+λ(2−θik)−γ. Note that 0 ≤ Pνi

k
(M i

k) ≤ 1 and γ > 0. Therefore,Q(λ, γ) is
a second-order polynomial of λ and the coefficient of λ2 is negative. It is well known that the maximum
value of a second order function f(x) = ax2 + bx + c with a < 0 is c − b2

4a and it holds at x = −b
2a . Hence,the maximum value ofQ(λ, γ) holds at λ∗ =

γ(γ+1)(2−θi
k)

2(1+γ−P
νi
k
(Mi

k))
. Since θik < 2, it is clear that λ∗ > 0. Then, the

optimal value of supλ>0,β∈R
{
f ik(λ, β)

} holds when λ = λ∗ and we have
sup

λ>0,β∈R

{
f ik(λ, β)

}
= sup

γ>0

{
−γ +

(2− θik)
2γ(γ + 1)

4(γ + 1− Pνi
k
(M i

k))

}
. (5.35)

Let u = γ + 1− Pνi
k
(M i

k), then u > 1− Pνi
k
(M i

k). Rewriting (5.35) as a function of u, we have:
sup

λ>0,β∈R

{
f ik(λ, β)

}
= sup

u>1−P
νi
k
(Mi

k)

F (u),

= sup
u>1−P

νi
k
(Mi

k)

{
au+

b

u
+ c

}
,

where a =
(

(2−θi
k)

2

4 − 1
)
,

b =
(2−θi

k)
2P

νi
k
(Mi

k)(Pνi
k
(Mi

k)−1)

4 ,

c = 1 − Pνi
k
(M i

k) +
(2−θi

k)
2(2P

νi
k
(Mi

k)−1)

4 . Note that a < 0 and b ≤ 0. We have: F ′
(u) = a − b

u2 . Hence, it
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can be shown that F is decreasing on (u∗,+∞), increasing on (−u∗, u∗) and decreasing on (−∞,−u∗),
where u∗ =

√
b
a . Or,

u∗ =

√
(2− θik)

2

4− (2− θik)
2
Pνi

k
(M i

k)(1− Pνi
k
(M i

k)). (5.36)
We have F (u∗) = −2

√
ab+ c. We consider 2 cases as follows

1: u∗ ≤ 1−Pνi
k
(M i

k). Since F is decreasing on (u∗,+∞), it is also decreasing on (1−Pνi
k
(M i

k),+∞). Hence,
supu>1−P

νi
k
(Mi

k)
F (u) = 0, where the optimal value holds when u→ 1− Pνi

k
(M i

k) ⇔ γ → 0, which violates
(5.30).
2: u∗ > 1− Pνi

k
(M i

k) > 0. Then, the optimal value of supu>1−P
νi
k
(Mi

k)
F (u) holds when u = u∗. Therefore,

sup
λ>0,β∈R

{
f ik(λ, β)

}
= F (u∗) = −2

√
ab+ c.

Then, (5.30) is equivalent to
− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
Pνi

k
(M i

k)(1− Pνi
k
(M i

k))

≥
(
1− (2− θik)

2

2

)
Pνi

k
(M i

k) +
(2− θik)

2

4
− (1− αi

k). (5.37)
By taking square on both side of (5.37), we obtain a second order inequality of Pν(K) as follows

Pνi
k
(M i

k)
2 +BPνi

k
(M i

k) + C ≥ 0,

where B, C are defined in Table 5.5. By solving the equality x2 + Bx + C = 0, we have two solutions
xmin < xmax where xmin = −B−

√
∆

2 , xmax = −B+
√
∆

2 . It is clear that (5.37) is equivalent to either Pνi
k
(M i

k) ≥

xmax or Pνi
k
(M i

k) ≤ xmin. Since θik < 2−
√
2, we deduce that 1− (2−θi

k)
2

2 < 0. Therefore, we have(
1− (2− θik)

2

2

)
xmin + (2− θik)

2

4
− (1− αi

k)

>

(
1− (2− θik)

2

2

)
xmax + (2− θik)

2

4
− (1− αi

k). (5.38)
On the other hand, we have

− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
x(1− x)

= ±
[(

1− (2− θik)
2

2

)
x+

(2− θik)
2

4
− (1− αi

k)

]
,
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where x = xmin or x = xmax. Note that −2

√
(2−θi

k)
2

4

(
1− (2−θi

k)
2

4

)
x(1− x) < 0. Using (5.38), we deduce

that
− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
xmax(1− xmax)

=

[(
1− (2− θik)

2

2

)
xmax + (2− θik)

2

4
− (1− αi

k)

]
,

and
− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
xmin(1− xmin)

= −
[(

1− (2− θik)
2

2

)
xmin + (2− θik)

2

4
− (1− αi

k)

]
.

or xmax satisfies (5.37) while xmin does not satisfy (5.37). Then, (5.37) is equivalent to Pνi
k
(M i

k) ≥ xmax.
• Case 2: 1 ≤ β

λ ⇔ λ ≤ β. We have
ϕ∗
(
β

λ

)
= +∞,

which implies that supλ>0,β∈R
{
f ik(λ, β)

}
= −∞, which violates (5.30).

5.4.3 . Second Order Cone Reformulation
In this section, we summarize our SOC reformulation results from Lemmas 5.20, 5.21, 5.22, 5.23, 5.24, and5.26. They show that in all cases of uncertainty sets defined in Sections 5.4.1 and 5.4.2, the feasible strategysets (5.6) and (5.7) can be written as

S1
α1 =

{
x ∈ X | (µ1

kj)
Tx+ κα1

k
||(Σ1

kw)
1
2x||2 ≤ b1k,

∀ j = 1, 2, . . . , N1, w = 1, 2, . . . , P1, k ∈ I1
}
, (5.39)

and
S2
α2 =

{
y ∈ Y | −(µ2

lj)
Ty + κα2

l
||(Σ2

lw)
1
2 y||2 ≤ −b2l ,

∀ j = 1, 2, . . . , N2, w = 1, 2, . . . , P2, l ∈ I2.
}
. (5.40)

• If the uncertainty set is defined by (5.9), then καi
k
=

√
αi

k

1−αi
k

and N1 = P1 = N2 = P2 = 1, for all i = 1, 2,
k ∈ Ii.

• If the uncertainty set is defined by (5.12), then καi
k
=

√
αi

k

1−αi
k

√
γik and N1 = P1 = N2 = P2 = 1, for all

i = 1, 2, k ∈ Ii.
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• If the uncertainty set is defined by (5.16), then καi
k
=

(√
αi

k

1−αi
k

√
γik2 +

√
γik1

)
andN1 = P1 = N2 = P2 = 1,

for all i = 1, 2, k ∈ Ii.
• If the uncertainty set is defined by (5.21), then καi

k
=

√
αi

k

1−αi
k

and N1 = P1 = N2 = P2 =M , for all i = 1, 2,
k ∈ Ii.

• If the uncertainty set is defined by (5.25), then καi
k
=

√
αi

k

1−αi
k

andN1 = 2m;P1 = 2(m
2), N2 = 2n, P2 = 2(n

2),
for all i = 1, 2, k ∈ Ii.

• If the uncertainty set is defined by (5.29), then καi
k
= Φ(−1)

[
H(θik, 1− αi

k)
] and N1 = P1 = N2 = P2 = 1,

where H and Φ(−1) are defined in Lemma 5.26.
We assume that the strategy sets (5.39) and (5.40) satisfy the strict feasibility condition given by Assumption5.7.
Assumption 5.7. 1. There exists an x ∈ S1

α1 such that the inequality constraints of S1
α1 defined by (5.39) are

strictly satisfied.

2. There exists an y ∈ S2
α2 such that the inequality constraints of S2

α2 defined by (5.40) are strictly satisfied.
The conditions given in Assumption 5.7 are Slater’s condition, which are sufficient for strong duality in aconvex optimization problem. We use these conditions in order to derive equivalent SOCPs for the zero-sumgame Zα.
5.5 . Existence and characterization of Saddle Point Equilibrium

In this section, we show that there exists an SPE of the game Zα if the distributions of the random con-straint vectors of both the players belong to the uncertainty sets defined in Sections 5.4.1 and 5.4.2. We furtherpropose a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game Zα.
Theorem 5.4. Consider the game Zα, where the distributions of the random constraint vectors aik, k ∈ Ii, i = 1, 2,
belong to the uncertainty sets described in Sections 5.4.1 and 5.4.2. Then, there exists an SPE of the game for all
α ∈ (0, 1)p × (0, 1)q.

Proof. Let α ∈ (0, 1)p × (0, 1)q. For uncertainty sets described in Sections 5.4.1 and 5.4.2, the strategy sets S1
α1and S2

α2 are given by (5.39) and (5.40), respectively. It is easy to see that S1
α1 and S2

α2 are convex and compactsets. The function u(x, y) is a bilinear and continuous function. Hence, there exists an SPE from the minimaxtheorem [243].
5.5.1 . Equivalent Primal-Dual Pair of Second-Order Cone Programs

From the minimax theorem [243], (x∗, y∗) is an SPE for the game Zα if and only if
x∗ ∈ argmax

x∈S1
α1

min
y∈S2

α2

u(x, y), (5.41)
y∗ ∈ argmin

y∈S2
α2

max
x∈S1

α1

u(x, y). (5.42)
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We start with the optimization problem
min
y∈S2

α2

max
x∈S1

α1

u(x, y).

By introducing auxiliary variables t1kjw, the inner optimization problem maxx∈S1
α1
u(x, y) can be equivalently

written as
max
x, t1kjw

xTGy + gTx+ hTy

s.t.
(i) − xTµ1

kj − κα1
k

∥∥t1kjw∥∥2 + b1k ≥ 0,

∀ j = 1, 2 . . . , N1, w = 1, 2 . . . , P1, k ∈ I1,

(ii) t1kjw −
(
Σ1

kw

) 1
2 x = 0,

∀ j = 1, 2 . . . , N1, w = 1, 2 . . . , P1, k ∈ I1,
(iii) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (5.43)

Let λ1 =
(
λ1kjw

), δ1kjw, and ν1 be the Lagrangemultipliers of constraints (i), (ii), and equality constraints given
in the constraint (iii) of (5.43), respectively. Here, for any j = 1, . . . , N1,w = 1, . . . , P1, k ∈ I1, λ1kjw is a realnumber, δ1kjw is anm× 1 real vector, and ν1 is aK1× 1 real vector. Then, the Lagrangian dual problem of theSOCP (5.43) can be written as

min
λ1≥0, δ1kjw, ν1

max
x≥0, t1kjw

{
xTGy + gTx+ hTy

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
λ1kjw

(
− xTµ1

kj − κα1
k

∥∥t1kjw∥∥2 + b1k
)

+ (δ1kjw)
T(t1kjw −

(
Σ1

kw

) 1
2 x
)]

+ (ν1)T(d1 − C1x)
}
.

By reformulating the objective function of the above optimization problem as the sum of two functions suchthat one depends on x and other depends on t1kjw, we have
min

λ1≥0,δ1kjw,ν1
max
x≥0

〈
xT
[
Gy − (C1)Tν1 + g

−
∑
k∈I1

N1∑
j=1

P1∑
w=1

(
λ1kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

)]

+max
t1kjw

∑
k∈I1

N1∑
j=1

P1∑
w=1

[
(δ1kjw)

Tt1kjw − κα1
k
λ1kjw

∥∥t1kjw∥∥2 ]

+ hTy + (ν1)Td1 +
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1kjwb
1
k

〉
.
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The first term of the objective function is a function of x
xT
[
Gy − (C1)Tν1 + g

−
∑
k∈I1

N1∑
j=1

P1∑
w=1

(
λ1kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

)]
. (5.44)

The above term is unbounded on the domaine x ≥ 0, unless the following condition holds
Gy −

∑
k∈I1

N1∑
j=1

P1∑
w=1

(
λ1kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

)
− (C1)Tν1 + g ≤ 0.

When the above condition holds, it is clear that the maximum value of (5.44) is zero and it holds at x = 0. Thesecond term of the objective function is a function of t1kjw
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
(δ1kjw)

Tt1kjw − κα1
k
λ1kjw

∥∥t1kjw∥∥2 ]. (5.45)
The above term is unbounded on the domaine t1kjw ∈ Rm, unless the following condition holds

||δ1kjw|| ≤ κα1
k
λ1kjw,

∀ k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1.

When the above condition holds, it is clear that the maximum value of (5.45) is zero and it holds at t1kjw = 0.Then, the Lagrangian dual problem of the SOCP (5.43) can be written as
min

λ1≥0,δ1kjw,ν1

(
hTy + (ν1)Td1 +

∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1kjwb
1
k

)
s.t. (i) Gy −

∑
k∈I1

N1∑
j=1

P1∑
w=1

[
λ1kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

]
− (C1)Tν1 + g ≤ 0,

(ii) ||δ1kjw|| ≤ κα1
k
λ1kjw,

∀ k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1.

Under Assumption 5.7, the Lagrangian dual problem of (5.43) has zero duality gap [30], which impliesthat the above optimization problem is equivalent to the problem maxx∈S1
α1
u(x, y). Hence, the problem
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miny∈S2
α2

maxx∈S1
α1
u(x, y) is equivalent to the following SOCP

min
y, ν1, δ1kjw, λ1

kjw≥0
hTy + (ν1)Td1 +

∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1kjwb
1
k

s.t.
(i) Gy −

∑
k∈I1

N1∑
j=1

P1∑
w=1

[
λ1kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

]
− (C1)Tν1 + g ≤ 0,

(ii) ||δ1kjw|| ≤ κα1
k
λ1kjw,

∀ k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1,

(iii) − (µ2
lj)

Ty + κα2
l
||(Σ2

lw)
1
2 y|| ≤ −b2l ,

∀ j = 1, 2, . . . , N2, w = 1, 2, . . . , P2, l ∈ I2,
(iv) C2y = d2, ys ≥ 0, ∀ s = 1, 2, . . . , n, (5.46)

where the constraints (iii) and (iv) are due to the fact that y ∈ S2
α2 and the representation of S2

α2 in (5.40).Similarly, problem maxx∈S1
α1

miny∈S2
α2
u(x, y) is equivalent to the following SOCP

max
x, ν2, δ2ljw, λ2

ljw≥0
gTx+ (ν2)Td2 −

∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2ljwb
2
l

s.t.
(i) GTx−

∑
l∈I2

N2∑
j=1

P2∑
w=1

[
− λ2ljwµ

2
lj +

(
Σ2

lw

) 1
2 δ2ljw

]
− (C2)Tν2 + h ≥ 0,

(ii) ||δ2ljw|| ≤ κα2
l
λ2ljw, λ

2
ljw ≥ 0,

∀ l ∈ I2, j = 1, 2, . . . , N2, w = 1, 2, . . . , P2,

(iii) (µ1
kj)

Tx+ κα1
k
||(Σ1

kw)
1
2x|| ≤ b1k,

∀ j = 1, 2, . . . , N2, w = 1, 2, . . . , P2, k ∈ I1,
(iv) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (5.47)

It follows from the duality theory of SOCPs that (5.46) and (5.47) form a primal-dual pair of SOCPs [30]. Next,we show that the equivalence between the optimal solutions of (5.46)-(5.47) and an SPE of the game Zα.
Theorem 5.5. Consider the zero-sum game Zα, where the feasible strategy sets of player 1 and player 2 are given
by (5.39) and (5.40), respectively. Let Assumption 5.7 holds. Then, for a given α ∈ (0, 1)p × (0, 1)q , (x∗, y∗) is an SPE
of the game Zα if and only if there exists (ν1∗, δ1∗kjw, λ1∗kjw ≥ 0) and (ν2∗, δ2∗ljw, λ

2∗
ljw ≥ 0) such that (y∗, ν1∗, δ1∗kjw, λ1∗kjw)

and (x∗, ν2∗, δ2∗ljw, λ
2∗
ljw) are optimal solutions of (5.46) and (5.47), respectively.

Proof. Let (x∗, y∗) be an SPE of the game Zα. Then, x∗ and y∗ are the solutions of (5.41) and (5.42), respec-tively. Therefore, there exists (ν1∗, δ1∗kjw, λ
1∗
kjw ≥ 0) and (ν2∗, δ2∗ljw, λ

2∗
ljw ≥ 0) such that (y∗, ν1∗, δ1∗kjw, λ1∗kjw) and
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(x∗, ν2∗, δ2∗ljw, λ
2∗
ljw) are optimal solutions of (5.46) and (5.47) respectively. On theother hand, let (y∗, ν1∗, δ1∗kjw, λ1∗kjw)and (x∗, ν2∗, δ2∗ljw, λ

2∗
ljw) be optimal solutions of (5.46) and (5.47), respectively. Under Assumption 5.7, (5.46) and(5.47) are strictly feasible. Therefore, strong duality holds for primal-dual pair (5.46)-(5.47). Then, we have

gTx∗ + (ν2∗)Td2 −
∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2∗ljwb
2
l

= hTy∗ + (ν1∗)Td1 +
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗kjwb
1
k. (5.48)

Consider the constraint (i) of (5.46) at optimal solution (y∗, ν1∗, δ1∗kjw, λ
1∗
kjw) andmultiply it by xT, for any x ∈ S1

α1 ,we have
xTGy∗ + gTx ≤ xT(C1)Tν1∗

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
xTµ1

kjλ
1∗
kjw + xT(Σ1

kw)
1
2 δ1∗kjw

]
. (5.49)

By using the Cauchy-Schwartz inequality, for any k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1, we have
xT(Σ1

kw)
1
2 δ1∗kjw ≤ ∥(Σ1

kw)
1
2x∥2∥δ1∗kjw∥2.

Using the constraint (ii) of (5.47), the above constraint implies that
(x∗)T(Σ1

kw)
1
2 δ1∗kjw ≤ ∥(Σ1

kw)
1
2x∥2κα1

k
λ1∗kjw.

Since x ∈ S1
α1 , we have

C1x = d1.

Then, the constraint (5.49) implies that
xTGy∗ + gTx ≤ (ν1∗)Td1

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
xTµ1

kjλ
1∗
kjw + (Σ1

kw)
1
2x∥2κα1

k
λ1∗kjw

]
,

which in turn implies by using the constraint (iii) of (5.47) that
xTGy∗ + gTx ≤ (ν1∗)Td1 +

∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗kjwb
1
k.

Then, for any x ∈ S1
α1 , we have

xTGy∗ + gTx+ hTy∗ ≤ hTy∗ + (ν1∗)Td1

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗kjwb
1
k. (5.50)
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Similarly, for any y ∈ S2
α2 , we have

(x∗)TGy + gTx∗ + hTy ≥ gTx∗

+ (ν2∗)Td2 +
∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2∗ljwb
2
l . (5.51)

Take x = x∗ and y = y∗ in (5.50) and (5.51), then from (5.48), we get
u(x∗, y∗) = hTy∗ + (ν1∗)Td1 +

∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗kjwb
1
k

= gTx∗ + (ν2∗)Td2 +
∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2∗ljwb
2
l . (5.52)

It follows from (5.50), (5.51), and (5.52) that
u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), ∀x ∈ S1

α1 , y ∈ S2
α2 ,

which in turn implies that (x∗, y∗) is an SPE of the game Zα.
5.6 . Numerical results

5.6.1 . Competition in Financial Market
In this section, we consider a competition of two firms in financial market. They invest in the same setof portfolios. Let P = {1, 2, . . . , NP } be the set of portfolios. Let Aj be the set of assets in the portfolio j.Assume that the sets Aj and Ak are disjoint, for any j ̸= k. Let xk = (xkj)j∈Ak

be the investment vector offirm 1 in portfolio k and yk = (ykj)j∈Ak
be the investment vector of firm 2 in portfolio k. Let x = (xk)k∈P and

y = (yk)k∈P be the investment vector of firm 1 (resp. firm 2). The set of investments X of firm 1 is defined asfollows
X =

x ∣∣∣ ∑
j∈Ak

xkj =W 1
k , ∀j ∈ Ak, k ∈ P

 ,

and the set of investments Y of firm 2 is defined as follows
Y =

y ∣∣∣ ∑
j∈Ak

ykj =W 2
k , ∀j ∈ Ak, k ∈ P

 ,

where W i
k is the total investment of firm i in portfolio k, for any i = 1, 2 and k ∈ P . Let Li

k = (Li
kj)j∈Ak

bea random loss vector of firm i from portfolio k. Then, for a given investment vector xk and yk, the total lossof firm 1 (resp. firm 2) caused by portfolio k is defined as (L1
k)

Txk (resp. (L1
k)

Tyk). Each firm wants to makesure that their random loss is below a maximal allowable loss level with high probability. This condition ismodeled by the following inequality
P
{
(L1

k)
Txk ≤ b1k

}
≥ α1

k, (5.53)
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and
P
{
(L2

l )
Tyl ≤ b2l

}
≥ α2

l , (5.54)
where bik are deterministic vectors and αi

k are confidence levels, i = 1, 2, k ∈ P . We assume that the truedistribution of random loss vectors is unknown, but only known to belong to some uncertainty setDi
k definedin Section 5.4. Then, the feasible strategy sets of two firms are given by

inf
F 1

k∈D1
k

P
{
(L1

k)
Txk ≤ b1k

}
≥ α1

k, ∀ k ∈ P,

and
inf

F 2
l ∈D2

l

P
{
(L2

l )
Tyl ≤ b2l

}
≥ α2

l , ∀ l ∈ P.

We assume that the total profit of both firm is zero, i.e., for each profile of strategies (x, y) ∈ X × Y , iffirm 1 gains a profit u(x, y), then firm 2 gains a profit −u(x, y). Firm 1 wants to maximize u w.r.t x, for
y ∈ S2

α2 and firm 2 wants to minimize u w.r.t y, for x ∈ S1
α1 . We assume that u has the form (5.1), i.e.,

u(x, y) = xTGy + gTx+ hTy.In order to find an SPE of (5.8), we solve the two SOCP problems (5.46) and (5.47) using coneqp solver inCVXOPT. We compare the uncertainty sets defined in Section (5.4) with the true model, in which we assumethat the true distribution of random loss vectors is known and follows Gaussian distribution. In this case, itis well known that the constraints (5.53) and (5.54) are equivalent to SOC constraints [90]. An SPE in truemodel can be computed by solving an SOCP reformulation [218].
5.6.2 . Case Study

All the numerical results below are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We consider two firms investing in a portfolio consists offour assets, i.e., P = {1} and A1 = {1, 2, 3, 4}. We generate randomly the vectors g and h in (5.1) in [−3, 3]4 bythe command "numpy.random.uniform(-3,3,size=(4,1))". ThematrixG in (5.1) is randomly generated by the com-mand "numpy.random.uniform(-3,3,size=(4,4))". We take the confidence levels of two firms as α1 = α2 = 0.9,the total investment of two firms in the portfolioW 1
1 andW 2

1 are randomly generated on [20, 80] by the com-mand "numpy.random.uniform(20,80)". The maximal allowable loss levels of two firms b11 and b21 are randomlygenerated on [100, 500] by the command "numpy.random.uniform(100,500)". The probability distribution ofthe loss of two firms L1
1 and L2

1 are assumed to be Normal distributions with mean vector µ1
1 (resp. µ2

1) andcovariance matrix Σ1
1 (resp. Σ2

1). The mean vectors are randomly generated on [8, 12]4 using the command
"numpy.random.uniform(8,12, size=(4,1))". The covariance matrix are defined as follows

Σi
1 =

AAT
4

+ I4, ∀ i = 1, 2,

whereA is a 4×4 randommatrixwhose all entries belong to [0, 1] generatedby the command "A=numpy.random.random(size=(4,4))"and I4 denotes 4 × 4 identity matrix. For any i = 1, 2, we define sample mean vector µi
sample and Σi

sampleby generating randomly a sample of 100 observations ξi1, . . . , ξi100, which follow Normal distribution withmean vector µi
1 and covariance matrix Σi

1. To do that, we generate a standard Gaussian vector by the com-mand "x=numpy.random.normal(0,1,4)". We generate a Gaussian vector with mean vector µi
1 and Σi

1 by taking
ξij = Bx+µi

1, whereB is the Cholesky factorization ofΣi
1. To get the Cholesky factorization of amatrix, we usethe command "numpy.linalg.cholesky". The samplemean vector µi

sample and the covariancematrixΣi
sample are
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defined as follows
µi
sample =

1

100

100∑
j=1

ξij ,

Σi
sample =

1

99

100∑
j=1

(ξij − µi
sample)(ξ

i
j − µi

sample)
T.

Now, we define other parameters for each model. For the uncertainty set (5.12), we take γi1 = 1.1, for any
i = 1, 2. For the uncertainty set (5.16), we take γi11 = γi12 = 1, for any i = 1, 2. We take the uncertainty set (5.21)similarly as the uncertainty set (5.9) by choosing M = 1. For the uncertainty set (5.25), we take the radiusvector ϵiµ,1 = (0.1, 0.1, 0.1, 0.1)4 and the radius matrix ϵiΣ,1 = 0.1× I4, for any i = 1, 2, where I4 is 4× 4 identitymatrix. For the uncertainty set (5.29), we take θi1 = 0.05, for any i = 1, 2.For the above instance, we compute an SPE of the true model, where the true distribution of random lossvectorsL1

1 andL2
1 followGaussian distributions withmean vector µ1

1 (resp. µ2
1) and covariancematrixΣ1

1 (resp.
Σ2

1). We obtain an SPE (x∗, y∗) given by
x∗ = (18.91, 19.45, 19.45, 20.22)T,
y∗ = (19.01, 20.15, 20.45, 18.71)T.

The profit of firm 1 for this instance is u(x∗, y∗) = −275.52. Now, we calculate an SPE of the models definedin Section (5.4). For the uncertainty sets (5.9), (5.12), (5.16), (5.21) and (5.25), we take µi
1 = µi

sample and Σi
1 =

Σi
sample, for any i = 1, 2. For the uncertainty set (5.29), we assume that the nominal distribution νi1 followsa Gaussian distribution with mean vector µi

sample and covariance matrix Σi
sample. We compare the optimalprofit value of firm 1 in above models with the optimal profit value of firm 1 in the true model. The resultsare given in Table 5.6. We can see that for this instance, the models defined by ϕ−divergence give bettersolution than the models defined by moments since the optimal profit value in ϕ−divergence uncertaintysets approximates well the optimal profit value in true model. We also present the time analysis for a large

Table 5.6: List of optimal profit values u(x∗, y∗)
True model Known MeanKnown Covariance Known MeanUnknown Covariance Unknown MeanUnknown Covariance Polytopic
-257.52 -221.11 -222.5 -224.8 -221.11ComponentwiseBounds KullbackLeibler VariationDistance Modified

χ2 - distance Hellinger Distance
-223.3 -255.1 -256.23 -255.8 -253.9

numbers of assets size model by considering the number of assets between 100 and 1000. For each case ofnumber of assets, we randomly generate 10 instances of the known mean known covariance model, wherethe parameters are defined similarly as above andwe calculate the average running time (in seconds) to solvethe two optimization problems (5.46) and (5.47). The results are given in Figure 5.6.It is clear from Figure 5.6 that our optimization problems can be solved efficiently in high dimension up to1000 assets.
5.7 . Conclusion

We study a more general two player zero-sum game than the model considered in [168] under variousmoment based and statistical based uncertainty sets. We propose a reformulation of the chance constraints
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Figure 5.6: CPU time (in seconds) to solve (5.46) and (5.47) in knownmean known covariance cases with different numberof assets.

using distributionally chance-constrained optimization framework and show that there exists a mixed strat-egy SPE of the game. Under Slater’s condition, the SPE of the game can be obtained from the optimal solutionsof a primal-dual pair of SOCPs. We present a competition of two firms in financial market as an application tofigure out out theoretical results. The numerical experiments are performed using randomly generated dataon the game up to 1000 assets and it is clear fromour time analysis that the SOCPs problems can be computedefficiently. For our future works, we will study tractable reformulation of the zero-sum game problem withdifferent payoff structure in a different game model and apply the game problem in a different applicationto the competition in financial market considered in this chapter.This chapter correspond to the reference [170].
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Chapter 6 :Distributionally Robust Chance-Constrained Markov Deci-
sion Processes

Markov decision process (MDP) is a decision making framework where a decision maker is interested inmaximizing the expected discounted value of a stream of rewards received at future stages at various stateswhich are visited according to a controlled Markov chain. Many algorithms including linear programmingmethods are available in the literature to compute an optimal policy when the rewards and transition prob-abilities are deterministic. In this chapter, we consider two types of MDP problems where either transitionprobabilities are known and the reward vector is a random vector whose distribution is partially known orthe reverse holds true. We formulate the MDP problem using distributionally robust chance-constrained op-timization framework under various types of moment based uncertainty sets, and statistical-distance baseduncertainty sets defined using ϕ-divergence andWasserstein distancemetric. In the random reward case, foreach type of uncertainty set, we consider the case where the random reward vector has either a full supportor a nonnegative support. We prove that the distributionally robust chance-constrained optimization can bereformulated as deterministic optimization using duality theory, which can be solved using Gurobi, Mosek,nonlinear nonconvex solver Baron or BNB solver in YALMIP toolbox of Matlab. As an application, we study amachine replacement problem and illustrate numerical experiments on randomly generated instances.This chapter offers a comprehensive investigation into the field of distributionally robust chance-constrainedMarkov Decision Processes (MDPs). To the best of our knowledge, the specific framework of distributionallyrobust chance-constrained MDPs with random transition probabilities has not been previously explored inthe existing literature. By addressing this research gap, we contribute novel insights and results to the field,paving the way for further advancements in this area.
6.1 . Introduction

An MDP is a decision making framework to model the performance of a stochastic system which evolvesover time according to a controlledMarkov chain. We consider the case where the systemhas a finite numberof states. At time t = 0, the system is at some initial state s0 ∈ S, according to an initial distribution γ, and adecisionmaker chooses an action a0 ∈ A(s0), whereA(s0) denotes the set of finite number of actions availableto the decision maker at state s0. As a consequence a reward R(s0, a0) is earned and at time t = 1, the systemmoves to a new state s1 with probability p(s0, a0, s1). The same thing repeats at time t = 1 and it continues forthe infinite horizon. The decision taken at time t, which could be deterministic or randomized, may dependon the history ht at time t, where ht = (s0, a0, s1, . . . , st−1, at−1, st). LetHt be the set of all possible histories attime t. A history dependent decision rule ft at time t is defined as ft(ht) ∈ ℘(A(st)) for every history ht withfinal state st, where ℘(A(st)) denotes the set of probability distributions on the action set A(st). A sequenceof history dependent decision rules fh = (ft)
∞
t=0 is called a history dependent policy. A history dependentpolicy (ft)∞t=0 is called a stationary policy if there exists a decision rule f such that ft = f for all t. We denotea stationary policy, with some abuse of notations, by f and define f = (f(s))s∈S such that f(s) ∈ ℘(A(s)) forevery s ∈ S. As per a stationary policy f , whenever theMarkov chain visits state s, the decisionmaker choosesan action a with probability f(s, a). We denote the set of all history dependent and stationary policies by

POHD and POS , respectively. A history dependent policy fh ∈ POHD defines a probability measure P fh over
the state and action trajectories, and Efh denotes the expectation operator corresponding to the probability
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measure P fh

γ . For a given policy fh, the expected discounted reward at a discount factor α ∈ (0, 1) is definedas [8, 195]
V (fh) = (1− α)Efh

( ∞∑
t=0

αtR(Xt, At)

)
=
∑
s∈S

∑
a∈A(s)

g(fh; s, a)R(s, a), (6.1)
where Xt and At represent the state and the action at time t, respectively. The set {g(fh; s, a)}(s,a) is called aset of occupation measures defined by

g(fh; s, a) = (1− α)

∞∑
t=0

αtP fh

(Xt = s,At = a), ∀ s ∈ S, a ∈ A(s). (6.2)
When the running rewards and the transition probabilities are stationary, i.e., R(Xt = s,At = a) = R(s, a) and
P (Xt+1 = s′|Xt = s,At = a) = p(s, a, s′) for all t, we can restrict to stationary policies without loss of optimality[8, 195].In practice, theMDPmodel parametersR(·) and p(·) are not known in advance and are estimated fromhis-torical data. This leads to errors in the optimal policies [152]. Most efforts to take into account this uncertaintyfocused on the study of robust MDPs where the rewards or the transition probabilities are known to belongto a prespecified uncertainty set [110, 172, 238, 248, 249]. However, Delage and Mannor [56] showed that therobustMDPapproach usually leads to conservative policies. For this reason, a chance-constrainedMarkov de-cision process (CCMDP) was introduced in [56], where the controller obtains the expected discounted rewardwith certain confidence. In [56], the case of random rewards and random transition probabilities are con-sidered separately and it is shown that a CCMDP is equivalent to a second-order cone programming (SOCP)problem when the running reward vector follows a multivariate normal distribution and the transition prob-abilities are exactly known. When the transition probabilities follow Dirichlet distribution and the runningrewards are exactly known, the CCMDP problem becomes intractable and the optimal policies can be com-puted using approximation methods. Varagapriya et al. [239] considered a CMDP problem with joint chanceconstraint where the running cost vectors are random vectors and the transition probabilities are known.They proposed two SOCP based approximations which give upper and lower bounds to the CMDP problemif the cost vectors follow multivariate elliptical distributions and the dependence among the constraints isdriven by a Gumbel-Hougaard copula.In many practical situations, it is often the case that only partial information about the underlying distribu-tion is available based on historical data. In that case, a distributionally robust approach, is used tomodel theuncertainties, which assumes that the true distribution belongs to an uncertainty set based on its partiallyavailable information. Such an approach has been used in modelling the uncertainties of many optimizationand game problems [117, 145, 215]. There are at least two popular ways to construct an uncertainty set forthe distribution of the uncertain parameters. The first one is based on the partial information on momentsof the true distribution and the second one is based on the statistical distance between the true distributionand a nominal distribution. The moment-based uncertainty sets assume certain conditions on the first twomoments [46, 57, 182]. The statistical distance-based uncertainty sets contain all the distributions which lieinside a ball of small radius and center at a nominal distribution which is usually considered to be an empir-ical distribution or a normal distribution [158, 117]. To define a distance between the distributions, either a
ϕ−divergence [22, 117] or Wasserstein distance metric is used [158, 76, 272].In this chapter, we consider an infinite horizon MDP with discounted payoff criterion defined in Section6.1 where the source of randomness comes from reward or transition probabilities. The distribution of the
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random vector is not completely known and it is assumed to belong to a given uncertainty set. We formulatethe random vectpr with a distributionally robust chance constraint which guarantees the maximum rewardfor a given policy with at least a given level of confidence. We call this class of MDP as a distributionallyrobust chance-constrained Markov decision process (DRCCMDP). The random reward vector has either a fullsupport or a nonnegative support. We consider bothmoment and statistical distance based uncertainty sets.The main contributions of the chapter are as follows.
1. We consider three different types of uncertainty sets based on the moments of the random rewardvector and the random transition probabilities. For the case of random rewards, we demonstrate thatthe DRCCMDP problem can be reformulated as Second-Order Cone Programs (SOCPs) and copositiveoptimizations. The SOCPs can be effectively solved using the Gurobi solver, while the copositive opti-mizations can be approximately relaxed as Semi-Definite Programs (SDPs) and solved using the Moseksolver. Regarding random transition probabilities, we propose reformulations using Mixed-Integer Lin-ear Programming (MILPs) or Mixed-Integer Semi-Definite Programming (MISDPs). The MILPs can besolved using the Gurobi solver, while theMISDPs can be handled by the Branch-and-Bound (BNB) solveravailable in the YALMIP toolbox of Matlab, which might be time consuming.
2. We explore four distinct types of ϕ-divergences to construct uncertainty sets based on statistical dis-tances. Specifically, in the case of random rewards, we propose reformulations using SOCPs. On theother hand, for the case of random transition probabilities, we suggest reformulations using MILPs.
3. When utilizing the Wasserstein distance metric to define a statistical distance-based uncertainty set forthe random reward case, we consider the nominal distribution to be an empirical distribution. In therandom reward case, where the uncertainty set has full support or nonnegative support, we establishthat the DRCCMDP problem can be reformulated as two equivalent problem formulations. The first for-mulation corresponds to a Mixed Integer Second-Order Cone Programming (MISOCP) problem, whichcan be efficiently solved using the Gurobi solver. The second formulation corresponds to a biconvexoptimization problem, which can be addressed using the nonlinear nonconvex solver Baron, withoutany guarantee of running time.
4. We illustrate our theoretical results on a machine replacement problem.
The chapter is organized as follows. In Section 6.2, we define a DRCCMDP under a discounted payoff cri-terion for the case random reward. we developed uncertainty sets using two distinct approaches: moment-based and statistical distance-based. Themoment-based approach (Section 6.2.1) considered various scenar-ios, including known mean with known covariance, known mean with unknown covariance, and unknownmean with unknown covariance. On the other hand, the statistical distance-based approach employed phi-divergence (Section 6.2.2) and Wasserstein distance 6.2.3 to construct the uncertainty sets. Furthermore,we investigated two types of supports: full support and nonnegative support. By exploring these differentcombinations, we were able to capture a wide range of possible scenarios and provide a comprehensiveanalysis of the problem at hand. Section 6.3 defines a DRCCMDP under a discounted payoff criterion for thecase random transition probabilities, also using two approaches, moment-based (Section 6.3.1) and statisticaldistance-based (Section 6.3.2). We conduct a thorough analysis by comparing and evaluating the implicationsand outcomes of different approaches and uncertainty sets in the context of amachine replacement problemand present numerical results in Section 6.4 . We conclude the chapter in Section 6.5.
6.2 . Distributionally robust chance constrained Markov decision process with random reward
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We consider an infinite horizon MDP defined in Section 6.1, with a finite state space S, finite action spaces
A(s), s ∈ S, an initial distribution γ, where∑s∈S γ(s) = 1, γ(s) > 0, a discount factor α ∈ (0, 1), where thetransition probabilities are exactly known and the running reward vector is a random vector defined on aprobability space (Ω,F ,P) which is denoted as R̂. Therefore, for each realization ω ∈ Ω, R̂(s, a, ω) representsa real valued reward received at state swhen an action a is taken. We assume that the random vector R̂ doesnot vary with time. Since the reward R̂ is a random vector, transition probabilities p are exactly known, for agiven policy fh, the expected discounted reward defined by (6.1) becomes a random variable and we denoteit by V (fh, R̂). Consider the case where the controller is interested in a maximum discounted reward whichcan be obtained with at least a given confidence level (1 − ϵ), where ϵ ∈ (0, 1). This leads to the followingoptimization problem

(CCMDP-R) sup
y∈R, fh∈POS

y

s.t. P
(
V (fh, R̂) ≥ y

)
≥ 1− ϵ. (6.3)

Lemma 6.27. Given a policy fh and transition probabilities p. Then, the following system of equations has unique
solution ρ ∈ R|K| 

(i) ∑s∈S, a∈A(s) ρ(s, a)
(
δ(s′, s)− αp(s, a, s′)

)
= (1− α)γ(s′), ∀ s′ ∈ S,

(ii) fh(s, a)(∑a∈A(s) ρ(s, a)
)
= ρ(s, a), ∀ s ∈ S, a ∈ A(s),

(iii) ρ(s, a) ≥ 0, ∀s ∈ S, a ∈ A(s),
∑

a∈A(s) ρ(s, a) > 0, ∀ s ∈ S.

(6.4)

Moreover, the unique solution ρ of (6.4) is the occupation measure defined by (6.2).
Proof. The proof is given in Theorem 3.1 and Theorem 3.2, [8].

Using Lemma 6.27, we can represent the optimization problem (6.3) equivalently as follows
sup

y∈R, fh∈POS

y

s.t. (i) PR̂

(
ρTR̂ ≥ y

)
≥ 1− ϵ, (ii) ρ is the unique solution of (6.4). (6.5)

We define the set of occupation measures as
Q =

{
ρ ∈ R|K| ∣∣ ∑

(s,a)∈K

ρ(s, a)
(
δ(s′, s)− αp(s, a, s′)

)
= (1− α)γ(s′), ∀ s′ ∈ S,

ρ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A(s),
∑

a∈A(s)

ρ(s, a) > 0, ∀ s ∈ S

}
,

where K = {(s, a) | s ∈ S, a ∈ A(s)}. Then, we can represent the optimization problem (CCMDP-R) in term ofdecision vector (y, ρ) as follows
sup

y∈R, ρ
y

s.t. (i) PR̂

(
ρTR̂ ≥ y

)
≥ 1− ϵ, (ii) ρ ∈ Q, (6.6)
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and the optimal policy fh∗ is given by
fh∗ (s, a) =

ρ∗(s, a)(∑
a∈A(s) ρ ∗ (s, a)

) , ∀ s ∈ S, a ∈ A(s),

where ρ∗ is the optimal solution of (6.6). If then vector R̂ follows a multivariate normal distribution, theoptimization problem (6.6) is equivalent to an SOCP problem [56]. The above result can be generalized forelliptically symmetric distributions because the linear chance constraint (i) present in (6.6) is equivalent to asecond order cone constraint [90].However, in most practical situations, we only have partial information about the underlying probabilitydistributions. Such situations can be handled with the distributionally robust optimization approach, i.e., weassume that the distribution of R̂ belongs to an uncertainty set. This leads to the followingDRCCMDPproblem
sup y

s.t. (i) inf
F∈D

PF

(
ρTR̂ ≥ y

)
≥ 1− ϵ, (ii) ρ ∈ Q, (6.7)

where F is the distribution of R̂ and D is a given uncertainty set. Note that PF (ρ
TR̂ ≤ y − θ) ≤ PF (ρ

TR̂ < y) ≤
PF (ρ

TR̂ ≤ y) for every θ > 0. Therefore, we can replace supF∈D PF

(
ρTR̂ < y

) by supF∈D PF

(
ρTR̂ ≤ y

). Then,
problem (6.7) is equivalent to the following problem

sup y

s.t. (i) sup
F∈D

PF

(
ρTR̂ ≤ y

)
≤ ϵ, (ii) ρ ∈ Q. (6.8)

In the following sections, we study different types of uncertainty sets of R̂ which are defined using i) partialinformation of moments of R̂, ii) ϕ-divergence distance, and iii) Wasserstein distance. For each uncertaintyset, we consider the cases of full and nonnegative supports of R̂. We derive equivalent reformulations ofDRCCMDP problem (6.7) (or (6.8) equivalently) for each uncertainty set.
6.2.1 . Moment based uncertainty sets

Let µ ∈ R|K| be the mean vector and Σ ≻ 0 be a |K| × |K| positive definite matrix. We consider 3 types ofmoment based uncertainty sets of the distribution of R̂ defined as follows:
1. Uncertainty set with known mean and known covariance matrix: The uncertainty set of the distri-bution of R̂ in this case is defined by

D1(φ, µ,Σ) =

F ∈ M+

∣∣∣∣∣∣∣
E(1{R̂∈φ}) = 1,

E(R̂) = µ,

E[(R̂− µ)(R̂− µ)T] = Σ.

 , (6.9)

2. Uncertainty set with known mean and unknown covariance matrix: The uncertainty set of thedistribution of R̂ in this case is defined by

D2(φ, µ,Σ, δ0) =

F ∈ M+

∣∣∣∣∣∣∣
E(1{R̂∈φ}) = 1,

E(R̂) = µ,

E[(R̂− µ)(R̂− µ)T] ⪯ δ0Σ.

 , (6.10)
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3. Uncertainty set with unknown mean and unknown covariance matrix: The uncertainty set of thedistribution of R̂ in this case is defined by

D3(φ, µ,Σ, δ1, δ2) =

F ∈ M+

∣∣∣∣∣∣∣
E(1{R̂∈φ}) = 1,

[E(R̂)− µ]TΣ−1[E(R̂)− µ] ≤ δ1,

E[(R̂− µ)(R̂− µ)T] ⪯ δ2Σ.

 , (6.11)

where φ ⊂ R|K| is the support of R̂ which we assume to be a convex set, M+ is the set of all probabilitymeasures on R|K| with Borel σ−algebra, δ1 ≥ 0, δ2, δ0 ≥ 1, µ ∈ RI(φ); RI(φ) denotes the relative interior of
φ. The notation A ⪯ B implies that B − A is a positive semidefinite matrix and 1{·} denotes the indicatorfunction. For a good overview of moment-based uncertainty sets, we refer to [140].
DRCCMDP with moment based uncertainty sets under full support

We consider the case when the random vector R̂ has full support, i.e., φ = R|K|. We show that the DRCCMDPproblem is equivalent to an SOCP problem.
Theorem 6.6. Consider the DRCCMDP problem (6.7) where the distribution of R̂ belongs to the uncertainty sets
defined by (6.9), (6.10), (6.11), and the support φ = R|K|. Then, theDRCCMDP (6.7) can be reformulated equivalently
as the following SOCP problem

max y

s.t. (i) µTρ− κ∥Σ 1
2 ρ∥2 ≥ y, (ii) ρ ∈ Q, (6.12)

where || · ||2 denotes the Euclidean norm and κ is a real number whose value for each uncertainty set is given in
Table 6.7.

Table 6.7: Value of κ for moment based uncertainty set
Uncertainty set D = D1(φ, µ,Σ) D = D2(φ, µ,Σ, δ0) D = D3(φ, µ,Σ, δ1, δ2)

κ
√

1−ϵ
ϵ

√
(1−ϵ)δ0

ϵ

√
(1−ϵ)δ2

ϵ
+

√
δ1

Proof. The proof follows from the fact that for each uncertainty set the distributionally robust chance con-straint (i) of (6.7) is equivalent to a second-order cone constraint. The uncertainty set (6.9) has been widelystudied in the literature [34, 83]. For the uncertainty sets (6.10) and (6.11), it can be proved using similar ar-guments used in Lemma 3.1 and Lemma 3.2 of [168] which are based on the one-sided Chebyshev inequality[145].
DRCCMDP with moment based uncertainty sets under nonnegative support

We consider the case where the support of the random vector R̂ is a nonnegative orthant of |K|-dimensional
Euclidean space, i.e., φ = R|K|

+ . We show that the DRCCMDP problem (6.8) is equivalent to a copositive opti-mization problem.
Theorem 6.7. Consider a DRCCMDP problem (6.8) with φ = R|K|

+ . Then, the following results hold.
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1. If the distribution of R̂ belongs to the uncertainty set defined by (6.9), the DRCCMDP problem (6.8) is equivalent
to the following copositive optimization problem

max y

s.t. (i) − t̄− Q̄ ◦ Σ− q̄Tµ ≤ sϵ,

(ii)
(

−Q̄ − 1
2 q̄ + Q̄µ

− 1
2 q̄

T + µTQ̄ −t̄− µTQ̄µ
)

∈ COP|K|+1,

(iii)
(

−Q̄ − 1
2 q̄ + Q̄µ+ ρ

− 1
2 q̄

T + µTQ̄+ ρT −t̄− µTQ̄µ− s− y

)
∈ COP|K|+1,

(iv) Q̄ ∈ S |K|, s ≥ 0, ρ ∈ Q. (6.13)
2. If the distribution of R̂ belongs to the uncertainty set defined by (6.10), the DRCCMDP problem (6.8) is equiv-

alent to the following copositive optimization problem

max y

s.t. (i) − t̄− µTq̄ − µTQ̄µ+ δ0Σ ◦ Q̄ ≤ sϵ,

(ii)
(

Q̄ − 1
2 q̄ − Q̄µ

− 1
2 q̄

T − µTQ̄ −t̄

)
∈ COP|K|+1,

(iii)
(

Q̄ 1
2 (−q̄ + ρ)− Q̄µ

1
2 (−q̄ + ρ)T − µTQ̄ −t̄− s− y

)
∈ COP|K|+1,

(iv) Q̄ ∈ S |K|
+ , s ≥ 0, ρ ∈ Q. (6.14)

3. If the distribution of R̂ belongs to the uncertainty set defined by (6.11), the DRCCMDP problem (6.8) is equivalent
to the following copositive optimization problem

max y

s.t. (i) r̄ + t̄ ≤ sϵ,

(ii)
(
Q̄ 1

2 q̄
1
2 q̄

T r̄

)
∈ COP|K|+1,

(iii) t̄ ≥ (δ2Σ+ µρT) ◦ Q̄+ ρTq̄ +√δ1||Σ 1
2 (q̄ + 2Q̄µ)||2,

(iv)
(

Q̄ 1
2 (q̄ + ρ)

1
2 (q̄ + ρ)T r̄ − s− y

)
∈ COP|K|+1,

(v) Q̄ ∈ S |K|
+ , s ≥ 0, ρ ∈ Q, (6.15)

where COP|K|+1 =
{
M ∈ S |K|+1 | xTMx ≥ 0, ∀ x ∈ R|K|+1

+

}
, Sn is the set of all real symmetric matrix of size

n× n, Sn
+ is the set of positive semidefinite matrices of size n× n, ◦ denotes the Frobenius inner product and( )
denotes a block matrix (or a partitioned matrix).

In order to prove the first result of Theorem 6.7, we need the following lemma.
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Lemma 6.28. Consider an optimization problem

sup
F∈D1(φ,µ,Σ)

PF (ρ
TR̂ ≤ y), (6.16)

where φ = R|K|
+ . If the feasible set of (6.16) is non-empty, the dual of (6.16) is given by

inf −t−Q ◦ Σ− qTµ

s.t. (i) 1{ρTξ≤y} + qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|K|
+ ,

(ii) Q ∈ S |K|,

and the strong duality holds.
Proof. Consider the optimization problem

vP(µ,Σ) = sup
F∈C+

∫
φ

1{ρTR̂≤y}dF (R̂)
s.t. (i)

∫
φ

dF (R̂) = 1, (ii)
∫
φ

(R̂− µ)(R̂− µ)TdF (R̂) = Σ,

(iii)
∫
φ

R̂dF (R̂) = µ, (6.17)
where C+ is the set of all positive measures on R|K|

+ . The dual problem of (6.17) is given by
vD(µ,Σ) = inf −t−Q ◦ Σ− qTµ

s.t.. (i) 1{ρTξ≤y} + qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|K|
+ ,

(ii) Q ∈ S |K|, (6.18)
where t, q, andQ are the dual variables associated with the constraints (i), (ii) and (iii) of (6.17), respectively. InTheorem3.4 of [46], under the assumption µ ∈ RI(φ), the authors show that theDirac distribution δµ lies in therelative interior of the distributional uncertainty set which implies that the weaker condition of Proposition3.4 of [207] holds. However, it is not trivial to find a strictly feasible point inside our distributional uncertaintyset. Let (t∗j , Q∗

j , q
∗
j )j∈N be a sequence of feasible solutions of (6.18) such that

−t∗j −Q∗
j ◦ Σ− q∗Tj µ→ vD(µ,Σ), as j → ∞. (6.19)

For each j ∈ N, let r∗j = max(0, q∗j )− q∗j , wheremax(0, q∗j ) denotes a |K|-dimensional vector with ith component
equal to themaximum value between 0 and the ith component of q∗j , for every i = 1, . . . , |K|. Let ϵj be a strictlypositive decreasing sequence such that ϵjr∗j → 0 componentwise and ϵj → 0, when j → ∞. Let xj = ϵjI, where
I denotes the vector with all components equal to 1. Then, r∗Tj xj → 0 as j → ∞. For each j ∈ N, consider thefollowing conic optimization problem

vjP(µ,Σ) = sup
F∈C+

∫
φ

1{ρTR≤y}dF (R)
s.t. (i)

∫
φ

dF (R) = 1, (ii)
∫
φ

(R− µ)(R− µ)TdF (R) = Σ,

(iii) µ ≤
∫
φ

RdF (R) ≤ µ+ xj . (6.20)
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The dual problem of (6.20) is given by
vjD(µ,Σ) = inf −t−Q ◦ Σ+ (r − h)Tµ+ rTxj

s.t. (i) 1{ρTξ≤y} + (h− r)Tξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|K|
+ ,

(ii) h, r ∈ R|K|
+ , Q ∈ S |K|, (6.21)

where t, Q, r and h are the dual variables of the constraint (i), (ii) and (iii) of (6.20), respectively. The vector
(t, Q, h, r) such that t = t∗j , Q = Q∗

j , h = max(0, q∗j ), r = r∗j is a feasible solution of (6.21). Hence,
vjD(µ,Σ) ≤ −t∗j −Q∗

j ◦ Σ− q∗Tj µ+ r∗Tj xj , ∀ j ∈ N. (6.22)
Since the feasibility set of (6.16) is non-empty, there exists a nonnegative distribution F ∗ such that E(F ∗) = µand Cov(F ∗) = Σ. Let Fj be a distribution with support φj :=

{
ξ ∥ ξ ∈ RK

+, ξ ≥
xj

2 , componentwise}, definedby
F ∗(ξ) = Fj(ξ +

xj
2
), ∀ ξ ∈ RK

+.

It is clear that Fj is a feasible solution of (6.20) and φj ⊂ RI(φ). Hence, Fj belongs to the relative interior of thedistributional uncertainty setwhich implies that strong duality holds, i.e., vjP(µ,Σ) = vjD(µ,Σ) for all j ∈ N. Since
the objective function of (6.20) is a continuous function of F and xj → 0 as j → ∞, then vjP(µ,Σ) → vP(µ,Σ) as
j → ∞. Therefore, it is sufficient to prove that vjD(µ,Σ) → vD(µ,Σ) as j → ∞. It is clear that the feasible setsof (6.21) and (6.18) are equivalent and objective function of (6.21) has additional positive term. Therefore,

vjD(µ,Σ) ≥ vD(µ,Σ), ∀ j ∈ N. (6.23)
Using (6.19), (6.22) and (6.23) and the fact that r∗Tj xj → 0 as j → ∞, we have vjD(µ,Σ) → vD(µ,Σ) as j → ∞.
Proof of Theorem 6.7. 1. Let the distribution of R̂ belongs to the uncertainty set D1(ϕ, µ,Σ). Using Lemma6.28, the optimization problem (6.8) is equivalent to the following problem

sup y

s.t. (i) − t−Q ◦ Σ− qTµ ≤ ϵ,

(ii) qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|K|
+ ,

(iii) 1 + qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|K|
+ , ρTξ ≤ y,

(iv) Q ∈ S |K|, ρ ∈ Q.
(6.24)

The constraint (ii) of (6.24) is equivalent to:
(ξT, 1)U(ξT, 1)T ≥ 0, ∀ ξ ∈ R|K|

+ ,

where U ∈ S |K|+1 such that
U =

(
−Q − 1

2q +Qµ

− 1
2q

T + µTQ −t− µTQµ
)
.
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Here, (ξT, 1) denotes the row vector of size 1 × (|K| + 1) with the last component equals 1 and the first
|K| components are the components of ξ. The above inequality can be rewritten as

xTUx ≥ 0, ∀ x ∈ R|K|+1
+ , ||x||2 = 1.

Using Proposition 5.1 in [102], we deduce that the constraint (ii) of (6.24) is equivalent to U ∈ COP|K|+1.The constraint (iii) of (6.24) is equivalent to:
−1 + (ξT, 1)U(ξT, 1)T ≥ 0, ∀ ξ ∈ R|K|

+ , ρTξ ≤ y. (6.25)
Define, 

sP = min
ξ∈R|K|

+

max
λ≥0

L(λ, ξ, U, ρ, y).

sD = max
λ≥0

min
ξ∈R|K|

+

L(λ, ξ, U, ρ, y).
(6.26)

where L(λ, ξ, U, ρ, y) = −1 + (ξT, 1)U(ξT, 1)T + λ(ρTξ − y). In [46], the authors use the Sion’s minimaxtheorem [220] to interchange the minimum and the maximum. However, since φ is not compact, wecannot apply the Sion’s minimax theorem directly in this case. We show that φ can be restricted to acompact set without loss of optimality. For a given U and ρ, we have
sP ≤ max

λ≥0
L(λ, 0, U, ρ, y)

= max
λ≥0

(−t− µTQµ− λy − 1) = −t− µTQµ− 1 <∞ (6.27)
Therefore, using the min-max inequality sD ≤ sP < ∞. Let Ui = U + 1

2i I|K|+1 and ρi = ρ + 1
2i1, for every

i ∈ N, where I|K|+1 denotes the identity matrix of size |K|+ 1, 1 denotes the vector with all componentsequal to 1. It is clear from the construction that ρi > 0 componentwise. Since, L is a continuous functionw.r.t U and ρ, we have
L(λ, ξ, Ui, ρi, y)

i→∞−−−→ L(λ, ξ, U, ρ, y), ∀ ξ ∈ R|K|
+ , λ ≥ 0.

Since, the min and max operators preserve the continuity, we have
min

ξ∈R|K|
+

max
λ≥0

L(λ, ξ, Ui, ρi, y)
i→∞−−−→ min

ξ∈R|K|
+

max
λ≥0

L(λ, ξ, U, ρ, y).

max
λ≥0

min
ξ∈R|K|

+

L(λ, ξ, Ui, ρi, y)
i→∞−−−→ max

λ≥0
min

ξ∈R|K|
+

L(λ, ξ, U, ρ, y).

This implies that, if sP = sD holds for any Ui, ρi, i ∈ N, it also holds for U, ρ. For an arbitrary Ui and ρi, letthe the optimal solutions of minimax and maximin problems defined by (6.26) are (ξP, λP) and (ξD, λD),respectively. We prove that ξP and ξD are bounded, i.e., there exists ΥP > 0 and ΥD > 0 depending on
Ui, ρi and y such that ||ξP||2 ≤ ΥP and ||ξD||2 ≤ ΥD. It is clear that λP = 0 and ρTi ξP− y ≤ 0. Hence, we have

sP = −1 + (ξTP, 1)Ui(ξ
TP, 1)T,

= −1 + (ξTP, 1)U(ξTP, 1)T + 1

2i
||ξP||22 + 1

2i
.
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From constraint (ii) of (6.24), it follows that (ξTP, 1)U(ξTP, 1)T ≥ 0. Therefore, if ||ξP||2 → ∞, sP → ∞.
Therefore, ||ξP||2 is bounded by some real number ΥP > 0 which depends on Ui, ρi and y. As ξ ∈ R|K|

+and ρi > 0, componentwise, we have
lim inf
||ξ||2→∞

λ(ξ)(ρTi ξ − y) ≥ 0,

for any λ(ξ) ≥ 0. Then,
sD = −1 + (ξTD, 1)Ui(ξ

TD, 1)T + λD(ρTi ξD − y),

= −1 + (ξTD, 1)U(ξTD, 1)T + 1

2i
||ξD||22 + 1

2i
+ λD(ρTi ξD − y).

It is clear that 1
2i ||ξD||22 → ∞ and the other terms are lower bounded by some nonnegative number.Therefore, sD → ∞ when ||ξD||2 → ∞. Hence, ||ξD||2 is bounded by some real number ΥD > 0 whichdepends on Ui, ρi and y. Let Υ = max(ΥP,ΥD). Then, (6.26) is equivalent to

sP = min
ξ∈R|K|

+ ,||ξ||2≤Υ

max
λ≥0

L(λ, ξ, U i, ρi, y).

sD = max
λ≥0

min
ξ∈R|K|

+ ,||ξ||2≤Υ

L(λ, ξ, U i, ρi, y).

Note that the set {ξ | ξ ∈ R|K|
+ , ||ξ||2 ≤ Υ

} is compact. Therefore, from Sion’s minimax theorem sP = sD
for every Ui, ρi, i ∈ N. For any ξ such that ρTξ > y, it is easy to see that

max
λ≥0

L(λ, ξ, U, ρ, y) = ∞

The condition sP <∞ gives ρTξ ≤ y and λ = 0 which in turn implies that
sP = min

ρTξ≤y
L(0, ξ, U, ρ, y) ≥ 0.

Therefore, (6.25) is equivalent to sD ≥ 0. Then, there exists a sequence of nonnegative numbers λj ≥ 0and a decreasing sequence of positive numbers θj > 0, such that θj → 0 as j → ∞, for which thefollowing condition holds{
− 1 + (ξT, 1)U(ξT, 1)T + λj(ρ

Tξ − y) ≥ −θj , ∀ ξ ∈ R|K|
+ , j ∈ N,

λj ≥ 0, ∀ j ∈ N.
(6.28)

For each j ∈ N, define
Fea(θj) = {(U, ρ, y, λ) | −1 + (ξT, 1)U(ξT, 1)T + λ(ρTξ − y) ≥ −θj , λ ≥ 0}.

The feasible region defined by (6.28) is equivalent to ⋂
j∈N

Fea(θj). For any i < j, Fea(θj) ⊂ Fea(θi).
Therefore, Fea(θj) ↓ ⋂

i∈N
Fea(θi) as j → ∞. The feasible set Fea(θj) as j → ∞ is given by

{
(ξT, 1)Z(ξT, 1)T ≥ 0, ∀ ξ ∈ R|K|

+ ,

λ ≥ 0,
(6.29)
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where Z ∈ S |K|+1 and Z =

(
−Q − 1

2q +Qµ+ λρ

− 1
2q

T + µTQ+ λρT −t− µTQµ− 1− λy

)
. Using similar arguments as

above, the constraint (6.29) is equivalent to
Z ∈ COP|K|+1, λ ≥ 0. (6.30)

This implies that the constraint (iii) of (6.24) is equivalent to (6.30). Hence, DRCCMDP problem (6.8) canbe rewritten as follows
max y

s.t. (i) − t−Q ◦ Σ− qTµ ≤ ϵ,

(ii)
(

−Q − 1
2q +Qµ

− 1
2q

T + µTQ −t− µTQµ

)
∈ COP|K|+1,

(iii)
(

−Q − 1
2q +Qµ+ λρ

− 1
2q

T + µTQ+ λρT −t− µTQµ− 1− λy

)
∈ COP|K|+1,

(iv) Q ∈ S |K|, λ ≥ 0, ρ ∈ Q. (6.31)
The optimization problem (6.31) is a bilinear copositive optimization problem, where the source ofbilinearity comes from the term λρ. Note that we can restrict the feasibility set of (6.31) to λ > 0,since if λ = 0, either the feasibility set of (6.31) is empty or the optimal value of (6.31) is infinity. Let
1
λ = s, t̄ = t

λ , Q̄ = Q
λ , q̄ =

q
λ , we obtain the copositive optimization problem (6.13)

2. Let the distribution of R̂ belongs to the uncertainty set D2(φ, µ,Σ, δ0). From Theorem 3.4 [46], the dual
of the optimization problem supF∈D PF

(
ρTR̂ ≤ y

) can be written as
inf (−t− µTq − µTQµ+ δ0Σ ◦Q)

s.t. (i) 1{ρTξ≤y} + t+ qTξ − ξTQξ + 2µTQξ ≤ 0, ∀ ξ ∈ R|K|
+ ,

(ii) Q ∈ S |K|
+ ,

and the strong duality holds. The rest of the proof follows from the similar arguments used for the caseof the uncertainty set D1(φ, µ,Σ).
3. If the distribution of R̂ belongs to the uncertainty set D3(φ, µ,Σ, δ1, δ2), using Lemma 1 of [57] the dual

of problem supF∈D PF

(
ρTR̂ ≤ y

) is given by
inf (r + t)

s.t. (i) r ≥ 1{ρTξ≤y} − ξTQξ − ξTq, ∀ ξ ∈ R|K|
+ ,

(ii) t ≥ (δ2Σ+ µρT) ◦Q+ ρTq +√δ1||Σ 1
2 (q + 2Qµ)||2,

(iii) Q ∈ S |K|
+ ,

and strong duality holds. Again, the rest of the proof follows using similar arguments used in the caseof D1(φ, µ,Σ).
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6.2.2 . Uncertainty set with ϕ -divergence distance
We consider an uncertainty set defined using statistical distance metric called ϕ-divergence. In such un-certainty set, a nominal distribution is known to the decision maker based on the available estimated data.The decision maker believes that the true distribution of R̂ belongs to a ball of radius θϕ and centered at anominal distribution ν and the distance between the true distribution and ν is given by a ϕ-divergence. Weshow that the DRCCMDP problem (6.7) is equivalent to an SOCP problem for various ϕ-divergences.

Definition 6.13. The ϕ−divergence distance between two probability measures ν1 and ν2 with densities fν1 and
fν2

, respectively, and support φ is given by

Iϕ(ν1, ν2) =

∫
φ

ϕ

(
fν1

(ξ)

fν2(ξ)

)
fν2(ξ)dξ.

For different choices of ϕ, we refer to [22] and [176]. Let ν ∈ M+ be a nominal distribution with a densityfunction fν . The uncertainty set of the distribution of R̂ based on ϕ-divergence is defined by
D4(ν, θϕ) =

{
F ∈ M+ | Iϕ(F, ν) ≤ θϕ

}
, (6.32)

where θϕ > 0.
Definition 6.14. The conjugate of ϕ is a function ϕ∗ : R → R ∪∞ such that

ϕ∗(r) = sup
t≥0

{rt− ϕ(t)} , ∀ r ∈ R.

We study 4 cases of ϕ−divergences whose conjugates are given in Table 5.4.
Theorem6.8. Consider the DRCCMDPproblem (6.7) under the uncertainty set defined by (6.32) for theϕ-divergences
listed in Table 5.5. If the reference distribution ν is a normal distribution with mean vector µν and positive definite
covariance matrix Σν , the DRCCMDP problem (6.7) is equivalent to the following SOCP problem

max y

s.t. (i) ρTµν − Φ(−1)[f(θϕ, ϵ)]∥Σ
1
2
ν ρ∥2 ≥ y, (ii) ρ ∈ Q, (6.33)

where Φ(−1) is the quantile of the standard normal distribution and the values of θϕ, ϵ and f(θϕ, ϵ) for different
ϕ-divergences are given in Table 5.5.

Proof. The proof follows from the same arguments as the proof of Lemma 5.26.
6.2.3 . Uncertainty set with Wasserstein distance

We consider an uncertainty set defined using statistical distance metric called Wasserstein distance. Weshow that the DRCCMDP problem (6.8) is tractable if the reference distribution ν follows a discrete distri-bution whose scenarios are taken from historical data. We refer to Villani [241, 242] for more details of theWasserstein distance metric.Let φ be a closed, convex subset of R|K| and p ∈ [1,∞). Let B(φ) denotes the Borel σ− algebra on φ. Let
P(φ) be the set of all probability measures defined on B(φ) and Pp(φ) denote the subset of P(φ) with finite
p−moment and it is defined as

Pp(φ) =

{
µ ∈ P(φ) |

∫
ξ∈φ

||ξ − ξ0||p2µ(dξ) <∞ for some ξ0 ∈ φ

}
.

It follows from the triangle inequality that the above definition of Pp(φ) does not depend on ξ0.
106



Definition 6.15 (Wasserstein distance). The Wasserstein distanceWp(µ, ν) between ν1, ν2 ∈ Pp(φ) is defined by

Wp(ν1, ν2) =

(
inf

γ∈Pν1,ν2
(φ×φ)

∫
φ×φ

||x− z||p2γ(dx, dz)
) 1

p

,

where Pν1,ν2
(φ × φ) denotes the set of all probability measures defined on B(φ × φ) such that the marginal laws

are ν1 and ν2.

The uncertainty set using Wasserstein distance is defined by
D5(φ, ν, p, θW ) = {F ∈ Pp(φ) |Wp(F, ν) ≤ θW } , (6.34)

where ν ∈ Pp(φ) and θW > 0.
Lemma 6.29. Consider an optimization problem

sup
F∈D5(φ,ν,p,θW )

PF (ρ
TR̂ ≤ y). (6.35)

Then, the dual problem of (6.35) is given by
inf
λ≥0

{
λθpW −

∫
φ

inf
z∈φ

[
λ||x− z||p2 − 1{ρTz≤y}

]
ν(dx)

}
, (6.36)

such that the strong duality holds and the optimal values of the primal and the dual problems are finite.

Proof. Let Ξ be a Polish space with metric d, P(Ξ) be the set of Borel probability measures on Ξ, ν ∈ P(Ξ)and Ψ ∈ L1(ν), where L1(ν) represents the L1 space of ν - measurable functions. It follows from Theorem 1of [76] that the following strong duality holds
sup

µ∈P(Ξ)

{∫
Ξ

Ψ(ξ)µ(dξ) | Wp(µ, ν) ≤ θW

}
= inf

λ∈R,λ≥0

{
λθpW −

∫
Ξ

inf
ξ∈Ξ

[λdp(ξ, ζ)−Ψ(ξ)] ν(dζ)
}
<∞, (6.37)

provided the growth factor given by Definition 4 of [76] is finite. We apply this result in our case by choosing
Ξ = φ, d as an Euclidean metric and Ψ(ξ) = 1{ρTξ≤y} for all ξ ∈ φ. For this choice of Ψ(ξ), it is easy to see
from Definition 4 of [76] that the growth factor is zero. Since {ξ ∈ φ | ρTξ ≤ y

} is a closed set, it is a Borelmeasurable set. Hence, it is clear that Ψ ∈ L1(ν) for all ν ∈ P(φ). Then, (6.37) reduces to
sup

F∈D5(φ,ν,p,θW )

PF

(
ρTR̂ ≤ y

)
= inf

λ≥0

{
λθpW −

∫
φ

inf
ξ∈φ

[
λ||ζ − ξ||p2 − 1{ρTξ≤y}

]
ν(dζ)

}
.

We consider the case when p = 1 and ν is a data-driven reference distribution, i.e., it is a discrete distri-bution with H scenarios ξ̃1, . . . , ξ̃H , where ξ̃i ∈ φ, for every i = 1, . . . ,H . Using Lemma 6.29, we propose adeterministic reformulation of the DRCCMDP problem (6.8).
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Lemma 6.30. If the distribution of R̂ belongs to the uncertainty set defined by (6.34), the DRCCMDP (6.8) can be
reformulated equivalently as the following deterministic problem

sup y

s.t. (i) θW − 1

H

H∑
i=1

gi ≤ lϵ,

(ii) inf
z∈φ,ρTz≤y

||ξ̃i − z||2 ≥ l + gi, ∀ i = 1, . . . ,H,

(iii) l > 0, ρ ∈ Q, gi ≤ 0, ∀ i = 1, . . . ,H. (6.38)
Proof. Using Lemma 6.29, since ν is a discrete distribution withH scenarios ξ̃1, ..., ξ̃H , the constraint (i) of (6.8)can be equivalently written as

λθW − 1

H

H∑
i=1

inf
z∈φ

[
λ||ξ̃i − z||2 − 1{ρTz≤y}

]
≤ ϵ, λ ≥ 0.

By introducing auxiliary variables ti, i = 1, ...,H , the above constraint can be rewritten as{
(i) λθW − 1

H

∑H
i=1 ti ≤ ϵ, λ ≥ 0

(ii) infz∈φ

[
λ||ξ̃i − z||2 − 1{ρTz≤y}

]
≥ ti, ∀ i = 1, . . . ,H.

(6.39)
The constraint (ii) of (6.39) is equivalent to the following two constraints{

(i) infz∈φ λ||ξ̃i − z||2 ≥ ti, ∀ i = 1, . . . ,H,

(ii) infz∈φ,ρTz≤y λ||ξ̃i − z||2 − 1 ≥ ti, ∀ i = 1, . . . ,H.
(6.40)

Since λ ≥ 0, infz∈φ λ||ξ̃i−z||2 = 0. Then, the constraint (i) of (6.40) is equivalent to ti ≤ 0, for every i = 1, . . . ,H .Moreover, if λ = 0, from the constraint (ii) of (6.40), ti ≤ −1, for every i = 1, . . . ,H , which in turn implies
− 1

H

∑H
i=1 ti ≥ 1. This violates the constraint (i) of (6.39). Hence, λ > 0. Let l = 1

λ and gi = ti
λ , for every

i = 1, . . . ,H . Therefore, the constraint (i) of (6.8) is equivalent to the following constraints
(i) θW − 1

H

∑H
i=1 gi ≤ lϵ,

(ii) infz∈φ,ρTz≤y ||ξ̃i − z||2 ≥ l + gi, ∀ i = 1, . . . ,H,

(iii) l > 0, gi ≤ 0, ∀ i = 1, . . . ,H.

(6.41)

This implies that the DRCCMDP (6.8) is equivalent to (6.38).
The constraint (ii) of (6.38) includes inf term which makes it difficult to solve the problem directly. Weshow that the optimization problem (6.38) is equivalent to a MISOCP problem and a biconvex optimizationproblem for the case of full support and nonnegative support, respectively.

DRCCMDP under Wasserstein distance based uncertainty set with full support

Lemma 6.31. If φ = R|K|,

inf
ρTz≤y

||ξ̃i − z||2 = max

(
0,
ρTξ̃i − y

||ρ||2

)
, ∀ i = 1, . . . ,H.
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Proof. For each i = 1, . . . ,H , we consider two cases as follows:
Case 1: Let ρTξ̃i ≤ y. In this case, it is clear that infρTz≤y ||ξ̃i − z||2 = 0 and the optimal value holds at z = ξ̃i.
Case 2: Let ρTξ̃i > y. An optimal solution z∗ of infρTz≤y ||ξ̃i − z||2 is such that ρTz∗ = y. Because if ρTz∗ < y,
there exists a point z0 on the line segment of z∗ and ξ̃i such that ρTz0 = y and ||ξ̃i − z∗||2 > ||ξ̃i − z0||2 whichgives a contradiction. Hence, we can write infρTz≤y ||ξ̃i − z||2 = infρTz=y ||ξ̃i − z||2. Using the KKT conditions, itis easy to show that an optimal solution z∗ satisfies

||ξ̃i − z∗)||2 =
ρT ξ̃i − y

||ρ||2
.

Using Lemma 6.31, we have the following result.
Lemma 6.32. The optimization problem (6.38) is equivalent to the following optimization problem

sup y

s.t. (i) βθW − 1

H

H∑
i=1

bi ≤ tϵ,

(ii) max
(
0, ρTξ̃i − y

)
≥ bi + t, ∀ i = 1, . . . ,H,

(iii) ||ρ||2 ≤ β, t ≥ 0, β > 0, ρ ∈ Q, bi ≤ 0, ∀ i = 1, . . . ,H. (6.42)
Proof. Using Lemma 6.31, the constraint (ii) of problem (6.38) can be written as

max

(
0,
ρTξ̃i − y

||ρ||2

)
≥ l + gi, ∀ i = 1, ...,H.

Let β > 0 be an auxiliary variable. Then, under the transformations t = βl, bi = βgi, for every i = 1, ...,H , it iseasy to see that (6.38) is equivalent to (6.42).
It is clear that a vector (y, ρ, β, (bi)Hi=1, t) such that ρ ∈ Q, β = ||ρ||2, bi = 0, for every i = 1, . . . ,H , t = θW

ϵ ||ρ||2and y = mini=1,...,H(ρTξ̃i) − θW
ϵ ||ρ||2 is a feasible solution of (6.42). Therefore, the optimal solutions of (6.42)and the following optimization problem are the same
sup y

s.t. (i) βθW − 1

H

H∑
i=1

bi ≤ tϵ,

(ii) max
(
0, ρTξ̃i − y

)
≥ bi + t, ∀ i = 1, . . . ,H,

(iii) y ≥ min
i=1,...,H

(ρTξ̃i)− θW
ϵ

||ρ||2,

(iv) ||ρ||2 ≤ β, t ≥ 0, β > 0, ρ ∈ Q, bi ≤ 0, ∀ i = 1, . . . ,H. (6.43)
We reformulate problem (6.43) as an MISOCP problem. In order to do that, we define a constant M =(

θW
ϵ + 2maxi=1,...,H ||ξ̃i||2

) for which the following result holds.
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Lemma 6.33. For every feasible solution of (6.43),M ≥ |y − ρTξ̃i| for all i = 1, . . . ,H .

Proof. Let (y, ρ) be a feasible solution of (6.43) which implies that the constraint (i) of (6.8) holds. Since,reference distribution ν belongs to uncertainty set (6.34), we have
1

H

H∑
i=1

1{ρTξ̃i≤y} = Pν

(
ρTR̂ ≤ y

)
≤ ϵ. (6.44)

It follows from (6.44) that there exists ξ̃i such that ρTξ̃i > y which implies that
y < max

i=1,...,H
(ρTξ̃i) < max

i=1,...,H
|ρTξ̃i|+ θW

ϵ
||ρ||2. (6.45)

Moreover, from the constraint (iii) of (6.43), we have
y ≥ min

i=1,...,H
(ρTξ̃i)− θW

ϵ
||ρ||2 ≥ − max

i=1,...,H
|ρTξ̃i| − θW

ϵ
||ρ||2. (6.46)

Using (6.45), (6.46), Cauchy-Schwartz inequality and the fact that ρ is a probability measure, we have
|y − ρTξ̃i| ≤M.

Theorem 6.9. Consider the DRCCMDP problem (6.8). We assume that the distribution of R̂ belongs to the un-
certainty set defined by (6.34) and φ = R|K|. Then, the DRCCMDP problem (6.8) is equivalent to the following
MISOCP

max y

s.t. (i) βθW − 1

H

H∑
i=1

bi ≤ tϵ,

(ii)Mηi ≥ bi + t, ∀ i = 1, . . . ,H,

(iii)M(1− ηi) + ρTξ̃i − y ≥ bi + t, ∀ i = 1, . . . ,H,

(iv) ηi ∈ {0, 1} , ∀ i = 1, . . . ,H,

(v) ||ρ||2 ≤ β, t ≥ 0, β > 0, ρ ∈ Q, bi ≤ 0, ∀ i = 1, . . . ,H. (6.47)
Proof. Since, the distribution of R̂ belongs to the uncertainty set defined by (6.34), the DRCCMDP prob-lem (6.8) is equivalent to (6.43). We show that (6.43) and (6.47) are equivalent. It is clear that a vector
(y, ρ, β, (bi)

H
i=1, (ηi)

H
i=1, t) such that ρ ∈ Q, β = ||ρ||2, bi = 0, t = θW

ϵ ||ρ||2, ηi = 1, for every i = 1, . . . ,H , and
y = mini=1,...,H(ρTξ̃i) − θW

ϵ ||ρ||2 is a feasible solution of (6.47). Therefore, the optimal solution of (6.47) doesnot change if we add constraint (6.48) given below
y ≥ min

i=1,...,H
(ρTξ̃i)− θW

ϵ
||ρ||2, (6.48)

to the feasible region of (6.47). Now, it is enough to show that the constraint (ii) of (6.43) is equivalent to
(ii)− (iv) of (6.47). Let the constraint (ii) of (6.43) be satisfied, i.e.,

max
(
0, ρTξ̃i − y

)
≥ bi + t, ∀ i = 1, . . . ,H. (6.49)
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For each i = 1, . . . ,H , we consider two cases as follows:
Case 1: Ifmax

(
0, ρTξ̃i − y

)
= 0, by choosing ηi = 0, (6.49) is equivalent to the constraint (ii) of (6.47). Moreover,

using Lemma 6.33,M ≥ |y − ρTξ̃i|. Therefore,
M(1− ηi) + ρTξ̃i − y ≥M − |y − ρTξ̃i| ≥ 0 ≥ bi + t.

Case 2: If max
(
0, ρTξ̃i − y

)
= ρTξ̃i − y, by choosing ηi = 1, (6.49) is equivalent to the constraint (iii) of (6.47).

Moreover, using Lemma 6.33, we have
Mηi =M ≥ ρTξ̃i − y ≥ bi + t.

This implies that there exists ηi ∈ {0, 1} such that (ii)−(iv) of (6.47) are satisifed. Conversely, suppose (ii)−(iv)of (6.47) has a feasible solution. If ηi = 1, the constraint (iii) of (6.47) implies the constraint (ii) of (6.43). If
ηi = 0, the constraint (ii) of (6.47) implies the constraint (ii) of (6.43).
DRCCMDP under Wasserstein distance based uncertainty set with nonnegative support

Lemma 6.34. Let φ = R|K|
+ and consider an optimization problem

inf
z∈φ,ρTz≤y

||ξ̃i − z||2. (6.50)
The dual problem of (6.50) is given by

max λi(ρ
Tξ̃i − y)− ζTi ξ̃i

s.t. ||ζi − λiρ||2 ≤ 1, ζi ∈ R|K|
+ , λi ≥ 0,

such that the strong duality holds.

Proof. The optimization problem inf
z∈R|K|

+ ,ρTz≤y
||ξ̃i − z||2 can be reformulated as following SOCP problem

min t

s.t. ρTz ≤ y, t ≥ ||ξ̃i − z||2, z ∈ R|K|
+ . (6.51)

The Lagrangian dual problem of (6.51) is given by
max

λi≥0,ζi∈R|K|
+ ,β≥0

min
t∈R,z∈R|K|

L(t, ρ, z, λi, β, ζi),

where L(t, z, λi, β, ζi) = t+λi(ρ
Tz−y)− ζTi z+β(||ξ̃i− z||2− t). The inner minimization problem can be writtenas

J(λi, ζi, β) = min
t∈R,z∈R|K|

{
t(1− β) + β||ξ̃i − z||2 + λiρ

Tz − ζTi z − λiy
}
. (6.52)

It is easy to see that J(λi, ζi, β) = −∞ if β ̸= 1 and it implies that the dual objective function value is −∞. Byusing the strong duality of a primal-dual pair of SOCPs, the objective function value of primal problem is−∞,i.e., inf
z∈R|K|

+ ,ρTz≤y
||ξ̃i − z||2 = −∞ which is a contradiction. Therefore, β = 1 and using a change of variable

z1 = ξ̃i − z, we have
J(λi, ζi, 1) = min

z1∈R|K|

{
||z1||2 + (ζi − λiρ)

Tz1
}
+ λi(ρ

Tξ̃i − y)− ζTi ξ̃i.
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The above minimization problem is unbounded unless ||ζi − λiρ||2 ≤ 1 and it leads to the following dualproblem of (6.51).
max λi(ρ

Tξ̃i − y)− ζTi ξ̃i
s.t. ||ζi − λiρ||2 ≤ 1, λi ≥ 0, ζi ∈ R|K|

+ . (6.53)

Theorem 6.10. Consider the DRCCMDP problem (6.8). We assume that the distribution of R̂ belongs to the un-
certainty set defined by (6.34) and φ = R|K|

+ . Then, the DRCCMDP (6.8) is equivalent to the following biconvex
optimization problem

max y

s.t. (i) θW − 1

H

H∑
i=1

gi ≤ lϵ,

(ii) λi(ρTξ̃i − y)− ζTi ξ̃i ≥ l + gi, ∀ i = 1, . . . ,H,

(iii) ||ζi − λiρ||2 ≤ 1, ∀ i = 1, . . . ,H,

(iv) λi ≥ 0, ζi ∈ R|K|
+ , l > 0, gi ≤ 0, ρ ∈ Q, ∀ i = 1, . . . ,H. (6.54)

Proof. The proof follows directly from Lemma 6.30 and Lemma 6.34.
6.3 . Distributionally robust chance constrained Markov decision process with random transition

probabilities

In this section, we consider an MDP framework defined in Section 6.1, with a finite state space S, finiteaction spaces A(s), s ∈ S, an initial distribution γ, where∑s∈S γ(s) = 1, γ(s) > 0, a discount factor α ∈ (0, 1),a running reward vectorR and transition probabilities p, where the running reward vectorR is exactly knownand the transition probabilities p are random variables. For each triple (state, action, state) s′ ∈ S, a ∈
A(s), s ∈ S, we assume that the p(s, a, s′) is an 1− dimensional random variable defined on a probabilityspace (Ω,F ,P). Therefore, for each realization ω ∈ Ω, the term p(s, a, s′)(w) is a real number in [0, 1] whichrepresents the probability of moving to a new state s′, where the decision maker chooses action a at actualstate s. Assume that p follows a discrete distribution Fp, whose support is taken by the set of historical dataon the transition probabilities. Denote this set by φp = {p1, p2, . . . , pJ}. For each s′ ∈ S, let p̂(s′) be a |K|−dimensional random vector defined as follows

p̂(s′)(s, a) = δ(s′, s)− αp(s, a, s′), ∀ s ∈ S, a ∈ A(s). (6.55)
Let p̂ = (p̂(s′)s′∈S) be a |S| × |K|−dimensional random vector. Then, the distribution of p̂ is a discrete distri-bution with support φp̂ = {p̂1, . . . , p̂J}, where p̂j(s, a, s′) = δ(s′, s)− αpj(s, a, s

′), for any s′, s ∈ S, a ∈ A(s), j =
1, . . . , J . We focus our attention on the set of stationary policies POS , where the policy does not depend ontime t. Let POD ⊆ POS be a subset of the set of stationary policies.For a policy fh ∈ POD and a realization ω ∈ Ω, we define the occupation measure (m̂(s, a))(s,a) (ω) by

m̂(s, a)(ω) = (1− α)

∞∑
t=0

αtP fh

p(ω)(Xt = s,At = a), ∀ s ∈ S, a ∈ A(s). (6.56)
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where the probability function P fh

p(ω) is defined by the policy fh and the transition probabilites p(ω). Since thetransition probabilities are random variables, it is clear that m̂ = (m̂(s, a))(s,a) is a |K|−dimensional randomvector, whose distribution is defined on the same probability space (Ω,F ,P). For each realization ω, theexpected discounted reward denoted by V (fh, p̂)(ω) is given as follows
V (fh, p̂)(ω) = (1− α)Efh

p̂(ω)

( ∞∑
t=0

αtR(Xt, At)

)
=
∑
s∈S

∑
a∈A(s)

m̂(s, a)(ω)R(s, a). (6.57)

It is clear that V (fh, p̂) is an 1−dimensional random variable, defined on (Ω,F ,P) and the distribution of
V (fh, p̂) depends on the distribution of p̂ and we denote this distribution by Fp̂. Define our optimizationproblem as follows

(CCMDP-TP) sup
y∈R, fh∈POD

y

s.t. Pp

(
V (fh, p̂) ≥ y

)
≥ 1− ϵ, (6.58)

where the controller is interested in maximizing the expected discounted reward which can be obtained withat least a given confidence level (1 − ϵ). In most of the practical situations, we only have partial informationabout the underlying probability distributions of p̂ based on historical data of the transition probabilities p.Such situations can be handled with the distributionally robust optimization approach, where the decisionmaker believes that the distribution of p̂ belongs to some uncertainty set Dp̂. To ensure that the chanceconstraint P(V (fh, p̂) ≥ y) ≥ 1 − ϵ holds, we assume that it holds for any distribution which belongs to theuncertainty set. This leads to the following optimization problem
(DRCCMDP-TP) sup

y∈R, fh∈POD

y

s.t. inf
Fp̂∈Dp̂

Pp̂

(
V (fh, p̂) ≥ y

)
≥ 1− ϵ, (6.59)

The optimization problem DRCCMDP-TP is challenging to solve since V (fh, p̂) is a complex nonlinear functionof transition probabilities p. To handle it, we first reformulate (6.58) by considering the occupation measure
m̂ defined by (6.56) as an auxiliary decision variable of our optimization problem.Using Lemma 6.27, the equations (6.56) can be rewritten equivalently as follows

(i) m̂(ω)Tp̂(s′) = (1− α)γ(s′), ∀ s′ ∈ S, ∀ ω ∈ Ω

(ii) fh(s, a)
(∑

a∈A(s) m̂(ω)(s, a)
)
= m̂(ω)(s, a), ∀ s ∈ S, a ∈ A(s), ∀ ω ∈ Ω

(iii) m̂(ω) ∈ R|K|, m̂(ω)(s, a) ≥ 0, ∀s ∈ S, a ∈ A(s),
∑

a∈A(s) m̂(ω)(s, a) > 0,

∀ ω ∈ Ω, ∀ s ∈ S,

(6.60)
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which can be reformulated equivalently as follows

(i) E[
(
m̂(ω)Tp̂(s′)− (1− α)γ(s′)

)2
] = 0, ∀ s′ ∈ S,

(ii) E
[(
fh(s, a)

(∑
a∈A(s) m̂(ω)(s, a)

)
]− m̂(ω)(s, a)

)2]
= 0, ∀ s ∈ S, a ∈ A(s)

(iii) φm̂ ⊆ X =

{
ρ | ρ ∈ R|K|, ρ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A(s),

∑
a∈A(s) ρ(s, a) > 0, ∀ s ∈ S

}
,

(6.61)

where φm̂ is the support of the distribution Fm̂ of m̂. Then, the optimization problem DRCCMDP-TP can berewritten as follows
sup

y∈R, fh∈POD

y

s.t. (i) inf
Fp̂∈Dp

P(m̂,p̂)

(
m̂TR ≥ y

)
≥ 1− ϵ,

(ii) E(m̂,p̂)[
(
m̂(ω)Tp̂(s′)− (1− α)γ(s′)

)2
] = 0, ∀ s′ ∈ S,

(iii) E(m̂,p̂)


fh(s, a)

 ∑
a∈A(s)

m̂(ω)(s, a)

]− m̂(ω)(s, a)

2
 = 0,

∀ s ∈ S, a ∈ A(s)

The support φm̂ is the set of all solutions of (6.56), where fh ∈ POD and p̂ ∈ φp̂. To ease our notations, wedefine real functions g1(s′) : R|K| × R|S|×|K| → R and g2(s, a) : R|K| × R|S|×|K| → R such that
g1(s

′)(xm̂, xp̂) =
(
xT̂mxp̂(s′)− (1− α)γ(s′)

)2
, ∀ s′ ∈ S, (6.62)

and
g2(s, a)(m̂, p̂) =

fh(s, a)
 ∑

a∈A(s)

m̂(s, a)

− m̂(s, a)

2

, ∀ s ∈ S, a ∈ A(s), (6.63)
for any xm̂ ∈ R|K|, xp̂ ∈ R|S|×|K|. Let g1 = (g1(s

′))s′∈S and g2 = (g2(s, a))s∈S, a∈A(s). Using the abovementionednotations, the optimization problem DRCCMDP-TP can be rewritten shortly as follows
sup

(y∈R, fh∈POD)

y

s.t. (i) inf
Fp̂∈Dp̂

E(m̂,p̂)

[
1{m̂TR≥y}

]
≥ 1− ϵ,

(ii) E(m̂,p̂) [gi(m̂, p̂)] = 0, i = 1, 2, (6.64)
where 1{} denotes the indicator function, E(m̂,p̂) is the expectation function w.r.t the joint distribution of
(m̂, p̂). In the following sections, we study different ways to define the uncertainty set Dp̂ by using i) partialinformation of moment and ii) ϕ-divergence distance. We derive equivalent reformulations of the DRCCMDP-TP problem (6.64) for each uncertainty set.
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6.3.1 . Moment based uncertainty sets
In some situations, the true distributions of p̂ is unknown in advance. We can only get partial informationof the underlying distributions based on historical data. By observing sufficiently large number of data, wecan estimate the first moment (expected value) and the second moment (covariance matrix) of the randomvariable by their sample mean and sample covariance matrix. We assume that the distribution of p̂ belongsto an uncertainty set based on its first moment and second moment. These moments are estimated from

historical data of transition probabilities. Let µ ∈ R|S|×|K| be the sample mean vector and Σ ∈ S |S|×|K|
++ be

the sample covariance matrix of p̂, where S |S|×|K|
++ denotes the set of |K| × |K| definite positive matrices. Weconsider 3 types of moment based uncertainty sets defined as follows

1. Uncertainty set with known mean and known covariance matrix:

D1 =

Fp̂

∣∣∣∣∣∣
(i) E(1{p̂∈φp̂}) = 1(ii) E(p̂ = µ(iii) E[(p̂− µ)(p̂− µ)T] = Σ

 , (6.65)

2. Uncertainty set with known mean and unknown covariance matrix:

D2 =

Fp̂

∣∣∣∣∣∣
(i) E(1{p̂∈φp̂}) = 1(ii) E(p̂) = µ(iii) E[(p̂− µ)(p̂− µ)T] ⪯ δ0Σ,

 , (6.66)

3. Uncertainty set with unknown mean and unknown covariance matrix:

D3 =

Fp̂

∣∣∣∣∣∣
(i) E(1{p̂∈φp̂}) = 1(ii) [E (p̂)− µ]TΣ(−1)[E (p̂)− µ] ≤ δ1,(iii) E[(p̂− µ)(p̂− µ)T] ⪯ δ2Σ,

 , (6.67)

Here, Fp̂ ∈ M+
φp̂
, whereM+

φp̂
is the set of all positive measures on φp̂ with Borel σ−algebra, δ1 ≥ 0, δ2, δ0 ≥ 1,

µp̂ ∈ RI(φp̂); RI(φ) denotes the relative interior of φ. The notation A ⪯ B implies that B − A is a positivesemidefinite matrix. Note that E [1{m̂TR≥y−θ}
]
≥ E

[
1{m̂TR>y}

]
≥ E

[
1{m̂TR≥y}

] for every θ > 0. Therefore, wecan replace E
[
1{m̂TR≥y}

] by E [1{m̂TR>y}
] in (6.64). Then, the constraint (i) of (6.64) can be rewritten as
(i) sup

Fp̂∈Dp̂

E(m̂,p̂)

[
1{m̂TR≤y}

]
≤ ϵ. (6.68)

We consider the following optimization problem
sup

Fp̂∈Dp̂

E(m̂,p̂)

[
1{m̂TR≤y}

]
s.t. (i) E(m̂,p̂) [gi(m̂, p̂)] = 0, i = 1, 2, (6.69)

where the uncertainty set Dp̂ is defined by one of three uncertainty sets abovementioned. We consider thefollowing assumption, which is necessary for our subsequent analysis.
Assumption 6.8. The support of the true distribution of m̂ (resp. p̂) belongs to RI(φm̂) (resp.RI(φp̂) ).
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In order to ease our notations, we consider the following functions
A1(t, q,Q, r) = (1− α)2

(∑
s′∈S

r1(s
′)γ(s′)2

)
− t− qTµ−Q ◦ Σ+ µTQµ,

B1(t, q,Q, r, ξ) =
∑
s′∈S

r1(s
′)

[(
ξTm̂ξp̂(s

′)
)2

− 2(1− α)γ(s′)(ξm̂)Tξp̂(s
′)

]
+

∑
s∈S, a∈A(s)

r2(s, a)

[
fh(s, a)2

 ∑
a∈A(s)

ξm̂(s, a)

2

− 2fh(s, a)

 ∑
a∈A(s)

ξm̂(s, a)

 ξm̂(s, a) + ξ2m̂(s, a)

]
+ t+ qTξp̂ + ξT̂pQξp̂ − 2µTQξp̂,

A2(t, q,Q, r) = (1− α)2

(∑
s′∈S

r1(s
′)γ(s′)2

)
− t− qTµ+Q ◦ δ0Σ− µTQµ,

B2(t, q,Q, r, ξ) =
∑
s′∈S

r1(s
′)

[(
ξTm̂ξp̂(s′)

)2
− 2(1− α)γ(s′)(ξm̂)Tξp̂(s′)

]
+

∑
s∈S, a∈A(s)

r2(s, a)

[
fh(s, a)2

 ∑
a∈A(s)

ξm̂(s, a)

2

− 2fh(s, a)

 ∑
a∈A(s)

ξm̂(s, a)

 ξm̂(s, a) + ξ2m̂(s, a)

]
+ t+ qTξp̂ − ξT̂pQξp̂ + 2µTQξp̂,

A3(t, q,Q, r) = (1− α)2

(∑
s′∈S

r1(s
′)γ(s′)2

)
− t+Q ◦ δ2Σ− qTµ+ µTQµ

+
√
δ1

∥∥∥∥Σ 1
2 (q − 2Qµ)

∥∥∥∥,
B3(t, q,Q, r, ξ) =

∑
s′∈S

r1(s
′)

[(
ξTm̂ξp̂(s

′)
)2

− 2(1− α)(ξm̂)Tξp̂(s
′)

]

+
∑

s∈S, a∈A(s)

r2(s, a)

[
fh(s, a)2

 ∑
a∈A(s)

ξm̂(s, a)

2

− 2fh(s, a)

 ∑
a∈A(s)

ξm̂(s, a)


ξm̂(s, a) + ξ2m̂(s, a)

]
+ t+ qTξp̂ − ξTp̂Qξp̂,

where t ∈ R, q ∈ R|S|×|K|, Q ∈ S|S|×|K|, (ξm̂, ξp̂) ∈ φm̂ × φp̂, r1 ∈ R|S|, r2 ∈ R|K|, S|S|×|K| is the set ofall real symmetric matrix of size (|S| × |K|) × (|S| × |K|), ◦ denotes the Frobenius inner product, || · || is theEuclidean norm, r = (r1, r2), ξ = (ξm̂, ξp̂). Using these notations, by applying conic duality theory [207], wereformulate (6.69) equivalently as a deterministic optimization problem in each case of uncertainty set. Wehave the following lemma.
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Lemma 6.35. Let Assumption 6.8 holds. Consider the optimization problem (6.69). If the true distribution of p̂
belongs to the uncertainty set Dj , j = 1, . . . , 3, then the optimization problem (6.69) is equivalent to the following
deterministic problem

inf
(t,q,Q,r)

Aj(t, q,Q, r)

s.t. (i) 1{ξT̂mR≤y} +Bj(t, q,Q, r, ξ) ≤ 0, ∀ ξ = (ξm̂, ξp̂) ∈ φm̂ × φp̂, (6.70)
where Qp̂ ∈ S|S|×|K|, if j = 1 and Q ∈ S

|S|×|K|
+ , if j = 2, 3, where S|S|×|K| is the set of symmetric matrices of size

(|S| × |K|)× (|S| × |K|).
Proof. First, we prove the case, where the true distribution of p̂ belongs to the uncertainty set D1 defined by(6.65). The Lagrangian function of the optimization problem (6.69) is written as follows

L
[
F, t, q,Q, (ri)

2
i=1

]
= E(m̂,p̂)

[
1{m̂TR≤y}

]
+

2∑
i=1

rTiE(m̂,p̂)(gi(m̂, p̂))

+ t
(
E(m̂,p̂)

(
1{p̂∈φp̂}

)
− 1
)
+ qT (E(m̂,p̂)(p̂)− µ

)
+Q ◦

(
E(m̂,p̂)[(p̂− µ)(p̂− µ)T]− Σ

) (6.71)
where t ∈ R, q ∈ R|S|×|K|, Q ∈ S|S|×|K|, ∀ s′ ∈ S, r1 ∈ R|S|, F = (Fp̂, Fp̂) ∈ M+

φp̂
×M+

φm̂
, r2 ∈ R|K|. The primalproblem (6.69) and its dual problem can be rewritten shortly as follows

(P) sup
F

inf
(t,q,Q,r)

L
[
F, t, q,Q, (ri)

2
i=1

]
(D) inf

(t,q,Q,r)
sup
F

L
[
F, t, q,Q, (ri)

2
i=1

] (6.72)
Note that (6.65) is a conic optimization problem. Due to Assumption 6.8, the true distribution of (m̂, p̂) liesin the relative interior of the distributional set. Hence, the primal problem (P) in (6.72) is strictly feasible andthe strong duality holds (the weaker version of Assumption 3.4 holds) [207]. We represent the Lagrangianfunction as the form E [u (m̂, p̂)] + v, where u : R|K| × R|S|×|K| → R is a real function and v does not dependon (m̂, p̂). If there exists ξ = (ξm̂, ξp̂) ∈ φm̂ × φp̂ such that u (ξm̂, ξp̂) > 0, then supF L = ∞, which impliesthat the optimal value of the dual problem (D) is ∞. Otherwise, the optimal value of the dual problem (D)is v and this holds when u (ξm̂, ξp̂) ≤ 0, for any ξ = (ξm̂, ξp̂) ∈ φm̂ × φp̂. On the other hand, we can verifythat v is the objective function of the optimization problem (6.70) and the condition u (ξm̂, ξp̂) ≤ 0, for any
ξm̂ ∈ φm̂, ξp̂ ∈ φp̂ is equivalent to the constraint (i) of (6.70). Therefore, the conic optimization problem (6.69)and the deterministic optimization problem (6.70) are equivalent.
The proof of the case, where the true distribution p̂ belongs to the uncertainty set D2 defined by (6.66) issimilar by considering the following Lagrangian function

L
[
F, t, qp̂, Qp̂, (ri)

2
i=1

]
= E(m̂,p̂)

[
1{m̂TR≤y}

]
+

2∑
i=1

rTiE(m̂,p̂)(gi(m̂, p̂)) + t×(
E(m̂,p̂)(1{p̂∈φp̂})− 1

)
+ qT (E(m̂,p̂)(p̂)− µ

)
+Q ◦

(
δ0Σ− E(m̂,p̂)

[
(p̂− µ)(p̂− µ)T

]) (6.73)
where Q ∈ S

|S|×|K|
+ , where S|S|×|K|

+ is the set of positive semidefinite matrices of size (|K| × |K|) × (|K| × |K|)and the other parameters are defined equivalently as (6.71).
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Finally, we prove the case, where the true distribution of p̂ belongs to the uncertainty setD3 defined by (6.67).It follows from [57] that the constraint (ii) in (6.67) is equivalent to Z∗ ∈ S
S×|K|+1
+ , where

Z∗ =

(
Σ E(p̂)− µ

(E(p̂)− µ)
T

δ1

)
,

Then, the Lagrangian function has the following form
L
[
F, t, Z,Q, (ri)

2
i=1

]
= E(m̂,p̂)

[
1{m̂TR≤y}

]
+

2∑
i=1

rTiE(m̂,p̂)(gi(m̂, p̂))

+ t
(
E(m̂,p̂)

(
1{p̂∈φp̂}

)
− 1
)
+ Z ◦ Z∗ +Q ◦

(
δ2Σ− E(m̂,p̂)

[
(p̂− µ)(p̂− µ)T

])
, (6.74)

where Z ∈ S
|S|×|K|+1
+ , Z =

(
U v

vT h

)
, U ∈ S

|S|×|K|
+ , v ∈ R|S|×|K|, h ≥ 0, and the other parameters are

defined equivalently as (6.73). The primal problem (6.69) and its dual problem can be rewritten as follows
(P) sup

F
inf

(t,Z,Q,r)
L
[
F, t, Z,Q, (ri)

2
i=1

]
(D) inf

(t,Z,Q,r)
sup
F

L
[
F, t, Z,Q, (ri)

2
i=1

] (6.75)
Due to Assumption 6.8, the strong duality holds. We can simplify the dual problem (D) in (6.75) by solving theoptimization problemw.r.t Z, while fixing the other variables. The dual problem (D) in (6.75) can be rewrittenas follows

inf
(t,q,Q,r)

[
(1− α)2

(∑
s′∈S

r1(s
′)γ(s′)2

)
− t+Σ ◦ U − 2vTµ+ δ1h+Q ◦ δ2Σ− µTQµ

]

s.t. (i) 1{ξT̂mR≤y} +
∑
s′∈S

r1(s
′)

[(
ξT̂mξp̂(s′)

)2
− 2(1− α)γ(s′)(ξm̂)Tξp̂(s′)

]

+
∑

s∈S, a∈A(s)

r2(s, a)

[
fh(s, a)2

 ∑
a∈A(s)

ξm̂(s, a)

2

− 2fh(s, a)

 ∑
a∈A(s)

ξm̂(s, a)


ξm̂(s, a) + ξ2m̂(s, a)

]
+ t+ 2vTξp̂ −

(
ξT̂pQξp̂ − 2µTQξp̂

)
≤ 0, (6.76)

for any ξm̂ ∈ φm̂, ξp̂ ∈ φp̂, where
Z =

(
U v

vT h

)
⪰ 0. (6.77)

If h = 0, due to (6.77), we have v = 0. Then, U = 0 is the optimal solution of (6.70). Otherwise, if h > 0, byapplying Schur’s complement, (6.77) is equivalent to U ⪰ 1
hvv

T. Since Σ ⪰ 0, we deduce that U = 1
hvv

T is theoptimal solution of (6.70). By replacing U = 1
hvv

T in the objective function of (6.70), we minimize the function
1
hvv

T ◦ Σ + hδ1, for h > 0. The optimal solution of this optimization problem is h = ||Σ
1
2 v||√
δ1

. Let q = 2(v +Qµ).
Then, the optimization problem (6.76) reduces to the form (6.70).
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To deal with the indicator function in (6.70), we can introduce an auxiliary binary decision variable xξm̂ =
1{ξTm̂R≤y} ∈ {0, 1}. We have the following lemma.
Lemma 6.36. Let Assumption 6.8 holds. Consider the DRCCMDP-TP (6.64). Let M = 1T|K|R, where 1K denotes
|K|−dimensional vector with all components equal to 1. Then, if the true distribution of p̂ belongs to the uncertainty
set Dj , j = 1, . . . , 3, then the DRCCMDP-TP optimization problem (6.64) is equivalent to the following deterministic
problem

sup
(y∈R, fh∈POD)

y

s.t. (i) Aj(t, q,Q, r) ≤ ϵ, (ii) xξm̂ +Bj(t, q,Q, r, ξ) ≤ 0, (iii) y − ξT̂mR ≤Mxξm̂ ,

Q ∈ S|S|×|K|, if j = 1, Q ∈ S
|S|×|K|
+ , if j = 2, 3, ∀ ξ = (ξm̂, ξp̂) ∈ φm̂ × φp̂. (6.78)

Proof. First, we prove that any feasible solution y of (6.64) and (6.78) must belong to [0,M ]. In fact, it is clearthat for y < 0, the constraint (i) of (6.64) and the constraint (iii) of (6.78) are redundant, while for y > M , theyare always infeasible, which in turn implies that 0 ≤ y ≤M .Using Lemma 6.35, we need prove that the constraint (i) of (6.70) is equivalent to the constraints (ii) and iiiof (6.78). Let (y, t, q,Q, r, ξ) be a feasible solution of (i) of (6.70). By taking xξm̂ = 1{ξT̂mR≤y}, we get a feasiblesolution of (ii) and (iii) of (6.78). On the other hand, let (y, t, q,Q, r, ξ, xξm̂) be a feasible solution of (ii) and (iii) of(6.78). If xξm̂ = 0, we deduce that 1{ξT̂mR≤y} = 0, which implies that (ii) of (6.78) implies (i) of (6.70). Otherwise,
the proof is trivial.

Note that φp̂ is a finite support, while φm̂ can be an infinite support due to the set of policies POD. The de-terministic optimization problem (6.78) is in fact a mixed-integer nonlinear optimization problemwith infiniteconstraints, which is challenging to solve. One can resort to discretization methods by using a meshgrid on
[0, 1]|K| and restricting the set of policies on the meshgrid, that makes the support φm̂ to be finite. However,the method only works with very small size problems and the number of constraints increases exponentiallyw.r.t the number of states in our MDP problem. To make the problem solvable, we restrict the set of ran-
domized policies to the set of deterministic policies, i.e., POD is the set of fh ∈ {0, 1}|K|, such that fh(s, a) = 0or 1, for any s ∈ S, a ∈ A(s). It is clear that the set of deterministic policies POD contains exactly |K| elements.The support φm̂ is the set of solutions of (6.4), which in turn implies that φm̂ is a finite support. Then, (6.78) isa mixed-integer with finite nonconvex constraints, where the source of nonconvexity comes from the terms
r2(s, a)f

h(s, a)2 and r2(s, a)fh(s, a), s ∈ S, a ∈ A(s) in the formulation of Bj, j = 1, . . . , 3. Since fh(s, a) = 0 or
1, then fh(s, a)2 = fh(s, a). Let z(s, a) = fh(s, a)r2(s, a). Assume that there exists a large number T > 0 suchthat −T ≤ r2(s, a) ≤ T, for any s ∈ S, a ∈ A(s). Then, using McCormick inequalities, by introducing auxiliaryvariable z(s, a) = fh(s, a)r2(s, a) ∈ [−T, T ], the functions Bj , j = 1, . . . , 3 are linear w.r.t decision variableswith additional four linear constraints as follows

(i) z(s, a) + Tfh(s, a) ≥ 0, ∀ s ∈ S, a ∈ A(s),

(ii) z(s, a)− Tfh(s, a) ≤ 0, ∀ s ∈ S, a ∈ A(s),

(iii) z(s, a) +Mfh(s, a)− r2(s, a)− T ≤ 0, ∀ s ∈ S, a ∈ A(s),

(iv) z(s, a)− Tfh(s, a)− r2(s, a) +M ≥ 0, ∀ s ∈ S, a ∈ A(s).

Then, if POD is the set of deterministic policies, the optimization problem DRCCMDP-TP is equivalent to amixed-integer linear programming (MILP) in case of uncertainty set D1 and a mixed-integer semi definiteprogramming (MISDP) (due to the constraint Q ⪰ 0) in case of uncertainty set D2 and D3.
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6.3.2 . Uncertainty set with ϕ -divergence distance
In this section, we define a ϕ− divergence based uncertainty set for the distribution of p̂. We assume thata nominal distribution of p̂ is known to the decisionmaker based on historical data of transition probabilities.Denote this distribution by ν ∈ M+

φp̂
. The decision maker believes that the true distribution of p̂, with sup-port φp̂, belongs to a ϕ−divergence ball, centered at a nominal distribution. The definition of ϕ−divergencedistance between two discrete probability measures ν1 and ν2 with support φp̂ is given by
Iφ(ν1, ν2) =

J∑
j=1

φ

(
ν1(p̂j)

ν2(p̂j)

)
ν2(p̂j),

where ν1(p̂j) (resp. ν2(p̂j)) is the weight of ν1 (resp. ν2) on the j − th atom p̂j of φp̂. The uncertainty set of thedistribution of p̂ based on ϕ-divergence is defined by
D4 =

{
Fp̂ ∈ M+

φp̂
| Iϕ(Fp̂, ν) ≤ θϕ

}
,

where θϕ > 0. We have the following lemma.
Lemma 6.37. The optimization problem (6.59) with uncertainty set Dp̂ = D4, is equivalent to the following opti-
mization problem

sup
y∈R, fh∈POD

y

s.t. Pν

(
V (fh, p̂) ≥ y

)
≥ f(θϕ, ϵ), (6.79)

where f(θφ, ϵ) is defined in Table 5.5.

Proof. The proof follows the same arguments as random reward case, where we replace a continuous nom-inal distribution with a density function by a discrete nominal distribution.
Remark 6.8. In random reward case, V (fh, ·) is a linear function of reward R̂, then by assuming that R̂ follows a
Normal distribution, (6.79) can be reformulated equivalently as a SOCP. However, the problem is more challenging
in random transition probabilities case.

By introducing the occupation measure as an auxiliary random variable, (6.79) is equivalent to the follow-ing optimization problem
sup

y∈R, fh∈POD

y

s.t. (i) E(m̂,p̂)

[
1{m̂TR≥y}

]
≥ f(θϕ, ϵ),

(ii) E(m̂,p̂) [gi(m̂, p̂)] = 0, i = 1, 2, (6.80)
where p̂ follows the nominal distribution ν with support φp̂. In general case, when POD = POHD, the op-timization problem (6.80) is very challenging to solve. One way is to discretize the set of stationary policies
POHD by a finite number of policies. By restricting POHD on this finite set, the support φm̂ is also a finiteset. Assume that φm̂ = {m̂1, . . . , m̂U}. Then, one can represent the joint distribution of (m̂, p̂) as a set of
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xij ∈ [0, 1], xuj ≥ 0, ∀ u ∈ U, j ∈ J,
∑

u∈U, j∈J xuj = 1. The optimization problem (6.80) is rewritten as follows
sup

y∈R, fh∈POD, x

y

s.t. (i) ∑
u∈U, j∈J

xuj1{m̂T
uR≥y} ≥ f(θϕ, ϵ),

(ii) ∑
u∈U, j∈J

xujgi(m̂u, p̂j) = 0, i = 1, 2,

(iii) ∑
u∈U, j∈J

xuj = 1, xuj ≥ 0. (6.81)
The optimization problem (6.81) is intractable due to a huge number of nonconvex constraints in the con-straints (ii). To make the problem tractable, we restrict the set of policies to deterministic policies, i.e., weassume that

POD =
{
fh | fh(s, a) = 0 or 1, ∀ s ∈ S, a ∈ A(s)

}
.

For any u ∈ U , let zu = 1{m̂T
uR≥y} Then, (6.81) is equivalent to the followingmixed-integer optimization problem

sup
y∈R, fh∈POD, x, z

y

s.t. (i) ∑
u∈U, j∈J

xujzu ≥ f(θϕ, ϵ), (ii) m̂T
uR− y ≤Mzu, zu ∈ {0, 1}

(iii) ∑
u∈U, j∈J

xujgi(m̂u, p̂j) = 0, i = 1, 2, (iv) ∑
u∈U, j∈J

xuj = 1, xuj ≥ 0, (6.82)

where M = 1T|K|R. The optimization problem (6.82) is a mixed-integer programming with nonconvex con-
straints, where the source of nonconvexity comes from the bilinear terms xujzu and xujfh(s, a). Since zu and
fh(s, a) are binary variables and xu ∈ [0, 1], by introducing auxiliary variables guj = xujzu and huj(s, a) =
xujf

h(s, a), one can apply McCormick inequalities to obtain an equivalent mixed-integer linear programmingform of (6.82) with additional linear constraints
guj ≥ 0, guj ≤ xuj , guj ≤ zu, guj ≥ xuj + zu − 1,

huj(s, a) ≥ 0, huj(s, a) ≤ xuj , huj(s, a) ≤ fh(s, a), huj(s, a) ≥ xuj + fh(s, a)− 1.

6.4 . Machine replacement problem

In this section, we present a series of numerical results to compare the approaches discussed earlier.These comparisons aim to evaluate theperformance and efficiency of the different reformulations and solversin solving the respective problems. By conducting these comparisons, we can gain insights into the strengthsand limitations of each approach and make informed decisions based on the specific problem characteris-tics. All the numerical results below are performed using Matlab and Python 3.8.8 on an Intel Core i5-1135G7,Processor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD.
6.4.1 . Comparison between moment-based and statistical distance-based approaches, full support and

121



nonnegative support
We consider a machine replacement problem where a machine in a factory has a life-time of N years. Atevery stage a maintenance of the machine is scheduled but a factory owner can decide whether to repair ordo not repair the machine. There is a high probability that the machine behaves like a new one if it is beingrepaired and its life gets reduced by a year if it is not being repaired. The factory owner incurs maintenancecost if he decides to repair the machine. It can be modelled as an MDP problem where the life of a machinerepresents the state of underlying Markov chain, i.e., there areN+1 states. The first state represents a brandnewmachine. At each state there are two actions: i) "repair", ii) "do not repair". The transition probabilities ofthe Markov chain with respect to each action is given by Figure 7.1. The maintenance cost corresponding toevery state-action pair is not exactly known and is realised after the decision ismade. Therefore, it ismodelledwith a random variable. We assume that for every state action pair (s, a), the maintenance cost is definedas ĉ(s, a) = K + Ẑ(s, a), where K represents the fixed cost and Ẑ(s, a) represents a variable cost which is arandom variable. The machine generates a revenue L(s, a) at state-action pair (s, a) and the profit for each

(s, a) ∈ K is given by
R̂(s, a) = L(s, a)−K − Ẑ(s, a). (6.83)

The factory owner is interested in maximizing the expected discounted profit. We assume that the factoryowner has a finite number of the same machines which are modelled using the same Markov chain. There-fore, we compute the optimal repair policy with respect to a single machine and the same repair policy canbe applied for all other machines. We compare the performance of DRCCMDP for each uncertainty set with

Figure 6.7: Machine replacement MDP with two actions: "repair" (with solid lines) and "do not repair" (with dashed lines)
the CCMDP model (6.6) where the distribution of R̂ is assumed to be a normal distribution. In our numericalexperiments, we set the number of states to 10, the threshold value ϵ = 0.1, the discount parameter α = 0.85and the initial distribution of states γ to be uniformly distributed. For the above instance, |K| = 20 and R̂ is a
20× 1 random vector with mean vector µ given by

µ(s, a) = L(s, a)−K − µẐ(s, a), (6.84)
where µẐ is the mean vector of the random cost vector Ẑ. We take K = 10, the function L and the mean
cost µẐ corresponding to each state-action pair are summarized in Table 6.8. The covariance matrix Σ of R̂is randomly generated using the following formula

Σ =
AAT
20

+D20, (6.85)
whereA is a 20×20 randommatrixwhose all the entries are real numbers belonging to [0, 1], andD20 is a 20×20diagonal matrix with D20(10, 10) = 4, D20(20, 20) = 9, D20(i, i) = 1, for every i ̸= 10, 20 and all other entriesequal to zero. We use the above µ and Σ for all the moment based uncertainty sets. For ϕ-divergence based
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Table 6.8: Random cost Ẑ and Revenue L

State(s)Action(a) "Repair"
µẐ(s, 1)

"Do notrepair"
µẐ(s, 2)

"Repair"
L(s, 1)

"Do notrepair"
L(s, 2)1 10 0 30 302 10.1 0 30 29.93 10.2 0 30 29.84 10.3 0 30 29.75 10.4 0 30 29.66 10.5 0 30 29.57 10.6 0 30 29.48 10.7 0 30 29.39 10.8 0 30 29.210 10.9 5 30 29.1

Table 6.9: Other parameters
Known meanunknown covariance δ0 = 0.9

Unknown meanunknown covariance δ1 = δ2 = 1

ϕ−divergence θϕ = 0.01

Wasserstein distance θW = 0.01
H = 1000

uncertainty set, we take the nominal distribution ν as a normal distribution with mean µν = µ and covariancematrix Σν = Σ where µ and Σ are defined by (6.84) and (6.85), respectively. For Wasserstein distance baseduncertainty set, we take the number of observationsH = 1000. The scenarios (ξ̃i)Hi=1 are randomly generatedby taking ξ̃i = Bx + µν , where x is a standard normal vector, µν is defined by (6.84) and B is the Choleskyfactorization of Σν defined by (6.85). We summarize the other parameters related to all the uncertainty setsin Table 6.9.
Table 6.10: Optimal policies of CCMDP-R and DRCCMDP-R with full and nonnegative supports

State(s)
Optimalpolicies CCMDPGaussian(p,1-p)

Full supportknown meanknown covariance(p,1-p)

Full supportknown meanunknown covariance(p,1-p)

Full supportunknown meanunknown covariance(p,1-p)
ϕ−divergence(Modified χ2)(p,1-p)

ϕ−divergence(variation)(p,1-p)
1 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)2 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)3 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)4 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)5 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)6 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)7 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)8 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)9 (0, 1) (0.64, 0.36) (0.64, 0.36) (0.6, 0.4) (0.27, 0.73) (0.05, 0.95)10 (0.9, 0.1) (0.91, 0.09) (0.91, 0.09) (0.91, 0.09) (0.9, 0.1) (0.9, 0.1)

We compute an optimal policy of the CCMDP-R problem (6.6), where R̂ follows a normal distribution withmean vector and covariance matrix defined by (6.84) and (6.85), by solving an equivalent SOCP problem [56].The optimal policies of the DRCCMDP-R problem for all the uncertainty sets are computed by solving theproposed equivalent optimization problems. We present the optimal policies of CCMDP-R and DRCCMDP-Rwith full support and nonnegative support in Tables 6.10 and 6.11, where p is the probability of "repair" actionand 1−p is the probability of "do not repair" action. It is clear from Tables 6.10 and 6.11 that the optimal repairpolicy corresponding to all the uncertainty sets for first eight states is same. At state 9 the probability of repairis greater than the probability of do not repair for moment based uncertainty sets whereas for statisticaldistance based uncertainty sets the probability of repair is less than the probability of do not repair. Thisshows that the statistical distance based uncertainty sets give better optimal policy as compared to momentbased uncertainty sets and the nonnegative support uncertainty sets give better optimal policy as comparedto full support uncertainty sets. At the last state, the optimal policy is to choose repair action with a very highprobability for all the uncertainty sets.
6.4.2 . Comparisons in terms of running time between different reformulations methods

123



Table 6.11: Optimal policies of CCMDP-R and DRCCMDP-R with full and nonnegative supports (continued)
ϕ−divergence(Kullbach-Leibler)(p,1-p)

ϕ−divergence(Hellinger )(p,1-p)
Full supportWasserstein(p,1-p)

Nonnegativeknown meanknown covariance(p,1-p)

Nonnegativeknown meanunknown covariance(p,1-p)

Nonnegativeunknown meanunknown covariance(p,1-p)
NonnegativeWasserstein(p,1-p)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)(0.25, 0.75) (0.28, 0.72) (0.02, 0.98) (0.62, 0.38) (0.62, 0.38) (0.59, 0.41) (0.01, 0.99)(0.9, 0.1) (0.9, 0.1) (0.9, 0.1) (0.91, 0.09) (0.91, 0.09) (0.91, 0.09) (0.9, 0.1)

We consider a machine replacement model with fixed reward and random transition probabilities. Thereward vector is given by
R(s, a) = L(s, a)−K − µ(s, a), (6.86)

whereK = 10 and L, µ are given in Table 6.8. Transition probabilities p are |S| × |K|− random variable, whichfollows an uniform distribution on φp. We simulate J = 100 data points of φp. The other parameters aretaken similarly as random reward model. We present the time analysis by considering the number of statesfor all uncertainty sets between 100 and 1000. All the parameters are taken similar to the case of 10 states.We utilize different solvers for solving the optimization problems described as follows:
• Gurobi solver: We use Gurobi solver to solve SOCP (6.12) with κ =

√
1−ϵ
ϵ , theMISOCP (6.47) and theMILP

in case of uncertainty set D1 of random transition probabilities.
• Mosek solver: To solve SDP relaxation of the copositive optimization copositive optimization problem(6.13), we employ Mosek solver. The SDP relaxation is a common approach to approximate copositiveoptimization problems.
• Baron solver: For the biconvex optimization problem biconvex optimization problem (6.54), we utilizethe Baron solver. Baron is a nonlinear nonconvex solver that is well-suited for handling such problems.
• BNB solver in YALMIP toolbox of Matlab: The MISDP optimization for uncertainty set D2 in randomtransition probabilities is solved using the Branch-and-Bound (BNB) solver available in the YALMIP tool-box of MATLAB. This solver is specifically designed to handle mixed-integer semidefinite programmingproblems.

The results obtained from these solvers are presented in Figure 7.2. The figure illustrates that the CPU timeis generally similar for both the SOCP and MILP formulations. However, solving MISOCP and SDP problemstypically requires more CPU time. Additionally, MISDP and biconvex optimization problems tend to have sig-nificantly longer computation times. Overall, the figure highlights the differences in computational efficiencyamong the different optimization approaches and solvers, demonstrating that the CPU time required variesbased on the specific problem formulation and solver employed.
6.5 . Conclusion
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Figure 6.8: CPU time (in seconds) vs number of states

We study a DRCCMDP problem under various moment and statistical distance based uncertainty setsdefined using ϕ-divergence and Wasserstein distance metric in two cases: random reward and random tran-sition probabilities. We propose equivalent SOCP, MISOCP, copositive optimization problem, biconvex opti-mization problem, MILP, MISDP depending on the choice of the uncertainty set, for the DRCCMDP problem.All these optimization problems except biconvex optimization problems and MISDP can be solved efficientlyusing known optimization solvers. We perform numerical experiments, using the optimization solvers inpython, on amachine replacement problem using randomly generated data. The numerical experiments areperformed on the DRCCMDP problem up to 1000 states and it is very clear from our time analysis that theseproblems can be solved very efficiently.This chapter correspond to the reference [169].
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Chapter 7 :Conclusions and Perspectives

7.1 . Conclusions

In conclusion, this thesis has delved into the study of convexity properties in chance constrained opti-mization and their applications in random games and Markov decision processes (MDPs). The research hasexplored various aspects related to these topics, yielding important results and insights. The study of chanceconstrained optimization and its applications remains an attractive research area. The following notable re-search results were obtained
• We studied on the study of linear joint chance constraints with a random technologymatrix. We assumethat the constraint row vectors follows an elliptical distribution and the dependence among the rows ismodelled by Gumbel-Hougaard copulas. Building upon previous work, particularly the paper by Chenget al. [48], we extended the analysis to provide a deeper understanding of the convexity propertiesin a more specific setting. Under certain assumptions, primarily relating to the probability level, weestablished the convexity of the feasibility set for the considered linear joint chance constraints. Thisresult demonstrates the inherent structural properties of the problem, highlighting the potential fordeveloping efficient solution approaches.
• Convexity result of chance constraints can be applied to show the existence of a Nash equilibrium ina chance-constrained game. We studied an n−players chance-constrained game with random payoffsand continuous strategy sets. Each player’s payoff function was defined by its expected value, whiletheir strategy sets were defined by joint chance constraints. These joint chance constraints incorporateddependent random constraint vectors that followed elliptically symmetric distributions. To capture thedependence among these random constraint vectors, we employed the Archimedean copula. Ourmaincontribution was the proposal of a reformulation for the joint chance constraint of each player based onthe family of Archimedean copulas tomodel the dependence between the row vectors of the technologymatrix. The paper emphasizes the importance of the convexity of the feasibility set in the context of then-player gamewith random payoffs and joint chance constraints. This convexity property plays a crucialrole in establishing the existence of a Nash equilibrium in the paper. Next, we extended the study ofthe n-player chance-constrained game with elliptically distributed assumption. Specifically, we focusedon a slight extension of the distribution of row vectors in the technology matrix. We assume that therow vectors follow a normal mean-variance mixture distribution, which belongs to a broader class ofdistributions, allows us to better capture the characteristics of real-world data and applications. To finda Nash equilibrium, we proposed a best-response algorithm. This algorithm sequentially solves convexoptimization problems to determine the optimal strategies for each player. By iteratively updating thestrategies basedon the best response to the strategies of other players, we aimed to converge to a stableNash equilibrium (not guarantee). We applied the game to model a financial competition scenario,showcasing the usefulness of the approach in real-life applications.
• We consider a two-player zero-sum game with random linear chance constraints. These chance con-straints are characterized by distributions that belong to either moment based uncertainty sets or sta-tistical distance based uncertainty sets. The main result of this chapter is the demonstration of the exis-tence of a saddle point equilibrium of the game. This equilibrium represents the optimal solution whereneither player can unilaterally deviate from their strategy to improve their payoff, given the strategy of
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the opponent, also known as Nash equilibrium. This result is significant as it establishes the uniqueequilibrium point, ensuring the stability of the game under the considered random linear chance con-straints. To compute this saddle point equilibrium, we propose a novel approach based on solving aprimal-dual pair of second-order cone programming (SOCP) problems. By formulating the game as aprimal-dual pair of SOCPs, we exploit the duality theory to efficiently find the equilibrium point. Thisapproach offers computational tractability and guarantees the convergence to the saddle point equilib-rium.
• We study MDP problems of two types: one where the transition probabilities are known and the rewardvector is a randomvectorwith a partially knowndistribution, and the otherwhere the reverse holds true.To handle the uncertainty in these MDP problems, we adopt the framework of distributionally robustchance-constrained optimization. We consider different types of moment based uncertainty sets andstatistical-distance based uncertainty sets. These uncertainty sets are defined using phi-divergence andWasserstein distance metric. We investigate two scenarios within the random reward case: one wherethe random reward vector has a full support, and another where it has a nonnegative support. To solvethe distributionally robust chance-constrained optimization problems, we show that they can be refor-mulated as deterministic optimization problems using duality theory. This reformulation enables us toleverage existing optimization solvers such as Gurobi, Mosek, the nonlinear nonconvex solver IPOPTor BNB solver in YALMIP toolbox of Matlab. By solving the deterministic reformulations, we can obtainoptimal solutions to the distributionally robust chance-constrained MDP problems. As an applicationof the proposed framework, we study a machine replacement problem, which serves as an illustra-tive example to showcase the effectiveness of our approach. We conduct numerical experiments onrandomly generated instances, demonstrating the applicability and robustness of the distributionallyrobust chance-constrained optimization framework in solving real-world decision problems.
7.2 . Perspectives

In this thesis dissertation, several perspectives and future directions can be considered to further expandand advance the research in the field. The following prospects highlight potential areas of exploration anddevelopment:
• A promising direction for future research involves expanding the existing framework of convexity re-sults in chance-constrained optimization to encompass a broader range of cases. This expansion canbe achieved by exploring several avenues, such as considering different types of copulas, alternativedistributional assumptions, or incorporating nonlinear chance constraints. By investigating these di-rections, the applicability and generality of the convexity result can be extended, enabling its effectiveutilization in diverse scenarios. In particular, exploring different types of copulas can provide valuableinsights into the relationship between random variables and the dependence structure among them.This exploration can lead to a deeper understanding of the impact of copulas on the convexity proper-ties of chance-constrained optimization problems. Additionally, incorporating alternative distributionalassumptions allows for a more comprehensive analysis of the convexity result, accounting for a widerrange of probability distributions and their associated characteristics. Another promising avenue for re-search involves considering nonlinear chance constraints. Nonlinear chance constraints capture morecomplex relationships between decision variables and uncertainties, and their investigation can signifi-cantly enhance the flexibility and practicality of chance-constrained optimization models. By examiningthe convexity properties of these constraints, researchers can identify new solution techniques and de-velop innovative optimization algorithms tailored to handle nonlinear chance constraints effectively.
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Furthermore, investigating the analytic properties of chance constraints, such as the differentiability ofthe probability function, offers a rich area for exploration. Understanding the differentiability character-istics provides insights into the behavior and structure of chance constraints, enabling the developmentof specialized solution methodologies. By leveraging this knowledge, researchers can design novel al-gorithms and techniques that exploit the differentiability properties, ultimately leading to improvedsolution quality and efficiency. By pursuing these research directions, the understanding of convexityin the context of chance constraints can be advanced. This advancement not only broadens the theo-retical foundations of chance-constrained optimization but also paves the way for novel applications indecision-making under uncertainty. Ultimately, these research efforts contribute to the developmentof more robust and effective optimization frameworks that account for uncertainties in real-world sce-narios.
• Our potential research in chance-constrained games is exploring the existence of a Nash equilibriumin the case of dependent row vectors in the normal mean-variance mixture distribution is an intrigu-ing and open research direction with significant potential. Currently, the assumption of independenceamong the row vectors provides tractable analysis and serves as a fundamental basis for studying Nashequilibria. However, incorporating dependence among the row vectors introduces a new level of com-plexity to the problem formulation. By considering dependent row vectors in the normalmean-variancemixture distribution, researchers can delve into the intricacies of interdependencies and their impacton the existence of Nash equilibria. This direction opens up avenues for investigating the relationshipbetween dependence structures, such as correlation or covariance, and the emergence of equilibriumsolutions. It also allows for the exploration of how different forms of dependence can influence strategicdecision-making and equilibriumoutcomes. Addressing the challenges posedby dependent row vectorsrequires the development of novel analytical techniques and solution methodologies. Research effortscan focus on adapting existing game-theoretic frameworks to accommodate dependence or introduc-ing new mathematical tools specific to the analysis of dependent row vectors. These advancementswill enable a deeper understanding of the behavior and properties of Nash equilibria in settings withcomplex interdependencies. Furthermore, exploring the existence of Nash equilibria in the presenceof dependent row vectors has practical implications across various domains. For example, in finance,considering dependence among asset returns can provide valuable insights into portfolio optimization,risk management, and market equilibrium. In social networks, understanding the influence of intercon-nections among individuals can shed light on strategic interactions and the emergence of equilibriumbehavior.
• Applying chance-constrained games and Markov decision processes models in other fields of applica-tion can open up new avenues for research and practical implementations. Some potential fields whereour models can be applied are energy systems, transportation and logistics, environmental manage-ment and healthcare systems. In energy systems, the application of our models to energy systemscould enable more efficient and effective management of power generation and distribution. The in-herent uncertainty of renewable energy sources, like wind or solar power, lends itself to the chance-constrained models. Optimal decision making can be enhanced by applying these models to problemslike grid balancing, where unpredicted changes in energy supply and demand can be managed effi-ciently. Additionally, these models could be used for strategic investment planning in the energy sector.Transportation and logistics represent a vast area for potential application of our models. The complex-ity of decision-making in this field, influenced by a multitude of stochastic factors like traffic, weatherconditions, and customer demand, aligns well with our game and MDP models. This could lead to in-novations in areas like route optimization, delivery scheduling, and fleet management. Moreover, theemergence of autonomous vehicles could benefit significantly from the predictive and adaptive capa-
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bilities of our models. Environmental management is increasingly becoming an important field due tothe heightened awareness of climate change. Our models could help policymakers and environmentalscientists make better decisions under uncertainty, such as the optimal allocation of resources for pol-lution control or wildlife conservation efforts. Themodels could also be used to predict and adapt to theuncertain impact of climate change on various ecosystems, thereby aiding in the creation ofmore robustconservation strategies. In healthcare systems, our models could be instrumental in improving patientoutcomes and healthcare delivery by enabling more effective decision-making under uncertainty. Thiscould range from optimizing patient scheduling in hospitals, making decisions about treatment plansunder uncertain patient responses, to managing the supply chain of vital medicines and medical equip-ment. Furthermore, with the rise of personalized medicine, these models could be used to make betterindividualized treatment decisions based on each patient’s unique health parameters.
• In the current era of digital transformation, we’re witnessing an unprecedented proliferation of dataacross various industries. This data explosion presents both challenges and opportunities. The chal-lenges lie in handling the vast volumes of complex data and deriving meaningful insights from it. Theopportunities arise from the potential of using this data tomakemore informed decisions, improve pro-cesses, and ultimately, enhance the overall efficiency of systems. By integrating machine learning (ML)into chance-constrained optimization, we can create models that not only handle large and complexdata but also learn from it. Thesemodels will continuously improve their performance, adapting to newdata and evolving trends. This will result in optimizationmodels that are both dynamic and resilient, pro-viding reliable solutions even in the face of changing environments. On the other hand, the integrationofML and optimization has the potential to bring theoreticalmodels closer to real-world applications. Byutilizing ML’s capacity to handle real-world complexities, we can develop chance-constrained optimiza-tion models that are not only theoretically sound but also practically applicable. This could drasticallyexpand the scope of chance-constrained optimization, opening up new fields of application.
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