
HAL Id: tel-04214869
https://theses.hal.science/tel-04214869

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical studies of arithmetical pseudo-random
numbers generators

Florette Martinez

To cite this version:
Florette Martinez. Mathematical studies of arithmetical pseudo-random numbers generators. Cryp-
tography and Security [cs.CR]. Sorbonne Université, 2023. English. �NNT : 2023SORUS222�. �tel-
04214869�

https://theses.hal.science/tel-04214869
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

DE SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunication et Électronique (Paris)

Présentée par

Florette MARTINEZ

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Mathematical studies of arithmetical pseudo-random
numbers generators

Thèse dirigée par Damien Vergnaud

soutenue publiquement le 04 Juillet 2023

après avis des rapporteurs :

Mme. Adeline ROUX-LANGLOIS Chargée de Recherche, CNRS
M. Mehdi TIBOUCHI Industriel, NTT (Japon)

devant le jury composé de :

M. Jean-Sébastien CORON Professeur, Université du Luxembourg
Mme. María NAYA-PLASENCIA Directrice de Recherche, INRIA Paris
Mme. Adeline ROUX-LANGLOIS Chargée de Recherche, CNRS
M. Mehdi TIBOUCHI Industriel, NTT (Japon)
M. Damien VERGNAUD Professeur, Sorbonne Université
M. Vincent ZUCCA Maître de conférences, Université de Perpignan

Remerciements
C’est le début de ce manuscrit et pourtant nous voilà dejà dans les crédits du générique de fin

! Je n’ai hélas pas la possibilité de faire en sorte que ces dizaines de feuilles de papier vous jouent
une musique façon carte de voeux musicale. Alors chantez-vous une petite chanson et c’est parti !

Je tiens bien évidemment à commencer par remercier Damien Vergnaud, mon directeur de thèse.
C’est quelqu’un d’une patience et d’une gentillesse incroyables qui m’a toujours encouragé. Il m’a
présenté des problèmes pertinents et n’a pas hésité à me fournir les outils adéquats (et colorés)
pour les résoudre. Je voudrais également remercier Charles Bouillaguet grâce à qui j’ai compris
l’importance de l’implémentation des attaques cryptographiques et qui m’a présenté un des TP
d’informatique les plus complets et immersifs que j’aie pu voir. Bien que j’aie eu une collaboration
beaucoup plus restreinte avec lui, je tiens à remercier Jean-Sébastien Coron, qui m’a permis de
comprendre un peu plus en profondeur comment fonctionnait l’attaque de Stern sur le générateur
congruentiel linéaire. Je remercie aussi Vincent Zucca et María Naya-Plasencia qui ont pris du
temps pour faire partie de mon comité de suivi de thèse. Merci au jury d’être ici aujourd’hui et
aux rapporteurs d’avoir pris le temps de lire mon manuscrit en détail.

Je voudrais remercier également les personnes qui étaient là quand je suis arrivée même si nous
avons rarement discuté de sciences: Jean-Claude Bajard, Anand, Jérôme et Thomas. Même si le
covid et le départ des troisièmes années a vidé le bureau, toute une nouvelle bande a su lui donner
une nouvelle vie, alors merci à Abdel, Thibauld, Samuel, Jules, Mickael, Orel et Ahmed. Merci
aussi aux peluches, fléchettes et autres Nerfs qui ont su remplir les fins d’après-midi où la motivation
n’était plus au rendez-vous.

Merci à Noé, William, Maxence, Adrien et Émeline pour les gartic phones du dimanche soir,
parce que le covid c’était dur. Merci à ma mère chez qui j’ai passé mes confinements et à sa cuisine
depuis laquelle j’ai présenté mon papier à CT-RSA. Merci à Bertille, ma soeur qui est passé par là
avant moi et qui a su me donner des conseils avisés. Merci à Claire, Pierre-Alexandre et Solène, qui
sont là depuis longtemps et dont le soutien m’est très précieux. Merci à Julia, que j’ai rencontrée
au tout début de ma thèse et qui n’est jamais vraiment partie du bureau depuis.

Et puis merci à Ambroise pour les petits pains (on parle ici bien évidemment de chocolatines)
et pour la relecture de ma thèse (entre autres).

i

Contents

I The Linear Congruential Generator 1
0.1 Pseudo-Random Number Generators . 2
0.2 Cryptanalysis of Pseudo-Random Number Generators 3
0.3 The Linear Congruential Generator . 3
0.4 The Lagged Fibonacci Generator and the Multiple Recursive Generator 5
0.5 The Knapsack Generator . 5
0.6 Contributions of this Thesis . 6

0.6.1 Organization of this thesis . 8
0.7 Notations . 8

1 Euclidean lattices 9
1.1 Norms for lattices . 10
1.2 About short vectors in a lattice . 12

1.2.1 Shortest Vector problem . 12
1.2.2 The Gaussian Heuristic . 12
1.2.3 The Closest Vector problem . 13

1.3 Lattice basis reduction algorithms . 15
1.4 Babai’s rounding algorithm . 15
1.5 Coppersmith method . 16

1.5.1 A basic version of the method . 16
1.5.2 The complete version . 18

2 Attacks Against the Linear Congruential Generator 19
2.1 Attacks when the multiplier and the modulus are known 20

2.1.1 Recover the seed solving a Closest Vector Problem 20
2.1.2 Attack from Frieze et al. 21

2.2 Attacks when the multiplier is unknown . 23
2.2.1 Attack using the Coppersmith method . 23
2.2.2 Stern simplified Attack . 26
2.2.3 Knuth Attack on the Knuth generator . 31

2.3 Attacks when both the multiplier and the modulus are unknown 31
2.3.1 Presentation of the attack . 31
2.3.2 Theoretical choice of the parameters . 32

2.4 Variants of the Linear Congruential Generator . 34
2.4.1 One output over two . 34

ii

2.4.2 Upper bits truncated . 34

II Reducing Pseudo Random Number Generators to Linear Congru-
ential Generators 36

3 The Permuted Congruential Generator 37
3.1 Presentation of the Generator . 38
3.2 Dealing with a noisy truncated Linear Congruential Generator 39

3.2.1 Reconstruction in Low Dimension Using Babai’s Rounding 40
3.3 State Reconstruction for PCG64 With Known Increment 41
3.4 State Reconstruction for PCG64 With Secret Increment 44

3.4.1 Partial Difference Reconstruction . 45
3.4.2 Predicting all the Rotations . 46
3.4.3 Full Difference Reconstruction . 48
3.4.4 Complete State Reconstruction . 48

3.5 Implementation and Practical Results . 49
3.5.1 Known Increment . 50
3.5.2 Unknown Increment . 51

4 Attack on Trifork 53
4.1 Description of Trifork . 53
4.2 General idea behind the attack . 55
4.3 Recovering Z−r3 . 56
4.4 Recovering Y−r2 . 58
4.5 Experimental results . 60

5 Attack on the Fast Knapsack Generator 61
5.1 Description of the Fast Knapsack Generator . 61
5.2 Attacking an LCG with non consecutive pairs of outputs 63
5.3 Attacking the Fast Knapsack Generator . 64

5.3.1 Attack with consecutive outputs(Coppersmith method) 64
5.3.2 Attack with consecutive outputs (Stern method) 66
5.3.3 Attack via Coppersmith method without consecutive outputs 67

6 Multiple Recursive Generator 69
6.1 Recovering the seed solving a Closest Vector Problem 69

6.1.1 Experimental results . 70
6.2 Retrieving the seed using the attack from Frieze et al. 71

6.2.1 Experimental results . 72
6.3 Recovering the seed when the multiplier is unknown 73

6.3.1 Link with the simplified Stern attack for the Linear Congruential Generator . 73
6.3.2 Theoretical parameters . 73
6.3.3 Experimental results . 74

6.4 Multiple Recursive Generator with secret modulus 75
6.5 The particular case of Combined Multiple Recursive Generators (CMRG) 75

6.5.1 Attack on the MRG32 . 76

iii

6.5.2 The MRG32k3a by L’Écuyer . 78

III Attack on a combined generators 79

7 A Generalization of the Knapsack Generator 80
7.1 Generalized Subset-Sum Generator . 80
7.2 High-level description of the attack . 81
7.3 Preliminaries . 82
7.4 Finding “Good Triplets” . 84

7.4.1 A Simple Sub-Quadratic Algorithm to Find Good Triplets 87
7.4.2 Sub-Quadratic Algorithm with Overwhelming Success Probability 87

7.5 Practical Key-recovery Attack on von zur Gathen-Shparlinski Elliptic Knapsack Gen-
erator . 89
7.5.1 Attack on the Elliptic Subset Sum Generator 89
7.5.2 Experimental Results . 91

7.6 Theoretical Key-recovery Attack on the Elliptic Knapsack Generator 92
7.7 Practical Key-recovery Attack on the Subset Product Generator 93

7.7.1 Description of the Attack . 93
7.7.2 Experimental Results . 94

8 Arrow 96
8.1 About Lightweight Cryptographic . 96
8.2 Presentation of Arrow . 96
8.3 Attack on a first hardware version of Arrow . 98
8.4 Another hardware version of Arrow . 100
8.5 A software version of Arrow . 102

9 Conclusion and perspectives 105

iv

Part I

The Linear Congruential
Generator

1

Introduction

0.1 Pseudo-Random Number Generators
Cryptography is a field of computer science and mathematics that deals with the study of techniques
and algorithms for securing communication and data against unauthorized access, modification,
or disclosure. Pseudo-random number generators play a critical role in modern cryptography as
they allow for the creation of numbers that are unpredictable and can be used as the basis for
cryptographic keys and other essential components of cryptographic algorithms. More precisely, a
Pseudo-Random Number Generator (PRNG) is an (efficient) deterministic algorithm that generates
a sequence of numbers that appear to be statistically random and unpredictable even if they are
actually generated from a fixed (short) initial value, called the seed. The generated (pseudo-random)
numbers can be used for numerous applications in cryptography (e.g. key generation, initialization
vector generation for block cipher modes of operation, nonces generation in communication protocols
such as SSL/TLS or SSH to prevent replay attacks of in signature schemes such as ECDSA, password
salting, …).

The one-time pad is a standard cryptographic technique for encrypting messages using a random
key that is as long as the message itself. The key is generated using a truly random process and
used once and never reused; to encrypt the message, the sender combines each plaintext character
with the corresponding key character using modular addition. The one-time pad is unconditionally
secure (meaning that an attacker who intercepts the ciphertext is unable to derive any information
about the plaintext without the key.) but its practical implementation has some severe limitations.
One can use a PRNG to generate a pseudo-random key from a short seed (and possibly some
initialization vector) and combine it with the plaintext (or ciphertext) using modular addition. In
many cryptographic attacks, the attacker has access to both the plaintext and the corresponding
ciphertext generated by an encryption algorithm; in the context of an encryption scheme constructed
using a PRNG to emulate a one-time pad, this means that the adversary is given access to the
actual outputs of the generator and may try to deduce the seed used by the generator. This kind of
attack is deemed a key-recovery attack and it can have devastating consequences (since they would
allow an attacker to decrypt any encrypted messages that were encrypted using the compromised
seed). Actually, to be considered secure in practice, a PRNG should achieve the indistinguishability
security definition which is a measure of how difficult it is for an attacker to distinguish the output
of the generator from a truly random sequence. In this thesis, we will analyze the security of several
number-theoretic PRNG and we will present key-recovery attacks against them (showing that they
cannot be considered secure and should not be used in practice).

An alternative suitable for some setting is to use “True” Random Number Generators that
generates truly random numbers by measuring physical phenomena that are unpredictable and

2

random in nature (e.g. temperature of a CPU, movements of a computer mouse, …). These
generators can be more expensive and less efficient than deterministic software counterparts because
they require specialized hardware to measure the physical phenomena used to generate random
numbers. Moreover, they can be vulnerable to various types of attacks, such as physical attacks or
environmental factors that can affect the measured physical phenomena. An interesting approach
is to use a hybridisation between the two techniques and to continuously collect inputs from the
physical source of randomness and to produce outputs that depend on the previous inputs using a
PRNG. This class of algorithm is usually called a pseudo-random number generator with input [7, 23].
Such generators will not be studied in this thesis.

0.2 Cryptanalysis of Pseudo-Random Number Generators
Analysing the quality of randomness for a PRNG suited for cryptographic applications is natural
as a failure in these PRNGs would lead to problematic security breaches. In 1997, Golic presented
in [29] a first attack against A5/1, a standard stream cipher for GSM communication. The list of
attacks against this standard and its successors can be found in [16]. In 2008, a bug in the OpenSSL
package in Linux led to insufficient entropy gathering and to practical attacks on the SSH and SSL
protocols [67].

Attacking a non-cryptographic PRNG is not irrelevant. Non-cryptographic PRNGs tend to
be faster and lighter than their cryptographic counterparts. As they do not pretend to achieve
some kind of security, they are less studied by cryptanalysts hence there might not exist any
known attack against them. Because of that, one might be tempted to replace a strong but slow
cryptographic PRNG with a faster non-cryptographic one. Breaking non-cryptographic PRNGs
could deter anyone to use them outside of what they are made for. Such mistakes have already
been made, for example for the website Hacker news and it leads to a real life attack, see[26] (this
particular example will be discussed later in section 6.5).

Attacking a non-cryptographic PRNG is not only security-related. PRNGs can be used in
numerical simulations and a hidden structure in a PRNG could cause bias in said simulation. In
[25], Ferrenberg et al. ran classical Ferromagnetic Ising model Monte-Carlo simulations in specific
cases where exact results were known, with different PRNGs. They observed that the choice of the
PRNG had a significant impact on the outcome. For example, a given linear feedback shift register
tent to give energy levels that were too low and a critical temperature that was too high.

0.3 The Linear Congruential Generator
The Lehmer Generator (the first known ancestor of the Linear Congruential Generator) was pre-
sented by Lehmer in 1949 in [41]. It is defined by the recurrence relation

xn+1 = axn mod N

where x is the sequence of pseudo-random values, a the multiplier and N a modulus of the form
2n ± 1. At this point, there was no notion of secure pseudo-random number generator, as the
internal state was directly output at each step. In this article there is no generic discussion of the
period of such a generator.

3

In 1958, Thomson presented in [62] a variation of this generator, defined by the recurrence
relation

xn+1 = (4k + 1)xn + k mod 2ℓ

where k is odd. The goal of this generator was still not to be secure as they were still outputting the
whole internal states but its efficiency: the modulus was a power of two to accelerate computations
on a binary machine and the period was proven to be 2n.

Rotenberg presented in 1960 in [55] his version of the linear congruential generator defined by
the recurrence

xn+1 = (2a + 1)xn + c mod 235

where c is odd. With the multiplier being of this particular form, the generator is even more efficient
than the previous one. Once again the period is proven to be 235 and numerical tests were run to
compute the correlation between two consecutive outputs (and thus estimate the statistical quality
of the produced randomness). The same year, in [21], Coveyou presented a way to theoretically
compute the correlation.

A first mention of using a Linear Congruential Generator to encrypt data can be found in [36] in
1985. Of course only the leading bits of the sequence should be used or there would be no security
at all. In this article, Knuth considers the variation of the LCG defined by the recurrence

xn+1 = axn + c mod 2ℓ

where the multiplier a satisfies a ≡ 1 mod 4 and the constant c satisfies c ≡ 1 mod 2. He proposed
a first algorithm to recover the seed of such a generator when the multiplier and the constant are
not known and the last ℓ bits are missing with time complexity O(ℓ). This attack will be described
in subsection 2.2.3.

The first use of lattice-base cryptographic techniques against Truncated LCG comes from Frieze,
Hastad, Kannan, Lagarias, and Shamir in 1988 in [27]. They present a lattice-based attack to recover
solutions of linear congruential systems. One of their application is the attack of a Truncated Linear
Congruential Generator when the multiplier, constant, and modulus are known. The algorithm
runs in polynomial time and returns the correct values for a very large window of parameters. The
algorithm will be presented in subsection 2.1.2.

The most famous algorithm used to attack the Truncated LCG even when the multiplier, the
constant, and the modulus are unknown was presented in the article Secret linear congruential
generators are not cryptographically secure[59] by Stern in 1987. The title is self-explanatory, the
window of parameters allowing the Truncated LCG to be used as a cryptographic PRNG is not
wide enough. The algorithm presented in the paper will be described in the section 2.3.

Does the LCG have any advantage left? It remains one of the oldest and best-known PRNG.
It is easy to understand and to implement and one can find online lists of optimal parameters.
Because of that some popular programming languages have their version of the LCG as their usual
”rand” function: the Gnu C compiler or the Turbo Pascal compiler for Pascal. But it seems that
the LCG does not produce good quality randomness for scientific applications such as Monte Carlo
computation, see [46].

4

0.4 The Lagged Fibonacci Generator and the Multiple Re-
cursive Generator

Many generalizations of the LCG were proposed to achieve better efficiency and unpredictability.
In 1969, Knuth [37] presented an unpublished additive generator devised in 1958 by Mitchell and
Moore and based on the recursive sequence defined by

xn = xn−24 + xn−55 mod N, for n ≥ 55

where N is even, and where x0, ..., x54 are arbitrary integers not all even. This generator is very
fast since it does not require any multiplication. It is inspired by the simplest recursive sequence in
which xn depends on more than one of the preceding values, namely the Fibonacci sequence, and
the integers 24 and 55 used in the definition are commonly called lags. In the late 90s, Reeds and
Mitchell developed an interesting variant of this algorithm for an early version of UNIX; it was used
in Plan 9 and eventually as the basic random source in the Go programming language in 2008:

xn = xn−273 + xn−607 mod (263 − 1), for n ≥ 607,

where for the initial values x0, . . . , x607, Go uses a vector generated using a LCG.
The Lagged Fibonacci Generators (LFG) have found numerous applications even if it has some

strong statistical flaws and it outputs its full internal state, making it easy to predict after some
(short) amount of time.

To increase the period and improve the statistical properties of the numbers output by an
LCG, many works were devoted to proposing and analysing generators from higher-order linear
recurrence, which are called Multiple Recursive Generators (MRGs). These generators are defined
by a seed (C0, . . . , Ck−1) and the recursive relation

Xn+k = ak−1Xn+k−1 + · · ·+ a0Xn + c mod N

where a = (a0, . . . , ak−1) is the multiplier, c the constant and N the modulus. If the modulus N
is a prime number, then the maximum period of the output sequences of such an MRG can be as
large as Nk − 1. The LFG is a simple example of an MRG with zero values except for two values
equal to 1 in the multiplier and a zero constant.

0.5 The Knapsack Generator
The knapsack problem is a NP-hard problem that was already studied in the 19th century. In this
problem, we consider several objects with weights and values and we want to fill a knapsack for
it to be as light and as valuable as possible. A variation of this problem is called the Subset Sum
Problem where all the objects have the same value and we want to attain a precise weight for the
whole knapsack. In other words we have n weights ω0, . . . , ωn−1 ∈ {0, . . . ,M} and an integer s and
we search for a binary vector u = (u, . . . , un−1) such that

n−1∑
i=0

uiωi = s.

5

In 1983 [39], Lagarias and Odlyzko presented a first algorithm to solve the Subset Sum Problem
using lattice-based techniques as long as M/2n < 0.6463 . . ., it will be quickly detailed in subsection
1.2.1 as an example of an instance of a Short Vector Problem. This result was improved by Coster,
Joux, LaMacchia, Odlyzko, Schnorr and Stern in 1992 in [20] to obtain a correct algorithm for
M/2n < 0.9408 The problem is still considered hard if M = 2n and this is why Rueppel
and Massey introduced the Knapsack Generator [56] in 1985 for cryptographic purposes using a
modular Subset Sum. We consider n secret bits u0, . . . , un−1 and we extend them using a Linear
Feedback Generator (a weak PRNG) to obtain a flow of pseudo-random bits. We also consider n
secret weights ω0, . . . , ωn−1 ∈ {0, . . . , 2n}. At step i the Knapsack Generator computes

vi =

n−1∑
j=0

ui+jωj mod 2n

and output yi which is the n − ℓ leading bits of vi where ℓ is an independent parameter. In 2011,
Knellwolf and Meier [35] presented the main attack against this generator. They used a guess-
and-determine strategy coupled with lattice-based techniques to recover most of the key in relevant
instances of the generator. In order to run said attack, they needed to guess all the n initial control
bits. Hence their attack had a time complexity Ω(2n). An equivalent algorithm to theirs will be
presented as an example of a Closed Vector Problem in subsection 1.2.3. In 2009, von zur Gathen
and Shparlinski presented the Fast Knapsack Generator that had a far smaller key and was sensibly
faster but had not undergo a serious cryptanalysis. This generator will be studied in chapter 5.
In [64], they also presented an elliptic version of this generator that will be studied in chapter 7 of
this manuscript.

0.6 Contributions of this Thesis
Cryptanalysis of the Permuted Congruential Generators. The Permuted Congruential
Generators are popular conventional (non-cryptographic) pseudo-random generators designed in
2014. They are used by default in the NumPy scientific computing package. Even though they are
not of cryptographic strength, their designer stated that predicting their output should nevertheless
be ”challenging”. We present a practical algorithm that recovers all the hidden parameters and
reconstructs the successive internal states of the generator. This enables us to predict the next
“random” numbers and output the seeds of the generator. We have successfully executed the
reconstruction algorithm using 512 bytes of challenge input; in the worst case, the process takes
20 000 CPU hours. This reconstruction algorithm makes use of cryptanalytic techniques, both
symmetric and lattice-based. In particular, the most computationally expensive part is a “guess-
and-determine” procedure that solves about 252 instances of the Closest Vector Problem on a very
small lattice.

These results were originally presented at the international conference FSE 2020 in Practi-
cal seed-recovery for the PCG Pseudo-Random Number Generator by Bouillaguet, Martinez, and
Sauvage [15].

Cryptanalysis of Trifork. Trifork is a family of pseudo-random number generators described in
2010 by Orue, Montoya, and Hernández Encinas. It is based on three lagged Fibonacci generators
and has been claimed as cryptographically secure. To prevent “guess-and-determine” attacks, Tri-
fork uses very large internal states that are initialized using a linear congruential generator from a

6

secret seed made of three secret words of 64 bits. We present a lattice-based attack on Trifork and
show that it cannot have more than 64 bits of security and that it is thus not cryptographically
secure.

Cryptanalysis of Arrow. In 2017, López, Encinas, Muñoz, and Vitini presented a new family
of lightweight pseudo-random number generators, which they called Arrow. These generators are
based on the same techniques as Trifork and designed to be light, fast, and secure, so they can allow
private communication between resource-constrained devices. The authors based their choices of
parameters on NIST standards on lightweight cryptography and claimed these pseudo-random
number generators were of cryptographic strength. We present practical implemented algorithms
that reconstruct the internal states of the Arrow generators for different parameters given in the
original article. These algorithms enable us to predict all the following outputs and recover the
seed. These attacks are all based on a simple guess-and-determine approach which is efficient
enough against these generators. The techniques used there are different from the ones used in the
remainder of this thesis as they are not lattice-related.

These last two contributions were presented at the international conference ACNS 2022 in
Practical Seed-Recovery of Fast Cryptographic Pseudo-Random Number Generator by Martinez [48].

Cryptanalysis of the Fast Knapsack Generator. The fast knapsack generator was introduced
in 2009 by von zur Gathen and Shparlinski. It generates pseudo-random numbers very efficiently
with strong mathematical guarantees on their statistical properties but its resistance to crypt-
analysis was left open since 2009. We present lattice-based practical seed-recovery attacks against
this generator that are surprisingly efficient when the proportion of truncated bits in relation to
the internal states is not too large. Their complexities do not strongly increase with the size of
parameters, only with the proportion of discarded bits.

Cryptanalysis of Combined Multiple Recursive Generators. A combined multiple recursive
generators is a pseudo-random number generator based on combining two or more multiple recursive
generators. L’Écuyer presented the general construction in 1996 and a popular instantiation called
MRG32k3a in 1999. We present lattice-based practical seed-recovery attacks against this generator
family. We use algebraic relations with the underlying algebraic generators to show that they are
cryptographically insecure. We provide a theoretical analysis as well as efficient implementations.

These last two contributions were presented at the international conference CT-RSA 2022 in
Attacks on Pseudo Random Number Generators Hiding a Linear Structure by Martinez [47].

Cryptanalysis of the Elliptic Knapsack Generator. In 2004, von zur Gathen and Shparlinski
suggested a generalization of the knapsack pseudo-random generator in arbitrary abelian groups
and proposed to use it with elliptic curves defined over (prime) finite fields. This generator provides
strong mathematical guarantees on their statistical properties and the authors claimed that: “the
only available attack on this generator is the brute force search over all parameters defining this
generator”. We first present an attack based on a search of combinatorial relations, a (limited)
brute force search, and simple linear algebra to practically break the parameters proposed by von
zur Gathen and Shparlinsk. We then extend this attack using the algebraic group law of the
underlying Abelian group and latticed-based techniques for cases where this partial brute force
search becomes prohibitive.

7

These results have not been published yet and are a joint work by Bouillaguet, Martinez, and
Vergnaud.

0.6.1 Organization of this thesis
The first chapter presents an introduction to Euclidean lattices and their applications in cryp-
tography. We will discuss their use in solving certain instances of the subset sum problem and
in attacking the Knapsack Generator. Additionally, we will introduce several lattice-based tools
such as the Gaussian Heuristic, Babai rounding algorithm, and Coppersmith method, which will
be utilized in subsequent chapters.

Chapter 2 will focus on the Linear Congruential Generator and the known attacks against
it, depending on the public parameters. In Chapter 3, we present our results on the Permuted
Congruential Generator. Chapter 4 is dedicated to describing an attack against Trifork.

Chapters 5 and 6 analyze the Fast Knapsack Generator and the Multiple Recursive Generator,
which can be viewed as a generalization of the LCG. We also present an attack against the Com-
binated Multiple Recursive Generators. Chapter 7 is devoted to our attacks on generalizations of
the knapsack generator, including the elliptic Knapsack Generator and the last Chapter presents
attacks against the lightweight generator Arrow.

0.7 Notations
Here are some useful notations that will be used in this whole manuscript

• Vectors, tuples or sequences will be denoted by bold letters like v and vi denotes the i-th
element of v.

• We will denote by v mod N the vector (v0 mod M, v1 mod M, . . .) and by v/a the vector
(v0/a, v1/a, . . .)

• The XOR operation is denoted ⊕

• The integer division is denoted div

• Left and right rotations are denoted ≪ and ≫ respectively.

• Left and right shift are denoted � and � respectively. Shifts are defined as in the program-
ming language C, meaning that if x is an integer modulo 2n then:

x� ℓ = x× 2ℓ mod 2n and x� ℓ = x div 2ℓ mod 2n

• We will denote byM(n×m)(K) the set of matrices over the ring K with n rows and m columns.
The ring K might be omitted if obvious.

• We will denote by Mi,j the coefficient on the i-th row and j-th column of M .

Experimental results All the experimental results presented in this manuscript are averages of
hundred instances of the algorithm run on sagemath v.9.5 on my laptop, a Dell Latitude running
on Linux 22.04, unless otherwise specified. Theses codes are available on my git account.

https://github.com/floretteM

8

https://github.com/floretteM

Chapter 1

Euclidean lattices

This chapter aims to introduce fundamental concepts, issues, and outcomes concerning lattices to
facilitate the understanding of forthcoming chapters and help non-specialist readers.

Let Rn be the n-dimensional Euclidean space for some integer n ≥ 1. An Euclidean lattice Λ
of rank k and dimension d is a finite Z-module of Rn of rank k. Figure 1.1 presents illustrations of
three lattices of rank 2 in R2 and one lattice of rank 1.

Λ1: Λ2:

Λ3: Λ4:

Figure 1.1: Four different lattices over R2(the grey points represent Z2).

9

A lattice Λ of rank k can be defined by a basis B = {b0, . . . ,bk−1} as

Λ =

{
k−1∑
i=0

αibi for (α0, . . . , αk−1) ∈ Zk

}
.

For the lattices from Figure 1.1, one can see that:

• Λ1 =
{
α(0, 1) + β(1, 0) for (α, β) ∈ Z2

}
• Λ2 =

{
α(0, 2) + β(1, 1) for (α, β) ∈ Z2

}
• Λ3 =

{
α(0.2, 1.5) + β(0.8, 1.3) for (α, β) ∈ Z2

}
• and Λ4 = {α(0.5, 0.6) for α ∈ Z}

Even if a lattice can be defined by a basis, this basis is not unique! We can define the lattice
Λ2 from the red basis or from the blue basis represented on Figure 1.2.

A lattice Λ can be represented by a matrix M whose lines are the vector bi’s. Hence Λ2 can be
represented by

(
0 2
1 1

)
or by

(
−1 1
1 1

)
.

Proposition 1. Let Λ be a lattice of rank n over Rn represented by a matrix M ∈M(n×n)(R).

• For every matrix Z ∈ M(n×n)(Z) of determinant ±1, the matrix Z ×M also represent the
lattice.

• Correspondingly, for every matrix M ′ ∈ M(n×n)(R) representing Λ there exists a matrix
Z ∈M(n×n)(Z) of determinant ±1 such that M ′ = Z ×M .

Corollary 1. By the previous proposition, the absolute value of the determinant of a matrix M
representing a lattice Λ is an invariant of the lattice called the volume and denoted vol(Λ). In other
words, if M represent Λ, then vol(Λ) = |det(M)|.

Definition 1. If Λ is lattice and B = {b0, . . . ,bk−1} a basis, we call a fundamental domain the
subset of space D defined by:

D =

{
n∑

i=1

λibi | λi ∈ [0, 1[

}
.

The volume of the fundamental domain is given by the determinant of the matrix associated to the
basis B.

As for basis, fundamental domains are not unique. In Figure 1.2 we draw two fundamental
domains for the lattice Λ2. One from the red basis and one from the blue basis.

1.1 Norms for lattices
In the following, the notions of ”short” and ”close” vectors are discussed. These notions are defined
for a norm on Rn.

10

Figure 1.2: Two basis and their associated fundamental domains for the lattice Λ2

Definition 2 (Euclidean norm). Let v = (v0, . . . , vn−1) be a vector in Rn, we define the euclidean
norm of v as

‖v‖2 =

√√√√n−1∑
i=0

|vi|2.

Definition 3 (Infinite norm). Let v = (v0, . . . , vn−1) be a vector in Rn, we define the euclidean
norm of v as

‖v‖∞ = max
i
|vi|.

We will also define a norm on the matrices.

Definition 4 (Operator norm). We define the operator norm on M ∈M(n×n)(R) as

~M~ = sup
x∈Rn\0

‖Mx‖2
‖x‖2

.

By definition, for any x ∈ Rn,‖Mx‖2 ⩽ ~M~‖x‖2.

We could also define another operator norm from the infinite norm but it would be of no use in
this manuscript.

Proposition 2. • The operator norm is a sub-multiplicative norm. If we consider A ∈
M(n×n)(R) and B ∈M(n×n)(R) then

~AB~ ≤ ~A~× ~B~

• The operator norm of M ∈M(n×n)(R) is equal to the largest eigenvalue of M .

Remark 1. Here we defined the operator norm on the “matrix × vector” product. But the matrices
M and MT (its transpose) have the same eigenvalue hence the same operator norm. For any vector
x ∈ Rn,‖xM‖2 ⩽ ‖x‖2~M~.

Definition 5 (Condition number). The condition number of an invertible matrix M ∈ M(n×n)

is given by ~M~ × ~M−1~. We denote it cond(M). It is used to define how well a problem
is conditioned (how much an error in the input will affect the output). As the operator norm is
sub-multiplicative, the condition number of a matrix is always greater or equal to one.

11

1.2 About short vectors in a lattice
1.2.1 Shortest Vector problem
Definition 6. The Shortest Vector Problem (SVP) consists in finding, in a lattice, a non-zero
vector v with the shortest norm. We denote by λ1(Λ) (or directly λ1) the value ‖v‖2.

The SVP is a hard problem as all the known SVP-solver are exponential in time. But even
if it is hard in general we will see several examples in this manuscript where finding the shortest
vector in a specific, structured lattice is easy. We can reduce some mathematical problems used in
cryptography to the SVP.

Example 1 (The Subset Sum). Let us consider the case of the subset sum presented in 1983 by
Lagarias and Odlyzko in [39]: we have n public weights (ω0, . . . , ωn−1) ∈ {1, . . . ,M}, a binary (or
at least very small) secret u = (u0, . . . , un−1) and an output y =

∑n−1
i=0 xiωi. Finding u is supposed

to be hard. We consider a large integer N and the following matrix:

A =


1 0 0 Nω0

0 1 0 Nω1

...
0 0 1 Nωn−1

0 0 0 Ny


We notice that z = (u0, . . . , un−1,−1)×A = (u0, . . . , un−1, 0) is a short vector in the lattice spanned
by the rows of A. If N is large enough, only the vectors ending by zero can be candidates as being
the shortest vector. As we already choose u small, we can hope that z is the shortest vector of the
lattice (it is the case when M/2n < 0.6 as detailed in the same article). Finding the vector u is
equivalent to solving the SVP in this particular lattice.

The decisional SVP (knowing if a given vector is the shortest in a lattice) is also a hard problem.
To know if a candidate vector in a lattice Λ has its chance to be the chosen one, we need to know
an approximation of the value λ1(Λ).

1.2.2 The Gaussian Heuristic
Given the volume of a lattice, we can at least easily estimate the value λ1 by the Gaussian Heuristic.
Earlier we have see the notion of fundamental domain. If Λ is a lattice and D a fundamental domain
of Λ, we can tile Λ with D, centred on each lattice point. We tile R2 with the blue fundamental
domain of Λ2 in Figure 1.3.

The Gaussian heuristic “predicts” that if Λ is a full-rank lattice and C is a “nice” measurable
subset of Rn, then the number of points of Λ ∩ C is roughly vol(C)/ vol(Λ). That is to say, if we
can fit k fundamental domains in C, we can assume there are k points of the lattice in C.

For example we consider C a rectangle 2 × 3 in Λ2. By the Gaussian heuristic we should have
around six points of the lattice in C.

We see in Figure 1.4 that we do have six points in C if we count its border. But if we shift C,
only four points would remain in C or its border.

12

Figure 1.3: A fundamental domain of the lattice Λ2 tiling R2

Figure 1.4: A subset C containing six points of lattice and its shift containing only 4 points.

Computing an approximation of λ1: The Gaussian heuristic is neither precise nor proved but
it is an intuition that will help us compute an approximation of λ1. We fix C the n−ball of radius
λ1. Then Λ ∩ C should contain roughly 3 lattices points : 0, v a shortest vector and −v. As the
volume of the n-ball is πn/2

Γ(n
2 +1)

λn
1 , we obtain:

λ1 = 31/n × vol(Λ)1/n

(
Γ
(
n
2 + 1

)
πn/2

)1/n

.

Using the Stirling formula, which is given by n ! ∼
√
2πn

(
n
e

)n, we obtain

λ1 ∼
1√
2eπ

√
n vol(Λ)1/n.

As it is a loose approximation and
√
2eπ ≈ 4 we will use the following:

λ1 ≈
√
n vol(Λ)1/n (1.1)

1.2.3 The Closest Vector problem
Definition 7. The Closest Vector Problem (CVP) consists in finding, in a lattice, the closest vector
to a certain target vector.

13

In Figure 1.5, the red point is the closest lattice point to the blue target vector (the blue target
vector does not have to be a lattice point).

×

Figure 1.5: Solving a CVP in the lattice Λ2

The CVP is a hard problem and known CVP-solver are exponential in time. But we will
see through this manuscript examples of particular, small or structured lattices where solving the
CVP is easy. As for the SVP, there are mathematical problems used in cryptography that can be
reduced to the CVP, such as retrieving the weight of the Knapsack Generator. We will present here
an heuristic attack –different from the one of Knellwolf and Meier– against the Knapsack Generator.
It seems to lead to similar results to the Knellwolf and Meier attack.

Example 2 (The Knapsack Generator). We consider n secret control bits u0, . . . , un−1 that we
extend in a secret pseudo-random flow u using a Linear Feedback Shift Register. Meaning we use
a public binary polynomial P and computes un+j as un+j = P (uj , . . . , uj+n−1) for j > 0. We
also consider n secret weights w = (ω0, . . . , ωn−1) ∈ {0 . . . , 2n}. At step j the Knapsack Generator
computes

vj =

n−1∑
i=0

ui+jωi mod 2n

and outputs yj where yj = vj � ℓ.
To attack, we start by guessing the n control bits u0, . . . , un−1 so we know the pseudo-random

flow u. We denote by m the number of outputs and by v the vector v = (v0, . . . , vm−1) which is in
the lattice Λ spanned by the rows of the following matrix:

u0 u1 . . . um−1

u1 u2 . . . um

. .
.

un−1 un . . . un+m−2

2n

. . .

. . .

2n


and close to 2ℓy, where y = (y0, . . . , ym−1).

14

We call t the closest vector to 2ℓy in Λ. As the lattice contains very small vectors (of norm
'
√
n/2), there is no chance that v = t, but the two vectors will be really close. We denote by ω′

the vector satisfying ω′U = t. To clearly define this vector we will need U to be of rank n so we
must choose m a bit larger than n.

If the control bits u0, . . . , un−1 have been guessed correctly then we will have (ω′−ω)U = (t−v)
over Z and ‖ω′−ω‖2 small so we will be able to recover a good proportion of the secret weights. For
n = 32 and m = 40 we present in the following table the percentage of bits recovered depending on
the number of discarded bits (we consider that the secret control bits are already correctly guessed).

ℓ 2 4 8 16 20 24 26 28
% of correct bits 97 92 80 56 42 30 20 3
computing time 0.44s 0.43s 0.43s 0.45s 0.43s 0.43s 0.43s 0.44s

1.3 Lattice basis reduction algorithms
The Lenstra–Lenstra–Lovász (LLL) algorithm is a polynomial time lattice-basis reduction algorithm
invented by Lenstra, Lenstra, and Lovász in 1982, see [42]. Given a basis B of a lattice Λ, it computes
a shorter basis B′ of the same lattice in polynomial time.

This algorithm uses a parameter δ such that 0 < δ < 1 quantifying the quality of reduction.
The closer to one δ is, the shorter the basis B′ will be. The returned basis B′ = {b′

0, . . . ,b
′
m−1}

satisfies several properties, in particular the following ones:

• The first vector in the basis cannot be much larger than the shortest non-zero vector: ‖b′
0‖2 ≤

(2/(
√
4δ − 1))n−1λ1

• The first vector in the basis is also bounded by the determinant of the lattice: ‖b′
0‖2 ≤

(2/(
√
4δ − 1))(n−1)/2(det(Λ))1/n.

In practice the most common implementations of LLL use δ = 0.99.

Remark 2. If there is no vector v in the lattice satisfying λ1 < ‖v‖2 < (2/(
√
4δ − 1))n−1λ1, then

the LLL algorithm solves the exact SVP in polynomial time.

1.4 Babai’s rounding algorithm
In 1986, Babai proposed in [4] a simple algorithm that solves an approximate CVP. Let Λ be a full
rank lattice represented by a LLL-reduced matrix M ∈M(n×n). Then we can write:

Λ = {αM |α = (a0, . . . , an−1) ∈ Zn}.

Let t be our target vector. As M is invertible in R, there exist β = (b0, . . . , bn−1) ∈ Rn such
that βM = t. We denote by dβc the vector (db0c, . . . , dbn−1c) where bxe denotes the nearest integer
to x (using the “rounding half to even” tie-breaking rule). The vector dβc is the closest integer
vector to β.

15

The vector dβc ×M is a point of the lattice. Let c be the closest vector to t in Λ. Then
‖dβc ×M − c‖2 ≤ ‖dβc ×M − t‖2 + ‖t− c‖2

≤ ‖dβc ×M − β ×M‖2 + ‖t− c‖2
≤ ‖dβc − β‖2 × ~M~ + ‖t− c‖2

A c is part of the lattice, cM−1 is an integer vector and its farther from β than dβc.
‖dβc ×M − c‖2 ≤ ‖cM−1 − β‖2 × ~M~ + ‖t− c‖2

≤ ‖c− t‖2 × ~M−1~× ~M~ + ‖t− c‖2
≤ (cond(M) + 1)‖c− t‖2

If c —the closest vector to t in Λ— satisfies (cond(M)+1)‖c− t‖2 < λ1 then the Babai’s rounding
algorithm outputs c.
Remark 3. Why does M need to be LLL-reduced? Because an LLL-reduced matrix tends to have
a shorter condition number than the original.[66]

1.5 Coppersmith method
The Coppersmith method described here was first presented by Coppersmith in [19] and [18], we
refer the reader to [32] for proofs. This algorithm, based on the LLL algorithm, aims to solve a
multivariate modular polynomial system of equations.

1.5.1 A basic version of the method
We consider r linearly independent multivariate polynomials P1, . . . , Pr defined over Z [z0, . . . , zn],
a secret small vector x = (x0, . . . , xn) and a single known modulus N satisfying:

Pi(x) ≡ 0 mod N for i ∈ {1, . . . , r}.

The vector x is said small in the sense that it must be bounded by known values, namely |x0| <
X0, . . . , |xn| < Xn. To each of these polynomials Pi we associate a number ki that will be the
multiplicity of x as a root of Pi mod N (in other terms, ki is the largest integer such that for all
k ≤ ki, Pi(x) ≡ 0 mod Nk). We construct the matrix M ∈M(|M|+r×|M|+r)(R) as follows:

M =

P1 · · · Pr

↓ · · · ↓



1

⋆
1

X−1
0 z0

. . .
...

X−a0
0 × · · · ×X−an

n za0
0 × · · · × zan

n

0 Nk1

. . .

Nkr

16

We denote M(= {1, z0, . . . , zn . . . , za0
0 × · · · × zan

n }) the set of monomials that appear at least
in one Pi and |M| its cardinality. Each one of the upper rows (between 1 and |M|) corresponds to
one of these monomials and each one of the latest columns (from |M|+ 1 to |M|+ r) corresponds
to one of the polynomials.

Let i be in {1, . . . , |M|}, we denote mi the i-th monomial of M, mi = zb00 . . . zbnn . The value of
Mi,i will be the inverse of the bound on mi, hence X−b0

0 . . . X−bn
n . For all j between 1 and r, the

value of Mi,|M|+j will be the coefficient of mi in Pj . Finally, the value of M|M|+j,|M|+j will be Nkj

as described in the previous paragraph.

Example 3. We want to use this method to factor a RSA modulus N = p × q when the most
significant bits of p and q are known. We call them p′ and q′and we set

P = (p′ + z0)(q
′ + z1) = p′q′ + q′z0 + p′z1 + z0z1.

This polynomial satisfies P (x0, x1) ≡ 0 mod N . The set of monomials is M = {1, z0, z1, z0z1}
and we construct the following matrix

M =


1 p′q′

1
X0

q′

1
X0

p′

1
X0×X0

1

0 N


We want to show that the smallest vector of the lattice spanned by the rows of M contains the

solution x. We denote by ci the integer such that Pi(x) = ciN
ki . We can construct v:

v = (1, x0, . . . , x
a0
0 . . . xan

m−1,−c1, . . . ,−cr)×M

=

(
1,

x0

X0
, . . . ,

xa0
0 . . . xan

n

Xa0
0 . . . Xan

n
, 0, . . . , 0

)
.

By construction, the vector v is in the lattice. Its first |M| coordinates are smaller than one and
the remaining ones are zero, hence it is a small vector. In general, retrieving the shortest vector of
a lattice is a hard problem (called the SVP for Shortest Vector Problem), but if this short vector
is abnormally short, it can be far easier. To obtain a small vector v we apply the LLL algorithm
on M .

Remark 4. This vector v might not be the smallest but the smallest satisfying v0 = 1 and
(vm+1, . . . , vm+r) = (0, . . . , 0).

The conditions on the bounds that make this method works are given by the following (simpli-
fied) equation: ∏

z
b0
0 ...zbn

n ∈M

Xb0
0 . . . Xbn

n < N
∑r

i=1 ki . (1.2)

For further details see [52].

17

1.5.2 The complete version
Instead of considering r linearly independent polynomials, we consider s irreducible and linearly
independent polynomials Q1, . . . , Qs and we construct a new set of polynomials:

P ⊂ {zα0
0 × · · · × zα

n−1

n−1 Qi|i ∈ {1, . . . , s},α ∈ Zn}.

The polynomials in this new set still need to be linearly independent. This introduces an additional
malleability as we can find a new and bigger family of polynomials but at the cost of a larger
number of monomials.

Example. We fix N = 27670116305985339737, p′ = 232, q′ = 232 + 231 and X0 = 32. If we
consider the polynomial P = (p′ + z0)(q

′ + z1) = p′q′ + q′z0 + p′z1 + z0z1 alone, the condition (1.2)
is satisfied but it is a simplified version to understand the asymptotic behaviour of this method and
the attack does not work. We now consider P = {P, z0P, z1P, P 2}. The set of monomials becomes
M = {1, z0, z1, z0z1, z20 , z21 , z20z1, z0z21 , z20z21}and the equation (1.2) is still satisfied.

M =

P z0P z1P P 2

↓ ↓ ↓ ↓



1 p′q′ 0 0 (p′q′)2 1
1
X0

q′ p′q′ 0 2p′(q′)2 z0
1
X0

p′ 0 p′q′ 2(p′)2q′ z1
1

X2
0

1 p′ q′ 4p′q′ z0z1
1

X2
0

0 q′ 0 (q′)2 z20
1

X2
0

0 0 p′ (p′)2 z21
1

X3
0

0 1 0 q′ z20 × z1
1

X3
0

0 0 1 p′ z0 × z21
1

X4
0

0 0 0 1 z20 × z21

0
N

N
N

N2

The algorithm returns

v = (1,
15

32
,
23

32
,
345

1024
,
225

1024
,
529

1024
,
5175

32768
,
7935

32768
,
119025

1048576
, 0, 0, 0, 0)

and we verify that (232 + 15)(232 + 231 + 23) = N .

18

Chapter 2

Attacks Against the Linear
Congruential Generator

The generator that we will present in this part is the Linear Congruential Generator (LCG), but
there exists other PRNGs that are also congruential and linear and can be seen as a generalization
of the LCG. A part of this chapter comes from the article Attacks on Pseudo Random Number
Generators Hiding a Linear Structure presented at CT-RSA 2022 [47]. In particular the attack
using a Coppersmith method is original (and a variation of it will be used in a following chapter).

We consider the LCG given by a seed x0 and the equation

xi+1 ≡ axi + c mod N

where a is the multiplier, c the constant and N the modulus. To obtain the output yi from an
internal state xi we truncate the ℓ lower bits. We denote the discarded bits by δi. We obtain xi =
yi2

ℓ + δi.
We first simplify the problem in two aspects.

Getting rid of the constant To work with a linear problem instead of an affine one, we want
to make the constant c disappear. We consider the sequence (vi) given by vi = xi+1−xi. We know
the most significant bits of each term of the sequence because vi = (yi+1 − yi)2

ℓ + (δi+1 − δi) and
|(δi+1 − δi)| < 2ℓ+1. As this new sequence satisfies vi+1 ≡ avi mod N , we have reduced the affine
problem to a linear one. The reduction is not free as for now the ℓ+1 last bits are missing, instead
of the ℓ last ones. From now we will only consider generators of the form xi+1 ≡ axi mod N .

Re centring the discarded bits The LCG is defined modN . At each step i, the ℓ truncated
bits form a value δi between 0 and 2ℓ− 1. To recover this value, we will use lattice techniques. But
these techniques operate on relative numbers. By centring the δi’s around zero, we will lower the
upper bound on them from 2ℓ to 2ℓ−1. The equation xi = yi2

ℓ + δi becomes

xi = hi + δ′i

where hi = yi2
ℓ + 2ℓ−1 and δ′i ∈ {−2ℓ−1 + 1, . . . , 2ℓ−1 − 1}. From now we will only consider δ′i and

rename it δi.

19

Remark 5. This two tips cannot be used simultaneously as getting rid of the constant will auto-
matically recentre the discarded bits.

Notation. For a number m of outputs, we will use the following notations.

x = (x0, x1, . . . , xm−1)

h = (h0, h1, . . . , hm−1)

δ = (δ0, δ1, . . . , δm−1)

By definition, x = h+ δ.

2.1 Attacks when the multiplier and the modulus are known
The internals states of the generator satisfy the following equation

xi+1 ≡ axi mod N

where a and N are public.

2.1.1 Recover the seed solving a Closest Vector Problem
Presentation of the attack

We consider the lattice Λ spanned by the lines of the following matrix.

L =


1 a a2 . . . am−1

N
N

.. .

N


The unknown vector x is part of this lattice as

x ≡ x0 × (1, a, a2, . . . , am−1) mod N.

It is also close to the known vector h as x− h = δ and ‖δ‖∞ < 2ℓ−1. We can expect to recover x
by searching the closest vector to h in Λ using a CVP solver.

Theoretical choice of the parameters

We want x to be the closest vector to h in Λ. Let us suppose x′ is the closest vector to h in Λ.
Then

‖x− x′‖2 ≤ ‖x− h‖2 + ‖h− x′‖2
≤ 2‖x− h‖2
≤ 2‖δ‖2
≤ 2ℓ
√
m

20

The volume of the lattice Λ is Nm−1, thus by the Gaussian Heuristic we can assume that λ1 '√
mN (m−1)/m. If ‖x − x′‖2 < λ1, we can expect x′ = x and x to be the closest vector to h thus

returned by the CVP solver. The inequality can be simplified in
ℓ < n× (m− 1)/m (2.1)

where n denotes the size of N (that is to say n ' dlog2(N)e).

Complexity and limits

Algorithm 1 Seed retriever using a CVP solver
1: procedure AttackCVP(h, a,N,m, ℓ)
2: L← matrix(m×m) L described above.
3: x̃← CVP-solver(L,h)
4: return x̃0 as a candidate for x0.

This algorithm uses a CVP-solver on a matrix of size m×m, its time complexity is exponential
in m. With the formula (2.1), we see that every l < n− 1 should be reachable as (m− 1)/m tends
to one.

Experimental results

For a given n and m we search for the greater ℓ such that the probability of success of retrieving
the seed x0 is above 50%.

m 2 3 4 5 16 32
n = 32

ℓ (theoretical) ≤ 16 21 24 25 30 31
ℓ (experimental) ≤ 16 21 23 25 29 30

time 0.0009s 0.001s 0.002s 0.003s 0.03s 0.11s
n = 64

ℓ (th.) ≤ 32 42 48 51 60 62
ℓ (exp.) ≤ 32 42 47 50 59 61

time 0.001s 0.001s 0.002s 0.003s 0.03s 0.12s
n = 1024
ℓ (th.) ≤ 512 682 768 819 960 992
ℓ (exp.) ≤ 512 682 767 818 959 991

time 0.001s 0.002s 0.003s 0.004s 0.06s 0.43s

These results seem to confirm our heuristic. This algorithm is fast despite being exponential.

2.1.2 Attack from Frieze et al.
Presentation of the attack

Frieze et al described in [27] a method to solve a linear modular system when we already know a
part of the solution. In the case of the LCG, the equations of the system are

aix0 − xi ≡ 0 mod N for i ∈ {1, . . . ,m− 1}.

21

A generator matrix for this system is:

A =


N
a −1
a2 −1
...

. . .

am−1 −1


The equation Ax = 0 mod N has an infinite number of integer solutions. We apply the LLL-
algorithm on A and obtain A′ (it does not change the space of solution) and split x in x = h+ δ.
We denote by c the vector in {−N/2, . . . , N/2}m satisfying −A′h ≡ c mod N . The new equation
is A′δ ≡ c mod N .

If ‖A′δ‖∞ < N/2, the equation is not modular any more and we can compute δ as (A′)−1c.

Theoretical choice of the parameters

Proved parameters The article of Frieze et al. contains the following theorem (Theorem 3.1)

Theorem 1. For square-free N > c(ϵ,m) there is an exceptional set E(N, ϵ,m) of multipliers of
cardinality |E(N, ϵ,m)| ≤ N1−ϵ such that for any multiplier not in E(N, ϵ,m) the following is true.
The xi are uniquely determined by the knowledge of the (1/m+ ϵ) log2(N)+m/2+(m−1) log2(3)+
7/2 log(m) + 2 leading bits of the xi.

Furthermore, there is an algorithm which runs in polynomial time in log2(M) +m and finds x

Heuristic parameters

• If A′ represents one of the shortest basis of the lattice, by the Gaussian heuristic, its coefficients
are roughly N1/m. The inequality ‖A′δ‖∞ < N/2 becomes ℓ ≤ nm−1

m − log2(m).

• If A′ is the LLL-transformation of A, we know its coefficients will be slightly bigger.

Complexity and limits

This algorithm calls the LLL algorithm (O(m5n3)) and a matrix solver (O(m3)) hence the time
complexity of this algorithm is polynomial in m.

Algorithm 2 Seed retriever using lattice basis-reduction
1: procedure AttackFrieze(h, a,N,m, ℓ)
2: A′ ← LLL-reduction of matrix A described above.
3: k← b(−A′ × h)/Ne
4: c← −A′h−N · k
5: δ̃ ← (A′)−1c
6: x̃← h+ δ̃
7: return x̃0 as a candidate for x0.

22

Experimental results

For a given n and m we search for the greater ℓ such that the probability of success of retrieving
the seed x0 is above 50%.

m 2 3 4 5 16 32
n = 32

ℓ (proved) ≤ 7 9 8 6 0 0
ℓ (heuristic) ≤ 17 21 24 25 26 26

ℓ (experimental) ≤ 16 21 23 25 28 29
time 0.001s 0.002s 0.003s 0.004s 0.04s 0.15s
n = 64
ℓ (p.) ≤ 23 30 32 32 12 0
ℓ (h.) ≤ 33 43 48 50 56 57
ℓ (exp.) ≤ 32 42 47 50 58 60

time 0.001s 0.002s 0.003s 0.004s 0.04s 0.15s
n = 1024
ℓ (p.) ≤ 503 670 752 800 912 907
ℓ (h.) ≤ 513 683 768 818 956 987
ℓ (exp.) ≤ 512 682 767 818 958 990

time 0.002s 0.002s 0.006s 0.006s 0.07s 0.32s

Once again the results seem to confirm our heuristic (they are even a tad greater). As expected
the attack is slightly less efficient (we attained smaller ℓ), but faster. In the case (n = 1024, m = 32)
we go from 0.46s in the CVP attack to 0.32s in the Frieze attack.

2.2 Attacks when the multiplier is unknown
The internal states of the generator satisfy the following equation

xi+1 ≡ axi mod N

where the multiplier a is secret and the modulus N is public.

2.2.1 Attack using the Coppersmith method
Presentation of the attack

Let x0, x1, x2 be 3 consecutive internal states of the LCG. We have x1 ≡ ax0 mod N and x2 ≡
ax1 mod N . If a and N are coprime, we obtain:

x2
1 ≡ x0x2 mod N.

We replace xi by hi + δi:

h2
1 + 2h1δ1 + δ21 = h0h2 + h0δ2 + h2δ0 + δ0δ2 mod N,

and notice that (δ0, δ1, δ2) is a small root of the polynomial P mod N where

P (z0, z1, z2) = z21 − z0z2 + 2h1z1 − h0z2 − h2z0 + h2
1 − h0h2.

23

We can generalize this method. Let x0, . . . , xk be k + 1 consecutive internal states. We will
obtain

(
k
2

)
equations of the form xjxi+1 ≡ xixj+1 mod N . Hence we will construct

(
k
2

)
polynomials

Pi of which (δ0, . . . , δk) is a simple root mod N .

Theoretical choice of the parameters

In the case with three outputs, we apply the Coppersmith method on P with bounds X0 = X1 =
X2 = 2ℓ. The set of monomials is M = {z0, z1, z2, z21 , z0z2}hence we should heuristically recover
the root if X0 ×X1 ×X2 ×X2

1 ×X0X2 < N , that is to say if ℓ/n < 1/7.
In the generalization, the set of appearing monomials will be:

M = {zi|i ∈ {0, . . . , k}}
⋃
{zizj+1|i, j ∈ {0, . . . , k − 1}, i 6= j}.

We find that
∏

zi|i∈{0,...,k} Xi ×
∏

zizj+1|i,j∈{0,...,k−1},i ̸=j XiXj+1 = (2ℓ)Γ(k) where Γ(k) = (k + 1) +

2 × 2
(
k
2

)
. Thus, by eq.(1.2), the attack should work as long as ℓ/n <

(
k
2

)
/Γ(k). This theoretical

bound increases toward 1/4.

An improvement of the Coppersmith method ?

We saw in section 1.5 that we could artificially increase the number of polynomials, which may lead
to more favourable parameters.

For the reader familiar with [9] by Benhamouda et al., we will use the same notations. We denote
P the bigger set constructed from the Pi. The polynomials in P are of the form f = yk0

0 , . . . , ykn
n P kp

and are all linearly independent. We denote by χP(f) the multiplicity of our small root as a root
of f mod N : χP(f) = kp. We denote M the set of all the monomials appearing in P. If m in M

is of the form yk0
0 . . . ykn

n , we denote χM(m) = k0 + · · · + kn. We know by equation (1.2) that the
attack is supposed to work as long as

ℓ/n ≤
∑

f∈P χP(f)∑
m∈M χM(m)

where ℓ is the number of discarded bits and n the size of the internal states of our generator.
Here our polynomial is P = y21 +2H1y1+H2

1 −y0y2−H0y2−H2y0−H0H2. We fix a parameter
T and choose PT as following:

PT = {yk0
0 yϵ1y

k2
2 P kp |ϵ ∈ {0, 1}, k0 + ϵ+ k2 + 2kp ≤ T}

All the polynomials in PT are linearly independent. Indeed, if we consider the monomial order
y1 > y0 > y2 then the leading monomial of yk0

0 yϵ1y
k2
2 P kp is y

2kp+ϵ
1 yk0

0 yk2
2 thus all leading monomials

are different.
We are not going to precisely compute the set of monomial of PT instead we are going to

approach it with
MT = {yk0

0 yk1
1 yk2

2 |k0 + k1 + k2 ≤ T}.

Now we must compute
∑

f∈PT
χPT

(f) and
∑

m∈MT
χMT

(m):

24

∑
f∈PT

χPT
(f) =

T−2∑
k0=0

1∑
ϵ=0

T−2−k0−ϵ∑
k2=0

⌊T−k0−ϵ−k2
2 ⌋∑

kp=1

kp

= b ((T + 1)2 − 1)× ((T + 1)2 − 3)

48
c

∑
m∈MT

χMT
(m) =

T∑
k0=0

T−k0∑
k1=0

T−k0−k1∑
k2=0

k0 + k1 + k2

=
T (T + 1)(T + 2)(T + 3)

8
.

Thus this new construction should allow us to recover the small root as long as

ℓ/n ≤ b ((T + 1)2 − 1)× ((T + 1)2 − 3)

48
c × 8

T (T + 1)(T + 2)(T + 3)
.

This value tends to 1/6.
To obtain a bound bigger than 1/7 (our already achieved result), we need T ≥ 13. But T = 13

means our lattice would be of dimension 924, and running the LLL algorithm on a lattice of
dimension 900 is hardly doable.

Complexity and limits

Algorithm 3 Seed retriever using Coppersmith method
1: procedure AttackCoppersmith(h, N,m, ℓ)
2: lMono← [1, z0, . . . , zm−1] ▷ z0, . . . , zm−1 are variables
3: lPoly ← [] ▷ We initialize an empty list
4: for i in {1, . . . ,m− 1} do
5: for j in {i+ 1, . . . ,m− 1} do
6: P ← zizj−1 − zi−1zj + hizj−1 + hj−1zi − hjzi−1 − hi−1zj + (hihj−1 − hi−1hj)
7: lPoly ← lPoly + [P]
8: lMono← lMono+ [zizj−1, zi−1zj]

9: v← Coppersmith(list_poly, list_mono,N, ell − 1, 1)
10: if v vector in ∈ Z then
11: x0 ← h0 + v1
12: return x0

This algorithm calls the LLL algorithm on a matrix of size 2·
(
m−1
2

)
+m hence the time complexity

of this algorithm is exponential in m. We notice it does not recover the multiplier a but could easily
do with few modifications.

This theoretical bound ℓ/n <
(
k
2

)
/Γ(k) increases toward 1/4. We cannot prove this attack can

recover seeds if more than a quarter of the bits are discarded.

25

Experimental results

For a given n and m we search for the greater ℓ such that the probability of success of retrieving
the seed x0 is above 50%.

m (= k + 1) 3 4 5 6 7
matrix size 5 10 17 26 37
n = 32

ℓ (th.) ≤ 4 6 6 6 7
ℓ (exp.) ≤ 6 9 11 12 13

time 0.008s 0.03s 0.08s 0.19s 0.39s
n = 64

ℓ (th.) ≤ 9 12 13 13 14
ℓ (exp.) ≤ 32 19 22 24 25

time 0.008s 0.03s 0.08s 0.19s 0.41s
n = 1024
ℓ (th.) ≤ 146 192 211 222 229
ℓ (exp.) ≤ 204 307 361 393 415

time 0.01s 0.04s 0.16s 0.54s 1.7s

The heuristic gives only a lower bound on the attainable ℓ. This was expected as Coppersmith
methods tend to be more effective in practice that in theory.

2.2.2 Stern simplified Attack
In this subsection we will present an alternate version of the attack presented by Stern in [59]. In
this simplified version the modulus N is known. We denote by n the size of N n = dlog2(N)e).

Presentation of the attack

We consider a new integer parameter d and a matrix seen earlier

M1 =


N
a −1
a2 −1
...

. . .

ad−1 −1


This matrix is unknown as the multiplier a is secret. The lattice Λ1 spanned by the lines of M1

contains vectors (µ0, . . . , µd−1) such that

d−1∑
i=0

µia
i ≡ 0 mod N. (2.2)

Let µ = (µ0, . . . , µd−1) be such a small vector. We obtain

26

d−1∑
i=0

µihi+j =

d−1∑
i=0

µixi+j −
d−1∑
i=0

µiδi+j

≡
d−1∑
i=0

µia
ixj −

d−1∑
i=0

µiδi+j mod N

d−1∑
i=0

µihi+j ≡ −
d−1∑
i=0

µiδi+j mod N (2.3)

As µ and the δ are small, we can expect to have |
∑d−1

i=0 µiδi+j | smaller than N .
We consider now a second integer parameter r and the the lattice Λ2 spanned by the lines of

the following matrix

M2 =



2ℓ−1 h0

2ℓ−1 h1

. . .
...

2ℓ−1 hd−1

N

0
. . .

N


where hi = (hi, hi+1, . . . , hi+r−1).

Let µ be a short vector in Λ1. By eq.(2.3), we know that there exists a vector v is in Λ2 such
that:

v = (µ02
ℓ−1, . . . , µd−12

ℓ−1,−
d−1∑
i=0

µiδi, . . . ,−
d−1∑
i=0

µiδi+r−1).

As µ and the δis are small, v will be a short vector in Λ2. We retrieve v and thus µ applying the
LLL algorithm on M2. By eq.(2.2), we obtain a polynomial P in one variable of degree d− 1 such
that P (a) ≡ 0 mod N .

If we redo all this algorithm again, we obtain a second polynomial Q such that Q(a) ≡ 0 mod N .
The GCD of P and Q mod N , if of degree 1, should give the root a. Because of the use of a GCD,
this attack mainly work with N prime.

Theoretical choice of the parameters

For a given r and d, the number of outputs needed to obtain one polynomial is mp = r + d − 1.
The matrix M1 is of determinant N and of dimension d, if µ is a short vector in Λ1, we can
expect ‖µ‖∞ ' N1/d by the Gaussian Heuristic. Still using the Gaussian Heuristic, we know that
the norm of an average short vector in Λ2 is

√
r + d(2(ℓ−1)dNr)

1
r+d . The norm of v is close to√

d+ rd22ℓ−12n/d, thus we need the following inequality:√
d+ rd22ℓ−12n/d <

√
r + d(2(ℓ−1)d2nr)

1
r+d .

27

Experimentally, it seems that r = d is quite optimal. If mp + 1 is even we fix r = d = (mp + 1)/2
and we obtain ℓ < 2 + n(1− 2/d)− log2(d

2 + 1). If mp is even we fix d = m/2 and r = d+ 1 and
we obtain ℓ < 1 + 2d+1

d+1

(
1
2 log2(

2d+1
d+d2+d3) + n d+1

2d+1 −
n
d

)
Complexity and limits

Algorithm 4 Seed retriever using Stern method while N is known
1: procedure FindPolynomialSimple(h, N, ℓ)
2: mp ← len(h)
3: if mp + 1 is even then
4: d← (mp + 1)/2
5: r ← d
6: else
7: d← mp/2
8: r ← d+ 1

9: M ← LLL-reduction of matrix M2 described above.
10: β ← (M0,0, . . . ,M0,d−1)
11: α← β/2ℓ−1

12: P ← α0 + α1Z + . . . αd−1Z
d−1 ▷ P is a polynomial

13: return P
14: procedure AttackSimpleStern(h, N, ℓ,mp)
15: m← len(h)
16: t = bmp/2c
17: h1 = (h0, . . . , hmp−1)
18: P1 ← FindPolynomial(h1, N, ℓ)
19: h2 = (ht, . . . , ht+mp−1)
20: P2 ← FindPolynomial(h2, N, ℓ)
21: P ← GCD(Z/NZ, P1, P2)
22: if deg(P) == 1 then ▷ P = γ0 + γ1Z
23: a = −γ0/γ1 mod N
24: x0 ← AttackFrieze(h, a,N,m, ℓ))
25: return x0, a

As we only use an instance of the LLL algorithm on a matrix((r + d) × (r + d)), the time
complexity of this algorithm is polynomial on mp.

The first limit in this attack is eq.(2.3). We need |
∑d−1

i=0 µiδi+j | < N , in other words d2n/d2l−1 <
2n which is no longer possible if ℓ is too close to n. When this inequality is not satisfied any more,
the vector v is not the shortest neither even particularly short in Λ2.

The second limit is given by the bound ℓ < n(1− 2/d) + 2− log2(r
2 +1). For a given n, we can

compute the maximum of the right term. The results are presented in the following table.

n 32 64 1024
ℓ ≤ 22 52 1004

All these calculus allow us to predict if the constructed polynomial will have a as a root modulo

28

N . We have no heuristic for the second part of the algorithm but we found heuristically that is was
hard to constantly obtain a polynomial of degree exactly one.

Experimental results

For a given n and r we search for the greater ℓ such that the probability of success of finding a
polynomial P such that P (a) ≡ 0 mod N is above 50%.

m 4 5 6 7 16
n = 32

ℓ (th.) ≤ 5 9 12 13 20
ℓ (exp.) ≤ 5 11 13 16 24

time 0.004s 0.006s 0.007s 0.01s 0.04s
n = 64

ℓ (th.) ≤ 10 20 25 29 45
ℓ (exp.) ≤ 10 21 26 32 48

time 0.005s 0.007s 0.008s 0.01s 0.05s
n = 1024
ℓ (th.) ≤ 170 340 425 509 778
ℓ (exp.) ≤ 170 341 426 512 781

time 0.006s 0.008s 0.01s 0.013s 0.07s

In the case where N is prime, for a given n and r we search for the greater ℓ such that the
probability of success of retrieving the multiplier a is above 20% (we lower the bar as the second
part of the algorithm brings a lot of failure).

mp 4 5 6 7 16
m 6 8 9 11 24

n = 32
ℓ (th.) ≤ 5 9 12 13 20
ℓ (exp.) ≤ 6 10 12 15 24

time 0.01s 0.014s 0.018s 0.023s 0.08s
n = 64

ℓ (th.) ≤ 10 20 25 29 45
ℓ (exp.) ≤ 11 21 25 32 48

time 0.011s 0.014s 0.018s 0.024s 0.13s
n = 1024
ℓ (th.) ≤ 170 340 425 509 778
ℓ (exp.) ≤ 172 341 425 511 782

time 0.012s 0.014s 0.021s 0.035s 0.14s

Alternate ending when N = 2n

If we know a polynomial P such that P (a) = 0 mod 2n and if P is not degenerate, we can hope to
find a using Hensel lifting.

In the case where N = 2n, for a given n and r we search for the greater ℓ such that the probability
of success of retrieving the multiplier a is above 50%.

29

Algorithm 5 Seed retriever using Stern method when N = 2n

1: procedure HenselLifting(P, n)
2: roots← []
3: if P (0) == 0 mod 2 then
4: roots← roots+ [0] ▷ the + here represents concatenation
5: if P (1) == 0 mod 2 then
6: roots← roots+ [1]

7: for i ∈ {2, . . . , n} do
8: newroots← []
9: for z ∈ roots do

10: if P (z) == 0 mod 2i then
11: newroots← newroots+ [z]

12: if P (z + 2i−1) == 0 mod 2i then
13: newroots← newroots+ [z + 2i−1]

14: roots← newroots
15: if len(roots) > 100 then
16: return ▷ we abort if the number of roots is not manageable
17: return roots
18: procedure AttackSimpleSternAlt(h, 2n,m, ℓ)
19: P ← FindPolynomial(h, 2n,m, ℓ)
20: roots← HenselLifting(P, n)
21: for a ∈ roots do
22: x0 ← AttackFrieze(h, a,N,m, ℓ)
23: if CheckConsistency(x0, a,N,h) then
24: return x0

m 4 5 6 7
n = 32

ℓ (th.) ≤ 5 9 12 13
ℓ (exp.) ≤ 5 10 13 26

time 0.013s 0.018s 0.033s 0.026s
n = 64

ℓ (th.) ≤ 10 20 25 29
ℓ (exp.) ≤ 10 21 26 32

time 0.010s 0.018s 0.030s 0.040s
n = 1024
ℓ (th.) ≤ 170 340 425 509
ℓ (exp.) ≤ 170 341 426 512

time 0.027s 0.046s 0.053s 0.043s

30

2.2.3 Knuth Attack on the Knuth generator
This attack is a bit aside because it focuses on a particular LCG and does not use lattice technique.
Even if this attack is not particularly effective it seemed important to present it as it is one of the
oldest against the LCG. It was presented by Knuth in 1985 in [36].

We consider the Knuth Generator of seed x0. At step i it computes : xi+1 ≡ axi + c mod 2k

and outputs yi+1 = xi+1 � ℓ. The parameters a and c are secret and satisfy a ≡ 1 mod 4 and
c ≡ 1 mod 2.

For a integer t we consider z
(t)
n = xn+2t − xn mod 2k. We obtain two properties:

z
(t)
n+1 ≡ az(t)n mod 2k (2.4)

z(t)n is an odd multiple of 2t (2.5)

Now we call x(t)
n the t-th bit from the right of xn and consider the following lemma.

Lemma 1. For each t in {1, . . . , k − 2}, there exists a unique bt such that for any n,

x(t)
n ≡ x

(t+1)
n+2t−1 − x(ℓ+1)

n + bt mod 2. (2.6)

Proof. Because of 2.5, there exists bt such that z(t)0 ≡ bt2
t+2t−1 mod 2t+1. As z(t)n+1 ≡ az

(t)
n mod 2k

and a ≡ 1 mod 4, for every n, z(t)n ≡ bt2
t+2t−1 mod 2t+1, always with the same bt. Then we notice

that z
(t−1)
n + xn ≡ xn+2t−1 mod 2k, hence the (t + 1)-th bit of z(t−1)

n + xn is equal to x
(t)
n+2t−1 . It

gives the expected result.

Thanks to this lemma we can easily see the trajectory of the attack. We start by guessing bℓ,
and as we know 2ℓ outputs we can guess all the xℓ

n with the equation 2.6. Then we guess bℓ−1 and
derive all the xℓ−1

n and so on. This method is not efficient as its time complexity is in O(2ℓ).

2.3 Attacks when both the multiplier and the modulus are
unknown

The internal states of the generator satisfy the following equation

xi+1 ≡ axi mod N

where both the multiplier a and the modulus N are secret.

2.3.1 Presentation of the attack
This attack was presented by Stern in 1987 in and improved by Contini and Shparlinski in 2005
[17].

31

Step 1: Constructing polynomials Let r and d be again two integers, we want to construct
several polynomials Pj of degree d− 1 such that Pj(a) ≡ 0 mod N .

Let xk be (xk, . . . , xk+r−1). As above, we want a linear combination of the xi that sums to zero,
but this time it has to be on the integers as we do not know the modulus N . We are searching for
(µ0, . . . , µd−1) such that

d−1∑
i=0

µixi = 0. (2.7)

As xi = aix0, these µi would give us a polynomial Pj such that Pj(a) ≡ 0 mod N .
We do not know the xi, so we cannot find these µi so easily. Instead, we will search for

µ = (µ0, . . . , µd−1) such that
d−1∑
i=0

µiyi = 0. (2.8)

where yk = (yk, . . . , yk+r−1)
We will present conditions that force solutions of eq.(2.8) to also satisfy eq.(2.7).
To find a small solution of eq(2.8), we apply the LLL-algorithm on the following matrix

M =


1 ky0

1 ky1

. . .
...

1 kyd−1


where k is an integer parameter to define.
If the small solution of eq(2.8) is also a solution of eq(2.7) then it gives a polynomial Pj such

that Pj(a) ≡ 0 mod N .

Step 2: Retrieving the modulus N Here we present the alternate version of step 2, presented
by Contini and Shparlinski [17].

If Pi(a) ≡ 0 mod N and Pj(a) ≡ 0 mod N then N divides the resultant of Pi and Pj . The
algorithm will simply apply the first step several time to obtain several polynomials. Then it will
compute resultants and GCDs to obtain N or a small multiple.

2.3.2 Theoretical choice of the parameters
In the article we find the following proposition.

Proposition 3. There exists a solution to eq(2.8) such that its coefficients are bounded by B where

B = 2(n−l+log(d)−1)r/(d−r).

A slightly bigger solution µ can be computed as the first line of the LLL-reduction of M where
k = d

√
d2(d−1)/2Be. This solution satisfies ‖µ‖∞ < k.

Heuristically the solution given by the proposition should also satisfy eq.(2.7) when

ℓ < (r − 1)n/r and d '
√
2nr

32

Algorithm 6 Description of Stern Algorithm
1: procedure Step1(y, r, d, ℓ)
2: B ← 2(n−l+log(d)−1)r/(d−r)

3: k ← d
√
d2(d−1)/2Be

4: M ← LLL-reduction of the matrix M described above
5: µ← (M0,0, . . . ,M0,r−1)
6: return µ

7: procedure AttackStern(y, r, ℓ)
8: d← b

√
2(n− ℓ)rc

9: µ← Step1((y0, . . . , yd+r−1), r, d, ℓ)
10: P1 ← µ0 + µ1Z + µ2Z

2 + · · ·+ µr−1Z
r−1

11: γ ← Step1((y1, . . . , yd+r), r, d, ℓ)
12: P2 ← γ0 + γ1Z + γ2Z

2 + · · ·+ γr−1Z
r−1

13: η ← Step1((y2, . . . , yd+r+1), r, d, ℓ)
14: P3 ← η0 + η1Z + η2Z

2 + · · ·+ ηr−1Z
r−1

15: R12 ← Resultant(P1, P2)
16: R23 ← Resultant(P2, P3)
17: R13 ← Resultant(P1, P3)
18: Ñ ← GCD(R12, R23, R13)
19: P ← GCD(Z/ÑZ, P1, P2)
20: P ← GCD(Z/ÑZ, P, P3)
21: if deg(P) == 1 then ▷ P = γ0 + γ1Z
22: a = −γ0/γ1 mod Ñ
23: x0 ← AttackFrieze(h, a, Ñ ,m, ℓ))
24: return x0

Complexity and limits

The algorithm applies three times the LLL algorithm on a matrix of size d × 2r, three resultants
on polynomials of degree r and GCD on theses resultants. As d is close to

√
2n, we can conclude

that the time complexity of this algorithm is polynomial in n.

Experimental results

For a given n and r we search for the greater ℓ such that the probability of success of retrieving the
multiplier a and N is above 50%.

• n = 32
m 23 28 33 38

ℓ (th.) < 21 22 25 26
ℓ (exp.) ≤ 17 19 21 22

time 0.10s 0.14s 0.17s 0.21s

33

• n = 64
m 29 35 41 46

ℓ (th.) < 42 47 51 53
ℓ (exp.) ≤ 37 43 46 48

time 0.20s 0.27s 0.34s 0.39s

• n = 1024
m 56 60 64 66

ℓ (th.) < 682 768 819 853
ℓ (exp.) ≤ 656 740 791 834

time 5.5s 7.1s 6.8s 5.8s

The results are below the heuristic. Even if we reduce the problem to finding polynomials
satisfying P (a) ≡ 0 mod N .

2.4 Variants of the Linear Congruential Generator
2.4.1 One output over two
The internal states of the generator satisfy the following equation

xi+1 ≡ axi + c mod N

but the outputs are only issued from one internal state over two. We construct intermediate states
vi given by

vi = x2i

and the outputs yi are given by vi ≡ yi2
ℓ + δi.

When we write vi+1 as a function of vi we obtain

vi+1 ≡ x2i+2 mod N

≡ ax2i+1 + c mod N

≡ a(ax2i + c) + c mod N

≡ a′vi + c′ mod N

where a′ = a2 and c′ = (a+ 1)c. Using only one output over a fixed number does not increase the
difficulty of retrieving the seed. We face the same problem with the same parameters but different
constants.

2.4.2 Upper bits truncated
The internal states of the generator still satisfy the following equation xi+1 ≡ axi + c mod N and
xi = δi2

n−ℓ + yi.
If N is a power of 2, the outputs directly satisfy yi+1 ≡ ayi + c mod 2n−ℓ. Predicting the

generator becomes trivial but the seed can never be recovered.

34

If N is known and odd, then we can invert 2n−ℓ mod N and we call this inverse α. Then

αxi ≡ αyi + δi mod N

where |δi| ≤ 2ℓ. If we call vi = αxi, then

vi+1 ≡ azi + c′ mod N

where c′ = αc and
vi = y′i + δi

where y′i = αyi. Our problem is very similar to the classical LCG and most of the attacks work
without modification. The only detail is that y′i might not be a multiple of 2ℓ but we can discard
the least significant bit to retrieve the same exact situation.

If N is known and even we split it in two N = 2pQ where Q is odd. We consider on one
side the generator mod2min(p,ℓ) and on the other side the generator modQ. We predict outputs
for these two sequences and reconstruct the outputs of the original generator thanks to the Chinese
Reminder Theorem. This problem with parameters N, ℓ is as hard as predicting a classical LCG of
parameters Q, ℓ with log2(Q) < log2(N).

If N is unknown, the problem seems far more complex.

35

Part II

Reducing Pseudo Random
Number Generators to Linear

Congruential Generators

36

Chapter 3

The Permuted Congruential
Generator

This chapter is largely inspired by the article Practical seed-recovery for the PCG Pseudo-Random
Number Generator co-written with Charles Bouillaguet and Julia Sauvage and presented at FSE
2020 [15]

The Permuted Congruential Generator (PCG) is the default pseudo-random number generator in
the popular NumPy [63] scientific computing package for Python. It essentially consists in applying a
non-linear filtering function on top of a LCG. The resulting combination is fast and passes current
statistical test suites. The PCG family contains many members, but we focus on the strongest
one, named either PCG64 or PCG-XSL-RR. The internal state of the PCG64 generator is made of a
128-bit “state” and a 128-bit “increment”, whose intended use is to provide several pseudo-random
streams with the same seed. A default increment is provided in case the end-user just want one
pseudo-random stream with a single 128-bit seed.

We describe an algorithm that reconstructs the full internal state of the strongest member of
the PCG family. This allows to predict the pseudo-random stream deterministically and clock the
generator backwards. The original seeds can also easily be reconstructed. The state reconstruction
algorithm is practical and we have executed it in practice. It follows that predicting the output of
the PCG should be considered practically feasible.

While the PCG pseudo-random generator is not meant as a cryptographic primitive, obtaining
an actual prediction algorithm requires the use of cryptanalytic techniques. Making it practical
requires in addition a non-trivial implementation effort.

Our algorithm reconstructs the internal state using a “guess-and-determine” approach: some
bits of the internal state are guessed ; assuming the guesses are correct, some other information is
computed ; a consistency check discards bad guesses early on ; then candidate internal states are
computed and fully tested.

Notation. • If x = (x0 . . . xn−1) ∈ {0, 1}n is an n-bit string, then x[i:j] denotes the bit string
(xixi+1 . . . xj−2xj−1) (this is the “slice notation” used in Python)

• If U is a vector or a sequence, then Ui is the i-th element and we will use capital letters for
the integers that we will consider as bit strings

37

• Modular addition is denoted + (or ⊞ to make it even more explicit).

• In the rest of this chapter, we often perform arithmetic operations on integers where only
some bits are known. This leads to generation of unknown carries. If a, b are integers modulo
2128 and 0 ≤ i < j < 128, then there is a carry 0 ≤ γ ≤ 1 (resp. a borrow 0 ≤ β ≤ 1) such
that:

(a⊞ b)[i:j] = a[i:j]⊞ b[i:j]⊞ γ, (3.1)
(a⊟ b)[i:j] = a[i:j]⊟ b[i:j]⊟ β. (3.2)

3.1 Presentation of the Generator
We describe the PCG64, a non-cryptographic pseudo-random number generator (a.k.a. PCG-XSL-
RR in the designer’s terminology).

PCG64 has an internal state of 128-bit, which operates as a linear congruential generator mod-
ulo 2128. More precisely:

Si+1 = aSi + c mod 2128,

where the multiplier a is a fixed 126-bit constant. The first initial state S0 is the seed of the
generator. The increment c may be specified by the user of the PRNG to produce different output
streams with the same seed (just as the IV acts in a stream cipher). If no value of c is specified,
then a default increment is provided. Note that c must be odd. The default values are:

a = 47026247687942121848144207491837523525 (fixed)
c = 117397592171526113268558934119004209487 (default value, user-definable)

Each time the PRNG is clocked, 64 output bits are extracted from the internal state using a
non-linear function that makes use of data-dependent rotations. The six most significant bits of the
internal state encode a number 0 ≤ r < 64. The two 64-bit halves of the internal state are XORed
together, and this 64-bit result is rotated right by r positions.

The successive 64-bit outputs of the generator are X0, X1, . . . where:

Xi = (Si[0:64]⊕ Si[64:128]︸ ︷︷ ︸
Yi

) ≫ Si[122:128]︸ ︷︷ ︸
ri

. (3.3)

For the sake of convenience, we denote by Yi the XOR of the two halves of the state (before the
rotation) and by ri the number of shifts of the “i-th rotation”.

Fig. 3.1 summaries the process. The overall design strategy is similar to that of a filtered LFSR:
the successive states of a weak internal generator with a strong algebraic structure are “filtered” by
a non-linear function.

Updating the internal state requires a 128 × 128 → 128 multiplication operation. In fact, this
can be done with three 64× 64→ 128 multiplications and two 64-bit additions. High-end desktop
CPUs all implement these operations in hardware, so the generator is quite fast on these platforms.

38

×a+ c mod 2128

Si

128

Si+1

128

064122128

⊕64 64

≫
ri

6 Yi

Xi

64

Figure 3.1: PCG64: Internal state update and output process.

3.2 Dealing with a noisy truncated Linear Congruential Gen-
erator

Given an integer k, a fixed multiplier a and a “seed” x, we define the sequence:

U0 = x

Ui+1 ≡ a× Ui mod 2k.

The vector U forms the n successive states of a LCG.
Let Ti = Ui[k − t:k] denote the top t bits of Ui and ∆i denote the lower k − t bits, then

Ui = Ti2
k−t + ∆i and 0 ≤ ∆i < 2k−t. We consider ε an arbitrary ”noise vector” such that

εi ∈ {−1, 0, 1}. Finally, we set T̃i = Ti + εi mod 2t.

Lemma 2. There exists U′ such that U ′
i ≡ Ui mod 2k and

∥∥∥U′ − 2k−tT̃
∥∥∥
2
≤
√
n2k−t+1.

Proof. • If T̃i = Ti + εi (without modulo), then we have:

|Ui − 2k−tT̃i| = |Ti2
k−t +∆i − Ti2

k−t − 2k−tεi|
= |∆i − 2k−tεi|
< 2k−t+1

• If T̃i = Ti + εi + 2t, we fix U ′
i = Ui + 2k and we have:

|U ′
i + 2k−tT̃i| = |Ui + 2k − 2k−t(Ti + εi)− 2k−t2t|

= |∆i − 2k−tεi|
< 2k−t+1

39

• If T̃i = Ti + εi − 2t, we fix U ′
i = Ui − 2k and we have:

|U ′
i − 2k−tT̃i|2 = |Ui − 2k − 2k−t(Ti + εi) + 2k−t2t|

= |∆i − 2k−tεi|
< 2k−t+1

This means this noisy LCG where we truncate k− t bits can be seen and attacked as a classical
LCG where we truncate k − t+ 1 bits.

In section 3.4.3, we will be facing the problem of reconstructing a geometric sequence modulo
2128 given arbitrarily many (noisy versions of the) most-significant 6 bits of successive elements of
the sequence. To do so we will use an exact CVP solver on the lattice Λn spanned by the rows of
the following matrix

Gn,k =


1 a a2 . . . an−1

2k

2k

. . .

2k


already presented in section 2.1.1, with k = 128 and t = 6. We are searching for a parameter n
such that U′ described above is the closest vector to 2122T̃ in Λn.

We said earlier that our problem could be seen as attacking a classical LCG missing k+t+1 bits,
so we might want to use the results of section 2.1. If we write Ui = 2k−tT̃i + δi, then δi < 2k−t+1

(in the case εi = 1) and we cannot use the trick where we recenter the discarded bits around
zero as δi might not be positive (in the case εi = −1). Because of that the equation 2.1 becomes
(k − t + 1) + 1 < k(n − 1)/n. It gives n = 32. But this reasoning was heuristic (as we used the
Gaussian heuristic). If we redo the calculus that gives the equation but we keep λ1 as such, we
obtain the condition 2

√
n2k−t+1 < λ1(Λn2.1).

Starting from n = d122/6e, we computed the length of the shortest vector of the lattice spanned
by Gn,128 for each successive n until the condition holds. To solve these SVP we used the (almost)
off-the-shelf G6K library [2], which gave results very quickly by sieving. fplll [61] was too slow
above dimension 50, in the default settings.

After this computation, we found that the minimal possible n is 63: with n = 63, the shortest
vector of Λn has length greater than 2127.02, which is high enough. This vector can be obtained by
bootstrapping the geometric sequence with

U0 = 12144252875850345479015002205241987363.

It follows that when n ≥ 63, k = 128 and t = 6, any CVP oracle will return a vector congruent to
the original U when given T̃.

3.2.1 Reconstruction in Low Dimension Using Babai’s Rounding
In sections 3.3 and 3.4.1 we will need to reconstruct billions of noisy truncated geometric series
modulo 264 with very few terms, of which a large fraction of most-significant bits are known. In

40

this setting, the CVP problem becomes much easier. This enables us to use faster and more ad hoc
methods, such as Babai’s rounding algorithm.

Denote again by Λn the n-dimensional lattice spanned by the rows of Gn,64, and let H denote
the LLL-reduction of Gn,64. The same lattice is also spanned by the rows of H. For instance, with
n = 3:

H =

 −1241281756092 3827459685972 −728312298332
−5001120657083 −2117155768935 5479732607037
8655886039732 3303731088004 6319848582548


As we want to retrieve U′ as defined in the previous subsection, we will need it to satisfy two

conditions

• The vector U′ is the closest vector to 2k−tT̃ in Λn. By the previous section it means

2
√
n2k−t+1 < λ1(Λn)

• The Babai rounding method should return the closest vector to 2k−tT̃ in Λn (which should
be U′ by the first condition), hence

(1 + cond(H))‖U′ − 2k−tT̃‖2 < λ1(Λ)

as seen in section 1.4.

We have seen earlier that ‖U′−2k−tT̃‖2 <
√
n2k−t+1 and that the condition number of a matrix

is always greater or equal to one. We only have one condition left which is:

(1 + cond(H))
√
n2k−t+1 < λ1(Λ).

n ~H~×
‌

‌H−1
‌

‌ λ1(Λ) minimum t
(
1 + ~H~×

‌

‌H−1
‌

‌

)√
n264−t+1

3 2.87 4.09e12 ' 241.9 26 3.69e12

4 2.06 2.44e14 ' 247.8 20 2.15e14

5 3.77 1.72e15 ' 250.6 18 1.5e15

6 2.69 1.03e16 ' 253.2 15 1.02e16

Table 3.1: minimal t needed for a given n

When t is greater than the values given in table 3.1, then Babai’s rounding technique will always
return the closest vector, and will allow us to reconstruct a truncated geometric serie.

3.3 State Reconstruction for PCG64 With Known Increment
We first consider the easier case where the increment c is known — recall that a default value is
specified in case the user of the pseudo-random generator does not want to provide one.

In this case, reconstructing the 128-bit internal state Si of the generator is sufficient to produce
the pseudo-random flow with 100% accuracy (the generator can also be clocked backwards if nec-
essary, so that the seed can be easily reconstructed). We therefore focus on reconstructing S0 (the
seed) from X0, X1, X2, A very simple strategy could be the following:

41

1. Guess the 64 upper bits of S0 (this includes the rotation).

2. Compute the missing 64 lower bits using (3.3), with:

S0[0:64] = S0[64:128]⊕ (X0 ≪ S[122:128]).

3. Compute S1 then extract X1; if X1 is correct, then output S0.

This “baseline” procedure requires 264 iterations of a loop that does a dozen arithmetic oper-
ations; it always outputs the correct value of S0, and may output a few other ones (they can be
easily discarded by checking X2). An improved “guess-and-determine” state reconstruction algo-
rithm is possible, which essentially amounts to expose a truncated version of the underlying linear
congruential generator, and attack it using the tools exposed in chapter 2 and section 3.2. This is
possible by combining the following ingredients:

• The underlying linear congruential generator uses a power-of-two modulus, therefore the ℓ
low-order bits of Si+1 are entirely determined by the ℓ low-order bits of Si. More precisely,
we have:

Si+1 = aSi + c mod 2ℓ, for all 0 ≤ ℓ ≤ 128 (3.4)
Therefore, guessing the least-significant bits of S0 yields a “long-term advantage” that holds
for all subsequent states.

• Guessing a 6-bit rotation ri gives access to Yi (the XOR of the two halves of the internal
state). Thus, if a part of the state is known, then this transfers existing knowledge to the
other half.

In figure 3.2, we see that guessing S0[0:ℓ] and a few 6-bit rotations ri give access to Si[58:64+ ℓ]
for the corresponding states. Therefore, looking at Si[ℓ:64 + ℓ], we are facing a truncated linear
congruential generator on 64 bits, where we have access to the 6 + ℓ most-significant bits of each
state (denoted by T), for a few consecutive states. This is sufficient to reconstruct entirely the
successive states of this truncated linear congruential generator. This reveals S0[ℓ:64 + ℓ], and
using (3.3) the entire S0 can be reconstructed. The precise details follow.

We consider the sequence of internal states S = (S0, S1, . . .) = LCG128(S0, c). We will guess
the ℓ least-significant bits of S0, therefore let us assume that their value is known and denote it
by w. We define S′ = LCG128(S0 − w, 0) and K = LCG128(w, c) — this is known. As the LCG is
linear, we have S′ = S−K. The point is that the elements of S′ follow a geometric progression of
common ratio a; in addition, the ℓ least significant bits of each components are equal to zero. It
follows that if we fix U = S′[ℓ:64 + ℓ], U also follows a geometric progression of common ratio a,
this time modulo 264. The crux of the reconstruction algorithm is to find U.

As we know K, for each guessed rotation ri we have access to Si[58:64+ ℓ] (named Ti, in yellow
on the figure). Then

U[58− ℓ:64] = S′[58:64 + ℓ]

= (S⊟K)[58:64 + ℓ]

= S[58:64 + ℓ]⊟K[58:64 + ℓ]⊟B

where B is an unknown vector of borrows, whose components are either 0 or 1, by (3.2).

42

r0 wS0

64 bits 64 bits

???????????????????T0

r1 w1S1

???????????????????T1

r2 w2S2

???????????????????T2

ℓ bits 6
64 bits ℓ bits

Figure 3.2: A guess-and-determine algorithm to reconstruct the first internal state S0. Magenta
bits are guessed; cyan bits are obtained using the linear congruence relation (3.4) modulo 2ℓ; yellow
bits are obtained from the output and the guessed rotations using (3.3).

43

We can compute T̃′ = S[58:64+ℓ]⊟K[58:64+ℓ], and clearly T̃′ = U[58−ℓ:64]⊞B. We are thus
in the context of the problem discussed in section 3.2, namely reconstructing a geometric sequence
given t = 6 + ℓ (noisy) most-significant bits. The “noise” is the unknown vector B of borrows.

We will guess n rotations and ℓ least-significant bits of the state, for a total of 26n+ℓ guessed
bits. Table 3.1 gives a lower-bound on t = 6 + ℓ given n, and we see that the total number of
guessed bits reaches a minimum of 38 when n = 3 and ℓ = 20. Therefore, success is guaranteed if
we guess ℓ = 20 low-order bits of the state and three consecutive rotations.

The algorithm that reconstructs the internal state of the PCG64 generator with known increment
proceeds as shown in algorithm 7.

The procedure is completely practical. More details are given in section 3.5. Let us just mention
that the procedure often works (twice faster) with ℓ = 19 or even four times faster with ℓ = 18
(with a reduced success probablity).

Algorithm 7 State reconstruction Algorithm (case where c is known)
1: procedure ReconstructStateℓ(X0, X1, X2)
2: // Statement involving j must be repeated for j = 0, 1, 2.
3: H ← LLL reduction of G3,64

4: ℓ← 20
5: for 0 ≤ w < 2ℓ do ▷ Guess least-significant bits of S0

6: Kj ← ajw + c(aj − 1)(a− 1)−1 mod 2128 ▷ Known part
7: for 0 ≤ r0, r1, r2 < 64 do ▷ Guess rotations
8: Yj ← Xj ≪ rj ▷ Undo rotations
9: Tj ← (rj ⊕ Yj [58:64]) + 64 · (Kj ⊕ Yj) [0:ℓ] ▷ Truncated LCG output

10: T̃ ′
j ← Tj ⊟Kj [58:64 + ℓ] ▷ Truncated geometric series on 6 + ℓ bits

11: (U0, U1, U2)←
⌊
258−ℓ · (T̃ ′

0, T̃
′
1, T̃

′
2) ·H−1

⌉
·H ▷ CVP (Babai rounding)

12: S0[0:64]← K0[0:64] + 2ℓ · U0[0:64− ℓ] ▷ Reconstruct S0

13: S0[64:128]← S0[0:64]⊕ Y0

14: S1 ← aS0 + c ▷ Recompute X1

15: Ŷ1 = S1[0:64]⊕ S1[64:128]

16: if Ŷ1 = Y1 then ▷ Check consistency
17: output S0 as a candidate internal state.

3.4 State Reconstruction for PCG64 With Secret Increment
The algorithm of section 3.3 does not apply directly to the general case where the value of c
is unknown. A “baseline” procedure would consist in guessing S0[64:128] and S1[64:128]; using
eq. (3.3), this would reveal S0 and S1; from there, the increment c is easy to obtain, and every secret
information has been reconstructed. This would take 2128 iterations of a very simple procedure,
which is completely infeasible.

Set ∆Si = Si+1 ⊟ Si; it is easily checked that ∆Si is a geometric progression of common
ratio a. Therefore, reconstructing both S0 and ∆S0 is sufficient to compute all subsequent states
(and recover the unknown increment c). The global “guess-and-determine” strategy is essentially
the same as before: gaining access to a truncated version of ∆Si, solving a small SVP instance,

44

reconstructing ∆S0, then checking consistency.
Let us set:

∇Si
def
= Si − S0 ≡

i−1∑
j=0

∆Sj ≡ ∆S0 ·
i−1∑
j=0

aj ≡ ∆S0
ai − 1

a− 1
mod 2128 (3.5)

Note that ∇S0 = 0 and ∇S1 = ∆S0. Therefore, knowledge of ∆S0 entails that of the whole
sequence of ∇Si. The prediction algorithm we propose proceeds in three phases:

1. Reconstruct ∆S0[0:64 + ℓ] from X0, . . . , X4, check consistency with X5, . . . , X63.

2. Reconstruct all rotations ri from this partial knowledge.

3. Fully reconstruct ∆S0 from the rotations.

4. Reconstruct S0 from ∆S0 and the rotations.

Only the first phase is computationally intensive. The four steps are discussed in the next four
subsections.

3.4.1 Partial Difference Reconstruction
In order to access to a part of ∆Si, we use the same “guess-and-determine” strategy as in section 3.3:
we guess the least significant bits of S0 and some rotations, then check consistency. The difference
is that, since c is unknown, we must in addition guess the least significant bits of c to obtain the
same “long-term advantage” (c is always odd; this makes one less bit to guess). We must also guess
k + 1 successive rotations to get information on k successive differences ∆Si.

Confirming that the guesses are correct is less immediate. When c was known, we could recon-
struct the internal state; from there, filtering out the bad guesses was easy. When c is unknown,
the same strategy does not work, but a very strong consistency check can still be implemented.

We consider again the sequence of internal states S = (S0, S1, . . .) = LCG128(S0, c). We will
guess the ℓ least-significant bits of S0 and of c, therefore let us assume that their value is known and
denote it by w0 and c0. We define S′ = LCG128(S0−w0, c−c0) and K = LCG128(w0, c0) — again, K
is known and S′ = S−K. This time, the components of S′ do not follow a geometric progression;
but we still have that the ℓ least significant bits of each S′

i are zero. Set ∆S′
i

def
= S′

i+1 − S′
i;

∆S′[ℓ:64+ ℓ] follows a geometric progression of common ratio a modulo 264 (again). This time, we
have to find ∆S′

0[ℓ:64 + ℓ].
As in section 3.3, we have access to Ti

def
= Si[58:64 + ℓ]. We want to subtract the known part

to obtain T ′
i

def
= (Si ⊟ Ki)[58:64 + ℓ], which is the truncation of S′

i. This again introduces an
unknown vector B of borrows, and in fact we can only compute T̃′ = S[58:64 + ℓ] ⊟K[58:64 + ℓ],
with T̃′ = T′ ⊞ B. As explained above, to access a geometric sequence, we would like to obtain
∆T ′

i
def
= T ′

i+1 − T ′
i , but we can only compute:

∆T̃ ′
i
def
= T̃ ′

i+1 − T̃ ′
i = (T ′

i+1 ⊟ T ′
i)⊞ (Bi+1 ⊟Bi)

We are thus still in the context of the problem discussed in section 3.2, but this time the “noise”
caused by the carries is given by Bi+1 − Bi. Instead of being between {−1, 0, 1} it is between

45

{−2,−1, 0, 1, 2}, because of that it could be seen as the outputs of a LCG truncated of k − t + 2

bits. When the guesses are correct, then Babai’s rounding will reconstruct ∆S̃′[ℓ:64+ ℓ] from ∆T̃′.
This in turn yields ∆S0[0:64 + ℓ].

Once we have found ∆S0[0:64 + ℓ], we can compute ∇Si[0:64 + ℓ] for any i because eq. (3.5)
holds modulo 264+ℓ; because we have guessed the first rotation and the ℓ least significant bits of
the state, using (3.3) we gain access to S0[58:64 + ℓ]; combined with the “differences” ∇Si, this
reveals Si[58:64 + ℓ] for any i (and we already had Si[0:ℓ]). This allows us to compute Yi[0:ℓ] =
Si[0:ℓ] ⊕ Si[64:64 + ℓ] for any i. Given a “fresh” output Xi, and assuming that the guesses are
correct, then we should have:

Si[0:ℓ]⊕ Si[64:64 + ℓ] = (Xi ≪ ri)[0:ℓ]. (3.6)

In particular, if the guesses were correct, then we should have for any i:

Si[0:ℓ]⊕ Si[64:64 + ℓ] ∈
{
(Xi ≪ r)[0:ℓ] | 0 ≤ r < 64

}
. (3.7)

If none of the 64 possible rotations yields a match, then the guesses made beforehand have to be
wrong. As a consequence, bad guesses can be filtered with an arbitrarily low probability of false
positives, by trying several indices i.

A few details still need to be fleshed out. To be precise, let us assume that we have guessed the
ℓ least-significant bits of S0 (we denote them by w0) and the first rotation r0. Set Y0 = X0 ≪ r0.
We obtain the i-th state by Si ≡ ∇Si ⊞ S0; however, because the “middle” of S0 is unknown, then
an unknown carry may cross the 64-th bit during the addition and perturb Si[64:64 + ℓ]. As a
result, there is an unknown vector C, whose components are either 0 or 1, such that such that:

Si[64:64 + ℓ] = Ci ⊞∇Si[64:64 + ℓ]⊞ (w0 ⊕ Y0[0:ℓ]︸ ︷︷ ︸
S0[64:64+ℓ]

)

In algorithm 8, ConsistencyCheck uses eq. (3.7) combined with this observation to discard
bad guesses.

The heart of the algorithm is again the reconstruction of a truncated geometric progression
knowing the t = ℓ + 6 upper bits of four consecutive terms. Looking at table 3.1, we see that the
best choice consists in guessing 5 consecutive rotations and ℓ = 14 least-significant bits. Therefore,
ReconstructPartialDifference does 257 iterations of the inner loop, and succeeds determin-
istically.

3.4.2 Predicting all the Rotations
Knowing the values of ∆S0[0:64 + ℓ] as well as the ℓ least-significant bits of S0 and c is sufficient
to get rid of the nastier feature of PCG64: armed with this knowledge, we can determine all the
subsequent rotations deterministically, at negligible cost, using eq (3.6). For each index i, it suffices
to try the 64 possible values of ri; only one should satisfy eq (3.6). The complete pseudo-code is
shown in algorithm 9.

It is unlikely that several possible values of ri match: each value is “checked” on ℓ bits, so an
accidental match happens with probability 2ℓ−6. The total number of lists returned by Recon-
structRotations then follows a binomial distribution of parameters 2ℓ−6, k. With ℓ = 14 and
k = 64, then only one rotation vector should pass the test for 0 ≤ i < 64 on average.

46

Algorithm 8 Partial difference reconstruction algorithm (when c is unknown).
1: procedure ConsistencyCheck(∆S0, w0, Y0, X5, . . . , Xk)
2: v0 = w0 ⊕ Y0[0:ℓ] ▷ v0 = S0[64:64 + ℓ]
3: for i = 5, . . . , k do
4: ui ← ∆S0(a

i − 1)(a− 1)−1 mod 264+ℓ ▷ ui = ∇Si[0:64 + ℓ]
5: wi = w0 ⊞ ui[0:ℓ] ▷ wi = Si[0:ℓ]
6: vi = v0 ⊞ ui[64:64 + ℓ] ▷ Si[64:64 + ℓ] ∈ {vi, v′i}
7: v′i = vi ⊞ 1
8: Ci ← {wi ⊕ (Xi ≪ ri)[0:ℓ] | 0 ≤ ri < 64} ▷ Check eq. (3.7)
9: if {vi, v′i} ∩ Ci = ∅ then

10: return False ▷ Bad Guesses
11: return True ▷ No inconsistency
12:
13: procedure ReconstructPartialDifference(X0, . . . , Xk)
14: // Statement involving j must be repeated for j = 0, 1, 2, 3, 4.
15: H ← LLL reduction of G4,64

16: ℓ← 14
17: for 0 ≤ w0 < 2ℓ and 0 ≤ c0 < 2ℓ−1 do ▷ Guess least-significant bits
18: Kj ← ajw0 + (2c0 + 1)(aj − 1)(a− 1)−1 mod 2128 ▷ Known part
19: for 0 ≤ r0, r1, r2, r3, r4 < 64 do ▷ Guess rotations
20: Yj ← Xj ≪ rj ▷ Undo rotations
21: Tj ← (rj ⊕ Yj [58:64]) + 64 · (Kj ⊕ Yj) [0:ℓ] ▷ Truncated LCG
22: T̃ ′

j ← Tj ⊟Ki[58:64 + ℓ] ▷ Cancel known part
23: ∆T̃ ′

j = T̃ ′
j+1 ⊟ T̃ ′

j ▷ Difference (truncated geom. seq.)
24: (∆U0, . . . ,∆U3)←

⌊
(∆T̃ ′

0, . . . ,∆T̃ ′
3) · 258−ℓ · H̃−1

⌉
· H̃ ▷ CVP

25: ∆S0[0:64 + ℓ]← (K1 ⊟K0) [0:ℓ] + 2ℓ ·∆U0[0:64] ▷ Check
26: if ConsistencyCheck(∆0, w0, Y0, X5, . . . , Xk) then
27: return (w0, c0, r0, . . . , r4,∆S0).

Algorithm 9 Rotations and full difference reconstruction algorithm
1: function ReconstructRotations(∆S0, v0, i, k)
2: // Return a list of potential [ri, ri+1, . . . , rk]; assume that v0 = S0[64:64 + ℓ]
3: if i > k then
4: return [] ▷ End recursion
5: T ← ReconstructRotations(∆S0, v0, i+ 1, k) ▷ Find all the (ri+1, . . . , rk)
6: H ← [] ▷ List of possible ri’s
7: ui ← ∆S0(a

i − 1)(a− 1)−1 mod 264+ℓ ▷ ui = ∇Si[0:64 + ℓ]
8: wi = w0 + ui[0:ℓ] mod 2ℓ ▷ wi = Si[0:ℓ]
9: vi = v0 + ui[64:64 + ℓ] mod 2ℓ ▷ Si[64:64 + ℓ] ∈ {vi, v′i}

10: v′i = vi + 1 mod 2ℓ

11: for 0 ≤ r < 64 do ▷ Try all rotations
12: if wi ⊕ (Xi ≪ r)[0:ℓ] ∈ {vi, v′i} then ▷ Check eq. (3.6)
13: H ← r::H ▷ New candidate ri
14: return {h::t | h ∈ H, t ∈ T } ▷ Return H× T

47

3.4.3 Full Difference Reconstruction
Using X0, X1, . . . , X63, we recover all rotations and thus we recover the 6 most-significant bits of
S0, S1, . . . , S63. This allows us to compute the 6 most significant bits of the differences ∆Si between
consecutive states (up to missing carries), and we are faced with the problem of reconstructing a
128-bit geometric progression using 63 consecutive outputs truncated to their 6 most-significant
bits. There is again an unknown vector of borrows B such that ∆Si[122:128]⊞ Ci = ri+1 ⊟ ri.

Reconstructing ∆S0 from the ri is exactly the problem discussed in section 2.1. This can be
done by solving an instance of CVP in dimension 63. We use the off-the-shelf CVP solver embedded
in fplll: it runs in negligible time.

3.4.4 Complete State Reconstruction
Once all the rotations have be recovered and ∆S0 has been found entirely, the only thing that remain
is to actually find the entire S0. For this, we use again eq. (3.3), coupled with the “differences”:

Si = S0 ⊞∇Si

Yi = Si[0:64]⊕ Si[64:128].

The Yi and ∇Si are known, ∇S0 = 0, and the problem consists in recovering S0. We could
probably encode it as an instance of SAT, feed it to a SAT-solver and be done with it.

Nevertheless, here is a detailed recovery procedure which obtain all bits of S0, from right to left,
by exploiting the non-linearity of modular addition. It takes negligible time. Let Ci the vector of
(incoming) carries generated during the addition of S0 and ∇Si:

Si[j] = S0[j]⊕∇Si[j]⊕ Ci[j]

Ci[j] =

{
0 if j = 0

MAJ(S0[j − 1],∇Si[j − 1], Ci[j − 1]) if j > 0

Combining all the above, we have:

Yi[j] = Y0[j]⊕
(
∇Si[j]⊕∇Si[64 + j]

)
⊕
(
Ci[j]⊕ Ci[64 + j]

)
(3.8)

This useful equation enables an induction process.

• When j = 0, the 0-th carries are zero, and therefore eq. (3.8) reveals the 64-th carries:

Ci[64 + j] =
(
Y0[j]⊕ Yi[j]

)
⊕
(
∇Si[j]⊕∇Si[64 + j]

)
.

• Next, suppose that Ci[0:j], S0[0:j − 1], Ci[64:64 + j] and S0[64:64 + j − 1] are known, for all
i. We can compute Ci[j]⊕Ci[64+ j] for any i using eq. (3.8). We then look a a specific index
i > 0 such that

∇Si[j − 1] 6= Ci[j − 1] and ∇Si[64 + j − 1] = Ci[64 + j − 1].

The point is that, thanks to the majority function, Ci[j] = S0[j−1] and Ci[64+ j] = ∇Si[64+
j − 1]. It follows that:

S0[j − 1] = Y0[j − 1]⊕ Yi[j − 1]⊕
(
∇Si[j − 1]⊕∇Si[64 + j − 1]⊕∇Si[64 + j − 1]

)
From there, we also have S0[64 + j − 1] = Y0[64 + j − 1]⊕ S0[j − 1], and the j-th carry bits
can be computed normally.

48

The whole procedure is shown in algorithm 10. Note that once S0 has been found, then all
subsequent states can be computed with error using Si = S0 ⊞∇Si. In particular, computing S1

gives c by c← S1 ⊟ aS0. This complete the reconstruction procedure for PCG64.

Algorithm 10 Full state reconstruction algorithm
1: function ReconstructState(∆S0, r0, . . . , rk, X0, . . . , Xk)
2: for i = 0, 1, . . . , k do ▷ Setup
3: ∇Si ← ∆S0(a

i − 1)(a− 1)−1 mod 2128

4: Yi ← Xi ≪ ri ▷ Undo rotations
5: Ci[0]← 0 ▷ Bootstrap induction
6: Ci[64]←

(
Yi[0]⊕ Yi[j]

)
⊕
(
∇Si[j]⊕∇Si[64 + j]

7: for j = 1, 2, . . . , 64 do ▷ Induction
8: i← ⊥ ▷ Find good index
9: for k = 1, 2, . . . , k do

10: if ∇Sk[j − 1] 6= Ck[j − 1] ∧∇Sk[64 + j − 1] = Ck[64 + j − 1] then
11: i← k
12: if i = ⊥ then ▷ No suitable indice found?
13: Abort with Failure
14: ▷ Compute next state bit
15: S0[j − 1]← Y0[j − 1]⊕ Yi[j − 1]⊕

(
∇Si[j − 1]⊕∇Si[64 + j − 1]⊕∇Si[64 + j − 1]

)
16: S0[64 + j − 1]← Y0[64 + j − 1]⊕ S0[j − 1]
17: for i = 0, 1, . . . , k do ▷ Compute next carries
18: Ci[j]← MAJ(S0[j − 1],∇Si[j − 1], Ci[j − 1])
19: Ci[64 + j]← MAJ(S0[64 + j − 1],∇Si[64 + j − 1], Ci[64 + j − 1])

20: return S0

3.5 Implementation and Practical Results
We have implemented the state reconstruction algorithms described above using a mixture of C
(for the computationally expensive parts) and Python (for the rest). We used the fplll library [61]
to solve CVP instances exactly in dimension 63.

In this section, we briefly outline important aspects of our implementations and present practical
results. Our codes are available in the supplementary material as well as online at:

https://github.com/cbouilla/pcg/

The designer of PCG was kind enough to send us two sets challenge inputs: one with the default
(known) increment and one with a random secret increment. She generated random seeds and
provided us with the first outputs of the pseudo-random generator. We were able to reconstruct
the seed with an extremely high confidence level, because they re-generate the same outputs. We
emailed back the seeds and received confirmation that they were indeed correct.

We have therefore successfully taken the challenge of predicting the output of the PCG64 gen-
erator.

The analysis of section 3.2 yields parameters that guarantee that the reconstruction procedure
always succeeds. In most cases, these parameters are pessimistic. We ran a serie of experiments to

49

https://github.com/cbouilla/pcg/

n = 3 (section 3.3) n = 4 (section 3.4.1)
ℓ Success proba. ℓ Success proba.

16 ≈ 0.125 10 ≈ 0.12
17 ≈ 0.25 11 ≈ 0.64
18 ≈ 0.5 12 ≈ 0.995
19 ≈ 1 13 ≈ 1
20 1 (proved) 14 1 (proved)

Table 3.2: Empirical success probabilities with smaller parameters.

determine more practical choices: using smaller-than-guaranteed values of ℓ (the number of guessed
least-significant bits), we measured the success probability of the state reconstruction procedure.
The results are shown in table 3.2.

3.5.1 Known Increment
When the increment c is known, algorithm 7 is all it takes to reconstruct the internal state of the
generator and predict it (or output the seed). We implemented it in C, using OpenMP to parallelize
the outer loop that guesses the least-significant bits of the state. This yields a simple multi-core
implementation. We used the gcc 8.3.0 compiler.

From section 3.2.1, we know that guessing ℓ = 20 least-significant bits ensures deterministic
success. However, we observed empirically that ℓ = 19 works with probability ≈ 1, and runs twice
as fast. ℓ = 18 and ℓ = 17 run with probability ≈ 1/2 and ≈ 1/4 respectively, therefore are much
less useful. In practice, we used ℓ = 19.

We ran it on a server equipped with two 16-core Intel Xeon Gold 6130 CPU @ 2.10GHz (“Skylake”)
CPUs. The inner loop does 237 iterations and terminates in 42.3s, which makes 23 core minutes.

These processors operate at a different frequency depending on the number of cores used and
the type of instructions executed. Our code uses only scalar instructions, so the CPUs runs at the
highest frequency tier when executing it. Using a single software thread per physical core (each
core presents two hardware execution contexts, commercially called HyperThreads) allows the CPU
to run at 2.8Ghz, the maximum “Turbo” frequency on all cores. Using one software thread per
hardware thread reduces the frequency to ≈ 2.6Ghz, but allows to better saturate the execution
units of the CPU and yields a nearly 20% speedup overall.

Therefore the algorithm requires 241.67 CPU cycles in total; this makes less than 26 cycles per
iteration of the inner loop. We used several implementation tricks to reach this level of efficiency:

• We used the __uint128_t type provided by most C compilers to do 128-bit arithmetic when
computing S1 from S0. Apart from that, the algorithm has been designed to do mostly 64-bit
arithmetic, for the sake of efficiency.

• Looking at the algorithm, it is clear that U1 and U2 are actually not needed, so we just don’t
compute them.

• T̃J is a function of w, j and rJ (with j = 0, 1, 2). therefore, for each new value of w, we
precompute once and for all an array indexed by (J,RJ) of the 192 possible values of T̃J .

50

• Pushing the same idea a bit further, we precompute parts of the matrix-vector product inside
the rounding: this computes a linear combination of the rows of G−1

3 , in which T̃j is the
coefficient of the j-th row. So we precompute the 576 possible products T̃j ·G−1

3 [j, k].

• We enumerate the possible rotations in lexicographic order. This means that T̃0 changes in
each iteration while T̃1 (resp T̃2) changes every 64 (resp 4096) iterations. Therefore, in 98%
of the iterations, two-thirds of the matrix-vector product inside the rounding are the same
as from the previous iteration. Therefore, we fully compute the matrix-vector product only
when r1 changes and only update it when r0 changes.

• The rounding operation, when done naively by writing llround(x), is actually a bottleneck:
it calls a library function that accounted for about 20% of the total running time. We instead
used the following technique, which correctly returns bxe whenever |x| < 251: This hack
exploits the IEEE754 representation of double-precision floats: the mantissa lies in bits [0:52]
while the sign bit and the exponents take the 12 most significant bits. Adding 252+251 forces
the mantissa to shift to the correct position and inserts an extra 1 bit at position 51. The
two shifts clear the extra bit and the exponent, while correctly expanding the sign bit.

3.5.2 Unknown Increment
When the increment c is known, the internal state of PCG64 can be practically reconstructed
from X0, . . . , X63 using the algorithms shown in section 3.4. Only algorithm 8 is computationally
expensive; we implemented it in C, while we implemented algorithms 9 and 10 in Python.

We have shown that algorithm 8 is correct when ℓ = 14. The procedure does 229+2ℓ iterations
of the inner loop, so decreasing ℓ would really be interesting. Looking at table 3.2, we settle for
ℓ = 13 in the worst case; let T denotes the running time when ℓ = 13.

It seems that the most promising strategy consists in choosing ℓ = 11; if the reconstruction
procedure fails, then we try again with different inputs. The expected running time of this approach
number of trials is T/(16 × 0.64) ≈ T/10.25. In our implementation, T = 200, 000 CPU hours, so
the expected running time of the reconstruction procedure is about 20, 000 CPU hours. In fact we
were lucky: on the challenge input, the first attempt with ℓ = 11 succeeded, so the whole process
took only 12, 500 CPU hours.

It actually ran in 35 wall-clock minutes using 512 cluster nodes, each equipped with two 20-cores
Intel Xeon Gold 6248 @ 2.5Ghz (“Cascade Lake”). The actual machine is the jean-zay computer
located at the IDRIS national computation center. Note that on this particular parallel computer,
running the algorithm with ℓ = 13 would take 10 hours using the same amount of resources, so the
whole procedure is practical, even in the absolute worst case.

The outer loop of algorithm 8 makes 22ℓ−1 iterations while the inner loop makes 230 iterations.
Using a single hardware execution context, we measured that one of the outer loop takes between
41.5s and 44s (apparently not all nodes of the cluster are running at exactly the same speed, poten-
tially because of “turbo boost” adjustments and thermal constraints). Because of this variability,
we implemented a master-slave work distribution pattern, in which a master process dispatches
iterations of the outer loop to slave processes. This also made checkpointing very easy. We used
MPI for inter-process communication.

With ℓ = 11, the whole process took 256.74 CPU cycles, which makes less than 54 cycles per
iteration of the inner loop. We used essentially the same implementation tricks discussed above.
However, this time we had to additionally implement the ConsistencyCheck procedure, which is

51

called in the inner loop. We observed that the set of possible candidate values C only depends on w0

(the variable of the outer loop). Therefore, before entering the inner loop, we precompute a bit field
of size 2ℓ describing Ci. To simplify the implementation, we flatten them by computing C = ∪iCi.
This slightly increase the probability of false positives, but makes our code slightly simpler.

52

Chapter 4

Attack on Trifork

4.1 Description of Trifork
The generator Trifork has been presented in 2010 by Orue, Montoya, and Hernández Encinas
[51] as suitable for cryptographic purposes. The main idea was to construct a fast and secure
generator combining three Lagger Fibonacci Generators that are not secure but very fast. To
protect itself against attackers, it combines modular arithmetic and binary operations, to avoid
arithmetic attacks, and uses very large internal states, to avoid “guess-and-determine”. Because
of this last characteristic, this generator cannot be used for lightweight cryptography despite its
speed and the simplicity of its operations. To keep the size of the key reasonable, this generator
has an initialization phase where it uses an LCG to derive the first internal state from three secret
words of 64 bits. They claim for their generator a security of 192 bits, hence the size of the key.
The proposed algorithm retrieves the seed of this generator in O(264) operations for a large set
of parameters. The strategy is to obtain approximations of the outputs of the LCG used in the
initialization phase as we already have many tools to attack this generator. This algorithm is an
original work firstly presented in Practical Seed-Recovery of Fast Cryptographic Pseudo-Random
Number Generators at ACNS 2022 [48].

Definition 8. The Lagged Fibonacci Generator (LFG) is defined by three parameters: r, s and
m. The seed contains r words of size log2(m): (x−1, . . . , xr). At step i the generator computes
xi ≡ xi−r + xi−s mod m. It can be described by the following figure.

+

xi−r xi−s xi←←

They have poor statistical properties, which make them easily distinguishable from the uniform
distribution, and they are easily predictable (as we can obtain the full internal state by clocking
the generator enough times).

53

xi−r1 xi−s1← ← xi−1

yi−r2 yi−s2← ← yi−1

zi−r3 zi−s3← ← zi−1

+

+

+

� d

� d

� d

Figure 4.1: Description of Trifork

The Trifork generator, described in Fig. 4.1, is going to use three Lagged Fibonacci Generators
of respective parameters (r1, s1, N, 2n), (r2, s2, N, 2n) and (r3, s3, N, 2n). The internal states of the
first LFG are denoted (Xi), the internal states of the second one (Yi), those of the third (Zi) and
the outputs (wi).

A step i, the generator computes

X ′
i = Xi−r1 +Xi−s1 mod 2n

Y ′
i = Yi−r2 + Yi−s2 mod 2n

Z ′
i = Zi−r3 + Zi−s3 mod 2n

Xi = X ′
i ⊕ (Z ′

i � d) (4.1)
Yi = Y ′

i ⊕ (X ′
i � d) (4.2)

Zi = Z ′
i ⊕ (Y ′i� d) (4.3)

where d is a constant satisfying 0 < d < n. The output at step i is:

Wi = Xi ⊕ Zi.

Remark 6. Trifork uses r1+ r2+ r3 words of n bits with n = 64. Because it uses Lagged Fibonacci
generator, we might want to guess-and-determine the whole internal state (as we will do in chapter
8). The “guess-and-determine” approach consist in guessing some bits of the internal states, using
the equations and the known outputs to determine some other bits of the internal state, and then
keeping track of these bits to extract some new information the next time their are used to compute

54

an output. Here the internal state appears too large to let us hope we could use a classical “guess-
and-determine” approach. But because the internal state is that large, it cannot be filled with a
secret key (or the secret key would be too large to be usable).

The seed of the generator is (X−r1 , Y−r2 , Z−r3). To fill its internal state, it will use an LCG of
public parameters a, c, 2n with a odd (hence invertible mod2n).

For i ∈ {−r1 + 1, . . . ,−1}, Xi = aXi−1 + c mod 2n

For i ∈ {−r2 + 1, . . . ,−1}, Yi = aYi−1 + c mod 2n

For i ∈ {−r3 + 1, . . . ,−1}, Zi = aZi−1 + c mod 2n

4.2 General idea behind the attack
We have seen in chapter 2 that the LCG was not a cryptographic secure PRNG. As it is only used
in the initialization phase of Trifork, one could have thought that it was hidden enough not to
compromise the security of the whole generator. Alas, the Lagged Fibonacci Generators do not mix
the internal states enough to prevent us from attacking this generator.

In the following figure, the words in red depend only on the secret parameter X−r1 , the words
in green depend only on the secret parameter Y−r2 and the words in blue depend only on the secret
parameter Z−r3

• At t = 0, at the end of the initialization, each register depends only on one secret parameter:

xt−r1 xt−s1← ← xt−1

yt−r2 yt−s2← ← yt−1

zt−r3 zt−s3← ← zt−1

• At t = 1, only the lower bits of the last words start to depend on two secret parameters at
the same time. We see that the words used to compute the next output are still not mixed.

xt−r1 xt−s1← ←

yt−r2 yt−s2← ←

zt−r3 zt−s3← ←

• At t = s2 − 1, the words used to compute the next output are still not mixed (it will be the
last time):

55

xt−r1 xt−s1← ←

yt−r2 yt−s2← ←

zt−r3 zt−s3← ←

By guessing X−r1 , and thus having access to the full first register at t = 0, we will manage to
reconstruct the upper bits of two sequences that are at least closely related to sequences output from
an LCG. Because we need to guess X−r1 , the time complexity of this algorithm will be exponential
in n.

4.3 Recovering Z−r3

We consider a parameter f1 ≥ s3 that will be the number of outputs we will use to recover Z−r3 .
We will set this parameter later.

We denote by dXed the d upper bits of a value, bXcd its d lower bits and consider the two
following functions :

g:i→
i−1∑
j=0

aj mod 2n and f :(r, s, i)→ g(r − s+ i) + g(i) mod 2n

The first step is to compute an approximation of the d upper bits of the values {X0, . . . , Xf1−1}.
If i < 0, Xi = a(...a(aX−r1 + c) + c...) + c mod m, that we conveniently rewrite Xi = ar1+iX−r1 +
g(r1 + i)× c mod 2n. If i ≥ 0, by eq (4.1), dXied = dXi−s1 +Xi−r1 mod 2ned.

• if i < s1, then dXied = dai(1 + ar1−s1)X−r1 + f(r1, s1, i) × c mod 2ned and we can compute
this value correctly.

• if i ≥ s1, then dXied ' dXi − r1ed + dXi−s1ed = daiX−r1 + g(i)× c mod 2ned + dXi−s1ed and
we can only compute the d− (i− s1) upper bits correctly.

With that we obtain an approximation of the d upper bits of {Z0, . . . , Zf1−1} knowing that
Zi = Wi ⊕Xi. We call these approximations Z̄i.

• if i < s3, then dZied = dai(1 + ar3−s3)Z−r3 + f(r3, s3, i)× c mod med. We set ti = Z̄i2
n−d −

f(r3, s3, i)× c.

– If i < s1 then Z̄i = dZied and ai(1 + ar3−s3)Z−r3 − ti = bZicn−d mod m. Hence
|ai(1 + ar3−s3)Z−r3 − ti| < 2n−d.

– If i ≥ s1, Z̄i and dZied are only equal on the d − (i − s1) upper bits. Hence |ai(1 +
ar3−s3)Z−r3 − ti| < 2n−d+i−s1 .

• if i ≥ s3, then dZied = daiZ−r3 + Zi−s3 + g(i)× c mod med. We set ti = (Z̄i − ¯Zi−s3)2
n−d −

g(i)× c.

56

– If i < s1 then Z̄i = dZied and ¯Zi−s3 = dZi−s3ed, so

aiZ−r3 − ti = aiZ−r3 − (dZied − dZi−s3ed)2n−d − g(i)× c mod m

= Zi−r3 − (dZied − dZi−s3ed)2n−d mod m

= (dZi−r3ed + dZi−s3ed − dZi−s3 + Zi−r3ed)2n−d

+ bZi−r3cn−d mod 2n‘

Hence |aiZ−r3 − ti| < 2n−d+1.
– If i ≥ s1, Z̄i and dZied are only equal on the d − (i − s1) upper bits. Hence |ai(1 +

ar3−s3)Z−r3 − ti| < 2n−d+i−s1+1.

Remark 7. As we use few outputs, we will not treat the case where i− r3 > 0.

We set b = a−1 mod m and α3 = (1 + ar3−s3). We construct

T = (ts3 , . . . , tf1−1, t0, . . . , ts3−1)

which is close to

U = as3Z−r3 × (1, a, a2, . . . , af1−1−s3 , bs3α3 . . . , bα3) mod m.

This vector begins like a sequence of outputs of an LCG. We could choose f1 a bit larger and use
only (ts3 , . . . , tf1−1). Then we would only have to attack an LCG as seen earlier in this manuscript.
We could also lightly modify the attack using a CVP as seen in subsection 2.1.1.

In this previous attack, we used the fact that we knew the sequence (ai) satisfying xi+1 ≡
aixi mod m. The additional information about (ai) following a geometric progression was not
used.

Hence we search for the closest vector to T in the lattice:

{α× (1, a, a2, . . . , af1−1−s3 , bs3α3 . . . , bα3) mod m|α ∈ Z}.

This lattice is spanned by the lines of the following matrix:

1 a . . . af1−1−s3 bs3α3 bs3−1α3 . . . bα3

m
.. .

m
m

.. .

. . .

m


As seen earlier a CVP solver will retrieve the seed as long as 2‖U − T‖2 < λ1 and we use the
Gaussian heuristic to approach λ1 by

√
f12

n(f1−1)/f1 (here the seed is as3Z−r3). As a is invertible
we can recover Z−r3

57

If f1 ≤ s1, then

‖U−T‖2 ≤

√√√√s3−1∑
i=0

(2n−d)2 +

f1−1∑
i=s3

(2n−d+1)2

≤ 2n−d
√
s3 + 4(f1 − s3)

If s3 ≤ s1 < f1, then

‖U−T‖2 ≤

√√√√s3−1∑
i=0

(2n−d)2 +

s1−1∑
i=s3

(2n−d+1)2 +

f1−1∑
i=s1

(2n−d+i−s1+1)2

≤ 2n−d

√√√√s1 + 4(s1 − s3) + 4

f1−s1−1∑
j=0

4j

≤ 2n−d

√
s1 + 4(s1 − s3) + 4

4f1−s1 − 1

3

If s1 < s3 < f1, then

‖U−T‖2 ≤

√√√√s1−1∑
i=0

(2n−d)2 +

s3−1∑
i=s1

(2n−d+i−s1)2 +

f1−1∑
i=s3

(2n−d+i−s1+1)2

≤ 2n−d

√√√√s1 +

s3−s1−1∑
j=0

4j + 4

f1−s1−1∑
j=s3−s1

4j

≤ 2n−d

√√√√s1 +

f1−s1−1∑
j=0

4j + 3

f1−s1−1∑
j=s3−s1

4j

≤ 2n−d

√
s1 +

4f1−s1 − 1

4− 1
+ 3× 4s3−s1

4f1−s3 − 1

4− 1

≤ 2n−d

√
s1 +

4f1−s1+1 − 1

3
− 4s3−s1

Remark 8. Alas, the inequality 2‖U−T‖2
√
f12

n(f1−1)/f1 is not satisfied in the critical cases. We
use an even more loose heuristic and hope U is indeed the closest vector as long as we have n bits
of correct information. If n/d < s1, then we set f1 = max(n/d+ 1, s3 + 1 and the d− 1 upper bits
of the n/d + 1 computed approximation of Xi are correct. If n/d ≥ s1 then we set f1 such that
f1 − 1× (d− f1 − s1) ≥ n. This new heuristic gives similar f1.

If we guess X−r1 , we can compute Z−r3 or α3Z−r3 by solving one CVP on a matrix of size
f1 × f1.

4.4 Recovering Y−r2

We consider a parameter f3 > s2 that will be the number of outputs we will use to recover Y−r2 .

58

Firstly, we will compute an approximation of the n−d upper bits of the values {Z0, . . . , Zf3−1}.

• if i < s3, then dZied = dai(1 + ar3−s3)Z−r3 + f(r3, s3, i) × c mod 2ned and we can compute
this value correctly.

• if i ≥ s3, then dZied ' daiZ−r3 + g(i)× c mod med+ dZi−s3ed and only the d− (i− s3) upper
bits are computed correctly.

Secondly, we will compute an approximation of the n−d lower bits of the values {X0, . . . , Xf3−1}.

• if i < s1, then Xi = (ai(1 + ar1−s1)X−r1 + f(r1, s1, i)× c mod 2n)⊕ (Zi � d).

• if i ≥ s1, then Xi = (aiX−r1 + g(i)× c+Xi−s1 mod 2n)⊕ (Zi � d).

With the lower bits of the (Xi) we can compute an approximation of the n− d lower bits of the
values {Z0, . . . , Zf3−1} knowing that Zi = Wi ⊕Xi.

Then we obtain an approximation of the n − d upper bits of {Y0, . . . , Yf3−1} knowing that
Zi = (Zi−r3 + Zi−s3 mod m)⊕ (Yi � d). We call these new values Ȳi.

Remark 9. When we computed the upper bits of (Zi), we only had the d upper bits, not the n− d.
This lack of information impacts the rest of the calculation and at the final step, we know there is
no information in the n− 2d lower bits of the (Ȳi).

• if i < s2, then dYied = dai(1 + ar2−s2)Y−r2 + f(r2, s2, i) × c mod med. We set ti = Ȳi2
d −

f(r2, s2, i)× c.

• if i ≥ s2, then dYied = daiY−r2+Yi−s2+g(i)×c mod med. We set ti = (Ȳi− ¯Yi−s2)2
d−g(i)×c.

Remark 10. Here the dependences between the different values are harder to explicit. For example,
in the case where i < min(s1, s2, s3), we can compute the d upper bits of Zi correctly. Thanks to
that we can compute the d upper bits of bXicn−d correctly. We obtain directly the d upper bits of
bZicn−d with Zi = Wi ⊕ Xi. The last step is obtaining the d upper bits of Yi � d. At this point
there is an addition so we might lose one bit of precision because of a carry over. We obtain that
|ai(1 + ar2−s2)Y−r2 − ti| < 2n−d+1. Because of that we will fix f3 as follows: if n/d < s3, then we
set f3 = n/d+ 1 and the d− 1 upper bits of the n/d computed approximation of Zi are correct. If
n/d ≥ s3 then we set f3 such that f3 − 1× (d− f3 − s3) ≥ n.

We set b = a−1 mod 2n and α2 = (1 + ar2−s2). We construct

T = (ts2 , . . . , tf3−1, t0, . . . , ts2−1)

which is close to

U = as2Y−r2 × (1, a, a2, . . . , af3−1−s2 , bs2α2 . . . , bα2) mod 2n.

hence we search for the closest vector to T in the lattice:

{β × (1, a, a2, . . . , af3−1−s2 , bs2α2 . . . , bα2) mod 2n|β ∈ Z}.

59

This lattice is spanned by the lines of the following matrix:

1 a . . . af3−1−s2 bs2α2 bs2−1α2 . . . bα2

m
.. .

m
m

.. .

. . .

m


The CVP solver should return as2Y−r2 and we can compute Y−r2 .
Once again, for a set X−r1 we only solve one CVP to compute Y−r2 .
In the end, this attack needs to solve 2n × 2 CVPs on matrices of size f1and f3 where f1 and

f3 are small (of size ' n/d).

4.5 Experimental results
In the original article, a practical instantiation of Trifork was proposed with n = 64. As a simple
laptop can hardly compute 264 operations, we will present results when X−r1 is known instead of
guessed (the computer will only have to compute 2 CVP and a variety of arithmetical operations).
The rate of success and time are computed for a hundred of instances, with s1, s3, s3 randomly
chosen in {1, . . . , 9} and r1, r2, r3 randomly chosen in {10, . . . , 20}.

d 10 20 30 40 50 60
% of success 22% 99% 100% 100% 59% 0%

time 0.020s 0.018s 0.016s 0.015s 0.015s 0.014s

We notice that our attack does not cover the extreme cases where d is close to one or close to
64. In the case where d is close to 64, the hard problem is to recover the register Y because it will
impact the outputs very lightly. But we still should be able to quickly predict a large proportion of
output bits without the knowledge of any Yi. In the case where d is close to one, our method does
not allow obtaining precise enough approximations of zi’s.

60

Chapter 5

Attack on the Fast Knapsack
Generator

5.1 Description of the Fast Knapsack Generator
In 2009, von zur Gathen and Shparlinski presented a faster and lighter version of the knapsack
generator called the Fast Knapsack Generator [28]. The main modification was a specialisation of
the weights. In their paper, the authors mention that it was not clear if that specialisation had an
impact on the security of this generator. Thus it was not known if it was suited for cryptographic
purposes. In this chapter, we notice similarities between the fast knapsack generator and the LCG.
Because of the specialisation of the weights, the fast knapsack generator tends to act like an LCG
on one iteration with probability 1/4. The attack presented here is an original work first presented
in Attacks on Pseudo Random Number Generators Hiding a Linear Structure at CT-RSA 2022 [47].

Definition 9 (Linear Feedback Shift Register). The seed of a Linear Feedback Shift Register is
made of n bits u0, . . . , un−1. The public parameter is the feedback polynomial P : an irreducible
polynomial over F2 of degree n. At step i this generator computes ui+n = P (ui, . . . , ui+n−1). It can
be represented by the following figure

⊕⊕ . . .

. . .← ui+n←

Definition 10 (The Knapsack Generator). An instantiation of the Knapsack Generator is given
by n secret initial bits (u0, . . . , un−1), n secret weights (ω0, . . . , ωn−1) in {0, . . . , 2n−1} and a public
feedback polynomial P irreducible over F2 of degree n. At step i the generator computes:

vi ≡
n−1∑
j=0

ui+jωj mod 2n and ui+n = P (ui, . . . , ui+n−1)

61

and the output is made of the n− ℓ leading bits of vi.
We notice that the key is of size n+ n2 bits and the generator needs n additions over Z/2nZ to

compute a new output. That is why von zur Gathen and Shparlinski introduced the Fast Knapsack
Generator in 2009 [28] which is lighter and faster than the original Knapsack generator.
Definition 11 (The Fast Knapsack Generator). An instantiation of the Fast Knapsack Generator
is given by n secret initial bits (u0, . . . , un−1), two secret integers y and z in {0, . . . , 2n−1} and
a public feedback polynomial P irreducible over F2 of degree n. Before producing any outputs the
generator computes the weights ωi = zn−iy for i ∈ {0, . . . , n − 1}. At the first step the generator
computes:

v0 ≡
n−1∑
j=0

ujωj mod 2n and un = P (u0, . . . , un−1).

At step i+ 1, it computes:

vi+1 ≡ −uiz
ny + zvi + ui+nzy mod 2n and ui+n = P (ui, . . . , ui+n−1)

As before the output is given by the n− ℓ leading bits of vi+1.
Here the key is of size 3n, smaller that in first case, and the generator only needs 3 additions

over Z/2nZ to compute a new output.
Remark 11. We obtain this new way to computes vi+1 as:

vi+1 ≡
n−1∑
j=0

ui+j+1ωj mod 2n

≡
n−1∑
j=0

ui+(j+1)z
n+1−(j+1)y mod 2n

≡ z

n∑
k=1

ui+kz
n−ky mod 2n

≡ z(−uiz
ny +

n−1∑
k=0

ui+kz
n−ky + ui+ny) mod 2n

≡ −uiz
n+1y + zvi + ui+nzy mod 2n

The control bits (ui) come from a LFSR. Even if the LFSR is not cryptographically secure, as its
characteristic polynomial is irreducible, we can assume that the (ui) follow a uniform distribution
from a statistical viewpoint [50]. Because of that, the case where vi+1 = zvi mod 2n (i.e. ui =
un+i = 0) appears with probability 1

4 .
We are in a case where a PRNG behaves like an LCG with secret multiplier in one iteration with

probability 1/4. From section 2.2, we know how to retrieve the multiplier of an LCG with several
consecutive outputs and we will present an alternate version of the attack using the coppersmith
method of subsection 2.2.1 to retrieve the multiplier of an LCG with several non consecutive
pairs of consecutive outputs. We will then present two attacks following the same scheme: choosing
when we are going to assume the PRNG behaves like an LCG, using an attack against the assumed
LCG, obtain a multiplier z and some complete internal states, using the following outputs to guess
the y and finally check the consistency.

62

5.2 Attacking an LCG with non consecutive pairs of outputs
The internal states of the LCG satisfy the following equation

xi+1 ≡ axi + c mod N

but often we have gaps of unknown size between two outputs. We denote by ℓ the number of
discarded bits and by n the bit-size of N . As before xi = hi + δi where hi is construct only with
the outputs of the generator and δi is unknown and satisfies |δi| < 2ℓ−1.

Now we suppose we have two pairs of two consecutive internal states (x0, x1) and (xi, xi+1).
Then (δ0, δ1, δi, δi+1) is a small root of P mod 2n where

P (z0, z1, zi, zi+1) = z0zi+1 − z1zi + h0zi+1 + hi+1z0 − h1zi − hiz1 + h0hi+1 − h1hi.

We will apply the Coppersmith method on P with X0 = X1 = Xi = Xi+1 = 2ℓ. The set of
monomials is M = {z0, z1, zi, zi+1, z0zi+1, z1zi} hence, by eq.(1.2), we should heuristically recover
the root if (2ℓ)8 = X0 ×X1 ×Xi ×Xi+1 ×X0Xi+1 ×X1Xi < 2n, that is to say if ℓ/n < 1/8.

Generalisation
Let S be a set of k distinct integers (the larger being iS) and

⋃
i∈S{xi, xi+1} be at most 2k internal

states. We will obtain
(
k
2

)
equations of the form xjxi+1 = xixj+1 mod 2n hence

(
k
2

)
polynomials Pi

of which (δ0, . . . , δiS+1) is a simple root mod 2n. The set of appearing monomials will be:

M = {zi, zi+1|i ∈ S}
⋃
{zizj+1|i, j ∈ S, i 6= j}.

We will have at most 2k monomials of degree 1 and 2
(
k
2

)
monomials of degree 2. Heuristically, our

attack should work if (2ℓ)2k+4(k2) < (2n)(
k
2). In other words, our attack should work if ℓ/n < k−1

4k .
This theoretical bound increases toward 1/4.

Experimental results
For a given n and k, we search for the greatest ℓ such that the algorithm return the correct multiplier
and seed.

k 2 3 4 5 6
n = 32
ℓ (th.) 4 5 6 6 6
ℓ (exp.) 5 8 9 10 11

time 0.010s 0.034s 0.098s 0.23s 0.47s
n = 64
ℓ (th.) 8 10 12 12 13
ℓ (exp.) 10 16 19 21 22

time 0.009s 0.0.036s 0.0.12s 0.27s 0.57s
n = 1024
ℓ (th.) 128 170 192 204 213
ℓ (exp.) 170 256 307 341 365

time 0.012s 0.060s 0.22s 0.76s 2.29s

63

5.3 Attacking the Fast Knapsack Generator
We consider again the Fast Knapsack Generator. Its internal states satisfy

vi+1 ≡ −uiz
n+1y + zvi + ui+nzy mod 2n

We construct Hi = yi× 2ℓ+2ℓ−1 where yi is the i-th output of the generator, and we denote by
δi the discarded bits: δi = vi −Hi and |δi| < 2ℓ−1. The integer m represent the number of outputs
we have.

5.3.1 Attack with consecutive outputs(Coppersmith method)
Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k steps where we
assume the PRNG acts as an LCG. On these k + 1 outputs His we apply the algorithm described
in 2.2.1 to attack the underlying LCG and obtain the δis completing the k + 1 chosen outputs (as
vi = Hi + δi). If our assumption is false, the δis returned by our Coppersmith method might not
be integers. If it is the case, we start again with another set of k + 1 consecutive outputs until the
δis are integers. Then we can complete our outputs to obtain k+1 consecutive internal states. Due
to the use of a highly composite modulus 2n, computing the z is not completely straightforward. If
we know vi and vi+1 such that vi+1 = zvi mod 2n we might have to deal with a vi non-invertible
mod 2n. But usually the exponent of the factor 2 in vi does not exceed 5 so it is never a problem
to do an exhaustive search on the possible values for z.

Finding y: Based on our first assumption, we know z and k + 1 internal states of the PRNG.
We call vi the last known complete internal state and concentrate on vi+1 and vi+2. Based on the
structure of the PRNG, there are only 16 possibilities for the relations between vi, vi+1 and vi+2. If
these relations are part of the 8 following possibilities, we can recover y again with a Coppersmith
method using a lattice of dimension 4.

{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 − zn+1y mod 2n{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 + zy mod 2n{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy − zn+1y mod 2n

{
vi+1 = zvi + zy − zn+1y mod 2n

vi+2 = zvi+1 + zy mod 2n{
vi+1 = zvi − zn+1y mod 2n

vi+2 = zvi+1 + zy − zn+1y mod 2n

{
vi+1 = zvi + zy − zn+1y mod 2n

vi+2 = zvi+1 − zn+1y mod 2n

For example, let us assume that we are in the first case:{
vi+1 = zvi + zy mod 2n

vi+2 = zvi+1 + zy mod 2n.

64

Subtracting the first equation to the second and replacing vi+1 by Hi+1 + δi+1 and vi+2 by
Hi+2 + δi+2, we obtain:

Hi+2 + δi+2 −Hi+1 − δi+1 = zHi+1 + zδi+1 − zvi mod 2n

(we recall that, at this point, vi and z are assumed to be known). Hence (δi+1, δi+2) is a root of
a polynomial in two variables of degree 1 mod2n. It can be recovered thanks to a Coppersmith
method. Once we have vi+1, computing y is straightforward (once again, if the δi are not integers
it means either our first assumption is false either the couple (vi+1, vi+2) is not of this form).

Remark 12. There are several little optimisations/improvements we can do in this step. But it is
mostly finding more particular cases so, for the sake of simplicity, we decided to not describe them
here.

Checking consistency: We have made a first assumption: the k+1 chosen outputs of the PRNG
can be seen as truncated outputs of an LCG. We have made a second assumption: (vi+1, vi+2) is
of a chosen form between the eight listed possibilities. If y and z are the correct ones, we should
be able to check consistency from one to the next (for example Hi+3 should be given by one of
the four following internal states: zvi+2, zy + zvi+2, zvi+2 − zn+1y or zy + zvi+2 − zn+1y). If the
consistency is not obtained, it means one of our assumptions is false, and we must either change
our assumption on (vi+1, vi+2) if we did not explore the eight possibilities, either start again from
the beginning with a new set of consecutive outputs.

Analysis of the attack

For a given k, we want to know m the number of outputs needed such that the probability of the
PRNG acting as an LCG at least k times in a row is greater than 1/2. To do that we need some
probabilities.

Bernoulli trials We suppose that we have n Bernoulli trials, each with a probability of success
of p. We want to compute the probability of having a run of at least k consecutive successes. We
denote this probability Pr(n, p, k).

As we cannot have more successes than trials, if k > n then Pr(n, p, k) = 0. If k = n, it means
all the trials must be successes, hence Pr(n, p, k) = pk.

If n > k we have two excluding possibilities to have k successes. First possibility, a run of k
successes happen in the last n − 1 trials. Second possibility, a run of k successes happen in the k
first trial an there is no run of k successes in the last n − 1 trials. It means the first k trials are
successes, then the k + 1-th trial is a failure and there is no run of k successes in the n − k − 1
remaining trials. Hence the probability of having a run of k successes in n trials when n > k is
Pr(n, p, k) = Pr(n− 1, p, k) + pk × (1− p)× (1− Pr(n− k − 1, p, k))

We fix k and p and consider S[n] = 1 − Pr(n, p, k). We notice that (S[n])n∈N is a constant-
recursive sequence:

S[n+ 1] = S[n]− pk(1− p)S[n− k − 1]

of order k + 1 with initial terms being S[0] = · · · = S[k − 1] = 1 and S[k] = 1− pk.
The explicit values of the sequence are given by S[n] = C1(r1)

n + · · ·+ Ck+1(rk+1)
n where the

ri are the roots of the characteristic polynomial xk+1 − xk + pk(1 − p) and the Ci are constants
given by the initial terms.

65

In our case, we have m outputs and we want to know the probability of having k+1 consecutive
internal states of the form vi+1 = zvi mod 2n. Given a vi, the probability that vi+1 = zvi mod 2n

is 1/4. So our problem is to compute the probability of having a run of at least k successes in a
sequence of m− 1 Bernoulli trials, the probability of success of each trial being 1/4.

In the following table we give the minimal values of m such that the probability of having a run
of k successes in m− 1 trials is greater than 1/2.

k 2 3 4 5 6 7 8 10
m 15 58 236 944 3783 15138 60565 969085

(Warning, these values are given by numerical approximations, they might not be exact.)
Once m is greater than the computed bound, we hope there will be a set of k + 1 consecutive

outputs acting like an LCG. The two outputs following the last chosen one need to be in eight
possibilities out of sixteen. Again it happens with probability 1/2.

Remark 13. To compute these probabilities, we assumed we always had two outputs (vi+1, vi+2)
following our output vi. This is not always the case but this problem can be easily solved by choosing
either another known vi or the two preceding values of vi instead of the following ones.

Hence, for a given k, the attack should work with probability greater than 1/4 if m is greater
than what is given in the following table and l/n <

(
k
2

)
/Γ(k) (as seen in subsection 2.2.1). In

this case we will have to run in the worst case m − k instances of LLL on a lattice of dimension
k+ 1+ 3

(
k
2

)
and 8(m− k) instances of LLL on a lattice of dimension 4, each with entries of size n.

The values followed by (∗) are estimated values deriving directly from the experimental results of
the underlying LCG-seed retriever.

k 2 3 4 5 6
m 15 58 236 944 3783

number of calls to the LCG-solver ⩽ 13 55 232 939 3777
n = 32
ℓ (th.) ⩽ 4 6 6 6 7
ℓ (exp.) ⩽ 6 9 11 12 13(∗)

time (exp.) 0.19s 1.4s 14s 136s 24 min(∗)
n = 64
ℓ (th.) ⩽ 9 12 13 13 14
ℓ (exp.) ⩽ 12 19 22 24 25(∗)
time (exp.) 0.13s 1.4s 16s 122s 26 min(∗)
n = 1024
ℓ (th.) ⩽ 146 192 211 222 229
ℓ (exp.) ⩽ 204 307 361 393 415(∗)
time (exp.) 0.18s 2.0s 29s 333s 1.8h(∗)

Exceptionally the experimental time is an average of ten instances of the algorithm.

5.3.2 Attack with consecutive outputs (Stern method)
Finding z: We choose k + 1 consecutive outputs out of m, hence we choose k steps where we
assume the PRNG acts as an LCG. On these k + 1 outputs His we apply the algorithm to attack

66

the LCG described in subsection 2.2.2 and obtain z. We are going to compute what we assume the
internal states are. If we have the right value of z, then the vector of internal states (vi, . . . , vi+k)
is in the lattice spanned by the rows of the following matrix:

1 z . . . zk

0 2n . . . 0
. . .

0 0 0 2n

 .

Also, this vector is close to the target vector (Hi, . . . , Hi+k). We use a CVP solver on this
matrix and the target vector to find the vector of internal states.

The steps of Finding y and Checking consistency are the same as for the previous attack.

Analysis of the attack

The number of outputs m is the same as in the previous subsection, as the attack starts in the
same way. Hence, for a given k, the attack should work with probability greater than 1/4 if m is
greater than what is given in the following table and l < n(1− 2/k) + 4− log2(k

2 + 4) (as seen in
subsection 2.2.2). In this case we will have to run in the worst case m − k instances of LLL on a
lattice of dimension k + 1 + 3

(
k
2

)
and 8(m − k) instances of LLL on a lattice of dimension 4, each

with entries of size n.

k 3 4 5 6
m 58 236 944 3783

number of calls to the LCG-solver ⩽ 55 232 939 3777
n = 32
ℓ (th.) < 5 9 12 13
ℓ (exp.) ⩽ 5 11 13 26(∗)
time (exp.) 0.38s 1.7s 8.5s 98s(∗)
n = 64
ℓ (th.) < 10 20 25 29
ℓ (exp.) ⩽ 10 19 27 32(∗)

time 0.35s 1.6s 9.8s 152s(∗)
n = 1024
ℓ (th.) < 170 340 425
ℓ (exp.) ⩽ 168 339 418 512(∗)

time 0.74s 3.3s 15s 162s(∗)

5.3.3 Attack via Coppersmith method without consecutive outputs
Finding z We choose k outputs Hi out of m − 1 outputs (we cannot choose the last one) and
consider k pairs of outputs (Hi,Hi+1). It does not mean we work with 2k outputs as some pairs
can overlap. On these k pairs of outputs we apply the second algorithm we have against the LCG
described in subsection 5.2 and obtain δis. If our assumption is false, the δis might not be integers.
If it is the case, we start again with other sets of k pairs of outputs until the δis are integers. Then
we can obtain complete internal states (as vi = Hi + δi) to obtain at most 2k. Computing the z

67

is not completely straightforward. If we know vi and vi+1 such that vi+1 = zvi mod 2n we might
have to deal with a vi non-invertible mod 2n. But usually the exponent of the factor 2 in vi does
not exceed 5 so it is never a problem to do an exhaustive search on the possible values for z.

The steps of Finding y and Checking consistency are the same as for the previous attack.

Analysis of the attack

We want the PRNG to act at least k times like an LCG with probability greater than 1/2. We
suppose we clock the PRNG m−1 times (so we obtain m outputs). The probability that the PRNG
acts as an LCG on one iteration is 1/4. Hence we want k to be the unique median of a Binomial
distribution of parameters (m− 1, 1/4). We consider the following theorem from [33].

Theorem 2. If X is a B(n, p), the median can be found by rounding off np to k if the following
condition holds:

|k − np| ⩽ min(p, 1− p)

k is the unique median except when p = 1/2 and n is odd.

In the case where p = 1/4 we see that given a k the smaller number of trials satisfying this
inequality is 4k − 1. Hence, we choose m = 4k.

Once m is greater than 4k, we hope our PRNG will act at least k times like an LCG. The
two outputs following the last chosen one need to be in eight possibilities out of sixteen. Again, it
happens with probability 1/2.

So for a given k, the attack should work with probability greater than 1/4 if m is greater than
4k and ℓ/n < (k− 1)/4k (as seen in Section 5.2). In this case we will have to run in the worst case(
4k
k

)
instances of LLL on a lattice of dimension at worst 2k+ 3

(
k
2

)
and 8

(
4k
k

)
instances of LLL on a

lattice of dimension 4, each with entries of size n.

Experimental results

k 2 3 4 5 6
m 8 12 16 20 24

number of calls to the LCG-solver ≤ 21 165 1365 11628 100947
n = 32
ℓ (th.) < 4 5 6 6 6
ℓ (exp.) ⩽ 5 8 9(∗) 10(∗) 11(∗)
time (exp.) 0.25s 5.2s 133s(∗) 45 min(∗) 13h(∗)
n = 64
ℓ (th.) < 8 10 12 12 13
ℓ (exp.) ⩽ 10 16 19(∗) 21(∗) 22(∗)
time (exp.) 0.21s 5.8s 164s(∗) 52 min(∗) 16h(∗)
n = 1024
ℓ (th.) < 128 170 192 204 213
ℓ (exp.) ⩽ 170 256 307(∗) 341(∗) 365(∗)

time (exp.) 0.24s 7.8s 300s(∗) 2.4h(∗) 64h(∗)
Here the computing time is an average of ten instances of the algorithm running on the same

laptop. As the number of instances of LLL needed is
(
4k
k

)
, the computing time of the algorithm

quickly explodes.

68

Chapter 6

Multiple Recursive Generator

The generator we will present in this part is the Multiple Recursive Generator (MRG). It can be seen
as a generalization of the LCG. For this reason, we will try to attack this generator using the same
attacks we used against the LCG. The goal of the first part was to try to adapt straightforwardly the
attacks against the LCG seen in chapter 2. Independently, in [60] and [68] the authors presented a
far more detailed and efficient adaptation of the Stern attack presented in section 2.2. Their version
even works when the modulus N is unknown. The attack presented at the end of this section on
the combined multiple recursive generator is an original attack.

This generator is given by a seed xseed = (x0, . . . , xk−1) and the equation

xj+k = ak−1xj+k−1 + · · ·+ a0xj + c mod N

where a = (a0, . . . , ak−1) is the multiplier, c the constant and N the modulus. To obtain the output
yj from an internal state xj we truncate the ℓ lower bits. We consider hj = 2ℓyj +2ℓ−1. We obtain
xj = hj + δj where |δj | < 2ℓ−1. As before, we only consider the problem when c = 0 as we can get
rid of c by considering xj+1 − xj instead.

For redaction purposes, we will give names to plenty of coefficients. As xj only depends on
xseed, we write

xj = b
(j)
0 x0 + . . . b

(j)
k−1xk−1 mod N

where b
(j)
i = 0 if j < k and i 6= j, b(j)i = 1 if j < k and i = j and

b
(j)
i =

k−1∑
s=max(0,k−j)

asb
(j−k+s)
i mod N

if j > k.

6.1 Recovering the seed solving a Closest Vector Problem
We consider x = (x0, . . . , xm) the m first internal states of a PRNG and h = (h0, . . . , hm−1)
its m first outputs. To recover the seed of a LCG, we constructed in subsection 2.1.1 a matrix
L ∈ M(m×m) such that (x0, n1, . . . , nm−1) × L = x. To adapt this attack to the MRG it seems

69

natural to construct a matrix L ∈ M(m×m) such that (xseed, nk, . . . , nm−1) × L = x where the ni

are integers for the modulus reduction. The rows of the matrix L span the lattice Λ.

L =



1 a0 b
(k+1)
0 . . . b

(m−1)
0

1 a1 b
(k+1)
1 . . . b

(m−1)
1

. . .
...

...
...

1 ak−1 b
(k+1)
k−1 . . . b

(m−1)
k−1

N
N

0
. . .

N


The determinant of the lattice is Nm−k thus λ1 '

√
mN (m−k)/m. As before if x′ is closer to h

than x in Λ then:

‖x− x′‖2 ≤ ‖x− h‖2 + ‖h− x′‖2
≤ 2‖x− h‖2
≤ 2‖δ‖2
≤ 2ℓ
√
m

If we follow the reasoning of subsection 2.1.1, the CVP-solver should return x from L and h as
long as

ℓ < n× (m− k)/m

where n ' log2(N).

6.1.1 Experimental results
For a given n and m we search for the greater ℓ such that the probability of success of retrieving
xseed is above 50%.

For k = 2:

m 3 4 5 6 32
n = 32

ℓ (th.) ≤ 10 16 19 21 30
ℓ (exp.) ≤ 10 15 18 21 29

time 0.002s 0.002s 0.003s 0.004s 0.12s
n = 64

ℓ (th.) ≤ 21 32 38 42 60
ℓ (exp.) ≤ 21 31 38 42 59

time 0.001s 0.002s 0.003s 0.004s 0.13s
n = 1024
ℓ (th.) ≤ 341 512 614 682 960
ℓ (exp.) ≤ 341 511 614 682 959

time 0.002s 0.003s 0.005s 0.007s 1.58s

70

For k = 3:

m 4 5 6 7 32
n = 32

ℓ (th.) ≤ 8 12 16 18 29
ℓ (exp.) ≤ 8 12 15 18 28

time 0.002s 0.003s 0.004s 0.006s 0.13s
n = 64

ℓ (th.) ≤ 16 25 32 36 58
ℓ (exp.) ≤ 16 25 31 36 57

time 0.002s 0.003s 0.005s 0.006s 0.16s
n = 1024
ℓ (th.) ≤ 256 409 512 585 928
ℓ (exp.) ≤ 256 409 511 584 927

time 0.003s 0.005s 0.008s 0.01s 2.30s

As before the experimental results seem to confirm our heuristic. This algorithm is fast despite
being exponential.

6.2 Retrieving the seed using the attack from Frieze et al.
As before, we consider x = (x0, . . . , xm) the m first internal states of a PRNG and h = (h0, . . . , hm−1)
its m first outputs. To recover the seed of a LCG using the attack from Frieze et al., we constructed
in subsection 2.1.2 a matrix A ∈ M(m×m) such that Ax ≡ 0 mod N . To adapt this attack to the
MRG, it seems natural to construct a matrix A ∈M(m×m) satisfying the same property.

A =



N
.. .

N
a0 . . . ak−1 −1

b
(k+1)
0 . . . b

(k+1)
k−1 −1

...
...

. . .

b
(m−1)
0 . . . b

(m−1)
k−1 −1


As for the LCG we consider A′ the LLL-reduction of A and c the vector in {−N/2, . . . , N/2}m

satisfying −A′h ≡ c mod N . The new equation is A′δ ≡ c mod N .
If ‖A′δ‖∞ < N/2, the equation is not modular any more and we can compute δ as (A′)−1c.
The determinant of this matrix A′ is Nk thus ‖A′δ‖∞ ' Nk/m2ℓ−1. If Nk/m2ℓ−1 < N/2 the

Frieze algorithm should return xseed. We can simplify the equation as

ℓ/n ≤ m− k

m
− log2(m)/n

where n ' log2(N).

71

6.2.1 Experimental results
For a given n and m we search for the greater ℓ such that the probability of success of retrieving
the seed (x0, . . . , xk−1) is above 50%.

For k = 2:

m 3 4 5 6 32
n = 32

ℓ (th.) ≤ 9 14 16 18 25
ℓ (exp.) ≤ 10 15 18 21 28

time 0.002s 0.002s 0.004s 0.005s 0.12s
n = 64

ℓ (th.) ≤ 19 30 36 40 55
ℓ (exp.) ≤ 21 31 38 42 58

time 0.002s 0.002s 0.004s 0.006s 0.15s
n = 1024
ℓ (th.) ≤ 339 510 612 680 955
ℓ (exp.) ≤ 341 511 614 682 958

time 0.002s 0.003s 0.005s 0.007s 0.35s

For k = 3:

m 4 5 6 7 32
n = 32

ℓ (th.) ≤ 6 10 13 15 24
ℓ (exp.) ≤ 8 12 15 18 27

time 0.003s 0.004s 0.006s 0.007s 0.14s
n = 64

ℓ (th.) ≤ 14 23 29 33 53
ℓ (exp.) ≤ 14 25 31 36 56

time 0.003s 0.004s 0.006s 0.008s 0.16s
n = 1024
ℓ (th.) ≤ 254 407 509 582 923
ℓ (exp.) ≤ 255 409 511 584 926

time 0.003s 0.006s 0.008s 0.01s 0.44s

Once again the results seem to confirm our heuristic (the attainable ℓ is even a bit larger than
the heuristic). As expected, the attack is slightly less efficient (we attained smaller ℓ), but faster.
In the case (n = 1024, k = 3 m = 32) we go from 2.30s in the CVP attack to 0.44s in the Frieze
attack.

72

6.3 Recovering the seed when the multiplier is unknown
6.3.1 Link with the simplified Stern attack for the Linear Congruential

Generator
As before we consider x = (x0, . . . , xm) the m first internal states of a PRNG and h = (h0, . . . , hm−1)
its m first outputs. In the Stern simplified attack on the LCG, in subsection 2.2.2, we applied LLL
on the following matrix

M2 =



2ℓ−1 h0

2ℓ−1 h1

. . .
...

2ℓ−1 hr−1

N

0
. . .

N


where hi = (hi, hi+1, . . . , hi+r−1).

Let µ be an integer vector, let xj = (xj , . . . , xj+r). We chose parameters such that the only
way for

∑
µjhj to be small was for

∑
µjxj ≡ 0 mod N . And if we choose r big enough it would

happen only if
∑

µja
j ≡ 0 mod N

We will try the same heuristic for the MRG

d−1∑
j=0

µjxj+s ≡
d−1∑
j=0

µj

k−1∑
i=0

b
(j)
i xi+s mod N

≡
k−1∑
i=0

xi+s

d−1∑
j=0

µjb
(j)
i mod N

If µ satisfies ∀i ∈ {0, . . . , k − 1},
∑d−1

j=0 µjb
(j)
i = 0 mod N , then

v = (2l−1µ0, . . . , µr−1,
∑

µjhj , . . . ,
∑

µjhj+r−1) mod N

is a small vector of M2 as
∑

µjhj+s ≡ −
∑

µjδj+s mod N and the δi are small.
Once we have retrieved such a µ, we can construct k polynomials (Pi)i∈{0,...,k−1} in k variables

such that Pi(a0, . . . , ak−1) ≡ 0 mod N .

6.3.2 Theoretical parameters
We can expect µ to be the second part of the smallest vector of the lattice spanned by the matrix
A ∈ M(d×d) presented in subsection 6.2. By the Gaussian heuristic, we should have |µi| ' Nk/r.
Now we can compute the norm of v as ‖v‖2 '

√
r + r3/4 × 2ℓ−1Nk/r. Still using the Gaussian

73

Heuristic, we assume λ1(M2) =
√
2r2ℓ−1N . To have ‖v‖2 < λ1(M2) we would need ℓ to satisfy the

following equation
ℓ < n(1− 2k/r) + 4− log2(4 + r2)

where n ' log2(N).

6.3.3 Experimental results
For a given n and r we search for the greater ℓ such that the probability of success of retrieving the
first multiplier a0 is above 50%.

• For k = 2:
r 5 6 7 8 9

n = 32
ℓ (th.) ≤ 7 10 13 15 17
ℓ (exp.) ≤ 6 10 13 15 17

time 0.15s 0.21s 0.28s 0.37s 0.43s
n = 64

ℓ (th.) ≤ 13 21 27 31 35
ℓ (exp.) ≤ 12 20 26 31 34

time 0.16s 0.21s 0.29s 0.39s 0.48s
n = 1024
ℓ (th.) ≤ 205 341 438 511 568
ℓ (exp.) ≤ 204 341 438 511 568

time 0.25s 0.38s 0.55s 0.75s 1.01s

• For k = 3:
r 7 8 9

n = 32
ℓ (th.) ≤ 4 7 10
ℓ (exp.) ≤ 3 0 0

time 0.32s
n = 64

ℓ (th.) ≤ 9 15 20
ℓ (exp.) ≤ 9 0 0

time 0.38s
n = 32

ℓ (th.) ≤ 146 255 340
ℓ (exp.) ≤ 146 0 0

time 4.8s

If we had presented the table giving for which ℓ we can find a polynomial such that P (a) ≡
0 mod N we would have results following quite closely the heuristic. But in the case of the MRG,
extracting a and N from those polynomials seems to be hard.

74

6.4 Multiple Recursive Generator with secret modulus
In the case of the LCG, we were searching for (µ0, . . . , µd−1) such that for all j ∈ {0, . . . , r − 1},∑d−1

i=0 µihi+j = 0. We then expected:

d−1∑
i=0

µihi+j ≡ 0 mod N →
d−1∑
i=0

µixi+j ≡ 0 mod N →
d−1∑
j=0

µja
j ≡ 0 mod N

In the MRG we do exactly the same thing expecting:
d−1∑
i=0

µihi+j ≡ 0 mod N →
d−1∑
i=0

µixi+j ≡ 0 mod N →
d−1∑
j=0

µjb
(j)
i ≡ 0 mod N

but alas the last implication seems to never occur.

6.5 The particular case of Combined Multiple Recursive Gen-
erators (CMRG)

These PRNGs output a linear operation between two or more congruential constant-recursive se-
quences over different moduli, pairwise coprime, of the same length. They have been described in
[40]. The coefficients of the sequences and the moduli are known, only the initial conditions are
secret. We are going to focus on CMRG outputting the difference between two constant-recursive
sequences of order three, x and y over two different moduli m1 and m2 of the same length n.

At step i, the generator computes

xi = a11xi−1 + a12xi−2 + a13xi−3 mod m1

yi = a21yi−1 + a22yi−2 + a23yi−3 mod m2

zi = xi − yi mod m1

and outputs zi.
The values a11, a12, a13, , a21, a22, a23, m1 and m2 are known. The values x0, x1, x2, y0,y1 and

y2 form the seed of the generator.
As m1 and m2 are coprime, by the Chinese Reminder Theorem we know that the sequences

x and y are projections of a lifted constant-recursive sequence modulo m1m2 that we will call X.
This new sequence will be defined by Xi+3 = AXi+2+BXi+1+CXi mod m1m2 where A,B,C are
given by:

A ≡ a11 mod m1 and A ≡ a21 mod m2

B ≡ a12 mod m1 and B ≡ a22 mod m2

C ≡ a13 mod m1 and C ≡ a23 mod m2

and the initial conditions X0, X1, X2 in {0, . . . ,m1m2 − 1} satisfy:

X0 ≡ x0 mod m1 and X0 ≡ y0 mod m2

X1 ≡ x1 mod m1 and X1 ≡ y1 mod m2

X2 ≡ x2 mod m1 and X2 ≡ y2 mod m2.

The sequences x and y are given by x = X mod m1 and y = X mod m2.

75

6.5.1 Attack on the MRG32
In 1999, L’Écuyer presented a family of parameters giving CMRGs with good properties [44]. These
PRNGs are fast and pass the “spectral test” evaluating their closeness to the uniform distribution.
The more famous of these CMRGs is the MRG32k3a, largely used for producing multiple streams of
pseudo random numbers, as seen in [45]. It is one of the PRNGs implanted in Matlab and the native
PRNG of the programming language Racket. This PRNG had already been used once in place of
a secure one for the website Hacker news. In 2009, Franke [26] managed to hack this website and
was able to steal accounts. His attack was not based on breaking the MRG32k3a but on guessing
how the seed was generated. In this case, breaking the MRG32k3a could have led us to another real
life attack against this website.

The following attack is an original work first presented in Attacks on Pseudo Random Number
Generators Hiding a Linear Structure presented at CT-RSA 2022 [47].

Notations: We denote by z′i the integer value xi − yi which can be different from zi = xi −
yi mod m1. As xi is already in {0, . . . ,m1 − 1} and yi is already in {0, . . . ,m2 − 1}, we have that
z′i = zi or z′i = zi −m1. We also denote by u the inverse of m1 modulo m2 (um1 ≡ 1 mod m2).

Proposition 4. For every i ≥ 0, (xi, xi+1, xi+2, xi+3) is a root modulo m1m2 of

Pi(vi, vi+1, vi+2, vi+3) = ki+3m1 + vi+3 −A(ki+2m1 + vi+2)−B(ki+1m1 + vi+1)− C(kim1 + vi)

where ki is the only integer in {0, . . . ,m2 − 1} such that ki ≡ −z′iu mod m2.

Proof. As Xi ≡ xi mod m1, there exists an integer ki such that Xi = kim1 + xi. For the same
reason, there exists an integer k̂i such that Xi = k̂im2 + yi. Hence

z′i = xi − yi = k̂im2 − kim1.

Thus ki ≡ −z′iu mod m2. As Xi is in {0, . . . ,m1m2 − 1}, then ki is in {0, . . . ,m2 − 1}. To obtain
the polynomial Pi we need to remember that Xi+3 = AXi+2 +BXi+1 + CXi mod m1m2.

We have established that (x0, x1, x2, x3) is a root modulo m1m2 of

P1(v0, v1, v2, v3) = k3m1 + v3 −A(k2m1 + v2)−B(k1m1 + v1)− C(k0m1 + v0)

and each of its coordinates is bounded by m1.
If this root is the only small one, we can expect to retrieve it thanks to a Coppersmith method.

But it tends not to be the case. We will consider Λ the lattice containing all the differences between
two roots of P1 modulo m1m2. If the smallest vector v of Λ has its coordinates smaller than m1,
then the vector (x0, x1, x2, x3) − v could be a smaller root of P1 mod m1m2 and our attack might
not work.

If we have two roots (x0, x1, x2) and (x′
0, x

′
1, x

′
2) then

(x3 − x′
3)−A(x2 − x′

2)−B(x1 − x′
1)− C(x0 − x′

0) ≡ 0 mod m1m2.

Hence the lattice Λ is spanned by the rows of the following matrix:
1 0 0 C
0 1 0 B
0 0 1 A
0 0 0 m1m2

 .

76

Following the Gaussian heuristic, we can expect the shortest vector of this lattice to be of norm√
4(m1m2)

1/4 ≈
√
4 × 2n/2 <

√
4 × 2n ≈

√
4m1 . Hence, it is unlikely that (x0, x1, x2, x3) is the

only root of P1 modulo m1m2 such that each of its coordinates is bounded by m1. We try to add
other polynomials, hoping it will reduce the number of common roots.

If we consider the three polynomials P1, P2 and P3, the lattice containing the difference between
two commons roots will be spanned by the rows of the following matrix:

1 0 0 C AC BC +A2C
0 1 0 B C B2 +AC
0 0 1 A (B +A2) C + 2AB +A3

0 0 0 m1m2 0 0
0 0 0 0 m1m2 0
0 0 0 0 0 m1m2

 .

Following the Gaussian heuristic, we can expect the shortest vector of this lattice to be of norm√
6(m1m

3
2)

1/6 ≈
√
6 × 2n ≈

√
6m1. We are at the limit as we have no clear indication that the

smallest vector of Λ is big enough. We cannot say that (x0, x1, x2, x3, x4, x5) is the only common
root of P1, P2 and P3 modulo m1m2 such that each of its coordinates is bounded by m1. Adding
two polynomials was not enough. But the smallest difference between two common roots is far
greater than before. So we keep adding polynomials.

If we consider the four polynomials P1, P2, P3 and P4, the lattice containing the difference
between two commons roots will be spanned by the rows of the following matrix:

1 0 0 C AC BC +A2C C2 + 2ABC +A3C
0 1 0 B C B2 +AC 2BC +AB2 +A2C
0 0 1 A (B +A2) C + 2AB +A3 2AC +B2 + 2A2B +A4

0 0 0 m1m2 0 0 0
0 0 0 0 m1m2 0 0
0 0 0 0 0 m1m2 0
0 0 0 0 0 0 m1m2


.

Following the Gaussian heuristic, we can expect the shortest vector of this lattice to be of norm√
7(m1m

4
2)

1/7 ≈
√
7× 28n/7 >

√
7× 2n ≈

√
7m1. Hence (x0, x1, x2, x3, x4, x5, x6) is likely to be the

only common root of P1, P2, P3 and P4 modulo m1m2 such that each of its coordinates is bounded
by m1. We could wonder if it is relevant to use the Gaussian heuristic in such specific cases, but
the parameters given by this reasoning are experimentally recovered.

We can now describe the attack. From a11, a12, a13, , a21, a22 and a23 we construct A, B and C.
Then we consider 7 outputs z0, . . . , z6, and from them, we guess z′0, . . . , z

′
6 (we recall that z′i = zi

or z′i = zi −m1). Now we have all the values we need to construct P1, P2, P3 and P4 as described
in Proposition 1.

We use a Coppersmith method to find the only common root of P1, P2, P3 and P4 mod m1m2

with all of its coordinates bound by m1. If we have correctly guessed the z′i’s, this root has to be
(x0, x1, x2, x3, x4, x5, x6), hence the initial conditions we were searching for. Finally we check the
consistency thanks to an eighth output.

Knowing the zi’s we have 27 set of possible values for the z′is. For each set we run one instance
of LLL on a lattice of dimension 12 (8 monomials + 4 polynomials) and entries of size n. The time
complexity is then O(n3).

77

6.5.2 The MRG32k3a by L’Écuyer
For this particular PRNG, the public values are m1 = 232 − 209, m2 = 232 − 22853, a11 = 0
a12 = 1403580, a13 = 810728, a21 = 527612, a22 = 0 and a23 = 1370589.

If we consider the four polynomials P1, P2, P3, P4 we find that the smallest difference be-
tween two common roots modulo m1m2 is (-12600073455, 8717013482, 35458453228, 57149468535,
25239696855, -3505005772, 66309741613). We can see that each of its coordinates is greater than
2×m1, this ensures that (x0, x1, x2, x3, x4, x5, x6) will be the only small common root of P1,P2,P3

and P4 modulo m1m2. Our algorithm retrieves the initial conditions in 0.01 second with 8 outputs.

78

Part III

Attack on a combined generators

79

Chapter 7

A Generalization of the Knapsack
Generator

7.1 Generalized Subset-Sum Generator
In this chapter, we consider a generalization of the subset sum pseudorandom generator, suggested
by von zur Gathen and Shparlinski in 2004 [64]. In our abstraction, it is defined by two integer
parameters λ and n and three independent components:

• a control-sequence generator CSG:{0, 1}λ × N→ {0, 1}n;

• an abelian cyclic group (G,+) of prime order q where the group law is denoted additively;

• a deterministic and public conversion function Ψ:G → {0, 1}ρ where ρ denotes the output
length of the pseudo-random generator.

The seed of this generalized subset-sum generator consists in a bit-string seed0 ∈ {0, 1}λ and n
group elements P1, . . . , Pn ∈ G. The bit size of the seed is thus equal to λ+ n · dlog2(q)e.

At each iteration i ∈ N, the control-sequence generator generates an n-bit string vi = (v1i , . . . , v
n
i) =

CSG(seed0, i), computes the group element Qi defined by

Qi = [v1i]P1 + · · ·+ [vni]Pn ∈ G

and outputs si = Ψ(Qi) ∈ {0, 1}ρ. It is schematized in the figure 7.1 with the secret key in red and
the outputs in blue

Example 4. In the classical knapsack generator, the group G is the group of modular residue G =
Zm, the control-sequence generator is defined by a linear feedback shift register and the conversion
function Ψ is a truncation.

In [64], von zur Gathen and Shparlinski proposed to use for G the group of rational points of
an elliptic curve defined over a (prime) finite field, a linear feedback shift register as the control-
sequence generator and again a truncation for the conversion function (more precisely, truncation
of the abscissa of the elliptic curve point Qi). They proposed to use λ = n and an elliptic curve

80

seed0 ∈ {0, 1}λ
↓

CSG P1, . . . , Pn ∈ G
↓ ↓

v0,v1, · · · → SubsetSum
↓

Q0, Q1, · · · → Ψ → s0, s1, . . .

Figure 7.1: Description of the generalized knapsack generator

defined over a finite field Zp where p is a n-bit prime number. By the Hasse-Weil theorem, the
number of group elements q is around 2n and the total seed size is ' n+ n · n = n · (n+ 1). They
suggested that Ψ should discard log2(n) low-order bits of the x-coordinate of the point before using
it as pseudo-random output and claimed that: “the only available attack on this generator is the
brute force search over all parameters defining this generator” and thus using n as small as 12
should provide a 128-bit security level. The statistical properties of the sequences generated by this
pseudo-random generator were analyzed in [10, 1, 24].

In this chapter, we present two attacks against this generator (and other variants derived from
our abstraction). In the instantiation suggested by von zur Gathen and Shparlinski, our attack has
complexity O(21.778n) well below the O(2n(n+1)) brute-force attack. We also present a variant in
some cases where ρ = α · n with α < 1 with a similar complexity.

7.2 High-level description of the attack
We consider the case where the control sequence generated by the CSG is known by the adversary.
If this is not the case, they can simply try all possible values for seed0 ∈ {0, 1} which increases the
complexity of the attack by a factor 2λ.

We assume that the control sequence outputs uniform and independent n-bit strings vi =
CSG(seed0, i) for each i ∈ N. Note that this is obviously false but this property does not hold
computationally if the control sequence is generated by a shift (as in the classical knapsack generator
setting) even if one assumes that the control-sequence generator is a cryptographic pseudo-random
generator. We will analyse our attacks using this assumption (and our experimental results will
show that it actually holds in practice).

Let us suppose that an adversary finds three indices i1, i2, i3 such that vi1 +vi2 = vi3 as vectors
of integers (i.e. where the addition is performed over Z and not over Z2). In this case, they know
that the relation Qi1 +Qi2 = Qi3 holds in the group G. The adversary is not given the actual values
of the points Qi1 , Qi2 and Qi3 but only the values Ψ(Qi1), Ψ(Qi2) and Ψ(Qi3). Assuming that there
exist only a few group elements R

(1)
i1

, . . . , R
(n1)
i1

and R
(1)
i2

, . . . , R
(n2)
i2

such that Ψ(Rt
ij
) = Ψ(Qij) for

j ∈ {1, 2} and t ∈ {1, . . . , nj} and that the adversary can efficiently retrieve them, they can simply
compute Ψ(Rt1

i1
+ Rt2

i2
) for all (t1, t2) ∈ {1, . . . , n1} × {1, . . . , n2} and check whether it is equal to

si3 . If there exists only one such pair (t1, t2) then the adversary can safely assumes that Qi1 = Rt1
i1

,
Qi2 = Rt2

i2
(and Qi3 = Rt1

i1
+Rt2

i2
).

81

The number of pairs (t1, t2) ∈ {1, . . . , n1} × {1, . . . , n2} which satisfy

Ψ(Rt1
i1
+Rt2

i2
) = si3 (7.1)

is difficult to estimate and depends heavily on the group G and the conversion function Ψ. In
[58], Shoup studied the computational complexity of the discrete logarithm in abelian groups in
the context of algorithms which do not exploit any special properties of the encodings of group
elements. Shoup introduced the generic group model where each group element is encoded as a
unique and arbitrary binary string (picked uniformly at random and independent of the actual
group structure). As a consequence, it is not possible for an algorithm in this model to exploit any
special properties of the encodings and group elements can only be operated on using an oracle
that provides access to the group operations. If we make a similar assumption on the group G and
if we chose the conversion function Ψ to be a truncation of ℓ bits out of the (log2 q)-bit encodings
of Qi1 and Qi2 , then we can expect the values n1 and n2 to be close to 2ℓ and the number of pairs
(Rt1

i1
, Rt2

i2
) different from (Qi1 , Qi2) satisfying (7.1) to be 2ℓ · 2ℓ/2log2(q)−ℓ ' 23ℓ/q . In particular

if ρ > 2 · log2(q)/3, one expects the number of candidates for (Qi1 , Qi2 , Qi3) to be constant in a
“generic” group. It is worth mentioning that this assumption does not hold in the classical knapsack
generator that uses the group G = Zm since in this case, the number of candidates for a single
equation will be about 22ℓ.

Each relation vi1 + vi2 = vi3 gives two relations in the group G:

Qij = R
tj
ij

= v1ijP1 + · · ·+ vnijPn

for j ∈ {1, 2}. If the adversary can recover n points Qi1 , . . . , Qin such that vi1 , . . . , vin are lin-
early independent, they would be able to retrieve all the weights used in the generalized knapsack
generator.

In the following, we will describe and analyse an algorithm to find “good triplets” of indices
(i1, i2, i3) such that vi1 +vi2 = vi3 and show how to use it to attack the elliptic knapsack generator
when ρ = n− log2(n) (as suggested by von zur Gathen and Shparlinski) but also when ρ = α ·n for
some α < 1 using more extensively the algebraic group law of elliptic curves and the Coppersmith
technique.

7.3 Preliminaries
Bounds for Binomial Distributions. Let H denote the binary entropy function, meaning that
H(x) = −x log2(x)− (1− x) log2(1− x), for all 0 < x < 1. The following standard bounds for the
binomial coefficient can be derived from Stirling’s formula:

2nH(x)√
8nx(1− x)

≤
(

n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (7.2)

Let X ∼ B(n, p) be a binomial random variable. We will use the classical inequality (7.3) given
below, a proof of which can be found in [3] amongst others. Here, D(a, p) is the Kullback-Leibler

82

divergence between an a-coin and a p-coin:

Pr(X ≤ an) ≤ exp(−nD(a, p)) if a < p. (7.3)
Pr(X ≥ an) ≤ exp(−nD(a, p)) if a > p,

D(a, p) = a ln
a

p
+ (1− a) ln

1− a

1− p
.

If Y = Y1 + · · ·+ Yn is a sum of binary random variables, we have the “conditional expectation
inequality” [54] (see also [38, MPR]):

Pr(Y > 0) ≥
n∑

i=1

E (Yj)

E (Y | Yi = 1)
. (7.4)

Elliptic curves. Let p be a prime number (with p ≥ 5) and let E be an elliptic curve defined
over a prime finite field Fp, that is a rational curve given by the following Weierstrass equation

E:y2 = x3 + ax+ b

for some a, b ∈ Fp with 4a3 + 27b2 6= 0. It is well known that the set E(Fp) of Fp-rational points
(including the special point O at infinity) forms an abelian group with an appropriate composition
rule (denoted additively) where O is the neutral element (for more details on elliptic curves, we
refer to [11, 65]).

For two points P = (xP , yP) ∈ E(Fp) and Q = (xQ, yQ) ∈ E(Fp), with P,Q 6= O, the addition
law is defined as R = (xR, yR) = P +Q where:

• If xP 6= xQ, then

xR = m2 − xP − xQ mod p, yR = m(xP − xR)− yP mod p (7.5)

where, m =
yQ−yP

xQ−xP
mod p

• If xP = xQ but yP 6= yQ, then R = O

• If P = Q and yP 6= 0, then

xR = m2 − 2xP mod p, yR = m(xP − xR)− yP mod p

where, m =
3x2

Q+a

2yP
mod p

• If P = Q and yP = 0, then R = O.

For n ∈ N, n ≥ 2, we consider n-th summation polynomial fn = fn(X1, X2, . . . , Xn) introduced
by Semaev in [57] such that

fn(x1, . . . , xn) = 0

for xi ∈ Fp (the algebraic closure of Fp if and only if there exist y1, . . . , yn ∈ Fp such that
(x1, y1), . . . , (xn, yn) ∈ E(Fp) and

(x1, y1) + · · ·+ (xn, yn) = O.

83

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1

x+ y 0 0 1 1 1 1 2 2

Table 7.1: Tabulating all solutions of x+ y = z for x, y, z ∈ {0, 1}

These polynomials have found interesting applications in cryptography (in particular for solving
the discrete logarithm problem on elliptic curves defined over finite fields, see [22, 49] and references
therein).

The following lemma gives a simple way of calculating them:

Lemma 1. The n-th Semaev summation polynomial fn may be defined by:

f2(X1, X2) = X1 −X2

f3(X1, X2, X3) = (X1 −X2)
2X2

3 − 2 ((X1 +X2)(X1X2 + a) + 2b)X3

+(X1X2 − a)2 − 4b(X1 +X2)

fn(X1, . . . , Xn) = ResX(fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X)),

n ≥ 4 and 1 ≤ k ≤ n− 1 .

The polynomial fn is symmetric and of degree 2n−2 in each variable Xi for any n ≥ 3. The
polynomial fn is absolutely irreducible and we have

fn(X1, . . . , Xn) = f2
n−1(X1, . . . , Xn−1)X

2n−2

n + . . .

7.4 Finding “Good Triplets”
Assume that three lists A,B, and C, each of size N , are made of uniformly random n-bit strings.
Let Y be the random variable that counts the number of triplets (x,y, z) ∈ A × B × C such that
x+ y = z when x,y and z are seen over Zn and not modulo 2 . When this relation holds, we call
(x,y, z) a “good triplet”. Our goals in this section are twofold: 1) lower-bound the probability that
A,B and C contain a good triplet and 2) design an algorithm to find good triplets efficiently.

As a warm-up, examining the simplest case (n = 1) is interesting (cf. Table 7.1). Looking at
this table, we see that Pr(x+ y = z) = 3/8. We next prove the following

Theorem 1. We have
E (Y) = N3

(
3

8

)n

,

and
Pr(Y = 0) ≤ 1

N3

(
8

3

)n

+
3

N

(
10

9

)n

+
3

N2

(
4

3

)n

.

Before going into the proof, we discuss the implications. With N = α(8/3)n/3, Theorem 1
yields:

Pr(Y = 0) ≤ 1

α3
+

3

α
(0.801...)n +

3

α2
(0.69...)n.

84

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

u+ v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x+ y 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2
u+ y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

u+ v 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
x+ y 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2
u+ y 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

Table 7.2: Tabulating u+ v, x+ y, u+ y for x, y, z, u, v ∈ {0, 1}

Therefore, setting α = 10 is sufficient to ensure that a good triplet exists with probability 99.9%.
In addition, it follows from Theorem 1 that

Pr(Y = 0) ≤ 1

E (Y)
+

3

(E (Y))1/3
+

3

(E (Y))2/3
. (7.6)

(this can be obtained by substituting N = ((8/3)nE (Y))1/3 into the inequality and simplifying).
This other form is less precise but it is sometimes more practical.

We now proceed to prove the theorem.

Proof. Let x, y, z, u, v denote five independent random bits, and set:

ρ = Pr(x+ y = z)

σ = Pr(u+ v = z | x+ y = z)

τ = Pr(u+ y = v | x+ y = z)

We already know that ρ = 3/8. Building a simple table as above shows that σ = τ = 5/12 (see
Table 7.2).

Let X(i, j, k) denote the binary random variable that takes the value 1 if and only if A[i]+B[j] =
C[k], so that Y =

∑
X(i, j, k). Unless mentioned otherwise, all sums are taken over 0 ≤ i, j, k < N

; we omit the indices to alleviate notations.
The expected value of Y is easy to determine. Because the elements of the lists are identically

85

distributed, Pr(A[i] +B[j] = C[k]) is independent of i, j and k and its value is ρn. We get:

E (Y) = E
(∑

X(i, j, k)
)
=
∑

E (X(i, j, k)) =
∑

Pr(A[i] +B[j] = C[k])

= N3

(
3

8

)n

.

Because Y is the sum of binary random variables, we are entitled to use (7.4):

Pr(Y > 0) ≥
∑ E (X(i, j, k))

E (Y | X(i, j, k) = 1)
.

As argued above, the value of the term under the sum is independent of i, j and k, so this boils
down to: Pr(Y > 0) ≥

(
3
8

)n
/E(Y | X(0, 0, 0) = 1). It remains to compute the expected number of

good triplets under the assumption that there is at least one. This yields:

E(Y | X(0, 0, 0) = 1) =
∑

Pr(A[i] +B[j] = C[k] | A[0] +B[0] = C[0])

We split this sum into 8 parts by considering separately the situation where i = 0, j = 0 and
k = 0 (resp. 6= 0 for each summation index). We introduce the shorthand pijk = Pr (A[i] +B[j] =
C[k] | A[0] + B[0] = C[0]) and we assume that i, j, k > 0. Because A[i] is sampled independently
from A[0] (resp. B, C), the two events inside the conditional probability are in fact independent
and therefore pijk =

(
3
8

)n. But when at least one index is zero, this is no longer the case. The
extreme situation is p000 = 1.

When there is a single non-zero summation index, the situation is rather simple. If x + y = z,
then x+U = z if and only if U = y, and this happens with probability 2−n because U is uniformly
random. This shows that pi00 = p0j0 = p00k = 2−n.

It remains to deal with the case of two non-zero summation indices. In fact, pij0 is simply σn,
while both pi0k and p0jk are equal to τn (by the symmetry between the role of the first two lists).

It follows that

E (Y | X(0, 0, 0) = 1)

= (N − 1)3
(
3

8

)n

+ 3(N − 1)2
(

5

12

)n

+ 3(N − 1) · 2−n + 1

= N3

(
3

8

)n

+ 3N2

(
5

12

)n

+ 3N2−n + 1−∆

with ∆ =
(
3N2 − 3N + 1

)(3

8

)n

+ 3(2N − 1)

(
5

12

)n

+ 3 · 2−n.

The “error term” ∆ is always positive for N ≥ 1. Going back to the beginning, we have:

Pr (Y > 0) ≥ N3(3/8)n

N3(3/8)n + 3N2(5/12) + 3N(1/2)n + 1−∆

≥ 1

1 + 3N−1(10/9)n + 3N−2(4/3)n +N−3(8/3)n

Using the convexity of x 7−→ 1/(1 + x), we obtain

Pr(Y = 0) ≤ 3N−1(10/9)n + 3N−2(4/3)n +N−3(8/3)n.

86

7.4.1 A Simple Sub-Quadratic Algorithm to Find Good Triplets
Finding a “good triplet” (such that x+ y = z) can be done using a naive quadratic algorithm: for
all pairs (x,y) in A×B, check if x+ y ∈ C; if so, return it ; after this loop, return ⊥. This could
potentially be sped up a little by exploiting the fact that x and y are necessarily disjoint.

In this section, we present a simple algorithm to find a good triplet more efficiently. We work
under the assumption that the input lists have size N : = α(8/3)n/3 for some constant α ≥ 4.
Under this condition, (7.6) ensures that there is a good triplet with probability at least 3

64 . This
assumption will be relaxed in the next section.

Looking again at Fig. 7.1, we see that Pr(x = 1 | x + y = z) = 1/3 while Pr(z = 1 | x + y =
z) = 2/3. In other terms, even though x, y, z are sampled uniformly at random, if we restrict our
attention to good triplets, then x and y are biased towards zero (sparse) while z is biased towards
1 (dense).

This observation suggests an algorithm to find good triplets efficiently: remove from A,B (resp.
C) input vectors of Hamming weight different from n/3 (resp. 2n/3), then run the naive quadratic
algorithm on what remains.

Theorem 2. This algorithm terminates in O (Ne) with e = 2 ln(9/4)/ ln(8/3) ≈ 1.654 and succeeds
with probability Ω

(
1
n

)
.

Proof. It follows from the discussion just before the statement of the theorem that there are 3n

good triplets on n bits (out of 8n triplets in total). The number of good triplets that satisfy the
weight condition imposed by the algorithm is

N =

(
n

n/3, n/3, n/3

)
=

(
n

2n/3

)(
2n/3

n/3

)
≥ 2nH(2/3)

√
n4/3

22n/3

2
√

n/3
=

3
√
3

8n
3n.

If the input list contain a good triplet, then the algorithm described above returns it with probability
greater than 0.65/n. The claimed time complexity is in fact a consequence of the next theorem,
and we will therefore not prove it here.

7.4.2 Sub-Quadratic Algorithm with Overwhelming Success Probability
We generalize the algorithm of the previous section by relaxing the weight condition. This yields
algorithm 11. It takes an additional argument w controlling the maximum allowed weight.

In the sequel, all the stated complexities must be understood “up to a constant factor”. Let ϵ
denote a constant in the open interval

(
0; 1

6

)
.

We denote by wt(x) the Hamming weight of a bit string x.

Algorithm 11 Algorithm to find good triplets.
1: function FindTriplet(A,B,C,w)
2: A′ ← {x ∈ A | wt(x) ≤ w}
3: B′ ← {y ∈ B | wt(y) ≤ w}
4: for all x, y ∈ A′ ×B′ do
5: if x+ y ∈ C then
6: return (x, y, z)

87

Lemma 2. With w = n
(
1
3 + ϵ

)
, if the input contains a good triplet, then Algorithm 11 returns ⊥

with probability less than 2 exp(−2nϵ2).

Proof. Assume that the input lists contain a good triplet (x∗, y∗, z∗). It will be discarded if and
only if the weight of either x∗, y∗ is greater than w. We know that the weight of x∗ and y∗ follows
a binomial distribution of parameters (n, 1/3), therefore (7.3) shows that either has weight greater
than n(1/3 + ϵ) with probability less than exp(−nD(1/3 + ϵ, 1/3).

The (well-known) fact that D(p+ ϵ, p) ≥ 2ϵ2 combined with union bound (for x∗ and y∗) then
yields the announced result.

Lemma 3. Let T denote the running time of algorithm 11 with w = n
(
1
3 + ϵ

)
. Then ET ≤

N +N2 exp
[
−nD

(
1
3 + ϵ, 1

2

)]
.

Proof. Filtering the input lists and keeping only low-weight vectors can be done in linear time.
Given the complexity of the naive quadratic algorithm, the total time complexity is simply T =
N + |A′| · |B′|.

Let X ∼ B(n, 1/2) be a binomial random variable modeling the weight of a random n-bit
vector. Such a vector belongs to A′ or B′ if its weight is less than or equal to w, and this happens
with probability s: = Pr(X ≤ w). The binomial tail bound (7.3) yields the tight upper-bound
s ≤ exp

[
−nD

(
1
3 + ϵ, 1

2

)]
.

The sizes of A′ and B′ are stochastically independent random variables following a binomial
distribution of parameters (N, s) with expectation Ns. The expected running time of the quadratic
algorithm on A′ and B′ is therefore E (|A′| × |B′|) = E |A′| × E |B′| = N2s2. Combining this with
the upper bound on s gives the announced result.

Theorem 3. Write e = 2 · ln(9/4)
ln(8/3)

≈ 1.654 For all d > e there is an algorithm that runs in time

O
(
Nd
)
, where N denotes the size of the input list and fails to reveal a good triplet present in the

input with negligible probability (in n).

Proof. Let e < d < 2 be a complexity exponent greater than the bound e given in the statement of
the theorem. There always exist ϵ > 0 such that

d = 2− 6
D
(
1
3 + ϵ, 1

2

)
1
3 ln

8
3 + ϵ ln 2

.

Indeed, setting ϵ = 0 in this expression yields the lower-bound exponent e of the theorem, and the
expression of d is increasing as a function of ϵ; it reaches d = 2 for ϵ = 1/6.

Let N0: = (8/3)n/3, so that input lists of size N0 contain a single good triplet in average. We
distinguish two cases depending of the size of the input lists.

Suppose that N ≤ 2ϵnN0, where N denotes the size of the input lists. In this case run Algo-
rithm 11 with w = n

(
1
3 + ϵ

)
. Lemma 2 guarantees the exponentially small failure probability while

lemma 3 tells us that the expected running time T is less than N +N2 exp[−2nD
(
1
3 + ϵ, 1

2

)
].

A quick calculation shows that the algorithm then runs in time O
(
Nd
)

— the value of d has
been chosen for this purpose. The theorem is proved in this case.

If N > 2nϵN0, then slice the input lists in chunks of size 4N0 and run Algorithm 11 with
w = n/3 on each successive chunk until a solution is found. Each chunk contains a good triplet

88

with probability at least 3
64 thanks to (7.6). The algorithm reveals this triplet, if it exists, with

probability Ω
(
1
n

)
, because it always works if the algorithm of the previous section works.

There are 2ϵn/4 chunks (i.e., exponentially many). Because the chunks are disjoint parts of the
input lists, success in a chunk is independent from the others. Therefore the probability that this
process fails to reveal a good triplet is negligible. The running time of this procedure is O

(
NNe−1

0

)
.

Because N0 ≤ N , this is less than O (Ne).

7.5 Practical Key-recovery Attack on von zur Gathen-Shparlinski
Elliptic Knapsack Generator

In this section, we consider the instantiation of the knapsack generator suggested by von zur Gathen
and Shparlinski in [64]. In particular, the group G is composed of the points of an elliptic curve E
defined over a (prime) finite field Fp (where p ≥ 5 is an n-bit prime number). It is a rational curve
given by the following Weierstrass equation

E:y2 = x3 + ax+ b

for some a, b ∈ Fp with 4a3 + 27b2 6= 0. It is well known that the set E(Fp) of Fp-rational
points (including the special point O at infinity) forms an abelian group with an appropriate
composition rule (denoted additively) where O is the neutral element — for more details on elliptic
curves, we refer to [11, 65]. Von zur Gathen and Shparlinski suggested to use a conversion function
Ψ:E → {0, 1}ρ that simply truncates ℓ = log2(n) least significant bits of the abscissa of a point
(with ρ = n − ℓ). An n-bit linear feedback shift register is used as the control-sequence generator
(as in the Rueppel-Massy classical knapsack generator) and the overall seed length is thus n(n+1)
bits.

7.5.1 Attack on the Elliptic Subset Sum Generator
The adversary first “guesses” seed0. In other terms, all subsequent steps have to be repeated 2n

times, one for each possible value of seed0.
Following the analysis from section 7.4, one needs to construct three sets A, B, C of independent

vectors vi of size N = 4× (8/3)n in order to find a good triplet (i1, i2, i3) such that vi1 +vi2 = vi3

in time O(N1.50019...) with probability at least 1 − 1/43. We need to have n/2 such good triplets
in order to find the n points P1, . . . , Pn used as weights in this elliptic knapsack generator, and
we can hope to obtain them with constant positive probability from an output sequence made of
O(n1/3N) values si ∈ {0, 1}ρ. Note that in our implementation, we do not distinguish the sets A,
B, and C and simply run the algorithm from the previous section with A = B = C the sets of all
vectors vi corresponding to all known outputs si ∈ {0, 1}ρ.

Note that as in the classical knapsack generator, the control sequence is not made of independent
n-bit strings since if one denotes (un)n≥0 the sequence output by the linear feedback shift register,
we have

vi = (v1i , . . . , v
n
i) = (ui, ui+1, . . . , ui+n−1) ∈ {0, 1}n

for i ∈ N. The analysis given in section 7.4 does not apply to such sequences but we make the
heuristic assumption that these n-bit tuples are “sufficiently” random and that our algorithm will
succeed with a similar probability (this heuristic is shown to be correct by our implementation).

89

The data complexity of our attack is therefore O(n1/3 · (8/3)n/3 · ρ) = O(20.472n) bits and finding
n/2 good triplets with our sub-quadratic algorithm will cost O((n1/3 ·N)e = 22.0.778n) operations.

We then follow the general idea given above but for each good triplet (i, j, k) such that vi +
vj = vk, if the adversary finds two points on the elliptic curve Ri and Rj such that Ψ(Ri) = si,
Ψ(Rj) = sj and Ψ(Ri +Rj) = sk, then this gives rise to two possible relations:

1. Qi = Ri, Qj = Rj (and Qk = Ri +Rj), but also

2. Qi = −Ri, Qj = −Rj (and Qk = −(Ri +Rj)).

This is due to the fact that on an elliptic curve, a point and its negative have representations
with much in common since they share the same the x-coordinate (and the y-coordinates are
opposites). This “non-genericness” of elliptic curves is well-known and has important consequences
in cryptography (e.g. the signature scheme ECDSA is malleable in the sense that if the pair of
integers (r, s) is a valid signature of a given message then so is (r,−s)). However, with a truncation
of log2(n) bits of the abscissa of the points, we expect the number of points triple compatible with
(si, sj , sk) to be equal to only 2 (since the algebraic addition law on the elliptic curve is generic
compared to the bit-representation of the points except for this negation issue).

Note that for the first such triple, this is not a problem since the generator parametrized with
the n points P1, . . . , Pn outputs the same sequence as the one parametrized with the n points
−P1, . . . ,−Pn. The adversary can then pick up arbitrarily (Qi, Qj) = (Ri, Rj) or (Qi, Qj) =
(−Ri,−Rj). However, for the subsequent relations obtained from other good triplets, the sign
choice may be incompatible with the first one and this will result in a system with no solutions.
In order to be able to solve the system, we need to have n linear relations among the discrete
logarithms of the points P1, . . . , Pn and each good triplet gives us two such relations (the third one
is by construction a linear combination of the two others and is useless in solving the linear system).
Assuming that n is even, one needs to make n/2− 1 choices for the sign of each relation (after the
first one), and the adversary can simply make a brute-fore search on all such signs (multiplying the
running time of the algorithm by a factor 2n/2−1).

Once the n/2 good triplets have been found, we derive from them n points Qi1 , Qj1 , . . . , Qin/2,Qjn/2

as seen in previous paragraph and obtain the following linear system:

M ×

P1

. . .
Pn

 =


Qi1

Qj1

. . .
Qin/2

Qjn/2

 with M =


vi1

vj1

. . .
vin/2

vjn/2


where the unknowns are the Pi’s. As the vi’s are binary vectors, and the matrix M of full rank, it
can be easily inverted modq where q is the order of the elliptic curve E. The secrets weights Pi’s
are now given by:

P1

. . .
Pn

 ≡M−1 ×


Qi1

Qj1

. . .
Qin/2

Qjn/2

 mod q

90

The overall complexity of the attack is thus

O (2n ×(20.778n +(n/2× 22 log2(n))+ poly(n) +poly(n)× 2n/2−1) = O(21.778n)
↓ ↓ ↓ ↓ ↓

seed0 good triplets derive Q′
is inverse M sign of Q′

is

binary operations.

7.5.2 Experimental Results
We first consider the elliptic curve defined by the equation y2 = x3 + 5x + 5 over GF(p) where
p = 216 − 15. This curve contains q points where q = 65111. As the curve order is small we have
no problem computing discrete logarithms and it takes 23.3 seconds. We present the attack when
the control sequence (vi) is known and we consider n = 16 as suggested by von zur Gathen and
Shparlinski. The key size in this setting is equal to 256 bits. We should fix m = 4n1/3(8/3)n/3 '
1885 as seen in the previous subsection but we can use a smaller m at the beginning. We present
in the following table the time necessary to recover the secret weights with probability at least 50%
when ℓ bits are missing .

ℓ 1 2 3 4 5 6
m 1000 1000 1000 1000 1000 1885

time 6.9s 5.3s 5.6s 5.02s 5.7s 26.7s

For ℓ = 7 the algorithm stops working because it does not manage to find unique Ψ(R1) = si1 ,
Ψ(R2) = si2 and Ψ(R1 +R2) = si3 . We saw earlier an heuristic predicting the algorithm could not
work if ℓ > log2(q)/3 (see eq(7.2). With the current fixed values it becomes ℓ ⩽ 5 hence our results
are coherent with the heuristic.

There is a way to shortcut the exhaustive search on the sign of the points of the elliptic curve.
On the first triplet we choose arbitrarily the points R1, R2 satisfying Ψ(R1) = si1 , Ψ(R2) = si2
and Ψ(R1 + R2) = si3 (we have two couples possible, (R1, R2) and (−R1,−R2)) .Then we only
treat triplets that have at least one index in common with the points we already have. It makes
the analysis far more obscure but it keeps on working in practice and is substantially faster.

ℓ 1 2 3 4 5 6
m 1885 1885 1885 1885 1885 1885

time 1.96s 1.99s 2.03s 2.1s 2.46s 5.59s

Now we consider the elliptic curve defined by the equation y2 = x3 + x+ 14 over GF(p) where
p = 240 + 15 but still n = 16. With this choice we can focus on recovering the points of the elliptic
curves from the outputs without being too bothered with finding the good triplets. This curve
contains q points where q = 1099510687747.

ℓ 1 2 3 4 5 6 7 8 9
m 1885 1885 1885 1885 1885 1885 1885 1885 1750

time 2.1s 2.1s 2.08s 2.5s 2.6s 2.1s 3.5s 8.3s 26.7s

91

7.6 Theoretical Key-recovery Attack on the Elliptic Knap-
sack Generator

The attack in the previous section is made possible by the fact that the number of bits removed by
the compression function is only logarithmic. By increasing this number substantially and using a
compression function that would return only ρ = α · n bits with 0 < α < 1, the cost of finding the
points Rij for each good triplets would be exponential in n (instead of only polynomial). In this
section, we consider a variant of the parameters where:

• the control-sequence generator is a linear feedback shift register with a λ-bit seed;

• the abelian cyclic group (G,+) is an elliptic curve of prime order q defined over a (prime)
finite field Zp (but not necessarily with p and q n-bits integers);

• the public conversion function Ψ:G→ {0, 1}ρ where ρ = bα · log2(q)c is simply the truncation
of d(1− α) log2(q)e bits of the x-coordinate of an elliptic curve point.

A straightforward adaptation of the attack of the previous section gives an attack with complexity

O (2λ ×(20.778n +(n/2× 22(1−α) log2(q)) +poly(n)× 2n/2−1)
↓ ↓ ↓ ↓

seed0 good triplets derive Q′
is sign of Q′

is

In this section, we present a lattice-based (heuristic) attack based on Coppersmith’s method
to improve the part of the complexity O(n/2 × 22(1−α) log2(q)) in O(log2(q))) for some parameters
α ∈]0, 1[.

Given a good triplet (i1, i2, i3) with vi1+vi2 = vi3 , we denote sj = sij the corresponding output
of the generator and

Qj = (xj , yj) = [v1ij]P1 + · · ·+ [vnij]Pn

for j ∈ {1, 2, 3}. By definition, we have xj = (2ℓsj + γj) where γj ∈ {0, . . . , 2ℓ − 1} is some
value unknown to the adversary (for j ∈ {1, 2, 3}) and p is a (k + ℓ) -bit long prime number (with
k = bα · log2(p)c). Since (i1, i2, i3) is a good triplet, we have Q1 + Q2 = Q3 on the elliptic curve
and thus:

(x1 − x2)
2x2

3 − 2 ((x1 + x2)(x1x2 + a) + 2b)x3 + (x1x2 − a)2 − 4b(x1 + x2) = 0

using the third summation polynomial. By replacing xj by (2ℓsj + γj) for j ∈ {1, 2, 3}, one obtains
a polynomial equation where the coefficients are known to the adversary and that involves the
following monomials:{

1, γ1, γ2, γ3, γ
2
1 , γ1γ2, γ1γ3, γ

2
2 , γ2γ3, γ

2
3 , γ

2
1γ2, γ

2
1γ3, γ1γ

2
2 , γ1γ2γ3, γ1γ

2
3 ,

γ2
2γ3, γ2γ

2
3 , γ

2
1γ

2
2 , γ

2
1γ2γ3, γ

2
1γ

2
3 , γ1γ

2
2γ3, γ1γ2γ

2
3 , γ

2
2γ

2
3

}
The sum of degrees of these monomials is equal to

1× 3 + 2× 6 + 3× 7 + 4× 6 = 60

and if one applies Coppersmith’s technique to this polynomial (without using shifts or powers of
the polynomial) it will succeed if |γj | ≤ p1/60 for j ∈ {1, 2, 3}. For α ≥ 59/60, we thus obtain a
(heuristic) attack with the overall complexity

O(2λ · (20.778n + n/2 · poly(log2(q)) + 2n/2)).

92

Remark 1. Note that this attack is mainly theoretical since the bound on α is very close to 1.

7.7 Practical Key-recovery Attack on the Subset Product
Generator

Following the generalization of the knapsack generator to elliptic curves proposed by von zur Ga-
then and Shparlinski, it is natural to consider other variants using abelian groups of interest in
cryptography. The most natural choice is to use (a subgroup of) the multiplicative group of a
finite field Zp for some prime number p. This group is certainly not generic since there exist sub-
exponential time discrete logarithm algorithms in these groups, but it seems that representation
of group elements by the unique member of its class in {0, . . . , p − 1} is sufficiently “generic” that
using truncation of their bit-representation as a conversion function would permit an adversary to
mount a lattice-based attack on this generator even if a quarter of the bits of each group elements
is discarded when computing the output of the generator.

More precisely, in this section, we consider a multiplicative variant of the subset sum generator
where:

• the control-sequence generator is a linear feedback shift register with a λ-bit seed;

• the abelian cyclic group (G, ·) is the multiplicative group of a (prime) finite field Zp (note
that it is denoted multiplicatively);

• the public conversion function Ψ:G→ {0, 1}ρ where ρ = bα · log2(p)c is simply the truncation
of d(1− α) log2(p)e bits of the unique member of its group element class in {0, . . . , p− 1}.

We call this generator the subset product generator.

7.7.1 Description of the Attack
In this setting, the seed consists in a bit-string seed0 ∈ {0, 1}λ and n group elements g1, . . . , gn ∈ Z∗

p.
The bit size of the seed is thus equal to λ+n·dlog2(p)e. At each iteration i ∈ N, the control-sequence
generator generates an n-bit string vi = (v1i , . . . , v

n
i) = CSG(seed0, i), computes the group element

hi defined by
hi = g

v1
i

1 · · · g
vn
i

n ∈ Z∗
p

and outputs si = Ψ(hi) = hi div 2
ℓ ∈ {0, 1}k where p is a (k + ℓ) -bit long prime number (with

k = bα · log2(p)c).
A straightforward adaptation of the attack of the Section 7.5 gives an attack with complexity

O(2λ · (20.78n + p2(1−α))) for α ≥ 2/3. Note that the complexity does not involve the O(2n/2) term
that came from the indecision on the signs in the elliptic curve variant of the knapsack generator.
We remark that one can improve the complexity of the attack by replacing the brute-force search
on the missing bits with the use of Coppersmith technique to retrieve them.

Description of the attack. For a vector vi output by the control sequence generator, we have

hi = g
v1
i

1 · · · g
vn
i

n ∈ Z∗
p

93

with hi = (2ℓsi + xi) where xi ∈ {0, . . . , 2ℓ − 1} is some value unknown to the adversary. Given a
good triplet (i, j, k) with vi + vj = vk, we have hi · hj = hk mod p and thus:

(2ℓsi + xi) · (2ℓsj + xj) = (2ℓsk + xk) mod p.

The unknowns (xi, xj , xk) are thus “small” roots of an equation of the form

Axi +Bxj + xixj − xk + C = 0 mod p

where A = 2ℓsi, B = 2ℓsj and C = (2ℓsi · 2ℓsj − 2ℓsk) mod p are values known by the adversary.
One can thus apply Coppersmith’s technique to this polynomial and the basic technique (without
using shifts or powers of the polynomial) will succeed if |xi|, |xj |, |xk| ≤ p1/5. A simple trick allows
us to improve readily this bound by setting y = xixj − xk such that |y| ≤ 22ℓ and solving the
equation

g(xi, xj , y) = Axi +Bxj + y + C = 0 mod p

in (xi, xj , y) is sufficient to recover (xi, xj , xk). Using the basic Coppersmith’s technique (again with-
out using shifts or powers of this polynomial), this attack will succeed (heuristically) in polynomial-
time if |xi|, |xj |, |xk| ≤ p1/4. For α ≥ 3/4, we thus obtain an attack with the overall complexity

O
(
2λ · (20.78n + n · poly(log2(p)))

)
= O

(
2λ · (20.78n)

)
.

Remark 2. Note that we can improve the bound on the size of the “small” root by using shifts and
powers of the polynomial g(xi, xj , y). For instance, if one considers the family of four polynomials

{g, xi · g, xj · g, g2}

that vanish in (xi, xj , y) modulo p with total multiplicity (1+1+1+2) = 5 and involve the following
set of monomials:

{xi, xj , y, x
2
i , xixj , xiy, x

2
j , xjy, y

2}

with a sum of degrees equal to (1+1+2+2+2+3+2+3+4) = 20, we obtain that the Coppersmith’s
method succeeds (heuristically) if |xi|, |xj |, |xk| ≤ p5/20 = p1/4 (see [32]). This gives the same bound
as above. However, if we reintroduce the variable xk and replace the monomial xixj by y + xk, the
total degree of the set of monomials decreases to 19 and this decreases the bound to p5/19. It is
possible to decrease a bit further the exponent of p in this bound, at the cost of using a lattice of higher
dimension in Coppersmith’s technique using the technique of unravelled linearization from [30] (see
also [8]).

7.7.2 Experimental Results
Exhaustive search on the truncated bits. We consider first the finite field K = Fp with
p = 2q + 1 and q = 99839. We choose weights in the cyclic multiplicative group G of order q made
by the non-quadratic residues of K minus zero. We present the attack when the control sequence
(vi) is known and we consider n = 16 as suggested by von zur Gathen and Shparlinski. The key
size in this setting is equal to 256 bits. We present in the following table the number m of outputs
needed and the time necessary to recover the secret weights with probability at least 50% when ℓ
bits are missing.

94

ℓ 1 2 3 4 5 6

m 1000 1000 1000 1000 1000 1885
time 0.51s 0.45s 0.44s 0.47s 0.58s 2.1s

When 7 bits are truncated we cannot recover the weights even with 1885 outputs.
Now we consider the finite field K = Fp with p = 2q + 1 and

q = 72536599031050480402372360602698911648481683373808860129469667649180998227293

a 256-bit number, but still n = 16. With this choice we can focus on recovering the points from the
outputs without being too bothered with finding the good triplets. We need n points to recover the
weights and to obtain a good average of the time each computation is run ten times. The whole
attack is therefore quite practical.

ℓ 1 2 3 4 5 6 7 8 9

m 1000 1000 1000 1000 1000 1000 1000 1000 1000
time 0.46s 0.50s 0.48s 0.43s 0.55s 0.70s 0.87s 1.9s 6.6s

Coppersmith method. We consider the attack on the second group with p = 2q + 1 and q a
256-bit number. First, we implement the attack with the single polynomial g = Axi+Bxj + y+C.
As the Coppersmith method is a bit more unpredictable, we present in the following table the
number m of outputs needed and the time necessary to recover the weights with probability at
least 50% when ℓ bits are missing.

ℓ 2 4 8 16 32 62 63

m 1000 1000 1000 1000 1000 1000 1000
time 0.71s 0.67s 0.68s 0.61s 0.63s 0.51s 0.55s

If we follow the heuristic in Coppersmith’s method we should be able to retrieve the weights up
to ℓ = 64 and ℓ = 64 is the first instance where the attack stops working. If we try to consider the
family of polynomials {g, xig, xjg, yg, g

2} instead the improvement on the upper-bound from p1/4

to p5/19 would not be significant for 256-bit integers.

95

Chapter 8

Arrow

The attacks presented in this chapter are an original work firstly presented in Practical Seed-
Recovery of Fast Cryptographic Pseudo-Random Number Generators at ACNS 2022 [48]. They
differ from what we have seen before as no lattice-based technique is involved. As the algorithms
are long they are not fully described here, they can be found on my git account https://github.
com/floretteM

8.1 About Lightweight Cryptographic
Because of the miniaturization of components and the emergence of the Internet of Things, we face
a new cryptographic challenge in which highly-constrained devices must wirelessly and securely
communicate with one another. The standardized available PRNGs do not fit into these constrained
devices, this is the reason why people started looking for lighter PRNGs. In 2017, NIST (National
Institute for Standards and Technology) prepared a new competition to standardize algorithms
for lightweight cryptography. In [34], they presented several generally-desired properties that they
would use to evaluate the design of future lightweight cryptographic protocols. They strongly
underline the fact that the security should be of at least 112 bits. In August 2018, the call for
algorithm to be considered for lightweight cryptography was published. Since then, NIST received
57 submissions to be considered for standardization. After the initial review of the submissions, 56
were selected as Round 1 candidates. Of the 56 Round 1 candidates, 32 were selected to advance
to Round 2. The competition is still ongoing as the time of writing.

8.2 Presentation of Arrow
they had poor statistical properties, which made them easily distinguishable from the uniform
distribution, and they were easily predictable (as we could obtain the full internal state by clocking
the generator enough times) hence could not be used as cryptographic PRNG. We recall that
they are defined by four parameters: (r, s,N,m) and an initial internal state composed of r words
of size N : (x−r, . . . , x−1). At step n, the internal state of the generator is (xn−r, . . . , xn−1).
Then it computes xn as xn ≡ xn−r + xn−s mod m, outputs xn and updates its internal state to
(xn−r+1, . . . , xn).

96

https://github.com/floretteM
https://github.com/floretteM

The goal of Arrow, presented by Lopez, Encinas, Muñoz, and Vitin in [43] in 2017 was to use
two LFGs to keep their lightweight properties by combining them in a way that would make the
resulting PRNG more secure. To improve the security of these new PRNGs, the authors used
two LFGs of different lengths and combined them using both modular arithmetic over Z/mZ and
binary operations, to break the linearity of the operations. The sequences generated by Arrow pass
successfully the Marsaglia’s Diehard randomness tests suite and the randomness tests of NIST. The
statistical randomness distribution of the outputs of Arrow has been studied further in [12], by
Blanco et al. in 2019. As this generator is tailored for lightweight cryptography, its internal states
are relatively small.

xn−r1 xn−s1← ← xn−1

yn−r2 yn−s2← ← yn−1

� d1 � d3

� d2 � d4

+

+

wn

xn

yn

Figure 8.1: Description of Arrow

Arrow is an elaborated architecture, its structure is described in Fig. 8.1. It is composed of
two LFGs of respective parameters (r1,s1,N ,m) and (r2, s2, N,m). The internal states of the first
LFG are denoted (xi), the internal states of the second one (yi) and the outputs (wi). The values
(xi)−r1≤i≤−1 and (yi)−r2≤i≤−1 are the seed of this generator. The parameters r1, r2, s1, s2, N,m
are public.

Instead of having xn = xn−s1 +xn−r1 mod m and yn = yn−s−2 + yn−r2 mod m we scramble the
two generators to obtain at step n ≥ 0:

xn = ((xn−r1 ⊕ (yn−s2 � d1)) + (xn−s1 ⊕ (yn−r2 � d3))) mod m (8.1)
yn = ((yn−r2 ⊕ (xn−s1 � d2)) + (yn−s2 ⊕ (xn−r1 � d4))) mod m (8.2)

where d1, d2, d3 and d4 are four public constant satisfying 0 < di < N . The output at step n is:

wn = xn ⊕ yn.

The security of Arrow is based on the secrecy of the internal states. If we clock r2 times the
generator, then for all i ∈ {0, . . . , r2 − 1}, we know the value xi ⊕ yi (which is equal to wi). This is
the main weakness we are going to exploit in the following attacks. The global paradigm were are
going to use is call “guess-and-determine”. The point it to obtain simple equations on the bits of
the internal sates and known parameters/ outputs. Then we guess some bits, determine other bits
using the equations previously obtained and precisely follow how these known bits behave when we
clock the internal states and in which future outputs they are going to reappear.

97

A famous guess-and-determine attack was the real-life attack presented in 1997 against the
alleged A5/1, a stream cipher widely used in GSM communications. Several variations of the
stream cipher SOBER [53] where also attacked by guess-and-determine attacks such as SOBER-II
in 1999 by Bleichenbacher in [13] or SOBER-t32 in 2003 by Baggage et al. in [5]. You can find a
quick summary of other guess-and-determine attacks in this survey [6], paragraph 3.10.

8.3 Attack on a first hardware version of Arrow
We present a first hardware version of Arrow with words of size N = 16 presented in the original
paper. The set of parameters used is

N m r1 s1 r2 s2 d1 = d2 = d3 = d4
16 65536 5 2 3 1 4

and the claimed security is 128 bits (96 bits if a public IV is used).
If we decide to split all the relevant words of size 16 into four sub-words of 4 bits, we can

represent the internal state of this variant of Arrow as follows:

an bn cn dn en fn gn hn x
(4)
n x

(3)
n x

(2)
n x

(1)
n

in jn kn ℓn mnnn on pn y
(4)
n y

(3)
n y

(2)
n y

(1)
n

We also split the outputs wn of size 16 into four sub outputs of 4 bits: w
(1)
n , w(2)

n , w(3)
n and w

(4)
n

with w
(1)
n being the least significant bits of wn and w

(4)
n the most significant bits.

The equations (8.1) and (8.2) become:

x(1)
n = dn + (hn ⊕ kn) mod 16 (8.3)
c(1)x = (dn + (hn ⊕ kn)) div 16 (8.4)

x(2)
n = (cn ⊕ pn) + (gn ⊕ jn) + c(1)x mod 16 (8.5)
c(2)x = ((cn ⊕ pn) + (gn ⊕ jn) + c(1)x) div 16 (8.6)
x(3)
n = (bn ⊕ on) + (fn ⊕ in) + c(2)x mod 16 (8.7)
c(3)x = (bn ⊕ on) + (fn ⊕ in) + c(2)x div 16 (8.8)

x(4)
n = ((an ⊕ nn) + en + c(3)x) mod 16 (8.9)

98

y(1)n = ℓn + (cn ⊕ pn) mod 16 (8.10)
c(1)y = (ℓn + (cn ⊕ pn)) div 16 (8.11)

y(2)n = (hn ⊕ kn) + (bn ⊕ on) + c(1)y mod 16 (8.12)
c(2)y = ((hn ⊕ kn) + (bn ⊕ on) + c(1)y) div 16 (8.13)
y(3)n = (gn ⊕ jn) + (an ⊕ nn) + c(2)y mod 16 (8.14)
c(3)y = (gn ⊕ jn) + (an ⊕ nn) + c(2)y div 16 (8.15)

y(4)n = ((fn ⊕ in) +mn + c(3)y) mod 16 (8.16)

x(1)
n ⊕ y(1)n = w(1)

n (8.17)
x(2)
n ⊕ y(2)n = w(2)

n (8.18)
x(3)
n ⊕ y(3)n = w(3)

n (8.19)
x(4)
n ⊕ y(4)n = w(4)

n (8.20)

The c
(i)
x and c

(i)
y are the carries we must work with. Their value is either 0 or 1. The (wi) are

known as they are the outputs.
Our attack will be based on a classical “guess-and-determine” approach. The guessed bits will

appear in red, the derived bits at the first step in blue, and the derived bits at the second step in
olive. In this case, the attack is very simple: we start by clocking 3 times our generator.

Step 1 We guess a3, b3, c3, d3, e3, f3, g3, h3, i3, j3, k3, ℓ3 (hence 48 bits). With d3, h3 and k3 we
compute x

(1)
3 and c

(1)
x (eq. 8.3 and 8.4). Then we compute y

(1)
3 with x

(1)
3 and w

(1)
3 (eq. 8.17)

and retrieve p3 as we know ℓ3 and c3 (eq. 8.10). The knowledge of c3 allows us to compute
x
(2)
3 (eq. 8.5), recover y

(2)
3 (eq. 8.18) and then o3 (eq. 8.12). With o3 we can compute x

(3)
3

(eq. 8.7), recover y(3)3 (eq. 8.19) and then n3 (eq. 8.14). And finally, with n3 we can compute
x
(4)
3 (eq. 8.9) and recover y

(4)
3 (eq. 8.20) as well as m3 (eq. 8.16). As we know w0, w1, w2,

we can fill up the internal states above i3, j3, k3, ℓ3 and m3, n3, o3, p3 and under e3, f3, g3,
h3 (eq 8.17, 8.18, 8.19 and 8.20).

a3 b3 c3 d3 e3 f3 g3 h3

∗ ∗ ∗ ∗

x
(4)
3 x

(3)
3 x

(2)
3 x

(1)
3

i3 j3 k3 ℓ3

∗ ∗ ∗ ∗

m3n3 o3 p3

∗ ∗ ∗ ∗

y
(4)
3 y

(3)
3 y

(2)
3 y

(1)
3

Step 2 We clock the generator twice. As explained above, we have derived a5, b5, c5, d5 from i3, j3,
k3, ℓ3 and w0. The values e5, f5, g5, h5 are x

(4)
3 , x(3)

3 , x(2)
3 , x(1)

3 and i5, j5, k5, ℓ5 are m3,

99

n3, o3, p3. We remark that we are in a similar situation as step 1, hence we use the same
equations to derive m5, n5, o5, p5 as well as x

(1)
5 , x(2)

5 , x(3)
5 , x(4)

5 , y(1)5 , y(2)5 , y(3)5 and y
(4)
5 .

The values above m5, n5, o5, p5 can be computed thanks to w4.
At this point, we know the full internal state of the generator.

a5 b5 c5 d5 e3 f3 g3 h3 e5 f5 g5 h5

∗ ∗ ∗ ∗

x
(4)
5 x

(3)
5 x

(2)
5 x

(1)
5

i5 j5 k5 ℓ5

∗ ∗ ∗ ∗

m5n5 o5 p5

∗ ∗ ∗ ∗

y
(4)
5 y

(3)
5 y

(2)
5 y

(1)
5

Step 3 We compute the five following outputs using the internal states we have and we compare
them with the true outputs given by the generator. If they are equal, it means we have
recovered the full internal state of the generator with overwhelming probability. If they are
not it means the guesses were wrong and we go back to Step 1 with new guesses. We notice
that the generator is easily invertible, hence we can recover the seed.

This particular version of Arrow was supposed to have between 96 and 128 bits of security
(depending on whether an IV was used or not) and with this attack, we show it cannot have
more than 48 bits of security which is far from the 112 bits of security recommended by NIST
for lightweight cryptography. This attack had been implemented in C but is not practical on a
standard laptop: a Dell Latitude 7400, running on Ubuntu 18.04 (the same laptop will be used for
the rest of this paper). If we only test a hundred sets of guesses, the algorithm runs in 0.000144s.
To retrieve the full internal state of the generator, the algorithm should run for approximately 12
years.

8.4 Another hardware version of Arrow
We study another hardware version of Arrow presented in the original paper, this time with words
of size N = 8. The set of parameters used is

N m r1 s1 r2 s2 d1 = d2 = d3 = d4
8 256 9 4 7 3 4

and the claimed security is 128 bits (96 bits if a public IV is used).
If we decide to split all the relevant words of 8 bits into four sub-words of 4 bits, we can represent

the internal state of this variant of Arrow as follows:
We also split the outputs wn of 8 bits in two sub words of 4 bits: w

(1)
n and w

(2)
n , with w

(1)
n being

the least significant bits of wn and w
(2)
n the most significant bits.

The equations (8.1) and (8.2) become:

100

an bn cn dn x
(2)
n x

(1)
n

en fn gnhn y
(2)
n y

(1)
n

x(1)
n = bn + (en ⊕ dn) mod 2N/2 (8.21)
cx = (bn + (en ⊕ dn)) div 2

N/2 (8.22)
y(1)n = fn + (an ⊕ hn) mod 2N/2 (8.23)
cy = (fn + (an ⊕ hn)) div 2

N/2 (8.24)
x(2)
n = (cn + (an ⊕ hn) + cx) mod 2N/2 (8.25)
y(2)n = (gn + (en ⊕ dn) + cy) mod 2N/2 (8.26)

We start the attack by clocking the generator seven times. Then, for every n ≥ 7, en, fn =

y
(2)
n−7, y

(1)
n−7, cn, dn = x

(2)
n−4, x

(1)
n−4 and gn, hn = y

(2)
n−3, y

(1)
n−3. If we denote ēi, f̄i the values above ei, fi,

we see that we can easily derive them from ei, fi and wi−7. We also denote ḡi, h̄i the values above
gi, hi and c̄i, d̄i the values under ci, di

Step 0: guess b7, g7, (e7 ⊕ d7), (a7 ⊕ h7)

determine → (x
(1)
7 , y

(1)
7 , f7, y

(2)
7 , x

(2)
7 , c7)

Step 1: b9 = f̄7
guess g9, (e9 ⊕ d9), (a9 ⊕ h9)

determine → (x
(1)
9 , y

(1)
9 , f9, y

(2)
9 , x

(2)
9 , c9)

Step 2: b11 = f̄9, c11 = x
(2)
7 , d11 = x

(1)
7 , e11 = g7

guess f11
determine → (x

(1)
11 , y

(1)
11 , x

(2)
11 , y

(2)
11 , g11)

Step 3: a12 = c7, c12 = ¯g11, e12 = c̄9, g12 = y
(2)
9 , h12 = y

(1)
9

guess b12, cx, cy

determine → (x
(2)
12 , y

(2)
12 , d12, x

(1)
12 , y

(1)
12 , f12)

Step 4: a15 = ḡ9, c15 = x
(2)
11 , d15 = x

(1)
11 , e15 = g11, g15 = y

(2)
12 , h12 = y

(1)
12

determine → (y
(1)
15 , x

(1)
15 , b15, x

(2)
15 , y

(2)
15)

Step 5: a16 = x
(2)
7 , b16 = x

(1)
7 , c16 = x

(2)
12 , d16 = x

(1)
12 , e16 = y

(2)
9 , f16 = y

(1)
9

determine → (x
(1)
16 , y

(1)
16 , h16, x

(2)
16 , y

(2)
16 , g16)

Step 6: a18 = x
(2)
9 , b18 = x

(1)
9 , e18 = y

(2)
11 , f18 = y

(1)
11 , g18 = y

(2)
15 ;h18 = y

(1)
15

determine → (y
(1)
18 , x

(1)
18 , d18, y

(2)
18 , x

(2)
18 , c18)

101

Step 7: a20 = x
(2)
11 , b20 = x

(1)
11 , c20 = x

(2)
16 , d20 = x

(1)
16 , e20 = g16, f20 = h16

determine → (x
(1)
20 , y

(1)
20 , h20, x

(2)
20 , y

(2)
20 , g20)

Step 8: a21 = x
(2)
12 , b21 = x

(1)
12 , c21 = ¯g20, d21 = h̄20, e21 = y

(2)
12 , f21 = y

(1)
12 , g21 = y

(2)
18 , h21 = y

(1)
18

determine → (x
(1)
21 , y

(1)
21 , x

(2)
21 , y

(2)
21)

Step 9: a22 = ¯g16, b22 = h̄16, c22 = x
(2)
18 , d22 = x

(1)
18 , e22 = y

(2)
15 , f22 = y

(1)
15

determine → (x
(1)
22 , y

(1)
22 , h22, x

(2)
22 , y

(2)
22 , g22)

At the end of Step 9, we have derived from our guesses the whole internal state of the generator.
We use these values to compute the five following outputs and compare them to the five “true”
outputs given by the original generator to know if our guesses were correct or not with overwhelming
probability. As we guess 16 bits in Step 0, 12 bits in Step 1, 4 bits in Step 2, and 6 bits in Step 3,
our time complexity will be approximately (238). We recall that the security of this generator was
supposed to be of at least 96 bits. This attack has been implemented in C and is running in 20
minutes over 8 threads and with the -O3 option on a standard laptop.

8.5 A software version of Arrow
The software version of Arrow with words of size N is using the following set of parameters

N m r1 s1 r2 s2 d1 = d2 = d3 = d4
N 2N 31 3 17 3 N/2

with N = 8 or N = 32.
If we decide to split all the relevant words of N bits into two sub-words of N/2 bits, we can

represent the internal state of this variant of Arrow as follows:

an bn . . . cn dn x
(2)
n x

(1)
n

en fn . . . gnhn y
(2)
n y

(1)
n

We obtain the same equations as in the previous case.
This version of Arrow has two specificities:

• The values ci, di are above gi, hi. Hence, if the generator has been clocked enough times and
if we know gi and hi, then we know ci and di.

• The two lagged Fibonacci generator used in this version of Arrows are more or less synchro-
nized (which is something that should have been avoided). If we call t the difference between
r1 and r2, we notice that t = r1 − r2 = s2 − r2. Hence, if we know ei, fi, ci, di we will know
ai+14, bi+14, ei+14, fi+14. It will ease our guess-and-determine attack;

Because of that, in our attack we will only face three cases:

102

Case gh We know ai, bi, ei, fi, we guess gi, hi and derive ci, di, xi, yi with the help of wi−3 and wi. We
compare x

(2)
i ⊕ y

(2)
i to w

(2)
i .

Case a We know ei, fi, gi, hi, we guess ai and derive xi, yi with the help of wi. We compare x
(2)
i ⊕y

(2)
i

to w
(2)
i .

Case 0 We know all the relevant values, we derive xi, yi from them and compare xi⊕yi to the output
wi.

We start by clocking the generator 17 times to know all the xor between xi and yi for i in
{0, . . . , 16}.

Step 0: guess a17, e17, f17, g17, h17

determine → (c17, d17, x
(1)
17 , x

(2)
17 , y

(1)
17 , y

(2)
17)

assert x
(2)
17 ⊕ y

(2)
17 = w

(2)
17

Step 1 (case gh): a31 = ¯e17, b31 = ¯f17, e31 = g17, f31 = h17

guess g31, h31

determine → (c31, d31, x31, y31)

assert x
(2)
31 ⊕ y

(2)
31 = w

(2)
31

Step 2 (case a): c34 = x
(2)
31 , d34 = x

(1)
31 , e34 = y

(2)
17 , f34 = y

(1)
17 , g34 = y

(2)
31 , h34 = y

(1)
31

guess a34
determine → (x34, y34)

assert x
(2)
34 ⊕ y

(2)
34 = w

(2)
34

Step 3 (case gh): a45 = c17, b45 = d17, e45 = g31, f45 = h31

guess g45, h45

determine → (c45, d45, x45, y45)

assert x
(2)
45 ⊕ y

(2)
45 = w

(2)
45

Step 4 (case 0): a48 = x
(2)
17 , b48 = x

(1)
17 , c48 = x

(2)
45 , d48 = x

(1)
45 , e48 = y

(2)
31 , f48 = y

(1)
31 , g48 = y

(2)
45 , h48 = y

(1)
45

determine → (x48, y48)
assert x48 ⊕ y48 = w48

In step 0, there are 25N/2 possibilities for the set of values {a17, e17, f17, g17, h17}. Thanks to
the first filter, on average only 24N/2 possibilities are still on course for step 1.

In step 1, there are 26N/2 possibilities for the set of values {a17, e17, f17, g17, h17, g31, h31}
(24N/2 from step 0 and 22N/2 for g31, h31). Thanks to the filter, on average only 25N/2 possibilities
remains for step 2.

In step 2, there are 26N/2 possibilities for the set of values {a17, e17, f17, g17, h17, g31, h31,
a34} (25N/2 from step 1 and 2N/2 for a34). Thanks to the filter, on average only 25N/2 possibilities
remains for step 2.

In step 3 we consider 25N/2 × 22N/2 possibilities, on average only 26N/2 of them pass the filter.
In step 4 we consider 26N/2 possibilities, on average only 24N/2 of them pass the filter.

103

Step 5 (case a): c51 = x
(2)
48 , d51 = x

(1)
48 , e51 = y

(2)
34 , f51 = y

(1)
34 , g51 = y

(2)
48 , h51 = y

(1)
48

guess a51
determine → (x51, y51)

assert x
(2)
51 ⊕ y

(2)
51 = w

(2)
51

Step 6 (case gh): a59 = c31, b59 = d31, e59 = g45, f59 = h45

guess g59, h59

determine → (c59, d59, x59, y59)

assert x
(2)
59 ⊕ y

(2)
59 = w

(2)
59

Step 7 (case 0): a62 = x
(2)
31 , b62 = x

(1)
31 , c62 = x

(2)
59 , d62 = x

(1)
59 , e62 = y

(2)
45 , f62 = y

(1)
45 , g62 = y

(2)
59 , h62 = y

(1)
59

determine → (x62, y62)
assert x62 ⊕ y62 = w62

Step 8 (case 0): a65 = x
(2)
34 , b65 = x

(1)
34 , c65 = x

(2)
62 , d65 = x

(1)
62 , e65 = y

(2)
48 , f65 = y

(1)
48 , g65 = y

(2)
62 , h65 = y

(1)
62

determine → (x65, y65)
assert x65 ⊕ y65 = w65

Step 9 (case a): c68 = x
(2)
65 , d68 = x

(1)
65 , e68 = y

(2)
51 , f68 = y

(1)
51 , g68 = y

(2)
65 , h68 = y

(1)
65

guess a68
determine → (x68, y68)

assert x
(2)
68 ⊕ y

(2)
68 = w

(2)
68

Step 10 (case gh): a73 = c45, b73 = d45, e73 = g59, f73 = h59

guess g73, h73

determine → (c73, d73, x73, y73)

assert x
(2)
73 ⊕ y

(2)
73 = w

(2)
73

Step 11 (case 0): a76 = x
(2)
45 , b76 = x

(1)
45 , c76 = x

(2)
73 , d76 = x

(1)
73 , e76 = y

(2)
59 , f76 = y

(1)
59 , g76 = y

(2)
73 , h76 = y

(1)
73

determine → (x76, y76)
assert x76 ⊕ y76 = w76

Step 12 (case 0): a79 = x
(2)
48 , b79 = x

(1)
48 , c79 = x

(2)
76 , d79 = x

(1)
76 , e79 = y

(2)
62 , f79 = y

(1)
62 , g79 = y

(2)
76 , h79 = y

(1)
76

determine → (x79, y79)
assert x79 ⊕ y79 = w79

Step 13 (case 0): a82 = x
(2)
51 , b82 = x

(1)
41 , c82 = x

(2)
79 , d82 = x

(1)
79 , e82 = y

(2)
65 , f82 = y

(1)
65 , g82 = y

(2)
79 , h82 = y

(1)
79

determine → (x82, y82)
assert x82 ⊕ y82 = w82

We keep repeating these three steps (case a, case gh, and case 0) until we reach n = 243. It
takes another 110 steps to go there. At this point, we will have derived the full internal state of the
generator and only one guess would have passed all the filters with overwhelming probability. This
attack has been fully implemented in C. For N = 8 the attack is practical as it runs in 20 seconds
over 8 threads on a standard laptop: a Dell Latitude 7400, running on Ubuntu 18.04.

In each step, there are never more than 27N/2 possibilities tested (the maximum is in step 3).
We can assume that the complexity is roughly 27N/2. For N = 8, we obtain 228, which is coherent
with our experimental results. For N = 32, it would give 112 bits of security, which is enough for
NIST’s standards, but far lower than the claim of 1024 bits of security.

104

Chapter 9

Conclusion and perspectives

The Linear Congruential Generator is at least seventy years old. As it is one of the oldest and best
known pseudo-random numbers generator, it had been heavily studied and it was already known
not to be cryptographically secure. All the efforts that were made to increase its security failed. As
it is easy to implement, the LCG is a key part of several PRNGs, like the PCG presented in chapter
3 or Trifork in chapter 4, but these generators fail to hide the linear structure of the LCG enough
and it is their main liability. We stripped all the layers that covered the LCG until we managed to
obtain a truncated and possibly altered version of its outputs. From then all we had to do was to
apply the already known attacks against the LCG. In chapter 5 we presented the Fast Knapsack
generator that does not use an LCG. But we still managed to find a way to link them both which
means all the work on the LCG could be used to attack this generator. We could conclude that
using the LCG in a cryptographic environment not directly as a PRNG but even as a subroutine
in another larger PRNG seems unwise.

In the second part we presented combined generators. Arrow and its predecessor Trifork combine
two or more copies of a weak generator, the Lagged Fibonacci Generator, mixing them using binary
operation to mask the linear structure. In the case of Trifork the weakness of the Lagged Fibonacci
Generator allows us to easily attain the LCG used in the initialisation phase. In Arrow the weakness
of the generator combined with the small size of the words in the internal state create a perfect
set up to run guess-and-determine attacks. The problem is not restrained to the LCG: topping
permutations or binary operations over a weak PRNG does not strengthen their security enough
to make them suitable for cryptographic purpose.

The Knapsack Generator is a PRNG that combines a weak PRNG, a Linear Feedback Shift
Register, and a hard computational problem, the Subset Sum Problem. The attacks both against
the Knapsack Generator and its Elliptic version in chapter 7 start the same way by guessing the
whole key of the LFSR. Because the Subset Sum Problem is a hard problem (even harder when the
weights are secret), the outputs of the LFSR are not easily attainable. But in the set of parameters
proposed in both papers presenting the Knapsack Generator and the Elliptic Knapsack Generator,
the seed of the LFSR is small enough to be practically guessed (32 bits for the first PRNG, 16 for
the second).

In chapter 7 we presented a generalised version of the Knapsack Generator and called the first
weak generator generating the ui’s the Control Sequence Generator (CSG). It could be an LFSR
(like in the original knapsack generator) or anything else. To make it secure, what properties should

105

this CSG satisfy? Is “having a seed large enough not to be guessed” enough? Could it lead to a
secure version of the knapsack generator under the assumption that the Subset Sum is a hard
problem? It would be more efficient than the Naor-Impagliazzio scheme [31] which is secure under
this hypothesis but not efficient.

106

Bibliography

[1] Ahmadi, O., Shparlinski, I.E.: Exponential sums over points of elliptic curves. J. Number
Theory 140, 299–313 (2014)

[2] Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.:
The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 717–746. Springer, Heidelberg (May 2019).
doi:10.1007/978-3-030-17656-3_25

[3] Arratia, R., Gordon, L.: Tutorial on large deviations for the binomial distribution. Bulletin of
Mathematical Biology 51(1), 125 – 131 (1989)

[4] Babai, L.: On lovász’lattice reduction and the nearest lattice point problem. Combinatorica 6,
1–13 (1986)

[5] Babbage, S., De Cannière, C., Lano, J., Preneel, B., Vandewalle, J.: Cryptanalysis of SOBER-
t32. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 111–128. Springer, Heidelberg
(Feb 2003). doi:10.1007/978-3-540-39887-5_10

[6] Banegas, G.: Attacks in stream ciphers: A survey. Cryptology ePrint Archive, Report 2014/677
(2014), https://eprint.iacr.org/2014/677

[7] Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with appli-
cations to /dev/random. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005. pp.
203–212. ACM Press (Nov 2005). doi:10.1145/1102120.1102148

[8] Bauer, A., Vergnaud, D., Zapalowicz, J.C.: Inferring sequences produced by nonlinear pseu-
dorandom number generators using Coppersmith’s methods. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 609–626. Springer, Heidelberg (May 2012).
doi:10.1007/978-3-642-30057-8_36

[9] Benhamouda, F., Chevalier, C., Thillard, A., Vergnaud, D.: Easing Coppersmith methods
using analytic combinatorics: Applications to public-key cryptography with weak pseudoran-
domness. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.) PKC 2016, Part II.
LNCS, vol. 9615, pp. 36–66. Springer, Heidelberg (Mar 2016). doi:10.1007/978-3-662-49387-
8_3

[10] Blackburn, S.R., Ostafe, A., Shparlinski, I.E.: On the distribution of the subset sum pseudo-
random number generator on elliptic curves. Unif. Distrib. Theory 6(1), 127–142 (2011)

107

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-540-39887-5_10
https://eprint.iacr.org/2014/677
https://doi.org/10.1145/1102120.1102148
https://doi.org/10.1007/978-3-642-30057-8_36
https://doi.org/10.1007/978-3-662-49387-8_3
https://doi.org/10.1007/978-3-662-49387-8_3

[11] Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography, Lond. Math. Soc. Lect.
Note Ser., vol. 265. Cambridge: Cambridge University Press (1999)

[12] Blanco, A.B., López, A.B.O., Muñoz, A.M., Martínez, V.G., Encinas, L.H., Martínez-
Graullera, O., Vitini, F.M.: On-the-fly testing an implementation of arrow lightweight prng
using a labview framework. In: International Joint Conference: 12th International Conference
on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th In-
ternational Conference on EUropean Transnational Education (ICEUTE 2019). pp. 175–184.
Springer (2019)

[13] Bleichenbacher, D., Patel, S.: SOBER crytanalysis. In: Knudsen, L.R. (ed.) FSE’99. LNCS,
vol. 1636, pp. 305–316. Springer, Heidelberg (Mar 1999). doi:10.1007/3-540-48519-8_22

[14] Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann, P.: Comparing
the difficulty of factorization and discrete logarithm: A 240-digit experiment. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 62–91. Springer,
Heidelberg (Aug 2020). doi:10.1007/978-3-030-56880-1_3

[15] Bouillaguet, C., Martinez, F., Sauvage, J.: Practical seed-recovery for the PCG pseudo-
random number generator. IACR Trans. Symm. Cryptol. 2020(3), 175–196 (2020).
doi:10.13154/tosc.v2020.i3.175-196

[16] Cattaneo, G., De Maio, G., Petrillo, U.F.: Security issues and attacks on the gsm standard: a
review. J. Univers. Comput. Sci. 19(16), 2437–2452 (2013)

[17] Contini, S., Shparlinski, I.: On Stern’s attack against secret truncated linear congruential
generators. In: Boyd, C., Nieto, J.M.G. (eds.) ACISP 05. LNCS, vol. 3574, pp. 52–60. Springer,
Heidelberg (Jul 2005)

[18] Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits
known. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 178–189. Springer,
Heidelberg (May 1996). doi:10.1007/3-540-68339-9_16

[19] Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U.M.
(ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (May 1996).
doi:10.1007/3-540-68339-9_14

[20] Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P., Stern, J.: Improved
low-density subset sum algorithms. Computational complexity 2, 111–128 (1992)

[21] Coveyou, R.: Serial correlation in the generation of pseudo-random numbers. Journal of the
ACM (JACM) 7(1), 72–74 (1960)

[22] Diem, C.: On the discrete logarithm problem in elliptic curves. Compos. Math. 147(1), 75–104
(2011)

[23] Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis of
pseudo-random number generators with input: /dev/random is not robust. In: Sadeghi,
A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 647–658. ACM Press (Nov 2013).
doi:10.1145/2508859.2516653

108

https://doi.org/10.1007/3-540-48519-8_22
https://doi.org/10.1007/978-3-030-56880-1_3
https://doi.org/10.13154/tosc.v2020.i3.175-196
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1145/2508859.2516653

[24] El-Mahassni, E.D.: On the distribution of the elliptic subset sum generator of pseudorandom
numbers. Integers 8(1), article a31, 7 (2008)

[25] Ferrenberg, A.M., Landau, D.P., Wong, Y.J.: Monte carlo simulations: Hidden errors
from “good” random number generators. Phys. Rev. Lett. 69, 3382–3384 (Dec 1992).
doi:10.1103/PhysRevLett.69.3382, https://link.aps.org/doi/10.1103/PhysRevLett.69.
3382

[26] Franke, D.: How I hacked hacker news (with arc security advisory). https://news.
ycombinator.com/item?id=639976 (2009)

[27] Frieze, A.M., Hastad, J., Kannan, R., Lagarias, J.C., Shamir, A.: Reconstructing truncated
integer variables satisfying linear congruences. SIAM J. Comput. 17(2), 262–280 (Apr 1988).
doi:10.1137/0217016, http://dx.doi.org/10.1137/0217016

[28] Von zur Gathen, J., Shparlinski, I.E.: Subset sum pseudorandom numbers: fast generation
and distribution. Journal of Mathematical Cryptology 3(2), 149–163 (2009)

[29] Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EUROCRYPT’97.
LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (May 1997). doi:10.1007/3-540-69053-0_17

[30] Herrmann, M., May, A.: Attacking power generators using unravelled linearization: When do
we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 487–504.
Springer, Heidelberg (Dec 2009). doi:10.1007/978-3-642-10366-7_29

[31] Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum.
Journal of Cryptology 9(4), 199–216 (Sep 1996). doi:10.1007/BF00189260

[32] Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new
applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 267–282. Springer, Heidelberg (Dec 2006). doi:10.1007/11935230_18

[33] Kaas, R., Buhrman, J.: Mean, median and mode in binomial distributions. Statistica Neer-
landica 34, 13–18 (1980)

[34] Keery A. McKay, L.B.: Report on lightweight cryptography. Tech. Rep. NISTIR 8114, National
Institute of Standards and Technology, Gaithersburg, MD (2017). doi:10.6028/NIST.IR.8114

[35] Knellwolf, S., Meier, W.: Cryptanalysis of the knapsack generator. In: Joux, A. (ed.) FSE 2011.
LNCS, vol. 6733, pp. 188–198. Springer, Heidelberg (Feb 2011). doi:10.1007/978-3-642-21702-
9_11

[36] Knuth, D.: Deciphering a linear congruential encryption. IEEE Transactions on Information
Theory 31(1), 49–52 (1985)

[37] Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algorithms.
Addison-Wesley (1969)

[38] Knuth, D.E.: The art of computer programming, Volume 4B: Combinatorial Algorithms, Part
2. Addison-Wesley (2022)

109

https://doi.org/10.1103/PhysRevLett.69.3382
https://link.aps.org/doi/10.1103/PhysRevLett.69.3382
https://link.aps.org/doi/10.1103/PhysRevLett.69.3382
https://news.ycombinator.com/item?id=639976
https://news.ycombinator.com/item?id=639976
https://doi.org/10.1137/0217016
http://dx.doi.org/10.1137/0217016
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/978-3-642-10366-7_29
https://doi.org/10.1007/BF00189260
https://doi.org/10.1007/11935230_18
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.1007/978-3-642-21702-9_11
https://doi.org/10.1007/978-3-642-21702-9_11

[39] Lagarias, J.C., Odlyzko, A.M.: Solving low density subset sum problems. 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983) pp. 1–10 (1983)

[40] L’Ecuyer, P.: Combined multiple recursive random number generators. Operations research
44(5), 816–822 (1996)

[41] Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Proceedings of a
Second Symposium on Large Scale Digital Calculating Machinery. pp. 141–151 (1949)

[42] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients.
Mathematische annalen 261(ARTICLE), 515–534 (1982)

[43] López, A.B.O., Encinas, L.H., Muñoz, A.M., Vitini, F.M.: A lightweight pseudorandom num-
ber generator for securing the internet of things. IEEE access 5, 27800–27806 (2017)

[44] L’Écuyer, P.: Good parameters and implementations for combined multiple recursive random
number generators. Operations Research 47(1), 159–164 (1999)

[45] L’Écuyer, P.: Random number generation with multiple streams for sequential and parallel
computing. In: 2015 Winter Simulation Conference (WSC). pp. 31–44. IEEE (2015)

[46] Marsaglia, G.: Random numbers fall mainly in the planes. Proceedings of the National
Academy of sciences 61(1), 25–28 (1968)

[47] Martinez, F.: Attacks on pseudo random number generators hiding a linear structure. In:
Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 145–168. Springer, Heidelberg
(Mar 2022). doi:10.1007/978-3-030-95312-6_7

[48] Martinez, F.: Practical seed-recovery of fast cryptographic pseudo-random number genera-
tors. In: Ateniese, G., Venturi, D. (eds.) ACNS 22. LNCS, vol. 13269, pp. 212–229. Springer,
Heidelberg (Jun 2022). doi:10.1007/978-3-031-09234-3_11

[49] Mefenza, T., Vergnaud, D.: Inferring sequences produced by elliptic curve generators using
coppersmith’s methods. Theoretical Computer Science 830, 20–42 (2020)

[50] Mitra, A.: On the properties of pseudo noise sequences with a simple proposal of randomness
test. International Journal of Electrical and Computer Engineering 3(3), 164–169 (2008)

[51] Orue, A., Montoya, F., Hernández Encinas, L.: Trifork, a new pseudorandom number generator
based on lagged fibonacci maps. Journal of Computer Science and Engineering 2, 46–51 (2010)

[52] Ritzenhofen, M.: On efficiently calculationg small solutions of systmes of polynomial equations:
lattice-based methods and applications to cryptography. Ph.D. thesis, Verlag nicht ermittelbar
(2010)

[53] Rose, G.G.: A stream cipher based on linear feedback over GF(28). In: Boyd, C., Daw-
son, E. (eds.) ACISP 98. LNCS, vol. 1438, pp. 135–146. Springer, Heidelberg (Jul 1998).
doi:10.1007/BFb0053728

[54] Ross, S.: Probability Models for Computer Science. Elsevier Science (2002), https://books.
google.fr/books?id=fG3iEZ8f3CcC

110

https://doi.org/10.1007/978-3-030-95312-6_7
https://doi.org/10.1007/978-3-031-09234-3_11
https://doi.org/10.1007/BFb0053728
https://books.google.fr/books?id=fG3iEZ8f3CcC
https://books.google.fr/books?id=fG3iEZ8f3CcC

[55] Rotenberg, A.: A new pseudo-random number generator. J. ACM 7(1), 75–77 (jan 1960).
doi:10.1145/321008.321019, https://doi.org/10.1145/321008.321019

[56] Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear fonction. In: IEEE International Sym-
posium on Information Theory. IEEE Press, NY (1985)

[57] Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic curves.
Cryptology ePrint Archive, Report 2004/031 (2004), https://eprint.iacr.org/2004/031

[58] Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EU-
ROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (May 1997). doi:10.1007/3-
540-69053-0_18

[59] Stern, J.: Secret linear congruential generators are not cryptographically secure. In: 28th
FOCS. pp. 421–426. IEEE Computer Society Press (Oct 1987). doi:10.1109/SFCS.1987.51

[60] Sun, H.Y., Zhu, X.Y., Zheng, Q.X.: Predicting truncated multiple recursive generators with
unknown parameters. Designs, Codes and Cryptography 88(6), 1083–1102 (2020)

[61] development team, T.F.: fplll, a lattice reduction library (2016), https://github.com/
fplll/fplll, available at https://github.com/fplll/fplll

[62] Thomson, W.E.: A Modified Congruence Method of Generating Pseudo-random Numbers.
The Computer Journal 1(2), 83–83 (01 1958). doi:10.1093/comjnl/1.2.83, https://doi.org/
10.1093/comjnl/1.2.83

[63] Van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: A structure for efficient
numerical computation. Computing in Science Engineering 13(2), 22–30 (2011)

[64] von zur Gathen, J., Shparlinski, I.: Predicting subset sum pseudorandom generators. In: Hand-
schuh, H., Hasan, A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 241–251. Springer, Heidelberg (Aug
2004). doi:10.1007/978-3-540-30564-4_17

[65] Washington, L.C.: Elliptic curves. Number theory and cryptography. Boca Raton, FL: Chap-
man and Hall/CRC, 2nd ed. edn. (2008)

[66] Yao, H., Wornell, G.W.: Lattice-reduction-aided detectors for mimo communication systems.
In: Global Telecommunications Conference, 2002. GLOBECOM’02. IEEE. vol. 1, pp. 424–428.
IEEE (2002)

[67] Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys are public:
results from the 2008 Debian OpenSSL vulnerability. In: Feldmann, A., Mathy, L. (eds.) Pro-
ceedings of the 9th ACM SIGCOMM Internet Measurement Conference, IMC 2009, Chicago,
Illinois, USA, November 4-6, 2009. pp. 15–27. ACM (2009). doi:10.1145/1644893.1644896,
https://doi.org/10.1145/1644893.1644896

[68] Yu, H.B., Zheng, Q.X., Liu, Y.J., Bi, J.G., Duan, Y.F., Xue, J.W., Wu, Y., Cao, Y., Cheng, R.,
Wang, L., et al.: An improved method for predicting truncated multiple recursive generators
with unknown parameters. Designs, Codes and Cryptography pp. 1–24 (2023)

111

https://doi.org/10.1145/321008.321019
https://doi.org/10.1145/321008.321019
https://eprint.iacr.org/2004/031
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1109/SFCS.1987.51
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1093/comjnl/1.2.83
https://doi.org/10.1093/comjnl/1.2.83
https://doi.org/10.1093/comjnl/1.2.83
https://doi.org/10.1007/978-3-540-30564-4_17
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/1644893.1644896

	I The Linear Congruential Generator
	Pseudo-Random Number Generators
	Cryptanalysis of Pseudo-Random Number Generators
	The Linear Congruential Generator
	The Lagged Fibonacci Generator and the Multiple Recursive Generator
	The Knapsack Generator
	Contributions of this Thesis
	Organization of this thesis

	Notations

	Euclidean lattices
	Norms for lattices
	About short vectors in a lattice
	Shortest Vector problem
	The Gaussian Heuristic
	The Closest Vector problem

	Lattice basis reduction algorithms
	Babai's rounding algorithm
	Coppersmith method
	A basic version of the method
	The complete version

	Attacks Against the Linear Congruential Generator
	Attacks when the multiplier and the modulus are known
	Recover the seed solving a Closest Vector Problem
	Attack from Frieze et al.

	Attacks when the multiplier is unknown
	Attack using the Coppersmith method
	Stern simplified Attack
	Knuth Attack on the Knuth generator

	Attacks when both the multiplier and the modulus are unknown
	Presentation of the attack
	Theoretical choice of the parameters

	Variants of the Linear Congruential Generator
	One output over two
	Upper bits truncated

	II Reducing Pseudo Random Number Generators to Linear Congruential Generators
	The Permuted Congruential Generator
	Presentation of the Generator
	Dealing with a noisy truncated Linear Congruential Generator
	Reconstruction in Low Dimension Using Babai's Rounding

	State Reconstruction for PCG64 With Known Increment
	State Reconstruction for PCG64 With Secret Increment
	Partial Difference Reconstruction
	Predicting all the Rotations
	Full Difference Reconstruction
	Complete State Reconstruction

	Implementation and Practical Results
	Known Increment
	Unknown Increment

	Attack on Trifork
	Description of Trifork
	General idea behind the attack
	Recovering Z-r3
	Recovering Y-r2
	Experimental results

	Attack on the Fast Knapsack Generator
	Description of the Fast Knapsack Generator
	Attacking an LCG with non consecutive pairs of outputs
	Attacking the Fast Knapsack Generator
	Attack with consecutive outputs(Coppersmith method)
	Attack with consecutive outputs (Stern method)
	Attack via Coppersmith method without consecutive outputs

	Multiple Recursive Generator
	Recovering the seed solving a Closest Vector Problem
	Experimental results

	Retrieving the seed using the attack from Frieze et al.
	Experimental results

	Recovering the seed when the multiplier is unknown
	Link with the simplified Stern attack for the Linear Congruential Generator
	Theoretical parameters
	Experimental results

	Multiple Recursive Generator with secret modulus
	The particular case of Combined Multiple Recursive Generators (CMRG)
	Attack on the MRG32
	The MRG32k3a by L'Écuyer

	III Attack on a combined generators
	A Generalization of the Knapsack Generator
	Generalized Subset-Sum Generator
	High-level description of the attack
	Preliminaries
	Finding ``Good Triplets''
	A Simple Sub-Quadratic Algorithm to Find Good Triplets
	Sub-Quadratic Algorithm with Overwhelming Success Probability

	Practical Key-recovery Attack on von zur Gathen-Shparlinski Elliptic Knapsack Generator
	Attack on the Elliptic Subset Sum Generator
	Experimental Results

	Theoretical Key-recovery Attack on the Elliptic Knapsack Generator
	Practical Key-recovery Attack on the Subset Product Generator
	Description of the Attack
	Experimental Results

	Arrow
	About Lightweight Cryptographic
	Presentation of Arrow
	Attack on a first hardware version of Arrow
	Another hardware version of Arrow
	A software version of Arrow

	Conclusion and perspectives

