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1. General introduction  

 

Respiratory disease is a multifactorial problem in poultry, with viral and bacterial 

respiratory pathogens often concurrently present and most probably influencing one another 

(Marien et al., 2007). A community of mucosal dwelling microorganism colonize healthy upper 

respiratory tract including both commensals and potential pathogens kept under control by the 

host immune system.  There are some evidence demonstrating that bacterial colonization can 

be enhanced by viral priming (Brealey el al., 2015).There are two hypotheses which can explain 

the underlying mechanism. One hypothesis is that viral infections may lead to bacterial 

superinfection by damaging the respiratory tissue, characterized by loss of cilia and ciliated 

cells (Bakaletz, 1995; Matthijs et al., 2009), decreased ciliary activity and mucociliary 

clearance (Wilson et al., 1996), and leading to efficient bacterial attachment with damaged 

respiratory tissue (El Ahmer et al., 1999). A second hypothesis is that the dysfunction of 

immune system may increase the colonization of bacterial infections after viral infection. 

Previous virus infection led to decreased phagocytic activity of macrophages and heterophils 

(Engelich et al., 2002; Navarini et al., 2006). Moreover, bacterial colonization may also be 

enhanced by severe granulotoxic effects of the innate anti-viral responses (type I interferons 

(IFN)) (Navarini et al., 2006; Matthijs et al., 2009). A significant higher number of pathogens 

are seen in tissues of superinfected animals than in tissues of animals infected with only one 

pathogen. Furthermore, inflammatory cytokines can be over produced during superinfection 

leading to exacerbated immune responses and damage to host tissue (Beadling & Slifka, 2004; 

van der Sluijs et al., 2006; Speshock et al., 2007). 

  Usually opportunistic bacterial pathogens are detected during respiratory virus 

infections such as Escherichia coli (E. coli). Uptil now, unidirectional view of avian influenza 

virus (AIV) /bacterial interactions has been studied, where viral infection proved beneficial to 

bacterial infection and led to bacterial superinfection at the respiratory tract. Respiratory viruses 

and bacteria may interact in a bidirectional way, where bacteria may also influence host 
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susceptibility to viral infection. Moreover, cotransmission of virus and bacteria may be possible 

as infectious agents of respiratory tract are transmitted through aerosol or direct contact with 

respiratory excretions (Brealey et al., 2015). Low pathogenic Avian influenza virus (LPAIV) 

infection is an emerging respiratory problem, isolated from different birds from a number of 

countries and has been reported to have zoonotic potential (Swayne, 2008; Liu et al., 2014; 

Umar et al., 2016a). LPAIV may be transmitted from aquatic birds to domestic poultry leading 

to economic losses (Swayne, 2008). Turkeys are an important host in influenza virus ecology 

because they are susceptible to infection with these viruses and are often involved in inter 

species transmission. Several previous studies reveal that waterfowl-origin influenza viruses 

can be more easily transmitted to domestic turkeys than to chickens (Abid et al., 2016). 

An important natural route of avian influenza (AI) infection in farms is inhalation of 

contaminated dust. Aerosols may contribute to the transmission of AI between birds in addition 

to the faecal-oral route. For example, some high pathogenic avian influenza virus (HPAIV) 

(H5N1) can replicate in feather follicles of waterfowl, which may serve as a potential source 

for aerosol transmission (Yamamoto et al., 2007). Spread of viruses in the air has been 

suspected when outbreaks of AI have occurred downwind from infected flocks or when 

contaminated manure has been spread on land in the proximity of poultry buildings (Lv et al., 

2012). Experimental studies have shown that some subtypes of AIV could be transmitted 

between flocks of chickens via the air (Tsukamoto et al., 2007; Shi et al., 2010; Yao et al., 

2011; Guan et al., 2013), and more information on virus infection by aerosols and the 

corresponding host immune response is needed to improve the understanding of aerosol 

transmission of AIV. Viruses that travel in the air can be carried as aerosols; aerosols contain 

particles < 5 μm in size. Aerosols can stay in the air longer and travel farther than large droplets 

and hence are more likely to be responsible for airborne transmission of viruses (Nicas et al., 

2005). Commonly used methods of experimental infection, such as intranasal and intratracheal 

inoculations, bypass the deep air sac access of virus particles. In addition, the minute size of 

virus aerosols facilitates their reach into the lower respiratory tract and causes more severe 
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disease (Tellier, 2006; Guan et al., 2015). A human clinical study of influenza infection reported 

that the 50% infectious dose (ID50) by aerosol inhalation was approximately 100-fold less than 

that by inoculation with intranasal drops (Tellier, 2006). In accord with that report, studies in 

chickens have shown that the ID50 values of both HPAIV (H5N1) and LPAIV (H9N2) were 

substantially lower by aerosol inoculation than by intranasal drops (Guan et al., 2013; Sergeev 

et al., 2013). Sergeev et al. (2013) found that aerosolised HPAIV was rapidly spread to various 

organs via respiratory infection in chickens. LPAIV H9N2 is currently widespread in domestic 

poultry and occasionally transmitted to mammalian species, including humans (Alexander, 

2007; Kwon et al., 2008; Liu et al., 2014). Respiratory tract infections in turkeys due to viruses 

and bacteria frequently result in considerable financial losses due to increased production 

losses, mortality rates and medication costs. Respiratory diseases in turkeys are triggered by 

several pathogens, alone or in combination with the support of other non-infectious factors. The 

respiratory viruses influenza virus type A, paramyxovirus types 1, 2 and 3 and avian 

metapneumovirus (avian pneumovirus, turkey rhinotracheitis virus) (aMPV) have been shown 

to induce respiratory problems. However, clinical signs following experimental inoculation 

with these viruses are less severe than those observed in the field (Marien et al., 2007). It is 

generally accepted that secondary bacterial pathogens are often involved, with amongst others 

E. coli. These bacterial agents differ from the viral pathogens in that it is not always 

straightforward to reproduce clinical signs following experimental infection. E. coli, a notorious 

infectious pathogen in poultry, illustrates this apparent paradox. 

LPAIV H6N1 has been circulating in French Poultry industry and may cause severe 

economic losses especially due to secondary bacterial infection by E. coli (Prof.Jean Luc Guerin 

personal communication) and E. coli infections often occur between production onset and 

slaughter. Thus, in the current field situation bacterial infections appeared to be the predisposing 

agents rather than AIV. Whether this virus, which belongs to the genus Orthomyxovirus and 

this Gram-negative bacterium merely act separately or in a synergistic or additive way remains 

to be elucidated. Only a few experimental studies have been undertaken in chickens to study 
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possible mutual interactions between AIV and E. coli (Barbour et al., 2009). The lack of 

documentation in scientific journals is surprising since AI and E. coli co-infections are serious 

emerging issues in the poultry industry. Previous studies have shown that pathogenicity of the 

LPAIV was typically enhanced by secondary bacterial infections, resulting in chicken 

morbidity (Kishida et al., 2004). Recently, one H3N8 virus, Dk/BJ/40/04, caused a fatal disease 

when coinoculated with E. coli indicating H3N8 subtype viruses can be pathogenic to chickens 

under field conditions (Pu et al., 2012). Moreover, Barbour et al. (2006) and Stipkovits et al. 

(2012ab) reported that clinical signs were aggravated during mixed infections of AIV and 

Mycoplasma in poultry (Barbour et al., 2006; Stipkovits et al., 2012ab). 

Poultry industry is one of the biggest industry in Pakistan and France. However, turkey 

industry is much bigger and developed in France than in Pakistan. Percapita meat consumption 

is lower in Pakistan than in France. Therefore, poultry industry in Pakistan needs big 

improvement to fulfill the demands of increasing human population. Comparison of poultry 

production for both countries is presented in Table 1 (FAOSTAT, 2014). The present study was 

undertaken to study the molecular epidemiology of respiratory viruses in Pakistani poultry and 

to develop a dual infection model for AIV and E. coli in turkeys using the intratracheal and 

aerosol inoculation routes. During our experimental work on turkeys, we performed different 

pilot experiments to compare aerosol and intratracheal route of inoculation. We found that 

aerosol route of inoculation is better than intratracheal route of inoculation in that it better 

mimics field conditions. Aerosol inoculation may help to shorten the gap between field and 

laboratory conditions. However, it is still difficult to generate 100% field conditions in 

laboratory settings because there are some other factors which contribute in the production of 

diseases e.g. dust, pollution, humidity, temperature, ammonia production, housing stress etc. 

Different settings were tested between infections, with clinical signs, gross lesions, histology 

and bacterial/viral titration as parameters for evaluating possible synergistic/additive potential 

between both agents. 
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Parameters  France Pakistan 

Total poultry population 216,587 (1000 heads) 858,700  (1000 heads) 

Chickens  167,906 (1000 heads) 855,000  (1000 heads) 

Turkeys  20,190 (1000 heads) NA 

Total poultry meat production 1,718 (1000 tonnes) 1,074 (1000 tonnes) 

poultry meat consumption per capita 26.4 kg 7 kg 

 

Table 1: Comparison of Pakistani and French poultry production (FAO STAT, 2014) 

2. The avian respiratory system  

 

The principal function of the respiratory system in birds is exchanging oxygen (O2) and 

carbon dioxide (CO2) between atmosphere and blood, but also temperature regulation and 

phonation. Because of its role in gas exchange, the respiratory system is regularly in direct 

interaction with the outside environment. Every day many liters of air go through the lungs, 

providing a constant challenge of airborne particles and microbes. In complete contrast to the 

tidally ventilated mammalian respiratory system, where fresh inhaled air is mixed with residual 

stale air in the respiratory airways, the avian lung is a flow-through system (Reese et al., 2006). 

The respiratory tract begins at the nares, consists of passages between conchae in the head and 

subsequently leads inhaled gas to the larynx. The trachea extends from the larynx, and branches 

into two extrapulmonary primary bronchi. From each primary bronchus, four groups of 

secondary bronchi (medioventral, mediodorsal, lateroventral and laterodorsal) arise and from 

the secondary bronchi multiple parabronchi develop (Fedde, 1998) (Figure 1). Ventilation is 

achieved through a unique action of the air sacs as there is no diaphragm in birds. Therefore, 

avian lungs have a highly complex structure and are fixed in thoracic walls. Air sacs occupy 

every available space in the body cavity which is not occupied by other viscera. There are nine 
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air sacs in most of the birds: paired cervical air sacs, an unpaired clavicular air sac that is 

connected to each lung, paired cranial thoracic air sacs, paired caudal thoracic air sacs, and 

paired abdominal air sacs. The cervical, clavicular, and cranial thoracic air sacs arise from the 

medioventral secondary bronchi, and they are often called the cranial air sacs. The caudal 

thoracic and abdominal air sacs (the caudal air sacs) arise from the lateroventral and 

mediodorsal secondary bronchi and from the continuation of the intrapulmonary primary 

bronchus. The air sacs are auxiliary structures that pump air through the respiratory tract, but 

do not contribute to the gas exchange with the blood (Fedde, 1998; Reese et al., 2006). The O2
 

and CO2
 
exchange only occurs in the lungs. During inspiration, active contraction of some 

muscles of the body wall causes an increase in the volume of the air sacs which results in 

pressure in the air sacs less than that in the atmosphere and gas moves through the lungs into 

the air sacs. The inspired air completely bypasses the cranially lying openings of the 

medioventral secondary bronchi, a process which is called inspiratory aerodynamic valving 

(Reese et al., 2006). In contrast, during the inspiratory phase as well as the expiratory phase, 

air flows in the mediodorsal and lateroventral secondary bronchi. About one half of the inspired 

volume passes through the paleopulmonic parabronchi and in this way in the cranial air sacs, 

and the remainder passes through the much smaller neopulmonic parabronchial network to the 

caudal air sacs, and through the direct connection from the intrapulmonary primary bronchus 

to the abdominal air sacs. During expiration, reduction in coelomic volume (decrease in the 

volume of the air sacs) increases the pressure in the air sacs and air moves out of the air sacs. 

Some of the air from the caudal air sacs again traverses the neopulmonic parabronchi and most 

of the air enters the paleopulmonic parabronchi, travelling in the same direction as during 

inspiration. Air from the cranial air sacs flows through the medioventral secondary bronchi to 

exit the lung without contacting any parabronchial gas exchanging surfaces (Figure 2). Thus 

exchange of O2
 
and CO2

 
between air and blood occurs both during inspiration and expiration 

in birds and nearly all of the air that was inhaled, has passed over paleopulmonic parabronchial 

gas exchanging surfaces during some part of the respiratory cycle. The walls of the parabronchi 
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are perforated by numerous openings that lead to the respiratory atria. Funnel-shaped 

infundibulae arise from the atria and open into the air capillaries. The inhaled air flows through 

the parabronchial lumen and then into the exchange tissue through the atria, the infundibulae, 

and the network of air capillaries. A complex network of blood capillaries closely surrounds air 

capillieries forming efficient gas exchange system in birds (Reese et al., 2006). The blood-gas 

barrier in the avian lung is approximately 56-67% thinner than that of a mammal of the same 

body mass and the respiratory surface area is approximately 15% greater (Maina et al., 1989). 

Respiratory efficiency is enhanced by large surface area and thin tissue barrier. However, these 

structural features make birds more susceptible towards pulmonary injury from environmental 

toxicants and invasion by pathogenic organisms (Reese et al., 2006). 

 

Figure 1: Respiratory system of chickens (Clav. AS= clavicular air sac; Cran. Th. AS=/cranial 

thoracic air sac; Caud. Th. AS=caudal thoracic air sac; Abd. AS=abdominal air sac). There is 

expansion of airsacs during inhalation drawing air from trachea and primary bronchi towards 

the the caudal air sacs and paleopulmonic parabronchi (Fedde, 1998). 
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Figure 2: Mechanism of respiration in birds. Mechanism and pathway of gas flow and 

exchange through the pulmonary system during inspiration and expiration in right 

paleopulmonic lung and air sacs of chicken. A: Inspiration. B: Expiration (Source: 

http://www.people.eku.edu/ritchisong/birdrespiration.html) 

 

2. Defense mechanisms and immune responses in birds 

 

The divergence of mammals and birds from a common reptilian ancestor occurred 200 

million years ago. Despite this evolutionary time period, the fundamental principles of both the 

innate and adaptive immune systems of mammals and birds are the same. The availability of 

the chicken genome has helped improve our understanding of the avian immune system. The 

http://www.people.eku.edu/ritchisong/birdrespiration.html
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respiratory system harbours the most extensive and thinnest surface across which the body is 

exposed to the external environment. Due to this characteristic, a vast array of proteins and 

pathogens are challenging this system on a daily basis. To cope with these pathogens, birds 

have well-developed defence mechanisms. 

3.1. Innate resistance  

 

The first non-specific arm of the avian immune system is known as the innate System. 

As in mammals, the most well characterised family of non-specific pattern recognition 

receptors (PRRs) are membrane-bound Toll-like receptors (TLRs) expressed by various cell 

types including epithelial cells and sentinel cells such as antigen presenting cells (APCs), 

dendritic cells and macrophages. In the chicken, TLRs are also expressed by heterophils, a 

polymorphonuclear leukocyte and homologue of mammalian neutrophils. TLRs detect 

structurally conserved microbial specific motifs. Thirteen TLRs have been described in the 

chicken; 11 are also present in mammals while two are chicken-specific (TLR-15 and TLR-21) 

(Temperley et al., 2008). Despite differences in TLR families, similar microbial motifs are 

recognised by both TLR repertoires. The initial line of defense for the airway is the nasal and 

tracheal epithelium, which prevents pathogens from entering the body. Multiple mucous glands 

within the pseudostratified ciliated columnar epithelium produce mucus which forms a layer on 

top of the cilia of the epithelial surface. Particulate material that is caught in the mucus gets 

transported by the movement of the cilia in an oral direction, where it is swallowed and digested 

or excreted by coughing and sneezing (Sharma, 2003; Koch et al., 2009). Furthermore, mucus 

contains antibacterial enzymes which impede the attempts of pathogens to colonize.  

Phagocytic cells that include heterophils and macrophages, and natural killer (NK) cells 

are important components of innate immunity. Monocytes-macrophages, cells belonging to the 

mononuclear phagocytic system, are considered to be the first line of immunological defense. 

These cells originate from the bone marrow and subsequently enter the blood circulation. Upon 

migration to various tissues, monocytes mature and differentiate into tissue macrophages 

(Dietert et al., 1991; Qureshi et al., 2000). Macrophages then get involved in innate and 
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acquired immunity (Qureshi et al., 2000). Since the respiratory surface is in proportion much 

larger than that of mammals and the tissue barrier is much thinner (Maina, 1989; Maina et al., 

1989), one can expect that, as stated above, the avian respiratory tract is relatively more easily 

attacked by pathogens than the mammalian one (Nganpiep & Maina, 2002). One would hence 

assume that for a similar defense competence, more residing avian respiratory phagocytes (ARP 

= macrophages and polymorphonuclear leukocytes such as heterophils) would arise on the 

surface of avian lungs. Paradoxically, the normal, steady-state avian respiratory system has very 

low numbers of residing ARP in comparison to the mammalian system, and as a consequence 

birds must rely heavily on the influx of ARP into the site of infection for non-specific defense 

against bacteria and other pathogens (Ficken et al., 1986; Qureshi et al., 1994, 2000; Klika et 

al., 1996; Toth, 2000). Interestingly, ARPs the were present atria and the infundibulae and were 

never found on the surface of the air capillaries which represent the functional equivalent to the 

mammalian alveoli (Nganpiep & Maina, 2002; Reese et al., 2006). Thus, macrophages seem to 

be located at strategic check points where fresh air is distributed into the gas exchange areas 

and where particles can be trapped and removed (Marien et al., 2007). The paucity and even 

lack of ARPs in birds has been used to explain a purported high susceptibility of poultry to 

respiratory diseases. Nganpiep & Maina (2002), however, showed that a composite defense 

armament has additionally developed in the avian respiratory system. A highly lytic upper 

airway epithelium endowed with lysosomes (apparently lacking in mammals), generally robust 

ARPs, and efficient translocation of subepithelial macrophages onto the respiratory surface, 

play a role in the protection of the respiratory system (Nganpiep & Maina, 2002). In the air 

sacs, being thin walled and lacking an elaborate ciliated epithelium, particle clearance is largely 

accomplished by phagocytic cells albeit significantly lower than in the lungs (Nganpiep & 

Maina, 2002; Reese et al., 2006).  

3.2. Adaptive immunity  

 

The second arm of the chicken immune system is the adaptive one involved in both 

cellular and humoral (antibody) responses, as well as the production of memory cells. The avian 
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antigenic repertoire is more compact than that of the mammalian system; one reason for this is 

that birds only possess 2 of the Major Histocompatability complex class (MHC), compared to 

the 6 of mammals (Kaufman, 2000). When pathogens cannot be withheld by physical barriers 

nor controlled by innate immune defense mechanisms, adaptive immunity (specific immune 

response) is required to specifically focus defense mechanisms on that particular antigen 

resulting not only in the elimination of the pathogen but also in protecting in case of a repeat 

encounter with the same pathogen (memory). Adaptive immunity is mediated by a variety of 

cells, of which T lymphocytes, B lymphocytes, and macrophages are the most important.  

In poultry as in mammals, adaptive immunity is critically dependent on regulation by T 

lymphocytes (T cells), the coordinators of the immune response. Maturation of the T cells takes 

place in the thymus, a feature shared with mammalian species (Arstila et al., 1994). Before T 

cells can initiate and participate in an adaptive immune response to a pathogen, the antigen has 

to be presented by host cells in the context of their MHC molecules, i.e., as an antigenic peptide 

bound to the MHC molecule. The MHC molecules come in two forms: the MHC class I is 

expressed by essentially all nucleated cells, whereas the MHC class II is expressed mainly by 

cells of the immune system, the so-called antigen presenting cells (APC) such as macrophages, 

dendritic cells and B lymphocytes (B cells). These APC also deliver other signals equally 

important to the T cell activation, the so-called second or costimulatory signals (Arstila et al., 

1994). Activation of T cells results in proliferation of the activated T cells and their 

differentiation into subpopulations of diverse effector cells, helper T  cells (CD4+), suppressor 

T cells, and cytotoxic T cells (CD8+), or memory cells. Effector functions of T helper cells 

primarily involve production of cytokines (soluble molecules secreted to the extracellular 

space), and expression of membrane-bound cell-surface molecules, all affecting other cells of 

the immune system. The cytotoxic T cells, in contrast, are mostly killers that are specialized in 

the elimination of intracellular antigens. The latter include those that have entered cells via the 

endocytic pathway (exogenous antigens; e.g., phagocytosed bacteria) or were produced within 

the cell such as viral proteins and proteins resulting from neoplastic transformation of the cell 
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(endogenous antigen) (Erf, 2004). Another lineage of T cells exists (γδ T cells), but their 

physiological significance remains largely a matter of speculation (Marien et al., 2007).  

Besides the T lymphocytes, other cells important to the cellular immune response include 

macrophages, dendritic cells, NK cells, and effector cells of antibody dependent cellular 

toxicity (Sharma, 2003). NK cells can also be regarded effector cells of specific cell-mediated 

immunity as they greatly benefit from T helper mediated activity (Erf, 2004). Unlike mammals, 

birds have a special organ, the bursa of Fabricius, where the development of B lymphocytes (B 

cells) from their immature precursors takes place. For humoral immunity, B cells differentiate 

into plasma cells that secrete antigen-specific antibodies. Antibodies can prevent disease caused 

by pathogens and provide protection, but they are primarily effective in preventing entry of 

pathogens through mucosal surfaces (e.g., secretory IgA) and in eliminating extracellular 

antigens (Koch et al., 2009). Most organisms stimulate both cell-mediated immunity and 

humoral immunity, although the type of immunity most critical for defense may vary with the 

organism (Vandaveer et al., 2001; Sharma, 2003; Erf, 2004).  

 

3. Respiratory diseases and associated pathogens in turkeys and 

chickens 

 

Respiratory diseases are continuing to cause heavy economic losses in the poultry industry 

due to high production losses, mortality and medication costs (Van Empel & Hafez, 1999). 

Respiratory disease in poultry is a multifactorial problem, with viral and bacterial respiratory 

pathogens often concurrently present and most probably influencing one another (Marien et al., 

2007). In addition to these infectious organisms, non-infectious factors, such as climatic 

conditions (e.g. inadequate ventilation, high ammonia levels, too high or too low temperature) 

can also help in diseases progress. The severity of clinical signs, duration of the disease and 

mortality are extremely variable and are influenced by many factors such as a virulence and 
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pathogenicity of the infectious agent as well as by many environmental factors. In many cases, 

respiratory disease observed in a flock may be a component of a multisystemic disease or it 

may be the predominant disease with lesser involvement of other organ systems. Respiratory 

tract infections increase the overall cost of production in terms of the provision of services of 

qualified veterinary personnel and the cost of medication for possible treatment. It is therefore 

important to reduce if not eliminate, respiratory infections among poultry flocks to the barest 

minimum to have good production and maximize profit of the producer. Various pathogens 

including a variety of viruses, bacteria, and fungi may initiate respiratory diseases in poultry. 

Environmental factors may augment these pathogens to produce the clinically observed signs 

and lesions. Poultry respiratory diseases are known to be caused by many pathogens  (Table 2) 

including Newcastle disease virus (NDV), AIV, Infectious Bronchitis Virus (IBV), aMPV, 

Mycoplasma gallisepticum (M. gallisepticum), Mycoplasma synoviae (M. synoviae) 

Mycoplasma meleagridis (M. meleagridis), Mycoplasma iowae (M. iowae), Ornithobacterium 

rhinotracheale (O. rhinotracheale), Pasteurella multocida and Avibacterium paragallinarum, 

Bordetella avium, Chlamydophila psittaci and E. coli with associated significant economic 

losses to the industry (Van de Zande et al., 2001).  

Disease Aetiology Main Clinical signs 

/lesions 

Prevention 

/control 

Avain influenza 

(AI) 

Avian influenza 

virus (AIV) 

Mild to severe  

respiratory signs 

depend on virus 

subtype 

Vaccine available 

Good biosecurity 

measures 

NewCastle disease 

(ND) 

Newcastle disease 

virus (NDV) 

Variable: mild to 

severe respiratory 

clinical signs and 

lesions 

Vaccine available 

Good biosecurity 

measures 

Infection bronchitis 

(IB) 

Infection bronchitis 

virus (IBV) 

Tracheitis, 

airsacculitis, 

pneumonia, nephritis 

Vaccine available 

Good biosecurity 

measures  

Infectious 

laryngotracheitis 

(ILT) 

Infectious 

laryngotracheitis 

(ILTV) 

Teacheitis Vaccine available 

Good biosecurity 

measures 

Swollen head 

syndrome/ turkey 

rhinotracheitis 

Avian 

metapneumovirus 

(aMPV) 

Swollen head, 

tracheitis, 

airsaculitis,pneumonia 

Vaccine available 

Good biosecurity 

measures 

Mycoplasmosis Mycoplasma 

gallisepticum 

Chronic tracheitis; 

chronic  

Mycoplasma free 

progeny. 
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airsacculitis  

 

Vaccination 

Possible 

Mycoplasmosis Mycoplasma 

synoviae  

Moderate tracheitis 

and airsacculitis. 

Arthritis 

Mycoplasma free 

progeny 

 

Infectious Coryza Avibacterium 

paragallinarum  

Conjunctivitis, 

sinusitis, airsacculitis 

Vaccination 

possible 

 

Colibacillosis E. coli, often asso-  

ciated with other 

respir  

atory pathogens, e.g.  

IBV, NDV, 

mycoplasma 

Fibrinous pericarditis, 

airsacculitis, tracheitis 

Vaccine available 

against some E. 

coli serotypes. 

Reduce dust in shed 

Pasteurellosis (Fowl 

cholera)  

 

Pasteurella 

multocida 

in chronic form e.g. 

conjunctivitis, 

tracheitis; in 

acute form 

septicaemia 

Vaccination 

possible 

Good biosecurity 

measures 

Ornithobacteriosis  Ornithobacterium 

rhinotracheal  

Tracheitis, 

airsacculitis 

Vaccination 

possible 

Good biosecurity 

measures 

 

Table 2: Respiratory pathogens and related diseases in poultry 

 

These respiratory pathogens are of major importance because they can cause disease 

independently, in alliance with each other or in association with other bacterial and viral agents 

(Ali & Reynolds, 2000; Yashpal et al., 2004). Viral agents are mostly being attributed a 

triggering role, since the clinical signs following experimental inoculation with these viruses 

are less severe than those observed in the field. Viral infections generally cause rather acute 

respiratory problems from which birds usually can recover fairly easily. The problems, 

however, become more critical when bacterial pathogens are involved. With these bacterial 

agents, it is not always straightforward to reproduce clinical signs following experimental 

infection. This has led to a still contemporary discussion point whether the different bacterial 

agents are primary or rather secondary pathogens (Marien et al., 2007). In the present thesis, 

the experimental research focuses on the co-infection in turkeys with AIV, and E. coli. Hence, 

the most important literature data on these agents will be discussed below. 
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4. Avian influenza 

Avian influenza (AI) was first identified as a distinct disease entity of poultry in 1878, 

in Italy. It was called “fowl plague” and was defined as a highly lethal, systemic disease of 

chickens. From the 1870s into the early 1900s, fowl plague spread from Northern Italy into the 

rest of Europe, and by the 1930s it was endemic in parts of Europe and Africa (Schafer, 1955). 

Likewise, in the United States the disease was reported in 1924‐1925 and 1929 (Stubbs, 1948). 

Into the mid‐twentieth century, fowl plague had been diagnosed in North Africa, South 

America, North America, and most of Europe (Swayne & Halvorson, 2008). The agent 

responsible for the human influenza initially isolated from pigs in 1931 and later from humans 

in 1933 (W. Smith et al., 1933; Shimizu, 1997). Prior to that, one of the most devastating 

influenza pandemics in human history, the “Spanish Flu” (H1N1 subtype), hit the population 

in 1918, causing thousands of deaths (Taubenberger et al., 2000). Even if Centanni & Savonuzzi 

(1901) had already demonstrated the existence of a filter‐passing agent, the viral etiology of 

fowl plague was unknown until 1955, when the disease was determined to be caused by 

influenza A virus (Schafer, 1955).  

In gallinaceous birds (i.e., chickens and turkeys), AI viruses are classified as being highly 

pathogenic AI (HPAI) or low pathogenic AI (LPAI) viruses. Although molecular criteria have 

been established by the World Organization for Animal Health (OIE) for the identification of 

the HPAI virus based on the protein sequence of the HA proteolytic cleavage site, in vivo testing 

used to be the gold standard. An AI virus isolate is classified as being HPAI if it kills at least 

75% of susceptible 4- to 6-week-old chickens within 10 days postinoculation by the intravenous 

route. Some isolates will cause 100% mortality by 36–48 hours postinoculation. All other 

isolates are considered to be LPAI viruses. Biologically, the difference between HPAI and 

LPAI is that HPAI is a systemic infection and LPAI remains localized to the respiratory and 

intestinal tracts. For unknown reasons, all HPAI viruses have been either H5 or H7 HA subtypes 

(David L. Suarez & Swayne, 2008). Nevertheless, mild clinical forms of AI, characterized by 

respiratory disease and drops in egg production, were first recognized in 1949 in chickens and, 
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subsequently, in several domestic poultry species (Easterday & Tumova, 1972). Therefore, 

since 1971, H5 and H7 viruses have been isolated and characterized not only as HPAIVs but 

also as LPAIVs (Smithies et al., 1969). Although wild birds were already suspected to 

participate in fowl plague transmission, it was not until 1961 that the first proof of AIV infection 

in wild birds arose, in an outbreak in South Africa affecting common terns (Sterna hirundo) 

with high mortality (Becker, 1966). Since then, and particularly during the recent past decades, 

numerous surveys have been conducted in migratory waterfowl, confirming asymptomatic 

infection by AIV of healthy wild aquatic birds, especially in the orders Anseriformes and 

Charadriiformes (Hinshaw & Webster, 1982).  

Type A influenza strains are classified by the serological subtypes of the primary viral surface 

proteins, the hemagglutinin (HA) and neuraminidase (NA). The HA has 16 subtypes (H1–H16) 

and contains neutralizing epitopes. Antibodies against the NA are not neutralizing, and there 

are nine neuraminidase or “N” subtypes. The “H” and N subtypes seem to be able to assort into 

any combination, and many of the 144 possible combinations have been found in natural 

reservoir species, although some combinations are more common than others. All 16 subtypes 

have been found in ducks, gulls, or shorebirds, the natural reservoir host species of the virus 

and two of HA and NA (HA17–HA18 and NA10–NA11) have been isolated from bats (Tong 

et al., 2012, 2013).  However, in these species certain subtypes are more common than others; 

for example, H3, H4, and H6 are most common in ducks in North America and although there 

is no clear association between host range or host restriction based on HA subtype, some 

subtypes are more common in some species than others, i.e., H1 and H3 in swine, H3 in horses, 

and H5 and H7 in chickens (David L. Suarez & Swayne, 2008). 

It was not until 1997 that AI became considered a disease not only of birds, when the 

occurrence of fatal disease in poultry and humans in Hong Kong was associated with the 

HPAIV H5N1 strain (Claas et al., 1998). This episode increased the international interest in 

HPAIV among the veterinary and public health community, because it was the first indication 

that AIV (H5N1) could potentially be the precursor to a human pandemic viruses (Sims & 
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Brown, 2008). Indeed, over the next decade, HPAIV (H5N1) in poultry spread across three 

different continents with unprecedented socioeconomic consequences. These concerns were 

amplified because of the reassortment possibility with a human influenza A virus, which could 

create a new virus capable to produce the next human influenza pandemic (David L. Suarez & 

Swayne, 2008). 

 

4.1. Etiology and Classification 

Influenza viruses belong to the Orthomyxoviridae family (orthos, Greek for "straight"; 

myxa, Greek for "mucus") and are classified into five different genera: influenza A, influenza 

B, influenza C, Thogotovirus, and Isavirus (Cheung & Poon, 2007). The most serious types that 

cause dangerous outbreaks with high morbidity and mortality are influenza A viruses because 

they mutate more rapidly and have a wider range of hosts (Khanna et al., 2008). Influenza A 

viruses infect animals, including birds, pigs, horses, whales, seals, and also humans (Ito & 

Kawaoka, 2000; Reperant et al., 2009). Type B and C are generally found in humans, in 

addition to some mammals like seals, with less severity than influenza A. The main differences 

between the three main types of influenza viruses (A, B and C) are outlined in table 3. Wild 

aquatic birds of the order of Anseriformes (ducks, geese and swans) and Charadriformes (gulls, 

terns, surfbird and sandpiper) are considered to be the natural reservoir of all types of influenza 

A viruses. In these hosts, viral replication occurs mainly in the gastrointestinal tract, and to a 

lesser extent in the respiratory tract. The infected birds generally have no apparent signs of 

illness, with some exceptions after infection with highly pathogenic avian influenza viruses 

(Munster et al., 2007).  
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Features  Influenza A virus Influenza B virus Influenza C virus 

Number of gene 

segments  

8 8 7 

Surface 

glycoproteins 

Haemaglutinin and 

neuraminidase (HA 

and NA) 

HA and NA  HEF ( Haemagglutination 

esterase Fusion) 

Host range  Wide range of hosts 

(humans, pigs, horses, 

whales, seals and 

birds) 

Humans and seals Mainly humans (also 

found in swine) 

 

Table 3: Comparison of major properties of influenza viruses (Cheung & Poon, 2007). 

 

4.2. Morphology and molecular organization 

Influenza viruses are roughly spherical with a size of around 100 nm or filamentous in 

shape, often in excess 300 nm in length (Bouvier & Palese, 2008). Morphological structure is 

known to be affected by several viral proteins (HA, NA) and matrix proteins (M1 and M2), in 

addition to the nature of the host cells (Cheung & Poon, 2007). Influenza viruses are enveloped 

with surface glycoprotein spikes and a segmented RNA genome of negative sense 

(complementary to mRNA). RNA of influenza A virus is organized into 8 segments, in total 

around 13600 nucleotides long (Webster et al., 1992). These are the polymerase basic (PB1 and 

PB2), the polymerase acidic (PA), haemagglutinin (HA), nucleoprotein (NP), neuraminidase 

(NA), matrix (M), and non-structural (NS) genes (Samji, 2009). Influenza A viral gene 

segments are known to encode at least ten proteins which are the RNA polymerase complex 

proteins (PA, PB1, and PB2), surface glycoproteins (HA, and NA), nucleoprotein (NP), matrix 

proteins (M1 and M2), and nonstructural proteins (NS1, NS2) (Samji, 2009; Wang & 

Taubenberger, 2010). In addition, PB1–F2 and a new viral protein (N40) which is translated 

from segment 2 have been recently identified in some influenza A virus isolates (Wise et al., 

2012). Moreover, two more proteins, PA-X and M42 which are translated from segment 3 and 

7, respectively, have been recently found (Jagger et al., 2012; Wise et al., 2012) (Figure 3). 
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Figure 3: Genomic structure of influenza A virus  

RNA segments (in nucleotides) shown in positive sense and their encoded proteins (in amino 

acids). The lines at the 5´ and 3´ termini represent the coding regions. The PB1 segment encodes 

three proteins, two of them (PB1 and N40) translated from ORF 0, and PB1–F2 protein 

translated from ORF 1. The M2, M42 and NEP/NS2 proteins are encoded by spliced mRNAs 

(the introns are indicated by the V–shaped lines) (Jagger et al., 2012; Wise et al., 2012). 

 

Each viral RNA segment is surrounded by nucleoprotein (NP) forming ribonucleoprotein 

(RNP) and encapsidated by one copy of trimeric polymerase (PB1–PB2–PA complex) which 

is essential for viral replication (Digard et al., 1999). The structural organization of viral 

ribonucleoprotein can be seen in figure 4. 
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Figure 4:  Structure of influenza virus ribonucleoprotein (vRNP). 

Green spheres represent NP monomers, and the black line shows the associated single–stranded 

vRNA molecule. Influenza RNP folds into a double–helical hairpin structure. A short duplex 

formed between the 5´ and the 3´ ends provides the binding site for the heterotrimeric RNA–

dependent RNA polymerase (Portela & Digard, 2002). 

Four virus proteins (PB2, PB1, PA, and NP) are responsible for virus transcription and 

replication of the viral genome in the nuclei of infected cells. PB1–F2 protein plays a role in 

pro–apoptotic activity, while N40 protein, which is encoded by the same gene (PB1), interacts 

with the polymerase complex in the cellular environment but does not contribute to 

transcription function (Wise et al., 2012). PA-X protein has been shown to modulate host 

response and viral virulence (Jagger et al., 2012). Haemagglutinin (HA or H) plays a role in 

virus attachment to the host cell and subsequent fusion with cell membranes, while 

neuraminidase (NA or N) supports the release of viruses from the host cell surface by 

hydrolyzing sialic acid from glycoproteins which helps to release the progeny virus particles 

from host cells (McCauley & Mahy, 1983). Non–structural protein 1 (NS1) has a major role in 

inhibition of host immune response via limitation of interferon (IFN) production (Hale et al., 

2008). NS2 (also called nuclear export protein or NEP) plays a role in the export of RNPs from 

the nucleus to the cytoplasm during viral replication, in addition, it also regulates virus 

transcription and replication processes (Robb et al., 2009). Matrix protein 1 (M1), the major 

structural protein, is the dominant protein in determining virus morphology and also plays an 
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important role in virus assembly and budding (Rossman & Lamb, 2011). Matrix protein 2 (M2) 

is the ion channel that regulates the pH, and is responsible for virus uncoating, the step that 

follows virus entry into the host cell (Holsinger et al., 1994). In addition, this protein also plays 

an important role in membrane scission in the last stage of virus life cycle (Roberts et al., 2013). 

Matrix protein 42 (M42) can functionally replace M2 and support efficient replication in null 

M2 influenza viruses (Wise et al., 2012). Table 4 summarizes the length of each viral segment 

and the function of protein(s) encoded by each segment. 

Segment  Segment 

size (nt) 

Encoded 

proteins 

 Protein 

length (a.a)  

Protein roles  

1 2341 PB2 759 Polymerase subunit; plays a role in 

RNA 

replication by mRNA cap recognition 

2 2341 PB1  757 Polymerase subunit; RNA elongation 

during replication 

PB1–F2 87 Pro–apoptotic activity 

N40 718 Polymerase complex interaction 

3 2233 PA 716 Polymerase subunit, endonuclease 

activity 

PA-X 252 modulates the host response and viral 

virulence 

4 1778 HA  550 Major surface antigen, receptor binding 

and fusion activities, main target for 

neutralizing antibodies 

5 1565 NP  498 RNA binding protein, nuclear import 

regulation 

6 1413 NA  454 Minor surface glycoprotein for 

neutralizing 

antibodies; sialic acid activity, cleavage 

of progeny virions from host cell 

receptors and virus release 

7 1027 M1  252 Major component of virion, RNA 

nuclear export regulation, viral 

assembly and budding 

M2 97 Ion channel for controlling pH during 

virus 

uncoating and HA synthesis (viral 

release) 

M42  99 functionally replace M2 in M2-null 

viruses 

8 890 NS1  230 Interferon antagonist protein, 

regulation of hostgene expression 

NEP  121 Control export of RNP from nucleus 
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Table 4:  Influenza A virus gene segments, their proteins and functions. Typical gene and 

protein sizes are shown, though strain variation occurs (Bouvier & Palese, 2008). 

 

The viral envelope is made of a lipid bilayer which is derived from the host cell’s plasma 

membrane. Three surface viral antigens are embedded in the lipid bilayer: the HA spike, which 

has a rod like–shape, represents approximately 80% of the total surface proteins; the NA spike, 

which is almost mushroom–shaped, represents 17%; with minor components of M2 represented 

by few molecules (only 16 to 20 molecule per virion) (Schroeder et al., 2005; Nayak et al., 

2009). Underneath the lipid bilayer, the M1 protein forms a layer that separates the viral 

segments from the virus membrane. Inside the virion, 8 segments of different length are 

associated with the nucleocapsid protein (NP) and three large proteins (PB1, PB2, and PA). 

NEP is also associated with the virus but in low amounts (Cheung & Poon, 2007). Figure 5 

illustrates the typical structure of influenza A virus. 

 

Figure 5: Schematic diagram of an influenza A virus particle. 
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The RNA is segmented and each segment encodes one or more proteins. The segments are not 

identical in length (ranging from 2341 to 890 nucleotides). The longest segment encodes PB2 

protein and the shortest encodes NS protein. The RNA segments are coated with nucleoprotein 

forming ribonucleoprotein (RNP), and a small amount of transcriptase (polymerase complex) 

represented by PB1, PB2, and PA is also associated with it. The haemagglutinin (HA), 

neuraminidase (NA), and M2 proteins are inserted into the host–derived lipid envelope. The 

matrix (M1) protein underlies the lipid envelope. A nuclear export protein (NEP) is also 

associated with the virus (Al-Mubarak, 2014). 

 

4.3. Replication of influenza A viruses 

The first step of viral replication is virus attachment to its host cell. The host specificity of each 

type of influenza virus is mainly determined by differences in the host cell receptors (Naeve et 

al., 1984). There are two main types of host cell receptors with which influenza viruses have 

the affinity to bind. The linkage between neuraminic acid and the sugar (galactose) determines 

whether influenza virus binds to avian or mammalian cells (Figure 6). Avian influenza viruses 

preferentially bind to the neuraminic acid α 2,3 galactose receptors while mammalian influenza 

viruses bind to neuraminic acid α 2,6 galactose (Auewarakul et al., 2007; Pillai & Lee, 2010) 

 

Figure 6:  Overview of receptor predilections of avian and mammalian influenza viruses (Nelli 

et al., 2010). 
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Once a host cell is infected with influenza virus, the HA glycoprotein is produced as a precursor, 

HA0, which is cleaved into two subunits (HA1 and HA2) by host serine proteases before virus 

particles become infectious (Klenk et al., 1975). The HA1 portion contains the antigenic sites 

(the receptor binding domain), while the HA2 portion mediates fusion of the virus envelope 

and cell membranes (Steinhauer, 1999). Virulent and avirulent avian influenza A viruses can 

be differentiated by the sequence of a few basic amino acids at the point where the HA0 is 

cleaved (cleavage site); the so–called cleavage sequence (Zambon, 1999). The virus enters the 

host cell via receptor (clathrin) mediated endocytosis at the inside face of the plasma membrane 

forming an endosome (Rust et al., 2004). The endosome has a low pH of around 5 to 6, which 

induces a conformational change in HA0, displaying the HA2 fusion peptide. This fusion 

peptide inserts itself into the endosomal membrane and mediates the fusion of the viral envelope 

with the endosomal membrane. This mechanism is not only important for inducing the 

conformation change in HA0, but also opens up the M2 ion channel during fusion of viral and 

endosomal membranes, allowing the virion interior to become acidic which releases the vRNP 

from M1. This permits the vRNP to enter the host cell’s cytoplasm (Pinto & Lamb, 2006). 

Transcription and replication occur inside the nucleus. Because of the negative sense of the 

viral genome, the viral RNA is copied into positive sense mRNA by the polymerase complex 

to act as a template for the production of the viral RNAs. The polymerase complex responsible 

for viral transcription and replication is formed by PB1, PB2, and PA. The viral RNA 

transcription is catalyzed by the RNA dependent RNA polymerase. The resultant positive sense 

viral mRNA is exported to the cytoplasm through nuclear pores to start viral translation by 

ribosomes. Positive sense viral mRNA also serves as a template to produce the negative sense 

RNA that is packaged into new virions (Swayne, 2008). Polymerase basic (PB1 & PB2), 

nonstructural (NS1 & NS2), NP, PA, and M1 proteins are synthesized in the host cell cytoplasm 

then transported to the nucleus to participate in matrix and nonstructural splicing, transcription 

and replication. Surface glycoproteins (HA and NA) are synthesized by ribosomes and then 

enter the endoplasmic reticulum (ER), where they are glycosylated, and then folded in the Golgi 
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apparatus. These proteins are incorporated in the cell membrane and assembled with vRNP 

complex (Sidorenko & Reichl, 2004). Progeny RNPs are released to the cytoplasm and 

packaged into new virus particles. New virions get enveloped with the plasma membrane with 

integrated virus proteins through budding (Palese & Shaw, 2007). Progeny virions are released 

from the cell surface using NA, which cleaves the sialic acid residues from the cell surface 

(Roberts et al., 2013). The stages of influenza virus replication start from attachment of the 

virus onto host cells and end with the release of the progeny particles (Figure 7). 

 

Figure 7: Life cycle of influenza viruses. 

Stages involved in the replication process are:1. Attachment to host receptor and entry to host 

cell via endocytosis.2. Virus uncoating and releasing RNPs to the cytoplasm.3. Transcription 

and translation of viral RNA. 4. Replication of viral RNA.5. Production of nucleoprotein, non-

structural, matrix, polymerase acidic, and polymerase basic proteins.6. Production of envelope 

proteins (surface glycoproteins HA and NA, and M2) and their transportation to cell 
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membrane.7. Viral RNPs packaging and assembly.8. Virion budding and release from the cell 

membrane (Al-Mubarak, 2014). 

 

4.4. Pathogenicity of influenza A viruses 

According to the pathogenicity and severity of the disease in chickens, avian influenza 

A viruses can be classified into two pathotype groups: HPAIV and LPAIV. The mortality rates 

of the poultry flocks infected with HPAIV may reach 100%, while infection with LPAIV cause 

only milder and primarily respiratory disease (Capua & Marangon, 2000). In HPAIV, the region 

that encodes the cleavage site of the surface glycoprotein (HA) molecule contains multiple basic 

amino acids (arginine and lysine) which allows cleavage of the HA molecule by cellular 

endogenous proteases widely distributed throughout the cells of the body (Wood et al., 1993). 

This molecular structure is important in determining the virulence of these strains because it 

allows the virus to replicate in a considerably broader tissue range, causing widespread damage 

in tissues and death of the bird, with a mortality rate approaching 100% (Kim et al., 2009; 

Adams & Sandrock, 2010). The most pathogenic subtypes of avian influenza are restricted to 

subtypes H5 and H7. On the other hand, LPAIV have only one basic amino acid (arginine) in 

the cleavage site of the HA molecule. This limits the site for the viral cleavage by trypsin–like 

host proteases, and as a consequence, the replication process occurs in limited tissues and 

organs, particularly in respiratory and digestive tracts, causing only mild disease (Alexander, 

2000). LPAIV which cause asymptomatic or low pathogenic infection may mutate and convert 

to HPAIV through an adaptation process after infection of poultry (Mundt et al., 2009).  

4.5. Influenza A viruses evolution 

During influenza viral replication, genetic variations occur frequently. This is due to the 

structure of the viral RNA (segmented) and the low fidelity of the RNA dependent RNA 

polymerase which generates replication errors during virus life cycle (Zambon, 1999;  Zambon, 

2001). Consequently, influenza A viruses can undergo recurrent antigenic changes. The 

resultant change in structure allows the virus to evade neutralizing antibody, the main 
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mechanism of protective immunity against influenza infection. Such changes may lead to the 

creation of a new virus strain distinctive from those previously circulating viruses (Zambon, 

1999). 

Antigenic shift is a result of reassortment and it occurs when two or more different influenza A 

viruses subtypes infect a single cell simultaneously. Because influenza A viruses are 

segmented, it is possible to produce new viruses with a variety of segment combinations by the 

acquisition of entirely new gene segments. The newly assembled progeny virions may have 

mixed genes from the two parent viruses (Holmes et al., 2005; Nelson et al., 2008). This may 

result in the emergence of new subtypes which may be more pathogenic than the original parent 

viruses and may be associated with pandemics (Neumann et al., 2009; Van-Tam & Sellwood, 

2010). Pigs are thought to play an important role in influenza virus ecology because of their 

ability to become infected with different types of influenza A viruses (avian and human 

viruses), and thus they act as an intermediate host, or mixing vessel (Figure 8). The new 

reassortant strain may cause a pandemic or panzootic because the hosts (humans or birds) have 

little or no immunity against it (Van-Tam & Sellwood, 2010). Such a scenario happened 

recently in April 2009 with the H1N1 pandemics caused by swine origin quadruple reassortant 

virus with of avian, swine and human origins (Michaelis et al., 2009). 
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Figure 8:   Schematic diagram of the antigenic shift process. 

 

Genetic change in influenza A virus also occurs by ‘antigenic drift’. This is due to the 

accumulation of point mutations over time, which results from a lack of proofreading 

mechanism in the RNA polymerase, leading to incorrect ribonucleotide insertions during 

replication (Zambon, 1999; Adams & Sandrock, 2010). Such changes occur progressively over 

a period of time accompanied by a gradual change in surface glycoproteins (HA and/ or NA). 

The accumulation of basic amino acids in the HA gene product may result in the transition of 

low pathogenic viruses to high pathogenic forms (Adams & Sandrock, 2010). Antigenic drift 

gives rise to immune-escape variants and can decrease a vaccine’s efficacy (Figure 9). There 

are circumstantial evidences indicating that viruses may have drifted to escape vaccine induced 
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immunity in poultry (Connie Leung et al., 2013). As a result of this, influenza vaccines must 

be updated each year with changes in the circulating influenza viruses to achieve the best match 

with the circulating strain possible  

 

Figure 9:  Schematic diagram of antigenic drift process (Al-Mubarak, 2014)  

This occurs when the genes encoding viral surface antigens undergo progressive mutation 

which leads to antigenic changes in the protein. Such changes allow the newly formed viruses 

to infect the host because of the absence of the specific antibodies against the altered surface 

antigen. 

4.6. Mode of transmission of influenza A viruses 

 

All influenza A subtypes can be transmitted in two main ways: inhalation of 

contaminated aerosols and by direct contact. Many studies have shown that inhalation of aerosol 
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and infectious respiratory droplets play an essential role in the spread of the disease (Tellier, 

2006, 2009). Transmission by contact may occur directly from the infected persons or animals 

or indirectly by touching contaminated tissues and surfaces (Collier & Oxford, 1993; Tellier, 

2006; Van-Tam & Sellwood, 2010). Persons who are in contact with infected birds may be 

infected with the highly pathogenic strains (Khanna et al., 2008). Such transmission could 

happen in wet markets where live birds are sold, leading to direct close contact with infected 

poultry, via feather plucking and preparation of poultry for consumption, as well as poultry 

slaughtering facilities, commercial poultry farms, and eating of raw or poorly cooked animal 

parts (Tambyah & Leung, 2006). Transmission between birds usually occurs by the faeco–oral 

route which is the predominant mean of spread in wild bird reservoirs. The stability of avian 

influenza viruses in water may enable transmission of the virus to other birds such as shore 

birds and also to aquatic mammals such as seals and whales (Stallknecht et al., 1990). Mallard 

ducks are of great interest because they are widely distributed and can travel large distances 

carrying the viruses from one region to another (Achenbach & Bowen, 2011). Transmission 

also occurs through inhalation of respiratory secretions contaminated with influenza virus 

particles (Zambon, 1999). 

4.7. Clinical signs and pathology of influenza A viruses in birds 

The incubation period of influenza A in birds extends from one to seven days and is 

followed by the appearance of clinical signs (Swayne, 2008). Clinical signs displayed by birds 

that are infected with avian influenza viruses can differ considerably. Factors influencing the 

course of the disease include: 1.) Strain (Low/High Pathogenicity AI but also subtype) 2.) Host 

family and subfamily (for example turkey vs. chicken) 3.) Gender 4.) Age 5.) Presence of 

secondary pathogens (respiratory or digestive tract pathogens) 6.) Management conditions 7.) 

Route of inoculation. The main clinical signs which appear in poultry infected with HPAIV 

include decreased food and water consumption, sudden drop in egg production, rales, sinusitis, 

ruffled feathers, excessive lacrimation, respiratory signs, cyanosis of the head and skin 

(purplish–blue coloring), edema of the face and head, diarrhea and nervous system disorders, 
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including loss of the ability to walk and stand. The birds can be markedly depressed and sudden 

death of large number of poultry is common (Peiris et al., 2007; Neumann et al., 2009). Other 

signs include sneezing, coughing, blood tinged oral and nasal discharges, loss of egg 

pigmentation and shell less eggs (Swayne, 2008). Usually HPAIV cause significant mortality 

in chickens but are typically benign in ducks and geese with some exceptions of highly 

pathogenic avian H5N1 which may cause dark green diarrhea, anorexia and sometimes 

neurological signs (Neumann et al., 2009). Infection of poultry with LPAIV is usually 

subclinical (asymptomatic), however, it may cause decreased egg production and mild 

respiratory signs (Swayne, 2008). 

With low pathogenic virus infections in chickens, the major areas affected with pathological 

lesions are the respiratory and urogenital systems. These pathological lesions include 

pulmonary congestion, air saculitis, pneumonia, congestion of the ovary, and hemorrhagic 

ovarian follicles. During the latter stages of outbreaks, gross or histologic lesions which are 

identified within the urinary system include visceral urate deposition, nephritis, renal tubule 

necrosis, and swollen kidneys (Swayne, 2008). In contrast, during infection with high 

pathogenic viruses in chickens, the pathological lesions are more prominent in comparison with 

low pathogenic viruses. The lesions may also involve the intestine, liver, spleen, and the brain. 

The major lesions are congestion and neuronal degeneration in brain tissues and severe 

congestion, edema and hemorrhage in lung tissues. The main pathological findings in the liver, 

spleen, and kidneys are hyperemia, cell degeneration and necrosis (Vascellari et al., 2007). 

 

4.8. Diagnosis of influenza A viruses 

 

Because pathological lesions of AI are not definitive, several tests have been developed 

for an accurate diagnose when AIV infection is suspected and for surveillance programs. Such 

tests are based either on the detection of the virus or the detection of the host immune response. 

Besides, a series of techniques are used to characterize the virus and study the pathogenesis of 
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the disease (Spackman et al., 2008). Many diagnostic techniques for influenza virus infection 

have been used and are classified into direct and indirect techniques. The direct methods include 

direct detection of viral particles, rapid antigen detection such as immunofluorescence 

techniques, and Enzyme Linked Immunosorbent Assay (ELISA) (Stallknecht et al., 2008; OIE, 

2012). The indirect methods involve conventional and rapid cell culture, eggs or animal 

inoculation for growing and also typing of the viruses. Hen’s eggs are usually used for such 

propagation. Virus isolation is the reference standard method to diagnose AI in both poultry 

(Spackman et al., 2008) and wild birds (Stallknecht et al., 2008). Influenza viruses can be 

isolated by using cell culture techniques whereby a specimen is inoculated in a live culture 

system and the virus is then detected after a given period of incubation. Madin Darby Canine 

Kidney (MDCK) cells are frequently used to detect viral replication by observing the cytopathic 

effects (CPE) on infected cells. However, it is not utilized for routine diagnosis because of being 

expensive and time‐consuming (Spackman et al., 2008). Further investigations of influenza 

virus have been done by nucleic acid testing (RT– PCR), and serological diagnostic tests 

(complement fixation (CF), haemagglutination inhibition (HI), and neutralization tests). All of 

these diagnostic tests have different sensitivity rates with some advantages and disadvantages 

(Spackman et al., 2008). In recent years, molecular methods have become an essential tool for 

the diagnosis and surveillance of AIV (Rose et al., 2006; Spackman et al., 2008; Stallknecht et 

al., 2008). RT–PCR is generally more sensitive and specific and is not time consuming. It 

provides accurate detection, and facilitates the typing and subtyping of influenza viruses 

(Spackman et al., 2008). In addition, multiplex PCR can be used to detect the infection by 

including a universal primer set in one amplification reaction, to determine the presence of more 

than one genome segment in the same reaction (Swayne, 2008). Furthermore, quantitative RT–

PCR (qRT–PCR) is considered the more sensitive and accurate method for influenza A virus 

detection and quantitation. This test is usually used for the detection of viral M gene, the most 

conserved gene for all influenza A virus subtypes (Swayne & Halvorson, 2008). Serological 

tests, particularly haemagglutination inhibition and complement fixation are not only used for 
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detection of infection, but also to determine the host’s response to influenza vaccination. Viral 

subtype testing through Hemagglutination (HI) and neuraminidase (NI) inhibition assays is 

generally deferred to national or international AIV reference laboratories. The HI can be used 

as a confirmatory test for the presence of subtype‐specific AIV in hemagglutinating egg fluids, 

to further characterize AIV isolates by identifying the HA subtype or to identify subtype‐

specific antibodies to AIV in serum, plasma or egg yolk (Thayer & Beard, 1998; Pedersen, 

2008; Kida et al., 1980). HI results have also proven inconsistent because: 1) antibodies are 

often not detectable against killed intact virus (Kida et al., 1980); 2) nonspecific inhibitors may 

be present in serum samples; and 3) serum may cause nonspecific agglutination of chicken 

erythrocytes. Some of these problems can be solved using different methods such as 

pretreatment of the serum with chicken erythrocytes (Swayne & Halvorson, 2008). 

 

4.9. Control and prevention of influenza A viruses 

Since identification of influenza A virus as the cause of fowl plague or high 

pathogenicity avian influenza (HPAI) in 1955, 30 epizootics of HPAI in birds have occurred 

around the world. Traditional control strategies for HPAI have relied upon four basic categories 

of components: 1) education (including behavioral change communications), 2) biosecurity 

(including modifications to the ways in which poultry are reared and sold, movement 

management, and cleaning and disinfection), 3) diagnostics and surveillance, and 4) elimination 

of infected poultry, usually through culling or depopulation (Swayne, 2008). In 1995, a fifth 

category was added, decreasing host susceptibility, with the field implementation of vaccines 

and vaccination in Mexican and Pakistani control programs. In the future, increasing host 

resistance through genetics may replace or at least augment vaccination as a means to decrease 

host susceptibility (Swayne, 2012). The decision to eradicate by a stamping-out program, or to 

use other control measures that may include vaccination, is often a difficult decision that must 

consider multiple factors. This may include how many premises have infected birds, how 

widely distributed are the affected farms, the strength of the veterinary infrastructure, the impact 
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on trade, the availability of appropriate vaccines, the availability of indemnity, and so on. The 

principals of stamping out are clear: Diagnose when a disease is introduced into a country or 

region, identify farms with infected animals, and then destroy the infected animals and those 

animals that are likely to have been exposed to the infected animals as quickly as possible before 

they have a chance to spread the infection to naı¨ve animals. If the index case and close contacts 

are identified quickly the rapid destruction of the flock or herd can be the most costeffective 

approach for control. For countries with a good veterinary infrastructure and an efficient 

veterinary diagnostic laboratory system, the use of stamping out has been shown to be an 

effective method for control of disease outbreaks (Suarez et al., 2002; Swayne & Suarez, 2005 

; Stallknecht & Brown, 2008). Surveillance is the second critical component for reducing 

potential domestic animal and public health impacts. Effective surveillance supports efficient 

disease control through early detection of the disease, definition of risk factors, better 

assessment of vaccination programs, improved understanding of genetic evolution of the virus, 

and clearer elucidation of the epidemiology of the disease. Therefore, surveillance activities 

should focus on specific geographical sampling sites and periods, and targeted to pre defined 

species of high risk of exposure (Rose et al., 20006; Olsen et al., 2006).  

4.9.1 Vaccination  

One of the primary alternatives to stamping-out programs is to vaccinate and try to 

protect uninfected animals. Effective vaccination programs can lead to a robust immune 

response that can reduce clinical disease symptoms, reduce the amount of virus that birds 

excrete if infected, and increase the resistance of the bird to being infected. All these factors 

can help break the transmission chain that can end an epidemic (Swayne & Kapczynski, 2008). 

However, vaccination if improperly applied, either by ineffective application, insufficient 

coverage, or through poor antigenic matching of vaccines to field strains may contribute to the 

persistence of infection and disease in the region (Swayne & Halvorson, 2008; Swayne & 

Kapczynski, 2008; Swayne et al., 2011). One argument against the use of vaccination is that 

vaccinated animals could not be easily differentiated from naturally infected animals. Most 
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importing countries have viewed the presence of antibody as evidence of prior or active 

infection with the disease agent and will actively block the importation of live poultry and 

poultry products. This negative effect on trade is a major concern for exporting countries. The 

two major poultry transboundary viruses that affect trade are AIV and NDV. For AI, any HPAI 

or, alternatively, LPAI of the H5 andH7 subtype are reportable to the World Organisation for 

Animal Health (WHO, 2014) and typically result in trade sanctions on the reporting country.  

There are five general types of avian influenza vaccine which include inactivated, DNA 

vaccines, live attenuated virus, recombinant vectors expressing foreign genes and subunit 

vaccines. All have specific advantages and disadvantages but only inactivated and recombinant 

type AI vaccines have received licensure for commercial use (Swayne et al., 2011). 

 

 Inactivated whole AIV vaccines  

Inactivated viral vaccines are essentially inert antigens that induce CD4+ T cell and 

humoral responses. The overwhelming majority of AI vaccines produced and sold for use in 

poultry are oil emulsion, inactivated whole AI virus vaccines that are administered either 

subcutaneously or intramuscularly (Koch et al., 2009). Conventional inactivated vaccines 

aimed at H5, H7 and H9 subtypes are now commercially available and have been licensed for 

use in a number of countries (Naeem & Siddique, 2006; Swayne et al., 2011). These vaccines 

have the advantage of being very safe as, although most of the proteins that induce the 

protective immune response are present, the organism cannot replicate and therefore establish 

a persistent infection or revert to a virulent form. With reverse genetics, vaccine strains have 

been incorporated the HA and NA of recent field AIVs and remaining six gene segments from 

a high growth influenza A vaccine virus. This type of technology allows to convert HPAIV into 

LPAIV vaccines by mutating the HA cleavage site. Parenteral administration is required for 

these vaccines, which can be a limitation from the pragmatic viewpoint. In addition, the immune 

response tends to be weaker so multiple doses, as well as adjuvantation, is required to induce 

sufficient protection. As discussed earlier, LPAIV (H6 and H9) are becoming serious threats to 



37 

 

poultry and have become endemic in most countries. Different killed vaccines (single or 

combined) are being used to overcome LPAIV (H9N2) in different countries e.g. Poulshot®, 

CEVAC® FLU-KEM, CEVAC®, Intervac-H9, Jova Zeit 7, GALLIMUNE™ Flu H9, 

NOBILIS® Influenza H9N2 and many more 

(http://www.cfsph.iastate.edu/Vaccines/disease_list.php?disease=avian-influenza&). 

Live LPAIV vaccines  

A live attenuated vaccine is a live virus that has lost its virulence while maintaining its 

ability to replicate. Live attenuated vaccines induce humoral and cellular immunity and provide 

superior and longer lasting protection compared with inactivated vaccines. In addition, these 

vaccines have a relatively low manufacturing cost as they do not require adjuvants in the 

formulation. However, these vaccines are not recommended in field conditions because: 1) they 

may produce important economically losses associated with clinical signs of AI; 2) they can 

easily spread among birds and farms; 3) they can potentially revert to a HPAIV; and 4) they 

can reassort with field AIVs (Swayne & Kapczynski, 2008). 

 Live vectored vaccines 

Recombinant vaccines for avian influenza viruses have been produced by inserting the 

gene coding for the influenza virus HA protein into a live virus vector and using this 

recombinant virus to vaccinate against influenza. These live vaccines are ideal as they replicate, 

presenting the foreign antigen to the immune system in the context of an intracellular infection, 

with the expectation of stimulating humoral and cellular immunity. Many vector supports have 

been studied, but the most frequently reported systems have been the recombinant fowl 

poxvirus (rFPV) and the recombinant Newcastle disease virus (rNDV) with H5 or H7 AI HA 

gene inserts (Swayne et al., 2000). These vaccines replicate in the host providing similar 

immune protection than a live vaccine. Disadvantages include a limited host range and vaccine 

failure if the birds to be vaccinated already possess immunity to the vector (Swayne et al., 

2011).  

DNA vaccines  

http://www.cfsph.iastate.edu/Vaccines/disease_list.php?disease=avian-influenza&
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DNA vaccination involves the introduction of DNA expression vectors encoding 

immunogenic proteins into cells, thereby inducing a CD8+ cytotoxic T cell response. Using this 

method, plasmid DNA-based vaccines that express the AI HA gene can provide protective 

immunity towards influenza. Following vaccine application and uptake by host cells, the HA 

gene is transcribed into RNA and transported to the cytoplasm for protein translation. The 

endogenously expressed protein antigen is processed intracellularly via MHC class I proteins, 

stimulating cytotoxic T cells, or by MHC class II molecules for the stimulation of humoral 

immunity (Swayne & Kapczynski, 2008). DNA vaccines are safe as the production of plasmids 

does not require handling of infective agents and, because immunity is only directed towards 

the plasmid encoded antigen, it is easy to differentiate infected from vaccinated animals. 

However, although DNA vaccines do induce a humoral and cellular response, they have a 

relatively low efficacy and a large amount of DNA is required to produce a strong response 

(Lee & Suarez, 2005; Ullah et al.,2013).  

HA subunit vaccines  

These vaccines are based on portions of influenza proteins (HA) that are chemically 

synthesized and formulated into a vaccine to stimulate a protective immune response in the 

host. The main disadvantage is that the peptide alone stimulates a very weak immune response. 

However, this can be improved using adjuvants or another method of delivering the peptide to 

the immune cells (Bertran et al., 2013). In France, similarly to other developed countries 

(Swayne et al., 2011), preventive or routine vaccination of domestic poultry against AI is 

prohibited, although emergency vaccination programs previously approved by the European 

Commission (EC) could be used (Swayne & Kapczynski, 2008). Preventive vaccination 

programs with vaccines licensed for chickens (mainly inactivated) might be useful when 

targeted to high value or high risk non‐poultry populations, such as zoo birds, hunting or 

endangered species (Swayne et al., 2011). In this light, the EC approved preventive vaccination 

programs against H5N1 HPAIV for birds kept in zoos in 17 Member States to avoid stamping 

out measures for captive wild bird species (Pittman et al., 2007). Additionally to the EU 
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program, vaccination of zoo or captive held non poultry birds has been conducted in several 

other countries (Swayne et al., 2011). 

 

5. E. coli infection in poultry 

E. coli is a Gram-negative, non-spore forming, rod-shaped bacterium, of the family 

Enterobacteriaceae. Most strains are motile and have petrichous flagella (Barnes et al., 2003). 

E. coli is present in the normal microbiota of the intestinal tract, other host mucosal surfaces 

and in the bird’s environment, only a certain number of these strains possessing specific 

virulence attributes, designated as avian pathogenic E. coli (APEC), are able to cause disease 

(Dho-Moulin & Fairbrother, 1999; Vandekerchove, 2004). E.coli are usually opportunistic 

pathogens and can cause severe disease in the presence of immunosuppressive agents (Umar et 

al.,2014; Rehman et al.,2016)  Since serotyping for the somatic antigen (O-serotyping) is still 

the most frequently used typing method for diagnostic purposes, the O-type is often used for 

APEC description. O1, O2 and O78 are reported as the main serotypes in poultry (Barnes et al., 

2003; Vandekerchove, 2004). Many other serotypes (O8,O15,O18,O35 etc) can also cause 

colibacillosis in poultry and have been found less frequently (Barnes et al., 2003). Colibacillosis 

refers to any localized or systemic infection (e.g. septicemia, peritonitis, cellulitis, salpingitis, 

osteomyelitis, synovitis, omphalitis, airsacculitis, and coligranuloma) caused entirely or partly 

by APEC, and is the most frequently reported disease in surveys of poultry diseases or 

condemnations at slaughter, hence responsible for severe economic losses (Dho-Moulin & 

Fairbrother, 1999; Barnes et al., 2003). Most, if not all avian species, are susceptible, although 

clinical disease is reported most often in chickens, turkeys and ducks. Susceptibility and 

severity of infection are greatest in young birds (Barnes et al., 2003; Rodriguez-Siek et al., 

2005). Horizontal infection with E. coli usually occurs through contact with other birds, or 

through faeces, contaminated water and feed. Natural respiratory tract infection of poultry by 

APEC is thought to occur via the inhalation of faeces contaminated dust (Dho-Moulin & 

Fairbrother, 1999). Carlson & Whenham (1968) have demonstrated that the risk of 
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colibacillosis increases with the level of environmental contamination. Dust in poultry houses 

may contain 105-106 colony forming units (cfu) of E. coli/g. These bacteria may persist for long 

periods, particularly under dry conditions (Harry, 1964; Barnes et al., 2003). Vertical infection 

results from the transmission of E. coli from breeders, via contaminated shells during hatching, 

or in ovo, as a result of salpingitis. The virulence mechanisms of avian pathogenic E. coli have 

not been clearly characterized yet. A number of potential virulence factors have been identified 

in APEC strains isolated from diseased birds, but their role in causing disease is not completely 

understood (Barnes et al., 2003). Besides bacterial virulence factors, probably also host 

resistance is a great determinant of colibacillosis occurrence (Barnes et al., 2003). In fact, 

colibacillosis is usually considered to be a secondary disease, following a primary infection 

with respiratory pathogens and/or unfavorable environmental conditions (Barnes et al., 2003; 

Vandekerchove, 2004).  Different known virulence factors of APEC have been summarized in 

Table 5.  

 

 

Function  Name  Reference  

Adhesins Type I fimbriae  La Ragione et al.(2000) 

Stg fimbriae  Lymberopoulos et al. (2006) 

P fimbriae  Kariyawasam and Nolan 

(2009) 

Autotransporter adhesion  

AatA 

Li et al. (2010) 

Curli  La Ragione et al, (2000) 

Temperature sensitive 

hemagglutinin Tsh  

Dozois et al. (2000) 

Yqi  Antao et al. (2009) 

E. coli common pilus (ECP)  Stacy et al. (2014) 

Iron acquisition Aerobactin  Gao et al. (2015a) 

Salmochelin  Caza et al. (2008) 

System Sit  Sabri et al. (2008) 

Heme utilization/transport 

protein ChuA  

Gao et al. (2012) 

Antiphagocytic 

activity/serum resistance 

K1 capsular polysaccharide  Mellata et al. (2003a) 

Increased serum survival (Iss)  Nolan et al. (2003) 

Degenerate type III secretion 

system 2 (ETT2sepsis)  

Ideses et al. (2005) 

O78 LPS  Mellata et al. (2010) 
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Metabolism Phosphate transport system 

(pts)  

Lamarche et al. (2005) 

Nitrite transporter (NirC)  de Paiva et al. (2015) 

Sugar metabolism (Aec35-

37)  

Chouikha et al. (2006) 

Two-component 

regulatory systems 

RstA/RstB  Gao et al. (2015b) 

PhoB/PhoR  Bertrand et al. (2010) 

BarA/UvrY  Herren et al. (2006) 

Miscellaneous SsrA/SmpB  Mu et al. (2013) 

IbeA and IbeB   Flechard et al. (2012) 

Type VI secretion systems   Ma et al. (2014) 

Transcriptional regulator 

(YjjQ)  

Li et al. (2008) 

Vacuolating autotransporter 

toxin (Vat)  

Parreira and Gyles (2003) 

Flagella (FliC)  Dziva et al. (2013) 

Group 4 capsule  Dziva et al. (2013) 

  

Table 5. Validated virulence factors of APEC (adapted from Guabiraba et al., 2015) 

 

5.1. Host immune response to E. coli infections in poultry 

Avian colibacillosis generally starts as a respiratory infection that evolves to generalised 

infection resulting in fibrinopurulent lesions of internal organs. Uptil now, the mechanisms of 

APEC virulence are not well defined. Colonisation of the trachea and air sacs is considered the 

first step of a systemic infection by APEC, followed by the colonization of the liver and the 

pericardium, with subsequent bacteraemia (Guabiraba & Schouler, 2015). There have been fast 

advances in chicken immunology after the study of full chicken genom (Wong et al., 2004). 

New technologies  has allowed to understand chicken immune responses in a better way against 

important poultry pathogens such as E. coli (Lowenthal et al., 2013). Host immunity responds 

to invading pathogens through different receptors such as the Toll-like receptors (TLRs), which 

distinguish different classes of pathogen-associated molecular patterns (PAMPs) (Roy & 

Mocarski, 2007). Immune cells are activated by the invasion of microbes which leads to 

activation of intracellular signaling pathways related to production of pro- and/or anti-

inflammatory cytokines and microbial killing mechanism (Kogut et al., 2015). Bacterial motifs 

are recognized with the help of four TLR in chicken including TLR-2, which senses 
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peptidoglycan; TLR-4, which recognises lipopolysaccharide (LPS); TLR-5, which binds 

flagellin; and TLR-21, which recognises unmethylated CpG DNA commonly found in bacteria 

(Keestra et al., 2010). TLRs expressed by epithelial and resident phagocytic cells probably 

recognise APEC in lungs leading to stimulation of phagocytic cells and the production of 

inflammatory cytokines. So far, the dynamics of TLR expression in the pneumonic form of 

colibacillosis in birds have not been studied. Therefore, mechanisms of APEC and TLR 

interactions in bird’s respiratory tract remain largely unknown (Guabiraba & Schouler, 2015). 

Macrophages and heterophils are efficiently activated by immune responses within the 

respiratory tract of birds to APEC infection (Figure.10). However, there is very limited 

knowledge on the interaction and adhesion mechanisms of APEC to these cell populations. 

These phagocytic cells are likely to play a key role on the initial host defence not only to APEC 

but also to other pathogens that might predispose the avian lung to a more efficient bacterial 

adherence and invasion. Blood monocytes and tissue resident macrophages certainly play 

different roles in recognition and initiation of immune responses to APEC invasion. However, 

there is no study integrating phenotyping and activation status of circulating monocytes and 

resident macrophages in the course of APEC infection in chickens (Guabiraba & Schouler, 

2015). 

Heterophils, the most abundant granulocyte in most avian species, play an crucial role in the 

avian immune response to pathogens by using a range of cytotoxic and prostimulatory 

molecules such as cytokines, chemokines and lipid mediators (Kogut et al., 2001). Heterophils 

play a vital role for the recruitment and activation of other innate immune cells and mediate the 

inflammatory responses (Kogut et al., 2003). Heterophils are likely to be the first leukocyte 

population to be recruited from the bloodstream to the infected site by chemokines within few 

hours after the establishment of infection forming purulent discharge during pulmonary 

infection of APEC (Horn et al., 2012). Although, heterophils help in bacterial clearance but 

they can also lead to tissue damage and complicate disease outcomes if inflammation persist 

for longer time (Figure 10). Natural killer (NK) cells have been functionally and 
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morphologically defined in chickens (Jansen et al., 2010), and recent progress has been made 

on the role of diverse types of NK cell receptors (Straub et al., 2013). Peripheral blood 

leukocytes (PBL) of chicken infected with an APECO1 strain showed upregulation of genes 

related to NK cell mediated toxicity however, the phenotype and function of this cell population 

largely remains unexplored in vivo upon APEC infections (Sandford et al., 2012). So far, the 

mechanism of leukocyte recruitment into chicken’s lungs upon APEC infection is under debate. 

Although heterophils and macrophages are likely to be the most important cell populations to 

respond to invading bacteria in the lungs, one cannot exclude the role of NK cells and other 

innate lymphoid cells in early or later moments of the host immune response to infection, which 

can be better studied with new cell surface markers and flow cytometry strategies that have 

arisen in the last years (Sperling et al., 2015). Our current knowledge on the inflammatory 

response to respiratory colibacillosis in chicken’s lungs and air sacs and the dynamics of cell 

populations involved in recognition and elimination of APEC is summarised in Figure 10. 
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Figure 10:  Schematics showing chicken’s inflammatory response to APEC in the respiratory 

tract. (A) Upon inhalation of contaminated aerosol particles, APEC might interact with and 

infect epithelial cells already in the trachea. A previous viral infection, such as IBV, may 

damage the respiratorymucosa and facilitate APEC colonization. (B) Resident cells such as 

epithelial cells and macrophages in lungs and air sacs will be the first line of defense through 

recognition of bacterial PAMPs by TLRs or bacteria phagocytosis. (C) These responses will 

result in proinflammatory cytokines and chemokines production that will activate and/or recruit 

other leukocytes to the infected site. Inflammation will also contribute to tissue damage and 

impairment of lung function if bacterial colonization persists. Heterophils are likely to be the 

first leukocyte population to be recruited from the bloodstream to the infected site by 

chemokines within few hours after the establishment of infection. Later in the inflammatory 

response to APEC, monocytes arrive in the second wave of leukocyte immigration into the 

lungs not only to optimize bacterial clearance but also to contribute to phagocytosis of dying 

heterophils and thus contribute to tissue repair. The kinetics of these cellular events and the 

mediators of inflammation that participate in the immigration and activation of heterophils or 

monocytes/macrophages in APEC-infected chicken lungs remain largely unexplored 

(Guabiraba & Schouler, 2015) 

 

5.2. Clinical signs and lesions caused by E. coli   

One of the most common forms of colibacillosis begins as a respiratory tract infection 

and, if unattended, this infection may evolve into a bacteraemia and a generalised infection 

which manifests as a polyserositis (Pourbakhsh et al., 1997; Dho-Moulin & Fairbrother, 1999; 

Barnes et al., 2003). Barnes et al. (2003) and Dho-Moulin & Fairbrother (1999) described in 

details other localized and systemic colibacillosis-associated disease syndromes. Respiratory-

origin colisepticemia affects both chickens and turkeys and is the most common type of 

colisepticemia (Barnes et al., 2003). Lesions are prominent in respiratory tissues (trachea, 

lungs, and air sacs), pericardial sac and peritoneal cavities and are typical of the subacute 
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polyserositis stage of colibacillosis. Infected air sacs are thickened and often have caseous 

exudates on the respiratory surface. Pneumonia is more common in turkeys than chickens.   

 

5.3. Diagnosis of E. coli 

The diagnosis of colibacillosis is first suggested by the clinical picture and by the 

presence of typical macroscopic lesions such as airsacculitis, sometimes associated with 

pericarditis and perihepatitis. Diagnosis needs to be confirmed by the isolation of pathogenic 

E. coli from the heart blood and affected tissues, like liver, spleen, pericardium or bone marrow, 

on selective media like McConkey, eosin methylene blue or drigalki agar. Care must be taken 

to avoid faecal contamination of samples. Further identification of the isolated colonies is based 

on biochemical reactions (Dho-Moulin & Fairbrother, 1999). The diagnosis is strengthened if 

the isolated culture belongs to a known pathogenic serogroup. Different ELISAs have been 

developed for the detection of antibodies, although they have limited value because they can 

only detect homologous APEC types (Leitner et al., 1990; Bell et al., 2002).  Virulance 

associated factors can not be used to identify APEC because these factors have been detected 

in both fecal isolates and in strains isolated from colibacillosis lesions. Currently, molecular 

based techniques such as PCR improves both the speed of detection and the level of sensitivity 

and has been increasingly used to identify several APEC strains from food and clinical samples. 

 

5.4. Control of E. coli   

Colibacillosis is mainly treated with antimicrobials. E. coli may be sensitive to many drugs such 

as ampicillin, chloramphenicol, chlortetracycline, enrofloxacin, neomycin, nitrofurans, 

gentamicin, nalidixic acid, oxytetracycline, polymyxin B, spectinomycin, streptomycin and 

sulphonamides (Barnes et al., 2003). E. coli isolates from poultry are frequently resistant to one 

or more drugs, since they have been largely used in the poultry industry over a long period (e.g. 

tetracyclines) (Barnes et al., 2003; Vandekerchove, 2004). It is not only important to analyse 

the isolates for their antimicrobial resistance patterns, one must also take care that the animals 
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receive a sufficiently high dose of the antimicrobial and moreover, ingest it especially when 

they are diseased, to obtain the necessary therapeutic effect. It is impossible to stop all the 

factors that cause colibacillosis. Autogenous killed E.coli vaccines have been tried but they 

provide protection against homologous challages only. But with Poulvac® E. coli, the only 

commercially available modified-live E. coli vaccine, it is possible to protect against both the 

disease and productivity loss. Despite the potential for developing an efficacious vaccine to 

combat this economically important poultry disease, several obstacles hinder such efforts. 

Those obstacles include the cost, vaccine delivery method and timing of vaccination. Measures 

should be taken to prevent introduction of pathogens that promote infections with APEC 

(Barnes et al., 2003;Azeem et al., 2017). The housing climate (humidity, ventilation, dust and 

ammonia) and the stocking density must be kept optimal (Dho-Moulin & Fairbrother, 1999; 

Vandekerchove, 2004). Vaccines are not being used on a large scale  in poultry due to great 

diversity among APEC strains (Dho-Moulin & Fairbrother, 1999; Vandekerchove, 2004). 

 

6. Other viral respiratory pathogens 

Respiratory diseases in domestic poultry species are caused by various viruses which 

complicate disease prognosis in the presence of other opportunistic bacteria such as E. coli. 

Below is a brief introduction to common poultry viral pathogens other than AIV. 

 

6.1. Newcastle disease virus (NDV) 

Newcastle disease (ND) is an economically important and highly infectious disease of 

both wild and captive birds (Saif et al., 2008) caused by Newcastle disease viruses (NDV) 

synonymous with avian paramyxovirus- 1 (APMV-1). NDV is a member of the Avulavirus 

genus in the Paramyxoviridae family. Encompassing a diverse group of single-stranded, 

negative sense, non-segmented, enveloped RNA viruses of approximately 15.2kb; NDV has a 

broad host range and is known to infect over 200 bird species (Alexander, 2001). NDV was 

first reported in 1926, in Java, Indonesia and Newcastle-on-Tyne, England, and since then 
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various genotypes have been responsible for different ND panzootics. NDV is distributed 

worldwide and its continual presence in multiple avian species presents a constant threat to all 

poultry industries and other activities that involve the raising or keeping of birds (Anonymous, 

2011).  Based on its virulence in chickens, the NDV is classified into three main pathotypes: 

velogenic, mesogenic, and lentogenic (Alexander et al., 2012). The velogenic strains are more 

virulent than the mesogenic strains, but both are classified as being virulent. The lentogenic 

strains, on the other hand, are considered avirulant. The presence of virulent strains (velogenic 

and mesogenic strains) in poultry requires monitoring and control measures even in countries 

where they are endemic because the existence of the virus severely impacts commercial 

productivity and the international trade in poultry and poultry products (Alexander et al., 2012). 

The NDV is tentatively diagnosed based on the clinical outcome, postmortem lesions 

particularly pin-point hemorrhages in proventriculs and hemorrhages in cecal tonsils, mortality 

pattern, vaccine history. However, geometric mean titer (Haemaaglutination inhibition test), 

and virus isolation are being considered the gold standard method in identifying ND outbreaks 

and subsequent biological and molecular characterization of the genotype involved. The 

vaccines currently being used to prevent ND are not able to control the disease and sporadic 

outbreaks are reported every year even disease remains endemic throughout the year in 

developing countries. Therefore, the introduction of efficient vaccination strategies is needed 

in order to rise to the occasion (Saif et al., 2008). 

 

6.2. Avian metapneumovirus (aMPV) 

Avian Metapneumovirus (aMPV) infections are a huge economical issue for the poultry 

industry worldwide, which has been associated with upper respiratory tract infections and 

reductions in egg production in various avian species. The aMPV causes turkey rhinotracheitis 

(TRT) and is associated with swollen head syndrome (SHS) in chickens, which is usually 

accompanied by secondary infections that increase mortality. It was first reported in 1978 in 

South Africa and since then, it has been reported in most regions of the world. aMPV, 
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previously called avian pneumovirus (APV) or turkey rhinotracheitis virus (TRTV), is a 

member of the Paramyxoviridae family, Pneumovirinae subfamily, within the new genus 

Metapneumovirus (Lamb et al., 2000; Gough & Jones, 2008). It was classified into four 

subgroups called: A, B, C and D. TRT and SHS are characterized by tracheal rales, sneezing, 

swollen sinuses, swollen head, and nasal and ocular discharge. The aMPV can also lead to 

transient drop in egg production and/or an increase in egg abnormalities in both turkeys and 

hens. Chickens may have antibodies, without having clinical signs. Transmission requires direct 

contact among birds. Its spread over long distances is uncertain, but wild birds are postulated 

as probable chain links (Umar et al.,2016b). Clinical signs are not pathognomonic for a 

diagnosis of aMPV. A diagnosis may be made by serology, PCR or virus isolation. The 

diagnosis of this disease poses a challenge due to difference in clinical features and genome. 

Avian metapneumovirus can be very difficult to isolate and the success rate might be low. To 

confirm the identity of the aMPV electron microscopy or immunochemical methods can be 

used. There are three immunochemical methods that are used for detecting aMPV in turkeys; 

immunofluorescence (IF), immunoperoxidase (IP) and immunogold staining. For detecting 

aMPV in chickens IF and IP are being used. The value of these tests under field conditions has 

not been fully evaluated, nor have any scientific studies been undertaken to compare the 

sensitivity and specificity of IF and IP. Good biosecurity and immune interventions are effective 

and necessary aspects of the control program. Live vaccines predominantly control avian aMPV 

infection in poultry flocks, but vaccine virus can be found for extended periods after application 

that may lead to reversion of vaccine virus (Cook & Cavanagh, 2002; Shin et al., 2002; Gough 

& Jones, 2008; Catelli et al., 2010; Cecchinato et al., 2010; Cecchinato et al., 2014).  

 

6.3. Infectious bronchitis virus (IBV) 

Infectious bronchitis is a highly contagious upper-respiratory tract disease of chickens 

and causes a severe economic burden on the poultry industry worldwide (Fraga et al., 2013). 

The causative agent, infectious bronchitis virus (IBV), has been found in many types of birds.  
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IBV belongs to genus Gammacoronavirus of family Coronaviridae within order Nidovirales 

(Jackwood, 2012). This round, enveloped virus usually found in pleomorphic shape has size of 

approximately 120 nm in diameter (Cavanagh, 2007). The positive sense RNA genome of this 

virus is 27.6 kb in size and encompasses 3′ and 5′ untranslated regions (UTRs) with a poly (A) 

tail. Clinical signs of the disease in chickens include watery eyes, mucus in the nares and 

trachea, gasping, coughing and tracheal rales. The disease leads to a decrease in egg production 

and egg quality, and some strains of the virus can cause an interstitial nephritis. The virus 

replicates in epithelial cells causing lesions in the nasal turbinates, trachea, kidney, gonads, 

oviduct, lungs and air sacs. Lesions can also be found in the gastrointestinal tract, bursa of 

Fabricius and caecal tonsils (Cook et al., 2012; Jackwood, 2012). The viral distribution is 

virtually global. It was first described in the 1930s in the USA and more than 50 variants or 

serotypes have been documented globally. IBV causes serious problems to poultry health when 

coinfected with other pathogens e.g. E. coli, influenza viruses. It has been demonstrated that 

infectious bronchitis live vaccine, exacerbates the manifestation of experimental H9N2 AIV 

infection in broiler chicken (Haghighat-Jahromi et al., 2008; Seifi et al., 2012). Mutation and 

recombination processes are involved in the genetic and phenotypic variations of IBV, leading 

to the emergence of new variant strains, and give rise to virus population diversity to be 

modelled by the host, particularly by the immune system. The consequence is the continuous 

emergence of new variants with regard to pathotypes, serotypes, and protectotypes (Umar et 

al., 2016c). The viral genes encoding the spike, replicase and nucleocapsid proteins can be 

considered the main genomic regions, which indicate the evolution processes of 

IBV.Conventional and more advanced methods have been used for the diagnosis of IBV 

infection. In the past, serological assays such as virus neutralization (VN) and 

haemagglutination inhibition (HI) were used widely for detecting and serotyping IBV strains. 

These tests also have been used to measure flock protection following vaccination. Serotype-

specific antibodies usually are detected using HI, even though the HI test is less reliable. On 

the other hand, ELISA assays are more sensitive and easily applied for field use and in 
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monitoring antibody response following vaccination or exposure. However, emergence of 

different IBV serotypes that do not cross-react with commonly available antisera generally 

made serological tests less applicable and nonconclusive in classifying new or emerging IBV 

isolates. Virus isolation has been the gold standard for the diagnosis of IBV. The stringent 

technique requirements and factors, such as the time required for several passages of virus in 

egg or cell culture, limit the use of virus isolation as a diagnostic method of choice for IBV 

infection. In view of their increased sensitivity and reduced reporting time, molecular methods 

such as PCR, have nearly replaced conventional serology and virus cultivation methods of IBV 

diagnosis (Bande et al., 2016). Despite the use of vaccination, new IBV variants are evolving 

and circulating in the field and should be considered as initial candidates for vaccine 

development. The new generation vaccines developed against locally prevailing IBV strains 

may be more helpful and avoid the reversion of virulence in live vaccine viruses. Understanding 

the mechanisms underlying the evolution of IBV has basic relevance and, without doubt, is 

essential to appropriately control and prevention of the disease. 

 

7. Other respiratory bacterial pathogens 

Bacterial pathogens are playing a crucial role in causing respiratory diseases in domestic 

poultry. Bacterial pathogens may play a primary or secondary role in diseases. Usually, primary 

viral or environmental damage to respiratory tissue attract bacteria to colonize the respiratory 

system. IBV infections predispose birds to E. coli superinfection is an example of secondary 

bacterial invasion. In other cases, bacterial act as a primary factor and initiate the disease 

process in birds. Infectious coryza and fowl cholera infections in chicken are examples of 

primary bacterial respiratory diseases in poultry. Below is a brief introduction to common 

poultry bacterial pathogens other than E. coli. 

 

7.1. Ornithobacterium rhinotracheale 
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Ornithobacterium rhinotracheale (O. rhinotracheale) infection, also known as 

ornithobacteriosis, is a contagious disease of avian species, primarily turkeys and chickens. 

O. rhinotracheale is a gram-negative staining rod, belonging to the family Flavobacteriaceae 

in the phylum Bacteroidetes. It has been variously referred to as Pasteurella-like, Kingella-like, 

Taxon 28, or pleomorphic gram- negative rod until the present name O.rhinotracheale was 

suggested in 1994 (van Empel & Hafez, 1999; Chin et al., 2008). In chickens and turkeys, 

O.rhinotracheale causes a contagious disease characterized by respiratory distress, decreased 

growth, and mortality. Besides drops in egg production, decrease of egg shell quality, and 

reduced rate of hatchability, decreased weight gains, increased mortality, and high 

condemnation rates due to purulent airsacculitis cause considerable economic losses. Other 

respiratory lesions, such as catarrhal tracheitis (Gavrilović et al., 2010) and bilateral exudative 

pneumonia (Gornatti Churria et al., 2012), have also been found in chickens affected by 

ornithobacteriosis. The severity of clinical signs, duration of the disease, and mortality are 

extremely variable and are influenced by virulence and the pathogenicity of the causative isolate 

as well as by many environmental factors such as poor management, inadequate ventilation, 

high stocking density, poor litter conditions, poor hygiene, high ammonia level, concurrent 

diseases, and secondary infections (Chin & Charlton, 2008; Chin et al., 2008). Moreover, O. 

rhinotracheale infection can induce higher economic losses and mortality if H9N2 AIV is also 

present (Pan et al., 2012). O. rhinotracheale spreads horizontally by direct and indirect contact 

through aerosol or drinking water (Chin et al., 2008). Besides its isolation from ovaries, oviduct, 

hatching eggs, infertile eggs, dead embryos, and dead-in-shell chickens and turkeys (van Empel 

& Hafez, 1999; Chin et al., 2008), there are circumstantial evidences of vertical transmission 

in birds affected by ornithobacteriosis (van Empel et al., 1997). Diagnosis consists of case 

history, clinical investigations, and postmortem examination, as well as isolation or detection 

of ORT DNA by PCR (Gornatti Churria et al., 2012). Isolation and identication of the causative 

agent are essential for differential diagnosis as clinical signs and postmortem lesions of O. 

rhinotracheale infections are similar to other bacterial and virus infections. Currently 18 
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different ORT serotypes designated A to R have been identified. Serotyping can be done with 

reference antisera by agar gel precipitation test (AGP) or enzyme linked immunosorbent assay ( 

Chin & Charlton, 2008). Currently AGP is the method of choice for serotyping. Serological 

tests are useful for flock monitoring and/or the diagnosis of O. rhinotracheale infection (Chin 

et al., 2008). ELISA can be a useful diagnostic tool as it can detect presence of antibodies 

against O. rhinotracheale in 1-day-old birds and in egg-yolks, as well as in birds with clinical 

signs. PCR assays have shown to be useful for identication and genotyping purposes (Gornatti 

Churria et al., 2012). The best strategy for the control or prevention of O. rhinotracheale 

infection is probably vaccination, because most worldwide O. rhinotracheale isolates have 

acquired resistance against the antibiotics regularly used in poultry (Schuijffel et al., 2006). In 

spite of the availability of autogenous vaccines, economic losses related to O.rhinotracheale 

infections in the poultry industry are estimated in hundreds of millions of dollars annually in 

the United States. Bacterins, live vaccines, and subunit recombinant vaccines have been 

developed and reported, with variable results for the control of experimental and natural 

infections associated with O.rhinotracheale (Gornatti Churria et al., 2012). Moreover, 

antibiotic susceptibility profiles should be used for the selection of antibiotic for the treatment. 

 

7.2. Avibacterium paragallinarum 

Infectious coryza is an upper respiratory disease of chickens caused by infection with 

Avibacterium paragallinarum (A. paragallinarum) previously known as Haemophilus 

paragallinarum (Blackall et al., 2005). The bacteria exhibit pleomorphic rod or coco-bacilli 

morphology with a tendency to form filament like arrangement with short chains. Ordinarily, 

the size of bacterium ranges from 1 to 3 μm in length and from 0.4 to 0.8 μm in width. In most 

of the cases, the organisms are grown under micro aerobic or anaerobic conditions with 

increased levels of CO2
 
(5-10%).  The organism causes severe upper repiratory disease 

characterized by swollen infraorbital sinuses, nasal discharge, and depression leading to very 

significant drop in egg production in layer chicken. At initial stage of infection, the clinical 
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signs are sero-mucus discharge(s) mainly from nostrils and eyes, lately transforming into 

caseous flake like exudative deposits in the subcutaneous tissue, around the para- nostrils area 

as well as eyes, consequently resulting in sticky closures of eyes of birds (Chukiatsiri et al., 

2010). 

Besides, primarily involving upper respiratory tract, the infection also transcends down to 

trachea, air sacs as well as causes pneumonia in lungs in very extreme cases. In older and egg 

laying chicken, the organism predominantly affects the reproductive organs viz; ovary and 

salpinx and are responsible for poor egg quality and decreased egg production. In meat type 

birds, due to inanition, the feed conversion efficiency drastically declines, that mainly results 

in poor flesh development and extreme culling at tender age. The infection does not spread 

readily from farm to farm without movement of contaminated people or fomites from farm to 

farm because A. paragallinarum does not survive well outside of its host. An infected flock 

may potentially shed the organism for the life of the flock. For this reason, A. paragallinarum 

infection may persist indefinitely on farms having multiple-age chickens, particularly multiple-

age layer or breeder farms (Priya et al., 2012). In yester years, various ancillary tests viz; 

isolation of bacterium along with biochemical characterization used to be set procedures to 

confirm the presence of organism but with delayed intimation. The improvement in molecular 

diagnostics has largely curtailed the awaiting time for disease reporting in matter of hours to 

begin suitable therapeutic regimen in shortest possible time point. Apart from this, the cogent 

identification of the provincial sero/immuno vars to conclusive, comprehensive region specific 

vaccine development has immensely appreciated these molecular diagnostic approaches for its 

boon. PCR, a molecular tool has now become largely indispensable to its identification with 

having advantages closely accurate to conventional techniques i.e. culture, with much rapidity 

that avoids concept of false negativity. Biosecurity and vaccination are usually adopted to 

prevent infectious coryza outbreaks at farms. Good biosecurity procedures should prevent 

exposure of chickens to A. paragallinarum infection; however, vaccination must be used to 

minimize the impact of the disease especially on those farms where A. paragallinarum is 
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endemic. Inactivated whole-cell bacterins vaccies are available commercially containing one or 

several isolates. Broilers are seldom vaccinated against infectious coryza; however, 

replacement layers and breeders are routinely vaccinated in many countries (Deshmukh et al., 

2015). 

7.3. Pasterulla multocida 

Pasteurella multocida, the causative agent of fowl cholera, is of major economic 

importance worldwide (Glisson et al., 2003; Singh et al., 2014).The other subspecies of 

Pasteurella, for example, Pasteurella multocida subspecies septica, and pasteurella-like 

bacteria from the Pasteurellaceae family (e.g., Avibacterium spp., Galibacterium spp.), can 

cause similar clinical signs. Pasteurella multocida is a gram-negative, nonmotile, and 

facultatively anaerobic bacterium. Pasteurella multocida displays wide serologic and genetic 

diversity. Pasteurella multocida is classified into the serogroups A, B, D, E, or F based on their 

capsular composition and 16 somatic (lipopolysaccharide) serotypes. When present as an acute 

disease, high morbidity and mortality can occur. In this acute form, clinical signs are typically 

only seen shortly before death. Typical clinical signs seen in the acute form of the disease are 

fever, ruffled feathers, mucus discharge from the mouth, diarrhea, and increased breathing rate 

(Glisson et al., 2008). The disease also presents as a chronic form, in which localized infection 

of joints and sinuses can follow the acute form, or on occasion, be the only form of the disease 

present in a flock. In the chronic form, the typical signs include swollen wattles, eyes, sinuses, 

leg or wing joints, or foot pads; twisted necks (torticollis); and respiratory gurgles (rales). In 

the chronic form, birds that recover become carriers of the disease, can remain infected for life, 

and become a reservoir of infection for further outbreaks (Glisson et al., 2003). The disease has 

been recognized as a putative in the emerging free range layers (Singh et al., 2013) and 

backyard poultry (Christensen et al., 1998) in the developed world and in village chickens in 

the developing world (Muhairwa et al., 2001). But, no reports of fowl cholera outbreaks in free 

range, organic broiler flocks in the developed world appear to have been reported. The 

recurrence of fowl cholera outbreaks on properties has been reported in turkeys (both shedded 
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and free range) and free range layers and ducks (Singh et al., 2013). The explanation for these 

recurring outbreaks could be carrier chickens or environmental persistence of Pasteurella 

multocida. An alternative explanation could be a common source reintroducing the strain at 

intermittent periods (Singh et al., 2013). Since all types of birds are susceptible to fowl cholera, 

wild birds are a potential source of reintroduction of strains. It has been shown that sparrows 

and pigeons can become infected with Pasteurella multocida from infected chickens and once 

infected can transmit it to susceptible chicken.  However, it seems only the isolates of 

Pasteurella multocida from pigs and cats that have been shown to be consistently pathogenic 

for fowl. Cats have consistently been identified as a potential source of introduction of 

Pasteurella multocida into flocks. However, definite evidence linking cats with fowl cholera 

outbreaks does not exist (Glisson et al., 2003, 2008). The diagnosis of fowl cholera is based on 

the occurrence of typical signs and lesions and on detection of bacteria by using microscopy 

techniques in tissues, such as liver, heart, lung, and blood. However, in many cases, 

confirmation depends on the isolation and identification of the causative Pasteurella multocida 

bacterial species. Conventional methods of identification, such as capsular serotyping, have 

been largely replaced by DNA-based methods (PCR) that are sensitive and specific for a rapid 

diagnosis. Confinement is probably the most effective way to prevent introduction of 

Pasteurella multocida. However, extensive management systems dominate in many parts of the 

world, and under such circumstances vaccination is recommended as a preventive measure. 

Unfortunately, the development of safe and efficient live vaccines still poses problems. As a 

result, control remains dependent on bacterins which exhibit significant disadvantages 

compared to live vaccines (Ahmed et al., 2014). 

7.4. Mycoplasma  

Avian mycoplasmosis caused by Mycoplasma species was primarily described in 

turkeys in 1926 and in chickens in 1936 (Nascimento et al., 2005; Kleven, 2008). There are 

more than 120 named Mycoplasma species and more than 20 species are known to infect avian 

hosts (Nascimento et al., 2005; Purswell et al., 2011). Of these, M. gallisepticum and M. 
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synoviae are the major pathogens, and M. meleagridis, and M. iowae are of importance in 

turkeys (Sprygin et al., 2011). M. gallisepticum infection is usually designated as chronic 

respiratory disease of chickens and infectious sinusitis in turkeys. Recently, it has been reported 

that Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian 

tracheal epithelium (Sid et al., 2016). It is characterised by respiratory rales, coughing, nasal 

discharges, and frequently by sinusitis in turkeys. M. synoviae infection is usually known as 

infectious synovitis, an acute-to-chronic infectious disease for chickens and turkeys involving 

primarily the synovial membranes of joints and tendons sheaths. However, during recent years, 

M. synoviae has less frequently been associated with synovitis but more frequently associated 

with airsacculitis in chickens and sometimes in turkeys (Khalifa et al., 2013). Transmission 

may be transovarian or lateral via respiratory aerosols and direct contact. Infection occurs via 

the respiratory tract and usually affects 100% of the birds. Following infection birds become 

persistently infected with M. synoviae and remain carriers for life. As a result of the expansion 

of poultry production and the concentration of large, multiage production complexes within a 

restricted geographic area, it is becoming more and more difficult to maintain flocks that are 

free of M. synoviae. Both diseases are economically important, egg transmitted and hatchery 

disseminated. They lead to tremendous economic losses in poultry production as a result of 

decreased hatchability and egg production, reduced quality of day-old chicks, reduced growth 

rate, increased costs of eradication procedures which involve site cleaning and depopulation, 

and increased costs of medication and vaccination (Ferguson-Noel & Williams, 2015). For 

many years, diagnosis of avian mycoplasmosis was based on serological assays to detect 

antibody production and/or on isolation and identification of the organism. Serological tests 

include serum plate agglutination test (SPA), Haemaglutination inhibition test (HI) and Enzyme 

linked immunosorbant assay (ELISA) for M. gallisepticum, M. synoviae, or M. meleagridis 

(Ferguson-Noel et al., 2012; Khalifa et al., 2013). Difficulties encountered with the use of 

serologic tests for Mycoplasma have been described extensively. Serologic testing is related to 

imperfections in the interpretation of results (Kleven, 2008). The problems arise primarily from 
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the multiplicity of serotype strains isolated and their coexistence in the same isolate. Cultivation 

techniques are laborious, slow, and expensive and require sterile conditions. Problems 

experienced with culture include overgrowth by faster-growing Mycoplasma species or other 

organisms, or no growth in subculture. Culture can take 3-4 weeks, and even then, the result 

can be negative or be hampered by mixed infections (Ferguson-Noel et al., 2012). For these 

reasons, use of rapid and sensitive detection methods, like PCR, can be advantageous because 

it provides a better sensitivity and specificity facilitating the detection of pathogens in clinical 

samples collected from asymptomatic animals, or those who are under treatment with 

antibiotics (Evans et al., 2005; Peebles et al., 2014,Umar et al.,2017b). 

Control of avian mycoplasma infections is, in theory, quite simple and straightforward, 

especially because the pathogenic avian mycoplasmas are egg transmitted and lack a cell wall, 

rendering them susceptible to environmental influences. One begins with mycoplasma-free 

replacement stock that is placed on a single-age farm with all-in, all-out type management, good 

biosecurity, and a consistent monitoring programme (Kleven, 2008). Multi-age commercial egg 

complexes are mostly positive for M. gallisepticum and M. synoviae, and in some parts of the 

world, both infections are widespread in commercial broiler production. M. gallisepticum 

vaccines are used with increasing frequency in areas where control is not feasible such as large 

poultry populations in small geographic areas and multiple-age farms that never depopulate. 

Vaccine has been used extensively; it is reported to be very immunogenic and mildly virulent 

in chickens and is effective in displacing virulent (field) strains from poultry operations. Control 

of poultry mycoplasmas consists of three general aspects: prevention, medication, or 

vaccination (Kleven, 2008). 

 

8. Multicausal respiratory disease  

Respiratory diseases are a matter of great concern for turkey producers as these are 

causing huge economic losses to turkey industry. According to an estimation, nearly all turkey 

farms flocks face respiratory issues leading to expensive antibiotic treatment, loss of production 
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and carcass condemnation at slaughter (Hall et al., 1975; Anderson et al., 1978). Several 

respiratory pathogens namely: influenza virus type A subtypes H6 and H9, avian 

paramyxovirus 1, 2 and 3, avian pneumovirus (APV), E. coli, O.rhinotracheale, Mycoplasma 

species and Chlamydophila psittaci have been associated with respiratory disease in turkeys in 

Europ (Van Beek et al.,1994.; Macpherson et al., 1983; Vanrompay et al., 1993, 1997; Van de 

Zande et al., 2001; Vandemaele et al., 2002; Kishida et al., 2004; Corrand et al., 2012; Bertran 

et al., 2013; Costa-Hurtado et al., 2014). Although much is known about the single agents 

responsible for respiratory diseases in poultry, however, coinfection involving different 

pathogens largy remains unexplored. Complicated infections involving multiple etiologies with 

viruses, mycoplasmas and other bacteria, immunosuppressive agents, and unfavourable 

environmental conditions are more commonly observed than single infections under 

commercial conditions. AIV has been found to be involved in multicausal respiratory infections 

where interaction with Mycoplasma was thought to be responsible for high mortality (Bano et 

al., 2003; Roussan et al., 2008; Stipkovits et al.,2012ab, Egyed, et al., 2012; Sid et al., 2015). 

Multiple respiratory infections may be related to poor hygiene or prophylactic measures. Other 

studies have shown that influenza virus infection together with bronchitis live vaccine may lead 

to an extension of the shedding period of H9N2 virus and to an increase in the severity of 

clinical signs (Haghighat-Jahromi et al., 2008). It was previously speculated that multi-

infection may have been responsible for high mortalities in poultry flocks (Stipkovits et al., 

2012ab; Egyed, et al., 2012). Experimental co-infection of M. gallisepticum with aMPV or 

avian influenza increased clinical signs and reduced weight gain (Naylor et al., 1992; Stipkovits 

et al., 2012ab; Glavits, et al., 2012). 

In turkeys, only a few studies have been performed to elucidate the effects of combined action 

of viruses and other micro-organisms. The virus being regarded as having a very important role 

in turkeys is aMPV, and as a consequence, most studies have included aMPV as triggering 

agent. Cook et al. (1991) demonstrated that B. avium and Pasteurella-like organisms were able 

to colonize after an aMPV infection. Infection was somewhat more severe (slightly more severe 



59 

 

clinical symptoms and thickened air sacs) when bacteria were included in the inoculum, but no 

poults in any of the experiments appeared sick and no mortality was recorded. In 1992, Naylor 

et al. demonstrated that an infection with aMPV accelerated the colonization of the lower tract 

by M. gallisepticum and that simultaneous infection resulted in respiratory disease of greater 

morbidity than following infection with either agent alone. However, for the affected birds, the 

severity of disease in the mixed infection group was not greater than that in the M. gallisepticum 

group. In an experiment to investigate the possible pathogenicity of M.imitans for turkeys, 

Ganapathy et al. (1998) showed that in 1-day-old turkey poults, the presence of aMPV enhanced 

the ability of M.imitans to invade and colonize. M. imitans was only isolated from the upper 

respiratory tract in single infection, but was recovered also from lung and air sacs in the 

presence of the virus. After dual infection, they saw a significant increase in clinical signs and 

lesions, although these still remained relatively mild. On the contrary, dual infection of turkey 

poults with aMPV and M. synoviae did not result in detectable synergism, i.e. no increase in 

severity of clinical disease, nor gross and microscopic lesions due to aMPV (Khehra et al., 

1999). Several O. rhinotracheale strains, isolated from turkey, chicken or partridge, were used 

for aerosol challenge of turkeys of various ages (Van Empel et al., 1996). In turkeys, infection 

was aggravated by the prior administration of aMPV or NDV. In these studies, no airsacculitis 

nor pneumonia were seen in the absence of virus. Van de Zande et al. (2001) reported that 

aMPV/E. coli dual infection in turkey poults results in respiratory disease with a higher 

morbidity, higher incidence of lesions, and higher isolation of E. coli from inoculated poults 

compared with groups given single infections. Clinical symptoms such as depression and 

anorexia were only seen with dually infected birds and correlated well with the high incidence 

of gross lesions such as pneumonia, airsacculitis, perihepatitis and pericarditis. Mortality, 

however, as often seen in the field in aMPV/E. coli infected birds, was not encountered in their 

trial. In 13-wk-old turkeys, dual infection with aMPV and E. coli resulted in more severe 

clinical signs compared with single infection (Van de Zande et al., 2001). In a study with a US 

aMPV isolate (Colorado strain), a dual infection in turkeys with either a turkey Newcastle 
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disease virus isolate or broiler E. coli isolate resulted in increased morbidity rates and gross 

lesions compared with single infection, and more synergism was observed with the viral 

Newcastle infection than with E. coli (Turpin et al., 2002). Most poults receiving aMPV/E. coli 

exhibited mild clinical signs (mild depression) early during infection, but swelling of sinuses, 

as frequently reported in the field, was not observed. In the aMPV/NDV infected birds more 

severe symptoms were found, ranging from decreased food consumption and in most of the 

birds nasal exudates with infraorbital, periocular and submandibular swelling. Very recently, 

Jirjis et al. (2004) used an aMPV subgroup C strain present in the US, to experimentally 

inoculate turkey poults together with different bacterial species. They found that infection was 

more severe (increase in severity or incidence of clinical scores, nasal discharge, swollen 

sinuses, microscopic inflammatory changes in both upper and lower respiratory tract, and gross 

lesions in air sacs and lungs) in the turkey poults inoculated with aMPV when B.avium was 

administered either alone or in combination with E. coli and O.rhinotracheale. They concluded 

that B.avium had an additive effect on aMPV infection in turkeys, but this effect was not seen 

with aMPV in combination with E. coli or O. rhinotracheale. Loock et al. (2006) examined the 

pathogenicity of an aMPV superinfection in C.psittaci predisposed turkeys. The aMPV 

infection during the acute phase of a C.psittaci infection aggravated the severity of clinical 

signs, macroscopic lesions, pharyngeal AMPV excretion and histological tracheae lesions. 

Some of the single aMPV and single C.psittaci infected turkeys excreted nasal exudates with 

or without swollen sinus, whereas a higher percentage of dually infected turkeys showed similar 

and more long-lasting symptoms. In contrast, no clear interaction could be established after 

AMPV infection in latently C.psittaci infected SPF turkeys.  

In some studies, other viruses were used in turkeys in order to try to reproduce severe clinical 

respiratory disease. Back et al. (1997) infected SPF turkeys with O.rhinotracheale and with 

O.rhinotracheale in combination with Newcastle disease vaccine virus, but were not able to 

reproduce neither clinical signs nor mortality. Charlton et al. (1993) experimented with dual 

P.anatipestifer and NDV infection via different inoculation routes in turkeys, but were unable 
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to reproduce clinical symptoms. They were only able to demonstrate some differences in 

histopathology. Sivanandan et al. (1991) evaluated the effect of an apathogenic avian influenza 

virus (AIV) subtype (H5N2) on the ability of the respiratory tract of turkeys to clear bacterial 

infections and suggested that AIV infection contributed to increased numbers and decreased 

clearance of P.multocida. Clinical symptoms were not mentioned. Experiments in turkeys have 

also been done with two bacterial strains, e.g. De Rosa et al. (1997) found that B. avium may 

enhance pathogenicity of O.rhinotracheale, although no convincing results were reported, and 

Droual & Chin (1997) were not able to find a synergistic effect between O.rhinotracheale and 

E. coli after intra air sac inoculation. Ficken et al. (1986) found that the clearance of E. coli 

from the air sacs was little affected after infection with B.avium. Van Alstine & Arp (1987) 

found in an infection experiment designed to study the effects of B.avium infection on the 

pulmonary clearance of E. coli in turkeys, that B.avium had no effect on the numbers E. coli in 

the lungs, but was associated with increased numbers of E. coli in tracheae. Severe airsacculitis 

was found more often in B.avium pre-infected turkeys. 

When considering the different results obtained from the various challenge studies, it can be 

noted that it is generally problematic to reproduce respiratory disease similar as seen in the 

field. For instance, mortality is frequently seen in natural outbreaks of respiratory disease, 

especially when E. coli is involved. None of the above mentioned studies was able to reproduce 

this phenomenon. Furthermore, it is very difficult to really compare the different experimental 

studies, since a lot of different variables have to be taken into account. For instance, the 

virulence and pathogenicity characteristics from the different challenge isolates, the different 

inoculation routes applied, the varying intervals between the different microbiological 

inoculations, the age, strain and health status of the inoculated hosts may influence the clinical 

outcome of an experimental inoculation (Umar et al., 2017a). 
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Respiratory pathogens and diseases are a matter of great concern for poultry farmers all over 

the world including in Pakistan. Respiratory disease causes important financial losses in the 

turkey industry worldwide due to reduced growth, an increased mortality rate, high medication 

costs and a higher number of condemnations at slaughter and these are usually associated with 

coinfections which are not easy to detect in field condition due to complex clinical picture. A 

variety of respiratory pathogens, both bacterial and viral, and adverse environmental conditions 

are the main factors contributing to the development of this disease. The pathogenesis of 

infections with these respiratory disease agents and their mutual interactions, are far from fully 

unraveled. This is partly responsible for the fact that therapeutic measurements against different 

bacterial infections are virtually entirely based on the administration of antimicrobials. In the 

literature, it is frequently mentioned that although different antimicrobial products are available, 

the clinical effects are very variable in the field especially during coinfections thus leading to 

excessive use of antibiotic in poultry especially in turkey farming. So far, coinfecting pathogens 

interactions upon coinfection largly remains unexplored or only poorly investigated. This is to 

a great extent rooted in the fact that often no suitable infection models are available. To extend 

our knowledge on coinfections and control of respiratory infections in turkeys, the present thesis 

was initiated. Single and combined infections with AIV and E. coli, important respiratory 

pathogens, were studied.  

Bacterial and viral infection causing huge economic losses to economy in the form of morbidity 

and mortality of birds, poor diagnosis and excess medicine, vaccination costs. Antibiotic 

resistance and vaccination cost for the prevention or treatment of viral and bacterial infections 

are two major issues for poultry industry. The medical community has expressed concern that 

antibiotic use in food animals may promote the development of antibiotic-resistant strains of 

bacteria that could impact human health too (Grahem et al., 2007). Antibiotic resistance is also 

an economic burden on the healthcare system. On the other hand, limiting the use of antibiotics 

in poultry farms may lead to an increase of bacterial infections, and also of co-infections, 

confirming the need of a better understanding of these complex interactions in vivo. LPAIV 
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H6N1 has been circulting in France but their interactions with co-circulating pathogens are still 

rela tively unknown (Corrand et al., 2012). To the best of our knowledge no data are available 

that describe the co infection of LPAIV (H6N1) with certain respiratory pathogens such as E. 

coli. Antimicrobial drugs are used extensively to fight against co-infection in turkeys resulting 

in antimicrobial resistance and economic losses. Growth-promoting antibiotics have been 

banned from animal feed in the European Union (feed additives regulation1831/2003/EC). One 

of the negative consequences associated with the prohibition of antibiotic growth promoters in 

commercial poultry production is the increase in secondary bacterial infections, such as 

colibacillosis. Personal experiences showed that some turkey flocks which had been suffering 

from E. coli infection showed extraordinary high mortality due to H6N1 infection. Recently, 

some researchers have reported on coinfections in field in French poultry industry (Corrand et 

al., 2012a, 2012b, Croville et al., 2017 in preparation) while there is no data available on the 

coinfections in poultry in Pakistan. The impact of co-infections is not very well known so far 

especially in turkeys. One way to increase our knowledge on coinfections is to perform 

experimental studies in poultry models. Co-infection studies is one approach in defining 

possible synergistic or additive effects of different organism on each other. For the present PhD 

thesis work, we intended to link the coinfections observed in Pakistani poultry farms with 

coinfection studied in experimental conditions and experimental studies were set out to examine 

the possible pathogenic interplay between E. coli and LPAIV H6N1, and as such contributing 

to the unravelling of the respiratory disease complex in turkeys. Our main objective was to 

develop experimental infection models using these agents and subsequently use these models 

to study the role of E. coli on the pathogenesis of LPAIV H6N1 or vice versa. We hope that our 

coinfection study will help toward better diagnosis and ultimately reduce the use of 

antimicrobials in turkey industry. Random treatments (vaccines or antimicrobials) are applied 

to fight against these infections in Pakistan without knowing the actual cause of disease. 

Epidemiological work in Pakistan will help to screen and characterize respiratory pathogens 

involved in respiratory diseases thus leading to efficient implementation of control measures 
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against respiratory diseases. We used non specific pathogen free (SPF) commercial turkeys in 

our experiements because they better mimics field conditions than SPF turkeys. Moreover, 

turkeys have longer life span than chicken and in their longer life span they encounter different 

respiratory infections/coinfections. During coinfections in turkeys, different antibiotics are used 

to fight against these infections in field. Better knowledge on these coinfections may help to 

reduce the use of antibiotics in field conditions. 

More specific goals of the study were:  

 To develop a coinfection model in poultry 

 To study the impact of these coinfection in vivo 

 To screen and chacterize avian respiratory viruses in Pakistani poultry 

 To assess the burden of co-infections in poultry in Pakistan 

 To link the coinfections observed in Pakistani poultry farms with coinfection studied in 

experimental conditions. 

Ethics statement   

State of the art laboratory material and machines were at our disposal and, unless otherwise 

indicated, all laboratory procedures were carried out in accordance with the Manual on Animal 

Influenza Diagnosis and Surveillance of the World Health Organization.  Experimentations 

were conducted in accordance with European and French legislations on Laboratory Animal 

Care and Use (French Decree 2001-464 and European Directive CEE86/609) and animal 

protocols approved by the Ethics Committee “Sciences et santé animale”, committee number 

115.  
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Abstract 

Low pathogenic avian influenza virus (LPAIV) usually causes mild disease or asymptomatic 

infection in poultry. LPAIV have however become a great threat to poultry industry due to 

mixed infections with other pathogens. Co-infections do frequently occur in the field but are 

not easily detected, and their impact on pathobiology is not clearly defined due to the 

complicated nature but it is a well-known fact that there is an impact. One way to increase our 

knowledge on co-infections in poultry is to challenge birds in experimental and controlled 

conditions. While many articles report in vivo experiment with LPAIV in avian models, only 

few studied co-infections. Moreover, researchers tend to choose different bird types, ages, 

inoculation routes and doses for their experiments, making it difficult to compare between 

studies. 

This review describes a state of the art on experimental infections with LPAIV alone or 

associated with co-infecting pathogens in avian models. Second, it aims at discussing how to 

best mimic field infections in laboratory settings. In the field of avian diseases, experimental 

design to use is obviously directly linked with the research question addressed. But there is a 

gap between field and experimental data and further studies are warranted to better understand 

how to bring the laboratory settings closer to the field situations. 

 

Keywords: Low pathogenic avian influenza viruses, co-infection, avian models 

 

Abbreviations: AI: avian influenza; AIV: avian influenza virus; CFU: colony forming unit; 

EID50:50% egg infectious dose; HA : hemagglutination; HPAIV: Highly pathogenic avian 

influenza virus; AP: Avibacterium paragallinarum; IT: intratracheal; IN: intranasal; 

IV:intravenous;  IC: intracloacal; IBV: Infectious bronchitis virus; LPAIV: Low pathogenic 

avian influenza virus; MG: Mycoplasma gallisepticum; NDV: Newcastle disease virus; ORT: 

Ornithobacterium rhinotracheal; O: ocular; PO: per orally; SPF: specific pathogen free; SA: 

Staphylococcus aureus;  TOC: tracheal organ culture 



68 

 

In poultry farms, infections with avian influenza viruses are dreaded as they are very often 

associated with severe economic losses. To better understand the clinical outcomes, 

pathogenesis and transmission in the field, researchers have developed animal models to study 

infections in laboratory settings. Here we present a state of the art on experimental infections 

with low pathogenic avian influenza virus alone or associated with co-infecting pathogens in 

avian models. On this first basis we then discussed how to best mimic field infections in 

laboratory settings and highlight a gap between field and experimental data that requires further 

studies to fill. This review is not a meta-analysis but was performed using Pubmed and a 

combination of the following keywords: low pathogenic avian influenza virus, co-infection, 

chicken, turkey, duck, poultry, experimental infection, in vivo. Only studies with experimental 

infections of birds with LPAIV alone or with a co-infecting pathogen were considered here. 

Avian influenza viruses: high and low pathogenicity 

Avian influenza (AI) is caused by avian influenza viruses (AIVs) that belong to the genus 

Influenza virus A, of the family Orthomyxoviridae. AIV harbors a segmented genome of 8 

distinct single-stranded RNA molecules, which encode at least 10 different viral proteins (50). 

On the basis of antigen variations of the surface glycoprotein hemagglutinin (HA) and 

neuraminidase (NA), there are eighteen antigenically distinct HA and eleven NA subtypes of 

influenza A viruses (82). With the exception of the recently described influenza A (H17N10 

and H18N11) viruses of bats all other subtypes circulate in birds (84). AIV are classified into 

two pathotypes in gallinaceous birds known as a highly pathogenic avian influenza virus 

(HPAIV) and a low pathogenic avian influenza virus (LPAIV) based on the existing World 

Organization for Animal Health (OIE) criteria (17). For AIV to be highly pathogenic, they must 

meet one of two criteria: 1) intravenous pathogenecity index (IVPI) > 1.2 or lethality for 75% 

or more of intravenous susceptible chickens (Gallus gallus domesticus); or (2) viruses of H5 or 

H7 subtypes with multiple basic amino acids at the HA cleavage site. All other AIV are 

characterized as LPAIV (78). HPAIV are responsible for rapid and fatal systemic infection 

inducing mortality up to 100% in broilers, layers and breeders while LPAIV lead to 
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asymptomatic or milder infections. All HPAIV identified up to date belong to H5 and H7 

subtypes, even though all H5 or H7 viruses are not always highly pathogenic (86). Pathogenicity 

of HPAIV is associated with polybasic amino acids (arginine and lysine) at their HA cleavage 

site motif (85) which enable them to replicate and damage a wide range of vital organs and 

tissues ultimately resulting in death of the infected birds (64). In contrast, LPAIV are capable 

to replicate only in limited tissues of respiratory and digestive systems. In the field, LPAIV can 

cause severe disease if the host is stressed or if other diseases are present (1,47). In cases of 

sub-clinical LPAIV infections, production losses are observed due to anorexia in meat birds 

and drop in egg production in breeders/layers. LPAIV of H1N1 and H9N2 subtypes were indeed 

shown to replicate in chicken and turkey reproductive tracts (57, 58, 63,83,89). In the present 

review we chose to focus on LPAIV. 

Influenza A viruses and evolution 

Because avian influenza RNA-polymerase does not possess a proof-reading-function, faulty 

nucleotides are integrated during replication with high mutation rates of 10-3 to 10-4 

substitutions/site/year. Besides mutations, viruses with segmented genomes change genetically 

through genetic reassortment (antigenic shift) by exchange of one or more segments between 

two related viruses which infect a host cell at the same time (6). Genetic variability is of vital 

importance for the survival of avian influenza viruses and it is ensured through mutations 

(antigenic drift) and reassortment (antigenic shift) during the replication-cycle of the virus (26). 

Infections with multiple strains of AIV are well documented in ducks and lead to a high viral 

genetic diversity. In contrast, mixed infections in poultry are relatively rare and generally seen 

in areas where there several endemic strains circulate (1,79).  In nature, the high prevalence of 

mixed infections in chickens and ducks can then lead to genome reassortment and result in 

antigenic shift (27,59). It has been confirmed that genetic reassortment in LPAIV has led to 

novel phenotypes and increased virulence (37,39). Previous studies have shown that seven 

genes of the H5N1 virus isolated in the Hong Kong outbreak in 1997 have high sequence 

similarity to LPAIV virus H6N1 (69). Similarly, in Pakistan extensive co-circulation of H9N2 
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viruses with other avian influenza viruses, including highly pathogenic H5N1 and H7N3 

subtypes, coupled with extensive vaccination has generated a novel variant H9N2 with possibly 

increased epizootic and zoonotic potentials (51). The novel H9N2 viruses 

(A/chicken/Pakistan/UDL-01/08-like virus), currently circulating in Pakistan has acquired PB2, 

PB1, PA and NS gene segments from HPAI H7N3 viruses with the other genes originating from 

G1-like lineage H9N2 viruses (39). Some LPAIV, such as H9N2, can indeed break species 

barriers and provide genes to other influenza virus, which could present a risk for severe human 

infection (31). 

LPAIV and co-infecting pathogens in field conditions 

Over the last 15 years, influenza viruses of the H9N2 subtype have been isolated from outbreaks 

in poultry in various countries such as Germany, Italy, Ireland, Saudi Arabia, Iran, Egypt, Israel, 

Pakistan, China, Hong Kong, South Africa, and the United States (1,2,7,17). Laboratory 

examination of specific pathogen free (SPF) chicken showed that H9N2 avian influenza virus 

causes little disease but in the last decade Asian and Middle Eastern countries have faced 

frequent outbreaks of H9N2 infection with high mortality (8,31). It was reported that outbreaks 

of H9N2 influenza viruses in Iranian broiler chicken farms caused a 20-65% mortality rate and 

the most prominent lesions in affected dead birds were respiratory airway hyperemia and severe 

exudation, which lead to tubular cast formation in the tracheal bifurcation, extending to the 

lower bronchi (54, 66). However, it is also documented that LPAIV, such as the H9N2 subtype 

in domestic poultry manifest mild clinical signs and respiratory diseases with low mortality, not 

exceeding 5% (79). Disease effects of AI may be far more devastating in the presence of other 

organisms or other forms of stress (1). It is proposed that concurrent infections may play a key 

role in exacerbating mortality in chicken infected with mild AIVs. Co-infection with other 

respiratory pathogens may complicate the respiratory disease syndrome during outbreaks of 

non-highly pathogenic avian influenza viruses and cause severe disease and high mortality. 

Strains of infectious bronchitis viruses (IBV) were isolated from several broiler flocks during 

the course of the H9N2 outbreak in Iran (55). Previous studies demonstrate that H9N2 virus 
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infection contributes to respiratory distress and is involved in diseases caused by other 

respiratory pathogens in the poultry industry (36,77).  Mixed infections of influenza virus with 

other respiratory pathogens have been found to be responsible for high mortality and resulted 

in great economic losses (1,8,29,49). Mixed infections with Newcastle disease virus (NDV) and 

LPAIV have been reported in waterfowl, and competition between viruses during isolation 

suggests an underestimation of co-infections in the laboratory (24). 

Other respiratory co-pathogens, such as M. gallisepticum (MG), E. coli and IBV, have been 

commonly identified in the field and could have increased the severity of clinical syndromes 

accompanying H9N2 AI virus infections (70). M. gallisepticum and E. coli were isolated from 

the field cases and may have played a role as co-pathogens to AI virus in the clinical disease 

syndrome. Fibrino-necrotic casts in the tracheal bifurcation were reported in turkeys during the 

1999 outbreak of H7N1 AI in Italy in association with secondary bacterial pathogens such as 

E. coli, Riemerella anatipestifer and Pasteurella multocida (16). M. gallisepticum in 

combination with other respiratory pathogens, including LPAIV, can cause severe airsacculitis 

(9,10,54). This suggests a common pathogenic mechanism with multiple lineages of AIV 

causing extensive damage to respiratory airways, followed by additional damage by secondary 

pathogens. In severe cases, death was perceived as the result of occlusion of the airway and 

resulting asphyxiation. The individual role of H9N2 AI virus and co-pathogens needs to be 

determined in future studies. 

LPAIV in experimental studies 

The pathogenicity and transmission of many LPAIV strains have been investigated in 

experimental conditions in avian models. Specific pathogen free (SPF) chickens are the most 

frequently used as a standard well characterized and relatively homogeneous host to carry out 

LPAIV experimental infections. Table 1 summarizes the main experimental infections of avian 

species with LPAIV. Considering that different research teams used various animal models (in 

term of species and age), LPAIV strains, routes of inoculation, and doses, Table 1 illustrates 

the difficulty one may have to compare data generated from different studies.  
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Avian models of 3-4 weeks of age are commonly used for experimental studies, likely because 

of their easy handling and low feed cost at this age. Moreover, intranasal route (IN) for the 

inoculation of respiratory pathogens in avian models is the most common followed by intra-

tracheal (IT), oral (PO), intraocular (O), intramuscular (IM), intravenous (IV), intra-oviduct 

(IO) and intra-cloacal (C). Aerosol route is the most common route for the spread of respiratory 

pathogens, which is why many researchers choose IN or IT routes to simulate respiratory 

transmission of LPAIV and complicating pathogens. Inoculation routes (IN, IC, and O) were 

compared in a study where hens were inoculated with 106 EID50 of 

A/chicken/CA/1255/02(H6N2) or A/chicken/NJ/12220/97(H9N2). Hens inoculated IN with 

H6N2 virus presented mild clinical signs and shed higher virus titers in the higher respiratory 

tract (as measured in oropharyngeal swabs) than their H6N2 inoculated counterparts. Birds 

were less susceptible to H9N2, which was detected only in oropharyngeal swabs and only when 

inoculated IN. Clinical signs and lesions were also less pronounced when the pathogen was 

inoculated through oral and cloacal routes (58). In this latter study the IN route of inoculation 

was hence the most efficient. But it may be virus strain-specific and linked with preferential 

binding of these H6N2 and H9N2 viruses to the respiratory rather than digestive tract of the 

chickens. 

As far as inoculation dose is concerned, the most common dose used in experimental studies is 

106 EID50 for LPAIV and this dose usually induces clinical signs and lesions. The latter are 

indeed dose dependent. Thus, quail and turkeys infected oro-nasally with increasing doses (103–

106 EID50/0.1 ml) of LPAIV (A/quail/Hong Kong/G1/97) showed more disease and lesions 

when inoculated with higher virus doses. Quail were more susceptible than turkeys: they were 

readily infected with lower challenge doses (13). 

Ex vivo tracheal organ culture (TOC) models have been proposed as possible alternative to 

experimental LPAIV infections of the respiratory tract to address some specific questions: TOC 

may be of interest to compare the host susceptibility to different LPAIV strains by monitoring 

induction of ciliostatis, necrosis of the epithelium or viral replication (61). But tissue cultures 
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show obvious limitations since they cannot address accurately the contribution of the immune 

response. 

LPAIV and co-infecting pathogens in experimental studies 

It is well appreciated that upper respiratory tract viral infections in poultry are often complicated 

by more serious bacterial diseases. While influenza virus is most commonly thought of in this 

context, other respiratory viruses, including NDV, IBV, and infectious laryngotrachitis virus 

(ILTV) may also predispose to secondary infections. Several different bacteria have also been 

implicated, including M. gallisepticum, E. coli, Avibacterium paragallinarum, 

Ornithobacterium rhinotracheal (ORT) and, Staphylococcus aureus (35,36,77). It is thought 

that certain pairings of organisms better complement each other than other potential pairings. 

Co-infections of poultry present a complicated clinical picture confusing the identification and 

diagnosis and unfortunately little is known on the interactions between co-infecting pathogens 

(19). Tables 2 and 3 summarize the literature on experimental infections of birds with LPAIV 

and bacteria, and LPAIV and avian viruses, respectively. Co-infection of poultry with more 

than one bacterial and/or viral agent is common and often results in increased clinical signs 

when compared to single agent infections (56,73,74). Conversely, infection of a host with one 

virus may affect infection by a second virus, a phenomenon explained by the occurrence of 

viral interference; cells infected by a virus may not permit multiplication of a second virus (22). 

In addition, viral interference may be detrimental to detecting viruses in co-infected flocks since 

lower or undetectable virus titers might fail to give a complete diagnosis (24). Co-infection of 

LPAIV A/chicken/Iran/SH-110/99 (H9N2) virus with infectious bronchitis live vaccine led to 

increased clinical signs and mortality rates as well as longer virus shedding in chickens (36). 

Significantly higher antibody titers against AIV was observed during co-infection with IBV 

which may indicate that IBV could promote the propagation of H9N2 AIV 

(A/chicken/Iran/SH110/99(H9N2)) or stimulate the immune response (67). Else IBV and 

LPAIV co-infections have not been thoroughly studied but live attenuated IBV vaccine has 

been shown to interact with LPAIV H9N2 infection, leading to a more severe disease outcome 
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than with LPAIV alone (35,36). Co-infection of LPAIV A/mallard/MN/199106/99(H3N8) and 

NDV (mallard/US(MN)/AI06-978/2006) in ducks resulted in a higher number of cloacal swabs 

detected positive for LPAIV and a lower number of cloacal swabs detected positive for NDV 

(25). Co-infection of chickens and turkeys with NDV and LPAIV 

(A/turkey/VA/SEP/67/2002(H7N2) affected the replication dynamics of these viruses but did 

not alter clinical signs (19). ORT infection could lead to a higher mortality and economic losses 

in presence of H9N2 AIV in chicken (56). Co-infection of H9N2 influenza virus with S. aureus 

or A. paragallinarum enhances the replication of the virus in chickens, resulting in exacerbation 

of the H9N2 virus infection (42). Bacterial and viral infections cause huge economic losses in 

the form of morbidity and mortality of birds. Poor diagnosis, antibiotics and vaccination cost 

for the prevention or treatment of viral and bacterial infections (and emergence of antibiotics 

resistant bacteria) are major issues for poultry industry. The medical community has expressed 

concern that antibiotic use in food animals may promote the development of antibiotic-resistant 

strains of bacteria that could impact human health too (32). Antibiotic resistance is also an 

economic burden on the healthcare system. On the other hand, limiting the use of antibiotics in 

poultry farms may lead to an increase of bacterial infections, and also of co-infections, 

confirming the need of a better understanding of these complex interactions in vivo. 

As for LPAIV infections alone, the most common avian models for the study of viral and 

bacterial co-infections are chickens. Ducks, turkeys, quail, and partridges have also been used 

to address different research questions. One possible reason for most widely use of chicken as 

avian model may be their easy handling, availability, low price, and early maturity as compared 

with other avian models. In addition to this, chickens are also the most economically important 

(largest industry) type of poultry worldwide.  

The classical doses used for bacteria inoculation (Mycoplasma, E. coli) as described in literature 

are 106 to 109 colonies forming units (CFU). Clinical signs and lesions severity have been 

shown to increase in a dose dependent manner. Bacterial co-infections lead to more severe 

lesions when the bacterial were inoculated IN or via an aerosol route. In an experimental co-
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infection study with LPAIV H3N8 (A/mallard/Hungary/19616/07) and M. gallisepticum 

inoculated through aerosol spray, the authors showed that LPAI H3N8 virus alone did not cause 

any clinical signs but M. gallisepticum infection caused clinical signs, reduction of body weight 

gain and colonization of the inner organs. These parameters were more severe in the birds co-

infected with M. gallisepticum and LPAIV H3N8 than in the group challenged with M. 

gallisepticum alone. Co-infection with LPAIV H3N8 thus enhanced the pathogenesis of M. 

gallisepticum significantly (73,74). Barbour et al co-infected chickens IT or intra-thoracic with 

H9N2 LPAIV and E. coli. High and acute mortality was observed with the intra-thoracic 

inoculation route for E. coli (9,10).  

LPAIV co-infection with other viruses promotes replication of LPAIV, leading to increase the 

severity of clinical signs, mortality rate and gross lesions (35,67). However, these viruses can 

interfere during viral replication phase as reported in previous studies. França and colleagues 

documented higher shedding of LPAIV in cloacal swabs when mallards were co-infected with 

LPAIV and NDV on the same day. Conversely, marked reduction of NDV in cloacal swabs 

was observed during the study. At the same time, reduced LPAIV and NDV was observed in 

oropharyngeal swabs. However, Co-infection with LPAIV and NDV did not affect replication 

of LPAIV (H3N8) in intestine and bursa of fabricius. Viral interference during replication can 

be a possible reason for the decrease on NDV shedding in cloacal swabs and LPAIV may have 

reduced or inhibited NDV replication (25). Similarly, Costa-Hurtado and colleagues reported 

that co-infection of chicken and turkeys with LPAIV (H7N2) and NDV can affect replication 

dynamics of these viruses but did not affect clinical signs. This virus replication pattern was 

dependent on timings of inoculation and bird species, suggesting that co-infection with two 

different viruses can result in temporary cell receptor binding competition (19). During this 

study, chickens and turkeys were infected with NDV vaccine strain (LaSota) and a H7N2 

LPAIV (A/turkey/VA/ SEP-67/2002) simultaneously or sequentially three days apart. No 

clinical signs were observed in chickens co-infected with NDV and LPAIV while all turkeys 

showed mild clinical signs during co-infection. The replication dynamics of these viruses was 
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however affected by the co-infection: lower virus titers and fewer birds with virus replication 

were recorded, especially when LPAIV was followed by NDV. These results suggest that 

infection with a heterologous virus may result in temporary competition for cell receptors or 

competent cells for replication, most likely interferon-mediated, which decreases with time 

(19).  

Viral interference is a phenomenon in which a cell infected by a virus does not allow replication 

of a second homologous or heterologous superinfectant virus (22). Viral interference can result 

from different mechanisms including: competing by attachment interference therefore reducing 

or blocking of receptor sites for the superinfecting virus; competing intracellularly for 

replication host machinery; and virus-induced interferon interference. NDV and LPAIV 

replicate in cells where there are trypsin-like enzymes such as in the upper respiratory and 

intestinal epithelia and might compete for the same target cells or replicate in adjacent cells 

(79). Both NDV and AIV bind to sialic acid-linked glycoconjugates on host cells and may also 

compete for host cell machinery during viral replication (25,76). In addition, previous 

replication in the same site of another virus may affect replication by activating antiviral 

immune responses. Although the LaSota NDV strain is known to be a weak interferon inducer 

as part of their low virulent phenotype profile, local interferon production might still be able to 

interfere with LPAIV replication (23). In fact, previous studies in embryonated eggs showed 

that LaSota NDV could suppress growth of a H9N2 LPAIV, provided NDV was inoculated 

prior to LPAIV (28). Influenza virus induced interferons may be the other possible reason for 

the inhibited replication of NDV (43). Viral interference has also been suggested in other 

studies with influenza virus in human (H1N1). It was reported that increase in the proportion 

and number of rhinovirus can decrease of influenza virus diagnoses in human, suggesting that 

rhinoviruses may compete with influenza virus for receptor binding and replication (4). 

Bacterial and viral co-infections usually show synergistic effects and exacerbate clinical signs 

and lesions. No competition between pathogens is observed then. 

 



77 

 

Timing of co-infections 

In an attempt to put together the available methods reported in the literature for co-infections 

in experimental conditions, and mainly to see which time line may best fit field co-infections 

situations, we drew time arrows summarizing LPAIV and co-infecting bacteria experiments 

(Figure 1) as well as LPAIV and co-infecting viruses experiments (Figure 2). The studies in 

experimental conditions conducted so far reported either simultaneous infections (central parts 

of the Figures, in the arrows), or subsequent infections usually 3 days apart (bacteria or virus 

followed by LPAIV, LPAIV followed by bacteria or virus on the top or bottom panels of the 

Figures, respectively). The 3 days interval chosen between subsequent infections was pretty 

consistent throughout literature (9,19,42,35,73,74). Just five studies compared in parallel 

simultaneous and subsequent infections with similar experimental conditions. Kishada and 

colleagues, first studied LPAIV H9N2 and Avibacterium paragallinarum with simultaneous 

inoculation and Staphylococcus aureus infection followed by LPAIV H9N2 inoculation (42). 

The use of two different bacteria made a systematic comparison of the timing of co-infection 

difficult. Pan et al co-infected chickens with LPAIV H9N2 and ORT and showed that when 

ORT was inoculated before or at the same time as LPAIV H9N2, the disease outcome was more 

severe (56). LPAIV (H7N2 in chickens or H3N8 in mallard) and NDV experimental co-

infections have been more systematically studied (19,25). While minimal effect of the LPAIV 

and NDV co-infection was observed on a clinical point of view, altered shedding pattern was 

detected both in mallards and chickens, irrespective of the timing of the co-infection (19,25). 

When LPAIV and IBV live vaccine were both administered to chickens, the co-infection lead 

to more severe clinical signs and longer LPAIV shedding, again irrespective of the timing of 

co-infection (35). In the laboratory setting, the timing of co-infections does therefore not seem 

to play an essential role on pathogenesis. While common knowledge in virology associates co-

infections with a virus coming first followed by a bacteria, the timing in the field may actually 

rather be opposite with commensal bacteria that are there first and may become a problem when 

a virus super-infects the birds (14). Manheimia haemolytica, Gallibacterium anatis, 
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Pseudomonas aeruginosa have indeed been identified as commensal bacteria of the upper 

respiratory tract of poultry, while they may also be found in sick birds either in presence of a 

co-infecting pathogen or in difficult environmental conditions (3, 5, 48,71). 

 

SPF versus commercial birds for experimental infections 

In chickens, to avoid interference with other pathogens and in an attempt to “standardize” 

experiments, researchers usually inoculate SPF birds. The absence (or very limited supply) of 

SPF turkeys, quail and other poultry species makes it of course difficult: commercial birds are 

then used in experimental conditions. The SPF versus commercial bird (broiler, layer, or 

breeder) comparison for LPAIV infections (with or without complicating pathogens) has 

however never been properly investigated. The immune responses of two types of chickens 

have been compared to some extent in vaccine studies that aimed at understanding differences 

in vaccine protection in the laboratory and in the field (38,81,65,30). These studies show a 

better antibody response of SPF chickens than commercial birds likely due to the differences 

among genetic lines of chickens in antibody development.  

To our knowledge a single study compared SPF and commercial birds for LPAIV 

pathogenicity. Ladman et al., (44) indeed observed respiratory signs, airsacculitis, and 

microscopic lesions in the trachea and lung of broilers infected with LPAIV H7N2 but very 

rarely in SPF layers. Systemic (serum) antibodies were also detected earlier in broilers than in 

SPF layers. The authors suggested one rethinks the choice of bird type for LPAIV pathogenesis 

studies. To mimic the field situation commercial birds seem of course more appropriate also in 

experimental settings but care should be taken to control the health status of the birds. 

Vaccination history should also be respected to be closer to the farm situation. 

To study LPAIV pathogenesis in order to better understand disease outcome in the field thought 

should be given into the design of experimental settings. Depending upon the research question 

asked different protocols may be selected. In addition to the variables we have just reviewed: 

birds type, single or co-infections, timing, dose of infection(s), environmental and management 
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variables play a critical but poorly controlled role in the disease outcome in farms. Environment 

pollution can also play a very important role in disease outcomes in field conditions.  

Contaminated dust is a known source of respiratory pathogens, which is very difficult to 

reproduce in laboratory settings. One way to address the spread of respiratory pathogens with 

dust in experimental conditions is to inoculate birds by aerosol rather than intra-nasally or intra-

tracheally. In a clinical study, authors compared the 50% infectious dose (ID50) by aerosol and 

intranasal inhalations and showed a 100-fold lower ID50 in the first case (80). Access of virus 

particles to the deep air sacs is actually bypassed when birds are infected intra-nasally or 

tracheally. The use of aerosols for in vivo infections may help reduce the gap between the 

laboratory and the field. Temperature and humidity can now also be regulated (and brought 

closer to the farm conditions) in poultry isolators with relevant technicity. All these 

improvements in experimental conditions will contribute to bringing laboratory settings closer 

to the field situation but one should stay aware of the remaining gap between the two 

configurations and not overinterpret experimental results. 

 

Conclusion  

Taken together, the review of literature suggests that to study co-infections with LPAIV and a 

complicating pathogen in experimental conditions, using young (3-4 weeks old) birds, 106 

EID50 of virus and 106-9 CFU of bacteria per bird, IN, would most likely lead to clinical 

observations and would allow for better comparison of the findings with previously published 

studies. While using SPF birds (for chickens) makes comparison with published data easier, 

commercial birds with a carefully checked health status better reflect the field situation and 

may be even more susceptible to infections than their SPF counterparts. Further studies are 

warranted to really assess the cost-benefit of using commercial birds and to determine the 

adequate timing of the co-infection in relation to the field situations. Environmental factors 

(temperature, relative humidity, ammonia level, etc) should also be taken into account as they 
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definitely play a role in the field but have so far not been much looked at in experimental 

settings. 
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Figure 1. Time arrow of LPAIV and bacteria co-infections in experimental conditions. d: 

day, ORT: Ornithobacterium rhinotracheal, MG: Mycoplasma gallisepticum, SA: 

Staphylococcus aureus, AP: Avibacterium paragallinarum, LPAIV: low pathogenic avian 

influenza virus. 

Figure 2. Time arrow of LPAIV and avian virus co-infections in experimental conditions. 

d: day, LPAIV: low pathogenic avian influenza virus, IBV: infectious bronchitis virus, NDV: 

Newcastle disease virus.  
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Table 1: Summary of LPAIV infections in different avian models in experimental conditions 

Influenza virus strain Animals/age Infection 

dose (/bird) 

Infection 

route 

Main findings  References 

A/cx/Pakistan/UDL-01/08(H9N2) 3 week-old 

chicken 

(broiler and 

white leghorn), 

common quail, 

red jungle fowl 

(hen pullet) 

sparrow, crow 

(age not 

known) 

106.6 EID50 IN - efficient virus replication in all species except 

for crows 

- efficient direct contact transmission within a 

given species for all species except for crows 

- efficient broiler to sparrow transmission 

- higher virus shedding in quail than in other 

species 

(40) 

A/cx/shaanxi/01/2011 30-week-old  

SPF White 

Leghorn layers 

106   

EID50 

IN, IC, or 

IO 

-clinical signs of depression and respiratory 

distress  

-Efficient virus replication in magnum and uterus 

-severe gross lesions in uterus and magnum -

gradual decrease in egg production with 

deteriorated egg shell quality 

(63) 

A/cx/Shaanxi/11/2012 30-week old 

SPF White 

Leghorn layers 

O, IN  Efficient virus replication in magnum and uterus 

Significant tissue damage and appotosis in 

oviductal parts 

(83) 
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-Decreases expression of mRNA expression of 

IFN-α 

A/cx/CA/1255/02(H6N2) and 

A/cx/NJ/12220/97(H9N2) 

46 weeks-old 

SPF chicken 

(layer)  

 

 106 EID50 IN  

IC  

O 

- efficient H6N2 virus replication but poor H9N2 

virus replication 

- Efficient transmission of H6N2 but not of H9N2 

virus. Both  viruses can also infect chickens 

through other routes besides the IN route 

(58) 

A/cx/United Arab Emirates/99 

(H9N2) 

3 week-old 

chicken 

(broiler) 

 

108.8 EID50 O 

IN 

IT 

- efficient virus replication in lungs  

- little gross pathology  

- necrosis of parabronchial epithelium, oedema, 

and fibrin exudation in airways and air capillaries 

(severe pneumonia)  

(21) 

A/cx/Pakistan/UDL-01/08(H9N2) 3 week-old 

chicken  

(broiler) 

 

4 HA 

Units 

IV - mild clinical signs  

- gross and microscopic lesions mainly on lungs 

and kidneys 

 - IHC detection of viral antigen in kidney and 

lungs 

- virus affinity for respiratory and urinary systems 

(75) 

A/cx/Iran/SH-110/99(H9N2) 3 week-old 

chicken  

(broiler) 

 

106 EID50 IT - clinical signs: depression, puffing, face edema, 

conjunctivitis, ruffled feathers (2-4 dpi) 

- gross lesions in respiratory tract and kidneys 

(34) 
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A/cx/Lebanon/1/04(H9N2) 3 week-old 

chicken 

7 TCID50 IT - no mortality  

- low morbidity (<50%)  

- increased pathogenicity after virus passaging 

(higher  morbidity, higher gross and microscopic 

lesions)  

(68) 

A/cx/Chile/176822/02(H7N3) 

 

4 week-old 

chicken 

106 EID50 IN 

IV 

 

- after IV inoculation: mortality, nephrosis, 

interstitial nephritis and oedema 

- after IN inoculation: no morbidity or mortality  

- no gross pathologic and histologic lesions 

irrespective of inoculation route except the ceacal 

tonsils in IN inoculated birds 

(41) 

A/cx/California/1772/02(H6N2) 

 

6-8 week-old 

chicken 

107 EID50 

 

IN - efficient virus replication in all inoculated and 

contact birds 

- efficient transmission  

- higher respiratory than digestive virus shedding 

- no clinical signs but mild oedema and 

congestion of kidney and lungs at necropsy 

(87) 

A/mallard/ Delaware/415/05 

(H6N2), A/shorebird-environment 

/Delaware/251/05(H3N6), 

A/mallard/Maryland/1159/06 

(H5N1), A/mallard/Delaware/ 

418/05(H7N3) 

2 week-old 

chicken 

(broiler) and 

turkey  

 

106 EID50 IT 

IC 

- no clinical disease, gross lesions, or mortality 

with any tested virus in chickens or turkeys 

- replication of 

A/mallard/Maryland/1159/2006(H5N1) in the 

upper respiratory tract of turkeys 

(45) 
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- replication of 

A/mallard/Delaware/418/2005(H7N3) in the 

upper respiratory and intestinal tracts of turkeys 

and to a lesser extent of chickens 

- replication of A/shorebird-

environment/Delaware/251/2005(H3N6) in the 

upper respiratory and intestinal tracts of chickens 

A/Chile/3536/2009 (H1N1) 53 week old 

laying turkeys 

105.3 
 TCID50 IN, IC, 

IU 

-No clinical sign, lesion, virus shedding and drop 

in egg production was shown by turkeys 

inoculated through IN with pH1N1 

-Turkeys inoculated IU presented with mild 

diarrhea, drop egg production, lesions in 

reproductive tract, virus shedding in 

oropharyngeal and cloacal swabs 

-Turkeys inoculated by the IC route showed 

diarrhea, no lesions in reproductive tract, no effect 

on egg production and virus shedding in cloacal 

swabs only 

(57) 

A/qu/Hong Kong/G1/97(H9N2) 4 week-old 

turkey and 

Japanese quail 

 

103 to 106 

EID50 

PO 

IN 

- quail  more susceptible than turkeys to H9N2 

but with less sever clinical signs (quail can act as 

a silent reservoir for  H9N2) 

- efficient direct contact transmission in quail and 

turkeys 

(13) 
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A/cx/Hong Kong/G9/97(H9N2), 

A/qu/Hong Kong/G1/97(H9N2), 

A/qu/Hong Kong/A17/99(H9N2), 

A/Hong Kong/1073/99(H9N2), 

A/pigeon/HK/FY6/99(H9N2) 

adult quail, 

pigeon and 

chicken 

 

103 EID50 

(quail) 

106.5 EID50 

(chicken)  

106 EID50 

(Pigeon) 

 

PO, IN, 

O 

- no clinical signs in quail or chicken 

- higher virus shedding in respiratory tract than 

intestinal tract of quail  

- efficient transmission of A/Hong 

Kong/1073/99(H9N2) to contact quail  

- poor/no replication of all viruses in pigeon; no 

contact transmission in pigeons 

(33) 

A/anas platyrhynchos/Spain/1877 

/09(H7N2) 

8 week-old  

European quail  

 

106 EID50 IN - no clinical signs or pathology in inoculated and 

contact quail 

- efficient replication and transmission  

(12) 

A/cx/Iran/772/98(H9N2) 23 week-old 

chukar 

partridges 

(A.chukar) 

107 EID50 

 

O 

IN 

- clinical signs: coughing, sneezing, depression 

and anorexia  

- good virus replication and wide tissue tropism 

(52) 

A/Anas  crecca/Spain/1460/08 

(H7N9) 

9 week-old 

red-legged 

partridge 

(Alectoris rufa) 

106 EID50  IN - no clinical signs or histopathological lesions  

- only short-term viral shedding and 

seroconversion  

(11) 

A/cx/California/1772/02(H6N2) 

 

6-8 week-old 

chicken, 

8-12 week-old 

pekin ducks 

107 EID50 

 

IN - efficient virus aerosol transmission from 

chickens to chickens and quail; poor aerosol 

transmission from chickens to ducks 

(88) 
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and quail (7 

week old) 

A/ty/WI/66(H9N2), 

A/ty/MN/38391/95(H9N2), 

A/shorebird/DE/9/96(H9N2), 

A/cx/Beijing/1/94(H9N2), 

A/qu/Hong Kong/G1/97(H9N2) 

A/cx/Korea/323/96(H9N2), 

A/cx/Korea/006/96(H9N2), 

A/cx/Hong Kong/G9/97(H9N2), 

A/cx/Hong Kong/G23/97(H9N2),  

A/dk/Hong Kong/Y439/97 

(H9N2), and A/dk/Hong Kong/ 

Y280/97(H9N2) inoculated in 

chickens;  

A/cx/Hong Kong/G9/97(H9N2),  

A/qu/Hong Kong/G1/97(H9N2), 

and A/dk/Hong Kong/Y439/97 

(H9N2) inoculated in ducks 

3-12 week-old 

SPF white 

leghorn 

chicken and  

5 week-old 

Pekin white 

duck 

  

 

107 EID50 

(chickens) 

106 EID50 

(ducks) 

 

IV, PO, 

IT, or IN 

- efficient replication of all viruses in chickens 

and ducks  

- no clinical signs except with 

A/chicken/Beijing/1/94(H9N2) 

- up to 80% mortality with 

A/chicken/Beijing/1/94(H9N2) in chicken 

- increased susceptibility to 

A/chicken/Beijing/1/94(H9N2) with age 

- differential tracheal/cloacal shedding (virus-

specific)  

 

(31) 

A/dk/HK/702/79(H9N2), 

A/dk/HK/448/78(H9N2), 

A/dk/HK/366/78(H9N2), 

A/dk/HK/149/77(H9N2), 

4 week-old 

Japanese quail 

(Coturnix  

coturnix), 

5×106 EID50 IT, PO, 

IN 

- efficient replication of duck viruses in quail and 

ducks but not in chickens 

- higher replication in the respiratory than 

intestinal tract of quail  

(60) 
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A/dk/HK/86/76(H9N2), 

A/dk/HK/147/77 (H9N6), and 

A/qu/Hong Kong/A28945/88 

(H9N2) 

chicken (white 

leghorn), 

mallard and 

Pekin ducks 

 

- direct and aerosol transmission of 

A/duck/HK/702/79(H9N2) and A/quail/Hong 

Kong/A28945/88(H9N2) in quail; direct 

transmission only of A/quail/Hong 

Kong/A28945/88(H9N2) in chickens 

      

A/cx/MD/MinhMa/04(H7N2), 

A/mallard/OH/421/87(H7N8), 

A/pintail/MN/423/99(H7N3), 

A/ ruddy turnstone/DE/1538/00 

(H7N9), A/cx/NJ/15086-3/94 

(H7N3), A/ty/NY/4450-4/94 

(H7N2), A/cx/NY/3112-1/95 

(H7N2), A/cx/NY/12273-11/99 

(H7N3), A/cx/NY/30749-3/00 

(H7N2), A/guinea hen/MA/ 

148081-11/02(H7N2), 

A/cx/PA/9801289/98(H7N2), 

A/ty/VA/SEP-67/02(H7N2) 

4 week-old 

chicken  

2 week-old 

duck and 

turkey  

106 EID50 IT - good replication of all viruses 

- higher vial shedding in turkeys than ducks or 

chickens 

- higher pathogenicity in turkeys (severe clinical 

signs and mortality) 

- only 3 isolates in ducks and 6 isolates in 

chickens induced mild clinical signs without 

mortality   

 

(72) 

A/mallard/New Brunswick/1/06 

(H2N3), A/gull/Ontario/680-6/01 

(H13N6)  

 

22 week-old 

mallard duck 

 

108 EID50 

 

PO 

IT 

- no detectable clinical signs with either virus 

- replication of both viruses in lungs and air sacs 

until 3 dpi (locally extensive interstitial, 

exudative, and proliferative pneumonia) 

(20) 
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- replication of H2N3, but not H13N6 virus, in 

intestinal mucosa and cloacal bursa (no lesion) 

- higher shedding of H2N3 virus in cloacal than 

pharyngeal swabs 

A/mallard/MN/355779/00(H5N2)  

A/mallard/MN/182761/98(H7N3) 

A/mallard/MN/199106/99(H3N8) 

 

10-16 week-

old duck  

(mallards, red 

heads, wood 

ducks, 

laughing gulls) 

106 EID50 IN - no morbidity, mortality, gross and 

histopathological lesions in all type of ducks 

- efficient replication of all virus strains  

- H7N3 virus shedding in respiratory tract only  

- cloacal shedding of  H3N8 and H5N2 in 

mallards but oropharyngeal shedding in other 

ducks and gulls 

(18) 

A/mallard/Minnesota/199106/99 

(H3N8) 

4 weeks-old 

duck 

 

106.5 EID50 IN - efficient virus replication  

- no clinical signs but high virus shedding 

(15) 

LPAIV: low pathogenic avian influenza virus, cx: chicken, dk: duck, qu: quail, ty: turkey, EID: egg infectious dose, TCID: tissue culture 

infectious dose, IHC: immunohistochemistry, SPF: specific pathogen free, HA: hemagglutination, IC: intra cloacal, IN: intranasal, IO: intra-

oviduct, IP: intraperitoneal, IT: intra-tracheal, IV: intravenous, O: intraocular, PO: per orally.
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Table 2. Summary of LPAIV and bacteria co-infections in different avian models in experimental conditions 

Virus and bacteria strains Animal/age Infection 

dose 

Infection 

route 

Main findings  References 

A/mallard/Hungary/19616/07(H3N8),   

M. gallisepticum (strain 1226) 

2 week-old 

chicken 

(broiler) 

 

105 EID50 

(H3N8) 

2.1 ×107 

CFU (MG) 

Spray 

(aerosol) 

- no clinical signs with H3N8 alone but 

clinical signs and reduction of body weight 

with MG alone 

- more pronounced clinical signs and 

reduction in weight in co-infected birds than 

in MG only infected birds 

- reduced anti-mycoplasma antibody titers in 

co-infected versus MG alone infected 

chickens 

(73,74) 

A/cx/Iran/m.1/10(H9N2), 

R87-7/1387 (JF810491,ORT) 

3 week-old 

chicken  

(white leg 

horn layer) 

 

106 EID50 

(H9N2), 

1010 CFU 

(ORT) 

IT - more pronounced clinical signs, gross 

lesions and mortality in co-infected birds than 

in birds challenged with ORT alone  

- significantly higher HI titers against H9N2 

virus in co-infected than H9N2 infected birds 

(6) 

A/cx/Shandong/2011(H9N2), 

ORT/chicken/Shandong/2011 

 

3 week-old 

chicken 

(broiler) 

102 EID50 

(H9N2), 

10 LD50 

(ORT) 

 

IP and IN - general sickness in all co-infected groups 

(simultaneous infection or ORT followed by 

H9N2) 

- more severe clinical signs of respiratory 

disease, anorexia, and mortality observed in 

(56) 



101 

 

co-infected birds (simultaneous infection or 

ORT followed by H9N2) 

- no mortality but typical pneumonia with 

fibrinous airsacculitis, pericarditis, peritonitis 

and scattered areas of haemorrhage in the 

lungs in birds inoculated with H9N2 virus 

followed by ORT or H9N2 virus alone 

A/cx/Lebanon1/04(H9N2), 

E. coli (BVL strain) 

3 week-old 

chicken 

(broiler) 

 

2 HA units 

(H9N2) 

1.7 ×10 9 

1.7 ×10 6 

1.7 ×10 5 

1.7 ×10 4 

1.7 ×10 3 

CFU (E. 

coli) 

IT + intra 

thoracic  

- enhanced clinical signs and gross lesions 

with increasing E. coli doses, but more severe 

clinical signs and gross lesions in co-infected 

birds than single infections 

(9)  

 

A/dk/Beijing/40/04(H3N8), 

A/dk/Beijing/61/05(H3N8), 

 E. coli O78 

5 week-old 

chicken  

(white 

leghorn 

layer) 

 

106 EID50 

(H3N8) 

2.53 ×108 

(E. coli) 

IN 

IO 

IC 

O 

- no obvious signs of disease in chickens 

inoculated with virus or bacteria alone  

- depression, diarrhoea and mortality after 

inoculation with A/dk/Beijing/40/04(H3N8) 

and E. coli 

(62) 
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- slight depression but no mortality after 

inoculation with A/dk/Beijing/61/05(H3N8) 

and E. coli 

A/cx/aq-Y-55/01(H9N2), 

A/cx/aq-Y-135/01(H9N2), 

A/cx/Beijing/2/97(H9N2), 

A/tern/South Africa/61(H5N3), 

Staphylococcus aureus (Hyogo strain) and 

Avibacterium paragallinarum (HK-1 

strain) 

4 week-old 

chicken 

(white 

leghorn 

layer) 

 

107 EID50 

(influenza 

virus) 

2.2×105 

CFU (SA) 

3×103CFU 

(AP)  

IN - exacerbation of clinical signs and gross 

lesions for co-infected birds with H9N2 virus 

and  SA or HP compared with single infected 

birds 

- higher H9N2 viruses in co-infected than 

H9N2 only infected birds 

(42) 

 

LPAIV: low pathogenic avian influenza virus, cx: chicken, dk: duck, qu: quail, ty: turkey, E. coli= Escherichia coli, MG: Mycoplasma 

gallisepticum, ORT: Ornithobacterium rhinotracheal, SA: Staphylococcus aureus, AP: Avibacterium paragallinarum, EID: egg infectious dose, 

CFU: colony forming unit, HA: hemagglutination, IN: intranasal, IP: intraperitoneal, IT: intra-tracheal, O: intraocular IC: cloacal, IO: intra-oviduct
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Table 3. Summary of LPAIV and avian virus co-infections in different avian models in 

experimental conditions 

Viral strains Animal/age Infection 

dose 

Infection 

route 

Main findings  References 

A/ty/VA/SEP/67/02(H7N2)  

APMV1/cx/US(NJ)/LaSota/46 (NDV)   

3-4 week-old 

chicken 

(white 

leghorn 

layer) and 

turkey 

107 EI D50  

 

 

 

O 

IN 

- no clinical signs and mild clinical signs in 

chickens and turkeys, respectively, after 

single or co-infection 

- delay in virus shedding peak in co-infected 

chickens 

 (19) 

A/cx/Iran/SH-110/99(H9N2),  

IBV live vaccine (freeze-dried live 

attenuated vaccine, Mass type, H120 

strain) 

3 week-old 

chicken 

(broiler) 

 

106 EID50 

(H9N2), 

103 EID50 

(IBV) 

IN + 

spray 

- longer shedding period of H9N2 virus, 

more severe clinical signs and higher 

mortality in co-infected birds 

(35,36) 

 

A/mallard/MN/199106/99(H3N8) 

mallard/US(MN)/AI06-978/06 (NDV) 

 

5 week-old 

mallard 

 

106 EID50 IN - efficient AIV and NDV replication 

- higher digestive shedding of AIV for co-

infected birds 

(25) 

A/cx/Iran/SH110/99(H9N2) 

IBV vaccine strain IB 4/91  

3 week-old 

chicken 

(broiler) 

0.2 ml 

homogeni-

zed sample 

IN - exacerbated clinical signs, gross lesions, 

and mortality in co-infected birds 

- higher antibody titers against H9N2 virus in 

co-infected birds 

(67) 

 

LPAIV: low pathogenic avian influenza virus, NDV: Newcastle disease virus, IBV: infectious 

bronchitis virus, cx: chicken, ty: turkey, EID: egg infectious dose, IN: intranasal, O: 

intraocular 
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Abstract  

Respiratory diseases are responsible for major economic losses in poultry farms. While in most 

cases a single pathogen is not alone responsible for the clinical outcome, the impact of co-

infections is not well known, especially in turkeys. The purpose of this study was to assess the 

possible synergism between E.coli (O78) and low pathogenic avian influenza virus (LPAIV, 

H6N1), in the turkey model. Four-week-old commercial turkeys were inoculated with either 

LPAIV subtype H6N1, E.coli serotype O78 or both agents simultaneously or 3 days apart. We 

have established an experimental infection model of turkey poults with LPAIV using 

aerosolization that better mimics field infections. The birds were observed clinically and 

swabbed on a daily basis. They were killed at 4 and 14 days post single or dual inoculation and 

examined for gross lesions at necropsy. Samples of the trachea, lungs, air sacs were taken for 

histological and immunohistochemical analyses. Combined LPAIV/E.coli infections resulted 

in more severe clinical signs, were associated with higher mortality and respiratory organ 

lesions, in comparison with the groups given single infections (p<0.05). The time interval or 

the sequence between H6N1 and E. coli inoculation (none or 3 days) did not have a significant 

effect on the outcome of the dual infection and disease although slightly higher (p>0.05) 

respiratory signs were observed in turkeys of the E.coli followed by H6N1 inoculated group. 

Microscopic lesions and immunohistochemical staining supported clinical and macroscopic 

findings. Efficient virus and bacteria replication was observed in all inoculated groups. These 

findings all endorse our conclusions that E. coli and H6N1 exercise an additive or synergistic 

pathogenic effect in the reproduction of respiratory disease if given simultaneously or three 

days apart. 

 

Keywords: LPAIV, H6N1, E. coli, turkeys, aerosol, coinfection 
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Introduction  

Respiratory diseases are continuing to cause heavy economic losses in the poultry industry with 

increased mortality rates, drops in egg production, reduction of egg shell quality, decreased 

hatchability, increased condemnation rates at slaughter and increased medication costs (Van 

Empel & Hafez, 1999). They may be induced by various viral and bacterial agents, either alone 

or in combination. Respiratory tract infections increase the overall cost of production in terms 

of the provision of services of qualified veterinary personnel and the cost of medication for 

possible treatment (Anderson et al., 1978; Marien et al., 2005). It is therefore important to 

reduce if not eliminate, respiratory infections among poultry flocks to the barest minimum to 

have good production and maximize profit of the producer. Various pathogens may initiate 

respiratory disease in poultry, including a variety of viruses, bacteria, and fungi. Poultry 

respiratory diseases are known to be caused by many pathogens including Newcastle disease 

virus (NDV), Avian influenza virus (AIV), Infectious bronchitis virus (IBV), avian 

metapneumovirus (aMPV), Mycoplasma gallisepticum (M. gallisepticum), Mycoplasma 

synoviae (M. synoviae), Mycoplasma meleagridis (M. meleagridis), Mycoplasma iowae (M. 

iowae), Ornithobacterium rhinotracheale (O. rhinotracheale), Pasteurella multocida, 

Avibacterium paragallinarum, Bordetella avium, Chlamydophila psittaci and E. coli with 

associated significant economic losses to the industry (Van de Zande et al., 2001; Sid et al., 

2015). In chickens, respiratory disease caused by aMPV (Majó et al., 1997) or IBV (Smith et 

al., 1985; Cook et al., 1986; Nakamura et al., 1992) was more severe in the presence of E. coli. 

In turkeys, a few studies have been performed to elucidate the effects of the combined action 

of aMPV and other microorganisms (Cook et al., 1991; Naylor et al., 1992; Ganapathy et al., 

1998). 

Influenza infections in poultry are important because they impact animal health and agricultural 

trade, and control costs are very high. Low pathogenic avian influenza virus (LPAIV) infections 

are becoming major threat to poultry industry and limited protection is often provided by the 

inactivated vaccines (improper cold chain, dose given, etc are often involved). Effective culling 
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strategy is not widely implemented in developing countries during outbreaks of LPAIV so no 

effective strategy exists for controlling LPAIV infections. Co-infection of LPAIV with various 

other respiratory pathogens led to increasing severity of clinical signs and mortality rates as 

well as the virus shedding period in chickens (Kishida et al., 2004; Haghighat-Jahromi et al., 

2008; Barbour et al., 2009; Pan et al., 2012; Seifi et al., 2012; Stipkovits, Egyed, et al., 2012; 

Stipkovits, Glavits, et al., 2012; Azizpour et al., 2013). An important natural route of LPAIV 

infection in farms is inhalation of contaminated dust. Contaminated dust is a known source of 

respiratory pathogens, which is very difficult to reproduce in laboratory settings. One way to 

address the spread of respiratory pathogens with dust in experimental conditions is to inoculate 

birds by aerosol rather than intra-nasal or intra-tracheal route (Nicas et al., 2005; Guan et al., 

2013, 2015). The aerosol route of inoculation better mimics field infection and use of aerosols 

for in vivo infections may help reduce the gap between the laboratory and the field conditions.  

LPAIV subtype H6N1 has been isolated from commercial turkeys in France (Corrand et al., 

2012). However, the pathogenicity of the H6N1 isolates, alone or in combination with E. coli, 

had so far not been studied in turkeys in experimental conditions. E. coli infection is widely 

spread in poultry flocks ( reviewed in Guabiraba & Schouler, 2015). Therefore, we 

hypothesized that LPAIV H6N1 could be easily transmitted to poultry flocks that are infected 

with E. coli. In the field, LPAIV H6N1 and E. coli have shown exacerbation of clinical signs, 

mortality and severe production loss (Dr. Jean Luc Guérin personal communication). Whether 

LPAIV H6N1 and E. coli, merely act separately or in a synergistic or additive way remains to 

be elucidated. The aim of the present investigation was to develop a co-infection experimental 

model and to study the impact of co-infections of E. coli (O78) on LPAIV H6N1 infections 

under experimental conditions in turkeys. 

 

 

 

Materials and Methods  
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Turkeys  

Mixed sex turkey poults (non-specific pathogen free) were purchased from a local company 

(GFA de Pierpont, Castelnau de Montmiral, France) originating from M. synoviae and M. 

gallisepticum free parent stock. The birds were housed in animal biosafety level 2 (ABSL‐2) 

facilities. The turkeys were housed in high-efficiency particulate air (HEPA) isolators (Allen 

town, NJ, USA) with a volume of 0.68 m3 and fitted with a wire floor of 0.93 m2. Isolators were 

ventilated at a rate of approximately 40 m3h-1.The isolators were equipped with nipple drinkers. 

The birds received 16 hours of light per day, and had free access to food and water. The birds 

were fed with standard feed without antibacterial agents. Strict measures were adopted to avoid 

cross contamination and management procedures for all groups were identical. Before 

inoculation with E. coli (O78), oropharyngeal swabs were taken from all birds in all groups for 

bacteriological examination, and were negative for E. coli (O78). All birds tested serologically 

negative for influenza before the start of the experiment. Cotton swabs (MWE, medical wire, 

UK) were used to collect oropharyngeal swabs and placed in viral transport media as 

recommended (WHO, 2014). Experimentations were conducted in accordance with European 

and French legislations on Laboratory Animal Care and Use (French Decree 2001-464 and 

European Directive CEE86/609) and animal protocols approved by the Ethics Committee 

“Sciences et santé animale”, committee number 115. 

Bacteria and viruses 

E. coli strain (O78K80, X7122) was obtained from Professor Eric Oswald (Purpan Hospital 

Toulouse), originally isolated from chicken. A stock culture of E. coli strain was stored in 40% 

glycerol broth at - 80°C. E. coli stock culture was prepared by inoculating Mckonky’s agar with 

a loopful of reference E. coli strain culture and incubating at 37°C for 24 h. To prepare E. coli 

cultures for infecting birds by aerosol, 250 ml of DMEM was inoculated with colonies from 

Mckonky’s agar plate and incubated in an orbital shaker at 37°C for 22 to 24 h. A neutralizing 

medium (Hepes 25mM) was added just 1 hr prior to inoculation. The estimated colony count 
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was confirmed by plating 0.1 ml of 105 dilution of the final culture onto separate Mckonky agar 

plates. 

LPAIV H6N1 (A/turkey/France/09010-1/2009) was isolated from commercial turkeys in 

France (Corrand et al., 2012). Viruses used in this study were propagated in fertile SPF hen’s 

eggs (PFIE, INRA, Nouzilly, France). Viral titers were measured with standard plaque assays 

[plaque-forming units (PFU)/mL] as described previously (Matrosovich et al., 2006). 

Animal experiment 

Turkeys were individually identified and assigned into different groups. Turkeys were housed 

in different isolators and each isolator served as an experimental treatment group. Bacteria and 

virus were administered as aerosols at a dose of 109 colony forming units and 106 plaque 

forming units per isolator diluted in PBS, respectively. For the aerosol inoculations, a 

compressor nebuliser CompAir Pro NE C29 E (OMRON, Japan) was used to aerosolize the 

pathogens for 20 min. Turkey groups were as follows: (negative control) non infected group, 

(E. coli alone) Bacteria inoculated group, (H6N1 alone) Virus inoculated group, (E. 

coli+H6N1) group inoculated bacteria and virus simultaneously, (E. coli/H6N1) group 

inoculated with bacteria and followed by virus inoculation three days later, (H6N1/E. coli) 

group inoculated with virus and followed by E. coli inoculation three days later. The 

experimental setup is summarized on Fig.1. Experimentations were conducted in two batches 

for animal facilities space constraints. 

Clinical examination and sampling 

Throughout the experiment the birds were monitored at least once a day to evaluate the clinical 

signs they may display. We paid attention to any kind of pathology but especially to disorders 

of the respiratory system (head swelling, nasal discharge, sneezing, tracheal rales, coughing, 

and difficult breathing). A scoring system was used to evaluate the severity of clinical signs. 

Each clinical sign was scored by the following scale: 0, no sign; 1, mild or slight; 2, moderate; 

3, severe. The mean clinical score was based on the sum of clinical scores for each sign divided 
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by the number of birds in each group at each observation time as previously described (Jirjis et 

al., 2004).  

Macroscopic and microscopic lesions examination 

Birds were euthanized using an intracephalic injection of' pentobarbital sodium (Anpro 

Pharmaceutical, Arcadia, CA) at 4 and 14 days post-infection (dpi). Necropsy was performed 

immediately after the birds were euthanized. The presence of pathologic lesions was examined. 

The lesions of the trachea were scored as follows: 0, no redness of mucosal membrane and no 

mucus; 1, reddish mucosal membrane, congestion, and small amount of mucus; 2, intensive 

redness, congestion of mucosal membrane, and significant amount of mucus. The lesions of the 

lungs were scored as follows: 0, no lesions; 1, mild congestion and no fibrinous exudate; 2, 

moderate congestion and small amount of fibrinous exudate; 3, severe congestion and 

significant amount of fibrinous exudate. Lesions of air sacs were scored grossly for severity. 

Briefly, all air sacs were scored together, all on a scale of 0 to 3: 0, no lesions; l, cloudy air sac 

walls; 2, thickened air sac walls and small amounts of serofibrinous exudates; and 3, thickened 

air sac walls and meaty in consistency, with large accumulation of fibrinous exudates. The sum 

of scores in one group was used for statistical comparison of the severity of the lesions between 

the groups. Trachea, lungs and air sacs samples were taken from each necropsied bird and fixed 

in 10% formalin for the determination of microscopic lesions. After fixation, tissues were 

routinely processed in paraffin blocks, sectioned at 3 µm and stained with haematoxylin and 

eosin for microscopic examination. Lesions were assessed histologically and graded as follwos: 

(-) no lesion, (+) light, (++) moderate or (+++) marked lesions as described previously (Corrand 

et al., 2012).  

Immunostaining was performed on paraffin-embedded sections of trachea with a monoclonal 

mouse anti-nucleoprotein Influenza A virus antibody (Argene, 11-030, pronase 0,05% retrieval 

solution, 10 min at 37 °C: antibody dilution 1/50, incubation overnight, at 4°C). The 

immunohistochemical staining was revealed with a biotinylated polyclonal goat anti-mouse 

Immuno-globulin conjugated with horseradish peroxidase (HRP) (Dako, LSAB2 system-HRP, 
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K0675) and the diaminobenzidine chromagen of the HRP (Thermo Scientific, TA-125-HDX). 

Negative controls comprised sections incubated either without specific primary antibody or 

with another monoclonal antibody of the same isotype (IgG2). Histopathological analyses were 

carried out by two veterinary pathologists certified by the European College of Veterinary 

Pathologists. 

Determination of Virus Shedding 

Buccal (B) swabs were collected daily from 1 to 7 days post virus inoculation to assess virus 

shedding in 1 mL of PBS containing 1% antibiotics (100 U/mL penicillin and 100 µg/mL 

streptomycin, Invitrogen) and kept at -80◦C until further used. RNA was extracted using the 

QIAamp viral RNA (Qiagen, Valencia, CA) and Macherey-Nagel viral RNA isolation kits 

(Macherey-Nagel, Düren, Germany) according to the instructions of the manufacturers. The 

virus titer of each sample was determined by using quantitative real-time reverse transcriptase 

polymerase chain reaction (qRT-PCR) targeting the influenza virus M gene (M52C 

5'CTTCTAACCGAGGTCGAAAG 3' and M253R 5'AGGGCATTTTGGACAAAKCGTCTA 

3') using QuantiTect® SYBR Green RT-PCR Kit (Qiagen, Hilden, Germany). A 250 bp 

fragment of M gene was amplified (Fouchier et al., 2000). The quantitative RT-PCR reactions 

were performed on a Light Cycler®480, Real-Time PCR system (Roche diagnostics, Germany) 

with the following program: 50◦C for 30 min, 95◦C for 15 min followed by 40 cycles of 94◦C 

for 10s and 60◦C for 40s. M gene copy number was calculated using a standard curve as 

described previous (Ducatez et al., 2016). The virus titer was represented by the mean ±SEM 

(Standard error of the mean) of the virus titer per mL of sample (log10 cDNA copies/ml). 

Determination of bacteria shedding 

Bucal swabs were collected in PBS 1 to 7 days post-infection for the determination of bacterial 

shedding. Swabs were vortexed and tenfold serial dilutions were inoculated in duplicate 

Meckonkys agar. After 24-48h of incubation at 37°C, viable counts were performed. Bacterial 

titres were expressed as log10 colonies forming units (CFU)/ml PBS solution.  

Serology 
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For detection of AIV antibodies, blood samples were taken at day 0 and day 14 post virus 

challenge for haemaglutination inhibition (HI) assays. The serological response to the influenza 

virus was assayed with the same virus batch as for challenge with the haemagglutination 

inhibition test using 8 haemagglutinating units. Sera were treated with receptor destroying 

enzyme (RDE) to remove non specific inhibitors as described previously (WHO, 2014). 1% 

chicken red blood cells suspension (v/v in PBS) was used. Serum titers of 1:10 or lower were 

considered negative for antibodies against AIV. 

Statistical Analysis 

Data was expressed as means ±SEM (standard error of the mean) and analyzed using the 

GraphPad Prism 6 software (GraphPad Software Inc., La Jolla, CA, USA). One way analysis 

of variance (ANOVA) including Bonferroni correction was performed to assess putative 

differences in virus shedding in oropharyngeal swabs, and in clinical signs and lesions at 

different time points in different groups. Differences were considered statistically significant 

when p < 0.05. 

Results  

Clinical signs  

Birds in the negative control group remained healthy and active throughout the experiment 

period and did not show any clinical sign. The turkey poults remained active and became alert 

upon clapping and tapping the walls of shed. Mild clinical signs (ruffled feathers, hunched 

posture and depression) were shown by the birds affected with colibacillosis. Infection with 

AIV H6N1 alone caused clinical disease with various respiratory signs including swollen 

infraorbital sinuses, snicking, open mouth breathing and frothy discharge in the mouth cavity. 

There was gradual loss of condition and dullness. The H6N1 and E. coli (O78) dual infection 

resulted in a higher morbidity and mortality than single infections with either agent (Fig. 2 and 

3). Survival rates were 52%, 58% and 78% in the H6N1/E.coli, E.coli+H6N1 and E.coli/H6N1 

groups respectively (Fig.3). The clinical symptoms in themselves were similar in nature to those 

caused by H6N1 alone, but they were more severe and persisted markedly longer. From 4 dpi 
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onwards, turkeys in the E.coli/H6N1 group showed slightly higher respiratory clinical scores 

in comparison with E.coli+H6N1 and H6N1/E.coli infected birds. However, general sickness 

and head swelling was more pronounced in turkeys of the H6N1/E.coli group than in turkeys 

of the E.coli/H6N1 and E.coli+H6N1 groups. The clinical signs were more severe in co-infected 

turkeys indicating a synergistic or additive effect between the pathogens. 

Macroscopic and Microscopic lesions  

No bird in the negative control group demonstrated body cavity lesions and all organs were 

normal in size, shape and consistency. Tracheas were lined with pseudostratified ciliated 

columnar respiratory epithelium with few goblet cells and varying numbers of mucoid glands. 

The lamina propria was one to three cells wide and no infiltrates were present. A few single 

granulocytes per section were present. Plasma cells were present in low numbers varying from 

5 to 30 plasma cells per section. The capillary area of parabronchi, infundibula and atria 

appeared open and aerated. The atrial septa consisted of a thin stroma lined with flat epithelium. 

In the capillary area predominantly erythrocytes, air capillary epithelium and endothelium were 

recognized; a few mononuclear cells were also present, mostly fibrocytes and macrophages. 

The wall of the cranial thoracic air sacs consisted of a thin layer of stroma covered with serosa 

of one cell thickness. On the respiratory side areas covered with columnar ciliated epithelium 

of the respiratory tract alternated with areas covered with flat epithelium. No oedema, infiltrates 

and follicles were present (supplementary Fig.1 and 2). 

Macroscopically, the pericardium, epicardium, and hepatic peritoneal sac were markedly 

thickened with caseous exudates in E. coli infected turkeys. Scoring of macroscopic lesions is 

summarized in Fig.4.  Mild hyperemia or congestion of lungs was observed. The air sac, 

peritoneum, mesentery, and gastrointestinal serosa had similar changes. In severely affected 

turkeys, there were adhesions between the pericardium and epicardium. Adhesions between the 

hepatic peritoneal sacs and the hepatic capsule were seen occasionally but those separated 

easily. The liver and spleen were moderately enlarged. The hock joint of one bird was swollen, 

and filled with yellowish exudates. At day 14 post infection, macroscopic lesions were milder 
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in severity than 4 dpi. In the trachea, slight hyperplasia of the epithelial cells and glandular cells 

with heterophilic and lymphocytic infiltrations in the lamina propria were noted. Epithelial cells 

of the air sac were hyperplastic, degenerate, and necrotic-resulting in erosion with fibrinous 

exudates. In the subepithelial tissue of the air sac, there was infiltration of heterophils, 

lymphocytes, and plasma cells with macrophages and fibroblasts. Loss of epithelial cells with 

fibrinous exudate and infiltration of heterophils, lymphocytes and plasma cells with 

macrophages and fibroblasts in subepithelial tissue. Lungs hardly showed any lesion except 

mild congestion and few localized granulomatous foci. Moreover, minimal or no lesions were 

observed at 14 dpi.  

On the other hand, in turkeys inoculated with influenza virus, lesions were confined to the lung 

and air sacs: diffuse and opacification (mild to moderate) of air sacs was reported in birds 4dpi 

and only a few birds showed slight airsacculitis at 14 dpi. Microscopic lesions consisted of 

proteinaceous fluid, fibrin, heterophils, macrophages and sloughed epithelial cells within 

parabronchi, atria, and infundibula. The main specific lesion was a focal to diffuse fibrino-

necrotic exudate covering the trachea, primary bronchi and intra-lung airways. These lesions 

were observed in all turkeys but with different severity levels. Spleen enlargement and 

congestion was also observed. The main histopathological lesions were observed in the trachea, 

bronchi, lung and air sacs (Table 1). These lesions consisted of a marked loss of cilia, 

hyperplasia of tracheal epithelium and infiltration of monocytes. A moderate exudative 

fibrinoleucocytic airsacculitis was also present. Atrial and infundibular epithelial cells were 

swollen, cuboidal in appearance and hyperplastic. There was an intense infiltration of the atrial 

and infundibular interstitium, surrounding air capillary beds, and the lamina propria of adjacent 

secondary bronchi with lymphocytes, macrophages, heterophils and plasma cells with many 

blood vessels cuffed with lymphocytes. By 14 dpi, the epithelium had returned to normal and 

small well-developed lymphoid nodules were present in bronchial lamina propria and the 

interstitium of the atria and infundibula. Similar gross and histopathological lesions were 



118 

 

observed for co-infected turkeys, however, the intensity of lesions were more severe in turkeys 

of these groups. 

In negative control turkeys, influenza nucleoprotein was not detected in air sacs, trachea or 

lungs. In influenza virus-inoculated poults at 4 dpi, influenza A nucleoprotein was occasionally 

to commonly detected within areas of pneumonia in most poults. The majority of positive cells 

were hypertrophied atrial and infundibular epithelial cells or mononuclear cells which 

morphologically resembled macrophages. In trachea and bronchi, a few respiratory epithelial 

cells had staining for nucleoprotein. In the air sacs, a few ciliated columnar and non-ciliated 

hypertrophied (cuboidal) epithelial cells had staining for nucleoprotein. On 6 dpi, nucleoprotein 

was detected in a similar number of poults and had a similar tissue distribution as seen on 4 dpi. 

However, the total number of positive cells and intensity of staining was decreased. At 14 dpi, 

influenza nucleoprotein was not detected in air sacs, tracheas or lungs. Results for 

immunohistochemical detection of influenza A nucleoprotein are reported in supplementary 

Table 1. 

Determination of virus shedding  

Efficient virus replication was observed in all virus inoculated groups. However, virus shedding 

pattern in the buccal swabs of influenza virus inoculated turkeys did not significantly differ 

between groups (p>0.05) except in turkeys in H6N1/E.coli group who showed significantly 

higher virus shedding than other group turkeys (p<0.05) at day 6 post-inoculation (Fig. 5A & 

5B). 

Determination of bacterial Shedding  

E. coli (O78) was not recovered from bucal swabs from any of the birds in the negative control 

group. The results of E. coli (O78) titrations of the bucal swabs of the remaining groups are 

shown in Figure 5C. Mean titres (log10 CFU/ml) for each experimental group are depicted. 

Bacteria shedding was slightly higher in co-infected groups however this difference was non-

significant (p>0.05). 

Serology 
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Serum samples collected pre-inoculation were all negative for avian influenza antibodies (HI 

titers <10). Moreover, serum samples collected at 14 dpi showed seroconversion against H6N1 

in all virus infected birds (320 ≤ HI titers ≤ 1280). 

Discussion  

Respiratory diseases are matter of great concern worldwide and these are often associated with 

confections (Watanabe et al., 1977; Sakuma et al., 1981; Yashpal et al., 2004) resulting in poor 

animal welfare, economic losses, and increased antibiotics consumption. It is well appreciated 

that upper respiratory tract viral infections in poultry are often complicated by more serious 

bacterial diseases. It is thought that certain pairings of organisms better complement each other 

than other potential pairings. Co-infections of poultry present a complicated clinical picture 

confusing the identification and diagnosis and unfortunately little is known on the interactions 

between co-infecting pathogens (Costa-Hurtado et al., 2014). Influenza virus is commonly 

thought of in this context along with other respiratory viruses and bacteria.  

Natural infections with AIV are more severe than experimental infections, suggesting that 

secondary agents or other factors play prominent role in the clinical disease process. Natural 

AIV/bacterial problems are expected to occur at the same time and have been reported in 

poultry (Pan et al., 2012; Pu et al., 2012), but the effects of such combinations on the health 

status of poultry is not well known. In the field, co-infections of AIV do occur with other 

respiratory pathogens but are not easily detected, and the impact of co-infections on 

pathobiology is unknown. The mixed AIV infections may provide increased virulence, posing 

a substantial risk to poultry and public health. The coinfection of E. coli and influenza viruses 

in poultry has been observed in field conditions. During the last decade, the outbreaks of H9N2 

influenza virus with severe clinical signs, high mortality (20-65%) and low production (up to 

75%) have been reported in commercial poultry farms (Nili & Asasi, 2002; Bano et al., 2003; 

Nili & Asasi, 2003; Swayne, 2008). Similarly, an outbreak of H9N2 influenza virus infection 

in chickens in Hong Kong (A/chicken/Hong Kong/739/94) was associated with coughing and 

respiratory distress in 75% of the birds, and with 10% mortality. Treatment with antibiotics 
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reduced the mortality rate, suggesting that bacteria may play a role in the exhibition of the 

clinical signs (Kishida et al., 2004). However, H9N2 viruses in domestic poultry cause mild 

clinical signs and respiratory diseases with low mortality (less than 5%). It is proposed that 

concurrent infection may play a key role in exacerbating mortality in chicken infected with 

H9N2 influenza virus (Haghighat-Jahromi et al., 2008; Pan et al., 2012; Seifi et al., 2012). It 

was speculated that severe clinical signs linked to AIV H9N2 infections in the field were, 

probably due to E. coli involvement (Bano et al., 2003). Similarly, these lesions were 

commonly reported in turkeys during the 1999 outbreak of H7N1 AIV in Italy in association 

with secondary bacterial pathogens such as E. coli, Riemerella anatipestifer and Pasteurella 

multocida (Capua & Marangon, 2000). 

In the present study, we tried to come as close as possible to field conditions in our experiments 

by choosing commercial turkeys and using aerosol route of inoculation. However, it is still 

difficult to reproduce field conditions in laboratory settings because many other factors 

contribute in the production of diseases such as dust, pollution, humidity, temperature, 

ammonia production, housing stress etc. 

Clinical signs and lesions were significantly more severe and persisted longer in co-infected 

turkeys than in birds infected with a single pathogen (p<0.05). Respiratory distress was slightly 

higher in turkeys inoculated with E.coli first and followed by H6N1 while co-infected turkeys 

showed more head swelling when H6N1 was inoculated first followed by inoculation of E.coli. 

However, this difference was found non significant (p>0.05). Similarly, mortality was 

significantly higher in co-infected groups. AIV H6N1 has a unique ability to form purulent 

exudate in the lower part of the respiratory tract which latter becomes thick and blocks 

respiratory passage leading to respiratory distress and ultimately death. There was no significant 

impact of E.coli and H6N1 inoculation sequence in co-infected groups on disease outcome. All 

inoculated turkeys in co-infected groups showed more or less similar clinical picture. 

Histopathological analysis supported clinical and gross findings. However, virus and bacteria 

shedding did not differ much between birds groups. Two hypotheses may explain this pattern. 
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First, the aerosol route of inoculation may have deposited pathogens in the lower parts of the 

respiratory tract in extensive amounts (parabronchi, air sacs) and may thus have led to excessive 

multiplication of pathogens along with purulent exudates in the lower rather than upper part of 

respiratory system. Purulent exudate could not be expectorated to the buccal cavity due to 

blockage of air passages with mucous plugs. We determined pathogens shedding in buccal 

swabs that actually reflect the pathogen shedding in the upper and not lower respiratory system. 

Secondly, we can assume that the severity of lesions may also be attributed to the innate 

immune response. 

Our experimental AIV H6N1 caused lesions are in agreement with field outbreak (Corrand et 

al., 2012). Inflammation and deciliation of the trachea, degeneration of the mucous gland cells 

and damage to the respiratory epithelium were likewise previously demonstrated (Corrand et 

al., 2012). We recently reviewed the literature on LPAIV and co-infecting pathogens in 

experimental conditions and our current results are also in agreement with the general finding 

of LPAIV + co-infecting bacteria studies: a more severe disease outcome (Umar et al., 2016). 

 

In conclusion, it was shown that the E. coli strain (O78) and H6N1 alone are able to produce 

mild respiratory infection through adhesion and colonization of the respiratory tract, but without 

each other help do not induce severe respiratory disease and mortality in suspected turkeys. The 

results obtained in the present study clearly indicate the occurrence of marked synergistic or 

additive effects between two distinct respiratory pathogens important in poultry. The 

established E. coli (O78) single and AIV/E. coli dual infection models can be used to further 

investigate the mechanism of E. coli colonization and the AIV/E. coli synergy. Further, the 

AIV/E. coli dual infection model may be used to test preventive and curative measures to 

combat the respiratory disease. With consideration of the significant spread of E. coli infections 

as well as LPAIV in poultry, a surveillance of LPAI infection and regular diagnosis of E. coli 

infection and anti E. coli treatment of flocks may help to prevent development of severe clinical 

disease and economic losses due to such co-infections. Continuous surveillance of AI infection 
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and co-infections studies in experimental poultry models is warranted to find new strategies to 

control their circulation in domestic and wild poultry. The timing of co-infection would also 

require further systematic experimental studies to understand the role of 

prior/post/simultaneous inoculation in disease outcome, pathogenesis and virus shedding 

pattern. The present study contributes to the unravelling of the multi-factorial respiratory 

disease complex in turkeys, illustrating that the outcome of AIV infection in acutely E. coli 

predisposed turkeys is aggravated, compared to single AIV infected turkeys. Clarifying the 

interaction mechanisms between the different pathogens will allow a more precise diagnosis 

and a better treatment, reducing not only economical complications of respiratory diseases, but 

also the zoonotic risk.  
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Table 1: Summary of microscopic lesions and their intensity 

 

Tissue  Elementary 

lesion  

Lesion intensity 

Negative 

control 

E.coli 

alone 

H6N1 

alone 

E.coli+H6N1 H6N1/E.coli E.coli/H6N1 

 

 

 

Trachea 

primary and 

secondary 

bronchi 

Tracheitis and 

bronchitis 

with: 

- necrosis and 

exfoliation of 

the superficial 

mucosal 

epithelium 

- -+ + ++ ++ + 

- regenerative 

epithelial 

hyperplasia 

- - + ++ ++ ++ 

- squamous 

epithelial 

metaplasia 

- - + ++ +++ ++ 

- inflammatory 

cellular 

infiltrates in 

the lamina 

propria: 

    Heterophils 

     

mononuclear 

cells: 

lymphocytes, 

macrophages 

- -+ + ++ ++ ++ 

- accumulation 

of 

fibrinoleucocyt

ic exudate in 

the 

lumina 

- - + +++ +++ ++ 

Pulmonary 

parenchyma 

(from 

parabronchi to 

respiratory air 

capillaries) 

Focal 

extensive 

inflammatory 

lesions from 

injured 

bronchi with: 

 

- - + ++ ++ ++ 

accumulation 

of necrotic 

cells and 

fibrinous 

material 

- - + ++ ++ + 

oedema -  + +++ ++ + 

inflammatory 

cellular 

- - + ++ ++ ++ 
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infiltrates in 

parabronchi 

and atria: 

      Heterophils 

     

mononuclear 

cells: 

lymphocytes, 

macrophages 

Air sacs Airsacculitis 

with: 

- congestion 

and oedema 

- + + ++ ++ ++ 

- accumulation 

of fibrinous 

material or 

fibrinoleucocyt

ic 

exudate 

- ++ + +++ ++ ++ 

- inflammatory 

cellular 

infiltrates: 

     Heterophils             

mononuclear 

cells: 

lymphocytes, 

macrophages 

- + + ++ +++ + 

- presence of 

bacteria 

- + + ++ ++ + 

 

- = no lesions, + = slight or mild lesions, ++ = moderate lesions, +++= marked or severe 

lesions 
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Table 1 (supplementary): Average distribution of Nucleoprotein antigen of AIV in different 

respiratory tissues of infected turkeys.  

Group  Tissue  4 dpi 14 dpi Predominant 

cell types 

Associated lesions 

H6N1 alone Trachea  ++ +- Respiratory 

epithelium 

Subacute trachitis (focal, 

moderated to marked 

heterophils accumulation 

, epithelial hyperplasia 

Lungs ++ +- Respiratory 

epithelium, 

Goblet cells 

Severe, subacute 

bronchitis (edema, loss 

of epithelium, exudates, 

infiltration of 

heterophils) 

E.coli+H6N1 Trachea  ++ + Respiratory 

epithelium, 

Goblet cells 

Focal slight subacute 

trachitis 

Lungs +++ + Respiratory 

epithelium 

Severe subacute 

bronchitis, mono nuclear 

cells, heterophils, edema 

exudates,( 

fibrinomucotic with 

edema) 

E.coli/H6N1 Trachea  +++ + Respiratory 

epithelium, 

Goblet cells 

Acute trachitis with 

minimal intensity, loss of 

cilia for some cells, a 

few heterophils 

Lungs +++ ++ Respiratory 

epithelium 

Marked acute 

bronchitis,fibrinonecrotic 

exudates in lumen, 

edema, heterophils, 

mononuclear cells 

H6N1/E.coli Trachea  ++ 

 

+ Respiratory 

epithelium, 

Goblet cells 

Acute trachitis with 

minimal intensity, loss of 

cilia for some cells, a 

few heterophils 

Lungs ++ 

 

++ Respiratory 

epithelium 

Moderate subacute 

bronchitis,fibrinonecrotic 

exudates in lumen, 

edema, heterophils, 

mononuclear cells 

 

- = no positive cells; + = single positive cells; ++ = scattered groups of positive cells; +++ = 

widespread positivity. dpi, days post‐inoculation
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Figure legends:    

Fig 1: Experimental setup of the coinfection study 

Turkey groups: Negative Control: PBS inoculation only. E.coli alone: E.coli inoculation only. 

H6N1 alone: H6N1 virus inoculation only. E.coli+H6N1: Simultaneous inoculation of E.coli 

and H6N1. E.coli/H6N1: E.coli inoculation followed by H6N1 virus inoculation. H6N1/E.coli:  

H6N1 inoculation followed by E.coli inoculation. *Blood samples collection for serology 

 

Fig 2: Clinical scores in groups of turkeys after inoculation with avian influenza virus (H6N1) 

or E. coli (O78) or a combination of both. Each respiratory clinical sign was scored by the 

following scale: 0, no sign; 1, mild or slight; 2, moderate; 3, severe. Color code: black line and 

symbols: negative control (non infected) group; red line and symbols: E.coli alone group; green 

line and symbols: H6N1 alone group; purple line and symbols: E.coli+H6N1 group; blue line 

and symbols: E.coli/H6N1 group; orange line and symbols: H6N1/E.coli group. 
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Fig 3: Mortality (%) in different groups of turkeys after inoculation with avian influenza virus 

(H6N1) or E. coli (O78) or a combination of both. Color code: black line and symbols: negative 

control (non infected) group; red line and symbols: E.coli alone group; green line and symbols: 

H6N1 alone group; purple line and symbols: E.coli+H6N1 group; blue line and symbols: 

E.coli/H6N1 group; orange line and symbols: H6N1/E.coli group. 
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Fig 4:   Scores of macroscopic lesions in trachea, lungs and airsacs of turkeys challenged with 

E. coli (O78) and AIV H6N1 singly or in combination. Color code: black line and symbols: 

negative control (non infected) group; red line and symbols: E.coli alone group; green line and 

symbols: H6N1 alone group; purple line and symbols: E.coli+H6N1 group; blue line and 

symbols: E.coli/H6N1 group; orange line and symbols: H6N1/E.coli group. 
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Fig.5:  Virus and bacteria shedding pattern in buccal swabs in coinfection study (A) Virus 

shedding in co-infection study 1 showing non significant virus shedding pattern (p>0.05); (B) 

Virus shedding in co-infection study 2 showing non significant virus shedding pattern except 

in H6N1 then E.coli group at 6 dpi (p<0.05); (C) E.coli (O78) titres (log10 CFU/ml) in buccal 

swabs collected at different time points after E.coli (O78) inoculation. Different groups showing 

non significant bacteria shedding (p>0.05). Color code: black line and symbols: negative 

control (non infected) group; red line and symbols: E.coli alone group; grey line and symbols: 

H6N1 alone group; orange line and symbols: E.coli+H6N1 group; blue line and symbols: 

E.coli/H6N1 group; green line and symbols: H6N1/E.coli group. 

 

 

Supplementary Figure legends 

 

Suppl. Fig. 1: Macroscopic pathologic lesions of experimentally infected turkeys. Walls of 

abdominal airsacs are thin, transparent and clear and there is no accumulation of exudates while 

airs sacs in infected turkeys are thick, cloudy and showing presence of fibrinous exudates 

(arrow). Similarly, lungs of negative control turkeys showing normal appearance without 
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exudates and pneumonia while lungs of virus infected turkeys showing edema, pneumonia and 

presence of thick mucus plug in bronchi (arrow). 

 

Suppl. Fig. 2: Trachea, lungs and air sacs of turkeys in single or co-infected groups at 4 dpi 

(Haematoxylin and eosin stain, bar = 50 µm). Normal tracheal mucosa with pseudostratified 

columnar epithelium bearing cilia (arrow), lamina propria of only few cells thickness and 

mucous glands while trachea in infected groups showing epithelial cells with irregular 

morphology, loss of cilia, sloughed off respiratory epithelium and in the lamina propria 

inflammatory cellular infiltrate of several tens of cells in thickness is present (arrow). Lung 

tissue sampled at 4 dpi in negative control turkeys showed normal appearance (Haematoxylin 

and eosin stain, bar = 50 µm) with open and aerated parabronchi, atria and infundibulum (arrow) 

while infected lungs showing pneumonia with heavy infiltration of inflammatory cells in the 

lamina propria of bronchi along with edema and presence of fibrinous exudates. Air sac 

sampled at 4 dpi in negative control turkeys showing normal histological structure of air sacs 

(Haematoxylin and eosin stain, bar = 50 µm) with columnar respiratory epithelium bearing cilia 

and serosa of one cell thickness while air sacs in infected groups showing  thick infiltrated air 

sacs with edema and presence of fibrinous exudates (arrow). 
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Suppl. Fig. 3: Distribution of nucleoprotein antigen in positive tissues of a turkey co-infected 

with E.coli and H6N1 simultaneously (4 dpi). (A) Positive staining in nucleus and cytoplasm 

of epithelial cells in trachea; (B) Positive staining in nucleus and cytoplasm of epithelial cells 

in lungs (IHC). 
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Abstract 

Background: Viral diseases are a huge concern for poultry farmers in Pakistan. Multiple 

common viral respiratory diseases (CVRDs) cause huge economic loss in poultry industry. 

Incidence of CVRDs is not clear in many countries including Pakistan.  

Results: Incidences of 5 chicken respiratory viruses: avian influenza virus (AIV), Newcastle 

disease virus (NDV), infectious bronchitis virus (IBV), avian metapneumovirus (aMPV) and 

infectious laryngotracheitis virus (ILTV) was assessed in Pakistanis commercial farms with 

respiratory problems from 2014 through 2016. While AIV and NDV were very frequently 

detected (in 16 to 17% of the farms), IBV and aMPV were rarer (detected in 3 to 5% of the 

farms) and ILTV was not detected. We characterized H9 viruses of the G1 lineage, genotype 

VII NDV, GI-13 IBV, and type B aMPV strains with very little genetic variability in the 2 years 

study period. Co-infections with AIV and NDV were common and NDV was detected despite 

the use of vaccines: control measures to limit the virus burden in chicken flocks are discussed.  

Conclusions: Our data showed that the above mentioned respiratory viruses were the most 

important causes of respiratory disease in commercial poultry in Pakistan. The predominance 

of H9 infection indicates a need for continuous monitoring of AIV among avian species and the 

awareness against public health risk.  Further studies are necessary to assess circulating strains, 

economic losses caused by infections and coinfections of these pathogens, and the costs and 

benefits of countermeasures. Furthermore, farmers need to be educated about the use of 

vaccines against these pathogens. 

Key words: Chicken respiratory viruses, molecular epidemiology, chicken, Pakistan, avian 

influenza virus, infectious bronchitis virus, Newcastle disease virus, avian metapneumovirus 

List of Abbreviations: aMPV=avian metapneumovirus; AIV=Avian influenza virus; 

CVRD=common viral respiratory diseases; DNA=deoxyribonucleic acid; dNTPs= 
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deoxynucleoside triphosphate; HA= Haemagglutination; IB= infectious bronchitis; 

IBV=infectious bronchitis virus; ILTV= infectious laryngotracheitis virus; ND= NewCastle 

disease; NDV= NewCastle disease virus; OP= oropharyngeal; PBS=phosphate buffer saline; 

PCR=Polymerase Chain Reaction; RNA=ribonucleic acid; SHS=swollen head syndrome



141 

 

Background 

Commercial poultry in Pakistan was established in 1963 representing one of the largest agro 

based segment of Pakistan economy having an investment of more than 7 billion US dollars. It 

contributes about 1.3 percent to national GDP (Gross Domestic Product), and its share in 

agriculture and livestock is 6.1% and 10.8%, respectively. Furthermore, about 28% of total 

meat produced in the country is poultry [1]. According to a survey from the Pakistan Poultry 

Association, there are over 25,000 commercial poultry farms of layer, broiler and breeder birds 

in the country with 722.39 million broilers, 39.46 million layers and 10.19 million breeders, 

producing 1,220 million kg of chicken meat and about 10,000 million eggs annually [2]. In the 

past, small scale regional studies on surveillance of poultry diseases have been conducted in 

relation to seasons and region, indicating the huge economic impact of viral diseases [3–5]. 

Consistent outbreaks of viral diseases in the field with huge morbidity and mortality have been 

reported recently [6–8]. Pakistan poultry industry is growing continuously, providing numerous 

opportunities for the spread of multiple common viral respiratory diseases (CVRDs) such as 

Newcastle disease (ND), infectious bronchitis (IB), swollen head syndrome (SHS), infectious 

laryngotracheitis (ILT)  and low pathogenic avian influenza (LPAI) infections caused by 

Newcastle diseases virus (NDV), infectious bronchitis virus (IBV), avian metapneumovirus 

(aMPV), infectious laryngotracheitis virus (ILTV) and avian influenza virus (AIV), 

respectively [5,9–11]. These are highly contagious diseases of poultry, distributed worldwide 

and they have serious economic impacts on the poultry industry. The causative agents of these 

diseases affect chickens of all ages except ILTV, which normally does not affect chickens 

before three weeks of age. These pathogens interact with bacterial agents such as Escherichia 

coli, Bordetella and Pasteurella, resulting in morbidity in the infected chickens [12]. The 

continuous emergence of new virulent genotypes from global epidemics and the frequent 

changes observed in the genomic sequence of these viruses sometimes lead to ineffective 
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diagnostic and control measures. Outbreaks of some of CVRDs such as IB and SHS are not 

reported to the ministry of livestock and poultry production. Consequently, the distribution 

pattern of such chicken diseases is not clear in Pakistan. Moreover, some CVRDs, such as LPAI 

(H9N2) infections are of great significance to public health [13]. Therefore, it is important to 

investigate the distribution pattern of CVRDs in different regions and types of chicken flocks 

to develop scientific and risk based prevention measures of poultry diseases.  

The aim of this study was to detect and to characterize chicken respiratory viruses in 

commercial poultry in Pakistan, which is the first step necessary before control measures can 

be implemented. Five major chicken respiratory viruses were looked for: AIV, NDV, IBV, 

aMPV and infectious laryngotracheitis virus (ILTV). 

Methods 

Samples collection 

Between July 2014 and January 2016 a total of 89 commercial poultry farms (broiler and layers) 

from different locations in Pakistan were sampled. Sampling area was chosen on the basis of 

poultry population: the selected sampling area is the main Pakistan poultry production region 

(with more than 50% of the country’s poultry farms). Oropharyngeal swab or tissue impression 

smear (trachea, lungs) were applied directly to Finders Technology Associates (FTA®) 

sampling cards (Whatman, Inc., Clifton, NJ) from birds showing respiratory signs and allowed 

to air dry, and kept at 4°C until further processing. Age, flock size and health status are 

summarized in Table 1. For each flock, 1 or 2 pools of 10 swabs were spotted on each FTA 

card (one sample number refers to a pool of 10 swabs from symptomatic birds in a given flock, 

Table 1) in order to detect a prevalence ≥0.14 to ≥0.28% for each virus per flock (for flocks of 

10000 birds to 2500 birds with 95% confidence level). According to the farmer’s information, 

some of the farms were vaccinated against Newcastle disease, infectious bursal disease and/or 
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infectious bronchitis but none of the farms visited vaccinated against aMPV and ILTV (Table 

1). 

RNA isolation  

Punches from FTA cards were incubated at 4°C for 24 hours in 1 mL of Phosphate buffer saline 

(PBS). Viral RNA and DNA from swabs were extracted using the QIAamp® viral RNA 

isolation kit (Qiagen Germany) according to the instructions of manufacturer. RNA/DNA was 

eluted in 50μL elution buffer and stored at −80°C until further use.  

Polymerase Chain Reactions (PCR) 

After extracting RNA, complementary DNA was generated for the RNA viruses from 5 µL of 

RNA using RevertAid first strand cDNA synthesis kit (RevertAid First Strand cDNA Synthesis 

kit, ThermoFisher Scientific, Carlsbad, CA) following the manufacturer’s protocol. Briefly, 

5μL of total RNA was mixed with random hexamers as primer (0.3 μg/μL) and incubated for 5 

min at 65°C. Then, 4μL of 5x reaction buffer (ThermoFisher Scientific, Carlsbad, CA), 0.5 μL 

of RNase Out (Life Technologies, Carlsbad, CA), 2 μL of 10 mmol/L deoxynucleoside 

triphosphate (dNTP) solution (Finnzymes, Espoo, Finland), and 1 μL of RevertAid reverse 

transcriptase (ThermoFisher Scientific, Carlsbad, CA) were added to this mixture at the same 

time. The reaction volume was completed to 20 μL with distilled water. The RT reaction was 

performed at 25°C for 10 minutes, followed by 42°C for 60 minutes and finally 70°C for 10 

minutes. cDNA was used as the template for PCR amplification. The primers and PCR 

conditions used for the detection of NDV, IBV, aMPV (types A and B), ILTV, and AIV have 

been listed in Table 2. Two different Taq DNA Polymerases were used in this study (Qiagen 

Taq DNA polymerase, Germany and Kapa biosystems, Inc. MA). All programmed cycling was 

performed in a GeneAmp PCR system 9700 thermal cycler (Applied Biosystems, USA). PCR 

amplicons were analyzed in a 1.5% agarose gel (Ultrapure, Invitrogen, Merelbeke, Belgium), 

containing nucleic acid stain (SYBR® Safe DNA gel stain, ThermoFisher Scientific, Carlsbad, 
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CA) using 1×TBE as electrophoresis running buffer. Bands are compared to a commercially 

available 100 bp ladder (Bioline HyperLadder™ 100bp) and a positive control. 

Sequencing  

PCR products were purified (NucleoSpin®Gel and PCR Clean-up kit, Macherey-Nagel, Düren, 

Germany) according to manufacturer’s instructions. Purified products were quantified with 

Qubit® 2.0 fluorometer (ThermoFisher Scientific, Waltham, CA). Ten ng DNA were used for 

sequencing in both directions with the Big Dye Terminator v.3.1 cycle sequencing kit (Applied 

Bio-systems) on a capillary sequencer (model 3100 avant, Applied Bio-systems) using the PCR 

primers as sequencing primers. In case of nucleotide ambiguity, sequencing was repeated. 

Sequences generated in the present study were submitted to the EMBL/GeneBank database 

under the accession numbers LT599493 to LT599497. 

 

Data analysis and phylogeny 

Assembly and analysis of sequence data were conducted using the BioEdit Software version 

5.0.9 [14]. This program was also used to read the sequencing electrophoregrams and to exclude 

nucleotide ambiguity. To ensure the reliability of sequences, forward and reverse sequences 

were aligned with ClustalW [15]. Phylogenetic analysis and tree construction were generated 

using the maximum likelihood method with 500 bootstrap replicates with MEGA software 

Version 5.05 program [16], and bootstrap values above 50 were labelled on major tree branches 

for reference. The nucleotide sequences of partial segment of the S1, G, HA, and F genes of 

IBV, aMPV, AIV, and NDV, respectively were compared with the first 10 blast hits sequences 

and reference sequences of the same genes from GenBank. Recent classifications for NDV and 

IBV genotypes were used [10,17]. 

Results  

Virus prevalence and co-infections in Pakistanis farms 
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Samples were screened for viral respiratory pathogens nucleic acids in Pakistan within the 

commercial broiler and layer hen populations. We found that the viral respiratory diseases are 

common even though vaccines are being used on short scale in the country. In total, 161 pools 

samples from 89 flocks were collected during 2014-2016 from different areas of Pakistan. 

Among these flocks, 15 flocks (16.8%) were positive for AIV (H9), 14 flocks for NDV (15.7%), 

4 flocks with IBV (4.4%), and two flocks with aMPV (2.2%). No ILTV positive sample was 

detected in our study. A map of Pakistan with collection sites and prevalence for the different 

chicken viruses tested is presented on Figure 1. Co-infections were common for AIV and NDV 

(9 AIV/NDV co-infected flocks) but less common for the other tested chicken viruses (Table 

1). Briefly, 9 flocks (6,21,23,38,41,42,66,67,68) were found positive for AIV (H9) and NDV 

coinfections and NDV+aMPV, AIV+aMPV and NDV+IBV coinfections were detected only in 

flock number 69, 70 and 80  respectively. 

Molecular epidemiology of avian influenza virus in Pakistan 

Twenty-two of the 161 samples collected were AIV positive by PCR. Partial HA sequences 

were obtained for 19 Pakistanis strains; they were all identical but one and all clustered with 

H9 influenza viruses. A/chicken/Pakistan/17/2014 and A/chicken/Pakistan/74/2015 were 

selected as representative sequences of 2014-2016 Pakistanis samples. They clustered with G1-

like viruses and were closely related to strains from Libya, Tunisia, Saudi Arabia, and Pakistan 

collected from 2005 through 2015 (Fig 2). 

Molecular epidemiology of Newcastle disease virus in Pakistan 

Nineteen of the 161 samples collected were NDV positive by PCR. A total of 9 partial F gene 

sequences were phylogenetically compared with representatives of the 18 known genotypes of 

APMV-1 circulating worldwide. Phylogenetic analysis was based on the full F gene sequence 

for reference viruses and a 280 nucleotide (nt) sequence of the Pakistanis APMV-1 F gene (nt 

267-545) obtained with primers FIP1 and FIP2 (Table 2). The 9 Pakistani NDV sequences were 
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identical and NDV/chicken/Pakistan/11/2014 was thus included in the analysis as a 

representative sequence. Deduced amino acid sequences of the F protein cleavage site of 

Pakistanis NDV strains, GRRQKR*F (aa 111-117), was indicative of a high virulence for these 

viruses. In the phylogenetic tree, NDV/chicken/Pakistan/11/2014 clearly clustered with 

sequences of genotype VII viruses (supported by a 100 bootstrap value, Fig 3).  

Molecular epidemiology of infectious bronchitis virus in Pakistan 

Eight of the 161 samples collected were IBV positive by PCR. A total of 8 partial S1 gene 

sequences were phylogenetically compared with representatives of the 32 distinct viral lineages 

known genotypes of IBV circulating worldwide. Phylogenetic analysis was based on the full 

S1 gene sequence for reference viruses and a 700 nucleotide (nt) sequence of the Pakistanis 

IBV S1 gene (nt 1-700) obtained with primers CK2 and S15 (Table 2). As our 8 Pakistanis IBV 

sequences were identical, we selected γCoV/chicken/Pakistan/142/2015 as a representative 

strain. It clustered with genotype 1 lineage 13 viruses, previously called 793/B or 4/91 

genotype, and this grouping was supported by a very high bootstrap value (100) (Fig 4). 

Molecular epidemiology of avian metapneumovirus in Pakistan 

Four of the 161 samples collected were aMPV positive by PCR. A total of 4 partial G gene 

sequences were obtained, all identical, and aMPV/chicken/Pakistan/107/2015 (representative 

Pakistani sequence) was phylogenetically compared with representatives of the 4 known 

genotypes of aMPV (A to D). It clustered with aMPV type B viruses (Fig 5). 

Discussion  

Viral infections of poultry cause considerable economic losses and respiratory viruses have 

been frequently reported as a primary or secondary pathogens of poultry worldwide [18]. Our 

work focuses on the incidences and molecular epidemiology of viral respiratory pathogens in 

Pakistan within the commercial broiler and layer hen populations. 
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AIV have been frequently reported in Pakistan since 1994. LPAI H9N2, LPAI and HPAI H7N3 

and HPAI H5N1 viruses have been regularly sequenced and 2 LPAI H4N6 viruses from 2010 

and 2011 have been isolated and sequenced. LPAI H9N2 and HPAI H7N3 have been isolated 

from the same flock in 2003 [19] and since then frequent reassortment events between H7N3, 

H5N1 and H9N2 have been reported [13,20]. In the present study we detected LPAI H9 virus 

in several Pakistani farms from 2014 through 2016. As samples were collected on FTA cards it 

was unfortunately not possible to attempt virus isolation and limited nucleic acid quantities did 

not allow us for amplifying more than the HA2 part of the genomes. Further molecular 

characterization would be very interesting to confirm that only H9 was present in studied flocks, 

link clinical signs and genes constellations and to better understand the role of molecular 

determinants into field pathogenicity of currently circulating H9 viruses in unvaccinated flocks. 

Similarly, only partial gene sequences could be obtained for NDV, IBV, and aMPV. It enabled 

us to subtype/genotype currently circulating chicken viruses in Pakistan: genotype VII NDV, 

GI-13 (793B) IBV and genotype B aMPV, with no difference from the summer of 2014 through 

January 2016.  

Despite the extensive and unrestricted use of imported vaccines, NDV still remains the main 

poultry disease in both commercial and rural chickens of Pakistan [21]. Recently, NDV of 

genotype VII (VIIa, VIIb, VIIe, VIIf) were detected in poultry of Pakistan [22–24]. Similarly, 

Miller et al. [25] reported that viruses of sub-genotype VIIi have replaced NDV isolates of 

genotype XIII in Pakistan, which were commonly isolated in 2009–2011, and became the 

predominant sub-genotype causing ND outbreaks since 2012.  

Direct comparison of our IBV and aMPV findings with previous ones in Pakistan is not possible 

due to the absence of published data on these viruses in the country. There had so far been no 

genomic characterization of IB viruses circulating in Pakistan but serological evidence of the 

pathogen. Ahmed et al. [26] indeed showed seroprevalence of IBV including M-41 (88%), D-
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274 (40%), D-1466 (52%), and 4-91 (8%) strains in Pakistani poultry. Similarly, high 

prevalence of IBV in backyard poultry (74%) and commercial poultry of Bangladesh (57%) 

were reported [27]. Sumi et al. [16] classified Indian IBV isolates on the basis of phylogenetic 

analysis within the Mass genotype (India/LKW/56/IVRI/08, now called GI-1) and the 793/B 

genotype (India/NMK/72/IVRI/10, now called GI-13).  Moreover, IBV viruses of genotype 

793/B like (GI-13) and QX like (GI-19) have been reported recently in poultry of Iran and Iraq 

[28–30]. Considering the geographic vicinity of the 5 countries and the commercial exchanges, 

it is therefore not surprising that we detected 793/B (GI-13) strains in Pakistan. 

High seroprevalence of aMPV in broiler (48%) and breeder (93%) flocks has been reported in 

Iran [31]. In a recent study in Ahwaz, in the south west of Iran, [32] reported 55.5% aMPV 

seropositivity. Similarly, [33] reported seroprevalence of aMPV in breeders (34%) of Tamil 

Nadu in India. The virus has thus clearly circulated in the region. aMPV of subtype B have been 

reported in Iran [34,35]. In addition, aMPV of subtypes A as well as of subtype C have been 

reported in China [9,36,37]. Again, geographic vicinity and commercial exchanges of Pakistan 

with Iran and India rather than with China may explain the circulation of aMPV type B in 

Pakistan although the PCR primers used here would not have allowed us for aMPV subtype C 

detection. 

While most of the farms sampled did not vaccinate against any of the chicken viruses we looked 

for, putative NDV vaccine failures were observed in farms 6, 13, 23, 62, 65, 66, and 80 (Table 

1). The NDV vaccines used in Pakistan are strains LaSota (genotype II) and R2B (mesogenic 

Mukteswar strain, genotype III). The LaSota vaccine is formulated from a lentogenic (low 

virulence) clone of the LaSota strain and is manufactured in different countries of the world 

and imported and administered to commercial poultry in Pakistan. However, the R2B strain is 

manufactured by the local vaccine companies and administered to backyard poultry. It is still a 

matter of debate whether these vaccine strains (genotypes II and III viruses) are able to elicit a 
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protective immune response against the prevailing field strains, especially as we observed 

circulation of genotype VII viruses: the protection should be evaluated in experimental and field 

conditions. Inability of live vaccines to elicit protective immune response might also be due to 

improper cold chain supply system, inappropriate route of vaccination, or uneven vaccination 

schedules. It has been reported that the currently practiced NDV vaccines give better protection 

against the velogenic NDVs isolated from the 1930s through the 1970s (Herts33/56, California 

71) than the ones isolated in past few years [22]. Hence parameters for selection of vaccine 

strains need to be reconsidered. Homologous strains may be worth a try for immunization 

against NDV. The optimization of vaccination schedules according to local climate and 

environmental conditions should also be looked into.  

While the present study helped to understand the virus burden in Pakistani poultry production 

systems, further studies are warranted to fully characterize the virus strains and evaluate 

vaccines efficacy to counter the different pathogens. Finally, a main piece of information gained 

from our surveillance project was the frequent AIV/NDV co-infections. This phenomenon has 

been observed in the past in Bangladesh [38]. Experimental co-infections with the two viruses 

showed little impact on clinical signs but altered virus shedding (with higher LPAIV than NDV 

shedding) [39,40].  

Conclusions: Our data showed that the above mentioned respiratory viruses were the most 

important causes of respiratory disease in commercial poultry in Pakistan. The predominance 

of H9 infection indicates a need for continuous monitoring of AIV among avian species and the 

awareness against public health risk.  Further studies are necessary to assess circulating strains, 

economic losses caused by infections and coinfections of these pathogens, and the costs and 

benefits of countermeasures. Farmers need to be educated about the use of vaccines against 

these pathogens. Further studies are needed to understand the benefit of vaccination against 

either one of the two pathogens in preventing both diseases. Epidemiology studies on risk 
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factors in Pakistani farms are also warranted to better assess the putative synergistic effect of 

the co-infections. 

Declarations  

Acknowledgements: The authors express special thanks to the participating farmers in 

Pakistan and the Plateau de Génomique GeT-Purpan, UDEAR UMR 5165 CNRS/UPS, CHU 

PURPAN, Toulouse, France, for the sequencing. Sajid Umar’s PhD scholarship was supported 

by the Higher Education Commission, Pakistan.  

Funding: This study was funded by the Institut Carnot Santé Animale (ICSA), project 

RESPICARE.  

Availability of data and materials: All data generated and analyzed during this study are 

included in this published article 

Authors’ contributions: SU and HA collected all the required data, SU and AT processed the 

samples and drafted the manuscript. MD and JLG designed the study, and analyzed and 

interpreted the data, critically and substantially revised the manuscript. All authors read and 

approved the final manuscript. 

Conflict of interest: authors declare no conflict of interest 

Consent for publication: Not applicable 

Ethics approval and consent to participate: A local ethics committee ruled that no formal 

ethics approval was required to conduct this research. Before conducting the research, informed 

consent was obtained from the owners or managers of the poultry farms used in this study. 

References  

1. Anonymous. Economic survey of Pakistan 2015-16. Ministry of Finance: Government of 

Pakistan. 2016. Available from: http://www.finance.gov.pk/survey_1516.html 

2. Haq S. Poultry sector is spreading its wings. Express Trib. 2014. Available from: 

http://tribune.com.pk/story/741025/poultry-sector-is-spreading-its-wings/ 



151 

 

3. Yunus AW, Nasir MK, Farooq U, Böhm J. Prevalence of poultry diseases and 365 their 

interaction with mycotoxicosis in district Chakwal: 1. Effects of age and flock size. J. 

Anim. Plant Sci. 2008;18:107–13.  

4. Ahmad I, Anjum MS, Hanif M. Prevalence of poultry diseases at high altitudes of district 

Poonch Aazad Jammu & Kashmir. Pak. J. Life Soc. Sci. 2012;64:334–6.  

5. Habib–ur–Rehman, Fawad N, Abbas G, Naheed G, Siddique B, Afzal F, et al. Surveillance 

of poultry diseases in Punjab province, Pakistan; special reference to Newcastle 

Disease. Res. J. Vet. Pract. 2013;1:1–4.  

6. Alam J, Muhammad F, Siddiqui MU, Khan SA, Rehmani S, Ahmad A. Dot-ELISA for 

Newcastle Disease, Infectious Bursal Disease and Mycoplasmosis. Pak. J. Zool. 

2012;44:1301–5.  

7. Siddique AB, Rahman SU, Hussain I, Muhammad G. Frequency distribution of 347 

opportunistic avian pathogens in respiratory distress cases of poultry. Pak. Vet. J. 

2012;32:386–9.  

8. Abbas G, Khan S, Hassan M, Mahmood S, Naz S, Gilani S. Incidence of poultry diseases in 

different seasons in District Khushab, Pakistan. J. Adv. Vet. Anim. Res. 2015;1.  

9. Owoade AA, Ducatez MF, Hübschen JM, Sausy A, Chen H, Guan Y, et al. Avian 

metapneumovirus subtype A in China and subtypes A and B in Nigeria. Avian Dis. 

2008;52:502–6.  

10. Diel DG, da Silva LHA, Liu H, Wang Z, Miller PJ, Afonso CL. Genetic diversity of avian 

paramyxovirus type 1: proposal for a unified nomenclature and classification system of 

Newcastle disease virus genotypes. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. 

Infect. Dis. 2012;12:1770–9.  



152 

 

11. Jackwood MW. Review of infectious bronchitis virus around the world. Avian Dis. 

2012;56:634–41.  

12. Cook JKA. Avian Metapneumovirus infections of turkeys and chickens. Vet. J. 

2000;160:118–25.  

13. Chaudhry M, Angot A, Rashid HB, Cattoli G, Hussain M, Trovò G, et al. Reassortant Avian 

Influenza A(H9N2) Viruses in Chickens in Retail Poultry Shops, Pakistan, 2009–2010. 

Emerg. Infect. Dis. 2015;21:673–6.  

14. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program 

for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–8.  

15. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. Multiple sequence 

alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31:3497–500.  

16. Sumi V, Singh SD, Dhama K, Gowthaman V, Barathidasan R, Sukumar K. Isolation and 

molecular characterization of infectious bronchitis virus from recent outbreaks in broiler 

flocks reveals emergence of novel strain in India. Trop. Anim. Health Prod. 

2012;44:1791–5.  

17. Valastro V, Holmes EC, Britton P, Fusaro A, Jackwood MW, Cattoli G, et al. S1 gene-

based phylogeny of infectious bronchitis virus: An attempt to harmonize virus 

classification. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 

2016;39:349–64.  

18. Alexander DJ. Newcastle disease and other avian paramyxoviruses. Rev. Sci. Tech. Int. Off. 

Epizoot. 2000;19:443–62.  



153 

 

19. Naeem K, Naurin M, Rashid S, Bano S. Seroprevalence of avian influenza virus and its 

relationship with increased mortality and decreased egg production. Avian Pathol. 

2003;32:285–9.  

20. Iqbal M, Yaqub T, Reddy K, McCauley JW. Novel Genotypes of H9N2 Influenza A Viruses 

Isolated from Poultry in Pakistan Containing NS Genes Similar to Highly Pathogenic 

H7N3 and H5N1 Viruses. PLoS ONE. 2009;4:e5788.  

21. Sarwar M, Muhammad K, Rabbani M, Younus M, Sarwar N, Ali MA, et al. Prevalence of 

Avian Influenza Viruses in Live Bird Markets of Lahore. J Anim Plant Sci. 

2013;23:388–392.  

22. Munir M, Cortey M, Abbas M, Qureshi ZUA, Afzal F, Shabbir MZ, et al. Biological 

characterization and phylogenetic analysis of a novel genetic group of Newcastle 

disease virus isolated from outbreaks in commercial poultry and from backyard poultry 

flocks in Pakistan. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 

2012;12:1010–9.  

23. Shabbir MZ, Abbas M, Yaqub T, Mukhtar N, Subhani A, Habib H, et al. Genetic analysis 

of Newcastle disease virus from Punjab, Pakistan. Virus Genes. 2013;46:309–15.  

24. Farooq M, Saliha U, Munir M, Khan QM. Biological and genotypic characterization of the 

Newcastle disease virus isolated from disease outbreaks in commercial poultry farms in 

northern Punjab, Pakistan. Virol. Rep. 2014;3–4:30–9.  

25. Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, et al. Identification of 

new sub-genotypes of virulent Newcastle disease virus with potential panzootic 

features. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2015;29:216–

29.  



154 

 

26. Ahmed Z, Naeem K, Hameed A. Detection and seroprevalence of infectious bronchitis virus 

strains in commercial poultry in Pakistan. Poult. Sci. 2007;86:1329–35.  

27. Das SK, Khan MSR, Das M. Sero-prevalence of infectious bronchitis in chicken in 

Bangladesh. Bangladesh J. Vet. Med. 2009;7:249–52.  

28. Hosseini H, Fard MHB, Charkhkar S, Morshed R. Epidemiology of Avian Infectious 

Bronchitis Virus Genotypes in Iran (2010-2014). Avian Dis. 2015;59:431–5.  

29. Najafi H, Langeroudi AG, Hashemzadeh M, Karimi V, Madadgar O, Ghafouri SA, et al. 

Molecular characterization of infectious bronchitis viruses isolated from broiler chicken 

farms in Iran, 2014-2015. Arch. Virol. 2016;161:53–62.  

30. Seger W, GhalyanchiLangeroudi A, Karimi V, Madadgar O, Marandi MV, Hashemzadeh 

M. Genotyping of infectious bronchitis viruses from broiler farms in Iraq during 2014-

2015. Arch. Virol. 2016;161:1229–37.  

31. Rahimi M. Seroprevalence of avian metapneumovirus infection in broiler and broiler 

breeder chickens in Iran. Vet. Med.2011;56:395-399.  

32. Mayahi M, Seifi MR, Pourmehdi M, seyyedkolaei SJG. Serological study on avian 

Metapneumovirus in boiler chicks by ELISA test. 3rd Int. Vet. Poult. Tehran, Iran; 

2012.  

33. Eswaran MA, Sukumar K, Rajeswar JJ, Balasubramaniam GA, Anna T. Serological Survey 

of Avian Metapneumovirus Infection in Broiler Breeder Chicken Farms in Tamil Nadu. 

Int. J. Adv. Vet. Sci. Technol. 2014;0:84–7.  

34. Hosseini H, Ghalyanchi-Langeroudi A. Detection and Molecular Characterization of Avian 

Metapneumovirus in Iran: The First Report. Iran. J. Virol. 2012;6:26–31.  



155 

 

35. Homayounfar N, Shoushtari H, Charkhkar H SS, Bozorgmehrifard M. Detection by reverse 

transcriptase-polymerase chain reaction and molecular characterization of avian 

metapneumovirus in Chicken flocks in Iran. WALIA J. 2015;31:170–4.  

36. Wei L, Zhu S, Yan X, Wang J, Zhang C, Liu S, et al. Avian metapneumovirus subgroup C 

infection in chickens, China. Emerg. Infect. Dis. 2013;19:1092–4.  

37. Sun S, Chen F, Cao S, Liu J, Lei W, Li G, et al. Isolation and characterization of a subtype 

C avian metapneumovirus circulating in Muscovy ducks in China. Vet. Res. 

2014;45:74.  

38. Shanmuganatham K, Feeroz MM, Jones-Engel L, Smith GJD, Fourment M, Walker D, et 

al. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, 

Bangladesh. Emerg. Infect. Dis. 2013;19:1393-1402.  

39. Costa-Hurtado M, Afonso CL, Miller PJ, Spackman E, Kapczynski DR, Swayne DE, et al. 

Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic 

Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet. Res. 

2014;45:1.  

40. França M, Howerth EW, Carter D, Byas A, Poulson R, Afonso CL, et al. Co-infection of 

mallards with low-virulence Newcastle disease virus and low-pathogenic avian 

influenza virus. Avian Pathol. 2014;43:96–104.  

41. Akin A, Lin TL, Wu CC, Bryan TA, Hooper T, Schrader D. Nucleocapsid protein gene 

sequence analysis reveals close genomic relationship between turkey coronavirus and 

avian infectious bronchitis virus. Acta Virol. 2001;45:31–8.  



156 

 

42. Humberd J, García M, Riblet SM, Resurreccion RS, Brown TP. Detection of infectious 

laryngotracheitis virus in formalin-fixed, paraffin-embedded tissues by nested 

polymerase chain reaction. Avian Dis. 2002;46:64–74.  

43. Juhasz K, Easton AJ. Extensive sequence variation in the attachment (G) protein gene of 

avian pneumovirus: evidence for two distinct subgroups. J. Gen. Virol. 1994;75:2873–

80.  

44. Fouchier RA, Bestebroer TM, Herfst S, Van Der Kemp L, Rimmelzwaan GF, Osterhaus 

AD. Detection of influenza A viruses from different species by PCR amplification of 

conserved sequences in the matrix gene. J. Clin. Microbiol. 2000;38:4096–101.  

45. Phipps LP, Essen SC, Brown IH. Genetic subtyping of influenza A viruses using RT-PCR 

with a single set of primers based on conserved sequences within the HA2 coding 

region. J. Virol. Methods. 2004;122:119–22.  

46. Gelb Jr J, Weisman Y, Ladman BS, Meir R. S1 gene characteristics and efficacy of 

vaccination against infectious bronchitis virus field isolates from the United States and 

Israel (1996 to 2000). Avian Pathol. 2005;34:194–203.  

 



157 

 

Table 1 Origin of the Pakistani avian samples from which viruses were sequenced 

Farm 

ID /Flock 

ID 

Collec-

tion date  

Location  Chicken 

type 

Flock 

size 

Age 

of 

birds 

(days) 

Health status Vaccination 

status 

Type 

of 

farm 

Type 

of 

sample 

Sample 

ID 

H9 NDV IBV aMPV ILTV 

S/6 13/7/14 Kasur Broiler  3000 10 MRS V (ND, IB) open OP 11 + + - - - 

S/8 17/7/14 Rawalpindi  Broiler  10000 16 MRS NV control OP 12,15 - + - - - 

H/9 19/7/14 Kasur Broiler  3000 38 MRS NV open OP 17,18 + - - - - 

K/10 22/7/14 Multan  Broiler  3000 20 MRS NV open OP 20 + - - - - 

A/11 25/7/14 Kasur Broiler  3000 9 MRS NV open OP 21,22 + - - - - 

K/12 27/7/14 Kasur  Broiler  3000 12 MRS V (ND) open OP 23,24 + - - - - 

R/13 29/7/14 Kasur Broiler  2500 31 MRS V (ND, IB) open OP 26  + - - - 

Y/21 13/8/14 Lahore Layer  3000 80 MRS NV open OP 41,42 + + - - - 

A/22 14/7/14 Kasur Layer  3000 120 MRS NV open OP 44 + - - - - 

R/23 15/7/14 Lahore  Broiler  10000 31 MRS V (ND) control  OP 45,46 + + - - - 

Z/32 23/7/14 Okara  Broiler  3000 10 MRS NV open OP 64,65 - + - - - 

A/38 18/10/14 Kasur Layer  3000 78 MRS NV open lung 

swabs 

74 + + - - - 

H/41 14/1/14 Multan  Layer  3000 108 MRS NV open OP 77 + + - - - 
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H/42 28/11/14 Multan  Layer  2500 145 MRS NV open OP 78 + + - - - 

K/51 15/10/14 Multan  Layer  3000 66 MRS NV open OP 87 - + - - - 

A/59 14/8/15 Rawalpindi  Broiler  3000 14 Open mouth 

breathing, 

mucus plug in 

bronchi 

V (ND) open OP 98,99 - - + - - 

W/62 17/8/15 Kasur Broiler  3000 35 Respiratory 

distress, 

congested 

lungs  

V (ND, 

IBD) 

open OP, 

lung 

swabs 

106,107 - + - + - 

I/64 26/8/15 Rawalpindi  Broiler  3000 25 MRS V (ND) open OP 110,111 - - + - - 

U/65 26/8/15 Mansehra Layer  3000 208 sickneess, 

congested 

lungs, pale 

carcass 

V (ND) open OP 112,113 - + - - - 

T/66 29/8/15 Abbottabad Layer 3000 180 fever, 

sneezing, 

gasping, 

airsacculitis 

V (ND) open OP, 

lung 

swabs 

114 + + - - - 
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F/67 2/9/15 Kasur Broiler  3000 33 MRS V (ND, 

IBD) 

open OP 115 + + - - - 

S/70 27/9/15 Sheikhupura  Broiler  3000 35 MRS V (IB, ND) control OP 122,123 + - - + - 

K/80 13/12/15 Faisalabad  Broiler  3000 26 MRS V (ND) control OP 142,143 - + + - - 

K/84 2/1/16 Lahore Broiler  2500 29 MRS NV control  OP 150,151 + + - - - 

A/88 9/1/16 Kasur Layer  3000 120 MRS NV open OP  158,159 - - + - - 

V: vaccinated, NV: non vaccinated, OP: oropharyngeal swab, ND: Newcastle disease, IB: infectious bronchitis, IBD: infectious bursal disease, 

aMPV: avian metapneumovirus, IBV: infectious bronchitis virus, NDV: Newcastle disease virus, ILTV: infectious laryngotracheitis virus. MRS : 

Mild respiratory signs: slight opening of the beak and chest movements. “Control” versus “open” farms: environmentally controlled (versus not 

controlled) poultry farms. Sample numbers: each number corresponds to a pool of 10 swabs from a chicken flock. Data in this table include only 

those samples and flocks which were found positive for selected viruses. 
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Table 2 PCR conditions for the detection and genotyping of avian respiratory viruses in samples from Pakistan 

 

         Virus  Primers  Sequences ( 5-3) Target  Amplicon 

size (bp) 

PCR conditions  Reference  

D
et

ec
ti

o
n

 P
C

R
 

NDV FIP-1 5' TACTTTGCTCACCCCCCTT 3' Fusion gene 

(F) 

 

280 94 C for 2 min; 40 cycles of 94 C for 30 

sec, 58 C for 30 sec, 72 C for 1 min; 

final extension at 72 C for 5 min  

[25] 

FIP-2  5' CATCTTCCCAACTGCCACT 3' 

IBV N791 

 

5' GTGATGACAAGATGAATGAGGA 3' Nucleo-

protein gene 

(N) 

380 94 C for 2 min; 40 cycles of 94 C for 30 

sec, 54 C for 30 sec, 72 C for 1 min; 

final extension at 72 C for 5 min 

[41] 

 

N1129  5' CAGCTGAGGTCAATGCTTTATC 3' 

ILTV gEU 

 

gEL     

5' GCTGGGTTCTGGGCTACACAAC 3' 

 

5’ TGCGCGTGACTCGGAGAG 3’ 

 

Glyco-

protein E 

gene (gE) 

 

626 94 C for 2 min; 40 cycles of 94 C for 30 

sec, 61 C for 30 sec, 72 C for 1 min; 

final extension at 72 C for 5 min 

 [42] 

aMPV G1 

 

5' GGGACAAGTATCYMKAT 3' 441 94 C for 2 min; 40 cycles of 94 C for 30 

sec, 50 C for 30 sec, 72 C for 

 [43] 
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G6  5' CTGACAAATTGGTCCTGATT 3' Attachment 

glycoprotein 

gene (G) 

1 min; final extension at 72 C for 5 min 

AIV M52C 5' CTTCTAACCGAGGTCGAAAG 3' Matrix gene 

(M) 

280 95 C for 30 sec; 40 cycles of 95 C for 

30 sec, 55 C for 30 sec, 72 C for 

30sec; final extension at 72 C for 1 min 

 [44] 

M253R 5'AGGGCATTTTGGACAAAKCGTCTA 3' 

G
en

o
ty

p
in

g
 P

C
R

 

AIV HA-1134F  5′ GGAATGATHGAYGGNTGGTATG 3′ hemma-

gglutinin 

gene (HA) 

600 95 C for 30 sec; 40 cycles of 95 C for 

30 sec, 55 C for 30 sec, 72 C for 

30sec; final extension at 72 C for 1 min 

[45] 

NS-890 R 5′ ATATCGTCTCGTATTAGTAGAAAC 

AAGG 3′ 

IBV S15 5’ TGAAAACTGAACAAAAGACA 3’ Spike gene 

(S) 

700 95°C for 2 minutes; 40 cycles 

of 95°C for 30 seconds, 52°C for 30 

seconds, 72°C for 30 seconds; final 

extension of 72°C for 12 minutes 

[46] 

CK2 5’ CTCGAATTCCNGTRTTRTAYTGRCA 

3’ 

bp : base pairs
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Figures legends. 

Figure 1. Map of Pakistan with sampling sites. Areas in Pakistan where samples were 

collected. The map was drawn using ArcGis and it shows the distribution of positive specimens 

for respective viruses (AIV in red, NDV in blue, IBV in green and aMPV in grey shades) 

throughout the country. The pies diameters are proportional to the number of samples collected 

per district. 
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Figure 2. Phylogenetic tree of recent Pakistanis influenza viruses HA genes. Sequences of 

A/chicken/Pakistan/17/2014 and A/chicken/Pakistan/74/2015 were selected as representative 

sequences for the present study. The HA2 nucleotide sequences of these 2 viruses (in bold font 

with a closed circle shaped symbol) were compared with full H9 gene sequences from GenBank 

and GISAID databases: the first 10 blast hits sequences, reference sequences (including 

recommended WHO vaccine strains in red font) and previously published Pakistani H9 

sequences. *: partial sequence. 
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Figure 3. Phylogenetic tree of recent Pakistanis Newcastle disease viruses F genes. 

Sequences of Pakistanis NDV were identical and NDV/chicken/Pakistan/11/2014 was selected 

as a representative strain for the present study. Its partial F gene sequence was compared with 

its first ten BLAST hits and reference sequences from the 18 known NDV genotypes. *: partial 

sequence. 
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Figure 4. Phylogenetic tree of recent Pakistanis infectious bronchitis viruses spike genes. 

Sequences of γCoV/AvCoV/chicken/Pakistan/11/2014, 

γCoV/AvCoV/chicken/Pakistan/98/2015, γCoV/AvCoV/chicken/Pakistan/99/2015, 

γCoV/AvCoV/chicken/Pakistan/142/2016, γCoV/AvCoV/chicken/Pakistan/143/2016, and 

γCoV/AvCoV/chicken/Pakistan/159/2016 were identical so only 

γCoV/AvCoV/chicken/Pakistan/142/2016 was represented on the tree with a black circle 

shaped symbol. Its partial S1 gene sequence was compared with its first ten BLAST hits and 

reference sequences from the 32 known IBV lineages. *: partial sequence. 
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Figure 5. Phylogenetic tree of recent Pakistanis avian metapneumoviruses attachment 

protein genes. Sequences of aMPV/chicken/Pakistan/106/2015, 

aMPV/chicken/Pakistan/107/2015, aMPV/chicken/Pakistan/122/2016, and 

aMPV/chicken/Pakistan/123/2016 were identical so only aMPV/chicken/Pakistan/107/2015 

was represented on the tree with a black circle shaped symbol. Recent Pakistanis aMPV G gene 

sequences were compared with their first ten BLAST hits and reference sequences from the 4 

genotypes: A, B, C, and D.  
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General Discussion & Conclusions 
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Respiratory diseases in poultry have been reported to be caused by mixed or single infections 

with several agents (Watanabe et al., 1977; Sakuma et al., 1981; Yashpal et al., 2004) resulting 

in poor animal welfare, economic losses, and increased antibiotics consumption. It is well 

appreciated that upper respiratory tract viral infections in poultry are often complicated by more 

serious bacterial diseases. It is thought that certain pairings of organisms better complement 

each other than other potential pairings. Co-infections of poultry present a complicated clinical 

picture confusing the identification and diagnosis and unfortunately little is known on the 

interactions between co-infecting pathogens (Costa-Hurtado et al., 2014). Influenza virus is 

commonly thought of in this context along with other respiratory viruses and bacteria.  

Natural infections with AIV are more severe than experimental infections, suggesting that 

secondary agents or other factors play prominent role in the clinical disease process. Natural 

AIV/ bacterial problems are expected to occur at the same time and have been reported in 

poultry (Pan et al., 2012; Pu et al., 2012), but the effects of such combinations on the health 

status of poultry is not well known. In the field, co-infections of AIV do occur with other 

respiratory pathogens but are not easily detected, and the impact of co-infections on 

pathobiology is unknown. The mixed AIV infections may provide increased virulence, posing 

a substantial risk to poultry and public health. The coinfection of E. coli and influenza viruses 

in poultry has been observed in field conditions. During the last decade, the outbreaks of H9N2 

influenza virus with severe clinical signs, high mortality (20-65%) and low production (up to 

75%) have been reported in commercial poultry farms (Nili & Asasi, 2002, 2003; Bano et al., 

2003; Swayne, 2008). Similarly, An outbreak of H9N2 influenza virus infection in chickens in 

Hong Kong (A/chicken/Hong Kong/739/94) was associated with coughing and respiratory 

distress in 75% of the birds, with 10% mortality. Treatment with antibiotics reduced the 

mortality rate, suggesting that bacteria may play some role in the exhibition of the clinical 

syndrome (Kishida et al., 2004). However, H9N2 viruses in domestic poultry cause mild 

clinical signs and respiratory diseases with low mortality (less than 5%). It is proposed that 
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concurrent infection may play a key role in exacerbating mortality in chicken infected with 

H9N2 influenza virus (Haghighat-Jahromi et al., 2008; Pan et al., 2012; Seifi et al., 2012). It 

was speculated that severe clinical signs linked to AIV H9N2 infections in the field were, 

probably due to E. coli involvement (Bano et al., 2003). Similarly, these lesions were 

commonly reported in turkeys during the 1999 outbreak of MP H7N1 AI in Italy in association 

with secondary bacterial pathogens such as E. coli, Riemerella anatipestifer and Pasteurella 

multocida (Capua & Marangon, 2000).  

For the present PhD thesis work, we intended to link the coinfections observed in Pakistani 

poultry farms with coinfection studied in experimental conditions. In the present study, we tried 

to come as close as possible to field conditions in our experiments by choosing commercial 

turkeys and using aerosol route of inoculation. However, it is still difficult to reproduce field 

conditions in laboratory settings because many other factors contribute in the production of 

diseases such as dust, pollution, humidity, temperature, ammonia production, housing stress 

etc. It was demonstrated that dual infections of turkeys with H6N1 and O78 were able to cause 

similar, but more severe and longer persisting respiratory symptoms compared to single 

infections. The AIV H6N1 / E. coli (O78) dual infection resulted in a higher morbidity and 

mortality than single infections with either agent. The clinical symptoms in themselves were 

similar in nature to those caused by AIV H6N1 alone, but they were more severe and persisted 

markedly longer. This aggravation of clinical disease was reflected in the necropsy findings in 

that the lesions found in the respiratory tract were clearly more outspoken in the dually infected 

birds. Furthermore, microscopic lesions in the birds having received both agents were generally 

more extensive and more prolonged in comparison to the singly-infected animals. In the poults 

inoculated with AIV followed by E. coli inoculaion, the inflammatory changes, loss of cilia and 

airsacculitis were more extensive than in poults inoculated with AIV or E. coli alone. Our 

experimental AIV H6N1 caused lesions are in agreement with field outbreak (Corrand et al., 

2012). Inflammation and deciliation of the trachea, degeneration of the mucous gland cells and 

damage to the respiratory epithelium were likewise previously demonstrated (Corrand et al., 
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2012). Jirjis et al. (2004) reported aggravation of clinical signs and lesions when E. coli 

inoculation followed by aMPV inoculation in turkeys. These findings all endorse our results 

that AIV H6N1 and E. coli (O78) exert an additive or synergistic pathogenic effect if given 

consecutively, spaced by three days to susceptible turkeys. While we could compare our 

experimental findings to field observations in France (Corrand et al., 2012), it is difficult to 

extrapolate to the Pakistani poultry farms situation. In Pakistan, our molecular epidemiology 

study indeed just targeted avian respiratory viruses. A follow up study is warranted to 

understand the bacterial co-infections in the field. 

In our epidemiological work in Pakistan, we found that the viral respiratory diseases are 

common even though vaccines are being in some farms. We have characterized four respiratory 

viruses in our study. There is already published data on AIV and NDV in Pakistan (Iqbal et al., 

2009, Munir et al., 2013, Miller et al., 2015), however, IBV and aMPV have not been 

characterized before, although there are some reports on their prevalance based on serological 

surveys. The information about their genotypes/subtypes will help to better implement control 

measures. We could not isolate these viruses due to samples on FTA cards and we could not 

sequence their full genomes due to limited genome quantity on the FTA cards. It will be very 

interesting to obtain their full genome sequences and look at putative mutations in their 

genomes. We could not screen and characterize bacterial pathogens in our samples, bacterial 

pathogens may be possible etiological agents in virus negative samples. Moreover, timing of 

samples collection is very important. We might have collected samples when there was no virus 

shedding or very limitrd virus shedding in oropharyngeal excretions: a possible reason for 

absence of virus detection. In addition, AIV gene constellation should also be studied because 

reassortant LPAIV H9N2 viruses have been reported in the past (Iqbal et al., 2009). Finally, 

most of the sampled poultry farms lacked proper disinfectants and biological barriers, which 

favor transmission of infectious diseases. We observed putative vaccine failure for NDV, 

therefore continous monitoring of NDV in field and evaluation of vaccines should be carried 

out on regular basis to get maximum protection. Moreover, effect of vaccination prior or during 
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coinfection should also be evaluated. It is possible that vaccine handling and delivery are 

incorrect. Vaccines in Pakistan are often delivered by illiterate farmers, who may not follow 

the manufacturer’s instructions regarding vaccine application (withdrawing of water 

disinfectants from drinking system, appropriate water quality and temperature, appropriate 

vaccine dose, etc). Therefore, education of farmers will be also an important measure to 

improve poultry health in Pakistan. Co-infections were common for AIV and NDV but less 

common for the other tested chicken viruses indicating that these two pathogens could be 

present at the same time of respiratory disease outbreak and their importance in the field should 

not be underestimated. In a future study, it would be important to assess the likely exacerbation 

of clinical disease caused by AIV and NDV co-infections in experimental conditions. It will 

also be interesting to see which of them infects birds first and how these pathogens interact with 

each other. Further investigation and characterization of additional respiratory pathogens is 

required in order to adapt appropriate control strategies in the future. Another future goal for 

surveillance studies in Pakistan is to detect putative E. coli and AIV coinfections, economic 

losses caused by the coinfections of these pathogens, and the costs and benefits of 

countermeasures. Furthermore, the effects of reduced antibiotic use on coinfections should be 

studied. There are some gaps in the knowledge about E. coli serotypes in circulation in Pakistan 

which needs to be filled for better comparison and understanding.  During my PhD we carried 

out both the molecular epidemiology and experimental co-infection studies in parallel and we 

lacked time to tackle questions raised by the field work in the laboratory settings. This is a clear 

perspective of my project. 

In conclusion, it was shown in experimental conditions that the E. coli strain (O78) and AIV 

H6N1 alone are able to produce mild respiratory infection through adhesion and colonization 

of the respiratory tract, but without each other help do not induce severe respiratory disease and 

mortality in suspected turkeys. The results obtained in the present study clearly indicate the 

occurrence of marked synergistic or additive effects between two distinct respiratory pathogens 

important in poultry. We have established an experimental infection model of turkey poults 
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with LPAIV and/or E. coli using aerosolization that better mimics field infections than more 

classical IT inoculations. The established E. coli (O78) single and AIV/E. coli dual infection 

models can undoubtedly be used to further investigate the mechanism of E. coli colonization 

and the AIV/E. coli synergy. Further, the AIV/E. coli dual infection model may be used to test 

preventive and curative measures to combat the respiratory disease. With consideration of the 

significant spread of E. coli infections as well as LPAIV in poultry, a surveillance of LPAI 

infection and regular diagnosis of E. coli infection and anti-E. coli treatment of flocks may help 

to prevent development of severe clinical disease and economic losses due to such co-

infections. Continuous surveillance of AI infection and co-infections studies in experimental 

poultry models is warranted to find new strategies to control their circulation in domestic and 

wild poultry. Further studies are also warranted to really assess the cost-benefit of using 

commercial birds for pathogenesis studies of LPAIV and complicating pathogens. The timing 

of co-infection would also require further systematic experimental studies to understand the 

role of prior/post/simultaneous inoculation in disease outcome, pathogenesis and virus 

shedding pattern. The present study contributes to the unravelling of the multi-factorial 

respiratory disease complex in turkeys, illustrating that the outcome of AIV infection in acutely 

E. coli predisposed turkeys is aggravated, compared to single AIV infected turkeys. We 

highlighted the need to reconsider the old dogma of viral infections facilitating bacterial 

infections and thus causing severe disease. The order of viral / bacterial infections may indeed 

be inverted in the field as commensal bacteria often may become pathogenic after viral 

superinfections. Clarifying the interaction mechanisms between the different pathogens will 

allow a more precise diagnosis and a better treatment, reducing not only economical 

complications of respiratory diseases, but also the zoonotic risk. 
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Abstract 
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Title: Avian influenza and co-infections: investigation of the interactions in the poultry model 
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The purpose of this study was to assess the burden of co-infections in the field and to better 

understand the possible synergism between pathogens in a laboratory setting. We focussed on 

E. coli (O78) and low pathogenic avian influenza virus (LPAIV, H6N1) in turkey model and 

infected the birds via the aerosol route to reproduce respiratory disease. Viral shedding and 

lesions were more severe and persisted longer during coinfection indicating possible 

enhancement of pathogenesis for LPAIV by E. coli and vice versa. These findings all endorse 

our conclusions that E. coli and LPAIV exercise an additive pathogenic effect in the 

reproduction of respiratory disease if given simultaneously or spaced by three days between the 

viral and the bacterial challenges to susceptible turkeys. In parallel, we studied avian respiratory 

agents circulating in the field in Pakistani farms. There, we focussed on co-infections as well, 

targeting viruses only as a first study. We observed frequent LPAIV H9 (G1 lineage) and 

Newcastle disease virus (genotype VII) coinfections in the field. 
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Résumé 
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Titre : Influenza aviaire et co-infections : étude des interactions dans le modèle aviaire 
 

Directeurs de thèse : Maxence Delverdier et Mariette Ducatez 

…………………………………………………………………………………………… 
 

Ce travail vise à estimer l’impact de co-infections sur le terrain et à mieux comprendre le 

synergism possible entre agents pathogènes en conditions expérimentales. Nous nous sommes 

intéressés à E. coli (O78) et au virus influenza faiblement pathogène (LPAIV, H6N1) dans le 

modèle dinde. Les oiseaux ont été infectés par voie aérosole pour reproduire l’infection 

respiratoire. L’excrétion virale ainsi que les lesions ont été plus importantes lors de la co-

infection, ce qui suggère une pathogénicité accrue. Ces résultats montrent que E. coli et LPAIV 

ont un effet additif sur la maladie respiratoire lors qu’ils ont été inoculés soit simultanément 

soit en différé (à 3 jours d’intervalle) à des dindes naïves. En parallèle, nous avons étudié les 

virus respiratoires en circulation dans les élevages parkistanais. Des co-infections avec le 

LPAIV H9 (lignage G1) et le virus de la maladie de Newcastle (génotype VII) ont été 

fréquemment observées. 
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