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RÉSUMÉ EN FRANÇAIS

Enedis est une entreprise de service public et le principal gestionnaire de réseau de
distribution (GRD) français. Les GRDs sont responsables de la distribution de l’électricité
en France. Les GRDs exploitent le réseau électrique basse et moyenne tension et gèrent
les données associées. Dans le cadre de leurs missions, les GRDs collectent, analysent et
publient les consommations individuelles d’électricité. Il s’agit notamment de permettre
la facturation par les fournisseurs d’électricité des offres qu’ils proposent à leurs clients et
de fournir aux clients des informations sur leur consommation d’électricité.

La France exploite le compteur intelligent Linky pour mesurer, collecter et publier la
consommation d’électricité des ménages. Les GRDs ont l’obligation légale de partager les
mesures au public. Certains tiers de confiance peuvent accéder aux mesures sans anonymi-
sation toutefois le partage est principalement fait en utilisant des agrégats anonymisés.
Cette politique restrictive est due à la sensibilité des données. Les mesures individuelles de
la consommation d’électricité contiennent de nombreuses informations sur les habitudes
d’un ménage. Pour donner un exemple, il est possible de détecter l’occupation d’une
maison et les appareils électriques utilisés. Par conséquent, ces données sont considérées
comme des informations personnelles en vertu des réglementations relatives à la protection
de la vie privée (c’est-à-dire le RGPD). La violation de ces réglementations suite à une
fuite d’informations personnelles expose le responsable de traitement (à savoir Enedis) à
des amendes importantes et à des problèmes d’image. Cette thèse vise à comprendre les
vulnérabilités en matière de protection de la vie privée liées à la publication de mesures
anonymisées de la consommation d’électricité. En outre, cette thèse vise à fournir des
pistes de réflexion pour la publication d’informations sûres et utiles sur la consommation
d’électricité.

Le compteur intelligent est un élément essentiel de l’infrastructure de comptage. Il doit
mesurer avec précision la consommation d’électricité à intervalles réguliers et la communi-
quer à son gestionnaire. La collecte automatique de données précises sur la consommation
d’électricité est l’une des principales raisons justifiant le déploiement des compteurs in-
telligents. Pour les gestionnaires de réseaux (c’est-à-dire les opérateurs de distribution
et de transport), les compteurs intelligents apportent une meilleure compréhension de la
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Résumé en français

consommation d’électricité. Pour les fournisseurs, ils permettent de développer des offres
commerciales flexibles et une aide à la facturation. La transition énergétique est une autre
raison justifiant l’utilisation des compteurs intelligents, car ils permettent aux individus
de comprendre et d’adapter dynamiquement leur consommation. Les législateurs et les
autorités locales utilisent les mesures de la consommation d’énergie dans la planification
et l’exécution de nouvelles politiques publiques. En l’absence de compteurs intelligents,
toute action sur le compteur (c’est-à-dire la mesure ou la modification du contrat) nécessite
qu’un technicien se déplace physiquement jusqu’au compteur, ce qui limite les possibil-
ités offertes par le compteur et, par conséquent, toutes les applications potentielles. La
France, déploie le compteur intelligent Linky à la jonction entre le réseau électrique et le
réseau domestique depuis les années 2010. Début 2023, environ 35 millions de compteurs,
représentant près de 92 % des foyers français, auront été déployés.

Les GRDs sont légalement tenus de publier les mesures de la consommation d’électricité
en utilisant des agrégats par seuil. Les agrégats sont un moyen peu coûteux et simple
d’anonymiser des données. Dans cette thèse, nous nous concentrons sur les agrégats sous
forme de somme et de moyenne dans la mesure où ils sont concernés par les publica-
tions actuelles. Il faut trouver un compromis entre la publication d’agrégats contenant
des informations fines et la préservation de la vie privée. Contrairement aux données non
agrégées, les agrégats ne sont généralement pas publiés seuls, mais avec des métadonnées:
un ensemble de statistiques précalculées décrivant la population agrégée.

La quantité et la qualité des informations disponibles sur une série dépendent de
sa précision. Les séries à la demi-heure contiennent plus d’informations que les séries
quotidiennes (qui contiennent plus d’informations que les séries annuelles). La NILM
(Non Intrusive Load Monitoring) est un domaine qui permet d’extraire des attributs des
séries temporelles de consommation d’électricité. Nous notons que, dans leur état actuel,
les techniques de NILM peuvent inférer des attributs sensibles tels que l’occupation d’un
foyer et des paramètres socio-économiques sur des séries demi-horaires. Cependant, nous
notons que les algorithmes de NILM nécessitent un entraînement qui requiert une vérité
terrain importante (c’est-à-dire des séries étiquetées). La collecte de cette vérité terrain
est complexe et coûteuse, ce qui limite (sans l’annuler) l’impact des attaques par inférence
d’attributs basées sur la NILM.

Une autre menace pour la publication des séries temporelles de consommation d’électricité
est le couplage de deux séries. Une série publiée au cours d’une période donnée peut-elle
être liée à une autre série publiée au cours d’une autre période ? Nous pourrions imag-
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iner qu’un attaquant dispose d’un accès détaillé à une série sur une petite période et
d’une publication pseudonymisée de plusieurs séries sur une période plus longue. Trouver
quelle série de l’ensemble de données pseudonymisées correspond à la série ciblée permet
à l’attaquant d’acquérir des connaissances supplémentaires sur la cible.

Les menaces qui pèsent sur les agrégats sont différentes de celles qui pèsent sur les
séries individuelles. Même s’il est possible de procéder à une inférence des attributs, le
fait que les agrégats fusionnent plusieurs séries complexifie la tâche. Les caractéristiques
individuelles se fondent dans la masse et finissent par être masquées par le nombre de
séries agrégées. Les caractéristiques générales décrivant l’ensemble de la population rem-
placent les informations individuelles. La menace passe de l’extraction des caractéristiques
à la déduction de la participation ou non d’un individu à l’agrégat. Les agrégats ne sont
pas publiés seuls, mais sont accompagnés de métadonnées et d’informations descriptives.
L’identification d’un individu comme faisant partie d’un agrégat lui attribue ces informa-
tions descriptives. Les attaques par inférence d’appartenance pourraient être généralisées
à l’ensemble de la population de l’agrégat pour trouver toutes les séries à l’origine d’un
agrégat.

Cette thèse se concentre sur les questions suivantes. Tout d’abord, nous étudions les
modèles de menace pour la vie privée liés à la publication de séries temporelles agrégées de
consommation d’électricité. Nous développons de nouvelles attaques de protection de la
vie privée ciblant la publication d’agrégats. Ces attaques nous permettent de comprendre
comment un acteur malveillant peut porter atteinte à la confidentialité d’un agrégat. En
outre, les attaques permettent de connaître les exigences de l’attaquant. Tant en termes
de connaissances de base que de puissance de calcul. Enfin, nous analysons les ensembles
de données et les attaques, en essayant de comprendre ce qui rend un agrégat et une
série individuelle vulnérables. Nous visons à fournir des connaissances pour choisir un
seuil d’agrégation pertinent. En examinant les séries individuelles, nous visons à fournir
une définition d’une série "atypique" qui devrait être retirée de l’agrégat. Cette thèse est
organisée comme suit.

Tout d’abord, le chapitre 1 présente le contexte de la thèse : ce qu’est un compteur
intelligent, les réglementations applicables et la sensibilité des données. Le chapitre 2
présente la littérature relative aux attaques contre la vie privée en se concentrant sur
celles liées aux agrégats de séries temporelles de consommation d’électricité.

Dans le chapitre 3, nous présentons notre première contribution. Il présente les don-
nées de consommation d’électricité utilisées dans nos expériences. Ce chapitre présente
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également une étude statistique de ces données. L’étude statistique contient une analyse
de la vulnérabilité de la publication de séries individuelles (non agrégées) basée sur le
taux d’unicité. Cette étude d’unicité montre que la grande majorité des consommations
électriques sont uniques en considérant un très faible nombre de mesures. Les travaux
de ce chapitre font l’objet de deux publications. L’étude statistique est publiée dans un
rapport interne à Enedis. L’étude d’unicité est en cours de relecture par le journal Nature
Scientific Report, Smart Cities.

Le chapitre 4 présente notre seconde contribution: l’attaque SubSum. Il s’agit d’une at-
taque par inférence d’appartenance permettant de trouver l’ensemble des séries à l’origine
d’un agrégat. Cette attaque est basée sur une adaptation du problème de la somme
d’un sous-ensemble. Elle requiert de nombreuses données (au moins celles présentes dans
l’agrégat) ainsi qu’une importante puissance de calcul. Toutefois, cette attaque montre
une forte capacité à identifier les séries présentes dans un agrégat. Nos expériences mon-
trent que la capacité de l’attaque à identifier les membres d’un agrégat est lié au nombre
d’individus connus, de la longeur de la série et du temps disponible pour l’attaquant. Si
l’attaquant dispose de suffisamment de temps et de séries de longueur supérieur à la moitié
de la taille de la population, il est généralement possible (dans plus de 90 % des cas) de
retrouver les individus présent dans tous les agrégats formables à partir des séries connues
de l’attaquant. Notons que le problème de la somme des sous-ensembles est un problème
NP-difficile. De fait, il semble difficile d’appliquer cette attaque contre des populations
importantes. Au maximum nous attaquons des populations de 4,500 séries nécessitant une
journée de calcul par agrégat attaqué. Cette attaque est publiée dans l’édition 2022 de la
conférence internationale Conference of Security and Cryptography (SECRYPT).

Le chapitre 5 présente notre troisième contribution: l’attaque STATS. Il s’agit d’une
attaque par inférence d’appartenance sur les agrégats de séries temporelles. Cette attaque
permet de déterminer si une unique série est présente dans un agrégat. Cette attaque se
présente sous la forme d’un problème de classification de séries temporelles. Elle entraîne
un modèle de classification pour détecter la présence de la cible (appelé Shadow Training).
Cette attaque requiert moins de connaissances préalables et de puissance de calcul que
l’attaque SubSum. Elle montre de très bons résultats et est capable d’attaquer des agrégats
de taille importante quand l’attaque est réalisée sur la même période que la période
d’entrainement. Au maximum, nous attaquons des agrégats de taille 20,000. Lorsqu’elle
est réalisée dans des conditions adverses (attaque sur une période différente que celle
d’entrainement), l’attaque n’est plus en mesure d’attaquer des agrégats aussi importants.
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Elle reste capable d’identifier jusqu’à 40 % des individus ciblés pour des agrégats de taille
inférieure à 1,000. Cette attaque est rapide ne nécessitant que quelques minutes de calcul
par agrégat attaqué. Dans ce chapitre, nous proposons aussi un score d’atypisme pouvant
être utilisé pour anticiper la vulnérabilité d’une série à notre attaque.

Enfin, le chapitre 6 conclut la thèse en discutant les résultats et en proposant de futurs
travaux intéressants. Ce chapitre propose aussi un résumé des travaux présentés lors de
l’EnergyDataHack. Il s’agit d’un hackathon organisé par le Ministère des Armées visant à
retrouver les datacenters français en utilisant (entre autres) les données de consommation
électrique publiées par Enedis. Notre équipe a remporté la 1er place de ce hackathon.

Finalement, nous répondons aux questions suivantes: Comment un acteur malveillant
peut menacer la vie privée des membres d’un agrégat et qu’est-ce qui rend un agrégat vul-
nérable (compte tenu de sa taille et de sa population) ? Tout d’abord, cette thèse montre
que toutes les attaques nécessitent l’accès à des séries individuelles. Par conséquent, la
protection et le contrôle de l’accès aux séries individuelles sont essentiels pour prévenir les
attaques sur les agrégats. La publication de séries individuelles pseudonymisées est risquée.
Les séries individuelles sont hautement identifiables avec un minimum de connaissances
préalables. Deuxièmement, alors que l’attaque SubSum nécessite beaucoup de temps et
de puissance de calcul, l’attaque STATS peut être exécutée rapidement sur un ordinateur
personnel. Cette thèse montre que le seuil d’agrégation actuel est insuffisant pour pro-
téger tout le monde contre nos attaques. Pour protéger chaque individu contre l’attaquant
le plus favorable (réalisant l’attaque au cours de la même période que l’entrainement),
il faut significativement augmenter le seuil de publication. Nous ne formulons pas de
recommandations pour un seuil capable de protéger tout le monde. Au maximum, nous
attaquons des agrégats de 20,000 séries. À l’échelle de la population générale, cela pour-
rait encore représenter des milliers d’individus à risque. Cependant, seuls les individus
atypiques restent vulnérables sur de grands agrégats. En outre, réaliser l’attaque dans des
conditions moins favorable (c’est-à-dire attaquant une période différente que la période
d’entrainement) ne permet plus d’attaquer de grands agrégats. Pour la plupart des séries
ciblées, nous ne sommes pas en mesure d’attaquer des agrégats contenant plus de 1,000
séries. L’élimination des individus les plus identifiables des agrégats permettrait de ré-
duire le seuil d’agrégation. Nous pensons qu’il est possible de réduire le seuil à 1,000 tout
en protégeant plus de 90 % des séries contre l’attaquant le plus favorable (c’est-à-dire au
cours de la même période). Notre score d’atypisme pourrait être utilisé comme mesure
estimant la vulnérabilité de chaque individu présent dans un agrégat. L’élimination des
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individus les plus identifiables des agrégats soulève toutefois la question de l’utilité des
données sans introduire de nouvelles vulnérabilités. Il convient de noter que la population
agrégée influence fortement les résultats de l’attaque. Il est nécessaire d’analyser chaque
publication indépendamment pour détecter les vulnérabilités spécifiques aux membres de
la population.
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Chapter 1

INTRODUCTION

Enedis is a public service company and the leading French Distribution System Op-
erator (DSO). DSOs are responsible for electricity distribution in France. DSOs operate
the low and medium-voltage electricity network and manage the associated data. DSOs
collect, analyze, and publish individual electricity consumption as part of their missions.
The data is used by suppliers to bill their clients and to provide clients with insights
into their electricity consumption. To the electricity network actors and collectivities, the
analysis of precise electricity consumption information helps improve the management of
the electricity network. Electricity consumption data plays a role in creating and applying
energy policies.

France operates the Linky smart meter to measure, collect and publish households’
electricity consumption. DSOs have the legal obligation to share the measurements with
many recipients. Trusted third parties can access measurements, but only anonymized
aggregates are usually shared. This restrictive policy is due to the sensitivity of the
data. Individual electricity consumption measurements carry much information about the
household’s habits. To provide a non-exhaustive example, detecting whether a house’s
occupancy and the devices used is possible. Therefore, they are considered personal infor-
mation under privacy protection regulations (i.e., the GDPR). Violating such regulations
by leaking private personal information through the data sharing programs exposes the
publisher (namely Enedis) to significant fines and bad public relations. This thesis aims
to provide avenues of reflection for publishing safe and valuable electricity consumption
information.

This chapter provides the context of the thesis. Section 1.1 starts by presenting the
Linky smart meter, its history, and functions. Then, Section 1.2 looks at the relevant
regulation as it governs the measurements collection and processing. Then, Section 1.3
presents the current anonymization method in place. We present in Section 1.4 the po-
tential privacy threats over both un-anonymized and aggregated electricity consumption
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time series. Finally, Section 1.5 presents the outline of this thesis: the research questions
and our contributions.

1.1 Smart meters

The smart meter is a crucial component of the metering infrastructure. It must ac-
curately measure the electricity consumption at regular timestamps and report it to its
manager. The automatic collection of precise electricity consumption data is one of the
main reasons justifying the deployment of smart meters. For the network managers (i.e.,
distribution and transport operators), smart meters bring a better understanding of elec-
tricity consumption. For the suppliers, they allow the development of flexible commercial
offers and billing support. The energy transition is another reason justifying the usage
of smart meters as they allow individuals to understand and dynamically adapt their
consumption 1. Legislators and local authorities use energy usage measurements in the
planning and execution of new policies. Without smart meters, any action on the meter
(i.e., measurement or changing the contract) requires a technician to move to the me-
ter physically, thus limiting the possibilities offered by the meter and, subsequently, any
potential applications.

Client: An individual (household) or any entity (i.e., a com-
pany) consuming electricity and equipped with a meter.

Supplier: A company selling electricity to clients.
Distribution System Operator: The entity managing the

electricity distribution to the clients.
Balance responsible parties: A private entity ensuring the

balance between production and consumption within a lim-
ited perimeter (a supplier for example) a.

a. https://www.services-rte.com/files/live/sites/services-
rte/files/documentsLibrary/2022-09-01_RULES_MA-RE_SECTION_2_A-
D_4200_en

Network actors

1. https://observatoire.enedis.fr/
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France, deploys the Linky smart meter at the junction between the electric grid and the
household network. Lamb [Lam22] provides the history of the Linky program. Lamb traced
the first works to digitalize meters back to the 80s. However, the first thoughts around
the mass deployment of smart meters date from the early 2000s at the dawn of the energy
market liberalization. We must wait until the early 2010s to see the first experimental
deployment of the Linky system. The mass deployment started in 2015, intending to
equip all households by 2020. More than 90 % (approx. 30 million) of households have
been equipped by that date. In early 2023, around 35 million meters have been deployed.
In this thesis, we focus only on the privacy questions [MRT12] related to publishing
personal electricity consumption data.

CPL

hub

GSM Internet

Database

Figure 1.1 – Linky to database

The Linky meters work as follows (see Figure 1.1). The meter performs one measure-
ment daily or every 30 minutes, depending on the client’s choice. Daily measurements
(also called "index") are measured in Watt-hour (Wh), and half-hourly measurements in
Watt (W ). Strictly speaking, the measurements, in Watt-hour , are called consumption
and the half-hourly ones power. In this thesis, we abuse the language, call every measure-
ment a consumption. Even if an individual can inject electricity onto the network (i.e.,
through solar panels), we consider that injected electricity is managed separately from the
consumed electricity. No measurements can be negative. Plans are made to lower the mea-
surement rate to 15 minutes. Since it has yet to be fully implemented, we only consider a
minimum sampling rate of 30 minutes. The meter encrypts the measurements and sends
them to a hub using the electricity distribution network with power line communication.
The hub relays the information to the database using the internet. The database decrypts
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the message and stores the measurements for further processing. Individual measurements
form a time series: a sequence of timestamped measurements.

1.2 Regulation

Since the early 2000s, the European Union (under the directive relative to the electric
market rules [09]) imposes the deployment of smart meters and the collection of energy
consumption data. French laws (with article L322-8 of the "Code de l’Énergie" (Energy
Code) [21] and article 29 of the Law "Transition Énergétique pour la Croissance Verte"
(Energy Transition for Green Growth) [15]) implement the directive. Article 23 of the Law
"pour une République Numérique" (for a Digital Republic) [16a] imposes the publication
of energy consumption data to the public.

However, these laws also recognized the personal and sensitive character of the data
and impose a treatment compatible with the current privacy laws: namely, the GDPR [16b]
in Europe. In France, the Law "Informatique et Libertées" (Informatics and Liberties) [78]
provides the legal baseline on privacy protection. Besides a right of information, rectifi-
cation, and deletion, they state that any publication should be anonymized, such as it is
impossible to re-identify any individuals included.

In France, articles D111-59 to D111-66 of the "Code de l’Énergie" (Energy Code)
specify the anonymization method before publishing any electricity consumption series
to the public. It requires the use of the threshold aggregation method. The thresh-
old indicates the minimum number of series aggregated. The thresholds are summarized
in Table 1.1. Publishing half-hourly measurements below 24 h (48 timestamps) requires
aggregating at least 100 meters. Publishing periods between 1 and 31 days (1,488 times-
tamps) require aggregating at least 500 meters. Above, a publication must contain at
least 5,000 series. For daily measurements, the publication must aggregate at least 100
individuals independently of the period published. The law also states that "atypical"
measurements should be removed (without defining "atypical"). Publishing series contain-
ing only professional clients requires aggregating 3 series with a restriction that a single
individual must not contribute to more than 85 % of the aggregate. The professional
threshold is justified because they are not considered "personal information" contrary to
the residential ones and, therefore, not subject to personal data protection laws. In this
thesis, we focus on residential aggregates and series as they are directly concerned by the
GDPR.
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Frequency Timestamps Threshold
> 24H ≥ 100
< 24H < 24H ≥ 100
< 24H [24H; 31J] ≥ 500
< 24H > 31J ≥ 5000
Professionals above 36 kW ≥ 3

Table 1.1 – Aggregate thresholds function of the publication according to the measurement
frequency (daily or half-hourly) and the number of timestamp published.

1.3 Publishing aggregates

As the previous section shows, Enedis is legally bound to release electricity consump-
tion measurements using threshold aggregates [17]. Aggregation is a traditional and still
common method to publish data. Aggregates are cheap to compute (summing values) and
require minimal hyperparameter tuning (the number of values to aggregate). In the rest
of this thesis, we focus on sum and mean aggregates as Enedis’ publications use them.

To give an example, Figure 1.2 shows three individual electricity consumption time
series, the mean aggregate of the three series, and the mean aggregate of the whole
ISSDA dataset (see Section 3.2). We see that the three series (TS 1 to 3 on Figure 1.2)
have each a distinct consumption pattern. The aggregate reflects the characteristics of its
population. Outstanding individuals have a substantial impact on small aggregates (mean-
aggregate on Figure 1.2, performing the mean of TS 1 to 3). Individual patterns become
indistinguishable by aggregating numerous series (Global mean-aggregate on Figure 1.2,
aggregating 4622 series), replaced by global information about the general population. We
see that the whole population consumes electricity during the day while TS1 and TS3
have two high consumption periods in the morning and the afternoon, strongly impacting
the mean-aggregate. On the other hand, TS2 has a tiny and stable consumption for most
of the day; only its peak in the evening impacts the mean-aggregate.

There is a trade-off to find between publishing aggregates containing fine-grained in-
formation and preserving privacy. Unlike unaggregated datasets, aggregates are generally
not published alone but with metadata: a set of pre-computed statistics describing the ag-
gregate population (e.g., count, label). To make the published aggregates more valuable,
they are usually associated with additional attributes characterizing the subpopulation in
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Figure 1.2 – Three illustrative half-hourly series over a single day, the mean-aggregate of
the three series and the mean-aggregate of the whole population.

the aggregates. To illustrate this point, the current publications made by Enedis 2 consist
of the average daily electricity consumption (time series) per region and profile (attribute).
In the future, such characterizing attributes may potentially be, for example, the house-
holds occupancy [Che+13], socio-economical metrics about the household (i.e., household
surface, number of inhabitants) [BSS13] or, as a generality, information extracted through
NILM (see Section 2.1).

Despite the recognition of differential privacy [Dwo06; Dwo+06] as the de facto stan-
dard for privacy-preserving data publishing (see the box below), aggregation (without
additional protection) is still widely used by the industry [ENA15; Pod21] and statistical
entities 3 4 to publish protected data. Aggregates have some advantages over differential-
privacy-based methods. One of them is that aggregates allow the publication of unbounded
time series. Publishing timestamped data while respecting differential privacy requires dis-
tributing the privacy budget (ϵ) according to the number of timestamps. With a large

2. https://data.enedis.fr/
3. https://www.insee.fr/fr/information/4174982
4. https://www.census.gov/library/visualizations/2019/comm/history-privacy-

protection.html
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number of timestamps, the expected variance of the noise increases significantly and re-
duces the publication utility.

However, despite being widely used as a publication method, it is still challenging to
justify the threshold choice [WD96; ENA15; ISO18]. Few recent works propose to attack
aggregates (see Section 2). One of the objectives of this thesis is to test the current
threshold defined by the regulation to find potential vulnerabilities or provide detailed
insight justifying the choice of pertinent threshold and defining "atypical" individuals.

Formally, introduced by Dwork is 2006 [Dwo06; Dwo+06], ϵ-
differential privacy is the de-facto standard for the publication
of privacy sensitive information. Given a function f , an observer
should not be able to tell if an individual participated in the result
of f . It is done by adding noise, simulating the potential impact of a
single individual on the result (with a margin of error). In addition,
the privacy budget (ϵ) calibrates the magnitude of the noise. If the
noise is too weak, the publication might be vulnerable. If the noise
is too strong, it destroys information, and the publication loses its
utility.

ϵ-differential privacy

1.4 Publication sensitivity

As the previous sections show, electricity consumption time series are sensitive and
require adequate protection. This section details the privacy threats faced by both indi-
vidual series and aggregates. This section details the actors having access to individual
series and the ones having access to aggregates. Finally, we provide accurate threat models
to credibilize the attacks presented in this thesis.

1.4.1 Threat on individual series

In this section, we discuss the electricity time series sensitivity. We do it for two
reasons: First, we study in Section 3.5 the vulnerability of publishing time series against re-
identification attacks. Second, every attacks against aggregates need access to individual
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time series. Therefore, the question of obtaining access to individual time series is a
prerequisite to the realization of the attacks.

We identified the actors having access to individual electricity consumption time series.
They could either behave maliciously or leak the data to a malicious actor. Even if all
actors are honest and adequately protect the entrusted data, data leaks are a threat to
be taken seriously. Leaks can be triggered by an external actor or through a malicious
employee. Data leaks multiplied in recent years with more than 5,000 breaches referenced
in 2021 5 (+ 44 % in 2022 6). Such numbers are the tip of the iceberg, and many leaks
remain unaccounted for. Without leaks, the attacker could collect series directly at the
source (from the home electricity network) or through the third parties accessing the
measurements.

The quantity and quality of information available on a series depend on its precision.
Half-hourly series carries more information than the daily ones (which carry more informa-
tion than yearly ones). NILM (Non-Intrusive Load Monitoring) is a data science field that
infers attributes from electricity consumption time series. We detail NILM in Section 2.1.
Still, we note that in its current state, NILM techniques can infer sensitive attributes such
as home presence and socio-economic metrics on half-hourly series. However, we note that
NILM algorithms require extensive ground truth information (i.e., labeled series) for train-
ing. Gathering such ground truth is complex and expensive, limiting (without canceling)
the impact of NILM-based attribute inference.

Another threat to the publication of electricity consumption time series is the linkage
of two series together. Given a series published during a period, can that series be linked
to another one (from the same individual) published in another period? We could imagine
an attacker having detailed access to a series (and subsequently the whereabouts) over a
small period and a pseudonymized publication (by removing Identifying information) of
multiple series over a longer period. Finding which series in the pseudonymized dataset
corresponds to the targeted series allows the attacker to gain additional knowledge of the
target.

5. https://www.verizon.com/business/resources/reports/dbir/2021/data-breach-
statistics-by-industry/

6. https://www.proofpoint.com/us/resources/threat-reports/cost-of-insider-threats
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1.4.2 Threat on the aggregates

Every aggregates are considered public as they are published respecting the threshold.
The threats to the aggregates are different from those to the individual series. Even if it
might be possible to perform an attribute inference attack, the fact that aggregates merge
multiple series complexifies the task. Individual patterns will blend in and ultimately be
masked with the number of series aggregated. General characteristics describing the whole
population replace individual information.

The threat shifts from extracting characteristics to inferring whether or not an individ-
ual participates in the aggregate. Aggregates are not published alone but are accompanied
by metadata and descriptive information. Identifying an individual as part of an aggregate
labels it with that descriptive information. Membership inference attacks could be gener-
alized to the whole aggregate population to find all series at the origin of an aggregate.

1.4.3 Attackers motives

We identify three main families of objectives that could motivate a malicious actor to
attack electricity consumption published data.

Public relation issues: Performing an attack to hurt the company’s image is one of
the main threats faced at the moment. Malicious actors might also try to black-
mail the company for monetary gains. Either they get paid a ransom, or they
publish the sensitive data at their disposal. Even if no such attacks have been per-
formed against anonymized datasets, they are already widely performed through
data leaks [Phi17] 7.

Buisness gains: The current electricity market is very competitive, with many sup-
pliers fighting each other to gain market shares. Therefore, using borderline (and
sometimes illegal) methods to gain or retain a client is tempting. Multiple cases of
mismanagement of private data 8 and aggressive marketing 9 from suppliers have
been documented. As we previously identified, suppliers could have access to de-
tailed measurements of their (former) clients. We note in particular that if it is

7. https://www.cloudflare.com/learning/insights-ransomware-extortion/
8. https://www.cnil.fr/fr/prospection-commerciale-et-droits-des-personnes-sanction-

de-1-million-deuros-lencontre-de
9. https://www.economie.gouv.fr/dgccrf/sanction-lencontre-de-la-societe-eni-gas-

power-france-pour-non-respect-du-droit-de
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possible to identify a former client in a new publication, it is possible to under-
stand the reason for his departure and make a tailored new offer to regain it.
Suppliers are not the only ones with financial interests in attacking published
electricity consumption time series. Gaining in-depth knowledge of a household
consumption pattern could prove extremely valuable for advertisers.

Spycraft: Individual and commercial consumption measurements carry much per-
sonal information ranging from the home presence, devices used, and company
activity. Therefore, they make a tempting target for various spies. Against compa-
nies, finding the location of factories, the machinery they used, and how they are
used could prove helpful for economical spies 10.

1.5 Outline

This thesis is funded by the Enedis company to study the privacy challenges posed by
the publication of (aggregated) electricity consumption time series. In this introduction,
we discuss the privacy threat models related to aggregated electricity consumption time
series publication. Why would someone conduct a malicious action to extract sensitive
information from electricity consumption time series? This thesis focuses on the following
questions.

1. We develop privacy attacks targeting the publication of aggregates. With these
attacks, we aim to understand how a malicious actor can breach the privacy of an
aggregate. Besides, the attacks provide knowledge of the attacker’s requirements.
Both in terms of background knowledge and computational power.

2. We analyze the datasets and the attacks, trying to understand what makes an
aggregate and an individual series vulnerable. We aim to provide knowledge for
choosing a relevant aggregation threshold. We aim to define an "atypical" series
that should be removed from the aggregate.

This thesis is organized as follows. First, Chapter 1 presents the context of the thesis:
the smart meter, the related regulations, and the data sensitivity. Chapter 2 presents
the literature related to privacy attacks. The chapter focuses on the most relevant attacks
related to aggregates. Chapter 3, presents our first contribution. We present the electricity

10. https://www.capital.fr/economie-politique/espionnage-industriel-les-affaires-qui-
ont-fait-trembler-l-economie-1074640
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consumption datasets used in our experiments. Besides, it presents an in-depth statistical
study of these datasets. This statistical study presents a vulnerability analysis of individual
(un-aggregated) electricity consumption time series publications. Chapter 4 presents our
second contribution, the SubSum attack. It is a membership attack aiming to find all
the series participating in an aggregate. Chapter 5 presents our third contribution, the
STATS attack. This attack finds if a series participates in an aggregate. Finally, Chapter 6
concludes the thesis by discussing the findings and providing interesting future works.
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Chapter 2

LITERATURE REVIEW

In the last decades, numerous privacy attacks trying to infer sensitive information from
published data have been proposed. This chapter survey privacy attacks developed and
highlights the most relevant ones in the context of this thesis. Based on the classification
made by Dwork, Smith, Steinke, and Ullman in their survey [Dwo+17], we can distinguish
4 main attack families with different goals, background knowledge, and methods:

1. Attribute inference: The attacker aims to extract privacy-sensitive attributes
from the published data (Section 2.1).

2. re-identification: The attacker aims to link an anonymized (or pseudonymized)
record back to its original owner (Section 2.2).

3. Reconstruction: The attacker aims to reconstruct the dataset at the origin of an
anonymized publication (Section 2.3).

4. Membership Inference: The attacker aims to detect whether or not a target
individual was used in the construction of a published dataset (Section 2.4).

2.1 Attribute inference attacks

Attribute inference attacks aim to extract privacy-sensitive attribute from published
data. The attribute is an information labeling the data. Attributes inference attacks
are not always considered as a privacy violation but rather as legitimate data science 1.
However, it is possible to infer privacy-sensitive attributes directly from the dataset by
crossing the information contained in multiple datasets [GL16].

In this chapter, we focus on Non-Intrusive Load Monitoring (NILM) aiming at ex-
tracting valuable information from electricity consumption time series [Fau+17]. Hart
presented the first NILM paper in 1992 [Har92]. It is also referred to in the literature as
Non-Intrusive Appliance Monitoring.

1. https://differentialprivacy.org/inference-is-not-a-privacy-violation/
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Figure 2.1 – NILM example at infering devices used [Har92].

Faustine et al. [Fau+17] surveys NILM techniques. For example, using NILM, it is
possible to detect which electrical devices are used and when by a given household [Har92;
Mol+10; LMW10; AR13; VKD13; ACF12; SM21]. Figure 2.1 illustrates the concept of
NILM. The figure shows an electricity consumption time series labeled with the devices
using electricity at a given time. With NILM, it is possible to create consumer profiles
and improve contracts and grid management [Chi+03; Bir+12]. Some works predict the
thermal sensibility of a building [Bir+12], a metric often used in thermal renovation and
for the energy transition. [GJL12] detects the TV program currently watched.

However, some extracted information can threaten individuals. For example, detect-
ing whether a house is occupied [Che+13; AR13; JJS17] could help burglars find empty
homes. Another example would be to extract sensitive socio-economic metrics on house-
holds [LMW10; AR13; BSS13; MH20; SM21] such as the number of residents, the family
status (single, number of children), the employment status (employed, unemployed or
retired), the social status and even the sleep patterns. Therefore NILM techniques can
be diverted by a malicious actor to extract sensitive attributes from published electricity
consumption time series.

Note that several drawbacks make NILM challenging to be used in an attack. Firstly,
many NILM techniques inferring detailed insights on the household whereabouts are per-
formed on time series with a sampling rate below a minute for [Mol+10; VKD13; GJL12;
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Figure 2.2 – re-identification attack by crossing unique attributes between two
datasets [Swe00].

Bir+12; Rot+19]. It is incompatible with the current precision of the smart meters (per-
forming one measurement every 30 minutes). Secondly, all NILM methods require training
and ground truth information. The ground truth corresponds to a series correctly labeled
with the information to extract. Obtaining the ground truth is particularly challenging
and expensive. A simple survey linking a series to an attribute could be sufficient. For
example, Beckel [BSS13] uses the survey accompanying the ISSDA dataset to infer the
survey answers from the series. However, most of the time, gathering the ground truth
requires obtaining the authorization of the individuals and installing intrusive physical
devices. Most works previously mentioned trains their algorithms on a limited number
of households [VKD13; ACF12; Bir+12; Rot+19]. Only a few works use the (relatively)
numerous and coarser-grained ISSDA dataset [BSS13; MH20].

Because of these drawbacks, we decided not to pursue a general research direction
about NILM and attribute inference attacks. We do not rule out an attacker getting access
to sufficient knowledge by collecting the ground truth or through pre-trained third-party
models to perform a NILM-based attack.

2.2 Re-identification attacks

Re-identification attacks link information in a pseudonymized dataset to a real indi-
vidual’s identity. Pseudonymization (or de-identification) is a technique often used to
anonymize a dataset by removing (or replaced by a pseudonym) any personal informa-
tion from a dataset. With pseudonymization, performing the same analysis as on the raw
dataset is possible.
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The most impressive re-identification attacks happen when individuals are unique. An
individual is said unique if it is the only one in the dataset with a set of descriptive
variables (called quasi-identifiers). The uniqueness is defined as the proportion of
unique individuals (relative to a set of quasi-identifier) in the dataset.

Re-identification attacks suppose the attacker has access to a pseudonymized dataset
containing sensitive information and a re-identification dataset containing identity in-
formation. An attacker can link sensitive information to an identity by crossing unique
quasi-identifiers between the two databases. The re-identification attack could be sum-
marized (and is often implemented) as an SQL join between two tables on a shared set of
columns.

In 2000, Sweeney [Swe00; Gol06] showed that 87 % (216 million out of 248 million)
individuals were unique in a pseudonymized medical database only by knowing three char-
acteristics: the ZIP code, gender, and birth date. Sweeney used a public register containing
the information of 54,000 individuals to find the names behind a pseudonymized medi-
cal dataset using the unique characteristics shared between the two databases (see Fig-
ure 2.2). Using this method, Sweeney re-identified W. Weld, the Massachusetts governor
at the time [Swe02]. Similarly, Narayanan and Shmatikov [NS08] crossed the public IMDB
database containing user film ratings with the pseudonymized Netflix one, re-identifying
users behind Netflix accounts.

Several studies pointed out high uniqueness over sparse datasets without proposing
a full attack. Uniqueness is used as a risk measurement metric. High uniqueness with
minimum identifiers facilitates the re-identification (as shown by Sweeney, Narayanan
and Shmatikov). De Montjoye et al. performs such uniqueness study on a countrywide
mobility dataset containing 1.5 million traces [De +13; DP16] over 15 months. A trace
is the timestamped position of an individual. In this dataset, a position corresponds to
a GSM antenna. Therefore, each antenna encodes multiple individuals’ locations during
the same period. There are, on average, 2000 inhabitants per area covered by an antenna.
The authors found that four randomly chosen points are enough to characterize 95% of
the individuals in the dataset uniquely. Two years later, De Montjoye et al. reiterates a
new uniqueness study on payment data [Mon+15]. This time, the database contains the
credit card history of 1.1 million individuals for three months. The authors found that
randomly taking four transactions per individual was enough to uniquely identify 90 %
of them uniquely. In both cases, the authors found that reducing the dataset precision
does not prevent a high uniqueness. They reduced the precision by aggregating multiple
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positions (or shops in the second attack) and timestamps. With the transaction dataset,
10 points are enough to identify 80 % of the population when aggregating the transactions
over two weeks and 350 shops.

Without uniqueness, re-identification attacks are performed on GPS traces [GH05;
GKP13]. The goal is to link pseudonymized GPS traces to identified ones using a like-
lihood ratio. In the first case, [GH05] compute a likelihood ratio between traces. In the
second, [GKP13] model the traces as a Mobility Markov Chains. Then the authors mea-
sure the distances between the chains and link the closest together to perform the re-
identification.

Jawurek et al. [JJR11] propose two re-identification attacks tailored against pseudonymized
electricity consumption time series. Both attacks aim to link a pseudonymized time series
with a non-pseudonymized one. The first attack finds anomalies in both datasets simul-
taneously (requiring that both datasets overlap) to perform the linkage. Anomalies are
detected by computing a distance to an individual nominal consumption (mean for the
period). The second attack uses pattern recognition to find common patterns that could
identify an individual (thus not requiring overlap). The recognition is done by training an
SVM classifier for every individual to re-identify.

2.3 Reconstruction attacks

Reconstruction attacks try to restore all or parts of the data at the origin of an
anonymized publication. Dinur and Nissim introduced them in 2003 [DN03]. The anonymized
data could be published once (i.e., as a CSV file) [GAM19; MSS20] or through a set of
queries (i.e., an SQL interface) [FEM17; CN20]. All reconstruction attacks in the litera-
ture [DN03; DMT07; KRS13] share the same concept: the attacker uses the available data
to build a set of linear constraints modeling the data to reconstruct. A solution is a set of
individuals (with their values) matching the constraints. If the modeling is sufficient, then
the constraints produce a single solution corresponding to the original data. In the worst
case, multiple solutions match the constraints. When the set of solutions is reasonable, it
offers valuable insight into the original data.

Garfinkel et al. [GAM19] propose a reconstruction attack on the US census statistics
published per geographical area. The attacker dataset consists of a small population (i.e.,
a US county) where the same characteristics (here: sex, race, and marital status) are
described by multiple metrics (here: the number of people, the mean, and the median
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age). Having the same characteristics described by multiple metrics allows the attacker to
build numerous constraints covering all characteristics and metrics. Besides, the attacker
can build multiple constraints per individual. Only a few combinations (i.e., characteristics
per individual) match the constraints, leading to a small set of solutions potentially at
the origin of the publication.

Of course, obtaining a set (greater than one) of potential solutions prevents the recon-
struction of the original dataset. The attacker could compute a probability of presence
in the original dataset per individual. The attacker obtains knowledge about the original
population if the probabilities are better than random guessing. Besides, the attack is
limited by the number of constraints possible given the set of characteristics and metrics
available. However, the following paragraph shows that the only limitation is the number
of constraints the attacker obtains. Adding more constraints reduces the resulting set of
solutions. Ultimately, only one solution matches the constraints: the one at the origin of
the publication.

In [CN20], Cohen and Nissim propose an attack on the DIFFIX [FEM17] system.
DIFFIX is a database query system where users perform custom SQL counting queries
over a private dataset. DIFFIX maintain privacy by limiting the minimal number of rows
queried, adding noise, and restricting the usage of some SQL operands. The attacker
constructs a large set of linear constraints by submitting a large batch of queries using
well-chosen pseudo-random filters, fully restoring the original database. In this attack, the
filters are designed pseudo-randomly to cover the whole database population with multi-
ple constraints. Besides, the attacker predicts which individuals are present in the filter.
Individuals are represented with a unique database id (i.e., an integer). No information
about an individual true existence (the id might be contained within the filter but not
present in the database) is available to the attacker. Solving the constraints confirms the
individual existence and provides its value.

Martinez, Sébé, and Sorge [MSS20] propose a reconstruction attack on electricity con-
sumption data. The attacker access half-hourly pseudonymized consumption measure-
ments and monthly aggregates containing customer information. New pseudonyms are
generated for every timestamp, meaning tracing an individual consumption series from
the measurements is impossible. The aggregates are computed by each meter by summing
the measurement of multiple timestamps. The attack is modeled as a knapsack problem. It
aims at building credible series (linking individual measurements over time) using the set
of individual measurements and aggregates. For every aggregate, the attacker builds a set
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of knapsack constraints, such as the sum of the individual consumption constituting the
aggregate. This paper is adapted by Dietrich et al. [DLS20] on the UMass 2 electricity con-
sumption dataset containing only 114 series. Both attack implementations focus on a tiny
period: below 60 timestamps for [MSS20] and below 15 for [DLS20]. Their implementa-
tions are computationally intensive, and attacking more significant problems exceeds their
available computational power (24 cores and 512 GiB of RAM). Besides [MSS20], [DLS20]
studied the impact of the measurement precision on the attack success and studied the
number of solutions found. They show that more precise measurements are more vulner-
able to reconstruction attacks.

Reconstruction attacks can only occur in a setup with extensive background knowl-
edge available to the attacker. For example, in the DIFFIX attack [CN20], 3500 queries
were required to reconstruct a subset of 73 individuals. Also, solving the linear programs
modeling the constraints is an NP-hard problem. However, linear reconstruction attacks
are powerful when applicable as they can restore the whole private dataset or give valuable
insight into a potential set of individuals forming the dataset.

2.4 Membership inference attacks

Membership Inference Attacks (MIA in short, also referred by [Dwo+17] as tracing
attacks), regroup a wide range of attacks aiming to find whether an individual is present
in a publication. MIA often targets machine learning models or aggregates. MIA was
introduced by Homer et al. in 2008 [Hom+08]. On this attack, the goal was to find if a
gene was present in a set of gene subsequences. We split this section into two categories,
one about MIA against machine learning models and one presenting the works tailored
against aggregates.

2.4.1 MIA on machine learning model

Most recent works around MIAs focus on the following problem: given a machine
learning model and a targeted individual: find if this individual is used to train the machine
learning model. A recent survey [Hu+22] reports more than a hundred articles discussing
MIAs against machine learning models. In this section, we present a few influential of
these and focus on the works and techniques potentially usable against aggregates.

2. https://traces.cs.umass.edu/index.php/Smart/Smart
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In 2017, Shokri et al. [Sho+17] introduced the influential shadow model concept.
This concept is largely used and extended [Tru+21; Che+22]. In this attack, the attacker
has access to an individual (the target) and black-box access to a model. A black-box
access means the attacker can only ask the model for predictions without accessing any
information about the model (i.e., algorithm, training data). Besides, the paper considers
the attacker has access to similar data as the one used to train the model. The idea of the
shadow model is to use the target and similar data to train multiple fake models (both
trained with and without the target). Then, an attack model is trained to detect which
model has been trained using the target. The attack model is then used to predict the
target’s presence in the real model.

The [Sho+17] attack uses the accuracy, the precision, and the recall as success metrics
(defined in Section 5.1). The accuracy is the ratio of correct classification (both positive
and negative) during the testing phase. The precision is the proportion of correct positive
classifications. The recall is the proportion of positive labels correctly identified by the
model. The F-score (the harmonic mean of the precision and the recall) could also be
used as a success metric [Rah+18]. Compared to the accuracy which shows the probability
of getting a correct classification, the F-score offers a better vision of the True Positive
(i.e., the examples correctly classified as part of the training data) which can be useful
for the attacker. One attacker might consider that he must not accuse an innocent (i.e.,
having a False Positive). In that case, the attacker performs the attack only when the
precision is high.

Salem et al. [Sal+19] demonstrate the attack feasibility by training a single fake model
to simulate the targeted model. This model is trained to imitate the attacked model using
a similar dataset to the one used to train the target model. Here the model is trained
on half of the similar dataset. The model then classifies the remaining individuals in
the similar dataset and the attacker observes the prediction probabilities. Based on the
prediction results, the attacker builds a new model to detect if targeted records have been
used to train the targeted model.

Based on [Sho+17], Yeom et al. [Yeo+18] explore the reason behind MIA’s success
against machine learning models. The authors found that model overfitting is one of the
main factors influencing MIA success. A model is said to overfit when it remembers
the training values instead of learning a general trend. Another factor is the importance
taken by some individuals in the attacked model. The most important individuals are
the most vulnerable. Overfitting is not much of a concern in dealing with aggregates as
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it is a machine-learning concept. An aggregate (sum or mean) learns nothing about the
data. The weight of each individual in the final publication is particularly relevant while
dealing with aggregates. As seen by Figure 1.2 some individuals have more impact on
the aggregate than others. [Yeo+18] also introduced the membership advantage (Adv)
metric defined in Formulae 2.1 as the attack advantage over random guessing.

Adv = 2 × accuracy − 1 (2.1)

Jayaraman et al. [Jay+21] propose an improvement of the [Sho+17] and [Yeo+18]
attacks to support imbalanced datasets for training the shadow model. Besides, this paper
explores MIA against differentially private models evaluating the impact of the privacy
budget (ϵ) on the membership inference. Unsurprisingly, a lower budget reduces the ability
to perform MIA. However, a lower budget significantly reduces the model’s utility. There
is a tradeoff to find between the model resistance to MIA and its utility.

While the previous works quantify the attack success through accuracy-based metrics,
Long et al. [Lon+20] propose a pragmatic approach. Their idea is to force the attack model
to reach high precision. The authors consider the attacker must not accuse innocent (i.e.,
perform a classification when there is a chance of getting a False Positive). The attacker
makes a prediction only when the attacking model is confident enough. The attacker
does not predict anything when the model confidence is too low. The model confidence
is computed using p-values. A model is deemed confident enough when the p-value is
below 0.05. This attack shows that even if an MIA does not reach a high accuracy, it
still is possible to identify the presence of a few individuals with good precision and high
confidence.

GANs 3 are increasingly used to circumvent privacy issues by generating credible fake
data. As they produce synthetic data similar to personal ones, it is believed that the
synthetic data could be safely published without restriction. MIA has been developed to
study if real private information, used in the training phase, could leak from the generative
model and the resulting synthetic data [Hay+17; HAP17; Mel+19; SOT22]. These works
found that GANs have the same privacy weaknesses as the other machine learning models.

3. Generative Adversarial Networks (GAN): A class of machine learning putting in competition two
networks. One generates data and the other detects if the data is fake or real. The goal is to generate a
model producing fake data indistinguishable from the real ones.
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2.4.2 MIA on aggregates

In 2015, a report from the Energy Network association 4 claimed that aggregating two
electricity consumption time series was enough to guarantee the privacy of a publication.
According to them, it is impossible to distinguish an individual’s contribution to an aggre-
gate. Buescher et al. [Büs+17] refuted this claim and propose a new membership inference
attack. Contrary to the previous MIA, this attack is modeled as a cryptographic game.
In that game, the attacker is given a pair of series and must find which one is present
inside the aggregate. The attack uses simple statistical estimators (Pearson correlation,
Mean Squared Error, and the most common consumption peaks). It is evaluated using the
membership advantage metric. This attack achieves almost absolute success (advantage
above 75 %) against an aggregate of size 2. The paper explores the attack’s success against
aggregates of sizes up to 50. The advantage becomes low (below 25 %) for aggregate sizes
above 20.

In his PhD thesis [Pyr19; PTC17; PTC18; PTC20] and the related papers, Pyrgelis and
his co-authors conducted an in-depth MIA study on aggregated location data. His attack
is based on the shadow model principle (described above in [Sho+17]). Individual mobility
traces are represented as a boolean sparse matrix (the cell is set to 1 if the individual was
present at that location and at that time). The aggregate consists of the sum of multiple
individual matrixes indicating the number of individuals per location and timestamp. The
attack consists of simple machine learning models (Logistic Regression, Random Forest,
K-Nearest Neighbors, and Multi Layers Perceptrons) taking simple features (min, max,
mean, median, variance, and standard deviation) computed for each location over the
targeted aggregate. In its latest variant [PTC20], the attack also uses PCA 5 to compute
features and uses only Logistic Regression deemed the most efficient machine learning
method. Therefore, this attack does not consider the data’s temporal aspect. The attack
challenges aggregate sizes up to 100. The attack is very successful for small aggregates
(5, 10). The success rate goes down when the aggregate size increase. The authors also
study many potential protection methods and utility metrics. They find that differential
privacy methods achieve good privacy but at the cost of the data utility.

4. https://www.energynetworks.org/industry-hub/resource-library/smart-meters-data-aggregation-
assessment-final-report.pdf

5. Principal Component Analysis
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Chapter 3

DATASETS ANALYSIS

This chapter presents and analyses the datasets used in this thesis: the ISSDA [CER12]
dataset, the LONDON [Net13] dataset and the ENEDIS dataset. ISSDA and LONDON
are two public electricity consumption datasets. We use them as a reproducible caution
for our work. However, they are relatively small, around 5000 series each, preventing us
from running large-scale experiments on them. We use the ENEDIS dataset containing
more than 3 million half-hourly series and more than 30 million daily series.

This chapter offers a statistical study of each dataset. Our primary objective is to
explore the datasets, understand the consumptions and find relevant patterns. We observe
the consumption patterns from the yearly level down to the half-hourly level. We study the
factors influencing consumption. This study highlights the importance of temperature as a
main factor influencing consumption. We find higher consumption during the winter than
in summer. We compare the average consumption to the average temperature and find a
strong correlation between consumption and low temperature. We observe a consumption
peak during the evening after working hours. Finally, we observe that higher average
consumption leads to a higher dispersion. Although the ISSDA and ENEDIS datasets
behave similarly, the LONDON dataset is different, with higher consumption during the
summer and the night.

Finally, in this chapter, we study the vulnerability of the datasets to a re-identification
attack by looking at the uniqueness metric. Uniqueness is a widely used measure for eval-
uating the vulnerability to re-identifications of personal data. For example, the famous re-
identification of Governor Weld performed by Sweeney within a health dataset [Swe02] is
possible because Governor Weld’s record (date of birth, zipcode, sex) is unique in the
health dataset disclosed. So any adversary knowing the (date of birth, zipcode, sex)
triple of Governor Weld can join it with the dataset to obtain his health information. Ob-
viously, the rate of unique measurements impacts the re-identification. Uniqueness is used
in the Netflix attack [NS08]. It is exploited by large-scale empirical studies on mobility
traces [De +13] and transaction data [Mon+15]. Uniqueness is now well recognized as a
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risk measurement metric [Sek+21; RLK21]. Based on previous uniqueness works [Swe02;
NS08], we measure uniqueness as a re-identification risk metric. In this context, unique-
ness quantifies the fraction of households that can potentially be re-identified by accessing
part of their electricity consumption time series.

To the best of our knowledge, this work is the first uniqueness study performed na-
tionwide on fine-grained electric consumption time series. Previous large-scale uniqueness
studies [NS08; De +13; Mon+15] do not mention electric consumption time series. Related
works [JJR11; Buc+13; DLS20; Büs+17] focusing on the vulnerabilities to re-identification
of electric consumption time series do not perform any in-depth uniqueness study. A re-
cent work [Cre+22] focuses on re-identifying individuals when the adversarial background
knowledge is different from the period of the disclosed dataset. However, uniqueness is
not studied in [Cre+22], and the dataset consists of interactions between individuals (e.g.,
who calls who).

In a nutshell, we observe that even at such a large-scale, most electric consumption
time series are unique when considering a few consecutive electric consumption measures.
For example, on average, 90 % of the time series are unique when considering only 5
consecutive daily measures. Moreover, tremendously degrading the precision of the elec-
tric consumption measures is not enough to hinder possible re-identifications, even when
rounding the measures from the watt to the kilowatt on half-hourly consumption mea-
sures.

The ENEDIS datasets statistical study (Section 3.4) is published as an Enedis’ internal
report. The uniqueness study is an independent article currently under review by the
Nature Scientific Report Smart Cities journal [Voy+22b].

We start this chapter in Section 3.1 by exposing data management regulations and the
analysis methodology. Then, we present the statistical study of the three datasets, starting
with the ISSDA dataset (Section 3.2), followed by the LONDON dataset (Section 3.3)
and the ENEDIS dataset (Section 3.4). Finally, we present the results of the uniqueness
study in Section 3.5. Section 3.6 discusses the results and concludes.
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3.1 Practical information

3.1.1 Legal compliance

This thesis leverages collecting and manipulating a significant amount of electricity
consumption time series. They are considered personal information and have been man-
aged under the applicable legislation [78; 16b]. In this document, we only share individual
series from public sources.

The two public datasets (CER-ISSDA [CER12] and London [Net13]) are managed
regarding their respective license. Both contain pseudonymized data and are collected
with the agreement of the concerned individuals. All requests should be addressed to the
provider.

We also use data from our industrial partner: Enedis. They are collected and managed
as part of the normal process of the company 1. Daily consumptions (called index) are
systematically collected and transmitted to the electricity provider for billing purposes.
They are kept for 72 months before being deleted. The collection of half-hourly consump-
tion requires the approval of the client. The authorization (and its revocation) is managed
directly through the Enedis client account or by using the electricity supplier as a proxy.
They are kept for 24 months before being automatically deleted. Note that, in the rest
of this document, and due to this deletion process, series are processed over different pe-
riods depending on when each study is performed. In this study, all data are processed
on the Enedis computational infrastructure. We do not have access to any nominative
information. Any request should be addressed to Enedis (see the footnote above).

3.1.2 Methodology

The statistical analyses made in this study follow the same procedure but vary ac-
cording to the considered perimeter. A perimeter defines the dataset population: which
meters are included.

For the ISSDA and LONDON datasets, the perimeter contains the whole cleaned
dataset (without series containing empty values). For the ENEDIS dataset, a perimeter
is a tuple defined by a geographical area and a profile. A geographical area is defined
as a French administrative area. It ranges from a city to the whole country (metropolitan

1. https://www.enedis.fr/donnees-personnelles
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France). A profile is a classification of individual meters made by Enedis 2. Each meter
is attributed to a profile based on contractual information and past consumption. For
example, the perimeter (NAT; RES*) represents all the residential meters (RES*) in the
whole of metropolitan France (NAT).

Table 3.1 provides the notations used in this chapter. All these notations are relative
to a given perimeter. A glossary containing all the definitions is available in Table 3.1 and
in Appendix A.

Notation Description
Meter A Point Of Measurement (POM) collecting the consumption

value at regular timestamps.
Profile Specific to the ENEDIS dataset. Contract type and consump-

tion pattern associated with a meter.
Geographical area Specific to the ENEDIS dataset. A geographical area. Either

the whole of metropolitan France or an administrative depart-
ment.

T Set of timestamps with t ∈ T being a single timestamp.
W Set of all possible consumption values within a perimeter. Ex-

ample: W = {0, 1, ..., 36000} (in Watt W).
S Set of power consumption time series. Si,t is the consumption

of the ith meter at the timestamp t. Note that for some times-
tamps, Si,t = ∅ and does not exist (ignored in the computa-
tion).

σ(St) Standard deviation for the set of series S at the timestamp t.
Defined in Formulae 3.2.

ρ(i, j) Pearson coefficient between the series i and j. Defined in For-
mulae 3.4.

F [w] Frequency for the consumption value w. Defined in Formu-
lae 3.5.

et Shannon entropy. Defined in Formulae 3.8.
uk

t Uniqueness at timestamp t with k consecutive timestamps. De-
fined in Formulae 3.7.

Table 3.1 – Notations

Cleanup: We clean the raw datasets in the following manner. For the ISSDA and LON-
DON datasets, we remove all measurements containing missing values. For the ENEDIS

2. https://www.enedis.fr/responsable-dequilibre-profilage-et-profils
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datasets, we selected the measurements with at least 46 measurements per day on the
period. We detail any additional filters and missing values remediation methods applied
when relevant.

Time series: A time series is a sequence of timestamped values. We represent (see
eq. 3.1) a set of time series as a |I| × |T | matrix S where the |I| rows represent the time
series of each individual and the |T | columns represent the timestamps (i.e., a sequence
of integers from 1 to |T | for simplicity). Each cell Si,t ∈ [dmin, dmax] thus represents the
value of the ith individual at the tth timestamp. As no measurements could be negative,
dmin = 0.

S =


S1,1 · · · S1,|T |

... ... ...
S|I|,1 · · · S|I|,|T |

 (3.1)

Standard deviation: Equation 3.2 defines the standard deviation σ(St) of the set of
time series S at the timestamp t. The standard deviation measures the dispersion of a set
of the values relative to the mean value.

∀t ∈ T , σ(St) =
√√√√ 1

|I|
·

∑
∀i∈I

(
Si,t − St

)2
(3.2)

Covariance: Equation 3.3 defines the covariance of two time series i and j in the set
of time series S. The covariance measures the joint variation of the two series.

cov(i, j) =
∑

∀t∈|T |(Si,t − Si) · (Sj,t − Sj)
|T |

(3.3)

Pearson coefficient: Equation 3.4 defines the Pearson coefficient. The Pearson coeffi-
cient is a metric measuring the correlation between two series (i and j in the set of time
series S). σi is the standard deviation of the series i (with respectively σj for series j).
Equation 3.3 defines the covariance cov(i, j).

ρ(i, j) = cov(i, j)
σi · σj

(3.4)
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Frequencies: Equation 3.5 defines the frequencies. Frequencies are computed for a set of
time series S. Each value of the series belongs to the definition domain W = {dmin · · · dmax}.
δ(i, t, w) = 1 when Si,t = w and 0 otherwise.

∀w ∈ W , F [w] =
∑

∀t∈T
∑

∀i∈I δ(i, t, w)∑
∀w∈W

∑
∀t∈T

∑
∀i∈I δ(i, t, w) (3.5)

Uniqueness: We apply the same method for computing the uniqueness regardless of
the dataset. We compute the ENEDIS results using SQL and we developed a dedicated
Python library 3 to compute the ISSDA and LONDON results.

Given k, we compute the uniqueness at each timestamp t by considering for each time
series the sub-sequence starting at t (included) and containing k consecutive measures
(called a k-length sub-sequence below) and by computing the uniqueness (i.e., number
of unique measurements) in the resulting set of sub-sequences. Finally, for a given k,
we compute and plot the average and minimum/maximum interval uniqueness over all
timestamps.

Let S be a set of n electricity consumption time series with |T | timestamps each.
Given k, we denote Sk

t the dataset derived from S that contains for each time series the
k consecutive timestamps starting at time t (and consequently ending at time t + k − 1).
Note that we ignore the k-length sub-sequences that have missing values (due to, e.g.,
transmission errors). Missing values occur only on the ENEDIS datasets and concern up
to 10 % of the measurements (see Section 3.4). The function U, defined in Equation 3.6,
outputs the set of time series that are unique in Sk

t .

s ∈ U(Sk
t ) ⇐⇒ ∄s′ ∈ Sk

t \ {s}, s.t. s′ = s (3.6)

The uniqueness at time t for k-length sub-sequences; denoted uk
t and defined in

Equation 3.7, is the fraction of unique time series given within the dataset Sk
t .

uk
t = |U(Sk

t )|
|Sk

t |
(3.7)

Entropy: The entropy is computed using the Shannon entropy formulae [Sha48] ap-
plied to k-length sub-sequences. Equation 3.8 computes the entropy for each timestamp

3. https://gitlab.com/phd_antonin/tsunicity
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t. Equation 3.9 defines the probability to get the k-length sub-sequence s ∈ Sk
t with

δ(s, s′) = 1 if s = s′ and 0 otherwise.

et = −
∑

s∈Sk
t

P [s] log2 P [s] (3.8)

P [s] =
∑

s′∈Sk
t

δ(s, s′)
|Sk

t |
(3.9)

Rounding: We also study the impact of a more and more severe information loss on
uniqueness. We degrade our time series by rounding their values by 1, 2, and 3 orders of
magnitude (i.e., respectively to the closest 10 W (or Wh), the closest 100 W (or Wh), and
the closest kW (or kWh)) and compute uniqueness and entropy as explained above. To
this end, consumption measures are rounded before computing uniqueness or entropy.

A note on reading the figures: Due to the high number of figures, this study focuses
on the most interesting figures. If there is no figure for a specific perimeter, refer to the
analysis of the closest higher-level perimeter available. To keep the readability of the
frequency figure, we display only a zoom of what is deemed the most interesting part of
the figure. Note that this study has an appendix (Appendix B) containing all figures. The
datasets contain measurement in local time: GMT for ISSDA and LONDON and CET
for ENEDIS. It includes daylight saving time.

The boxplot figures, for example, Figure 3.16a, represent the Q25 (bottom of the
box), Q75 (top of the box) and the median (middle line within the box). The whiskers are
defined at ±1.5 · IQR (with IQR = Q75 − Q25). The points outside of the whiskers (for
example, with Figure 3.16a in February) represent the outliers outside of that 1.5 IQR 4.
For the monthly statistics, January = 1 and December = 12. For the daily statistics, it is
assumed that Monday = 0 and Sunday = 6.

On the uniqueness figures (for example, Figure 3.27), the line represents the average
uniqueness, and the whiskers represent the minimum and maximum (respectively for the
lower and upper whiskers) uniqueness measured.

4. https://seaborn.pydata.org/tutorial/categorical.html#boxplots
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(a) Average and median consumption.
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Figure 3.1 – Average, median consumption and standard deviation for the whole half-
hourly ISSDA dataset.

3.2 ISSDA

The CER-ISSDA dataset [CER12] is an electric consumption dataset collected by the
Commission for Energy Regulation for the Irish Social Science Data Archive. It contains
the half-hourly electricity consumption measurements of 6435 Irish meters collected be-
tween July 2009 and December 2010. Besides, the dataset comes with a survey providing
insight into the devices used by the meters (usage of heating devices) and socio-economic
metrics such as the number of residents and employment status. We leave this survey
apart from our studies.

Before using the data in our study, we cleaned the dataset by removing all measure-
ments containing at least one missing value. This left us with 4622 complete half-hourly
series over one year and a half. We changed the unit from kilowatt to Watt to manipulate
only integer values. From now on, any mention of the ISSDA dataset refers to this cleaned
dataset. We aggregated the values of the cleaned half-hourly dataset per day to get the
daily consumption measurements. We refer to this dataset as ISSDA-DAILY.

General Statistics: Figure 3.1 shows the average, median, and standard deviation ev-
ery half-hour. The figure shows that the average consumption is well above the median
consumption and that the standard deviation is correlated to the average consumption.
The figure also reveals two seasonal patterns: a first daily pattern, with substantial varia-
tion between the time of the day, and a second one depending on the season, with higher
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Figure 3.2 – Average, median consumption and standard deviation for the whole half-
hourly ISSDA dataset (1 = January, 12 = December).

consumption during winter than during summer. Computing the Pearson coefficient be-
tween the average consumption and the standard deviation shows a strong correlation
(ρ = 0.82), meaning we can expect more dispersed consumption when the average con-
sumption is high.

Monthly Statistics: The monthly statistics are illustrated by Figure 3.2. It shows
a seasonal pattern with higher consumptions in winter than in summer. The standard
deviation follows the consumption with more dispersed consumptions during the winter.
The lower bound of the median indicates a fairly stable Q25 consumption over the year
seemingly unaffected by the month.

Daily Statistics: Figure 3.3 shows the average and median consumptions and the stan-
dard deviation per day of the week (0 = Monday and 6 = Sunday). The consumption
and the standard deviation are relatively stable during the week, with two notable ex-
ceptions: Monday and Sunday. These days, consumption, especially the Q75, is globally
lower (around 20 %) than during the rest of the week.

Hourly Statistics: Figure 3.4 shows the average, median, and standard deviation per
hour of the day. It shows a strong pattern with the lowest consumption during the night (0h
to 6h) and the highest consumption during the evening (17h to 20h), with a high plateau
during the day (9h to 17h). The standard deviation peaks around 11h and decreases
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Figure 3.3 – Average, median consumption and standard deviation for the whole half-
hourly ISSDA dataset (0 = Monday, 6 = Sunday).
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Figure 3.4 – Average, median consumption and standard deviation for the whole half-
hourly ISSDA dataset.
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Figure 3.5 – ISSDA consumption frequency with a zoom on specific ranges.

afterward, ignoring the consumption peak of 17h showing more diverse consumption in
the morning.

Consumption frequencies: Figure 3.5 shows the consumption frequency per Watt in-
dependently of the timestamps. Figure 3.5b zooms on frequencies below 2 kW. First, even
if the consumption range is large (up to 69 kW), most recorded consumption happened
below 1 kW with two peaks at 0 and 100 W. The figure displays some regular artifacts
consisting of higher frequencies followed shortly after by lower frequencies. This is prob-
ably due to some rounding effect on the meter: higher frequencies are even values while
lower frequencies are odd. This is not systematic and does not significantly influence the
series’ shape.

3.3 London

The UK Power Networks company handling the electricity distribution in and around
London collected the LONDON dataset [Net13]. It contains the half-hourly measurements
of 5567 meters collected between November 2011 and February 2014. A significant portion
of the dataset population (approx. 1100 series) is subject to dynamic pricing depending
on the time. The company applies financial incentives to shift their consumption to an-
other time. The UK Power Networks company issues high price periods one day before
the predicted consumption peak. High prices are mainly issued in the winter and dur-
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Figure 3.6 – Average, median consumption and standard deviation for the whole half-
hourly LONDON dataset.

ing the evening 5. Conversely, the company issues lower prices when they expect a low
consumption period.

We clean the dataset by removing all measurements containing at least one missing
value leaving us with 5433 complete series. We change the unit from kilowatt to Watt
to manipulate only integer values. From now on, any mention of the LONDON dataset
refers to the cleaned version of this dataset.

General Statistics: Figure 3.6 shows the average, median, and standard deviation
every half-hour. The figures show that the average consumptions are well above the median
consumption and that the standard deviation is correlated to the average consumption.
Besides, they reveal two seasonal patterns: A first daily pattern, with strong variation
depending on the time of the day (more on that in the hourly statistics paragraph), and
a second seasonal pattern, with higher consumption during summer and autumn than
winter. We note a low consumption on all parameters in the first days of the study due to
a high proportion of consumptions at 0 W. 94 % meters in the first timestamp recorded a
0 W measurement. Computing the Pearson coefficient between the average consumption
and the standard deviation shows a strong correlation (ρ = 0.92), meaning we can expect
more dispersed consumption when the average consumption is high.

5. https://innovation.ukpowernetworks.co.uk/projects/low-carbon-london/
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Figure 3.7 – Average, median consumption and standard deviation for the whole half-
hourly LONDON dataset(1 = January, 12 = December).
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Figure 3.8 – Average, median consumption and standard deviation for the whole half-
hourly LONDON dataset (0 = Monday, 6 = Sunday).

Monthly Statistics: Figure 3.7 illustrates the monthly statistics. We remark on a sur-
prising seasonal pattern with higher summer consumption than winter. This is surprising
compared to the ISSDA (Section 3.2) and ENEDIS (Section 3.4.1) dataset. They both
have stronger consumption in winter than in summer. We could have expected higher
consumption due to the generally lower temperature in winter. As the dataset measures
a lower power than for their ISSDA and ENEDIS counterparts (approx. twice less), we
guess the households do not use electricity for heating. The standard deviation follows
the consumption with more dispersed consumption during the autumn.
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Figure 3.9 – Average, median consumption and standard deviation for the whole half-
hourly LONDON dataset.

Daily Statistics: Figure 3.8 shows the average and median consumptions and the stan-
dard deviation per weekday (0 = Monday and 6 = Sunday). They are both relatively stable
during the week without any days standing to the other.

Hourly Statistics: Figure 3.9 shows the average, median, and standard deviation per
hour of the day. It shows a strong pattern, with the highest consumption happening at
night (3h to 8h) and the lowest around noon (11h to 14h). This pattern is surprising
compared to the ISSDA (Section 3.2) and ENEDIS (Section 3.4.1), which have the lowest
consumptions during the night and peaking during the evening. This could be due to
the different pricing policies encouraging some individuals to shift their consumption at
different times of the day.

Consumption frequencies: Figure 3.10 shows the consumption frequency per Watt
independently of the timestamps, and Figure 3.10b zoom on the frequencies below 1 kW.
While ISSDA and ENEDIS have a maximum recorded consumption of respectively 69 kW
and 36 kW, the LONDON dataset has a maximum recorded consumption below 10 kW.
As for the other dataset, most recorded consumption happened below 1 kW with two
peaks at 0 (up to 9 % of the measurements) and 50 W (up to 1 % of the measurements).
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Figure 3.10 – LONDON dataset consumption frequency (with zoom).

3.4 Enedis

The ENEDIS dataset used in this study was collected by ENEDIS between September
2020 and September 2021. We focus on metropolitan French residential and professional
meters and split them into several smaller perimeters per profile and geographical areas.
As a disclaimer, please note that the COVID-19 pandemic impacted the studied period
and might not fully represent a typical year 6. It was chosen as the newest during the study
and with the most measurements available before the GDPR purges. The GDPR purges
delete most measurements two years after their creation (see Section 3.1.1). Besides, even
if around 3 million meters collect half-hourly series, they represent only a portion of the
35 million meters installed by ENEDIS. The other meters do not have the half-hourly
measurements activated.

Perimeters: This study focuses on the entire French metropolitan (National/NAT)
territory and a few selected regions (at the French departmental administrative level).
Perimeters are summarized in Table 3.2. Departments are chosen based on their (assumed)
geographical specificity that might impact consumption (climate, big cities). The Paris
(75) region corresponds to a dense urban area, Haute-Savoie (74) is a mountainous region,
Marne (51) is a rural region with a continental climate, Finistère (29) is an oceanic region,
and Bouches-du-Rhône (13) is a Mediterranean region with a big city (Marseille) and
heavy industries.

6. https://www.enedis.fr/presse/quel-impact-eu-le-confinement-sur-votre-
consommation-delectricite
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The profiles are ENEDIS’s most common residential (RES1, RES2) and professional
(PRO1, PRO2) commercial contracts. We added a few less common contracts deemed
interesting for this study: RES11, PRO5. The remaining residential and professional con-
tracts are grouped in the RESAutre and PROAutre profiles. The RES1 and PRO1 repre-
sent contracts that always have the same pricing (BASE). The RES2 and PRO2 contracts
represent contracts with different pricing depending on the time of the day (HPHC). The
period impacting the pricing is different for each individual. RES11 profiles are high con-
sumers (authorized by their contract) BASE residential meters, while the RES1 profile
contains only low consumption meters. The PRO5 profile contains public lighting meters.
The RESAutre and PROAutre profiles contain a melting pot of smaller niche profiles. We
do not study them individually here.

Notation Description
Profiles:

RES1 BASE residential meters (same price every time) ≤ 6 kW.
RES2 HPHC residential meters (price variation depending on time).
RES11 BASE residential meters (same price every time) > 6 kW.
RESAutre mixing of all other residential profiles.
RES* RES1 ∪ RES2 ∪ RES11 ∪ RESAutre.
PRO1 BASE professional meters (same price every time).
PRO2 HPHC professional meters (price variation depending on time).
PRO5 Public lighting.
PROAutre Mixing of all other professional profiles.
PRO* PRO1 ∪ PRO2 ∪ PRO5 ∪ PROAutre.
RES*+PRO* RES* ∪ PRO*.

Geographical areas:
NAT Contains all of metropolitan France.
13 The Mediterranean department "Bouche-du-Rhône" (13).
29 The oceanic department "Finistère" (29).
51 The continental department "Marne" (51).
75 The alpine department of "Haute-Savoie" (74).
75 The department "Paris" (75).

Table 3.2 – ENEDIS perimeters

3.4.1 General statistics
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Figure 3.11 – Number of meters (POM) per 1/2h for the perimeters : [(NAT;
RES*+PRO*), (NAT; RES*), (NAT; PRO*)]. In total there is approximately 3M POM
with 2.5M RES* and 1M PRO* POM.

Number of meters: The number of meters (POM) corresponds to the number of
meters that activated the half-hourly measurement and have been successfully reached at
the timestamp. This metric gives an idea of the volume of measurements involved in the
rest of this section.

Figure 3.11 shows the number of POM available in France without profile discrim-
ination and with RES* and PRO* discrimination. There are approximately 3 million
(NAT; RES*+PRO*) measurements per timestamp. There are approximately 5 times
more (NAT; RES*) meters (around 2.5M) than (NAT; PRO*) meters (around 500k).

Figures 3.12 show the number of POM available for each RES and PRO subdivision.
For the RES meters, the (NAT; RES2) meters are the more numerous (around 1.2M),
followed by the (NAT; RESAutre) meters (up to 1M meters) and the (NAT; RES1)
meters (up to 1M). The (NAT; RES11) meters are relatively stable, with around 250K
meters. The (NAT; PRO1) are the more numerous for the PRO-meters, with up to 400k
meters. The (NAT; PRO5) and (NAT; PRO2) are relatively similar to both, around 100k
meters. The (NAT; PRO5) are slightly more numerous than the (NAT; PRO2). The (NAT;
PROAutre) profile contains around 50K meters.

The drop in October 2020 may be due to the removal of a large number of meters
forcibly (at least without their opt-in approval) registered by their providers to the half-
hourly metering program. The peak in the number of POM of the (NAT; PRO5) in
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(a) Perimeters: [(NAT; RES1), (NAT; RES2),
(NAT; RES11), (NAT; RESAutre)]

(b) Perimeters: [(NAT; PRO1), (NAT, PRO2),
(NAT, PRO5), (NAT, PROAutre)]

Figure 3.12 – Number of POM per 1/2h for the subdivision of ENEDIS National RES and
PRO profiles at 1/2h step. The number of POM increase over time with some temporal
increase/drop in the number of POM.

(a) Perimeter: (NAT; RES*+PRO*)
(b) Perimeters: [(NAT; RES*+PRO*), (NAT;
RES*), (NAT; PRO*)]. Windows: [1; 500]W.

Figure 3.13 – ENEDIS consumption frequency.

December 2020 / January 2021 may be due to the addition/removal of Christmas light-
ing (and their associated meters) or a punctual measurement campaign. The temporary
measurement campaign may also happen elsewhere in the figures (such as the drop in
October 2020). Some small and local drops (such as in March 2021) may be due to bugs
during the collection process. However, we note that these interpretations are educated
guesses by ENEDIS colleagues and may not be the real reason as no absolute information
can be found. All figures show that the number of measurements linearly increases with
time and the deployment of new meters.
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(a) Perimeters: [(NAT; RES1), (NAT; RES2),
(NAT; RES11), (NAT; RESAutre)]

(b) Perimeters: [(NAT; PRO1), (NAT; PRO2),
(NAT; PRO5), (NAT; PROAutre)]

Figure 3.14 – ENEDIS consumption frequency ([1; 500]W window).

Consumption frequency: In the following, we present the consumption frequencies
independently of the timestamps. The objective is to learn when the consumptions hap-
pened and how they distribute.

Figures 3.13 and 3.14 shows the consumption distribution frequency. Figure 3.13a
shows all the frequencies without any filter, while the other figures show a zoom of the
[1; 500] W window. It shows that the consumption at 0 is overly represented (around
2 % of the total measurements) and quickly drops for higher consumption. The over-
representation of the consumptions at zero is for all the perimeters considered and not
only for higher consumptions. All other figures focus on a window of consumption be-
tween 1 and 500 W. Figure 3.13b shows the consumptions frequencies of the (NAT;
RES*+PRO*), (NAT; RES*) and (NAT; PRO*) perimeters. It shows that the global fre-
quencies distribution (NAT; RES*+PRO*) closely follows the distribution of the (NAT;
RES*). Figure 3.14a shows the distribution of each RES profile, and Figure 3.14b shows
the distribution of each PRO* profile.

All figures, except the PRO5, follow a similar pattern: a low frequency at low con-
sumptions that increases with the consumption until the frequency decreases until the
maximum consumption. However, the peak’s location and height vary according to the
profile. This is particularly true for the RES profiles, as the PRO frequencies are closer
to each other. The PRO5 have higher frequencies at lower consumptions that quickly
decrease, followed by a slight bounce around 150 W. The null consumption is overly rep-
resented, and the consumptions are concentrated on the lower values. However, all the
possible consumptions are represented even at low frequencies.
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(c) ENEDIS dataset thermosensitivity: im-
pact of the average consumption depending
on the average temperature.

Figure 3.15 – Perimeter: (NAT; RES*+PRO*)

3.4.2 The general case

This section presents various statistics over the (NAT; RES*+PRO*) perimeter con-
taining all the measurements. We use it as a base analysis by considering the statistics
obtained by this perimeter as the normal case. In the following sections, we use this gen-
eral case as a comparison base to present individual perimeters specificities standing out
from this general case.

Half hourly consumption and thermosensitivity: Figure 3.15 shows the average
consumption and standard deviation every half-hour and the thermosensitivity. The av-
erage consumption is almost always above the median consumption, and the standard
deviation is correlated to the average consumption. Computing a Pearson coefficient be-
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tween the standard deviation and the quantile 25 (ρ = 0.62), average (ρ = 0.95), and
quantile 95 (ρ = 0.97) half-hourly series shows a strong correlation between consumption
level and the standard deviation. With a Pearson coefficient of 0.95, the standard devia-
tion is strongly correlated with the average consumption. On both figures (Figure 3.15a
and Figure 3.15b) we can easily distinguish two seasonal areas: the summer, where the
consumption is relatively stable (within the daily variation), and the winter, where the
consumption is higher with higher volatility linked to the temperature. Temperatures
negatively correlate with consumption (Pearson coefficient at -0.67). When the tempera-
tures drop below 15°C, the consumption increases. The impact of the temperature on the
consumption is confirmed by Figure 3.15c. This figure shows the thermosensitivity: the
impact of the temperature on the average consumption. It displays the average consump-
tion according to the average national temperature (each point is a half-hourly average
consumption) and a polynomial regression (order 2) on those points. It helps visualiz-
ing the correlation between the temperature and the consumption when the temperature
drops below 15°C.
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(a) Average and median per calendar month
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Figure 3.16 – Perimeter : (NAT; RES*+PRO*).

Monthly statistics: The monthly statistics illustrated by Figure 3.16 confirm the con-
sumption seasonality except for a slight bounce in July. On the other hand, the standard
deviation seems to be less impacted by the temperature. The drop between August (8) and
September (9) is linked to running our experiments from September 2020 to September
2021. Therefore there is one year of difference between these two points. The half-hourly
Figure 3.16b indeed shows a greater dispersion during the end of the 2021 period than in
September 2020.
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Figure 3.17 – Perimeter : (NAT; RES*+PRO*)
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(a) Average and median per hours of the day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hours

800

1000

1200

1400

1600

1800

2000

2200

Co
ns

om
m

at
io

n 
(W

)

Metric
Standard deviation

(b) Standard deviation per hours of the day

Figure 3.18 – Perimeter : (NAT; RES*+PRO*)

Daily statistics: Figure 3.17 shows the variation of the average, the median (Fig-
ure 3.17a) and the standard deviation (Figure 3.17b) per week days as a boxplot. Our
initial intuition was that the consumption varies over the days, with at least a distinction
between the working days and the weekends. However, the figures show high stability with
very few differences from one day to another.

Hourly statistics: Figure 3.18 shows the variation of the average, the median, and
the standard deviation per hour of the day. Even if the average consumption seems stable
(with slight peaks in the morning and the evening), the median shows higher consumption
during the day, with a strong consumption peak in the evening and a smaller peak in the
morning. The standard deviation (Figure 3.18b) shows a greater dispersion during the
day than at night. In contrast with the median, the stronger dispersion appears in the
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(b) Quantile Q95 and Q99 per hour of the day.

Figure 3.19 – Perimeter : (NAT; RES*+PRO*)

morning rather than in the evening (although they still have a higher dispersion than the
rest of the day). Although the consumptions are higher in the evening, they are more
diverse in the morning.

Figure 3.19 shows the hourly variation of the Q25 (Figure 3.19a), Q95 and Q99 (Fig-
ure 3.19b). They highlight the atypical lower (respectively higher) consumption. Fig-
ure 3.19a shows a very strong peak in the evening and a more stable consumption for
the rest of the day. Higher quantiles (in Figure 3.19b) are stable with still a higher con-
sumption in the morning and in the evening than during the rest of the day. However,
the most notable feature is the huge consumption gap between Q25, the median, and
the Q95 department, with the Q25 consumption being around 5 times lower than the
median consumption and the Q95 consumption being 8 times higher than the median.
The highest difference is obtained by Q99 in the evening consuming between 16 and 20
times more than the median.

Synthesis of the general case: To conclude this section, we can define our consump-
tions as mainly low (< 1 kW) with some relatively rare outliers with huge consumptions.
The average consumption is around 500 W. They are strongly correlated with the temper-
atures leading to a seasonal consumption pattern. They have higher consumption during
the winter than during the summer. Surprisingly, this perimeter does not display notice-
able consumption changes between weekdays. On the intra-day, consumptions are greater
and more volatile during the day than at night. We note some exceptions depending on the
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(a) Perimeter: (NAT; RES1). (b) Perimeter: (NAT; PRO1).

Figure 3.20 – Average and median consumption per day of the week on the ENEDIS
dataset.

quantiles observed. On every level observed, the standard deviation follows the average
consumption leading to a stronger dispersion for higher consumption.

In the following section, we show that each profile has its characteristics. We study
these various profiles and their differences from the general case.

3.4.3 Divergences from the general case

In the previous section, we described our consumptions with global statistics, and
we defined a statistical point of reference built from the (NAT; RES*+PRO*) perimeter
containing all the measurements. However, each sub-perimeter, geographical, or profile
has its specificity. This section focuses on the differences from the general case appearing
on the sub-perimeter basis. First, we present the primary differences between RES, PRO,
and their main sub-profiles. Then, we focus on some outliers profiles that have unusual
consumption properties. We only put the dispersion figures for readability when they
differ from the conclusions drawn from the average and median consumption figures. For
further analysis, please refer to Appendix B.

Daily differences between RES and PRO: Surprisingly, the general statistics show
little to no difference between the days of the week. However, zooming into the RES*
and PRO* sub-profiles (Figure 3.20) highlights some differences. We see that the RES
meters consume more during the weekend than during the working days and that the
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(a) Perimeter: (NAT; RES1). (b) Perimeter: (NAT; RES2).

(c) Perimeter: (NAT; PRO1). (d) Perimeter: (NAT; PRO2).

Figure 3.21 – Average and median per hours of the day on the ENEDIS dataset.

PRO meters consume less during the weekend. These changes appear on most individual
profiles except for the PRO5 meters.

Main profiles hourly differences: The main difference between RES and PRO pro-
files comes with the different consumption values. Generally, the PRO* profiles consume
more (average of around 1200 W) than the RES* profiles (average of around 750 W).
However, the hourly consumptions (Figure 3.21) show more significant differences between
profile consumptions. The RES1 profiles have two consumption peaks in the morning and
the evening (higher). They consume 350 W on average. This pattern is shared by the
RES11 meters with smoother peaks and much higher average consumptions at 750 W.
On the other hand, the RES2 consumes, on average more than the RES1 and RES11 at
1000 W but has a much more erratic hourly consumption pattern. The PRO1 and PRO2
follow a similar consumption pattern with a peak in the morning (between 8h and 12h),
less consumption in the afternoon, and lower consumption at night. The PRO2 hourly
consumption pattern is smoother than the PRO1, with a less notable day-night differ-
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(b) Hourly standard deviation.

Figure 3.22 – ENEDIS perimeter: (75; RES*+PRO*)

ence. On average, the PRO2 consumes twice as much (1500 W) as the PRO1 (750 W).
The PRO profiles are more dispersed (2100 W on average for the PRO*) than the RES
profiles (948 W on average). The most dispersed profiles are the PROAutre (average at
2700 W) followed by the PRO2 (2590 W), RESAutre (2000 W), PRO5 (1690 W), and
PRO1 (1680 W). The least dispersed profiles are the RES2 (1000 W), RES11 (1000 W),
and RES1 (488 W). These results confirm that the dispersion seems correlated with the
average consumption, with higher consumption leading to higher dispersion.

Regional sensibility: Most studied regions follow a similar consumption pattern to
the general case except for the Paris region (75).

In Paris, Figure 3.22a shows strong consumption drops around Christmas and lower
consumption during the summer holidays (July-August). On the hourly level (Figure 3.22b),
consumption follows a (NAT; PRO1) pattern: higher consumption during the day than
during the night with a consumption peak in the morning. In Paris, the RES1 and PRO1
are more numerous than the national level at the detriment of the RES2, PRO2, and
PRO5. On 2021-08-31, there is approximately 90,000 (75; RES*+PRO*) POM in Paris
and 3,510,000 (NAT; RES*+PRO*) POM on the national level. There is twice the propor-
tion of RES1 in Paris compared to the NAT level. There is 45 % (approximately 40,500)
RES1 in Paris against 24 % (approximately 870,000) at the NAT level. The proportion of
RES2 is half of the national level, with 24 % (approximately 22,000) against 41 % (ap-
proximately 1,455,000). With 16 % (approximately 15,000) against 11 % (approximately
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Figure 3.23 – ENEDIS perimeter: (13; RES*+PRO*)

418,000), the proportion of PRO1 is slightly up. There is slightly less PRO2 in Paris,
with 3.6 % (approximately 3,200) against 4.23 % (approximately 150,000). PRO5 profile
is marginalized with only 0.4 % (41) against 4.83 % (approximately 170,000) and the
proportion of RESAutre (1 % -900 POM- against 4 % -140,000 POM-). The proportion
of RES11 and PROAutre are stable with 7.49 % (6,700 POM) against 6.96 % (244,000
POM) and 1.35 % (1,210 POM) against 1.63 % (57,000 POM) for the PROAutre.

The Bouche-du-Rhône region (13) shows some consumptions bouncing during the
summer, with Figure 3.23 showing these bounces as smaller sporadic peaks in the summer.
On the 2021-08-31, there is approximately 115,000 (13; RES*+PRO*) POM and 3,510,000
(NAT; RES*+PRO*) POM on the national level. In proportion, there are slightly fewer
RES1, RES11, PRO5, and PROAutre with respectively 24,000 (21 %), 5,700 (5 %), 3,888
(3.38 %), and 1,260 (1.10 %) POM each. There are slightly more RESAutre with 4.72%
(5,400 POM) against 4 % and PRO2 4.62 % (5,300 POM) against 4.23 %. The proportion
of PRO1 is equivalent to 12.26 % (14,000 POM) against 11.93 %.

Generally, the proportion of profiles is closer in the Bouche-du-Rhône region to the
general case than in Paris. As for the average consumption and standard deviation, the
(NAT; RES*+PRO*), (29; RES*+PRO*), (74; RES*+PRO*), and (51; RES*+PRO*)
have all have an average consumption of around 600 W, and an average standard deviation
around 1,350 W. On the other hand, the Paris region has a lower consumption and
standard deviation at 500 W (for the average consumption) and 1,000 W for the standard
deviation.
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(a) Average and median per hour of the day. (b) Quantile Q25 hours of the day.

(c) Deviation standard per hour of the day.

Figure 3.24 – ENEDIS dataset perimeter: (NAT; RESAutre)

The RESAutre case: The RESAutre meters (Figure 3.24) show quite atypical con-
sumption happening mainly during the night, with two consumption peaks in the morning
and the evening. The average consumption is around 1,000 W. This is especially visible
for the quantile Q25, where the daily consumption is anecdotal and low at night (max
250 W). However, the standard deviation is not that much impacted by this day/night
separation, with only the morning/evening peak that is visible.

The PRO5 case: PRO5 meters represent the public lighting meters. Therefore, as
shown in Figure 3.25, it is normal to see them consuming only at night and not during
the day. Their consumption is stable at night, with two peaks at the beginning and the end
of the night. The transition period (the 4h-8h and 17h-21h periods) shows the transition
between day and night due to the daytime seasonal variation. Standard deviation fol-
lows the meter consumptions closely. The unique distribution of the PRO5 consumptions
explains the daily compression of the PRO* statistics.
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(a) Average and median per hours of the day. (b) Deviation standard per hours of the day.

Figure 3.25 – ENEDIS dataset perimeter: (NAT; PRO5)

(a) Average and median per calendar month.
(b) Quantiles Q95 and Q99 per calendar
month.

Figure 3.26 – ENEDIS dataset perimeter: (NAT; PROAutre) (1 = January, 12 = Decem-
ber).

The PROAutre case: The PROAutre meters distinguish themselves by having counter-
seasonal consumption. Figure 3.26 shows a consumptions peak, evident for the quantiles
Q95 and Q99, in the summer month and only a slight bounce during the winter.

3.5 Uniqueness

We begin this section by looking at the uniqueness of the whole datasets (ENEDIS,
ISSDA, and LONDON ). We obtain high uniqueness with a handful of timestamps for
every dataset. Then, we look at the impact of the data degradation on the uniqueness. It
shows the difficulties of significantly reducing uniqueness while preserving utility. Finally,
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Figure 3.27 – Average uniqueness (mean with minimum/maximum uniqueness observed
per timestamp) according to the number of consecutive points (k) and the rounding for
(a) the half-hourly ENEDIS dataset, (b) the daily ENEDIS dataset and (c) the subset of
the daily ENEDIS dataset restricted to time series generated by the smart meters having
generated the half-hourly dataset.

we look at multiple parameters potentially explaining and impacting our results. We find
that the dataset entropy is strongly correlated to uniqueness.

To illustrate why uniqueness reaches such high values in our datasets, we consider
the three illustrative electricity consumption time series shown in Figure 1.2. Each series
corresponds to a smart meter measuring power consumption in Watt (W) for a day
with 48 measures (i.e., 30 minutes rate). The three series look similar because many
individuals share everyday activities (e.g., waking up, commuting to work, and performing
other activities roughly simultaneously). Their electricity consumption time series mirror
these common behaviors. However, no household is the exact copy of another. First,
the same activity of an electric device shifts along the time axis due to differences in
household schedules. Also, using distinct electric devices results in distinctive electricity
consumption. This contributes to making them unique along the time.

Figure 3.27 shows the average uniqueness on the ENEDIS datasets, according to k and
the order of magnitude of the rounding. Note that in this section, the ENEDIS dataset
contains only the RES* profiles. A very high uniqueness (above 90 %) is reached at k = 5
(i.e., 2h30 consumption) in the half-hourly dataset (Figure 3.27a), and 3 days - k = 3 -
consumption in the daily dataset (Figure 3.27b and Figure 3.27c), without any rounding.
It is worth noting that sub-sequences of length k = 1 have a very low uniqueness: almost
every smart meter consumption is shared by at least another meter. However, as time
passes, even by a few hours, almost every smart meter generates a different consumption
time series, making them unique.
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We further note that although the trends are similar, higher uniqueness can be ob-
served on the (small scale) publicly available ISSDA and LONDON electricity consump-
tion time series datasets. On the half-hourly ISSDA dataset, we reached 90 % uniqueness
at k = 3. We reach this threshold on the daily ISSDA dataset with k = 1. On the half-
hourly LONDON dataset, we reached 90 % uniqueness at k = 3. On the daily dataset,
this threshold is also reached at k = 3, with more than 70 % uniqueness at k = 1. This
can be explained by the small size of the datasets resulting in much sparser datasets, thus
in fewer collisions, and as a result in higher uniqueness.

Focusing on Figure 3.27a, i.e., the uniqueness of the half-hourly ENEDIS dataset,
we confirm the following intuition: the higher the rounding, the lower the uniqueness,
which nevertheless remains far from being negligible even with the strongest degradation.
For example, rounding to 2 orders of magnitude (i.e., to the closest 100 W) results in
uniqueness above 40 % for k = 7. Rounding to the kilowatt (3 orders of magnitude), the
uniqueness is about 0.5 %, corresponding to 12,500 unique time series. A non-negligible
number of households. Rounding to the kilowatt is a very strong degradation given the
average consumption and the standard deviation (see Section 3.4.1) Note that such a
rounding results in a dramatic information loss. Although the definition domain of our
electricity consumption measures is [0; 36, 000] W , most measures fall between 500 W

and 1, 500 W , as illustrated in Section 3.4.1. Overall, the average consumption measure
over the full year is 725 W with a mean, standard deviation of 950 W.

Focusing now on Figure 3.27b, i.e., the uniqueness of the daily dataset, we observe even
higher uniqueness, whether rounding is enabled or not. Because rounding applies here to
much higher measures in expectation (daily measures instead of half-hourly measures),
it has (unsurprisingly) much less impact on uniqueness. After rounding to the kW the
daily measures, around 40 % of the 25M meters are still unique with k = 7 (i.e., one
week rounded daily consumption). Figure 3.27c shows the uniqueness of a subset of the
daily dataset, including only the daily time series of the 2.5M smart meters involved in
the half-hourly dataset. By comparing it to Figure 3.27b, we observe the impact on the
uniqueness of the scale of the dataset. In general, thanks to its sparser space, the subset
of the daily dataset reaches higher uniqueness. More precisely, increasing the number of
time series by an order of magnitude (i.e., from 2.5M to 25M) slightly reduces uniqueness:
obtaining 90 % uniqueness requires k = 3 consecutive measures without rounding (instead
of k = 2), requires k = 5 consecutive measures with rounding to the 10 Wh (instead of
k = 3), and requires k = 7 with rounding to the 100 Wh (instead of k = 5). With the
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highest rounding enabled (to the kWh) and when k = 7, uniqueness drops from around
70 % on the daily subset to 40 % on the full daily dataset.

Note that the minimum and maximum uniqueness may vary more or less depending on
k and the order of magnitude of rounding. For example, for the half-hourly dataset, with
k = 3 and no rounding, the minimum and maximum uniqueness differ by 40 % at most,
while for most parameter settings, the difference between the minimum and maximum
uniqueness remains small.

Finally, we observe that the uniqueness reaches a maximum value (e.g., around 96 %
for both the half-hourly and daily datasets). Once this value is reached, increasing k only
increases the uniqueness by a tiny percentage. This can be explained by the significant
proportion of electricity consumption measures equal to 0 W (between 3 % and 10 %).
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Figure 3.28 – Monthly (a) and hourly (b) uniqueness along time (mean with the minimum
/ maximum uniqueness observed), together with the relationship between electricity con-
sumption and uniqueness (c), between temperatures and electricity consumption (d), and
between entropy and uniqueness (e). All figures are computed based on the half-hourly
ENEDIS dataset with k = 3 and no rounding (i.e., to the Watt (W)).
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Figure 3.28 shows how uniqueness varies with time. In particular, Figure 3.28a shows
a first seasonal variation leading to higher uniqueness in winter than in summer. Fig-
ure 3.28b shows that uniqueness is higher during the day than during the night with two
peaks, the first peak at noon (12h) and the second peak in the evening (18h-22h). The
entropy of the sets of k-length subsequences at each timestamp is also plotted on Fig-
ures 3.28a and 3.28b in order to observe visually the correlation between uniqueness and
entropy. This is also clearly illustrated in Figure 3.28e. The Pearson correlation coefficient
between uniqueness and entropy is 0.94 (the closer to 1 the stronger the correlation). In
addition, as shown in Figures 3.28c and 3.28d, uniqueness is also strongly correlated to
the average consumption (Pearson coefficient of 0.8) which is itself strongly (negatively)
correlated to the temperatures (Pearson coefficient of −0.8): the lower the temperature
the higher the consumption, and the higher the consumption the higher the uniqueness.
The consumption seems to stabilize for an average temperature above 15 °C. At local
levels, a temperature above 30 °C leads to a consumption bounce. However, France is
not warm enough to be able to spot such patterns on a nationwide scale. In a nutshell,
uniqueness is higher for a winter evening than for a summer night.

3.6 Discussion

This study aimed at presenting statistical metrics about the three electricity consump-
tion datasets used in this document (i.e., ENEDIS, LONDON, and ENEDIS). The first
two are relatively small (around 5,000 series) but, contrary to the ENEDIS datasets, they
are public. Therefore, we use them as reproducible caution for the works described in this
document. The large-scale ENEDIS dataset is the most valuable as it contains millions
of real-life consumption measurements.

The analysis of the datasets shows that most of the studied consumptions follow
similar patterns. The individual consumption and its variance per POM (measure points)
are strongly correlated for most perimeters. Specifically, when the average consumption
increases, the consumptions are more dispersed. The analysis highlighted two seasonal
patterns. First, an intra-day pattern where the consumption mostly takes place during
the day instead of at night with a consumption peak in the evening (except for the
LONDON and ENEDIS PRO5 perimeters). Then, a seasonal pattern correlated with the
temperature: the colder it is, the higher the consumption. Again, the LONDON datasets
stand out by not being sensitive to the temperature. Surprisingly, there is no notable
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difference between weekdays on the global level but slight differences between weekdays
and weekend days over some ENEDIS profiles.

The study presents the first uniqueness results computed over two large-scale, na-
tionwide electric consumption time series datasets. We show that uniqueness reaches high
values even when computed over tiny subsequences. Our results hold despite the following
adverse facts. First, individuals behave similarly (e.g., sleeping patterns and commuting
periods). While this (relative) uniformity can be observed in the results that only in-
clude single consumption measures (k = 1), uniqueness increases fast when considering
only a little bit more consumption measures (k > 1). Second, individual measures are
concentrated over a small part of the definition domain. In the event of the deployment
of new and more precise meters, we expect uniqueness to rise as the definition domain
widens and consumption measurements become sparser. Again, this impacts our results
when uniqueness is computed on single electric consumption measures, but considering
only a few additional measures makes uniqueness rise tremendously. Third, we compute
uniqueness at each timestamp t based on k-length subsequences. Performing an exhaus-
tive search of the subsets of k measures, not necessarily consecutive, that leads to the
highest uniqueness might indeed lead to higher uniqueness. However, we believe that the
uniqueness results that we obtain are already sufficiently high for raising strong concerns
about the re-identifiability of households within electric consumption time series datasets.
Fourth, to the best of our knowledge, our datasets are the largest electric consumption
time series datasets (i.e., around 2.5M half-hourly time series and around 25M daily
time series – both during one year). Despite the possible collisions that increase with the
number of time series in the dataset, uniqueness remains dramatically high, even when
considering small subsequences.

Our study also shows the impact on uniqueness of degrading the time series severely.
Surprisingly, uniqueness remains high despite losing orders or magnitude precision and
considering small subsequences. Even when uniqueness drops (i.e., rounding the half-
hourly series to the kW), around 12, 500 thousand of households among the 2.5M of
the full half-hourly dataset remain unique. This shows the limitation of naive protection
methods (e.g., rounding) from potential re-identification attacks.

The high uniqueness depicted in the results of this study shows that re-identification
of households in large-scale electric consumption datasets might be possible with high
probability by adversaries knowing only a small subset of consumption measures of their
target(s). As seen in Chapter 1, detailed electricity consumption measures can be cap-
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tured today by a wide range of actors besides the grid manager. Although all these actors
may not adopt adversarial behaviors, the attack surface is large, with weaknesses, and
they may suffer from negligence. This increases the risk of leaking electric consumption
measures to the wild. Additionally, even rough estimates of electric consumption mea-
sures might be sufficient for performing a re-identification (e.g., based on other sources
of information about the household, based on past data, based on a subset of the elec-
tric consumption). Adversaries with approximate knowledge might still benefit from the
uniqueness of degraded electric consumption time series for performing re-identifications.

Our uniqueness results are based on two French large-scale electric consumption datasets
and two public electricity consumption datasets. While we know biases might impact the
actual uniqueness numbers (e.g., climate biases, socio-cultural biases, political biases), we
believe similar conclusions about uniqueness can be drawn from many other large-scale
electric consumption datasets. Indeed, the climate is the main driving force for house-
holds’ energy consumption and, consequently, for uniqueness. However, our results show
that for k ≥ 5, worryingly high uniqueness levels are reached (above 90 %), independently
from time and climate.
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Chapter 4

THE SUBSUM ATTACK

This chapter introduces our SubSum attack, a membership inference attack. This
attack uses a threat model where the attacker has access to the published aggregates
(e.g., averages, sums) associated with additional attributes and a set of disclosed time
series. This attack can be formalized as an extension of the subset-sum problem [KPP04].
Specifically, each time point is used as a constraint to find the series at the origin of an
aggregate. We use constraint programming to solve the problem. Based on this approach,
we perform experiments on the ISSDA and LONDON datasets (see Chapter 3) using the
Gurobi solver. We show that our membership inference attack is usually successful. Our
findings demonstrate that breaking privacy when aggregate-based techniques are used
to publish time series is much easier than expected. We analyze the limit cases to help
publishers enforce individuals’ privacy. This attack was published at the Conference of
Security and Cryptography (SECRYPT) [Voy+22a].

This chapter is organized as follows: Section 4.1 contains the background knowledge.
Section 4.2 presents the problem and defines the threat model. Section 4.3 presents the
attack algorithm. Section 4.4 contains a large-scale experimental analysis of the attack.
Section 4.5 concludes and presents interesting future works of this attack.

4.1 Background knowledge

Constraint programming (CP) [Apt03] is a programming technique that can be
used to model and solve mathematical optimization problems. The problem is modeled
by a set of variables and equations called constraints. A variable is an unknown value
within a definition domain (i.e., a set of numbers). A constraint is a logical relation
between the variables. Constraints restrict the possible values a variable can take. The
model’s objective can be to prove (or disprove) the feasibility of the problem, or to find
real solutions, if any. A solution is a set of variable values matching the constraints.
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Mixed Integer Programming (MIP) [Wol20] focuses on problems where all the
variables are integers. MIP and CP work in different ways. Both uses a branch-and-bound
search procedure that explores the space of feasible solutions and iteratively refines the
solution until an optimal solution is found. MIP uses algebraic techniques (such as linear
relaxation), while CP uses logical inferences. It is generally accepted that MIP solvers
are faster at finding real solutions on linear problems while CP is more flexible and can
handle a wider range of constraints. Multiple solvers can solve MIP problems. Gurobi 1 is
recognized as the most performant solver [Jab+15]. We note the existance of three main
competitors: OR-Tools 2 and CPLEX 3 and Choco 4.

The Subset-sum problem [KPP04] is a combinatorial optimization problem. It is a
well-known NP-hard problem. The objective is to determine whether a subset from a list
of numbers (W ) can sum to a targeted value (o). For example, given bag able to carry
10 kg (O = 10) and the following set of numbers W = {5, 2, 1, 3, 6}, the following set of
numbers (i.e., solutions) can fill the bag: {5, 3, 2} and {6, 3, 1}.

The subset-sum problem can be modelized and efficiently solved as a MIP prob-
lem [Wol20]. Equation 4.1 represents the sumset-sum problem as MIP, with W the set of
weighted objects and Vi ∈ {0; 1} the variable indicating if the object i has been selected.

maximize
∑

i∈|W |
Vi · Wi

subject to
∑

i∈|W |
Vi · Wi = o

(4.1)

4.2 Problem statement

4.2.1 The publishing environment

Publisher: The publishing environment consists of a publisher and an attacker (de-
scribed in Section 4.2.2). Figure 4.1 illustrates the publishing environment. The publisher
collects from a set of individuals I a set of time series S (see Chapter 3). Each individual
produces a single fixed-length time series. Each time series is associated with, possibly

1. http://www.gurobi.com
2. https://developers.google.com/optimization/
3. https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
4. http://www.choco-solver.org
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Notation Description
I Set of individuals
T Set of timestamps
S Set of time series, Si,t is the measurement of the individual i at

timestamp t.
SA ⊂ S Set of time series participating in the aggregates.
A Vecotor of aggregates, At the aggregate at timestamp t.
θ Attacker’s time budget
p Pool size (number of solutions asked to the solver)
P Set of solutions found by the attacker
G Adversarial guesses

Table 4.1 – Notations

Individuals

Collect

Get access

Publisher

Attacker

Publish aggregates
+ sensitive information

Who is in ?
(infer sensitive information)

Figure 4.1 – The SubSum Attack

privacy-sensitive, additional attributes contextualizing the time series (e.g., income, house
surface, socio-demographic information, electricity appliances).

Published aggregates: The publisher selects a subset SA ⊂ S and computes and pub-
lishes one aggregate At per timestamp over SA. In this chapter, we focus on aggregates
that are sums (we use the two terms indistinctly below). Note that all sum-based aggre-
gation methods (e.g., average) can also be tackled by our attack with minor changes in
the algorithm. Formulae 4.2 computes the aggregates for each timestamp t by summing
the values of each individual in SA.

At =
∑
∀i

SA
i,t (4.2)

The set of individuals selected in SA represents the ground truth. We model the
ground truth as a vector of probability. This vector tells which individuals of S are part
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of SA. The probability of the ith individual is set to 1 if and only if the ith individual is in
SA, and to 0 otherwise. It is worth noting that the aggregates A usually come with the
timestamps and the amount of aggregated time series.

Published additional attributes: To make the published aggregates more valuable,
they are usually associated with additional information that characterizes the subpopu-
lation in the aggregates. Such characterizing attributes are described in Chapter 1 and
Section 2.1.

4.2.2 Threat model

The usual threat model considers an attacker who aims to retrieve the identity (or
associated valuable information) of the individuals concerned by the publication [Jay+21;
BB20; PTC18]. We consider a threat model where the attacker has access both to the
(published) aggregated time series and to the (leaked) individual time series (while the
additional attributes remain secret and the goal of the attack remains unchanged). We
now discuss two points: the relevance of this scenario and the attacker’s motivation to
perform an attack in such a scenario.

Due to legal requirements and widespread security best practices, publishers usually
store direct identifiers and individual time series in separate databases applying, for ex-
ample, traditional pseudonymization schemes (see Section 3.5). Dedicated access control
policies, archival rules, or security measures can be applied to each database (e.g., a re-
tention period limited to a couple of years for fine-grained electricity consumption time
series). Isolating direct identifiers from time series prevents direct re-identifications from
malicious employees or external attackers exploiting a leak. The same security principles
apply to storing additional, possibly sensitive, attributes. Note that our model can easily
capture variants of the above context. An example of a variant, common in real-life, is
when the additional attributes come from another data provider collaborating with the
publisher for computing cross-database statistics. Whatever the scenario, this results in a
set of databases isolated from each other for security reasons to mitigate the impacts of
data leaks or simply because multiple data providers collaborate. Data leaks are common,
either due to insider attackers or external ones. Considering that raw data may eventually
leak is a conservative approach that should be explored. If the identifiers, the time series,
and the additional attributes all leak together, attacking the aggregates is useless. How-
ever, in cases where only the raw times series leak, attackers need to deploy membership

76



The SubSum attack

inference attacks to learn the association between a target individual and its attributes.
In the following, we consider this threat model. We show in a real-life example that an
attacker can efficiently retrieve the attributes of a target using linear programming.

Formally, the adversarial background knowledge consists of the complete set of time
series S. Given his/her background knowledge S, the vector A of timestamped aggregates,
and the amount of time series aggregated, the attacker outputs a vector of guesses G
over the participation of each individual to the vector of aggregates. The vector of guesses
is similar to the ground truth vector s.t. the ith value of the vector of guesses represents
the probability of the participation of the ith individual to the aggregate. The closer the
guesses are to the ground truth, the more successful the attacker is.

4.3 The SubSum attack

The SubSum attack is based on finding solutions to the subset-sum problem [KPP04]
over the aggregates A given the set of time series S. An overview of the problem is
available in Section 4.1.

The SubSum attack finds solutions to the subset-sum problem. The subsets-sum prob-
lem is NP-hard. Solving this problem is inefficient and would not scale in the general case.
This difficulty is because an important set of individuals may have similar values for a
given timestamp, which may further increase combinatorics. By exploiting the different
time points (with different aggregate values but originating from the same set of individ-
uals), the solver can prune the unsatisfactory solutions much faster and converge, with
enough constraints, to possibly unique solutions if all individuals do not have identical
values as another individual in all-time points.

Algorithm 1 thus combines multiple subset-sum problems, one for each aggregate
(each timestamp), into a single set of IP constraints. Let X be a vector of |S| Boolean
variables denoting the time series that are (possibly in case of multiple solutions) part of
the aggregate. We define one constraint per aggregate At in Equation 4.3.

∑
∀i∈S

(Xi · Si,t) = At (4.3)

We define one final constraint representing the attacker’s knowledge of the number
|SA| of individuals present in the aggregates in Equation 4.4.
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Algorithm 1: SubSum attack
Input: The set of time series (S), the aggregates (A), the time budget (θ), the

number of solutions to look for (p)
Output: The solutions found (P), the guesses (G), the status code (status)
set_time_limit( θ)
set_pool_size(p)
for i ∈ |S| do

add_variable(Xi, {0, 1})
end
for t ∈ |A| do

add_constraint( ∑
∀i∈S XiSi,t = At)

end
add_constraint( ∑

∀i∈S X[i] = |SA|)
P := solve()
G := to_probability_vector(P)
status := get_status()
return P , G, status

Functions used in the algorithm :
add_variable(bounds): Define an integer variable bounded to a given set of

values.
add_constraint(constraint): Define a constraint binding the model.
set_pool_size(p): Define an upper bound p on the number of solutions to search

for.
set_time_limit(θ): Set the time budget θ of the solver.
solve(): Solves the problem and get the solutions found by the solver (if any).
get_status(): Get the status of the solver after its termination. We assume that at

least the two following statuses are available : OPTIMAL (i.e., either p solutions
are found or less than p solutions are found but no more solutions exist),
TIMELIMIT (i.e., the time budget θ is over) and INFEASIBLE (i.e., the model
cannot be solved).

∑
∀i∈S

X[i] = |SA| (4.4)

Our objective is to find less than p solutions (ideally p = 2) to infer meaningful
information about the aggregate members within a reasonable time (i.e., before reaching
the wall time θ). The solver runs until one of the following conditions is satisfied: (1)
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all the existing solutions are found, (2) the maximum number of solutions p is reached,
and (3) the time budget θ is exhausted. The solver outputs a set P of up to p candidate
solutions together with a status code. Each solution is a probability vector, similar to
the ground truth vector, indicating the individuals from S that, when summed up on the
proper timestamp(s), solve the given set of constraints X. Finally, the attacker computes
the frequency of each individual in the set of solutions to obtain his guesses G.

4.4 Experiments

We perform an extensive experimental study of the attack using two open datasets:
the ISSDA dataset (see Section 3.2) and the LONDON one (see Section 3.3). Our results
show that the SubSum attack finds the exact set of individuals originating the aggregate
when the attack’s requirements are met. The attack requires the published aggregates to
contain half the number of timestamps as the number of series known to the attacker.

4.4.1 Experimental settings

Experimental environment: The code of our experiments is publicly available 5. It
consists of two software modules. First, the driver module, written in Python, is in charge
of driving the complete set of experiments: deploying the experiments, launching them,
stopping them, and finally fetching the experimental results. We deploy the driver module
on our own OAR2 (Linux) 6 computing cluster, allocating at least 2 cores (2.6 GHz)
and 2 GB RAM to each experiment. Each experiment is a SubSum attack for a set of
parameters. We describe it below. The second software module is the solver performing a
SubSum attack given a set of parameters. We use in our experiments the Gurobi solver 7,
a well-known and efficient IP solver, but any other solver can be used provided that it
implements an API similar to the one used in Algorithm 1. We perform our experiments
over the real-life ISSDA and LONDON public electricity consumption datasets (defined
in Section 3.2 and Section 3.3 respectively).

Experimental protocol: We consider three main parameters impacting the SubSum
attack: the size of the set of time series (|S|), the length of the aggregates published

5. https://gitlab.com/phd_antonin/subsum
6. https://oar.imag.fr/
7. http://www.gurobi.com
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Parameter Value
S {ISSDA, LONDON}
|S| {1000, 2000, 3000, 4000, 4500}
|SA| {0 %, 10%, . . . , 100 %} × |S|
|T | {0 %, 10 %, . . . , 100 %} × |S|

θ {1000, 2000, 4000, 8000, 86400}
p {2, 100}

Table 4.2 – Values of the parameters used in our experiments.

(number of constraints/timestamps |T |), and the number of series in the aggregate (|SA|).
Table 4.2 shows the parameter values we use in our experiments. For each triple of pa-
rameters (i.e., |S|, |T |, |SA|), we generate 20 experiments 8 where each experiment is a
SubSum attack over (1) a set of time series, (2) a vector A of aggregates published, and (3)
a time budget θ. At each experiment, the whole population S, together with the individu-
als SA that are part of the aggregates, are randomly selected. We log for each experiment
the ground truth (i.e., the exact set of individuals in SA), the candidate solution(s) found
by the solver, the status of the solver, and the wall-clock time elapsed during the attack.

Success definition: Our experimental validation considers a flexible success definition.
An attack is considered to be a success if the solver finds strictly less than p solutions
in the allowed time θ 9. Indeed, this implies (1) that the solution is part of the pool of
solutions and (2) that the solver found all the solutions. We mainly focus on a pool size
equal to 2. In this case, success occurs when the solver outputs a single solution: the
membership inference is perfect. However, a pool size equal to 2 is not always sufficient.
In these cases, we increase the pool size and analyze the solutions more deeply found by
the solver, showing the distribution of the guess vector on the individuals that are part
of the ground truth.

8. Performing 20 times the SubSum attack on the same set of parameters is sufficient for obtaining a
stable success rate for the given set of parameters.

9. Note that this is a somewhat precautionary success measurement since the attacker concludes when
he/she is sure the solver has found all solutions. Other success metrics can be considered in which the
attacker gains information from incomplete sets of solutions the solver returns. However, when the solver
reaches the time budget or when the pool p is filled, the solver fails to prove the non-existence of other
solutions. New yet undiscovered solutions might refute inferences on incomplete results.
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4.4.2 Experimental results

Our experiments aim at providing clear insights on the conditions leading to successful
SubSum attacks. First, we study the SubSum success rate according to the total number
of time series in the entire population (population size |S|), the number of time series
aggregated in the published aggregates (aggregate size |SA|), and the length of the series
(number of constraints |T |). We set the time budget to a value sufficiently high to not
interfere with the attack. This study shows a clear relationship between the population
size and the published aggregates (size and length) for a successful SubSum attack. This
relationship allows us to express both the size of the published aggregates and its length
relatively as a fraction of the population size. Then, we study the impact of the time
budget (θ) on the success rate. Finally, we study the efficiency of the SubSum attack on
the entire population available in our datasets.
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Figure 4.2 – Minimal number of constraints before getting at least one success. Dataset
= ISSDA, |S| = {1000, 2000, 3000, 4000}, θ=24h, p=2, 20 repetitions.

Influence of |S| on the success rate: Figure 4.2 shows the minimal constraints re-
quired for at least one success for several population sizes and for a time budget large
enough to be neutral (i.e., θ = 24h). Even if the required number of constraints before
achieving success increases with the population size, it follows a parabolic shape for all
population sizes. Figure 4.3 shows the success rate for the aggregate size and the number
of constraints for a small dataset of 1000 individuals and a small time budget of 1000s
(approximately 15 minutes).
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Figure 4.3 – Success rate (0 : all failed, 1 : all succeed). Dataset = ISSDA, |S| = 1000,
θ=1000s, p=2, 20 repetitions.

As already seen in Figure 4.2, Figure 4.3 shows that the attacks fail in a parabolic
area centered around aggregates of half the population size because the solver reaches the
maximum allocated time. Outside this area of failure, the attacks are mostly successful
except for a few randomly distributed, failed experiments that depend on the original
aggregate and population samples. In this "light" area, the few failures are due to the
existence of several possible solutions (we provide below an advanced analysis of the
cases where several solutions exist). After reaching an aggregate size corresponding to
50% of the population, the number of constraints needed is expected to decrease again.
Identifying |SA| individuals in S is as difficult as identifying |S| − |SA| individuals. With
small aggregate sizes (lower than 50% of the population size), the number of constraints
needed is often twice the size of the aggregate: in general, the number of constraints
needed to successfully attack a population of size |S| should be at least in the order of
the aggregate size |SA|. Conversely, if the number of constraints is much lower than the
aggregate size, the dataset is deemed safe (relatively to the time budget θ and to the
pool size p) to the SubSum attack. Building on this result, in the following, both the
aggregate size (|SA|) and the length of the series (number of constraints T ) are expressed
as a fraction of the population size (|S|). Note that the number of published timestamps
might be larger than the population size, resulting in fractions larger than 100% of the
population size.
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(a) θ = 1000s
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(b) θ = 2000s
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(c) θ = 4000s

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Number of constraints (% of | |)

50
45
40
35
30
25
20
15
10

5Ag
gr

eg
at

e 
siz

e 
(%

 o
f |

|)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(d) θ = 8000s

Figure 4.4 – Evolution of the success rate (0: all failed, 1: all succeed) depending on the
time budget. Dataset = ISSDA, |S| = 2000, θ = {1000s, 2000s, 4000s, 8000s}, p = 2, 20
repetitions.
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Figure 4.5 – Evolution of experiments time depending on the time budget. Dataset =
ISSDA, |S| = 2000, θ = {2000s, 8000s}, p = 2, 20 repetitions.
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Impact of the time budget θ: For practical reasons, we evaluate the impact of the
time budget on a relatively small dataset with |S| = 2000. As seen in Figure 4.4, the
time budget θ impacts the attack success: the higher the time budget, the higher the
success rate. However, as shown in Figure 4.4d, even with a high time budget, attacking
an aggregate with a few time points (the left dark sides of Figures 4.4b, 4.4c and 4.4d)
is unsuccessful. Conversely, if the time budget is too low and the number of constraints
is too high (the right black/grey area of the Figures 4.4a, 4.4b and 4.4c), the solver does
not have the time to solve the problem with its given parameters. Figure 4.5 shows the
experiment’s time (in seconds). We note three areas of interest on the figures: an area
with missing points (before reaching 25% of constraints) corresponding to the previously
defined, parabolic area of failures (Figure 4.2 and Figure 4.3) (1). The failures are due
to reaching the solver’s time budget. When increasing the number of constraints, the
execution time drops to a minimum for all aggregate sizes (between 25% and 100% of
constraints) (2). After this point, the execution time increases linearly with the number
of constraints until the execution time reaches the time budget again (Figure 4.5b) (3).
There is an apparent compromise to make between the number of constraints used (that
needs to be in the order of the aggregate size) and the time budget. If the attacker has a
short time budget, he/she might prefer not to use all the available constraints at his/her
disposal.

Attacking large populations: Previously, we attacked small subsets of the ISSDA
and LONDON datasets. The attacks on the complete datasets provide results similar to
the ones previously described. However, since the datasets are larger, we need to increase
the time budget to 24h to observe the same phenomena. As shown in Figure 4.6, the
relationship between the dataset size, the aggregate size, and the number of aggregates
required for the attack to succeed is similar to what we observed in the other experiments.
In particular, in this case, we need roughly twice more constraints than the aggregate size
until we reach an aggregate size of 25% of |S|. After that, the number of constraints
needed to obtain a success remains stable at 50% of |S|.

Advanced success analysis: We set the pool size to p = 100 in these experiments,
meaning that the attack is considered successful if the number of solutions found is be-
tween 1 and 99. This allows us to study the cases where several solutions are found,
making G worth analyzing. We chose the experiment in which the solver returns the high-
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(a) Dataset = LONDON
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(b) Dataset = ISSDA

Figure 4.6 – Attack success rate (0: all fail, 1: all succeed) for datasets of 4500 individuals.
Dataset = {ISSDA, LONDON}, |S| = 4500, θ = 24h, p = 100, 20 repetitions.

est number of solutions and where the intersection of these solutions is the smallest. In
other words: where the number of individuals that are part of several solutions is the
highest. This case occurs in one of the 20 repetitions of the attack with the following
parameters: dataset = ISSDA, |S| = 4500, θ = 24h, p = 100, |SA| = 225 (5%) and |T |
= 900 (20%). It results in a pool containing 3 solutions. In Figure 4.7, we represent the
part of the guess vector limited to the individuals present in the 3 solutions. Figure 4.7 is
a histogram showing the fraction of individuals (Y-axis) associated with eleven possible
ranges of guess in G 10 (X-axis). The figure shows that 224 (98.7%) individuals appear in
all the solutions: their membership can thus be completely inferred with certainty. Only
one individual differs in all three solutions: the membership probability of this individual
is thus equal to 1/3. This shows that the SubSum attack gains significant knowledge about
the aggregate members even when multiple solutions are provided.

4.5 Conclusion

Membership inference attacks aim to infer whether a specific individual belongs to
a given aggregate. This work introduces a technique to perform membership inference
attacks on (threshold-based) aggregated time series. Given a publicly known dataset of

10. Recall that the vector of guesses G contains the probability that the individual participates to A
for each individual.
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Figure 4.7 – Focus on the experiment in which the solver returned the highest number of
solutions and where the intersection of these solutions is the smallest (3 solutions found
in this case). We show the fraction of individuals associated with each possible adversarial
guess value (organized within eleven ranges). Dataset = ISSDA, |S| = 4500, θ = 24h, p
= 100, |SA| = 225 (5%), |T | = 900 (20%).

time series and aggregated values (one value per timestamp) calculated from a private
subset of that dataset, the adversary can re-identify the individuals belonging to the
private subset. To do so, we model the membership inference attack as a subset-sum
problem and use Gurobi to solve it. We perform experiments on two real-life datasets
containing power consumption time series from UK and Ireland, respectively. We show
that if the number of published timestamps is larger than the aggregate size (i.e., the
number of individuals in the private subset), then the SubSum attack is highly likely
successful.
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Chapter 5

THE STATS ATTACK

In this chapter, we present the Shadow Training for Aggregated Time Series (STATS)
attack aiming to predict whether a target individual belongs to an aggregate or not.
Unlike other membership inference attacks (MIA, presented in Section 2.4), we focus
on large-scale time series aggregates. Our attack is cast as a time series classification
problem. We leverage the temporal aspect of our data by using specialized time series
classifiers. As the data changes over time (due to meteorology and human interaction),
we evaluate the effectiveness of domain adaptation methods to improve the attack success
rate. We evaluate the attack’s success according to the aggregate size, the series length,
and the target. Our findings demonstrate the vulnerability of large aggregates (up to
20,000 series) against favorable adversaries performing the attack during the same period
as the training. The attack is less successful against weaker attackers performing the attack
during a different period than the training, even if we still manage to attack aggregates
of size 1000. We provide the oddness score as a metric that can estimate individual series’
potential vulnerability to membership inference attacks. Eventually, our results will help
publishers disclose smaller aggregates with better privacy guarantees.

We organize this chapter as follows: Section 5.1 contains the necessary background
knowledge about time series classification. Section 5.2 introduces the context of the attack,
the publishing environment, and the considered threat model. Section 5.3 presents the
algorithms of the attack. Section 5.4 presents the experimental protocol. We perform an
in-depth study of the attack and the results in Section 5.5. Section 5.6 finally concludes
this chapter.

5.1 Background knowledge

Our attack is cast as a time series classification problem. Time series are specific data
types with strong correlations between data points. [Bag+16; MSB23] 1 surveys and bench-

1. http://timeseriesclassification.com
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Figure 5.1 – Comparaison of training time versus model accuracy rank for various time
series classification models (from [Mid+21]).

mark the different methods to classify time series. Figure 5.1 (from [Mid+21]) compares
the training time versus the accuracy rank of the current state-of-the-art time series clas-
sification algorithms. The rank is computed using the Wilcoxon signed rank test [Wil45].
As we plan to perform many experiments on large-scale datasets, we also pay particu-
lar attention to the model’s computational cost. While HIVE-COTE V2 [Mid+21] (HC2
on the figure) offers the best accuracy, Rocket [DPW20] offers the best tradeoff between
accuracy and computation time. The creators of Rocket propose MiniRocket [DSW21],
an improvement of Rocket. According to the authors, MiniRocket is 75 times faster than
Rocket and offers the same accuracy. Therefore, we use MiniRocket to perform our ex-
periments.

MiniRocket computes a set of random convolutional kernels 2 for every training series
(in our case, an aggregate). The kernels are used as features in a linear model to classify the
data. By default, Rocket and MiniRocket use a Ridge classifier [HK70] but it is possible
to use a Logistic Regression classifier [Cra02]. The only hyperparameter is the number
of kernels. All aspects (length, weight, bias, dilatation, and padding) of the kernels are
random. The linear classifier takes as features the PPV (Proportion of Positive Values) of
each kernel. Equation 5.1 defines the PPV for the series X, the kernel K, and the bias b.

2. A convolutional kernel is a small matrix transforming each point of the time series depending on
its neighbors.
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PPV (X ∗ K) = 1
2

∑
[X ∗ K > b] (5.1)

The classifier produces a confusion matrix describing the proportion of True Posi-
tive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) examples
classified by the model. The confusion matrix is used to compute the following metrics
evaluating the model performance:

Accuracy Formulae 5.2 defines the accuracy as the ratio of correct classification
(both positive and negative) during the testing phase. In a binary classification
setting, an accuracy close to 1 indicates that the model mainly makes correct
classifications. An accuracy score close to 0.5 means that the model cannot make
good predictions and is answering randomly.

accuracy = TP + TN

TP + TN + FP + FN
(5.2)

Precision Formulae 5.3 defines the precision as the proportion of correct positive
classifications. A precision close to 1 indicates that the model can confidently iden-
tify positive examples but may produce many false negatives. A precision close to
0 indicates that the model makes many false positive predictions.

precision = TP

TP + FP
(5.3)

Recall Formulae 5.4 defines recall as the proportion of positive labels correctly iden-
tified by the model. A recall close to 1 indicates that the model can identify many
positive examples, but it may also produce many false positives. A recall close to
0 indicates that the model is missing many positive examples and may produce
many false negatives.

recall = TP

TP + FN
(5.4)

F-score Formulae 5.5 defines the F-score as harmonic mean of the precision and the
recall. It evaluate the model capacity to perform correct positive classifications. An
F-score close to 1 indicates that the model has both a high precision and a high
recall, while an F-score close to 0 indicates that the model has poor precision or
recall scores.
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F = 2 · precision · recall

precision + recall
(5.5)

Domain Adaptation: Domain Adaptation is a set of machine learning techniques that
can be used when the training data distribution (called the source) is different from the
testing data distribution (called the target). domain adaptation algorithms either trans-
form the data from a source to a target domain or directly transform the model [Red+20;
Zha21]. There exist supervised and unsupervised domain adaptation algorithms. We focus
on unsupervised algorithms that transform the data since we use these algorithms in a
context where we cannot access target labels and cannot modify the model. The Adapt
Python library 3 references and implements multiple state-of-the-art domain adaptation
methods. Three algorithms match our constraints (i.e., unsupervised data transforma-
tion): Transfer Component Analysis (TCA) [Pan+09], Subspace Alignment (SA) [Fer+13]
and CORAL [SFS17]. We could not run the TCA algorithm on our server due to a lack
of RAM (the server has 1 TB of RAM), so we focus on SA and CORAL.

Subspace Alignment (SA) [Fer+13] is defined in Algorithm 2. It adapts the source
domain to the target one by aligning the two PCA vectors [Hot36]. By default, the number
of components is set to the dimension of the dataset. With time series, it corresponds to
the length of the series. Note that, in the algorithm X

′
S is the transposed matrix of XS,

the source PCA vector.

Algorithm 2: Subspace Alignment (SA)
Input: The source (Ssource) and target (Starget) datasets and the number of PCA

compoments (d).
Output: The transformed source dataset (Ssource

T )
XS = PCA(Ssource, d)
XT = PCA(Starget, d)
Xa = XS · X

′
S · XT

Ssource
T = Ssource · Xa

return Ssource
T

CORAL [SFS17] aligns the covariance matrix between the source and the target do-
main using Algorithm 3.

3. https://adapt-python.github.io/adapt/map.html
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Algorithm 3: CORAL
Input: The source (Ssource) and target (Starget) datasets.
Output: The transformed source dataset (Ssource

T )
XS = cov(Ssource) + Isize(S,2)
XT = cov(Starget) + Isize(T,2)

S = S ∗ X
−1/2
S

Ssource
T = S ∗ X

1/2
T

return Ssource
T

DTW: Algorithm 4 defines the Dynamic Time Warping (DTW) between two time
series Si and Sj of length |Ti| and |Tj|. DTW is an algorithm measuring the similarity
between two time series. A DTW value close to 0 means that the two series are similar.

Algorithm 4: DTW
Input: Si and Sj, two time series of length n and m.
Output: The DTW distance.

D =
∞0,0 · · ·

... ∞n,m


for a = 1; a < n; a + + do

for b = 1; b < m; b + + do
cost = |Si,a − Sj,b|
insert = D[a − 1; b]
delete = D[a; b − 1]
match = D[a − 1; b − 1]
D[a; b] = cost + min([insert, delete, match])

end
end
return D[n; m]

5.2 The publishing environment

The publishing environment comprises a publisher and an attacker. The publisher
collects a set of time series Spub from a set of individuals I. Each individual produces
a single fixed-length time series associated with additional, possibly private, attributes
contextualizing the time series. Table 5.1 summarizes the notations used in this chapter.
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Notation Description
I Set of individuals
T Set of timestamps
Spub ⊂ S Publisher’s series
SA ⊂ Spub Aggregate’s series
c ∈ Spub Targeted series
Satt ⊂ S Attacker’s series
A Published aggregates
O Outlier score
M Classification model
accuracy Model accuracy score
| · | Cardinality

Table 5.1 – Notations

Individuals: S

Collect
Spub

Get access:
Satt, c ∈ Spub

Publisher

Attacker

Publish aggregates A
+ sensitive information

c is in A?
(infer sensitive information)

Figure 5.2 – The STATS Attack

The publisher: The publisher selects a subset SA ⊂ Spub, computes and publishes a
vector of aggregates A from SA. This chapter focuses on aggregates that are means (we
use the two terms indistinctly below). Note that our attack can also tackle all sum-based
aggregation methods (e.g., sums and means) without any changes to the attack. It is
worth noting that the vector of aggregates A usually comes along with the timestamps
and the number of time series aggregated. Formulea 5.6 computed the aggregate At per
timestamp with SA

i,j the consumption of the ith individual at the timestamp t.

At =
∑

∀i SA
i,t

|SA|
(5.6)

The attacker: The threat model (illustrated in Figure 5.2) considers an attacker aiming
to infer the presence of a known target inside a published aggregate. During the attack,
the attacker has access to the series of a targeted individual c and a set of series Satt similar
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to the ones at the origin of the aggregates. Simimar series are not formally defined. They
are similar if they share similar statistical properties (i.e., shape and frequency). Even
if the attacker series Satt could intersect with the publisher series Spub, we consider the
worst-case scenario where Satt is distinct from Spub. The attacker could readily obtain
similar series using legal means such as data-sharing programs or open data. Getting
the precise series of the target might seem complex, yet several actors have such access,
using legal means (e.g., former clients) or illegal ones (e.g., data leaks). The attacker can
infer information by finding whether the target is part of the aggregate. For example, the
simple knowledge of the target presence can help discriminate between a client that moved
(absent from the newest publications) and a client that is gone with a competitor (still
present in the newest publications). Secondly, as the aggregate is published with private
attributes, knowing the presence of the target within the aggregate allows labeling the
target with this information.

We distinguish two variants of the attack: when the attacker has access to c and Satt

over the same period as the publication and when he has access to information over
a different period. The latest is the worst-case scenario for the attacker and the most
realistic one. We do not rule out an attacker getting access to his targeted series during
the same period as the attacked one. In this case, the attacker’s motivation declines
(without canceling it) as much information is disclosed, but it eases his task. Considering
the two scenarios bound the attack by its extreme. We explore both the easiest and the
worst setup for the attacker.

5.3 The STATS Attack

The STATS attack is cast as a time series classification problem. The attacker uses
a set of known series Satt, similar to the ones used by the publisher, to generate fake
aggregates. The fake aggregates are balanced, containing the same number of aggregates
with the target as without it. The generation of fake aggregates to train the attack model
is called shadow training. The classifier is trained using the fake aggregate to detect
the presence of the target. The classifier is used against the targeted aggregate to infer
the target membership with a probability depending on the model’s accuracy.

Algorithm 5 presents the attack algorithm against an aggregate of size |SA|. It uses the
targeted series c and three, ideally distinct (population and period wise), sets of series:
Strain, and respectively Svalid and Stest, subset of Satt, to train, validate and test the
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Algorithm 5: STATS attack
Input: The targeted series (c), The set of series known to the attacker for

training (Strain), for validation (Svalid) and testing (Stest), The number of
train (ktrain), validation (kvalid) test (ktest) aggregates, Aggregate size
(|SA|)

Output: The classification model (f) and its confusion matrix (Mvalid and
Mtest).

// Build train / test aggregates
X train, Y train := build_aggregates(Strain, c, ktrain, |SA|)
X valid, Yvalid := build_aggregates(Svalid, c, kvalid, |SA|)
X test, Y test := build_aggregates(Stest, c, ktest, |SA|)
// (Optional) Domain adaptation
X train := adapt(X train, X test)
// Train and test the model
f = train_model(X train, Y train)
Mvalid := test_model(f, X valid, Yvalid)
Mtest := test_model(f, X test, Y test)
return f , Mvalid, Mtest

Functions used in the algorithm :
build_aggregates(S, c, k, |SA|): Build a set of k aggregates of size |SA| from a

series dataset S containing the target c and another k aggregates not containing
the target c (Algorithm 6).

adapt(X training, X testing): Domain adaptation algorithm transforming the source
aggregates (training) to match the destination aggregates distribution (testing).

train_model(X , Y): Train the classifier using a set of aggregates (X ) and a
target presence vector (Y).

test_model(f, X , Y): Test the model against a set of aggregates (X ) and the
target presence ground truth (Y).
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model. Firstly, the attacker uses Algorithm 6 to generate three sets of aggregates (X train)
of size |SA| for training, validation, and testing using their respective population. The
symbol ⌢ denotes the concatenation of two vectors. All sets of aggregates are balanced
and contain k aggregates including the target c and k aggregates without c. A boolean
vector (Y) label which aggregates contains the target. Once the aggregates are generated,
the training aggregates (X train) and label vector (Y train) are used to train the model to
detect the target presence. Subsequently, the model is tested against the validation and
testing aggregate (X valid, X test) and label vector (Yvalid, Y test) and returned alongside the
resulting confusion matrix M, containing TP , TN , FP , FN respectively the number of
True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN)
classifications. The confusion matrix is used to compute the following metrics: accuracy,
precision, recall, and the F-score. If the model performs correctly, the model is used
against the attacked aggregate, inferring the target presence with a correctness probability
depending on the metric observed.

Algorithm 6: build_aggregates
Input: The series dataset (S), The targeted series (c), The number of aggregates

(k), The aggregate size (|SA|).
Output: The set of aggregates (X ) and the target presence vector (Y).
X = []
Y = []
for i = 0 to k do

Sc := S \ {c}
Sbase := sample(Sc, |SA| − 1)
Swith := Sbase ∪ {c}
Swithout := Sbase ∪ sample(Sc \ Sbase, 1)
Awith := aggregate(Swith)
Awithout := aggregate(Swithout)
X := X ⌢

[
Awith; Awithout

]
Y := Y ⌢ [1; 0]

end
return X , Y

Functions used in the algorithm :
sample(S, n): Randomly sample n series from the series dataset S.
aggregate(S): Aggregate (sum or mean) the set of series S per timestamp.
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Alternatively, the attack can use a domain adaptation algorithm to boost its results.
Due to technical limitations 4 related to the classifier and the domain adaptation algo-
rithms, the algorithms adapt the aggregates. They transform the training aggregates to
resemble the testing ones.

5.4 Experiments

Our experiments aim at understanding which parameters influence the success of our
attack. We consider a list of parameters impacting the results: the aggregate size |SA|,
the series length |T |, the target c, and the train/test population and period. For each
set of parameters, we apply the algorithm defined in Section 5.3 building ktrain = 15, 000
training aggregates pairs and kvalid = ktest = 5, 000 validation and testing aggregates.
The testing aggregates challenge the model to obtain the model performance metrics
(accuracy, precision, recall, and F-score). We consider a target vulnerable for a series
length and aggregate size if its accuracy is above 0.6 meaning the attacker can gain some
advantage over random guessing. The validation phase is used before the experiments to
fix the model hyperparameters (i.e., rocket kernels and normalization).

We propose an open-source Python implementation of the STATS attack allowing the
reproduction of our results 5. We deploy our experiments on a computer with 32 cores
(2.5 Ghz) and 1 TB of RAM. We use the minirocket [DSW21] classifier with 1,000 kernels
as it offers the best tradeoff between accuracy and classification time.

5.4.1 Datasets

We perform the attack on two real-life electric consumption datasets: the CER-ISSDA
presented in Section 3.2 and the ENEDIS dataset presented in Section 3.4. Due to the
small size of the ISSDA dataset, we do not split the population into separate populations,
and the targets are selected directly from this population.

The ENEDIS dataset contains around 1.6 million residential series (RES1 and RES2)
over two months (June 2021 and June 2022) with a half-hourly frequency and precision to
the Watt. Despite being collected after the ENEDIS dataset in Section 3.4, this dataset has
the same statistical properties. Each profile has a different consumption pattern. We keep
the balance between each category in the following series selection. We split the ENEDIS

4. The implementation of Rocket we use is incompatible with our domain adaptation library.
5. https://gitlab.com/phd_antonin/mia-ts
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dataset into 4 datasets: First, we select the targets as defined in Section 5.4.2. Then,
we extract three (ENEDIS-train, ENEDIS-valid, and ENEDIS-test, used respectively as
training, validation, and testing populations) distinct representative panels. The ENEDIS-
train dataset contains 100,000 series. The ENEDIS-valid and ENEDIS-test contain 50,000
series each. A non-negligible amount of series (up to 4 % of the series per timestamp)
contains at least one missing value over the period. We select the most complete series
and interpolate the missing values (using linear interpolation) when the missing period
per day is less than 1H long. While most selected series are complete, around 2 % of them
require interpolation with, at worst, 2.5 % (36 timestamps over 1440) missing timestamps
in them.

5.4.2 Targets selection

We select the targets by attributing an oddness score Os to each series. This score
tells how far the series is from the mean-series. The mean-series is the mean aggregate of
all the series within the whole dataset (ISSDA or ENEDIS). Formulae 5.7 computes the
score Os for each series s ∈ S. Formulae 5.8 computes the mean-series µt for timestamp t.

∀i ∈ I, Oi =

√∑
t∈T (µt − Si,t)2

|T |
(5.7)

µt =
∑

∀i∈S Si,t

|St|
(5.8)

A high score corresponds to a large dispersion regarding the mean-series. Targets are
selected according to the score. The score domain is split into multiple groups (defined
below), and the targets are sampled within each group. We define the groups as giving
more importance to the series with a more significant score that would otherwise not be
selected by uniformly sampling the whole population. We call these series outliers as they
are few and far from the average series. We expect outliers to be more vulnerable than
the series close to the mean-series. As they are few and different from the other series,
we expect them to produce a stronger impact on the aggregates. However, the groups are
strongly imbalanced, with some representing around 90 % of the total population and
others representing only 1 %.
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ISSDA: We split ISSDA dataset into 4 groups of equal size relative to the oddness
scores and the standard deviation of the score σ(O). From them, we sampled 10 series
per group when possible. Groups are defined in the following manner:

— G0 : [0; 1 × 5 × σ(O)]. It contains 4562 series (98 %).
— G1 : ]1 × 5 × σ(O); 2 × 5 × σ(O)]. It contains 49 series (1.06 %).
— G2 : ]2 × 5 × σ(O); 3 × 5 × σ(O)]. It contains 7 series (0.1 %).
— G3 : ]3 × 5 × σ(O); max(O)]. It contains 3 series (0.06 %).
Figure 5.3 shows the distribution of the series score (the histogram in blue), the groups

(the vertial lines in red), and the score of the target (the dots in orange). We force the
selection of significant outliers that would not have been selected by uniform sampling.
However, the most extreme groups (G2 and G3 ) contain a tiny number of series. Therefore
all series in these groups are selected as targets.

ENEDIS: The Enedis dataset is split into three groups around the average score. We
reduced the number of groups compared ISSDA due to the few numbers of individuals
present in G2 and G3. This selection method allows watching three series categories: the
series close to the mean series, the main population, and the outliers. We selected 100
series per group and profiles as targets. Groups are defined in the following manner:

— G0 : contains series with a lower score than G1. G0 = [0; O − σ(O)]. It contains
23,039 series (4.74 %) for the RES1 and 10,080 (1.14 %) for the RES2.

— G1 : contain series around. G1 =]O − σ(O); O + σ(O)]. It contains 421,520 series
(86.75 %) for the RES1 and 781,829 (89.09 %) for the RES2.

Figure 5.3 – ISSDA score
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(a) RES1 (b) RES2

Figure 5.4 – ENEDIS score

— G2 : contains series with a higher score than G1. G2 =]O + σ(O); max(O)]. It
contains 41,303 series (8.5 %) for the RES1 and 85,629 (9.75 %) for the RES2.

Individual series scores are computed against the population (1.6 M series), and targets
are selected relative to the profiles series distribution. Figure 5.4 shows the series score
distribution (histogram in blue) for each profile and the score of each targeted series
(orange dots). Vertical red lines delimitate the groups. RES1 (Figure 5.4a) series are
generally more dispersed than the RES2 series (Figure 5.4b), with most series having a
score around 10,000 for the RES1 compared to 2500 for the RES2. Nevertheless, RES2
series have more extreme outliers with a maximum score of 780,000, 5 times higher than
RES1 series (150,000).

5.5 Experimental results

In this section, we analyze the results of the experiments. First, we observe the accuracy
on the ISSDA dataset function of the aggregate size, group, and series length. Then, we
observe the accuracy on the ENEDIS dataset. We start by performing the attack in the
same period as the training period (June 2021). We refer to this scenario as "same period".
Then, we observe the accuracy by training the classifier one year prior to the attack period.
The training uses June 2021 data, and the testing uses June 2022 data. We refer to this
scenario as "different period". We test the impact of domain adaptation algorithms on the
attack’s performances.
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Figure 5.5 – STATS attack accuracy on the ISSDA dataset depending on the aggregate
size, series length, and score (group). |SA| = {2, 10, 50, 100, 1000, 2000}, |T | = {2, 24,
48, 336, 1440, 8640}.
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Attacking the ISSDA dataset: Figure 5.5 shows the models accuracy on the ISSDA
dataset according to the aggregate size |SA| and the series length |T | for each target
group. We see a clear impact of both the aggregate size |SA| and the series length |T |
on the accuracy. Small aggregates and long series are the most vulnerable (accuracy close
to 1). Large and short aggregates are almost impossible to attack (accuracy below 0.6).
The oddness score influences the attack accuracy. Distinctive targets (G3, G2 and G1 )
are more vulnerable considering larger aggregates and shorter series. Targets from the
most common series (i.e., G0 ) are harder to distinguish, even considering small and long
aggregates.
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Figure 5.6 – STATS attack accuracy on the ENEDIS dataset depending on the aggre-
gate size, profile, and group over the same period. |SA| = {2, 100, 1000, 5,000, 10,000},
|T | = 1440, training = 2021, testing = 2021.

Attacking ENEDIS aggregates: Figure 5.6 shows the average accuracy (as well as
the 95 % confidence interval) on the ENEDIS dataset according to the aggregate size,
group, and profile. Both training and testing are performed in the same period (June
2021). As in the previous figures, large aggregates are more challenging to attack than
small ones. Secondly, we see that RES2 series are more vulnerable than the RES1 ones.
Lastly, the target group influences the resulting accuracy. For the G0 series, the model’s
accuracy is below 0.6 for the aggregate size of |SA| > 100 (|SA| > 1, 000 for G1 ) while
we still have a decent accuracy (0.65) for the RES2 G2 series at |SA| = 10, 000.

Figure 5.7 shows the proportion of targeted individuals vulnerable (i.e., with an accu-
racy > 0.6) on the ENEDIS dataset according to the aggregate size, group, and profile.
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Figure 5.7 – Proportion of vulnerable individuals on the ENEDIS dataset depending on
the aggregate size, profile, and group over the same period. |SA| = {2, 100, 1000, 5000,
10000}, |T | = 1440, training = 2021, testing = 2021.

The proportion of vulnerable individuals diminishes as the aggregate size increases. In-
dividuals are vulnerable when the aggregate size is small (below |A| ≤ 10 for G1 and
|A| ≤ 100 for G2). For group G0, an aggregate size of |A| = 1, 000 is enough to protect
all individuals. However, this threshold is reached at |A| = 10, 000 for the group G2 and
the profile RES1. We note that approx. 50 % RES2 in the group G2 are still vulnerable
for an aggregate size of |A| = 10, 000. At most, we attack aggregates of 20,000 series, and
22 % of the RES2 G2 series remain vulnerable with a maximal accuracy of 0.77.

Attacking different period: Figure 5.8 shows the mean attack accuracy (as well as
the 95 % confidence interval) per profile and group according to the aggregate size with
different training (June 2021) and test (June 2022) period. As the aggregate size increases,
the attack accuracy for all targeted series diminishes towards 0.5. RES1 series generally
have a very low accuracy (below 0.7 for |SA| = 2). However, we observed individual series
in the G2 group reaching an accuracy of 0.8 at an aggregate size of |SA| = 100. RES2
series have an higher average accuracy than the RES1 series reaching 0.65 at |SA| = 100.
We observe a maximum accuracy of 0.75 for |A| = 5, 000. In France, cold weather is one of
the main factors influencing electricity consumption. By choosing two summer periods, we
limit the impact of the weather on the series. However, the series changes from one year
to the next. Therefore, series are harder to classify, resulting in a lower attack accuracy.

Figure 5.9 shows the proportion of vulnerable targets (i.e., with an accuracy > 0.6) on
the ENEDIS dataset according to the aggregate size, group, and profile. The proportion
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Figure 5.8 – STATS attack accuracy on the ENEDIS dataset depending on the aggregate
size, profile, and group over a different period. |SA| = {2, 100, 1000, 5000, 10000}, |T | =
1440, training = 2021, testing = 2022.

of vulnerable targets follows a similar shape as the attack in the same period, except the
proportion is half. At most, approx. 50 % individual are vulnerable for |SA| = 2. For
group G0, no individual is vulnerable for |SA| ≥ 100. For group G1 and the RES1 profile
of group G2, no individual is vulnerable for |SA| ≥ 100. For the RES2 profile of group
G2, no individuals are vulnerable for |SA| = 10, 000, but 10 % remain vulnerable for
|SA| = 5, 000.

Impact of the domain adaptation methods: Figure 5.10 and Figure 5.11 show the
mean accuracy using the CORAL (and respectively the Subspace Alignment) domain
adaptation method. CORAL improves the attack accuracy by up to 40 % for aggregates
size below |SA| ≤ 100. We do not observe any significant improvements for aggregates
size above |SA| > 100. The usage of the SA method does not significantly improve the
accuracy (at most +10 % for |SA| = 2).

Figure 5.12 and Figure 5.13 show the proportion of vulnerable targets using the
CORAL (and respectively SA) domain adaptation method. Both CORAL and SA signifi-
cantly improve the proportion of vulnerable targets for small aggregate sizes (|SA| < 100).
We observe no improvement for larger aggregate sizes. CORAL is the most efficient do-
main adaptation method improving the proportion of vulnerable targets by up to 80 %
for RES1 G2 on |SA| = 2. At most, SA improves the proportion of vulnerable targets by
at most 40 % for RES1 G2 on |SA| = 2. However, for aggregates size above |SA| > 2, SA
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Figure 5.9 – Percentage of vulnerable individuals on the ENEDIS dataset depending on
the aggregate size, profile, and group over a different period. |SA| = {2, 100, 1000, 5000,
10000}, |T | = 1440, training = 2021, testing = 2022.

does not improve the proportion of vulnerable targets. Sometimes SA even reduces the
proportion of vulnerable targets.

Explaining the accuracy drop attacking different periods: Figure 5.14 shows
the accuracy change between the attack on the same period and the attack on a different
period depending on the DTW distance, the score’s drift, and the series Euclidian distance.
The DTW is the Dynamic Time Warping distance between the two series. The score drift
is defined as the difference between the series score in the training period and in the
testing period. The distance is the Euclidian distance between the two series. Performing
the attack during a different period always degrades the accuracy compared to attacking
the same period. The accuracy loss is lower when all parameters are close to 0. The more
the target changes between the training and testing periods, the more challenging the
attack. Note that the accuracy change is sometimes low when the distance is relatively
high because the accuracy was already close to 0.5.

Other success metrics: Besides the accuracy, we look at the attack results using the
precision, recall, and F-score metrics. Figure 5.15 shows the attack performance using
these metrics. When attacking the same period, all metrics follow the accuracy. The
precision follows the accuracy on different periods and diminishes with the aggregate size.
The recall remains stable or increases with the aggregate size. The F-score remains stable
(around 0.5) or increases with the aggregate size. Using domain adaptation methods
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Figure 5.10 – STATS attack accuracy on the ENEDIS dataset per target and profile over
a different period using the CORAL domain adaptation. |SA| = {2, 100, 1000, 5000,
10000}, |T | = 1440, training = 2021, testing = 2022.
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Figure 5.11 – STATS attack accuracy on the ENEDIS dataset per target and profile over
a different period using the Subspace Alignment (SA) domain adaptation. |SA| = {2, 100,
1000, 5000, 10000}, |T | = 1440, training = 2021, testing = 2022.
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Figure 5.12 – Percentage of vulnerable individuals on the ENEDIS dataset per target and
profile over a different period using the CORAL domain adaptation. |SA| = {2, 100, 1000,
5000, 10000}, |T | = 1440, training = 2021, testing = 2022.
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Figure 5.13 – Percentage of vulnerable individuals on the ENEDIS dataset per target
and profile over a different period using the SA domain adaptation. |SA| = {2, 100, 1000,
5000, 10000}, |T | = 1440, training = 2021, testing = 2022.
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Figure 5.14 – Impact of the series changes between the same period attack and the different
period on the accuracy. Series changes measured using using the DTW, the score drift and
euclidian distance. Parameters: Enedis same period and different period (without domain
adaptation), |SA| = 100, |T | = 1440, training = 2021, 2022, testing = 2022.
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Figure 5.15 – STATS attack performance using the precision, recall and Fscore metrics on
a different period. |SA| = {2, 100, 1000, 5000, 10000}, |T | = 1440, group = G2, training
= 2021, testing = 2022.
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mainly improves the recall (up to +50 %) rather than the precision (up to +10 %).
Subsequently, the F-score increases with the recall.

5.6 Conclusion

This work introduces a technique to perform membership inference attacks on (threshold-
based) aggregated time series. Given a known targeted series, an aggregate, and a dataset
of similar series as the ones forming the aggregates, the adversary tries to re-identify the
target’s membership in the aggregate. We model the membership inference attack as a
time series classification problem. This work presents a metric to estimate the vulnera-
bility of series using the oddness score. We observe that the series with a higher score
(relative to the other series) are more vulnerable to the attack. We perform experiments
on two real-life datasets over multiple aggregate sizes, periods, and targets. Protecting ev-
ery individual against the favorable attacker (i.e., performing the training and the attack
on the same period) requires increasing the threshold. At most, we attack aggregates of
20,000 series, and 22 % of the RES2 G2 series remain vulnerable with a maximal accuracy
of 0.77. However, only a few individuals remain vulnerable on large aggregates. For most
series, we are not able to attack aggregates above 1000. Removing the most identifiable
individuals from the aggregates allows the reduction of the aggregation threshold. We
use domain adaptation methods to improve the attack’s success in adversarial conditions.
Domain adaptation methods significantly improve the attack results on small aggregates
but do not improve the accuracy of large aggregates. Interesting future works include
relaxing the background knowledge the attack requires (e.g., missing or approximate val-
ues). Besides, we focus on fast and state-of-the-art classification and domain adaptation
methods due to the constraints of conducting large-scale experiments.
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Chapter 6

CONCLUSION

As stated in the introduction, French legislation imposes the publication of electric-
ity consumption time series. However, electricity consumption time series are personnal
data. Therefore, the laws imposes the usage of threshold aggregation to protect the se-
ries. Besides, the legislation proposes to remove the "atypical" series before publication
without defining "atypical". This work aims to understand the vulnerability of published
electricity consumption time series. In particular, this thesis produces valuable informa-
tion for choosing relevant aggregation thresholds. We also propose a metric to estimate
the potential vulnerability of individual series prior to their aggregation. Section 6.1 sum-
marizes our contributions. Section 6.2 extends our work by discussing the vulnerability of
professional data. Section 6.3 proposes interesting future directions.

6.1 Summary of contributions

This thesis provides three main contributions. First, we perform a large-scale statisti-
cal study of French electricity consumption data. This study shows two main consumption
patterns: a seasonal pattern with higher consumption during the winter and a daily pat-
tern with higher consumption during the evening than at night. The consumption disper-
sion is linked to the mean and median consumption. The temperature strongly influences
electricity consumption. Besides, the study shows that most individual series are unique,
considering a few timestamps. Therefore, publishing pseudonymized individual series (i.e.,
without identifying information such as the name or contract number) leaves the series
potentially identifiable and vulnerable to re-identification attacks. Degrading the data is
insufficient to protect individual series while offering good utility.

We then propose two membership inference attacks. We adapt and improve existing
concepts to cope with time series. All attacks are empirically tested against real-life elec-
tricity consumption data using large-scale and reproducible experiments. By doing so,
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we manage to attack aggregates a magnitude larger than in the previous membership
inference attacks in the literature.

First, the SubSum attack finds every series participating in an aggregate. It is modeled
as a variant of the subset-sum problem. The attackers create one subset-sum constraint
per timestamp, finding which series can form the aggregate on each timestamp. As the
number of constraints increases, the set of individuals matching the constraints diminishes
until the solver finds a single solution: the set of individuals participating in the aggregate.
The attack requires knowing at least all the series in the aggregates. Our experiments show
that the ability of the attacker to identify the members of an aggregate is related to the
number of known individuals, the number of timestamps, and its available time. If the
attacker has enough time, it is generally possible (in more than 90 % of the cases) to find all
the individuals present in the aggregates if the number of published timestamps is greater
than half the size of the attacker’s known individuals. Note that the subset sum problem
is an NP-hard problem. Therefore, it seems complicated to apply this attack against large
populations. At most, we attack populations of 4,500 series requiring approximately a
day of computation to attack a single aggregate. While slow, the computation time (i.e.,
a few days) remains acceptable while attacking aggregates containing a few thousand
individuals.

Second, the STATS attack finds if a specific target participates in an aggregate. The
attack is cast as a time series classification problem. This attack is fast (less than 1H)
and requires limited knowledge from the attacker. It only requires knowing the targeted
series at some point in time and a set of similar series as the ones in the aggregate. The
attacker’s known series can be on a different period than the one attacked. The attack
can find an individual on large aggregates (i.e., thousands of individuals) while training
the algorithm on the same period as the period attacked. At most, we successfully attack
aggregates of 20,000 individuals. When it is carried out in adverse conditions (attack on a
different period than the training period), the attack can no longer attack such important
aggregates. It can identify up to 40 % of the targeted individuals for aggregates of less than
1,000 individuals. This attack is fast, requiring only a few minutes of calculation to attack
a single aggregate. It is possible to improve the attack results using domain adaptation
algorithms. The usage of domain adaptation improves the attack’s results against small
aggregates (|SA| < 1000). Domain adaptation does not improve the attack’s results on
larger aggregates. We propose a metric estimating the potential vulnerability of a series
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against this membership inference attack using the oddness score. Series with higher
oddness scores have more chances to be identified by the STATS attack.

We answer our research question defined in the outline (Section 1.5): "how can a mali-
cious actor breach the privacy of an aggregate, and what makes an aggregate safe from our
attacker, considering the aggregate size and population?" First, this thesis shows that all
the attacks require access to individual series. Therefore protecting and controlling access
to individual series is crucial to prevent attacks on aggregates. Publishing pseudonymized
individual series is risky as they are highly identifiable with minimal background knowl-
edge. Second, while the SubSum attack requires significant time and computational power,
the STATS attack can quickly run on a personal computer. The number of individuals
in the aggregate and the series length influence the vulnerability. Long aggregates with
few individuals are more vulnerable. This thesis shows that the current legal threshold is
insufficient to protect everyone against our privacy attacks. Protecting every individual
against the most knowledgeable attacker (i.e., performing training and testing in the same
period) requires increasing the legal threshold. We do not make recommendations for a
safe threshold able to protect everyone. At most, we attack aggregates of 20,000 series.
Scaled to the general population, it could still represent thousands of individuals at risk.
However, only a few individuals with a high oddness score remain vulnerable on large
aggregates. Besides, the weaker attacker (i.e., performing the training and testing on a
different period) yields significantly worse results on large aggregates. For most series, we
are not able to attack aggregates above 1000. Removing the most identifiable individuals
from the aggregates allows the reduction of the aggregation threshold. We confidently as-
sume that it is possible to reduce the threshold to 1000 while protecting more than 90 %
series against the most knowledgeable attacker (i.e., in the same period). Our oddness
score could be used as a metric to estimate the vulnerability of each individual present
in an aggregate. Removing the most identifiable individuals from the aggregates raises
the question of data utility without introducing new vulnerabilities. For example, if we
remove a single individual from an aggregate while keeping this individual in a higher
level aggregate (e.g., publishing a city and an aggregate of cities), then subtracting the
two aggregates reconstructs the consumption of the hidden individual. Note that the ag-
gregate population strongly influences the attack results. It is necessary to analyze each
publication individually to find any potential individuals vulnerable to a privacy attack.
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6.2 Attacking professional data

This thesis focuses on personal data. However, smart meters also collect measurements
from companies. As seen in Chapter 1, company measurements are not considered personal
data under the privacy protection regulation. They can be published using a threshold of
3 series. However, they are still considered "commercially sensitive" and might represent
a tempting target for industrial spies. The electric consumption of industrial sites reflects
the site’s physical location, the machinery used, and, generally, the company activity.
Therefore, privacy protection methods and regulations should not be limited to personal
data but should extend to any sensitive data requiring protection.

This section illustrates the vulnerability of professional electricity consumption time
series by presenting our work with Diane Leblanc-Albarel at the EnergyDataHack 2022.
The EnergyDataHack is a hackathon organized by the French Ministry of Defense 1. The
challenge aims to identify and cartograph French data centers using open-source intelli-
gence. Our team got the best results at this hackathon. The full report is confidential. In
this section, we only present a summary of the methodology and results. To accomplish
this mission, we cross information publicly available from multiple sources: the Enedis
open data, satellite imagery, and press articles. We locate the precise location of around
190 data centers, including 30 sensitive and secret ones.

To find the data centers, we use the following methodology. First, press articles pro-
vide the location and capacity of multiple data centers. Besides, some data centers were
publicly referenced. Next, the energy consumption published on the Enedis open data
highlights the approximate location of high-consumption entities. We filtered the aggre-
gates probably related to data centers, research, and defense. The precise location can be
found using the cartography of the electricity distribution network and satellite imagery.
Enedis publishes the precise cartography of the electricity distribution network in open
data. Data centers require a medium-voltage power supply. Buildings connected to the
medium-voltage network are interesting guesses. Finally, data centers are easily identi-
fiable from satellite imagery. As they consume a lot of energy, they produce heat. This
heat is dispersed passively or using special cooling devices. Passively cooled buildings are
identifiable by infrared satellite imagery as they are warmer than the surrounding build-
ings. Actively cooled buildings are cooled using very distinctive pieces of equipment easily
distinguishable from the sky. France requires satellite imagery providers to blur sensitive

1. https://energydatahack.challenkers.com/
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areas (including some data centers). It is possible to overcome this limitation by looking
at overseas providers that do not blur the images.

6.3 Future works

A straightforward extension of the thesis would be the extension and improvement of
the proposed attacks. First, it is possible to relax the background knowledge required by
the attacks. Our attacks require time series without missing values. It would be interesting
to cope with missing or approximated values within a time series. The SubSum attack
requires all the series present in the aggregate. An interesting future work would be to
cope with missing series. Our experiments provide insights into aggregate vulnerability
while attacking specific populations. We perform the STATS attack using the Rocket
classifier and compatible domain adaptation algorithms. We note the existence of deep
classification models and domain adaptation methods. Such methods require extensive
training time and computational power. It would be interesting to test other classifiers
and domain adaptation algorithms trying to improve the attack’s results. Another inter-
esting future work would be the implementation of MIA as a service for publishers to
estimate the vulnerability of their publications. Relaxing the attack prerequisites to con-
sider an attacker crossing multiple consumption datasets (e.g., gas, water) and electricity
consumption datasets is possible.

We focus on attacking Irish, Londoner, and French electricity consumption datasets.
However, the attack results depend on the observed populations. It is necessary to study
the vulnerability of each population individually. Our works focus on electricity consump-
tion time series, but there is no doubt our algorithms can be applied to any time series.
Our work may be used in any multivariate publications. Timestamp represents a new vari-
able. In that case, however, the lack of correlation between the variables might require
adapting the attack.

It is possible to work on new attacks by studying the aggregate vulnerability against
new adversaries. For instance, we do not study attribute inference attacks due to technical
limitations evoked in Section 2.1. We show that individual electricity consumption time
series carries personal information about the household or the company activity. We do
not study the impact of the aggregate on attribute inference: How many (and which)
series must be aggregated to mask individual attributes? Without proving it, the ability
to identify personal information is related to the ability to perform a membership attack.
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If we cannot identify the individual, we cannot infer any attribute of this individual. Thus,
we cannot tell whether a sensitive attribute (for example, the proportion of individuals
with a particular religion) can be inferred from an aggregate.

This thesis does not study any defense mechanism besides threshold aggregation.
We note that the individual or the publisher can implement several protection meth-
ods [Kal+10; RN10; Kal+11; ÁC11; KBB15; Aca+18] in addition to the aggregates. It
would be interesting to challenge our attacks against other protection methods. Finally, we
note the emergence of methods generating credible fake electricity consumption datasets
(e.g., GAN) [YJS19; Fri+19; SOT22]. It would be interesting to evaluate the privacy of
such methods.
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Appendix A

GLOSSARY

Accuracy Classifier metric measuring the proportion of correct classifications.

Aggregate A sum or an average of multiple time series.

Attacker Malicious actor trying to infer private information.

Client An individual (household) or any entity (i.e., a com- pany) consuming elec-
tricity and equipped with a meter.

Confusion matrix the proportion of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) examples classified by the model.

Constraint A logical relation between variables.

Consumption A consumption or power measurement (in Watt -W - or Watt per hour
-Wh-).

DSO Distribution System Operator. DSOs are in charge of the electricity distribution
in France.

Fscore Metric evaluating the model capacity to perform correct positive classifica-
tions.

Ground truth Labeled series with true information.

Linky The Enedis smart meter.

Meter A device measuring the electricity consumed by a household and reporting it
to a central server.

Measurement A point measured by the meter at a timestamp. The measurements
are at a 1/2h step and to the W. All measurements are between [0; 36000]W.

Membership Inference Attack (MIA) Privacy attack aiming to find is a series is
present in a publication.

NILM Non Intrusive Load Monitoring. A field aimed at the extraction of informa-
tion from electricity consumption time series.
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Oddness score Score indicating how far a series is from the mean series.

Overfit A model is said to overfit when it remembers the training values instead of
learning a trend.

Perimeter Set of meters within a dataset (or a subset). A perimeter is represented
with the following tuple : (Geographical area; profiles) (example: (NAT; RES1)
for the perimeter containing all the RES1 meters in the National geographical
perimeter)

Profile Contract type associated with a meter and a way of consuming electricity.

RES Residential meters.

RES1 BASE meters (same price every time) ≤ 6 kVA

RES2 HPHC meters (cheaper during certain hours, here undefined)

RES11 BASE meters (same price every time) > 6 kVA

RESAutre mixing of all other RES profiles.

RES* RES1 ∪ RES2 ∪ RES11 ∪ RESAutre

PRO Professional meters.

PRO1 BASE meters (same price every time)

PRO2 HPHC meters (cheaper during certain, here undefined, hours)

PRO5 Public lighting.

PROAutre Mixing of all other PRO profiles.

PRO* PRO1 ∪ PRO2 ∪ PRO5 ∪ PROAutre

RES*+PRO* RES* ∪ PRO*

Geographical area A geographical area. Either the whole metropolitan France
or an administrative department.

NAT Contains all of metropolitan France.

13 The Mediterranean department "Bouche-du-Rhône" (13).

29 The oceanic department "Finistère" (29).

51 The continental department "Marne" (51).

75 The alpine department of "Haute-Savoie" (74).

75 The department "Paris" (75).
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Precision The precision as the proportion of correct positive classifications.

Pseudonymization Protection method consisting of removing any personal infor-
mation from the data.

Publisher Entity publishing aggregates.

Recall The proportion of positive labels correctly identified by the model.

Solution Set of individual matching a set of constraints.

Threshold Minimum number of series to put in the aggregate (legal).

Time Series a sequence of timestamped measurements.

Unique A series is unique if it is the only one with a set of values.

Uniqueness Proportion of unique series.

Variable unknown value within a definition domain.

Shadow model MIA methodology consisting of training aan attack model on fake
publications.
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Appendix B

ENEDIS DATA STATISTICAL STUDY: ALL

FIGURES

All of the individual figures generated for the study in Section 3.4, per perimeter and
analysis without comments.
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Figure B.1 – Number of POM per 1/2h
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Figure B.2 – Average and median per 1/2h
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Figure B.3 – Standard deviation per 1/2h
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Figure B.4 – Average and median by month
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Figure B.5 – Q25 by month
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Figure B.6 – Q95 and Q99 by month
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Figure B.7 – Standard deviation by month
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Figure B.8 – Average and median per day
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Figure B.9 – Standard deviation per days
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Figure B.10 – Average and median per hours
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Figure B.11 – Quartile 25 per hours
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Figure B.12 – Quartile 95 and 99 per hours
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Figure B.13 – Standard deviation per hours
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Figure B.14 – Average and median per 1/2h at regional levels
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Figure B.15 – Standard deviation per 1/2h at regional levels
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Figure B.16 – Average and median per month at regional levels
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Figure B.17 – Standard deviation per month at regional levels
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Figure B.18 – Average and median per week days at regional levels
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Figure B.19 – Standard deviation per week days at regional levels
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Figure B.20 – Average and median per hours at regional levels
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Figure B.21 – Standard deviation per hours at regional levels







Titre : Analyse des Risques Liés à la Publication de Données Temporelles : Application aux
Données de Consommation Électriques.

Mot clés : Vie privée, Données ouvertes, Consommation électriques

Résumé : Enedis est le principal gestionnaire
de distribution d’électricité en France. Les dis-
tributeurs sont légalement obligé de mesu-
rer et de publier la consommation électrique
française. Les mesures contiennent de nom-
breuses informations personnelles et sen-
sibles. De fait, la publication est anonymisée
à l’aide d’agrégats par seuils. Ce travail étu-
die la vulnérabilité liée à la publication des
mesures de consommation électrique. Notre
première contribution est une étude statis-
tique à grande échelle des mesures d’électri-
cité française. En particulier, nous réalisons
une étude d’unicité montrant que les séries
non anonymisées sont très facilement identi-
fiables. Notre deuxième contribution est une

attaque par inférence d’appartenance qui per-
met de trouver toutes les séries formant un
agrégat. Cette attaque est basée sur une va-
riante du problème de la somme des sous-
ensembles. Notre troisième contribution est
une attaque par inférence d’appartenance
modélisée comme un problème de classifica-
tion de séries temporelles. Cette attaque né-
cessite peu de connaissances préalables et
permet de trouver une cible spécifique dans
un agrégat. Nous réalisons des expériences
approfondies sur les attaques. Les résultats
permettent de mieux choisir le seuil de pu-
blication. Enfin, nous proposons une méthode
pour estimer la vulnérabilité des séries.

Title: Privacy Risk Analysis of Large-scale Temporal Data: Application to Electricity Consump-
tion Data

Keywords: Privacy, Open data, Electricity consumption data

Abstract: The leading French electricity dis-
tribution manager, Enedis, legally must col-
lect and publish electricity consumption time
series. Series from households and compa-
nies are highly privacy sensitive. Therefore,
the publication is anonymized using thresh-
old aggregates. This work studies the vulnera-
bility of open-sourcing electricity consumption
time series. Our first contribution performs a
large-scale statistical study of French electric-
ity measurements. In particular, we perform a
unique study showing un-anonymized series’
high vulnerability against identification attacks.

Our second contribution is a membership in-
ference attack that finds every series forming
an aggregate. This attack is based on a variant
of the subset-sum problem. Our third contri-
bution is a membership inference attack mod-
elized as a time series classification problem.
This attack requires little prior knowledge and
can find a specific target in an aggregate. We
perform in-depth experiments on the attacks.
The results offer insight into the choice of rel-
evant threshold. Finally, we propose a metric
estimate the potential vulnerability of individ-
ual series.
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