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Paramétrisation de la convection atmosphérique dans les modèles
numériques de climat – Pratiques et enjeux épistémologiques

Résumé : Historiquement, les modèles de circulation générale (MCG) ont joué un rôle es-
sentiel dans notre capacité à comprendre et à prédire les changements climatiques, et donc,
à fournir des informations scientifiques pertinentes aux décideurs politiques. Pourtant, depuis
quelques années, des critiques ont été formulées à l’encontre des MCG et du paradigme sur
lequel ils reposent. En particulier, certains scientifiques ont remis en cause une composante
fondamentale de tout MCG, les paramétrisations de la convection, censées représenter l’effet
moyen de la convection atmosphérique à l’échelle de la grille du modèle. L’objectif de ma thèse
est de mener une analyse hybride des paramétrisations de la convection, à l’interface entre les
sciences de l’atmosphère et la philosophie des sciences, afin d’étudier les défis épistémologiques
et pratiques que leur utilisation soulève dans les modèles de climat.

Je commence par une réflexion générale sur ce que signifie comprendre la convection at-
mosphérique et sur le rôle joué par l’identification de certaines structures cohérentes – que
j’appelle “objets” – dans cette compréhension. Les paramétrisations de la convection re-
posent elles-mêmes sur certains objets et elles nous donnent ainsi un cadre pour traduire notre
compréhension des phénomènes atmosphériques dans les modèles climatiques. Je décris ce cadre
et j’explore ses limites. J’examine ensuite les paramètres contenus dans les paramétrisations.
La valeur de la plupart de ces paramètres est peu contrainte par les observations, et doit donc
être ajustée. Ce “tuning” des modèles climatiques comporte des similarités avec ce que l’on
appelle “calibration” dans d’autres domaines scientifiques. Pourtant, je montre que le tuning
présente des spécificités qui en font une activité unique, dont le cadre épistémologique reste
à définir. Cette réflexion est illustrée par un cas d’étude, où je règle les paramètres du MCG
atmosphérique LMDZ suite à l’ajout d’une nouvelle paramétrisation. A travers cet exemple
concret, je donne certains critères pour définir comment évaluer les progrès apportés par une
nouvelle paramétrisation dans un MCG, un exercice qui présente des difficultés conceptuelles et
méthodologiques importantes. Enfin, je me penche sur l’organisation collective de la recherche
climatique actuelle autour des MCG, en examinant l’une de ses pierres angulaires, le projet
d’intercomparaison des modèles couplés (CMIP). Grâce à CMIP, tous les 5 ou 6 ans, la plupart
des MCG utilisés dans le monde sont comparés dans des conditions similaires. Un des effets
de CMIP est d’avoir permis davantage de dialogue entre les laboratoires de modélisation du
climat. En retour, j’explique cependant que CMIP a créé un fossé entre les développeurs de
modèle et leurs utilisateurs, et a concentré l’effort de recherche sur les analyses de modèles au
détriment du développement de paramétrisations.
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Parameterization of atmospheric convection in numerical climate
models – Practices and epistemological challenges

Summary: Historically, general circulation models (GCMs) have played a critical role in our
ability to understand and predict climate change, and thus, to provide policy-relevant scientific
information to decision makers. However, in recent years, criticisms have been raised against
GCMs and the paradigm on which they are based. In particular, some scientists have ques-
tioned a fundamental component of any GCM, convection parameterizations, which represent
the average effect of atmospheric convection at the model grid scale. The objective of my
thesis is to conduct a hybrid analysis of convection parameterizations, at the interface between
atmospheric sciences and philosophy of science, in order to investigate the epistemological and
practical challenges their use raises in climate models.

I begin with a general reflection on what it means to understand atmospheric convection and
on the role played by the identification of certain coherent structures – which I call “objects” – in
this understanding. Convection parameterizations are themselves based on certain objects and
thus give us a framework to translate our understanding of atmospheric phenomena into climate
models. I describe this framework and explore its limitations. I then look at the parameters
contained in parameterizations. The value of most of these parameters is poorly constrained
by observations, so they must be tuned. The “tuning” of climate models bears similarities with
what is called “calibration” in other scientific fields. However, I show that tuning has speci-
ficities that make it a unique activity, whose epistemological framework remains to be defined.
This reflection is illustrated with a case study, where I tune the parameters of the atmospheric
GCM LMDZ following the addition of a new parameterization. Through this concrete example,
I give criteria to define how to evaluate the progress brought by a new parameterization in a
GCM, an exercise that poses important conceptual and methodological difficulties. Finally, I
analyze the collective organization of today’s climate research around GCMs by examining one
of its cornerstones, the Coupled Model Intercomparison Project (CMIP). Thanks to CMIP, ev-
ery 5-6 years, most of the GCMs used in the world are compared under similar conditions. One
of the effects of CMIP is to have enabled more dialogue between climate modeling laboratories.
In turn, however, I argue that CMIP has created a gap between model developers and model
users, and has focused research effort on model analyses at the expense of parameterization
development.
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amitié qui s’est construite peu à peu et s’est surtout renforcée lorsque nous étions dans la “coloc
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8



Chapter 1

Introduction

Contents

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Atmospheric convection and its role for climate . . . . . . . . . . . 11

1.2.1 Physics of convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Importance of convection in the climate system . . . . . . . . . . . . . 13

1.3 Scientific tools to study atmospheric convection . . . . . . . . . . . 16

1.3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 The parameterization debate . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 The need for epistemology in climate modeling . . . . . . . . . . . . . 20

1.4.2 Convection parameterizations being questioned . . . . . . . . . . . . . 22

1.5 The perspective of philosophers of science . . . . . . . . . . . . . . 24

1.5.1 Introduction to the philosophy of climate science . . . . . . . . . . . . 24

1.5.2 The (few) epistemological studies on parameterizations . . . . . . . . 26
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1.1 Motivations

We are conducting the most important and dangerous scientific experiment ever: changing the
climate of our planet. The concentration of carbon dioxide (CO2) in the atmosphere has been
increasing steadily over the past century and is now at a level never reached in the last million
years. This is likely not only to increase the Earth’s surface temperature, but also change
the intensity and distribution of precipitation, raise sea levels, cause glaciers to shrink, thaw
permafrost, etc. In turn, these changes will affect all ecological systems and all forms of life,
including our human societies. As we suffer their consequences, we will learn the results of this
large-scale scientific experiment in which we are, whether we like it or not, all involved.

For obvious reasons, rather than waiting patiently for disasters to come, we prefer to study
and understand the response of climate to an increase of CO2 and eventually, to predict what
lies ahead. As we do not have twins of the Earth on which we could carry out experiments
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CHAPTER 1. INTRODUCTION

without undergoing the consequences, we use instead digital twins, i.e. numerical models. Since
the advent of the computer age in the 60s, different types of numerical models have been used to
simulate our climate system or some of its components. Historically, these models have played
a key role in our progressive understanding of the climate system and its response to an increase
in atmospheric CO2 concentration. While useful, they have many uncertainties and should not
be mistaken for the truth. Distinguishing legitimate uses from misuses of climate models is
a challenging task and there has been growing debates among philosophers of science about
the conceptual, methodological and epistemological issues associated with climate models, with
questions such as: what is our confidence in these models based on? In which sense are they
validated by observational data? How to characterize their uncertainties? Are climate models
“fit-for-purpose”, i.e. good enough for the use we make of them?

When I arrived at the Laboratoire de Météorologie Dynamique (LMD) in September 2018
to begin a Ph.D. thesis at the interface between climate science and philosophy, I had these
questions in mind. I wanted to firmly establish the epistemological foundations of models used
in climate science in order to clarify their scope and purpose. Back then, I was concerned that
my interest in philosophical questions about climate models and their role would not be shared,
or even understood, by the scientists of my lab. What is the point of adding a philosophical
layer on top of climate science? Isn’t there enough real scientific work to be done in the field?
Why should a student like me waste his time with philosophical reflections that do not really
advance science?

I quickly realized that these fears were unfounded. On the contrary, the scientists of my lab
had asked themselves these questions before me. My first job was thus to listen what they had
to say, in order to understand all these reflections which were rarely published in the scientific
literature, but sparked debate at every coffee break, team meeting or conference. While there
is a consensus among climate modelers on the reality of anthropogenic climate change, there is
significant disagreement on how this change should be predicted and studied. During my Ph.D.,
I was confronted with various conceptions of models and their role, and with many discussions
about the meaning of “doing good science” with models. These discussions were sometimes
tense and had immediate consequences on the methods used by the scientists around me in
their daily research.

A recurring topic concerned the standard way of representing atmospheric convection in
climate models through “convection parameterizations”. The latter rely on various assump-
tions to account for the average effect of phenomena at the origin of clouds and precipitation in
climate models without resolving them at the model grid scale. On the one hand, there are the
opponents of convection parameterizations, who consider that the climate modeling community
has wasted enough time with parameterizations and propose alternatives to replace them. On
the other hand, there are their defenders, who are convinced that parameterizations are still
the right way to go and that efforts should be focused on improving them. The debate about
parameterizations is partly technical and concerns in particular the quality of the results that
parameterizations and their alternatives produce in climate models. However, it is also partly
epistemological: the foundations of parameterizations as well as their use in climate models are
indeed often questioned and described as not entirely justified.

Epistemological questions about convection parameterizations are the central topic of this
Ph.D. thesis. My approach will be at the interface between science and philosophy; I had the

10



1.2. ATMOSPHERIC CONVECTION AND ITS ROLE FOR CLIMATE

chance, during my Ph.D. thesis, to participate in several scientific works that gave me a close
look at various facets of the study of atmospheric convection. These different works have nour-
ished my reflection and are used throughout my thesis as examples, case studies or pretexts
for epistemological discussions on parameterizations and their foundations. I have thus built
my thesis on three pillars: first, a critical study of the literature in philosophy of science and
climate science on issues related to parameterizations. Second, the many informal discussions
I had with the scientists I worked with during my thesis. Third, the various scientific works
I conducted that allowed me to study in practice the methodological difficulties posed by the
study and modeling of atmospheric convection.

In the rest of this introductory chapter, I provide the reader with some key elements to
understand the content and relevance of the work presented in this manuscript. I start with
a general introduction on atmospheric convection and its role for climate (Section 1.2), and
present the different tools used to study atmospheric convection, in particular observations and
numerical simulations (Section 1.3). I then justify the need for epistemology in climate modeling
and introduce the parameterization debate (Section 1.4), before giving a brief overview of the
relevant literature in philosophy of climate science (Section 1.5). Finally, I present the general
organization of the rest of the manuscript (Section 1.6).

1.2 Atmospheric convection and its role for climate

1.2.1 Physics of convection

Convection refers to the transport of heat by the macroscopic movement of a fluid. It is one
of the three modes of heat exchange between two physical systems, along with conduction and
radiation. The manifestations of convection in our daily lives are countless: every time we see
smoke rising from a chimney, or observe the movement of liquid water in a boiling pot, we are
witnessing a convective phenomenon. What is less known, though, is that convection is also at
the origin of most clouds, from small fair weather cumuli to massive cumulonimbus that darken
the sky.

Atmospheric convection is the dominant form of vertical energy transport in the atmosphere.
It can be driven solely by buoyancy (buoyancy-driven or free convection) or by a combination
of buoyancy and mechanical force (forced convection). Buoyancy, according to Archimedes’
principle, comes from a density difference between an air parcel and its environment. When
a fluid is lighter than the fluid around it, it rises; when it is heavier, it sinks. At constant
pressure, due to ideal gas law, the density of an air parcel is inversely proportional to its tem-
perature. Heating close to the ground – for instance, due to the absorption of solar radiation
by the ground, or to the presence of a warm sea surface temperature – might therefore trigger
convection over the lowest layers. Forced convection happens when an obstacle – for instance,
a mountain – forces air masses to rise. In this case, the horizontal kinetic energy of the flow
is converted into vertical kinetic energy. A cold front – that is, the leading edge of a relatively
cold air mass – might also behave in some situations as a material obstacle and help the lifting
of surrounding air masses.

When an air parcel rises to lower pressure levels, its volume expands. Since the conductiv-
ity of the air is low, heat exchange between the rising air parcel and is environment is usually
neglected, and this expansion is described as adiabatic. Nevertheless, the decrease in pressure
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Figure 1.1: Different types of cumulus clouds: a) Cumulus humilis, b) Cumulus mediocris, c)
Cumulus congestus, d) Cumulonimbus. Pictures taken from the official website of the World
Meteoroloical Organization’s (WMO) International Cloud Atlas (https://cloudatlas.wmo
.int/en/home.html).

causes a decrease in temperature and the air becomes colder and colder as it goes to higher
altitudes. When the air is dry, the rate of temperature decrease of a rising air parcel is generally
stronger than that of the environment: after a few hundreds of meters, the rising parcel be-
comes colder, thus denser than its environment. It explains why dry convection stays generally
confined over the lowest layers of the atmosphere. On the contrary, when the air is moist, i.e.
when it contains water vapor, it may become saturated at a certain altitude. Indeed, according
to the Clausius-Clapeyron relation, the amount of water vapor that a given parcel of air can
contain depends on its temperature: the warmer the air, the more water vapor it can have. As
an air parcel rises in the sky, it gets progressively colder and its temperature may thus reach
its saturation temperature – the temperature for which the first liquid droplets appear. While
water vapor is invisible, these small water droplets floating in the sky reflect the sunlight and
are thus visible: they form what is called a cloud.

The condensation of water vapor releases some heat. This warms the saturated air parcel
relative to its environment and makes it rise further. The apparition of liquid water thus fu-
els convection and helps it to grow. The altitude at which a rising air parcel stops depends
mainly on its initial temperature and water vapor mixing ratio, but also on a process called
entrainment – namely how much the parcel mixes with the surrounding air as it rises. In
fact, a rising air parcel entrains some environmental air. If this entrained air is dry, it dilutes
the water vapor the parcel contains, thus reduces the available latent heat to feed convection.
Isolated air parcels in a dry environment generally give rise to fair weather cumulus clouds
such as cumulus humilis or cumulus mediocris (see Fig. 1.1 a and b), which stays confined in
the first two kilometers of the atmosphere. When the air is moister, air parcels may reach the
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mid-levels of the atmosphere, up to 6 km and give birth to congestus (Fig. 1.1 c), or through
the whole troposphere, up to 12 km or more, and form cumulonimbus (Fig. 1.1 d). At such
altitudes, temperatures become negative and some of the parcel liquid droplets turn into ice
crystals, releasing additional heat that sustains the ascent of the parcel.

Clouds are filled with tons of water droplets or ice crystals. Nevertheless, they float in
the sky due to the very small size of the liquid droplets or ice crystals that compose them.
Typically, the radius of water droplet or ice crystals ranges from a few microns (10−6 m) to a
few tens of microns. The fall speed of any object is related to its mass and surface area, as can
be seen by comparing the falling speed of the same mass of feathers and lead. The mass of a
cloud droplet scales with its volume, thus the cube of its radius, whereas its surface scales with
the square of its radius. The smaller the radius of a cloud droplet, the larger its surface/volume
ratio, and thus the slower its fall. Typically, the velocity of cloud droplets which are about
10 microns in radius is only 1 cm/s, which means that it takes them more than a day to go
through the atmosphere before reaching the surface!

In practice, droplets do not fall at all, but on the contrary rise. Such small fall velocities
are indeed largely offset by the rising air motions – so-called, the updrafts – which support
the clouds. Nevertheless, when the density of cloud droplets becomes large enough, various
processes of collision and coalescence make them merge and form larger droplets. Typically,
a rain drop of 2 mm contains the water equivalent to several millions of cloud droplets. The
largest droplets may then fall at a sufficient speed to reach the ground without being fully
evaporated. Depending on the conditions in which they were formed, these drops affect us
under the form of rain or solid crystals such as snow or hail.

1.2.2 Importance of convection in the climate system

Clouds and climate

Why do we care – or should we care – about clouds? Not only because they make us stay at
home when it rains, but also because by absorbing and reflecting electromagnetic radiation,
clouds have a decisive effect on the temperatures of our planet.

Cloud radiative effects To explain the role of clouds on the climate, we must go back to
what determines the temperatures at the surface of the Earth: the radiative budget, i.e. the
balance between the energy coming from the Sun and the one re-emitted by our planet to
space. Incoming solar radiation is mostly in the ultraviolet, visible and near-infrared part of
the energy spectrum, so-called “shortwave radiation” (SW). As illustrated in Fig. 1.2, clouds
reflect part of this SW radiation back to space. They thereby deprive the Earth of a fraction of
solar energy, which lowers its temperature. This cooling due to the reflection of SW radiation is
the first effect of clouds on the climate. To quantify this effect, one has to calculate the amount
of heat that would have been absorbed by the Earth in the absence of clouds. It is not an
easy task because the surface of our planet also reflects part of solar radiation. The amount of
energy returned, called the “albedo” depends largely on the properties of the surface receiving
sunlight. The oceans, darker than the ice, have for instance a lower albedo than the ice sheets.
To determine the total radiative effect of clouds, it is necessary to take into account both the
characteristics of clouds and their location: for example, a cloud located over the oceans will
tend to deprive the Earth of more energy than a cloud located over the poles.
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Figure 1.2: From Stevens and Schwartz (2012). Earth’s mean top-of-atmosphere (TOA) and
surface energy budget. In yellow: incoming shortwave radiation and how it is reflected and
absorbed by clouds, the atmosphere and the Earth’s surface. In red: longwave radiation emitted
by the Earth’s surface and atmosphere. The green and red arrows near the surface correspond
respectively to the surface sensible and latent heat fluxes. The values given for the different
fluxes refer to the likely range subjectively determined by Stevens and Schwartz (2012) based
on a review of the literature and global simulations.

In total, about 30% of the solar energy is reflected back to space. The remaining energy is
absorbed by the Earth’s surface or atmosphere. Any heated body dissipates part of its ther-
mal energy by emitting radiation whose wavelength depends on its temperature. The Earth
is no exception: in its temperature range, it is mostly infrared radiation that is emitted – we
will talk of “longwave radiation” (LW). Depending on their thickness and composition, clouds
absorb a certain percentage of this radiation. They then re-emit it in all directions and part
of it returns to the Earth (see Fig. 1.2). Clouds thus prevent a certain fraction of the infrared
radiation emitted by the Earth from escaping into space. This is the second effect of clouds
on the climate. Contrary to the first one, this second effect leads to a warming of the surface
temperatures of our planet.

There are therefore two competing effects of clouds on the climate: on the one hand, they
cool the Earth’s surface by reflecting solar radiation, and on the other, they warm it by trapping
infrared radiation. The net impact of these cloud radiative effects (CRE) depends on many
properties, including the location on Earth where they are formed, their height, their altitude,
their microphysical properties, etc. In the current climate, satellite data show that the global
and annual mean SW CRE is approximately -50 W/m2 and the mean LW CRE, about 30
W/m2 (Boucher et al., 2013). This results in a net global mean CRE of about -20 W/m2, thus
a strong net cooling effect of clouds on the current climate.

Cloud feedback An important question is whether global warming will change this net CRE.
Indeed, the distribution and type of clouds are expected to change with global warming, which
could lead to an increase or decrease in net CRE. For instance, if the net cooling effect of
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clouds is enhanced, this will compensate part of the global warming induced by an increase
of CO2 in the atmosphere – what is called a negative cloud feedback. On the contrary, if
the cooling effect of clouds is weakened, the temperature of the Earth will rise even more,
resulting in a positive cloud feedback. Assessing the magnitude of cloud feedback is the focus
on many ongoing scientific studies. According to the last report of the Intergovernmental
Panel on Climate Change (IPCC), the net cloud feedback is expected to be slightly positive,
around 0.6 W m−2 ◦C−1 (Stocker et al., 2013). However, there are still many unknowns about
the response of clouds to rising global temperature, thus on the amplitude of cloud feedback
(S. Sherwood et al., 2020). Much of the uncertainty about future climate change is hence
related to clouds.

Precipitation

Precipitation is another important effect of convection on the climate. The average residence
time of water in the atmosphere is about 10 days (Ent & Tuinenburg, 2017), and at any time,
part of the water present in the atmosphere returns to the surface in the form of precipitation.
The location and intensity of precipitation determines how fresh water is distributed over land,
and in particular the distribution of rivers, lakes and watersheds. Like many other species, we
cannot live without fresh water, and humanity has therefore developed mainly where there are
water resources. Precipitation also has a direct impact on soil moisture and on the plant species
that grow in it, with once again consequences on our human societies. Too little precipitation
can lead to droughts that make the soil unusable for farming. On the contrary, extreme pre-
cipitation is associated with natural disasters such as heavy storms or floods. Predicting the
consequences of global warming on the distribution and intensity of precipitation around the
Earth is therefore crucial for assessing the impact of climate change on humans.

Various modeling studies have shown that the Earth’s water cycle will intensify under global
warming, leading to an increase of globally-averaged precipitation of about 1 to 3 % ◦C−1

(O’Gorman & Schneider, 2009; Richter & Xie, 2008; Trenberth, 2011). Despite considerable
regional variability, there is an overall tendency for a “wet-get-wetter” and “dry-get-drier” re-
sponse over oceans. It can be understood because atmospheric circulations tend to import
moisture from dry regions to moist regions. As these circulations are not expected to change
significantly in a warmer climate, but the atmosphere is expected to be moister on average
(I. M. Held & Soden, 2006; Mitchell, Wilson, & Cunnington, 1987), the wet regions will tend
to import more moisture from dry regions. This result that have been confirmed by various
numerical simulations (Chou, Neelin, Chen, & Tu, 2009; Muller, O’Gorman, & Back, 2011)
and analyses of 20th century precipitation trends (Allan & Soden, 2007; Zhang et al., 2007).
Local changes in precipitation are however more uncertain as they might depend on regional
circulation shifts induced by global warming (Joshi, Gregory, Webb, Sexton, & Johns, 2008;
Xie et al., 2010). There are also major uncertainties about the precipitation response over land
due to the difficulties in predicting accurately moisture–precipitation feedbacks (Hohenegger,
Brockhaus, Bretherton, & Schär, 2009).

The importance of clouds and their uncertain response to climate change motivates many
scientific studies about atmospheric convection. We give an overview of the tools that are used
in these studies in the next section.

15



CHAPTER 1. INTRODUCTION

1.3 Scientific tools to study atmospheric convection

1.3.1 Observations

To study atmospheric convection, the most natural method is probably to observe what happens
in nature, what we will call “the natural phenomena”. Three main sources of observational
data can be used to study atmospheric convection (Guillemot, 2009).

Observing networks

Observing networks consist mainly of weather stations over lands and buoys over oceans. Each
station provides continuous data at one precise location. Twice a day, radiosondes are launched
in some of these stations in order to measure profiles of pressure, wind, temperature and
humidity in the atmosphere. The data collected are used to initialize weather forecast models,
but can also help to better understand atmospheric convection.

Field campaigns

A field campaign is a period of intensive measurements over a targeted region, usually focused
on one or a few specific phenomena. Over the past 50 years, many field campaigns have been
organized to understand atmospheric convection. As part of my Ph.D., I had the opportunity to
participate in the field campaign EUREC4A (Elucidating the role of clouds-circulation coupling
in climate) which took place in January and February 2020 in the trade-wind environment east
of Barbados (Bony et al., 2017, see also appendix B and C). A field campaign is interesting
in that it allows to cross the measurements of different instruments offering complementary
views of a given phenomenon. Panel a in Fig. 1.3 shows for instance the many instruments
that have been used during EUREC4A, including four aircraft, four research vessels, a scanning
precipitation radar, several drones, etc. More than two thousand atmospheric profiles have also
been measured during the field campaign using radiosondes and dropsondes.

Satellite observations

While the observations of field campaigns give precise information, localized in space and time,
satellites ensure a constant monitoring of the atmosphere all around the globe. Polar satellites
evolves at typically 700 to 800 km above the ground and circle the entire surface of the Earth
several times a day. Geostationary satellites evolve at about 36000 km from the Earth and, as
their name suggest, remain above a given location on our planet, which allows for instance to
follow the evolution of cloud fields in time. Equipped with various passive and active sensors,
these two types of satellites give precious information about many atmospheric properties rele-
vant for the study of convection such as microphysical and macrophysical properties of clouds,
winds, atmospheric water vapor content, etc.

1.3.2 Numerical simulations

As data from observations are often incomplete, atmospheric scientists use numerical models
to complement them. These models are based on fundamental equations of fluid dynamics,
discretized over a given grid at a given resolution. By definition, they will not be able to ade-
quately simulate phenomena that occur at a scale smaller than the model grid, nor phenomena
that cannot be directly described by the equation of fluid dynamics – radiative processes for
instance. To take their average effect at the scale of the grid into account, scientists include
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Figure 1.3: Scientific tools to study atmospheric convection a) Various platforms used to
collect observations during the EUREC4A field campaign (EUREC4A official website, 2021)
b) Instantaneous snapshots of clouds and near surface temperature in a CRM simulation
(Muller & Held, 2012) c) Representation of horizontal and vertical grids of a GCM. Colors rep-
resent grid-box temperatures, and arrows indicate wind direction (credit: L. Fairhead, ISPL).

parameterizations. Depending on the resolution of the model, more or less phenomena need to
be parameterized.

Large-eddy simulations

The typical resolution of large-eddy simulations (LES) ranges from a few tens of meters to a
few hundreds of meters. At such resolution, it is necessary to parameterize 1) the turbulence, in
order to represent the many small eddies that mix the air, but which are too small to be resolved
at the scale of the model grid, 2) the microphysics, i.e. the different processes associated with
cloud particles and precipitation (commonly referred to as “hydrometeors”), and 3) radiative
transfer in the atmosphere. Conversely, at the LES grid scale, convective updrafts are relatively
well described and do not need to be parameterized. LES are able to represent explicitly – that
is, without using parameterization – the life cycle of shallow cumulus such as cumulus humilis,
mediocris, stratocumulus, or deeper convective clouds such as congestus or cumulonimbus. The
relatively fine resolution of LES nevertheless comes at a price: due to their computational cost,
LES simulations can generally only be performed on domains of limited size, from about 5 km
to 100 km, and for relatively short periods of time, a few days at most.
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Cloud-resolving models

Various names have been given to models with a kilometric resolution: “cumulus ensemble
models” (Sui, Lau, Tao, & Simpson, 1994; K.-M. Xu, Arakawa, & Krueger, 1992), “cloud system
resolving models” (V. T. Phillips, Donner, & Garner, 2007) or, more simply, “cloud-resolving
models (CRMs)” (Gao, Cui, Zhou, & Li, 2005; McCaul Jr, Goodman, LaCasse, & Cecil, 2009).
We choose to use this last name here. CRMs and LES are based on similar equations. The
main difference is that the resolution is coarser in CRMs than in LES, which allows them to
be run over larger domains and for longer duration. Recently, some global simulations using
CRMs have even been conducted for several weeks (Satoh et al., 2019; Stevens, Acquistapace,
et al., 2020). Despite their coarse resolution compared to LES, CRMs are able to resolve many
important features of convection (Prein et al., 2015; Weisman, Skamarock, & Klemp, 1997).
However, shallow clouds are not simulated with the same accuracy as in LES. This led some
modeling groups – but not all – to adopt subgrid-scale parameterizations of shallow convective
clouds, in addition to the parameterizations of turbulence, microphysics and radiation also
present in LES (Bogenschutz & Krueger, 2013).

General circulation models

Historically, atmospheric general circulation models (GCMs) have been used both for weather
forecasting and for climate projections. In the latter case, atmospheric GCMs need to be cou-
pled to an oceanic GCM and various other components of the climate system, such as land
and sea-ice. The acronym GCM can then be used to mean Global Climate Model, or Global
Coupled Model. The term Earth System Models (ESMs) is generally preferred when a Global
Climate Model takes into account interactions with the biosphere, and in particular the carbon
cycle. In the following, when we speak of GCMs, we implicit mean atmospheric GCMs, whether
or not they are integrated into a Global Climate Model or an Earth System Model.

GCMs have a resolution much coarser than LES or CRMs, typically from 30-300km. At
such resolution, an important difference with LES and CRMs is that it is possible to simplify
the equations of fluid dynamics using the hydrostatic approximation, which assumes a balance
between the gravity force and the pressure force in the vertical direction, and neglects the ver-
tical acceleration due to buoyancy fluctuations. The resulting equations, so-called “primitive
equations”, are discretized over the grid of the model. They form the “dynamics” of the GCM,
as opposed to the “physics” which contains all the parameterizations. At each time step, typi-
cally every 10 minutes, the state variables of the model – that is the temperature, the specific
humidity, the pressure, and the wind vectors – are calculated by the dynamics at all points of
the 3D grid of the model.

Due to the coarse grid used in GCMs, many phenomena cannot be adequately represented
at the model grid scale and have to be parameterized, i.e. their average effect on the state
variables of the model must be calculated. In particular, contrary to LES and CRMs, GCM
do not explicitly resolve clouds and convection and use parameterizations to take their effect
into account. Over the past 50 years, different convection parameterizations for use in GCMs
have been proposed (e.g. Arakawa & Schubert, 1974; DelGenio & Yao, 1993; K. A. Emanuel
& Živković-Rothman, 1999). Due to the importance of atmospheric convection for the climate
system, these convection parameterizations are a key element of any GCM. Consequently, most
of the differences between GCM results come from differences in their convection parameteri-
zations (Rio, Del Genio, & Hourdin, 2019).
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Assessing convection parameterizations using SCM case studies To evaluate convec-
tion parameterizations, a paradigm has progressively emerged using so-called Single-Column
Models (SCMs) (Browning, 1994; D. Randall, Khairoutdinov, Arakawa, & Grabowski, 2003).
As its name suggests, a SCM can be seen as a single column of a GCM, taken in isolation
from the neighboring columns. A SCM contains the same parameterizations as the full GCM,
but gets rid of its large-scale dynamics. Its main advantage is that it allows to test parame-
terizations in a simplified framework. This comparison can be done at two levels. First, it is
possible to test a SCM directly with observational data from a field campaign. This testing
involves three different steps: 1) Initializing the SCM with observations. 2) Forcing the SCM
with observations, that is to say applying at each time step a correction to make it respect some
large-scale forcings derived from observations. 3) Comparing the results produced by the SCM
in response to this observed forcing with other observations collected in the field, observations
of cloudiness for instance.

Figure 1.4: Diagram explaing how CRM or LES can be used to test a GCM through the use of
its SCM version. SCM and CRM/LES results can be directly compared because both models
are initialized and forced with the same boundary conditions.

Yet, in practice, it is difficult to extract the relevant information from observations to assess
SCM results (step 3). Some important diagnostics for parameterizations, such as cloudiness at
different levels or mass flux at cloud base, cannot be easily inferred from observations. It moti-
vates the use of CRMs or LES, which can be initialized and forced (step 1 and 2) in exactly the
same way as SCMs (see Fig. 1.4). The comparison (step 3) between models and observations
is also easier for CRMs/LES than for SCMs. Indeed, as CRMs/LES explicitly resolve clouds,
they are one step closer to the observing world. If we use the same initialization and forcing
(step 1 and 2) for a SCM and a CRM/LES, the comparison between the two models is then
straightforward: the CRM/LES results give comprehensive information about four-dimensional
fields of temperature, water vapor, water liquid, ice and momentum which can then be com-
pared directly to SCM results.

Progressively, observational data from various field campaigns have been used to develop
different case studies comparing SCMs with CRMs/LES and observations. Early SCM stu-
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dies included the FIRE case [First ISCCP (International Satellite Cloud Climatology Project)
Regional Experiment] to study the stratocumulus-topped boundary layer (Bechtold et al.,
1996; Zhu et al., 2005), the ASTEX case (Atlantic Stratocumulus Transition Experiment,
C. S. Bretherton et al., 1999), to study cloudiness transition between stratocumulus and sub-
tropical trade cumulus clouds, the ARM case (Atmospheric Radiation Measurement, Guichard
et al., 2004; Lenderink et al., 2004), to study the diurnal cycle of convection over land, or the
more recent RICO case (Rain In shallow Cumulus over the Ocean), based on a field campaign
devoted to the study of the formation of rain in shallow cumuli over the Atlantic ocean (Rauber
et al., 2007). With these many case studies, the comparison between SCMs, CRMs and obser-
vations has progressively become the dominant paradigm to evaluate and improve convection
parameterizations.

1.4 The parameterization debate – or why do climate

modelers care about epistemology?

What are the links between climate modeling and epistemology? According to the Encyclopedia
Britannica, epistemology is “the philosophical study of the nature, origin, and limits of human
knowledge” (Martinich & Stroll, 2021). The scope of epistemology is thus extremely broad: it
attempts to study not only scientific knowledge, but any kind of knowledge. However, in the
French tradition, the term epistemology is generally more specific and focuses exclusively on
scientific knowledge (e.g. Berthelot, 2018; Le Moigne, 1990; Mucchielli, 2000; Nadeau, 1999).
It could then be defined as the branch of philosophy of science that critically examines the
foundations on which different scientific disciplines are based as well as the methods and prin-
ciples they use, in order to determine the value and scope of the results they produce. This
definition seems the most appropriate to describe the work done in this thesis and we use the
term “epistemology” in this sense in the rest of the manuscript.

With this definition, scientists engage in epistemology when they reflect on their own sci-
entific practices, on the methods they use, or discuss the validity of their results. As we will
see, this is common in climate science. Many climate modelers have conducted in-depth epis-
temological reflections on their own work. Epistemology is thus not a meta-discipline, which
would pose its own philosophical problems on top of climate modeling. On the contrary, many
epistemological problems are at the heart of the daily work of climate modelers, especially those
working on parameterizations. Epistemological reflections are needed to define what is meant
by “good science” when working with GCMs and orient climate modeling research accordingly.

1.4.1 The need for epistemology in climate modeling

Many epistemological studies in climate science have been conducted by climate scientists
themselves. There are two main reasons for this:

� first, the appearance of climate science in the public sphere. Faced with the
risks of future climate change, many voices have risen in the scientific community to alert
decision makers and the general public. The alert was given most notably through the
IPCC reports, which provide policy makers with regular scientific assessments of climate
change and its potential impacts. This visibility in the public sphere has exposed climate
scientists to criticism. In the United States in particular, many influential personalities,
sometimes even recognized scientists, claimed to be climate-skeptics and questioned the
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results of the IPCC reports (Dunlap, 2013; Hoffman, 2011). At the core of some of these
criticisms, there is the suspicion that future climate projections are based on numerical
models, giving a biased picture of reality (Norton & Suppe, 2001). To answer these
criticisms, scientists had to conduct an epistemological reflection to justify where their
confidence in numerical climate models came from.

� secondly, and more fundamentally, the increasing use of numerical models in sci-
ence challenges existing epistemological frameworks and raises new questions (Jebeile,
2013) such as: which kind of understanding do numerical models provide? how do we
know whether a numerical model is “good enough” for the use we want to make of it?
Reciprocally, how can we prove a model is wrong? How to assess the conditions of valid-
ity of a numerical model? Such questions strike climate modelers in their own scientific
practice and lead them to epistemological reflections in order to justify the choices they
make and the methods they use.

As a consequence, there are many instances in the scientific literature of atmospheric physi-
cists questioning the methods used in their own field of research. For instance, Stevens and
Lenschow (2001) attempt “to begin a dialogue on the philosophy of simulation”, with a focus
on LES. In this paper, important epistemological questions are studied such as: how can be
validate a LES using observations? What would be a critical test for LES? What role can LES
play to complement observations and experiments? In particular, Stevens and Lenschow (2001)
argue that the comparisons between LES and observations are most of the time uncritical – the
observations used have not been designed explicitly to test LES and as a result, they may pro-
vide at best qualitative statements about the fidelity of LES. They claim that explicit criteria
should be used to distinguish between the success and failure of a LES when it is confronted
to an observational test.

Many other scientific papers are focused on GCMs, and try to address the challenges of
interpreting and understanding such complex models. Again, many epistemological questions
are raised: where does our confidence in GCMs come from? What criteria can be used to guide
their development? What kind of understanding is enabled by such numerical simulations?
At what point does a simulation become too complex to be useful? I. Held (2005) defines for
instance the understanding of a complex system as the ability to relate its behavior to that of
simpler systems. It leads him to claim that a hierarchy of models of increasing complexity is
needed to make sense of the most complex GCMs. This claim is shared by Bony et al. (2013),
which point out that the understanding of the content of GCMs is crucial because, unlike mod-
els used for numerical weather prediction, climate models cannot be accurately assessed using
observations. According to the authors, our confidence in model projections critically depends
on our physical understanding of the principles on which they are built. Jeevanjee, Hassan-
zadeh, Hill, and Sheshadri (2017) provide an interesting complement, as they study among
other things how hierarchies actually help scientists to formulate hypotheses, test them, and
assess their robustness.

Another epistemological issue that climate modelers have been working on is the tuning of
GCMs. The parameterizations used in GCMs contain many free parameters that are “tuned”
in order to ensure that GCM results are sufficiently realistic. GCM tuning was sometimes
criticized and seen as an attempt to hide certain model deficiencies (e.g. Raäisaänen, 2007;
D. A. Randall & Wielicki, 1997). But in recent years, a rational discourse has emerged from
the climate modeling community to justify the tuning and the methods on which it is based.
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Particularly noteworthy are the papers of Hourdin et al. (2017a) and G. A. Schmidt et al.
(2017) which discuss and justify the uses and limits of climate model tuning.

1.4.2 Convection parameterizations being questioned

Significant improvements have been made since the first parameterizations were developed in
the 1970s (see Rio et al., 2019, for an overview of recent progress in parameterization devel-
opment). Parameterizations have enabled climate models (either atmospheric GCMs, coupled
GCMs or ESMs) to produce realistic climate projections, which have been extensively used
in IPCC reports to support scientific statements about anthropogenic climate change. How-
ever, considering that the pace of progress was too slow, climate modelers who had themselves
contributed to the development and improvement of parameterizations have become critical to-
wards the use of parameterizations in climate models (Arakawa, 2004; D. Randall et al., 2003).
In response to what these modelers called the “cloud parameterization deadlock”, alternative
paths were proposed.

Super-parameterizations A first avenue consisted in the use of CRMs as a “super-parame-
terization” within each column of a GCM (Grabowski, 2001; Grabowski & Smolarkiewicz,
1999). In this approach, a CRM is used over a fraction (2D or 3D) of a GCM column and gives
statistics about subgrid-scale convective processes that are then extrapolated to the whole
column (Khairoutdinov, Randall, & DeMott, 2005). Like a conventional parameterization, a
CRM receives as input the state variables from the dynamics of the GCM and returns as output
the tendencies due to subgrid-scale processes, which are calculated by horizontally averaging
the CRM fields over the whole column. Implicitly, the super-parameterization approach makes
the hypothesis that there is a clear separation of scales between the small scale and the large
scale, so that the small scale is “enslaved” to the large scale. This assumption also plays an
important role in traditional convection parameterizations, but has been questioned by several
observational studies (e.g. Heggem, Lende, & Løvseth, 1998; Ishida, 1989; Vinnichenko, 1970,
see also Chapter 3)

Global cloud-resolving models A second approach is based on CRMs covering the entire
atmosphere of the Earth called global cloud-resolving models (GCRMs). A main advantage of
GCRMs compared to traditional parameterizations and super-parameterizations is that they
better take into account the multi-scale nature of convection. In fact, GCRMs do not rely on a
notion of scale separation between the subgrid scale and the large scale and are able to resolve
the so-called “mesoscale”, which is neither parameterized nor resolved in traditional GCMs.
GCRMs have many applications and can in particular serve as a virtual laboratory to better
understand multi-scale interactions in the atmosphere (Stevens, Acquistapace, et al., 2020).
However, a major effort is needed to couple GCRMs with ocean models of similar resolution
and to run these coupled models over long period: decadal or multi-decadal climate simulations
using GCRMs seems therefore out of reach in the near future.

Machine learning Finally, the last approach is based on the recent perspectives offered by
the progress in machine learning (Balaji, 2021). Most modeling problems can be formulated
as an attempt to link certain outputs to certain inputs. In parameterizations, in particular,
the inputs are the state variables of the model at each grid point and the outputs are the
tendencies given by the parameterizations that define the average effect of subgrid processes
on the model grid. Basically, machine learning techniques aim to learn what is the best output
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for each input, i.e. to find the best function mapping the set of possible inputs to the set of
possible outputs. For that, the machine must first learn to connect inputs to outputs from
a training data set, which consists of an ensemble of known outputs given by known inputs.
Neural networks, random forests or various other machine learning algorithms can be used in
this learning phase. Second, the rules learned by the machine can be applied to other inputs,
for which the outputs are not known. For instance, Gentine, Pritchard, Rasp, Reinaudi, and
Yacalis (2018) propose to replace convection parameterizations by artificial neural networks
that could learn from a GCRMs or a super-parameterized GCM the tendencies associated with
various large-scale situations. The main advantage, as they argue, is that the computational
cost would be limited essentially to the training phase: once the correct tendencies are learned
by the machine learning algorithm, using these tendencies in a GCM would be computationally
efficient. It opens the door to decadal or multi-decadal projections at a reasonable computa-
tional cost (see also Brenowitz, Beucler, Pritchard, & Bretherton, 2020; O’Gorman & Dwyer,
2018).

Other scientists, however, are reluctant to abandon convection parameterizations and em-
phasize the significant progress in the development of parameterizations made in recent years
(Gettelman et al., 2019; Rio et al., 2019). Recognizing the opportunities offered by machine
learning and high-resolution models, some of them propose to take advantage of these opportu-
nities to improve parameterizations and better tune their parameters. For instance, Couvreux
et al. (2021) and Hourdin, Williamson, et al. (2020) use techniques from machine learning to
explore GCM results for different sets of parameters, and find the parameter values in the whole
parameter space that give the best results (see also Schneider, Lan, Stuart, & Teixeira, 2017,
for a similar approach).

These different approaches are certainly opposed on a technical basis, but also on an episte-
mological basis. They reflect different conceptions of the role of models used in climate science.
In parameterizations of atmospheric convection, understanding comes before modeling. Scien-
tists working on parameterizations summarize their understanding of convective phenomena in
the parameterizations they develop. Parameterizations give them a framework to think about
different convective phenomena. Their confidence in GCM results comes as much from the
realism of these results as from their understanding of the physical principles used to build the
parameterizations. On the contrary, in super-parameterizations and GCRMs, understanding
comes after modeling. Unlike parameterizations, CRMs do not contain the modelers’ vision
of what nature looks like. The characteristics of simulated phenomena and their interactions
appear spontaneously in CRMs, whereas they are prescribed in the parameterizations. This
leads modelers to discover the causes and effects of convective phenomena in the outputs of
CRM simulations. Some see this as an advantage, as it avoids contaminating CRMs with our
potential erroneous conceptions (Stevens, Acquistapace, et al., 2020). However, others consider
that rejecting parameterizations deprives scientists of the gradual understanding built up over
the last 50 years on convective phenomena, which parameterizations summarize and incorpo-
rate into GCMs (Rio et al., 2019).

Similar arguments oppose machine learning to parameterizations. But the use of machine
learning methods to replace conventional parameterizations presents also new epistemological
challenges compared to super-parameterizations or GCRMs. It is indeed possible to analyze
the outputs of a CRM – whether it is used as a super-parameterization or as a GCRM – in
order to understand the phenomena that emerge from the simulation. This analysis can help
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identify and correct certain biases in the model. On the contrary, it can help understand why
certain phenomena seem to be well represented, hence give confidence in the model results.
Conversely, machine learning models are difficult to interpret for the user, and sometimes
described as “black boxes” (N. Jones, 2017). This criticism is rejected by machine learning
advocates, who defend that machine learning is in part interpretable and offers a certain kind
of understanding (Dueben & Bauer, 2018; McGovern et al., 2019). The debate then moves to
an epistemological ground, with questions such as: what is understanding? What role does it
play in climate modeling? Where does our confidence in climate models come from? Which
kind of understanding do climate models provide? A critical look at these questions is given in
the study of Jebeile, Lam, and Räz (2020), which compares the type of understanding provided
by machine learning and the one given by other statistical methods commonly use in climate
science such as statistical downscaling. Climate modeling is today at a turning point and we
bet that such epistemological reflections are highly relevant to compare the various avenues
open to us and draw the future of climate models.

1.5 The perspective of philosophers of science

Over the last 30 years, more and more philosophers have become interested in the specific
problems posed by the study of climate and its modeling (Lenhard & Winsberg, 2010; Petersen,
2012; Winsberg, 2018b). It led to the emergence of the philosophy of climate science as a
distinct sub-discipline of philosophy of science. This sections aims at introducing the reader to
the growing literature in the domain, with a focus on the epistemology of climate modeling,
and detailing some of the works that will be relevant in the rest of the manuscript.

1.5.1 Introduction to the philosophy of climate science

So far, the philosophy of climate science has been focused mainly on GCMs. To our knowledge,
other numerical models used in climate science (e.g. LES or CRMs) have hardly received any
attention from philosophers of science and the theoretical foundations of climate science have
been addressed by only a few studies (e.g. Katzav & Parker, 2018). We give here a brief
overview of some of the main issues that have been discussed so far by philosophers of science.

Uses of GCMs What is the purpose of computer simulations produced by GCMs? Which
uses can we distinguish? Several answers to these questions have been given by philosophers of
science. First, GCMs can serve as a surrogate for experimentation, as it is not possible to
perform experiments on the real climate system (Petersen, 2012). In particular, we are forced
to use simulations to study future climate change because we do not have a twin Earth on
which we could test the effects of an increase in CO2 concentration. Second, GCM results can
be taken as a substitute for observational data (W. S. Parker, 2014). Many phenomena
could theoretically be observed in nature, but are difficult to study in practice due to lack of
relevant observational data. Computer simulations can help to study phenomena for which
observational data are either incomplete or inaccurate. Third, GCMs can be used heuristi-
cally, that is to formulate and test hypotheses (Heymann & Hundebøl, 2017), or serve as
educational resources.

More generally, two main uses of GCM simulations are often distinguished: understanding
the climate system and predicting it. While there are bridges between the two – in particular,
a good understanding of climate is necessary to trust GCM simulations – they address distinct
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research priorities and require different resources (Dalmedico, 2001; Heymann & Hundebøl,
2017). The models used to make climate projections are designed to represent all elements that
may be important to the climate system. Over the last decades, they have become increasingly
complex and have taken into account more and more phenomena. In particular, ESMs, the
most comprehensive models used today, include interactions with the biosphere in addition to
interactions between the atmosphere, land, ocean and sea ice. It is easy to get lost in the details
of these many interactions and such comprehensive models are therefore difficult to interpret.
If one wants to understand one aspect of the climate system, for example cloud feedbacks,
comprehensive models are of limited use. On the contrary, simplified GCMs, which assume for
example that oceans cover the entire surface of the Earth – so-called aqua-planet GCMs – have
limited value for making realistic climate projections. Nevertheless, they provide a valuable
tool to understand key aspects of the climate system.

Using climate models to understand or predict climate reflects two different epistemolog-
ical conceptions of the role of models in climate science. In a world of limited human and
computational resources, research strategies need to be defined and these two uses of models
are sometimes in competition. This illustrates how epistemological reflections on the kind of
science that is permitted, legitimate, or useful with models can influence research priorities in
laboratories and how research budgets are allocated.

Validation of GCMs using observations GCMs are routinely confronted to observational
data. The ability of GCMs to simulate accurately certain observations – the rate of warming
in the twentieth century, for instance – is in fact often used as a criterion to evaluate their abil-
ity to predict future climate change (Chen & Frauenfeld, 2014; Koutroulis, Grillakis, Tsanis,
& Papadimitriou, 2016). However, the expressions “validation of GCMs” or “verifications of
GCMs” by observations have been criticized by philosophers of science due to the methodologi-
cal difficulties such an exercise represents: to validate (or verify) a GCM, it would be necessary
to eliminate all the reasons that could lead to bad results. It is impossible in practice, first
because of the limited number of observations available and second, because GCM results are
far from matching observations perfectly. Instead of the black and white picture given by
the term validation, some philosophers proposed more nuanced terms such as “confirmation of
models by observations”(Lloyd, 2009; Oreskes, Shrader-Frechette, & Belitz, 1994), or suggested
to use observations only to assess the “adequacy for purpose” of GCMs, i.e. whether they are
adequate or not for a certain use (W. S. Parker, 2009, 2020).

These terminological debates might seem anecdotal. Yet, they have consequences on the
strategy used to evaluate GCMs: in particular, if the objective is to show the adequacy for
purpose of a GCM, scientists should focus on the most relevant variables for the intended use
of the GCM. For example, to predict the evolution of Arctic sea ice, they should compare past
simulations of Arctic sea ice to observations in order to assess whether the GCM used is adequate
for this particular purpose. On the contrary, terms such as validation or verification suggest a
deeper examination of various GCM results in order to detect any potential incoherence with
observations.

Interpreting multi-model ensembles As part of the Coupled Model Intercomparison
Project (CMIP), most of the coupled GCMs used around the world are submitted to the same
simulation protocols every 5 or 6 years to compare their results under similar conditions. In par-
ticular, CMIP gives a framework to compare future climate projections from different GCMs,
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which serve as the basis for the IPCC reports. However, many philosophers have questioned
the interpretation one can give to CMIP multi-model ensembles. In particular, the spread of
multi-model ensembles has given rise to much debate: should we see it as an estimate of the
uncertainty, as suggested by many scientific studies (Pirtle, Meyer, & Hemilton, 2010)? Or
only as a lower bound of the uncertainty (W. S. Parker, 2013)? Katzav (2014) is even more
cautious and argue that the spread of CMIP multi-model ensembles should only be seen as a
range of “real possibilities”.

Philosophers of science also examined the robustness of CMIP results and investigated
whether the agreement between different GCMs for a certain result legitimaly gives confidence
in that result. While Lloyd (2010) argues that the agreement between GCMs is indeed an argu-
ment on which we can base our confidence, W. S. Parker (2018) reaches an opposite conclusion
and argues that “when today’s climate models agree that an interesting hypothesis about future
climate change is true, it cannot be inferred [...] that the hypothesis is likely to be true, nor
that confidence in the hypothesis should be significantly increased, nor that a claim to have
evidence for the hypothesis is now more secure”. One of the reason for this claim is that, as
suggested by Knutti (2018); Pirtle et al. (2010) and others, GCMs are not independent of each
other but share ideas and sometimes even pieces of code. Therefore, they are likely to have
common biases and the agreement between GCMs may simply reveal these common biases.

1.5.2 The (few) epistemological studies on parameterizations

Parameterizations, and in particular convection parameterizations, are at the heart of GCM
uncertainties. Yet, few philosophers have looked specifically at the epistemological issues they
raise. Until recently, parameterizations have been mainly a focus for sociological research,
through fieldwork and interviews in climate modeling laboratories (e.g. Guillemot, 2017; Sund-
berg, 2007). This sociological research highlighted different ways of being a climate modeler –
what Shackley (2001) called “epistemic lifestyles”. For instance, Shackley (2001) proposed a
distinction between climate seers, who use GCMs mainly to understand the climate system and
explore specific scientific questions, and climate model constructors, who attempt to capture
the full complexity of the climate system, thus to build a versatile model that can be used for
a variety of applications. Climate seers, according to Shackley (2001) do not strive for realism,
but prefer idealized parameterizations, whose effects on the model or responses to perturbations
are easy to interpret. For model constructors, on the other hand, parameterizations must be as
realistic as possible, i.e. they should represent the real phenomena as accurately as possible. By
interviewing various researchers from the LMD, Guillemot (2017) offers a glimpse of another
epistemic lifestyle, unique to the lab where I did my Ph.D. thesis and characterized, according
to the author, by the importance of the “physical understanding” of processes.

These sociological studies also raised epistemological questions about parameterizations. For
example, Sundberg (2007) uses sociological fieldwork in a Swedish meteorological laboratory
to distinguish different functions of parameterizations, and to study the links between param-
eterizations, observations and theory. But in such studies, the heart of the matter remains the
distinction between different modeling practices, and epistemological reflections are relegated
to the sidelines. Consequently, while philosophers have examined various epistemological issues
related to GCMs and sociologists have investigated various ways of developing a climate model,
the epistemology of parameterizations has so far received little attention. Notable exceptions
are the following two issues, intrinsically related to parameterizations, and which have given
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rise to (a few) epistemological studies.

Confirmation holism In philosophy of science, confirmation holism is the claim that an
individual theory or hypothesis cannot be confirmed or refuted by an empirical test, as such a
test would necessarily involve other theories or hypotheses. It is only possible to test an ensem-
ble of theories or hypotheses as a whole. Lenhard and Winsberg (2010) defend a strong form
of confirmation holism for GCMs: when GCM simulations are compared to observations, the
different components of GCMs – namely, the parameterizations – cannot be tested individually.
GCMs can only be tested as a whole. According to the authors, it is not possible to isolate the
causes of success and failure of GCM simulations, and thus to use this analytical understanding
to improve them.

The heart of their criticism concerns the parameterizations. Indeed, they explain that
parameterizations are too interdependent to be tested in isolation. It is not possible to assess
the merits and shortcomings of a given parameterization in a GCM independently of the other
parameterizations. This criticism, which has been nuanced by other philosophers (e.g. Frigg,
Thompson, & Werndl, 2015), points to the problems of interpretability of parameterizations
in complex GCMs. It opens the door to epistemological reflections on the particular kind
of understanding given by GCMs. However, as far as parameterizations are concerned, the
reflexion proposed by Lenhard and Winsberg (2010) stays at the surface. They do not take
into account the fact that a parameterization is neither a theory nor a hypothesis: testing a
parameterization has thus a very different meaning than testing an hypothesis or a theory.
Before speaking of confirmation holism, it would be necessary to define the particular type of
scientific object parameterizations are, a discussion they completely omit.

Tuning and falsifiability Another issue that has been the subject of much epistemological
research concerns the tuning of GCMs. Several philosophers reacted to a paper written by
two atmospheric physicists, David A. Randall and Bruce A. Wielicki who accused tuning to
“artificially prevent a model from producing a bad result” (D. A. Randall & Wielicki, 1997,
p. 404). Randall and Wielicki argued that the tuning should be limited to parameters that
are both important to the model results but poorly understood, such as parameters related
to cloud microphysics. As our understanding progresses, fewer and fewer parameters should
therefore be tuned. According to them, understanding the natural phenomena sufficiently to
avoid the need for parameter tuning is a primary goal for climate modelers.

The philosopher Petersen compares the position of Randall and Wielicki with Popper’s phi-
losophy, which states that the formulation of a new theory should not be based on ad hoc
corrections of an old theory, but only on corrections that are theoretically justified (Petersen,
2012). According to this view, climate modelers should try to justify theoretically the correc-
tions they bring to their climate models; otherwise, the confrontation of a climate model to
observations would not be able to test a model adequately. Indeed, the agreement between
model results and observational data can come from compensating errors introduced by the
tuning process, and it is therefore not possible to use this agreement to validate the model. As
Edwards (2001) noted, this is a particularly strong concern when the same observations are used
to tune a GCM and to evaluate its performance. On the other hand, if there is a disagreement
between the GCM results and observations, the observed disagreement could be due either to
errors in the GCM or to incorrect parameter values. The causes of this disagreement would be
difficult to diagnose. GCMs are therefore not falsifiable in a Popperian sense (Petersen, 2012).
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However, Lloyd (2009) argues that this lack of falsifiability is not an issue as GCMs are not
used to test a theory, but to apply theories to give a description (or projections) of the climate
system. From this perspective, the use of tuning seems legitimate as it is likely to increase the
quality of GCM results.

Again, we believe that without a thorough study of what parametrizations are, these epis-
temological debates are difficult to settle. If parametrizations were firmly established in theory,
there would be no debate and tuning would be akin to calibration: parameters could be set
once and for all before the GCMs are run. Conversely, if the parameterizations were entirely ad
hoc, they would lack generality and could not be used in a GCM: each situation would require
a particular tuning, impossible to generalize. Since parameterizations are partly theory-based
and partly ad hoc, they live in a semi-empirical world, a term coined by Edwards (2001). In
this semi-empirical world, partly determined by theory and partly determined by observations,
epistemological debates arise about what is acceptable or not. To shed light on these debates,
an examination of the foundations of parameterizations seems necessary.

1.6 Organization of the manuscript

The previous discussions illustrate the interest of both climate scientists and philosophers of
science in the epistemological issues raised by GCMs. Parameterizations occupy a central place
in GCMs and are at the heart of these debates. Sometimes seen as the “Achilles heel” of GCMs
(Stone & Risbey, 1990), they are often described as major sources of uncertainties and opposed
to the dynamics of GCMs, solidly anchored in well-established equations. Many epistemologi-
cal studies consider parameterizations as one of the main causes of difficulties in interpreting
and validating GCM results. Yet, in such studies, the description of parameterizations remains
superficial: parameterizations are put in the same “physical package”, living in a rather vague
“semi-empirical world”. In particular, no distinction is made between the different parame-
terizations used in GCMs, and their respective justification. However, if we look closely, the
different types of parameterizations have little to do with each other: in particular, parame-
terizations of microphysics, radiation, turbulence and convection are very different in nature
and involve different types of justification. Each type of parameterization would thus require a
detailed epistemological examination to determine its basis, scope and limitations. Such studies
could shed new light on the debates about the interpretation of GCM results.

In my Ph.D. thesis, I choose to limit myself to convection parameterizations. This choice
is motivated by the present context, where alternative paradigms to convection parameteriza-
tions are being proposed by the climate modeling community – I have cited in particular the
emergence of super-parameterizations, GCRMs and machine learning as rivals to convection
parameterizations. A discussion on the foundations of parameterizations and the kind of un-
derstanding they give us could help assess what would be lost or gained if parameterizations
were replaced by other approaches. I will try to answer questions such as: what are we trying
to represent when we parameterize atmospheric convection? In what sense are the parameter-
izations partly ad hoc and partly determined by theory? What interpretations can be given to
the parameterization formalism? How do these interpretations help to better understand the
role of tuning in GCMs?

To answer these various questions, my approach will be at the interface of climate science
and epistemology. I had the chance, during my Ph.D. thesis, to participate in several scientific
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works that gave me a close look at various facets of the study of atmospheric convection. In
particular, I took part in the EUREC4A field campaign and was involved in several studies that
resulted from it (Albright, Fildier, & Touzé-Peiffer, 2020; Stevens et al., 2021; Touzé-Peiffer,
Vogel, & Rochetin, 2021). This experience allowed me to understand the role and limitations
of observations in the study of atmospheric convection. I also developed a parameterization for
the atmospheric GCM LMDZ and conducted significant work of model re-tuning following the
addition of this new parameterization. Thanks to this work, I acquired a practical knowledge
of the epistemological challenges posed by model tuning and the new perspectives offered by
automatic tuning methods. Finally, I was confronted with the world of LES and CRM sim-
ulations over large domains by contributing to a study defining a method to detect localized
areas of cold air near the surface formed by evaporation of precipitation, called “cold pools”, in
such simulations (Rochetin, Hohenegger, Touzé-Peiffer, & Villefranque, 2021). These different
works are used throughout my thesis as examples, case studies or pretexts for epistemological
reflections on parameterizations and their foundations. In the following, I give an overview of
the organization of the manuscript.

Behind the complexity of atmospheric flows, we can see some coherent structures, which I
call “objects”. The purpose of Chapter 2 is to study these objects and to specify the role they
play in our understanding of atmospheric convection. In particular, I explain that objects rep-
resent the conceptual framework on which the convection parameterizations are built. But their
role does not stop there: objects also give words to analyze observations and high-resolution
simulations. In this, I define them as the prism through which we see and study atmospheric
convection. The different facets of the role of objects in our understanding of atmospheric
convection are illustrated with the example of cold pools.

In Chapter 3, I explore the semi-empirical world of convection parameterizations, between
theory and observations. I first study the context in which parameterizations emerged and ex-
plain that parameterizations were originally proposed to answer an operational need to “make
the models work”, i.e. to ensure that GCMs are sufficiently realistic to be useful. Despite
attempts to ground parameterizations solely on observations or to derive them exclusively from
first principles, I then explain that most parameterizations used in GCMs offer an object-based
representation of convection, relying on both some theoretical principles and more ad hoc as-
sumptions based on observations. The advantages and limits of such framework are discussed.

I then focus on the tuning of GCMs in Chapter 4, and study the characteristics of this spe-
cific scientific activity. I distinguish on different levels parameters that can be used for tuning,
and analyze why tuning is necessary and which tuning strategies can be used. I then explain in
which sense climate model tuning is similar and different from calibration procedures used in
other scientific fields. I also study the consequences of the non-accuracy of parameterizations
on tuning and the risks to introduce “compensating errors” or to “overtune” a model. Finally,
I mention recent progress in automatic tuning methods and the paradigm shift they represent
for climate model tuning.

I explore how the different issues regarding parameterizations and tuning arise in practice
in Chapter 5, where I implement a cloud and precipitation overlap parameterization in the
atmospheric model LMDZ. Following this addition, I perform a re-tuning of the model using
new methods that automate part of the tuning process. Through this case study, I question
what it means to improve the parameterizations of a GCM and explain why in practice this
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simple question leads to important methodological difficulties. To overcome these difficulties, I
give some criteria to evaluate the progress brought by a new parameterization from a concep-
tual point of view and in terms of model results.

In Chapter 6, I extend the discussion to comparisons of different GCMs in CMIP, which
serve as basis for the IPCC reports. I show that CMIP was able to highlight the flaws of
parameterizations, but did not solve them. One of the historical motivations of CMIP was to
provide a framework for improving GCM parameterizations. I explain why this motivation was
not fulfilled and detail the various uses of CMIP in climate research today. I show that CMIP
has steered climate studies in a certain direction, focused on model applicability rather than
model improvement, and I mention the structural effects it has had on climate research.

Eventually, Chapter 7 summarizes all the work presented in this manuscript and discusses
possible avenues for future research.
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2.1 Introduction

In our daily life, we use words to describe our environment. To describe an entity which has a
trunk, branches and leaves, we will use for instance the word “tree”. This single word aggregates
a myriad of information coming from our perception: the vision of branches, the sound of wind
in the leaves, the texture of a tree trunk, etc. In the word tree, consciously or unconsciously,
our brain has attached many characteristics. Spontaneously, if we see something that has a
trunk, branches and leaves, we will guess that it should also have roots. Through words, we
can not only name the things around us, but also get to know them better.

In this sense, words are the mediator between our understanding and the world. Our
language is constituted by the most useful words, concepts or notions which describe our en-
vironment. As scientists study phenomena that we do not encounter in our daily lives, they
sometimes have to find new words to name them. Indeed, in science as in the real life, words are
the lens through which we see the world: they order our environment and make it intelligible.
From the particle physicist distinguishing different families of particle, to the biologist finding
names for the constituents of a eukaryotic cell, the words created from scratch by scientists are
numerous.

Atmospheric physicists are no exception and invented a whole vocabulary to talk about their
field of study. One famous example is the International Cloud Atlas, first published in 1896 by
the International Meteorological Organization (now the World Meteorological Organization).
Its objective was to promote a more consistent use of vocabulary describing clouds, in order
to facilitate the communication between meteorologists about weather forecasts. As easy as
it may sound, we should not overlook the challenge of finding appropriate names to describe
what we see in our scientific research. Many scientific debates could have been avoided with
a more appropriate choice of vocabulary (see Lévy-Leblond, 2000, for an example in quantum
physics). A great challenge for atmospheric physicists – and more generally, for all scientists –
is thus to find the sharpest words to describe what they study.

In particular, to separate the problem of atmospheric convection in different sub-problems,
atmospheric physicists have divided the atmosphere into different components, called in the fol-
lowing “objects”. The term “object” originally appeared in the field of image analysis (Chien,
Ma, & Chen, 2002) to describe the detection of some semantic objects of a certain class (for
instance cats or dogs) in digital images and videos. The use of this term was then extended
in weather and climate modeling studies to analyse 2 or 3D scalar fields (or sometimes 4D
fields when the time dimension is included) and detect some localized and episodic features
of interest (Brient, Couvreux, Villefranque, Rio, & Honnert, 2019; Couvreux, Hourdin, & Rio,
2010; Davis, Brown, & Bullock, 2006). Here, we will call object any coherent structure in
the atmospheric flow that can be separated from an environment, and that is thought to play
a role in atmospheric convection. A typical example is a localized rain shaft: this episodic
event can be distinguished from an environment by the presence of a rainfall rate above a
certain threshold and obviously plays a role for atmospheric convection. A cloud can also be
considered as an object – in this case it is even possible to be more specific and to use more
precise objects such as cumulonimbus, stratus, congestus, cumulus, etc. Clouds and rain shafts
are visible to the human eye and, at first glance, seem as easy to identify as a tree, a cat or a dog.

Air movements transporting water vapor and heat in the atmosphere play a crucial role in
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atmospheric convection. However, unlike clouds, they are invisible to the naked eye. We have
to use specialized instruments such as lidars or numerical models to see them. Whether we
study nature with the naked eye, with sophisticated instruments, or with numerical models,
each scene we observe is unique. Objects help to name and recognize some similarities in this
apparent diversity. They allow us to identify some recurrent phenomena behind the disordered
and chaotic appearance of atmospheric flows. Finding relevant objects to describe atmospheric
convection is key to understand it. In this chapter, we will see in detail that objects focus
atmospheric research towards specific research question, help to formulate and test hypotheses,
make the link between otherwise isolated studies, and, most importantly, are the lens through
which we see atmospheric convection.

2.2 Definition and characteristics of objects

2.2.1 Splitting the atmosphere into objects

At the most fundamental level, the atmosphere is the set of molecules in motion around the
Earth. The state of the atmosphere could therefore in theory be described by the position and
velocity of each molecule, as well as their interactions with each other. However, this approach
is inconvenient in practice due to the amount of information it requires: it is not possible to
record all the data needed to describe the behavior of the atmosphere at a molecular level
in a human brain or a computer, let alone use it to understand and predict atmospheric or
meteorological phenomena that affect us directly, such as air temperature, wind, rain or snow,
etc.

In fluid dynamics, it is common to consider instead mesoscale particles, whose volume is
small enough to ensure that the characteristics of the fluid it contains (e.g. its velocity, temper-
ature, pressure, etc.) do not vary significantly, and at the same time big enough to contain a
relatively large number of molecules in order to average statistical fluctuations. The movement
of mesoscale particles can be predicted using mass, momentum and energy budgets of each
particle. This is the basis of numerical computation, where the fundamental equations of fluid
dynamics are discretized over a given grid, at a given resolution. The smaller the grid, the more
accurate the description of the fluid is. Provided a sufficient computer capacity is available, this
approach is useful to predict atmospheric phenomena. On the other hand, it is more difficult to
use it to understand these phenomena, i.e. to establish a limited, and thus intelligible, chain of
causal links between an atmospheric phenomenon A (e.g. there is a cloud) and an atmospheric
phenomenon B (e.g. it rains).

The need to work at a relevant temporal and spatial scale to understand atmospheric con-
vection motivates the introduction of objects. The move from mesoscale particles to objects
share similarities to the move from molecules to mesoscale particules. An object can indeed
be seen as a group of adjacent mesoscale particles having certain characteristics in common.
However, contrary to mesoscale particles which group molecules exhaustively, objects generally
cover only a small part of the atmosphere. We will call the part of the atmosphere which be-
longs to no objects “the environment”. Another important difference is that in the move from
molecules to mesoscale particules, a single spatial criterion, based on a finite volume, was used
to group particles. On the contrary, the spatial and temporal limits of an object are defined by
the presence of certain local heterogeneities with respect to the mean field. By local, we mean
particles close to each other both in time and space.
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By definition, an object has therefore both spatial and temporal coherence. This coherence
is not guaranteed by the fluid particles that compose it, because when an object evolves, it can
gain or lose some fluid particles. The coherence of an object is instead guaranteed by the pres-
ence of some shared characteristics in a certain region of space and during a certain time. Since
an object has a spatial coherence, it is possible to define its spatial boundaries and to describe
its energy and matter exchanges with its environment and other objects in terms of fluxes at its
boundaries as if it was a single mesoscale particle. Since an object has a temporal coherence, it
is possible to track it over time and to study its life cycle – its birth, development, and death
– and how it interacts with other objects and with its environment at each stage of this life cycle.

To illustrate what it means to define an object, let’s consider a very simple object, known
long before it was studied scientifically: a cloud. How do we know that a cloud is a cloud? We
are able to recognize a cloud because our past experience – in particular, the many clouds we
have seen in our life – has given us a mental representation of what a cloud is, which matches
the information provided by our eyes. Clouds are identified as a particular object in the sky
(their environment) thanks to the concordance of what we see and certain criteria in our mem-
ory. A cloud can evolve over time: it can be transported by the wind, expand horizontally or
vertically, change its shape, etc. However, it has a certain spatial and temporal coherence: it
is possible to delimit it in space and follow it in time.

Many other objects used to study atmospheric convection are invisible to our eyes. Figure 2.1
gives examples of some of these objects. It shows, for example, updrafts and downdrafts, which
can be defined as a set of adjacent particles with a vertical velocity anomaly with respect to
the environment, positive for updrafts and negative for downdrafts. Cold pools, also shown in
Fig. 2.1, are another example of objects; they can be defined as a group of particles near the
ground with a negative temperature anomaly compared to the environment. More generally,
in practice, any object can be defined as a set of adjacent mesoscale particles which present
an anomaly with respect to one or several spatial field(s), such as temperature, wind speed,
humidity, etc. In observations, the anomaly defining an object has to be detected using data
from available instruments, such as thermometers, anemometers, hygrometer, etc. In computer
simulations, it has to be diagnosed from model outputs.

2.2.2 On the choice of objects

Objects are in part natural and in part artificial. They are in part natural because the choice of
objects is determined to some extent by the atmospheric phenomena that occur in nature. The
objects are indeed based on certain regularities observed within the atmospheric flows. The
different particles which constitute an updraft have for instance a common characteristic: a
high vertical speed. This common characteristic is not invented, but comes from observational
data, which show that certain localized regions of the atmosphere have a higher vertical speed
than their surroundings.

One could argue that formally, we could invent any object X as a group of adjacent particles
which present a certain property P. But if this object does not exist in nature, it is irrelevant
for the study of atmospheric convection. The same holds if an object has no particular role for
atmospheric convection. For an object to be useful, it must correspond to real phenomena that
play an important role in atmospheric convection.
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Figure 2.1: Sketch of various objects used to describe atmospheric convection and how they
interact with each other and with their environment. From Rio et al. (2019).

Nevertheless, objects are not entirely determined by nature. What nature gives us is only
an apparently chaotic and disorganized atmospheric flow where a few patterns emerge. We de-
cided to name the patterns that seemed to be the most important for atmospheric convection
and group them into objects. However, there are many ways to divide the atmosphere into
different patterns, and the definition we use of a given object is to a large extent artificial –
it reflects our subjective understanding of what is important for atmospheric convection. Ob-
jects are therefore partly constructed and express our present understanding of atmospheric
convection. As we will see in Section 2.5 with the example of cold pools, the objects we use
and their definition are likely to evolve as our understanding progresses. Objects are thus both
upstream and downstream of our understanding: they are the prism through which we study
atmospheric convection and in turn, they are continuously chosen and redefined according to
what we know about it.

One could argue that what we say here about objects applies not only to the study of fluids,
but to scientific research in general. Indeed, as we explained in the introduction, all scientists
introduce words to name the entities they study. In essence, these words are determined in part
by nature, but reflect also some kind of understanding of the phenomena at stake. However,
contrary to entities used to study other physical systems, the objects used to study fluids do not
have well-defined boundaries. A eukaryotic cell, for example, has a membrane which separates
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it from the extracellular medium and gives it a real unity. One cannot say the same thing for
an updraft. The different particles which constitute an updraft have certain characteristics in
common, but are not attached to each other. An updraft has therefore less spatial coherence
than a eukaryotic cell. Since it has no explicit boundaries, there are more ways to define it than
a eukaryotic cell. In this sense, the objects used to study the atmosphere are more artificial
than those used in other scientific fields.

Admittedly, the components of the atmosphere that are not in gaseous form – such as cloud
droplets, rain drops, ice crystals, or dust particles – do have a well-defined boundary, and
even a certain exchange surface with their environment. However, for the understanding of
atmospheric convection, these small objects are analogous to air particles: they are too small
and too numerous at the scale of atmospheric convection. It is for instance not possible to
describe the movement and behavior of each cloud droplet to describe how a cloud interact
with its environment. Larger objects have to be used and rain drops are grouped into a rain
shaft, cloud droplets, into a cloud, etc. Unlike the many tiny objects that compose them,
these larger objects have no clear spatial boundary: for instance, to distinguish a cloud from
its environment, an artificial threshold on the concentration of liquid water droplets must be
chosen.

2.2.3 Mechanistic understanding vs functional understanding

To a simple question such as “Why do deciduous trees lose their leaves in winter?”, two answers
can be given. One answer would be that reduced daylight and temperatures cause some trees to
decrease the production of a certain plant hormone, called auxin, which results in a weakening
of the bond between the tree’s leaves and the branch. When this bond becomes too weak, the
leaves eventually fall off the tree. A second and equally valid answer would be that deciduous
trees shed their leaves to conserve resources during the winter and protect themselves from
wind during winter storms.

The first answer gives a mechanistic explanation of the phenomenon at stake. There has
been many philosophical discussions on the notion of mechanism (e.g. Bechtel & Abrahamsen,
2005; Darden, 2006; Machamer, Darden, & Craver, 2000). We take the definition of Craver
(2007, 2013), which call a mechanism a set of entities and activities organized such that they
give rise to a certain phenomenon. Mechanistic explanation therefore interpret the behavior of
a certain system through the interactions between its components. In Craver’s definition, these
components are called entities and are characterized by their structural properties and their
relations with other entities.

Though Craver applies his definition mainly to physiological sciences such as neuroscience,
these entities correspond to what we called objects in the study of atmospheric convection.
When we say for instance that “updrafts bring moisture in the atmosphere and thus create
clouds, which in turn produce rain and downdrafts, the latter spreading at the surface as cold
pools”, we typically give a mechanistic explanation of atmospheric convection. We explain con-
vection through the interactions between different objects.

On the contrary, a functional explanation is not so much focused on the structure of the
object, rather than on its integration in a larger system. When we say that “deciduous trees
shed their leaves to conserve resources during the winter”, we are not looking downward, i.e. at
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the underlying mechanisms that cause leaves to eventually fall, but rather upward, i.e. at the
role of leaf shedding for the tree in response to changes in its environment. As Craver noted,
functional understanding is everywhere in physiological sciences, where different entities gener-
ally have complementary functions to maintain certain balances needed for organs to function
properly.

This second type of explanation does not seem applicable to the study of atmospheric con-
vection: naively, one could think that fluids are aimless and that it is therefore vain to interpret
convective phenomena otherwise than by mechanistic explanations. Convective phenomena do
not have their own end or purpose because contrary to biological systems, atmospheric con-
vection has not evolved over time through natural selection to respond to its environment.
The theory of evolution explains why certain entities or processes do have specific functions in
physiological systems – for instance, why deciduous trees do lose their leaves in winter – but
does not apply to non-living phenomena like atmospheric convection. In particular, the Gaia
hypothesis, according to which the Earth forms a self-regulating system that helps to main-
tain and perpetuate the conditions for life on the planet has been criticized by several studies
(Kirchner, 2003; Moody, 2012). The study of fluid dynamics might therefore seem fundamen-
tally different from the study of living beings and allow only mechanistic explanation.

Figure 2.2: Reflected short-wave radiation at top of atmosphere from ten years of CERES EBAF
data (Loeb et al., 2009) as a function of latitude. The year-to-year variability is indicated by
the gray shading which spans the range of yearly values. The blue line shows the 10-year mean.
The small red bar and the two small horizontal bars denote respectively the range in te global
and annual means, and the 10-year means averaged over the northern and southern hemisphere
separately.

Nevertheless, certain equilibria in Earth’s atmosphere are striking and suggest the presence
of certain regulating feedbacks in which atmospheric convection is involved. For instance, Fig-
ure 2.2 given in Stevens and Schwartz (2012) shows the constancy of the planetary albedo over
annual time scales, not only globally but also within latitude zones. The small vertical and
horizontal red bars in the left side are particularly interesting: they show respectively the range
of the global inter-annual variability in ten years of measurements and the two hemispherically
averaged values over ten years. Despite zonal average differences of more than 40 W m−2,
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the inter-annual range is only 1.16 W m−2 and the difference between the two hemispherically
averaged values, only 0.35 W m−2. As we have seen in Chapter 1, the amount of shortwave
(SW) radiation reflected back to space depends on many factors including the height, depth
and microphysical properties of clouds, their location, the color of the Earth’s surface, etc.
Despite this diversity, the planetary albedo is surprisingly constant over time, with a similar
averaged value in the two hemispheres.

Another equilibrium is often invoked to interpret the behavior of atmospheric convection:
the convective quasi-equilibrium (CQE). The CQE assumes that moist atmospheric convection
reacts rapidly to large-scale instabilities, hence a kind of equilibrium behind convection and the
large-scale (Arakawa & Schubert, 1974; A. K. Betts, 1986; K. A. Emanuel et al., 1994). Under
the CQE hypothesis, convection drives the atmosphere towards certain typical temperature
profiles, as was documented in various observational data sets in the tropics and subtropics
(Lord, 1982; Lord & Arakawa, 1980). We discuss the quasi-equilibrium assumption and its
limitations in more detail in Chapter 3. For now, we simply note that the CQE assumption
typically gives a functional understanding of atmospheric convection, which can be contrasted
with the mechanistic understanding given by objects: it expresses the cause of atmospheric
convection in terms of its environment rather than in terms of its building blocks.

2.2.4 Sugar, gravel, fish and flowers as examples of objects

Objects determine how we study atmospheric convection. They give us words to name what we
see and to give mechanistic explanations of convective phenomena. Therefore, the importance
of choosing relevant objects to orient and guide atmospheric research should not be underesti-
mated. This is best exemplified with a recent classification given in Stevens, Bony, et al. (2019),
which categorizes cloud scenes from satellite imagery in the western tropical Atlantic into four
main cloud types: sugar, gravel, fish and flowers. In this classification, sugar consists of many
small clouds scattered across the domain, gravel is recognizable due to the presence of cloud
lines or arcs, clouds in a fish have the appearance of a fishbone skeleton, and flowers refers to
the presence of larger but more dispersed cloud clusters. As detailed in Stevens, Bony, et al.
(2019), these patterns have been defined subjectively from the visual inspection of cloud scenes
in satellite imagery. Figure 2.3 gives an example of each of these patterns.

Sugar, gravel, fish and flowers can be seen as four different objects: they are indeed defined
as a set of adjacent points with a certain anomaly, here a certain appearance of a cloud field
seen from space, with respect to an environment. The environment is in this case the scenes
that were identified as containing none of the four patterns. We see with this example that the
notion of objects is intrinsically linked to the notion of organization: it is because atmospheric
flows organize themselves into characteristic structures that we can distinguish these structures
and group them into objects. We would not be able to distinguish objects in a homogeneous
flow: objects appear only when there are persistent heterogeneities, i.e. forms of organization.

The classification introduced by Stevens, Bony, et al. (2019) gives four new building blocks
to describe and understand mechanistically atmospheric convection. The definition of sugar,
gravel, fish and flowers actually expanded a whole field of research. A first step in the char-
acterization of these patterns was for instance proposed by Bony et al. (2020a), which related
the presence of each pattern to large-scale environmental conditions. The authors showed that
gravel and flowers tended to form predominantly under strong surface winds, and fish and
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Figure 2.3: Illustration of the four prominent cloud patterns of shallow convective organization
pointed out by Stevens, Bony, et al. (2019) over the tropical western Atlantic near Barbados.
The four satellite images (48–58◦ W, 10–20◦ N) are derived from MODIS imagery. From Bony
et al. (2020a).

flowers, in situations with enhanced lower-tropospheric stability. Another recent study of Vial,
Vogel, and Schulz (2021) looked at how sugar, gravel, fish and flowers evolve at a daily time
scale and showed that fish and sugar appeared mainly during the day, and gravel and flowers
during the night. Further studies are expected in the coming years, and the characterization
and understanding of these patterns is at the core of the EUREC4A field campaign, which took
place in January-February 2020 over the western tropical Atlantic, west of Barbados (Stevens
et al., 2021, see also appendix B and C).

Sugar, gravel, fish and flowers provide an interesting example of how the definition of certain
objects may focus and guide scientific research. Stevens, Bony, et al. (2019) did not discover
anything new: some special kinds of shallow convective organization had long been noticed in
the tropics (e.g. Warner et al., 1979). However, by naming them, Stevens, Bony, et al. (2019)
made a mechanistic understanding of the associated phenomena possible.

2.3 Objects in observations

In the previous section, we defined what objects are and how they can provide a mechanistic
understanding of atmospheric convection. In the next two sections, we clarify the role played
by observations and computer simulations in this understanding, starting with the role and
limitations of observations.
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2.3.1 Defining and characterizing objects in observations

Objects are in part natural, in part artificial, that is to say they are not directly given by nature
but have to be constructed. In observations, this means that one has to define what an object
is, and how it can be detected. Defining an object and detecting it are two sides of the same
coin. Any detection method relies directly or indirectly on a certain definition of an object.
For instance, if we define a cloud as an ensemble of liquid or solid water particles in suspension
in the atmosphere, we can detect the presence of a cloud with an in situ measurement – with
sensors on a research aircraft for instance – of the concentation of liquid or solid hydrometeors
in the atmosphere. Conversely, a detection method is in itself a particular way of defining an
object. When a certain criterion is used to detect an object, it defines at the same time what
that object is.

Nevertheless, in practice, the instruments and data available create a strong constraint on
the detection method used. There can therefore be a gap between the definition of an object
and the method used to detect it in observations. Generally, only a few features of the definition
can be used in practice to detect the object. Any detection method can therefore be seen as a
projection of the definition of an object on the space of available data.

Once an object is defined, it is possible to study its characteristics. For instance, if we fly
with a research plane in a cloud, with appropriate sensors, we can detect the presence of liquid
or solid water particles in suspension in the atmosphere. If we perform a sufficient number of
research flights in a variety of clouds, we can deduce that this feature is a general characteristic
of clouds. On the contrary, when we notice that certain features that are present in some
clouds but not in all, we can choose separate the object “clouds” into more specific objects.
For instance, differences in vertical velocity inside clouds may lead to a distinction between
convective and stratiform clouds. The shape, size and altitude of clouds can create further dis-
tinctions between cumulus, strato-cumulus, congestus, and cirrus, as shown in Fig. 2.1. Each
time a new object is defined, its characteristics can be studied to determine which properties
are generalizable to this object and which are not and may lead to further distinctions.

Objects have played a crucial role in the interpretation of the field campaigns that have
been conducted over the past 50 years. For instance, the Barbados Oceanographic and Mete-
orological Experiment (BOMEX) was one of the pioneering field campaigns in the tropics. It
was conducted in May, June and July 1969 in the western Atlantic Ocean north and east of
Barbados (Davidson, 1968; Holland, 1970). During BOMEX, clouds were sometimes observed
to orient themselves in the wind direction, forming “cloud bands” or “cloud streets”. Kuettner
(1971) proposed the mechanism described in Fig. 2.4 to interpret these cloud bands observed
during BOMEX. In this mechanism, the observed cloud bands are attributed to helical rolls,
which load water vapor in converging areas by sweeping the air laterally across the sea surface.
The high humidity in the converging areas provides latent heat to support the rise of the air,
which contributes to the helical circulation along the line of convergence. We see here how a
certain phenomenon (the presence of cloud bands) is interpreted based on an object (helical
rolls) and its interactions with its environment.

BOMEX paved the way to another, much larger field campaign in the tropical Atlantic. The
Global Atmospheric Research Program’s (GARP) Atlantic Tropical Experiment (GATE) took
place in the summer of 1974 and lasted approximately 100 days. GATE Observations extended
from West Africa to the western Atlantic Ocean, between 10 ◦S and 20 ◦N. Considerable
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Figure 2.4: Mechanistic interpretation of cloud bands during BOMEX using helical rolls con-
centrating regions of high humidity along lines parallel to the wind direction (Fleagle, 1972).

resources were deployed, in particular forty meteorological and oceanographic ships, twelve
research aircraft and a vast network of buoys from some twenty countries. GATE has led to
numerous studies that are still references today (e.g. A. K. Betts, 1978; Houze Jr & Betts,
1981; Warner et al., 1979). In particular, E. Zipser (1977) proposed the conceptual model
shown in Fig. 2.5 to describe some of the mesoscale systems observed during GATE, that
he names “squall lines”. Using data from GATE and other field campaigns in the tropics,
Zipser identified features that are common to different squall lines over the tropical oceans and
summarized these features in a conceptual model. As we can see, this conceptual model is
based on numerous objects, in particular updrafts, convective-scale downdrafts and mesoscale
unsaturated downdrafts. These objects divide a squall line in different interacting blocks, which
Zipser uses to give a mechanistic interpretation of the squall line phenomenon.

2.3.2 Limitations of observational measurements

Objects are 4-dimensional: they have a certain spatial extent in 3D and evolve in time. On the
contrary, many instruments measure the atmosphere only in 1D. It is the case, by definition, of
instruments used for in situ measurements such as radiosondes or dropsondes, weather stations,
measurement probes on an aircraft or a ship, etc. Instruments taking remote measurements,
whether they are active such as radars or lidars, or passive such as radiometers, spectrometers
or interferometers, can measure the atmosphere either in 2D (time + 1 spatial dimension) or,
in the best case, in 3D (time + 2 spatial dimensions). Remote measurements can be taken
either from the ground, from an aircraft or from a satellite. These different types of instru-
ments offer complementary visions of objects. Nevertheless, since objects are 4-dimensional
and instruments are at best 3D, at least one of the dimension of the detected objects is miss-
ing. An entire object cannot be captured in observations. For instance, the sugar, gravel, fish
and flowers patterns mentioned precedently were detected in satellite images in 2D only (two
spatial dimensions, no time). Satellite images gave access neither to the vertical extent of these
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Figure 2.5: Schematic of a certain class of mesoscale convective system called squall lines,
featuring different objects. The arrows indicate the flow relative to the squall line, which is
moving from right to left. From E. Zipser (1977).

objects, nor to their evolution in time.

To describe the objects, it is thus necessary 1) to combine measurements from different
instruments and 2) to perform statistics over several objects, as the different instruments will
likely not measure the same object simultaneously. An object studied in observations is thus
generally a composite of various measurements. Connecting isolated measurements from dif-
ferent instruments taken at different times and places is in fact an important role of objects
in observations. For instance, during the field campaign EUREC4A, in situ measurements of
sugar, gravel, fish and flowers were taken from dropsondes and radiosondes, and gave access
to the vertical extent of these patterns (see appendix C, Fig. C.5). Without a definition of
these four patterns, it would have been impossible to connect the properties deduced from these
measurements to similar cloud scenes visible in satellite images.

When different instruments are used to study objects, each instrument will likely have its
own detection method. Nevertheless, the various detection methods used have to be compatible
with each other. To verify this, one can for example cross-check the measurements made by
different instruments on a few well-chosen examples of objects, in order to ensure that the dif-
ferent detection methods used give the same results. The characteristics of a particular type of
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object can then be studied statistically, by combining the measurements collected by different
instruments, on different objects. For instance, in appendix B, we combine satellite, ship and
sounding measures to study the properties of trade-wind cold pools.

However, as an entire object cannot be captured from instrumental measurements, observa-
tions offer only a partial view of an object: in particular, it is not possible to know accurately
fluxes of energy and matter at the boundaries of an object from observations. As a consequence,
causality is also difficult to establish. To analyze the causes and effects of an object – which we
have defined as a group of adjacent air particles – we would like to know what goes in and out.
Such budgets at the boundary of an object enable to establish formal relationships between this
object and its environment, or between two objects, and thus to test mechanisms. For instance,
to prove that an updraft creates a cloud, we need to know the mass flux and quantity of water
vapor brought by the updraft to the cloud layer. Various approximations exists to estimate the
mass flux (see for instance Vogel, Bony, & Stevens, 2020), but one should keep in mind that
they are only approximations and not exact calculations. More generally, observations may
be consistent with certain mechanisms linking objects, but do not prove them. This is why
computer simulations – where, as we will see, formal causal relationships can be established –
have to be used to complement observations.

2.4 Objects in computer simulations

We will now look at objects in computer simulations. In particular, we will make a distinction
in the following between resolved objects and parameterized object and specify different uses
of computer simulations to study objects.

2.4.1 Models and computer simulations in climate science

Let’s first precise what we mean by a computer simulation. In a broad sense, a simulation is a
method to study the behavior of a system thanks to another system. We talk about a computer
simulation when this study is performed using a computer. A computer simulation involves
different steps: formulating a model to represent the process, finding a way of implementing
this model in a form that can be run on a computer, calculating the output of the algorithm,
and visualizing and studying the resultant data. The model itself can be expressed either as
a set of equations – for instance, the equations of fluid dynamics to study the behavior of a
fluid – a set of rules, or both. The advent of computer simulation is relatively recent – the first
examples of use of computer simulations in science comes from meteorology and nuclear physics
after World War II (Edwards, 2010). Today, the use of computer simulations is nevertheless
pervasive in many scientific fields: among others, particle physics, astronomy, meteorology,
climate science, or even social sciences such as economics or sociology rely heavily on this tool.
Some entire scientific fields, such as the study of complex systems or chaos theory, are based
almost exclusively on computer simulations.

In climate science, the object of study is the behavior of the Earth system – and in particular
its two main components, the atmosphere and the ocean – over long time scales, from decades
to centuries and under different conditions. As both the atmosphere and the ocean are fluids,
most of the models used in climate science are based in one way or another on Navier-Stokes
equations, discretized over a given grid, with a given resolution. By definition, processes occur-
ring at scales smaller than the grid used – what we will call subgrid-scale processes – will not
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be resolved, as well as processes that affect the behavior of the atmosphere and the ocean, but
cannot be described by fluid dynamics equations (microphysical processes associated with the
formation of cloud droplets and precipitation for instance). To take their statistical effect at the
scale of the grid into account, climate scientists introduce so-called parameterizations. In large-
eddy simulations (LES) for instance, the resolution is typically between tens and hundreds of
meters and the small-scale turbulence is not adequately resolved. The Smagorinsky-Lilly model
(Lilly, 1967) is a parameterization commonly used to describe the effect of this small-scale tur-
bulence at the scale of the LES grid. Global Climate Models (or general circulation models,
GCMs) used to make projections about future climate change are much coarser than LES and
typically have a resolution of tens to hundreds of kilometers. At such scales, many processes
are not taken into account and several parameterizations have to be introduced. A particular
difficulty comes from the representation of atmospheric convection for which many different
parameterizations have been proposed. When comparing projections from different GCMs (as
done in IPCC reports; see Flato & Marotzke, 2014), most of the differences between models are
due to differences in these parameterizations. The importance of convection for climate is the
reason why we focus on objects that are used to study atmospheric convection in this chapter
– and on convection parameterizations in the rest of this thesis – although some of the points
we make here could be applied to other objects used in climate science.

2.4.2 Two types of objects

Objects can be either an emergent property of a computer simulation or one of its building
block. For instance, in LES, convective updrafts are explicitly simulated, whereas in GCMs,
they are included in the parameterizations. In the first case, when objects are detected in the
model outputs, we speak of “resolved objects”. In the second, when objects are contained in
the model formulation, we refer to them as “parameterized objects”.

Let’s note that in a single computer simulation, some objects may be an emergent property
of the model, and others included in the model formulation. In particular, computer simulations
with a kilometric resolution typically resolve deep convection, but are too coarse to adequately
resolve dry and cloudy shallow convection. The associated models sometimes include a pa-
rameterization of shallow convective updrafts (e.g. Pergaud, Masson, Malardel, & Couvreux,
2009), leading to a coexistence of resolved deep convective updrafts and parameterized shallow
convective updrafts in these simulations.

In what follows, we will see that the status and role of objects are quite different depending
on whether they are an emergent property of the computer simulation, or a component of the
associated model.

Resolved objects

Let’s first study objects that are an emergent property of a computer simulation. It concerns
mainly LES, i.e. simulations with a horizontal resolution between tens and hundreds of meters.
Certain relatively large objects may also emerge in the outputs of simulations with a kilometric
resolution, which we called in the introduction cloud-resolving models (CRMs). In the follow-
ing, for simplicity, we use the generic term “high-resolution simulations” to refer to simulations
with a grid fine enough to resolve objects, and distinguish them from GCMs with a coarser grid.
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Many scientific papers aim at defining and characterizing coherent structures in the output
of high-resolution simulations, even if the word “object” is not always used to designate these
coherent structures (e.g. Brient et al., 2019; Dupont, Brunet, & Finnigan, 2008; Tompkins,
2001; Torri, Kuang, & Tian, 2015). Two main types of methods to detect an object in the
output of a high-resolution simulation can be distinguished:

� methods that rely on an anomaly of a certain model output variable, or a combination
of model output variables (e.g. Hirt, Craig, Schäfer, Savre, & Heinze, 2020; Tompkins,
2001; Torri et al., 2015). Such methods are applicable to any simulation, provided that
the relevant output data are available. They only require some post-processing of the
simulation data.

� methods using anomalies of the concentrations of tracers emitted at strategic locations
in the simulation. In this case, the tracer that makes the objects appear is integrated
in the simulation itself: it is transported with the fluid at each time step and each
grid point. Then, a post-processing script detects objects based on anomalous tracer
concentrations. In a simulation of marine stratocumulus, Brient et al. (2019) detected for
instance updrafts and downdrafts from anomalous concentrations of two distinct tracers,
emitted respectively at the surface and at cloud top.

High-resolution simulations, contrary to observations, provide a 4D view of the objects that
are explicitly resolved. Regardless of the method used, it is thus possible to detect objects
in their entirety in simulations. Once an object is defined, not only its characteristics can be
inferred, but also the exchanges at its boundaries, thus its interactions with other objects and
with its environment. By quantifying such interactions, Brient et al. (2019) for instance proved
that updrafts and downdrafts contributed to most of the total transport of heat and moisture
in the boundary layer, even if they covered only a small part of the domain. Another example
is provided by Hirt et al. (2020), who showed in LES of different resolutions that convection is
triggered much more efficiently near the edges of cold pools than in other regions, and quantified
the role of cold pools for convective initiation. These two examples illustrate how objects can
be used to establish causal relationships in the outputs of a computer simulation. We discuss
in 2.4.3 whether such relationships can be extended to observations.

Parameterized objects

In the following, we distinguish two kinds of parameterized objects: those that are used in
conceptual models and those that are used in GCM parameterizations. These two types of
objects have a number of points in common, but GCMs create specific constraints that should
be highlighted.

Objects in conceptual models Historically, many conceptual models have been proposed
to explain phenomena in the atmospheric boundary layer, convection in particular, using a set of
simple thermodynamic equations. Stevens (2006) provides a review of simple conceptual mod-
els used to study tropical and subtropical maritime atmospheric boundary layers and introduce
a formalism to build such models. Using this formalism, Naumann, Stevens, Hohenegger, and
Mellado (2017) interpret the behavior or a dry convective boundary layer with the conceptual
model illustrated in Fig. 2.6. In this simple model, we can distinguish two main objects: the
boundary layer (BL) and the free troposphere (FT). These objects are described using certain
variables, in particular the potential temperature θBL, the height h of the BL and the vertical
velocity in the FT wFT , as well as other prescribed parameters such as radiative cooling rates
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in the BL and in the FT, respectively QBL and QFT .

Figure 2.6: A conceptual bulk model for a dry, convective boundary layer with prescribed
horizontally homogeneous cooling rates. From Naumann et al. (2017).

When we write such a conceptual model, we have to choose first some objects, characterized
with certain variables, and then how we relate them. Defining objects and their interactions
is not, by itself an explanation, though it may reflect our understanding or intuition of the
phenomena of interest. The explanation comes later. Once the objects are defined, they have a
certain autonomy. Whether the results of a model are analyzed using a pen and paper method
or simulated using a computer, new causal relationships, that were not explicitly written or
thought in the formulation of the model, may appear between the objects. For instance,
Naumann et al. (2017) find that the height of the BL increases with the radiative cooling in
the BL and prove that this behavior can be established analytically. Conceptual models can
thus be used to establish causal relationships between objects, even if the latter are components
rather than emergent properties of this kind of models. Once again, we leave to Section 2.4.3
the discussion on whether or not these causal relationships can be extended to the real world.

Objects in GCM parameterizations Many GCM parameterizations are based on concep-
tual models similar to the ones we just mentioned (see for instance Arakawa & Schubert, 1974;
Deardorff, 1972). They thus share many characteristics with these conceptual models. In par-
ticular, they also rely on the definition of some objects – such as updrafts, downdrafts, clouds
and cold pools – and relations between them. Nevertheless, the fact that parameterizations
are implemented in operational GCMs creates some constraint on the form they can take. As
illustrated in Fig. 2.7, GCMs have a dual structure. On the one hand, they are based on a
particular form of fluid dynamics equations, so-called primitive equations, which are discretized
over a grid spanning the whole atmosphere. In current GCMs, the typical horizontal resolution
is between 50 and 300 km, with a vertical resolution varying from a few tens of meters to a few
dozens of kilometers depending on the altitude – the finest resolution being near the surface.
The time step of the model is typically around 10 min, which means that every ten minutes,
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the state variables of the model such as the temperature, the specific humidity, the pressure,
or the three components of the wind vector are calculated at each grid point.

This discretization is used to build the “dynamics” of GCMs, which computes the large-
scale transport of air masses in the atmosphere. However, many phenomena occur at a smaller
scale than the model grid and are ignored by the dynamics. Parameterizations are introduced
to take these subgrid-scale processes into account and constitute what is called the “physics”
of GCMs. Some parameterizations, for instance turbulence, occur at a subgrid scale both hor-
izontally and vertically, but many parameterizations span multiple vertical levels and are thus
discretized over the grid of the GCM in the vertical direction (see Fig. 2.7). It means that
the characteristic variables of each object used in a parameterization, for instance its potential
temperature or specific humidity, are calculated within each horizontal cell at each vertical level
in the model. It is an important difference with conceptual models, which can freely choose
the vertical grid used to represent the objects and their interactions. The conceptual model
of Naumann et al. (2017), which is built on a two-level grid, cannot be directly turned into a
parameterization for this reason.

Figure 2.7: Sketch of an atmospheric column in the atmospheric GCM LMDZ. Different param-
eterizations are illustrated: diffusive turbulence (circular blue arrows), thermals that are used
to represent shallow convection (brown arrows), deep convection, including deep convective
updrafts (red upward arrows), compensating subsidence (small red arrows) and downdrafts
(black downward arrows), and cold pools created below deep convective clouds (in orange).
The interactions between cold pools and deep convection are also represented and materialized
in particular by the orange arrow, which represents the triggering of deep convection by cold
pools. Adapted from Hourdin et al. (2010).

As for conceptual models, once a parameterization is implemented in a GCM, new causal
relationships between objects, that were not explicitly written in the parameterization, may
appear. However, due to the complexity of GCMs, it is more difficult to diagnose such causal
relationships in the outputs of a GCM simulation than in a conceptual model. Lenhard and
Winsberg (2010) even accused GCMs of facing a strong form of confirmation holism, preventing
to understand analytically the results of GCM simulations. In chapter 6, we nuance this claim
by referring to the many tools that can be used to play with model results and interpret them.
For now, we simply assume that analytical understanding of GCM results is possible, but much
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more difficult to establish than for simple conceptual models. Despite that, GCMs can be
used to investigate the effect of objects in a much more realistic framework than for conceptual
models. In particular, the interactions between convection and the large-scale circulation, which
are thought to play an important role for climate, can be studied (D. A. Randall, Dazlich, &
Corsetti, 1989; S. Sherwood, Roca, Weckwerth, & Andronova, 2010).

2.4.3 Uses and limitations of computer simulations

Whether we find some causal relationships thanks to resolved or parameterized objects, the
big question is of course: how well do the results found in the simulations apply to the real
world? At least, two main uses of computer simulations can be distinguished. First, computer
simulations may help scientists to formulate new hypotheses, which could then be tested using
observations, for instance. This is what W. S. Parker (2008) called the heuristic function of
computer simulations. Then, computer simulations might be used as evidential resources, i.e.
to test hypotheses. In the study of atmospheric convection, both uses present epistemological
challenges.

Heuristic and evidential uses of computer simulations

When computer simulations are used heuristically, that is to formulate hypotheses, we would
like to use observations to test these hypotheses. However, as we explained in Section 2.3,
observations provide only a limited view on objects. There may be some hints of certain causal
relationships in observations, but it is not possible to prove them rigorously. Consequently, for
the study of atmospheric convection, we cannot just ask computer simulations to serve as mere
heuristic resources: they must also act as evidential resources and help test and validate certain
hypotheses.

Nevertheless, to serve as an evidential resource, a computer simulation must itself be vali-
dated, which raises another bunch of epistemological questions, such as: how do we know that
a computer simulation is good enough to serve as an evidential resource? What criteria should
be used? These questions are not specific to the study of atmospheric convection and many
philosophers have studied the epistemological issues associated with the validation of computer
simulations (e.g. Frigg & Reiss, 2009; Klein & Herskovitz, 2005; Winsberg, 2009). The principal
strategy used to validate a computer simulation consists in comparing its outputs with data
from observations. In practice, observations are however often scarce and it is furthermore not
clear how much agreement with observational data is necessary to have confidence in simula-
tion results. Due to these difficulties, the expression “validation of computer simulations” by
observations itself has been criticized by Oreskes et al. (1994) as it leads to overconfidence.
Taking into account this criticism, the last IPCC reports changed their terminology and used
the term confirmation of climate models by observations instead (Giorgi & et al., 2001; IPCC,
2014).

Trust and distrust in simulations of atmospheric convection

In computer simulations used to study atmospheric convection as in other simulations, it is
difficult to guarantee the reliability of the outputs of a simulation. Nevertheless, the fact that
the physical laws that describe fluid motions are well understood gives a fundamental reason to
have a relative confidence in high-resolution simulations and in GCMs. It has to be contrasted
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with empirical laws used to study human behaviors in economy or sociology, or the dynam-
ics of ecosystem – a famous example being the Lotka-Volterra equations, also known as the
predator-prey equations, which are often used to describe the dynamics of biological systems
where two species interact, one as a predator and the other as prey. Contrary to the equations
of fluid dynamics, which can be derived from Newton’s laws, the Lotka-Volterra equations are
not related to more fundamental principles. Models describing fluid motions in the atmosphere
are therefore based on a more solid theoretical foundation than models using empirical laws
such as the Lotka-Volterra equations.

This argument concerns only the dynamics of high-resolution simulations and of GCMs.
The parameterizations used in these models do not have such a solid theoretical basis (see
Chapter 3) and are, in practice, a main source of uncertainties for GCMs (McFarlane, 2011;
T. J. Phillips et al., 2004). Due to these uncertainties, if we establish a formal relation in the
outputs of a GCM, this relation may not hold in the real world because of certain important
phenomena absent from the simulation or inadequately represented in the parameterizations.
This is also true for high-resolution simulations, which use parameterizations for microphysics,
turbulence and radiation (Jansson, Edeling, Attema, & Crommelin, 2021). High-resolution
simulations, however, are more accurate than GCMs because they resolve many phenomena
that are parameterized in GCMs. As a consequence, despite the superiority of high-resolution
simulations and to a lesser extent, GCMs, compared to simulations solely based on empirical
laws, there are many reasons why certain causal relationships established in the outputs of an
atmospheric simulation would not hold in the real world.

The validation of conceptual models is even more challenging. Conceptual models represent
a further degree of simplification compared to parametrizations: they also contain objects, but
these objects are generally more simplified than those used in parameterizations. Moreover, the
domain of application of conceptual models is extremely limited: conceptual models usually
target one or a few phenomena and it is not possible to test them in a variety of situations as
can be done for GCMs and high-resolution models. Despite that, the main advantage of con-
ceptual models is that they can be understood analytically: in these models, the link between
different objects can be easily diagnosed.

Table 2.1 summarizes the characteristics, uses and limitations of the various tools we have
mentioned to study atmospheric convection. This list of tools is not exhaustive, and we could
mention in addition:

� Direct Numerical Simulations (DNS), in which the whole range of spatial and tem-
poral scales of turbulence is resolved, but which requires a resolution of approximately
10−3 m for the atmosphere. DNS are thus very expensive and can only be run over very
small domains.

� cloud-resolving models (CRMs), which have a coarser horizontal resolution than LES,
typically between 1 and 10 km, but can encompass larger domains. Recently, global
simulations using CRMs and SRMs have even been performed (e.g. Satoh et al., 2019;
Stevens, Acquistapace, et al., 2020; Stevens, Satoh, et al., 2019).

� Earth System Models of Intermediate Complexity (EMICs), which are simplified
versions of GCMs – typically with less details in the representation of processes in param-
eterizations and/or a coarser resolution. EMICs are sometimes seen as a bridge between
conceptual models and GCMs (Claussen et al., 2002; Weber, 2010).
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Tools Characteristics Uses Limitations

Observations Either local and 1D with drop-
sondes, radiosondes, measure-
ment probes on a weather sta-
tion, etc. or remote and poten-
tially 2 or 3D (time+2D) using
radar, lidar, radiometers, etc.
from the ground, an aircraft or
a satellite.

Detect and charac-
terize objects from
statistics over sev-
eral objects.

1) Do not give a 4D view
of the objects, thus can-
not prove causal relation-
ships between objects.
2) The characterization of
the object is limited by the
accuracy of the instrument
used.

Large-Eddy
Simulations
(LES)

Horizontal resolution: around
100 m.
Domain size: 10-100 km.
Parameterizations: turbu-
lence, radiation and micro-
physics mainly.

Resolve explicitly
some objects that
can then be de-
tected and studied
in 4D.

1) Do not span the whole at-
mosphere, and are therefore
inappropriate for studying
interactions between con-
vection and the large-scale
circulation or climate.
2) (Small) biases associated
with the parameterizations.

General
Circulation
Models
(GCMs)

Horizontal resolution: between
50 and 300 km.
Domain size: the whole atmo-
sphere (+ oceans in coupled
GCMs).
Parameterizations: shallow
and deep convection, turbu-
lence, radiation, microphysics.

Simulate the whole
atmosphere and its
interactions with
other components
of the climate
system (ocean, sea
ice, vegetation).

1) The understanding and
the interpretation of GCM
outputs raise difficulties.
2) (Large) biases associated
with the parameterizations.

Conceptual
models

Conceptual models consist of a
set of closed equations linking
different variables and free pa-
rameters, usually targeting a
given phenomenon.

Understand analyt-
ically the behavior
of the objects de-
fined by the equa-
tions.

1) Conceptual models have
a limited domain of applica-
tion.
2) The validation of con-
ceptual models is even more
difficult than for LES and
GCMs.

Table 2.1: Different tools to study atmospheric convection, with their characteristics, uses and
limitations.
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Need for a model hierarchy

These models all have some usefulness, but also some limitations. Due to these limitations,
when a certain causal relationship is found in a particular computer simulation, there is some
doubt whether this relationship is valid as well in the real world. Then, how can we prove that
a given relationship is robust? The mathematical ecologist Richard Levins was confronted to
a similar issue when using various kinds of models in population biology. In Levins (1966), he
explains that “all models leave out a lot and are in that sense false, incomplete, inadequate.”
The strategy he proposes to reach robust conclusions thanks to these imperfect models is to
use several models, based on different assumptions, but which attempt to represent the same
phenomenon. If these various models lead to similar results, he explains that these results
might be considered as independent from the details of the different models, thus robust. This
leads him to claim that “our truth is the intersection of independent lies.” (Levins, 1966, p.
423). Levins’ account of robustness is a strong argument for the use of various models to study
atmospheric convection, or more generally any important phenomenon in the climate system.
Robustness can for instance be achieved when the results diagnosed in the outputs of LES,
CRMs and GCMs are consistent with what we see in observations, and can furthermore be
interpreted using simple conceptual models.

In addition, the use of models of varying complexity can facilitate our understanding of the
results of comprehensive GCMs, the most realistic models to make projections of future climate
change. In an influential paper entitled “The Gap between Simulation and Understanding in
Climate Modeling” (I. Held, 2005), the climate physicist Issac M. Held compares the progress
in climate modeling and in biology, where a hierarchy of biological systems of increasing com-
plexity have been used to understand the human genome, from bacteria, to insects, mouses
and finally, humans. Rapid progress in the understanding of the human genome was possible
because biologists first put their focus on simple organisms, such as the bactery E. coli or
the fruit fly Drosophila melanogaster. Similarly, to understand the most complex GCM sim-
ulations, Held argues that simplified models capturing the essence of the phenomena at stake
should be used. Reflecting on the progress made in climate research since the Charney Report
on CO2-induced climate change published in 1979, Bony et al. (2013) reach similar conclusions:
progress in climate change projections depends critically on our understanding of the phenom-
ena at stake, and this understanding can be achieved through the use of models of increasing
complexity.

However, having a hierarchy of model of various complexity is not enough: we also need to
make these different models talk to each other. Contrary to the genome, which is written in
nature in a single language, the various models used in the study of atmospheric convection
sometimes look like a tower of Babel: the view they give of atmospheric convection is so different
that it is not easy to transfer the knowledge acquired on a given model to another (Jeevanjee et
al., 2017). For instance, when we compare the conceptual model of a dry, convective boundary
layer given in Naumann et al. (2017), with the parameterizations of the atmospheric GCM
LMDZ shown in Fig. 2.7 or the outputs of a LES, we have three quite different pictures of
atmospheric convection.

To climb the model hierarchy, objects that are consistent across models have to be defined.
For instance, to compare the results of their conceptual model with LES, Naumann et al. (2017)
had to define the object “boundary layer” in LES. For this, they used the height of maximum
temperature variance as a proxy for the height of the boundary layer in LES. Similarly, to
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compare model simulations with observations, objects that refer to the same phenomena in
simulations and in observations have to be defined. Well-defined objects can make the link
between the various tools we have at our disposal to study atmospheric convection: they are
the Esperanto making the construction of our Tower of Babel possible. In the next section, we
will see how a well-defined object can serve as a bridge between GCMs, LES and observations
with the example of cold pools.

2.5 Objects as a bridge between computer simulations

and observations: the example of cold pools

2.5.1 Definition of a cold pool

Below clouds, the partial evaporation of precipitation may cool the air sufficiently to generate
unsaturated downdrafts, which spread horizontally when reaching the surface under the form
of density currents. These density currents are called “cold pools”. When spreading at the sur-
face, cold pools can reach a size between 10 and 200 km in diameter and typically last less than
a day (Zuidema, Torri, Muller, & Chandra, 2017). The edge of a cold pool is called a gust front.
While the air inside a cold pool is relatively cold, thus less able to support buoyancy-driven
convection, in some situations, the gust front has the ability to lift surrounding air masses and
create new convective cells (Craig Goff, 1976; Warner et al., 1979). This triggering has been
observed to be particularly effective when two or more cold pools collide (Droegemeier & Wil-
helmson, 1985) or when the vorticity created by a cold pool counteract that from the low-level
wind shear (Rotunno, Klemp, & Weisman, 1988). In addition, since they induce strong gusts
near the surface, cold pools are suspected to enhance surface fluxes, and thus, to modify the
thermodynamic properties of the subcloud layer (Langhans & Romps, 2015; Tompkins, 2001).
For all these reasons, cold pools are thought to play an important role for the organization and
the propagation of convection (Kurowski, Suselj, Grabowski, & Teixeira, 2018; Schlemmer &
Hohenegger, 2014; Tompkins, 2001).

This description shows that today, a cold pool is a relatively well-defined object: it is created
by a precise process, the evaporation of precipitation, is delimited spatially by a gust front, has
a certain lifetime, and plays an important role for convection. This object can be detected in
a variety of environments: on land and over oceans, in deep or shallow convective regimes, at
various latitudes, etc. But making cold pools such a universal object and one of the building
blocks of convection took time.

2.5.2 The construction of the object “cold pools”

Early views of cold pools in observations and in numerical simulations

Early studies on cold pools in observations were made as part of the Thunderstorm Project, a
major meteorological study conducted by the United States just after World War II to study
the nature and causes of thunderstorms (Byers & Braham, 1949; Newton, 1950). At that time,
cold pools were seen as one of the properties of so-called squall lines, that is lines of thunder-
storms forming along or ahead of a cold front. Newton (1963) referred to them as “pseudo-cold
front” and already identify their capacity to regenerate convection by lifting the unstable warm
air ahead of the squall line. A few years later, E. J. Zipser (1969) came to similar conclusions
on the role of cold pools when analyzing data from the Line Islands Experiment conducted in
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the eastern Indian Ocean in February-April 1967. Once again, in this study, cold pools as not
yet seen as a separate object, but as an emerging features of squall lines – E. J. Zipser (1969)
identified them as a particular kind of circulation induced by downdrafts (see also Fig. 2.5,
taken from his subsequent paper E. Zipser, 1977). Analyzing data from a large tropical cloud
cluster during GATE, Houze Jr and Betts (1981); Leary and Houze Jr (1979) later employed
the terms outflows (or wakes) of convective-scale downdrafts to speak about cold pools. They
both noted that such “outflows” exerted a strong control on where future convection broke
out. These studies suggested that cold outflows should be represented in parameterizations of
convection along with updrafts and downdrafts (Houze Jr & Betts, 1981). Although the term
“cold pools” did not become widespread until the 1990s (see Fig. 2.8), this marks the birth of
cold pools as an object.

In parallel, similar features were detected in the first numerical simulations of storm dynam-
ics, first in two dimensions (Hane, 1973; Schlesinger, 1973; Takeda, 1971), and later in three
dimensions (Klemp & Wilhelmson, 1978; Redelsperger & Lafore, 1988). These simulations were
used to better understand the role of cold pools in triggering convection. In particular, Rotunno
et al. (1988), based on two- and three-dimensional squall line simulations, concluded that the
interactions between cold pools and the low-level shear were crucial to explain the formation
of new convective cells and the longevity of squall lines. A key point in their demonstration
concerns the generation of vorticity near cold pool edges, which can counteract the vorticity
induced by low-level wind shear in certain situations. Following this study, D. J. Parker (1996);
Q. Xu (1992) looked at cold pools as a particular kind of gravity (or density) current. They
borrowed a fluid dynamics formalism developed by Benjamin (1968); Prandtl (1952) and other
early studies to investigate the production of vorticity near the edge of a cold pool. In these
studies, the properties of cold pools are studied independently of the storm that generates them,
which underlines the emergence of cold pools as a distinct convective object.

Detection methods of cold pools

The apparition and the definition of cold pools as an object is also reflected in the appearance
of the first methods to detect cold pools in high-resolution simulations and observations. As
we have seen in section 2.2, there is a close link between detecting an object and defining it. As
a consequence, the first attempts to detect cold pools in simulations led to define them more
precisely (D. J. Parker, 1996; Skamarock, Weisman, & Klemp, 1994). In model simulations,
cold pools were defined as a set of connected points fulfilling some conditions. Since cold pools
are essentially density currents, a natural candidate to identify them was the buoyancy, defined
as:

b =
g(θρ − θ̄ρ)

θ̄ρ
(2.1)

where g is acceleration due to gravity, the overbar represents the horizontal domain mean, and
θρ the density potential temperature, defined following K. A. Emanuel et al. (1994) as

θρ = θ(1 + 0.608 qv − ql) (2.2)

with qv and ql are respectively the mixing ratios of water vapor and liquid water. In Tompkins
(2001) for instance, cold pools were identified as regions where the buoyancy is lower than a
given threshold. Since, many other methods have been proposed to detect cold pools in LES
or CRMs, relying mostly on buoyancy, temperature or wind anomalies (see Drager & van den
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Heever, 2017, for an overview).

In observations, Young, Perugini, and Fairall (1995) provided one of the early attempt to
detect cold pools. Analyzing data from the Tropical Ocean Global Atmosphere (TOGA) Cou-
pled Ocean-Atmosphere Response Experiment (COARE; Webster & Lukas, 1992), they defined
the beginning of a cold pool time period through the onset of any rain shaft of at least 2 mm
h−1 and the end of a cold pool time period by the end of the subsequent surface temperature
recovery. Other methods were then used to detect cold pools in observations, using for instance
abrupt wind shifts at the surface (Engerer, Stensrud, & Coniglio, 2008; Provod, Marsham,
Parker, & Birch, 2016) or temperature drops in the surface timeseries (de Szoeke, Skyllingstad,
Zuidema, & Chandra, 2017; Vogel, 2017). The choice of a method rather than another depends
on the observational data, the environmental conditions, and potentially the characteristics of
the observed cold pools and/or the question of interest. As for models, there is therefore no
consensus about the “best” method to detect cold pools from observations.

This lack of consensus reminds us that the construction of an object is always an idealiza-
tion: what nature – and to some extent high-resolution simulations – gives us is only a single
atmospheric flow, with some persistent heterogeneities. We have decided to call some of these
heterogeneities “cold pools”, but depending on the situation, weather conditions or available
data, what we call “cold pools” may correspond to different phenomena. The hope is that pro-
gressively, the various methods used by atmospheric physicists to define cold pools will become
increasingly consistent, in order to guarantee that all the tools available to study cold pools
speak the same language.

Cold pool parameterizations

Cold pool parameterizations are another aspect of the emergence of cold pools as an object.
One of the early attempt to parameterize the effect of cold pools in GCMs is given in Qian,
Young, and Frank (1998). Later on, Grandpeix and Lafore (2010) and Park (2014) proposed
their own cold pool parameterizations for use in GCMs. Like any parameterization, these cold
pool parameterizations are highly idealized. Hence, to build a parameterization, it is necessary
to choose which characteristics of cold pools are important to represent, and which can be
ignored. In Grandpeix and Lafore (2010), for instance, cold pools are represented as circular
objects with vertical frontiers, whereas in Qian et al. (1998) there are represented as rectangu-
lar objects. Choices must also be made regarding the way cold pools interact with the other
parameterizations. For example, Grandpeix and Lafore (2010) has been implemented in the
atmospheric GCM LMDZ, which has two separate parameterizations for shallow and deep con-
vection. In this implementation, the cold pools are generated and cooled by the deep convective
downdrafts. In turn, cold pools trigger and feed the parameterization of deep convection. In
Grandpeix and Lafore (2010), cold pools are therefore an internal feedback of convection.

Due to these different choices, parameterizing an object is a distinct epistemic activity than
detecting it in observations or in simulations. In both cases, there is a construction: as we
have seen, objects are not given as such in observations and we need to find a way to see them,
that is to say a detection method and thus a certain definition of the object. Similarly, objects
in a parameterization have to be constructed inside the frame of a given GCM. Nevertheless,
detecting an object involves choosing only one aspect of the object – the one used in the de-
tection method. The other characteristics of the object emerge freely from the observations or
the simulations. On the contrary, by design, a parameterization defines both what an object is
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and how it interacts with other objects and with the large-scale. In the process of defining an
object, the formulation of a parameterization thus represents one step further compared to the
choice of a detection method.

The above story, telling the emergence of cold pools as an object, can be summarized in three
steps: 1) first, certain patterns that will be later called “cold pools” were seen in observations.
2) Then, cold pools were identified as one of the building blocks of convection, detected and
studied both in observations and in high-resolution simulations. 3) Finally, the knowledge
gained about cold pools was used in a parameterization and incorporated in a GCM. At each
step, a stone was laid in the construction of cold pools as an object.

2.5.3 The role of cold pools as an object

The role of an object like cold pools encapsulates three main dimensions that we will detail
in the next subsection: focusing atmospheric research, summarizing our understanding, and
serving as a guide to analyze observations and high-resolution simulations.

Focusing atmospheric research

Naming an object focuses atmospheric research on that object. Cold pools were first named
and identified as a building block of atmospheric convection in the 90s. Since, the number
of studies on atmospheric cold pools exponentially increased, as shown in Fig. 2.8. Today,
cold pools are one of the central objects around which research in atmospheric sciences is or-
ganized. A well-defined object such as cold pools leads to the definition of specific research
questions, shared within certain research communities, which can be addressed using the many
tools mentioned above. With these questions, objects break complex problems, for instance
“understanding atmospheric convection” into a serie of simpler problems that can be treated
separately, such as “in which conditions do cold pools trigger new convective cells?”. In other
words, objects orient atmospheric research on some specific and solvable issues. Precise research
questions motivate the formulation and test of hypotheses, thus focus and guide atmospheric
research. This coordination brought by objects links otherwise isolated studies. In fact, in
the introduction of many studies on cold pools, the relevance of the study to some recognized
ongoing issues on cold pools is often cited as a main motivation for the work presented (see for
instance the introduction of Drager & van den Heever, 2017; Gentine et al., 2016; Torri et al.,
2015).

By focusing atmospheric research on some specific questions, objects make it possible to
study a given hypothesis using a variety of tools, thus to assess its robustness. For instance,
in the past decade, different studies focused on the role of cold pools in the diurnal cycle of
convection over land. In particular, when the parameterization of Grandpeix and Lafore (2010)
was implemented in the atmospheric GCM LMDZ, the diurnal cycle of convection over land was
shifted to the late afternoon. This corrected a bias shared by many GCMs, where continental
thunderstorms tend to peak with insolation, in contrast to observations where they tend to peak
a few hours later. This GCM result led to the hypothesis that cold pools play a fundamental
role in the diurnal cycle of convection over land. The role of cold pools in the diurnal cycle of
convection was further tested in Haerter, Böing, Henneberg, and Nissen (2019), who showed in
an idealized LES that cold pools played a role in the self-organization of convection, and thus
potentially on its diurnal cycle, a result confirmed by Hirt and Craig (2021) in a realistic CRM
simulation over Germany, and interpreted in Haerter (2019) using a simple conceptual model.
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Figure 2.8: Occurence of the term “cold pools” in the abstract or title of papers published in
atmospheric sciences journals from 1970 to 2020. Data source: Google Trends.

With this example, we see how a given hypothesis – the role of cold pools in the diurnal cycle of
convection – could be addressed and thus proven robust using a variety of tools. It illustrates
how objects can serve as a catalyst to tackle certain questions and robustly test hypotheses.

Summarizing our understanding

Objects connect different studies at two levels: first, as we have just seen, they relate studies
dealing with the same research questions, thus allowing us to study the robustness of the hy-
potheses proposed to answer them. Then – and this is what we will see here – they connect
isolated hypotheses about a certain phenomenon, and thus enable incremental progress in the
understanding of this phenomenon. Objects give us words to which we can attach our under-
standing of certain phenomena which share similar characteristics. For instance, if two studies
A and B successfully prove two different hypotheses about the same phenomenon, we will be
able to connect the results of A and B only because we have a word to name this phenomenon,
thus to recognize it both in A and in B. More generally, objects help us to connect studies that
all give a partial vision of one phenomenon in order to understand this phenomenon globally.

The conceptual model given in Rochetin et al. (2021) and shown in Fig. 2.9 best illustrates
this power of object. Indeed, it summarizes many studies about cold pools, which all give
a partial understanding about what a cold pool is: for instance, observations from the field
campaign GATE (Houze Jr & Betts, 1981) led Rochetin et al. (2021) to represent a cold pool
as a mixed layer near the surface and a stratified layer higher up, numerical studies from Hirt
et al. (2020); Romps and Jeevanjee (2016) and Torri et al. (2015) supported the presence of
lifting ahead of the gust front, etc. Such a conceptual model also helps to formulate and
thus motivate unresolved research questions: in particular, Rochetin et al. (2021) explain that
the subsidence and the “capping inversion” above cold pools are more speculative and should
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Figure 2.9: Conceptual diagram of a cold pool and its interactions with clouds and its environ-
ment. From Rochetin et al. (2021)

be studied further. By summarizing what we know, objects help to assess the limits of our
knowledge and thus to push back these limits.

Analyzing computer simulations and observations

“If, while contemplating phenomena, we did not immediately link them to some principles, not
only would it be impossible for us to combine these isolated observations, and, consequently, to
draw any fruit from them, but we would even be entirely unable to remember them.”1 wrote
Auguste Comte in 1830 in his Course of Positive Philosophy (Comte, 1835). According to the
philosopher, we need some principles to study phenomena. These principles determine what
we can learn from observations. In the study of atmospheric convection, and more generally of
climate, we have seen that some of these principles can be summarized into objects. In par-
ticular, we explained previously how the object “cold pool” has been progressively constructed
from observational and numerical studies. These studies led to an increasing understanding of
the characteristics of cold pools and of their role for convection; the state of the art of what
is known today about cold pools is illustrated in Fig. 2.9. This process suggests a linear road
from observations to understanding. Here, we mean observations in a broad sense, that is both
observations of real phenomena and high-resolution simulations where cold pools are resolved
and can also be “observed”. Comte opens a different path: our accumulated knowledge on cold
pools could help us to better observe them. The journey from observations to understanding
would then be more like a series of round trips than a straight line.

In fact, our understanding of an object has an influence on how we observe and see these
objects in high-resolution simulations or observations. We illustrate it with two recent studies

1“Si en comtemplant les phénomènes, nous ne les rattachions point immédiatement à quelques principes, non
seulement il nous serait impossible de combiner ces observations isolées, et, par conséquent, d’en tirer aucun
fruit, mais nous serions même entièrement incapables de les retenir”, Auguste Compte, Cours de philosophie
positive, première leçon. Traduit par nos soins.
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on cold pools in which we have been involved.

Rochetin et al. (2021) – A physically-based definition of convectively generated
density currents: detection and characterization in convection-permitting simula-
tions This first study proposes a method to detect and study cold pools in CRMs and LES.
This method relies on the conceptual model given in Fig. 2.9. As in this conceptual model, cold
pools are defined horizontally as a cold area adjacent to at least one gust, and vertically, as the
combination of a mixed layer and a stratified layer. Rochetin et al. (2021) explains how this
definition is used in practice to build a detection method. This method is “physically-based”
in the sense that it relies on a physical understanding of what a cold pool is.

We tested the use of the method proposed by Rochetin et al. (2021) in LES simulations over
the western tropical Atlantic, using the ICOsahedral Non-hydrostatic (ICON) model (Zängl,
Reinert, Ŕıpodas, & Baldauf, 2015), with 313 m horizontal grid spacing (see Dipankar et al.,
2015; Heinze et al., 2017; Vial et al., 2019a, for more details about this simulation). The
identification of cold pools provides access to quantitative and statistical information about
them, such as their numberNdens and their fractional coverage fdens. U

gust
mix – the mean horizontal

wind velocity in gusts over the height of the mixed layer – is also used as a proxy for estimating
the average cold pool propagation speed cdens. Finally, the mean equivalent radius rdens of cold
pools can easily be deduced from their spatial density: Ddens = Ndens/D, with D, the domain
size:

< rdens >=

√
fdens
πDdens

=

√
fdensD

πNdens

(2.3)

Figure 2.10: Time series of cold pool fractional coverage fdens (red), cold pool number Ndens

(black), domain-mean cold pool radius rdens (km, green), domain-mean cold pool gust velocity
cdens (m s−1, yellow) and domain-mean surface rain rate Pr (mm hr−1, blue).

Figure 2.10 shows the time series of these different variables over one simulation day, start-
ing at 8 a.m. (local time) on December, 11 2013. We see that the number of cold pools Ndens

follows qualitatively the precipitation rate at the surface, whereas the cold pool mean radius is
relatively constant across the simulation. This suggests that more precipitation at the surface
leads to an increasing number of cold pools, but not necessarily larger cold pools, an hypoth-
esis that could be tested in other simulations and observations. As explained in Rochetin et
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al. (2021), Ndens, fdens, cdens, and rdens can also be used to evaluate the realism of the pa-
rameterization of Grandpeix and Lafore (2010), as the latter uses these different variables as
parameters (for Ndens) or prognostic variables (for fdens, rdens and cdens). In fact, having data
from LES or CRMs to test Grandpeix and Lafore (2010) parameterization is an important
motivation behind Rochetin et al. (2021). This shows that theory – here, under the form of a
parameterization – determines not only how we detect cold pools, but also which features of
cold pools we characterize once cold pools have been defined. Once again, this illustrates the
power of objects to create multiple interactions between different research tools.

Touzé-Peiffer et al. (2021) – Detecting cold pools from soundings during EUREC4A
We illustrate the role of our understanding of an object on how we can observe it with a second
study, whose preprint version is given in appendix B. In this study, we propose a detection
method to analyze cold pools from data of the field campaign EUREC4A (Elucidating the role
of clouds-circulation coupling in climate; Bony et al., 2017), which took place in January and
February 2020 over the Atlantic ocean east and south of Barbados. During EUREC4A, more
than 2000 atmospheric profiles were measured using radiosondes and dropsondes launched from
aircraft, research vessels and a surface observatory (Stevens et al., 2021). This unprecedented
data set represents a unique opportunity to study the properties of cold pools over tropical
oceans. However, to make sense of this large amount of data, a method to detect cold pools
from atmospheric soundings is needed.

As in Rochetin et al. (2021), to build this detection method, we relied on the conceptual
model shown in Fig. 2.9. The challenge was however to project the definition of cold pools given
by this conceptual model on the space of available observations, that is 1D vertical profiles.
Most cold pool detection methods, including Rochetin et al. (2021), use the fact that the air
inside a cold pool is colder than the air around it. This is unapplicable to soundings, which are
by definition pointwise in the horizontal plane. Instead, we decided to use the fact that cold
pool air is colder than the air above it. In terms of virtual potential temperature, a cold pool
is indeed colder, thus denser than the subcloud layer air on top of it. Consequently, a sharp
increase in virtual potential temperature θv is expected at the top of a cold pool, as suggested
by the presence of a stratified layer in Fig. 2.9. Over tropical oceans, in convective regimes,
this contrasts with the subcloud layer outside cold pools, which tends to be well-mixed in θv
up to cloud base (e.g. Cuijpers & Duynkerke, 1993; Pennell & LeMone, 1974). This led us to
use a cold pool detection method based on the height of the mixed layer (Hmix).

Following Canut, Couvreux, Lothon, Pino, and Säıd (2012) and Rochetin et al. (2021),
we defined Hmix as the lowest altitude Z above Zmin = 100 m where the virtual potential
temperature θv is higher than its mass-weighted average from Zmin to Z by a fixed threshold
ε = 0.2 K:

θv(Z) ≥ θ̃v + ε

with θ̃v =

∫ Z
Zmin

ρ(z)θv(z)dz∫ Z
Zmin

ρ(z)dz

(2.4)

ρ being the density of the air. Setting Zmin at 100 m is necessary due to the presence of unphys-
ical temperature peaks below 100 m for a few radiosondes. The virtual potential temperature
is calculated assuming that the air of the lowest layers is not saturated, so that the mixing
ratio of liquid water in the air can be neglected. It is then approached as: θv = θ(1 + 0.61r), r
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being the mixing ratio of water vapor. The calculation of Hmix thus requires only the vertical
profiles of pressure, temperature and humidity at a single point and is directly applicable to
soundings.

Figure 2.11: Cumulative distribution function (black) and histogram for the height of the mixed
layer for all radiosondes and dropsondes launched during EUREC4A. The bins of the histogram
are 10 m wide. Colors indicate cold pool soundings (blue), unclassified soundings (grey) and
environmental soundings (red). The upper left panel shows two examples of θv profiles, one in
a cold pool and the other in the environment.

Figure 2.11 shows the Hmix distribution for EUREC4A soundings. The histogram reveals
a negatively skewed distribution, with a median of 720 m. Assuming that the left tail of the
distribution is due to cold pools, we choose to define “cold pool soundings” as those with Hmix

lower than 400 m (7% of soundings, in blue), and “environmental soundings” as those with
Hmix higher than 500 meters (90% of soundings, in red). With this definition, only 3% of
soundings (in grey) are neither in cold pools nor in the environment.

To show that Hmix provides a robust detection of cold pools, we tested our detection method
in a high-resolution simulation over the Atlantic Ocean, upstream of Barbados. This simula-
tion was the same as the one used in Rochetin et al. (2021) and described previously, that is
the LES version of the ICON model, with realistic boundary conditions and 313-m horizontal
grid spacing (Dipankar et al., 2015; Zängl et al., 2015). Figure 2.12 shows that our detection
methods gives consistent results with the surface temperature and precipitation fields. It rep-
resents a snapshot of the mixed layer height Hmix (left) and the temperature near the surface
(z ≈ 50 m, right) on 12 December 2013 0930 UTC. In the right panel, we see that regions
with negative temperature anomalies are co-located with significant surface precipitation (red
dots) and also with important wind shifts (not shown), suggesting that these cold regions are
in fact convective cold pools. In the left panels, we apply our detection method by circling in
yellow regions where the mixed layer is less than 400 meters. Qualitatively, there is a really
good agreement between cold pools detected with our method and regions strongly cooled by
rainfall. This gives us confidence to choose Hmix to detect cold pools from soundings during
EUREC4A.
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Figure 2.12: Height of the mixed layer Hmix and surface temperature T at z ≈ 50m in an area
of 5◦×10◦ upstream of Barbados (circled in green) on December 12, 2013 at 0930 UTC. In the
left-hand panel, cold pools are circled in yellow as regions where Hmix is lower than 400 meters.
In the right-hand panel, the red dots represent locations where surface rainfall is greater than
10 mm day−1.

This example is interesting for our discussion on objects, because we were able to assess
the credibility of our method to detect cold pools from atmospheric soundings using 1) a LES,
which illustrates the complementarity between various tools to study an object and 2) some
understanding of what a cold pool is, in order to check whether the objects identified with our
method in LES are consistent with what we would expect. Without such understanding, we
would not have been able to build our detection method and test it. This shows that how we
understand an object determines how we see it in observations.

In turn, our detection method has enriched our understanding of cold pools. The full study
is provided in Appendix B, and we give here only an example of its results. This result concerns
the impact of the wind shear on the spreading of a cold pool. It is shown in Fig. 2.13, where
∆SCL(u) and ∆SCL(v) refers respectively to the difference of zonal and meridional wind speed
in the subcloud layer between 100 and 500 m, that is in and above cold pools when there is one.
In the environment (in red), there is little difference in terms of wind speed between the two
layers, consistent with what we would expect for a relatively well-mixed layer. On the contrary,
in cold pools, the average wind difference is about 3 m s−1 between the two layers. Further-
more, zonal and meridional wind distributions show that cold pools spread in all directions,
consistently with the conceptual picture of a density current propagating over a solid boundary.
In the presence of vertical wind shear, theories and numerical simulations nevertheless predict
that cold pool spreading may not be perfectly isotropic, as vertical momentum transport might
favor the propagation of cold pools downshear (Grant, Moncrieff, Lane, & van den Heever, 2020;
Mahoney, Lackmann, & Parker, 2009; Moncrieff, 1992). Fig. 2.13 middle and right panels test
this hypothesis by showing the zonal and meridional wind difference between 100 and 500 m
(∆SCL(u) and ∆SCL(v)) for three zonal and meridional wind shear ranges in the cloud layer,
between 1 and 2 km: ]−∞;−1], ]− 1, 1] and ]1,+∞[ (m s−1). The box and whisker diagrams
reveal that ∆SCL(u) is gradually shifted to higher values as the zonal wind shear in the cloud
layer increases. On the contrary, in environmental soundings, the zonal wind shear in the cloud
layer has little, if any, influence on ∆SCL(u). The same result stands for the meridional wind,
suggesting significant momentum transport by downdrafts in cold pools in all directions. Such
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Figure 2.13: (a) Scatter plot of the difference of meridional wind speed at 100 m and at 500 m
∆SCL(v) for cold pool (blue) and environmental (red) soundings. On the upper and right sides
of the graph, marginal distributions of each variable are also reported for cold pools and their
environment, with a bin width of 0.3 m s−1. The circles represent the mean of the absolute
wind speed distributions, that is the mean of

√
(∆SCL(u))2 + (∆SCL(v))2 for cold pool and

environmental soundings. (b) Box and whisker plots for the zonal wind difference between 100
and 500 m ∆SCL(u) for three zonal wind shear ranges in the cloud layer. The wind shear ranges

are defined by calculating for each sounding the difference between u2km =
∫ 2.2km

1.8km
u(z)dz and

u1km =
∫ 1.2km

0.8km
u(z)dz. Horizontal line within each box represent the median, box bottom and

top are 1st (Q1) and last (Q3) quartile of the distributions, and the whiskers extend up to
1.5 interquartile range above Q3 and below Q1. (c) Same plot, but for the meridional wind
difference between 100 and 500 m ∆SCL(v) for three meridional wind shear ranges in the cloud
layer.

momentum transport by downdrafts in cold pools had been suspected in conceptual models
and numerical simulations, but never shown nor quantified in observations.

This new result would not have been possible without a robust detection method applicable
to sounding measurements. This demonstrates in practice the importance of having relevant
tools, based on well-understood physical principles, to dissect observations. Our understanding
is in fact incremental: what we understand gives us an angle of attack to analyze observations
that allow us to understand even more.

More generally, Rochetin et al. (2021) and Touzé-Peiffer et al. (2021) illustrate the many
interactions between observations, numerical simulations, and our theoretical understanding
in the case of cold pools. Well-defined objects such as cold pools appear as bridges between
different tools to study atmospheric convection: they focus atmospheric research, connect dif-
ferent studies, help formulate specific hypotheses and assess their robustness, summarize our
understanding and give us reading grids to analyze observations and numerical simulations.
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2.6 Conclusion

In this chapter, we defined what objects are and what role they play in our understanding
of atmospheric convection. Objects are a way to cut the atmosphere in different components
that present similarities. The study of objects and their interactions provides a mechanistic
understanding of atmospheric convection. We explained that such mechanistic explanation is
not specific to the study of atmospheric convection, but is frequently used in physiological sci-
ences such as neuroscience. Many physical systems can indeed be understood by being broken
down into different components. However, the specificity of the objects used to study con-
vection is that they are in part artificial: their frontiers are not given by nature, but have to
be constructed. In observations, it means that some criteria have to be chosen to detect an
object, i.e. to isolate it from its environment. Once an object is detected in observations, its
characteristics can be studied. Nevertheless, since an object is by definition four dimensional (3
spatial dimensions + time) and observations are at best three dimensional (2 spatial dimensions
+ time), they give only a partial view of an object. The limitations of observations motivate
the use of numerical simulations to track objects in time, and study their interactions with
their environment and with other objects. We distinguished simulations in which objects are
simulated explicitly from simulations in which they are simulated implicitly. In each case, we
precised the kind of understanding given by objects and why this understanding is necessarily
limited. We then argued that well-defined objects can link these different tools in order to test
the robustness of certain assumptions. The various roles an object can have for atmospheric
research were finally illustrated with the example of cold pools.

At the end of this chapter, we showed that well-defined objects such as cold pools deter-
mine how we observe natural phenomena, and we interpreted this role of objects in light of
Auguste Comte’s positivism. This discussion on objects reminds us of another one, which took
place in the first half of the XXth century between the founding fathers of quantum mechanics.
Quantum physicists, destabilized by the many paradoxes of quantum physics, felt that they
had to build a new science on solid epistemological foundations. In this context, Heisenberg
chose to follow the guiding principle: “any good theory must be based only on quantities which
can be directly observed” (Heisenberg, 1970). The famous author of the uncertainty principle
had indeed been influenced by the positivism of Mach, according to which “the goal of physics
is the simplest and cheapest abstract expression of the facts” (Mach, 1882). For the Austrian
physicist and philosopher, the formalism used in physics had to be as close as possible to what
we can observe in the real world. The theory developed by Heisenberg was thus immediately
linked to experience: his matrices were simply the translation in mathematical terms of quanti-
ties that could be observed experimentally (Heisenberg, 1970). On the contrary, influenced by
the positivism of Auguste Comte, Einstein considered that we should not neglect the impor-
tance of theory on our observations. According to him, it is the theory alone that decides what
we can observe. Any experiment needs a theory to be interpreted and a quantity is therefore
only observable in relation to an old theory. This debate, at first sight anecdotal, had profound
implications on the development of quantum physics and inspired in particular Heisenberg’s
famous uncertainty principle.

Likewise, we hope that our reflection on objects will have a positive influence on any at-
mospheric scientist who reads it. We hope to have convinced him that objects are not just
given by Mother Nature, but are the result of an artificial construction of our human mind.
As a consequence, we are free to choose new objects or to redefine them, which often means
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opening new fields of research. The classification of sugar, gravel, fish and flowers given in
Stevens, Bony, et al. (2019) is probably one of the best examples. Let’s take a step back and
reflect: are the objects used today the most relevant? Do they allow the formulation of specific
research questions that can be answered with the available research tools? Do they act as a
bridge between different studies? If they do, let’s continue to use these objects. If they don’t,
let’s be creative and imagine new ways to talk about what we observe. For it is our language
that defines what we understand.
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Chapter 3

The semi-empirical world of convection
parameterizations

All models are wrong, but some
are useful.

George Box
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CHAPTER 3. THE SEMI-EMPIRICAL WORLD OF CONVECTION
PARAMETERIZATIONS

3.1 Introduction

In atmospheric general circulation models (GCMs), a distinction is often made between the “dy-
namics” or “dynamic core”, representing the large-scale transport of heat, mass and moisture
based on well-established equations of fluid dynamics and thermodynamics, and the “physics”,
representing the collective influence of subgrid processes on grid-scale conditions using diverse
parameterizations (Guillemot, 2017; W. S. Parker, 2006). Contrary to the dynamics, parameter-
izations are not solidly anchored in the theory. They rely both on some theoretical principles and
some empirical relationships derived from observations or process studies using high-resolution
models. Parameterizations are thus often described as “semi-empirical” – they stand between
theory and observations (Edwards, 2010; Katzav, 2013).

Many GCM biases have been attributed to the poor representation of subgrid processes in
parameterizations. In particular, convection parameterizations constitute a major source of un-
certainty for climate change projections (Stevens & Bony, 2013) and were sometimes described
as “the Achilles’ heel” of climate modeling (Stone & Risbey, 1990). Moreover, despite significant
progress were made since the first convection parameterizations were introduced in GCMs 50
years ago (Rio et al., 2019), the rate of progress associated with parameterizations has been con-
sidered too slow, and parameterizations were sometimes described as a “deadlock” (T. Palmer
& Stevens, 2019; D. Randall et al., 2003). To break this deadlock, some scientists have pro-
posed to replace parameterizations with high-resolution models using super-parameterizations
(D. Randall et al., 2003; D. A. Randall, 2013) or global cloud-resolving models (GCRMs, Satoh
et al., 2019; Stevens, Acquistapace, et al., 2020), or with machine-learning algorithms (Gentine
et al., 2018).

Criticisms against parameterizations do not only concern their effect in GCMs, but also their
scientific basis. In particular, the semi-empirical nature of parameterizations is often seen as a
weakness. For instance, Edwards (2001) argues that the “fuzzy relationship” of parameteriza-
tions with observational data is contradictory with the reductionist imperative of the physical
sciences, which attempt to “explain large-scale phenomena as an outcome of smaller-scale pro-
cesses”. Since they are based partly on observations, parameterizations would be less scientific
grounded than for instance GCRMs or super-parameterizations, which represent subgrid pro-
cesses using first principles. However, Edwards (2001) does not explain why parameterizations
should meet the reductionist standards. More generally, while many philosophers of science
have mentioned the semi-empirical nature of parameterizations, few studies have defined pre-
cisely in which sense parameterizations are partly determined by theory, partly determined by
observations, thus whether and why their semi-empirical nature is legitimate, or not.

Answering these questions is the objective of this chapter. We adopt a partly historical
approach to explain the context in which parameterizations have emerged and how the pa-
rameterization problem has been originally framed. With different examples, we illustrate two
extreme positions that have been proposed to build parameterizations: deduce logically pa-
rameterizations from first principles – what we called theory-based parameterizations – or rely
mostly on observations – observation-based parameterizations. We underline the limits of each
approach and motivate the simultaneous use of observations and theory to build parameteri-
zations. We argue that the semi-empirical world of convection parameterizations can be best
understood in terms of objects, as we defined them in the previous chapter. We give exam-
ples of object-based parameterizations used in the atmospheric model LMDZ and justify why
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objects are a useful framework to make the best use of both theory and observations.

3.2 Why do we need to parameterize atmospheric con-

vection?

To understand why we need to parameterize atmospheric convection, we need first to understand
why the models in which parameterizations are used, GCMs, have appeared historically as a
natural way to study climate change. This is the objective of the following subsection (3.2.1),
where we trace the origins of GCMs, and explain how they gradually emerged as a prominent
tool for studying the general circulation of the atmosphere, and then climate and climate
change.

3.2.1 The need for GCMs to study climate change

Early climate change studies using 1D radiative-convective models

Many of the early studies on the temperature rise caused by an increase in atmospheric CO2

concentration were conducted using simple, one-dimensional model: so-called Radiative Con-
vective Models (RCMs). RCMs allow to simulate energy transfer in one vertical atmospheric
column. At each vertical level, RCMs calculate shortwave and longwave radiation fluxes by
taking into account various parameters such as surface albedo, cloud amount and atmospheric
humidity. In such models, the effect of atmospheric convection is represented in a simplified
way called “convective adjustment”: when the vertical temperature profile becomes unstable,
i.e. when density starts to increase with height, convection is assumed to take place and the
temperature profile is adjusted towards a stable profile. This convective adjustment is designed
to move heat from near-surface levels upwards (Manabe & Strickler, 1964).

Despite their simplicity, RCMs proved valuable to isolate important feedbacks, such as wa-
ter vapor feedback. In particular, using a RCM, Manabe and Wetherald (1967) represented
a breakthrough in our understanding of climate change induced by an increase of CO2. They
tested a RCM under present-day conditions and under a doubling of CO2 concentration in the
atmosphere. Assuming the relative humidity would not change under an increase of tempera-
ture, they calculated a 2.4◦C warming under a doubling of CO2. This result is still consistent
with the most recent statements of the IPCC, which estimate that the climate sensitivity is
“likely between 1.5◦C and 4.5◦C” (Stocker et al., 2013). Many other results given by Manabe
and Wetherald (1967) are equally valid today. In particular, the two authors predicted a sig-
nificant stratospheric cooling under an increase of CO2, a result that has been confirmed by
observations in the past 50 years (e.g. Ramaswamy et al., 2006; Randel et al., 2009). They also
tested changes in clouds at different levels and found that an increase in low clouds would cool
surface temperatures, while changes in high clouds could instead warm them, again consistent
with what we know today (e.g. Voigt et al., 2021).

These results were promising in terms of our ability to use numerical models to better
understand various climate feedbacks. Nevertheless, Manabe and Strickler (1964) pointed out
that RCMs were limited by their inability to describe horizontal transports in the atmosphere.
They suggested that numerical models able to simulate the large-scale movement of air masses
would be useful to solve these limitations, opening the door to the use of GCMs in climate
studies.
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The genesis of GCMs

GCMs were derived from numerical models used for weather predictions. The early 1950s
marked indeed the advent of numerical weather prediction in the United States. The first
weather forecast by means of an electronic computer was run by Jule Charney and his team at
the Institute for Advanced Studies (IAS) in Princeton in 1950. This forecast relied on fluid dy-
namics equations ingeniously simplified into a so-called “barotropic vorticity equation”, easier
to run on a computer. The horizontal grid used for the first weather prediction covered North
America and had 270 points about 700 km apart. In the following years, other forecasts were
run and proved the feasibility of using numerical models to simulate the large-scale movement
of air masses. This paved the way to the more ambitious goal of simulating the entire atmo-
sphere, and thus climate.

Norman Phillips, a young meteorologist working in Charney’s team at the IAS, was the
first to simulate the general circulation of the atmosphere using a numerical model. The nu-
merical model he considered was similar to the ones used for numerical weather prediction,
but contained two vertical levels and covered a larger area. Phillips chose a modeling surface
of 10000 km by 6000 km – 10000 km being approximately the distance between the equator
and the poles on the Earth’s surface, and 6000 km a width deemed large enough to capture
large-scale eddies. To construct the grid of his model, he divided this surface into rectangles
of 625 km along the y-axis (latitudes) and 375 km along the x-axis (longitudes). In addition,
he imposed periodic conditions along the x-axis, so that his domain was cylindrical. Phillips
launched his model for a duration of 31 days, with a time step of one hour. The results were
convincing. Even if Phillips had not taken into account moist phenomena and in particular had
ignored the influence of clouds, a circulation similar to the Hadley-Ferrel circulation appeared
in this model, as well as large-scale eddies comparable to the cyclones and anticyclones typically
observed in the atmospheric circulation (N. A. Phillips, 1954).

Phillips’ work intrigued American meteorologists and triggered further work on GCMs. A
specialized research unit on GCMs was created in 1955 a few months after the publication of
Phillips’ results and placed under the responsibility of Joseph Smagorinsky. In 1963, this unit
became the Geophysical Fluid Dynamics Laboratory (GFDL) and hosted in particular Manabe
and Wetherald, who developed their RCM to study the effect of an increase in CO2 on global
temperatures. The use of GCMs to study climate change was thus born at the crossroads of
two successes: 1) on the one hand, the first tests of GCMs, and Phillips’ model in particular,
had shown the ability of these models to qualitatively predict large-scale atmospheric motions.
2) On the other hand, RCMs had proven successful in understanding climate feedbacks, but
were limited because, unlike GCMs, they were one-dimensional and therefore did not capture
the effects of large-scale horizontal transport in the atmosphere.

3.2.2 The need to parameterize atmospheric convection in GCMs

Moist convective adjustment

When the first atmospheric GCMs were developed in the 1960s, a major issue appeared: the
atmospheric state given by GCMs in the tropics was sometimes unstable, leading to an exponen-
tial growth of intense vertical motions at certain grid points – so-called “grid-scale atmospheric
convection” (J. Charney & Ogura, 1960). This was due to the fact that the grid used in GCMs
was far too coarse to resolve atmospheric convection. As discussed in chapter 1, convection acts
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as a negative feedback for large-scale instabilities, but takes place at a much smaller scale than
the GCM grid: resolving atmospheric convection requires numerical models with a horizontal
resolution of one kilometer or less. Grid-scale atmospheric convection that appeared when the
atmospheric profiles became unstable were thus very unrealistic. When they developed, errors
exponentially increased and GCMs were not able to predict accurately the observed large-scale
atmospheric circulation (Kasahara, 1961; Lilly, 1962).

To get a realistic large-scale atmospheric circulation using GCMs, it was necessary to find
a way to account for the presence of atmospheric convection within each grid box of a GCM,
hence to prevent the simulated atmospheric profile from becoming unstable. This was the ini-
tial motivation behind parameterizations of atmospheric convection. The basic idea of the first
parameterization schemes (Manabe, Smagorinsky, & Strickler, 1965; Mintz, 1968; Smagorinsky,
Manabe, & Holloway Jr, 1965) was to adjust the temperature lapse rate when it exceeded the
moist adiabatic value. This procedure had already been used with success in RCMs and re-
ferred to as “moist convective adjustment” (Manabe & Strickler, 1964). This simple strategy
helped early GCMs to overcome the pathological dfficulty of predicting realistic vertical ther-
modynamic profiles.

The authors of this first parameterizations of atmospheric convection were well aware of the
limitations of the solution they proposed. As Manabe et al. (1965) explained:

Since the grid-scale convection cannot be resolved by the grid itself, the computation
quickly deteriorates. Therefore, it is desirable to design a scheme of convection such
that the grid-scale convection does not develop. [...] In view of our ignorance in this
matter, we used a very simple scheme of convective adjustment [...] and successfully
avoided the abnormal growth of grid-scale convection. It is hoped that the results
obtained can provide the basis for the computation of a more exact and better
scheme of convection. (Manabe et al., 1965, p. 770)

Despite these limitations, the early moist convective adjustments were sufficient to make
GCMs realistic enough to be useful.

On the use of ad hoc hypotheses in GCMs

The first parameterizations of atmospheric convection, moist convective adjustments, appeared
for practical reasons – correcting the large-scale instability observed in the GCMs – rather than
for well-established scientific grounds. According to the Merriam-Webster dictionary, something
is “ad hoc” if it is “formed or used for specific or immediate problems or needs” (Merriam-
Webster, 2021). Moist convective adjustment could be seen as a typical ad hoc hypothesis,
because it was specifically added to the GCM formulation to solve the problem of convective
instability. Is the addition of such an ad hoc hypothesis to correct GCM results legitimate?

The history of sciences is full of ad hoc hypotheses that were added to scientific theories to
make them consistent with observational data. Some of these as hoc hypotheses turn out to be
true – a famous example being the ad hoc introduction by Albert Einstein of the cosmological
constant to the Theory of General Relativity in order to explain why the universe is static.
Nevertheless, the use of ad hoc assumptions to correct a scientific theory is often considered
questionable. The philosopher of science Popper explained that the increasing addition of ad
hoc hypotheses to a scientific theory makes it more and more complex and less and less falsi-
fiable, which means that it cannot be contradicted by empirical data. According to him, one
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of the characteristic of pseudo-sciences such as Marx’s theory of history and Freudian psycho-
analysis is to rely on ad hoc assumptions that allow them to justify almost any empirical fact
(Popper, 1982). If each time observational data disagree with a certain theory, a new ad hoc
hypothesis is added to it, there is indeed a problem of circular reasoning and it will be difficult
to use the predictive power of the theory to test it.

Nevertheless, the use of ad hoc hypothesis in numerical models such as GCMs does not
have the same status as in scientific theories. Indeed, in a GCM, when Navier-Stokes equations
are discretized over a given grid to simulate the large-scale circulation of the atmosphere, the
objective is not to test Navier-Stokes equations. It is taken for granted that these equations are
well established, and on the other hand, it is known that the way these equations are simplified
and discretized over a grid with a resolution of several hundred kilometers introduces significant
errors. Despite these errors, the hope is that GCMs will be sufficiently realistic to be useful, i.e.
to help understand certain features of the atmospheric circulation, or certain climate feedbacks
when used to simulate climate change. If some corrections can make GCM results more realistic
and therefore more useful, it seems legitimate to use them.

A second fundamental reason for the use of a moist convective adjustment in GCMs is that
it is attributed to a specific phenomenon: convection. It is possible to interpret qualitatively
what is represented with such adjustment. As such, it is not entirely arbitrary – it is rooted in
some physical understanding of the system under study. The cause of GCM failure to represent
accurately large-scale atmospheric circulation is attributed to convection, and the convective
adjustment is a way to correct this specific failure.

As a consequence, methodologically, using ad hoc moist convective adjustments to correct
GCMs seems legitimate for two main reasons: first, it allows a better agreement between
GCM results and the observations, thus making GCMs more useful. Second, it takes into
account the effect of a process that cannot be simulated by GCMs: atmospheric convection.
The introduction of convective adjustments therefore represents an acknowledgment both of
the usefulness of GCMs to study the general circulation of the atmosphere and of their main
limitation – not resolving atmospheric convection.

Convective quasi-equilibrium hypothesis

A further justification for the use of convective adjustments in GCMs can be found in A. K. Betts
(1986), one of the only study which developed a moist convective scheme since the early at-
tempts of Manabe et al. (1965); Mintz (1968) and Smagorinsky et al. (1965). A. K. Betts (1986)
relies on the convective quasi-equilibrium (CQE) hypothesis, originally introduced by A. Betts
(1973) for shallow convection and Arakawa and Schubert (1974) for deep convection. According
to this hypothesis, as interpreted by A. K. Betts (1986), the collective effect of clouds strongly
constrains the temperature and moisture structure in the atmosphere. CQE thermodynamic
structures would therefore be pervasive in the atmosphere, both in shallow and deep convective
regimes. This hypothesis has been partially verified by observations, which have shown that
over large domains, and sufficiently long time scales, characteristic temperature and humidity
structures were observed (Lord, 1982; Lord & Arakawa, 1980).

If entirely verified, this hypothesis would be a strong support for the claim that it is not
necessary to represent atmospheric convection in GCMs. Only its effect could be taken into
account. If cloud fields do on average always the same thing, unstable atmospheric profiles pro-
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duced by GCMs could be adjusted towards the typical equilibrium states observed in nature,
without needing to enter the complexity of the convective phenomena that lead to these equi-
librium states. Just as, when we study a gas, the laws of thermodynamics are enough to study
states of equilibrium without taking into account the individual movement of gas molecules.

The CQE motivated A. K. Betts (1986) to propose an adjustment scheme based on equi-
librium structures found in observations. In this scheme, the atmospheric temperature and
moisture structures given by the GCM at each grid point are ajusted with a characteristic
time scale towards two distinct reference thermodynamic structures, one for shallow convection
and the other for deep convection. The altitude of cloud top is computed by the model and
helps to distinguish between shallow and deep convection. The reference profiles in each case
is determined from observations.

To this day, however, A. K. Betts (1986) represented an isolated attempt. Although the use-
fulness and simplicity of this scheme has often been recognized (e.g. Arakawa & Jung, 2011),
parameterizations based on certain theoretical principles were preferred to this observation-
based parameterization. Convective adjustment schemes were judged unphysical, as “there is
little physical basis for the universality of the water vapor profile” (K. A. Emanuel, 1991, p.
2331). The fear was that the reference profiles chosen by A. K. Betts (1986), although rep-
resentative of the tropical atmosphere over oceans, could not be easily extended to the whole
globe: in fact, numerous studies have shown some departure from quasi-equilibrium over lands
as well as in mid-latitudes (e.g. Bechtold et al., 2014; Zimmer, Craig, Keil, & Wernli, 2011).
These studies suggested that atmospheric convection is too diverse to be represented by a few
empirically determined reference profiles. In order to make parameterizations more generaliz-
able, and also easier to interpret and justify, climate modelers tried to base parameterizations
on a certain theoretical framework rather than on empirical profiles. It led to the development
of the mass-flux representations of atmospheric convection.

3.3 In pursuit of a theoretical foundation for mass-flux

convection parameterizations

In this section, we present what has become the standard approach to represent atmospheric
convection in GCMs: mass-flux convection parameterizations. Different variations of mass-flux
convection parameterizations have been proposed and used in GCMs. Most of them rely on a
similar formalism, that we expose in 3.3.1. We then focus on three interpretations that have
been given to this formalism. Contrary to moist convective adjustments, which were based on
observations, these interpretations are theory-based: each of them gives a self consistent frame-
work, derived by analogy with a well-established theory, to interpret the mass-flux formalism.

3.3.1 The mass-flux formalism

The replacement of adjustment schemes by mass-flux parameterizations roots in the hot-tower
hypothesis proposed by Riehl and Malkus (1958) in their study of the tropical heat budget. As
Riehl and Malkus showed, it is not possible to understand the heat budget associated with the
Hadley circulation, unless we assume that the apparent large-scale ascent near the equator is
actually the sum of vigorous ascent in a few isolated “hot-towers” and descent in their envi-
ronment. In this hypothesis, the hot-towers cover only a small fraction of the tropics and mix
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with their environment only at their base and top. This allows them to transport heat directly
from the surface to the top of the troposphere.

The hot tower hypothesis considerably influenced research in the early 1960s on tropical
cyclone. A major problem of cyclone research at that time was indeed to represent the role of
cumulus clouds in cyclone formation. In this respect, the early phases of cumulus parameter-
izations in GCMs are intrinsically linked with the development of the first numerical models
to simulate cyclone development. Numerical models used to represent the atmospheric general
circulation and those used to understand the formation of tropical cyclones were faced with
the same conceptual issue of accurately representing moist convection. Influenced by Riehl and
Malkus (1958) and subsequent work, Ooyama (1964) formulated a dynamical model for the
study of tropical cyclone development in which the heating effects of clouds was represented in
a mass-flux form. A few years later, Arakawa (1969) adapted the mass-flux approach to GCMs.

Here, we sketch briefly this approach, which will then become the standard way of represent-
ing atmospheric convection in parameterizations. The mass-flux form assumes that atmospheric
convection happens in “plumes” covering a small part of the grid box, consistently with the
hot-tower hypothesis of Riehl and Malkus (1958). The collective effect of these plumes is
represented through the use of a single bulk plume. Each variable can then be decomposed as:

φ̄ = αφu + (1− α)φe (3.1)

where α – the fractional area of the bulk plume – is much smaller than 1, φ̄ is the mean value
of the variable in the grid box, and φu and φe refers respectively to its value in the bulk plume
and in the environment.

The vertical transport in the plume is represented by a mass flux defined as f = ραwu, where
wu – the vertical velocity in the plume – is assumed to be homogeneous horizontally. Similarly,
the vertical transport in the environment – the compensating subsidence – is assumed to have
a horizontally homogeneous velocity we and a corresponding mass flux fe = ρ(1− α)we = −f .
In the first parameterizations such as the one proposed by Ooyama (1964), the convective and
environmental mass fluxes (and thus wu and we) are assumed constant from the base of the
plume to its top. Therefore, the air is entrained into the cloud base mass flux only at the base
of the plume and detrained only at its top. In this simple scheme, the number of unknowns
is decreased to only one, the cloud base mass flux f , which has to be specified depending on
the large-scale state. The problem of specifying the convective mass flux – and therefore the
intensity of convection – as a function of the large-scale state of the atmosphere is called “clo-
sure”. The closure usually relies on some equilibrium assumption and is a core aspect of any
convection parameterization.

In subsequent, more complex versions of mass-flux parameterizations, f is not necessarily
constant vertically: in particular, when ∂f/∂z > 0, environmental air entrains into convection,
and when ∂f/∂z < 0, convective air detrains out in the environment. More generally, the
vertical variation of the mass flux f is defined in terms of entrainment rate e and detrainment
rate d as:

∂f

∂z
= e− d (3.2)

With these definitions, the vertical transport of any conserved quantity in the updraft is given
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by:

∂fφu
∂z

= eφe − dφu (3.3)

As α � 1, φe is usually approximated as φ̄. The convective tendencies, that is the temporal
evolution of large-scale variables due to convection, can finally be approximated as:(

∂φ̄

∂t

)
conv

= −1

ρ

∂

∂z
f(φu − φ̄) (3.4)

This general framework is shared by many convection parameterizations. Differences be-
tween schemes appear in the specification of the vertical velocity wu (and therefore, the strength
of convection), the fractional area α, and the entrainment and detrainment rates, as a function
of grid-box mean quantities. Despite these differences, all mass-flux cumulus parameterizations
produce a negative feedback on large-scale destabilization (Arakawa, 2004). They thus have ini-
tially the same function as convective adjustment schemes, but were judged more satisfying as
they explain it mechanistically. As we have seen in 2.2.3, a mechanistic explanation interprets
the behavior of a certain system in terms of the interactions between its components. This
is precisely what mass-flux parameterizations do. They give a mechanistic understanding of
atmospheric convection by splitting it into two objects, the plume and its environment. On the
contrary, moist convective adjustments impose the effects of convection rather than deducing
them, and express at best some kind of functional understanding of atmospheric convection,
i.e. some understanding of what convection does in the atmosphere. As a result, the hot-tower
hypothesis was preferred to convective adjustment schemes to construct parameterizations not
because it led to better results, but because it provided at the same time a mechanism to
describe atmospheric convection.

We present in the following three interpretations of the mass-flux formalism, each based
on an analogy with a certain theory. These analogies are not justifications. They motivate
parameterizations given some theoretical grounds, but these grounds are too weak to justify
them rigorously. Nevertheless, each theoretical analogy provides a coherent framework to define
how the mass-flux formalism is used. As we are going to see, each framework specifies in a
strict way the form parameterizations can take.

3.3.2 Quasi-equilibrium filtering – Arakawa and Schubert (1974) pa-
rameterization

The Arakawa (1969) parameterization, which was later expanded in Arakawa and Schubert
(1974) represents the first attempt to represent atmospheric convection using a mass-flux and
the concept of CQE. Schubert (2000) interprets the CQE used in Arakawa (1969); Arakawa
and Schubert (1974) as a filtering procedure similar to the quasi-geostrophic theory. This first
theoretical analogy is interesting for understanding the basis of one of the earliest mass-flux
parameterizations of convection, which is still considered as a reference today.

Sketch of Arakawa (1969) parameterization

In Arakawa (1969), at each grid point, one of three types of convection can occur: what he calls
“middle-level convection”, “penetrating convection” and “low-level convection”. For simplicity,

73



CHAPTER 3. THE SEMI-EMPIRICAL WORLD OF CONVECTION
PARAMETERIZATIONS

Figure 3.1: Diagram of penetrating convection used in the parameterization of Arakawa (1969).
C represents the cloud base mass flux, ηC the cloud mass flux at level 2, and η(1 − C) the
entrainment.

we will focus here on the problem of penetrating convection and explain how the CQE hypoth-
esis helps to close the corresponding parameterization, that is to determine the convective mass
flux C.

As illustrated in Fig. 3.1, Arakawa (1969) is implemented in a three level GCM. Penetrating
convection occurs when there is conditional instability between the boundary layer and level
3, but not between level 3 and 1. Mathematically, this condition can be expressed using the
moist static energy defined as h = s + Lq, with s = cpT + gz and the saturation moist static
energy defined as h∗ = s + Lq∗. Penetrating convection occurs when hB > h∗1 and h1∗ > h3.
Middle-level convection and low-level convection are defined using similar criteria of stability.

The CQE hypothesis is expressed in the equation governing the tendency of hB −h∗1 (Schu-
bert, 2000):

∂(hB − h∗1)
∂t

+ vB · ∇hB(1 + γ1)v1 · ∇s1 + ω4

(
hB − h4

∆pB

)
− (1 + γ1)ω2

(
s2 − s1

∆p

)
= −gC

[(
hB − h4

∆pB

)
+ (1 + γ1)

(
s1 − s2

∆p

)
η

]
+

g

∆pB
ρSCE|vs|(h∗s − hB) (3.5)

In the left side of this equation, the first term is the time evolution of hB−h∗1, and the other
terms express its large-scale horizontal and vertical advection. In the right side, the first term
is the tendency due to cumulus convection, and the last term, the effect of surface fluxes.

As cumulus convection decreases hB − h∗1, and large-scale horizontal and vertical advective
terms, as well as surface fluxes, tend to increase it, Arakawa (1969) assumes a kind of equilib-
rium between the convection on the one hand, and the large-scale advection and surface fluxes
on the other. Due to this equilibrium, the core assumption of Arakawa (1969) is to consider
that the first term, ∂(hB − h∗1)/∂t is negligible compared to the others. This constraint leads
to a diagnostic equation for C.

The CQE has thus a very precise meaning in the parameterization of Arakawa (1969). In the
convective adjustment scheme proposed in A. K. Betts (1986), CQE was described as a certain
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balance between convection and the large-scale circulation that led to typical atmospheric
profiles. Arakawa (1969) relies on stronger assumptions. First, convection is assumed to be
governed entirely by the large scale. Second, the characteristic time of convection adjustment,
i.e. the time required for C to become constant, is assumed to be negligible compared to the
characteristic time of large-scale evolution.

Comparison with quasi-geostrophic theory

Schubert (2000) points out the parallel between the CQE used in Arakawa (1969); Arakawa and
Schubert (1974) and the quasi-geostrophic theory. This parallel, which we present in the fol-
lowing, is a first way to frame the parameterization problem by analogy with an existing theory.

The concepts of geostrophic balance and quasi-geostrophic balance have been introduced
more than half a century ago and widely applied in atmospheric and oceanic studies, such
as weather prediction and ocean circulation research. These concepts help to simplify in a
standard way the so-called primitive equations given in Holton and Hakim (2012) as:

Du

Dt
− fv = −1

ρ

∂p

∂x
(3.6)

Dv

Dt
+ fu = −1

ρ

∂p

∂y
(3.7)

with f = 2Ωsinθ and g the gravity acceleration. These two equations express Newton’s second
law in rotating coordinates projected on the horizontal plane.

Jule Charney, in his famous 1948 paper ”On the scale of atmospheric motions” (J. Charney,
1948) distinguishes different scales to simplify these equations, in particular a typical horizon-
tal length scale L ≈ 106 m, a typical horizontal velocity U ≈ 10 m s−1 and angular velocity
f ≈ 10−4 s−1 for mid-latitudes. With these notations, the first two terms in equations 3.6 and
3.7 are on the order of U2/L and fU respectively. Their ratio Ro = U/fL, called the Rossby
number, is about 10−2 in the mid-latitudes, thus negligible compared to 1. It means that the
advection terms Du/Dt and Dv/Dt are relatively small compared with the Coriolis force fu
and fv in the mid-latitudes. The geostrophic balance consists in neglecting these two terms
entirely in equations 3.6 and 3.7, so we have:

v =
1

fρ
px (3.8)

u = − 1

fρ
py (3.9)

This balance has many applications and explains for example the fact that in the mid-
latitudes, the direction of flow is often aligned with the isobars – the lines of constant pressure.
However, for many applications, the geostrophic balance is too idealized as it neglects entirely
the time evolution of the fluid. Equations 3.8 and 3.9 are indeed those of a static system. The
quasi-geostrophic theory introduced by Charney relaxes these assumptions slightly be keeping
first-order terms in the equations. It brings back the time evolution and non-linear terms in
the equations, while assuming them of higher order.

The geostrophic and quasi-geostrophic approximations can be thought of as a filtering pro-
cedure applied to the primitive equations. Indeed, 1/f can be interpreted as the time scale of
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Earth’s motion and L/U as the time scale of fluid motion we are interested in. When Ro is
small, the time scale of fluid motion is therefore much smaller than the timescale of Earth’s
rotation. Based on these two time scales, the quasi-geostrophic approximation can be seen
as a filtering of high frequencies – that is short timescales – and the atmospheric waves they
correspond to. Schubert (2000) summarised the role played by the quasi-geostrophic theory by
recalling the musical metaphor used by Charney himself:

About the time he was developing quasi-geostrophic theory, Jule Charney visualized
the atmosphere “as a musical instrument on which on can play many tunes”. He
thought of the high notes as the sound waves and gravity waves , and the low notes
as the Rossby waves, with Mother Nature being “a musician more of the Beethoven
than the Chopin type” in that she prefers “the low notes and only occasionally
plays arpeggios in the trevle and then only with a light hand”. If [the primitive
equations] can be thought of as a whole piano, the quasi-geostrophic equations
might be thought of as a piano that has been saved in half, with only the low notes
remaining usable. Even though its dynamic range is limited, it can still play some
beautiful music. (Schubert, 2000, p. 186, 188)

According to Schubert (2000), there is a parallel between the filtering of transient inertia-
gravity waves in quasi-geostrophic theory and the filtering of the transient adjustment of a cloud
ensemble in CQE. The filtering in CQE is justified by the relatively slow evolution of large-scale
forcing compared to the characteristic life-cycle of convection, just as, in quasi-geostrophic bal-
ance, the time scale of fluid motion is small compared to the characteristic time scale of the
Earth’s motion (when Ro� 1).

Several criticisms could be made to the CQE hypothesized by Arakawa (1969). In particu-
lar, as shown by T. R. Jones and Randall (2011), the hypothesis that the convective time scale
is much smaller than the time scale associated with large-scale processes is questionable. It
is now well known that convection in nature often develops mesoscale organization (Molinari
& Dudek, 1992) and that the various interactions between the convective, mesoscale and large
scales are crucial to predict the subsequent evolution of large-scale air masses (Heggem et al.,
1998; Ishida, 1989; Vinnichenko, 1970). However, one could argue that the conceptual basis
of geostrophic theory has not been better established than CQE: there is no clear separation
in the atmosphere between the relatively long time scale of Earth’s rotation (f) and a much
shorter time scale associated with fluid motion. It has not prevented the quasi-geostrophic
theory to be used in a range of applications, in particular in the first atmospheric numerical
weather prediction (NWP) models.

Arakawa and Schubert (1974) recognizes that their CQE hypothesis is not rigorously es-
tablished in nature. Nevertheless, they assumed that such an assumption would help represent
atmospheric convection in GCMs – just as quasi-geostrophic theory helped represent large-scale
atmospheric motions in early numerical weather prediction models. This reveals a certain con-
ception of the role of models, and a certain faith in their usefulness despite their imperfections.
As R. S. Plant and Yano (2016) argues, “the usefulness of the principle must then be judged a
posteriori from its applications, such as the performance of parameterizations” – which echoes
the epigraph of this chapter “all models are wrong, but some are useful” (Box, 1976).
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3.3.3 Statistical interpretation – Craig and Cohen (2006) stochastic
parameterization

Formally, Arakawa (1969) can be seen as a filtering procedure: fast convective motions are
filtered in order to guarantee a steady state balance between convection and the large-scale
forcing. However, mass-flux convection parameterizations were sometimes interpreted rather
as an attempt to represent the mean effect of an ensemble of cumuli. In the literature, pa-
rameterizations are indeed often described as a statistical representation of a cumuli field. For
instance, K. A. Emanuel (1983) writes:

The foundation of most parameterizations of cumulus convection is the two-scale
hypothesis, which may be thought of consisting of two parts. The first is the as-
sumption that the time scale of individual cumuli is small compared to that of
the larger-scale circulation we wish to explicitly resolve, so that the cumulus activ-
ity may be regarded as being in statistical equilibrium with the larger scale flow.
Without this assumption, it is very difficult to treat cumulus activity in a statistical
manner. The second part of the two-scale hypothesis is similar: it states that it is
possible to define an average over an area which is large enough to encompass a sta-
tistically significant number of individual cumuli, but small enough to be regarded
as infinitesimal compared to the larger-scale flow we wish to explicitly resolve.

One might think that there is little difference between the CQE used in Arakawa (1969)
and the statistical equilibrium discussed here. However, these two equilibrium require different
justifications. In Arakawa (1969), as we have seen, the main assumption is that the convective
adjustment time, i.e. the time needed for the mass flux C to become constant, is negligible in
front of the characteristic time of the large-scale circulation. In the statistical interpretation,
what is considered is not the adjustment time of convection, but the time scale of individual
cumuli (as well as their dimensions). The fundamental assumption of the statistical interpreta-
tion is that there is a sufficient number of cumulus clouds in the model grid at each time step
so that their mean properties converge. More precisely, the statistical interpretation assumes
that it is possible to choose a grid size ∆x much smaller than the typical large-scale L, but
much larger than the time scale of individual cumuli l and similarly, that the time step ∆t has
to be much smaller than the typical timescale of the large-scale T , but much larger than the
typical cumulus scale τ . Mathematically, these conditions can be written:

l� ∆x� L (3.10)

τ � ∆t� T (3.11)

In this second interpretation, an analogy can be made with statistical mechanics. Indeed, as
noted by Craig and Cohen (2006), this interpretation of convection parameterizations reminds
some typical problems in statistical mechanics, such as the ideal gas model. Statistical mechan-
ics attempt to explain macroscopic physical properties such as temperature, pressure or heat
capacity in terms of microphysical parameters that fluctuate around average values and are
characterized by a certain probability distribution. A basic application of statistical mechanics
to explain, for instance, the properties of an ideal gas requires the following assumptions. First,
the gas is assumed to be in equilibrium and there is supposed to be a scale separation between
the measurement scale and the molecular scale, so that a large number of particles with well-
defined averages are subject to the measurement. Then, the gas particles are supposed to be
independent, i.e. their interactions are neglected. Finally, all states of the system consistent
with these assumptions are assumed to be equally probable. This last assumption – which might
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seem questionable at first sight – is fundamental in the formalism of statistical mechanics and
was successful in explaining many natural phenomena. The strength of statistical mechanics is
to derive thermodynamic macroscopic formulas from a statistical description of microscopical
states under these three assumptions.

Convection parameterizations similarly attempt to derive large-scale tendencies from small-
scale processes. Moreover, the first two hypotheses mentioned above – scale separation and
particle independence – are analogous to hypotheses generally made in convection parameteri-
zations. In order to consider a kind of equilibrium between the large-scale and the convective
scale, the grid-box area is indeed much larger than the surface occupied by a single convective
system. Moreover, clouds are assumed to be independent because their interactions are not
taken into account. Concerning the last assumption – the equiprobability of all possible states
– most convection parameterizations do not make any a priori assumptions on the distribution
of convective states in the grid, but consider instead a mean, idealized convective system as
representative of all convective phenomena. With this view, conventional convection parame-
terizations implicitly assume that the number of convective cells in the grid is infinite and that
all convective processes are linear, so that only the mean values can be considered.

This hides the quantitative differences that would appear when considering a finite number
of convective clouds. As R. S. Plant and Yano (2016) explain, this is a strong assumption.
Assuming for instance one convective system every 10 km would yield 100 convective systems
within a typical grid cell of 104 km2. Since the convergence of a number N of random and
independent processes towards their mean value scales as 1/

√
N , assuming that the mean over

a grid cell is representative of convective processes is a very rough approximation, even if some
large-scale equilibrium is satisfied. It tends to smooth out the variability of convection, which
is problematic as convective fluctuations might interact strongly and in a non-linear way with
the resolved large-scale dynamics.

This is why the statistical interpretation of parameterizations naturally leads to the in-
troduction of stochastic components to better account for subgrid-scale variability. R. Plant
and Craig (2008) provide an example of such a stochastic scheme. Following Craig and Co-
hen (2006), they assume that there is indeed a large-scale equilibrium governing the average
properties of convection, but that this equilibrium occurs at a scale potentially much larger
than the typical GCM grid size. The average of convection over a given grid box will then
be a sub-ensemble of the large-scale equilibrium drawn from a distribution determined by the
large-scale forcing. This approach does not require a grid size much larger than the typical
spacing between convective elements. The grid scale only has to be small enough to resolve the
large scale, that is:

∆x� L (3.12)

∆t� T (3.13)

and in addition there has to be a scale separation between the convective scale and the large
scale so that:

l� L (3.14)

τ � T (3.15)

It is therefore only the conditions between the grid size ∆x and the convective scale l on the
one hand, and the grid timestep ∆t and the convective time τ on the other, that are relaxed –
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in particular, we can now have ∆x ≤ l and ∆t ≤ τ without any contradiction.

Quasi-convective equilibrium and statistical equilibrium are two different ways of formu-
lating the convection parameterization problem. It is not clear which interpretation is more
theoretically founded – both interpretations are based on an analogy with a given theory, but
this analogy does not prove them completely. However, they give rise to parameterizations of
convection with a different formulation and different results – one again, the usefulness of one
interpretation or the other must be evaluated according to the results it allows.

3.3.4 Segmentally constant approximation – Yano (2014)

The quasi-equilibrium filtering of Arakawa and Schubert (1974) and the statistical interpreta-
tion of Craig and Cohen (2006) both propose an interpretation of the collective behavior of a
field of updrafts. Each interpretation relies on an analogy with a given theory, which determines
how the closure of the mass-flux formulation is defined. Conversely, with the segmentally con-
stant approximation (SCA), Yano (2014) interprets the mass-flux formalism itself rather than
its closure. His objective is not to relate the cloud base mass-flux to some theoretical principles,
but to justify why it is legitimate to use a parameterization of atmospheric convection based on
the mass-flux formalism described in 3.3.1 – regardless of the formulation chosen for its closure.
Despite this difference, we choose to present this third interpretation here because, once again,
it is based on an analogy with a certain theory, and gives a coherent framework for formulating
convection parameterizations.

The objective of SCA is to systematically derive the mass-flux formalism and its potential
extensions from the following set of anelastic equations:

∂

∂t
φ+∇ · uφ+

1

ρ

∂

∂z
ρwφ = F (3.16)

∇ · u +
1

ρ

∂

∂z
ρw = 0 (3.17)

with φ a general prognostic variable, u the horizontal wind components, w the vertical velocity
and F a source term. The first equation expresses the conservation of any general prognostic
variable φ (for instance momentum or water vapor) and the second equation expresses mass
continuity under the anelastic approximation, which filters acoustic waves. For more details
about the anelastic approximation and how these equations can be derived, see Gough (1969)
and Masmoudi (2007).

The equations 3.16 and 3.17 could be used to run a high-resolution model such as a CRM
or a LES within each grid box of the GCM – this is what is done in super-parameterizations.
The refinement brought by CRMs or LES is mainly horizontal, as the vertical resolutions used
in GCMs and CRM/LES are comparable. Similarly, the SCA can be seen as a horizontal
refinement of the grid of the GCM. The main assumption behind SCA is that at each vertical
level of a GCM subgrid-scale processes (such as those simulated by CRMs or LES) can be
merged into different “segments” with size Sj, such that the grid-box domain with area S can
be expressed as S =

∑n
j=1 Sj. These segments are homogeneous, i.e. the physical variables that

describe them are constant horizontally. Vertically, the segments form a “plume” (for example,
an updraft, a downdraft or a cold pool) as illustrated in Fig. 3.2. At each vertical level z, we
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thus have:

φ =
n∑
j=1

δj(x, y)φj (3.18)

where δj(x, y) is defined by:

δj(x, y) =

 1, if (x, y) ∈ Sj
0, if (x, y) /∈ Sj

(3.19)

With these definitions, the average of variable φ over the jth segment is defined by:

φ =
1

Sj

∫
Sj

φdxdy (3.20)

and it is then possible to deduce the prognostic equation and the mass continuity equation
under SCA from eq. 3.16 and 3.17 for φj (see Yano, 2014, for more details).

Figure 3.2: A schematic view of a grid box in the SCA. The main hypothesis of SCA is that
the different subgrid-scale components (updraft, downdraft, cold pool, stratiform cloud) are
constant horizontally. From Yano (2014).

The framework given by Yano (2014) is much more general than the standard mass-flux
formulation. As illustrated in Fig. 3.2, it is possible to use it to describe not only updrafts,
but also other subgrid-scale components such as downdrafts or cold pools. The fundamental
idea of SCA is to represent with homogeneous variables what is sufficiently similar horizontally.
Yano (2014) makes an analogy between this approximation and a finite volume approach:

From a purely numerical algorithmic point of view, SCA is nothing other than a
finite volume approach [...]. This correspondence becomes more evident when a
sufficiently large number of segments are introduced [...]. However, under SCA, the
number of elements may be radically reduced in an analogous manner as an image
compression by wavelet [...]: retaining a high local resolution only where a high
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variability is found, but keeping a much lower resolution where less variability is
found. As a result, SCA provides a compresses-CRM, and introduction of SCA in
place of a standard CRM into GCM leads to compressed super-parameterization
(Yano, 2014, p.10)

SCA can be seen as a “selective refinement” of the grid of the model. As such, it can be
used to interpret both a CRM – when there is a large number of segments – and the standard
mass-flux formulation, which can be recovered using three additional assumptions:

� entrainment-detrainment hypothesis: to describe the interactions between different
segments, an entrainment-detrainment hypothesis is introduced. Entrainment and de-
trainment rates Ej,i and Dj,i describe the lateral exchanges at each vertical level between
a pair of segments i and j. This avoids the need to estimate the horizontal winds crossing
the segment boundary, and therefore to take into account the position of the segment
boundary. Under this simplification, the total entrainment and detrainment rates for the
segment j are given respectively by Ej =

∑n
i=1,i 6=j Ej,i.

� environment hypothesis: an environment is introduced and different segments are
assumed to interact with the environment exclusively. The total entrainment and de-
trainment rates for each segment j thus become Ej = Ej,e and Dj = Dj,e where the
subscript e stands for the environment.

� scale separation hypothesis: the fractional area σj of each convective segment is
taken to be much smaller than that of the environment σe: σj � σe or equivalently
σj → 0 and σe → 1. Under this approximation, grid-box means are approximated by
their environmental values, i.e. φ̄ ≈ σeφe ≈ φe (except for the vertical velocity).

With these assumptions, Yano (2014) explains how the standard mass-flux formulation can
be systematically derived from the set of fundamental equations given in 3.16 and 3.17. This
method is self-consistent and makes explicit all the successive assumptions that are made.
It also provides a guide to extend the standard mass-flux formulation in order to take into
account other objects such as downdrafts or cold pools, which are known to play an important
role for convection in high-resolution simulations (Brient et al., 2019; Torri et al., 2015). Such a
clean derivation of convection parameterizations from fundamental principles seems satisfying.
Nevertheless, we disagree with Yano, Bengtsson, Geleyn, and Brozkova (2016) when they argue
that any parameterization should be based on a full deduction from basic physical laws similar
to SCA:

A parameterization is, by definition, a parametric representation of the full physics
on the subgrid-scale [...]. Thus, a certain process of deduction from the full physics
is required in order to arrive at a parametric representation. Such a deduction
process must be self-consistent and logical: a simple moral dictum. (Yano et al.,
2016, p. 426)

For us, the fact that a system is described by certain physical laws does not imply that
any parametric representation of this system has to be deduced from the same physical laws.
This is not the only way to proceed, and in many cases, not the most efficient one. Let’s take
a simple example: the latent heat of vaporization of water, that is the amount of energy that
must be added to a given quantity of liquid water to transform it into vapor. The latent heat of
vaporization depends, among other things, on the temperature. In theory, we could try to de-
duce this dependence from first principles, based on quantum dynamics. Yet, to our knowledge,
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this approach has not been successful yet. As a consequence, the temperature dependence of
heat vaporization of water vapor is based on tabulated values from experiments. This does not
prevent the empirical relationship obtained from being useful for various applications.

Similarly, we argue that even if analogies with theories are interesting and provide a basis
to construct parameterizations, in many cases, they are not enough. Therefore, we should not
rely exclusively on theory and accept to use ad hoc assumptions to make our parameterizations
more realistic. The observation-based convection schemes and the three theory-based parame-
terizations described here should be taken as two extreme stances. In the following, we will see
that the parameterizations used in the atmospheric model LMDZ are “object-based” and in
between these two antagonist positions. We will argue that objects provide a flexible framework
to combine information from observations and theory in convection parameterizations.

3.4 Object-based interpretation of LMDZ convection pa-

rameterizations

In this section, we focus on the convection parameterizations used in the atmospheric model
LMDZ and defend the “object-based” approach that is used in this GCM – and in many other
GCMs, though we limit our study to LMDZ. The construction of parameterizations in LMDZ
was done incrementally. Progressively, parameterizations were modified or added in part for
theoretical reasons, in part to correct some of the identified deficiencies in model results. Most
of these parameterizations were based on an object, as we have defined it in chapter 2. As
we will see in the following, the representation of objects in LMDZ parameterizations is based
partly on theory, and partly on observations.

3.4.1 Overview of LMDZ convection parameterizations

We first give an overview of the convection parameterizations used in LMDZ, focusing on
three central aspects of these parameterization: the representation of shallow convection by the
thermal plume model (Hourdin, Couvreux, & Menut, 2002; Rio & Hourdin, 2008), the deep
convection parameterization (K. A. Emanuel & Živković-Rothman, 1999; Grandpeix, Phillips,
& Tailleux, 2004), and the cold pool parameterization (Grandpeix & Lafore, 2010).

The thermal plume model

The original thermal plume model of Hourdin et al. (2002) combines a diffusion scheme for
small-scale turbulence and a mass-flux model to represent dry convection. We focus on the
mass-flux part of the model and explain first its conceptual basis as originally formulated in
Hourdin et al. (2002). The formulation of Hourdin et al. (2002) of the updraft mass flux is
similar to the standard mass-flux formulation exposed in 3.3.1. Hourdin et al. (2002) relies on a
simple updraft – so called, a “thermal plume” – homogeneous horizontally and which entrains
air along its ascent. The closure of the parameterization, however, is less conventional. As
illustrated in Fig. 3.3, the assumption is made that convection happens through stationary
convective rolls. From observations and LES, Hourdin et al. (2002) choose a certain value for
the typical ratio between the width of a convective cell L and its height zmax. Based on this
particular geometry, the authors relate the cloud base mass flux to the convergence of air in
the subcloud layer, and deduce a certain expression for this mass flux.
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Figure 3.3: Physical image sustaining the thermal plume model and corresponding vertical
velocity w, relying on diffusive turbulence in the surface layer and coherent “convective rolls”
in the mixed layer. The mass flux f depends on the entrainment of air inside the thermal from
the surface layer a, and also on the entrainement e and detrainment d in the mixed layer. From
Rio and Hourdin (2008).

There is some similarity between Hourdin et al. (2002) and the standard convection pa-
rameterization of Arakawa. However, the arguments used to justify the closure are not of the
same order: Arakawa (1969) does not make any assumption on the geometry of convection.
The assumption he makes concerns the collective effect of convection, whose adjustment time
is assumed to be much faster than the characteristic time of the large scale. Even if Hourdin
et al. (2002) is also based on a certain equilibrium assumption between the small scale and the
large scale, the justification used to construct the closure is instead based on the geometry of
some objects – convective rolls – as observed in the atmosphere.

Various developments have been made since the original formulation of the thermal plume
model in Hourdin et al. (2002), initially developed to represent only dry convection: in partic-
ular Rio and Hourdin (2008) extended the scheme to the representation of cloudy convection,
Jam, Hourdin, Rio, and Couvreux (2013) refined the representation of cloud processes by adding
a bimodal distribution of subgrid-scale water, and Rochetin, Couvreux, Grandpeix, and Rio
(2014) proposed a stochastic triggering of deep convection by thermals by introducing a thermal
size distribution. We will not detail these various developments here, but simply note they are
also based on geometric pictures of “objects” that can be observed in the atmosphere or in LES.

For instance, the stochastic triggering parameterization of Rochetin et al. (2014) is based
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on a LES diagnostic of the geometry of cloudy thermals. The authors show that in LES,
two populations of thermals can be distinguished: the smallest thermals, not able to trigger
convection, and larger thermals, which can turn into cumulus or cumulonimbus. They calculate
that the cross section spectrum of each population can be described using an exponential
distribution and use these distributions to calculate the probability of having a cumulus hosting
an undiluted updraft strong enough to trigger deep convection. As in Hourdin et al. (2002),
the geometry of the objects considered in Rochetin et al. (2014) plays a crucial role in the
formulation of the parameterization.

Deep convective scheme

The deep convective scheme in LMDZ is another interesting example of a parameterization
that is neither theory-based, nor observation-based, but in between. Its original formulation
is described in K. A. Emanuel (1993), and its actual implementation in LMDZ in Grandpeix
et al. (2004). This scheme has been developed to correct important limitations of mass-flux
convection parameterizations and in particular account for the fact that 1) the entrainment
of air in clouds is not continuous as in the standard mass-flux formulation, but episodic and
heterogeneous, 2) mixing in clouds crucially depends on microphysical processes, a phenomenon
ignored by convection parameterizations so far. The main steps of this scheme are detailed in
Fig. 3.4. The adiabatic ascent of a parcel starting from the subcloud layer and ending at its
level of neutral buoyancy is the core of this scheme. As the thermal plume used in Hourdin
et al. (2002), this parcel transports a certain mass flux. The main difference is that at each
level, the parcel is ‘peeled’ according to two processes. First, a fraction of the condensed water
is converted to precipitations and used to feed an unsaturated downdraft. Second, part of the
parcel is shed and mix with the environmental air to build a set of mixtures, which rest at their
level of neutral buoyancy after further removal of precipitation and evaporation of cloudy water.

The actual implementation of this scheme in LMDZ, described in Grandpeix et al. (2004),
defines how the mixing is performed according to a certain probability distribution, and how
the cloud base mass flux of the parcel is calculated. We will not detail it here. By giving the
backbone of the scheme, our idea is just to raise the question: how such a scheme can be inter-
preted? The three interpretations given above attempt to give a precise theoretical framework
to parameterize atmospheric convection. Obviously, the parameterization of K. A. Emanuel
(1993) does not fit in any of these frameworks. Indeed, the latter is not primarily motivated by
theoretical reasons, but by an observation-based understanding of the role played by different
phenomena in atmospheric convection.

As a consequence, the whole scheme proposed by K. A. Emanuel (1993) contains many more
ad hoc assumptions than for instance Arakawa and Schubert (1974). Apparently, the latter is
thus more theoretically based than the former. But this strength is actually a weakness. Para-
doxically, the strict theoretical framework chosen by Arakawa and Schubert (1974) prevents
them from taking into account some important processes in the atmosphere, microphysical
processes in particular. On the contrary, K. A. Emanuel (1993) is not so much based on theory
than on the understanding of an object – here, an air parcel that mixes inhomogeneously with
the environment. An object, as we have seen in chapter 2, is a natural way of observing and
understanding convective phenomena in the atmosphere. Object-based parameterizations do
contain ad hoc hypotheses, but such hypotheses allow them to be easily improved and, if neces-
sary, made more complex to take into account new observational data. In particular, the many
ad hoc hypotheses used in K. A. Emanuel (1993) helped this object-based parameterization to
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Figure 3.4: Idealized model of the convection parameterization of K. A. Emanuel (1991). a)
Reversible ascent from subcloud layer to arbitrary level (i) between cloud base (ICB) and level
of neutral buoyancy (INB). b) A fraction εi of condensed water is converted to precipitation
which is added to a single unsaturated downdraft. c) Remaning cloudy air is mixed according
to an equal probability distribution with the environment at level i. d) Mixtures then ascend
or descend to levels at which their liquid water potential temperature is equal to that of their
environment.

be closer to real phenomena, and thus more realistic than theory-based parameterizations such
as Arakawa and Schubert (1974), deduced logically from a few justified hyotheses.

Cold pool parameterization

Before further developing our object-based interpretation of LMDZ parameterizations, we
present a last parameterization used in LMDZ, which attempt again to represent an object:
the cold pool parameterization of Grandpeix and Lafore (2010), already mentioned in Chapter
2. As illustrated in Fig. 3.5, the parameterization consists in circular cold pools with vertical
frontiers. The cold pools originate from the downdrafts of the deep convective scheme. Three
prognostic variables are used to compute the characteristics of cold pools and their evolution:
1) their fractional coverage σ 2) the potential difference δθ(p) between cold pools and their
environment and 3) the specific humidity difference δqv between the two. As cold pools have
vertical frontiers, σ is constant vertically, but δθ(p) and δqv(p) may vary along the pressure
axis. Since cold pools are denser than their environment, they spread at the surface. Their
spreading rate is calculated following Von Karman et al. (1940) as the square root of their
potential energy:

EP = −g
∫ hw

0

δθv
θ̄v
dz (3.21)
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where θv is the virtual potential temperature and hw the mean cold pool depth (at which δθv
vanishes). Heat, mass and energy budgets then allow to calculate σ, δθ(p) and δqv(p) at each
vertical level.

An important aspect of the cold pool parameterization is to trigger and feed the deep con-
vective scheme. The feedback of cold pools on the deep convective scheme takes into account
the spreading rate of cold pools and is parameterized in the closure of the deep convective
scheme. When deep convection is activated, the cloud base mass flux is enhanced in the pres-
ence of cold pools.

Figure 3.5: Representation of cold pools in a GCM grid cell, as seen from above, in the param-
eterization of Grandpeix and Lafore (2010).

The representation of cold pools used in Grandpeix and Lafore (2010) is partly based on
theory. For instance, the spreading of cold pools as well as the power available to feed con-
vection are determined following simple equations of fluid dynamics and conservation laws.
However, it is also partly based on observations and includes ad hoc assumptions motivated by
observational data of cold pools – in the original version of the parameterization, the density
of cold pools is for instance imposed with a value representative of observations. The param-
eterization of Grandpeix and Lafore (2010), like the other LMDZ parameterizations exposed
previously, is therefore semi-empirical in nature: it is based on a certain theoretical framework,
but is not entirely deduced from this theoretical framework. On the contrary, numerous ad
hoc assumptions help to ensure that the cold pools represented in this parameterization are
sufficiently close to the cold pools studied in observations or in high-resolution simulations.

3.4.2 Interpreting LMDZ multi-object parameterizations

The previous description of LMDZ parameterizations reveals that they are based on some ob-
jects: convective rolls for the thermal plume model, an undiluted parcel for the deep convective
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scheme, and cold pools for the parameterization of Grandpeix and Lafore (2010). Object-based
parameterizations might seem more ad hoc and less solidly founded than theory-based ones.
As Edwards (2010) put it, they live in a “semi-empirical world” in between theory and obser-
vations. Yet, what matters is not how solidly founded they are, but how useful they are to
develop a GCM and improve it. We argue that objects provide a useful and flexible framework
to guide the development of parameterizations.

Object-based vs theory-based parameterization

Quasi-equilibrium, statistical equilibrium and SCA attempt to deduce logically the formulation
of convection parameterization or its closure from a coherent theory. In each case, an anal-
ogy with an existing well-established theory is used to justify the assumptions made: Schubert
(2000) uses an analogy between CQE and quasi-geostrophic theory, Craig and Cohen (2006), an
analogy with statistical thermodynamics, and Yano (2014) describes its schemes as a particular
case of finite volume approach. These analogies should not be confused with demonstrations:
although interesting, their explanatory power remains limited. They give a coherent, but in-
complete description of phenomena as they occur in nature.

On the contrary, the thermal plume model, the deep convective scheme or the cold pool
parameterization used in LMDZ are not so much theory-based as object-based. Their objective
is not to apply a certain theory to the parameterization problem, but to describe an object:
convective rolls in Hourdin et al. (2002), an air parcel in K. A. Emanuel (1993) and cold pools
in Grandpeix and Lafore (2010). The description of each object is neither entirely empirical
like the reference profiles used in moist convective adjustment schemes, nor entirely determined
from first principles: it is based both on observations and some theoretical considerations.
Theoretical equations provide a basis to interpret the observed behavior of the object and con-
struct a parameterization based on some fundamental principles. Ad hoc assumptions are used
to guarantee that this theoretical basis is sufficiently close to the real world. Object-based
parameterizations are thus semi-empirical: the assumptions they use are motivated in part for
theoretical reasons, in part for empirical ones.

Chapter 2 provides arguments for the use of such object-based parameterizations. Indeed,
we saw that objects are a natural and convenient way to analyze both observations and high-
resolution simulations. When we observe clouds, we do not see a quasi equilibrium, a statistical
equilibrium or SCA equations. We see objects interacting with each other. Analyzing these
interactions enables first to characterize the objects, and second to understand them. Think-
ing parameterizations with objects helps to use this understanding both to construct and test
parameterizations. For instance, the rate of spreading of cold pools in Grandpeix and Lafore
(2010) can directly be compared with the rate of spreading of cold pools in observations or
high-resolution simulations. If there is a mismatch between what is predicted in the parame-
terization and observations, it is possible to try to adjust the specific hypothesis involved. In
this way, it is possible to ensure that the parameterized objects are as close as possible to the
real world.

Conversely, a theory-based parameterization takes more distance from the observed phe-
nomena. It attempts to deduce a coherent representation of convection from fundamental
principles. This logical deduction gives a strict framework for representing atmospheric phe-
nomena. If this framework does not give realistic results, it is difficult to use observations to
interpret the failure of a theory-based parameterization and improve it. A new coherent theory
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has to be proposed to solve the discrepancy. It is of course impossible to formulate a new
theory for each bias identified in the model. As a consequence, even if theory-based parameter-
izations are more coherent than object-based one, they are likely to be further from observed
phenomena.

On the coherence of parameterizations

Unlike theory-based parameterizations that attempt to derive successive assumptions from first
principles in a logical and consistent manner, the ad hoc assumptions used in object-based pa-
rameterizations can be partially incoherent. For instance, the thermal plume model and the
deep convective scheme used in LMDZ express two visions of convection, the first one based on
convective rolls and the second on an air parcel. These visions are in part incoherent: when the
thermal plume model and the deep convective scheme are used one after the other in LMDZ,
we assume successively that convective instabilities are dissipated through convective rolls of
Fig. 3.3 and through the undiluted parcel of Fig. 3.4 – two representations of convection that
are radically different and in part contradictory. One might prefer to have instead a single
unified scheme to express both shallow and deep convection. However, is the lack of coherence
an issue when developing parameterizations?

To answer this question, we will first wonder: why does a scientific theory need to be co-
herent? Nature itself is coherent: physical laws are universal, i.e. they apply in the same way
everywhere and at all times. Since the vocation of a scientific theory is to explain nature, a
scientific theory should be coherent as well. A theory that would not be coherent would be
described as incomplete. For instance, time has a different meaning in quantum physics and
general relativity. For over half a century, many theoretical work has been done to attempt to
unify general relativity and quantum physics in a single coherent framework.

However, parameterizations are not theories. Their objective is to represent approximately
atmospheric convection in GCMs, not to provide an explanation for atmospheric convection
from first principles. In addition, coherence does not guarantee accuracy. A parameterization
may be perfectly coherent and at the same time produce very unrealistic results. Therefore, for
parameterizations, coherence is not a panacea. It is only one criterion, among others, to take
into account to evaluate the quality of a parameterization (see chapter 5 for other criteria to
assess a parameterization from a conceptual point of view).

The semi-empirical world of object-based parameterizations is thus not a weakness, but a
strength. The framework it gives is more flexible than the strict coherent framework imposed
by theory-based parameterizations. It helps to recognize the usefulness of certain empirical
hypotheses, alongside other assumptions that can be justified on the basis of theoretical prin-
ciples. By using different objects, in part incoherent, we recognize that the representations
used in parameterizations are imperfect, so that a single coherent representation of convection
is not sufficient. Each object has a limited explanatory and predictive power. Thinking with
objects allows us to represent in parameterizations physical images which are certainly partly
contradictory, but also complementary to give a realistic picture of atmospheric convection.

Limits of object-based parameterizations

Despite the advantages of objects to parameterize atmospheric convection, there are some limits
inherent to the convection parameterizations that cannot be solved using objects. The two main
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issues we identified are the artificial separation of scale and the artificial separation of processes
introduced by parameterizations.

Separation of scales Objects used in parameterizations represent subgrid-scale phenomena.
Convection parameterizations thus introduce a separation between two scales: the large-scale,
resolved by the grid of the model, and the convective scale, which has to be parameterized.
Regardless of the parameterization chosen, the large scale is taken to be much larger both in
terms of spatial and time scale, so that fast convective processes react quickly to the large-scale
state, hence a kind of equilibrium between the two. Parameterizations aims at representing this
reaction and the associated feedback of convection on the large-scale state. In this idealized
vision, atmospheric processes at other scales either do not exist or interact in a negligible way
with the convective scale and the large scale.

In the real world, the large scale and the convective scale are of course further divided into
many different scales: different large scale disturbances are best characterized with different
spatial and temporal timescales and the same can be said for individual cumuli. A range of
scales seems more realistic to describe typical large-scale or convective phenomena than a single
value. It does not necessary make the parameterization problem more complicated if we assume
a clear separation between the two ranges of scales, i.e. if we assume that the kinetic energy
in the atmosphere is concentrated in two distinct windows, the large scale and the convective
scale, the latter being much smaller than the former, and that there is a so-called “mesoscale
gap” between the two so that the large scale and convective scale interact exclusively with one
another.

The problem is that there is no such mesoscale gap in the atmosphere. It is now well known
that convection in nature often develops mesoscale organization (Molinari & Dudek, 1992) and
that the various interactions between the convective, mesoscale and large scales are crucial to
predict the subsequent evolution of large-scale air masses (Heggem et al., 1998; Ishida, 1989;
Vinnichenko, 1970). The atmospheric power spectra is more and more seen as a continuum and
there is no mesoscale gap that clearly separates the convective and large scale (Yano, 2016).
Due to this absence of clear-scale separation, we miss something when thinking only with
subgrid-scale objects. It seems difficult to take into account what happens in the mesoscale
with an object-based parameterization of atmospheric convection.

Separation of processes Thinking with objects helps to separate the problem of atmo-
spheric convection into different sub-problems. As a consequence, object-based parameteriza-
tions typically have a modular structure, with different components describing different physical
processes: shallow or deep convection, precipitation, cold pools, radiation, turbulence, etc. In
practice, the different modules are generally coupled to the dynamics more or less independently
from the others. Most small-scale interactions between processes are not taken into account.

This absence of coupling is a serious limitation of parameterizations because in the atmo-
sphere, the coupling between different processes is the norm rather than the exception. A
famous example is given by the very strong and fast interactions among cloudiness, turbulence
and radiation in stratocumulus clouds. Turbulence driven by radiative cooling near cloud top
in stratiform clouds leads to the entrainment of warm and dry air which might produce holes
in the cloud layer, thus affect the fractional cloudiness (Lilly, 1968; Stevens, 2002). Such effects
are rarely taken into account in GCMs because turbulence, radiation and microphysics are
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generally described in separate modules interacting with the dynamics only.

This limitation is of a more practical than theoretical nature. In theory, the coupling
between the different modules of a parameterization can indeed be envisioned. For instance,
in LMDZ, the deep convective scheme is coupled to the cold pool scheme of Grandpeix and
Lafore (2010): deep convective downdrafts may generate cold pools, which in turn trigger and
feed the deep convective scheme. Such attempts are a nice step forward, but a lot of work still
has to be done before the various modules of a parameterization act in concert rather than as
separate processes.

3.5 Conclusion

In this chapter, we clarified and justified the semi-empirical nature of convection parameteri-
zations used in GCMs. Recalling the context in which convection parameterizations emerged,
we first mentioned that parameterizations appeared because of an operational need to make
GCMs work: the motivation behind the first parameterizations was thus more technical than
scientific. However, in a second time, some theoretical formulations of atmospheric convection
were formulated, notably the Arakawa and Schubert (1974) parameterization. Due to the im-
perfections of these theoretical formulations, hybrid representations, based partly on theoretical
principles and partly on observations, have finally been adopted in most GCMs. These hybrid
representations have proven to be the most useful for parameterizing atmospheric convection
and can be best understood in terms of objects. We relied on chapter 2 to justify why objects
can act as a bridge between observations and theory and as such, are a useful way to think
the convection parameterization problem. Some inherent limitations of convection parameter-
izations were finally clarified, namely the fact that parameterizations introduce an artificial
separation of scales and of processes in GCMs.

In which sense does the previous discussion inform the parameterization debate, that is
whether or not parameterizations should be replaced by approaches based on high-resolution
models or machine learning? To a certain extent, GCRMs (or super-parameterizations) bear
similarities with what we called theory-based parameterizations – they attempt to deduce a
representation of convective phenomena from first principles. In contrast, machine learning
algorithms are closer to observation-based parameterizations – they also rely on learning from
observations (or from high-resolution models used as observations), with the difference that
they potentially use a much larger sample of reference profiles. We explained in this chapter
that parameterizations should not be considered inferior to these alternatives just because
they are “semi-empirical”, i.e. based on both theory and observations. On the contrary, in
some cases, the simultaneous use of theory and observations is a more useful framework to
make models consistent with the real world. The comparison between parameterizations and
competing approaches must therefore be judged solely on the basis of their applications – and
it remains to be proven that there exists an alternative more useful than parameterizations for
making climate projections.
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4.1 Introduction

As their name suggests, the behavior of parameterizations depends crucially on parameters,
whose values are often poorly constrained in observations. During the development stage of a
parameterization, parameter values are set from a mixture of theoretical or observational rea-
sons, as well as modeling results obtained in simplified case studies used during the development
of the parameterization, such as single column model (SCM) case studies. When parameteri-
zations are integrated in a full GCM, parameters can also be adjusted in order to improve the
quality of simulation results and guarantee in particular that the temperatures predicted by
the coupled GCM are sufficiently close to present-day values. This process is generally referred
to as “tuning” (Hourdin et al., 2013; Mauritsen et al., 2012; D. A. Randall & Wielicki, 1997).

Most coupled GCMs are tuned before each phase of the Coupled Model Intercomparison
Project (CMIP, see chapter 6). As part of CMIP, every 5 or 6 years, the main coupled GCMs
used around the world are submitted to standardized simulation protocols. This coordinated
effort represents an opportunity to compare the state-of-the-art coupled GCMs under similar
conditions, and use them to study anthropogenic climate change and provide statements for the
IPCC reports. The results of coupled GCMs depend to a large extent on their tuning process.
Yet, until recently, this process was not well documented, and therefore not taken into account
in the many analyses based on CMIP results. Contrary to the calibration of scientific instru-
ments, which is typically conducted following a strict protocol (e.g. Manrique et al., 2020),
GCM tuning is not standardized at the level of the climate modeling community. Tuning prac-
tices vary among modeling centers, and the criteria used for tuning are in part subjective and
depend on the personal expertise of climate modelers. Only recently have climate modelers felt
the need to systematically document and compare the tuning procedures they used (Hourdin
et al., 2017a; Mauritsen & Roeckner, 2020; Mignot et al., 2021).

Conversely, over the past twenty years, the tuning of climate models has attracted the at-
tention of many philosophers of science. One of the main issues they addressed concerned the
interpretation of the agreement between GCM results and observations. If GCMs are tuned
against observable data, what does it mean when GCM simulations and observations agree? In
particular, should this agreement support confidence in future climate projections? For some
philosophers, the agreement between GCM results and past observations may well be just a
consequence of the tuning process, especially if the same observations are used to tune a model
and evaluate its results (W. S. Parker, 2011; Stainforth, Downing, Washington, Lopez, & New,
2007). Others, however, are more optimistic and highlight the various lines of evidence used to
test climate models as an argument for their empirical adequacy (Lloyd, 2009, 2010).

Philosophers of science, however, have generally been more interested in the consequences
of tuning on the results of the model, than in the tuning process itself. In particular, there is
little discussion in the philosophical literature about the variety of strategies used in the tuning
process. The parameters used for tuning are rarely specified, nor are the needs that tuning
addresses. Moreover, we found no attempt to define what makes climate model tuning unique
compared to calibration procedures used in other scientific fields. Such comparison would be
valuable in defining the basis, scope, and purpose of climate model tuning and constrating it
with what is done in other fields.

We believe that the fact that climate modelers, in the past few years, have decided to better
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document their tuning process is an opportunity for philosophers of science. The purpose of this
chapter is to initiate a discussion on the specific kind of scientific practice tuning represents. In
the following, we are not so much interested in the consequences of tuning on the interpretation
of climate models – a subject much discussed by philosophers of science – as in the tuning
process itself.

4.2 Principle and methods of climate model tuning

The tuning process is confronted with many constraints, which take various forms. In particular,
there are constraints on the parameters that can be used for tuning, constraints on the objectives
that tuning must satistfy, and constraints on the strategies that can be used to tune a climate
model. Clarifying these different constraints is the purpose of the following subsections.

4.2.1 Typology of parameters used in GCMs

We first look at the parameters that can be used for tuning. Modern coupled GCMs typically
contain hundreds of parameters. To understand the role of tuning in GCMs, we first need
to understand what these parameters control in climate models. We propose four criteria to
distinguish on different levels the role played by parameters in a GCM:

1. What does the parameter represent?

2. Is it observable, i.e. does it have an empirical equivalent?

3. How is it used mathematically?

4. What is the effect of the parameter on GCM results?

These criteria are partly arbitrary and other classifications could be proposed. We have
chosen them because they are in continuity with what we have presented elsewhere in this
thesis, particularly in Chapters 2 and 3. Regardless of the classification chosen, we argue that
it is important not to lump parameters together: there is a wide variety of parameters used in
GCMs, and not all parameters are equally important for climate model tuning. We hope that
the distinctions we propose in the following can help in understanding what types of parameters
can be used for climate model tuning and how they can be used.

1) What does the parameter represent?

In chapter 3, we have seen that most parameterizations are based on some objects. Parameters
in such object-based parameterizations can represent three main phenomena: the interaction
between an object and its environment, the interaction between two objects, or the character-
istics of an object.

The interaction between an object and its environment This first type of representa-
tion concerns the majority of parameters used in GCMs. With a few exceptions, parameteri-
zations describe objects evolving independently of each other in the same environment. Most
objects used in parameterizations interact with this environment exclusively. Direct interac-
tions between objects are theoretically possible, but difficult to include in parameterizations in
practice. We mentioned in section 3.4.2 that this artificial separation of processes was a serious
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limitation of convection parameterizations.

As a consequence, how an object interacts with its environment is a core aspect of any
object-based parameterization. To specify this interaction, semi-empirical formulas involv-
ing parameters are often used. In particular, as we have seen in 3.3.1, mass-flux convection
parameterizations specify the exchanges between a bulk plume and its environment through
entrainment and detrainment rates. The expression of entrainment and detrainment rates typ-
ically involves some parameters. For instance, in the thermal plume model of Rio and Hourdin
(2008), the entrainment and detrainment rates in the cloud layer, respectively e(z) and d(z),
are proportional to the mass flux inside the cloud f(z):

e(z) = ε∗f(z) (4.1)

d(z) = δ∗f(z) (4.2)

with ε∗ and δ∗ two parameters whose values must be determined empirically1.

Certain formula parameterizing the effects of cloud and precipitation microphysics also
belong to this category. For instance, the following formula given in Sundqvist (1988) is used
in LMDZ to calculate the evaporation of precipitation at each vertical level:

∂Pl,s
∂z

= EVAP(1− qt
qsat

)
√
Pl,s (4.3)

In this formula, the parameter EVAP specifies how a given object – here, a precipitation
shaft – interacts with its environment. In the standard version of LMDz, the precipitation shaft
is described with a liquid or solid precipitation flux Pl,s.

2 The environment plays a role in the
formula through the mean relative humidity over the grid-box at each vertical level qt/qsat.

The interactions between two objects Since interactions between objects are limited,
parameters representing the interactions between two objects are less frequent than those rep-
resenting the interactions between an object and its environment. In LMDZ, they concern
mostly the activation of the deep convective scheme by the thermal plume model or by the cold
pool parameterization (see 3.4.1). For instance, in the cold pool parameterization of Grandpeix
and Lafore (2010), the power transferred by cold pools to the deep convective updraft Plift is
proportional, for simple dynamical reasons, to the cube of the cold pool spreading speed C3

∗ ,
the height of cold pools h, the density of the air ρ, and the total perimeter of cold pools per
unit area L:

Plift = εlift ρ C
3
∗ h L (4.4)

The parameter εlift specifies that only part of the power of cold pools can be used for
lifting, therefore to enhance the deep convective mass flux. As explained in Grandpeix and
Lafore (2010), this parameter accounts for different phenomena that prevent the full conversion
of cold pool energy to lifting power for deep convection, and that were ignored in the formulation
of the cold pool parameterization.

1More precisely, the parameters that are imposed in Rio and Hourdin (2008) are δ and β = e/d = ε∗/δ∗.
The advantage of using β instead of ε∗ is that β is also used to estimate the entrainment as a function of the
detrainment in the subcloud layer, where the detrainment is calculated following a more complex expression
than 4.2.

2In chapter 5, we propose to change formula 4.3 in order to make the object “precipitation shaft” more
realistic by introducing clear and cloudy precipitation fractions.
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The characteristics of an object Finally, parameters can be used to specify the charac-
teristics of an object, in particular its geometry. For instance, in the thermal plume model,
the aspect ratio of the convective rolls is prescribed, i.e. the ratio between the width L of the
convective rolls and their height zmax (see Fig. 3.3):

r =
L

zmax
(4.5)

Another example is given in Grandpeix and Lafore (2010), where the parameter k∗ specifies
the link between the cold pool spreading speed and the square root of their potential energy
EP (as defined in 3.21):

C∗ = k∗
√

2EP (4.6)

Such parameters precise the properties of the objects used in parameterizations.

2) Is the parameter observable, i.e. does it have an empirical equivalent?

This second criteria is related to the first one. Parameters representing the characteristics of an
object are usually the easiest to measure empirically. For instance, the value of the aspect ratio
of convective rolls in the thermal plume model r = L/zmax was set to 2 in Rio and Hourdin
(2008) based on the geometry of convective rolls typically observed in LES. In this case, the
empirical equivalent of the parameter is well defined and can be directly diagnosed
in observations or high-resolution simulations. Nevertheless, we will see in 4.4.1 that
even parameters that have a direct equivalent in observation are in fact weakly constrained by
this equivalent.

It is often more difficult to calculate the empirical value of a parameter representing an
interaction between two objects, or between an object and its environment. Two types of
situations can be distinguished:

� the parameter has, in theory, an equivalent in the real world, but this equiva-
lent is difficult to diagnose in practice. Formula 4.3 is a good example. In theory, it
is possible to calculate the parameter EVAP by measuring the evaporation rate of differ-
ent precipitation fluxes in different environments. However, such an empirical calculation
of EVAP requires extensive observational data in various environments, and is therefore
difficult to achieve in practice.

� the parameter has no direct equivalent in the real world. In fact, the empirical
equivalent of many parameters is often not well defined. For instance, the cloud and
precipitation overlap parameterization introduced in chapter 5 contains a parameter that
guarantees a linear decrease of the fractional precipitation area when the precipitation
intensity falls below a certain threshold. This threshold was introduced to ensure a linear
behavior of the parameterization but has no direct analogue in observations.

3) How is it used mathematically?

GCM parameters can be distinguished on another level: how is the parameter expressed math-
ematically, i.e. what is the form taken by the equation in which this parameter is written?
It is useful to keep this third criterion in mind when tuning a GCM. Here again, a few broad
categories can be distinguished:
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� threshold parameters, used to trigger or strongly enhance a certain parameterized
process when a given variable goes above or below their value. To guarantee a smooth
behavior, the corresponding equations are often expressed using exponential functions.
For instance, the following equation defines the sink associated with the formation of
liquid precipitation in LMDZ:

dql
dt

= − ql
CLTAU

(1− e−(
ql/αc
CLC

)) (4.7)

This equation depends on the local concentration of cloud liquid droplets averaged over
the grid box ql. When the local concentration of cloud liquid droplets in clouds ql/αC
goes above the parameter CLC, the sink associated with the release of liquid precipitation
increases exponentially.

� statistical parameters, that define how certain variables are distributed over the grid
box. For instance, the water vapor distribution is crucial to determine cloud properties,
and the equations defining the shape of this distribution generally depend on some pa-
rameters. Typically, in LMDZ, in the presence of shallow convection, the cloud fraction
and cloud water content are calculated following a bi-Gaussian distribution of the satura-
tion deficit. The variance of each distribution is related to variables of the thermal plume
model through different parameters as specified in Jam et al. (2013).

� linear parameters, from which depend more or less linearly a certain parameterized
process. These parameters include those that are used to specify the efficiency of a
certain process such as εlift in 4.4, a characteristic time constant such as CLTAU in 4.7,
or the relative importance of two processes.

The mathematical expression of parameters also allows to distinguish them depending on
their unit: for instance, threshold parameters such as CLC have the unit of the variable for
which they set a threshold, whereas parameters expressing an efficiency such as the parameter
εlift used in 4.4 are dimensionless. The unit of a parameter helps determine its range: for
example, a dimensionless parameter expressing an efficiency is usually between 0 and 1, while
the value of a threshold parameter must be within the range of values taken by the variable it
controls.

4) What is the effect of the parameter on GCM results?

To determine the effect of a parameter on GCM results, thus how useful it will be for tuning,
different things have to be taken into account:

� The effect of threshold parameters, statistical parameters and linear parameters will be
significantly different on GCM results. In particular, threshold parameters can have a very
large effect or on the contrary no effect at all depending on the value of model variables
compared to the threshold. On the contrary, changing the value of a linear parameter
systematically increases or decreases the intensity of the corresponding parameterized
process.

� some parameters are only read in certain cases in the model – for example, only when ice
clouds are present – while other parameters always have an influence. As we are going
to see in chapter 5, it allows to focus on some parameterizations – parameterizations
involved in shallow convection for instance – in part of the tuning process.
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� certain parameters control directly the same model results. For instance, in equation
4.7, CLTAU controls the speed at which precipitation is formed, whereas in equation
4.3, EVAP controls the evaporation rate of precipitation. If we decrease CLTAU, more
precipitation will form, but if at the same time we increase EVAP, more precipitation
will evaporate. Therefore, the two effects might cancel each other out in terms of the
precipitation rate at the surface.

� Last but not least, the effect of a given parameter on GCM results depends obviously
on the importance of the process it represents. In particular, since clouds are crucial for
climate, parameters that have a direct effect on clouds are considered very important and
generally kept for tuning (Hourdin et al., 2017a).

4.2.2 Need for climate model tuning

The type of parameters that can be used for tuning provides a first fundamental constraint
on the tuning process. The parameters of a GCM indeed define the degrees of freedom on
which a climate scientist can act to tune his model. One might think that another constraint
is provided by the value that model parameters take in observations. However, we will see
that GCM parameters are most of the time weakly constrained by their empirical equivalent,
even when the latter is well defined. The observations do give some constraints, but on the
model results, rather than on the model parameters directly. We will mention in particular
that simulating a correct Earth’s energy budget is one of the main objectives of climate model
tuning.

The values of GCM parameters are weakly constrained by observations

A first basic reason to tune GCM parameters is that the value of many parameters are not
known. As we have seen, some parameters have no equivalent in the real world and others
have in theory an equivalent, but this equivalent is difficult to calculate in practice. For such
parameters, tuning seems to be a necessity.

Does it mean that the observable parameters, i.e. those which have an equivalent that can
be easily measured in observations, should be set once and for all before the model is run? The
values of such parameters could indeed be determined empirically, by analyzing observations
and high-resolution simulations. However, the way parameters are computed in observations
and high-resolution simulations must be consistent with their definition in parameterizations.
For instance, in mass-flux convection parameterizations, detrained air is assumed to have the
properties of the plume, and entrained air, the properties of the environment. On the contrary,
in LES, Romps (2010) has shown that it is not the most humid parcels that detrains, neither
the most buoyant ones, so that detraining air has properties between the average properties
of the plume and those of the environment. Similar results were found for the entrainment.
Local estimates of entrainment and detrainment rates at the boundary of a plume then give
erroneous flux predictions when used in a parameterization. To measure entrainment and
detrainment rates in LES consistent with those used in parameterizations, Couvreux et al.
(2010) take instead the definition of entrainment and detrainment rates in mass-flux convection
parameterizations, namely (with the same notations as 3.3.1):

∂φu
∂z

= ε(φ̄− φu) (4.8)
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with ε the fractional entrainment rate defined as ε = e/f . This equation can be easily deduced
from eq. 3.2 and 3.3 given in 3.3.1. Such bulk calculation underestimates entrainment and de-
trainment rates by a factor of 2 compared to their direct calculation in Romps (2010). Yet, the
diagnosed values by Couvreux et al. (2010) are a much more relevant constraint for convection
parameterizations.

Nevertheless, even the definition of Couvreux et al. (2010) could be questioned. Indeed,
it implicitly assumes that the fluxes φ̄ and φu calculated in the LES are equivalent to those
parameterized in the GCM, whereas the latter are highly idealized. As a result, the values found
in Couvreux et al. (2010) are a relatively weak constraint for the entrainment and detrainment
rates used in the thermal plume model: a certain agreement is expected between the two, but
this agreement is not supposed to be perfect. More generally, care should be taken in comparing
observable parameters to their real-world equivalent. Parameterizations involve simplifications
and idealizations: they are inspired by the real world, but do not reproduce it accurately. Due
to these approximations, defining the true equivalent of an observable parameter in observations
or in high-resolution simulations is virtually impossible. We will come back to the consequences
of the non-accuracy of convection parameterizations in 4.4.1.

Simulating a correct Earth’s energy budget

The need to simulate a correct Earth’s energy budget is a second fundamental reason to tune
GCM parameters. Earth’s energy budget describes the balance between the energy that the
Earth receives from the sun, and the energy it sends back to space. If the Earth’s energy
budget is not satisfied in a coupled GCM, the climate simulated by the model will drift towards
a climate state quite different from the present climate (Marotzke & Stone, 1995; Murphy,
1995). When a GCM is initialized with present day conditions, it means that there will be an
increase or decrease of sea surface temperatures(SSTs) until the model reaches a new equilib-
rium, warmer or colder than the present climate. This increase or decrease may be stronger
than the model simulated transient response to an increase of CO2 concentration in the atmo-
sphere. If GCMs are to be used to study climate change, they must therefore correctly simulate
the Earth’s energy budget.

Historically, when the first coupled GCMs were developed, climate modelers used so-called
“flux adjustments” to guarantee that the climate state produced by coupled GCMs was similar
to the present climate. Flux adjustments were ad hoc corrections on the heat and moisture
fluxes between the atmosphere and the ocean – their objective was to ensure that the atmo-
sphere and ocean components receive the same fluxes as those they need to reach equilibrium
when run separately with observed boundary conditions. These flux adjustments have given
rise to much debate both within and outside the climate modeling community, even if climate
modelers generally preferred to avoid discussing the issue outside the academic circle, so as not
to fuel climate-skepticism (Shackley, Risbey, Stone, & Wynne, 1999). For instance, in 1994, a
critical comment entitled “Climate Modeling’s Fudge Factor Comes Under Fire” was published
in Science and starts with the following statement:

In climate modeling, nearly everybody cheats a little. Although models of how the
ocean and the atmosphere interact are meant to forecast the greenhouse warming of
the next century, when left to their own devices they can’t even get today’s climate
right. So researchers have tidied them up by “adjusting” the amount of heat and
moisture flowing between a model’s atmosphere and ocean until it yields something
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like the present climate. (Kerr, 1994, p. 1528)

A few years later, however, climate modelers managed to get rid of flux adjustments through
improved parameterizations and tuning (Kerr, 1997). The strategy used in many coupled GCMs
consists in tuning the top-of-atmosphere energy budget in atmospheric simulations forced with
SSTs to a value slightly different from observations, in order to guarantee realistic surface
temperatures in coupled mode. For instance, in the atmospheric model LMDZ, while the net
flux at the top of the atmosphere should in theory be tuned to the observed value of about
0.6 ± 0.4 W m−2 when imposing present-day SSTs and forcing, it happens that it should be
rather tuned to a value of ≈ 2 W m−2 in order to get the present-day global mean surface
temperatures in the coupled GCM (Mignot et al., 2021).

Increasing the realism of GCM results

In addition with the global constraint of simulating correctly the Earth’s energy budget, tuning
can be used to make some aspects of GCM results more realistic, i.e. to make them more
consistent with selected observations. Some modeling groups consider indeed that it is nec-
essary to constrain a few key aspects of climate in order to have coupled GCMs sufficiently
realistic to be useful for studying future climate change. As a consequence, they use tuning to
guarantee for instance a realistic sea ice volume or extent, a realistic atmospheric circulation,
or a realistic increase of temperature in the twentieth century (Hourdin et al., 2017b). Climate
model tuning can then be seen as the degree of freedom left to climate modelers to make the
results of coupled GCMs with a given set of parameterizations sufficiently realistic to be useful.

Nevertheless, this last use of tuning is more controversial. Some modelers point out that too
much tuning might introduce significant compensating errors in GCM results and potentially
lead to overconfidence in the interpretation of these results. Neglecting the importance of tuning
could then result in an underestimation of the uncertainties surrounding climate projections.
On a more practical note, some modelers do not want to push the tuning process too far, because
a fine tuning of a coupled GCM requires a significant human and computer investment. As
documented in Hourdin et al. (2017a), there is therefore no consensus among climate modelers
on how far to go in the tuning process.

4.2.3 Tuning strategies

Having clarified why cimate model tuning is important for GCMs, the next question is how it
can be done, i.e., what strategies can be used in the tuning process. Two recent investigations
of tuning practices revealed that a wide variety of tuning strategies are used by climate mod-
eling groups (Hourdin et al., 2017a; G. A. Schmidt et al., 2017).

First, it is possible to focus on specific subgrid-scale processes by using a Single Column
Model (SCM), that is to say a simplified version of an atmospheric GCM consisting of only
one atmospheric column run in a constraint large-scale environment. Historically, data from
observational campaigns have been used to build some reference cases for these SCMs. Most
of the time, the observations themselves are not exhaustive enough to provide a reference, but
they can be used to initialize and force high-resolution models (with a resolution of 1 km or
less) with more or less realistic conditions deemed representative of the field data. When these
high-resolution models are relatively consistent with the observations, they are in turn taken as
a proper reference for evaluating and calibrating SCMs, as illustrated in Chapter 1 (Fig. 1.4).
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This protocol was initiated and supported by the GEWEX Cloud System Studies (GCSS) since
the mid-1990s (Browning et al., 1993; D. A. Randall, Xu, Somerville, & Iacobellis, 1996). Since
a SCM contains the same set of subgrid parameterizations as the full GCMs it represents, it
is a useful framework to understand the effect of parameterizations and tune the parameters
they involve without digging into the complexity of the interactions between the physics and
the dynamics of a climate model.

While very useful, tuning at the process level is not sufficient to ensure the quality of the
emergent properties of the full GCM, such as regional patterns of precipitation, sea ice extent or,
more importantly, the global balance between incoming and outgoing energy at the top of the
atmosphere – the global net top-of-atmosphere flux which is, as we have seen, crucial to prevent
global temperatures from drifting too far away from our current climate. To guarantee these
emergent properties, the interactions between the physics and the dynamics of a climate model
can be taken into account first component by component (atmosphere, ocean, sea ice, etc.) by
running for instance atmospheric or oceanic-only GCMs with appropriate boundary conditions.

Stand-alone atmospheric simulations are generally performed under pre-industrial or present-
day conditions on relatively short time scales, between 2 and 10 years. Such short simulations
have proven to be sufficient to tune parameters to satisfy a variety of targets such as radiative
fluxes at top of atmosphere (TOA), shortwave and longwave cloud radiative effects, precipita-
tion, near-surface land temperatures, etc. Note that a distinction is generally made between
the metrics that are explicitly used as a tuning target in the tuning process, and those that are
only monitored. For instance, the equilibrium climate sensitivity – the long term temperature
rise associated with a doubling of CO2 in the atmosphere – is typically monitored in the tuning
process, but rarely taken as an explicit tuning target (Hourdin et al., 2017a). In complement
to atmospheric simulations, stand-alone ocean and sea ice simulations can also be performed
following the CORE protocole (Coordinated Ocean-ice Reference Experiments, Danabasoglu
et al., 2014), targetting once again a variety of metrics: the meridional overturning circulation,
SSTs, salinity, etc. (G. A. Schmidt et al., 2017)

Tuning at a component level can be conducted over relatively short time scales and is com-
putationnally efficient. Nevertheless, some global equilibrium – in particular the Earth’s energy
budget – also have to be constrained precisely to avoid a drift of coupled models towards a
climate state that would be too far from the present climate. Therefore, it is necessary to tune
the different components of a climate model when they are coupled together in a full GCM.
The duration of a coupled simulation is typically on the order of a decade to over a century.
The tuning of a full GCM therefore requires a significant human and computational effort and
is a long process – three years for the CMIP6 version of the IPSL GCM (Mignot et al., 2021)
– with many back and forth adjustments at a process level, at a component level, and at a full
GCM level.

Having described climate model tuning and its main characteristics, we will now see in what
way such tuning is different from a traditional calibration procedure.

4.3 Climate model tuning vs calibration

Tuning is not a specificity of climate modeling. If we understand tuning in a broad sense
as calibration, it is shared by many different scientific or engineering fields. However, some
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climate modelers criticized the use of the term calibration to refer to tuning. In particular,
D. A. Randall and Wielicki (1997) argued that:

Modelers sometimes say that they need data to “calibrate” their models. Model
calibration is the same as tuning, except that [...] tuning has certain negative
connotations, while calibration has positive connotations. We all appreciate that
instrument calibration is a good thing. Surely, then, model calibration is also a
good thing, unlike, for example, tuning. (D. A. Randall & Wielicki, 1997, p. 403)

According to the authors, the term calibration to refer to climate model tuning is a mis-
nomer. It tends to legitimate climate model tuning by analogy with “instrument calibration”,
whereas the two activities are radically different. This led them to make, a bit further, the
following strong statement:

Tuning is bad empiricism. Calibration is bad empiricism with a bag over its head.
The problem with tuning is that it artificially prevents a model from producing a
bad result. (D. A. Randall & Wielicki, 1997, p. 404)

Apparently, D. A. Randall and Wielicki (1997) have a certain picture in mind when referring
to instrument calibration. Nevertheless, they do not elaborate on this picture, nor do they
justify why it does not fit climate model tuning. This is the objective of the present section. We
first try to define and characterize a standard calibration procedure (4.3.1) and then compare
it to what is done in climate model tuning (4.3.2).

4.3.1 Calibration – definition and characteristics

Definition

A widely used definition of calibration is given by the epistemologist Allan Franklin (Franklin,
1989, 1990, 1999) as “the use of a surrogate signal to standardize an instrument” (Franklin,
1999, p. 237). Typically, the instrument to calibrate is a material device, ranging from a
common instrument such as a clock, a thermometer or a balance, to a highly specialized and
sophisticated instrument used in laboratories. The governing principles that make the instru-
ment able to measure what we want to measure are generally well understood. For instance,
there is no debate about the theoretical ability of a mercury thermometer to measure tem-
perature – we understand why the instrument should work in theory. Moreover, in practice,
the instrument works as expected: it is not defective. This second point is fundamental to
distinguish the calibration of an instrument from its repair.

Then, how is the calibration itself conducted? We can distinguish two steps:

1. the comparison between measurements taken by the instrument and the reference – the
“surrogate signal” as Franklin puts it. The discrepancy between what the instrument
measures in practice and what it should measure in theory must be evaluated against the
reference used.

2. the use of the results of this comparison to correct the measurements of the instrument.
These corrections can be made before the measurement, through a material correction
on the instrument itself, for example by using a tuning wheel. It is also possible to use
the instrument as such, but to apply a mathematical correction to its results to ensure a
better agreement with the reference.
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Measurement standards

In Franklin’s definition, the surrogate signal is any phenomenon assumed to be sufficiently
well-known to play the role of a taken-for-granted reference with respect to some purpose. A
blank calibration test can provide a first surrogate signal. The principle of a blank calibration
test is to perform a measurement under the same conditions as the final measurement, but
without the object to be measured. For example, the blank calibration of a balance consists in
evaluating the position of the balance pointer without any load on the balance.

Other surrogate signals can be provided using measurement standards. Calibration tests
using a measurement standard consist in measuring quantities of already-known values. The
standards used as references should be reliable, that is they should have well-characterized
properties, known before and independently of the calibration test. In addition, the references
used should be adequate, i.e. close enough to the measurement we want to make with our
instrument – the so-called “end-measurement” (Soler et al., 2013). For instance, if we want to
use a high-precision balance to measure a sample of approximately 5 g, measurement standards
of similar weight should be used. Indeed, the calibration of an instrument might depend on the
range measured with this instrument.

In this regard, a distinction is sometimes made between a full calibration procedure and
routine calibration tests. A full calibration procedure is designed to assess the response
of the instrument under a range of conditions and calculate the associated measurement un-
certainty. It includes many tests, and has to be carried out regularly (either at regular time
periods, for example every year, or whenever a significant change in the operating conditions of
the instrument occurs). It can be heavy, and is thus usually not performed too frequently. It is
not specific, in the sense that it does not directly depend on one particular end-measurement.
On the contrary, routine calibration tests are performed just before a planned sequence of
end-measurements. They ensure that the instrument is well calibrated for the measurement at
hand. The reference used in these tests should therefore be chosen specifically depending on the
end-measurement. For complex instruments, containing many interacting sub-modules, both
full and routine calibration procedures may include separate calibration tests for the different
modules of the instrument.

Standardization and reproducibility

Standardization is an important characteristic of traditional calibration procedures. In par-
ticular, there is most of the time a collective agreement among a community of specialists about
the standards, or etalons, that can serve as well-known references to calibrate a given instru-
ment. The protocol used for calibration is also generally well documented. At an international
level, the International Bureau of Weights and Measure has the objective of ensuring the co-
herence of measurements, by maintaining a database of standardized calibration practices and
references around the world.

One of the objectives of the standardization of calibration is to guarantee the reproducibil-
ity of any measurement. By reproducibility, we mean that it is possible to reproduce any
experiment in a laboratory and obtain the same results with a good degree of agreement. Since
the measurements of an instrument depend on its calibration, the calibration used must be
standardized to avoid introducing differences in the results of the experiment. Reproducibility
is a necessary condition to compare measurements conducted under different conditions.
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4.3.2 Similarities and differences between climate model tuning and
calibration

At first sight, climate model tuning seems to share many characteristics with the picture of
calibration just given. Indeed, when a climate model is tuned, it is first compared to well-chosen
references, and then corrected to meet certain criteria defined depending on the intended use
of the model. The correction is done on the model itself, through a modification of some of its
parameters. The global net top-of-atmosphere flux mentioned previously, which is considered
as an overall tuning objective by most modeling centers (Hourdin et al., 2017b), can be seen
as a blank test for climate models: it consists in setting the pointer of the energy balance of
climate models to zero under current conditions, before using them under slightly different con-
ditions, for example to investigate the effect of an increase in the concentration of CO2 in the
atmosphere. As in a calibration procedure, measurement standards can also be used to comple-
ment this blank test. For instance, regional surface temperature of precipitation patterns given
by observations are often used in the tuning process (Hourdin et al., 2017b). Since a GCM
contains many interacting sub-modules, part of the tuning process might be more precise and
target specifically one or several sub-modules. We have already mentioned SCMs, which can be
used to tune one or several parameterizations in an idealized framework, using high-resolution
simulations as references. In complement with SCMs, so-called “process-oriented metrics” are
sometimes used to relate large-scale biases to the misrepresentation of specific subgrid-scale
processes. An example of process-oriented metrics is given by Suzuki, Golaz, and Stephens
(2013), who evaluate the tuning of cloud microphysical properties of a climate model using
satellite observations.

Despite these similarities, climate model tuning is much more complex than the calibration
procedures described previously. A first source of complexity comes from the references used.
As in any calibration procedure, both the precision and the adequacy of the references used for
climate model tuning are crucial. Some observations used as references, SSTs for instance, are
relatively well known, while others, for example observations of precipitation, suffer from large
uncertainties (Stephens et al., 2012). High-resolution simulations used as references in SCM
tuning also exhibit biases of various kinds (Stevens & Lenschow, 2001; Vial, Bony, Stevens, &
Vogel, 2017). The adequacy of the references raises even more questions. Climate models are
mainly used to simulate future climate, potentially slightly different from the current one. By
definition, there are no available observations of (hypothetical) future climate that could be
used as references in the tuning process. The only climate change observations available are
those of the twentieth century warming. Interestingly, there is however a debate in the climate
modeling community on whether it is legitimate or not to use the twentieth-century warming
as a tuning target (Hourdin et al., 2017a; G. A. Schmidt et al., 2017). From a calibration
perspective, temperature records from the past century are one of the most adequate standards
available – a transient climate is indeed more relevant for the study of future climate change
than an equilibrium climate in preindustrial or present-day conditions. Nevertheless, many cli-
mate scientists consider that the twentieth-century warming should rather be used a posteriori
to assess the quality of model results. There is indeed a consensus that different metrics should
be used to tune a model and to assess the quality of its results. A choice therefore has to be
made between the metrics used for tuning and those kept for the evaluation, and this choice
varies from one modeling center to another (G. A. Schmidt et al., 2017).

The second source of complexity comes from climate models themselves. Climate models all
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have structural limitations: even finely tuned climate models fail to reproduce some important
characteristics of climate, for instance the propagation of Madden-Julian Oscillation (Ahn et
al., 2020; Jiang et al., 2015; Lin et al., 2006), or the structure of the Intertropical Conver-
gence Zone (Lin, 2007; Oueslati & Bellon, 2015). Because of these limitations, and because
the references used are neither very precise nor adequate, tuning does not aim to guarantee a
perfect match between climate model results and references used in the tuning process. This is
another important difference with traditional calibration procedures. Since GCMs suffer from
biases of various kinds, and since the references used for tuning are not perfect, a disagreement
sometimes important between model results and references can be tolerated.

In practice, climate model tuning is often comparable to the search for an optimum within
the parameter space. This search is complicated because of the large number of parameters
and the various interacting sub-modules (parameterizations) contained in a climate model. In
principle, the modularity of an instrument makes its calibration simpler. Indeed, the calibra-
tion of a complex modular instrument can generally be reduced to a series of calibrations of
its sub-modules. This is not the case in climate model tuning because of what Lenhard and
Winsberg (2010) calls the “fuzzy modularity” of climate models: parameterizations are too in-
terdependent to be tuned separately. The various interactions between parameterizations have
to be taken into account in the tuning process and parameters cannot be adjusted one by one:
the full space of parameters has to be considered. Due to the number of parameters involved
in climate models and to the cost of numerical simulations, it is however impossible to explore
the full space of parameters. The search for an optimum is thus path dependent and there is a
risk of being trapped in a local optimum and miss the global optimum.

These difficulties help to understand why, contrary to the calibration of laboratory instru-
ments, climate model tuning has not been standardized yet. There is no consensus on the best
approach to tune a climate model, and the tuning strategies vary greatly from one modeling
center to another. These tuning strategies are moreover rarely well documented. In fact, de-
spite the importance of tuning, few climate modelers explicitly discussed the tuning of their
GCMs in the scientific literature (among the few exceptions, see Golaz, Horowitz, & Levy,
2013; Hourdin et al., 2013; G. A. Schmidt et al., 2014) This can be understood by the fact that
tuning has long been considered as the dark side of climate modeling (Hourdin et al., 2017a):
a necessary evil for GCMs to “work”, but without any solid scientific basis. Climate model
tuning is sometime considered as a way to introduce some error compensations in the model,
and thus hide some of its failures. There is a risk to overtune the model, that is to make it
work for bad reasons. These terms are however rarely well defined and can be confusing. We
will come back to this ambiguous terminology in the next section and try to clarify it.

4.4 Some terminology – Compensating errors, structural

error and overtuning

4.4.1 Non-accuracy of parameterizations and consequences for tun-
ing

Climate modelers and philosophers of science often discussed the risk of going “too far” in the
tuning process. D. A. Randall and Wielicki (1997) for instance argued that tuning might ”ar-
tificially prevents a model from producing a bad result”. Though they recognized that in some
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situations, tuning is a necessary evil, they argue that it should be limited to processes that are
both important for model results and poorly understood. As a corollary, parameters that have
a direct empirical equivalent and that can be measured should be set once and for all before the
model is run. W. S. Parker (2011) nuanced this view because she argued that it applies only
to models which are thought “to provide a very accurate representation of (relevant) aspects
of a target system, with parameters that have clear physical correlates”, which is not the case
for climate modeling. On the contrary, according to her, parameter values that give the best
model performance might be noticeably different from measured values, because of significant
errors elsewhere in the model. Golaz et al. (2013) gave an example of such discrepancy for the
volume-mean radius at which cloud droplets start to precipitate, a critical parameter in the
atmospheric GCM of the Geophysical Fluid Dynamics Laboaratory (GFDL). They found that
simulations of twentieth-century warming were more realistic using a value of this parameter
smaller than observed (Pawlowska & Brenguier, 2003; Suzuki, Stephens, & Lebsock, 2013).

The choice of some parameter values different from those found in observations can be jus-
tified because of the non-accuracy of representations used in climate models. When developing
a new parameterization, climate modelers certainly have a physical image in mind: updrafts
transporting heat and moisture from the surface to the cloud layer, cold pools spreading at the
surface, etc. These physical images are inspirations to develop parameterizations. They pro-
vide a conceptual framework to write equations to represent relationships between the different
variables in the model. However, it is important to make a distinction in a parameterization
between what we are trying to reproduce and what we are trying to represent. The goal of
subgrid-scale parameterizations is to reproduce some target variables at the scale of the grid
– temperature and humidity tendencies, average cloud fraction, surface precipitation, etc. –
thanks to a representation of subgrid-scale processes. As representations, intermediate vari-
ables and parameters are not expected to match perfectly the real world.

Let’s illustrate what it means with a simple example. In observations, let’s imagine that we
have an ellipsoidal object (for instance a cold pool, see 2.5). We are trying to predict, thanks to
a simple model, the mean area of this object and see if it matches the one found in observations.
In addition with this target variable, we can diagnose other quantities in observations, for in-
stance the radius of the object, calculated as the mean distance from its edges to its center. In
the model, for simplicity, we assume that our object is circular. The radius is one parameter
of the model, and we calculate the area of the object as the square of its radius. If we want
to reproduce correctly the mean area, we have to represent our object with a radius slightly
different from the one diagnosed in observations. Just because in the real, non-idealized world,
the area of an ellipse is not exactly the square of its radius as we have defined it. This simple
example shows that parameters (and more generally subgrid-scale parameterizations) do not
have to match observations perfectly, even if they are inspired by observations, because there
is always some differences between what they mean in the model and what they mean in the
real world.

There is another fundamental reason why it is not possible to constrain the parameters of
a GCM from observations, even when they have an empirical equivalent. Parameterizations
attempt to calculate the mean effect of the phenomena they represent. However, atmospheric
phenomena are very variable: in nature, there is for instance a multiplicity of updrafts with
different properties, higher or lower vertical speeds, larger or smaller surface fractions, etc.
Since fluids interact in a non-linear way, the gross arithmetic mean may not be representative
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of the collective effect of convective phenomena on the model state variables – what we want
to reproduce with convection parameterizations. An effective mean must there be used, which
may be significantly different from the gross airthmetic mean. But it is often unclear how to
calculate such an effective mean, so parameters are usually weakly constrained by observations.

4.4.2 Compensating errors

The term “compensating errors” is often used to express the fact that parameterizations or more
generally climate models can give good results for wrong reasons. For instance, in discussing
the different reasons why climate model results can be considered robust or not, Winsberg
(2018b) warned that to have confidence in climate models, climate modelers “would have to
systematically rule out, as possibilities, the various ways in which the models that are getting
that right are doing so as a result of compensating errors” (Winsberg, 2018a, p. 197). This idea
of “compensating errors” also appeared in Hourdin et al. (2017a), which explained that tuning
a climate model may compensate certain deficiencies in the formulation of the model itself. The
previous discussion shows that compensating errors may exist in a climate model, but with a
precise meaning. We argue that the term “compensating errors” is a misnomer when we use
it to refer to the intermediate variables used in parameterizations. For instance, in 4.2.2, we
explained that the small value of entrainment and detrainment rates in mass-flux convection
parameterizations compared to the ones calculated locally by Romps (2010) in LES is not an
error: it simply means that entrainment and detrainment rates in the parameterization have
a different meaning than in Romps (2010). Similarly, in our previous example, the fact that
we chose a slightly smaller radius than the one observed would not make our model wrong.
Parameterizations may contain bugs and inconsistencies, but the word error is not adequate to
speak about the representations used in parameterizations.

It does not mean that a climate model as a whole is not testable from observations or high-
resolution simulations. We might find errors – and even “compensating errors” – in climate
model results. For instance, a climate model can get the correct radiative effect of low clouds
by underestimating the low cloud cover and overestimating their radiative effects – a behavior
that has been noted in many models and referred to as the “too few, too bright” cloud problem
(Nam, Bony, Dufresne, & Chepfer, 2012; Webb, Senior, Bony, & Morcrette, 2001). Here, we
may speak of “compensating errors”, because these errors concern target variables that we try
to reproduce, rather than represent. In our previous example, the area of the ellipsoidal object
was the target variable of our model. If it were inconsistent with observations, there would be
indeed an error in the model. Similarly, the target variables or a climate model can be proven
to be correct or erroneous, but not the intermediate variables used in the parameterizations.

4.4.3 Structural error vs structural limitations

The non-accuracy of parameterizations legitimises the tuning process as it is difficult to know
in advance which parameter values will give the best agreement between model key outputs and
observations – even parameters that have an equivalent in the observations may (and some-
times should) diverge from their observed value. When there is a mismatch between certain
model output variables and observations, it is first necessary to tune the model in order to
reduce as much as possible this mismatch. Some errors are nevertheless resistant to the tuning
process. In this case, some use the term “structural error” of a climate model – sometimes
also called “structural uncertainty or model divergence” – to refer to the error associated with
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the structure of the model itself, regardless of the choice of parameters (Hourdin, Williamson,
et al., 2020; Knutti, 2010; Lenhard & Winsberg, 2010). With what we have seen previously,
parameterizations, as idealizations, are neither right nor wrong. The term “structural error” is
therefore misleading.

There is in fact, no real errors in the model formulation, only things a model can or can-
not do. The term “structural limitations” seems therefore more appropriate than “structural
error”. Speaking about the structural limitations of a model actually raises the question: what
worlds can this model explore when we go through its whole parameter space? The structural
limitations of GCM can be evaluated by testing it with different sets of parameters: they cor-
respond to the results the GCM never obtains regardless of the parameter set chosen.

Furthermore, we propose a distinction between individual and collective structural limi-
tations. Individual limitations happen when it is not possible to predict accurately a target
variable, for instance the cloud fraction in the tropics, whatever the accuracy desired on the
other variables. Collective limitations refers to the impossibility of predicting simultaneously
with a sufficient degree of accuracy two or more output variables, for instance the cloud cover
in the tropics and the ground precipitation in this region. We argue that it is much more
appropriate to speak of the individual and collective structural limitations of a GCM than of
an ill-defined structural error. To clarify discussions about the tuning of GCM, we therefore
recommend using these terms.

4.4.4 Overtuning

The concept of structural limitations helps to better define what is meant by overtuning, a term
generally employed in climate science when the parameters of a climate model are adjusted to fit
one data set too closely and fail to fit other data reliably (Hourdin et al., 2017a; D. Williamson,
Blaker, Hampton, & Salter, 2015). Even if overtuning was originally a statistical concept, its
meaning in climate science is very different from its meaning in statistics. In statistics, an over-
tuned (or overfitted) model is one that includes more terms or parameters than necessary, or
uses more complicated approaches than necessary (e.g. Hawkins, 2004). An extreme example is
a model which would contain as many parameters as the number of observations. Such a model
could predict the training data simply by memorizing the data entirely, but would fail when
confronted with new data. On the contrary, the term underfitting is used when a statistical
model cannot adequately capture the underlying structure of the data (Everitt & Skrondal,
2002). It generally occurs when certain terms or parameters relevant to characterizing the data
are missing. For example, a linear model applied to non-linear data would underfit these data.
In statistics, the concepts of underfitting and overfitting therefore concerns the structure of the
underlying model - mainly its shape and the number of parameters it contains. By contrast, in
climate modeling, overtuning concern the values of model parameters, rather than the model
structure itself.

The definition of overtuning for climate models suggests a causal link between the success
of a climate model with respect to a certain reference and its failure when compared to other
sources of data. It would be because a climate model works very well in one situation that it
would be broken in other cases. On the contrary, we argue that if we have only one reference
at our disposal, and if this reference has no systematic bias, it is legitimate to look for the
best possible match between our model and the reference. In the absence of other information,
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the optimum found in the parameter space with respect to a specific reference is indeed the
best possible estimate of the global optimum of the model. In this particular situation, the
search for an optimum is done within an individual structural limitation of a climate model,
that is for one target variable only. Nevertheless, if more references are available, the search for
an optimum must be started again by considering all the references, in order to find the best
possible balance given the collective structural limitations of a climate model.

This search has to take into account the personal preferences of climate modelers, in par-
ticular the output variables they target, the associated references, and how they compare these
output variables to the chosen references, i.e. the metrics they use. An overtuned model is one
for which a better balance in model results given the personal preference of climate modelers
can be found. There is thus a subjective component in the definition of overtuning: a model
that seems well-balanced for some climate modelers given its structural limitations may seem
overtuned for others. Different climate modelers might indeed have different priorities, and
depending on these priorities, tolerate more or less different kinds of errors. For example, some
climate modelers might place more emphasis on predictions of mid-latitude heat waves, while
others might prioritize predictions of precipitation in the tropics, or modes of intraseasonal
variability such as the Madden-Julian oscillation.

4.5 Automatic tuning methods: a shift in tuning paradigm?

4.5.1 Limitations of climate model tuning by hand

In the previous subsections, we defined the objective of tuning as the search for the best possible
balance within the structural limitations of a climate model. We have seen that to find this
balance, it is necessary to compare target outputs of climate model simulations (either in SCM
or in a full GCM mode) to well-chosen references. For each set of parameters, the differences
between the references chosen and the target variables of the simulations can be evaluated
using metrics. The values of the parameters finally kept are those that seem to perform best
according to these metrics, with potentially different weights for different metrics. The choice
of target variables and metrics reflect the priorities of the climate modeler, there is thus a
subjective component in the tuning process.

As the parameter space – the set of all combinations between parameter values – is extremely
large, not all values of parameters can be tested. It is not possible to know comprehensively
the structural limitations of a climate model. The choice of appropriate parameters is therefore
a delicate task, involving not only scientific skills, but also a great deal of intuition and expert
judgment (Hourdin et al., 2017a). There again, the subjectivity of climate modelers might play
a role. By experience and by following a trial and error method, climate modelers need to
intuit which parameters are the most useful for tuning the model and which values of these
parameters need to be chosen to make the model perform best according to the various metrics.
The full tuning of a GCM can take several months to several years, and contrary to a traditional
calibration procedure, is in part subjective and difficult to reproduce, making it challenging to
compare different climate models.
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4.5.2 Automatic tuning methods could make climate model tuning
more similar to a traditional calibration procedure,

Recent developments in automatic tuning methods could make the tuning process both faster
and more reproducible. In chapter 5, we will see in practice how to automate certain steps of
the tuning process with the HIGH-TUNE (HIGH-resolution simulations to improve and TUNE
boundary layer cloud parameterizations) explorer htexplo a tool developed recently by two
French climate modeling groups (IPSL and CNRM) in collaboration with Exeter University
(Couvreux et al., 2021; Hourdin, Williamson, et al., 2020). To use this tool, climate modelers
have to choose explicitly first the tuning parameters and their range of acceptable values, then
the references, the metrics and the uncertainty around them, and finally the degree of agree-
ment between the reference and the model they are ready to accept. Previously, all of these
choices were implicit, and sometimes even unconscious for climate modelers. With htexplo, the
tuning of climate models remains a complex issue, but better posed, in the sense that it can
be broken down into a series of simpler problems, such as: which tuning parameters should be
chosen? what is the range of acceptable values around them? which references and metrics are
the most relevant? how to take into account the uncertainty around the references and around
the model in the tuning process?

Once these different inputs have been given, htexplo searches for optima globally in the
parameter space. This is a major advantage over traditional tuning methods. When tuning is
done by hand, moving the parameters one after the other, there is a risk of being blocked in
a local optimum in the parameter space. On the contrary, as htexplo explores a much larger
sample of parameter space, it helps climate modelers to understand what a climate model can
and cannot do. Expert judgment remains crucial to explore and understand the structural
limitations of a climate model, but htexplo guides this expert judgment rather than replacing
it. It also facilitates the comparison between model outputs and target metrics, thus preventing
the risks of introducing compensating errors in the model. Indeed, if many metrics are used,
model errors will be more difficult to compensate by tuning for all the metrics. Therefore, the
more diverse the references used, the lower the risks of introducing compensating errors in the
model. Finally, htexplo reduces the risks of overtuning, as defined previously, by facilitating the
search for the best possible balance in the whole parameter space with respect to well-chosen
references and given the structural limitations of a climate model. As a consequence, htexplo
makes the tuning process more robust.

It also makes it more standardized. One aspect of this standardization concerns the ref-
erences used in the tuning process. In a standard calibration procedure, there is usually a
collective agreement among a community of specialists on the standards used as references to
calibrate an instrument. In contrast, there is no consensus in the climate modeling community
on the most appropriate references to tune a climate model (Hourdin et al., 2017b). In support
of htexplo, reference banks are gradually being developed by climate modeling centres: htexplo
relies in particular on the development of a bank of standardized 1D case studies, which allow
climate models to be tuned against LES references under simplified conditions. This stan-
dardization of the references used in the tuning process makes it more similar to a traditional
calibration procedure.
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4.5.3 facilitate the interpretation of GCM results,

More generally, automatic tuning methods such as htexplo bring an important building block in
the epistemological foundations of climate modeling. Historically, the tuning of climate models
made the interpretation of model results difficult. In particular, in multi-model ensembles pro-
duced by CMIP (see Chapter 6), it was not clear how much of the difference between models
was due to their structural differences and how much to their tuning. Htexplo makes it possible
to separate these differences by playing on two tables. First, it allows to assess systematically
the parametric uncertainty model by model. With htexplo, the range of plausible worlds allowed
by a given model can be known. For instance, it is possible to use htexplo to explore the spread
in the model equilibrium climate sensitivity for different parameter sets which give reasonable
results with respect to the tuning references chosen. Second, htexplo opens the door to a tuning
of different climate models using a similar standardized protocol. This would make the results
of climate models comparable independently of their tuning and allow the remaining model
spread – due only to model structural differences – to be evaluated.

The validation of climate models would be also facilitated by automatic tuning methods.
In practice, there is a consensus that references used to validate climate model results should
not be used for tuning. However, as the tuning of GCMs is rarely documented, it is difficult to
check that different references are used to validate and tune climate models. As a consequence,
when models of CMIP multi-model ensembles are compared and evaluated using the same set
of observations, some models may have been tuned using the observations taken as references.
Automatic tuning methods could address this problem by offering the potential to separate and
standardize the references used in the tuning process and those left for the validation of climate
models.

4.5.4 and guide the improvement of parameterizations

Finally, a major motivation behind htexplo is to guide the development of new parameteri-
zations. When a new parameterization is introduced into a climate model, a question arises:
has this new parameterization improved the model or not? Answering this question seems a
prerequisite for scientific progress in climate science. Otherwise, there is a risk for any climate
model to take “one step forward and two steps back” when a new parameterization is added.
However, in most cases, the answer is far from obvious. In fact, when a new parameterization is
introduced in a climate model, the quality of its results is often initially degraded as the changes
brought to the model can break the delicate balance of its tuning (Jakob, 2010). A long tuning
phase has to be carried out before potential improvements can be seen. Moreover, whatever
the results of this tuning phase, there will always be some doubt as to whether the observed
improvements or deteriorations are due to the new tuning or to the new parameterization itself.
It is therefore rare to see in the literature a systematic comparison of the results given by a
climate model before and after the addition of a new parameterization.

These difficulties and the effort tuning requires slow down the development of new param-
eterizations considerably and discourage climate scientists from engaging in the development
of new parameterizations. This could explain the often-quoted lack of progress in model de-
velopment (Jakob, 2010; D. Randall et al., 2003). By making the tuning process both shorter
and more reproducible, htexplo is a game changer. It could guide the development of new
parameterizations and enable a quick assessment of the improvements brought by a new pa-
rameterization. We will see this in practice in the following chapter, where we will use htexplo to
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guide the development of a cloud and precipitation overlap parameterization in the atmospheric
model LMDZ.

4.6 Conclusion

Climate model tuning challenges existing epistemological frameworks and requires the construc-
tion of new ones. So far, epistemological studies on tuning have been limited to the difficulties
posed by tuning on the interpretation of GCM results. In particular, many philosophers fo-
cused on the validation of GCM results and noted that because of tuning, coupled GCMs are
not testable from observations in the same sense that a theory is testable from observations.
On the contrary, few epistemological studies investigated tuning process itself, as a distinct
scientific activity. Based on the recent effort of some climate modelers to document the tuning
strategies they use (Mauritsen & Roeckner, 2020; Mignot et al., 2021), and our own experience
of tuning with the atmospheric model LMDZ, we attempted in this chapter to define climate
model tuning as a specific scientific practice. We gave its scope and purpose, the needs it meets
and some of the epistemological questions it raises. We also compared climate model tuning
to calibration procedures used in other scientific fields. Noting that standardization and repro-
ducibility were two important characteristics of traditional calibration procedure, we explained
why automatic tuning methods could make the tuning process more robust and more similar
to a traditional calibration procedure. Hopefully, these epistemological reflections will inspire
future fruitful collaborations between philosophers of science and climate modelers to further
build the epistemological foundations of climate model tuning.
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Chapter 5

Parameterization development and
tuning in practice – Cloud and
precipitation overlap in LMDZ
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5.1 Introduction

In the previous chapters, my reflection on convection parameterizations and tuning was based
partly on a critical review of the philosophy of science and climate modeling literature on the
subject, partly on the many discussions with climate modelers that I had during my three years
at the Laboratoire de Météorologie Dynamique, and partly on my own experience in developing
parameterizations and tuning with the LMDZ atmospheric model. A central experience of my
Ph.D. thesis was indeed to introduce a new parameterization to the LMDZ atmospheric GCM
and to conduct a substantial work of model re-tuning, using the HIGH-TUNE explorer htexplo,
following the addition of this new parameterization. The new parameterization implemented
led to significant improvements in both the Single Column Model (SCM) and General Circu-
lation Model (GCM) version of LMDZ and will therefore most likely be used in the reference
version of LMDZ for the next phase of CMIP. Just as my work on cold pools nourished my
reflection on objects in Chapter 2, the work done with this parameterization nourished my
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epistemological reflection on parameterizations and tuning.

I present this work here as a case study to show how some of the epistemological reflections
from the previous chapters arise in practice when developing a new parameterization or tuning
a GCM. In particular, a question that has been on my mind throughout this work is: how do we
know whether a given parameterization improves a model or not? This question is crucial for
any climate modeler. Anyone who adds a new parameterization to a GCM wonders whether the
new version of the model is better or not than the previous one. When a new parameterization
improves a GCM, it should be kept, otherwise it should be abandoned. If we are not able to
distinguish between parameterizations that improve a given GCM and those that deteriorate
it, there is a risk of moving backwards when adding new parameterizations to a GCM.

Yet, we will see that the meaning of progress for a GCM is not easy to define. Let’s take
a step back and ask ourselves what we mean by scientific progress in general. In his book
The Structure of Scientific Revolutions, Kuhn explains that the progress of science happens
not only through the accumulation of knowledge, but also through the replacement of some
ideas by others. When two ideas are in competition, their puzzle-solving power is crucial to
determine which idea will be preferred. A new idea will be preferred if it preserves much of
the ability of its predecessor to solve problems, but also addresses important and previously
unexplained issues (Kuhn, 1962, p. 129).

If we try to apply Kuhn’s theory of scientific progress to parameterizations, we could say
that a new parameterization improves a climate model if the results between the new version
and the original version are comparable, except for some aspects of model results for which the
new version shows significant improvements. Nevertheless, this account of scientific progress
for parametrizations seems overly simplistic. First, the ability of a new parameterization to
solve outstanding anomalies and to preserve previous model abilities depends on the tuning of
model parameters. Without an appropriate tuning phase, the introduction of a new param-
eterization may break the delicate balance between model parameters and lead to unrealistic
results. Moreover, even after an adequate tuning phase, a new parameterization often de-
teriorates some aspects of the model. Kuhn’s criteria for evaluating scientific progress must
therefore be relaxed – in practice, it is very rare that a new parameterization preserves most
of the GCM abilities, and in addition improves some of its major deficiencies. Finally, the
conceptual progress brought by a parameterization must be taken into account. Indeed, the
results of a model must not only be accurate, but also interpretable. A new parameterization
may facilitate or not this interpretation.

New criteria must therefore be found to define the specific meaning of the word progress for
parameterizations. This chapter has two main objectives: first, it aims to present the scientific
results we obtained by adding a cloud and precipitation overlap parameterization in LMDZ and
re-tuning the model using the HIGH-TUNE explorer htexplo (see 4.5.2). This is one of the first
times that htexplo is used to re-tune a GCM following the addition of a new parameterization,
and our results provide a test bed for this automatic tuning method. By documenting the
various tests we made and the results we got, we hope to facilitate and encourage the future
use of this tool. The second objective of this chapter is to conduct an epistemological reflection
on the notion of scientific progress for parameterizations. This reflection is initiated in section
5.2 where we distinguish two types of progress for parameterizations and propose some criteria
to evaluate them. We continue this reflection in the following sections, where we present
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respectively the cloud and precipitation overlap parameterization (Section 5.3) and the SCM
and GCM results (Section 5.4). For clarity, in these sections, we distinguish scientific results
from the epistemological reflections that accompany them by placing these epistemological
reflections in blue boxes. These boxes allow the reader to focus, depending on his or her
interest, either on the technical content of the chapter, on its epistemological content, or on
both.

5.2 Definition of progress for parameterizations

It is not possible to compare two parameterizations per se, but only two parameterizations
within a given GCM. Indeed, a GCM is not a modular structure where any parameterization
could be easily plugged in or out (Jebeile & Crucifix, 2020). The different parameterizations of
a model are largely interdependent on each other – this is what Lenhard and Winsberg (2010)
call the “fuzzy modularity” of climate models. When a new parameterization is added to a
model, the quality of the results obtained depends as much on the parameterization itself as
on its interactions with the other parameterizations of the model. It explains why adding a
new parameterization to a model sometimes does not produce the expected effects, even af-
ter a tuning phase. The improvements or degradations brought by a new parameterization
are largely dependent on the parameterizations already present in the model. A same parame-
terization implemented in two different GCMs might improve one model and degrade the other.

Consequently, in the following, we do not give criteria to compare two parameterizations,
but to compare two versions of the same GCM containing different parameterizations. We
distinguish two types of progress brought by a parameterization in a given GCM: conceptual
progress and progress in terms of model results. We define the conceptual progress
brought by a parameterization to a GCM based on the following four criteria:

� its Coherence. We can distinguish between the coherence of a parameterization and the
coherence of different parameterizations of a GCM taken together. A parameterization is
coherent if it can be deduced logically from a few basic principles. The more a parame-
terization is based on well-undersood and justified concepts, the more it is coherent. The
parameterizations of a GCM taken together are coherent if they are logically deduced
from the same assumptions, or at least from assumptions that are not contradictory. In
particular, if a new parameterization combines processes that were previously described
by different parameterizations, it is likely to increase the coherence of the model.

� its Interpretability. The parameterizations of a GCM are interpretable if their param-
eters and variables can be compared to real-world phenomena. For example, mass-flux
parameterizations make GCMs more interpretable than ad hoc moist convective adjust-
ments, because their formalism is easier to interpret in terms of real physical processes (see
3.3.1). The more realistic a parameterization is in its formulation, the more interpretable
it is since, by design, a realistic parameterization is based on objects that exist in the real
world. To increase the realism of a parameterization, and thus its interpretability, it is
often necessary to use ad hoc assumptions. The latter, by definition, are not well justfied
and therefore decrease the coherence of a parameterization. Hence, a balance has some-
times to be found between the coherence of a parameterization and its interpretability.
A perfectly coherent parameterization is often very idealized, therefore difficult to com-
pare to real phenomena. Conversely, most parameterizations that are easily interpretable
contain ad hoc assumptions in their formulation, and are therefore not fully justified.
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� its Simplicity. A new parameterization introduces new assumptions and formulas, which
necessarily complicate the model. The degree of complexity brought by a new parameteri-
zation can be assessed in part by the number of new variables and new tuning parameters
it introduces. The more variables and tuning parameters a parameterization contains,
the more it tends to complicate a GCM. The principles used to build a parameterization
can also be more or less complex. If a new parameterization comes in place of a more
complex one, it can, on the contrary, simplify the model.

� its Comprehensiveness. The ultimate goal of GCMs is to represent all processes rele-
vant for climate. If a parameterization adds an important missing process to an existing
GCM, it improves its comprehensiveness.

We will refer to these criteria as the CISC criteria (Coherence, Interpretability, Simplicity,
Comprehensiveness). The CISC criteria provide a framework for evaluating the improvements
brought by a parameterization in a given climate model. The assessment of each criterion de-
pends on the parameterizations already present in the model: a parameterization that would
bring a conceptual progress to a given climate model may, on the contrary, unnecessarily com-
plicate another model with a different structure.

What about progress in terms of model results? To compare the results of a GCM with a
new parameterization to those given by the original GCM, different choices have to be made.
First, the conditions under which the GCM simulation is carried out have to be
defined (e.g. SCM case studies, stand-alone atmospheric simulations forced with appropriate
boundary conditions, coupled simulations, etc.). Depending on these conditions, different types
of progress associated with the addition of a new parameterization can be observed: in particu-
lar, progress in SCM case studies does not systematically translate into progress in atmospheric
or coupled simulations.

Second, a tuning protocol as standardized as possible should be used to tune
both the standard and the new version of the model. Without such a protocol, this
will be difficult to diagnose whether the differences observed are due to the parameterization
itself or to a different tuning protocol. Historically, this difficulty has considerably hindered
the development of parameterizations.

Finally, we have to choose how the comparison between the original and the new
version is conducted. This comparison consists of three steps: 1. First, it is necessary to
choose which variables to focus on. Not all output variables of the model are equally im-
portant, and the subset of output variables to evaluate has to be defined. 2. Then, we need to
precise which references we use to evaluate these output variables. Various references can
be used – satellite observations, reanalyses, high-resolution simulations – to target the different
output variables chosen. 3. Finally, we have to choose how the comparison between the
output variables and the references is calculated by defining some “metrics”. The met-
rics give the formula used to compare the proximity of model output variables to the references
chosen. Here again many choices can be made: it is possible to use various statistical indicators,
such as the mean, the variance, the distribution in space and time, etc.
These three steps objectively define which aspects of model results are most important for the
climate modelers, thus what the comparison is about.

In simplified simulations such as SCM case studies, the improvements provided by a new
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parameterization sometimes jump off the page. It happens when most of the model chosen
output variables are equally close to the references, except for one or a few output variables for
which a significant improvement is observed. In this case, Kuhn’s criteria does apply: successful
parameterizations “preserve a great deal of the most concrete parts of past achievements and [...]
permit additional concrete problem-solutions besides” (Kuhn, 1962, p. 169). On the contrary, in
more complex simulations such as global simulations (atmospheric-only or coupled simulations),
the progress brought by a new parameterization is often less obvious, as an improvement of
some model output variables is virtually always associated with a degradation of others. In this
case, whether a new parameterization improves or not a given climate model is not clear. In
the following, we will look at these issues in practice by introducing a cloud and precipitation
overlap parameterization in LMDZ and examining whether it improves the model or not.

5.3 Presentation of the cloud and precipitation overlap

parameterization

5.3.1 Motivations

Variety of motivations for developing new parameterizations

In parameterization development, innovation is no guarantee of success: a new parame-
terization may make a model unnecessarily complex, or deteriorate rather than improve
its results. There must therefore be good reasons for embarking on the development of
a new parameterization. Improving the model results is often an important motivation
and typically, the development of a new parameterization aims at reducing major
biases identified in a model. The first moist convective adjustment schemes were
for instance developed with the objective of correcting the discrepancy between the
atmospheric profiles given by GCMs in the tropics and the observations (see Chapter 3).

The development of a new parameterization can also be motivated by the conceptual
progress it brings to the model. The objective is then either to simplify or unify
the model, to correct some errors or inconsistencies, to represent processes
deemed important that are absent from the model, or to make the param-
eterizations easier to interpret in terms of physical processes. Interestingly,
some parameterizations that were initially motivated by conceptual progress eventually
led to progress in terms of model results. For example, the cold pool parameterization of
Grandpeix and Lafore (2010) led to a correction of the diurnal cycle of convection over
land in LMDZ (Rio, Hourdin, Grandpeix, & Lafore, 2009), although it was initially devel-
oped to improve LMDZ conceptually, by representing in the model a process considered
important – cold pools – but ignored until then.

The parameterization discussed in this chapter is intended to improve the model both con-
ceptually and in terms of model results. It was initially motivated by an anomaly found when
comparing the SCM version of LMDZ to large-eddy simulations (LES) in the RICO case (see
Section 1.3.2 for more details on this methodology). This case is based on the data from the
“Rain in Cumulus over Ocean” field campaign, which was dedicated to the study of rain under
shallow cumuli in trade wind regions (Rauber et al., 2007). It is a composite case based on a
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three-week period with typical trade wind cumuli and a fair amount of rain, about 0.3 mm/day
at the surface. In the standard version of LMDZ, however, rain is evaporated before reaching
the ground. Figure 5.1 shows that most rain is evaporated in the cloud layer or just below
cloud base. As the cloudy air is close to saturation, we would expect instead that a significant
amount of rain falls in the cloud layer without being evaporated and reaches the surface, a
result confirmed by LES and observations (VanZanten et al., 2011).

Figure 5.1: (a) Rain rate profile after 20 hours of simulation in a reference LES and in the
standard version of LMDZ in the RICO case. (b) Cloud fraction and (c) rain rate given by
the LES. (d) Rain rate after evaporation (e) cloud fraction and (f) rain rate after evaporation
given by the standard version of LMDZ with 95 vertical levels. The LES used as reference was
conducted with the MESO-NH model and is documented in Lac et al. (2018).

To solve this bias, we looked at the representation of precipitation evaporation in LMDZ
large-scale condensation parameterization fisrtilp. In this module, the equations are imple-
mented in a vertical loop, from top to bottom. Each vertical level k receives a precipitation
flux from the level immediately above, with a precipitation flux initialized to zero for the top
level. Then: 1) part of the precipitation flux from level k+1 is evaporated 2) the cloud fraction
and cloud water content at level k are calculated 3) part of the newly created cloud is converted
into solid or liquid precipitation, thus increasing the corresponding precipitation flux. Here are
the formulas used in each step.

1) Precipitation evaporation In the first step, the evaporation of precipitation (solid and
liquid) is given by the formula introduced in Sundqvist (1988):

∂Pl,s
∂z

= EVAP(1− qt
qsat

)
√
Pl,s (5.1)

with Pl,s the liquid or solid precipitation flux density, in kg m−2 s−1, qt/qsat the relative humidity
at level k and EVAP a tuning parameter.
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2) Cloud formation The cloud fraction α and the solid and liquid water mixing ratios ql,s
are then calculated from statistical schemes that describe the water distribution in the grid box
(see Jam et al., 2013; Madeleine et al., 2020, for more details).

3) Precipitation formation Finally, a certain fraction of cloud liquid water is converted
into precipitation. For liquid clouds, the equation governing this conversion is also taken from
Sundqvist (1988):

dql
dt

= − ql
CLTAU

(1− e−(
ql/αc
CLC

)) (5.2)

where CLTAU is the characteristic time constant of precipitation formation and CLC a thresh-
old for liquid cloud water above which the formation of precipitation increases sharply. For ice
clouds, the formation of precipitation is written:

dqs
dt

=
1

ρ

∂

∂z
(ρwiwqs) (5.3)

with ρ the density of the air and wiw, the fall speed of ice crystals.

Taking a closer look at these equations, we realized that the formula used for the evapo-
ration of precipitation in LMDZ was different from that given in Sundqvist (1988). Indeed,
Sundqvist considers that the cloudy fraction of the grid is saturated, so that precipitation evap-
oration only occurs in the clear-sky fraction of the grid. Consequently, he applies the formula
5.1 using the clear-sky relative humidity qclr/qsat,clr and multiplies the result by the clear-sky
fraction to deduce the total evaporation in the grid box. In contrast, in the standard version
of LMDZ, the formula 5.1 is applied using the average relative humidity in the grid qt/qsat. In
LMDZ, evaporation occurs in fact before the formation of clouds, and is calculated without
taking their presence into account. Precipitation evaporation is calculated over the whole grid
box as if there were no clouds, whereas in the real world, one would expect only the non-cloudy
precipitation fraction to fall in unsaturated air, and thus to evaporate.

In addition to this difference, an assumption is added in LMDZ compared to Sundqvist
(1988): precipitation evaporation cannot saturate a fraction of the grid box greater than the
area of clouds above. In other words, the quantity of water vapor added by evaporation at level
k is limited to αevc (qsat− qt), with αevc the maximum cloud fraction in the overlying layers (reset
to zero whenever precipitation stops at a certain level) (Madeleine et al., 2020). This some-
what arbitrary assumption was added to the model to limit the overestimation of precipitation
evaporation in formula 5.1.

To summarize, in the standard version of LMDZ, precipitation is on the one hand overesti-
mated, especially in the cloud layer, because formula 5.1 is applied to the whole grid box rather
than to the clear-sky fraction of the grid only. On the other hand, to partially compensate for
this overestimation, an ad hoc assumption has been added to limit precipitation evaporation
to the maximum cloud fraction in the overlying layers. This treatment of precipitation evap-
oration in LMDZ did not seem very adequate and we suspected it to be responsible for the
unrealistic behavior of LMDZ in the RICO case. Panel d in Fig. 5.1 supports this claim by
showing that the rain is almost entirely evaporated at each level in LMDZ. The comparison of
panel d and f shows that most of the rain formed at level k + 1 is evaporated at level k. As a
consequence, all the rain is evaporated above cloud base in LMDZ in RICO and does not reach
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the lowest subcloud layers.

To correct this unrealistic behavior, we looked for a parameterization taking into account
the fact that part of the precipitation flux falls in cloudy air and is thus not evaporated. This
led us to adapt to LMDZ the parameterization of Jakob and Klein (2000), which separates the
clear-sky and the cloudy fraction of the precipitation flux.

5.3.2 Description of the new parameterization

Adapting a parameterization to a new model

Adapting a parameterization developed for a certain GCM to a new model is not
straightforward. The language of the new model has to be taken into account, that
is both its vocabulary – the variables it contains – and its syntax – how and in
which order processes are represented in the model. Two parameterizations based
on the same ideas and equations can therefore be implemented quite differently in
two different GCMs. The order in which processes are represented is particularly
important because many modules of the code interact with each other. By choosing
to represent a process A before a process B, one represents, in the best case, only the
influence of A → B. If B is calculated after A, the reciprocal influence of B → A
cannot be taken into account, at least not directly. B can at best exert an indirect ef-
fect on A in the next time step through its effect on the large-scale variables of the model.

In our example, there is a reciprocal interaction between the evaporation of precipitation
and the formation of clouds at each vertical level. The evaporation of precipitation
depends on the presence or absence of saturated air, i.e. clouds, in the grid. Conversely,
the evaporation of precipitation increases the relative humidity at each vertical level,
and may thus also increase the cloud fraction at each level. In Jakob and Klein
(2000), precipitation evaporation follows cloud formation, whereas it precedes it in
LMDZ. It was necessary to take into account this difference to use nevertheless Jakob
and Klein (2000) in LMDZ – the adaptations that had to be made are detailed in the text.

In addition with these adaptations, some minor changes are often made to the original
parameterization when it is implemented in a new model. They generally aim to correct
certain problems or deficiencies identified in the model following the addition of the new
parameterization. For instance, when the parameterization of K. A. Emanuel (1993) was
implemented in LMDZ (see 3.4.1), an improved mixing representation was introduced
and detailed in Grandpeix et al. (2004). In our case, to guarantee a linear behavior of
the model, we choose to add to Jakob and Klein (2000) a linear decrease of the clear-sky
and cloudy precipitation fractions when the corresponding precipitation intensities fall
below a certain threshold (see below).

The parameterization given by Jakob and Klein (2000) relies on a separation of the total
precipitation flux into a clear-sky precipitation flux P clr

l,s and a cloudy precipitation flux P cld
l,s .

For simplicity, we omit the indices l and s in the following, but one should keep in mind that
the proposed separation is performed at each level for both liquid and solid precipitation fluxes.
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The parameterization of Jakob and Klein (2000) is based on the following equations:

P = P clr + P cld

αP = αclrP + αcldP
(5.4)

with αP the total fraction occupied by precipitation, αclrP the fraction occupied by precipitation
falling in clear-sky, and αcldP the fraction occupied by precipitation falling in clouds. There are
therefore four independent variables – P clr, P cld, αcldP and αclrP – that needs to be calculated at
each vertical level k.

To adapt Jakob and Klein (2000) to LMDZ, we make the following modifications to the rep-
resentation of precipitation in fisrtilp. First, when calculating the evaporation of precipitation
(step 1), we assume that only the clear-sky precipitation flux evaporates following a discrete
version of equation 5.1:

∆P clr
k = min(∆z × EVAP(1− qclr

qsat,clr
)
√
P clr
k+1, P

clr
k+1) (5.5)

qclr/qsat,clr being, in principle, the relative humidity in the clear-sky fraction of the grid box. A
technical problem appears because in LMDZ, the evaporation of precipitation (step 1) precedes
the formation of clouds (step 2). Thus, we do not know at this stage what the relative humidity
is in the clear-sky fraction of the grid box. Two options are possible:

1. take the relative humidity in the clear-sky fraction at level k + 1 in the equation 5.5.
Physically, this choice can be justified because air cooled by evaporation tends to sink
slightly, which results in a difference between the altitude where evaporation is calculated
and the one where cooling is applied. The effect of this choice, however, depends on the
thickness of the layer.

2. keep the average relative humidity in the entire qt/qsat grid box considering the following
two limiting cases:

� if αc,k � 1, qclr/qsat,clr ≈ qt/qsat

� if αc,k is higher, under a maximum-random assumption for cloud overlap, the clear-
sky precipitation flux will be relatively small, so the choice of qclr/qsat,clr or qt/qsat
for the calculation of evaporation will not affect strongly moisture tendencies over
the grid box.

In the current version of the parameterization, we chose this second option.

Then, the clear-sky precipitation flux at level k is given by :

P clr
k = P clr

k+1 −∆P clr
k (5.6)

If all the precipitation flux evaporates at level k, i.e. if P clr
k = 0, αclrP,k = 0. Otherwise,

we assume that the evaporation of precipitation is spatially homogeneous and αclrP,k = αclrP,k+1.

There is no evaporation in the cloud fraction of the grid, so αcldP,k = αcldP,k+1 and P cld
k = P cld

k+1.

The cloud formation itself (step 2) does not change compared to 5.3.1 and gives access
to the cloud fraction αc,k. It defines a new partition between cloudy and clear air at level k
and we need to update αcldP,k, α

clr
P,k, P

cld
k and P clr

k accordingly. Indeed, a fraction of the cloudy
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Figure 5.2: Diagrams describing the three main steps in the treatment of precipitation in the
new parameterization: (1) precipitation evaporation, (2) cloud formation and precipitation par-
titioning, and (3) precipitation formation. αclrP,k+1 and αcldP,k+1 refer respectively to the cloudy
and clear-sky precipitation fractions, αc,k and αc,k+1 to the cloud fractions at levels k and k+1,
and ∆αcld→clrP,k (∆αclr→cldP,k ) the cloudy precipitation fraction that passes into clear sky (respec-
tively the clear-sky precipitation fraction that passes into a cloud). The blue arrows indicate
a transfer of precipitation due to a homogenization of the cloudy or clear-sky precipitation
fraction. The +/- refer to an increase/decrease in precipitation flux due to precipitation for-
mation/evaporation. At the top level, before precipitation formation (step 3), both clear-sky
and cloudy precipitation fluxes (and associated precipitation fractions) are zero.

precipitation flux might fall into clear sky and vice versa (see Fig. 5.2). To calculate the new
partitioning of precipitation between clear and cloudy air, we adopt the following method, given
in Jakob and Klein (2000). Noting Ck the total area covered by clouds from k to ktop, we first
consider that:

(1− Ck) = (1− Ck+1)×
1−max(αc,k, αc,k+1)

1−min(αc,k+1, 1− δ)
(5.7)

where δ = 10−6 to prevent division by zero. The equation expresses a maximum overlap for
clouds in adjacent levels and a random overlap for clouds separated by clear levels (see Jakob
& Klein, 2000, for more details). With this assumption, the fraction of the precipitation flux
that passes from clouds to clear sky (see Fig. 5.2) is given by the following formula:

∆αcld→clrP,k = αcldP,k+1 −min(αc,k, α
cld
P,k+1) (5.8)

and we deduce the corresponding transfer of precipitation flux as :

∆P cld→clr
k =

∆αcld→clrP,k

αcldP,k+1

× P cld
k+1 (5.9)

For the flux from clear to cloudy air, we notice that the portion ∆C = Ck−Ck+1 corresponds
to the portion of clouds at level k not overlapped by clouds at any higher level. Thus, no
precipitation can fall into it. Following Jakob and Klein (2000), we deduce the formula:

∆αclr→cldP,k = max(0,min(αclrP,k+1, αc,k −∆C − αc,k+1)) (5.10)
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and the corresponding transfer of precipitation flux:

∆P clr→cld
k =

∆αclr→cldP,k

αclrP,k+1

× P clr
k+1 (5.11)

After the formation of clouds, we can update all variables describing the partitioning of
precipitation:

α̃cldP,k = αcldP,k+1 + ∆αclr→cldP,k −∆αcld→clrP,k

α̃clrP,k = αclrP,k+1 −∆αclr→cldP,k + ∆αcld→clrP,k

P̃ cld
k = P cld

k+1 + ∆P clr→cld
k −∆P cld→clr

k

P̃ clr
k = P clr

k+1 −∆P clr→cld
k + ∆P cld→clr

k

(5.12)

the tilde referring to the updated values in the current step.

Finally, in the last step (step 3), part of cloud condensates is converted into precipitation
according to the equations 5.2 and 5.3. At level k, it generates a cloudy precipitation flux
∆P cld

k . We assume that this flux is uniform below the cloud, therefore, at the end of the three
steps at level k, we have:

α̃cldP,k = αc,k

P̃ cld
k = P cld

k + ∆P cld
k

(5.13)

with the same convention for the tilde as in 5.12.

These three steps are essentially the adaptation of Jakob and Klein (2000) parameterization
to LMDZ. We choose to add a fourth step to the original formulation in order to guarantee a
linear decrease of the area covered by the precipitation flux when the precipitation intensity
Iclr,cldk = P clr,cld

k /αclr,cldP,k is lower than a threshold value RI. In the original formulation, when

the flux of precipitation (either P cld
k or P clr

k ) goes to zero, the area it covers (αcldP,k or αclrP,k) may
drop abruptly from a high value to zero. To avoid such a sharp transition, we add the following
last step at each vertical level k (see Fig. 5.3):

αcldP,k,new = min(αcldP,k,
1

RI
× Icldk )

αclrP,k,new = min(αclrP,k,
1

RI
× Iclrk )

Does the parameterization improve the model conceptually?

To determine whether this new parameterization represents a conceptual progress, we
apply the CISC criteria to the new version of LMDZ:

� Coherence: the new parameterization helps to solve an incoherence in formula
5.1, used to calculate precipitation evaporation. This formula was supposed to be
applied in clear sky only, but was actually used over the whole grid box even when
clouds were present.

� Interpretability: in the standard version of LMDZ, an arbitrary assumption was
used to limit the amount of precipitation evaporated to the maximum cloud fraction
in the overlying layers (see 5.3.1 and Madeleine et al., 2020). The new parameter-
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Figure 5.3: Diagram describing how the limitation of the cloudy (left) and clear-sky (right)
precipitation fractions are calculated when the corresponding precipitation intensities fall below
a certain threshold RI. In each case, the solid line determines the value effectively taken by
the new cloudy/clear-sky precipitation fraction for a given rain intensity Icld/clr and the dotted
line the maximum value permitted.

ization replaces this assumption by variables (P clr, P cld, αclrP , αcldP ) and equations
that are easy to interpret physically.

� Simplicity: the parameterization involves only 4 new variables and 1 tuning pa-
rameter (RI) and is based on simple geometrical considerations. Therefore, it does
not complicate the model much.

� Comprehensiveness: the cloud and precipitation overlap parameterization takes
into account an important process for precipitation evaporation absent from the
standard version of LMDZ: the fact that part of the precipitation flux falls in
cloudy air and is thus not evaporated.

The parameterization exposed here represents improvements in terms of Coherence, In-
terpretability and Comprehensiveness and shows only minor degradations in terms of
Simplicity. Consequently, according to the CISC criteria, it represents a conceptual
progress compared to the standard version of LMDZ.

5.4 Results

Ten years after Jakob and Klein (2000) was implemented and tested in the ECMWF model,
Jakob (2010) looks back on this attempt and writes: “Although they clearly showed the need
for such a parameterization based on a process study (Jakob & Klein, 1999), the implementa-
tion of the new parameterization into the full GCM had very little effect on the model results.”.
In fact, improving a model conceptually does not imply improving its results. On the contrary,
there may be compensating errors between the different parameterizations of a GCM (as de-
fined in 4.4.2) and the improvement of a certain parameterization may remove some of these
compensations, thus making new biases appear in the model.
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Nevertheless, we will see in the following that the adaptation of Jakob and Klein (2000)
to LMDZ gives very encouraging results in SCM case studies and in the global atmospheric
GCM. This supports both the relevance of this parameterization for the LMDZ model, and the
usefulness of the HIGH-TUNE explorer htexplo to re-tune a GCM following the addition of a
new parameterization.

5.4.1 First results in SCM without tuning

In the RICO case, no precipitation reaches the ground in the standard version of LMDZ (see
Fig. 5.1). The new parameterization is intended to correct this deficiency and to take into
account the fact that part of the precipitation flux falls in a cloud, thus is not evaporated.
Figure 5.4 gives the cloudy, clear-sky and total precipitation fluxes and the corresponding frac-
tions in the new version of LMDZ in the RICO case. We fix the threshold value chosen for
the limitation of precipitation fraction RI at 0.5 kg m−2 s−1. In each panel, the cloud layer
predicted by the model is circled in gray. As expected, when a cloud is present, most of the
precipitation is cloudy. On the contrary, below the cloud layer, all the precipitation flux falls
into clear sky. It is partly evaporated, resulting in the progressive decrease of P clr observed in
panel b. The corresponding precipitation fraction αclrP (panel e) decreases as well in the low-
est layers, suggesting that the local intensity of the precipitation flux P clr/αclrP is lower than RI.

Figure 5.4: Cloudy (a), clear-sky (b) and total (c) precipitation flux densities and associated
precipitation fractions (d-e-f) in the RICO case using the 95-level version of LMDZ containing
the new parameterization. A value of 0.5 kg.m−2.s−1 is chosen for RI. Other parameter values
are left unchanged with respect to the standard version of the model. In each panel, the cloud
layer is contoured in gray.
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Target variables vs intermediate variables

In chapter 4, we made a distinction between target variables, which a climate model
seeks to predict as accurately as possible, and intermediate variables, which play a
role in parameterizations but can be legitimately approximated. The justification we
gave for the approximation of intermediate variables is based on the non-accuracy of the
representations used in parameterizations. Here, the clear-sky and cloudy precipitation
fluxes and the associated fractions could in principle be diagnosed in high-resolution
simulations or observations. However, even with such diagnostics, the purpose of our
scheme would not be to reproduce as accurately as possible these intermediate variables,
but rather to predict realistic values for the model target variables. Therefore, when
assessing the quality of model results, we do not focus on the clear-sky and cloudy
precipitation fluxes and associated fractions, but on two target variables of the model:
the cloud fraction and the surface rain rate.

In addition to the RICO case, we consider two other cases: ARMCU and SANDU. The first
is a case of a diurnal cycle of continental shallow convection developed from observations col-
lected on 21 June 1997 at the Atmospheric Radiation Measurement (ARM) site in Oklahoma,
USA (Brown et al., 2002). The second is a transition case from stratocumulus to cumulus
over subtropical oceans. As Sandu and Stevens (2011) explain, this second case was built by
compositing the large-scale conditions sampled along a set of individual Lagrangian 3-day tra-
jectories monitored in the northeastern Pacific during the summer months of 2006 and 2007.
In addition to the REF case shown here, Sandu and Stevens (2011) provide a FAST case and a
SLOW case, corresponding respectively to a faster and slower stratocumulus to cumulus tran-
sition, that we will use later in the tuning process.

To assess the quality of the results produced by the new version of LMDZ, we use a refer-
ence LES for each case. The ARMCU and RICO simulations are provided by the MESO-NH
model and detailed in Lac et al. (2018), and the SANDU simulation was performed with the
UCLA model (see Sandu & Stevens, 2011, for more details). The panels (a-b-c) in Fig. 5.5
give the cloud fractions simulated by the standard version of LMDZ (STD), by the new version
(NEW) and by the reference LES. We choose in each case a time interval characteristic of the
simulation: between the 7th and the 9th hour of simulation for the ARMCU case, between the
19th and the 25th hour of simulation for RICO and between the 60th and the 65th hour of
simulation for SANDU. The panels (d-e-f) show the evolution of the cloud fraction during the
whole simulation in the new version of LMDZ and enable us to check the representativity of
the time interval chosen (highlighted in gray).

In ARMCU, the cloud fraction is comparable between the STD and the NEW version of
the model. Both predict a cloud base altitude consistent with that given by the LES, but with
a slightly lower cloud fraction near cloud base. Differences are observed with respect to the
surface rain rate, which is zero in STD and positive in NEW. The surface rain rate in NEW is
more or less in phase with that of the LES, but overestimated by a factor of 2 to 3.

In RICO, the surface rain rate is also null in STD, but positive in LES and NEW. As in
ARMCU, surface rain rate is overestimated in NEW compared to LES. In addition, cloud base
in NEW is lower than in STD and LES, leading to an overall cloud profile significantly further
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from LES than that given by STD. This represents a major degradation in the NEW version
compared to the STD version of LMDZ in RICO.

In SANDU, the cloud fraction and the surface rain rate are comparable between NEW and
STD but largely overestimated compared to the LES. This can be explained by the presence of
stratocumulus clouds in this case study, revealed by the relatively large cloud fraction in panels
c and f. Since stratocumulus clouds are thin, the precipitation formed falls almost immediately
into clear sky. Moreover, as their surface fraction is close to 1, it is virtually equivalent to
evaporate over the whole cell (as in STD) or only over the clear-sky precipitation fraction (as
in NEW). The precipitation and the cloud fraction in the SANDU case are therefore hardly
affected by the new parameterization. The main difference between the STD and NEW sim-
ulations comes from the limitation of the clear-sky precipitation fraction when precipitation
intensity falls below RI. This limitation results in a more gradual decrease of the rain rate
towards the end of the simulation (after 40 hours) in NEW with respect to STD. In Fig. 5.5
panel l, it can be seen by the presence of more spikes on the black curve than on the red one
in the last hours of the simulation.

Obviously, the LES used is not an exact reference and may contain biases. In particular,
studies have shown that there are many uncertainties in the representation of microphysical
processes in LES (e.g. Chlond & Wolkau, 2000; Grabowski, 2014). In the RICO case, VanZanten
et al. (2011) documented for instance marked differences in surface rain rates in twelve LES
using different microphysical parameterizations. Nevertheless, even if the surface rain rates
predicted by these LES differed quantitatively, all but two of the simulations predicted positive
surface rain rates at the end of the simulation, consistently with what was expected from
observational data. Similarly, Van der Dussen et al. (2013) compared the surface rain rates
predicted by six LES in SANDU – once again, quantitative differences were observed, but the
surface rain rate stayed consistently below 1 mm/day in all simulations and, unlike the standard
version of LMDZ, it did not show any spikes: it was instead continuous from the beginning to
the end of each simulation. In terms of surface rain rate, LES should certainly not be taken
as the truth, and we do not intend that the surface rain rate predicted by LMDZ matches
perfectly with what LES predicts. Nonetheless, a LES gives qualitatively the rain rate that
is expected at the surface and is thus a relevant reference to evaluate the impact of the new
parameterization on SCM results.
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Figure 5.5: Cloud fraction in the standard version (STD, black), the modified version (NEW,
red) of LMDZ at 95 vertical levels, and in the LES (green) in the (a) ARMCU, (b) RICO and
(c) SANDU cases. The cloud fraction is averaged over the time interval specified for each case
and highlighted in gray in panels (d-e-f), which show the evolution of the cloud fraction in
ARMCU, RICO and SANDU in the modified version of LMDZ. (g-h-i) Same panels as (d-e-f)
but for the rain rate in each case. (j-k-l) Surface rain rate in the standard version of LMDZ,
the modified version, and in the LES simulation with the same colors as (a-b-c). For ARMCU
and RICO, there is no rain at the surface in STD.
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5.4.2 SCM tuning

Difficulties of SCM tuning by hand

In terms of cloud fraction, the results with the new parameterization are further from
LES than with the standard version of LMDZ. In the RICO case, in particular, panel
b in Fig. 5.5 shows an unrealistic decrease of the cloud base height in the new version
compared to the standard version and LES. The new parameterization seems to break
a certain balance between the different LMDZ parameterizations that ensure a realistic
cloud base height in RICO. To restore this balance, the parameters of the model have
to be tuned.

We initially tried to tune LMDZ parameters by hand. We used in particular the pa-
rameters EVAP and CLTAU, which are respectively involved in the formulas governing
the formation and evaporation of precipitation in LMDZ. By a trial and error method,
changing the value of one parameter at a time, we managed to obtain a good agreement
with the LES in the RICO case in terms of cloud fraction, but the cloud fraction in
SANDU or surface precipitation in one of the three cases then became unrealistic. If we
would have spent more time on this manual tuning, we would probably have obtained a
good agreement with LES in terms of surface precipitation and cloud fraction in the three
cases considered, but this small experience was enough to convince us of the relevance of
the HIGH-TUNE explorer htexplo to tune the parameters of LMDZ. More precisely, we
noted in practice two difficulties specific to manual tuning:

� its lack of reproducibility. The values finally adopted for the parameters depend
on the path chosen. In our example, we searched by trial and error for the best set
of parameters, changing one parameter after another. We first adjusted the EVAP
parameter. If we had started with another parameter, for example CLTAU or
CLC, perhaps we would have obtained different results. The tuning of a full GCM
is far from being limited to two or three parameters and depends even more on the
path chosen.

� the expertise it requires, which relies on the one hand on a theoretical under-
standing of the role and structure of the different parameterizations of the model,
and on the other hand, on a practical knowledge of the results produced by the
model under different conditions and with different sets of parameters. The train-
ing needed to obtain this expertise requires a significant investment and is specific
to a given climate model. Indeed, each model having its own language and behav-
iors, the practical knowledge acquired on a model cannot be easily transposed from
one model to another. In our example, as we did not have a global expertise on the
model, we limited ourselves to the parameters involved in the module fisrtilp.

These difficulties are linked to the lack of standardization of the tuning process by hand.
In a classical calibration process (and in htexplo), standardization is indeed what makes
the calibration reproducible, and also, what allows a non-expert user of an instrument to
calibrate it.

Due to the difficulties of re-tuning the model by hand following the addition of a new pa-
rameterization, we used the HIGH-TUNE explorer htexplo described in Couvreux et al. (2021);
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Hourdin, Williamson, et al. (2020). This tool uses an approach developed by D. Williamson
et al. (2013), whose principle is to remove certain regions of the parameter space iteratively,
refocusing the search on acceptable range of parameters at each step. The acceptability (or
non-acceptability) of parameters is first defined by comparing the results of SCMs for different
sets of parameters to LES. Once the parameter space has been significantly reduced using SCM
simulations, a 3D tuning phase is performed with atmospheric GCM simulations to further
reduce the parameter space using global metrics.

The full protocol used in the SCM tuning phase is documented in Couvreux et al. (2021);
Hourdin, Williamson, et al. (2020). We present here only a sketch of its main steps:

1. One has to choose some tuning parameters and acceptable range of values for each of
these parameters.

2. From this range of parameter values, the algorithm selects sets of parameters designed to
optimally sample the parameter space.

3. SCMs are run with the selected parameter sets in different cases and compared to LES.
This comparison is based on metrics, calculated from model target variables (such as
temperature, specific humidity or cloud fraction).

4. A meta-model called the “emulator” extrapolates the value of the different metrics calcu-
lated for each set of parameters to the whole parameter space (see D. Williamson et al.,
2013, for more details on how this emulator works).

5. For each point in the parameter space and each metric, a distance from the reference,
called implausibility, is computed. This distance distinguishes between acceptable and
non-acceptable values of the parameter space. It takes into account the difference with the
LES simulations used as references, as well as three main sources of uncertainties: 1) The
uncertainty around the reference, here the LES simulations used. 2) The uncertainty of
the emulator, as we do not sample the entire parameter space, but a reduced (well-chosen)
sampling of the parameter space. D. Williamson et al. (2015, 2013); D. B. Williamson,
Blaker, and Sinha (2017) explain how to take into account this uncertainty in the cal-
culation of implausibility. 3) The uncertainty associated with the tolerance to error for
the metric considered. This tolerance to error is chosen according to the expertise of
the climate modeler about the model structural limitations, i.e. what the model can
and cannot do (as we defined them in 4.4.3). Depending on these structural limitations,
the climate modeler might ask more or less to the model: indeed, if a model is asked
to be more accurate than permitted within its structural limitations, it will empty the
parameter space. It is therefore crucial for the climate modeler to have a good expertise
on the structural limitations of the model to choose a relevant tolerance to error. For a
given metric, the tolerance to error chosen reflects how close to the reference the climate
modeler thinks his model can be.

6. Based on the implausibility, regions of the parameter space that are too far from the
references used are ruled out. The remaining values form the NROY space (Not Ruled
Out Yet) over which a new iteration – so-called “wave” – can be performed. The parameter
space is progressively reduced by successive waves.

The first step – choosing some tuning parameters and a range of possible values for each of
these parameters – is similar to what a climate modeler has to do, consciously or unconsciously,
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when tuning a climate model manually. There is however a major difference: with htexplo, the
choice of parameters and parameter values becomes explicit, whereas it was implicit before.
Similarly, the choice of metrics and tolerance to errors has to be prescribed explicitly. As we
have seen in chapter 4, this represents a major step forward in terms of standardization and
reproducibility.

It was evident in our case as we used a set of parameters, a set of metrics and associated
tolerances to error similar to the ones that proved successful in previous studies (Hourdin,
Williamson, et al., 2020, in particular). More precisely, three types of parameters have been
chosen: 1) parameters directly involved in the new parameterization or in the formation or
evaporation of rain (EVAP, CLC, CLTAU, RI) 2) parameters involved in convection or in the
formation of shallow clouds (A1, A2, B1, BG1, DZ) 3) parameters involved in the tuning of deep
clouds, which do not have any influence on the shallow cumulus cases considered for the SCM
tuning, but are kept for the GCM tuning phase (FALLV, OMEPMX, REI, RSQPO, RQSDP,
RQSH). Table 5.1 gives, for each parameter, the minimum and maximum values defining the
range explored, the reference value used in the standard version of LMDZ, and what the pa-
rameter controls in the model.

Figure 5.2 lists the metrics used for each case study. The metrics are averaged over a period
of a few hours to smooth out possible numerical oscillations. The first two metrics θ400−600hPa
and qv,400−600hPa are vertical averages of potential temperature and specific humidity between
400 and 600 m. They assess the thermodynamical behavior of the subcloud layer. For cloudy
cases, the maximum cloud cover fcld,max or the cloud height can also serve as metrics. The
cloud height is computed using either an average height zcld,ave =

∫∞
0
fcld z dz/

∫∞
0
fcld dz or a

weighted height zcld,max =
∫∞
0
fcld z

4 dz/
∫∞
0
fcld dz, with a power 4 added to concentrate the

integral on the highest cloud fractions (see Hourdin, Williamson, et al., 2020, for more details).

In addition to the metrics, a tolerance to error has to be prescribed for each metric. For the
potential temperature and specific humidity, we prescribe the tolerance in terms of an absolute
tolerance ΣT = 0.5 K and Σq = 0.0005 kg/kg. We also prescribe a relative error on the height
of clouds Γz = Σz/z = 0.12 and cloud fraction Γf = Σf/f = 0.25. These tolerances to error
allow to compute the implausibility, a distance between the metric prediction by the emulator
and the reference metric value (Hourdin, Williamson, et al., 2020; D. Williamson et al., 2013;
D. B. Williamson et al., 2017). The space of parameters NROY is progressively reduced thanks
to these implausibility calculations. A point in the parameter space is kept if its implausibility
is lower than a threshold, progressively reduced from 3 in the first four waves, to 2.5 in the
following three, and finally to 2 at wave 8 and the following ones.

At each wave, 90 simulations are performed. Figure 5.6 shows the error with respect to LES
normalized by the tolerance to error metric by metric for each simulation performed with the
new version (NEW+TUNING, blue dots) and standard version (STD+TUNING, red dots) of
LMDZ at waves 1, 5, 15 and 30. In addition with the metrics defined previously, we use the
average of the different metrics AVE. The dashed line represents the normalized error given
by the standard version of LMDZ (STD) without tuning, i.e. with the original set of param-
eters. In the top panels, we see that the normalized errors in the ARMCU metrics stay low
throughout the waves, suggesting that the ARMCU metrics are not very restrictive for the
parameter space. On the contrary, the mean error (blue and red squares) by metric decreases
with the number of waves already performed for the RICO and SANDU metrics, as well as
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Name Min Max Ref Controls

EVAP 5e-5 5e-3 1e-4 Reevaporation of precipitation

CLC 5e-5 5e-3 6.5e-4 Autoconversion of cloud liquid water to rainfall

CLTAU 4000 15000 900 Characteristic time for the formation of rainfall

RI 1e-3 5 NA minimum local rain intensity

A1 0.5 1.2 0.667 Contribution of buoyancy to the plume acceleration

A2 1.5e-3 4e-3 2e-3 Drag term in the plume acceletation

B1 0 1 0.95 Scaling factor for entrainment or detrainment

BG1 0.4 2 1.1
subgrid-scale water distribution

Width of the environment

DZ 0.07 0.15 0.07 environmental air altitude shift for buoyancy calculation

FALLV 0.3 2 0.8 speed of fall of ice crystals

OMEPMX 0.005 0.01 0.001
conversion

maximum efficiency of cloud water → precipitation

REI 0.5 1.3 1 effective radius of cloud particles

RQSPO 40000 60000 45000

RQSDP 7000 25000 10000

RQSPH 0.05 0.6 0.4

parameters used to define the standard deviation
of the subgrid-scale water distribution

Table 5.1: Parameters used in the tuning process with htexplo. The minimum and maximum
values explored are given, as well as the reference value used in the standard version of LMDZ
and what each parameter controls in the model. Inspired from Hourdin, Williamson, et al.
(2020).

for the average error AVE, and becomes progressively better than STD. The best simulations
for each wave in NEW+TUNING and STD+TUNING are indicated in gold and give better
results than STD for most of the metrics. These results show that htexplo find regions of the
parameter space where the new version of LMDZ predicts results closer to LES than STD and
comparable with the best simulations found in STD+TUNING.

To compare the results given by the best simulations in NEW+TUNING and STD+TUNING,
we represent in Fig. 5.7 the surface rain rate and cloud fraction in ARMCU, RICO and SANDU
for one best simulation of the new version of LMDZ (NEW+TUNING, in blue), ten best sim-
ulations of the standard version of LMDZ (STD+TUNING, in black) and a reference LES
(in green). For these best simulations, the cloud fractions predicted by the new version and
the standard version of LMDZ after tuning are comparable in the three case studies consid-
ered. Significant differences are on the contrary observed in terms of surface rain rate. In
STD+TUNING, there is no surface precipitation in ARMCU and RICO, whereas in SANDU,
the precipitation tends to be overestimated at the beginning of the simulation and becomes
null after a few hours of simulations, in contradiction with what is predicted by the reference
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Case ARMCU RICO SANDU SANDU SANDU

Subcase REF REF REF SLOW FAST

time 7-9 7-9 19-25 50-60 50-60

θ400−600hPa X

qv,400−600hPa X

fcld,max X X

zcld,ave X

zcld,max X X X

Table 5.2: Metrics retained for the SCM/LES tuning. Inspired from Hourdin, Williamson, et
al. (2020)
.

LES. These results suggest that in the standard version of LMDZ, it is not possible to have si-
multaneously realistic cloud fractions and realistic surface rain rates in these three case studies.
They thus highlight a potential structural limitation of the standard version of LMDZ. On the
contrary, in the new version, some simulations give surface rain rates compatible with those
predicted by the LES in the three cases, as well as realistic cloud fractions, as illustrated by
the blue curve (NEW+TUNING).

In terms of model results, in these three case studies, Kuhn’s criterion does apply: a rel-
atively large part of the previous abilities of the model are conserved, but in addition, the
new parameterization seems to solve certain problems in model results unsolvable with tuning
alone – or at least, with the tuning protocol used, as a different tuning protocol might lead
to different results. The new version of LMDZ and the standard version are further compared
in Hwong et al. (2021) in SCM simulations under idealized radiative-convective equilibrium
conditions forced with anomalous temperature and moisture tendencies. In this study, the new
version of LMDZ (after tuning) also performed significantly better than the standard one. As
we sill see in the following, whether or not the new parameterization improves the model is
more questionable when analyzing results of the global GCM.

133



CHAPTER 5. PARAMETERIZATION DEVELOPMENT AND TUNING IN PRACTICE

Figure 5.6: Normalized error after wave 1, 5, 15 and 30 in the tuning process with htexplo for
the new version of LMDZ (in blue) and the standard version (in red). Each dot represents one
simulation. The best simulation for each wave is the one with the lowest score averaged over
all metrics (AVE) and is indicated with a gold dot. Blue and red squares give the mean error
for all simulations of respectively the new and standard version of LMDZ for each metric and
each wave. The dashed line represents the normalized error obtained with the standard version
of LMDZ without tuning.
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Figure 5.7: Cloud fraction (top) and surface rain rate (bottom) in ARMCU/REF, RICO/REF
and SANDU/REF in one “best” simulation of the modified version of LMDZ (NEW+TUNING,
blue) after 45 waves of tuning using htexplo, in ten best simulations using the standard version of
LMDZ (STD+TUNING, black), and in a reference LES (green). The cloud fraction is averaged
over the time interval specified for each case.
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5.4.3 GCM tuning

As in Hourdin, Williamson, et al. (2020), for the global simulations, we use atmospheric sim-
ulations forced by SSTs and sea ice cover mean seasonal cycle. Simulations are run on the
standard low resolution horizontal grid of LMDZ made up of 144 points in longitude and 143 in
latitude, with a 95-level vertical grid. The parameters chosen are the same as the parameters
used in the SCM tuning, and the initial NROY space for global simulations is the one obtained
after 45 waves of SCM tuning. We perform two additional waves of 180 simulations each using
the same SCM metrics considered for the 45 first waves, plus additional 3D metrics.

Table 5.3 lists the different 3D metrics used and the target values and tolerances to error
for each metric. Most of the 3D metrics chosen target the shortwave (SW), longwave (LW) and
net radiative fluxes at top-of-atmosphere computed in annual mean and averaged over spatial
masks (see Fig. 5.8), using the CERES-EBAF L3b observational data set (Loeb et al., 2009)
as reference. Three additional metrics are used, targeting the rain variability during the MJO
(MJO), the frequency of daily precipitation above 50 mm/day (PR>50) and the mean rainfall
over the Sahel (AMMA) and using the Global Precipitation Climatology Project (GPCP) data
set as reference (Adler et al., 2018). More details on the 3D protocol used can be found in
Hourdin, Williamson, et al. (2020).

metrics controls target error unit reference

metrics
Rad.

glob.rt

shown in Fig. 5.8.
one of the masks
globally or over

The metrics are averaged
radiative effect (crest).

or shortwave cloud
upward longwave (rlut),
upward shortwave (rsut),

either total (rt),
radiative fluxes:

Top of atmosphere (TOA)

1.577 0.25

W m−2
(Loeb et al., 2009)
CERES-EBAF L3b

glob.rlut 239.7 25

conv.rsut 103.2 25

conv.rlut 235.8 25

weak.rsut 81.8 25

weak.rlut 264.3 25

subs.rsut 84.9 25

subs.rlut 274.7 25

circAa.rsut 23.2 25

circAa.rlut -44.1 25

etoa.crest -10.7 25

metrics
Precip.

AMMA Mean rainfall over sahelian band 1.16 0.04 mm day−1

(GPCP, Adler et al., 2018)
Climatology Project
Global Precipitation

MJO
of the Madden Julian Oscillation (MJO)

Rainfall variability in the region
3.33 1 -

PR > 50
superior to 50 mm/day

Occurrence of precipitation rates
0.34 0.1 -

Table 5.3: Radiative and precipitation metrics used for GCM tuning at waves 46 and 47, along
with the target value and tolerance to error for each metric. The reference data sets used to
compute the target values for each metric are also given.
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Figure 5.8: Radiative metrics used for the GCM tuning, targeting the total radiative flux (rt)
at top of atmosphere, as well as the total upward shortwave (rsut) and longwave (rslt) fluxes at
top of atmosphere. The metrics are averaged globally or over a mask (in red), or calculated as
a difference between a red and a blue mask (anomalies). Grey dots represent the value of the
different metrics for the 180 simulations wave 46 (W46) and 47 (W47), and the black squares,
the average value of each metric for all simulations at each of the two waves. The golden points
represent the values of the different metrics for the best simulation, as defined in Fig. 5.11.
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In Chapter 4, we mentioned that simulating accurately the Earth’s energy budget in coupled
GCMs was one of the main motivations of tuning. Here, this is done in practice by choosing
an arbitrarily small tolerance to error in the metric that controls the total global radiative
flux at top of atmosphere (TOA) (glob.rt) – 0.25 W m−2 instead of 25 W m−2 for the other
radiative metrics. This tolerance to error is even smaller than the observational uncertainty of
∼ 4 W m−2 given in Loeb et al. (2009). Moreover, the target value for tuning (1.5 W m−2) is
chosen to obtain a correct Earth’s energy budget in the coupled GCM, but is not consistent
with the most recent estimate of 0.71 W m−2 from Johnson, Lyman, and Loeb (2016). This
discrepancy is due to atmospheric responses to SST biases in the coupled GCM: in fact, the
SSTs predicted by the coupled GCM do not match perfectly the present-day SSTs used as lower
boundary condition in the atmospheric-only GCM. Due to these SST biases, it is necessary to
tune the total energy budget of the atmospheric-ony GCM to a value that satisfies the energy
budget of the coupled model rather than to the value predicted by observations. This is the
typical example where compensating errors are explicitly introduced in the model in order to
guarantee key climate properties.

Figure 5.8 shows in grey dots the value of the different 3D radiative metrics considered for
all simulations at waves 46 and 47. The green dashed line indicates the reference value given by
observations for each metric. Wave 47 (W47) simulations are significantly closer to observations
than those of wave 46 (W46). The effect of tuning is not as strong for the MJO, PR > 50
and AMMA metrics, shown in Fig. 5.9. For MJO and PR > 50, the black squares reveal on
the contrary that W47 simulations are on average a little further from the observations than
W46 simulations. This is due to the tuning protocol used, which gives preference to radiative
metrics – and in particular to the total radiative flux glob.rt – over other metrics.

Figure 5.9: Same Figure as Fig. 5.8, but for precipitation metrics MJO, PR > 50 and AMMA.

As in Fig. 5.7, tolerances to error are used in htexplo to normalize the difference from the
reference value. We define the BEST simulation as that with the lowest “score”, i.e. normalized
error, averaged over the different metrics (1D+3D). The value of the different metrics for this
BEST simulation is indicated by a golden point in Fig. 5.8 and 5.9.

The many ways to compare GCM results with observations

Simulating a correct Earth’s energy budget is crucial to avoid a drift of the model climate
that would make it very far from the current climate and explains why we used glob.rt as
a main tuning target. Nevertheless, a correct radiative budget is not the only criterion to
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Figure 5.10: Biases in surface precipitation (pr, top) and temperature (tas, bottom) averaged
over a year in the standard version of LMDZ (CTRL) and the best simulation of the second wave
of GCM tuning (BEST). The observational data sets used as references are the one provided
by ERA Interim for surface temperature (Dee et al., 2011) and by GPCP (Adler et al., 2018)
for surface precipitation.

consider to evaluate the quality of a GCM simulation. Many other variables can be used,
such as surface temperature, surface precipitation, the 500-hPa geopotential height, etc.
There are different methods for comparing each of these variables to observations. In
climate models, we are more interested in statistics in space and time than in local and
instantaneous values. A choice has to be made on the time and space intervals chosen to
calculate averages or other statistical values. Moreover, for some variables, the patterns
present in the observations are also present in the model, but slightly shifted. Despite
the presence of realistic patterns in the model, a dot by dot comparison between model
and observations would attribute a poor performance to the model. To solve this issue,
different tools have been developed, such as the use of spectral empirical functions (EOF,
see Pritchard & Somerville, 2009; O. T. Schmidt, Mengaldo, Balsamo, & Wedi, 2019).
With all these variables and tools, the ways in which GCM results and observations can
be compared are virtually endless. This explains the difficulties in evaluating whether
one version of a model is better than another in terms of results: it all depends on what
is being compared.

In Fig. 5.10, we use the surface temperature (tas) and precipitation (pr) biases to compare
the standard version of LMDZ (CTRL) and this BEST simulation. To calculate these biases,
we averaged the surface temperature and precipitation given by the model and by observations
over a year. The two simulations shown have many similarities: they share for instance posi-
tive biases in precipitation over the Eastern Tropical Pacific and over Indonesia, and negative
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biases of temperature over Antarctica. However, some biases seem more pronounced in one
simulation or the other. For instance, the simulation BEST seems to have a more pronounced
global cold temperature bias over the continents than CTRL, but more realistic precipitations
over Indonesia.

Even if we were to consider only these two variables – the surface temperature and precipita-
tion averaged over a year – it is not possible to objectively determine which simulation is more
realistic. Kuhn’s criteria does not apply: in global simulations, previous model abilities are not
preserved. Improvements in certain regions are accompanied by deteriorations in others, which
makes the evaluation of GCM simulations difficult. The question “is the CTRL simulation
more realistic than the BEST simulation?” involves subjective choices on which aspects of the
results are considered most important.

To make these choices explicit, the solution adopted by the scientific community to evaluate
the performance of GCMs consists in using metrics. Metrics can first be used to assess whether
a simulation S1 is better than another S2 for one aspect of the model X. The question is
then not “which simulation is the best” but rather “which simulation is the best at predicting
X”. Knutti et al. (2017) make this choice when analyzing CMIP multi-model ensembles. They
weight climate model projections on one particular aspect (e.g. the future evolution of Arctic
sea ice) by taking into account the past performance of models on selected variables (e.g. their
ability to simulate accurately Arctic sea ice decline in the twentieth century). Similarly, in the
GCM tuning process, htexplo uses metrics to target essentially one (important) aspect of the
system: radiative fluxes at the top of the atmosphere.

An attempt to define the comparison of two GCM simulations

To compare exhaustively two GCM simulations, a more ambitious use of metrics has
to be done: metrics have to be chosen in order to define the overall quality of a
GCM simulation. Due to the number of possible metrics, this choice will be partly
arbitrary and express the personal preferences of the climate modeler. Different weights
may be assigned to different metrics and the assignment of these weights will also be
partly subjective. Nevertheless, metrics and weights allow to compare quantitatively
two simulations according to these subjective preferences. They give some criteria
to determine whether a global simulation S1 is better than another S2 or not. More
precisely, we formulate the following proposition to compare two simulations S1 and S2.

Proposition 1: Under an ensemble of n metrics (pi)i≤n and associated weights (mi)i≤n,
we consider that a simulation S1 is better than another S2 if and only if the weighted
average of the normalized errors of S1 (mi[S1])i≤n under the defined metric is smaller than
the weighted average of the normalized errors of S2 (mi[S2])i≤n under the same metrics.
That is, mathematically:

S1 > S2 ⇔
∑
i≤n

pimi[S1] <
∑
i≤n

pimi[S2] (5.14)

In formula 5.14, different methods can be used to normalize the errors: in our example,
htexplo divides them by the tolerances to error defined in Table 5.3. We apply Proposition
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Figure 5.11: Scores, i.e. error from observations divided by tolerances to error defined in 5.3,
in 3D metrics, 1D metrics and MJO metric for the 180 simulations of W47. The x-axis ranks
simulations according to their 3D score. In each panel, the best simulation in terms of 3D score
(S0) is indicated in gold, and one intermediate and one worse simulations in terms of 3D score
are shown in blue and red respectively.

1 to compare the simulations run during W47. Three different ways of comparing these 180
simulations are shown in Fig. 5.11. 3D refers to the average of the normalized errors of all
3D metrics (radiative + precipitation), 1D of all SCM metrics (defined in 5.2), and MJO of
the MJO metric only. The x-axis ranks the simulations according to their 3D score, and the
y-axis gives the value of their score according to each formula (3D, 1D or MJO). The 3D score
is further used to define a best simulation (S0, in gold), an intermediate simulation (S85, in
blue) and a worse simulation (S169, in red). Contrary to their 3D score, the 1D score of
these three simulation is comparable, and the ranking of these three simulations is reversed
for the MJO metric. This illustrates that there is no absolute ranking of GCM simulations,
but that the ranking is conditioned by the metrics and weights used when applying formula 5.14.

An attempt to define the comparison of two versions of a GCM

Despite its dependence on the chosen metrics and weights, formula 5.14 gives a quantita-
tive method to compare two simulations. What about the comparison of two GCMs or,
in our case, two versions of a GCM containing different parameterizations? The fact that
one particular simulation of a model version V1 is better than one particular simulation
of another version V2 does not prove that V1 is better than V2. It is illustrated in Fig.
5.11, where some simulations of the new version of LMDZ might be better than the
standard version, and some worse depending on the metrics and weights considered. This
remark may sound trivial but in scientific papers, it has always been the rule rather than
the exception to compare two particular simulations to evaluate the progress brought
by a new parameterization (e.g. Rasch & Kristjánsson, 1998; Yoo, Park, Kim, Yoon,
& Kim, 2015). Htexplo opens the door to another definition, that we give in the following.

Proposition 2: Let us call V1 a particular version of a GCM and S1 = V1(P1) a simulation
given by this version under a set of parameters P1 in the parameter space Ω1. We will
consider than V1 is better than another version V2 if and only if there is a set of parameters
P1,0 in Ω1 such that S1,0 = V1(P1,0) is better than any simulation S2 = V2(P2), with P2
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belonging to the parameter space Ω2. Mathematically, we can write:

V1 > V2 ⇔ ∃ P1,0 ∈ Ω1,∀P2 ∈ Ω2, V1(P1,0) > V2(P2) (5.15)

that is using eq. 5.14:

V1 > V2 ⇔ ∃ P1,0 ∈ Ω1,∀P2 ∈ Ω2,
∑
i

pimi[V1(P1,0)] <
∑
i

pimi[V2(P2)] (5.16)

When comparing two versions of a model, Proposition 2 distinguishes the differences in
results due to the tuning of each version from those due to differences in their parameterizations.
Conceptually, it clarifies what we aim to do when we evaluate the progress brought by a new
parameterization to a given climate model. Nevertheless, it raises two main practical difficulties:

1. It requires first the existence of a tuning protocol that explores extensively the
space of parameters. Due to the number of parameters involved in GCMs and the
many values they can take, it is impossible in practice. The choice of parameters and
parameter values used in the tuning process will always be in part arbitrary. A given
tuning protocol might be more favorable to some versions of the model than to others.
Therefore, some differences between two versions of a model after re-tuning may be due
to the fact that the tuning protocol used is more adequate for one version of the model
than for the other. We faced this problem at the beginning of our study: initially, we did
not use CLTAU as a tuning parameter, and we were not able to find SCM results with
the new version of LMDZ comparable with those given by the standard version, when
exploring the space of parameters with htexplo. This problem was solved when CLTAU
was used with appropriate range of values in the tuning process.

2. The second practical difficulty lies in the definition of metrics and weights given to
each metrics. There is no consensus yet on the most relevant metrics to evaluate the
performance of climate models. Yet, as we have seen in Fig. 5.11, the choice of metrics
and associated weights determines the relative performance of two simulations, thus of
two versions of a model.

Due to these practical difficulties, we will not use formula 5.16 in practice to compare the
standard and the new version of LMDZ. However, it inspires our approach in what follows. We
identify two differences in the new version of LMDZ compared to the standard version that do
not appear to be due to differences in tuning, but rather to differences in parameterizations.
These two properties are indeed shared by many simulations of W47 in the new version of
LMDZ and reduce biases that were resistant to tuning in the standard version of the model.

Reduction of excessive rainfall rates over Indonesia and over the northeast coast of
South America In the standard version of LMDZ, very high average rain rates are observed
over Indonesia and over the northeast coast of South America. The purple patches in Fig. 5.12
middle panel (CTRL) show that the rain rates exceed 14 mm/day in average at these locations.
On the contrary, in observations, the rain rates are always lower than 10 mm/day. The new
parameterization seems to significantly reduce this bias, even if it does not entirely correct it.
Indeed, we see in Fig. 5.12 that the purple patches are reduced in BEST compared to CTRL,
which means that the rain rates over Indonesia and the northeast coast of South America are
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significantly lower in BEST than in CTRL (even if they are still too high compared to obser-
vations).

Figure 5.12: Surface precipitation in observations (OBS), in the standard version of LMDZ
(CTRL) and in the BEST simulation of the new version. As in Fig. 5.10, precipitation ob-
servations are from GPCP (Adler et al., 2018). Precipitation in CTRL and BEST is averaged
over a year of simulation.

This result was expected given the effects of the parameterization in SCM case studies.
The SANDU case suggested indeed that the new version tended to reduce high precipitation
rates compared to the standard one (see Fig. 5.7). Admittedly, the SANDU case is a case
of shallow clouds containing only liquid precipitation, while the precipitation over Indonesia
and the northeast coast of South America is certainly due in part to deeper convective clouds
forming solid precipitation. However, the cloud and precipitation overlap parameterization
also affects solid precipitation from deep convection. The decrease in surface precipitation rate
over Indonesia and over the northeast coast of South America suggests that the effect of the
parameterization on deep clouds is similar to what we observed in the SANDU stratocumulus
case: it tends to reduce extreme precipitation rates.

Correction of summer continental warm bias over mid-latitudes Contrary to the
first one, this second bias correction was not expected. In the standard version of LMDZ, the
temperature at the surface reveals a strong summer continental warm bias in mid-latitudes.
This bias was documented in Boucher et al. (2020); Cheruy et al. (2020) and Hourdin, Rio, et
al. (2020). In the new version, as can be shown in Fig. 5.13, this bias is significantly reduced.
We show here only the BEST simulation but this property is shared by the different simula-
tions of W47. Simulations of the new version of LMDZ are significantly colder in summer over
continents than the standard version of LMDZ.

How to interpret this behavior? In the ARMCU and RICO case studies, we noted that
the new parameterization increases the frequency of light precipitation in the model. The
coupling between this light precipitation and the surface certainly exerts an influence on surface
temperatures and could explain the differences observed. Further research is underway to test
this hypothesis.
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Figure 5.13: Biases in surface temperature (tas) averaged over a year in the standard version of
LMDZ (CTRL) and in the BEST simulation of the new version. As in Fig. 5.10, ERA Interim
is used as reference for the surface temperature (Dee et al., 2011).

5.5 Conclusion

This chapter is at the frontier between climate modeling and epistemology. On the one hand,
we presented the scientific results we obtained by adaptating the parameterization of Jakob
and Klein (2000) to LMDZ. We detailed the process we used to re-tune LMDZ following the
addition of this parameterization using the tool htexplo. This was one of the first times htexplo
was used to tune a GCM following the addition of a new parameterization – this test was
successful in many ways. In SCM case studies, after 45 waves, htexplo reduced the parameter
space sufficiently so that the simulations in the version of LMDZ with the new parameterization
were of comparable or even better quality than those of the standard version of LMDZ. Then,
this parameter space was used to perform the 3D tuning of the model, through atmospheric
GCM simulations forced by SSTs and sea ice cover mean seasonal cycle. Two additional 3D
tuning waves were conducted. Simulations obtained at wave 47 (after 45 waves in SCM +
2 waves in 3D) performed well for most of the global metrics considered. Furthermore, two
important biases seem to be reduced in the simulations of the new version compared to the
standard one: excessive rain rates over Indonesia and the northeast coast of South America,
and a summer continental warm bias at mid-latitudes. These results strongly support the use
of the parameterization proposed in future reference versions of LMDZ. They also illustrate the
potential of automatic tuning methods such as htexplo to guide the development and testing of
new parameterizations in GCMs.

On the other hand, and in parallel to these scientific results, we conducted an epistemologi-
cal reflection throughout the chapter. In particular, we questioned what it means to improve a
GCM and how progress can be defined for parameterizations. We first distinguished conceptual
progress brought by a new parameterization from progress in terms of model results. We gave
four criteria to evaluate conceptual progress – what we called the CISC criteria for Coherence,
Interpretability, Simplicity and Comprehensiveness – and applied these criteria to the cloud
and precipitation overlap parameterization implemented in LMDZ. This led us to conclude
that this parameterization made significant conceptual progress in LMDZ. We then explored
the meaning of progress for model results and identified two main difficulties that arise when
one tries to assess the progress made by a parameterization on the results of a GCM. First, the
results of a GCM depend largely on its tuning – so to compare two versions of a GCM, we need
to distinguish differences that are due to tuning from those that are not. Second, there are
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many ways to evaluate the results of a GCM and progress in some results is often associated
with degradation in others. We argued that metrics can be used to objectively define which
model results should be prioritized and proposed a definition of the comparison of two versions
of a GCM independently of their tuning once a set of metrics and associated weights is defined
(Prop. 2). Although this definition is difficult to apply in practice, it guided us in comparing
the version of LMDZ containing the new parameterization and the standard version of the
model.

Our epistemological work shows that the benefits of using automatic tuning methods such
as htexplo should not be underestimated. By making the tuning process more standardized and
reproducible, htexplo not only helps climate modelers to save the tedious and time-consuming
process of re-tuning the model manually when a new parameterization is added. It also changes
the way we look at GCMs. As we have seen in this chapter, a GCM is no longer one particular
simulation, but an ensemble of plausible simulations defined by a parameter space and some
structural limitations within this parameter space. The meaning of “improving a GCM” is
thus questioned. Work remains to be done to clearly define metrics and a tuning protocol that
rigorously assess whether a new parameterization is better than another or not. But with htex-
plo, there is hope that in the near future, GCM improvement will rest on solid epistemological
grounds – even if the associated “progress” will probably have a different meaning than that
given by Kuhn.
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Chapter 6

The Coupled Model Intercomparison
Project – History, uses, and structural
effects on climate research
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6.1 Preamble

Over the past 30 years, projects to compare the results of different GCMs have become increas-
ingly important in climate science research. In particular, the Coupled Model Intercomparison
Project (CMIP) is now a reference tool for comparing simulations of coupled GCMs under dif-
ferent conditions. Studies based on CMIP results provide a convenient way to summarize what
the most comprehensive GCMs have to say about anthropogenic climate change and logically
play a key role in the IPCC reports. Yet, each phase of CMIP required significant human and
computing resources from modeling groups. At the time of writing, about 50 modeling groups
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participated in the last phase of CMIP, which represents almost all of the major climate mod-
eling groups in the world. With the progressive appearance of GCRMs and other competitors
to parameterizations and GCMs, we may wonder whether such an endorsement will continue
in the next phases of CMIP. The purpose of this chapter is to conduct a historical and episte-
mological study that might inform the debate on the future of CMIP. In particular, we assess
the role that CMIP has played historically, how CMIP results are analyzed today, and which
structural effects CMIP has had on climate research.

This chapter is based on a paper published in Wiley Interdisciplinary Reviews: Climate
Change in April 2020. The full reference is: Touzé-Peiffer, Ludovic, Anouk Barberousse, and
Hervé Le Treut. “The Coupled Model Intercomparison Project: History, uses, and structural
effects on climate research.” Wiley Interdisciplinary Reviews: Climate Change 11.4 (2020):
e648.

6.2 Abstract

The results of the sixth phase of the Coupled Model Intercomparison Project (CMIP) are
currently being analysed and will form the basis of the IPCC Sixth Assessment Report. Since
its creation in the mid-1990s, CMIP has had an increasing influence on climate research. While
the principle behind it has always remained the same – comparing different climate models
under similar conditions – its design and motivations have evolved significantly over the phases
of the project. This evolution is closely linked to the one of the IPCC, since, historically as well
as today, the results of CMIP have played a major role in the panel reports. This role increased
the visibility of CMIP – over time, more and more people started to be interested in CMIP and
to analyze its results. Despite this success, the way CMIP is used today raises methodological
issues. In fact, CMIP has promoted a particular way of doing climate research, centered on
a single tool, Global Coupled Models (GCMs), and creating a gap between model developers
and model users. Due to the debates regarding the interpretation of multi-model ensembles
and the validation of GCMs, whether the emphasis on this particular way of studying climate
is serving the progress of climate science is questionable.

6.3 Introduction

Intercomparison projects used in climate science are based on a simple idea: run a set of nu-
merical climate models under the same conditions and compare their results. The Atmospheric
Model Intercomparison Project (AMIP), which started in 1990, was the first attempt to coor-
dinate such an activity. Different intercomparison projects have followed: the Coupled Model
Intercomparison Project (CMIP), in particular, is now considered as “one of the foundational
elements of climate science” (Eyring et al., 2016, p. 1937). Since its creation in the mid-1990s,
it has evolved over five phases, involving all major climate modeling groups in the world. In
addition to their role in climate research, these phases have hold a central place in the reports
of the Intergovernmental Panel on Climate Change (IPCC). For the expert panel, whose objec-
tive is to synthesize the state of current knowledge about climate and climate change, CMIP
results were a goldmine – they provided an easy way to have a summary of what the most
comprehensive climate models had to say about these questions. The figures based on their
results were also perfect illustrations for the Summary for Decision Makers accompanying each
IPCC report – for instance, in the fourth Assessment Report (AR4), among the 7 figures of the
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Summary for Decision Makers, 4 were based on CMIP results.

If CMIP has been a great opportunity for the IPCC, its role for climate research is more
controversial. CMIP has indeed favored the use of one type of model, Global Coupled Models,
at the expense of other simpler, less comprehensive models. Climate science is not the only
area of environmental science to look at complex systems – but it is probably the only one
where the most comprehensive models have such a supremacy (Shackley, Young, Parkinson,
& Wynne, 1998). Ecologists, biologists or economists all use models of varying complexity
(Gabaix & Laibson, 2008; Jørgensen, 2008). The supremacy of GCMs in climate science raises
questions a fortiori when we look at the numerous issues surrounding the validation of GCMs
and the interpretation of their results (e.g. Knutti, Furrer, Tebaldi, Cermak, & Meehl, 2010;
W. S. Parker, 2011; Shackley et al., 1998). The problem gets worse when looking at the par-
ticular use of GCMs CMIP has promoted – by making the outputs of its simulations freely
available, CMIP has created a growing gap between model developers and model users. It has
promoted the analyses considering GCMs as black boxes and made it extremely difficult for
these analyses to be relevant for the improvement of climate models.

Our paper aims at tackling these different issues by providing an overview of the historical
evolution of CMIP, what it has become today, and the effects it has had on climate research.
We will start by analyzing how the project and the motivations behind it have evolved over
time. We will see that part of this evolution comes from the intertwining between the history of
CMIP and that of the IPCC. In a second part, we will study a set of papers based on the results
of the fifth phase of CMIP (CMIP5) in order to distinguish three main uses of CMIP results.
We will see that each of them raises methodological issues. Finally, borrowing a concept from
Pitt (2000), we will define CMIP as an infrastructure for climate science and we will explore the
various ways in which CMIP, as an infrastructure, has shaped climate research. Considering
these different effects altogether, we will finally question the value of CMIP on climate research
as a whole.

6.4 History of climate model intercomparison projects

6.4.1 AMIP and the genesis of climate model intercomparison projects

The genesis of climate model intercomparison projects lies in numerical weather forecasting.
In the 1970s, intercomparison projects between numerical models used for weather predictions
were pushed by the Global Atmospheric Research Program (GARP) - a program established
in 1967 with the goal of coordinating weather and climate research internationally. One of the
first decisions of the Joint Organizing Committee leading the program was to create a Work-
ing Group on Numerical Experimentation (WGNE), in order to promote a dialogue between
modeling groups (Gates, 2015). The WGNE aimed in particular to facilitate intercomparison
projects between atmospheric models used either for weather forecasting or for climate research.

At first, such intercomparison projects concerned mainly atmospheric models used for oper-
ational weather prediction. To compare different models or different versions of the same model
under similar conditions, intercomparison protocols were designed and led to the publication of
several papers in the 1970s (e.g. Baumhefner & Downey, 1978; D. D. Houghton & Irvine, 1976).
Comparatively, fewer intercomparison projects emerged in climate research. One of the first
example of juxtapositions of results from different atmospheric climate models was provided
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in 1975 by the report of the U.S. GARP Committee’s Panel on Climatic Variation (National
Academy of Sciences, 1975). This report used the simulations available at that time to deduce
common diagnostics between models. Even if it did not design any protocol to compare climate
models under similar conditions, it inspired further research on the subject (Gates, 1992).

The first climate model intercomparison protocols appeared in the following years with a
series of stand-alone initiatives. Among others, we can cite the Intercomparison of radiation
codes in climate models (ICRCCM) workshop, which led to the publication of a paper com-
paring atmospheric radiative processes in climate models of varying complexity (Luther et al.,
1988). Another example is given in Potter and Gates (1984), where the seasonal response of
two atmospheric models is compared.

Until the end of the 80s, these different initiatives remained isolated. It led the Joint Scien-
tific Committee (JSC) of the World Climate Research Program (WCRP) to call for a systematic
and comprehensive intercomparison of atmospheric climate models. Since such an intercompar-
ison would be based on a series of expensive simulations, having access to powerful computing
facilities was necessary for the emergence of the project. Under the aegis of W. Lawrence
Gates, the JSC successfully convinced the U.S. Department of Energy to provide the computer
facilities of the Lawrence Livermore National Laboratory (LLNL) to support the project. It
led to the creation of the Program for Climate Model Diagnosis and Intercomparison (PCMDI)
at LLNL in 1989, with the official goal of “increasing understanding of the differences among
climate models” (Gates, 1992, p. 1963). One year later, in 1990, the Atmospheric Model In-
tercomparison Project (AMIP) – the first major experiment of this program – was officially
endorsed by the JSC.

AMIP was designed to compare the response of atmospheric general circulation models
(GCMs) – the models simulating the behavior of the atmosphere at a global scale – on seasonal
and interannual time scales. All atmospheric GCMs could participate. The decade 1979-88
was chosen as the simulation period, and the protocol imposed to all models specific boundary
counditions – more precisely standardized values for the solar constant and atmospheric CO2

concentrations, as well as observed mean sea surface temperature and sea-ice distributions.
Moreover, the outputs of the simulations had to be given in a standard format (Gates, 1992).

There were officially two main motivations behind AMIP. The first one was to “undertake
the systematic intercomparison and validation of the performance of atmospheric GCMs on
seasonal and interannual time scales under as realistic conditions as possible” (Gates, 1992, p.
1963). In other words, AMIP aimed first at identifying output differences between atmospheric
GCMs under the same protocol, and comparing them with observations in order to validate the
performance of these models. However, the original ambition of AMIP was also “to support
the in-depth diagnosis and interpretation of the model results” (Gates, 1992, p. 1963), that is
to say, not only to find out what the differences between atmospheric GCMs were, but also to
understand them. This second motivation led to the organisation of 26 diagnostic subprojects
to analyze AMIP outputs in the years following the project (Gates et al., 1999, Appendix A).

AMIP was a major step for climate modeling – thanks to it, climate modelers had for the first
time access to an institutional structure to compare and evaluate the performance of their model
under similar conditions. The experiment became quickly “the most prominent international
effort devoted to the diagnosis, validation, and intercomparison of global atmospheric models’
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ability to simulate climate” (Gates et al., 1999): by 1995, 31 modeling groups had taken part in
the experiment, representing almost the entire atmospheric modeling community. This massive
endorsement paved the way to subsequent intercomparison projects, to the Coupled Model
Intercomparison Project (CMIP) in particular.

6.4.2 The beginnings of CMIP – CMIP 1, 2 and 2+

As early as the late 1960s, it had been recognized that ocean played a key role in climate,
and attempts had been made to couple atmospheric and ocean GCMs (Manabe & Bryan,
1969). However, such coupled models were complex, and required a high computational ca-
pacity. Thus, it is only in the 1980s that coupled models started to be developed in more and
more laboratories to represent the dynamic interactions between the atmosphere, ocean and
cryosphere. As the most comprehensive models, they were sometimes seen as “potentially the
most useful tools in simulating global climate, studying present-day climate fluctuations and
addressing the problem of anthropogenic climate change” (G. A. Meehl, 1995).

Therefore, at the end of the 80s, even if they were still facing strong uncertainties and sys-
tematic errors, some global coupled models have been used to study the impact of an increase
of anthropogenic CO2 on climate (J. Houghton, Jenkins, & Ephraums, 1990). For instance, the
Supplementary Report to the IPCC Scientific Assessment (J. Houghton, Callander, & Varney,
1992) compared the temperature rise associated with a transient CO2 doubling in four different
coupled models. The report recognized the limits associated with this set of simulations, but
still used them to confirm its statements about the rise of temperature associated with a CO2

increase in the atmosphere (J. Houghton et al., 1992).

As a consequence, CMIP was born at the confluence of two influences. On one side, AMIP
had shown the potential of intercomparison projects to coordinate and organize research around
atmospheric GCMs. Therefore, it was tempting to organize a similar project for coupled GCMs.
On the other side, more simulations from coupled models were needed to make statements about
anthropogenic climate change more robust.

The original structure of CMIP reflected these two motivations. In fact, CMIP was initially
divided into two complementary phases (G. A. Meehl, Boer, Covey, Latif, & Stouffer, 1997):

1. CMIP1, which started in 1996, and transposed the main objectives of AMIP – measuring
and understanding the ability of atmospheric GCMs to simulate current climate – to
coupled models.

2. CMIP2, which compared climate change simulated by coupled models under a 1% per
year CO2 increase. Starting in 1997, this second phase was thus directly in line with the
comparison performed in the Supplementary Report to the IPCC Scientific Assessment
(J. Houghton et al., 1992).

Due to limitations in data processing and archiving capabilities at that time, CMIP1 and
CMIP2 included only a few output fields, and at a coarse temporal resolution: for example,
surface temperature, precipitation, and sea level pressure were averaged over one month. This
rough sample was a strong limitation for analyses based on experiments. Consequently, the
Working Group on Coupled Modeling (WGCM) – a subgroup of the World Climate Research
Programme (WCRP) playing a leading role in CMIP – launched a new phase, CMIP2+, in 1999
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to include many more model fields, and daily data if possible. However, this new phase repre-
sented significant additional work for the modeling groups, and in the end CMIP2+ was able
to collect only 12 complete sets of outputs (G. Meehl, Covey, McAvaney, Latif, & Ronald, 2005).

CMIP1 and 2 – but not CMIP2+, which was not completed in time – played a substantial
role in the Third Assessment Report (TAR) of the IPCC. In particular, detailed analyses
of CMIP models were presented in the chapters “Model Evaluation” (McAvaney & et al.,
2001) and “Projections of Future Climate Change” (Cubasch & et al., 2001). In return, the
IPCC Third Assessment Report made some recommendations about future phases of CMIP.
In particular, it called for: “GCM simulations with a greater range of forcing scenarios and an
increased ensemble size to assess the spread of regional predictions” (Giorgi & et al., 2001, p.
586). Taking into account these recommendations, the WGCM decided to design a new phase
of CMIP.

6.4.3 CMIP3 – A new era in climate change research

A major novelty of CMIP3, compared to previous phases of CMIP, was to include climate
change scenario experiments, that is to say projections of future climate change under different
emission scenarios. Such simulations are of great interest for decision makers, because they can
be used as a basis for choosing between different mitigation and adaptation strategies.

Scenarios had already been used in the IPCC First Assessment Report. However, the com-
putational capacity available at that time did not make it possible to run these scenarios with
GCMs; instead, very simplified models called “box-diffusion models”, which were thought to
give the same results as GCMs when globally averaged, had been used (J. Houghton et al., 1990).

In its subsequent reports, the IPCC continued to steer climate research around emission sce-
narios. In particular, in the preparation of the Third Assessment Report (TAR), it produced a
Special Report on Emission Scenarios (SRES) (Nakicenovic & Swart, 2000). With its set of 40
scenarios, this report aimed to cover a wide range of assumptions about the main demographic,
economic, and technological driving forces of future greenhouse gas and sulfur emissions. The
idea was originally that the climate modeling community would use these scenarios in coupled
model simulations which could figure in the TAR. However, the SRES was approved only in
2000 – that is to say one year before the publication of the TAR – and most modeling groups
could finally run only two scenarios (A2 and B2) (Cubasch & et al., 2001; Giorgi & et al., 2001).

To avoid such coordination and timing issues in subsequent IPCC reports, it was decided
that scenario experiments would henceforth be part of CMIP (G. A. Meehl et al., 2007). Thus,
CMIP3 included three different climate change scenarios, corresponding respectively to the B1,
A1B, and A2 scenarios of the SRES. More generally, CMIP3 was also more focused on climate
change than the previous phases of CMIP – among the twelve CMIP3 experiments, ten tested
the dynamic response of climate to various CO2 concentrations (stable or evolving with time).

A main motivation behind these experiments was to help the Fourth IPCC report (AR4)
to provide “a better assessment of the state of human knowledge on climate variability and
climate change from the models” (G. A. Meehl et al., 2007, p.1384). As a consequence, CMIP3
was planned early enough in order for the analyses based on model experiments to be used
in the Fourth IPCC report (AR4). Providing assessments for the IPCC reports was thus a
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motivation at the core of CMIP3, whereas it was a side objective for the previous phases of
CMIP.

In CMIP3, the role of CMIP to organize and coordinate climate research – although already
present in the first phases of CMIP – also acquired a new dimension. Indeed, CMIP3 was the
first phase of CMIP to give open access to all the data from its experiments. While in CMIP1,
2, and 2+, only a few modeling groups around the world have had access to the data and
analyzed them, the data of CMIP3 were made accessible to any student or researcher around
the world. It represented more than 30 terabytes of data. This new openness “brought global
coupled climate model intercomparison and analysis to an internationally coordinated level
never before achieved in the field of climate science” (WGCM, 2006). As such, it ushered “a
new era in climate change research” (G. A. Meehl et al., 2007).

6.4.4 CMIP5 and 6 – the most recent phases of CMIP

The success of CMIP3 put the climate modeling community at the center of contradictory
interests. More and more scientists outside the climate research community were interested in
using CMIP results for their own areas of expertise. Therefore, CMIP51 was designed in order
to satisfy not only the motivations of the climate modeling community, but also those of many
different users:

the integrated set of CMIP5 simulations attempt to address major priorities of sev-
eral different communities, and incorporates some of the ideas and suggestions of
many individuals and from a number of workshops and meetings. These workshops
involved scientists with a wide range of interests, including climate modeling, bio-
geochemistry modeling, integrated assessment modeling, climate change impacts,
climate analysis, climate processes, and climate observations. (Taylor, Stouffer, &
Meehl, 2012, p. 486)

In order to take into account the various requests expressed, CMIP5 included more experi-
ments than CMIP3. The analyses of the simulations conducted in these different experiments
have formed the basis of the IPCC Fifth Assessment Report (WGCM, 2012, p. 6). However,
the deadlines imposed by the redaction of the IPCC report have put a lot of pressure on re-
searchers. Moreover, CMIP5 has been extremely demanding in terms of computing and time
resources, and blocked other research in modeling centers (Eyring et al., 2016).

Therefore, when thinking about the design of CMIP6, there has been a common will from
the modeling community to decouple CMIP experiments from the IPCC, and to reorganize
CMIP towards a few precise scientific questions relevant for climate and climate change. More
precisely, it was decided that CMIP6 should be centered around three main scientific questions:

“How does the Earth system respond to forcing? What are the origins and conse-
quences of systematic model biases? How can we assess future climate change given
internal climate variability, climate predictability, and uncertainties in scenarios?”
(WGCM, 2014, p. 13)

1CMIP4 was skipped in order to make the numbering of CMIP phases in line with the numbering of IPCC
reports.
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These questions reflect a will of the research community to take control of CMIP again,
and use it to better understand climate processes: “Ultimately scientific progress on the most
pressing problems of climate variability and change will be the best measure of the success of
CMIP6” (Eyring et al., 2016, p. 1949). In particular, the importance given to scenarios in
previous phases of CMIP was questioned. Indeed, although they are central in IPCC reports,
scenarios are of little use in understanding climate processes themselves, as they involve many
different assumptions that make it difficult to interpret their results. Therefore, it was decided
that the scenarios would not belong to the core experiments of CMIP6 – the experiments that
all participating groups should perform – but to the CMIP-Endorsed Model Intercomparison
Projects (MIP) – secondary experiments on a voluntary basis.

6.5 Uses of CMIP results and related controversies

In the previous section, we have seen that even if the principle behind CMIP has always
remained the same – comparing climate models by submitting them to a common set of simu-
lations – its design and the motivations behind it have evolved significantly over the phases of
the project.

However, the evolution of CMIP design and the motivations behind it is only one part of
the story. To fully grasp what CMIP has become, we also need to understand how CMIP
results have been used by climate scientists. For that, we looked at peer-reviewed papers based
on CMIP outputs: more precisely, we consulted a set of 280 papers based on CMIP5 results
published between 2012 and 2018 in six leading climate journals2. In this set of publications,
based on the title of the papers and their abstracts, we distinguished qualitatively three main
uses of CMIP results: the exploration of future climate change and associated uncertainties,
the comparison of CMIP simulations with observations and the interpretation of model results.
Table 6.1 gives a summary of how often these different uses come in the various journals from
which the papers were taken.

The three uses we distinguished are not exclusive – in particular, we counted 25 papers ex-
ploring future climate change that first compare CMIP simulations with observations in order
to assess their quality. Nor are these categories exhaustive – among other uses, we noted in
particular the study of paleoclimates or present climate. Besides, there are two kinds of papers
based on CMIP results we did not consider in our study. First, papers analyzing CMIP results
from only one or two models. Secondly, papers not using CMIP results as such, but proposing
statistical methods to analyze them or calculate the associated uncertainties.

Our attribution of uses is in part subjective, and one might adopt a different classification.
However, we hold that a large portion of the literature based on CMIP results explores future
climate change and associated uncertainties, compares CMIP simulations with observations
and/or tries to interpret the model results. Yet, we will see in the next part that each of these
uses raises methodological questions.

2Climatic Change, Climate Dynamics, Environmental Research Letters, Geophysical Research Letters, Jour-
nal of Climate, Journal of Geophysical Research.
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Number of papers using CMIP results mainly to:

Journal Number of
papers in the

data set

Explore future
climate change
and associated
uncertainties

Compare CMIP
simulations with

observations

Interpretation of
model results

Clim. Dyn. 52 21 19 22

Clim. Change 7 7 2 0

Environ. Res.
Lett.

12 7 3 3

Geophys. Res.
Lett.

64 28 14 29

J. Climate 92 41 26 30

J. Geophys. Res. 53 21 22 14

Total 280 125 86 98

Table 6.1: Summary of main uses of CMIP results for peer-reviewed papers ordered by journal.
For a detailed list of all peer-reviewed papers analysed, see Touzé-Peiffer et al. (2020).

6.5.1 Exploring future climate change and the associated uncertain-
ties

Exploring future climate change is the most widespread use of CMIP results we have identi-
fied in our set of papers. In the 125 papers tackling this issue, many different themes were
addressed: among others, we can cite regional impacts of climate change (e.g. Luomaranta et
al., 2014; Penalba & Rivera, 2013; Zomer et al., 2014), decadal predictions (e.g. Gaetani &
Mohino, 2013; Guemas, Garćıa-Serrano, Mariotti, Doblas-Reyes, & Caron, 2015; G. A. Meehl
et al., 2014), or the consequences of climate change on one particular climate phenomenon,
for instance the Asian monsoon (e.g Jayasankar, Surendran, & Rajendran, 2015; Srivastava &
DelSole, 2014; Zou & Zhou, 2015), the ENSO (e.g Stevenson, 2012; Taschetto et al., 2014) or
the poleward expansion of Hadley Circulation (e.g Hu, Tao, & Liu, 2013).

However, the interpretation of multi-model ensembles provided by CMIP is controversial.
Let’s consider for instance, Fig. 6.1, which gives the spread of the temperature and precipita-
tion in India during the summer monsoon according to a set of CMIP5 models. We see that
CMIP5 models simulate a future warming of Indian landmass at the end of 21st century by
about 1.19 ± 0.79 ◦C for RCP2.6 and 3.99 ± 1.27 ◦C for RCP8.5. Concerning the change in
precipitation, there is a relatively larger model spread, with a projected change of precipitation
of 0.39 ± 0.79 mm/day for RCP2.6 and 0.95 ± 1.13 mm/day for RCP8.5 (Jayasankar et al.,
2015). Seemingly, this range provides a measure of the uncertainty about future climate change
– in this example, it seems that there is much more uncertainty about the impacts of climate
change on precipitation than on temperature.

Nevertheless, such a statement raises epistemological issues. First, since the participation
in CMIP is made on a voluntary basis, the set of models participating in CMIP has not been
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Figure 6.1: JJAS anomalies with respect to the base period (1961–1990) in CMIP5 historical
simulations and 21st century projections of (a) surface air temperature and (b) precipitation for
India. The intermodel spread is shown in shades (gray for historical runs, purple for RCP2.6
simulations, and light orange for RCP8.5 simulations). The solid lines represent the multi-
model average for historical (black), RCP2.6 (blue), and RCP8.5 (red). Courtesy Jayasankar
et al. (2015).

designed to span the uncertainty about future climate change. The distribution of CMIP
multi-model ensembles is in a large part arbitrary. It led Tebaldi and Knutti (2007) to describe
multi-model data sets as “ensembles of opportunity”. Since these ensembles of opportunity do
not systematically explore the uncertainty about future climate change, some scientists consid-
ers them only as a lower bound of this uncertainty (e.g Stainforth et al., 2007). How low is this
bound, however, remains unknown.

As a corollary, it is difficult to interpret the agreement between models participating in
CMIP. As documented by Pirtle et al. (2010), in many scientific papers, confidence in model
projections about future climate change is justified by the agreement between GCMs in multi-
model ensembles. For instance, in Fig. 6.1, all models agree that the surface air temperature
anomalies in India with respect to the base period (1961-1990) are below 6◦ C under the busi-
ness as usual scenario (RCP8.5). Yet, if we consider the spread in CMIP projections only as a
lower bound of the uncertainty, we would not conclude with confidence that this result stands
as well for the real world.

A less ambitious goal would be to use CMIP simulations to have a “best guess” of future
climate change. A natural candidate, chosen in many studies, is the average of the projections,
as in Jayasankar et al. (2015) (see Fig. 6.1, where the average is represented in solid lines).
However, in some situations, the rough average masks the signal entirely. For precipitation
for instance, when temperatures rise, many climate models predict large-scale drying in the
subtropics and moistening at high latitudes , but at slightly different locations. As Knutti et
al. (2010) showed, the problem is that when models are averaged, they tend to cancel each
other out. Thus, at some latitudes, all models show significant drying over a relatively large
fraction of the land surface, but the average does not.
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More generally, the relevance of the gross arithmetic mean for climate projections – what
Knutti (2010) called “model democracy” – has often been questioned for two main reasons:
1) Climate models are not independent of each other – on the contrary, as Masson and Knutti
(2011) and Knutti, Masson, and Gettelman (2013) have shown, they share pieces of code and
common ideas. 2) Climate models do not have the same degree of agreement with observa-
tions: some perform better than others. These disparities between models motivated the work
of Knutti et al. (2017) who proposed, as an alternative to the gross arithmetic mean, a weight-
ing scheme that takes into account both the large differences in model performance and the
interdependencies between models. Whether similar weighting schemes should be used more
frequently remains controversial3.

Taking CMIP results as a lower bound of the uncertainty or using them as a ”best guess”
are not the only ways to interpret CMIP multi-model ensembles. Both climate scientists and
philosophers of science (see for instance W. S. Parker, 2011; Tebaldi & Knutti, 2007; Winsberg,
2018a) have proposed other alternatives, but none of them has yet reached consensus. Although
CMIP multi-model ensembles are often used to explore future climate change and associated
uncertainties, how to interpret thus remains an open question.

6.5.2 Comparing CMIP simulations with observations

Another common use of CMIP results consist in comparing them with observations in order to
assess the performance of the corresponding GCMs (86 papers in our set). A variety of observa-
tions can be used, such as station data, satellite data, proxy data or reanalysis data. However,
this measure of performance of CMIP models raises another bunch of analytical problems.

The first one is related to the fact that, in complex climate models, many parameters are
poorly constrained by observations and are adjusted in order to satisfy key climate metrics.
Hourdin et al. (2017a) provide an excellent overview of the tuning of parameters in GCMs and
the epistemological problems it poses. As they explain, the agreement with observations can be
improved by changing parameters not directly relevant for the problem at stake. For instance,
they show that the global top-of-atmosphere energy balance can be adjusted by changing a
parameter controlling the fall velocity of ice crystals, a parameter which, at first glance, seems
far from the issue at hand. It is thus possible to get the right result for the wrong reasons –
the agreement with observations may result from compensating errors and do not necessary
prove that processes are well represented in the model. As noted by Tebaldi and Knutti (2007),
Frisch (2019), and others, this limitation is particularly strong when the same data sets are
used to tune a model and to evaluate its performance.

Another issue concerns observations themselves. In our set of papers, the large majority
of studies do not compare CMIP simulations with model-independent observations, but only
with reanalysis. Since reanalysis models are based on numerical methods, assumptions, and
parameterizations similar to those of real climate models, they all exhibit biases of various
kinds (Edwards, 2010). Even if the analysis is continually corrected by available observational
data, reanalysis models thus transmit part of their biases to reanalysis products. Therefore, an
agreement between climate models and reanalysis data might just illustrate a common bias in

3For a detailed discussion of this issue and other challenges in combining projections from multiple climate
models, see Knutti et al. (2010).
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both climate and reanalysis models. This problem gets worse for processes for which we have
few observations, such as the hydrological cycle (Tebaldi & Knutti, 2007) – the reanalysis is
then loosely constrained by observations, but mainly model-derived.

As a consequence, although the agreement between models and observations is valuable to
identify systematic biases in climate models, it is not a guarantee of their reliability. Due to the
number of parameters in GCMs and to the interdependencies between GCMs and observations,
the agreement between GCMs and observations validates GCMs only in a very weak sense.

6.5.3 Interpreting model results

Originally, the official motivations behind AMIP were formulated as such: “The basic purpose
of AMIP is to undertake the systematic intercomparison and validation of the performance
of atmospheric GCMs on seasonal and interannual time scales under as realistic conditions
as possible, and to support the in-depth diagnosis and interpretation of the model results.”
(Gates, 1992, p. 1963). The hope was that this “in-depth diagnosis and interpretation of the
model results” would help to identify the causes of success and failures of participating climate
models, and thus to improve their performance. In particular, Gates had identified the param-
eterization of convection and precipitation as an outstanding modeling problem and called for
further analysis of AMIP results to reduce errors related to it (Gates et al., 1999).

In our set of papers, we counted 98 papers attempting to interpret model results. Yet, none
of them look at the details of the parameterizations involved. Most of these studies stay at
the level of model outputs; by analyzing correlations between the outputs of each model, they
exhibit causal relationships between them. However, where this causality comes from in the de-
tails of the corresponding models is not addressed. Kent, Chadwick, and Rowell (2015) provide
an example of such a study; their objective is to understand uncertainties in future projections
of seasonal tropical precipitation. They investigate correlations between precipitation, global
mean temperature, pattern in sea surface temperature and a few other variables. The influence
of the precipitation schemes used by the different models is left completely out of the picture.
Another example is provided by studies who try to assess the effect of one or several feedbacks
under CO2 increase (e.g. Long & Collins, 2013; Qu & Hall, 2014). These studies diagnose and
interpret climate feedbacks and their effect solely on the basis of simulation results, but never
discuss the underlying parameterizations.

According to Lenhard and Winsberg (2010), CMIP analyses stay at the level of model results
because climate models exhibit a form of “confirmation holism”. This concept is traditionally
defended in philosophy of science as the idea that a single hypothesis can never be tested in
isolation, but that such tests inevitably depend on other theories or hypotheses. As Pierre
Duhem – one of the first to formulate this theory – writes it:

In sum, the physicist can never subject an isolated hypothesis to experimental test,
but only a whole group of hypotheses; when the experiment is in disagreement with
his predictions, what he learns is that at least one of the hypotheses constituting
this group is unacceptable and ought to be modified; but the experiment does not
designate which one should be changed. (Duhem, 1954, p. 187)

As Lenhard and Winsberg (2010) explain, climate models face a particularly strong form of
confirmation holism because there is at the same time a high modularity in their development
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and lots of interactions between their different modules. As they put it: “The complexity of
interaction between the modules of the simulation is so severe that it becomes impossible to
independently assess the merits or shortcomings of each submodel.” (Lenhard & Winsberg,
2010) To illustrate their point, Lenhard and Winsberg (2010) take the example of AMIP and
other intercomparison projects, and point out the difficulties these intercomparison projects
have historically had to diagnose the causes of the successes and failures of climate models. In
their view, because of these difficulties, model convergence is unlikely: in the foreseeable future,
there will continue to be a plurality of models making divergent projections. Policy makers
should therefore accept this plurality, and not wait for a unanimous voice from the climate
modeling community.

While we agree with some of the conclusions from Lenhard and Winsberg (2010), we would
qualify their claim that climate models themselves face a strong form of confirmation holism.
Indeed, a climate model is not just the sum of the code (and the assumptions behind it) and
the results it gives for a particular set of simulations. On the contrary, it is a dynamical entity
with which it is possible to interact. When climate scientists want to study a climate model,
they can initialize it with various conditions, change the parameters of the model, compare the
results of simulations with data from observations or high-resolution simulations, use simplified
or idealized versions of the model or other models, etc. Thanks to these various interactions,
climate scientists can acquire a knowledge about the behaviour of a climate model, what it is
doing and why.

This knowledge is most of the time collective, because it results from collaboration in re-
search laboratories between different individuals working on separate but complementary as-
pects of the same climate model.4. However, if this knowledge is collective, it stays usually at
the level of one research team working on one model. Indeed, due to the complexity of the
models involved in CMIP, acquiring knowledge about the behaviour of a climate model takes
time and scientists generally focus their efforts on one particular model. In fact, in the liter-
ature, we can find many studies investigating the link between the results of a model and its
parameterizations (e.g. Hourdin et al., 2013; Notz, Haumann, Haak, Jungclaus, & Marotzke,
2013). But most of these studies are done for one model only – when many models are studied,
as in CMIP multi-model ensembles, the details of the parameterizations involved are almost
never taken into account. There are, of course, some rare exceptions: in particular, studies
comparing radiation codes in different climate models, such as Oreopoulos et al. (2012) and
Pincus et al. (2015), where the authors analyze not only the model results, but also the corre-
sponding parameterizations and the assumptions they make5. Based on the set of papers we
have studied, we claim nevertheless that the large majority of papers using CMIP results do
not look at the details of the parameterizations involved. In other words, our analysis suggests
that CMIP has promoted analyses which do not discuss the content of GCMs, but consider
them as black boxes. Hence, a strong form of confirmation holism does exist: however, unlike
Lenhard and Winsberg (2010), we argue that it is not so much GCMs per se, but GCMs as
they are used in CMIP that are facing it.

4This collective aspect of knowledge is not a specificity of climate modeling. On the contrary, as underlined
by Hardwig (1985), nowadays, epistemic dependence among scientists is pervasive.

5This is due to the fact that the representation of radiation in GCMs is a very different problem from the other
parameterizations, and much better grounded. For more details about what makes radiation parameterizations
unique, see Pincus and Stevens (2013), Pincus et al. (2015), and Pincus, Mlawer, and Delamere (2019).
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In this section, we have examined how CMIP results have been used in scientific papers.
We will see in the next section that this gives only a partial view of CMIP influence on climate
research – beyond analyses based on their results, intercomparison projects have indeed had
structural effects on climate research.

6.6 Structural effects of CMIP on climate research

CMIP should not be reduced to a set of simulations performed every 5 or 6 years by the main
modeling groups in the world. All the social interactions, questions, and scientific coordination
it creates have to be taken into account. CMIP is indeed a conglomerate of technical tools,
common objectives, dedicated workshops, and so on – what we will call an infrastructure for
climate research.

Let’s define more precisely what we mean by this. For that, we will rely on the concept of
technological infrastructure introduced and studied by the contemporary philosopher Joseph
Pitt. Pitt defines a technological infrastructure as “an historically determined set of mutually
supporting artifacts and structures that enable human activity and provide the means for its
development” (Pitt, 2000, 129). As far as science is concerned, Pitt explains that his definition
does not include only shared machines or techniques, but also all the work relations among
scientists which makes the doing of science possible. There is therefore a social component in
Pitt’s definition of the “technological infrastructure of science”. There is also an historical and
historiographical aspect behind this concept – it can be used to follow and understand advances
of science:

the mechanism that makes the discoveries of science possible and scientific change
mandatory is the technological infrastructure within which that science operates,
and that to understand why a science worked the way it did, and why it works
the way it does, you need to understand its context, which happens to include in
important ways its technological infrastructure. (Pitt, 2000, p. 132)

As an infrastructure, CMIP has shaped climate science in many ways. First, the existence of
CMIP has focused the effort of the scientific community on the construction of GCMs. Twenty
years ago, Shackley et al. (1998) already underlined that GCMs were commonly considered as
the “best climate models”. We argue that CMIP has reinforced this trend. In almost all major
climate modeling groups in the world, each phase of CMIP has appeared as an international
rendez-vous. To have a voice in it, every modeling group had to have the most recent version
of its GCM ready. It created a pressure around the development of GCM, at the expense of
other tools used to study climate.

This supremacy of GCMs is questionable, when considering the many issues exposed in
section 2 regarding the validation of GCMs and the interpretation of their results. When mod-
eling complex processes, there is always a trade-off to find between the inclusion of perceived
complexity and the understanding of dominant processes, interactions, feedbacks, and uncer-
tainties (Shackley et al., 1998). Yet, for GCMs, there is no trade-off: the balance is clearly
in favor of the inclusion of perceived complexity. As a consequence, some climate scientists
have argued that hierarchies of models of varying complexity would bring more insights about
the climate system and should be more frequently used in climate science (e.g. Bony et al.,
2013; Maher et al., 2019). Examples of commendable initiatives to compare GCMs with sim-
pler models already exist, such as: 1) RCMIP (Reduced Complexity Model Intercomparison
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Project), a unique CMIP6 sub-experiment, which provides a standard protocol for comparing
simple models and emulators to the latest CMIP results 2) The use of single-column versions
of GCMs compared to explicit high-resolution simulations to build and test parameterizations
(e.g. Rio, Hourdin, Couvreux, & Jam, 2010; Rochetin et al., 2014).

Despite these efforts, voices have raised in the climate modeling community to protest that
the pace of progress was to slow and that GCMs as they were used were not the appropriate
scientific response to the challenges posed by global warming. Different alternatives in the
practice of climate modeling have been proposed (e.g. Hurrell et al., 2009; T. N. Palmer, 2012;
Shukla et al., 2009) – Katzav and Parker (2015) provide an overview and critical examination
of these different approaches. More recently, T. Palmer and Stevens (2019) have argued for a
new strategy based on higher resolution models and a new approach to parameterizations with
stochastic modeling. Though in different ways, all of these proposals offer alternatives to the
CMIP dogma.

In addition to focusing the climate community on GCMs, another main effect of CMIP on
climate science is to have promoted connections between climate laboratories. It has helped
them to talk to each other and share common references. As the historian of science Paul
Edwards puts it:

By permitting regular, direct, and meaningful comparisons of the models with one
another and with standardized data sets, [climate model intercomparison projects]
have helped to transform climate modeling from a craft activity of individual labo-
ratories into a more modular and standardized collective activity involving virtually
all of the world’s climate modeling groups; in theoretical terms, they linked a set of
isolated systems and created a network. (Edwards, 2010, p. 350)

In practice, these connections were made through different means:

1. First, CMIP made its data freely available from all over the world thanks to a distributed
structure, the Earth System Grid Federation. It has also supported the development of
technical tools to convert the output data of various modeling group into a standardized
format, making therefore their exchange easier.

2. Second, CMIP has spread some common scientific approaches in the climate modeling
community, thereby facilitating the comparison of climate models with one another. We
can cite for instance abrupt 4 times CO2 experiments – simulations in which the CO2

concentration in the atmosphere is immediately and abruptly quadrupled from its pre-
industrial values – or transient simulations in which the CO2 concentration is increased
gradually at a rate of 1% per year. Thanks to CMIP, these two kinds of simulations have
become standard tools to investigate future climate change with GCMs.

3. Last but not least, dedicated workshops, special issues in scientific papers, etc. have
fostered the interest of climate scientists around CMIP results and led to various collab-
orations between modeling groups.

A side effect of the open-access to CMIP data is the creation of a growing gap between
model developers and model users. Before AMIP and CMIP, the results of a GCM simulation
were usually analyzed by the few people who had been involved in the development of the
corresponding GCM (e.g. Manabe & Wetherald, 1975; Washington, Semtner, Meehl, Knight,
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& Mayer, 1980). Model users had therefore a critical view of the strengths and weaknesses
of the climate model they analyzed, because they had contributed to develop it. When data
from intercomparison projects were made freely available, GCMs started to be analyzed by
people who had not participated in their development. It resulted in a loss of understanding
of climate model results, and increased the tendency to use GCMs only as black boxes (see 2.3).

Nevertheless, in CMIP6 overview paper, the authors claim that CMIP has favored “scien-
tific progress on the most pressing problems of climate variability and change” (Eyring et al.,
2016, p. 1949). Is it true? As an infrastructure, did CMIP succeed in making climate research
more effective?

Here, we think it is important to distinguish between effectiveness and efficiency. Some-
thing is effective if it is adequate to achieve an objective. In contrast, something is efficient if it
works in the best possible way. In other words, being effective is about doing the right things,
while being efficient is about doing things right. A process can thus be efficient – for instance,
if it is fast or cheap – but ineffective – if it is not well suited to the objective we want to achieve.

CMIP has certainly helped climate research to be more efficient. Indeed, it has pooled many
time-consuming activities at the level of the research community, and therefore facilitated the
work of climate scientists. For a single laboratory, building a simulation protocol is indeed a
time-consuming and costly effort. Boundary conditions, forcings and the associated databases,
output parameters and their format, as well as versions of the models involved have to be
carefully defined. Thanks to CMIP, climate laboratories have shared this burden. The use
of standardized format for the output data has also simplified a lot the analyses based on
the results of simulations, and in particular, the comparison with data from observations. As
Eyring et al. (2016) explain:

A key to the success of CMIP and one of the motivations for incorporating a wide
variety of coordinated modeling activities under a single framework in a specific
phase of CMIP (now CMIP6) is the desire to reduce duplication of effort, mini-
mize operational and computational burdens, and establish common practices in
producing and analysing large amounts of model output. (Eyring et al., 2016)

We thus agree that the production and the analyses of GCMs simulations have been made
more efficient thanks to CMIP. But did it make climate research more effective? CMIP has
focused the effort of the climate research community on one specific tool, GCMs, and has
promoted the interpretation of this specific tool as a black box. Was it and is it still the most
effective way to help climate scientists better understand climate variability and change? The
debate stays open.

6.7 Conclusion

When looking at the history of CMIP, it seems that this project has known a growing success.
It has promoted a coordination at an international level never before achieved in climate sci-
ence. With all the major modeling groups in the world participating, CMIP has been massively
endorsed by the research community. In addition, its results have played a key role in IPCC re-
ports. However, while the analyses of CMIP6 are currently being undertaken, it might be time
to pause and reflect about what CMIP has become and what it has brought to climate research.
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First, CMIP has focused the attention of the climate research community on GCMs. As
the ethnographer of climate modeling Simon Shackley observed, GCMs are often considered as
the best models in climate science (Shackley et al., 1998) and the most useful one to predict
future climate change. However, this view has been challenged by Bony et al. (2013); Shackley
et al. (1998), and others. According to them, though valuable, GCMs should not be seen as
the ‘panacea” of climate science (Bony et al., 2013). Different models are useful for differ-
ent purposes and simpler models can also provide valuable insights for understanding climate
processes. They should therefore be more frequently used in complementary of more complex
GCMs.

Another issue comes from the fact that CMIP promoted a particular use of GCMs as black
boxes. Since CMIP data are freely available, anybody can analyse them. As a consequence, the
large majority of CMIP analyses are conducted by scientists who have not been involved in the
development of the corresponding GCMs, and have therefore a poor knowledge of the content
of the climate models at hand. In fact, CMIP has created two distinct communities – model
users and model developers – with few interactions between them. The existence of these two
communities is an issue for the interpretation of CMIP results. In particular, CMIP results are
almost never used to guide model improvement, whereas it was one of the main objective for
AMIP.

We argue that there has not been enough explicit debate on the value of CMIP for climate
research and policy guidance. We strongly encourage scientists to examine the consequences
both for science and society of the particular form of research they have entered with CMIP. In
the context of the challenges posed by climate change, given the limited means and computing
resources available, there should be more discussions on the goals, epistemology and policy
context of this tool at the core of climate research. Hopefully, our historical and epistemological
perspectives about what CMIP was and what it is now will not close this debate but open it.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, I explored various epistemological issues associated with the parameterization
of atmospheric convection. The originality of my work is that it is located at the interface
between climate science and philosophy. I tried to make my epistemological reflection as close
as possible to the questions atmospheric physicists ask themselves in their practice. During my
Ph.D., I had the opportunity to participate in various atmospheric studies that led to interesting
scientific results (Albright et al., 2020; Hwong et al., 2021; Madeleine et al., 2020; Rochetin et
al., 2021; Stevens et al., 2021; Touzé-Peiffer et al., 2021). I chose in this thesis not to emphasize
these scientific results as much as the epistemological reflections that accompanied them. I
summarize below the main questions that I investigated.

Objects in the study of atmospheric convection

How to study atmospheric convection? Atmospheric phenomena all come from the same physi-
cal laws. However, one only has to look out the window to see that the atmosphere is always full
of new faces. In particular, each cloud is unique: clouds never have exactly the same shape, the
same brightness, the same appearance. Unlike clouds, air movements transporting water vapor
and heat in the atmosphere are invisible. However, we know that there is as much diversity in
these invisible air movements as there is in clouds. If we stopped at this diversity, we would
not be able to learn anything from natural phenomena. We could not remember what we saw
yesterday, understand what we see today and predict what we will see tomorrow. To learn,
understand and predict, we need to name some “objects” that emphasize certain similarities
linking phenomena despite their differences. Objects are the characteristic patterns that help
scientists to orient themselves in the jungle of atmospheric phenomena. The main results of
my study are 1) that objects are not just given by nature, but come also from a construction,
2) that objects define the way we study and understand atmospheric convection, both in ob-
servations and in simulations and 3) that it is critical to choose relevant objects to have the
best angle of attack to understand atmospheric convection. This third point is an immediate
consequence of the first two. To illustrate my argument, I used the example of an atmospheric
phenomenon called “cold pools” and showed the role played by this object in our understanding
of atmospheric convection.
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Parameterization and tuning of atmospheric convection

Parameterizations of atmospheric convection are often pointed out as one of the major causes
of uncertainty in GCMs (Gentine et al., 2018; Schneider, Teixeira, et al., 2017). They are some-
times described as ad hoc, i.e. not entirely justified by theory, and therefore not trustworthy.
For the past 20 years or so, some scientists have called for parameterizations of atmospheric
convection to be abandoned and have proposed alternatives to replace them. However, such
parameterizations are still widely used today and continue to be of interest to other scientists.
These different strategies to study climate reflect different epistemological conceptions of the
role of climate models and of their convection parameterizations. In particular, parameteriza-
tions have sometimes been criticized because they are not deduced from first principles, but
semi-empirically, by combining some theoretical principles and empirical assumptions derived
from observations (Edwards, 2001; Petersen, 2012). I showed that this semi-empirical approach
is not, in principle, less well founded than an approach based entirely on theory. On the con-
trary, it is a convenient way to think the parameterization problem using objects. Nevertheless,
I mentioned that parameterizations impose an artificial separation of both scales and processes,
two important limitations of their use in GCMs.

I also focused on the tuning of GCMs. The tuning of GCMs is different from a classical
calibration procedure, which would simply aim at making an instrument that works well in
theory also work in practice. Nor is it completely arbitrary, as some accuse, and used only to
hide certain deficiencies of the model. I aimed to define the role and status of tuning in climate
models between these two extreme positions. I explained in particular that the non-accuracy of
parameterizations is crucial to understand why most of GCM parameters are poorly constrained
by observational data, thus have to be tuned. I also clarified conceptually some terms used to
speak about the tuning of GCMs, such as “compensating errors”, “overtuning” and “structural
errors”. I suggested to avoid using this last term and proposed to replace it with “structural
limitations”. Finally, I investigated the paradigm shift brought by automatic tuning methods:
I explained notably that with them, the tuning process becomes more similar to a traditional
calibration procedure.

The potential of automatic tuning methods is then studied in practice through a case study,
where I developed a parameterization of cloud and precipitation overlap for the atmospheric
model LMDZ. Through this case study, I asked a simple question: what does it mean to
improve a GCM? To answer it, I distinguished between the conceptual progress that a new
parameterization brings to a given GCM and the progress it brings on the model results.
I explained that conceptual progress can be evaluated by considering criteria of Coherence,
Interpretability, Simplicity and Comprehensiveness – what I called the CISC criteria. I then
argued that progress in terms of model results have to be assessed independently of the tuning
of a GCM, as differences in model results might be due to a different tuning rather than to
differences in parameterizations. This creates significant methodological difficulties, especially
if the tuning is carried out manually. I proposed a definition allowing to evaluate the progress
brought by a new parameterization to a climate model independently of its tuning. Even
if progress remains to be made, automatic tuning methods allow to consider applying this
definition in practice in order to compare two versions of a GCM.
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Historical and epistemological study of CMIP

Historically, one of the main roles of early model intercomparison projects was to improve
GCMs, especially their parameterizations. Their principle was indeed to compare different
GCMs under similar conditions in order to diagnose their respective strengths and weaknesses,
and to evaluate in particular which parameterizations worked well and which ones did not. I
explained that the Coupled Model Intercomparison Project (CMIP) has had a critical role in
climate research, but not this one. In fact, CMIP has promoted analyses that consider GCMs
as “black boxes” and do not look at the details of their parameterizations. CMIP has thus
contributed to creating a gap between a (small) community of model developers and a (large)
community of model users.

More generally, the way CMIP results are used today raises serious epistemological issues.
First, when CMIP results are used to explore future climate change and associated uncertain-
ties, it is not clear how to interpret the agreement between models. I explained that these
difficulties come from the fact GCMs are dependent from one another, leading to possible com-
mon biases, and also that they have not been chosen to systematically sample the uncertainty.
A second common use of CMIP results consists in comparing twentieth century simulations to
observations in order to assess the performance of GCMs – and thus their ability to predict fu-
ture climate change. Again, I reviewed some epistemological problems associated with this use
of CMIP results – especially when the same observations are used to tune GCMs and evaluate
their performance, or when reanalyses are used as observations.

Despite these difficulties, CMIP has been massively endorsed by the climate modeling com-
munity. I attributed this success in part to the IPCC, which advertised the analyses based on
CMIP results. For the IPCC, CMIP was indeed an opportunity to summarize GCM projec-
tions about future climate change. In my analysis of CMIP, I tried to underline the tension
between the need to provide information to decision makers via the IPCC reports and the need
to advance science. Although CMIP has been an efficient way to provide statements for the
IPCC reports, I questioned the fact that it is today the most effective way to drive progress in
climate science.

7.2 Perspectives

My thesis work could provide food for thought on some concrete issues that the climate modeling
community will have to face in the coming years. In the following, I provide an overview of
some of these perspectives.

The future of CMIP

What future do we want for CMIP? What will CMIP7 look like? What about CMIP8, 9, 10, if
CMIP continues until then? I firmly believe that AMIP and the early phases of CMIP, despite
their limitations, have been extremely useful to the climate modeling community. These stan-
dardized model comparisons have forced climate modelers to make the results of their models
accessible to everyone. Such transparency made it possible to identify biases common to many
GCMs. As summarized by Stouffer et al. (2017) and Bock et al. (2020), analyses based on
CMIP results have shown for instance the tendency of climate models to simulate land surfaces
that are too warm and too dry during the summer, their difficulties to simulate accurately the
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structure of the intertropical convergence zone or the Walker circulation, some problems related
to the simulation of tropical and subtropical low-clouds, especially stratocumulus decks over
the eastern parts of ocean basins, etc.

CMIP also demonstrated the robustness of some results about climate change. As discussed
in I. M. Held and Soden (2006), many features of climate change could be expected from simple
thermodynamic arguments or idealized models. For instance, in Chapter 3, we mentioned that
in a simplified framework, Manabe and Wetherald (1967) have shown many results about cli-
mate change which are still relevant today. Nevertheless, CMIP proved the robustness of these
results in complex GCMs as well. It gave confidence that such simple results were not proved
wrong when the general circulation of the atmosphere and the coupling with oceans and other
components of the climate system were taken into account.

Now that these biases and some robust features have been identified, one might ask: has
CMIP had its day? Climate predictions from the last phases of CMIP have not changed much.
Numerous studies investigating various aspects of CMIP results have found the same biases in
CMIP3, CMIP5 and CMIP6 (e.g. Beadling et al., 2020; Harvey, Cook, Shaffrey, & Schiemann,
2020; Tian & Dong, 2020). Similarly, the spread of equilibrium climate sensitivity has not
changed significantly since the early assessments of J. G. Charney et al. (1979). CMIP also did
not resolve the biases identified in GCMs: as we have seen in Chapter 6, CMIP decoupled the
analyses of GCMs from their improvement, thus promoting the use of models as black boxes.
Consequently, most analyses based on the CMIP results offered little opportunity to improve
the models, and in particular their parameterizations. Therefore, what will be the added value
of the next phases of CMIP? What new results can we expect from CMIP7 and subsequent
phases compared to CMIP6?

These questions seem all the more relevant as model development has slowed down in
most climate modeling centers. A few years ago, Jakob (2010) already mentioned the lack of
attractiveness of model development, and the difficulties in finding model developers among
early career researchers. These challenges are even more important today because the alter-
native methods that are increasingly being used to replace GCMs – machine learning and
high-resolution models in particular – are mobilizing part of the research effort in climate
science. Contrary to these new prospects which lead to numerous publications, work on param-
eterizations is a long process, requires a high degree of specialization, and is difficult to exploit
in scientific publications. The future will tell us if the time and effort invested in alternatives
to parameterizations is worth it, but the fact is that, due to the lack of human resources,
current progress on parameterizations is slow. Even if sensible progress can be noted in some
GCMs in the past decade (see Rio et al., 2019, for an overview), most GCMs have not changed
significantly between CMIP5 and CMIP6, apart from increases in the horizontal and vertical
resolution. Major changes are not expected for the next phase of CMIP either. If the models
are more or less the same from one CMIP phase to the next, what would be the point of re-
running simulations every 5 or 6 years?

A potential solution would be to retain CMIP protocols, which provide a benchmark for
the comparison of successive GCM versions, but to abandon the concept of “CMIP phases”. I
propose that modelers should be able to submit a new version of their models to CMIP simula-
tions whenever they want, i.e., whenever they believe that a new version is sufficiently different
from the previous one and sufficiently mature to justify a new round of simulations. This would
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create less pressure on model developers and allow them to develop their models according to
their own planning and priorities, independent of the timeline imposed by CMIP. This would
also prevent the “publish first” effect after each phase of CMIP, which leads to numerous papers
of questionable scientific value, simply updating previous analyses with the new CMIP data.

Another challenge will be to compare the CMIP results with the new generation of coupled
non-hydrostatic climate models with kilometer resolution, that we called global cloud-resolving
models (GCRMs). DYAMOND (the DYnamics of the Atmospheric general circulation Modeled
On Non-hydrostatic Domains Stevens, Satoh, et al., 2019) is the first intercomparison project
of GCRMs. In some aspects, DYAMOND resembles CMIP: there is in both projects the same
effort to run model simulations under similar conditions in order to compare their results. Yet,
DYAMOND was not integrated into CMIP, but rather appeared as an alternative paradigm,
and even a competitor to CMIP in terms of human and computer resources. In this context,
how to relate CMIP to this new generation of models ? Should DYAMOND be integrated into
CMIP? Or should we let the two intercomparisons evolve in parallel? With what objectives?
CMIP will have to answer these many questions in the next few years.

Last but not least, I want to underline the new perspectives automatic tuning methods
offer to CMIP. In Chapters 4 and 5, we have seen that with automatic tuning methods, a
climate model is not just a single simulation, but an ensemble of simulations that are deemed
plausible based on certain metrics. This gives a new meaning to the comparison of two climate
models, which no longer becomes the comparison of a single simulation of each model, but the
comparison of a set of plausible simulations of each model. One can therefore imagine that each
version of a GCM submits several simulations to CMIP, which differ by their tuning. With the
same number of models, many more worlds could then be explored with CMIP. This would
allow to check more robustly some features of future climate change, in particular the spread
in climate sensitivity. A reflection should therefore be initiated on how best to integrate these
new opportunities into CMIP.

Destination Earth

While I was finishing this thesis, I became aware of the Destination Earth (DestinE) project
that was being discussed at the European level. DestinE’s ambitious goal is to “construct highly
accurate models, or ‘digital twins’, of the Earth to monitor and predict environmental change
and human impact in support of sustainable development” (Bauer, Stevens, & Hazeleger, 2021,
p. 80). The authors explain that such digital twins of the Earth, constrained by observations
and the laws of physics, could be used to guide policy makers and businesses for a variety of
applications. DestinE should help answer questions such as: “What is the economic impact of
adding wind power plants in an area once Europe is carbon neutral? What agricultural policy
is the most sustainable given future weather regime pattern changes?” (p. 81-82). The means
to achieve such technical feats are rather elusive: Bauer, Stevens et Hazeleger explain that
DestinE will exploit the potentials of “machine learning”, “extreme-scale data assimilation”,
of an “highly efficient virtual environment” without precising explicitly how these means will
be concretely used. Reading between the lines, we understand that the digital twins will be
based on global models with a kilometric resolution – what we called GCRMs – coupled with
models of human impacts and economics. There is thus first a technical debate as to whether
it is possible to build such models, and on what time scale.
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In addition to this technical debate, the use of such digital twins raises many epistemological
questions. In particular, one sentence in the paper describing the project caught my attention:

“An exciting aspect of a digital twin is the potential to break the paradigm of
classical Earth system prediction models with fixed and static flows of information
managed by layers of experts. Here, the challenge will be to design a digital twin that
allows users to intervene, extract information and influence the system trajectory
across time and space, as done – albeit often unwittingly – in the real world.”
(Bauer et al., 2021, p. 82)

According to the authors, the interpretation of the results of digital twins will not be confined
to a “layer of experts” and anyone could use these results for his or her own purposes. This
ambition reveals a certain conception of the potential and role of models. Models are seen
as predictive tools, whose results have value in themselves. Another conception of the role of
models could be opposed to this one. One could argue that the value of a model comes more
from the interpretation one gives to its results, than from the results themselves: in this case,
models are used as a guide to formulate and test hypotheses rather than as the truth. Such
use of models requires a good understanding of their limitations: a certain expertise on the
functioning and the limits of these models seems therefore necessary to correctly interpret their
results. On the contrary, allowing anyone to use models as “black boxes” – as DestinE pro-
poses with its digital twins – seems undesirable, or even dangerous. In addition to the technical
debate about whether or not it is possible to create digital twins of the Earth, there is thus an
epistemological debate behind DestinE: which kinds of models do we want for the future and
how do we want to use them?

This question does not only concern DestinE. The modeling of atmospheric convection –
and more generally, of climate – is today at a turning point. Parameterizations of atmospheric
convection, which have been the dominant paradigm on which GCMs have been built for more
than 50 years, are being questioned. In particular, some scientists propose to replace parame-
terizations with high-resolution simulations – in the form of GCRMs or super-parameterizations
– or machine learning. These different options are opposed on technical grounds, but also on
epistemological grounds and reflect different conceptions on the role of models. Clarifying the
role and limitations of current GCMs was an important motivation behind my Ph.D. thesis. To
continue this reflection, I propose in the following three epistemological guidelines for climate
modelers in order to make the best use of numerical models to study climate.

Three epistemological guidelines for climate modelers

Numerical models have proven to be extremely useful for a number of applications, including
weather forecasts and climate projections. Nevertheless, it is increasingly recognized in many
scientific fields that models can be misused, sometimes with adverse policy consequences (see
for instance Horner & Symons, 2020, for an overview of the risks associated with epidemiological
models). To conclude this thesis, I propose here three guidelines that might help avoid misuse
of models in climate research.

All models are not equivalent

In my thesis work, I focused on the convection parameterizations used in GCMs. I studied the
basis of these parameterizations as well as the specific problems that their use poses in climate
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models. I mentioned in Chapter 1 that the epistemological problems associated with convection
parameterizations are very different from those associated with other parts of GCMs, e.g., their
large-scale dynamics, or the parameterizations used to represent radiation or microphysics. The
different components of a GCM involve different assumptions, justifications and methods, and
have to be interpreted accordingly. Therefore, not all parts of climate models should be put in
the same box.

The need to recognize the diversity of the models seems even more important when climate
models are coupled with socio-economic models, as DestinE intends to do. In particular, we
must be aware that we have an extremely valuable tool for simulating atmospheric and oceanic
flows: the fundamental equations of thermodynamics and fluid mechanics. Thanks to such
equations, we can simulate with a relative fidelity the general circulation of the atmosphere
and the oceans, which allows us to forecast the weather with a fairly good accuracy. Unfor-
tunately, there is no similar equations to describe social and economic interactions. There is
therefore an epistemological gap between the part of models that is used to simulate atmo-
spheric and oceanic flows, and the part of the models that integrate socio-economic activities.

I find it very regrettable that Bauer et al. (2021) do not highlight this fundamental distinc-
tion. On the contrary, Bauer, Stevens and Hazeleger claim that some of the methods that have
proven useful for weather prediction, data assimilation in particular, will be equally useful for
constructing a digital twin of the Earth integrating many other components. This gives the
illusion that the problems we face in forecasting weather and in simulating our human activ-
ities are comparable. Unfortunately, this is not the case: simulating atmospheric and oceanic
flows is radically different from simulating our human activities. Therefore, it remains to be
demonstrated that the methods that have proved their worth for the former will be equally
useful for the latter.

Assess and accept the limitations of your model

All models have some usefulness, but also some limitations. These limitations have to be care-
fully assessed in order not to give wrong interpretations of model results. There are many
examples of misinterpretations of models in the literature, sometimes with direct political con-
sequences. For instance, as documented by Sarewitz and Byerly (2000), a complex model
composed of 286 sub-models and thousands of parameters had been built in the 1980s to evalu-
ate the risk of disposing of radioactive waste at a certain site in the United States, the “Yucca
Mountain repository”. The selection of this site suffered from many political, economic and
regulatory controversies in the United States. In front of the many oppositions, decision makers
relied on the results of the model to guarantee “one million years” of safety if the radioactive
waste were burried at this location. Nevertheless, analyses then revealed that a single key vari-
able – the so-called “percolation flux”, which determines the time it takes to water to percolate
down to the underground repository – was uncertain by three orders of magnitude, leading to
similar uncertainties on the ability of the site to keep waste safe over long periods of time.

This example shows how models can be instrumentalized to give an illusion of objectivity
in political and economic decisions. To avoid overconfidence in a model, its limitations must
be carefully assessed and taken into account when interpreting its results. We believe it is
important to emphasize this point because, as DestinE’s ambitions illustrate, there are more and
more applications for models. This can give the misleading impression that models can provide
quantitative answers to any problem. On the contrary, I argue that qualitative reasoning
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based on an in-depth analysis of certain key hypotheses seems in many situations preferable
to quantitative results given by a model. We should not ask too much to models. As the
computational resources available continue to grow, I think it is increasingly important for
scientists to recognize that models are not systematically the right way to answer a question.
When decision-makers ask for quantitative results, the best answer is sometimes to tell them:
“the models will not give you the answer to this question”.

Don’t let your model become a black box

When a model is used as a black box, only its inputs and outputs are considered. The content
of the model is not understood by the model user. Without such understanding, model users
cannot assess the assumptions on which the model is based. This is problematic because some
assumptions that are justified for a certain use of a model may seem absurd for other uses. To
determine the legitimate uses of a model, as well as its limitations, it seems therefore necessary
not to use a model as a black box.

Two characteristics of a model favor its use as a black box: its complexity, and the open-
ness of its results to non-expert users. When a model is very complex, even those who helped
build it may have difficulties understanding its content. Only expert users, who have a detailed
understanding of the assumptions on which the model is based and its limitations, can make
a relevant interpretation of model results. Therefore, the more complex a model, the higher
the level of expertise required to analyze it. In practice, in climate science, the opposite is
often the case. Simple models are typically analyzed by those who developed them, whereas
more complex models, such as GCMs, are analyzed by users who were not involved in their
development. I have noted and criticized this use of GCMs as black boxes in CMIP. Similar
criticisms apply to DestinE, which proposes highly complex models with which decision makers
can directly interact.

In contrast to such paradigms, I believe that simple models that are well-interpreted can be
highly relevant to current research in climate science. During my thesis, I had the chance to
explore the history of atmospheric and climate modeling. This led me to read numerous papers
published at the dawn of computer age in the 1960s and 1970s. I was genuinely impressed
by the level of understanding that emerged from these articles despite the means available at
the time, and in particular the limited computer resources. The illuminating paper of Manabe
and Wetherald (1967), which quantified the response of the atmosphere to a doubling of CO2

concentration, is probably one of the best examples of how very simple models can provide
valuable insights about the climate system and climate change. As we explained in Chapter 3,
many results given in this paper are still relevant today. Manabe and Wetherald had a sufficient
understanding of atmospheric phenomena first to include the main atmospheric processes in
their model and make it no more complicated than necessary, and second, to give an insightful
interpretation of its results. Inspired by such attempts, perhaps should we try to understand in
depth the tools we already have, instead of building new tools that we don’t fully understand.
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Appendix B

Detecting cold pools from soundings
during EUREC4A

B.1 Preamble

This chapter is based on a study on cold pools during EUREC4A that I carried out in collab-
oration with Raphaela Vogel and Nicolas Rochetin. I wrote the first draft of the manuscript
and performed most of the analyses. Raphaela Vogel and Nicolas Rochetin guided me through
the design and writing of the manuscript, and gave me extensive feedback before submission
and during the review process.

Cold pools are one of the important object that can be studied with EUREC4A data. In the
following study, we give a first look at cold pools during EUREC4A by using a novel method to
detect cold pools from atmospheric soundings. This study illustrates how objects like cold pools
give us a tool to analyze and understand observations. I therefore used it as a case study in my
epistemological analysis of objects in Chapter 2. For the sake of clarity, I have cited only the re-
sults most relevant to our epistemological reflections in Chapter 2 and I give here the full study.

The corresponding paper has been submitted to the Journal of Applied Meteorology and
Climatology in December 2020 and can be cited as: Touzé-Peiffer, L., Vogel, R., & Rochetin,
N. (2021). Detecting cold pools from soundings during EUREC4A. arXiv preprint (https://
arxiv.org/abs/2104.09146).

B.2 Abstract

This paper develops a novel method to detect cold pools from atmospheric soundings over
tropical oceans and applies it to sounding data from the EUREC4A field campaign, which took
place south and east of Barbados in January-February 2020. The proposed method exploits the
fact that the air in a cold pool is denser than the air above it. It leads us to define cold pool
soundings as those for which the mixed-layer height is smaller than 400 m. We first test this
criterion by verifying its consistency with surface temperature and precipitation in a realistic
high-resolution simulation over the western tropical Atlantic. Applying it to EUREC4A data,
we then identify 7 % of EUREC4A dropsondes and radiosondes as cold pool soundings. In
two selected case studies, we find that cold pools soundings coincide with mesoscale cloud arcs
and temperature drops in the surface time series. Statistics for the entire campaign further
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characterize the signature of cold pools in temperature, humidity and wind profiles. In the
presence of wind shear, we show in particular that the spreading of cold pools is favored
downshear, suggesting downward momentum transport by unsaturated downdrafts. These
results support the robustness of our simple method in different environmental conditions and
illustrate the new insights it offers for the characterization of cold pools and their environment.

B.3 Introduction

Below clouds, the partial evaporation of precipitation may cool the air sufficiently to generate
unsaturated downdrafts, which spread horizontally when reaching the surface under the form
of density currents. As these so-called ”cold pools” expand, they lift the warmer adjacent air
masses, leading in some situations to the creation of new convective cells (e.g. Craig Goff, 1976;
Warner et al., 1979). This triggering has been observed to be particularly effective when two
cold pools collide (Droegemeier & Wilhelmson, 1985; Feng et al., 2015; Meyer & Haerter, 2020)
or when the vorticity created by a cold pool counteracts that from the low-level wind shear (Ro-
tunno et al., 1988; Weisman & Rotunno, 2004). In addition, since they induce strong gusts near
the surface, cold pools are suspected to enhance surface fluxes, and thus to modify the prop-
erties of the subcloud layer (SCL) (Langhans & Romps, 2015; Tompkins, 2001). For all these
reasons, cold pools are thought to play an important role for the organization and the prop-
agation of convection (Kurowski et al., 2018; Schlemmer & Hohenegger, 2014; Tompkins, 2001).

Cold pools are ubiquitous in regions of precipitating convection, both over lands and oceans
(Bryan & Parker, 2010; Zuidema et al., 2017). Most past attempts to detect cold pools in
observational data used methods based on surface time series. Analyzing data from the Trop-
ical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment
(COARE; Webster & Lukas, 1992), Young et al. (1995) for instance defined the beginning of
a cold pool time period through the onset of any rain shaft of at least 2 mm h−1 and the end
of a cold pool time period by the end of the subsequent surface temperature recovery. During
the Rain in Cumulus over the Ocean campaign (RICO; Rauber et al., 2007), which took place
in the eastern Caribbean from December 2004 to January 2005, Zuidema et al. (2012) used a
similar method but did not impose any threshold on surface rain rate, in order to consider all
precipitating events. More recently, de Szoeke et al. (2017) detected cold pools over the central
Indian Ocean during the Dynamics of the Madden-Julian Oscillation experiment (DYNAMO;
Yoneyama, Zhang, & Long, 2013) as temperature drops in the surface time series measured by
the research vessel Roger Revelle. A slightly modified version of this method was used in Vogel
(2017) to detect cold pools from 2011 to 2017 at the Barbados Cloud Observatory (BCO), a
site exposed to relatively undisturbed trade-winds on the eastern side of Barbados (Medeiros
& Nuijens, 2016; Stevens et al., 2016).

Surface measurements from research vessels or weather stations are useful to get data with
high temporal resolution at a single point. They give precise information on the surface char-
acteristics of cold pools, such as the wind shifts they induce, the amplitude of the associated
temperature drops, their effects on surface fluxes, etc. However, they say little about their
vertical structure, in particular their height, which is recognized as an important parameter
to describe the triggering of new convective cells near cold pool edges (Grandpeix & Lafore,
2010; Jeevanjee & Romps, 2015). The distribution of temperature and moisture in and above
cold pools is also poorly known (Zuidema et al., 2017), as is the distribution of horizontal
and vertical winds. In a study of shallow marine cumulus convection, using large-scale simula-
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tions, C. Bretherton and Blossey (2017) found mesoscale convergence under precipitating cloud
clusters and associated circulations that could explain the mesoscale aggregation of shallow
convection under these conditions. Detecting similar circulations above cold pools to test this
hypothesis in observations remains a challenge.

The field study EUREC4A (Elucidating the role of clouds-circulation coupling in climate;
Bony et al., 2017) might help overcome some of these difficulties. EUREC4A was held in
January and February 2020 over the Atlantic ocean east and south of Barbados (Stevens et
al., 2021) and involved a wide variety of platforms: among others, four research aircraft, four
research vessels, surface observatories and a battery of uncrewed aerial and seagoing systems.
Aircraft and research vessels supported the implementation of a large-scale sounding array. In
total, more than 2000 atmospheric profiles were measured during EUREC4A using radiosondes
and dropsondes. This unprecedented dataset represents a unique opportunity to study the
properties of cold pools over tropical oceans, provided a robust method to detect cold pools
from atmospheric soundings exists.

The lack of such a method motivates the present study, which proposes a detection method
of cold pools based on the height of the mixed layer and applies it to EUREC4A data. The
paper is structured as follows: first, in Section B.4, we describe the EUREC4A radiosonde and
dropsonde data used in this study, then, in Section B.5, we present our detection method of
cold pools and test it in a high-resolution simulation. Finally, we assess our detection method
with EUREC4A data and use it to provide a first analysis of cold pools during the field study.

B.4 Radiosonde and dropsonde data

During EUREC4A, atmospheric soundings were released in two different regimes: the “Tradewind
Alley” and the “Boulevard des Tourbillons” (Stevens et al., 2021). The Tradewind Alley is a
corridor up to 50◦W east of Barbados, extending from approximately 11◦N to 17◦N. In January
and February, free-tropospheric subsidence prevails in these latitudes and the Tradewind Alley
can thus be seen as a trade-wind regime, with shallow convective clouds under a capping inver-
sion (Stevens et al., 2016). The Boulevard des Tourbillons is a corridor further south extending
from the northern coasts of Brazil to Barbados. It was initially chosen to characterize large-
scale oceanic eddies observed along the coast of South America and their impact on air-sea
interactions (Bony et al., 2017; Stevens et al., 2021). Located in areas of deeper convection,
the Boulevard des Tourbillons is also an opportunity to extend the EUREC4A sounding array
down to the Intertropical Convergence Zone.

In the Tradewind Alley, both radiosondes and dropsondes were used to characterize the
trade-wind environment. Radiosondes were launched from land at BCO (13.16◦N, 59.43◦W),
and from two research vessels – the German research vessel Meteor, cruising between 12-14.5◦N
at a fixed longitude of 57◦W, and the American research vessel from NOAA Ronald H. Brown
(RH-Brown), moving along transects further to the east. Two research aircraft, the German
HALO and the WP-3D Orion (P-3) from NOAA, complemented this set of measurements by
launching dropsondes. HALO flew at an altitude of about 10 km along the “EUREC4A cir-
cle”, a circular path with approximately 200 km diameter centered at 13.3◦N, 57.7◦W. When
launching dropsondes, the P-3 flew at about 7 km along both linear and circular patterns
around the EUREC4A circle, as well as further to the east close to the nominal position of the
RH-Brown. No dropsondes were launched in the Boulevard des Tourbillons, but radiosondes
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were launched from the French research vessel L’Atalante and from the German research vessel
Maria S. Merian (MS-Merian).

Equipped with a GPS receiver, all these radiosondes and dropsondes measured the pressure,
temperature, humidity and horizontal wind along their fall or ascent. For radiosondes equipped
with parachutes, we count the ascent and the descent as two separate profiles. In this study,
we use quality controlled data (Level-3) interpolated on a common altitude grid with bin sizes
of 10 m (George et al., 2021; Stephan et al., 2020). In addition to the filters already used in the
initial dataset, we are adding a filter to keep only soundings with at least 30 measurements of
temperature, pressure and humidity below 500 meters. This filter is needed to get enough data
in the lowest atmospheric layers to distinguish cold pools from their environment. It mainly
affects descending profiles from radiosondes as their signal was sometimes lost in the first
hundreds of meters above sea level due to Earth’s curvature (Stephan et al., 2020). It removes
in total 441 radiosonde profiles, resulting in an input dataset set with 1068 atmospheric profiles
from dropsondes and 1106 from radiosondes.

B.5 Presentation of the method and test in a high-resolution

simulation

Most methods which have been proposed to detect cold pools from observations used the fact
that the air inside a cold pool is colder than the air around it. The present detection method
uses the fact that cold pool air is colder than the air above it. In terms of virtual potential
temperature, a cold pool is indeed colder, thus denser than the SCL air on top of it. Conse-
quently, a sharp increase in virtual potential temperature θv is expected at the top of a cold
pool. Over tropical oceans, in convective regimes, this contrasts with the SCL outside cold
pools, which tends to be well-mixed in θv up to cloud base (e.g. Cuijpers & Duynkerke, 1993;
Pennell & LeMone, 1974). It motivates the use of a cold pool detection method based on the
height of the mixed layer (Hmix).

Following Canut et al. (2012) and Rochetin et al. (2021), we define Hmix as the lowest
altitude Z above Zmin = 100 m where the virtual potential temperature θv is higher than its
mass-weighted average from Zmin to Z by a fixed threshold ε = 0.2 K:

θv(Z) ≥ θ̃v + ε

with θ̃v =

∫ Z
Zmin

ρ(z)θv(z)dz∫ Z
Zmin

ρ(z)dz

(B.1)

ρ being the density of the air. Setting Zmin at 100 m is necessary due to the presence of unphys-
ical temperature peaks below 100 m for a few radiosondes. The virtual potential temperature
is calculated assuming that the air of the lowest layers is not saturated, so that the mixing
ratio of liquid water in the air can be neglected. It is then approached as: θv = θ(1 + 0.61r), r
being the mixing ratio of water vapor. The calculation of Hmix thus requires only the vertical
profiles of pressure, temperature and humidity at a single point and is directly applicable to
soundings.

Figure B.1 shows the Hmix distribution for EUREC4A soundings. The histogram reveals
a negatively skewed distribution, with a median of 720 m. Assuming that the left tail of the
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Figure B.1: (top) Cumulative distribution function (black) and histogram for the height of the
mixed layer for all radiosondes and dropsondes launched during EUREC4A. The bins of the
histogram are 10 m wide. Colors indicate cold pool soundings (blue), unclassified soundings
(grey) and environmental soundings (red). The upper left panel shows two examples of θv
profiles, one in a cold pool and the other in the environment. (bottom) Cumulative distribution
functions for cold pool (blue) and environmental (red) temperatures at 50 meters, and the
corresponding histograms with a bin width of 0.05 K.

distribution is due to cold pools, we choose to define “cold pool soundings” as those with Hmix

lower than 400 m (7% of soundings, in blue), and “environmental soundings” as those with
Hmix higher than 500 meters (90% of soundings, in red). With this definition, only 3% of
soundings (in grey) are neither in cold pools nor in the environment. The blue part of the
distribution peaks slightly above 200 m, consistent with the typical depth of cold pools ob-
served by Zuidema et al. (2012) in trade-wind regimes. Since this value is more than three
times smaller than the typical mixed layer height in the region (Fig. B.1), the mixed layer
height seems to be a suitable criterion to distinguish cold pools from their environment during
EUREC4A. In the cold pool recovery process, the height of the mixed layer gradually increases
due to surface sensible and latent heat fluxes and entrainment warming and drying from above,
as documented by Zuidema et al. (2012) during RICO. It could explain the large spread of the
Hmix distribution below 400 m (in blue) and its smooth increase from 400 to 500 m (in grey).

The surface temperature distribution (bottom panel, Fig. B.1) reveals that cold pool sound-
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ings are on average colder than environmental soundings. Nevertheless, a fixed surface tem-
perature threshold – as done for instance in de Szoeke et al. (2017) with radiosondes launched
during DYNAMO – would not be able to isolate cold pools. Indeed, given the spatial and
temporal extent of EUREC4A, cold pools are not the only source of variability for surface tem-
perature. In particular, measurements from research vessels reveal a sea surface temperature
(SST) difference of more than 1 K between the northeast (50◦W, 16◦W) and the southwest
(12◦N, 59.5◦W) of the Tradewind Alley during EUREC4A. Mesoscale variability in SST fea-
tures was also observed in the Boulevard des Tourbillons during the field study (Stevens et al.,
2021). Due to this variability, the surface temperature distributions for cold pool and environ-
mental soundings overlap (as shown in Fig. B.1) and do not allow to clearly separate cold pools
from their environment.

To show that Hmix provides on the contrary a robust detection of cold pools, we first test our
detection method in a high-resolution simulation over the Atlantic Ocean, upstream of Barba-
dos. This simulation was conducted using the large-eddy simulation version of the ICOsahedral
Non-hydrostatic (ICON) model, with realistic boundary conditions, 313-m horizontal grid spac-
ing and 150 vertical levels (Dipankar et al., 2015; Zängl et al., 2015). It was initialized on 11
December 2013 at 0900 UTC with 1.25km-resolution runs (see Vial et al., 2019a, for further
details).

In high-resolution models, most cold pool detection methods rely on anomalies in surface
temperature (or related quantities such as potential temperature or buoyancy), winds, or sur-
face rain (see Drager & van den Heever, 2017, and references therein). To determine cold pool
edges, they usually requires the entire 2 or 3D field of some thermodynamic or dynamic vari-
ables and are therefore unusable with sounding data. On the contrary, our detection method
is based on 1D thermodynamic profiles and is thus entirely local.

Despite this simplicity, Figure B.2 shows that it gives consistent results with the surface
temperature and precipitation fields. It represents three snapshots of the mixed layer height
Hmix (left) and the temperature near the surface (z ≈ 50 m) (right) on 11 December 2013 at
1600 UTC and on 12 December 2013 at 0330 UTC and 0930 UTC. In the right panels, we
see that regions with negative temperature anomalies are co-located with significant surface
precipitation (red dots) and also with important wind shifts (not shown), suggesting that these
cold regions are in fact convective cold pools. In the left panels, we apply our detection method
by circling in yellow regions where the mixed layer is less than 400 meters. Qualitatively,
there is a really good agreement between cold pools detected with our method and regions
strongly cooled by rainfall. Hmix is unaffected by large-scale temperature gradients and seems
to discriminate cold pools everywhere in the domain. Conversely, precipitation alone is a not
a distinguishing factor of cold pools, as it is generally present only over a small part of cold
pools, and any method based on a temperature threshold would likely be strongly sensitive to
the temperature gradient between the northeast and the southwest of the domain. This gives
us confidence to choose Hmix in the next section to detect cold pools from soundings during
EUREC4A.
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B.5. PRESENTATION OF THE METHOD AND TEST IN A HIGH-RESOLUTION
SIMULATION

Figure B.2: Height of the mixed layer Hmix and surface temperature T at z ≈ 50m in an area
of 5◦×10◦ upstream of Barbados (circled in green) on December 11, 2013 at 1600 UTC and
December 12, 2013 at 0330 UTC and 0930 UTC. In the left-hand panels, cold pools are circled
in yellow as regions where Hmix is lower than 400 meters. In the right-hand panels, the red
dots represent locations where surface rainfall is greater than 10 mm day−1.
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B.6 Application to EUREC4A data

Figure B.3: (a) Cold pool fraction per day from dropsondes (cyan circles), and from radiosondes
launched in the Trade-wind Alley (magenta squares) and in the Boulevard des Tourbillons
(yellow squares). The two days selected for the case studies are indicated in cyan. (b) Number
of soundings per day, with the same color code. (c) Hourly rain rate at BCO from the micro-rain
radar at 325 m height (see Stevens et al., 2016, for details).

Applying our method to our set of 2174 EUREC4A soundings, we find that 149 sondes
have fallen into cold pools. Figure B.3 shows (a) the cold pool fraction, (b) the number of
soundings per day and (c) the hourly surface rain rate measured at BCO. As expected, we see
some consistency between rain rates measured at BCO and cold pool fraction in dropsondes
and radiosondes in the Trade-wind Alley, in particular around January 22-25 and February
11-12, when significant rainfall rates were measured at BCO. For the dropsondes, the largest
cold pool fractions have been observed on January 24 and February 2. In the following, we will
examine the cold pool characteristics on these two days in more detail.

B.6.1 January 24

On January 24, more than 20 % of dropsondes (18 out of 88, see Fig. B.3) launched by
HALO fell into cold pools. The MODIS-Terra satellite image of that day (Fig. B.4) reveals
the presence of many mesoscale arcs. As noted by previous observational and modeling studies
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of trade-wind regimes (Seifert & Heus, 2013a; Zuidema et al., 2012), such mesoscale arcs are
likely due to cold pools. Indeed, while the dense air inside cold pools is less able to support
buoyancy-driven convection, it has long been known that the edges of an expanding cold pool
can lift surrounding air masses and trigger new convective cells (e.g. Knupp & Cotton, 1982;
Purdom, 1976; Weisman & Rotunno, 2004). Based on these previous studies, we expect rela-
tively few clouds above cold pools, but mesoscale arcs of clouds near their border. The presence
of many mesoscale arcs around the EUREC4A circle is thus consistent with the numerous cold
pools detected that day from the HALO dropsondes.

Superposing the launch positions of dropsondes to GOES-16 visible channels reveals the
cloud field dropsondes have actually sampled. Panel b (yellow box) shows the position of
dropsondes launched by HALO when passing over a mesoscale arc in the northeastern part
of EUREC4A circle, just before 1400 UTC. The bottom panels (d-e) give the potential tem-
perature and zonal wind speed measured by these dropsondes. The cold pool sounding (blue)
is the coldest, with the strongest zonal wind near the surface and the shallowest mixed layer.
In terms of potential temperature, Hmix and zonal wind, the unclassified sounding (grey) rep-
resents an intermediate case between the cold pool and the environmental (red) soundings.
Located inside the mesoscale arc, but closer to its edges than the cold pool sounding, it sug-
gests that the mixed layer may partially recover its initial properties near the edge of a cold pool.

Panel c (cyan box) gives a second example of a cold pool sounding. In this example, due
to the presence of many clouds on the satellite image, it is hard to say whether the cold pool
sounding fell in a cloud arc or not. Our detection method seems nevertheless consistent with
wind measurements, which reveal the presence of a cold outflow at the surface (with a difference
of more than 3 m s−1 in near-surface zonal velocity between the blue and red soundings). Note
that in this example, the surface temperature does not distinguish cold pools, as the blue
sounding (1419 UTC) in panel c is less than 0.5 K colder than the neighboring red soundings
(1415 and 1424 UTC), and slightly warmer than the red sounding in panel b (1400 UTC).
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Figure B.4: (top) MODIS-Terra scene from Worldview upstream of Barbados on January 24,
2020. The EUREC4A circle is indicated in white. The rectangles mark the two regions shown
in the lower panels. (middle) GOES-16 visible reflectance (channel 2) displayed at 1400 UTC
(b) in the northeast quarter of the EUREC4A circle and at 14:30 UTC (c) in the southwest part
of the circle. The ground position and launch time of dropsondes dropped in the 15 minutes
preceding the satellite image is shown in blue for cold pool soundings, in red for environmental
soundings and in grey for unclassified soundings. (bottom) Profiles of potential temperature
(d-f) and zonal wind speed (e-g) from the surface to 1 km for the dropsondes highlighted in
the middle panel.
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B.6.2 February 2

On February 2, the satellite images reveal a cloud field with many “flowers”, characterized by
the presence of mesoscale, quasi-circular, stratiform shallow clouds, capped by a strong inver-
sion and separated by very dry clear-sky areas following the classification introduced in Stevens,
Bony, et al. (2019). At 1700 and 1850 UTC, in the eastern part of EUREC4A circle, a mesoscale
cloud arc is visible in all directions around one of the flowers. As on January 24, we suspect
this cloud arc to be due to the presence of a cold pool at the surface. This claim is supported
by the surface meteorological data from the research vessel Meteor, which captured the onset
of the corresponding cold pool around 1110 UTC (see Fig B.5, panel a). Indeed, as shown
in Fig. B.6, the surface air temperature (a) measured by the Meteor at 1110 UTC suddenly
dropped by approximately 1.5◦C, suggesting that the research vessel entered a cold pool. This
drop is also visible in the virtual potential temperature (c). The ship remained in the cold pool
until 1230 UTC when the temperature rose to 26.2◦C, a slightly higher value than before the
passage of the cold pool. The wind speed (d) changed significantly as the ship passed through
the cold pool front: the absolute wind speed increased rapidly from 5 m s−1 to 10 m s−1 at
the time of the temperature drop, before decreasing continuously to 2 m s−1 and going back
to its pre-cold pool value of 5 m s−1 after the cold pool passed. The wind speed variations
upon entering and leaving the cold pool thus have approximately the same amplitude. These
results stand both for the meridional and the zonal wind, although the wind shifts have slightly
stronger amplitudes for the zonal wind. The specific humidity (b) and the equivalent potential
temperature (d) reveal that this cold pool is overall moister than its environment, especially
near its edges, which are about 1 g kg−1 moister than its core. Finally, the W-band radar
(e) shows 2.5 km deep clouds with strong reflectivity near the edges of the cold pool. When
the ship enters the cold pool, these clouds coincide with a high surface rain rate of more than
4 mm h−1 (b), so we suspect the evaporation of precipitation below these clouds to feed this
cold pool. Overall, these different features are consistent with previous observations of cold
pools over tropical oceans (de Szoeke et al., 2017; Zuidema et al., 2012) and support the cold
pool tagging shown in Fig. B.5.

Of the 100 dropsondes and radiosondes launched near the EUREC4A circle that day, 16
were detected falling in cold pools. 13 of them fell in or around the cloud cluster passing over
the Meteor at 1110 UTC. The three other cold pool soundings all fell in or around other cloud
clusters, located further east of the EUREC4A circle (visible for example at 1700 UTC in Fig.
B.5). Mean sounding profiles in (blue) and out (red) of cold pools are shown in the bottom
panels (e-g). Cold pool soundings are on average 1 K colder than the other soundings in terms
of potential temperature. This difference is mainly observed below 400 meters. The air in the
cloud layer above cold pools, from 800 m to 3 km, is significantly moister than the ambient air,
consistent with the presence of cloud clusters on satellite images. In the SCL, we observe on the
contrary slightly drier air between 200 meters and 800 meters in cold pools compared to their
environment, which might be due to downdrafts transporting the relatively drier air from the
cloud layer to the subcloud layer above cold pools. On this day, near-surface air in cold pools is
on average moister than in their environment, consistent with Meteor observations. At the sur-
face, cold pools propagate as density currents and induce significant wind shifts, visible in the
relatively large standard deviation of the near-surface wind in cold pools (g). The consistency
between satellite images, Meteor data and the thermodynamic profiles derived from soundings
support the ability of our detection method to distinguish cold pools from their environment
on February 2.
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This robust distinction between cold pool and environmental soundings allows the study
of not only the properties of cold pools, but also those of the convective system to which
they belong. For instance, the longevity of the cloud cluster first detected at 1110 UTC by
the Meteor (Fig B.6) and still visible on satellite images at 1850 UTC (Fig B.5) suggests
intense convective activity above the cold pool detected in the southern part of the EUREC4A
circle. To characterize the associated air circulations, we compute the divergence in and above
this cold pool, and compare it to the divergence calculated over the EUREC4A circle from
environmental soundings. For that, we use the method introduced by Lenschow and Sun (2007)
and successfully tested during the Next Generation Aircraft Remote Sensing for Validation
Studies (NARVAL2, Bony & Stevens, 2019). This method assumes that the wind field is
stationary and that wind variations in longitude and latitude are linear at each vertical level,
defining thus the large-scale wind V = (u, v) such that:

V = V0 +
∂V

∂x
∆x+

∂V

∂y
∆y (B.2)

where V0 is the mean velocity over the area and ∆x and ∆y are the eastward and northward
displacements from a chosen center point. Since V , V0, ∆x and ∆y are known, ∂V

∂x
and ∂V

∂y

can be calculated using a simple least square fit in equation B.2 and the divergence can then
be derived as: D = ∂xu+ ∂yv.

As in Bony and Stevens (2019), for HALO dropsondes out of cold pools, we choose as center
point the center of the EUREC4A circle, indicated by a red cross in Fig. B.5. For cold pool
soundings, the center point is taken at the center of the cold pool visible in the southern part of
the EUREC4A circle. To estimate the center location, we take as a starting point the position
of the Meteor where the minimum temperature was measured and advect it by the surface
mean wind speed measured by the research vessel in a four-hour time slot centered on the cold
pool period. In Fig. B.5, the position of the estimated “cold pool center” is indicated in each
snapshot by a blue cross. We see that it matches approximately the center of mesoscale arcs
observed at 1700 and 1850 UTC. With respect to, respectively, the center of the EUREC4A
circle and the estimated center of the cold pool, we then compute the least square fit for the 29
dropsondes dropped in the EUREC4A circle out of cold pools from 1420 to 1845 UTC, and for
the 11 dropsondes dropped in the main cold pool during the same period. This period is long
enough to have a sufficient number of dropsondes to get a robust measure of divergence in and
out of cold pools, but short enough to consider the stationarity assumption as valid at least
out of cold pools, as the autocorrelation time-scale of large-scale divergence estimated by Bony
and Stevens (2019) is approximately 4 hours. Assuming stationarity of the wind field above
the cold pool is more controversial, but seems nevertheless a good approximation in this precise
situation due to the duration of the convective system and the coherence between dropsonde
measurements at different times.

The blue curve in Fig. B.5 h reveals a layer of strong divergence near the surface in the cold
pool, culminating at more than 80×10−6 s−1 close to the ground, consistent with the spreading
of the cold pool at the surface. On the other hand, from 500 m to 1.5 km, we observe a zone of
convergence peaking slightly above 1 km with a value close to −80×10−6 s−1. This converging
air might feed convective updrafts or downdrafts near cloud base. Finally, between 2 and 3 km,
there is again a divergent layer, with a magnitude of about 80×10−6 s−1. It corresponds to the
altitude where the updraft air is detrained and where the stratiform outflow layer is located,
though the divergence profile close to the inversion might also be influenced by local circula-
tions induced by mixing with drier free tropospheric air. In contrast, the divergence plot out of
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cold pools has a much smaller amplitude from the surface to the inversion. As expected, above
the inversion, the divergence patterns in and out of cold pools follow each other closely (not
shown), suggesting homogeneous large-scale wind patterns in the free troposphere, whether or
not there are cold pools below.

The mesoscale divergence values above the cold pool are two or three times larger than
the maximum large-scale divergence observed by Bony and Stevens (2019) during NARVAL2
over 180 km diameter circles. When averaged over a EUREC4A circle, they could therefore
leave an imprint on the large-scale divergence, as shown by the black line which represents the
divergence computed over a EUREC4A circle from 1841 to 1936 UTC using all dropsondes (12
in total, including 4 dropped in cold pools). The orange line shows the divergence calculated
over the same circle with environmental soundings only. The comparison between the orange
and black curves shows local differences of more than 10 × 10−6 s−1 between the two curves.
The largest differences are observed between 500 m and 2 km, with smaller differences also
present near the surface and just below the inversion, at 3 km. The differences between the
black and orange curves are consistent with the differences between the blue and red ones,
albeit of opposite sign: indeed, as the cold pool center is located outside the EUREC4A circle
at 1850 UTC (see the blue cross on Fig. B.5, panel d), convergence over the cold pool at that
time leads to divergence over the EUREC4A circle and vice versa. This example shows that
mesoscale circulations around cloud clusters such as the one observed here could explain part
of the variability of the large-scale divergence in the SCL and cloud layer noted in Bony et al.
(2017).

In large-eddy simulations of marine shallow cumulus convection, C. Bretherton and Blossey
(2017) found circulations similar to those observed around the main flower on February 2.
According to the authors, these circulations might participate in the mesoscale aggregation of
shallow convection below the trade-inversion. Indeed, in trade-wind regimes, C. Bretherton
and Blossey (2017) show that such circulations induce relative moistening of the moistest sub-
domains, a form of gross moist instability. This hypothesis, if verified, would give a possible
explanation for the persistence for several hours of the cloud clusters on February 2 despite the
presence of cold pools below them.
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Figure B.5: (top) GOES-16 visible reflectance (channel 2), displayed on February 2 at (a)
1130, (b) 1430, (c) 1700 and (d) 1850 UTC in the Atlantic region upstream Barbados (circled
in yellow). The EUREC4A circle is outlined in white. The ground position and launch time
of dropsondes dropped in the 15 minutes preceding the satellite image is shown in blue for
cold pool soundings and in red for environmental ones. The yellow line represents the path of
the Meteor, with green-filled circle marking the position of the vessel at the time the satellite
image was taken. The location of BCO is indicated by a cyan triangle. (bottom) (e) Mean
potential temperature, (f) specific humidity, (g) wind speed and (h) divergence in cold pool
and environmental soundings. In each panel, the standard deviation around the mean for the
two types of soundings is represented by a dashed line. In panel h, the black line indicates
an example of divergence calculated over an entire EUREC4A circle (from 1841 to 1936 UTC)
using all dropsondes (12 in total, including 4 in cold pools), and the orange line indicates the
divergence over the same circle by considering environmental dropsondes only. For the sake of
clarity, the x-axis is stretched by a factor of 4 for these two curves, that is one should read ±20
instead of ±80 (10−6s−1).
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Figure B.6: Shipboard measurements from the Meteor on February 2, from 0900 to 1500 UTC:
(a) surface air (black) and sea temperature (blue), (b) surface specific humidity (black) and
surface rain rate (blue), measured using a ship rain gauge SRM 450. (c) virtual potential
temperature (black) and equivalent potential temperature (blue), (d) Zonal (red), meridional
(blue) and absolute (black) wind speed, (e) Vertically pointing shipboard W-band radar data
at 94 GHz, measured using the Raman lidar system LICHT (Lidar for Cloud, Humidity and
Temperature profiling) formerly at BCO and described in Stevens et al. (2016). Color bar
indicates uncalibrated radar signal-to-noise ratio, best interpreted relative to itself. In the five
panels, the grey shading marks the cold pool time period. Meteor data are freely accessible at
https://observations.ipsl.fr/aeris/eurec4a/.
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B.6.3 Statistics for other days

Figure B.7: Scatter plot of the vertical variations of (a) potential temperature, (b) specific
humidity and (c) wind speed between 100 and 500 m vs spatial anomalies of the same variables
at 100 m. The soundings considered are dropsondes launched in EUREC4A circles, and spatial
anomalies are calculated with respect to the circle environmental mean, that is the mean
calculated circle by circle with dropsondes launched out of cold pools only. Also reported are
the median values for cold pools (blue) and their environment (red). The bars indicate the
25th and 75th percentiles of the distributions.

We will now look at a few statistics of cold pools for other days during EUREC4A, focusing
first on the HALO dropsondes launched in the EUREC4A circles. In total, the aircraft dropped
more than 700 dropsondes along 72 circles, that is about 10 dropsondes per circle. We use circle
sounding data to compare the characteristics of cold pools to those of their close environment.
In Fig. B.7, the x-axis represents the difference between the potential temperature (a), specific
humidity (b) and wind speed (c) measured by each dropsonde at 100 m and the mean value
at the same altitude for environmental dropsondes launched in the same EUREC4A circle.
Mathematically, we define in the following Xz0 = 1

100m

∫ z0+50m

z0−50m X(z)dz as the value of X at the

altitude z0 averaged over a 100 m depth and X̄env
z0

as the mean circle value of Xz0 in environ-
mental soundings. We average Xz0 over a 100 m interval in order to be less sensitive to local
vertical heterogeneities. With these notations, the x-axes become respectively θ100m − θ̄env100m,
qv,100m − q̄envv,100m and ‖V100m − Venv

100m‖. They show that cold pools are on average 1 K colder
and 1 g kg−1 moister than their environment, and that the wind difference between individual
soundings and mean circle values is on average 2 m s−1 larger for cold pools than for their
environment.

The y-axis quantifies the imprint of cold pools on the vertical profiles for the same variables.
For each sounding, the y-coordinate represents the difference ∆SCL(X) in the SCL between 100
and 500 m, that is in and above cold pools when there is one. Mathematically, we define
∆SCL(X) = X100m − X500m for both cold pool and environmental soundings. In the environ-
ment, on average, there is little difference in terms of potential temperature, specific humidity
and wind speed between the two layers, consistent with what we would expect for a relatively
well-mixed layer. On the other hand, cold pool soundings are on average 1 K cooler and 1 g
kg−1 moister at 100 m, and the average wind difference is about 3.5 m s−1 between the two
layers. These values are consistent with those of the x-axis and suggest that in a well-mixed
layer the vertical imprint of cold pools can be used to estimate the differences between cold
pools and their environment in terms of potential temperature, specific humidity and wind
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speed.

Figure B.8: (left) Scatter plot of the difference of potential temperature at 100 m and at 500 m
∆SCL(θ) vs difference of specific humidity between the same altitudes ∆SCL(qv) for cold pool
(blue) and environmental (red) soundings. The crosses indicate the mean of each distribution.
On the upper and right sides of the graph, marginal distributions of each variable are also
reported for cold pools and their environment. The bins of the histograms are 0.1 g kg−1

wide for the specific humidity and 0.1 K wide for potential temperature. To facilitate the
comparison, the area under each distribution has been normalized to 1. (right) Same plot,
but for the meridional and zonal winds, with a bin width of 0.3 m s−1 for the corresponding
histograms. The circles represent the mean of the absolute wind speed distributions, that is
the mean of

√
(∆SCL(u))2 + (∆SCL(v))2 for cold pool and environmental soundings.

Based on these results, we take in Fig. B.8 the vertical imprint of cold pools as a proxy to es-
timate the intensity of cold pool anomalies. It allows us to generate statistics for all EUREC4A
soundings, including the many radiosondes and dropsondes not launched in EUREC4A circles
for which we do not have any environmental reference to assess cold pool properties. Consis-
tently with Fig. B.7, cold pool soundings are on average 1 K colder at 100 m than at 500
m, 1 g kg−1 moister and experience a wind difference between the two layers 2 m s−1 larger
than for environmental soundings. The coldest cold pools are also those for which the humidity
difference is the most important, although potential temperature alone explains only a small
part of the total humidity variance for cold pool soundings (R2 = 0.19). The difference in
humidity profiles in the SCL between cold pools and environment is also visible in Fig. B.9
a, which gives the equivalent potential temperature in cold pool and environmental soundings.
This panel further shows that cold pool soundings are well mixed in equivalent potential tem-
perature between 1 and 2.5 km, suggesting efficient convective mixing above cold pools.

In Fig. B.8 b, the zonal and meridional wind distributions show that cold pools spread in
all directions, consistently with the conceptual picture of a density current propagating over a
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Figure B.9: (a) Profiles of equivalent potential temperature for all EUREC4A soundings
launched in cold pools (blue) and in their environment (red). The bold lines represent the
medians of each distribution and the color shading their interquartile range. The grey shading
indicate the altitudes taken to define V1km = (u1km, v1km) and V2km = (u2km, v2km) used in
the middle and right panels. (b) Box and whisker plots for the zonal wind difference between
100 and 500 m ∆SCL(u) for three zonal wind shear ranges in the cloud layer. The wind shear

ranges are defined by calculating for each sounding the difference between u2km =
∫ 2.2km

1.8km
u(z)dz

and u1km =
∫ 1.2km

0.8km
u(z)dz. Horizontal line within each box represent the median, box bottom

and top are 1st (Q1) and last (Q3) quartile of the distributions, and the whiskers extend up
to 1.5 interquartile range above Q3 and below Q1. (c) Same plot, but for the meridional wind
difference between 100 and 500 m ∆SCL(v) for three meridional wind shear ranges in the cloud
layer.

solid boundary. In the presence of vertical wind shear, theories and numerical simulations nev-
ertheless predict that cold pool spreading may not be perfectly isotropic, as vertical momentum
transport might favor the propagation of cold pools downshear (Grant et al., 2020; Mahoney et
al., 2009; Moncrieff, 1992). Fig. B.9 middle and right panels test this hypothesis by showing the
zonal and meridional wind difference between 100 and 500 m (∆SCL(u) and ∆SCL(v)) for three
zonal and meridional wind shear ranges in the cloud layer, between 1 and 2 km: ]−∞;−1],
]− 1, 1] and ]1,+∞[ (m s−1). The box and whisker diagrams reveal that ∆SCL(u) is gradually
shifted to higher values as the zonal wind shear in the cloud layer increases. On the contrary,
in environmental soundings, the zonal wind shear in the cloud layer has little, if any, influence
on ∆SCL(u). The same result stands for the meridional wind, suggesting significant momentum
transport by downdrafts in cold pools in all directions. ∆SCL(u) is higher than ∆SCL(v) for
both cold pool and environmental soundings because of strong zonal winds in the region, around
−8.1 m s−1 at 100 m on average, compared to −1.7 m s−1 at 100 m for mean meridional winds.
These strong winds create friction in the lowest layers and decrease u100m with respect to u500m,
thus increasing ∆SCL(u).The relation between the direction of propagation of cold pools and
the vertical shear, as well as the vertical imprint of cold pools on dynamic and thermodynamic
profiles illustrate some interesting results inaccessible with detection methods based on time
series (de Szoeke et al., 2017; Young et al., 1995; Zuidema et al., 2012). Though preliminary,
these results provide a first systematic and robust characterization of cold pools over the wide
range of conditions observed during EUREC4A, demonstrating how valuable detecting cold
pools from soundings can be for the study of cold pools and cloud-circulation coupling.
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B.7 Conclusions

In this study, we presented a new method using the mixed layer height as a criterion for de-
tecting cold pools from soundings over tropical oceans. This method is based on the analysis
of more than 2000 radiosondes and dropsondes from the EUREC4A field campaign that took
place over the western tropical Atlantic near Barbados in January-February 2020. The mixed
layer height Hmix, defined using the virtual potential temperature, shows a left heavy tail for
EUREC4A soundings that we attribute to cold pools. It leads us to classify the soundings
with Hmix < 400 m as cold pool soundings, and those with Hmix ≥ 500 m as environmental
soundings.

We first test this criterion in a simulation over the Barbados region, performed with the LES
version of the ICON model. In this simulation, cold pools are visually identified as regions with
negative surface temperature anomalies and positive surface precipitation. They coincide with
regions of shallow mixed layer, supporting the relevance of the mixed layer height as a proxy to
identify cold pools in this LES simulation despite the presence of a strong SST gradient across
the domain. Then, we apply our detection method to EUREC4A soundings, looking first at
January 24 and February 2, two EUREC4A flight days during which the number of cold pools
detected in dropsondes is particularly high. On these two days, the cold pools detected with
our method are consistent with satellite images, surface time series from the research vessel
Meteor, and thermodynamic and dynamic profiles measured by soundings. On February 2, the
calculation of the divergence in and above one of the cold pools further reveals intense mesoscale
circulations, consistent with the observed persistence of cloud clusters above cold pools that day.

Finally, we give a few statistics for the entire EUREC4A period, focusing initially on the
dropsondes launched by HALO in the EUREC4A circle. By comparing, circle by circle, the
cold pool and environmental characteristics, we find that at 100 m, the cold pool soundings
are on average 1 K colder and 1 g kg−1 moister than the environmental soundings at the same
altitude, and experience a wind deviation of more than 3 m.s−1 with respect to their mean
environment. We further show that these differences have a similar amplitude as the vertical
differences between 100 and 500 m for each cold pool sounding, while environmental soundings
exhibit a small difference between these two altitudes, consistent with the well-mixed nature of
the subcloud layer (SCL) in trade-wind regimes. This significant vertical imprint of cold pools
in the SCL is then studied for all the EUREC4A soundings. The coldest cold pools turn out
to be those with the largest humidity difference between 100 and 500 m. When there is shear
in the cloud layer, we find that the spreading of cold pools is favored downshear, suggesting
momentum transport by unsaturated downdrafts feeding cold pools.

These first results and the method described here pave the way for more comprehensive
analyses of cold pools over tropical oceans. The quantity and quality of the measurements
made during EUREC4A is a great opportunity to perform such analyses. In particular, drones
and low-flying aircraft are likely to provide valuable information on the vertical structure of cold
pools, which could complement sounding measurements. In parallel, time series from research
vessels and surface weather stations could help study the characteristics of cold pools close to
the ground and better understand their interactions with the surface. The interest in cold pools
in tropical oceans is not new (Houze Jr & Betts, 1981; Leary & Houze Jr, 1979; E. J. Zipser,
1969), but EUREC4A offers an unprecedented dataset to finely characterize the temporal and
spatial properties of cold pools and explore unanswered questions about their effect on the
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organization and propagation of convection. Hopefully, the method and results described in
this paper will help us make the best use of this dataset – and turn this opportunity into reality.

B.8 Data availability

ICON primary data can be accessed through the ”Mistral” super computer of the German Cli-
mate Computing Center / Deutsche Klimarechenzentrum (DKRZ). BCO micro-rain radar data
are accessible to the broader community, as detailed in Stevens et al. (2016). Access to primary
data is provided here: https://mpimet.mpg.de/en/science/the-atmosphere-in-the-earth
-system/working-groups/tropical-cloud-observation/barbadosstation1/instrumentation

-and-data. Radiosonde and dropsonde data are described respectively in Stephan et al. (2020)
and George et al. (2021) and available through the AERIS portal (https://eurec4a.aeris
-data.fr/). Free access to Meteor surface meteorological data and Raman lidar data is also
provided by AERIS. The MODIS-Terra picture on January 24 is taken from NASA Worldview
(https://worldview.earthdata.nasa.gov).
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C.1 Preamble

After a field campaign, it is common to publish data papers in peer reviewed journals in order
to document the datasets that have been collected. This is the objective of the paper presented
in this chapter, which describes a dataset freely available online composed of the radiative pro-
files computed for all the soundings measured during EUREC4A (more than 2000 soundings).
Preliminary analyses about the variability of the calculated radiative profiles are also presented.
In particular, we provide a first characterization of the radiative properties of sugar, gravel,
fish, and flowers, which we mentioned in Chapter 2 as examples of objects that could focus and
guide atmospheric research.
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The paper was published in Earth System Science Data in February 2021 and can be cited
as Touzé-Peiffer, L., Albright, A. L., Fildier, B., Pincus, R., Vial, J., & Muller, C. (2021).
Atmospheric radiative profiles during EUREC4A. Earth System Science Data, 13(2), 617-630.
Anna Lea Albright, Benjamin Fildier and I contributed equally to the analysis, figures and
text. Robert Pincus, Caroline Muller and Jessica Vial helped in conceptualizing and guiding
this project and contributed to the manuscript.

C.2 Abstract

The couplings among clouds, convection, and circulation in trade-wind regimes remain a fun-
damental puzzle that limits our ability to constrain future climate change. Radiative heating
plays an important role in these couplings. Here we calculate clear-sky radiative profiles from
2504 in situ soundings (1068 dropsondes and 1436 radiosondes) collected during the EUREC4A
field campaign, which took place in the downstream trades of the western tropical Atlantic in
January-February 2020. We describe the method used to calculate these cloud-free, aerosol-free
radiative profiles. We then present preliminary results sampling variability at multiple scales,
from the variability across all soundings to groupings by diurnal cycle and mesoscale organiza-
tion, as well as individual soundings associated with elevated moisture layers. We also perform
an uncertainty assessment and find that the errors resulting from uncertainties in observed
sounding profiles, and ERA5 reanalysis employed as upper and lower boundary conditions are
small. The present radiative profile data set can provide important additional detail missing
from calculations based on passive remote sensing and aid in understanding the interplay of
radiative heating with dynamic and thermodynamic variability in the trades. The data set can
also be used to investigate the role of low-level radiative cooling gradients in generating shallow
circulations. All data are archived and freely available for public access on AERIS (Albright et
al., 2020, https://doi.org/10.25326/78).

C.3 Introduction

The EUREC4A field campaign, which took place in January and February 2020 in the down-
stream trades of the western tropical Atlantic, was designed to elucidate the couplings among
clouds, convection, and circulation in trade-wind regimes and understand the role of this in-
terplay in climate change (Bony et al., 2017). Shallow trade-wind clouds cover large parts of
tropical oceans (Wood, 2012), yet their response to warming remains largely unknown, and
uncertainty in shallow convective processes are the cause for large uncertainties in climate pro-
jections (Bony & Dufresne, 2005; S. C. Sherwood, Bony, & Dufresne, 2014; Vial, Dufresne, &
Bony, 2013; Zelinka et al., 2020). Among all physical processes involved in shallow convection,
atmospheric radiative cooling emerges as key to the coupling between low-level circulations
and convection. Understanding the dynamics driven by variations in radiative heating rates,
and potential relationship to the mesoscale organization of clear and cloudy regions, was one
motivation for the campaign (Bony et al., 2017).

A characteristic feature of the trade-wind vertical moisture profile is a sharp humidity gra-
dient between the moist marine boundary layer and dry, subsiding free troposphere around two
kilometers Malkus (1958); Riehl, Yeh, Malkus, and La Seur (1951). This characteristic vertical
moisture structure has important implications for radiative cooling profiles, but it is difficult to
observe with satellite remote sensing (Stevens et al., 2017). Indeed, moisture profile features,

196

https://doi.org/10.25326/78


C.4. DATA AND METHODS

such as the sharp decreases in moisture at the top of the marine boundary layer or elevated
moisture layers, are smaller than typical weighting functions of even hyperspectral instruments
(e.g. Maddy & Barnet, 2008; Menzel, Schmit, Zhang, & Li, 2018; Schmit, Li, Ackerman, &
Gurka, 2009), especially in the lowest three kilometers, corresponding to the weakest absorp-
tion lines (Chazette, Marnas, Totems, & Shang, 2014). The lack of informative observations
means that the vertical profile of water vapor in large-scale atmospheric analyses do not rep-
resent the fine-scale moisture structure indicated by soundings (Pincus et al., 2017). Errors in
the vertical moisture structure estimated from passive remote sensing produce corresponding
errors in radiative cooling profiles computed from retrievals and/or analyses, making in situ
soundings especially valuable.

Here we calculate radiative profiles from 2504 soundings (1068 from dropsondes and 1436
from radiosondes) collected during EUREC4A, whose network of observations provided exten-
sive sampling of the tropical trade-wind environment. Similar studies have been conducted
over continents as part of the Atmospheric Radiation Measurement program (Kato et al., 1997;
E. Mlawer, Clough, & Kato, 1998), over the western Pacific warm-pool region as part of the
Coupled Ocean Atmosphere Response Experiment (Guichard, Parsons, & Miller, 2000), and
over the western tropical Atlantic, albeit focused on transported Saharan dust layers (Gutleben,
Groß, & Wirth, 2019). The present radiative profiles have the potential to complement and
further what can be learned from calculations based on passive remote sensing. In addition, this
data set may help in understanding how low-level gradients in radiative cooling fuel shallow
circulations, as observed to emerge in remote sensing and large-eddy simulations (L’Ecuyer,
Wood, Haladay, Stephens, & Stackhouse Jr., 2008; Seifert, Heus, Pincus, & Stevens, 2015;
Stephens et al., 2012). These shallow circulations are speculated to influence the mesoscale
spatial organization of shallow convection, a question at the core of EUREC4A (Bony, Schulz,
Vial, & Stevens, 2020b; Stevens, Bony, et al., 2020).

In Section C.4, we describe the data, the radiative transfer code, and the procedure underly-
ing the calculation of the radiative profiles. We then present initial results to open the discussion
on questions that could be explored with these radiative profiles (Section C.5). Lastly, we per-
form an uncertainty assessment (Section C.6) and find that errors resulting from uncertainties
in the sea surface skin temperature, in situ soundings, and ERA5 reanalysis used as boundary
conditions are modest.

C.4 Data and methods

C.4.1 Radiosonde and dropsonde data

From January 8 to February 19, over 2500 atmospheric soundings were conducted using drop-
sondes and radiosondes over the western tropical Atlantic ocean south and east of Barbados.
As the sondes fall or ascend, their simple autonomous sensors, equipped with a GPS receiver,
measure the vertical profiles of pressure, temperature, relative humidity, and instantaneous
horizontal wind. To calculate radiative profiles, we employ level-3 data, which have been in-
terpolated into a common altitude grid with 10 meter spacing (George et al., 2021; Stephan
et al., 2020). We select dropsondes and radiosondes that have measurements on more than
ten atmospheric levels in total. This filter suffices to remove failed soundings and results in an
input data set consisting of 1068 atmospheric profiles from dropsondes and 1436 profiles from
radiosondes. The minimum and maximum levels zmin and zmax measured by each sonde are
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reported in the final data set.

Figure C.1a shows the geographic and temporal distributions of the sondes used to calcu-
late the radiative profiles. Radiosondes were launched from a network of one land station and
four research vessels, within a region ranging from 51–60◦W to 6–16◦N. On land, radiosondes
were launched from the Barbados Cloud Observatory (BCO), located on a promontory on the
easternmost point of Barbados called Deebles Point (13.16◦N, 59.43◦W), where it is exposed
to relatively undisturbed easterly trade-winds. The fleet of four research vessels includes the
French research vessel L’Atalante, two German research vessels Maria S. Merian (MS-Merian)
and Meteor, and the American research vessel from the National Oceanic and Atmospheric
Administration (NOAA) Ronald H. Brown (RH-Brown). Dropsondes were launched from both
the German High Altitude and Long Range Research Aircraft (HALO) and the United States
Lockheed WP-3D Orion from NOAA (WP-3D). HALO typically flew at an altitude of 30,000 ft
(approximately 9 km), following a circular flight pattern with 90 km radius centered at 13.3◦N,
57.7◦W. When launching sondes, the WP-3D flew at 24,000 ft (approximately 7 km), releasing
sondes along both linear and circular patterns in the region covered by HALO, as well as further
to the east close to the nominal position of the RH-Brown.

Radiosondes were launched every four hours, daily from January 8–February 19, 2020, ap-
proximately synchronously from each platform. Given that the time-lag between ascending and
descending radiosondes is on the order of hours, and that there is substantial horizontal drift
between the ascent and descent, we chose to compute separate radiative profiles for ascending
and descending radiosondes. For dropsondes, HALO flight takeoffs were staggered at 5, 8, and
11 am local time, with flights lasting approximately eight hours, yielding roughly 72 sondes
per flight. The WP-3D undertook three night flights, which allows for a better characteriza-
tion of the diurnal cycle, together with the radiosondes launched during the night (Figure C.1b).

We refer the reader to Stephan et al. (2020) and George et al. (2021) for a complete de-
scription of the radiosonde and dropsonde data sets, respectively, and Bony et al. (2017) and
Stevens et al. (2021) for an overview of the campaign scientific motivations and measurement
strategy.

C.4.2 Radiative transfer calculation

The radiative transfer code used here, RRTMGP (Rapid Radiative Transfer Model for GCMs,
Parallel) (Pincus et al., 2019), is a plane-parallel correlated-k two-stream model based on state-
of-the-art spectroscopic data for gas and condensate optics. It is based on line parameters from
Atmospheric and Environmental Research and the MT CKD water vapor continuum absorption
model (E. J. Mlawer et al., 2012). The calculation of radiative profiles from radiosonde and
dropsonde data then proceeds in the following way:

1. vertical soundings of temperature, pressure, and water vapor specific humidity at 10 meter
resolution are interpolated onto a 1 hPa vertical grid and then merged with temperature
and specific humidity from ERA5 reanalyses in the following manner. Sonde measure-
ments below 40 m are first truncated for all sondes: radiosondes do not provide data
in this surface layer because of deck heating effects on ships (Stephan et al., 2020), and
we apply the same filter to dropsondes for consistency. The ERA5 profiles at hourly
and 0.25◦ resolution (European Centre for Medium-Range Weather Forecasts, 2017) are
linearly interpolated temporally and spatially to the time, latitude, and longitude of the
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sounding. ERA5 values are used above the highest level measured by each sonde to
extend the observed soundings vertically to 0.1hPa and account for the effect of high-
altitude thermodynamic variability on the radiative cooling profiles below. To obtain the
lower boundary condition, we linearly interpolate the ERA5 sea surface skin tempera-
ture (SSTskin), also at hourly and 0.25◦ resolution (European Centre for Medium-Range
Weather Forecasts, 2017), to the time, longitude and latitude where the sounding was
launched;

2. CO2 concentrations are set to the present day value of 414 ppm while CH4, O3 and N2O
concentrations are taken from the standard tropical atmosphere profile of Garand et al.
(2001);

3. the set of resulting profiles is then used as input to RRTMGP to derive upwelling and
downwelling clear-sky radiative fluxes in the shortwave and longwave ranges of the spec-
trum. The calculation uses a spectrally-uniform surface albedo of 0.07 and a spectrally-
uniform surface emissivity of 0.98, typical values for tropical oceans.

Dropsondes and radiosondes drift horizontally as they rise and/or fall (Figure C.1a), which
could lead to slight errors due to aliasing of horizontal variability in moisture content into
vertical variability. This potential source error is less pronounced for dropsondes than for ra-
diosondes due to their faster speed of travel through the troposphere.

We compute radiative fluxes and heating rates only for the gaseous component of the at-
mosphere, without explicitly taking into account cloud or aerosol properties. These radia-
tive profiles are therefore clear-sky and aerosol-free. The soundings do, however, capture the
water vapor structure, including regions of high humidity in cloud areas and aerosol layers.
Cloud cover in trade-wind regimes is relatively low, between 10% (Nuijens, Medeiros, Sandu,
& Ahlgrimm, 2015) and 20% (Medeiros & Nuijens, 2016) for active clouds, so cloud-free, or
clear-sky, profiles are representative of the thermodynamic environment. Taking into account
the influence of cloud liquid water would require a number of ad hoc assumptions about micro-
physical and optical properties within clouds (see for instance Guichard et al., 2000). Similarly,
we do not directly represent the radiative effect of mineral dust aerosols. The dominant aerosol
radiative effect in this region has been shown to result from the covariance of aerosols with
water vapor, such that aerosols tend to be associated with elevated moisture layers Gutleben,
Groß, Wirth, and Mayer (2020); Gutleben et al. (2019). Dust aerosol layers are, moreover,
more common in the summer than in winter (Lonitz et al., 2015). We leave open the possibility
that direct scattering by dust aerosols has an additional role on radiative heating rates, but do
not have the coincident data to appropriately address this question for all soundings.
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Figure C.1: (a) The EUREC4A sounding network: 1068 soundings from dropsondes (white)
and 1436 from radiosondes (coral). We employ 807 dropsondes launched from HALO and
261 dropsondes from the WP-3D to calculate radiative profiles, as well as 276, 342, 147, 362,
and 309 radiosondes launched from the Atalante, BCO, MS-Merian, Meteor, and RH-Brown,
respectively. Background colors show sea surface skin temperature (SSTskin) from ERA5 re-
analysis at 0.25◦ resolution averaged over January and February. (b) The diurnal distribution
of the 1068 dropsondes (blue) and 1436 radiosondes (coral) with sonde launch-time binned in
10-minute intervals.
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C.5 Preliminary results and discussion

This section includes a first exploration of the data set. We examine radiative variability
at different scales – across all soundings, at the diurnal timescale, and according to different
patterns of mesoscale organization – as well as in individual profiles showing the influence of
sharp vertical moisture gradients on radiative heating rates.

Figure C.2: Top: Temperature (a), specific humidity (b) and relative humidity (c) (with respect
to ice for T < 0◦C) from EUREC4A dropsonde and radiosonde data. Bottom: Shortwave (d),
longwave (e) and net (f) heating rates calculated from EUREC4A dropsonde and radiosonde
data using the radiative transfer code RRTMGP. The center traces are the median profiles, and
the medium and light grey shadings indicate the 25–75% and 5–95% intervals, respectively. For
the shortwave, the median and the interquartile range are calculated using daytime values only.
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C.5.1 Variability across soundings

A distribution of longwave, shortwave, and net heating rates, as well as large-scale thermody-
namic quantities, are shown in Fig. C.2. Local extrema in the median shortwave, longwave,
and net heating rates occur near 2 km (Fig. C.2d,e,f), associated with the rapid decrease in
specific and relative humidity at this level (Fig. C.2b,c). The top of the planetary boundary
layer, or interface between the moist marine boundary layer and dry free troposphere above, is
expected to occur around 2km in the trades (Cao, Giambelluca, Stevens, & Schroeder, 2007;
Malkus, 1958; Stevens et al., 2017). The spread in specific and relative humidity is greater
than that in temperature, suggesting a strong role for moisture variability on the variability in
radiative heating rates. On average, longwave cooling is stronger than shortwave heating, such
that net heating rates are largely negative from the surface up to 10 km, with a median value
around -1 K/day. Additional local minima in longwave heating are observed around 3 and 5
km between the 5% and 25% quantiles. These local minima could, for instance, correspond
to the radiative effect of elevated moisture layers arising from convection detraining moisture
at these higher levels, albeit less frequently, or aerosol layers associated with increased water
vapor concentrations (Gutleben et al., 2019; O, Wood, & Tseng, 2018; Stevens et al., 2017;
Wood, O, et al., 2018; Wood, Tseng, et al., 2018).

We next partition radiative heating variability into its variability in time (e.g. diurnal cycle,
day-to-day variability) and regarding the spatial characteristics of the convection field (e.g. the
spatial distribution of clear and cloudy regions).

C.5.2 Diurnal cycle and day-to-day variability

Figure C.3 gives an overview of the diurnal variability of radiative heating, which has been
implicated in the diurnal cycle of convection and cloudiness (e.g., W. M. Gray & Jacobson Jr,
1977; D. A. Randall & Tjemkes, 1991; Ruppert & Johnson, 2016). Shortwave radiative heating
follows the solar cycle. Longwave heating rates show less diurnal variability and have approxi-
mately the same amplitude (with an opposite sign) as shortwave heating rates during daytime.
This compensation between longwave cooling and shortwave heating results in a daytime net
heating rate that is slightly positive in the lower 2km. The daytime heating contributes to
stabilizing the lower atmosphere, disfavoring convection. At night, strong radiative cooling
destabilizes the lower troposphere and strengthens convection. The maximum nighttime long-
wave cooling occurs slightly above 2 km, with secondary cooling peaks occurring around 4 and
6km. During daytime, the peak in stabilizing radiative heating appears slightly below 2km.
This difference in the height of peak radiative heating, albeit of different sign, could reflect dif-
ferences in the height of the moist, convecting layer over the diurnal cycle: a shallower marine
boundary layer during the day that deepens at night (Vial et al., 2019b). These considerations
highlight the potential for subtle interactions among radiation, convection, and cloudiness on
the diurnal timescale.

Fig. C.4 shows the day-to-day evolution of the shortwave (top), longwave (middle) and
net (bottom) heating rates derived from radiosondes launched at BCO. In the shortwave and
net heating rates, the daily stripes are due to zero shortwave heating during the night. In
the longwave component alone, the amplitude of the diurnal cycle is less evident. Regarding
the day-to-day variability, both in the shortwave and the longwave components, trends in the
height-evolution of the radiative heating maxima appear to persist over several days. These
trends are likely due to variations in humidity (e.g. Dopplick, 1972; Jeevanjee & Fueglistaler,
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Figure C.3: Diurnal composite of shortwave (left), longwave (middle), and net (right) clear-sky
heating rates binned in 10-minute intervals. Colored shadings indicate heating rates in units
of K/day. The data are plotted with respect to local solar time to simplify interpretation of
the diurnal cycle. White indicates the absence of data. We note that some variability, such as
in the nighttime longwave radiative cooling variability, could result from different numbers of
sondes launched throughout the diurnal cycle (as illustrated in Fig. C.1b).

2020) and are consistent with the presence of multi-day trends in moisture observed at BCO
during the campaign (see Figure 13 in Stevens et al., 2021). At the end of the campaign, the
rise in the peak of longwave cooling appears to correspond to the rising location of the interface
between the moist, convecting layer below and dry free troposphere above (not shown). The
persistence and evolution of radiative heating patterns could be tied to larger-scale synoptic
moisture activity or to the evolution of mesoscale organization patterns.
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Figure C.4: Shortwave (top), longwave (middle), and net (bottom) heating rates at BCO during
EUREC4A, from January 19 to February 17. The heating rates are calculated from radiosondes
launched at BCO. In colors are heating rates with units of K/day. White indicates the absence
of data.
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C.5.3 Radiative signatures of mesoscale patterns of cloud organiza-
tion

We next aggregate radiative heating rates spatially. Fig. C.5 illustrates four representative
cases of the Fish-Gravel-Flower-Sugar classification established previously for mesoscale (20-
2,000km) organization patterns of clear and cloudy regions (Bony et al., 2020b; Stevens, Bony,
et al., 2020). These cloud organization patterns were identified visually from satellite imagery
and correspond to differences in large-scale environmental conditions (Bony et al., 2020b). They
are also observed to have different top-of-the-atmosphere radiative effects (Bony et al., 2020b).
As outlined in Stevens, Bony, et al. (2020), Sugar refers to a ‘dusting’ of small, shallow clouds
with low reflectivity and a random spatial distribution. Gravel clouds tend to be deeper than
Sugar (up to 3-4km), have little stratiform cloudiness, precipitate, and organize along apparent
gust fronts or cold pools at the 20-200km scales. Fish are skeletal networks (often fishbone-like)
of clouds at the 200-2,000km scale with stratiform cloud layers; the Fish pattern is often as-
sociated with extratropical intrusions. Flowers are circular features defined by their stratiform
cloud elements. Both Fish and Flowers are surrounded by large swaths of clear air.

We choose four days as an example of the large-scale environmental and radiative signature
of each pattern, given the spatial pattern observable in the GOES-16 satellite images in the
HALO flight path shown by the white circle. We plot daily-mean profiles for temperature,
specific humidity, and relative humidity (Fig. C.5a,b,c), as well as shortwave, longwave, and
net radiative heating rates (Fig. C.5d,e,f). These profiles were calculated from approximately
70 HALO dropsondes launched during the eight-hour flight on each day. We also plot the
standard deviation of radiative heating for each flight (Fig. C.5g,h,i). As a first approximation,
the standard deviation of daily radiative heating profiles acts as a proxy for spatial variability
in radiative heating rates.

Spatial variability in radiative heating has been shown to drive shallow circulations (e.g.
Naumann, Stevens, & Hohenegger, 2019) and affect convective organization (e.g. C. S. Brether-
ton et al., 2005; Muller & Held, 2012). In this illustrative example, the differences in the mean
and standard deviation of the radiative heating rates hint at a role for differences in radiative
cooling rates in the onset or maintenance of mesoscale patterns of organization. For instance,
the ‘Fish’ pattern on January 22, 2020 is associated with a moister lower troposphere between
1 and 3km and slightly drier free troposphere above 4km. This vertical moisture distribution
may give rise to the observed vertical variability in radiative heating rates, with larger peaks in
the mean profile (Fig. C.5e) and standard deviation (Fig. C.5h) in radiative heating observable
between 2 and 4km, likely corresponding to strong humidity gradients at these levels.
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Fish 22-01-2020

Flower 02-02-2020

Gravel 05-02-2020

Sugar 09-02-2020

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.5: Thermodynamic (a-c), daily mean radiative heating (d-f), and daily standard
deviation of radiative heating (g-i) profiles classified by mesoscale organization pattern, using
a characteristic example of each type as diagnosed from snapshots from GOES-16 infrared
channel (left column). This figure employs HALO dropsondes launched in the circular flight
pattern (shown by the white circle) on the chosen day, corresponding to roughly 70 dropsondes
each. We focus on the spatial extent of the HALO flight pattern because the cloud organization
pattern does not necessarily extend across the entire sampling domain Figure C.1a, nor have
the patterns been shown to be scale-invariant.
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C.5. PRELIMINARY RESULTS AND DISCUSSION

C.5.4 Effect of sharp moisture gradients on radiative heating pro-
files

Figure C.6 highlights the radiative signatures of elevated moisture layers, which can persist for
multiple hours at inversion levels (Gutleben et al., 2019; Stevens et al., 2017; Wood, O, et al.,
2018). We focus in detail on two thermodynamic and radiative heating profiles of a particular
elevated moisture layer extending to 4 kilometers, alongside GOES-16 images (Fig. C.6i,j) cor-
responding to these soundings. This structure persisted for at least four hours on January 24,
2020, and we plot thermodynamic conditions and radiative heating profiles sampled three hours
apart, at 12:55 and 15:55 UTC (see Fig. C.6). A striking feature is the sharp peak in longwave
cooling at the top of the moisture layer of nearly -20 K/day at 15:55 UTC, corresponding to
the strong humidity gradient, with relative humidity decreasing by nearly 70% in 100 meters
(Fig. C.6c,d).

Although we calculate clear-sky profiles only, the present work could be extended to account
for radiative effect of cloud liquid water, which could be used, for instance, to investigate the
radiative effect of geometrically- and optically-thin ‘veil clouds’ persisting at inversion levels
(O et al., 2018; Wood, O, et al., 2018; Wood, Tseng, et al., 2018), such as those illustrated
by the flight photographs (Fig. C.6a,e). Over global oceans, approximately half of low clouds
do not fully attenuate space-borne lidar, suggesting that these optically-thin clouds contribute
significantly to total cloud cover estimates (Leahy et al., 2012) and could have an important
radiative impact (e.g., Wood, Tseng, et al., 2018).
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(b) (c) (d)

(f) (g) (h)

(a)

(e)

(i) (j)

Figure C.6: Thermodynamic and radiative heating profiles associated with an elevated moisture
layer persisting for multiple hours on January 24, 2020 in the HALO flight pattern. Plotted
here are the temperature (b), specific humidity (c), relative humidity (d), as well as shortwave,
longwave, and net radiative heating rate (f-h) profiles for two soundings sampled three hours
apart, at 12:55 and 15:55 UTC. Alongside these profiles are photographs (a,b) taken from the
HALO aircraft during the flight and GOES-16 satellite images (i,j), with the dropsonde location
and launch time indicated by a circle along the circular flight pattern. Credit for the two flight
photographs: J. Vial.
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C.6. UNCERTAINTY ASSESSMENT

C.6 Uncertainty assessment

To evaluate the robustness of our results and ensure good use of this data set, we performed
several uncertainty assessments by perturbing the SSTskin, in situ moisture data, and ERA
profiles used. We also included in the data set the minimum and maximum levels zmin and
zmax measured by each sonde. Unless indicated otherwise, the errors reported below correspond
to a subset of profiles with valid data starting at 40 m (ie. zmin ≤ 40 m) and during daytime,
which corresponds to 1314 profiles. The daytime filter was required for relevant calculation of
the error in the shortwave, and then kept for consistency for the longwave, but the magnitude
of errors in the longwave is not affected by this filter (not shown).

We first test the sensitivity to the ERA5 SSTskin. To this end, we perturbed the original
SSTskin by ± 0.42 K and recalculate all heating rates. This value is chosen as it corresponds to
the root-mean-square-error (RMSE) between between ERA5 SSTskin and Marine-Atmosphere
Emitted Radiance Interferometers (M-AERI) measures taken during a series of cruises in the
Carribbean Sea from 2014 to 2019 (Luo & Minnett, 2020). Figure C.7 shows the RMSE between
the original and perturbed radiative profiles (blue curves). In the longwave and net, the effect
of the perturbation is strong in the first atmospheric layer, but then decreases rapidly and
becomes negligible after a few hundred meters. Except for the first few atmospheric layers, the
uncertainty around the SSTskin can therefore be safely neglected.
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Figure C.7: Root-mean-square error estimates in shortwave (left), longwave (center) and net
heating rates (right) for perturbations in SSTskin (blue), ERA5 humidity profiles (green) and
sonde humidity measurements (red) for the 1314 daytime profiles that have valid data starting
at 40 m. Dashed curves show negative perturbations, solid curves show positive perturbations
and dotted green curves show ERA5 humidity perturbations restrained to the 1117 daytime
profiles that have valid data at all levels between 40 m and 8 km. The horizontal grey bars on
the left panel show the frequency distribution in the maximum level measured (zmax).

We then investigate the sensitivity to the uncertainty of sounding measurements by per-
turbing all soundings by a vertically-uniform relative error and redoing all radiative transfer
calculations. The manufacturer predicts an uncertainty of ± 0.1 K for the temperature and ± 3
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% for specific humidity (Vaisala, 2020). The temperature uncertainty has virtually no effect on
radiative profiles (not shown). The effect of ± 3 % uncertainty on the specific humidity profiles
is shown in Fig. C.7 in red. The highest RMSE for this specific humidity perturbation occurs
in the cloud layer, between 800 m and 2 km, with a magnitude of 0.05 K/day for net radiative
heating. A secondary peak with a magnitude of 0.03 K/day is also evident near the inversion,
at about 3 km. Given a median radiative heating value of -1K/day throughout the lower tropo-
sphere (Sec. C.5.1), these errors are roughly 3-5% for the net radiative heating. These maxima
likely correspond to the cumulative errors at the altitude of large vertical humidity gradients,
which lead to peaks in longwave, and to a lesser extent shortwave heating rates for individual
profiles.

Finally, we explore the uncertainty associated with ERA5 temperature and humidity data
employed as an upper boundary condition. Similarly to the uncertainty analysis for the sound-
ing data, we perturb ERA5 3D fields – used as input to the radiative transfer code – by a
uniform relative error. Previous studies have shown that ERA5 reanalyses can present biases
of various kinds (Dyroff et al., 2015; Nagarajan & Aiyyer, 2004). We compare ERA5 humidity
and temperature data with coincident radiosonde measures to obtain an estimate of ERA5 bi-
ases up to 100 hPa. From the surface to 100 hPa, the RMSE in temperature between co-located
radiosonde soundings and ERA5 is between 0.3 and 0.7 K, with a mean of 0.5 K, and between
5% (at the surface) and 70 % (near the inversion) for the specific humidity, with a mean around
30 %.

Fig. C.7 only shows the effect of the ERA5 specific humidity uncertainty, taken at ± 30
%, on radiative profiles, as the temperature has once again a negligible influence. The cor-
responding green curves (respectively dashed and solid) reveal local maxima in the longwave
and net heating rates around 3, 7 and 9.5 km. Again given a median radiative heating value
of -1K/day throughout the lower troposphere (Sec. C.5.1), the errors at these local peaks
are between 10-30%. These maxima coincide with the modes in the frequency distribution of
the highest level zmax measured by the soundings, indicated in grey in the left panel. These
peaks suggest that the uncertainty arises from the large discontinuities emerging at the ERA5-
sounding junction level when perturbing ERA5 humidity profiles. The results suggest that the
corresponding uncertainty mainly occurs in the vicinity of the junction levels. This notion is
further confirmed by calculating the RMSE only on profiles which have data between 40 m and
8 km (ie. zmin ≤ 40 m and zmax ≥ 8 km, dotted green curve): the remaining 1117 profiles
left do not contain vertical discontinuities in humidity in this range, and we see that the re-
maining upper-tropospheric discontinuities do not affect heating rates in the lowest troposphere.

Overall, the small uncertainty values given with these tests support the robustness of this
data set and gives confidence regarding its use for more detailed investigations in the lower
troposphere. The uncertainty from sea surface skin temperature is limited to the first few
atmosphere layers, and uncertainty from merging with ERA5 specific humidity is largely con-
tained to the sounding-reanalysis junction point. Uncertainty associated with observed specific
humidity profiles produces localized errors in the cloud and inversion layers below 3km, though
these errors are approximately 5% or less. We recommend that users carefully compare the
magnitude of the signal they analyze with the magnitudes of the errors provided here.
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C.7 Conclusions

The first objective of this work is to present the method used to calculate clear-sky, aerosol-
free radiative profiles from 2504 radiosonde and dropsonde soundings launched during the
EUREC4A field campaign. These radiative profiles are calculated using a state-of-the-art
correlated-k model, RRTMGP, in which ERA5 reanalyses provide lower and upper bound-
ary conditions. We then aggregate the radiative heating profiles at multiple scales to examine
temporal and spatial variability in trade wind regimes. We find that radiative heating rates in
the wintertime trade-wind environment display significant diurnal and day-to-day variability,
and we observe hints that this variability may be associated with different types of mesoscale
organization. An uncertainty assessment is further conducted to demonstrate that the influ-
ence of uncertainties in the sounding data, and upper and lower boundary conditions, is small
relative to the magnitude of estimated radiative heating.

These results present a first overview of how this data set could help answer existing research
questions, in particular: 1) What is the role played by radiation in the mesoscale organization
of shallow convection? (e.g. C. S. Bretherton & Blossey, 2017; Seifert & Heus, 2013b) 2) what
is the interplay between the diurnal variability in radiative heating, convection, and cloudiness?
(e.g., W. M. Gray & Jacobson Jr, 1977; Ruppert Jr & O’Neill, 2019; Vial et al., 2019b), and
3) what is the influence of clear-sky radiative cooling gradients on atmospheric circulations?
(e.g. K. Emanuel, Wing, & Vincent, 2014; W. Gray & Jacobson, 1977; Mapes, 2001; Naumann
et al., 2019; Thompson, Bony, & Li, 2017). Such questions regarding the coupling of clouds,
convection, and circulations in trade-wind regimes are at the heart of the EUREC4A field cam-
paign, and the radiative profiles presented here complement other EUREC4A observations and
data products in forming a toolbox for these investigations.

C.8 Code and data availability

All data are archived and freely available for public access on AERIS (Albright et al., 2020,
https://doi.org/10.25326/78). The code used to compute the radiative profiles and python
scripts used to generate the figures of the present paper are publicly released on Zenodo
(https://doi.org/10.5281/zenodo.4010195) and Github (https://github.com/bfildier/
Albright2020).

211

https://doi.org/10.25326/78
https://doi.org/10.5281/zenodo.4010195
https://github.com/bfildier/Albright2020
https://github.com/bfildier/Albright2020


APPENDIX C. ATMOSPHERIC RADIATIVE PROFILES DURING EUREC4A

212



Appendix D

Résumé long en français

Chapitre 1 – Introduction

Historiquement, les modèles de circulation générale (MCG) ont joué un rôle crucial pour avertir
les décideurs et le grand public des changements climatiques à venir. Ces modèles, au départ
uniquement atmosphériques, ont été couplés à partir des années 80 à des modèles océaniques et
utilisés pour comprendre le climat actuel et prédire le climat futur. Les MCG couplés ont joué
un rôle clef dans les rapports du GIEC, le Groupe d’experts Intergouvernemental sur l’Evolution
du Climat, qui synthétisent l’état des connaissances sur les changements climatiques et leurs
conséquences sur les sociétés humaines.

Les MCG atmosphériques ont une structure duale : d’une part, ils sont fondés sur une
forme particulière des équations de la mécanique des fluides, dites équations primitives, qui
sont discrétisées sur une grille couvrant l’ensemble de l’atmosphère. Dans les MCG utilisés au-
jourd’hui, la résolution horizontale typique est comprise entre 50 et 300 km, avec une résolution
verticale variant de quelques dizaines de mètres à quelques kilomètres selon l’altitude. Le pas
de temps utilisé dans les MCG est typiquement de l’ordre de dix minutes, ce qui signifie que
toutes les dix minutes, les variables d’état du modèle – la température, l’humidité spécifique,
la pression et les vents horizontaux et verticaux notamment – sont calculées à chaque point de
la grille du modèle.

Cette discrétisation permet de former la “dynamique” des MCG, qui est utilisée pour cal-
culer les mouvements à grande échelle des masses d’air dans l’atmosphère. Cependant, de
nombreux phénomènes se produisent à une échelle inférieure à celle de la grille des MCG et
sont ignorés par la dynamique. Des paramétrisations sont introduites pour tenir compte malgré
tout de ces processus et constituent la “physique” des MCG. En particulier, les MCG ont une
grille trop grossière pour résoudre les nuages et la convection atmosphérique et utilisent des
paramétrisations pour prendre en compte leur effet moyen à l’échelle de la grille du modèle.
Au cours des cinquante dernières années, différentes paramétrisations de la convection ont été
proposées (ex : Arakawa & Schubert, 1974; DelGenio & Yao, 1993; K. A. Emanuel & Živković-
Rothman, 1999). En raison de l’importance de la convection atmosphérique pour le système
climatique, ces paramétrisations de la convection sont un élément clé de tout MCG.

Cependant, au cours des 20 dernières années, des critiques ont été formulées à l’encontre
des paramétrisations : en particulier, les progrès permis par les paramétrisations de la con-
vection ont été parfois décrits comme trop lents, et certains modélisateurs ont vu dans les
paramétrisations de la convection une “impasse” (D. Randall et al., 2003; D. A. Randall, 2013).
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Des alternatives ont été proposées, fondées sur des modèles à plus haute résolution que les MCG
ou sur du machine learning. Une discussion sur les fondements des paramétrisations et le type
de compréhension qu’elles nous offrent pourrait aider à évaluer ce qui serait perdu ou gagné
si les paramétrisations étaient remplacées par d’autres méthodes. Plus précisement, des ques-
tions épistémologiques comme : “Qu’essayons-nous de représenter lorsque nous paramétrisons
la convection atmosphérique ? Dans quel sens les paramétrisations sont-elles en partie ad hoc,
en partie déterminées par la théorie ? Quelles interprétations peut-on donner au formalisme
employé dans les paramétrisations ? Comment ces interprétations aident-elles à mieux com-
prendre le rôle de l’ajustement des paramètres, ou tuning, dans les MCG ?” nous semblent tout
à fait pertinentes dans le contexte actuel.

Pour répondre à ces questions, j’ai choisi dans ma thèse une approche originale, à l’interface
entre les sciences du climat et la philosophie des sciences. J’ai eu la chance, pendant ma
thèse de doctorat, de participer à plusieurs travaux scientifiques qui m’ont permis de découvrir
différentes facettes de l’étude de la convection atmosphérique. En particulier, j’ai pris part
à la campagne de terrain EUREC4A, qui s’est déroulée en janvier-février 2020 à l’ouest de
l’océan Atlantique, et j’ai été impliqué dans plusieurs études qui en ont découlé (Albright
et al., 2020; Stevens et al., 2021; Touzé-Peiffer et al., 2021). J’ai également implémenté une
paramétrisation dans le MCG atmosphérique LMDZ et mené un travail important de re-tuning
du modèle suite à l’ajout de cette nouvelle paramétrisation. Grâce à ce travail, j’ai acquis
une connaissance pratique des défis épistémologiques posés par le tuning des modèles et des
nouvelles perspectives offertes par les méthodes de tuning automatique. Enfin, j’ai été confronté
au monde des simulations avec une résolution hectométrique (large-eddy simulations, LES) et
kilométrique (cloud-resolving models, CRM) sur de grands domaines en contribuant à une étude
définissant une méthode de détection des poches froides dans de telles simulations (Rochetin
et al., 2021). Ces différents travaux sont utilisés tout au long de ma thèse comme exemples,
études de cas ou prétextes pour mener une réflexion épistémologique sur les paramétrisations
de la convection, leur utilisation dans les modèles, et leurs fondements. Dans la suite, je donne
un résumé des différents chapitres qui composent le manuscrit.

Chapitre 2 – Nature et rôle des objets dans l’étude de la convection atmosphérique

Derrière la complexité des écoulements atmosphériques, certaines structures cohérentes jouant
un rôle important pour la convection atmosphérique peuvent être distinguées et isolées d’un
environnement – j’appelle de telles structures “objets”. Les objets les plus évidents sont ceux
qui sont visibles à l’oeil nu : un nuage ou une averse par exemple. D’autres objets sont invisi-
bles, mais jouent également un rôle important dans la convection atmosphérique. La présence
de vitesses verticales positives élevées dans une certaine région de l’espace peut par exemple
être utilisée pour isoler des “ascendances” (parfois appelées “thermiques” ou “panaches”) d’un
environnement avec des vitesses verticales plus faibles.

Que l’on étudie l’atmosphère à l’oeil nu, avec des instruments sophistiqués ou avec des
modèles numériques, chaque scène observée est unique. Les objets aident à nommer et à re-
connâıtre certaines similitudes dans cette diversité apparente. Ils nous permettent d’identifier
certains phénomènes récurrents derrière l’aspect désordonné et chaotique des écoulements atmo-
sphériques. J’explique que les objets ne sont cependant pas donnés par la nature, mais résultent
d’une construction. Trouver des objets pertinents pour décrire la convection atmosphérique est
donc essentiel pour la comprendre. Les objets orientent la recherche atmosphérique vers cer-
taines questions spécifiques, aident à formuler et à tester des hypothèses, font le lien entre des
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études autrement isolées, et plus généralement, sont le prisme à travers nous voyons la convec-
tion atmosphérique.

J’étudie ces différentes facettes du rôle des objets dans notre compréhension de la convec-
tion atmosphérique à travers l’exemple des poches froides, sur lesquelles j’ai travaillé pendant
ma thèse, en lien avec la campagne de terrain EUREC4A. Les poches froides sont un type
particulier de courant de densité formé par l’évaporation partielle des précipitations sous un
nuage. On sait aujourd’hui que l’air à l’intérieur d’une poche froide est peu favorable à la con-
vection, alors que le bord des poches, appelé le front de rafale, peut dans certaines situations
soulever les masses d’air environnantes et créer de nouvelles cellules convectives (Craig Goff,
1976; Warner et al., 1979). Des études ont montré que ce déclenchement est particulièrement
efficace lorsque deux poches froides entrent en collision (Droegemeier & Wilhelmson, 1985) ou
lorsque la vorticité créée par une poche froide s’oppose à celle induite par le cisaillement du vent
à basse altitude (Droegemeier & Wilhelmson, 1985). De plus, comme elles induisent de fortes
rafales près de la surface, les poches froides sont suspectées d’augmenter les flux de surface,
et donc de modifier les propriétés thermodynamiques de la couche sous-nuageuse (Langhans &
Romps, 2015; Tompkins, 2001). Pour toutes ces raisons, on attribue aujourd’hui aux poches
froides un rôle important dans l’organisation et la propagation de la convection (Kurowski et
al., 2018; Schlemmer & Hohenegger, 2014; Tompkins, 2001). Avec une telle description, on voit
que l’objet “poches froides” a été le sujet de nombreuses études et est désormais relativement
bien défini.

Pourtant, cet objet n’est pas donné par la nature mais est le résultat d’une construction.
Je le montre en analysant comment le terme “poches froides” est progressivement apparu dans
le vocabulaire des scientifiques qui étudient la convection atmosphérique. Je distingue trois
étapes dans l’émergence des poches froides en tant qu’objet. Tout d’abord, certaines struc-
tures qui seront plus tard appelées poches froides ont été vues et décrites dans les observations
(Newton, 1963; E. J. Zipser, 1969). Ensuite, les poches froides ont été identifiées comme l’un
des blocs constitutifs de la convection, détecté et étudié à la fois dans des observations et dans
des simulations à haute résolution (Tompkins, 2001; Young et al., 1995). Enfin, la connaissance
acquise sur les poches froides a été utilisée pour construire des paramétrisations utilisées dans
des GCMs (Grandpeix & Lafore, 2010; Park, 2014; Qian et al., 1998). Les poches froides ont
donc été construites progressivement à partir d’études fondées sur des observations, des simu-
lations à haute résolution et même des paramétrisations.

J’utilise ensuite les poches froides pour illustrer trois utilisations des objets: orienter les
recherches atmosphériques sur certaines questions spécifiques, résumer notre compréhension et
servir de guide pour analyser les observations et les simulations à haute résolution.

Donner un nom à un objet permet d’orienter les recherches atmosphériques sur cer-
taines questions autour de cet objet. Un objet bien défini comme les poches froides
conduit à la formulation de questions spécifiques, partagées au niveau d’une certaine com-
munauté de recherche. Avec ces questions, les objets décomposent des problèmes complexes,
par exemple “comprendre la convection atmosphérique”, en une série de problèmes plus sim-
ples qui peuvent être traités séparément, comme “dans quelles conditions les poches froides
déclenchent-elles de nouvelles cellules convectives ?” En d’autres termes, les objets orientent
la recherche atmosphérique vers certaines questions spécifiques et solubles. Des questions bien
posées motivent la formulation et le test d’hypothèses, et relient ainsi des études autrement
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isolées. Dans l’introduction de nombreuses études sur les poches froides, de telles questions
partagées au niveau de la communauté scientifiques sont souvent présentées comme une moti-
vation principale pour le travail proposé (voir par exemple l’introduction de Drager & van den
Heever, 2017; Gentine et al., 2016; Torri et al., 2015).

En orientant la recherche atmosphérique vers certaines questions spécifiques, les objets per-
mettent d’étudier une hypothèse donnée à l’aide d’une variété d’outils, et donc d’évaluer sa
robustesse. Par exemple, au cours de la dernière décennie, différentes études ont porté sur le
rôle des poches froides dans le cycle diurne de la convection sur continent. En particulier, lorsque
la paramétrisation de Grandpeix and Lafore (2010) a été utilisée dans le MCG atmosphérique
LMDZ, l’étude de Rio et al. (2009) a montré que le cycle diurne de la convection sur continent
prédit par le modèle était décalé à la fin de l’après-midi. Cela a corrigé un biais présent dans
LMDZ et partagé par de nombreux MCG, où la convection a tendance à être en phase avec
l’insolation, donc à atteindre son intensité maximale aux alentours de midi, contrairement aux
observations où l’intensité maximale de la convection sur continent est généralement atteinte
quelques heures plus tard. Ce résultat a conduit à l’hypothèse que les poches froides jouent
un rôle fondamental dans le cycle diurne de la convection sur continent. Par la suite, cette
hypothèse a été testée par Haerter et al. (2019) dans une simulation LES idéalisée, puis par
Hirt and Craig (2021) dans une simulation CRM réaliste sur l’Allemagne. Haerter (2019) a
ensuite proposé d’expliquer le lien entre les poches froides et le cycle diurne de la convection à
l’aide d’un modèle conceptuel. Une hypothèse donnée – le rôle des poches froides dans le cycle
diurne de la convection – a ainsi pu être testée et confirmée en utilisant une variété d’outils.
Cela illustre comment les objets peuvent servir de catalyseur pour guider les recherches autour
de certaines hypothèses bien définies.

Les objets aident aussi à résumer notre compréhension d’un certain phénomène.
Ils donnent en effet des mots auxquels nous pouvons attacher notre compréhension de certains
phénomènes qui partagent des caractéristiques similaires. Par exemple, si deux études A et B
prouvent avec succès deux hypothèses différentes sur le même phénomène, nous pourrons relier
les résultats de A et B uniquement parce que nous avons un mot pour nommer ce phénomène,
donc pour le reconnâıtre à la fois dans A et dans B. Plus généralement, les objets nous aident
à relier des études qui donnent toutes une vision partielle d’un phénomène afin de comprendre
ce phénomène dans son intégralité. En résumant ce que nous savons, les objets aident aussi
à évaluer les limites de nos connaissances et donc à repousser ces limites. Nous montrons ce
pouvoir des objets à travers le schéma conceptuel proposé par Rochetin et al. (2021) (voir 2.6),
qui fait le lien entre différentes études et résume ainsi à la fois notre compréhension actuelle
des poches froides et les questions en suspens.

Enfin, les objets donnent des principes pour analyser observations et simulations
à haute résolution. Comme l’écrit Auguste Comte: “Si en contemplant les phénomènes, nous
ne les rattachions point immédiatement à quelques principes, non seulement il nous serait impos-
sible de combiner ces observations isolées, et, par conséquent, d’en tirer aucun fruit, mais nous
serions même entièrement incapables de les retenir” (Comte, 1835). Selon le philosophe, nous
avons besoin de certains principes pour étudier les phénomènes. Ces principes déterminent ce
que nous pouvons apprendre des observations. Si l’on en croit cette théorie, nos connaissances
accumulées sur les poches froides nous permettraient donc en retour de mieux les observer.
Je l’illustre par deux études récentes sur les poches froides dans lesquelles j’ai été impliqué :
1) Rochetin et al. (2021), qui propose une méthode pour détecter les poches froides dans des
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simulations CRM et LES et 2) Touzé-Peiffer et al. (2021), qui analyse les poches froides dans des
régimes d’alizés à partir de sondages collectées pendant la campagne EUREC4A. Dans chacun
de ces deux exemples, la compréhension que les auteurs ont des poches froides a été cruciale
pour construire une méthode de détection la plus pertinente possible en fonction des données
disponibles. En retour, les méthodes de détection utilisées ont permis de mieux comprendre
les poches froides. Pour l’illustrer, je cite des exemples de nouveaux résultats qu’ont permis de
montrer ces deux études.

Notre compréhension des objets est donc en grande partie incrémentale: ce que nous com-
prenons d’un objet nous donne un angle d’attaque pour l’étudier dans des observations ou dans
des simulations à haute résolution, qui nous permettent de le comprendre encore davantage.

Chapitre 3 – Le monde semi-empirique des paramétrisations de la convection

De nombreux biais des MCG ont été attribués à la mauvaise représentation des processus sous-
maille dans les paramétrisations, qui ont parfois été qualifiées de “talon d’Achille” des modèles
climatiques (Stone & Risbey, 1990). En particulier, les paramétrisations de la convection
sont souvent décrites comme une source majeure d’incertitude pour les projections climatiques
(Stevens & Bony, 2013). De plus, bien que des progrès significatifs aient été réalisés depuis
l’introduction des premières paramétrisations de la convection dans les MCG il y a 50 ans (Rio
et al., 2019), certains ont critiqué la lenteur de ces progrès et décrit les paramétrisations de la
convection comme une “impasse” (T. Palmer & Stevens, 2019; D. Randall et al., 2003).

Les critiques contre les paramétrisations ne concernent pas seulement leur effet dans les
MCG, mais aussi leur fondement scientifique. En particulier, la nature semi-empirique
des paramétrisations est souvent critiquée. Les paramétrisations ne sont en effet pas
entièrement dérivées de principes fondamentaux, mais incluent des hypothèses ad hoc et des
paramètres ajustés pour garantir une certaine cohérence avec les observations. Edwards (2001)
soutient que la “relation floue” des paramétrisations avec les données d’observation est en con-
tradiction avec l’impératif réductionniste des sciences physiques, qui tentent “d’expliquer les
phénomènes à grande échelle comme un résultat de processus à plus petite échelle”. Cependant,
Edwards (2001) n’explique pas pourquoi les paramétrisations devraient répondre aux normes
réductionnistes. Plus généralement, alors que de nombreux philosophes des sciences ont men-
tionné et parfois critiqué le caractère semi-empirique des paramétrisations (ex : Lloyd, 2009;
Petersen, 2012), peu d’études ont défini précisément dans quel sens les paramétrisations sont
en partie déterminées par la théorie, en partie déterminées par les observations, et donc si et
pourquoi leur nature semi-empirique est légitime, ou non.

Je tente de répondre à ces questions en adoptant une approche partiellement historique pour
expliquer le contexte dans lequel les paramétrisations ont émergé et comment le problème de la
paramétrisation de la convection a initialement été formulé et a évolué par la suite. La genèse
des paramétrisations de la convection tient dans le fait que, lorsque les premiers MCG atmo-
sphériques ont été développés dans les années 60, un problème majeur est apparu : les profils
atmosphériques prédits par les MCG dans les tropiques devenaient rapidement instables, ce qui
entrâınait des mouvements verticaux intenses à l’échelle de la grille du modèle. Cela était dû au
fait que la grille utilisée dans les MCG, avec une résolution horizontale de l’ordre de quelques
centaines de kilomètres, était trop grossière pour résoudre la convection atmosphérique. La
convection agit comme une rétroaction négative sur les instabilités de grande échelle, mais elle
a lieu à une échelle très inférieure à celle de la grille des MCG : pour résoudre la convection
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atmosphérique, il faut utiliser des modèles numériques avec une résolution horizontale d’un
kilomètre ou moins. La présence de convection atmosphérique à l’échelle de la grille dans les
premiers MCG était donc très peu réaliste : lorsqu’elle se développait, les erreurs augmentaient
de façon exponentielle dans ces modèles (Kasahara, 1961; Lilly, 1962).

Pour obtenir une circulation atmosphérique à grande échelle réaliste à l’aide des MCG, il
était nécessaire de trouver un moyen de tenir compte de la présence de la convection atmo-
sphérique dans chaque maille d’un MCG, et donc d’empêcher les profils atmosphériques simulés
de devenir instables. Cela a motivé l’apparition des premières paramétrisations de la convection
atmosphérique, qui étaient au départ un simple ajustement des gradients de température dans
l’atmosphère lorsque les profils correspondants devenaient instables – une procédure appelée
“ajustement convectif humide” (Manabe & Strickler, 1964). Cette stratégie a aidé les premiers
MCG à surmonter leurs difficultés à prédire des profils thermodynamiques verticaux réalistes.

Les auteurs mêmes de ces ajustements les décrivaient cependant comme ad hoc, imparfaits,
et souhaitaient qu’ils soient rapidement remplacés par des paramétrisations davantage ancrées
dans la théorie (Manabe et al., 1965; Smagorinsky et al., 1965). Rapidement, des théories ont
ainsi été proposées pour formuler le problème de la convection atmosphérique. La plupart de ces
théories reposaient sur un formalisme appelé le formalisme en flux de masse, qui tient son
inspiration dans l’hypothèse des “tours chaudes”, initialement formulée par Riehl and Malkus
(1958). Cette hypothèse explique le bilan thermodynamique associé à la circulation de Hadley
dans les tropiques en considérant que l’apparente ascension à grande échelle près de l’équateur
est en fait la somme d’une ascension vigoureuse dans quelques “tours chaudes” isolées et d’une
descente dans leur environnement. Selon cette hypothèse, les tours chaudes ne couvrent qu’une
petite fraction des Tropiques et ne se mélangent à leur environnement qu’à leur base et à leur
sommet. Cela leur permet de transporter la chaleur directement de la surface jusqu’au sommet
de la troposphère.

L’hypothèse des tours chaudes a considérablement influencé le développement des premières
paramétrisations de la convection. Reprenant à son compte les idées de Riehl, Ooyama (1964)
a notamment formulé un modèle dynamique pour l’étude du développement des cyclones tropi-
caux dans lequel les effets de chauffage des nuages étaient représentés suivant une forme de flux
de masse. Quelques années plus tard, Arakawa (1969) a adapté l’approche en flux de masse
aux MCG.

Cette approche deviendra rapidement la manière courante de représenter la convection at-
mosphérique dans les paramétrisations. La forme du flux de masse suppose que la convec-
tion atmosphérique se produit dans dans “panaches convectifs” couvrant une petite partie de
la maille, conformément à l’hypothèse des tours chaudes de Riehl. Dans cette approche, le
transport vertical dans les panaches convectifs est représenté par un flux de masse défini par
f = ραwu, avec une vitesse verticale wu supposée homogène horizontalement. ρ désigne la
densité et α la fraction occupée par les panaches dans la maille. De même, le transport vertical
dans l’environnement – la subsidence compensatoire – est supposé avoir une vitesse horizon-
talement homogène we et un flux de masse correspondant fe = ρ(1 − α)we = −f . Dans les
premières paramétrisations telles que celle proposée par Ooyama (1964), les flux de masse con-
vectifs et environnementaux (et donc wu et we) sont supposés constants. Par conséquent, l’air
n’est entrâıné dans le flux de masse qu’à la base des nuages et n’est détaché qu’à leur sommet.
Dans ce schéma simple, le nombre d’inconnues est réduit à une seule, le flux de masse à la
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base du nuage f , qui doit être spécifié en fonction de l’état à grande échelle. Le problème de la
spécification du flux de masse convectif - et donc de l’intensité de la convection - en fonction
de l’état à grande échelle de l’atmosphère, est appelé “fermeture”.

A partir de ce formalisme ou de ses variations, de nombreuses paramétrisations de la con-
vection ont été proposées, qui différent notamment par leur fermeture. Toutes produisent une
rétroaction négative sur les instabilités de grande échelle et ont donc globalement le même effet
que les schémas d’ajustement convectifs humides. Cependant, alors que ces derniers imposent
la solution à partir des profils typiques observés dans les observations, les paramétrisations en
flux de masse donnent un cadre théorique pour expliquer pourquoi et comment l’atmosphère
est stabilisé par la convection.

Différentes interprétations ont été données au formalisme en flux de masse. Ces interprétations
ne sont pas des justifications, mais proposent des analogies pour interpréter le cadre théorique
des paramétrisations en flux de masse. Nous nous attachons à trois types d’analogies utilisées
pour interpréter le formalisme en flux de masse : 1) la paramétrisation de Arakawa and Schu-
bert (1974), qui repose sur la notion de quasi-équilibre convectif que l’on peut comprendre
par analogie avec la théorie quasi-géostrophique. Comme l’explique Schubert (2000), le quasi-
équilibre filtre l’ajustement transitoire d’un ensemble de nuages de la même façon que la théorie
quasi-géostrophique filtre les ondes de fréquences élevées. 2) L’interprétation statistique de la
convection, qui a inspiré la paramétrisation stochastique de la convection de Craig and Cohen
(2006). Par analogie avec la physique statistique, Craig and Cohen (2006) font l’hypothèse
qu’un certain équilibre est satisfait à grande échelle, mais que l’effet de la convection dans
une maille donnée est un sous-ensemble de l’équilibre de grande échelle, qui doit être tiré
d’une distribution déterminée par les conditions de grande échelle. 3) Enfin, nous examinons
l’interprétation donnée par Yano (2014) qui s’intéresse au flux de masse en lui-même plutôt
qu’à sa fermeture. Il interprète le formalisme en flux de masse comme une approche en volume
fini appliqué à la grille du modèle et, à partir de cette analogie, dérive les équations du flux de
masse par approximations successives.

Les analogies avec les théories sont intéressantes et fournissent une base pour construire des
paramétrisations, mais dans de nombreux cas, elles ne sont pas suffisantes. Par conséquent,
nous ne devrions pas nous fier exclusivement à la théorie et accepter d’utiliser des hypothèses
ad hoc pour rendre nos paramétrisations plus réalistes. Les schémas d’ajustement convectifs,
directement fondés sur des observations, et les trois paramétrisations décrites ci-dessus, qui
reposent sur des analogies avec certaines théories, doivent donc être considérés comme des po-
sitions extrêmes. Les paramétrisations utilisées dans le modèle atmosphérique LMDZ – et dans
de nombreux autres MCG – se fondent sur des objets et sont à cheval entre ces deux positions
antagonistes.

Les objets fournissent en effet un cadre flexible pour combiner les informations provenant des
observations et de la théorie dans les paramétrisations de la convection. Une paramétrisation
fondée sur un objet n’est ni entièrement empirique comme les profils de référence utilisés dans
les schémas d’ajustement convectifs humide, ni entièrement dérivée de principes fondamentaux :
elle repose en partie sur des observations et en partie sur certaines considérations théoriques.
La théorie fournit un cadre pour décrire l’objet à partir de certains principes physiques. Des
hypothèses plus ad hoc, fondées sur des observations, sont utilisées pour garantir que cette base
théorique soit suffisamment proche du monde réel. Les paramétrisations basées sur les objets
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sont donc semi-empiriques : les hypothèses qu’elles utilisent sont motivées en partie par des
raisons théoriques, en partie par des analyses empiriques.

Les objets constituent un moyen naturel et pratique d’analyser à la fois les observations et
les simulations à haute résolution. Lorsque nous observons une scène nuageuse, nous voyons des
objets qui interagissent les uns avec les autres. L’analyse de ces interactions permet d’abord de
caractériser les objets, puis de les comprendre. Penser les paramétrisations avec les objets aide
à utiliser cette compréhension à la fois pour construire et pour tester les paramétrisations. Par
exemple, la vitesse de propagation des poches froides dans la paramétrisation de Grandpeix and
Lafore (2010) peut être directement comparée à la vitesse de propagation des poches froides
dans les observations ou les simulations à haute résolution. S’il y a un décalage entre ce qui est
prédit dans une paramétrisation et les observations, certaines hypothèses de la paramétrisation
peuvent être ajustées en fonction des données des observations. Cela permet de s’assurer que
les objets représentés dans les paramétrisations soient aussi proches que possible du monde réel.

A l’inverse, une paramétrisation fondée sur une certaine théorie prend plus de distance par
rapport aux phénomènes observés. Elle tente de déduire une représentation cohérente de la con-
vection à partir de principes fondamentaux. Cette déduction logique donne un cadre strict pour
représenter les phénomènes réels. Si ce cadre ne donne pas de résultats réalistes, il est difficile
de tirer des enseignements des observations pour améliorer la théorie employée. Une nouvelle
théorie logiquement cohérente doit être proposée pour résoudre le problème identifié. Il est bien
sûr impossible de formuler une théorie entièrement nouvelle pour chaque biais identifié dans
le modèle. Par conséquent, la cohérence n’est pas un gage de fiabilité : une paramétrisation
peut être parfaitement cohérente et en même temps très irréaliste, c’est-à-dire éloignée des
phénomènes atmosphériques réels. Pour les paramétrisations, la cohérence n’est donc pas une
panacée. Ce n’est qu’un critère, parmi d’autres, à prendre en compte pour évaluer leur qualité.

Le monde semi-empirique des paramétrisations fondées sur des objets n’est donc pas une
faiblesse, mais une force. Le cadre qu’il donne est plus flexible que le cadre strict et logique-
ment cohérent imposé par des paramétrisations fondées sur une certaine théorie. Les objets
nous permettent de reconnâıtre que les représentations utilisées dans les paramétrisations sont
imparfaites, de sorte qu’une seule représentation cohérente de la convection n’est pas suffisante.
Chaque objet a un pouvoir explicatif et prédictif limité. Cependant, penser avec des objets
aide à représenter dans les paramétrisations des images physiques qui sont certes en partie
contradictoires, mais aussi complémentaires pour donner une image réaliste de la convection
atmosphérique.

Chapitre 4 – Epistémologie du tuning des modèles de climat

Comme leur nom l’indique, les paramétrisations contiennent des paramètres plus ou moins
bien contraints par les observations. Lorsqu’une paramétrisation est développée, la valeur de
chacun de ses paramètres est fixée de façon plus ou moins arbitraire, en tenant compte de
certains diagnostics dérivés d’observations, de l’expertise du modélisateur, ou des résultats de
modèles simplifiés comme des modèles 1D utilisés dans le développement de la paramétrisation.
Lorsque des simulations sont faites à partir d’un MCG 3D (atmosphérique ou couplé), certains
paramètres sont à nouveau réglés pour améliorer la qualité des résultats des simulations et
garantir notamment que les températures de surface prédites par le MCG couplé soient suff-
isamment proches de celles du climat actuel. Ce second réglage des paramètres est généralement
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appelé tuning (Mauritsen et al., 2012; D. A. Randall & Wielicki, 1997).

La plupart des MCG couplés sont réglés en particulier avant chaque phase du projet d ’inter-
comparaison de modèles couplés (CMIP, pour Coupled Model Intercomparison Project). Dans
le cadre de CMIP, tous les 5 ou 6 ans, les principaux MCG couplés utilisés dans le monde sont
soumis à des protocoles de simulation standardisés. Cet effort représente une opportunité de
comparer les dernières versions des MCG couplés dans des conditions similaires, et notamment
de comparer leurs prédictions climatiques afin de fournir des déclarations pour les rapports du
GIEC. Les résultats des MCG couplés dépendent dans une large mesure du tuning de leurs
paramètres. Pourtant, jusqu’à récemment, les procédures de tuning employées n’étaient pas
bien documentées, et donc pas prises en compte dans les nombreuses analyses fondées sur
les résultats de CMIP. Contrairement à la calibration des instruments de laboratoire, qui suit
généralement un protocole strict (ex : Manrique et al., 2020), le tuning des MCG n’est pas stan-
dardisé au niveau de la communauté de modélisation du climat. Les pratiques de tuning varient
d’un centre de modélisation à l’autre, et les critères utilisés pour le réglage des paramètres sont
en partie subjectifs et dépendent de l’expertise personnelle des modélisateurs climatiques. Ce
n’est que récemment que les modélisateurs climatiques ont ressenti le besoin de documenter
et de comparer systématiquement les procédures de tuning qu’ils utilisaient (Hourdin et al.,
2017a; Mauritsen & Roeckner, 2020; Mignot et al., 2021).

À l’inverse, au cours des vingt dernières années, le tuning des modèles climatiques a attiré
l’attention de nombreux philosophes des sciences. Ces derniers se sont intéressés notamment à
l’interprétation de l’accord entre les résultats des MCG et les observations : si les observations
sont utilisées pour ajuster les paramètres du modèle, que signifie l’accord entre les résultats des
MCG et les observations ? Doit-il renforcer notre confiance dans les modèles, donc dans les
projections climatiques futures? Ou au contraire, n’est-il que la conséquence du processus de
tuning ? De nombreux philosophes ont en effet noté le risque qu’il y a à utiliser des observations
parfois similaires pour régler les paramètres d’un modèle et évaluer ses résultats (W. S. Parker,
2011; Stainforth et al., 2007). D’autres, au contraire, sont plus optimistes et soulignent la di-
versité des preuves utilisées pour tester les modèles climatiques comme un argument en faveur
de leur adéquation empirique (Lloyd, 2009, 2010).

Les philosophes des sciences se sont cependant davantage intéressés aux conséquences du
tuning sur l’interprétabilité des MCG, qu’au processus de tuning en lui-même. En particulier,
la variété des stratégies utilisées dans le processus de tuning est peu abordée dans la littérature
philosophique. Les paramètres utilisés pour le tuning sont rarement spécifiés, tout comme les
besoins auxquels le tuning répond. De plus, nous n’avons trouvé aucune tentative dans la
littérature de définir ce qui rend le tuning des modèles climatiques différent des procédures de
calibration utilisées dans d’autres domaines scientifiques. Une telle comparaison serait précieuse
pour étudier dans quelle mesure les arguments utilisés pour justifier la calibration s’appliquent
au tuning des MCG.

Je tente de répondre à ces questions en proposant tout d’abord une typologie des paramètres
utilisés dans les MCG. Aujourd’hui, les MCG couplés contiennent typiquement plus d’une cen-
taine de paramètres. Je propose quatre critères pour distinguer à différents niveaux le rôle de
ces paramètres dans un MCG : 1) Que représente le paramètre ? 2) Est-il observable, c’est-
à-dire a-t-il un équivalent empirique ? 3) Comment s’exprime-t-il mathématiquement ? 4)
Quel effet le paramètre a-t-il sur les résultats du modèle ? A partir de ces quatre critères, je
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montre que tous les paramètres n’ont pas la même importance pour le tuning des modèles de
climat. Les paramètres les plus importants sont ceux qui ne sont pas bien contraints par les
observations et ont, en même temps, un impact important sur certains aspects essentiels des
résultats du modèle – typiquement, les paramètres impliqués dans la convection atmosphérique
(Hourdin et al., 2017a).

Je donne ensuite trois raisons fondamentales pour justifier le tuning des modèles de cli-
mat. La première raison est que la valeur de certains paramètres n’est pas connue
avec précision. En effet, certains paramètres n’ont pas d’équivalent dans le monde réel.
D’autre ont un équivalent, mais ce dernier n’est pas facile à calculer en pratique. Plutôt que
de donner une valeur arbitraire à de tels paramètres, il semble légitime d’utiliser une cer-
taine procédure de tuning pour les ajuster. Cet argument s’applique en fait également aux
paramètres qui ont un équivalent facilement mesurable dans le monde réel, car ce dernier ne
fournit qu’une contrainte assez faible sur la valeur que le paramètre correspondant doit prendre
dans le modèle. J’explique que cela est lié à la non-exactitude des représentations utilisées dans
les paramétrisations. Ces dernières s’inspirent du monde réel, mais contiennent de nombreuses
simplifications et idéalisations. En raison de ces approximations, les paramètres qu’elles con-
tiennent ne sont pas censés correspondre parfaitement aux paramètres mesurés dans le monde
réel.

Une deuxième raison d’ajuster les paramètres des MCG est la nécessité de simuler un
bilan énergétique de la Terre correct. Ce dernier représente l’équilibre entre l’énergie que
la Terre reçoit du soleil et celle qu’elle renvoie vers l’espace. Si le bilan énergétique de la Terre
n’est pas respecté dans un MCG couplé, le climat simulé par le modèle dérivera vers un état cli-
matique très différent du climat actuel (Marotzke & Stone, 1995; Murphy, 1995). Concrètement
cela se manifestera par une augmentation ou une diminution progressive des températures de
surface de la mer (SSTs pour sea surface temperatures) dans le modèle utilisé dans les condi-
tions actuelles. Cette réponse sera potentiellement plus forte que la réponse transitoire simulée
par le modèle à une augmentation de la concentration en C02 dans l’atmosphère et rendra donc
difficile l’utilisation du modèle pour étudier les changements climatiques.

Enfin, le tuning peut être utilisé pour rendre d’autres aspects des résultats des MCG
plus réalistes, c’est-à-dire plus conformes aux observations. Certains groupes de modélisation
considèrent en effet qu’il est nécessaire de régler certains aspects clés du climat afin d’avoir des
MCG couplés suffisamment réalistes pour être utiles à l’étude des changements climatiques. En
conséquence, ils ont recours au tuning pour garantir, par exemple, le réalisme du volume ou de
l’étendue de la banquise, celui de la circulation atmosphérique ou encore celui de l’augmentation
des températures de surface au cours du XXe siècle (Hourdin et al., 2017b). Néanmoins, une
telle utilisation du tuning est plus controversée. Certains modélisateurs soulignent en effet qu’un
tuning trop important pourrait introduire des erreurs qui se compensent dans les résultats des
MCG et conduire à une confiance excessive dans l’interprétation de ces résultats.

J’étudie ensuite comment le tuning est réalisé en pratique, c’est-à-dire quelles stratégies
sont utilisées pour régler les paramètres des MCG. Il est tout d’abord possible d’ajuster les
paramètres d’un MCG en utilisant la version 1D du modèle, qui contient une seule colonne
atmosphérique du modèle et peut être forcée avec des conditions représentatives de diverses
situations atmosphériques. Les modèles 1D constituent un cadre utile pour comprendre l’effet
des paramétrisations et régler la valeur des paramètres sans rentrer dans la complexité des
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interactions entre la physique (les paramétrisations) et la dynamique (les équations primitives
résolues à l’échelle de la grille) d’un MCG. Cependant, les propriétés globales d’un MCG doivent
elles aussi être ajustées, notamment les flux radiatifs au sommet de l’atmosphère, pour simuler
correctement le bilan énergétique de la Terre. Ces propriétés peuvent être réglées d’abord dans
un MCG uniquement atmosphérique avec des conditions aux limites bien définies, puis
dans un MCG couplé. Le réglage d’un MCG couplé complet est un long processus – trois
ans pour la version CMIP6 du MCG de l’IPSL (Mignot et al., 2021) – avec de nombreux allers-
retours entre du tuning dans des modèles 1D, dans des versions uniquement atmosphériques,
et dans des versions couplées.

Je me demande ensuite dans quelle mesure le tuning est similaire à une procédure de calibra-
tion utilisée pour calibrer des instruments de mesure plus classiques. Calibrer un instrument,
c’est “utiliser un signal de substitution pour le standardiser” selon le philosophe des sciences
Allan Franklin (Franklin, 1999). Le signal de substitution est en général fiable et adapté à
l’utilisation qu’on souhaite faire de l’instrument. Il y a d’ailleurs souvent un consensus à l’échelle
d’une communauté de spécialistes sur les références ou étalons qu’il faut utiliser pour calibrer
un certain instrument. La procédure de calibration elle-même est généralement standardisée
et bien documentée. Cette standardisation permet la reproductibilité de toute mesure.
Une mesure est reproductible s’il est possible de la reproduire en laboratoire et d’obtenir les
mêmes résultats avec un bon degré d’accord. Comme les mesures d’un instrument dépendent de
sa calibration, la calibration utilisée doit être standardisée pour ne pas introduire de différences
dans les résultats de l’expérience.

A première vue, le tuning des modèles de climat semble partager de nombreuses caracté-
ristiques avec une procédure traditionnelle de calibration. Lorsque les paramètres d’un modèle
climatique sont réglés, ils sont comparés à certaines références bien choisies, et ajustés pour
répondre à certains critères en fonction de l’utilisation prévue pour le modèle. Cependant, le
tuning des modèles de climat est à bien des égards plus complexe qu’une procédure de calibra-
tion. Une première source de complexité provient des références utilisées. Comme
dans toute procédure de calibration, la précision et l’adéquation des références choisies pour
le réglage des modèles climatiques sont cruciales. Or, certaines observations utilisées comme
références, les SSTs par exemple, sont relativement bien connues, tandis que d’autres souffrent
de grandes incertitudes – les observations de précipitations, notamment (Stephens et al., 2012).
L’adéquation des références utilisées soulève encore plus de questions. Les modèles climatiques
sont principalement utilisés pour simuler le climat futur, potentiellement très différent du cli-
mat actuel. Il n’est donc pas certain que les observations du climat actuel fournissent des
contraintes pertinentes pour la prédiction des changements climatiques. Mais, par définition,
il n’y a pas d’observations du climat futur (hypothétique) qui puissent être utilisées comme
références pour le tuning.

La deuxième source de complexité provient des modèles climatiques eux-mêmes. Les
modèles climatiques ont tous des limites structurelles : même les modèles climatiques
finement réglés ne parviennent pas à reproduire certaines caractéristiques importantes du cli-
mat, par exemple la propagation de l’oscillation de Madden-Julian (Ahn et al., 2020; Jiang et
al., 2015; Lin et al., 2006), ou la structure de la zone de convergence intertropicale (Lin, 2007;
Oueslati & Bellon, 2015). En raison de ces limitations, et parce que les références utilisées ne
sont ni très précises ni parfaitement adéquates, le tuning ne vise pas à garantir une correspon-
dance exacte entre les résultats des modèles climatiques et les observations utilisées comme
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références. Il s’agit d’une autre différence importante avec les procédures de calibration tradi-
tionnelles. Puisque les MCG souffrent de différents biais, et puisque les références utilisées pour
le tuning ne sont pas parfaites, un désaccord parfois important entre les résultats du modèle et
les références est acceptable.

Le réglage d’un modèle climatique s’apparente donc à la recherche d’un certain optimum
dans l’espace des paramètres en tenant compte des diverses références choisies. Cette recherche
est rendue complexe en raison du grand nombre de paramètres et des divers modules
(les paramétrisations) en interaction que contient un MCG. En principe, la modularité
d’un instrument rend sa calibration plus simple. En effet, la calibration d’un instrument con-
tenant plusieurs modules se réduit généralement à une série de calibrations de ses différents
modules. Il n’est pas possible de procéder de cette façon pour le tuning des modèles clima-
tiques en raison de ce que Lenhard and Winsberg (2010) appellent la “modularité floue” des
MCG : les paramétrisations sont trop interdépendantes pour être réglées séparément. Les di-
verses interactions entre les paramétrisations doivent être prises en compte dans le tuning et
les paramètres ne peuvent pas être ajustés un par un : l’espace complet des paramètres doit
être considéré. En raison du nombre de paramètres impliqués dans les modèles climatiques et
du coût des simulations numériques, il est cependant impossible d’explorer l’espace complet
des paramètres. La recherche d’un optimum est donc dépendante du chemin suivi et il existe
un risque d’être piégé dans un optimum local et de manquer l’optimum global de l’espace des
paramètres.

Ces difficultés permettent de comprendre pourquoi, contrairement au réglage de la plupart
des instruments de laboratoire ou du quotidien, le tuning des modèles de climat n’est pas encore
standardisé. Il n’y a pas de consensus sur la meilleure approche pour régler un modèle clima-
tique, et les stratégies de tuning utilisées varient beaucoup d’un centre de modélisation à l’autre.

Il existe par ailleurs une peur d’aller trop loin dans le processus de tuning. Selon D. A. Ran-
dall and Wielicki (1997), par exemple, le tuning pourrait “empêcher artificiellement un modèle
de produire un mauvais résultat”. Randall et Wielicki reconnaissent que, dans certaines situ-
ations, le tuning est une nécessité, mais soutiennent qu’il devrait se limiter aux processus qui
sont à la fois importants pour les résultats du modèle et mal compris. Par conséquent, les
paramètres qui ont un équivalent empirique direct et qui peuvent être mesurés devraient être
fixés une fois pour toutes avant l’exécution du modèle.

W. S. Parker (2011) nuance ce point de vue en soutenant qu’il ne s’applique qu’aux modèles
qui sont censés “fournir une représentation très précise des aspects (pertinents) d’un système
cible, avec des paramètres qui ont des corrélations physiques claires”, ce qui n’est pas le cas de
la modélisation du climat aujourd’hui. Le choix de certaines valeurs de paramètres différentes
de celles trouvées dans les observations peut en effet être justifié en raison de la non-exactitude
des représentations utilisées dans les modèles climatiques. Lorsqu’ils développent une nou-
velle paramétrisation, les modélisateurs climatiques ont certainement une image physique en
tête : des courants ascendants transportant la chaleur et l’humidité de la surface vers la couche
nuageuse, des poches froides s’étalant à la surface, etc. Ces images physiques sont des sources
d’inspiration pour développer des paramétrisations. Elles fournissent un cadre conceptuel pour
établir des relations entre les différentes variables du modèle. Cependant, il est important de
faire une distinction dans une paramétrisation entre ce que l’on cherche à reproduire et ce que
l’on cherche à représenter. Le but des paramétrisations est de reproduire certaines variables
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cibles à l’échelle de la grille – les tendances de température et d’humidité, la fraction nuageuse
moyenne, les précipitations de surface, etc. – grâce à une représentation des processus sous-
maille. En tant que représentations, les variables et paramètres intermédiaires ne sont donc
pas censés correspondre parfaitement au monde réel.

Le tuning est parfois accusé d’introduire des erreurs qui se compensent dans les modèles
de climat. Ce que nous venons de dire sur la non-exactitude des paramétrisations montre qu’il
n’y a pas à proprement parler d’erreurs qui se compensent dans les paramétrisations. Les
paramétrisations peuvent contenir des bugs et des incohérences, mais le terme “erreur” prête à
confusion parce qu’il implique que les représentations utilisées dans les paramétrisations pour-
raient en théorie être justes. Au contraire, en tant que représentations idéalisées de la réalité,
les paramétrisations ne sont ni vraies, ni fausses. Elles peuvent simplement conduire à des
résultats plus ou moins réalistes.

Cela ne signifie pas qu’un modèle climatique dans son ensemble n’est pas testable à partir
d’observations. Nous pourrions trouver des erreurs – et même des erreurs qui se compensent
– dans les variables cibles des modèles climatiques. Par exemple, Winsberg (2018b) explique
qu’un modèle climatique peut décrire avec précision l’effet des rétroactions nuageuses à l’échelle
mondiale, en surestimant le degré de formation des nuages de basse altitude dans les régions
tropicales, et en sous-estimant le degré de formation des nuages de haute altitude aux lati-
tudes moyennes. On peut parler ici d’erreurs qui se compensent car ces erreurs concernent des
variables cibles du modèle, que l’on cherche à reproduire plutôt qu’à représenter, et non des
variables intermédiaires utilisées dans les paramétrisations qui ne sont pas censées être repro-
duites avec exactitude.

Le terme d’erreur structurelle est parfois utilisé pour désigner les erreurs qui résistent au
tuning, c’est-à-dire qui sont associés à la structure même du modèle, indépendamment du choix
des paramètres. Ce terme suggère la présence d’erreurs dans la formulation du modèle, donc
dans les paramétrisations. Or, avec ce que nous avons vu, les paramétrisations ne sont ni cor-
rectes, ni erronées. Il y a seulement des choses qu’elles permettent de faire et d’autres qu’elles
ne permettent pas. Je défends donc qu’il faudrait plutôt parler des “limites structurelles” d’un
modèle de climat que de son erreur structurelle.

Définir les limites structurelles d’un modèle me permet aussi de préciser le sens du “sur-
ajustement” des paramètres, ou overtuning. Nous définissons un modèle sur-ajusté comme un
modèle pour lequel on peut trouver un meilleur équilibre dans les résultats du modèle compte
tenu de ses limites structurelles et des préférences personnelles du modélisateur. Il y a donc une
composante subjective dans la définition de l’overtuning : un modèle qui semble bien équilibré
pour certains modélisateurs climatiques compte tenu de ses limites structurelles peut sembler
sur-ajusté pour d’autres. Des modélisateurs climatiques différents peuvent en effet avoir des
priorités différentes et, en fonction de ces priorités, tolérer plus ou moins certaines erreurs.

Je termine mon étude épistémologique du tuning en m’intéressant au changement de paradigme
apporté par les méthodes de tuning automatique. Traditionnellement, le tuning des MCG est
effectué à la main, le plus souvent en suivant une méthode d’essai-erreur. Comme l’espace
des paramètres - l’ensemble de toutes les combinaisons entre les valeurs des paramètres - est
extrêmement vaste, toutes les valeurs des paramètres ne peuvent pas être testées. Il n’est pas
possible de connâıtre de manière exhaustive les limites structurelles d’un modèle climatique.

225
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Ajuster les paramètres d’un modèle est donc une tâche délicate, qui fait appel non seulement à
des compétences scientifiques, mais aussi à une grande part d’intuition et de jugement d’expert
(Hourdin et al., 2017a). Le réglage complet d’un MCG couplé peut prendre plusieurs mois à
plusieurs années et contrairement à une procédure de calibration traditionnelle est en partie
subjectif et difficile à reproduire. De plus, le manque de standardisation du tuning complexifie
considérablement la comparaison de deux MCG, ou de deux versions d’un GCM. En effet, sans
un protocole de tuning standardisé, il est difficile de distinguer les différences de résultats qui
sont dues à des choix de tuning différents, et celles qui sont dues à des différences dans la
formulation des paramétrisations.

Des progrès récents dans les méthodes de tuning automatique pourraient rendre le processus
de tuning plus rapide et plus standardisé, donc plus similaire à une procédure de calibration
traditionnelle. En particulier, l’explorateur htexplo (pour HIGH-TUNE explorer) est un outil
développé récemment par deux groupes français de modélisation climatique (IPSL et CNRM)
en collaboration avec l’Université d’Exeter (Couvreux et al., 2021; Hourdin, Williamson, et al.,
2020). Pour utiliser cet outil, les modélisateurs climatiques doivent d’abord choisir explicite-
ment les paramètres de réglage et la plage de valeurs acceptables pour chacun de ces paramètres,
puis les références et l’incertitude qui les entoure, les “métriques”, qui définissent comment les
résultats du modèle sont comparés aux références, et enfin les “tolérances à l’erreur”, c’est-à-
dire le degré d’accord entre les référence et le modèle qui semble acceptable compte tenu des
limites structurelles du modèle.

Ensuite, htexplo recherche des optima globaux dans l’espace des paramètres. Cela représente
un avantage majeur par rapport aux méthodes de réglage traditionnelles. Lorsque l’accord est
effectué à la main, en déplaçant les paramètres les uns après les autres, il y a un risque d’être
bloqué dans un optimum local dans l’espace des paramètres. Au contraire, comme htexplo
explore un échantillon beaucoup plus large de l’espace des paramètres, il aide les modélisateurs
à comprendre l’ensemble des limites structurelles d’un MCG donné. Il permet ainsi de rendre le
processus de tuning à la fois plus robuste et plus standardisé. En rendant le processus de tuning
plus rapide, il facilite également le développement et le test de nouvelles paramétrisations.

Chapitre 5 – Développement de paramétrisation et tuning en pratique : Recou-
vrement des nuages et des précipitations dans LMDZ

J’étudie dans ce chapitre comment les différentes questions épistémologiques concernant les
paramétrisations et le tuning apparaissent en pratique en implémentant une paramétrisation
de recouvrement des nuages et des précipitations dans le modèle atmosphérique LMDZ. En
particulier, je m’intéresse à un problème méthodologique qui se pose systématiquement lors
du développement d’une nouvelle paramétrisation : la paramétrisation améliore-t-elle le MCG
ou non ? Il semble nécessaire de répondre à cette question pour déterminer si une certaine
paramétrisation doit être ajoutée ou non à un MCG donné.

Cette question nécessite de définir le sens du mot amélioration, ou progrès pour un MCG.
Pour cela, je pars de la définition du progrès scientifique donnée par Kuhn dans son livre La
structure des révolutions scientifiques : selon le philosophe et historien des sciences, le progrès
de la science se produit non seulement pas une accumulation de connaissances, mais aussi par
le remplacement de certaines idées par d’autres. Lorsque deux idées sont en concurrence, leur
capacité à résoudre certains mystères est cruciale pour déterminer quelle idée sera retenue. Une
nouvelle idée sera retenue si elle préserve une grande partie de la capacité de celle qu’elle rem-
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place à résoudre des problèmes, mais aborde également des problèmes importants et jusqu’alors
inexpliqués (Kuhn, 1962).

Si nous essayons d’appliquer la théorie du progrès scientifique de Kuhn aux paramétrisations,
nous pourrions dire qu’une nouvelle paramétrisation améliore un modèle climatique si les
résultats entre la nouvelle version et la version originale sont comparables, sauf pour une ou
plusieurs variables cibles pour lesquelles la nouvelle version montre des améliorations significa-
tives. Néanmoins, cette définition du progrès scientifique pour les paramétrisations semble trop
simpliste. Tout d’abord, les effets d’une paramétrisation dans un MCG donné dépendent des
valeurs des paramètres du MCG, donc de son tuning. Sans un réglage fin des paramètres du
modèle, l’ajout d’une nouvelle paramétrisation peut conduire à des résultats très irréalistes. De
plus, même après ré-ajustement des paramètres, une nouvelle paramétrisation détériore sou-
vent certains résultats du modèle. La critère donné par Kuhn doit donc être assoupli : dans
la pratique, il est très rare qu’une nouvelle paramétrisation préserve la plupart des résultats
d’un MCG tout en améliorant certains de ses biais. Enfin, les progrès conceptuels apportés
par une nouvelle paramétrisation doivent être pris en compte. Il ne suffit pas que les simu-
lations produisent des résultats réalistes – il faut aussi pouvoir les interpréter. Une nouvelle
paramétrisation peut ou non faciliter cette interprétation.

Il faut donc donner de nouveaux critères pour préciser la notion de progrès pour les para-
métrisations. Pour cela, je distingue deux types de progrès : les progrès conceptuels, et les
progrès apportés par une nouvelle paramétrisation sur les résultats du modèle. Je propose
quatre critères pour évaluer les progrès conceptuels apportés par une paramétrisation : 1) la
cohérence – est-ce que la paramétrisation rend le modèle plus cohérent, en corrigeant par
exemple certaines erreurs ou un unifiant le modèle ? 2) l’interprétabilité – est-ce que la
paramétrisation est fondée sur des concepts bien compris et qui peuvent être facilement in-
terprétés physiquement ? 3) la simplicité – la paramétrisation complexifie-t-elle ou au con-
traire simplifie-t-elle le modèle ? 4) l’exhaustivité – dans quelle mesure la paramétrisation
permet-elle de prendre en compte un processus important jusqu’alors ignoré dans le modèle?
Ces critères, appelés critères CISC (pour Coherence, Interpretability, Simplicity, Comprehen-
siveness en anglais) donnent un cadre pour évaluer les progrès conceptuels apportés par une
paramétrisation dans un modèle de climat donné.

Un cadre doit également être défini pour les progrès sur les résultats du modèle. Pour cela, il
faut tout d’abord préciser les conditions dans lesquelles les simulations sont réalisées :
des progrès observés dans des simulations 1D ne se traduisent en effet pas nécessairement en
progrès dans des simulations atmosphériques ou couplés. Ensuite, il faut définir un protocole
de tuning aussi standardisé que possible de manière à régler à la fois la version standard et
la nouvelle version du modèle. Sans un tel protocole, il sera difficile de diagnostiquer si les
différences observées sont dues à la paramétrisation elle-même ou à un tuning différent. Enfin,
il est nécessaire de spécifier comment la comparaison entre la version originale du modèle et la
version contenant la nouvelle paramétrisation est effectuée, c’est-à-dire sur quelles variables
cibles du modèle elle porte, et quelles sont les références et métriques associées.

J’applique ces critères pour évaluer les progrès apportés par la paramétrisation de recou-
vrement entre les nuages et les précipitations de Jakob and Klein (2000) que j’ai implémentée
dans LMDZ. Cette dernière repose sur une séparation du flux de précipitations en un flux
de précipitations ciel-clair et un flux de précipitations nuageuses. Alors que dans la version
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standard du modèle, les précipitations étaient évaporées sur toute la maille comme s’il n’y
avait pas de nuages, la nouvelle paramétrisation tient compte du fait qu’une partie du flux
de précipitations tombe dans de l’air nuageux saturé, donc ne s’évapore pas. Cela permet
de résoudre certaines incohérences présentes dans la version standard du modèle (critère de
cohérence), remplacer certaines hypothèses arbitraires par des hypothèses plus faciles à in-
terpréter physiquement (critère d’interprétabilité), et de prendre en compte un processus im-
portant – le fait qu’une partie des précipitations ne s’évapore pas avant la base du nuage –
qui n’était pas pris en compte dans la version standard du modèle (critère d’exhaustivité). De
plus, la paramétrisation n’introduit que quatre nouvelles variables dans le modèle (les flux de
précipitations ciel-clair et nuageuses, et les fractions précipitantes associées) et se fonde sur
des considérations géométriques assez simples : elle ne complique donc pas beaucoup le modèle
LMDZ (critère de simplicité). D’après les critères CISC, nous en concluons donc que la nouvelle
paramétrisation améliore conceptuellement le modèle.

Pour évaluer les progrès apportés par la nouvelle paramétrisation sur les résultats du modèle,
nous devons ré-ajuster les paramètres de la nouvelle version du modèle suite à l’ajout de la nou-
velle paramétrisation. Nous utilisons pour cela l’explorateur HIGH-TUNE htexplo. Dans un
premier temps, nous ajustons les paramètres à partir de trois cas d’étude 1D : le cas ARMCU,
qui est un cas de cycle diurne de convection sur continent (Brown et al., 2002), le cas RICO,
centré sur la précipitation sous les petits cumulus d’alizés (Rauber et al., 2007), et le cas SANDU
qui est un cas de transition entre des stratocumulus et des cumulus au-dessus des océans sub-
tropicaux (Sandu & Stevens, 2011). Des simulations LES sont utilisées comme référence pour
chacun des cas. Différents types de paramètres sont choisis pour le tuning du modèle: 1) les
paramètres EVAP, CLC, CLTAU et RI utilisés dans la nouvelle paramétrisation ou dans
les équations gouvernant la formation ou l’évaporation des précipitations 2) les paramètres
A1, A2, B1, BG1, DZ impliqués dans la paramétrisation de la convection peu profonde.
3) Les paramètres FALLV, OMEPMX, REI, RSQPO, RQSDP, RQSH utilisés dans la
paramétrisation de la convection profonde, qui n’ont pas d’influence sur les cas 1D considérés
mais sont gardés pour la phase de tuning 3D. Pour chacun de ces paramètres, les valeurs mini-
male et maximale explorées par htexplo sont définies. Les métriques utilisées ciblent principale-
ment la couverture nuageuse, l’altitude des nuages, ainsi que les propriétés thermodynamiques
de la couche sous-nuageuse.

Nous avons réalisé 45 vagues de tuning 1D, comprenant 90 simulations chacune, pour la ver-
sion standard et la nouvelle version de LMDZ. Après 45 vagues, les résultats sont comparables
entre la nouvelle version et la version standard du modèle pour les métriques choisies. De plus,
les meilleures simulations de la nouvelle version du modèle ont des taux de pluie en surface plus
réalistes que celles de la version standard, pour des fractions nuageuses comparables. Dans ces
trois cas d’étude, le critère donné par Kuhn semble s’appliquer : après tuning, la plupart des
capacités précédentes du modèle sont conservées, mais la nouvelle paramétrisation permet en
plus de réduire certains biais sur les taux de précipitations qui ne pouvaient être corrigés avec
du tuning dans la version standard du modèle.

Nous comparons ensuite les résultats de la version standard du modèle et de la nouvelle
version dans des simulations atmosphériques globales. Nous utilisons pour cela le MCG atmo-
sphérique 3D forcé avec des valeurs standard de température de surface sur océans et avec le
cycle saisonnier de la banquise. Les paramètres choisis sont les mêmes que ceux utilisés dans
le réglage du modèle 1D et l’espace des paramètres utilisé est celui obtenu après 45 vagues de
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réglage 1D. Nous effectuons deux vagues supplémentaires en 3D, de 180 simulations chacune en
utilisant les mêmes métriques SCM que celles considérées pour les 45 premières vagues, ainsi
que des métriques 3D supplémentaires, ciblées sur les flux radiatifs au sommet de l’atmosphère
et les taux de précipitations en surface.

Le protocole de tuning utilisé permet au bout des deux vagues de tuning 3D d’obtenir des
flux radiatifs au sommet de l’atmosphère réalistes avec la nouvelle version du modèle. Cepen-
dant, il est difficile d’évaluer si la paramétrisation améliore ou non les résultats du modèle.
Même en considérant simplement deux variables – la température de surface sur continents et
les précipitations moyennées sur une année – nous observons que la nouvelle version du modèle
conduit à certaines améliorations, mais aussi à certaines dégradations. Contrairement à ce
qu’il se passe en 1D, le critère de Kuhn ne s’applique donc pas : dans les simulations globales,
les capacités antérieures de la version standard du modèle ne sont pas entièrement préservées.
Des améliorations dans certaines régions s’accompagnent de détériorations dans d’autres, ce
qui rend l’évaluation des simulations des MCG difficile. La comparaison de deux simulations
implique donc des choix sur les aspects des résultats des simulations qui sont considérés comme
les plus importants.

Pour rendre ces choix explicites, il est possible d’utiliser des métriques. Nous donnons la
proposition suivante (Proposition 1) : avec un ensemble n de métriques (pi)i≤n et de poids
associés (mi)i≤n, nous considérons qu’une simulation S1 est meilleure qu’une autre S2 si et
seulement si la moyenne pondérée des erreurs normalisées de S1 selon les métriques définies est
plus petite que la moyenne pondérée des erreurs normalisés de S2 selon les mêmes métriques.
Cette proposition donne une méthode quantitative pour comparer deux simulations. Elle ne
permet cependant pas de comparer deux versions d’un modèle. En effet, le fait qu’une simu-
lation particulière d’une version d’un modèle V1 soit meilleure qu’une simulation particulière
d’une autre version V2 de ce modèle ne prouve pas que V1 est meilleure que V2. Certaines
simulations d’une même version d’un modèle peuvent en effet conduire à des résultats plus
ou moins bons en fonction du tuning de leurs paramètres. Pour comparer deux versions d’un
modèle indépendamment de leur tuning, nous proposons donc la deuxième proposition suivante
(Proposition 2) : une version V1 est meilleure qu’une autre version V2 si et seulement s’il
existe un jeu de paramètres P1,0 dans l’espace de l’ensemble des paramètres de V1, Ω1, tel que
la simulation de V1 avec le jeu de paramètres P1,0, S1,0 = V1(P1,0), est meilleure que toute
simulation S2 = V2(P2), avec P2 appartenant à l’espace de paramètres de V2, Ω2.

En pratique, cette proposition est difficile à utiliser parce qu’elle nécessite un protocole
de tuning qui explore de façon exhaustive l’espace des paramètres. A cause du nombre de
paramètres que contient un MCG et de la gamme de valeurs possibles pour chaque paramètre,
cela est impossible en pratique. Le choix des paramètres explorés et de leur valeur sera toujours
en partie arbitraire. De même, les métriques et les poids donnés à chaque métrique sont fixées
en partie arbitrairement. Il n’y a pas encore de consensus sur les métriques qui sont les plus
pertinentes pour évaluer la performance d’un modèle de climat. Il faut donc garder à l’esprit
que le résultat de la comparaison dépend des métriques choisies et de leurs poids respectifs.

Nous nous inspirons cependant de la proposition 2 pour comparer la nouvelle version de
LMDZ à la version standard, en identifiant certaines différences entre les deux versions qui
semblent indépendantes du tuning. Nous identifions notamment deux biais dans la version
standard du modèle, résistants au tuning, qui sont largement atténués dans la nouvelle version :
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les pluies excessives au-dessus de l’Indonésie et sur la côte nord-est de l’Amérique du Sud, et
le biais chaud estival des températures de surface sur les continents des latitudes moyennes.
Ces résultats suggèrent que la nouvelle paramétrisation implémentée dans LMDZ conduit à des
améliorations non seulement dans le modèle 1D, mais aussi dans le modèle 3D et illustrent le
potentiel des méthodes de tuning automatique comme htexplo pour guider le développement et
le test de nouvelles paramétrisations dans les MCG.

Chapitre 6 – Le projet d’intercomparaison de modèles couplés CMIP : Histoire,
utilisations, et effets structurels sur les recherches en sciences du climat

Le principe des projets d’intercomparaison de modèles est de comparer des simulations MCG
réalisées dans les mêmes conditions. Le projet d’intercomparaison de modèles atmosphériques
AMIP (pour Atmospheric Model Intercomparison Project en anglais), qui a débuté en 1990, a été
la première tentative de coordination d’une telle activité. Différents projets d’intercomparaison
ont suivi : en particulier, le projet d’intercomparaison de modèles couplés CMIP (pour Coupled
Model Intercomparison Project an anglais) est maintenant considéré comme “l’un des éléments
fondateurs des sciences du climat” (Eyring et al., 2016, p. 1937). Depuis sa création au milieu
des années 1990, il a évolué en cinq phases, auxquelles ont participé les principaux groupes
de modélisation du climat au monde. En plus de leur rôle pour les recherches sur le climat,
ces phases ont occupé une place centrale dans les rapports du GIEC, dont l’objectif est de
synthétiser l’état actuel des connaissances sur le climat et les changements climatiques. Les en-
sembles multi-modèles de CMIP permettent en effet de résumer les prédictions des modèles de
climat les plus réalistes, les MCG couplés, et ainsi de fournir des déclarations pour les rapports
du GIEC.

Si CMIP a joué un rôle incontestable pour les rapports du GIEC, son rôle pour la recherche
climatique est plus controversée. En analysant un ensemble de 280 papiers fondés sur les
résultats de CMIP publiés entre 2012 et 2018 dans six journaux renommés en sciences du cli-
mat, je distingue trois utilisations principales des résultats de CMIP: l’exploration des change-
ments climatiques futurs et des incertitudes assocés, la comparaison des simulations de CMIP
et des observations et l’interprétation des résultats des modèles. Je montre que chacune de ces
utilisations pose des problèmes épistémologiques majeurs.

Lorsque les ensembles multi-modèles de CMIP sont utilisés pour explorer les change-
ments climatiques futurs, l’accord, ou le désaccord, entre les modèles est souvent utilisé
pour estimer l’incertitude sur différentes prédictions climatiques. Pourtant, comme la parti-
cipation à CMIP se fait sur la base du volontariat, les modèles participant à CMIP n’ont pas été
choisis pour explorer de façon systématique l’incertitude des prédictions climatiques futures.
L’écart entre les modèles ne peut donc être vu que comme une borne inférieure de l’incertitude.
Par conséquent, si les modèles de CMIP sont d’accord sur un certain résultat – par exemple,
s’ils prédisent tous une hausse de température similaire d’ici la fin du XXIème sicèle selon un
certain scénario d’émission – cela ne suffit pas à prouver que ce résultat est entouré de peu
d’incertitudes, contrairement à ce qui est suggéré par certaines études (ex : Jayasankar et al.,
2015).

Une autre utilisation courante des résultats de CMIP consiste à les comparer avec des
observations afin d’évaluer la performance des MCG correspondants. Cependant, le tuning
complique l’interprétation que l’on peut donner à l’accord entre les MCG et les observations :
l’accord avec les observations peut en effet être amélioré en modifiant la valeur des paramètres
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du modèle de façon ad hoc. Il est donc possible d’obtenir de bons résultats pour de mauvaises
raisons : l’accord avec les observations peut résulter d’erreurs qui se compensent et ne prouve
pas nécessairement que les processus sont bien représentés dans le modèle. Ce risque est par-
ticulièrement fort si les mêmes ensembles de données sont utilisées pour régler les paramètres
d’un modèle et évaluer ses performances (Frisch, 2019; Tebaldi & Knutti, 2007).

Un autre problème concerne les observations elles-mêmes. La majorité des études que nous
avons consultées ne comparent pas les simulations de CMIP avec des observations indépendantes
du modèle, mais avec des réanalyses. Or, les modèles utilisés dans les réanalyses se fondent
sur des méthodes numériques, des hypothèses et des paramétrisations similaires à celles des
modèles de CMIP et ont donc des biais en commun avec les MCG (Edwards, 2010). Même si
l’analyse est continuellement corrigée avec les données d’observation disponibles, les modèles
de réanalyse transmettent une partie de leurs biais aux produits de réanalyse. Par conséquent,
un accord entre les modèles climatiques et les données de réanalyse illustre dans certains cas
simplement des biais communs entre les MCG et la réanalyse utilisée comme référence. Le
problème est particulièrement critique pour les phénomènes pour lesquels nous disposons de
peu d’observations, le cycle de l’eau notamment. La réanalyse est alors faiblement contrainte
par les observations, donc principalement dérivée du modèle et peu fiable.

La dernière utilisation de CMIP consiste à interpréter les résultats des modèles, mais
dans un sens très spécifique. Les motivations originelles d’AMIP, un des premiers projets
d’intercomparaison de modèles, étaient de “diagnostiquer et interpréter en profondeur” les
résultats des modèles (Gates, 1992). L’idée derrière AMIP était de comprendre les causes des
succès et des échecs des MCG atmosphériques, c’est-à-dire de les rattacher à certaines hy-
pothèses ou formulations utilisées dans les paramétrisations de ces modèles. Cette vocation est
en contraste avec l’utilisation qui est faite de CMIP aujourd’hui : la plupart des articles que
nous avons consultés s’intéressent en effet uniquement aux sorties des modèles. Le lien avec les
paramétrisations sous-jacentes n’est quasiment jamais effectué.

Selon Lenhard and Winsberg (2010), cela manifeste une certaine forme d’holisme de confir-
mation caractéristique des MCG. Ce concept est traditionnellement défendu en philosophie des
sciences comme l’idée selon laquelle une certaine hypothèse ne peut jamais être testée de façon
isolée, mais que tout test expérimental dépend inévitablement d’autres théories ou hypothèses.
Comme l’expliquent Lenhard and Winsberg (2010), les modèles climatiques sont confrontés
à une forme particulièrement forte d’holisme de confirmation car il y a à la fois une grande
modularité dans leur développement et beaucoup d’interactions entre leurs différents modules,
i.e. entre les paramétrisations. Selon Lenhard and Winsberg (2010), les interactions entre les
paramétrisations sont si fortes qu’il n’est pas possible de démêler leur rôle respectif dans les
succès et les échecs des résultats des modèles.

Je m’oppose à cette vision en expliquant qu’un modèle climatique n’est pas seulement la
somme de son code (et des hypothèses qui le sous-tendent) et des résultats qu’il donne pour un
ensemble particulier de simulations. Au contraire, il s’agit d’une entité dynamique avec laquelle
il est possible d’interagir. Il est possible d’initialiser un modèle avec différentes conditions, de
modifier ses paramètres, d’utiliser des versions simplifiées ou idéalisées du modèle, etc. Grâce à
ces différentes interactions, les modélisateurs peuvent acquérir une connaissance du comporte-
ment d’un modèle climatique, de ce qu’il fait et pourquoi. Dans la littérature, il existe ainsi de
nombreuses études qui font le lien entre les résultats d’un modèle et ses paramétrisations (e.g.
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Hourdin et al., 2013; Notz et al., 2013). Mais la plupart de ces études sont faites pour un seul
modèle – quand de nombreux modèles sont étudiés, comme dans les ensembles multi-modèles
du CMIP, les détails des paramétrisations impliquées ne sont presque jamais pris en compte.
J’en conclus que ce ne sont pas les MCG qui font face à une forme forte de holisme de confir-
mation, mais CMIP. Les études fondées sur les résultats multi-modèles de CMIP considèrent
en effet les MCG comme des bôıtes noires, et ne s’intéressent qu’aux résultats des modèles et
non à leur contenu.

J’explique enfin que CMIP a eu des effets structurels sur les sciences du climat,
qui font de lui une véritable “infrastructure” pour la recherche climatique (Pitt, 2000). Tout
d’abord, CMIP a focalisé l’attention des scientifiques sur les MCG. Chaque phase de CMIP
est apparue comme un rendez-vous international pour les principaux groupes de modélisation
mondiaux. Pour avoir voix au chapitre, chaque groupe de modélisation devait présenter la
version la plus récente de son MCG. Cela a créé une pression autour du développement des
MCG, au détriment des autres outils qui peuvent être utilisés pour étudier le climat.

La façon de travailler avec des MCG a également été transformée. Avant AMIP et CMIP, les
différents groupes de modélisation travaillaient de manière relativement isolée : chaque MCG
présente en effet ses particularités, son langage qui lui est propre, et l’expertise acquise sur
un MCG donné n’est pas facilement transférable à un autre modèle. Comme l’écrit Edwards
(2010), les projets d’intercomparaison de modèles ont lié ces systèmes isolés en un réseau. Ils
ont permis non seulement de rendre les MCG comparables en les utilisant dans des conditions
similaires, mais les ont également aidés à partager certaines références communes et à utiliser
des approches de modélisation ou d’analyse similaires.

Le libre accès aux données de CMIP a par ailleurs considérablement facilité les analyses
des résultats des MCG. Cela a créé un fossé grandissant entre les développeurs de modèles
et leur utilisateurs. Avant AMIP et CMIP, les résultats des simulations des MCG étaient
généralement analysés par les quelques personnes qui avaient participé au développement du
MCG correspondant (ex : Manabe & Wetherald, 1975; Washington et al., 1980). Les utilisateurs
des modèles avaient donc une vision critique des forces et des faiblesses du modèle climatique
qu’ils analysaient, car ils avait contribué au développement de certains de ses aspects. Lorsque
les données des projets d’intercomparaison ont été rendues librement accessibles, les MCG ont
commencé à être analysés par des personnes qui n’avaient pas participé à leur développement. Il
en a résulté une perte de compréhension des résultats des modèles climatiques, et une tendance
accrue à utiliser les MCG uniquement comme des bôıtes noires.

Chapitre 7 – Conclusion

En conclusion, je commence par résumer la démarche que j’ai adoptée dans ma thèse et les prin-
cipales questions que j’ai abordées tout au long des chapitres. Je fais ensuite le lien entre ma
thèse et des questions plus générales sur l’avenir des modèles de climat. Je m’intéresse d’abord
à l’avenir de CMIP. Face aux peu de progrès des GCMs d’une phase de CMIP à l’autre, je pro-
pose d’abandonner le concept de “phases de CMIP”. Je suggère que les modélisateurs puissent
soumettre une nouvelle version de leurs modèles aux simulations CMIP quand ils le souhaitent,
c’est-à-dire chaque fois qu’ils estiment qu’une nouvelle version est suffisamment différente de
la précédente et suffisamment mature pour justifier une nouvelle série de simulations. Cela
créerait moins de pression sur les développeurs de modèles et leur permettrait de développer
leurs modèles en fonction de leurs propres échéances et de leurs priorités, indépendamment du
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calendrier imposé par le CMIP. Cela permettrait également d’éviter la “course à la publication”
après chaque phase de CMIP.

Je me penche ensuite sur le projet DestinE (Destination Earth) qui a pour objectif de
construire des “jumeaux numériques de la Terre” (Bauer et al., 2021). Les auteurs du pro-
jet expliquent que de tels jumeaux numériques de la Terre, contraints par les observations et
les lois de la physique, pourraient être utilisés pour guider les décideurs politiques et les en-
treprises pour une variété d’applications et répondre à des questions comme : “Quel est l’impact
économique de l’ajout de centrales éoliennes dans une région quand l’Europe sera neutre en
carbone ? Quelle politique agricole est la plus durable compte tenu des changements de régimes
météorologiques à venir ?” (Bauer et al., 2021, p. 81-82). Pour répondre à ces ambitions, Des-
tinE a pour vocation de donner à n’importe quel décideur la possibilité d’utiliser les jumeaux
numériques à ses propres fins. L’interprétation des résultats des jumeaux numériques ne serait
donc pas confinée à une “couche d’experts”. Avec cette ambition, les modèles sont vus comme
des outils prédictifs dont les résultats ont une valeur en soi.

Au contraire, on pourrait soutenir que la valeur d’un modèle provient davantage de l’interpré-
tation que l’on donne à ses résultats que des résultats eux-mêmes : dans ce cas, les modèles
sont considérés comme des guides pour formuler et tester des hypothèses plutôt que comme la
vérité. Une telle utilisation des modèles nécessite une bonne compréhension de leurs limites :
une certaine expertise sur le fonctionnement et les limites de ces modèles semble donc nécessaire
pour interpréter correctement leurs résultats. Permettre à n’importe qui d’utiliser un modèle
comme une “bôıte noire” – comme le propose DestinE avec ses jumeaux numériques – sem-
blerait alors peu souhaitable, voire dangereux. En plus du débat technique sur la possibilité ou
non de créer des jumeaux numériques de la Terre, il y a donc un débat épistémologique derrière
DestinE : quels types de modèles voulons-nous à l’avenir et comment voulons-nous les utiliser ?

Cette question ne concerne pas seulement DestinE. La modélisation de la convection atmo-
sphérique - et plus généralement du climat - est aujourd’hui à un tournant. Les paramétrisations
de la convection atmosphérique, qui ont constitué le paradigme dominant sur lequel les MCG
ont été construits pendant plus de 50 ans, sont remises en question. En particulier, cer-
tains scientifiques proposent de remplacer les paramétrisations par des simulations à haute
résolution – sous la forme de MCG ou de super-paramétrisations – ou par du machine learn-
ing. Ces différentes options s’opposent pour des raisons techniques, mais aussi pour des raisons
épistémologiques et reflètent des conceptions différentes sur le rôle des modèles. Clarifier le
rôle et les limites des MCG actuels a été une motivation importante de ma thèse de doctorat.
Pour poursuivre cette réflexion, je propose dans la conclusion trois conseils épistémologiques à
l’intention des modélisateurs de climat.

Le premier est simplement que tous les modèles ne sont pas équivalents. J’insiste sur la
nécessité de reconnâıtre la diversité des modèles a fortiori lorsque des modèles climatiques sont
couplés à des modèles socio-économiques comme DestinE cherche à le faire. J’explique notam-
ment que les modèles utilisés pour simuler la circulation générale de l’atmosphère et des océans
présentent une particularité : ils sont fondés sur les équations fondamentales de la thermody-
namique et de la mécanique des fluides. Ces équations sont un outils très précieux pour les physi-
ciens de l’atmosphère et du climat, mais malheureusement, il n’existe pas d’équations similaires
pour décrire les interactions sociales et économiques. Il existe donc un fossé épistémologique en-
tre les modèles qui servent à simuler les flux atmosphériques et océaniques et ceux qui intègrent
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les activités socio-économique. Les méthodes qui ont fait leurs preuves pour les premiers ne
seront donc pas nécessairement aussi efficaces pour les seconds.

Le deuxième conseil est qu’il est important d’évaluer et d’accepter les limites des
modèles. Tous les modèles ont une certaine utilité, mais aussi certaines limites. Ces limites
doivent être soigneusement évaluées afin de ne pas donner de mauvaises interprétations des
résultats du modèle. Il existe de nombreux exemples d’interprétations erronées de modèles
dans la littérature, avec parfois des conséquences politiques directes. Pour éviter une confiance
excessive dans un modèle, ses limites doivent être prises en compte dans l’interprétation de ses
résultats. Il nous semble important d’insister sur ce point car, comme l’illustrent les ambitions
de DestinE, les applications des modèles sont de plus en plus nombreuses. Cela peut donner
l’impression trompeuse que les modèles peuvent fournir des réponses quantitatives à n’importe
quel problème. Au contraire, je soutiens qu’un raisonnement qualitatif fondé sur une analyse
approfondie de certaines hypothèses clés semble dans de nombreuses situations préférable aux
résultats quantitatifs donnés par un modèle.

Enfin, le troisième conseil est qu’il ne faut pas laisser les modèles devenir des bôıtes
noires. En effet, sans une compréhension du contenu d’un modèle, ses utilisateurs ne peuvent
pas évaluer les hypothèses sur lesquelles il se fonde. Or, certaines hypothèses justifiés pour
une certaine utilisation peuvent sembler absurdes pour d’autres utilisations. Comprendre le
contenu d’un modèle permet donc de déterminer à la fois les utilisations légitimes d’un modèle
et ses limites. Face à l’utilisation de modèles de plus en plus complexes difficiles à interpréter,
je conclus que des modèles idéalisés ont encore toute leur pertinence pour comprendre le climat.
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Jebeile, J., Lam, V., & Räz, T. (2020). Understanding climate change with statistical downscaling
and machine learning. Synthese, 1–21.
Cited on page 24.

Jeevanjee, N., & Fueglistaler, S. (2020). Simple spectral models for atmospheric radiative cooling.
Journal of the Atmospheric Sciences, 77 (2), 479–497. doi: https://doi.org/10.1175/JAS-D-18
-0347.1.
Cited on page 202.

Jeevanjee, N., Hassanzadeh, P., Hill, S., & Sheshadri, A. (2017). A perspective on climate model
hierarchies. Journal of Advances in Modeling Earth Systems, 9 (4), 1760–1771.
Cited on pages 21 and 51.

Jeevanjee, N., & Romps, D. M. (2015). Effective buoyancy, inertial pressure, and the mechanical
generation of boundary layer mass flux by cold pools. Journal of the Atmospheric Sciences,
72 (8), 3199–3213. doi: https://doi.org/10.1175/JAS-D-14-0349.1
Cited on page 176.

Jiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P., Woolnough, S. J., . . . others
(2015). Vertical structure and physical processes of the madden-julian oscillation: Exploring key
model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120 (10),
4718–4748.
Cited on pages 104 and 223.

Johnson, G. C., Lyman, J. M., & Loeb, N. G. (2016). Improving estimates of earth’s energy imbalance.
Nature Climate Change, 6 (7), 639–640.
Cited on page 138.

Jones, N. (2017). How machine learning could help to improve climate forecasts. Nature News,
548 (7668), 379.
Cited on page 24.

Jones, T. R., & Randall, D. A. (2011). Quantifying the limits of convective parameterizations. Journal
of Geophysical Research: Atmospheres, 116 (D8).
Cited on page 76.

Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M., & Johns, T. C. (2008). Mechanisms for
the land/sea warming contrast exhibited by simulations of climate change. Climate Dynamics,
30 (5), 455–465.
Cited on page 15.

Jørgensen, S. E. (2008). Overview of the model types available for development of ecological models.
Ecological Modelling , 215 (1), 3 - 9. doi: https://doi.org/10.1016/j.ecolmodel.2008.02.041
Cited on page 149.

Kasahara, A. (1961). A numerical experiment on the development of a tropical cyclone. Journal of
Atmospheric Sciences, 18 (3), 259–282.
Cited on pages 69 and 218.

Kato, S., Ackerman, T. P., Clothiaux, E. E., Mather, J. H., Mace, G. G., Wesely, M. L., . . . Michalsky,
J. (1997). Uncertainties in modeled and measured clear-sky surface shortwave irradiances. Jour-

251



REFERENCES

nal of Geophysical Research: Atmospheres, 102 (D22), 25881–25898. doi: 10.1029/97JD01841
Cited on page 197.

Katzav, J. (2013). Hybrid models, climate models, and inference to the best explanation. The British
journal for the philosophy of science, 64 (1), 107–129.
Cited on page 66.

Katzav, J. (2014). The epistemology of climate models and some of its implications for climate science
and the philosophy of science. Studies in History and Philosophy of Science Part B: Studies in
History and Philosophy of Modern Physics, 46 , 228–238.
Cited on page 26.

Katzav, J., & Parker, W. S. (2015). The future of climate modeling. Climatic Change, 132 (4),
475–487. doi: 10.1007/s10584-015-1435-x
Cited on page 161.

Katzav, J., & Parker, W. S. (2018). Issues in the theoretical foundations of climate science. Studies
in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern
Physics, 63 , 141 - 149.
Cited on page 24.

Kent, C., Chadwick, R., & Rowell, D. P. (2015). Understanding uncertainties in future projections
of seasonal tropical precipitation. Journal of Climate, 28 (11), 4390-4413. doi: 10.1175/JCLI-D
-14-00613.1
Cited on page 158.

Kerr, R. A. (1994). Climate modeling’s fudge factor comes under fire. Science, 265 (5178), 1528–1529.
Cited on page 99.

Kerr, R. A. (1997). Climate change: Model gets it right–without fudge factors. Science, 276 (5315).
Cited on page 99.

Khairoutdinov, M., Randall, D., & DeMott, C. (2005). Simulations of the atmospheric general circu-
lation using a cloud-resolving model as a superparameterization of physical processes. Journal
of the Atmospheric Sciences, 62 (7), 2136–2154.
Cited on page 22.

Kirchner, J. W. (2003). The gaia hypothesis: conjectures and refutations. Climatic Change, 58 (1),
21–45.
Cited on page 37.

Klein, E. E., & Herskovitz, P. J. (2005). Philosophical foundations of computer simulation validation.
Simulation & Gaming , 36 (3), 303–329.
Cited on page 48.

Klemp, J. B., & Wilhelmson, R. B. (1978). The simulation of three-dimensional convective storm
dynamics. Journal of the Atmospheric Sciences, 35 (6), 1070–1096.
Cited on page 53.

Knupp, K. R., & Cotton, W. R. (1982). An intense, quasi-steady thunderstorm over mountainous
terrain. Part II: Doppler radar observations of the storm morphological structure. Journal of the

252



REFERENCES

Atmospheric Sciences, 39 (2), 343–358. doi: https://doi.org/10.1175/1520-0469(1982)039〈0343:
AIQSTO〉2.0.CO;2
Cited on page 183.

Knutti, R. (2010). The end of model democracy? Climatic Change, 102 (3), 395–404.
Cited on pages 107 and 157.

Knutti, R. (2018). Climate model confirmation: From philosophy to predicting climate in the real
world. In Climate modelling (pp. 325–359). Springer.
Cited on page 26.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G. A. (2010). Challenges in combining
projections from multiple climate models. Journal of Climate, 23 (10), 2739-2758.
Cited on pages 149, 156, and 157.

Knutti, R., Masson, D., & Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and
how we got there. Geophysical Research Letters, 40 (6), 1194-1199.
Cited on page 157.
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