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Introduction

Context

Skin biomechanics, a discipline that studies the mechanical aspects of cutaneous tissue, has become
an interesting research area for interdisciplinary protagonists in the last decades. Scientists, clinicians,
and engineers cooperated in various research works to understand human skin behavior under load
and environmental conditions. The knowledge acquired from this challenging adventure would help
prevent or treat dermatological disorders like wounds. For this purpose, the mechanical properties of
the first defense line in the body are characterized by a combination of experimental, theoretical, and
numerical methods. On some anatomical sites subjected to durable and substantial natural tensions,
abnormal scars can emerge from cutaneous wounds that may cause heterogeneity in the mechanical
properties of the medium. Hence, intrinsic mechanical stress would arise on the scar periphery, driv-
ing specific cells to emit biochemical signals that eventually boost scarring. Therefore, it is judicious
to study their growth at the tissue scale from a mechanical point of view.

Keloid is one of the most problematic pathological scars, which may impose a significant clinical and
social burden on the patient because of its unpleasant shape. Despite the enormous efforts put into
play to elucidate the internal mechanism, keloids, considered benign tumors, are still misunderstood
by the clinical community. Unlike a hypertrophic scar, a keloid doesn’t fade with time. Several
methods are proposed to reduce its appearance, but none solve the problem permanently. After elimi-
nating the keloid, the scar tissue may grow back again, and sometimes it grows back larger than before.

Based on a patient-specific pipeline, the thesis aims to tackle the keloid’s growth problem with a novel
approach. Instead of using invasive techniques to delete the tumor, it would be appropriate to contain
it at an early stage, by reducing the mechanical stress in the area, and prevent further propagation.
To this end, in vivo experimental measurements are conducted on a subject and used as inputs to
fit macro-scale simulation models. Optimal material parameters are identified through numerical
methods and serve to quantify the mechanical stress in the medium enclosing the studied scar and
map its privileged direction locally. Specifications of a retention medical solution could be asserted
to conceive a restraint device adapted to the patient-specific keloid scar.

Advanced characterization studies contribute to scientific progress in perceiving the skin’s response.
In the actual context, it improves the reliability of the beforementioned framework and hence the
efficiency of the medical solution. Accordingly, the thesis addresses in a parallel project a feature that
was neglected in the first study: anisotropy in healthy skin modeling. The study involves building a
second pipeline to identify the anisotropic material parameters from a multi-axial extension test and
applying it to a clinical trial database to analyze the subject-to-subject variability.

Outlines

The thesis plan comprises six chapters covering two main research topics on top of a literature re-
view written in the first chapter: the mechanical characterization of hyperelasticity in bi-material in
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Chapters 2 to 4 and anisotropy in human skin in Chapters 5 et 6. Chapter 1 will describe the methods
used in skin biomechanics literature according to the three main features of the subject, experiments,
modeling, and parameter identification.

Chapter 2 will describe separately the components and methods of Finite-Elements-based open-source
numerical framework, SofTI1, to identify the material parameters of a bi-material heterogeneous soft
tissue, and their implementation using FEniCS libraries. It is an improvement of a program initialized
by Sutula [1], a former post-doc researcher in BiomecaT team from the FEMTO-ST institute. The
validation of the most crucial computational methods will be presented as well. Later in Chapter 3,
the accuracy and precision of material parameter identification will be studied regarding a selection of
uncertainty sources, particularly finite elements discretization errors, experimental data quantity and
quality, topology, and the tri-dimensional aspect. In silico data were generated with additive synthetic
noise to simulate the variability around a reference parameter set belonging to the Gent model, a hyper-
elastic constitutive law. Subsequently, Chapter 4 takes advantage of SofTI to identify the parameters
of a keloid scar and surrounding healthy skin starting from patient-specific experimental data. The
latter captured with a uni-axial extensometer should be within the limits of parameter identification
validity determined earlier. Afterward, the maximum mechanical stress in and around the tumor will
be quantified, which could be interpreted as its growth’s preferential directions. This process would
predict the future keloid shape and propose a medical solution specification to prevent its propagation.

The second topicwill address the anisotropic behavior of the skin through the two last chapters. Chapter
5 will introduce MARSAC pipeline2 designed to estimate Langer’s line and the stiffness along and
across it. The methodology was constructed around displacement fields obtained with an annular
suction device to provide a multi-axial extension of the skin surface and converted with the Digital
Image Correlation. An application to a series of tests on one volunteer’s forearm for validation and
investigation of intra-subject variability will be addressed. Chapter 6 exploits the MARSAC method
to analyze the subject-to-subject variability over a clinical trial that involved 30 volunteers. This part
will report the experimental protocol’s adaptation, data management, and treatment. It will present
the relevant results of variability’s significance in parameters regarding factors such as age and sex.

1https://github.com/aflahelouneg/inverse_identification_soft_tissue
2https://github.com/aflahelouneg/MARSAC
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Chapter 1

Literature review

1.1 Scar Formation

First of all, we describe the composition of keloid scars and the mechanical phenomenon behind
their growth in this section. For that, we need to explore the structure of damaged human skin on a
micro-scale, understand the mechanism of wound healing, and explain how and in which conditions
a keloid takes shape.

1.1.1 Skin Structure

The skin is the body’s largest organ, with a total area of 2 m2 and weight of 3 kg. It is a barrier
to the body against environmental damage [2], such as harmful microbes, ultraviolet radiation, and
dehydration. Also, it helps regulate body temperature. Its complex structure consists of three main
different cell layers, namely the epidermis, the dermis, and the hypodermis, as shown in Fig. 1.1. Its
total thickness varies from 1 mm to 8 mm depending on the anatomical site, subject, sex, and age [3]

Figure 1.1: Compositions of the skin layers at micro-scale. Adapted from [4] and [5].

1.1.1.1 Epidermis

This superficial layer, with a thickness of approximately 75–150 µm [6], is stratified and composed
of five highly cellular layers. In the stratum basale, we find the keratinocytes, which act as a
source of proliferation, continuously replacing cells in the other superficial epidermal layers. Over
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approximately 4 weeks, the cells lose their nuclei to become mature corneocytes that form the skin-air
interface [7]. The stratum spinosum and stratum granulosum comprise cells releasing keratinocytes,
which progress through distinct phases of differentiation into corneocytes [2]. Located between the
stratum granulosum and stratum corneum layers, the transparent layer of stratum lucidium contains
three to five layers of dead and flattened keratinocytes [8]. The epidermis includes other cells such as
melanocytes (pigmentation), Langerhans’s cells (immunity), and Merkel cells (pressure sensing) [9].

Stratum Corneum
A relatively important layer in the epidermis, from a mechanical point of view, the stratum corneum
(SC) consists of one to three cell-thick layers of dead keratinocytes featuring a 10 − 30 µm thickness
[10]. It is the prime line of defense against external threats, such as infection and injury. In particular,
the mechanical properties of the stratum corneum are fundamental in conditioning the transmission
of loads and subsequent deformations of the other underlying skin layers. In addition, it offers the
opportunity to observe the healing processes of wounds [11].

Dermis-Epidermis Junction
The dermis-epidermis junction of human skin is a complex network of interconnecting proteins which
lend an intricate architecture to this zone of enormous mechanical stability [12]. The DEJ controls the
transit of biomolecules between the dermis and epidermis according to their dimension and charge.
It allows the passage of migrating and invading cells under normal conditions (melanocytes and
Langerhans cells) or pathological (lymphocytes and tumor cells). Mechanically, this high surface area
enhances the adhesion between the dermis and the epidermis and protects the dermis from physical
trauma by diffusing external forces along the contact area [13].

1.1.1.2 Dermis

The intermediate layer, the dermis, 15−40 times as thick as the epidermis [9], is mainly constituted of
an extracellular matrix (ECM). ECM is a large network of proteins and other molecules that surround,
support, and give structure to cells and tissues in the dermis. ECM includes a loose network of
fine collagen, elastic fibers, and ground substance. The main ingredients of ground substance are
hyaluronic acid and various proteoglycans. ECM itself is populated primarily by sparsely distributed
fibroblasts, which synthesize consistently, among others, the structural components cells of the dermis,
i.e., collagen, elastic fibers, and the ground substance (Fig. 1.1). Fibroblasts play a critical role in
wound healing [14]. We also find in the dermis mechanoreceptors that provide the sense of touch
and thermoreceptors that provide the sense of heat. In addition, there are hair follicles, sweat glands,
nerves, and blood vessels. The dermis can be divided into two layers: a superficial layer called the
papillary dermis (PD) and a deeper layer called the reticular dermis (RD) (Fig. 1.1). The papillary
and reticular layers are both made of connective tissue but differ in the type of tissue present [15].

Papillary dermis
It is made of areolar connective tissue, a loose connective tissue with a low number of scattered cells,
including fibroblasts, macrophages, and an abundance of ECM. Blood vessels in PD are smaller, and
some sensory receptors are sensitive to touch. PD contains dermal papillae, finger-like projections
covered by the overlying epidermal ridges. These papillae are important in binding the epidermis.
Dermal papillae are responsible for the pattern of fingerprints. If the overlying epidermis is destroyed,
it regrows with the same pattern as before, based on the layout of the dermal papillae below.

Reticular dermis
It is thicker than PD and contains blood vessels, glands, hair follicles, lymphatics, nerves, and fat
cells. RD has fewer fibroblasts and immune cells, more collagen, and less ground substance than
PD. Collagen fibers are larger and often arranged in bundles, making the extracellular matrix of the
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reticular layer much coarser when compared to the almost invisible distributed collagen fibers seen in
the loose connective tissue of PD. RD has plentiful blood vessels and a rich nerve supply.

Collagen fibers
Collagen is responsible for the strength of the extracellular matrix and is primarily synthesized by
fibroblasts. It is one of the body’s vital natural resources and a component of skin tissue that can benefit
all stages of wound healing [16]. As the main component of ECM in biological tissues, collagen is the
most abundant protein in mammals [17], making up 25% to 35% of the whole-body protein content
and approximately 70% of the dry weight of dry dermis [18]. The proportion of this component can
vary considerably between the tissues of origin: skin, tendon, arteries, lungs, and heart valves. It
consists of triplets of amino acid chains, known as α-chains, of elongated fibril known as a collagen
helix (Fig. 1.2) [19]. Each chain is characterized by repeating the triplet (Gly-Pro-Hyp), where Gly
stands for glycine, Pro for proline, and Hyp for hydroxyproline. The collagen bundles’ diameter ranges
from 1 to 100 µm [20].

Figure 1.2: Sketch of the structure levels of collagen fiber [21].

Over 29 different collagen types are known, which can be divided (from a bio-engineering viewpoint)
into fibril-forming and non-fibrillar collagens. In the skin we may find 13 types [21]. Fibrillar
collagen Type-I and III (respectively 70-80% and 18-21% of total collagen content) are structurally
the most significant contributors to the mechanics of soft tissues (biological tissues) acting as stiff
fibrous units within tissues [22–24]. Compared with other tissues, such as tendons and cornea, the
micro-architecture of collagen fibril bundles in human skin appears less well defined, which makes
the physical interpretation of skin deformation challenging at the macro-scale.

Elastic fibers
The elastic fiber is comprised of an amorphous elastin core (which constitutes 90% of the fiber
mass) surrounded by a protective microfibril sheath (Fig. 1.3) [25]. Similar to collagen fibers, thick
horizontal bundles of elastic fibers dominate the deep reticular dermis of the skin. However, unlike
collagen fibers, elastic fibers are responsible for the recoiling mechanism after stress or deformation
has been applied (Elastin derives its name from this function) [26, 27]. Their diameter ranges from
0.2 − 1.5 µm [20]. The mechanics of elastin networks is driven primarily by entropic elasticity [28],
as they are far more rubber-like in conformation compared to collagen fibrils.
Although not collagen, this elastin resembles collagen protein closely, the main difference being that,
unlike collagen, it contains only a little proline and much lysine. It is the major insoluble protein in
elastic tissues, where it contributes to their elasticity and influences cell migration, proliferation, and
elastin synthesis [29].

Ground substance
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Figure 1.3: Components of an elastic fiber.

The ground substance is a gel-like amorphous phase constituted of all ECM components except
collagen and elastic fibers [30]. It includes, but not limited to, proteoglycans, glycoproteins (e.g.,
fibronectin), and blood and lymph-derived fluids involved in is transporting substances crucial to
cellular and metabolic activities. The ground substance has been shown to play a role mainly in
the viscoelastic properties of the skin because of its high-water content (64%) and complex time-
dependent interstitial fluid motion [31]. It has been shown in [32] that there was no effect on the
mechanical response of skin because of its low stiffness, while some studies suggest that ground
substance probably only plays a major role when soft tissue is subject to compression [31, 33].

1.1.1.3 Hypodermis

Also called “sub-cutaneous” tissue, the hypodermis is the deepest skin layer and is composed of loose
connective tissue and adipocytes cells (lobules of fat) (Fig. 1.4) [34]. It also contains larger blood
vessels and nerves than those found in the dermis. The number of adipocytes varies among different
body sites, while their size varies according to the body’s nutritional state. The subcutaneous fat
can be measured using body fat calipers to estimate total body adiposity roughly. It acts as a shock
absorber and provides some minor thermo-regulation via insulation. It is located between the dermis
and the fascia, a thin but strong membrane of connective tissue encapsulating bones, muscles, and
other organs underneath the skin. The hypodermis constitutes about 10% of the body mass [35], has
a low stiffness modulus (a few kPa to 100 kPa), and is difficult to separate from the dermis. As a
consequence, the mechanical properties of the hypodermis have barely been studied [36].

Figure 1.4: Subcutaneous micro-structure [37].

1.1.1.4 Skin Thickness

The thickness of the epidermis and dermis can be assessed with different Imaging techniques in
agreement with the targeted penetration depth zp and the suitable resolution ∆zp [38, 39]:

• Confocal Microscopy (CM): zp = 0.2 mm, ∆zp = [0.5 − 1] µm.

• Optical Coherence Tomography (OCT): zp = 2 mm, ∆zp = [4 − 10] µm.

• High-frequency Ultrasound (US): zp = 15 mm, ∆zp = 30 µm.
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• Computed Tomography (CT): total body penetration, ∆zp = 100 µm.

• Magnetic Resonance Imaging: total body penetration, ∆zp = 100 µm.

A trade-off between penetration depth and resolution is unavoidable when examining skin depth. The
CT, MRI, and US have high penetration depths but at the expense of reduced resolutions. Conversely,
the CM has high resolution at a much lower zp (Fig. 1.5). The OCT is the best candidate for
dermal studies as it can image deeper tissues than confocal microscopy while maintaining resolution
exceeding those of CT, MRI, and US.

Figure 1.5: Penetration depth of Imaging techniques [40].

Human skin thicknesswasmeasured in a large number of studies during the last decades [18,36,41–47].
In Table 1.1, we report some of the measurement values of the total thickness, which includes the
epidermis and dermis thicknesses. The analyses of collagen density proved that it is tightly related to
skin thickness [48, 49]. In the aging process, the skin becomes thinner because of a functional deficit
in the skin through structural and molecular degradation [50] and changes in the dermal collagen
network configuration [51]. It was found that the skin thickness is lower in females versus males of
the same age, which can be attributed to the hormonal imbalance linked with menopause (decrease of
estrogen) [52].

Table 1.1: Skin thickness in the literature.

Anatomical site Thickness [µm] References

Forehead 1284 ± 223 [43, 44, 53]
Cheek 1375 ± 185 [43, 44]
Chest 1439 ± 201 [44]
Breast 1550 ± 250 [45]
Abdomen 1528 ± 208 [18, 43, 44]
Back 2196 ± 240 [18, 44]
Upper arm 1181 ± 162 [18, 44]
Forearm 1202 ± 335 [18, 36, 41–44,46]
Hand 1121 ± 93 [44]
Palm 1350 ± 120 [44]
Thigh 1276 ± 127 [18, 44]
Leg 1089 ± 115 [44]
Foot 1164 ± 139 [44]
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1.1.2 Wound Healing

When the skin is injured, our body sets into motion a series of automatic operations, often referred to
as the “wound healing process,” in order to recover injured tissues. Under uncontrolled circumstances,
and because of a mechanical tensile field developing in the wound plane [54,55], abnormal scars may
be formed, such as chronic wounds, hypertrophic scars, and keloids [56–58].

1.1.2.1 Skin Repair

A normal wound healing process mechanism is divided into four overlapping phases: Hemostasis,
Inflammation, Proliferation, and Remodeling (Fig. 1.6). Wound healing phases are not discrete. The
proliferation phase begins even before the inflammation phase has been completed and continues even
as remodeling has begun [59].

Figure 1.6: Wound healing phases. Adapted from [60].

Hemostasis
Hemostasis begins at the onset of injury, aiming to stop the bleeding. The body activates in this
phase its emergency repair system, the blood clotting system, and forms a dam to interrupt blood loss.
Such a dam protects the body against external aggressors, thus facilitating cell migration throughout
the injured area. In forming the clot, platelets aggregate along the injured endothelium, where they
degranulate, releasing a host of molecules involved in the coagulation cascade [61].

Inflammation
After hemostasis is achieved, immune cells infiltrate the wound site and mount an inflammatory
response within hours after injury. Within 1–2 days, monocytes are activated to become macrophages
to remove foreign matter, bacteria, non-functioning host cells, damaged matrix components, and other
non-essential materials. These cells also secrete growth factors and proteins that attract immune
system cells to the wound to facilitate tissue repair. This phase often lasts four to six days and is often
associated with edema, erythema (reddening of the skin), heat, and pain. Once the wound is cleaned
out, fibroblast, epithelial and endothelial cells migrate, and the proliferation phase begins [62].

Proliferation
The reconstitution of the dermis proceeds in a manner conducive to rapid tissue replacement and
effective wound contraction. Fibroblasts are synthesized and deposit a new ECM filling the physical
defect caused by the injury. This approach requires fibroblasts to reside in stratified planes/axes parallel
to the epidermal surface. Consequently, collagen fibers are laid down in a similar configuration,
resulting in a fabricated ECM that can be contracted to reduce wound volume. It has been asserted
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in [54,55] that during the skin wound healing process, a mechanical tensile field develops in the wound
plane as result of this contraction. Also, quantitative measurements by laser light scattering showed
that the collagen fibers are oriented along the direction of the major contraction vector of the wound
rather than randomly oriented [63]. Once fibroblasts migrate all the way through the healing space,
the provisional ECM scaffold is gradually replaced by the newly formatted collagen fibers type-I and
type III [64]. Despite attaining more significant amounts of collagen cross-linking over time, the
maximum tensile strength of scar tissue (achieved during the third month) is no more than 70–80%
of that of normal skin [65]. Relative to collagen, elastic fibers play a much smaller role during wound
repair. They are secreted in smaller amounts and at a considerably slower rate [66].

Remodeling
The new tissue slowly gains strength and flexibility about two weeks after injury. During this time,
excess collagen fibers are removed, and the remaining collagen fibers are reorganized, adding stability
to the ECM and providing a more suitable micro-environment for cellular function. The tissue
remodels and matures, and there is an overall increase in tensile strength [61, 62]. The Maturation
phase varies greatly from a wound to wound, often lasting anywhere from 21 days to two years.

1.1.2.2 Scar Mechanobiology

An understanding of wound healing mechanics is critical for the design of medical devices that find
application in preventing alterations. It is critical to understand how the ECM environment reacts
to the mechanical stimuli and transmits the forces to its cellular components, which secrete various
growth factors and cytokines [67].

Cellular Scale
Mechanical forces, including stretching [68], compression, shear, and hydrostatic and osmotic pres-
sures, can be perceived by cellular mechano-receptors (including cytoskeleton) and/or nerve fiber
receptors that produce the somatic sensation of mechanical force [68–70]. When mechanical forces
deform the ECM, the cytoskeleton is altered, and mechano-receptors ion channels, such as Ca2+, are
activated. Cells convert mechanical stimuli into electrical signals through mechano-receptors, thereby
accelerating cell proliferation through various mechano-transduction pathways (Fig. 1.7).

Figure 1.7: Effect of mechanical force on cellular mechano-receptors. Adapted from [67].

Tissular Scale
It has been demonstrated that the reduction of intra- or extracellular tensile forces decreases fibroblasts’
conversion rates, resulting in the absence of contraction and the resultant wounds are likely to fail to
remodel [71]. The manipulation of the scars in pigs and mice model by increasing the mechanical
stress loads tends to produce aberrant scarring [72, 73]. Moreover, the wound is also influenced by
extrinsic forces, including skin’s natural tension.
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Langer’s lines
The influence of mechanical forces during the skin repair process has been widely examined since the
existence of skin tension lines was reported by Langer in 1861 [74]. Historically, surgical incisions on
the skin aremade parallel to Langer’s lines to produce the least tension, as incisions generally heal better
with less scarring and fibrosis [75]. The density distribution of collagen fibers shows a preferential
direction of lower extensibility correlated with Langer’s lines [74, 76] in numerous studies [77–82].
It is known that incisions across Langer’s lines are exposed to greater tension and form more scar
tissue quantitatively. The incision should be performed then along Langer’s lines [59, 83]. Relaxed
Skin Tension Lines (RSTL), also called Borges’ lines, follow furrows when the skin is relaxed and are
produced by pinching the skin [84]. Generally, Langer’s and Borges’ lines run similar over many parts
of the body but are different in mechanically complex areas such as the mouth corner and temple [59].

An appropriate intrinsic tension is necessary for incisional wound closure. External mechanical forces
can also lead to scarring. Scar formation is determined by the balance between those forces [67].
However, strong extrinsic forces can accelerate cell proliferation and hyperproduction of collagen,
resulting in abnormal scar formation.

1.1.2.3 Abnormal Scarring

Optimal healing consists of the total regeneration of new tissue with the same physical, biological,
and aesthetic characteristics of healthy-skin. However, this is far from the case. There are four
possible cases of healing: regeneration (exact replacement), regular repair (reestablished equilibrium),
deficient healing (chronic ulcers), and excessive proliferation (fibrosis) [85]. The rate and quality of
scar formation vary among individuals as it depends upon the size, depth, location of the scar and
genetic disposition, hormones, skin color, etc., factors that may cause alterations in the healing process.

Excessive Proliferation
Commonly seen in keloids and hypertrophic scars (HS), excessive healing occurs when collagen
regeneration in the dermis exceeds the amount we find in a typical scar [86]. It is often preceded by an
amplified inflammatory response with the resultant overproduction of growth factors [66]. We may
name hereafter four cases [87]:

• Raised dermal scars: They are bulky, itchy, and sometimes painful. Raised dermal scars grow
within the wound margins.

• Keloids: Clinical keloids are defined as dermal fibro-proliferative tumors rising beyond the
boundaries of original wounds and rarely regressing over time. Unique to humans, they are
characterized by excessive collagen deposition in the dermis secondary to traumatic or surgical
injures.

• Hypertrophic scars: Raised fibrous scars, remaining within the original boundaries. They
include dermal layer damage [88].

• Scar contractures: Appearing usually after burn injury in each part of the body that is subjected
to contraction, like joints or skin. These scars commonly develop into hypertrophic scars.

Keloids versus Hypertrophic Scars
Keloid scars are sometimes tricky to identify and can be confused with hypertrophic scars (HS),
with some clinical similarities. The main distinction between keloids and hypertrophic scars is that
HS is enclosed by the wound’s margins, whereas keloids extend beyond wound boundaries (Fig.
1.8b) [89, 90]. A keloid scar is a potential diagnosis if a raised scar is still emerging after 12 months.
On the other hand, hypertrophic scars generally show some evidence of regression over this period.
Compared to HS scars, fibroblast is upregulated in keloids, and thus collagen levels are 2–3 times
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higher. Moreover, hypertrophic scars contain a higher subpopulation of myofibroblasts than keloids.
Histologically, it is not rare to find keloid scars containing areas of HS, but some sites can host HS
and not keloids [67]. Keloids display scar and adjacent skin redness; in contrast, redness on adjacent
skin is not observed in HS [91]. It is difficult to distinguish between the HS and the keloids based on
what the inner layer looks like, but hypertrophic scars have more cells that contract, and keloids have
very thick bands of connective tissue in their inner layer [92]. To avoid confusion, the scar’s keloidic
state should be confirmed after 12 months [87].

(a) Keloid (b) Hypertrophic scar

Figure 1.8: Comparison of keloid and hypertrophic scars with regards to the original wound margin [93].

1.1.3 Keloids

A focus on this type of proliferative scar must be of concern in order to establish a clear link between
the applied mechanics and a clinical solution to prevent keloid appearance and growth. Keloid is
a tumor that forms in the dermis and gradually spreads to the skin’s surface, around the original
wound. It often reappears after her excision and can be triggered by a pimple problem, burns, sternum
infections, chickenpox, or any other injury that damages the skin [86, 94]. Keloid is benign and has
no problematic symptoms but can affect psycho-social development and cause anxiety and loss of
self-esteem because of its unpleasant shape. Also, a keloid scar can cause movement limitation due to
flexibility loss. The very first recorded keloid in human history dates from the time of ancient Egypt,
and it is described in Smith’s papyrus [95]. The word "keloid," deriving from the Greek "Chele,"
(crab’s claw) was first used by Alibert (1802) [96].

1.1.3.1 Formation

Normal and keloid scar formation processes are similar in the early stage. Nevertheless, the exact
mechanism of wound healing in the case of keloids remains unknown [97]. It is related to many fac-
tors: anatomy, genetics, and mechanics. African, Hispanic, and Asian races seemmore predisposed to
develop them [86,98]. In addition, keloid formation is related to hormonal changes (pregnant women
and adolescents) and the immunological system.

On a cellular scale, keloid formation is associated with excessive collagen production during the pro-
liferation phase [94,99] and/or insufficient degradation of collagen and other ECM components [100].
Numerous theories have been suggested to explain this behavior involving abnormal production of
factors, such as transform growth factors TGF-β, responsible for controlling the proliferation of cells,
including collagen [101]. In addition, many studies suggest that keloids arise as a result of abnormal
regulation of the inflammatory phase. Nevertheless, no conclusive evidence has been provided about
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the development of this tumor to date.

On a tissular scale, keloids aremore likely to develop and rise inmore aggressive and recurrentmanners
on some sites where skin tension is significant, as shown in Figure 1.9 [102–104]. On those sites,
the balance of intrinsic and extrinsic forces is not in favor of a well-closed wound. This hypothesis is
also supported by the noticed tendency of keloids to adopt specific shapes. Additionally, Figure 1.9
demonstrates how abnormal scars are deep through skin layers, exceeding the dermis [105,106].

Figure 1.9: Site specificity of scars and relationship between mechanical forces and scarring. Modified
from [67,107].

Indeed, although keloids grow and spread abundantly in all directions, their horizontal growth (tan-
gential to skin surface) results in characteristic shapes that depend on the zone where they appear. For
example, keloids on the anterior chest grow in a “crab’s claw”-like pattern, whereas shoulder keloids
grow in a “butterfly” shape (Fig. 1.10) [67, 108]. The regions where keloids commonly occur seem
to be related to natural tension forces, stretching the initial wound occurring in the keloid formation.
However, earlobe keloids seem to be the exception to that, appearing in an area with almost no tension
forces [96]. The excessive proliferation in the earlobe keloid may be due to pressure loads resulting
from recurrent contact between ear and pillow.

(a) Anterior chest (b) Shoulder

Figure 1.10: Keloid propagation directions [56].

These patterns appear to be related to the mechanical force distribution and the direction of the
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skin tension fibers (Langer’s lines) [109, 110]. Combined with the natural body movement, the stress
developed within the tissue surrounding the keloid scar plays an important role in forming the irregular
shapes observed in the keloid scar [111, 112]. In Figure 1.11, we may notice a similarity between
Langer’s lines, as pictured by Langer in 1861 [76], and the axes of the ellipsoid shape of the keloids
in the anterior back.

Figure 1.11: Site specificity of scars and mechanical forces effect on scarring. Modified from [67,107].

1.1.3.2 Scar Treatment

Several invasive and non-invasivemethods have been used to treat keloid scars. Among them are surgi-
cal excision, radiation laser therapy, corticosteroid, and intralesional steroid injections [113]. Besides
biochemical solutions, the wound healing of the skin may be improved via the manipulation of the
skin mechano-environment. Thus, some medical devices, such as paper tape, bandages, and silicone
gel sheets (SGH), have been developed to cancel mechanical stress and high tension. A randomized-
controlled trial (RCT) showed that SGH significantly reduces the incidence of hypertrophic scar and
keloids [114]. Other RCT has shown that applying paper tape after a cesarean section on 70 sub-
jects helped to prevent HS formation with significantly less scar volume [67, 115]. An innovative
pressotherapy device consisting of silicon clips equipped with magnets was recently developed by the
University of Franche-Comté (Besançon) and tested in the University Hospital of Besançon. After
keloid surgery, it was applied to the earlobe to prevent keloid recurrence [116]. Controlling the forces
in the extracellular fluid (ECF) can help prevent scars through various devices (e.g., vacuum-assisted
closure) by inducing hydrostatic pressure gradients and shear forces. The magnitude and balance of
these force patterns must be further studied to develop sophisticated patient-specific devices for scar
prevention.

1.1.3.3 Keloid Biomechanics

According to Davis’s law (a corollary to Wolff’s law applied to osseous tissue), soft tissues heal
according to how they are mechanically stressed [117]. This theory may also be valid for the skin
since soft tissues share a common component that is mechanically dominant, which is collagen. Var-
ious research works were conducted to analyze the relationship between stress field and keloid scar
shape. When it comes to predicting the evolution of its form, utilizing numerical simulation would be
necessary.
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The simulation of an elliptical-shaped scar under tension indicates that the highest stress concentration
occurs around the corners of the scar. The stress field forms a butterfly shape (Fig. 1.12) which can
also be clearly seen in the real keloid scar (Fig. 1.10b). A more pronounced concentration in such an
area represents an accumulation of more significant amounts of collagen.

Figure 1.12: Stretching simulation of ellipsoid skin wound [111].

The prediction of the privileged directions of extension of a presternal keloid as a function of mechan-
ical stress field was carried out by Chambert et al. [104]. A bi-dimensional bi-material finite elements
model composed of an oblong keloid surrounded by healthy-skin was implemented to predict the
progression of the scar. The mentioned study suggests that the extension of the keloid is related to
the direction of maximum shear stress. Starting from an initial oval shape and through the analysis
of the shear stress field, the evolution of the keloid form could be successfully forecasted (Fig. 1.13).
The experimental and the numerical results of the preferential growth angle were in good agreement.
The highest stress concentration was reported to be taking place on the oblong corners. However, as
pointed out by the authors, the preferential directions of scar growth are sensitive to the ratio of initial
natural stress in X- and Y-directions. This ratio may play a predominant role in keloid evolution and
needs to be assessed accurately alongside the shear stress. The latter hypothesis was explored in the
thesis.

Figure 1.13: Simulated shear stress field of a 40-year-old man with two presternal keloids (oblong and butterfly
shapes) reproduced from [108] and simulated by [104].

Quantifying the stress in the keloid and around it is a promising way to predict the privileged direction
of scar growth. Since the topology of the studied zone matters, using numerical simulation becomes
essential. Because of the high variability between subjects and the sensitivity of model outputs
with respect to the inputs, biomechanical analysis of keloids to prevent their growth should lie on a
“patient-specific” approach [118]. The model is built upon data gathered from the studied individual,
i.e., geometry and material parameters. The methodology followed to characterize the mechanical
properties of the keloid, and the healthy-skin around it lies in essential steps ordered as follows,
measurement (Sec. 1.2), modeling (Sec. 1.3), and parameter identification (Sec. 1.4) [119, 120].
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1.2 Mechanical Characterization Experiments

The in vivo mechanical investigation of scars was conducted in a few studies [1, 106, 121–125]. The
results show that the scars are stiffer than the injured skin because of the abundance of collagen.
The latter is the stiffest biological component in the skin. Since scars and healthy-skin consist
primarily of collagen fibers, which drive the mechanical response of the tissue, the mechanical
characterization experiments on both materials can be performed similarly. There are no general
standards for measuring human skin’s elasticity. The choice of methods and materials depends on the
targeted material parameters and site accessibility. But, an important step is always included in the
protocol, which is Preconditioning. Preconditioning was first introduced by Fung in 1972 [126] and is
an initial load applied at low strains so that the skin behavior becomes reproducible. Preconditioning
aims to reduce measurement variability due to randomness of fiber orientation or the existing pre-
stress. Experimental tests of skin materials can be categorized into two distinct methods, ex vivo and
in vivo: the sample is excised from it before testing or tested non-invasively and directly on the living
subject. For ethical reasons, in vivo testing is usually favored in humans, although ex vivo testing
provides more rigorous results because of kinematics and geometry simplicity. Besides, as we are
interested in preventing keloid growth, in vivo results are more realistic. In this section, we enumerate
the in vivo experiments carried out on uninjured skin during the last decades.

1.2.1 Stretch Test

In tensile tests, the skin is stretched parallel to its plane by means of extensometers, equipped with two
or more pads to be fixed on the surface of the tested material. This experiment quantifies the skin’s
stiffness and the elastic parameters along the stretched direction(s) through stress–strain curves. This
method seems to be the most reliable as the deformations are in-plane, corresponding to the alignment
of collagen fibers parallel to the dermis layer.

1.2.1.1 Uni-Axial Stretch

In this type of testing, the skin is stretched along one direction (by letting the two orthogonal direc-
tions free of load). Regarding the ease of designing an extensometry apparatus, and the facility of
interpreting the outputs, the uni-axial test has been operated in countless studies on long and large
sites, such as the forearm [78,106,127–143]. While two pads stuck to the surface are moved one from
each other at a constant speed (Fig. 1.14), tissue deformation is measured in both longitudinal and
transversal directions.

Figure 1.14: Quasi-static device applying uni-axial stretch to the upper arm skin between pads [141].

For a better assessment of transversal deformation, the displacement of the whole surface between
pads is captured with Digital Image Correlation (DIC) technique [133, 142]. The reaction forces can
be measured with stress gauges and load cells. Pad adhesion to the skin is of major concern and can
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be secured with adhesive tape or slipless contact. Even if the uni-axial tension is uni-directional, it
was used along many angles to characterize the anisotropy [130, 131, 140]. Furthermore, recording
the measurement over time was employed to characterize the viscosity [134]. Such an experiment can
be improved by adding external shields from both sides to isolate the tested area and minimize the
effects of peripheral forces from the skin around [142,144] (Fig. 1.15).

Figure 1.15: In vivo uni-axial stretch of skin isolated from the surrounding effects. Modified from [133].

1.2.1.2 Multi-Axial Stretch

The multi-axial tensile test was conducted in vivo on human skin in several studies to investigate the
anisotropic behavior [18,145,146]. The latter is related to the distribution of the Langer’s lines in the
measured site. The experiment can be conceived in the form of multiple simple tensile tests in many
directions arranged in circular configuration (Fig. 1.16).

Figure 1.16: In vivo multi-axial testing on the subject’s skin [146].

Besides the variation of skin stiffness in every direction, the multi-axial test leads to identifying
the Langer’s line on the tested site. The angle with the lowest strain corresponds to the privileged
direction of collagen fibers. However, this technique has several drawbacks. Conducting multiple
tests to obtain a load–extension curve in each direction is time-consuming. Conversely, reducing the
number of angles with which the direction of the minimum extensibility can be defined will affect the
accuracy [147]. Moreover, it cannot be applied to small regions. A novel technique was recently used
to investigate the anisotropy of soft tissue in all directions simultaneously, continuously, and locally.
By applying suction load p within an annular surface (to not be confused with the suction testing),
the central zone is subjected to multi-axial stretch (Fig. 1.17). The preferential direction of collagen
fibers is precisely quantified from the resulting full-field displacements. For that purpose, Laiacona
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et al. [148] have developed a homemade device with inner and outer diameters, respectively, 30 mm
and 49 mm. Such a large test area cannot fit on a small site on the body. A commercial device
CutiScan CS 100® [149], utilized in [124,150–154], has been introduced in the market by Courage +
Khazaka electronic GmbH, with an inner diameter of 5 mm (respectively outer diameter of 14 mm),
granting measurement of multi-axial stretch on small regions, such as the earlobe [124]. Although
the device is reliable and promising [154], it has some limitations, as reported in [124]. Indeed, the
angle of the minimum displacement (equivalent to Langer’s line) is given in the associated software,
but access to the data of the displacement full-field is not provided. One of my thesis contributions
is developing a numerical method to exploit efficiently and entirely the output displacement field
captured by the device.

Figure 1.17: The multi-axial test performed with an annular ring suction probe. Adapted from [124].

1.2.2 Indentation Test

In this experiment, used for the first time in 1912 [155], a rigid indenter applies a controlled perpendic-
ular displacement (depth) at a given site on the subject’s skin, and the normal reaction force is recorded,
or vice versa [147, 155–167]. From the impact shape data, the elasticity modulus can be determined
via contact-based physical models. Indentation can also be carried out with contactless method, for
example, by projecting air flow [168, 169]. One of the benefits of this technique is eliminating the
sliding effect (occurring between the probe and the skin), which can induce measurement errors.

Figure 1.18: Spherical indentation device. Adapted from [170].

The usefulness of the indentation test consists in studying the skin layers’ contribution to the mechani-
cal response, as the load is normal to the surface. Hence, the test was combined with skin measurement
techniques, ultrasound [171], and MRI [172]. The indentation technique helps also monitor changes
in mechanical properties of a patient’s skin with respect to aging [159]. It has been noticed that the
skin softens with age and progressively loses elasticity, most likely due to microstructural changes in
the dermis and hypodermis [165,166].
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If the indentation testing is simple to design, the interpretation of its results is, however, not clear.
Many mechanical aspects are at stake: viscoelasticity, nonlinearity, and contact, which complicates
obtaining consistent experimental results [173]. Because of its axisymmetrical nature, the models
used to fit the data are mostly isotropic (or transverse isotropic in the case of multi-layer media). Thus,
the anisotropy of the skin cannot be resolved directly with such a method. A way to overcome this
limitation is to capture the elliptic contact edge during deformation and analyze its eccentricity [167].

1.2.3 Suction Test

One of the most used techniques to characterize the mechanical properties of the skin [41, 125, 162,
174–188], the suction test consists in applying a negative pressure inside a sealed axisymmetrical
chamber mounted on the tested skin region, resulting in an out-plane deformation of a dome (Fig.
1.19). The dome height is measured with different methods, such as ultrasound [177,181], OCT [180],
camera when possible [185]. The height can be fixed when using a mechanical stopper in the form of
a thin pipe, through which the suction is supplied until the inflated dome closes it [184]. Ultrasound
methods add additional experimental constraints as the use of liquid interfacing the probe with the
tissue is required (wet skin behaves differently compared to dry skin). The mechanical stopper method
provides data for a unique point, which might increase experimental errors. Optical methods are
usually preferred since there is no unnecessary contact [189].

Figure 1.19: The suction testing working principle. Photograph of the Cutometer® [190].

The stress-strain curve is obtained from the relationship between the height of the bulged dome and
the suction pressure. Most suction devices presented in the literature use a 2−8 mm opening diameter
with a pressure of up to 500 mbar [4], which makes it accessible to cornered and/or small areas, i.e.,
the breast [183] and parotid [185]. Clinical studies have shown that suction tests provide reliable
indicators for skin aging [174,191,192].

Suction testing has some limitations. Like the indentation test, the mechanical analysis is based on
the simplifying assumption that skin is isotropic (or transverse isotropic). Indeed, given the circular
opening of typical suction probes, it is not obvious to characterize the anisotropy of skin. We can cite
the only study related to the context, where the anisotropy of the skin through the bulge test (similar
to suction) was investigated ex vivo [193]. The authors pointed out that the need for pre-inflation to
prevent a buckled reference state is a disadvantage of the bulge test. It has been reported for thin films
that the error introduced by pre-inflation can be significant. Therefore, there is no confirmation about
using suction testing to capture the anisotropic behavior. Another limitation of the suction test is the
repeatability, as it depends on accurate probe handling, especially for hand-held devices. Alignment
of probe and skin and control of contact pressure is key to ensure reproducible measurement data.
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1.2.4 Torsion Test

It was designed to characterize the shear modulus in the material. In the torsion experiment, a shear
load is imposed on the superficial skin layer as a result of the friction head (disk) rotation in contact
with the skin’s surface. The disk’s rotation is in the form of torque or angular displacement. A tube
shield can be associated with the friction head to isolate the tested site from the surrounding skin
(Fig. 1.20) [194]. The measured torque-angular displacement curve (analogous to the stress-stain
curve for the tensile test) can quantify the skin’s viscoelastic response and compare the variations in
skin elasticity regarding age, gender, and location [49,128,195,196]. Although the torsion technique
is quick to apply and not restrictive in terms of accessibility, it cannot be used to assess anisotropy
because torsion tests are not directional.

Figure 1.20: The torsion test device. Adapted from a photograph of the Frictiometer® FR 700 [190] and [141].

1.2.5 Elastography

Over the last two decades, different methods have been developed to perform elasticity imaging, where
the soft tissue’s elastic and viscoelastic properties are mapped [197, 198]. Every elasticity imaging
method combines two common operations: force excitation (mechanical, radiation force, endogenous)
and measurement (ultrasound, MRI, acoustic) [198]. As an example in Figure 1.21, a plane shear
wave is generated in soft tissue by shaking a rigid plate with a vibrator. The wave propagates along
the direction k . Simultaneously, connected to a scanner, a transducer array with 128 pins captures the
propagated shear waves. Then, based on speckle images stored in memory, a correlation algorithm
computes the displacement field u. Once the response has been observed, the stiffness can be quantified
by measuring the wave velocity: the mechanical shear waves travel faster through stiffer than softer
tissue [199]. The anisotropy can also be assessed with elastography [200,201].

Figure 1.21: Experimental setup based on the elastography technique. Adapted from [197]
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1.2.6 Supplementary Experiments

Less common skin characterization methods have been employed in some studies, for instance,
ballistometry, and the vertical pull method (excluding the bulge test, which is not applicable for in
vivo experiments). They are not widely used because of many limitations, including highmeasurement
sensitivity and difficulty interpreting output data through a well-established model. However, they can
help assess the mechanical properties when the classical approaches upward cannot be carried out.
Other stiffness assessment techniques were used on the living skin, i.e., optical approaches [202,203]
and friction [204].

1.2.6.1 Ballistometry

With a ballistometer [205], the material properties are measured by the successive rebounds of a light
ball dropped from a height on the skin surface (Fig. 1.22) [206–210]. It measures the skin surface
after a known mass has impacted it with a known force. The method was developed initially for testing
homogenous, hard industrial materials but is today used to determine the mechanical properties of
the skin. The magnitude of the first rebound represents skin stiffness, and the damping factor the
viscosity [206]. The method is simple to conduct and does not require direct contact with the skin.
Also, it strongly correlates with the aging effect (linear correlation [206]). On the other hand, the
surrounding skin contributes dynamically to the mechanical response, complicating the identification
of material parameters.

Figure 1.22: Ballistometry working principle [211].

1.2.6.2 Vertical Pull

This testing is based on a vertical pull of a disk stuck to the skin with double-sided adhesive tape. When
using a pulley system, the reaction force is measured by skin deflection upwards (Fig. 1.23) [212–214].
It can be seen as an inverse process of indentation testing. To date, no model has been developed
to mimic the material deformation under such load. Thus, the interpretation of the results is hard to
fulfill. Nevertheless, the method can be utilized for qualitative comparison regarding many factors:
age, gender, and location.

Summary
Various experiments in vivo to analyze and quantify skin stiffness, as well as the preferential direction
of collagen fibers, were described in this section. Faced with the multitude of existing mechanical
tests and analysis methods, we must select one approach compatible with our expectations. Due to the
differences between solicitation natures, hypotheses, experimental conditions, and physical models,
it seems understandable not to obtain similar results. As the main objective is characterizing the
mechanical properties of the keloid, the selection focuses on the predominant mechanical cause of
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Figure 1.23: Vertical pull technique [214]. (a) Pulley system. (b) Pivoted support system.

the scar growth, which is natural skin tension. For more reliable results, the type of solicitation
should follow the alignment of the stiffer component in the skin, collagen fibers [133]. Therefore, the
keloid characterization would be based on in-plane loading. In this case, tensile tests. In the next
section, the physical models developed in the literature to simulate the stress-stretch state of the skin
are introduced.

1.3 Skin Modeling

In recent years, modeling the material behavior of the skin has been a primary concern for many
researchers. Description of the material behavior of largest human organ is necessary for many
clinical applications, including the prevention of scar growth. A way out of this is to quantify the
dominant forces in the studied media and counter them. Under permanent natural tension and given
a physical model predicting the mechanical response of the tissue, the stress field can be computed to
determine those dominant forces and their privileged directions. A skin model consists of constitutive
law describing the tissue’s kinematics and constants, called material parameters. The latter are
gathered from the mechanical characterization experiment introduced in 1.2. Hereafter, we present an
overview of reliable methods and approaches that lead to simulating the deformation of soft tissues.

1.3.1 Hypotheses

George Box stated that all models are wrong, but some are useful [215]. In other words, although the
models are incomplete and do not represent "reality," they simplify the problem by focusing on the
significant aspects and neglecting less important factors. Simulating all the details is unimaginably
costly and may lead to paradoxical results. Let us consider assumptions that reality is held up within
certain limitations.

1.3.1.1 Limitations

A valid model is both as accurate and as simple as possible. No matter how good they can rep-
resent reality, skin models have some limitations. First of all, we need to introduce the two main
modeling limits independently of the scientific field: simplicity and approximation. In the first case,
unnecessary details are skipped for easy use without altering the physical characteristics under the
loop (for example, ball-and-stick models in chemistry). While in the approximated models, we make
several assumptions about those characteristics. Nevertheless, these two approaches help scientists
build concise models in order to: (i) explain physical phenomena roughly but enough, (ii) fit the

26



experimental data, and (iii) predict what might happen in particular circumstances.

In the context of skin biomechanics, we would imagine simulating in the best scenario the motion of
the skin exactly as it happens in real life, but it is very challenging. The state-of-art models allow
us only to characterize the mechanical properties of the living tissue and predict its deformation for
a given load value and vice versa. For example, estimating precisely how many wrinkles appear on
a 60-year-old subject’s forehead is impossible. Historically, phenomenological mechanical models
have been built principally to fit experimental data without taking into account the micro-structural
effect, such as cutaneous layer components. If the model fits remarkably the observable data, it is
thus validated. Dozens of ’black-box’ models have been established to mimic the skin according to a
particular data set [216–218]. Skin biomechanics modeling could be limited by the following barriers:

• Geometric complexity: 3-dimensions, multi-layers, multi-phases, and multi-scale.

• Interdisciplinarity: dermatology, biology, mechanics, mathematics.

• Multi-physical aspects: nonlinearity, anisotropy, viscosity, incompressibility.

• Computational challenges: costs, convergence, stability.

• Inter- and intra-subject variability.

If we consider modeling the skin with all the above constraints, we will never fit any experimental
curve. Conversely, by neglecting one or many aspects, we will come up with incorrect models by the
end of the day, but some are useful. It is, after all, not appropriate to "go hunting" for the standard
model that simulates any skin behavior. The biomechanical modeling is limited by how the problem
is simplified, approximated, computed, and, more importantly, by the noised observable data, set as a
referential mirror to develop the best digital twin. A reasonable way of thinking about the ’rightness’ of
modeling would be focusing on applying the identified model to predict future mechanical responses
locally. Biomechanics modeling needs small steps to push its limits further and so the frontiers of our
knowledge in this young field.

1.3.1.2 Mechanical Characteristics of Soft Tissues

Before describing a model for the skin, it is instructive to give some insight into its general mechanical
characteristic. The skin shares the same mechanical characteristic as other soft tissues (ST), namely,
arteries, tendons, and ligaments, where collagen is responsible for mechanical performance and
strength and represents the common main structural component between those tissues. As we do not
master the skin modeling, it would be wise to enlarge our criteria and try out models used on other
ST.
Mechanically, ST are complex fiber-reinforced composite structures. Their mechanical behavior is
strongly influenced by collagen and elastic fibers concentration and structural organization [219]. ST
behave anisotropically because of their fiber arrangement, which tends to have preferred directions
(two fiber families on arteries [220]). For the connective tissue parts of the skin, the three-dimensional
network of fibers appears to have preferred directions parallel to the surface. However, some fiber
orientations also have out-of-plane components to prevent out-of-plane shearing. In contrast to hard
tissues (bone, tooth enamel), ST may undergo large tensile deformations with a nonlinear stress-strain
curve that can be divided into 3 stages related to the stretch rate of collagen fibers (Fig. 1.24):

• Phase 1: Toe region. In the absence of load, collagen fibers gradually align with the tensile
direction. The tissue behaves like a very soft isotropic linear rubber material, and the elastin
fibrils (5 − 10% of the dry weight of the skin [219]) are mainly responsible for tissue elasticity
[26]. The toe phase data are used to identify Young modulus parameters.
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• Phase 2: Heel region. As the load increases, the aligned fibers along the tensile direction start
uncrimping.

• Phase 3: Linear region. The stress-strain relation becomes linear again. Aligned and straight-
ened fibers undergo stretching sliding past each other and ultimately failing, causingmacroscopic
damage and failure (up to 30 − 70% of strain in the skin [219]).

Figure 1.24: Evolution of stress-strain response of dermis combined with the aligning state of collagen
fibers [219].

Also, some ST show viscoelastic behavior, which has been associated with the shear interaction of
collagen with the ground substance, which provides viscous lubrication between collagen fibrils [221].
Many other factors can affect the stretch rates, such as topography, age, gender, temperature, osmotic
pressure, and humidity. Nevertheless, in every mechanical characterization study of ST, the results
should be interpreted with hypothetical arrangement of themain parts of thematerial, namely, collagen
and elastin fibers. Table 1.2 attempts to present ranges of values of collagen/elastin contents (% dry
weight) in some soft organs.

Table 1.2: Collagen and elastin fibers content in soft tissues. From [219]

Soft tissue Collagen (% dry weight) Elastin (% dry weight)

Tendon 75-85 < 3
Ligament 70-80 10-15
Aorta 25-35 40-50
Skin 60-80 5-10

1.3.1.3 Similarities Between Soft Tissues and Rubber-like Materials

The first ever referenced work drawing attention to the similarity between soft biological tissues and
rubber-like materials backs to 1881 [222]. Roy showed that the animal arteries behave as caoutchouc
materials in a mechanical and thermodynamic way, unlike metals. When a metal is stretched, it
becomes colder, and the opposite occurs when it is compressed. Such a thermal behavior is not met
in rubber-like materials or ST. From these observations, two classes of solids can be distinguished
regarding their thermodynamic functioning [223]: ‘entropic elasticity’ (rubbers, ST) and ‘energetic
elasticity’ (metals, glass, dry wood). Hereafter, some common characteristics of rubber-like material
and soft biological tissues are listed, making them somehow equivalent from a mechanical point of
view [223].

• Micro-structure: The three-dimensional networks of both rubbers and ST consist of macro-
molecules held together by van der Waals and covalent bonds (unlike metals, as inter-atomic
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bonds hold their structures). Although they are composites, their homogenized response is only
considered most of the time, at least for macroscopic problems (examples are skin, lung, and
bone).

• Anisotropy: As in many ST, such as skin, ligaments, and arteries, the stiffening effect is based
on the embedding of collagen fibers, which leads to the characteristic anisotropic mechanical
behavior. Some are oriented along the privileged direction (Langer’s lines in the skin). The
reinforced polymer chains also align in a specific direction, which results in an anisotropic
rubber [224].

• Nonlinearity: Many characterization studies carried out on ST have shown that their relative
stress-stretch curves are highly nonlinear at large strains. The same observations occur on
rubber-like materials. The nonlinearity is seemingly due to the increase of stiffening as the
polymer chains align straight when the material is gradually stretched.

• Viscosity: Both materials can exhibit a dissipation effect because of the motion of the chains
within the viscous ground substance matrix. In fact, ST behaving as viscoelastic materials
(relaxation and/or creep) show shear interaction of collagen with proteoglycans found in the
extracellular matrix [221].

1.3.2 Hyperelasticity

As mentioned earlier, the mechanical response of the skin, in the form of a stress-strain curve, is a
J-shaped nonlinear curve when it undergoes large tensile deformation. It is still possible to use data
only from the toe region, where the behavior is of type linear elastic, to estimate the elastic parameters,
Young’s modulus, and Poisson’s ratio. However, with such a partial dataset, the uncertainty about the
parameter identification’s accuracy is high [1]. Therefore, using as much consistent data as possible,
from up to the heel region, is preferred to identify accurate material parameters using a nonlinear
model. This part describes the main steps to constructing nonlinear constitutive laws.

1.3.2.1 Geometry and Material Nonlinearity

When we mention the term "nonlinear," two natures of nonlinearity should be considered: geometric
and material [225]. Material nonlinearity occurs when, for whatever reason, the stress-strain curve is
nonlinear beyond the linear limit. If changes in stiffness come only from changes in shape, nonlinear
behavior is defined as geometric. For example, a flat membrane deflects under pressure. Initially, the
membrane resits the pressure load only with bending stiffness. After the pressure load has caused
some curvature, the deformed membrane exhibits stiffness additional to the initial bending stiffness.
Another shape of geometric nonlinearity is the load direction changing as the model deforms in
cases of large deformations. Hyperelastic materials, such as rubbers and ST, may be considered both
geometrically and materially nonlinear.

1.3.2.2 Kinematics

An alternative coordinate systems is employed to define stress-strain relations, namely, material and
spatial descriptions associated with the names of Lagrange and Euler, respectively. The inertia effects
are discarded in this section. The continuous deformable body is represented as an assemblage of an
infinity of material particles whose position with respect to the Cartesian basis E I has the coordinates
X (Fig. 1.25) in the initial configuration. The current position of each particle at time t is represented
by the coordinates x with respect to the Cartesian basis ei. The two bases are taken to be coincident.
And the motion of trajectory between initial and current position is described through a bijective
function χ as

x = χ(X, t) (1.1)
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Then, the displacement vector for each material particle is expressed as

u = x − X (1.2)

Figure 1.25: Motion of deformed body [226].

Deformation Gradient Tensor
The main key to linking physical quantities present in the bodies before and after deformation is
the deformation gradient tensor F. For instance, the strain-energy density function (SEDF) during
deformation should contain this entity. The deformation gradient tensor enables the relative spatial
position of two neighboring particles P and Q. We consider the elementary vector dX = XQ − XP.
After deformation, in current spatial positions, it becomes (Fig. 1.25)

dx = xq − xp = χ(XP + dX, t) − χ(XP, t) (1.3)

Therefore, the deformation gradient tensor is defined as

F =
∂ χ

∂X
= ∇χ(X, t) (1.4)

where ∇χ is the gradient with respect to material configuration. Generally the elementary vector dx
can be expressed in terms of dX as

dx = FdX (1.5)

Another way to obtain F is by combining Equations 1.2 and 1.5

F =
dx
dX
= I +

du
dX

(1.6)

with I an identity second-order tensor.

Strain Tensor
One standard way to measure the deformation is using the square of local change in distances. That
leads to using a rotation-independent deformation tensor since a pure rotation should not induce any
strains in a deformable body. Let us consider
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dx · dx = (FdX)T (FdX)

= dX · FTFdX

= dX · CdX

(1.7)

George Green introduced a deformation tensor known as the right Cauchy–Green deformation tensor.
It can be defined as1

C = FTF (1.8)

F can be decomposed into a product of two tensors U and R, using polar decomposition

F = RU (1.9)

The latter equation implies that the deformation of dX onto dx (Eq. 1.5) may be obtained separately
in two steps: dX is stretched by a symmetric definite positive tensor U , i.e, dx ′ = UdX , followed by
an orthogonal rotation R, i.e, dx = Rdx ′. That explains why C is a rotation-independent tensor:

C = URTRU = U2 (1.10)

Volume Variation

In the material configuration, the elementary change of volume is expressed as the multiplication of
edges width parallel to the Cartesian axes given by dX i = dXiEi, hence

dV = dX1dX2dX3 (1.11)

By analogy, in the spatial configuration the volume change is a triple product of edges parallel to the
Cartesian basis ei [226] (where × denotes the vector product),

dv = dx1 · (dx2 × dx3) (1.12)

such as

dxi = FdX i =
∂ χ

∂Xi
dXi; i = 1, 2, 3 (1.13)

then from the two last equations,

dv =
∂ χ

∂X1
·

(
∂ χ

∂X2
×
∂ χ

∂X3

)
dX1dX2dX3 (1.14)

The above triple product is the determinant of F; thus, the volume variation in terms of the Jacobian
is

dv = JdV ; J = det(F) (1.15)

For incompressible materials, J = 1, i.e., the volume change is null. And, in terms of principal stretch,
λi,

J = λ1λ2λ3 (1.16)

1The F in FTF is situated on the right.
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Right Cauchy-Green tensor invariants
SEDF is often expressed as a function of invariants of the strain tensor. Hereafter we introduce the
invariants of C

I1 = tr(C) = λ2
1 + λ

2
2 + λ

2
3

I2 =
1
2

[
(tr C)2 − tr(C2)

]
= λ2

1λ
2
2 + λ

2
2λ

2
3 + λ

2
3λ

2
1

I3 = det(C) = λ2
1λ

2
2λ

2
3

(1.17)

with λi are stretch ratios initially oriented along the eigenvector directions of stretch tensor and are
not generally aligned with the coordinates system axis.

Objectivity
Objectivity is an alternative definition of frame indifference, where the position of an observer does
not affect any quantities of interest. In our context, the rigid body motion should not alter the stress
and strain quantities of the deformed subject. To express this concept in a kinematic framework, let
us consider an elementary vector dX that deforms to dx. The latter is rotated to d x̃ without changing
its magnitude via an orthogonal tensor Q. The relationship between these vectors is

d x̃ = Qdx = QFdX (1.18)

We show hereby that the right Cauchy-Green strain tensor is nonobjective quantity, in other words, its
relative rotated tensor Cr does not equal QCQT ,

Cr = FTQTQF = FTF = C (1.19)

However, it is unaffected by any rigid body motion [227].

1.3.2.3 Thermodynamic Theory

As SEDF will be used to simulate the mechanical response under loads, specific attention should be
attributed to the thermodynamic concept of the energetic approach. The first thermodynamic law
stipulates that the time rate change of the internal energy ÛE(P, t), for any part P ⊂ D of a deformable
body D, is compensated by the total heat flux Q(P, t), and the total mechanical power W(P, t) [228].

ÛE(P, t) = Q(P, t) +W(P, t) (1.20)

According to the second law, the change rate of entropy ÛS(P, t) is composed of exchanges of entropy
and production of entropy, which can be only positive (or null if the transformation occurs with no
dissipation). Then the exchanges of entropy under the temperatureΘ, in non-isotherm transformation,
follow the relation:

ÛS(P, t) ≥
Q(P, t)
Θ

(1.21)

By merging the two laws (1.20) and (1.21), we obtain

ÛE(P, t) − Θ ÛS(P, t) ≤ W(P, t) (1.22)

The mechanical power is obtained as follows

W = σ : L (1.23)

where L is the strain rate tensor and σ is the Cauchy stress tensor describing the rate of stretching and
shearing, it is the symmetric part of the velocity gradient tensor [228]. Consequently,
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ÛE(P, t) − Θ ÛS(P, t) ≤ σ : L (1.24)

The equation above shows that the work done by the stress induces either a decrease in the entropy or
an increase in the internal energy. When σ : L induces mostly a decrease in entropy ( ÛE � ‖Θ ÛS‖),
the elasticity of P is entropic. ST tissues are composed of cross-linked chains in the network sample.
External stress changes the end-to-end equilibrium distance of a chain, and it adopts a less probable
conformation [120, 229, 230]. Thus, its entropy decreases. The elasticity of soft tissues is said to be
purely entropic.

1.3.2.4 Constitutive Law

Fundamental Relations
Once the strain tensors in adequationwith kinematic criteria, i.e., objectivity and rotation-independence
to deformation, are defined, we employ them to build a hyperelastic constitutive law. The concerned
strain energy density depends only on the deformation gradient F. It may be written as:

ψ(X, t) = ψ(F(X, t), X) (1.25)

The total strain energy is the internal work done by stresses during the elastic deformation of a
given material. Without dissipation effects, the work is dependent only on the initial and the last
configuration. It is said to be path-independent. As a consequence, the stored energy can be
established as a function of first Piola-Kirchhoff stress tensor, P, and the time derivative of the
deformation gradient tensor, ÛF, [227]:

ψ(F(X), X) =

∫ t

t=0
Ûψ dt; Ûψ = P(F(X), X) : ÛF (1.26)

We learned from section (1.3.2.2) that C is independent of the rotational part of F = RU , as well as
ψ which depends only on the stretching part of F. Hence, we may write

ψ(F) = ψ(U) = ψ(C) (1.27)

Consider the time derivative of ψ(F). Utilizing the chain rule differentiation, we obtain

Ûψ =
∂ψ(F)

∂F
: ÛF (1.28)

By comparing to Eq. (1.26), since F and ÛF can take on any value independent of the other, the first
Piola-Kirchhoff stress is defined by

P =
∂ψ(F)

∂F
(1.29)

Hereafter, we look for stress expressions for F and C. By using the Property P : ÛF = tr(PT ÛF) and
the chain rule on C:

Ûψ = tr

[(
∂ψ(F)

∂F

)T
ÛF

]
= tr

[(
∂ψ(C)

∂C

)T
ÛC

]
(1.30)

As C is a symmetric second-order tensor, the scalar-valued energy gradient ψ(C) is also symmetric.
Therefore,

Ûψ = tr
[
∂ψ(C)

∂C
ÛC

]
(1.31)

To express the derivative of C = FTF with respect to time t, we introduce the spatial velocity gradient
l, such that ÛF = lF (by using the property

Û
FT = ÛF

T ):
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ÛC =
Û
FTF + FT ÛF = ÛF

T
F + FT ÛF

= FT lTF + FT lF = FT (lT + l)F
(1.32)

As demonstrated in [227],

Ûψ = tr

[(
∂ψ(F)

∂F

)T
ÛF

]
= 2tr

[
∂ψ(C)

∂C
FT ÛF

]
(1.33)

The relationship between F and C derivatives in the context of hyperelastic deformation is:(
∂ψ(F)

∂F

)T
= 2

∂ψ(C)

∂C
FT (1.34)

which, when substituted in (1.29), reads:

P = 2F
(
∂ψ(C)

∂C

)T
= 2F

∂ψ(C)

∂C
(1.35)

The first Piola-Kirchhoff P stress tensor is non-symmetric. Therefore, we express two symmetrical
stress tensors, Cauchy σ and the second Piola-Kirchhoff stress tensor S [226], as function of C:

σ = J−1FPT = 2J−1F
∂ψ(C)

∂C
FT (1.36)

and

S = F−1P = 2
∂ψ(C)

∂C
(1.37)

The second Piola-Kirchhoff stress tensor formulation could be used to construct a constitutive model
based only on the invariants of the right Cauchy-Green deformation tensor C.

Anisotropic Hyperelasticity
The relationship between the energy density ψ and C must be independent of the material axes chosen
and, consequently, ψ must only be a function of C tensor’s invariants. Thus, with the assumption that
the strain energy density can be decoupled into isotropic and anisotropic parts [219], one could write:

ψ = ψiso(C(X); I1, I2, I3) + ψaniso(C(X); I4, I5, I6, I7) (1.38)

The fiber orientations are formulated in the anisotropic parts through the additional term ψaniso.
Anisotroy invariant equations are based on the concept of structural tensors [231–233]. The invariants
are introduced below [234]:

I(k)4 = N (k)f · CN (k)f , I(k)5 = N (k)f · C
2N (k)f (1.39)

The unit vector N (k)f describes the initial orientation of the k-th fiber family (commonly 1 family for
the skin). These invariants depend primarily on one direction each, but it is possible count for the
interaction between different directions:

I(k,l)6 =
(
N (k)f · N

(l)
f

) (
N (k)f · CN (l)f

)
, I(k,l)7 =

(
N (k)f · N

(l)
f

)2
(1.40)

Other invariant forms were also proposed in the literature [235,236]. By considering only the isotropic
restriction, the second Piola–Kirchhoff stress tensor can be rewritten from Equation 1.29 as
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S = 2
∂ψ

∂C
= 2

(
∂ψ

∂I1

∂I1
∂C
+
∂ψ

∂I2

∂I2
∂C
+
∂ψ

∂I3

∂I3
∂C

)
(1.41)

The derivative forms of the isotropic invariants concerning C are expressed as follows:

∂I1
∂C
= I ;

∂

∂CIJ

3∑
K=1

CKK = δIJ (1.42)

∂I2
∂C
= I1I − C;

∂I2
∂C
=

1
2

(
2tr(C)I −

∂

∂CIJ

3∑
K=1

3∑
L=1

CKLCLK

)
(1.43)

The derivative of the third invariant is more conveniently evaluated using the expression for the
linearization of the determinant. The partial derivative is related to the directional derivative by
choosing an arbitrary increment tensor ∆C.

DI3[∆C] =
3∑

I,J=1

∂I3
∂CIJ

∆CIJ =
∂I3
∂C

: ∆C (1.44)

On the other hand, the linearized determinant is rewritten as [226]:

DI3[∆C] = det(C)C−1 : ∆C (1.45)

Thus from the two last Equations (1.44) and (1.45),

∂I3
∂C
= det(C)C−1 = I3C

−1 (1.46)

which leads to develop the form of the second Piola-Kirchhoff stress tensor (1.41)

S = 2
∂ψ(C)

∂C
= 2

[(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
I −

∂ψ

∂I2
C + I3

∂ψ

∂I3
C−1

]
(1.47)

Themultiplication of ∂ψ(C)/∂C byC from both sides leads to the same result. We say that ∂ψ(C)/∂C
is coaxial C (they have the same eigenvectors), which is essential for isotropy [227].
In the spatial description, we express the Cauchy stress tensor in the same way as S, via the formula
σ = J−1FSFT . It would be more convenient to rewrite the result in terms of the left Cauchy-Green
strain tensor B = FFT , as FIFT = B, FCFT = (FFT )2 = B2 and FC−1FT = (FF−1)(F−TFT ) =

I . we deduce then:

σ = 2J−1
[
I3
∂ψ

∂I3
I +

(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
B −

∂ψ

∂I2
B2

]
(1.48)

Strain Energy Density Functions
The hyperelastic models that define thematerial are characterized by their relative strain energy density
function. These functions are to be found intuitively such that the derived stresses and strains represent
well the mechanical response of the material under loads. Their constant parameters are identified
based on optimizing the discrepancy between the model and the experimental data. The hyperelastic
constitutive models can be classified into three main categories: phenomenological, structural, and
hybrid models (structurally based phenomenological) [218]. The first one is purely mathematical that
ignores the micro-structure properties, and describes the nonlinear evolution of stress as function of
stretch. Although this approach allows to fit the experiments efficiently , it has a principal drawback:
the built behavior law (constitutive model) does not often have a clear physical interpretation.

The usual strategy for building a phenomenological hyperelastic model is generally based on three
steps: formulation, data-fitting, and validation [237, 238]. The choice of the model form is based on
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two major points of view: assumptions and experimental facts. Among many hyperelastic constitutive
models, we list below some famous ones (incompressible form) that have been used in soft tissue
characterization studies [223, 234, 239–241]. They can be in the form of, or combines, power,
polynomial, exponential, or logarithmic terms.

• Mooney-Rivlin [242,243]:
ψMR = C1(I1 − 3) + C2(I2 − 3) (1.49)

where I1 and I2 are the first and the second invariant ofC. C1 ≥ 0 andC2 ≥ 0 are empiricmaterial
parameters and can be accurately determined with a uniaxial tensile test. For consistency with
linear elasticity, the shear modulus is equal to µs = 2(C1 +C2). The Mooney–Rivlin model is a
special case of the generalized Rivlin model [244], whose variants have been used for simulating
the motion of tongue [245], facial skin [246], thigh [247], and spine (the ground substance of
annulus bulk) [248]. As mentioned in [249], the Mooney-type models have difficulty describing
this highly nonlinear behavior.

• Neo-Hookean [243]:
ψNH = C1(I1 − 3) (1.50)

It is the simplest model among all the incompressible materials. It can be obtained by setting
C2 = 0 in Mooney-Rivlin SEDF. Hence, the shear modulus is µs = 2C1. The Neo-Hookean
(NH) model is based on the statistical thermodynamics of cross-linked polymer chains [250].
A comparison of experimental analyses shows that this model fails to fit highly nonlinear
curves because of its linear dependence on I1 [251]. At very low strains, Young’s modulus
approximates E ≈ 6C1. NH model were used for the spine [248], skin [164], calf [252],
foot [253], breast [254], and keloid [1].

• Yeoh [255]:
ψY = C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3 (1.51)

This polynomial SEDF was proposed to predict the shear modulus in carbon-black-filled rubber
significantly dropping at low strains [255]. In contrasts with Mooney-Rivlin and Neo-Hookean
models, which have a constant shear modulus, Yeoh material has shear modulus that varies with
deformation. As pointed out in [251], the dependence on the I2 invariant is not significant and
the function may contain only I1 and I3. Therefore a negative value of C2 is not necessarily
incorrect. Similarly to the two previous model, the linear consistency condition implies that the
initial shear modulus µ(0)s = 2C1. As for C3, it is interpreted as half the initial bulk modulus.
Yeoh model was employed to identify the material parameters of the tongue [256], spine (the
ground substance of annulus bulk) [248], and liver [249].

• Gent [257]:

ψG = −
µ

2
Jm ln

(
1 −

I1 − 3
Jm

)
(1.52)

Based on the concept of limiting chain extensibility, the Gent model has been developed to
characterize rubber-like materials better when subjected to large deformations. µ parameter has
the same physical interpretation as in the NH strain energy function. At the same time, Jm is an
additional parameter that controls the chain extensibility (see Section 1.3.2.5 for more details).
In the form of a logarithmic function, the Gent model has a singularity when I1 reaches the limit
Jm + 3. Hence, for incompressible material, Jm > I1 − 3. ψG was applied to several recent ST
characterization and simulation studies, arteries [258–260], brain tissue [261–264], skin [264],
pelvic organ [265], and keloid [266].

• Ogden [267]:

ψO =

N∑
p=1

µp

αp

(
λ
αp

1 + λ
αp

2 + λ
αp

3 − 3
)

(1.53)
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The Ogden strain-energy function is expressed directly in the principal stretches λi, which
are more intuitive measures of deformation than the invariants. µp and αp are the material
parameters for each order p. For the same tissue, µp calibratedwith a uniaxial tensile experiment
is not equal to the one from an equibiaxial test [251]. Despite its gaining popularity among
users of finite element analysis and its ability to fit very well the classical experimental data of
Treloar [268], the Ogden model offers no real advantage over the Rivlin form (Mooney-Rivlin
and Neo-Hookean). Because one load mode (associated with two-terms Ogen function) is
insufficient to characterize the rubber-like material [269]. Using a higher-order function will
increase the number of parameters. Among many applications to ST, we may cite the cases of
brain tissue [270], aortic [271], liver [272], and skin [136,139].

We find in the literature other phenomenological SEDF used to model the deep soft tissues [249], for
instance Fung [273], Veronda-Westmann [274], Demiray [275], etc.

Model Stability
The strain energy density cannot be chosen without restriction. Other criteria are to check over when
validating a hyperelastic strain energy function. The ones related to stability are not mandatory but
highly recommended. These criteria are:

• Drucker criterion. This criterion [276], is a strong condition stipulating that the incremental
internal energy of a deformed material can only increase. Hill’s stability criterion is a similar
postulate for elastic-plastic materials [277]. As pointed out in [278] that unstable energy
functions can cause inconsistency and divergence in the nonlinear numerical solution algorithms
used in FEM simulation. The Drucker criterion may be written in the following form:

dσ : dε ≥ 0 (1.54)

One could express the inequality above with principal stresses and strains at any point in the
solid: ∑

i=1
dσidεi ≥ 0 (1.55)

Principal Cauchy stresses and strains are related through the tangential stiffness matrix D:

©­«
σ1
σ2
σ3

ª®¬ = ©­«
D11 D12 D13
D21 D22 D23
D31 D32 D33

ª®¬ ©­«
ε1
ε2
ε3

ª®¬ (1.56)

In practice, the inequality (1.54) can be satisfied by justifying that tr(D) ≥ 0 and det(D) ≥ 0.
Di j depend on the load mode, and the strain energy function [279].

• Ellipticity condition. The strong ellipticity condition verifies nonlinear elasticity [280]. It was
used for incompressible [281] and compressible [282] isotropic materials. In some cases, the
model witnesses a loss of ellipticity [283], where the classical local continuum theory fails to
describe the problem correctly; in this situation, the boundary value problem is ill-posed, and
the elliptic equations become hyperbolic [284].
The generic condition to verify the strain energy in the absence of body forces can be written
as [285,286]:

1
J

FpαFqβ
∂2ψ

∂Fiα∂Fjβ
v1pv1qv2iv2 j > 0; v1 , 0 and v2 , 0 (1.57)
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with v1 and v2 are arbitrary non-zero vectors. This condition is always difficult to verify [234].
A simplified condition for plane-strain deformation of isotropic material is proposed in [287].

• Poly-convexity. The direct analysis of the ellipticity condition can be overcome by studying the
polyconvexity in the sense of Ball [288] that implies ellipticity [289].

1.3.2.5 Gent Model

A Note About Model Selection
A question about the representativity and the validity of phenomenological models should be tack-
led and discussed. One of the aims of modeling is the identification of material parameters. A
hyperelastic model is validated as soon as it helps to fit the gathered experimental data. However,
in plenty of material characterization studies [251, 290–292], more than a model can fit the same
data. Hence, a model selection procedure would be based on dictated criteria, such as Occam’s
razor [293]. Phenomenological models have been qualified as consistent with fundamental theory
but forgo any attempt to explain the relationship between the nature of the parameters and the mea-
sured values [294]. On the other hand, the micro-structural models (overviewed in [218]) are more
realistic and representative. Even though they fit the data accurately, they are overchargedwith parame-
ters, which may increase their uncertainty. Also, their formulation and implementation are very costly.

Furthermore, As it is widely known, the stretching limit is inevitably reached on human skin if the
extension undergoes large deformations in vivo. Therefore, the chosen model should include the
concept of stretching limit (Fig. 1.26). It has been shown previously thatGentmodel is an appropriate
semi-empirical candidate model to be associated with extensibility limit, with the ability to predict
non-linearities arising for small stretches (λ1 < 1.2) [106]. In this section, we explain its components
and relevance in skin application.

Figure 1.26: Limited stretch on the skin.

Semi-Empirical Behavior
Gent model, as introduced the first time in [257], is developed from both phenomenological and
micromechanics concepts. It has been demonstrated that it has a near equivalence with Arruda-
Boyce’s model. These two constitutive laws are able to predict similarly complex three-dimensional
deformation with only two material constants [295, 296]. Another conceptual link between micro-
structural and phenomenological models has been discussed in [297, 298], where the authors showed
that Gent behavior law is a very good approximation of a non-Gaussian full-network model involving
the inverse Langevin function (see Section 1.3.2.5). Its phenomenological parameters µ and Jm can
be formulated in terms of microscopic properties, providing a significant advance in establishing the
connection between statistical mechanics and continuum mechanics.

As thoroughly as necessary, let us propose a molecular interpretation of the Gent model inspired
by the Arruda-Boyce eight-chain model [241] since their respective mechanical responses are close
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[295, 296]. Figure 1.27 demonstrates equivalent values of the initial shear modulus for Gent and
8-chain (Arruda-Boyce) materials but not for the Neo-Hookean. The physical description of the two
formers was carried out by assuming the equivalence of their respective Cauchy stress expressions.
By substituting (1.52) in (1.48):

σG = −pI + µ
Jm

Jm − (I1 − 3)
B (1.58)

The averaged macroscopic constitutive equation for the Cauchy stress tensor in Arruda-Boyce eight-
chain model is [299]:

σAB = −pI + X(I1)B (1.59)

where p is the hydrostatic pressure in both equations above. Thus, the main idea is to prove that it is
possible to provide a molecular interpretation to the semi-phenomenological constitutive parameters
in (1.52), i.e.,

X(I1) ≈ µ
Jm

Jm − (I1 − 3)
(1.60)

We discuss first the theoretical molecular concept of the 8-chain model, as introduced by Beatty [299].

Figure 1.27: Comparison of the stress-strain curves for Gent, Neo-Hookean, and 8-chain models [251].

Eight-Chain Model

Many rubber elasticity models use as a measure of the deformation the change in length of the end-to-
end distance r between molecular cross-links (Fig. 1.28). It is assumed that the macroscopic stretch
is related to chain stretch via a non-Gaussian probability distribution function P(r). In the reference
configuration, the chain-end points occupy the most probable position over a uniform non-Gaussian
network [300–302]. Among many flexible-chain networks developed to characterize the mechanical
response of isotropic rubber-like materials, we can define the most successful Arruda-Boyce 8-chain
network [303] in Figure 1.28. Mathematically, it is simpler than others and fits well with different
mechanical experiments [299].

When the chain is fully extended, its length is equivalent to the total length of Nc rigid links, as
rL ≡ Ncl. Its average length in the undeformed configuration is given by [301, 302]: r̄ =

√
Ncl.

Consequently, the maximum chain stretch is defined by

λc ≡
rc
r̄

(1.61)

Furthermore, the current relative chain stretch is introduced as

λr =
rc
rL
=

λcr̄
√

Ncr̄
=

λc
√

Nc
(1.62)
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Figure 1.28: 8-chain cubic structure

The current relative stretch varies from λr = 1/
√

Nc and 1 (in the undeformed state λc = 1). If the
chain is completely rigid (Nc → ∞), the relative stretch is null. One could introduce nc as the chain
density per unit volume, then the total strain energy for a homogeneous network is then [299]:

ψ(λr ) = ncψc(λr ) (1.63)

Where the deformation work of a randomly-oriented chain ψc is determined by the second law of
thermodynamics: ψc = −ΘSc. Kuhn and Grün have derived the configuration entropy S as a
non-Gaussian approximate expression for P(r) [300].

S = k
[
c − Nc

(
βcλr + ln

(
βc

sinh βc

))]
(1.64)

k denotes the universal Boltzmann constant, and the constant c is chosen so that the energy vanishes
in the absence of deformations, while βc = L(λr ) is the inverse of the Langevin function. Or, more
precisely,

λr = L(βc) = coth βc −
1
βc

(1.65)

which can be approximated by βc ≈ 3λr in some special cases, as explained in [299]. On using (1.64)
in (1.63), the strain energy of the deformed chain is equal to

ψc = NckΘ
(
βcλr + ln

(
βc

sinh βc

))
− kcΘ (1.66)

The next step will be constructing the current relative stretch according to the cubic structure of the
Arruda-Boyce eight-chain model. Once considering X = Y = Z in the rectangular Cartesian frame
in Fig. 1.28, the length of the undeformed chain has the average value r̄ = X

√
3. Its direction vector

is ac = (1, 1, 1)/
√

3. If we suppose that the frame containing the network is oriented along the local
principal axes, the stretch of the eight chains, whose ac is the initial orientation, is expressed in terms
of the right Cauchy-Green tensor as

λ2
c = ac · Cac =

3∑
i=1

m2
i λ

2
i (1.67)

For every chain direction vector parallel to the cube diagonals m = (ac/
√

3, bc/
√

3, cc/
√

3) with ac, bc,
and cc taking the values of −1 and 1, the results remain the same (λ2

c = λ
2
1 + λ

2
2 + λ

2
3 = I1/3). As a

function of the first invariant of C, the stretch of a single chain takes the form
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λc =

√
I1
3

(1.68)

and by using the Equation (1.62),

λr =

√
I1

3Nc
(1.69)

The Arruda-Boyce 8-chain strain energy density as introduced in (1.63), and by combining the latter
with (1.66) and (1.62), is defined by

ψAB(λr ) = nckΘ
√

Nc

(
βc

√
I1
3
+ ln

(
βc

sinh βc

))
− nckcΘ (1.70)

Physical Interpretation

We recall that the main aim of this micro-structural study is to determine the molecular entities of
X(I1) in Eq. (1.59). It is obtained by deriving the strain energy density (1.70) with respect to the first
invariant, as mentioned in (1.48).

X(I1) = 2nckΘ
√

Ncβc
1

2
√

3I1
=

nckΘβc
3λr

(1.71)

In many theoretical and experimental studies conducted across the years on entropic rubbers, it
has been shown that the shear modulus in the undeformed state µ(0)s is linear with the temperature
Θ [241, 300, 301, 304]

µ
(0)
s ≡ nkΘ (1.72)

Therefore,

X(I1) ≡
µ
(0)
s βc
3λr

(1.73)

On comparing the latter with Eq. (1.60), one obtains the expressions that describe the molecular
structure of Gent parameters. It is trivial that the constant µ is equivalent to

µ ≡ µ
(0)
s = nkΘ (1.74)

Then, a physical description of Jm is valid if and only if it is equivalent to

JmG ≡
βc(I1 − 3)
βc − 3λr

=
3βc(Ncλ

2
r − 1)

βc − 3λr
(1.75)

However, the inverse Langevin function introduced earlier, βc = L
−1(λr ), cannot be determined

analytically and directly. A way to overcome this issue is to define Jm differently and find the
expression of βc. To do, we know that at large strains, the ultimate extensibility of the network is
activated when all the flexible links are aligned λr = 1 so that the distance end-to-end on a single
chain is the sum of its rigid links I1 = 3Nc. On the Gent model, the maximum extensibility is reached
when Jm = I1 − 3 (1.58), which leads to

Jm = 3(Nc − 1) (1.76)

In this situation, (1.58) becomes

σGent = −pI + µ
Nc − 1

Nc(1 − λ2
r )
B (1.77)
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Finding a proper expression for βc based on (1.60) would be secured through the approximation of
(1.73). Nevertheless, the use of polynomial expressions to approximate βc is somewhat misleading
because of the existence of singularity λr → 1. For this reason, the comparison carried out in [295]
between the Arruda-Boyce eight-chain model and the Gent model is not complete. To approximate
the inverse Langevin function, it is necessary then to use rational functions, such as Padè approxi-
mants [305]. The reader is referred to [241,298,306,307] for more details.

The take-home message in the present section is to show that is possible to give an a posteriori
‘molecular’ interpretation of the Gent model which is exactly equivalent of the one proposed for the
Arruda–Boyce model. In other words, Gent model is a suitable simplification of the 8-chain network
model.

1.4 Parameter Identification

Characterizing the mechanical behavior of structures and materials includes assessing their repre-
sentative models’ parameters. It is possible to deduce them by comparing models and experiments
directly. Since the subject is vast, this section focuses on the techniques, commonly known as inverse
problems, developed and used to identify soft tissue material parameters included in the constitutive
laws.

1.4.1 Inverse Problem Strategies

This inverse problem can be summarized into a forward problem (or direct problem), and an inverse
problem [308]. A direct problem is always well-posed and determines an expected output result, d,
from sufficiently given input data, such as material parameters, geometry, and boundary conditions
(Fig 1.29). The inverse problem is, however, concerned with the determination of an unknown input
from some incomplete output results. In our case, the unknown inputs are material parameters, and
the outputs are measurements.

The forward problem can be either analytical or numerical. Numerical forward problems are widely
employed since the physical modeling requires some complexity to simulate better reality. They can
be computed with different techniques, such as Finite Elements Method (FEM). The latter is the most
used in computational mechanics, which takes into account both physics and topology. Both analytical
and FEM-based numerical models were used in my thesis depending on the feasibility.

Figure 1.29: Inverse problem’s general scheme. BCs stand for boundari conditions.

The inverse problems know two main difficulties: ill-posedness and nonlinearity. In the first case,
the experimental data are not diversified enough to determine all the parameters accurately. While
in the second case, the error optimization is performed with sophisticated algorithms that may lead
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to non-unique solutions. It is then recommended to add constraints that reduce the solutions space
to have a unique solution regardless of the initial guess (set arbitrarily). We can enumerate several
inverse problems strategies used to characterize solid materials as follows [309,310].

1.4.1.1 Equilibrium Gap

This approach has been developed for elastic heterogeneity cases and aims to identify the contrasts of
mechanical properties that obey internal equilibrium from a given displacement. The basic assumption
is that the displacement data are available on ameasurement grid, which can be obtained either by finite
element analyses or digital image correlation. A linear system has to be solved (Eq. 1.78), where the
unknowns are the contrasts among the element-wise constant Young’s moduli cT = {C1,C2, ...,CNe}

(Ne denoting the number of elements), and the displacements measured at the nodes are known. The
two quantities are linked by an operator [M] retrieved from jump conditions between two elements,
applied to the equilibrium equation divσ = 0.

[M]{c} = {d} (1.78)

The system above is usually solved by minimizing the following norm [311]:

N = ‖[M]{c} − {d}‖2 (1.79)

1.4.1.2 Virtual Fields

The method leads to explicit identification formula of material parameters. It requires full-field
measurements of the strain ε in the domain Ω (alternatively through differentiation of a measured
displacement field) [312]. This approach is based on the virtual work principle applied with well-
chosen virtual fields and can be written in the absence of body force as

−

∫
Ω

σ : ε? dΩ +
∫
∂Ω

t · u? ds =
∫
Ω

ργ · u? dΩ (1.80)

with γ, the acceleration vector, ρ, the mass per unit volume, and t , the distribution of the applied
traction on the boundary surface ∂Ω. ’?’ stands for a kinematically admissible virtual field. The
idea of the virtual fields method is to replace the Cauchy stress tensor using the constitutive equation
σ = C : ε . In the case of quasi-static linear bi-dimensional isotropic elasticity, and within the
hypothesis of small deformations, this problem is rewritten as

∫
Ω

C11

(
ε11ε

?
11 + ε22ε

?
22 +

1
2
ε12ε

?
12

)
dΩ +

∫
Ω

C12

(
ε11ε

?
22 + ε11ε

?
22 +

1
2
ε12ε

?
12

)
dΩ =

∫
∂Ω

t · u? ds

(1.81)
As the material is considered homogeneous, material parameters Ci j can be taken out of the integrals,
and the latter are approximated by discrete sums. It results in a linear equation in the C ′i js, which are
to be identified. For assessing the Poisson’s ratio, one could write ν = C12/C11 [313]. The VFM was
applied to many solid mechanics studies, including soft tissue’s [314–316].

1.4.1.3 Constitutive Equation Gap

For a set of admissible stress fields S, the constitutive equation gap method minimize the distance
between admissible stress τ and another stress field computed through a constitutive model from a
given experimental displacement field û. For the linear case, the quantity to minimize is

E(û, τ,C) =
1
2

∫
Ω

(τ − C : ε (û)) : C−1 : (τ − C : ε (û)) dΩ (1.82)
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The measurement û is interpolated over the domain using finite element shape functions. Then the
elastic parameters (components of C̃) are identified through the equation

C̃ = arg min
C̃∈Cs

EC(C̃) ; EC(C̃) = min
τ∈S
E(û, τ, C̃) (1.83)

with Cs the space of the admissible elastic tensor, corresponding to symmetric and positive definite
fourth-order tensors. In particular, the procedure is seen to involve two partial minimization, with
respect to (û, τ), followed by a partial minimization with respect to C̃. With this approach, at most,
three parameters of heterogeneous materials can be locally determined [309].

1.4.1.4 Finite Element Model Updating

The goal of the Finite ElementModelUpdating (FEMU) approach is to identify thematerial parameters
gathered in the vector m by updating the forward problem based on FEM formulation iteratively
until reaching the minimum of the discrepancy J(m) between either known and predicted data,
displacement and/or force, (Fig. 1.30):

J(m) =

Nd∑
i=1
‖d(i)exp − dmodel(m)

(i)‖ (1.84)

where dexp and dmodel are observation and model data, respectively. They are summed over Nd data
points.

Figure 1.30: Flow-chart of the Finite Element Method Updating identification procedure.

This type of inverse problems may combine full-field measurements and the finite element method
(FEM), ans it was often used [309,312,317,318]. The earliest implementation of FEMUwas possibly
performed in 1971 by Kavanagh and Clough [319], where they tackled the problem of identifying
mechanical properties in elastic solids. To acquire full-field measurements, different optical tech-
niques, including digital image correlation (DIC) are commonly used [312, 320]. The procedure
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has been integrated into FEMU frameworks in many mechanical characterization studies: in linear
elasticity [321–324], in elasto-plasticity [325–329], in viscoelasticity [330, 331], and hyperelastic-
ity [332–334]. A practical example of its application to human skin is presented in Section 1.4.4.2.

Unlike the three inverse problems introduced earlier, the FEMUallows characterizingmanymechanical
aspects: nonlinearity, anisotropy, viscoelasticity, and pre-stress. Indeed, because of its intuitive
conception, the modeler needs to implement separately and simply a FE model and an optimizer
solver. The former is relatively easy to carry out thanks to many commercial and free open-source
frameworks. The latter, on the other hand, requires a suitable error minimization algorithm, given
the constraints, for instance, computation cost, measurement data consistency, and uncertainty, ...
Consequently, an overview of the optimization algorithms used in characterizing the soft tissues is
presented hereafter. They can be broadly classified into two categories: deterministic methods and
stochastic methods [335].

1.4.2 Deterministic Optimization

This branch of numerical optimization focuses on finding exact solutions to an optimization problem
within some predefined tolerance. The term "deterministic optimization" typically refers to rigorous
methods that converge to the global optimum in finite time. However, in ill-posed problems, the
solution space is not fully convex, which makes optimization algorithms converge toward the local and
not the global optimum. A remarkable advantage of the deterministic approach is that the convergence
to a solution requires a lower number of evaluations of the cost function J and their respective
derivatives compared to the use of stochastic optimization algorithms. We address the two main
aspects of deterministic optimization, namely: unconstrained and constrained optimization [336,337].

1.4.2.1 Unconstrained Optimization

An unconstrained optimization problem can be written in terms of the minimization of an objective
function for Nm model parameters

minimize J(m), m ∈ RNm (1.85)

An UPM algorithm starts from an initial guess m(0) and generates a sequence of points m(n) in the
solution space converging to the solution m̂ in the direction s with a step δm. At iteration n, it reads

m(n+1) = m(n) + δm(n)s(n), (1.86)

An optimal set m̂ must satisfy the following conditions{
sTG(m̂) = 0 ∀s ∈ RNm

sTH(m̂)s ≥ ∀s ∈ RNm
⇒

{
G(m̂) = 0
H(m̂) is positive semi − definite

(1.87)

with G and H , respectively, the gradient and the Hessian of the objective function with respect to
the model parameters. We assume that the objective function is sufficiently smooth, at least for the
second order, class C2 (or class C1 if we need to compute gradients only). For numerical reasons and
formulation limitations, G and/or H can be approximated using Finite Difference Equation. UPM
algorithms are usually based on approximating the objective function using a Taylor series expansion
up to the second order. Some famous strategies exist for that: Line Search [338], Trust Region, and
Downhill Simplex [339].

Line Search Approach
The line search approach finds a descent direction along which the objective function J will be
minimized and then computes a step size that determines how far m should move along that direction.
The principal steps of this strategy are:
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• determine a descent direction s.

• find δm(n) by minimizing Eq. (1.85).

• set the new parameter from the Eq. (1.86)

Trust Region Approach
Instead of finding an optimal solution for the cost function, in this approach, we define a neighborhood
area B around the current optimal solution as a trust region in each iteration. Unlike the Line Search
algorithm, it selects the direction s and step size δm simultaneously. First, J(m) is approximated
by a quadratic function q(n)(δm) obtained by truncating the Taylor series applied to J(m(n) + δm)

(involving the approximation of the gradient and the Hessian of J ). The neighborhood as a function
of the radius h is expressed by

B(n) = {m, such that ‖m − m(n)‖ ≤ h(n)} (1.88)

We seek the solution δ(n)m of

min
δm

q(n)(δm)

subject to ‖δm‖ ≤ h(n)
(1.89)

m(n+1) = m(n) + δ(n)m is then chosen.

Downhill Simplex Approach
This method, proposed by John Nelder and Roger Mead [340], known as the Nelder-Mead algorithm,
uses the concept of a simplex, a special polytope of n + 1 vertices in n dimensions. Let us take a
2D space as an example, where triangles are used to find an objective function’s local minimum or
maximum in a direct search. For each iteration n, the objective function is evaluated on 3 test points
mn

1 , m
n
2 , m

n
3 , and then extrapolated beyond the triangle. The simplest approach is to replace the worst

parameter mp set (with the highest cost) with another set mq reflected through the centroid of the
remaining 2 points. If J(mq) > J(mp), the triangle is contracted along this line. Conversely, the
triangle shrinks across a valley.

Unlike modern optimization methods, the Nelder–Mead heuristic can converge to a non-stationary
point unless the parameter space is entirely convex. Furthermore, the overall number of iterations
to the proposed optimum may be high. Regardless of the computational cost of the FEMU process,
the simplex approach can be a good candidate to optimize the errors as the derivation is not applied.
In the literature, the simplex method was used to identify the parameters of human skin through the
FEMU model in [136,164,185].

1.4.2.2 Gradient-based Optimization Methods

In this part, we describe the schemes of some famous least squares methods for nonlinear optimization
based on the gradient of the objective function. Thosemethods can compute the descent direction in the
Line Search approach. They have been used successfully in hyperelastic material characterization with
FEMU approach [141, 146, 163, 319, 332, 333]. Their main advantage is the fast rate of convergence.
In practice, they need to be modified for robustness and computational efficiency. However, the
derivatives of J must be provided for continuous space.
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Newton’s Method
It is the most classic nonlinear programming algorithm. In Newton’s method (or Newton-Raphson),
a quadratic model of the objective function is obtained from second-order-truncated Taylor series
expansion, as following

J(m(n) + δm) ≈ q(n)(δm) = J
(n) + δTmG

(n) +
1
2
δTmH

(n)δm (1.90)

The method requires G and H to be computed analytically. Consequently, the change in parameters
vector δm is obtained by resolving the system H (n)δm = −G

(n) and added to the previous m(n) to get
m(n+1). We point out that Newton’s method may fail to converge when H is not positive definite.
There are many ways to modify the Hessian matrix and combine it with other methods, such as the
steepest descent method [335].

Quasi-Newton Method
They are alternatives to Newton’s method when the Hessian derivative cannot be available or are too
expensive to compute at every iteration. The main idea is to approximate H by finite differences in
the gradient vector. To have a symmetrical matrix, H is replaced by 1

2

(
H̃ + H̃

T
)
, such that its i-th

column is made of terms like

H̃
(n)
i =

G
(
m(n) + δ̃mi

)
− G

(
m(n)

)
∆Hi

(1.91)

Yet, this is not enough to ensure a positive definite Hessian approximation. A way around that
is to approximate directly the inverse of the Hessian matrix at every iteration in such a way so
that a symmetric positive definite matrix is always secured. The most popular update formulas
are Broyden–Fletcher–Goldfarb–Shanno (BFGS), Davidon–Fletcher–Powell (DFP), and Broyden’s
method [341].

Levenberg–Marquardt Method
Also known as the Damped Least-Squares method, The Levenberg–Marquardt method is an improve-
ment of Newton’s method, which means that in many cases, it finds a solution even if it starts very
far off the final minimum. It is used in many software applications for solving curve-fitting problems.
However, like other iterative optimization algorithms, the algorithm finds only a local minimum,
which is not necessarily the global minimum. The update in parameters δm is computed by solving a
system (similar to Eq. 1.90) (

H (n) + λLMI
)
δ(n)m = −G

(n) λLM ≥ 0 (1.92)

where the damping multiplier λLM is chosen so that
(
H (n) + λLMI

)
is positive definite. There are

many strategies to set the damper on the basis of theoretical arguments, such as delayed gratification.
It consists of increasing the parameter by a small amount for each uphill step (increasing J ) and
decreasing it by a large amount for each downhill step (decreasing J ). The idea behind this strategy
is to avoid moving downhill too fast at the beginning of optimization, restricting the steps available in
future iterations and therefore slowing down convergence [342].

1.4.2.3 Constrained optimization

In this type of optimization, constraints Jc that are required to be satisfied are added to the statement
Eq. (1.85):

minimize J(m) m ∈ RNm

subject to Jci(m) = ci i ∈ E, c ∈ R

Jc j(m) ≤ dj j ∈ I, d ∈ R

(1.93)
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E and I are sets of equality and inequality constraints. Many constrained optimization algorithms
can be adapted to the unconstrained case, often via a penalty method. However, search steps taken
by the unconstrained method may be unsuccessful for the constrained problem, leading to a lack of
convergence [343]. For elementary problems, the substitution method can be carried out but not for
such complex problems case, as in FEMU models. In this method, one would solve the constraint
equation for one of the variables and substitute the latter in the cost function to be minimized. We
introduce in this section two common methods of constrained optimization: penalty and Lagrange
multiplier methods.

Penalty Method
In the penalty method, the constrained optimization problem (Eq. 1.93) is replaced by a series of
unconstrained problems whose solutions ideally converge to the solution of the original constrained
problem. The new formulation includes new additive terms, called penalty function I, multiplied by
the penalty coefficient kp [344]. The problem is formulated as

minimize J(m) + kp
∑
j∈I

I(Jc j(m)) (1.94)

with the measure of violation of the constraints

I(Jc j(m)) = max(dj,Jc j(m))
2 (1.95)

The violation measure is non-zero when the constraints are violated and is zero in the cases where
constraints are not violated. Because of the non-differentiability of the penalty functions, the objective
function can be approximated by a continuous function if the user prefers using gradient-based
optimization techniques. Conversely, direct search, such as Simplex, can be incorporated into the
minimizer. As for kp, it is set to be larger for each iteration. Therefore, the constraint violations are
severely penalized, thereby forcing the minimizer of the penalty function closer to the feasible region
for the constrained problem.

Lagrange Multiplier Method
If the constrained problem has only equality constraints, the method of Lagrangemultipliers, where we
introduce a new variableΛ called a Lagrangemultiplier, can be used to convert it into an unconstrained
problem.
Suppose the constrained problem has only equality constraints. In that case, the method of Lagrange
multipliers, where we introduce a new variable, Lagrange multiplier Λ, can be used to convert it into
an unconstrained problem.

minimize L(m,Λ) = J +
∑
i∈E

ΛiJci(m) (1.96)

whose number of variables is the original number of variables plus the original number of equality
constraints. The Lagrangemultiplier theorem states that at any local optimum of the function evaluated
under the equality constraints, the gradient of L (to find the stationary points) can be expressed as
a linear combination of the gradients of the constraints, with the Lagrange multipliers acting as
coefficients [345]. Thus, all partial derivatives should be null, including the partial derivative with
respect to Λ. To summarize

∇m1,...,mNp ,ΛL(m1, . . . ,mNp,Λ) = 0, mi(i = 1, . . . , Np) ∈ m (1.97)

This unconstrained systemcan be solved using gradient-based optimization algorithms, such asNewton
or Levenberg-Marquardt methods. A more direct method can be applied to deal with both equality
and inequality constraints, named Sequential Quadratic Programming (SQL). It consists of solving
iteratively subproblems in which the objective function is approximated to a quadratic function, and
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the constraints functions are linearized. Practically, at every iteration n, the Lagrangian function is
approximated by Taylor series expansion. For one equality constraint, it writes

∇L
(
m(n) + δm,Λ

(n) + δΛ

)
≈ ∇L

(
m(n),Λ(n)

)
+ ∇2L

(
m(n),Λ(n)

) (
δm
δΛ

)
(1.98)

As a result, the change in parameters δm and δΛ are calculated by solving the following stationary
problem (

∇2L
(
m(n),Λ(n)

)) (
δm
δΛ

)
= −∇L

(
m(n),Λ(n)

)
(1.99)

1.4.3 Stochastic Optimization

Stochastic optimization (SO) includes randomness in the search procedure. The randomness may
appear in variables, objective functions, and constraints if possible. Some stochastic optimization
methods use random iterates to solve stochastic problems [346]. Compared to deterministic optimiza-
tion methods:

• Their mathematical formulation is less complicated than deterministic optimization. For exam-
ple, the calculation of the derivatives is not needed.

• They allow global optimization to be performed as the randomness of the sampling can attain
better sets beyond local minima.

• In some methods, such as Bayesian inference, the uncertainty is estimated as well.

• They are easy to implement in the case of multi-objective optimization.

Conversely:

• They contain randomness in the search procedure, thus no exact identification.

• They have a much slower convergence towards the optimum solution.

• Their computation costs are enormous.

1.4.3.1 Evolutionary Algorithms

SO algorithms could be classified into different families, to cite the most popular: Evolutionary
Algorithms (EA). EAmethods aimat emulating the evolution of species through successive generations
of better-performing individuals by natural selection according to Darwin’s theory [347]. It is the
most important category of stochastic optimization together with the genetic algorithm. The main
steps of the EA approach are [335]:

• Initialization: the initial population m(0) is created and evaluated.

• Mutation and cross-over: a mutant individual m̃(n)i is created randomly for each individual in
the actual population m(n) and combined with, creating a parent-child link, namely, the trial
individual.

• Evaluation: the fitness of the trial individual is assessed.

• Selection: the best between the trial individual and its parent is selected to survive to the next
generation m(n+1).

Steps 2 to 4 are repeated until reaching convergence. Different techniques for mutation, evaluation,
and selection are possible. For instance, genetic algorithm (GA), evolutionary programming (EP),
evolution strategy (ES), etc.
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1.4.3.2 Bayesian Inference

Bayesian approaches are particular stochastic methods that rely on prior expert knowledge to build the
inverse problem by constraining the search space for material parameters. Once incorporated into the
inverse solver, it has two major roles: parameter estimation and model selection. Parameter estimation
of a given model’s parameters is often carried out using standard sampling methods e.g. Markov
Chain Monte Carlo (MCMC) [348]. Model selection, on the other hand, deals with the evidence for
each candidate mathematical model to approximate a particular observed dataset.

In practice, the Bayesian inference provides the posterior probability density with the information of
the prior density (primary knowledge about material parameter) and error in model and/or measure-
ment. In other words, the framework allows estimating the parameter values and their uncertainties
simultaneously. Even so, FE-based inverse solvers with MCMC sampling has a high computational
cost, requiring the full computation of the forward solver at least 104 times. This method has been
recently employed inmechanics to assess thematerial parameter inmore than one study [292,349–356].

1.4.4 Application to Skin Identification

After briefly introducing the concept of the most used optimization process, we describe their appli-
cation to some mechanical characterization studies to identify the material parameters of human skin
from in vivo, in vitro, in situ, and ex vivo experiments.

1.4.4.1 Non-structural Approach

Identifying the parameters of skin samples have been classically performed directly from the stress-
strain curve, alternatively stress-stretch curve, to solve complex mechanical models. The use of the
force-displacement curve is reliable since theoretical cross-section assumptions are unnecessary. This
approach is simple and does not require sophisticated tool, as geometry of samples is not considered.
The use of stress-strain data can be fruitful and accurate when the characterization experiment is
carried out on isolated samples, i.e., in vitro and ex vivo. Because of the nature of the load, the stress-
strain data from in vivo in-plane tensile tests can also be exploitable to identify the parameters directly.
However, in cases where the structure of the experiment was involved in the mechanical response,
the material parameters were estimated according to simplified models (over different assumptions).
This may explain the high variability in stiffness parameter, Young’s modulus, E = [1 kPa, 57 MPa],
calibrated in dozens of studies [30, 357, 358].

Tangent Method
Regarding the evolution of the stress-strain curve of the skin in (Fig. 1.24), the tangent of the curve
at the toe region can be interpreted as the initial stiffness of the skin with a weak contribution of the
collagen, whereas the tangent at the linear region represents mainly the stiffness of the collagen fibers.
The two coefficients are, respectively, minimal and maximal values of E , denoted by Emin and Emax.
In this case, the material is modeled as bi-linear elastic, and the stress-strain relation obeys Hooke’s
law with Young’s modulus of Emin. When the strain passes the heel region, the material responds
to the strain linearly with the new Young’s modulus of Emax [162]. A summary of bi-linear model
parameters is presented in Table 1.3.

Model Fitting
Several theoretical models have been developed and coupled with experiments to characterize rubber-
like materials (including skin). The built models would simulate one or many aspects at once, such as
nonlinearity, anisotropy, and viscoelasticity, but not the shape of the studied material. The parameters
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Table 1.3: Identified parameters of bi-linear equivalent model.

Anatomical site Experiment Emin MPa Emax MPa Reference

Abdomen in vitro uni-axial 0.1 18.8 [359]
Arm in vivo uni-axial 0.047 − 0.048 0.258 − 0.608 [106]
Back in vitro uni-axial 0.54 112.47 [81]
Back in vitro bulge 0.73 13.86 [193]
Breast in vivo uni-axial 1.02 − 1.41 N/A [129]
Calf in vivo uni-axial 0.3 20 [131]
Forearm in vivo suction 0.102 − 0.218 N/A* [176]
Forearm in vivo suction 0.041 − 0.131 0.187 − 0.365 [162]
Forearm in vivo uni-axial 0.121 − 0.493 N/A [135]
Forehead in vivo suction 0.121 − 0.431 N/A* [176]
*In linear curve, the stiffness remains constant during the load, Emin = Emax.

are identified through inverse problem methods, where optimization systems are solved analytically
or numerically. To cite an example; a mathematical model linking material properties of skin layers
to measurement data of indentation test has been developed based on the Hertz contact theory [360]:

FI =
4Err3

I

Rsi
(1.100)

FI is the load applied to provide the resulting indentation, Rsi is the radius of the spherical indenter,
and rI is the contact radius of the indenter on the material being tested. The reduced elastic parameter
is expressed as function of Young’s modulus E , Poisson’s ratio ν and indenter’s Young’s modulus EI

Er =

(
1 − ν2

E
+

1 − ν2

EI

)−1

(1.101)

This method can evaluate the elastic loading response but does not cover the conditions in which
skin exhibits strongly nonlinear mechanical behavior. For this, the Ogden model was utilized (1.53).
The parameters of both Hertz and Ogden models were computed through data fitting by a nonlinear
regression method in MATLAB®(Sec. 1.4.2.2). Figure 1.31 shows data fitting results of experimental
data with the two models for different indenter size, whose identified parameters can be retrieved
from [360]. The indentation displacement is equal to r2

I /Rsi

[
1 − 2/3 (rI 0/rI )

3/2
]
, with rI 0 the contact

radius at zero load. In Table 1.4, a non-exhaustive list of skin models is presented with their different
relative identified parameters. By confronting Young’s modulus in different experiments and models,
one may notice that its variation is huge, from 1 kPa to 1 MPa. In fact, many assumptions and
hypotheses formulated in these studies may lead to apparent elastic moduli but not the real ones. It is
still not a deadlock for researchers since the method can be used to compare stiffness between many
subjects in the same experimental conditions.

1.4.4.2 FEMU Approach

Stretching a T-shaped sample would have a different mechanical response than an I-shaped sample.
When considering the tested material’s geometry, the analytical models are not precise in simulating
the real behavior. Therefore, using numerical simulation methods is a must in this case. The most
used one in characterizing a soft tissue material is Finite Element Model Updating method.
The major advantage of this approach is the identification of every possible mechanical parameter in
regions that are difficult to access; or in unstable medium where the uncertainty is high, especially for
materials undergoing large deformations. Moreover, it is widely used in topology optimization. In
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Figure 1.31: Fitting of indentation test data with Ogden and Hertz model [360].

Table 1.4: Identified parameters of non-structural skin models from in vivo experiments.

Experiment Model Identified parameters Ref.

- Torsion
- Forearm

E = 2TT (1+ν)
4thsR

2
dθT

TT : torsion
ths: skin thickness
Rd: radius of disk
θT : rotation angle

E = 0.026 − 0.107 MPa
Ecollagen = 100 × E

[195]

- Torsion
- Forearm

E = TT
0.8πRd1Rd2thsUE

Rd1: inner torsion ring radius
Rd2: outer torsion ring radius
UE: immediate extensibility

E = 0.42 − 0.85 [196]

- Torsion
- Forearm E = TT

0.8πRd1Rd2thsUE E = 1.1 − 1.32 MPa [49]

- Suction
- Forearm

PS =
4u3ths

u2
3+r

2
0

(
E

1−ν A(u3) + σ0
)

A(u3) =

(
u2

3+r
2
0

2r0u3

)
arcsin

(
2r0u3
u2

3+r
2
0

)
− 1

PS: suction pressure
r0: suction area radius
σ0: initial stress
u3: out-plane displacement

E = 0.04 − 0.22 MPa [177]

- Torsion
- Uni-axial
- Forearm

G = TT
4πthsθT

(
1

Rd
2
1
− 1

Rd
2
2

)
G: Shear modulus (torsion)
E1: along Langer’s line (uni-axial)
E2: across Langer’s line (uni-axial)

E1 = 1.1 MPa
E2 = 0.34 MPa
G = 0.021 MPa

[128]

- Indentation
- Leg

E = 1−ν2

2rI κI
FI

u3
κI (ν, rI/ths): scaling factor

E = 10.4 − 89.4 kPa [171]

- Indentation
- Forearm

Neo-Hookean (1.50)
E = 2µ0(1 + ν)

µ0 = 1.598 kPa
E = 4.794 kPa [167]

- Multi-axial
- Abdomen

Hookean orthotropic [361]
ν12/E1 = ν21/E2
ν12: along Langer’s line
ν21: across Langer’s line

E1 = 5.702 Nm/g
E2 = 3.421 Nm/g
ν12 = 0.498
ν21 = 0.299
G = 0.95 Nm/g

[18]
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contrast, the process is limited by computation performance, cost, and environmental issues [362].

Regarding human skin, the FEMU was applied in many studies during the last decades. Despite the
need for geometry modeling, the use of FEMU was motivated by the fact that hyperelastic models are
the most precise in mimicking the skin deformation, which are hard to solve analytically. A summary
of some FEMU-based parameter identification studies is exposed in Table 1.5.

In the next chapter, we will present a FEMU-based framework implemented in an open-source code
to identify the parameters of a bi-material soft tissue subjected to the uni-axial tensile test. It has
been developed by a colleague, Danas Sutula, then corrected and validated by myself. Through this
numerical tool, we aim to assess the parameters of a keloid scar and healthy-skin from a specific
dataset.
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Table 1.5: Overview of FEMU-based inverse method results in the literature.

Experiment Constitutive law Optimization method Identified values Ref.

- Multi-axial
- Forearm

Tong and Fung [363]

ψTF =
1
2
(αTF 1ε

2
11 + αTF 2ε

2
22)

+
CTF

2
exp(aTF 1ε

2
11 + aTF 2ε

2
22)

ε11: strain along Lange’s line
ε22: strain across Lange’s line

Nonlinear Least Square

αTF 1 = 58.45*
αTF 2 = 74.38*
CTF = 5.8 10−6*
aTF 1 = 54.60
aTF 2 = 150.49

[146]

- Uni-axial
- Forearm

Lanir’s model [364]
σ = J−1

∫ π
0

(
R(θ)Kc(λ − 1)F ∂λ

∂EF
)

dθ − pI

R(θ) = 1/π + CL(cos4(θ − φ) − 0.375)
Kc: collagen stiffness
CL: anisotropy parameter
φ: Langer’s orientation

Constrained
maximum-likelihood

[365]

Kc = 46 MPa
CL = 0.58
φ = 18.85 ◦

[133]

- Uni-axial
- Forearm Hookean orthtropic Levenberg-Marquardt

E1 = 146 kPa
E2 = 40 kPa
G = 14 kPa
ν12 = 0.226
φ = 37.57 ◦

[141]

- Suction
- Forearm

Extended Mooney
ψEM = C1(I1 − 3) + C2(I1 − 3)(I2 − 3)
E = 6C1

Sequential
quadratic

programming

C1 = 9.4 kPa
C2 = 82.0 kPa
E = 56.4 kPa

[178]

- Indentation
- Forearm Hookean isotropic Extended Kalman

Filters [366]
E = 5.67 kPa
ν = 0.48 [367]

- Indentation
- Forearm Jamus-Green-Simpson [368] Newton

C10 = 5.4 kPa
C01 = 5.7 kPa
C11 = 18.6 kPa
C20 = 11.7 kPa
C30 = 19.6 kPa

[163]

- Indentation
- Forarm

Neo-Hookean (1.50)
E = 4µ(1 + ν)

Nelder-Mead
simplex (NMS) [340] E = 0.43 MPa [164]

- Uni-axial
- Forearm Ogden one-term (1.53) NMS coupled with

stochastic method
µp = 10 Pa
αp = 26 [136]

- Uni-axial
- Upper arm Ogden one-term Trust-region µp = 9.6 kPa

αp = 35.94 [139]

- Suction
- Face

Rubin and Bodner [369] (15 parameters)
ψRB =

µ0
2q (e

qg)

g = g(m2, Γ1, Γ2, r2)

NMS

µ0 = 86 kPa
q = 39.74
m2 = 0.027
Γ1 = 1.34 Hz
Γ2 = 67.3
r2 = 6.91

[185]

* Unity not mentioned
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Chapter 2

Bi-material Mechanical
Characterization: Inverse Problem

As described in the Outlines section, Chapters 2, 3, and 4 belong to a project that addresses the
mechanical characterization of a heterogeneous material undergoing large deformations. In view of
the motivations of the BiomecaT team from FEMTO-ST, this material consists of a partial plane
surface of human skin with a keloid tumor. The project’s final objective is to provide a patient-specific
scientific-based numerical pipeline to help the surgeon predict the privileged direction of keloid growth
to prevent it. The inputs are in the form of experimental data acquired from the in vivo uni-axial tensile
test and the 3D shape of the tumor. On the other side, the outputs are tension and shear stress fields.
The latter will assist the surgeon in calibrating his medical solution to the patient’s skin behavior. This
chapter concisely describes the components and operations of this methodology and the hypotheses
formulated given physical conditions and circumstances. Based on FEMU, the numericalmethodology
has been implemented in FEniCS and was used to identify the material parameters of the two media,
the keloid, and the surrounding healthy-skin, by fitting the experimental data. It was baptized SofTI
(Soft Tissue Identification) and is available for free for the community: https://github.com/
aflahelouneg/inverse_identification_soft_tissue Besides, the validation of the forward
problem, via a commercial software, and the inverse solver, using perfectly known synthetical data,
will be reported in this chapter.

2.1 Methodology

The way the framework is designed can be used to characterize any soft tissue material under the
condition that the experiment is performed identically to the presented study. One could imagine
the whole keloid characterization process patient-to-clinical-solution occurs with the following main
steps (Fig. 2.1). In the beginning, the 3D shape acquired for living keloid, a Computer-Aided Design
(CAD) modeling is carried out to represent the tumor numerically, which is transformed into a 2D
mesh for simulations. Afterward, a uni-axial stretch experiment takes place on a plane patient’s skin
surface. The resulting data are eventually filtered and converted into compatible data. By inserting the
latter in SofTI, the optimal parameter set for keloid and healthy-sin is identified and then employed
to simulate the stress field, given the natural tension in the skin. Consequently, the surgeon will have
clues about the specifications of a customized medical device to confine keloid growth or prevent it.
Every step in the introduced methodology is thoroughly described and supported with a real keloidic
case presented in the study of Chambert et al. [106].

2.1.1 Geometrical Model

Prior to my thesis project, Marco Sansale, a former Master student in ISIFC (Institut supérieur
d’ingénieurs de Franche-Comté), had worked on the FEM modeling of the keloid during his R&D
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Figure 2.1: Patient-to-clinical-solution numerical pipeline [370]. (1): Keloid geometry model. (2) Uni-axial
tensile test. (3) Data treatment. (4) FEMU-based material parameters identification. (5) Stress fields. (6)
Clinical solution to prevent keloid growth.

project. One of his significant contributions is providing a 3D points cloud of a patient’s keloid using
silicone.

2.1.1.1 3D Shape Acquisition

Figure 2.2 exhibits a print of butterfly-shaped keloid carved into a silicone-made mold. An optical 3D
surface measurement, with a resolution of 14µ m, and designed by Bruker alicona [371], was applied
to the mold to generate the inverse medium’s 3D shape: the negative values corresponding to cavities
depth are converted into positive values that represent the height of keloid’s profile, with respect to
the skin surface.

Figure 2.2: Keloid shape obtained by silicone-based molding. Retrieved from Sensale’s report.
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The 3D surface acquisition is based on the Focus Variation technique. Its operating principle combines
an optical system’s small depth of focus with vertical scanning to provide topographical information
from the focus variation. As the distance between the sample in movement and the camera objective
is varied, images are continuously captured. An algorithm is used to compute the position of each
grid point uniformly mapped by analyzing the focus.

Focus Variation requires optics with very little depth of field and is adapted for surface metrology. In
other words, it measures the waviness and roughness of samples. Regardless of the tool’s high price,
using it to measure deeper prints (inversely, more cambered tumors) is less reliable. Also, the captured
boundary points are not aligned, which is the case in the real sample. I would suggest scanning the
keloid’s shape directly on the patient for better performance. Plenty of reliable, free, and user-friendly
3D scanning apps developed for a smartphone can secure it, such as Spin Me Round.

2.1.1.2 2D Model Generation

For ease, the full 3D shape is reduced to a 2D geometrical model (the integration of the full 3D
model will be investigated in Section 3.4). For that, an STL (Standard Tessellation Language) file,
containing the out-plane coordinates of a uniformly-mapped grid, is read by the free open-source
Blender [372] (Fig. 2.3a). The shape imported as a CAD model (alternatively mesh) is oriented
manually and set to the origin because the raw shape boundaries are not aligned. In order to extract
the 2D form, a cross-section plane is generated and oriented perpendicular to the skin surface. As a
result, the CAD model is split into two materials: keloid and healthy-skin (Fig. 2.3b). Therefore, the
boundary between the two materials is defined such that the internal surface represents the keloid and
the external, the surrounding healthy-skin.

(a) Raw 3D shape

(b) Extracted 2D shape

Figure 2.3: 2D model extraction from 3D keloid shape.
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At this level, the interface boundary is considered to be well-established. Nevertheless, in reality,
keloid shape detection is imprecise. Considering this element while characterizing the material, the
interface keloid/healthy-skin is implicitly represented using a level-set method [373]. An optimal
regularization parameter can determine the location and approximate shape of material subdomains
in the presence of topological uncertainties [374]. Having said that, using the full 3D information
remains the most reliable way to represent the problem, but at the cost of computation. It is eventually
beyond the CPU (Central Processing Unit) limits.

2.1.2 Experimental Data

As discussed in Section 1.4, the ill-posedness in inverse problems can be tackled by diversifying
reference data types. Combining at least two independent sources of information helps reduce the
uncertainty of the identified parameters since the latter may strongly correlate with each data type.
In our situation, and given the material within our reach, we collected the data of force displacement
(FD) and displacement full-field, denoted, respectively, umsr and f msr. Moreover, following the
structural-based approach in identifying the material parameters, the FEM model in the forward
problem should include the experiment design. Hence, the link between the apparatus and the data
will be emphasized. Before that, we need to introduce the device used to stretch the specimen in
vivo and capture the deformation.

2.1.2.1 Uni-Axial Extensometry

A home-made ultra-light extensometer for stretching soft tissues in vivo, presented in Figure 2.4,
has been developed by Jacquet et al. [142] (the technical details are listed in Table 2.1). It was
conceived so that only the pads are in contact with the tested area with a large visible zone that permits
simultaneous image recording. The motion of the moving pad with respect to the fixed pad results
in a uni-directional stretch, and it is provided by an electric motor via a screw-nut mechanism. A
linear variable displacement transducer (LVDT) controls the moving pad displacement. Even though
the pad position is measured with a sensor, it is assumed to be exact. Each square pad is surrounded
by a "U-shaped" (moved together) to protect the measuring zone from peripheral forces. The force
sensor consists of beams made in bronze-beryllium equipped with strain gauges (Fig. 2.4b), whose
deformation is converted into a reaction force measurement. It should be noticed that the initial
distance between pads, namely, LIP0, is not fixed. The user needs to measure it before any stretch
operation. Because stability is crucial, LIP0 is assessed after setting the pads on non-draggable zones.
This maneuver is key for a reproducible experiment.

Table 2.1: Technical sheet of the tensile device.

Weight 36 g
Square pad side: SP 8 mm
U-shaped pad length: LP 24 mm
U-shaped pad width: WP 17 mm
Extensometer length: LE 100 mm
Extensometer length: WE 40 mm
Force accuracy 5 mN
Observable area limits 45 × 24 mm2

2.1.2.2 Displacement Field

Unlike FD curves obtained directly from the device, the displacement fields are measured syn-
chronously with a vision system. Thus, the recorded video is split into frames treated with the Digital
Image Correlation technique (DIC). In the outputs, 2D uniform grids, with displacement vector,
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(a)

(b)

Figure 2.4: A ultra-light extensometer for uni-axial tensile testing. Modified from [142]. (a) The apparent
front side is stuck on the skin surface. (b) Tensile test on the forearm.

ui = {u1i, u2i} expressed on each node i in a Cartesian referential, are retrieved. The DIC tool
implemented in the framework is based on the optical flow method, where the relative displacement
of an object between two successive frames is estimated. A graphic free open-source Python library,
OpenCV [375] (Computer Vision), has been chosen for that. In Figure 2.5, a characteristic parameter
aW of the correlation process is annotated. It represents the side of a square correlation window
centered on every grid node Gp. A second parameter, dG, representing the step size between grid
points, is also considered in displacement measurement. The two parameters are to be calibrated from
an optimization error procedure.

The concept of optical flowwas introduced by the American psychologist James J. Gibson in the 1940s
to describe the visual stimulus provided to animals moving through the world [376]. The method is
based on two essential assumptions:

• The pixel intensities of an object do not change between consecutive frames.

• Neighboring pixels have similar motion.

Let us consider a pixel p(x, y)moving between two successive frames by ∆x, ∆y. As its intensity does
not change, the brightness constancy constrain is given as follows
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Figure 2.5: DIC application to video frames of the uni-axial tensile.

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (2.1)

t and ∆t are pseudo-time and its variation. Suppose small displacement theory, the equation above in
terms of the Taylor series is given by

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) +
∂I
∂x
∆x +

∂I
∂y
∆y +

∂I
∂t
∆t (2.2)

Therefore, replacing (2.2) in (2.1) results in:

∂I
∂x
∆x
∆t
+
∂I
∂y

∆y

∆t
+
∂I
∂t
= 0 (2.3)

By considering the velocities Vx and Vy , as temporal derivatives of ∆x and ∆y , respectively, and the
brightness derivatives Ix , Iy , It , the optical flow equation is obtained,

IxVx + IyVy + It = 0 (2.4)

With two unknown variables, this single equation cannot be solved directly. The latter is known as
the aperture problem of the optical flow algorithms. Several methods based on partial derivatives
of the image signal are provided to solve this problem: Lucas-Kanade method [377], Horn–Schunck
method [378], and many others [379]. The former is included in OpenCV, and is widely used to track
motions [377]. The Lucas-Kanade method assumes that the displacement is approximately constant
within a neighborhood of Gp(x, y). The optical flow equation can be assumed to hold for all qi(x, y)
pixels within a window centered at Gp:

Ix(q1)Vx + Iy(q1)Vy = −It (q1)

Ix(q2)Vx + Iy(q2)Vy = −It (q2)

...

Ix(qn)Vx + Iy(qn)Vy = −It (qn)

The resulting linear system (in the form of Av = b) is usually over-determined as it has more equations
than unknowns. The Lucas–Kanade method obtains a trade-off solution by the least squares method
by solving system v = (AT A)−1 AT b:
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[
Vx

Vy

]
=

[ ∑
i Ix(qi)2

∑
i Ix(qi)Iy(qi)∑

i Iy(qi)Ix(qi)
∑

i Iy(qi)2

]−1 [
−

∑
i Ix(qi)It (qi)

−
∑

i Iy(qi)It (qi)

]
(2.5)

2.1.3 Forward Problem

A FEM model has been built to simulate the experiment accordingly to the accessible information
(measurements and commands) (Fig. 1.29). From the inputs: (i) material parameters, and (ii)
boundary conditions, it provides the outputs: (i) displacement fields, and (ii) reaction forces.

2.1.3.1 Assumptions

With this, we state the assumptions followed to build a solvable problem as representative as possible.
Besides considering the quasi-static state (by neglecting the viscoelasticity contribution for low stretch
rate), several aspects are discussed.

Bi-Material Behavior
Heterogeneous ST with abnormal shapes, e.g., keloids, ulcers, or brain tumors, may be modeled
as materials with two domains of different mechanical responses. However, common components
with high mechanical contribution are well present in both parts, making the latter similar. In the
keloid/healthy-skin case, both structures are dominated by collagen fibers, but with differences in bun-
dle diameter and orientation, [380]. Since the orientation of collagen fibers in keloids is random [381],
the respective behavior law could be considered isotropic. It was stated in [380] that thicker collagen
bundles are present in keloidal scars. That may explain why they are stiffer than healthy skin, as
noticed in [106]. Therefore, the anisotropy effect in the healthy skin on the mechanical response of
keloid could be neglected.

As a consequence, same isotropic constitutive law, but with different parameters, is assigned to the
materials in the framework. Implementing different constitutive laws is always possible, but it was not
investigated in the thesis. As introduced in Section 1.3.2.5, Gent model compatible with the limiting
chain extensibility, occuring when stretching the skin in vivo, is a promising candidate to include
non-linearities arising for small stretches, in accordance with the observations in [106]. Thus, the
material parameters of the bi-material are: µk and Jmk for keloid, and µhs and Jmhs for the healthy-skin.

Plane Strain Condition
Counting for the 3D aspect in a novel FEMU methodology would lead to failures. Therefore, in the
first step, the direct problem was reduced to a 2D FEM model. The choice of plane strain conditions
was held for the following reason. The skin structure implies that the inner layer of skin is attached
to muscles and subcutaneous tissues. In the case of in-plane stretch, the out-plane deformations, ε13,
ε23, and ε33 are not significant compared to the total thickness. In the framework, the deformation
gradient tensor is implemented as

FPS =
©­«
F11 F12 0
F21 F22 0
0 0 F33

ª®¬ (2.6)

such that F33 is the out-plane component, and is expressed as F33 = th f /thi, where thi and th f denote,
the thickness in the undeformed and deformed configurations, respectively [382]. One should notice
that for plane strain condition, F33 = 1.
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Reaction Force Equivalence
In a 2D FEM reduced model, the reaction force (RF) is derived from nodal displacement. It is
intuitively equivalent to the integral of the normal stress σxx over ΓCS, the cross-section of soft tissue
tangent to the square pad side (Fig. 2.6). Using a full 3D model that includes the sensor structure is
possible but has two limitations. Firstly, the sensor’s geometry is so complex that only extreme fine
mesh is used, which makes the computations very challenging regarding the performance limits of the
computers. Secondly, to identify the parameters using gradient-based methods (with few iterations),
the derivation of the force (deriving from the displacement field)with respect to thematerial parameters
is calculated in all areas, including the sensor. The convergence of the optimization algorithm in this
case may not be guaranteed. To overcome the latter limitation, the use of Simplex method (Sec.
1.4.2.1) is a suitable choice.

Figure 2.6: 2D equivalent model of the uni-axial extensometry.

2.1.3.2 Nonlinear FE-Model

The features of the forward nonlinear FEM solver are described in this section as follows: domain,
boundary conditions (BC), and weak formulation. Later, we will expose their code excepts imple-
mented via FEniCS libraries.

Domains
There are two types of a domain on which the functions are expressed and discretized, surface and
edges. As for surfaces, they represent the volume occupied by the two materials in 2D. Hence, the
global domain is divided into two sub-domains Ω = {Ωk ∪ Ωhs}, where k and hs denote keloid and
healthy-skin, respectively. As illustrated in Figure 2.7, the blue dashed lines separate the healthy-skin
domain into measurable and non-measurable sub-domains: Ωmsr

hs and Ωunmsr
hs . Measurable areas will

be used to fit the experimental displacement fields. Since the apparent keloid’s surface between the
pads is entirely measured, we introduce the measurable bi-material domain Ωmsr = {Ωk ∪ Ω

msr
hs }. As

for the edges, they represent in Figure 2.7 the boundaries of the moving pad ΓMP (red frame) and the
fixed pad ΓFP (black frame). The outside boundaries are free of any displacement constraint. The
white surfaces correspond to the rigid pads, they are not meshed because the deformations are null
(thus null elastic energy).

Boundary Conditions
For each pseudo-time tk , discretized in set of observation times {tk}k=0,1,...,NE , the imposed boundary
conditions on the pads are all of Dirichlet type: u(ΓMP, tk) = ū(tk) on the moving pad’s edges
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Figure 2.7: FE-model domains of the forward problem. The mesh contains 44 k cells and was performed with
Gmsh [383]. Modified from [266].

and u(ΓFP, tk) = 0 on the fixed pad’s edges. Considering the quasi-static hypothesis, the forward
problem is solved at each load step indicated by tk∗ associated with every DIC frame and its relative
displacement command. Although the measured displacement fields and ū(tk) are independent, they
are synchronizedwith each other through the assessment of the pad displacement with theDIC process.

Weak Formulation
Given the BC and the deformation configuration at tk , the total elastic energy is expressed, in the
absence of body and surface forces, as

Π(u(tk), tk) =
∫
Ωk

ψk(u, tk) dΩ +
∫
Ωmsr

hs ∪Ω
unmsr
hs

ψhs(u, tk) dΩ (2.7)

where ψk, respectively ψhs, is the strain energy density function related to keloid, respectively healthy-
skin. It is a modified Gent function developed for nearly-incompressible materials (Eq. 2.8) [384].
Like other hyperelastic incompressible materials, the purely incompressible version of Gent’s model
(Eq. 1.52) cannot be implemented with basic elements in FE solvers. Because of the volumetric
locking, which is the over-stiffening of elements when the material is incompressible (Poisson’s
ratio ν nearing 0.5), the solver fails to converge. The incompressibility of hyperelastic materials
was successfully incorporated in FEniCS-based solver by involving the mixed displacement–pressure
elements [385, 386]. During my thesis, incompressibility had been implemented for Gent’s model,
but it turned out that the inverse solver failed to identify the material parameters.

ψNI
G = −

µ

2

(
Jm ln

(
1 −

I1 − 3
Jm

)
+ 2 ln(J)

)
(2.8)

At the equilibrium, the total potential energy is minimized for each tk [225,387]. Let us denoteU(Ω)
the admissible displacement fields space that verifies the BC on ΓMP and ΓFP, andV(Ω) the space of
admissible variations v such that v = 0 on ΓMP ∪ ΓFP. Hence, for all admissible variations v ∈ V(Ω),
the forward problem consists in finding the displacement field u ∈ U(Ω) solution of

L(u; v) = 0 ∀v ∈ V (2.9)

whose weak formulation for the quasi-static equilibrium is the directional derivative of Π with respect
to change in u in the direction of v. It is given by

L(u; v) ≈
dΠ(u + εv)

dε

���
ε→0

(2.10)
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Depending on the SEDF ψ(u), L(u; v) can be nonlinear in u. In such a case, the problem is solved
using Newton’s method, which has many benefits, like rapid convergence. However, it is essentially a
local method. Its performance is satisfactory when the initial displacement vector is set near a solution.

The system above must be derived but not necessarily by hand. In FEniCS, we may find the module
dolfin that automates the derivation. This automation of nonlinear solvers is key to modern com-
putational tools. Despite that, it makes programming more accessible and eliminates potential errors
due to hand-derived algorithms. Later in Section 2.2, we will show how the forward solver has been
implemented in FEniCS and what are the accessible changes for users, for instance, modifying the
SEDF and its parameter m.

Model data
As outputs of the forward problem, we need two data types similar to the experiment outputs for
fitting, displacement field, and reaction force. By solving the system in Eq. 2.9, a set of predicted
nodal displacement is gathered at every time step tk denoted by uFE(tk). While, for the predicted
RF, it is computed in post-processing from uFE by integrating the traction t , resulting from the first
Piola-Kirchhoff stress (Eq. 1.29), over the surface ΓCS (Fig. 2.6)

f FE (uFE(tk,m), tk) =
∫
ΓCS

∂ψ (uFE(tk,m))
∂F (uFE(tk,m))

N dΓ (2.11)

In the undeformed configuration, N is the unit normal vector to the boundary surface ΓCS. An
alternative way to compute the traction vector is to use the Cauchy stress tensor and the unit normal
vector n in the deformed configuration (Eq. 2.12) [227]. In the latter case, n must be determined
from the deformed mesh with the boundary surface Γd∫

σ (uFE) n dΓd =

∫
P (uFE) N dΓ (2.12)

2.1.4 Inverse Identification

After defining the structure and the functions of the direct problem, from BCs and material parameters
m to uFE and f FE, we present the methodology that leads to identify the material parameters in the
reverse direction, from experimental data, umsr and f msr, to m.

2.1.4.1 Objective Functions

One would express the optimal Gent material parameters vector for keloid and healthy skin as m̂ =
{µk, Jmk, µhs, Jmhs}. The identification of m̂ is based on minimizing an objective function (or cost
function) that expresses the discrepancy between the experimental and model data (Eq. 1.84). In
our case, the optimizer minimizes the discrepancies of the displacement, through Ju subject to the
constraint of null discrepancies of the RF,i.e., Jf , accordingly to the Lagrange multiplier approach
(Eq. 1.96). With an additional parameter to be identified, the Lagrange multiplier Λ̂, such that
m̂L = m̂ ∪ {Λ̂}, the unconstrained optimization is defined as [337]

m̂L = argmin
m,Λ∈RNm+1

JL(m,Λ) = argmin
m,Λ∈RNm+1

Ju(m) + ΛJf (m) (2.13)

We hereafter explicit separately the discrepancies in displacements, respectively RF, with the two
following expressions

Ju(m) =
1

2α2
uNE

NE∑
k=1
‖uFE(m, tk) − umsr(tk)‖2Ωmsr (2.14)
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Jf (m) =
1

βf NE

NE∑
k=1

(
fXFE(uFE(m, tk)) − fXmsr(tk)

)
(2.15)

where ‖.‖Ωmsr is a convenient norm defined as ‖q‖2
Ωmsr =

∫
Ωmsr q · q dΩ. The predicted RF fXFE,

respectively the measured fXmsr, is the X-component of f FE, respectively f msr, in the material
coordinates oriented along the direction of the uni-axial extension. αu and βf areweighting coefficients
used to scale the misfit of displacement to force over time. They are computed through

αu = max
k=0,1,...,NE

‖umsr(tk)‖Ωmsr (2.16)

and,

βf = max
k=0,1,...,NE

| fXmsr(tk)| (2.17)

In the constraint Equation 2.15, we notice that the discrepancy of RFs is not quadratic. Indeed, since
the quadratic constraint concerning m cannot be derived automatically due to some FEniCSlimits,
we opted for a non-quadratic term. Hence, to overcome this barrier, a quadratic version of Jf must
be hand-derived and implemented in the solver from scratch [1]. This objective function is not a
Lagrange multiplier method and takes the form

Jq(m) =
1

2α2
uNE

NE∑
k=1
‖uFE(m, tk) − umsr(tk)‖2Ωmsr

+
1

2β2
f
NE

NE∑
k=1

(
fXFE(uFE(m, tk)) − fXmsr(tk)

)2
(2.18)

In an independent study, a comparison of the four different objective functions, Eq. 2.13, Eq. 2.14,
Eq. 2.15, and Eq. 2.18, was conducted to test their ability to identify the model parameters. Shortly
said, the aim was to answer the question: what type of data do we need to assess all the coefficients
accurately?

2.1.4.2 Optimization Algorithm

The flow chart in Figure 2.8 summarize the optimization process for parameter identification. It was
designed for gradient-based methods (Sec. 1.4.2.2), where a change in m is sought at every iteration,
until reaching the convergence criterion. We detail in this part the step of the optimization algorithm
along these lines:

• Step 1: Set an initial guess of model parameters composed of an initial material parameters set
m(0), and initial Lagrange multiplier Λ(0)). This operation is the most tricky part for a modeler.
The initial set should be close to the local optimum in gradient-based optimizers. It can be
based on an informative guess (prior knowledge about the correlation of material parameters
with the force-displacement curve).

• Step 2: Solve the forward FEM for over all the NE observation times {tk}k=0,1,...,NE with the
input parameters m(0) and Λ(0). Retrieve the nodal displacement sets {uFE(tk)}

(n)
k=0,1,...,NE

.

• Step 3: Compute the RFs using the elastic energy function from the nodal solutions and gather
them in vector { f FE(tk)}

(n).
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• Step 4: Build the total objective function JL(m,Λ)
(0) and its derivatives, the Gradient vector

G(m,Λ)(0), and eventually the Hessian matrix H(m,Λ)(0). For that purpose, the discrepancy of
experimental and model data (JLk) and its derivatives (Gk , Hk) are computed at every time step
tk and then summed directly. As the sets of data between observation times are independent,
the following property was considered:

∑NE

k=0 ∇JLk = ∇
∑NE

k=0 JLk .

• Step 5: Calculate the parameter steps δm(n) and δΛ(n) using one of the line search algorithms.
Newton and Levenberg-Marquardt were implemented and tested in SofTI.

• Step 6 (for n = 0, jump to step 7): Compare δm(n) with δm(n−1). If |δmp | < εop, ∀δmp ∈ δm
(n),

the convergence is reached, thus m̂L = m̂(n) ∪ Λ(n). Otherwise, go to step 7. The coefficient Λ
can be excluded from the test operation since it may not converge while the material parameters
do.

• Step 7: Update the model parameter set as Eq. 1.86, m(n+1)
L = m(n)L + δm

(n)
L (the subscript L

means that Λ is included in the model parameters vector). Then, repeat the pattern from step 2.

Initial set
m(0),Λ(0)

Solve
forward
problem

Model data:
{uFE(tk)}(n)

Minimize
the objective
function

Parameter
change

δm(n), δΛ(n)

Convergence
criterion
reached?

Optimal set
m̂L

Update
m(n),Λ(n)

Predicted
RFs

{ f FE(tk)}
(n)

Experimental
data:

{umsr(tk)}(n)

and
{ fXmsr(tk)}

(n)

yes

no

SEDF

Figure 2.8: The inverse identification process scheme in SofTI.

Some light must be shed on the reliability of the pipeline. One must be sure that the forward and
optimization solvers are correctly implemented. Therefore, a validation study was carried out in
Section 2.2.2.2. Additionally, Chapter 3 explores the uncertainty and limits of model identifiability
regarding some controlled factors, specifically, discretization error, element degree, measurement
noise, and data quantity.
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2.1.5 Stress Field Computation

Assuming the validity of SofTI’s output, for instance the optimal material parameter set m̂, they
are used to simulate the bi-material deformation as result of permanent stress. In the context of
keloid/healthy-skin biomechanics, the permanent stress represent the natural skin tensions. Conse-
quently, a FEM solver was established to compute the distribution of stress in keloid and around it for
a patient-specific.

2.1.5.1 FEM Solver

The geometric model of the introduced problem is composed of only keloidic scar and peripheral
healthy-skin, without pads (Fig. 2.9). In this model, the skin tensions are represented by Neumann
BCs with traction vectors t1 and t2. With neglected body forces, the total elastic energy reads:

Πs(u(tl), tl) =
∫
Ωk

ψk(u, tl) dΩ +
∫
Ωmsr

hs ∪Ω
unmsr
hs

ψhs(u, tl) dΩ +
∫
ΓR

t1(tl) · u(tl) dΓ +
∫
ΓT

t2(tl) · u(tl) dΓ

(2.19)
tl is the pseudo-time associated to the increments of the progressive imposed traction. They are
discretized such that the solver converges successfully till the last load increment, which corresponds
to the imposed natural tension values taken from the literature. The pseudo-time step decreases
(inversely, the number of increments increases) for a highly nonlinear force-displacement curve.

Figure 2.9: FE-model domain and boundary conditions for simulating keloid/healthy-skin natural tension. The
mesh was performed with Gmsh and contains 53 k cells.

The Dirichlet-type BCs were put in place to create the symmetrical conditions in the studied domain
bi-axially stretched (Fig. 2.9). Along the bottom boundary ΓB, the vertical component of the
displacement is set to be null in all configurations, i.e., u(tl) = (u1, 0) for all vertices in ΓB. By
analogy, u(tl) = (0, u2) for all vertices in ΓL. Then, the nodal displacement is obtained by solving at
each increment tl a similar weak formulation to Equation 2.9:

dΠs(u + εv)

dε

���
ε→0
≈ 0 (2.20)
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2.1.5.2 Post-Treatment

At the output of SofTI framework, the surgeon obtains stress fields of the final deformed configuration
to analyze the mechanical forces in the bi-material at a tissular scale. Let us focus on the keloid case.
One would map the Cauchy stress on the whole domain for three components: tensional stress σ11
and σ22, and shear stress σ12.
Considering ūFE as the displacement solution in the final configuration, the Cauchy stress at a given
material position X is calculated from Equations 1.29 and 1.36 as follows

σ(X) = J−1F(ūFE(X))

(
∂ψ (ūFE(X))

∂F (ūFE(X))

)T
(2.21)

Stress fields are obtained by projecting the stress expressions onto the mesh elements space through
the gradient of the interpolation functions. Thus, gradient discontinuity may be present between
neighboring elements. In FEniCS, the application of projection can turn discontinuous gradient fields
into continuous ones [387]. It consists in solving a variational problem to get the nodal solution of
the stress (as an approximation) and then interpolating the latter to get the stress values between the
nodes [388].

The essential parts of the methodology, developed to identify a bi-material parameters with the FEMU
method, have been formulated in the current section. We will see in the next one how they have been
implemented in FEniCS.

2.2 SofTI Framework

This section covers the main features of SofTI implemented in FEniCS with a focus on the forward
and optimization solvers. We will also emphasize the advantages of using FEniCS in constructing
FEMU-based frameworks, with some code excerpts as examples. We will also present the verification
procedures that were carried out based on reliable commercial software.

2.2.1 Overview

SofTI is composed of 4 fundamental files coded in Python linked to each together as illustrated in
Figure 2.10 and detailed in Section 2.2.1.2. They were named: main.py, invsolve.py, mesh.py,
and projection.py. Optional files were embedded to simplify the parameter modification in the
solvers and/or filter measurement data.

2.2.1.1 FEniCS Project

FEniCS is a user-friendly tool set out in 2003 and based on a collection of free libraries for automated
solution of partial differential equations [387]. Among its components, we may define two main
libraries, namely, DOLFIN [389] and UFL [390], that are commonly used for FEMU method [391].

DOLFIN
It is a library that works as the main user interface of FEniCS. It was organized as an environment that
handles the communications between various FEniCS core parts (such as UFL) and external software
(such as NumPy), including data structures and algorithms for computational meshes and finite element
assembly. DOLFIN provides a range of linear algebra objects: vectors, dense and sparse matrices,
direct and iterative linear solvers, and eigenvalues solvers. Another central part of DOLFIN is its mesh
class that supplies data structures for computational meshes (connectivity, refinement, cell marking).
DOLFIN provides two near-identical interfaces: a traditional C++ library and as a Python library. The
latter was used to build the SofTI.
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Figure 2.10: Overview of SofTI’s main functions.

UFL
The Unified Form Language library depends on DOLFIN and consists of a set of operators and
expressions that can be used to express variational forms and functionals. Precisely, the language
defines a flexible user interface for defining FE spaces and expressions in quasi-mathematical notation.
It is possible then to derive the forward and the optimization model using the automatic differentiation
features in UFL, but with some limitations. The link DOLFIN-UFL can be described with the following
example. A variational form expressed in the UFL is passed to the form compiler to generate a code,
which can then be used by DOLFIN to assemble linear systems.

2.2.1.2 Functions

In this part, we expose and explain the most important content inside the codes of SofTI’s blocks:
the mesh, the measurement data, the forward solver, and the optimizer. The section is introduced as
documentation for the reader to understand the framework’s functioning effortlessly. Since the latter
is an open-source program, it can be adapted freely to other applications, hence the need to popularize
the tool.

Mesh

One of the positive characteristics of FEniCS is its compatibility with some external programs, among
them Gmsh. The latter is an open-source 3Dwidely used to generate mesh from computer-aided design
models. It allows marking the mesh subdomains and boundaries to facilitate their identification by
DOLFIN. An output mesh from Gmsh is divided into 3 files: the mesh, the subdomain markers, and
the boundary markers. As shown in Algorithm 2.1, they are imported and called in MeshFunction
to convert the mesh into a DOLFIN function. The bi-material domains are formulated differently
for the forward and optimization problems. In fact, we recall that in the case of keloid/healthy-skin
bi-material, the surrounding skin is composed of 2 subdomains, Ωmsr

hs and Ωunmsr
hs (Fig. 2.7). Both

subdomains are considered in the forward solver because they form together one material. However,
for the optimization problem, only Ωmsr

hs is considered side by side with Ωmsr
k , since there was no

measurement on Ωunmsr
hs to be fitted with the model.
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1 import dolfin
2

3 mesh_domain = dolfin.Mesh(mesh_file)
4 markers_domain = dolfin.MeshFunction(’size_t’, mesh, domain_markers_file)
5 markers_boundary = dolfin.MeshFunction(’size_t’, mesh, boundary_markers_file)
6

7 id_markers_domain = {’unmarked’: 0, ’keloid_measure’: 10, ’healthy_measure’:
20, ’healthy’: 30,}

8 id_markers_boundary = {’unmarked’: 0, ’pad_moving’: 1, ’pad_fixed’: 2, ’
force_measure’: 3,}

9

10 dx_material = [
11 dolfin.Measure(’dx’, domain=mesh_domain , subdomain_data=markers_domain ,
12 subdomain_id=(id_markers_domain[’keloid_measure’])),
13 dolfin.Measure(’dx’, domain=mesh_domain , subdomain_data=markers_domain ,
14 subdomain_id=(id_markers_domain[’healthy’],
15 id_markers_domain[’healthy_measure’]))]
16 ds_sensor_pad = dolfin.Measure(’ds’, domain=mesh_domain , subdomain_data=
17 markers_boundary , subdomain_id=(id_markers_boundary[’force_measure’]))
18

Algorithm 2.1: Importing and marking the mesh.

Forward problem
Once the mesh function is ’standardized’ according to DOLFIN’s syntax, it is imported in the main.py
file, where the forward problem is implemented. For easiness, the forward problem was not built in a
separate file. It is represented by three major blocks, i.e., behavior law, boundary conditions, and the
variational formulation.

main.py starts with importing DOLFIN library (UFL is implicitly imported with) and the mesh func-
tions, as well as the subdomains and boundaries, and their respective indices (Algorithm 2.2).

1 import dolfin
2

3 from mesh import (
4 dx_material , ds_sensor_pad ,
5 mesh_domain , markers_domain , id_markers_boundary
6 id_markers_domain , id_markers_boundary)
7

8 V = dolfin.VectorFunctionSpace(mesh_domain , ’Lagrange’, element_degree)
9 disp_pad_moving = dolfin.Expression((’ux’,’uy’), ux=U_D, uy=0.0)

10 disp_pad_fixed = dolfin.Expression((’ux’,’uy’), ux=0.0, uy=0.0)
11

12 bcs = [
13 dolfin.DirichletBC(V, disp_pad_moving , markers_boundary ,
14 id_markers_boundary[’pad_moving’]),
15 dolfin.DirichletBC(V, disp_pad_fixed , markers_boundary ,
16 id_markers_boundary[’pad_fixed’]),
17 dolfin.DirichletBC(V, disp_pad_moving , markers_boundary ,
18 id_markers_boundary[’force_measure’])]
19

Algorithm 2.2: Assigning the boundary conditions to the forward problem.

In a multidimensional model, we use vector function space to define the fields based on the imported
mesh. For quadratic elements, we set element_degree= 2. Afterward, we formulate the boundary
conditions as UFL expression. The benefit of using an expression instead of assigning static values
lies in modifying constants anywhere in the code. In other words, when the constant U_D, standing
for Dirichlet-type boundary condition and equivalent to ū(tk), is updated for value in tk by a simple
command, the whole forward problem is updated instantaneously. In classical approaches, where
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the FEM solver is implemented from scratch, updating the boundary conditions is only possible after
implementingmanually the global linear system [K̃ ]{u} = { f }, with K̃ the assembled stiffnessmatrix.

The next block contains commands to introduce the behavior law as the strain energy density function.
In Algorithm 2.3, we see the content of the function SEDF with the Gent model from Equation 2.8 as
an example. The inputs are: displacement field’s UFL expression, u, and a dictionary of the material
parameters (mu = material_parameters[’mu’]). The use of the dictionary is recommended to
assign the parameters to each material. If it is initialized outside the subroutine, it is not duplicated
but conserved inside. The same function SEDF will be called for every material. In this case, the
values of material parameters will be updated through UFL expression for each element depending on
its nature: keloid or healthy skin.

1 def SEDF(u, material_parameters):
2

3 I = dolfin.Identity(3)
4 F = dolfin.variable(I + grad_reduc(u)) #F: deformation gradient tensor
5 C = F.T*F # Right Cauchy-Green tensor
6 J = dolfin.det(F) # Jacobian
7 I1 = dolfin.tr(C) # Stretch first invariant
8

9 mu = material_parameters[’mu’] # Gent’s parameter 1
10 jm = material_parameters[’jm’] # Gent’s parameter 2
11

12 # Gent model (nearly incompressible)
13 psi = -0.5*mu*(jm*ln(1 - (I1 - 3)/jm) + 2*dolfin.ln(J))
14

15 return psi
16

Algorithm 2.3: Implementing the behavior law.

As for the variational form, it is constructed in the following order (Algorithm 2.4). The field u
is retrieved from the vector function space, then inserted in the SEDF along side the parameters to
generate the partial elastic energy function for each subdomain. The latter is in form of integrand
(SEDF(u, param_k)*subdomain_k) to be assembled on each element. The integration is performed
with Gaussian points. After that, similarily to Equation (2.9), the variational L and its derivative dL
are defined and used to build the forward solver.

1 u = dolfin.Function(V)
2 subdomain_k = dx_material[0] # k stands of keloid
3 subdomain_hs = dx_material[1] # hs stands of healthy-skin
4

5 # total elastic energy
6 Pi = SEDF(u, param_k)*subdomain_k + SEDF(u, param_hs)*subdomain_hs
7

8 L = dolfin.derivative(Pi, u)
9 dL = derivative(L, u)

10

11 forward_problem = dolfin.NonlinearVariationalProblem(L, u, bcs, dL)
12 forward_solver = dolfin.NonlinearVariationalSolver(forward_problem)
13

Algorithm 2.4: Setting the nonlinear variational equation.

Finally, given a list of imposed displacement values ū(tk) on the moving pad, U_D, the equilibrium
problem for each pseudo-time tk is solved with these lines (Algorithm 2.5). We must point out that
the converged nodal solution uFE for the iteration tk is used as the initial set to seek solution for the
iteration tk + 1. Otherwise, the solver may not converge. The results are b, a boolean that equals 1
when a solution is found, and n, the number of iterations to achieve it.
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1 for tk, *_ in enumerate(U_D):
2 disp_pad_moving.ux = U_D[t_k] # set Dirichlet BC at pseudo-time t_k
3 n, b = forward_solver.solve()
4

Algorithm 2.5: Solving the forward nonlinear problem.

Projection
We recall that two type of data are fitted with the model via the optimization problem, force-
displacement curve and displacement fields (obtained by DIC technique). From a computational
point of view, the implementation of force-displacement vector is so basic. While projecting the DIC
fields uniformly mapped on a domain randomlymeshedmay not be obvious to conduct. Consequently,
the treatment process of DIC field was established in an external block projection.py. The Algo-
rithm 2.6 emphasizes the main steps to produce DOLFIN objects from DIC data.

The general concept behind generating displacement DOLFIN function is interpolating the DIC data
on new points corresponding to mesh nodes. The coordinates of x_MESH are collected from the
degrees of freedom of the function space V that shares the same features with the mesh. An
internal class names SimpleMeshlessInterpolation2d is called to perform the interpolation
based on a meshless method. At the end of the process, an initialized DOLFIN field (u_MESH =
dolfin.Function(V)) hosts the displacement on its respective nodes, u_MESH.vector()[:] =
u_proj.vector().get_local().

1 import dolfin
2

3 def project_on_functions(x_DIC, u_DIC, V, meshless_degree=1):
4

5 x_MESH = V.tabulate_dof_coordinates()
6 u_MESH = dolfin.Function(V)
7

8 meshless = SimpleMeshlessInterpolation2d(x_DIC)
9 meshless.set_reference_values(u_DIC)

10 meshless.set_interpolation_points(x_MESH)
11 u_proj = meshless.interpolate(degree=meshless_degree)
12

13 u_MESH.vector()[:] = u_proj.vector().get_local()
14

15 return u_MESH
16

Algorithm 2.6: Creating DOLFIN objects from DIC fields.

SimpleMeshlessInterpolation2dwas implemented to regroup the operations related to 2D interpolation
such as set_reference_values, set_interpolation_points, and interpolate. By setting
meshless_degree= 1, the displacement is linearly interpolated between the reference points by
taking into account the influence of the neighbor points. For meshless methods, the connection
between the mesh nodes (edges) is not required, but the interaction of each node with all its neighbors
is considered.

Optimization problem

The file invsolve.py contains a bunch of subroutines and classes to conduct the model fitting. A
pseudo-code was written to summarize the principal elements put into action to identify the material
parameters by optimizing the discrepancy between the model and experimental data. It was segmented
into three parts: objective function, nonlinear solver, and identification algorithm.
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In Algorithm 2.7, we recognize the shapes of the misfit for displacement (Eq. 2.14) and reaction
force (Eq. 2.15). Their non-integrated UFL expressions can be easily derived automatically and
symbolically, thereby leading to automatic sensitivity analyses [390]. Having said that, FEniCSis
unable to derive a quadratic constraint,

(
fXFE − fXmsr

)2 , with respect to material parameters. This
barrier has been overcome by manually implementing the quadratic force mismatch function, and their
respective derivatives by D. Sutula [1] (a detailed code is available in Appendices of [266]).

1 import dolfin
2

3 def cost (u_msr, t_msr, u_FEM, mesh_domain , dx_measure , ds_measure ,
4 alpha, beta): # for one pseuo-time
5

6 J_u = 0.5*1/alpha**2*(u_FEM - u_msr)**2 * dx_measure
7

8 N = dolfin.FacetNormal(mesh_domain)
9 t_FEM = dolfin.dot(PK1, N) # PK1: Piola-Kirchhoff tensor

10 J_f = 1/beta*(t_FEM[0] - t_msr[0])*ds_measure # t_i: traction vectors
11

12 return J_u + J_f
13

Algorithm 2.7: Building the objective function.

We explain why the automatic derivation of the quadratic constraint is beyond FEniCS’ ability. If
one assumes that fXFE , respectively fXmsr, are the resulted from integrating the X-component of the
traction vector tXFE, respectively tXmsr, over ΓCS, than the quadratic constraint reads(

fXFE − fXmsr
)2
=

(∫
ΓCS

tXFE − tXmsr dΓ
)2

(2.22)

Unfortunately, DOLFIN was not designed to derivate a square of an integral regarding the parameters
and variables without integrating. Still, there is a way to implement the quadratic constraint by
squaring the discrepancy of traction instead of force through the following equation.∫

ΓCS

(tXFE − tXmsr)
2 dΓ (2.23)

However, in this situation, the discrepancy is basically never null, because the distribution of tXFE over
ΓCS is not constant, unlike tXmsr.

Later, the objective function is called in another subroutine to calculate their first and second derivatives
(Algorithm 2.8), which can be utilized for other UFL forms. The sensitivity analysis for parameter
optimization involves the derivatives ∂J

∂uFE
, ∂J∂m , ∂

2J
∂u2

FE
, ∂2J
∂uFE∂m

, and ∂2J
∂m2 .

Two different methods were implemented for computing G and H : direct and adjoint. The first re-
quires as many solves as their model parameters for each pseudo-time and iteration. On the other hand,
the adjoint method requires one solution for any number of model parameters, but to the detriment of
the physical memory in the computer [390].
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1 def partial_derivatives(J, u, material_parameters):
2

3 # alias m: material_parameters
4 dJdu = dolfin.derivative(J, u)
5 d2Jdu2 = dolfin.derivative(dJdu, u)
6 dJdm = tuple(dolfin.diff(J, m_i) for m_i in material_parameters)
7 d2Jdudm = tuple(dolfin.diff(dJdu, m_i) for m_i in material_parameters)
8 d2Jdm2 = tuple(tuple(dolfin.diff(dJdm_i, m_j)
9 for m_j in material_parameters[i:])

10 for i, dJdm_i in enumerate(dJdm))
11 # upper triangular part (symeterical Hessian matrix)
12

13 return dJdu, dJdm, d2Jdu2, d2Jdudm, d2Jdm2
14

Algorithm 2.8: Evaluating objective function derivatives.

For simplicity, we explain how the Gradient vector is numerically evaluated hereafter. Its elements in
the direct method are evaluated for each parameter mi as

dJ(tk)
dmi

=
∂J(tk)
∂mi

+

(
∂J

∂uFE

)T duFE(tk)
dmi

(2.24)

where ∂J(tk )
∂mi

and ∂J
∂uFE

are assembled on each element. Assembling in FEniCS means returning the
corresponding value-tensor for a given form. To compute duFE(tk )

dmi
, a linear system (tangent system)

calling for the global stiffness matrix needs to be solved:

K̃ (tk)
duFE(tk)

dmi
=

d fXFE(tk)
dmi

−
dK̃ (tk)

dmi
uFE(tk) (2.25)

Once the sensitivities in the form of total derivatives are gathered, they are summed over tk for all
observation times, accordingly to the property

∑NE

k=0 ∇JLk = ∇
∑NE

k=0 JLk applied to Equations 2.14
and 2.15. Eventually, the Gradient and Hessian matrices are combined depending on the chosen
algorithm, for instance, Newton in Algorithm 2.9, to identify the optimal material parameter set (as
described in Sec. 2.1.4.2).

1 import scipy.linalg as linalg
2

3 num_iterations = 0; convergence = False
4 rtol = 1e-6 # relative toleranece
5

6 while not convergence:
7 DJDm = 0; D2JDm2 = 0;
8 for tk in observation_times:
9 DJDm += dJdm_method_direct(J, u, m, tk)

10 D2JDm2 += d2Jdm2_method_direct(J, u, m, tk)
11

12 # Compute model parameter change using the Newton method
13 dm = linalg.solve(D2JDm2, -DJDm)
14 m += dm
15

16 if np.all(np.abs(dm[:-1]) < np.abs(m[:-1])*rtol):
17 convergence = True
18

19 m_optimal = m
20

Algorithm 2.9: Identifying the optimal parameter set.

Through a series of code excerpts, we demonstrated the usefulness of working with FEniCS to build
a complete FEMU inverse problem for material parameters identification. Thereby, the user can
quickly adapt the framework to his requirements. Although FEniCS is getting attention from the
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computational sciences community, it is not as widely used as commercial software. It may be due
to the lack of detailed documentation of physical complex problems. Researchers may get interested
if the complete code is shared with every published research with a FEniCS application. Last but
not least, a new version of FEniCS, named FEniCSx, was recently developed. It has many major
improvements over the legacy library, including support for a wide range of cell types and elements,
memory parallelization, aswell as complex number support. With itsmain library DOLFINx, SofTI can
be improved for efficient use.

2.2.2 Validation

Verifying the correctness of numerical tools is essential in order to provide reliable simulations.
Despite the fact that DOLFIN modules and functions are continuously checked and publicly reviewed
by the modelers, thanks to their open-source nature, their combined application to physical problems
cannot be considered valid. Therefore, a validation study of the forward and optimization solvers was
conducted in my thesis.

2.2.2.1 Forward Solver

The validation process in the direct problem case consists of comparing the simulation results issued
from SofTI to reference data. Regarding our computational materials, a commercial FE simulator,
COMSOL Multiphysics®, was employed to construct a similar forward problem with some simplifi-
cations that will be enlighted in this section.

Approximation
Because of the file format incompatibility between FEniCS and COMSOL, comparing the simulation
results using the same mesh with the same vertices and edges is not doable. Besides, importing
the abnormal material outline (keloid, for instance) into COMSOL software is complicated. Hence,
the mesh that represents the uni-axial experiment on the keloid/healthy-skin model (Fig. 2.7) was
subjected to two approximations: (i) shaping the keloid as symmetrical polygon form, (ii) simulating
the forward problem on two different meshes but almost the same number of elements.

Reference Model
On COMSOL Multiphysics®5.2, a mesh domain with 11k elements was generated automatically by
setting the most extreme fine element standards (Fig. 2.11). A compressible version of Gent model
(Eq. 2.26), the only form implemented in COMSOL 1, was assigned to each of keloid and healthy-skin
materials but with different parameters. In addition to the reference material parameters mbimaterial

ref
set arbitrarily as µk = 0.05 MPa, Jmk = 0.2, µhs = 0.016 MPa, and Jmhs = 0.4, the compressibility
parameters were fixed with higher value so that the behavior became nearly-incompressible, i.e.,
κk = κhs = 1000 MPa.

ψC
G = −

µ

2
Jm

(
ln

(
1 −

J−2/3I1 − 3
Jm

)
−
κ

2
(J − 1)2

)
(2.26)

The reference model also verifies the plane strain conditions, with a unit uniform thickness of 1 mm.
The reaction force results from integrating the Piola-Kirchhoff X11-component over the keloid cross-
section, tangent to the pad edge (as introduced in Eq. 2.11). As for the boundary conditions, u(ΓMP, tk),
50 equidistant values imposed displacement increments were established, from 0 to −4 mm. Using

1One should report that, in COMSOL Multiphysics®5.2, the elastic energy equation of the Gent Model shown in
Material Settings differs from the one implemented in the Equation View tab. The latter holds the real implemented
formula for the solver.
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Figure 2.11: 11k-element mesh domain generated with COMSOL Multiphysics®.

the nonlinear solver of COMSOL, we obtain and then export 50 nodal displacement fields and a
force-displacement curve. The output data are to be introduced in the forward problem of SofTI for
local comparison.

Comparison
On the other side, in SofTI, the changes to be performed are no more than two lines. Indeed, after
creating a similar mesh in Gmsh, the user needs to extend the material parameters for an additional
compressibility coefficient and update the elastic energy function in Algorithm 2.3. To quantify the
discrepancy between FEniCS and COMSOL simulation results, we use the following indicator for
nodal displacements and reaction forces:

ε(i)u = |uCOMSOL(X i) − uFEniCS(X i)| (2.27)

ε f =
‖ f̄ XCOMSOL − f̄ XFEniCS‖2

‖ ¯f XCOMSOL‖2
(2.28)

ε(i)u and ε f are the absolute local bi-directional discard of nodal displacement (on a node X i) and
the relative global discard of force-displacement curves. The comparison results are summarized in
Figures 2.12 and 2.13. Starting with the reaction forces. The superposition of the curves calculated
by COMSOL and FEniCSshows that their respective solvers provide similar results with ε f = 0.8 %.
The same observation can be made for the displacement but not over all the domain. In fact, εu
is significant around the pads corners, which can be linked to the quality of mesh on those areas.
For large deformation, the elements might undergo distortion. This hypothesis will be addressed in
Section (3.1.1). Nevertheless, the edge effect had been considered in delimiting the measurement
zone (Fig. 2.7).

For scaling reasons, the comparison of the solvers’ outputs seems not conclusive on 2.12. A nodal
displacement comparison was made on cutlines to overcome the issue. Horizontal and vertical cut-
lines, crossing all the domain in the center, was chosen for that purpose. For the horizontal cutline,
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(a) Discard on εu1

(b) Discard on εu2

Figure 2.12: Comparison of nodal displacement between COMSOL Multiphysics®and FEniCS. The fields
correspond to the latest imposed displacement tk = 50, with ū1 = −4mm.

set on the coordinate X2 = 25 (Fig. 2.11)), the comparison is plotted in Figure 2.14. The latter shows
a good match of u1 (X1-component of u) with a relative error of 0.4 %, which was calculated inspired
from Equation 2.28. As for u2 (X2-component of u), the simulation results from the two solvers fit
averagely, but the COMSOL solver shows fluctuations due to numerical reasons.

Figure 2.15 exhibits a good fit between the solvers by comparing the simulation results on the vertical
cutline, set on the coordinate X1 = 50 (Fig. 2.11). The relatives errors for u1 and u2 are 0.3 % and
1.3 %, respectively. Fluctuations in u2 was also noticed for the COMSOL solver. Furthermore, we
learn from the previous figures that one component of displacement is uniform along the symmetrical
lines, e.g., the u1 in Figure 2.15 is about −2 mm on all points of the vertical cutline.
One time the forward problem in SofTI has been validated using a commercial framework as a
reference; it will be updated following an optimization scheme to identify the material parameters
given a hyperelastic model.

2.2.2.2 Optimization Solver

We present in this part the validation of the optimization problem characterized by a successful
identification of the reference material parameters mbimaterial

ref . From the latter, a set of data was
synthesized to play the role of measurement data in the form of DIC fields and force-displacement
curve. The inverse solver in its entirety will then solve the forward problem for a bunch of parameter
sets selected by the optimizer. If the optimizer converges toward mbimaterial

ref , two conclusions can be
made. The SofTI code is correctly implemented and the optimization scheme is well established.
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Figure 2.13: Comparison of reaction forces between COMSOL Multiphysics®and FEniCS.
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Figure 2.14: Comparison of displacement on the horizontal cutline The gap in the curves represent the
non-meshed pads.

Synthetic Data
An adaptive mesh with 1300 cells was generated such that the computations are enough fast and
accurate at the same time (Fig. 2.16). It was obtained by manually adding vertices on the high
uncertainty areas, for instance, the pads’ corners for more details, the reader is referred to Section 3.1.3.
As we aim to validate an identification process, we do not consider factors that may complicate the
line search procedure and hence a failure. Keeping in mind that the validation mesh should be simple,
its elements were set linear. Same as in the forward problem validation, the synthetic displacement
fields and reaction forces were fabricated for 50 pseudo-times so the imposed displacement sweeps
from 0 to −4 mm, for the parameter set mbimaterial

ref . A second case, where the material is monolithic
and represents the healthy-skin, was explored as well, with 2 reference parameters mmonolithic

ref = {µhs =

0.016 MPa, Jmhs = 0.4}. Technically, we assign the same parameter set for both subdomains Ωk and
Ωhs.

Parameter Identification
All the four objective functions, Equations 2.13, 2.14, 2.15, and Eq. 2.18, were tested side by side in
two separate studies: monolithic and bi-material. In this approach, we validate the parameter identifi-
cation ability of the optimizer and investigate its various cost functions simultaneously. The initial sets
were chosen not far from the targets mbimaterial

ref and mmonolithic
ref as we are interested by the feasibility

in the first position (As for the robustness, it will be addressed in Section 3). Consequently, the
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Figure 2.15: Comparison of displacement on the horizontal cutline The gap in the curves represent the
non-meshed pads.

Figure 2.16: Adaptive mesh with 1300 elements for validating the optimization solver. Published in [266].

identification path is from m(0)L = {µk = 0.01 MPa, Jmk = 0.01, µhs = 0.01 MPa, Jmhs = 0.01,Λ(0)}
toward mbimaterial

ref , and from m(0)L = {µhs = 0.01 MPa, Jmhs = 0.01,Λ(0)} toward mmonolithic
ref .

As illustrated in Figure 2.17, only the objective function Ju +ΛJf let converging to the target within
120 s, while the three others fail to. In come cases, like for Ju, the search was interrupted because of
a divergence of the forward solver. To complete the set, the evolution of the Lagrange multiplier Λ is
plotted in Figure 2.18, which shows a clear decrease toward 0 without convergence. The later result
witnesses the necessity of excludingΛ from the parameter change vector δm as its has a sharp tangent
at the convergence of the optimizer, at the iteration 12.

With a focus on Λ’s variation, we may define two main phases before and after the iteration 8. In the
first phase, Λ seems to stagnate while the material parameters m evolve in the direction of the refer-
ence. While in the second, it drops drastically as the tangents of all of the 4 other parameters decrease
progressively closer to the target. To define the role of the Lagrange multiplier on the optimized cost,
we need to draw the variation of the objective function with its separate parts for each iteration (Fig.
2.19) and oppose it to Figure 2.18. At first glance, the mismatch on the displacement appears to
be dominating the total cots, as if the force mismatch has no impact on the error optimization. The
reason behind that is the initial valueΛ(0) fixed as 10−4 (so low in order to guarantee the convergence),
making the force part neglected versus the displacement. However, we can notice in Figure 2.19 that
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(a) µk (b) Jmk

(c) µhs (d) Jmhs

Figure 2.17: Bi-material parameters evolution for different objective functions in the validation process.

all costs are driven the same way since they are connected through Λ.

In an attempt to understand better the influence of the Lagrange multiplier on the total mismatch,
a similar dummy identification was conducted for a higher value of the initial Lagrange multiplier:
Λ(0) = 1, but with a compatible m(0) set, as µ(0)k = 0.005 MPa, Jm

(0)
k = 0.05, µ(0)hs = 0.005 MPa, and

µ
(0)
hs = 0.05. Thereby, the variations of the costs were gathered in Figure 2.20. We see at the beginning

the total mismatch is dominated by the force part, then it shifts to the displacement mismatch, as the
Lagrange multiplier decreases continuously until the convergence. Even though the impact of the con-
straint, force mismatch, is not visible, one may affirm that it is essential for identifying the parameters
of a heterogeneous material. To support this statement, we refer back to Figure 2.17 that demonstrates
the incapability of the optimizer to find mbimaterial

ref if the minimization deals with the displacement
only through the objective function designed for that purpose. The same can be stated for the force.
Herefore, combining displacement and force is necessary to identify the full set of parameters, but not
in a random way. Indeed, the objective function that combines the latter (Eq. 2.18) failed also for the
same initial guess. It worked correctly for another initial set closer to the target, which makes it less
robust than the one based on the Lagrange multiplier. Nevertheless, identifying all the parameters
of keloid/healthy-skin media with Jq remains possible. For that, the two parameters of healthy-skin
are first assessed in a contra-lateral test, then fixed in a second process to identify the two remaining
keloid parameters as applied by Sutula et al. [1].

By reducing the problem to a homogeneous media, the objective function Jq succeeded in identifying
the 2 parameters of the monolithic material, unlike Ju and Jf separately. The parameters series
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Figure 2.18: Lagrange multiplier variation for the objective function Eq. 2.13.

Figure 2.19: The variation of the objective function Eq. 2.13 and its separate parts.

during the optimization are reported in Fig. 2.21. In this simplified case, considering force mismatch
as a constraint in Ju +ΛJf improves the convergence compared to the Jq form, where the duration of
computations was respectively 41 and 1085 seconds. The delay is related to the number of iterations
and the integration time for obtaining the manually implemented sensitivities (Gradient and Hessian).

Furthermore, the non-success of parameter identification with Ju and Jf may be due to the correlation
between the material parameters and the data type. The synthetic displacement fields introduced in Ju
as measurement, or reaction forces in Jf , need to be diversified enough to identify µhs or Jmhs. Thus,
displacement and forces measurement data had to be used all together in the optimization solver.

Conclusions

The present chapter addressed the principal structure of SofTI with describing its two main parts,
the forward and the optimization solvers. After introducing the theoretical continuum mechanics and
justifying the assumptions, a series of codes implemented in FEniCS were explained in simplified
excerpts. They were rewritten so that the modeler would easily understand the link between the
functions. After that, a validation process of the direct FEM solver (based on comparison with
commercial software) and the optimizer (based on synthetic data) was discussed, accompanied by a
study of some objective functions. The latter numerical research showed that identifying the Gent

81



(a) (b)

Figure 2.20: The variation of the objective function Eq. 2.13 and its separate parts for Λ(0) = 1.

(a) µhs (b) Jmhs

Figure 2.21: Monolithic material parameters evolution for different objective functions.

model parameters of a bi-material soft tissue undergoing uni-axial stretch can be performed only with
constrained optimization with the Lagrange multiplier method. In the next chapter, we will study
different aspects of uncertainty associated with parameter identification. The investigation aimed to
evaluate the reliability of parameter estimation carried out in SofTI before applying it to a real case.
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Chapter 3

Bi-material Mechanical
Characterization: Uncertainty Analysis

Numerical modeling has been recently developed and used in many research works to provide non-
invasively immeasurable data inside the soft tissue, such as stress fields. The use of experimental
techniques alongside computations aims to give evident knowledge to a deeper understanding of hu-
man skin functions leading to optimizing the treatment of wound healing disorders. There are several
challenges for computational medicine to make reliable predictions. Providing accurate experimental
data reflecting the biomechanical behavior of the studied site on a particular scale (tissue or cellular
scale) is of major concern. These experimental data are commonly used as input data of numerical
models to quantify output responses through physical and/or biological laws expressed by constitutive
mathematical equations. Also, these data can be used to validate the modeling outcomes. However,
uncertainties in the experimental data exist from several factors, such as inter-subject and intra-subject
variability and differences in techniques and protocol parameters. Uncertainties related to computa-
tions may also exist, where numerical processes impact the exactness of model data.

The present chapter focuses on a selection of uncertainty studies on the identified model parameters
regarding the methods and materials followed in pipeline. In fact, we will explore the mechanical
response of the system (constituted of a bi-material soft tissue material and a uni-axial extension
device) by varying parameters that control the discretization error, experimental data quantity and
quality, topology, and the tri-dimensional aspect. The uncertainty can be quantified by evaluating the
accuracy and/or precision. Accuracy is how close a given set of interest quantities are to their true
value, while precision is how close the quantities are to each other. In our case, the true value, namely,
the target, is known a priori and set arbitrarily. The sets of mechanical responses used to assess the
discard are generated synthetically.

3.1 Discretization

In computational mechanics, a function of a continuous variable is represented in the computer by a
finite number of evaluations, for example, on a mesh or lattice. The domain where the model equations
are formulated is said to be "discretized." The solutions of the equation in this situation are numer-
ically approximated, thus different from the exact solution. The discrepancy between the numerical
and the exact solution is called discretization error (DE). For a consistent discretization of the model
equations, the DE is expected to become smaller as the number of elements increases. However, the
results are strongly affected by the density of the mesh and distribution of the nodal points (or vertices).

A mesh element has many features, including size and interpolation degree. The latter factors will
be our variable in the uncertainty quantification of the inverse identification. In practice, this section
forwards the accuracy of the identified parameters with respect to the change in mesh, intending to
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find a compromise between uncertainty and computation cost.

3.1.1 Mesh study

A set of meshes were mapped on Gmsh to analyze the identification uncertainty [383]. By varying
the average distance between vertices, from scale 0.05 to 2, Gmsh applies the Delaunay triangulation
algorithm to generate the cells. As a result, 6 uniformly-distributed meshes, with the number of
cells Nelem ∈ {540, 830, 1300, 1900, 3000, 4000, 6000, 9000, 12000, 22000, 44000} will be tested in the
uncertainty analysis.

3.1.1.1 Mesh Convergence

The mesh size scale was limited to 0.05 in accordance with the computer’s extreme performance.
Hence, we set the reference mesh assumed to provide sufficient accuracy with 44k quadratic triangu-
lar elements, equivalent to 2 105 degrees of freedom (Fig. 3.1).

Figure 3.1: Reference mesh employed for convergence study and uncertainty analysis. Published in [266].
As the regions outside keloid and within the observation domain are separated, they have been displayed in
different colors by Gmsh.

By analogy with data generation in Section 2.2.2.2, the reference solution was obtained by solving the
forward problem with the same material parameters mbimaterial

ref , and for the same boundary conditions.
Therefore, we denote uref , respectively fX ref , the reference nodal solutions (displacement), respectively
the integrated force over the pad sensor, obtained from Equations 2.10 and 2.11. The nodal solutions
and the integrated force on the other coarser meshes are denoted by umesh and fXmesh. Thus, the
relative errors, εu

mesh and ε
F
mesh, are computed as:

εumesh =
‖umesh − uref ‖2
‖uref ‖2

ε
fX
mesh =

( fXmesh − fX ref)
2

fX2
ref

(3.1)

In Figure 3.2, we plot the evolution of the error norms expressed in Equation 3.1 and computed for
each mesh density, and for triangular with linear and quadratic interpolation. Two different media
were considered: bi-material (Fig. 3.2a) and mono-material (Fig. 3.2b). For the mono-material
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case, the parameter set mmonolithic
ref was utilized. As result, we observe a monotonic decrease of εumesh

for both configurations. As the curves decrease with similar shape, one could conclude that the
discrepancy is not due to the mechanical properties. εumesh-curves in Figure 3.2 also show a significant
gap between linear and quadratic interpolation impacts. Hence, using linear elements to identify the
parameters cannot be accurate, which will be inspected later. Moreover, ε fXmesh-curves does not exhibit
a proper decrease for high mesh density, where the maximum value of εF

mesh does not exceed 2.10−4,
for quadratic mesh. This non-monotonicity may be due to the derivation process, as the forces are
obtained from the displacement gradient in post-treatment. The derivation could lead to additional
numerical errors due to round-off, truncation, or interpolation errors [392]. Same as for εumesh, the
discrepancy in reaction force is highly impacted by the interpolation degree. Also, in case of linear
elements, the force is sensitive to the change in mechanical properties. Nevertheless, the analysis of
discretization error revealed a successful mesh convergence for the quadratic elements.
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Figure 3.2: Discretization error study of the forward solver in terms of element degree and element size. The
numerical values for each case are reported in Tables 3.1 and 3.2. All figure have been published in [266]

3.1.1.2 Computation Cost

The calculation duration, namely, the computation cost, is a major criterion in element density and
interpolation choice. The computation in the forward solver should be fast enough to conduct many
times in the iterative optimization process. As shown in Figure 3.3a, using the reference mesh of
44k elements is too costly, with around 1000 seconds to accomplish the 50 steps. When it comes to
identifying mbimaterial

ref , as in Figure 2.17, the optimization process would be realized in 6 hours on a
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Table 3.1: Values of mesh convergence analysis results illustrated in Figure 3.2, for coarse sizes. DOFs stands
for Degrees of Freedom.

Nelem 540 830 1300 1900 3000 4000
Number of DOFs (linear) 650 970 1500 2100 3300 4300

Number of DOFs (quadratic) 2400 3600 5500 7800 12500 16400
εu

mesh for m
bimaterial
ref (linear) 0.0407 0.0216 0.0228 0.0177 0.0139 0.0068

εu
mesh for m

bimaterial
ref (quadratic) 0.0109 0.0039 0.0049 0.0034 0.0026 0.0008

εu
mesh for m

monolithic
ref (linear) 0.0387 0.0211 0.0217 0.0169 0.0131 0.0063

εu
mesh for m

monolithic
ref (quadratic) 0.0104 0.0038 0.0047 0.0033 0.0025 0.0007

ε
fX
mesh for m

bimaterial
ref (linear) 0.0838 0.0486 0.1853 0.0841 0.3517 0.3749

ε
fX
mesh for m

bimaterial
ref (quadratic) 3.2 10−5 2.5 10−6 3.2 10−5 9.1 10−6 1.6 10−6 2.4 10−5

ε
fX
mesh for m

monolithic
ref (linear) 0.0145 0.0061 0.0172 0.0091 0.0228 0.0232

ε
fX
mesh for m

monolithic
ref (quadratic) 4.4 10−5 1.6 10−4 1.8 10−4 5.0210−5 1.8 10−4 1.2 10−4

Table 3.2: Values of mesh convergence analysis results illustrated in Figure 3.2, for fine sizes. DOFs stands for
Degrees of Freedom.

Nelem 6000 9000 12000 22000 44000
Number of DOFs (linear) 5600 7900 11900 21000 46500

Number of DOFs (quadratic) 21500 30600 46500 82300 184000
εu

mesh for m
bimaterial
ref (linear) 0.0067 0.0061 0.0052 0.0023 0.0023

εu
mesh for m

bimaterial
ref (quadratic) 0.0007 0.0007 0.0006 0.0002 0

εu
mesh for m

monolithic
ref (linear) 0.0063 0.0059 0.005 0.0021 0.0021

εu
mesh for m

monolithic
ref (quadratic) 0.0007 0.0006 0.0006 0.0002 0

ε
fX
mesh for m

bimaterial
ref (linear) 0.0959 0.1684 0.0637 0.0501 0.028

ε
fX
mesh for m

bimaterial
ref (quadratic) 1.1 10−4 4.7 10−5 7.5 10−5 2.6 10−7 0

ε
fX
mesh for m

monolithic
ref (linear) 0.0045 0.0077 0.0031 0.0018 0.0013

ε
fX
mesh for m

monolithic
ref (quadratic) 2.1 10−4 2 10−4 7.5 10−5 7.9 10−6 0
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desktop computer (Intel(R) Core(TM) i7-8700 CPU, 3.2 GHz, 8 GB RAM) providing that the initial
guess lead convergence. The modeler needs to test many initial sets, which makes the whole operation
last for days.

Figure 3.3b shows that the total number of iterations is not fully monotonic. The non-linear FEM
convergence correlates with the number of elements only for the fine meshes, Nelem > 6000 elements.
For Nelem < 4000, the non-linear FEM solver struggles somehow to find a stationary solution. Later,
a focused study will be presented to explain this abnormality at low element density levels based on
mesh quality. By dividing the values in Figure 3.3a by their respective in 3.3b, one would notice a
strong correlation between themesh density and the cost per one forward solver iteration in logarithmic
(Fig. 3.3c) and linear (3.3d) scales, meaning that cost is mainly due to matrix inversion in the system
[K̃ ]{u} = { f }.
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Figure 3.3: Computational costs of forward nonlinear simulation. The different meshes contain quadratic
elements. (a) Total costs over the 50 load steps. (b) Number of iterations over the 50 load steps. (c) & (d) Cost
per each iteration for logarithmic and linear scales, respectively. (a) and (b) have been published in [266]

In an attempt to explain why some coarse meshes require a few iterations to converge compared to
finer ones (Fig. 3.3b), the number of iterations required from the linear solver (used for K̃ matrix
inversion) to converge was computed for each load step, for meshes with Nelem < 4000. The use
of linear elements leads to a fast convergence within 3 sub iteration whatever the mesh density (Fig.
3.4a). However, with the quadratic elements, the linear solver struggles to converge for Nelem = 3000,
but not for a coarser mesh, such as Nelem = 830, as noticed in Figure 3.4b. For tk ≥ 30, the number of
iterations in the linear solver increases exponentially for Nelem = 540 and Nelem = 3000, which could
be caused by a critical deformation of some cells, unlike Nelem = 830.
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Figure 3.4: Linear solver iterations for each load step.

In Figure 3.5, values of the aspect ratio of all cells were mapped. For triangular elements, the aspect
ratio quality criterion reveals the degree of conformity of an element to the regular triangle, where all
edges have the same length. Its formula is given by [393]

qa =
lmax(l0 + l1 + l2)

4
√

3Aelem
(3.2)

where li (i = 1, 2, 3) is the edge length and Aelem the area. A direct comparison between meshes with
830 and 3000 elements revealed that qa is no higher than 3.5, which is an acceptable ratio. Also, the
distortion value of all elements is around 1. On that account, the convergence difficulty reported in
Figure 3.4b might not be linked to the element shape in the deformed state, as confirmed by linear
interpolation in Figure 3.4a. If quadratic elements had difficulty converging, unlike linear ones in the
same mesh (3000 elements), one would assume that adding intermediate vertices would delay finding
the stationary solution as the linear system becomes bigger. By referring to Figure 3.3b, we presume
that the mesh generation for Nelem < 4000 has a hazardous impact on the nonlinear forward solver
convergence. Using finer mesh would ensure that the solver converges within a few iterations.

3.1.2 Parameter Identification

Earlier in Section 2.2.2.2, I addressed the validation of the optimization solver through the identification
of the target mbimaterial

ref with an optimized mesh (described in Sec. 3.1.3). The identification process
was applied to different meshes with linear then quadratic elements. For every identified parameter
set m̂, the identification accuracy with respect to the target was assessed via the following relative
discrepancy

εopti =
|m̂i − mi |

|mi |
; m̂i ∈ m̂ and mi ∈ mbimaterial

ref (3.3)

3.1.2.1 Linear Mesh

Starting from an initial set relatively far from the target, m(0) = {µk = 0.01 MPa, Jmk = 0.01, µhs =

0.01 MPa, Jmhs = 0.01} and Λ(0) = 10−4, the optimization solvers reduce iteratively the data dis-
crepancy issued from a quadratic mesh with Nelem = 44 k elements, set as the reference, and linear
meshes with less density. Table 3.3 summarizes the identified parameter values of each mesh with
linear elements.
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(a) Nelem = 830

(b) Nelem = 3000

Figure 3.5: Mesh quality map in the deformed state based on the aspect ratio. The mapping was performed on
Paraview using the Mesh Quality filter for the load step tk = 50, such that ū(tk) = {−4, 0}T mm.

The results show a considerable gap between m̂ and mbimaterial
ref , which is caused by both discretization

and interpolation factors. By focusing on the reference mesh, where only the interpolation differs,
one would notice that the discard is significant for µk and µhs, but not for Jmk and Jmhs. Supposing
that the parameter µ is strongly correlated with the force-displacement curve, the important values of
εopt can be explained by the link force/interpolation: as the force is obtained from the derivation of
u (the derivation reduces the polynomial degree by one), using linear interpolation would results in a
discard of the force-displacement curve with respect to a quadratic interpolation, and thus a discard
in the estimated parameters with respect to mbimaterial

ref .

To conclude, the use of linear element demonstrated an incapacity to identify accurately the reference
material parameters even when using data on highly refined mesh (44k elements). This inaccuracy
can be associated with the large relative error observed for linear elements in Figure 3.2, where
ε
fX
mesh > 10−2 for the bi-material case. On the other hand, the results showed that the initial guess in
the inverse solver can be relatively far from the reference in case of the linear interpolation, i.e., up to
|m̂i |

|mi |
≈ 40 for m̂i ∈ m̂ and mi ∈ mbimaterial

ref .
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Table 3.3: Material parameters identification from reference data projected on linear meshes.

Nelem Converged parameter set m̂ εopt
540 µk = 40.37 kPa 0.1926

Jmk = 0.1949 0.0255
µhs = 7.5 kPa 0.5313
Jmhs = 0.491 0.2275

1300 µk = 36.358 kPa 0.2729
Jmk = 0.1931 0.0345

µhs = 10.237 kPa 0.3602
Jmhs = 0.4549 0.1373

6000 µk = 38.825 kPa 0.2235
Jmk = 0.2008 0.0040

µhs = 12.265 kPa 0.2334
Jmhs = 0.4166 0.0415

12000 µk = 41.432 kPa 0.1714
Jmk = 0.2006 0.003

µhs = 12.906 kPa 0.1934
Jmhs = 0.4138 0.0345

22000 µk = 42.51 kPa 0.1498
Jmk = 0.2019 0.0095
µhs = 13.19 kPa 0.1756
Jmhs = 0.4042 0.0105

44000 µk = 44.04 kPa 0.1192
Jmk = 0.2002 0.0010
µhs = 13.91 kPa 0.1306

Jmhs = 0.406 0.0150

3.1.2.2 Quadratic Mesh

In the case of quadratic interpolation, setting the same initial guess as in Section 3.1.2.1, far from
the target, requires costly computations and, most of the time, results in a divergence. Hence, the
identified values with linear meshes were set as the initial guess for the quadratic meshes. For example,
Jm
(0)
hs = 0.01→ Jmlinear

hs = 0.406→ Jm
quadratic
hs = Jmreference

hs = 0.4. The complete list of the converged
parameter sets m̂ for each quadratic mesh is reported in Table 3.4.

The values of m̂ and εopt confirm that using coarse meshes would cause uncertainties in parameter
identification; 8% of error occurred in the identification of Jmhs when using a 540-elements mesh.
Starting from finer mesh, Nelem ≤ 6000, the errors drops to 1%, unlike in Table 3.3 with errors
around 23% for Nelem = 6000. The last comparison affirms that when choosing between discretization
and interpolation to improve the identification accuracy, the priority is to use elements with higher
interpolation degrees. Besides, if one assumes that the quadratic elements represent better the captured
DIC fields, using successively linear, then a quadratic mesh would be an efficient technique to converge
to the most accurate parameter set.

3.1.3 Adaptive mesh

Based on criteria qualitatively assessed, affordable computation cost and low discretization error, an
“optimal” coarse mesh was designed and tested to investigate the possibility to identify the material
parameters accurately with less dense mesh.
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Table 3.4: Material parameters identification from reference data projected on quadratic meshes.

Nelem Converged parameter set m̂ εopt
540 µk = 49.88 kPa 0.0024

Jmk = 0.1923 0.0385
µhs = 16.031 kPa 0.0019

Jmhs = 0.4325 0.0813
1300 µk = 50.344 kPa 0.0069

Jmk = 0.1971 0.0145
µhs = 16.115 kPa 0.0072

Jmhs = 0.4133 0.0333
6000 µk = 50.52 kPa 0.0104

Jmk = 0.2001 0.0005
µhs = 16.166 kPa 0.0104

Jmhs = 0.4013 0.0033
12000 µk = 50.431 kPa 0.0086

Jmk = 0.1999 0.0005
µhs = 16.059 kPa 0.0037

Jmhs = 0.4015 0.0038
22000 µk = 50.038 kPa 0.0008

Jmk = 0.2002 0.001
µhs = 16.022 kPa 0.0014

Jmhs = 0.3998 0.0005
44000 (reference) µk = 50.0 kPa 0.0

Jmk = 0.2 0.0
µhs = 16.0 kPa 0.0

Jmhs = 0.4 0.0

3.1.3.1 Mesh Building

Based on a 540-quadratic-element mesh, additional vertices should be added manually on zones with
high discretization error inside the ZOI since the latter is an effective observable zone subjected to the
optimization problem. To be able to identify these zones, the difference in nodal solutions between
the 540-elements and the reference mesh is first mapped in Figure 3.6. Many vertices were added
arbitrarily to the uniform mesh (Fig. 3.7a) in the zone marked by the green ellipses to obtain a
moderately fine mesh comprised of 1300 elements. To avoid confusion with another mesh studied
earlier comprising 1300 elements uniformly distributed, we name the recent one “optimized mesh”
(Fig. 3.7b).

3.1.3.2 Application

In comparison with Figure 3.6, a drop of a factor of 10 was observed in ZOI on Figure 3.8. Thus, the
manually-refined adaptive mesh can be a suitable candidate for low-cost yet accurate simulations.
Note that it would be preferable to use a quantitative error indicator. Estimators are used a posteriori
to evaluate the discretization error. This information is then used to adaptively refine elements where
the error is high [394]. During his internship in the Biomechanics team – Department Applied
Mechanics/FEMTO-ST – Nicolas Marie worked on creating an adaptive mesh based on the dual-
weighted-residual (DWR) method developed for linear elasticity [395]. The DWR method allows for
localizing the error contributions to the simulation, compared to an exact solution, on each element.
As a result, as shown in Figure 3.9, refinement was applied automatically on the pad corners, and
keloid/healthy-skin interface according to a given quantity of interest, for instance, tr(σ). At first
glance, the refinement was in accordance with the error pattern in Figure 3.8. The DWR-based
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Figure 3.6: The distribution of nodal solutions difference between the 540-elements and reference mesh.
Published in [266]

adaptive mesh contained a massive number of elements, Nelem = 11 k, which is relatively costly. By
changing the targeted precision, the latter could have less number of elements. Its application to our
case revealed to be a suitable tool for adaptive mesh refinement in future works.
The optimized mesh was tested in the parameter identification process and compared alongside the
meshes introduced in Section 3.1.1. Table 3.5 regroups the identified values m̂ and their respective
error regarding the target for two interpolation degrees. For quadratic mesh, the maximum value of
εopti is 1.33 %, which makes it a valid candidate to replace the reference mesh with 44 k elements.

Table 3.5: Material parameters identification from reference data projected on the optimized mesh (1300
elements).

Interpolation Converged parameter set m̂ εopt
Linear µk = 44.101 kPa 0.1180

Jmk = 0.1988 0.006
µhs = 13.28 kPa 0.17

Jmhs = 0.431 0.0775
Quadratic µk = 50.219 kPa 0.0044

Jmk = 0.1994 0.003
µhs = 16.157 kPa 0.0098

Jmhs = 0.4053 0.0133

In order to emphasize the usefulness of using an adaptive mesh to reduce computation cost without
reducing the accuracy in parameter identification, the values of Tables 3.3, 3.4, and 3.5 are combined
and plotted in Figure 3.10. A direct comparison of m̂’s accuracy between meshes revealed that using
adaptive mesh is equivalent to using uniform meshes for Nelem ≤ 6000 but with fewer costs, which
confirms that the adaptive mesh can be very helpful in FEMU processes that run the forward solver
hundreds of times, such as Markov chain Monte Carlo scheme.

3.2 Experimental Data

The uncertainty about the identified model parameters studied in the previous part was related only
to the discretization error. Another well-known error source that may govern the identification
uncertainty is data accuracy. The data acquired from the experiments are commonly accompanied by
noise. It can be evaluated by experimenting at least three times. Within our context, the experimental
input data are in the form of force-displacement curves and DIC fields. This section aims to study the
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(a) 540 elements

(b) Optimized mesh

Figure 3.7: Coarsest operational meshes. Published in [266]

influence of their variation on the identified parameters and then set a threshold for every data type
that permits control of the identification precision.

3.2.1 Data Uncertainty

In biomechanics, the acquisition of specific-patient data is uncertain because of several factors,
among them the intra-subject variability, the sensor’s stability, and the environmental conditions. The
present study focuses on the most crucial factor: the apparatus’ precision. Instead of assessing every
apparatus component’s precision, the whole system’s global precision is to be evaluated directly on
the experiment outputs. Since the force-displacement and DIC field data are collected independently,
their respective uncertainties are uncorrelated and are characterized by their probability distributions.

3.2.1.1 Data Synthesizing

Due to a lack of experimental data (to evaluate their precision), dummy data were generated from
the forward FEM solver using the reference mesh with quadratic element and the reference material
parameters mbimaterial

ref . Then, for each observation time tk , Additive White Gaussian Noises (AWGN)
were processed on nodal solutions (to synthesize noisy DIC fields) over the ZOI, Ωmsr, and on the
reaction force (to synthesize noisy force-displacement sets) [397]. The AWGN is a noise model
used to mimic the effect of many natural random processes and adds a discrepancy to a point. This
discrepancy is governed by zero-mean Gaussian distribution with standard deviation representing the
data precision, as such
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Figure 3.8: The distribution of nodal solutions difference between the optimized and reference mesh. Published
in [266]

Figure 3.9: Adaptive mesh build upon the dual-weighted-residual method. The figure was reported from
Nicola Marie’s master thesis [396].

umsr(X i, tk) = u(X i, tk) + ∆u(X i, tk); ∀X i ∈ Ω
msr; k = 0, 1, . . . , NE (3.4)

and,

fXmsr(tk) = fX(tk) + ∆ f (tk); k = 0, 1, . . . , NE (3.5)

with ∆u and ∆ f additive noises for the DIC field and reaction force, respectively. They are generated
randomly from the normal distribution:

∆u(X i, tk) ∼ SDIC × N(0, I2) (3.6)

N(0, I2) denotes the 2-dimensional normal distribution, accordingly to the bi-dimensional domain
Ωmsr. The reaction force precision is drawn as following

∆ f (tk) ∼ Sforce × N(0, 1) (3.7)

SDIC and Sforce represent the measurement uncertainty in DIC fields and forces and then will be swept
for different noise levels to study the identification precision. As an example, Figure 3.11 illustrates
the "fuzzified" displacement and reaction force data with SDIC = 200 µm and Sforce = 10 mN. To
quantify the global error resulted from the addition of the random noises to the reference data overall
the observation times NE = 50, two numerical indicators were used.
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(d) Jmhs

Figure 3.10: Comparison of parameter identification accuracy and computation cost for all meshes. The green
cross represents the computation cost for the adaptive mesh.

εDIC =

√∑NE

k=1 ‖uref(tk) − umsr(tk)‖2Ωmsr√∑NE

k=1 ‖uref(tk)‖2Ωmsr

(3.8)

εforce =

√∑NE

k=1
(
fXmsr(tk) − fX ref(tk)

)2√∑NE

k=1
(
fX ref(tk)

)2
(3.9)

3.2.1.2 Parameter Identification

All the 50DIC frameswere synchronizedwith the incremental prescribed displacement ū(tk) (fromun-
deformed configuration to 4 mm traction). Standard deviations for both dummy displacement field and
reaction force were varied separately, with SDIC = {0; 40; 120; 200} µm and Sforce = {0; 2; 6; 10} mN.
Therefore, the optimization solver used 16 noised synthetic data sets as experimental data. In the
meantime, the zero-noise cases were considered to dissociate the effects of the two error sources on
parameter identification. In opposition with the study in Section 3.1.2, the initial guess was set close
to the target: m(0)L = {µk = 49 kPa; Jmk = 0.19; µhs = 15 kPa; Jmhs = 0.39}. As the study only
concerns measurement noise’s effect on parameter identification precision, it would be reasonable to
reduce the number of iterations toward convergence. Setting a further m(0)L in case of high data noise
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Figure 3.11: Application of the Additive White Gaussian process to DIC field and force-displacement curve.
Published in [266]

would result in convergence to an undesirable local minimum.

Two cases were investigated when studying the measurement noise’s effect on the inverse solutions
without then with considering discretization errors. In the former, the same mesh used to generate
the data was used to identify the parameters. Hence, the discrepancies on each parameter εopt would
inform how precise the identification was. While in the latter, the adaptive mesh was used to study the
effect of discretization error combined with measurement noise. Figure 3.12 shows the discrepancies
of the identified parameters from the first case for all noise level sets. As the noise distribution is
based on randomness, the noised dummy data samples were drawn three times. The maximum value
of discrepancies was retained and plotted in the form of 2D color maps (Fig. 3.12d). All the values
are reported in Table A.1 (Appendix A). Similarly, the discrepancies of the identified parameters with
data from the adaptive mesh are summarized in Figure 3.13 and detailed in Table A.2.

When the data were projected on the reference mesh, the maximum value of εopt did not exceed 2.5 %
for noise indicators reaching up εDIC = 8 % and εforce = 12 %. Once adding noise on forces only
(SDIC = 0 µm), we notice that the identification of Jmk and Jmhs are perfectly precise. On the other
hand, µk and µhs are equivalently sensitive to perturbations on the reaction force, meaning that those pa-
rameters are tightly related to material stiffness. Inversely, by focusing only on perturbed displacement
(Sforce = 0 mN), we notice that all parameters discrepancies, most important, Jmk and Jmhs, increase
for higher noise level on DIC. Finally, the combination of both DIC and forces measurement noise
does not lead to higher mismatches as expected, and the maximum parameter discrepancy is below
2.5%. Combining data with nature would lead to mutual compensation in errors, and the identifi-
cation tends to be accurate for measurement uncertainty lower than SDIC = 200 µm and Sforce = 10mN.

In the adaptive mesh case, the relative discrepancies increase higher because of discretization errors.
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Figure 3.12: Parameter identification precision study performed on noised dummy data with different noise
level sets using reference mesh. (d) has been published in [266]

Figure 3.13 shows that for all noise levels, εopt of keloid parameters, µk and Jmk, are likely very low
(<1 %), except for some critical cases where it reaches 4 % (Table A.2). The other parameters, µhs
and Jmhs, are more sensitive to the combination measurement noise and discretization error, with a
maximum discrepancy approximating 7.5 %. The errors are high on the healthy-skin material because
of the lack of vertices in the coarser adaptive mesh outside the keloid scar domain. In the healthy-skin
domain, the nodal solutions are sensitive to material parameter change, which could be noticed in
Sutula et al.’s work [1]. Also, Table A.2 shows clearly that the Jm parameter for both materials is
not affected by a change of uncertainty in force as their values remain constant for a fixed SDIC and
variable Sforce. Thus, efforts on reducing the DIC uncertainty are much recommended to enhance
accuracy in identifying Jmk and Jmhs. To conclude, although εopt is higher in the adaptive than the
reference mesh, εopt is still lower than 5 % for all parameters and for all noise levels providing that the
measurement uncertainties do not reach Sadm

DIC = 120 µm and Sadm
force = 8 mN. The latter will be used to

check the validity of the acquired measurement data in a in vivo test.

3.2.2 Data Quantity

In this part, we study the effect of the amount of data on identification uncertainty. Consequently, we
expect to answer the question, "howmanyDIC frames and load steps are needed to ensure stable values
of m̂." We describe how the noised synthetical data were obtained and split according to equidistant
observation times. Then, we report the parameter identification results for different datasets and
discuss them.
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Figure 3.13: Parameter identification precision study performed on noised dummy data with different noise
level sets using reference mesh. Published in [266]

3.2.2.1 Data Synthesizing

From the full set of the NE = 50 perturbed dummy data, subsets with NS observation times were se-
lected and distributed uniformly over the whole time range. Two scenarios were explored: weakly and
highly nonlinear force-displacement curves (Figures A.1 and A.2). The targeted material parameters
mref , the number of elements in NE , and noises Sforce and SDIC were partially set differently for both
cases. The noises were added to nodal displacements and derived forces computed with the reference
mesh. As a reminder, the reference mesh contains 44 k quadratic elements.

For the weakly nonlinear case, the following was set, mw
ref = mbimaterial

ref , Sforce = 20 mN, SDIC =

200 µm, and NS ∈ {5; 10; 20; 50; 100}. While for the highly nonlinear, it was set that mh
ref =

{µk = 10 kPa; Jmk = 0.017; µhs = 8 kPa; Jmhs = 0.17}, Sforce = 20 mN, SDIC = 200 µm, and
NS ∈ {20; 25; 40; 100; 200}. In that situation, more points were added to cover the twisted part
efficiently in the highly nonlinear curve. In additions, to simulate highly nonlinear reaction force, a
zero-displacement condition in the Y-direction was applied to the top and bottom external boundaries
(Fig. 2.6). To quantify global noises over the pseudo-times subsets, the same indicators εDIC and
εforce were used by replacing NE , the total number of time steps, with NS , the number of the partial
time sub-steps in Equations 3.8 and 3.9.

3.2.2.2 Parameter Identification

As the noise distribution is based on randomness, the dummy noises were drawn three times, and only
the maximum discrepancies are maintained in Figure 3.14. All the other values are reported in Table
A.3. At first glance, the error bars show that discrepancies in the identified parameters decrease with
increasing DIC frames and load steps. For a low amount of data, NS ≤ 50, the identification is impre-
cise; hence if the method is applied to real data, the uncertainty about the identified parameters is high.

Moreover, in both cases, Jmk and Jmhs are more likely insensitive to data quantity. By referring to
the explanation provided earlier, which stipulates that Jmk and Jmhs are correlated exclusively with
the displacement fields, unlike µk and µhs (which are strongly correlated with the reaction force),
one might conclude that the inverse solver needs few DIC frames to identify Jmk and Jmhs. Securing
precision and accuracy in identifying the parameters is conditioned by a rich force-displacement
dataset. Therefore, based on the obtained results, a trade-off between the number of equidistant
observation pseudo-times and computation cost should be carried on. Choosing NS around 100 would
necessitate reasonable cost and lead to enough precise estimation.
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Figure 3.14: Study of data quantity on parameter identification precision. Published in [266]

3.3 Boundary Conditions

Another aspect that plays a role in characterization uncertainty is topology. To develop the method
described in Chapter 2, the external boundary widths (Fig. 2.6) were set arbitrarily according to
a previous study [1]. Even so, in Section 3.2.2.1, it was reported that modifying some boundary
conditions could severely change the mechanical response, in occurrence weakly to highly nonlinear
behavior. Thus, a study about the influence of the domain dimensions on the accuracy of the identified
parameters was conducted and is reported in the current section.

3.3.1 Material and Methods

The final objective of this study is to determine the domain length and width, respectively, LΩ and
WΩ (Fig. 3.15), such that the borders’ effect on the simulated reaction force is null. We proceed by
evaluating a relative discrepancy εLW between two different boundary condition configurations for a
set of combinations of the topological parameters. In one of them, labeled "constrained boundaries",
the displacement in Y-direction was set null along the top and bottom boundaries. In the other
configuration, labeled "free boundaries", the same boundaries remained free on any constraint. The
expression of εLW is given by

εLW =

√∑NE

k=1
(
fX free(tk) − fXconstrained(tk)

)2√∑NE

k=1
(
fXconstrained

)2
(3.10)

It represents the relative mismatch between two force-displacement curves obtained for different con-
figurations.

10 equidistant values for LΩ ∈ [150, 300]mm andWΩ ∈ [100, 300]mmwere assigned to the geometry
generator in Gmsh for every set of geometrical parameters. The value 300 mm as a maximum of WΩ
corresponds to the arm’s circumference. Afterward, the geometrical models were meshed uniformly
so that the number of elements neared the computation limits (Fig. 3.16). The average element was
checked to be small enough to result in discretization error (based on the study in Section 3.1). The
material parameters were set to simulate the highly nonlinear response, as the boundary conditions
strongly impact the latter, thereby mh

ref = {µk = 10 kPa; Jmk = 0.017; µhs = 8 kPa; Jmhs = 0.17}.
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Figure 3.15: Topology parameters of the uni-axial extensometery’s equivalent model.

Figure 3.16: Extended mesh domain with LΩ = 300 mm and WΩ = 300.

3.3.2 Topology Uncertainty Analysis

Studying the boundary condition effects on the identified parameter uncertainty would not necessitate
solving the inverse problem for each set of LΩ and WΩ. Because the uncertainty source is not related
to experimental data, but to the geometrical model instead, the analysis targets the forward solver.
By sweeping the geometrical parameters, the reaction force value was calculated and plotted for the
"fixed" and "constrained" cases (Fig. 3.17a). Their values of εLW were calculated and summed up in
Figure 3.17b, where the minimum mismatch is 2.8 % for LΩ = 200 mm and WΩ = 300 mm.

The shape in Figure 3.17b indicates that extending the domain in the X-direction (increasing the
length LΩ ) does not affect the reaction force, which validates the usefulness of U-pads to isolate the
observable zone from external changes. In Figure 3.15, we remark that ZOI might not be protected
from the deformations of top and bottom boundaries. Therefore, the domain width must be too large
(WΩ close to 300 mm) to neglect the boundary effects, as seen in the latter figure. With an error less
than 5 %, and for the sake of less expensive computations, we can determine the model boundaries to
WΩ = 300 mm and LΩ = 150 mm.
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Figure 3.17: Study of boundary condition effects for different values of LΩ and WΩ.

The model becomes less representative with such a great width because the studied site is not flat.
At the same time, eliminating the boundary effects is mandatory to ensure they do not impact the
parameter identification. Given our situation, expanding the domain is the only solution to secure it.
Regarding the representativity issue, one could point out that the similitude between the model and
the experiment lies in the independence of measured force with the edges and not the dimensions.
An alternative way to force the geometric similitude and reduce the edge effect would be imposing
adaptive boundary conditions without altering the response.

3.4 3D modeling

The use of a 2D model was privileged for its simplicity and its reasonable computational costs, even
though its results showed some complexity. In this part, we use a full 3D model to clearly understand
how it can be replaced by the 2D equivalent model, which can be considered as an uncertainty source.
We start by describing how the body was modeled based on the molded shape of keloid by means
of free, open-source software. Then, we will introduce the implementation of the 3D FE forward
problem and its validation. Afterward, we will study the equivalence of 2D and 3D models.

3.4.1 FE Forward Problem

Compared to the forward problem detailed earlier in Section 2.1.3, the 3D forward problem includes
the same features (code structure, behavior law assigning, nonlinear algorithm) except for the ge-
ometry, boundary conditions, and element type. Hence, this part will address the CAD modeling,
FEniCS Implementation, and the forward solver validation.

3.4.1.1 Geometry Construction

As explained in Section 2.1.1.1, the keloid’s shape was acquired with an optical 3D surface mea-
surement and converted into a 3D points cloud. The latter was used to realize a CAD model on
Blender [372], as illustrated earlier in Figure 2.3a. Blender allows through many filters smoothing
the surfaces locally. Using Non-Uniform Rational Basis Splines could be possible, but the real keloid
curvature was approximated, thus less accurate. The output surface mesh, in STL format (Standard
Tessellation Language), is imported in a second free framework: FreeCAD [398]. The mesh is con-
verted into a solid part, extracted, and then embedded onto a half-thin-cylinder, representing the skin
epidermis and dermis in the arm, with a diameter of 47 mm (average measure on 30 volunteers).
Because of the curvature effect, the downside half-thin-cylinder does not impact the upside domain.
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This assumption will be addressed in Section 3.4.2.2. As a result, FreeCAD produces the CAD model
in BREP format (Boundary REPresentation), where its volume limits define the 3D shape. Afterward,
the BREP file is opened in Gmsh to generate tetrahedral elements within the volume boundaries, as
illustrated in Figure 3.18. The keloid in red was modeled with its full varying thickness and the
surrounding skin with a thickness 1.5 mm, accordingly to Chambert et al.’s measurement [106]. The
keloid goes completely through the skin until reaching the inner wall.

Figure 3.18: Representation of the bi-material 3D mesh composed of keloid and healthy skin.

3.4.1.2 Validation and Convergence

In the same way as the 2D equivalent model, the forward problem in 3D was implemented in FEniCS,
but with some adaptations. For the boundary conditions, in contrast with 2D configuration (Fig. 2.6),
the top surface domains where the pads were stuck were empty. After all, meshing a rigid body would
produce the same results, but it was mandatory for the 3D. All the vertices within the grey surfaces
in Figure 3.18, even the ones from the keloid, were subject to the prescribed displacement in both
fixed and moving pads. In addition, the displacement of the inner surface of the half-thin-cylinder,
corresponding to the dermis bottom boundary, was set null along Z-direction. Thereby, the skin should
slide following the stretch movement.

The validation of the forward solver was conducted based on COMSOLMultiphysics® software. The
parameter set mbimaterial

ref and the Gent model in its incompressible form were used for that. Knowing
that the 3D geometry illustrated in 3.18 cannot be reproduced on COMSOL (for file incompatibility
issues), I used a simplified flat 3D domain resulting from pulling out the 2D model (Fig. 2.11) with
a distance of 1 mm. The objective of the validation is to verify that FEniCS codes were correctly
typed and that the functions are consistent with continuum mechanics, which means that the choice
of the geometry can be arbitrary. The validation consisted in comparing the nodal solutions at the
last observation pseudo-time, u1(tk = NE ), u2(tk = NE ), and u3(tk = NE ) (along axes X , Y , and
Z , respectively), from COMSOL and FEniCS along two cutlines similar to the ones in Figures 2.14
and 2.15. The meshes had almost the same number of quadratic elements: 15 k for the COMSOL
model and 16 k for the FEniCS model. For the first cutline oriented horizontally on the center of the
domain, the comparison of displacement data in Figure 3.19 showed a fitting with relative errors of
0.2 % and 3.5 % for u1 and u3, respectively. As for u2, the mismatch in Figure 3.19b is due to the
discretization since the displacement was supposed to be constant and null in that situation. On the
other hand, the fitting in Figure 3.20, along the vertical cutline, also sketched on the center, showed an
accuracy of 1.87 % and 3.4 % for u2 and u3, respectively. In the latter, a refined mesh of 65 k elements
was employed after the 16000-element-mesh produced less accurate fitting. The high mismatches
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in Figure 3.20a are again caused by the discretization, and the displacement u1 was assumed to be
uniform around −2.075 mm.

35 40 45 50 55 60 65
Cutline coordinates [mm]

−4

−3

−2

−1

0

u 1
 [m

m
]

COMSOL
FEniCS

(a)

35 40 45 50 55 60 65
Cutline coordinates [mm]

−0.004

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

u 2
 [m

m
]

COMSOL
FEniCS

(b)

35 40 45 50 55 60 65
Cutline coordinates [mm]

−0.04

−0.03

−0.02

−0.01

0.00

u 3
 [m

m
]

COMSOL
FEniCS

(c)

Figure 3.19: Comparison of displacement on the horizontal cutline between 3D models.

The latter results confirmed that the forward solver coded in FEniCS was operational and gives iden-
tical results once referred to an a priori validated commercial code. However, the comparison in
Figure 3.20c would have us believe that the domain was efficiently meshed in COMSOL, as opposed
to FEniCS. One had to refine the mesh from 16 k elements to 65 k elements to result in solutions close
to the ones computed in COMSOL with 15 k elements. Following that, a mesh convergence study
was carried out on the FEniCS-based forward solver.

A series of meshes issued from the half-thin-cylinder described in Section 3.4.1.1 were used for
simulation to study the mesh density convergence. Every mesh was generated automatically on Gmsh
but not uniformly. In 3D bodies, the mesh builder automatically refines the curved areas, unlike
in 2D shapes. Besides, an adaptive mesh with 61 k elements was constructed based on the DWR
method, where linear elasticity was applied instead of nonlinear. Regarding the interpolation degrees,
the analysis revealed convergence starting from the quadratic order after comparing reaction force
between linear, quadratic, and cubic meshes. Figure 3.21a illustrates the convergence of the quantity∑NE

tk
| fX(tk)| over the mesh series, which occurred for the 172 k mesh. To conduct such highly

costly computations, I had to use a processor with 10 cores in the server, far beyond a simple desktop
computer’s performance. For NE = 100, the computation cost was around 3000 s, which represents
the duration of one iteration in identifying the material parameters. Hence, the total cost would be
more than 10 hours, providing that the first tested initial guess leads to correct convergence. Figures
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Figure 3.20: Comparison of displacement on the vertical cutline between 3D models.

3.21a and 3.21b indicate that using an adaptive mesh with 3 times less number of elements produces
the same results but faster, around 500 s instead of 3000 s. In this case, utilizing the optimization
solver is affordable.

3.4.2 Multi-Dimensional Uncertainty Analysis

The FE forward problem was solved for giving different configurations and parameters to study the
change in reaction force, derived from nodal displacements.

3.4.2.1 Epidermis-Dermis Thickness

Several simulations were performed for the total healthy skin thickness thed, as an addition of the
epidermis and dermis thicknesses. The curves exposed in Figure 3.22a revealed that the force retrieved
on the measurement pad is strongly correlated with domain thickness. Accordingly, when using an
equivalent 2Dmodel, the total thickness should be considered in the constitutive equations. Otherwise,
the material parameters will be misidentified. Figure 3.22 exhibits a linear correlation between force
(taken at the last observation time tk = NE ) and thed, which suggests that the integrated stress over
the pad’s surface is always constant (Eq. 2.11), and that the change in fX is due only to the thickness
variation.

Consequently, the equivalence between the 2D and 3D models can be justified by including the
bi-material thickness in the elastic energy term. It is then proposed to extend Equation 2.7 to
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Figure 3.21: Convergence study of the FEniCS-based 3D forward problem. (b) The comparison focused on
the u3 mismatch along the vertical cutline since it showed weaker fitting in Figure 3.20c.
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Figure 3.22: Analysis of thickness change on the reaction force.

Π(u(tk), tk) =
∫
Ωk

ψk(u, tk)thk dΩ +
∫
Ωmsr

hs ∪Ω
unmsr
hs

ψhs(u, tk)thhs dΩ (3.11)

with thk and thhs standing for, respectively, keloid and healthy-skin average thicknesses.

3.4.2.2 Curvature

The boundary effect on the mechanical response in the 2D equivalent model was addressed in Section
3.3, where an optimal rectangular domain with length LΩ = 150 mm and width WΩ = 300 mm. In
this part, we explore whether this domain, in its flat shape, can produce the same behavior as a curved
layer. Thus, the 2D model was swept perpendicularly with 1.5 mm to add thickness, resulting in a 3D
flat bi-material. The latter was compared to two curved 3D models: a full thin-cylinder and its half,
as displayed in Figure 3.23.

The first conclusion about the results is that modeling half of the thin cylinder is sufficient to simulate
the deformation of a bi-material on the arm site. Second, using a flat model would bring some
relative errors with 27 %; hence the uncertainty about the characterization increases. One could
add a corrective coefficient in the model to recapture the discrepancy. However, without additional
investigation, we cannot conclude that this correction is always 27 %. Given the constraints faced in
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Figure 3.23: Analysis of curvature effect on the reaction force.

modeling, particularly the boundary effects and the curvature, reducing the domain to a surface where
the curvature is negligible would be preferable. If one sets the maximum uncertainty to 5 % (based
on Figure 3.17b), a LΩ = 150 mm and WΩ = 150 mm width will be a good compromise.

Conclusions

In this chapter, the focus was on analyzing the uncertainties related to parameter identification us-
ing different approaches and considering various sources of errors. These sources included mesh
discretization, measurement data, boundary conditions, and tri-dimensional aspect. The uncertainty
quantification was performed differently for each source, depending on the nature of the variables and
data. For mesh discretization and measurement data, the discrepancy between identified parameters
and a reference set was computed, respectively, for varying mesh density and measurement noise.
Synthetic data was generated and sometimes significantly perturbed to simulate experimental data.
For the analysis of boundary conditions, the uncertainty was represented by the discrepancy in the
finite element model outputs between an arbitrary topology and a topology with very large sizes, with
the latter having negligible effects on the reaction force. Regarding the tri-dimensional aspect, the
uncertainty was qualitatively analyzed by assessing the reaction force on a 3D model with different
characteristics such as curvature and thickness.

The investigation into the impact of mesh discretization on parameter identification accuracy and pre-
cision involved generating synthetic data from a reference mesh with a known set of parameters, which
were then projected onto a series of coarser meshes. Material parameters were identified on each of
these meshes using an optimization problem, and the mismatch between the identified parameters and
the reference set was assessed. The study yielded two principal results. Firstly, it was found that linear
elements provided convergence from a relatively distant initial guess, but were not accurate in identi-
fying parameters from data originally produced by a quadratic mesh. Therefore, it is recommended to
combine linear and quadratic meshes for improved performance. Secondly, constructing an adaptive
mesh proved to be a time- and cost-effective approach for identifying parameters without sacrificing
accuracy.

For the analysis of measurement noises effect on the inverse identification quality, dummy noises
were added to the synthetic data, displacement fields and force-displacement curves, for several levels,
combinedly or separately. The study then examines the influence of variation in the data on identified
parameters and sets a threshold for every data type to control identification accuracy: Sadm

DIC = 120 µm
and Sadm

force = 8 mN. The results demonstrated that each material parameter is closely linked to a certain
data type, for instance µk and µhs with reaction force, and Jmk and Jmhs with displacement field. Last
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but not least, a minimum of 100 DIC frames and their relative forces data are recommended to reduce
uncertainty in parameter identification.

To account for the potential impact of boundary conditions on mechanical response, an uncertainty
analysis was conducted to establish domain limits that minimize computational costs while ensur-
ing minimal effect on output. The study determined that the optimal domain length and width are
LΩ = 150 mm and WΩ = 300 mm. It is important to note, however, that extending the mesh domain
may limit its applicability for modeling non-flat human skin sites such as the shoulder or jaw.

While incorporating the tri-dimensional aspect would enhance the realism of the identification process,
it comes at the cost of increased computation time. Therefore, a study was conducted to evaluate the
impact of multi-dimension uncertainty on identification accuracy, with the aim of improving accuracy
in a 2D equivalent model. The findings demonstrate that considering skin thickness is crucial, and
that curvature has a notable influence on the forward solution. Ultimately, the study suggests that a
3D model would be advantageous for achieving accurate parameter identification.
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Chapter 4

Bi-material Mechanical
Characterization: Application to a
Patient-Specific Case

After introducing the inverse problem method to characterize the bi-material soft tissue and its rela-
tive numerical features in Section 2, the uncertainties about the identified parameters were addressed
through quantitative and qualitative studies in Section 3. The uncertainty analysis helped define the
validation limits of the methods and suggest further improvements. The next step is applying the
SofTI method to a patient-specific dataset acquired from the uni-axial extension test on a keloid scar
situated on the upper arm. Consequently, the material parameters will be assessed, and the preferential
directions of keloid growth will be identified.

This Chapter is divided into three main parts. The experiment performed on the patient and the
resulting dataset is first described. The measurement errors will be quantified and checked if they
are within the acceptable uncertainty based on the earlier works. Afterward, the material parameter
identification will be reported for some different cases. Finally, the stress field is computed using the
optimal parameter set to investigate the mechanical interaction between the keloid and the surrounding
skin. This will lead us to conjecture about the future keloid shape. Once done, a medical solution
specification to prevent keloid growth could be established.

4.1 Experiment

This part covers the procedures and results related to data acquisition from the uni-axial test applied to
a domain consisting of a keloid scar and healthy skin. It covers as well measurement data processing
and its errors. Because of the lack of real data, the application of the method laid on an existing
dataset prior to the thesis from only one patient, which was mostly retrieved from Chambert et al.’s
study [106].

4.1.1 In vivo Test

A series of measurements was held on a 22-year-old Caucasian female in an average temperature
of 20 − 22 ◦C and relative humidity of 40 − 60 % with a rest time of 20 minutes between each
two load cycles. Under the Helsinki Declaration [399], a set of ethical principles regarding human
experimentation, the devices used were non-invasive and painless to the patient. The patient gave
consent to the experiment, and its keloid diagnosis was confirmed by a surgeon. No treatment was
administered before the measurement.
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4.1.1.1 Uni-Axial Extension Apparatus

Employing an ultra-light extensometer device, introduced in Section 2.1.2.1, a uni-axial extension
test was carried out on a butterfly-shaped keloid scar. The latter was situated on the dorsal side of
the left upper arm (Fig. 4.1a). To improve the accuracy of the DIC process, from videos captured
during the stretch, a random speckle pattern with black ink was sprayed onto the keloid/healthy-skin
domain (Fig. 4.1a). Later, the extensometer was stuck to the studied site with a surgical adhesive
used in dermatological surgery. Only the pads were in contact with the specimen, especially on
keloid lobes (Fig. 4.1c). The rest of the device is suspended. The apparatus also included a stabi-
lized camera Canon PowerShot ® SX510 HS, to record the deformations within the observation zone
(Fig. 4.1d). The distance between padsmeasured before the deformationwas equal to Lpads0 = 32mm.

(a) (b) (c) (d)

Figure 4.1: Uni-Axial extensometry performed on a 22-years-old Caucasian female subject with keloid.
(a) Butterfly-shaped keloid scar positioned on the left upper arm. (b) Application of speckle pattern on the
observable zone. (c) Ultra-light extensometer fixation to keloid/healthy-skin site. (d) Overview of the apparatus.

4.1.1.2 Thickness Measurement

The thickness of the surrounding skin thhs, considered as the total thickness of epidermis and dermis
layers, and the thickness of keloid scar thk, as an addition of the emerged part and the surrounding
skin, were assessed with high frequency ultrasound technique (detailed in [106]). Successive signal
lines resulting from longitudinal scanning of the surface were used to reconstruct cross section images
of the media. As results, thhs = 1.34 ± 0.05 mm and thk = 2.93 ± 1.26 mm. As the keloid has an
irregular shape, the measurement of its height was expected to witness large standard deviation.

Figure 4.2 presents an ultrasound visualization of the studied soft tissues in their depth. Images
retrieved from the healthy-skin case show a well-discernible interface between the epidermis-dermis
layer and the hypodermis (dark zone). On the other side, the dermis and the hypodermis interface
was hardly identified in keloid images by Chambert et al. [106]. According to their analysis, it may
be due to the irregularity of fine vessels distributed inside the whole skin coat. They reported that
the generally darker aspect of the image could express a liquid infiltration, a kind of edema due to
inflammation.
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(a) Healthy-skin zone (b) Keloid zone

Figure 4.2: Ultrasound observation of deep layers of the studied area. Modifier from [106]

4.1.2 Data Treatment

The whole in vivo experiment consisted of 3 linear loading-unloading cycles at a controlled speed of
0.6 mm/s. The outputs, reaction forces, and displacement fields were simultaneously and continuously
recorded. The primary results in [106] showed that the first cycle behaves differently compared to
the second and the third, which are similar. This behavior has been linked to the preconditioning
effect. Therefore, the second cycle (in its loading phase) was taken as reference data for parameter
identification. Its two datasets, forces and DIC fields were separately treated and then synchronized.

4.1.2.1 Force-Displacement Curve

Around 400 points of reaction forces were collected from the pad sensor along the pad displacement.
Although the latter was measured, it can be set as known values since the precision is less than 4 µm,
which is negligible compared to displacement magnitude order. Figure 4.3a displays the evolution of
the force-displacement curve with raw measurements. Noise related to the vibration of the electric
motor (Fig. 2.4a) can be noticed between 0 and 3 mm. A way to check the measurement uncertainty
resulting from that noise, as reported in the device specifications (5 mN in Tab. 2.1), is to calculate the
standard deviation of the difference between the raw points and their average curve. The average was
computed based on the moving average technique by adding up all the data points during a specific
period and dividing the sum by the number of time periods. In our case, the moving average was
conducted three times, with 9, 5, and 3 points per period, respectively. Thereby, the uncertainty on
reaction force was Sforce = 7.6 mN, which is beyond the accuracy reported in Table 2.1 but within the
threshold set in the uncertainty analysis, Sadm

force = 8 N (Sec. 3.2.1.2).

Figure 4.3b summarizes the offset procedure utility. It has been observed on the force and displace-
ment sensors non-null values for a null strain. The offset involves shifting the curve such that the first
point meets the null-displacement and null-force. Without this manipulation, additional errors would
necessarily be when matching the model response. In any hyperelastic model, for null deformation
(null strain energy), the displacement is imperatively null. It should not be confused with the pre-
stress effect, which exists actually but is not measurable with the extensometer. Unlike Flynn et al.’
study [139], the shift is not due to pre-stress effect. Our curves from the first, second and third cycles
start from the same non-null point. The moving average was used only to identify the first point by
smoothing the curve. However, the raw measurement subjected to the offset will be utilized for the
identification process.

4.1.2.2 Digital Image Correlation

The video recorded during the second loading was split into 98 frames, whose first was set as the
initial configuration. The displacement fields were obtained by computing the cumulative relative
displacement between two successive frames through the DIC technique. The algorithm based on
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Figure 4.3: Force-displacement curve from the uni-axial test performed on a keloid scar and surrounding skin.

Lucas–Kanade method (Eq. 2.5) was applied to the frames to convert them to displacement fields.

In Figure 4.4, the moving and fixed pads are marked in cyan and red, respectively. Their known length
sets up a scale to convert DIC displacements from pixel to millimeter. Marking the fixed pad help align
and orient the frames through a combination of functions implemented in OpenCV Python library. An
interactive program has been created to assist the surgeon in marking the pads with 4 points selected
from the screen directly. To avoid this operation that might add uncertainties to displacement fields,
the patient’s arm must be stabilized within a standardized protocol, inversely to the protocol exhibited
in Figure 4.1d.
selected

Figure 4.4: A video frame of the uni-axial extension test. The cyan and red lines indicate the boundaries of
the moving and fixed pad.

On the other hand, marking the moving pad is the key to the synchronization between DIC fields
and the reaction forces. For that purpose, each frame is converted into a displacement field (Fig.
2.5), hence the pad displacement is obtained in the sense of DIC, namely ūXDIC. The latter’s value
is pointed out on the force-displacement curve via the controlled pad displacement ūX . Therefore,
each frame is assigned to the respective reaction force. At that level, the assignment errors are tightly
related to DIC uncertainty.
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Calibration Study
To optimize the errors resulting chiefly from the cumulative application of DIC from one frame to
another, a calibration study was conducted, where the DIC parameters aW and dG are chosen (in-
troduced in Section 2.1.2.2). To recall, they represent in the order the side of a square correlation
window centered on every grid node and the gap between grid points. For a bunch of combinations
of aW and dG, the relative mismatch εC−DIC = |ūXDIC − ūX |/|ūX | was evaluated. The displacements
were taken from the end of the loading to count for the accumulation effect. Subsequently, the 3D
surfaces in Figure 4.5a map εC−DIC values and shows that optimums can be chosen arbitrarily from
a valley, where the errors do not exceed 2 %. Thus, we chose aW = 64 px and dG = 10 px that
corresponds to εC−DIC = 1.75 %. Figure 4.5b illustrates the computation time tC−DIC (in seconds) for
all DIC parameter sets and reports that an increase in the DIC grid resolution highly impacts them.
The calibrated DIC parameters requiring 27 seconds of computations are in line with both plots in
Figure 4.5.
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Figure 4.5: A calibration study to optimize DIC uncertainty applied to the uni-axial extension. As the Z-
axis could not be converted into the logarithmic scale, the logarithmic values of T were manually computed,
supposing 1 s = 1 dimensionless unity.

Application
Considering the optimal DIC parameters and the scale discussed above, the displacement fields were
computed for all the 98 frames. The grid points’ initial and final positions are superposed in Figure
4.6. Correspondingly, most top and bottom rows are deformed differently than the other intermediate
rows, indicating an effect from the moving pad corners. Back to Figure 3.8, the simulations have also
shown significant uncertainty around the pad corners. One needs to remove the displacement data
from the 3 most external top and bottom rows. Hence, the width of the measurement domain in the
numerical model, Ωmsr = {Ωk ∪Ω

msr
hs } (Fig. 2.7), has been reduced to 20 mm.

To evaluate the uncertainty on displacements, a comparison was carried out between the controlled
pad displacements, on the one hand, and the ones captured with DIC over the whole series of frames,
on the other hand. Out of lack of known displacements over all the space between the pads, the uncer-
tainty SDIC corresponds to the standard deviation of the mismatch in Figure 4.7a. Thus, SDIC = 84 µm,
revealed to be smaller than the maximum admissible measurement uncertainty for the displacement,
Sadm

DIC = 120 µm.
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Figure 4.6: Initial and final configuration of measurement domain.

Furthermore, the uncertainty of the DIC process on the synchronization was analyzed. In fact, if
considerable errors on DIC occurred, the frame would have been assigned to an invalid reaction force
value. Figure 4.7b indicates the range of the force-displacement curve where both data types are
available and valid. Because of a mismatch at the end of the curve in Figure 4.7a, ūXDIC = 4.06 mm
versus ūX = 4.17 mm, the DIC process failed to match the totality of force data acquired with the
extensometer. In this situation, the force-displacement curve will be truncated up to 2.11 N instead
of 2.5 N. As for the video frames to keep since the average mismatch between the controlled and the
evaluated pad displacement is 84 µm, they all are considered valid.
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Figure 4.7: Error analysis of the DIC process and validation range of the experimental data.

4.2 Parameter Identification

The inverse problem described thoroughly in Chapter 2 was applied to the validated DIC fields and
force data, based on uncertainty analyses from Chapter 3, to identify the material parameters of the
keloid and surrounding skin. This section covers the adaptation of the inverse problem principally, as
part of the SofTI method, to the patient-specific problem and its applications for various cases.
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4.2.1 Numerical Method

As a reminder, the FEMU-based inverse problem incorporated in SofTI (Fig. 2.1) has two major
parts, the forward and optimization solvers. The former underwent some modifications to match as
close as possible with the uni-axial extension test addressed in Section 4.1. As for the optimization
solver, we redefine the algorithms and equations with more suitable notation in this part.

4.2.1.1 Forward Solver

The adjustment of the forward problem (Sec. 2.1.3) concerned the total elastic energy and the mesh
domain. As for the hyperelastic behavior, the isotropic Gent model (Eq. 2.8) was allocated to
both materials. The boundary conditions and the plane strain conditions had not been changed. As
discussed in Section 3.4.2.1, the soft tissue thickness has a crucial influence on the reaction force and
should be included in the total energy function to build the weak formulation. With thhs = 1.34 mm
and thk = 2.93 mm as constants into Equation 3.11, one could write

Π
PS(tk) = thk

∫
Ωk

ψk(u, tk) dΩ + thhs

∫
Ωmsr

hs ∪Ω
unmsr
hs

ψhs(u, tk) dΩ (4.1)

where PS refers to "patient-specific". As reminder, both materials were assumed isotropic (see Section
2.1.3.1).

The original mesh domain, sized as LΩ = 100 mm and WΩ = 50 mm, was subjected to expansion on
the basis of uncertainty studies in Sections 3.3 and 3.4. Thus, LPS

Ω
= 150 mm and WPS

Ω
= 150 mm.

Concerning the mesh density, for better accuracy, a 44 k element mesh was employed for parameter
identification to the extent possible (Fig. 4.8). Using an adaptive mesh was possible too, but it would
have increased some uncertainties.

Figure 4.8: Mesh domain adapter for the patient-specific parameter identification.

We observe a lack of speckled pattern with a closer look at the area next to the fixed pad, marked
with the red line in Figure 4.4. Regrettably, it could considerably disturb the DIC process, resulting in

114



erroneous displacement data. Themiscalculation of the displacement can be visualized as a leap on the
right of the field in Figure 4.6. A qualitative study on the coherence of the experimental displacement
field was carried out by comparing the latter with arbitrary displacements issued from the model. The
coherence can be defined, given the problem, as a regular evolution of displacement from the fixed
pad side to the moving pad’s one. If one uses experimental data from all over Ωmsr, including the
leap region, the parameter will definitely be misidentified. By mapping the nodal difference between
the actual experimental displacement field and any model-issued nodal displacement (assumed to be
coherent) in Figure 4.9, the zone of incoherent data can be avoided. The zone delimited by black
dashed lines, namely, ΩPS, will be subjected to optimize the mismatch between experimental and
model displacement.

Figure 4.9: Reducing observation domain to avoid incoherence areas. The shown domain is partial and cropped
off from the patient-specific mesh domain (Fig. 4.8).

4.2.1.2 Optimization Solver

The keloid and peripheral healthy skin parameters were assessed through the minimization of two
objective functions introduced in Section 2.1.4.1. The first (Eq. 2.13), based on the Lagrange
multiplier method, has proven to be more adapted to the bi-material characterization problem with
faster convergence. Its application to patient-specific data takes the following shape.

JPS
L (m,Λ) =

1
2α2

uNE

NE=98∑
k=1
‖u(m, tk) − umsr(tk)‖2ΩPS

+ Λ
1

βf NE

NE=98∑
k=1

(
fX(u(m, tk)) − fXmsr(tk)

) (4.2)

The results of the second objective functions (Eq. 2.18) summarized in Figure 2.17, with a quadratic
mismatch in reaction forces and without Lagrange multiplier, could be an alternative tool for this
practical case. Thus, its adaptation is expressed as

JPS
q (m) =

1
2α2

uNE

NE=98∑
k=1
‖u(m, tk) − umsr(tk)‖2ΩPS

+
1

2β2
f
NE

NE=98∑
k=1

(
fX(u(m, tk)) − fXmsr(tk)

)2

(4.3)

Identifying the material parameters with two different optimizers is expected to verify their deviation.
One last thing to modify is the convergence criterion (step 6 in Section 2.1.4.2). With no guarantee
that the experimental displacement field is close to the model’s, the tolerance on the convergence
might be reconsidered. Therefore, the identification is assumed to be converged if the change in the
cost, instead of the change in the parameters, is less than a threshold.
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4.2.2 Results and Analyses

We discuss hereby the material parameters identification results and their contribution to validate
the hyperelastic model. When it comes to secure successful convergence, the modeler will face
the most challenging operation in deterministic-based parameter calibration, i.e., setting the initial
guess. The uncertainty studies (Sec. 3.2.1.2) led to understand the link between the parameters
and the data, based on dummy measurement noises. As a recall, it has been shown in Section
3.2.1.2 that identifying Jmk and Jmhs can only be achieved in the presence of displacement data.
To identify µk, the force-displacement curve data are more than enough. While for µhs, both data
sets are mandatory. Therefore, setting the initial guess would not be done randomly, but inspired
from the mechanical response. The strategy followed for that purpose, is simulating the forward
solver for various sets of parameters and observe the force-displacement curve to grow some intuition
(informative guess). Based on that, the initial set used to guarantee the optimizer convergence was
mPS

0 = {µk = 0.1 MPa, Jmk = 0.05, µhs = 0.05 MPa, Jmhs = 0.5,Λ = 10−4.

4.2.2.1 Lagrange Multiplier Method

As suggested in Section 3.1.2, the ability of linear mesh to converge in the inverse problem and the
accuracy of quadratic mesh could be jointly exploited to estimate the parameters to improve iden-
tifiability. The first optimization resulted in the converged set m̂PS

l = {µk = 0.07898 MPa, Jmk =

0.01918, µhs = 0.05629 MPa}. Figure 4.10a summarizes and evolution of the parameters for each
iteration until the convergence, with mPS

i /m0
PS
i the relative value compared to the initial set.

This first application of patient-specific data revealed some anomalies compared to the in silico data
(Fig. 2.17). The inverse solver failed to identify Jmhs, and it has not been represented in Figure
4.10a because its non-convergence was so significant that the convergence of other parameters could
not be distinguished. The non-convergence of Jmhs was caused by a lack of displacement data from
the healthy-skin area. Earlier, it was reported that the measurement domain was cropped to 30 % to
avoid incoherence areas (Fig. 4.9), where the discard between the experimental data and the model
is considerable. And since Jmhs is highly impacted by displacement data quality, its value would be
volatile if Ωmsr does not cover enough the surrounding skin. Figures 4.10b, 4.10c, and 4.10d, express
the minimized costs for each iteration and reveal that the optimizer tend to prioritize the minimization
of force rather than displacement, probably because of data quantity put in play.

Afterward, by setting the converged set m̂PS
l as the initial guess for the optimization with quadratic

elements, we obtain slightly different but more accurate parameter set m̂PS
L = m̂PS

q = {µk =

0.0779 MPa, Jmk = 0.0176, µhs = 0.0569 MPa}. Figure 4.11 exhibits the optimization conver-
gence with data projected on a mesh with quadratic elements. The latter operation confirmed the
usefulness of the "double-trigger" technique presented earlier in Section 3.1.2.2 but this time for real
data.

By introducing m̂PS
L in the forward solver and running the simulation, the best-fit solution was obtained

and compared to the experimental data in Figure 4.12a for forces and Figure 4.12b for displacement.
The accuracy of the identification was assessed with the following relative errors

εPS
f =

√∑NE=98
k=1

(
fX(u(m̂PS, tk)) − fXmsr(tk)

)2√∑NE=98
k=1

(
fXmsr(tk)

)2
(4.4)

and
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Figure 4.10: Convergence of the optimization solver for the patient-specific data projected on linear elements.

εPS
u =

√∑NE=98
k=1



u(m̂PS, tk) − umsr(tk)


2
ΩPS√∑NE=98

k=1 ‖umsr(tk)‖2ΩPS

(4.5)

Therefore, the mismatch on forces with the identified parameter set m̂PS
L , based on the Lagrange

multiplier method, was εPS
f
= 16.8 %, and εPS

u = 1.82 % for displacement. Contrary to what could be
noticed in Figure 4.12a, the mismatch errors are not small enough to validate the hyperelastic model
if one refers to εPS

f
. An alternative way to assess the model fitting error is using the square of Pearson

correlation coefficient R2. Even though it was designed for linear models, it has been employed for
hyperelastic model fitting in many studies [251, 261]. Hence, for the given configuration, we get
RL

2 = 0.984, which is assumed to be enough to validate the similarity of the Gent model with the
experimental data regarding the correlation coefficients calculated for dozens of hyperelastic models
in [251]. The mismatch errors on the displacement, on the other hand, are not significant within the
measurement domain ΩPS, as can be shown on the displacement difference field (on the last frame),
in Figure 4.12b. A direct comparison between the latter and Figure 4.9 witnesses the successfulness
of the optimization solver in minimizing the errors between the model and data collected from an in
vivo experiment.

4.2.2.2 Unconstrained Optimization

The application of the objective function with a quadratic mismatch on force (Eq. 4.3) was carried
out on the patient-specific data. We have shown through Figures 2.17 and 2.21 that the mentioned
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Figure 4.11: Convergence of the optimization solver for the patient-specific data projected on quadratic
elements. Initial set: m0

PS = {µk = 0.07898 MPa, Jmk = 0.01918, µhs = 0.05629 MPa}

equation is unable to identify all bi-material parameters at once, but showed helpful in identifying a
monolithic material’s parameters. In our case, Equation 4.3 will be utilized in two steps. In the first
position, µhs and Jmhs are calibrated based on a set of data collected from a uni-axial extension test
performed on the upper right arm, where the skin is entirely healthy [106]. This operation is known
as the contra-lateral test (supplementary results are exposed in Appendix B). Subsequently, once µhs
and Jmhs are determined, they will be fixed in the bi-material problem, and hence the optimizer will
seek µk and Jmk values.

Using the contra-lateral experiment data, which covers only the healthy-skin material, and projected
on the quadratic mesh, led to the determination of m̂PS

hs = {µhs = 0.03692 MPa, Jmhs = 0.103}, with
the respective errors Rhs

2 = 0.974 and εPS
u = 0.4 % (Fig. 4.13a). Later, by fixing the latter in the

bi-material model, the identification resulted in m̂PS
k = {µk = 0.0491 MPa, Jmk = 0.0175}, with the

respective errors Rk
2 = 0.969 and εPS

u = 1.33 % (Fig. 4.13b).

4.2.2.3 Definitive Parameter Set

At first sight, both objective functions, JPS
L and JPS

q , succeeded in identifying at least 3 material
parameters out of 4. With additional datasets of force-displacement curves and displacement field
from a contra-lateral test, the identification of Jmhs was fruitful. However, as mentioned in Chambert et
al.’ study [106], there was no guarantee that the mechanical response of the right arm (contra-lateral)
would be the same as the left one, where the keloid took place. On the grounds that the quality of
displacement data within the domain ΩPS was not consistent enough to identify Jmhs, and that the
effectiveness of JPS

q was acted on the availability of a second dataset covering only the healthy-skin,
the contra-lateral experiment data had to be exploited. With saying that, considering that the identified
value of Jmhs represents the surrounding skin lies on a strong assumption.

The values of Jmk determined with both cost functions are similar, Jmk = 0.0175 through the Lagrange
multiplier method, and Jmk = 0.0176 through the unconstrained optimization. Since Jmk is not corre-
lated with forces, but with displacement, its optimal value was expected to be the same knowing that
the two cost functions have the same mismatch function on the displacements. As for µk and µhs, the
ratio µhs/µk was 0.75 and 0.73 for JPS

L and JPS
q , respectively. Those results are in line with the ratio

0.8 adopted by Akaishi et al. in their numerical study for relationship between keloid growth pattern
and stretching tension [111]. However, their respective values are separately different, which can be
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Figure 4.12: Comparison of the experimental data and inverse solution for the identified set m̂PS
L . The shown

domain is partial and cropped off from the patient-specific mesh domain (Fig. 4.8)

visualized by comparing the force-displacement curves between the two optimization functions. A
significant distinction was perceived in a matter of model fitting approach. Figure 4.12a shows that
JPS

L seems to give importance equally to the entire observation pseudo-times counter to JPS
q that

tends to emphasize the influence of the initial slope. Figures 4.13a and 4.13b exhibit a strong model
fitting on the linear part but show a weaker correlation for the rest of the curve. Another criterion
that was taken into account to decide about the definitive material parameters set is fitting the initial
slope. The endmost objective of the SofTI methodology is determining the preferential direction of
keloid growth from the standing natural skin tension field. Therefore, model fit quality should be the
best at that quasi-undeformed keloid/healthy-skin medium. We should then rely on the results that
fit better with the initial curve slopes, i.e., µk and µhs values, based on JPS

q objective function. This
manner of choice would not impact the final value of Jmk, and by analogy Jmhs, considering that both
optimization functions converge to the same values.
Finally, the definitive parameter set of keloid and surrounding healthy skin is m̂PS = {µk =

0.0491 MPa, Jmk = 0.0175, µhs = 0.03692 MPa, Jmhs = 0.103}.

Needless to say, the application of SofTI on real data did not occur as straightforwardly compared to
synthetic data in Chapter 3. The experiment outputs have not been gathered in the best conditions.
The captured displacement field (Fig. 4.9) was not consistent all over the measurement area because
of the discontinuity of a speckle pattern. Therefore, the identification zone area had to be restricted
to ensure model fit, but to the detriment of some parameters, Jmhs, for instance. To overcome the
disadvantage, the SofTI framework was adapted without difficulty to identify the parameters based on
two data sets, the main and contra-lateral experiments. The second consisted of a uni-axial extension
on undamaged skin in the symmetrical site with no guarantee that the body symmetry conserves the
mechanical response. A better way to compensate for the lack of data quality in the main experiment
was to perform the uni-axial test on the same side but a bit closer to the studied site. In our case, the
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Figure 4.13: Model fitting based on combining the bi-material and mono-material contra-lateral experiments.

second uni-axial extension should be carried out on the forearm instead of the upper right arm. The
present experience taught us that in a biomechanical protocol, we would need to gather as much data
as possible that can help face imperfection cases.

4.3 Post Treatment

Understanding the internal forces contributing to keloid propagation starts with mapping the prestress
distribution all over the medium, considered the last step of its characterization. Provided with
the identified material parameter set m̂PS, a nonlinear FEM model was constructed to simulate the
mechanical response under natural tension along two perpendicular directions. As outputs, the model
provides two fields of the normal stress along the principal tension direction and the shear stress on
the studied plan. By accounting for the isotropy hypothesis, the privileged direction of keloid growth
can be obtained from the eigenvectors of the stress tensor. In addition, a qualitative and quantitative
parametric study will be conducted to analyze the sensitivity of the favored directions.

4.3.1 Stress Fields

Section 2.1.5 addressed the methods and the materials leading to compute the stress fields. We will
discuss in this part the adaptation of the FEM solver to the patient-specific case and report the results
for fixed values of natural pre-stretch.

4.3.1.1 Preliminary

The changes that took place in the FEM nonlinear solver (Sec. 2.1.5.1) are principally setting the
mixed boundary conditions. For Neumann-type conditions, the values of the applied tractions, rep-
resenting the natural skin tension, t1, and t2, were chosen based on the literature. On the other
hand, the Dirichlet-type conditions remained unchanged because they ensured the solution unicity by
eliminating the floating structure configuration.

For all the references read out during the thesis, the prestress values may not have been explicitly
assessed on the living skin. To set t1 and t2, we may refer to Reihsner et al.’s work [18]. Using the
in vivo geometry as a reference, a set of incremental strains was applied to specimens excised from
several sites. After stress relaxation of the sample, assumed to be orthotropic, was accomplished, the
final values of stresses were captured along two perpendicular axes, namely, σmax and σmin. Suppose
that the model is oriented such that t1 is aligned with σmax, one could write
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t1 = {σmax, 0}T , t2 = {0, σmin}
T (4.6)

For the outer side of the upper arm, the study issued the valuesσmax = 0.9 Nm/g andσmin = 0.6 Nm/g.
The unity "Nm/g" is used to quantify the stiffness of sheets. Being incapable of converting the latter into
the international system, we propose to set arbitrary valueswhile conserving the ratioσmax/σmin = 1.5.
The influence of changes in prestress for a fixed ratio on the privileged keloid’s growth direction will
be studied later.

Furthermore, the model domain, opposingly to the inverse problem, was not expanded because
applying the surface forces causes constant normal stresses across the healthy-skin area. Thus,
expanding the domainwould be pointless. The domain sizewas set toWΩ = 50mmand LΩ = 100mm.
Besides, similarly to Equation 4.1, the average thicknesses of keloid and healthy-skin were introduced
in the total energy function. To finish, pseudo-times tl (Eq. 2.19), referring to the load increments,
will not be described, and they are chosen, so that solution to the nonlinear problem converges. The
stress field is to be quantified on the last configuration.

4.3.1.2 Application

For the sake of demonstration, the natural bi-axial stretch was simulated for the case σmin = 1 kPa.
With the ratio retrieved from the literature [18], the longitudinal stress is set to σmax = 1.5 kPa. As a
result, the Cauchy stress field was mapped via Paraview in Figure 4.14 for the relevant components:
the normal stress σXX and σYY , and the shear stress σXY . By exploring stress distribution and differ-
ent secondary fields (principal stress and principal directions), we will set an approach to efficiently
exploit the SofTI outputs with the aim of stopping the keloid tumor propagation.

As a response to the normal prestresses in the X-direction (Fig. 4.14a), constantly applied with
σ

prestress
X = σmax = 1.5 kPa, a concentration of mechanical loads might have occurred on the central

zone of the butterfly-shaped scar between the two lobes. The concentration is an interpretation of
the increase in longitudinal stress up to 2.3 kPa, i.e., 53 %. One may explain this concentration by
a change in the keloid’s cross-section along its axis. The loads perceived on the outer side of the
lobes could be mostly transferred to the narrow part of the stiffest material (keloidic tissue). On the
contrary, with the σYY field, the internal area seems to incur the same efforts as the outer zone, as if the
healthy-skin and keloid behave identically. Figure 4.14b reveals the existence of effort concentration
on the outer side of the lobes, where the average stress increased of 25 % compared to the applied
transversal prestress σprestress

Y = σmin = 1 kPa. Furthermore, like in Tsai and Ogawa’ study [400], the
finite-element analysis showed that there is high tension at the keloid edges and lower tension at the
centre. It seems as if the current topology dictates the pattern and degree of keloid’s growth.

The rise compared to the applied load for both longitudinal and transversal normal stress can be re-
lated to the current tumor shape. Higher stress, if not countered, would progressively drive the keloid
toward the X- and Y- arbitrary directions. However, another behavior should be countered separately,
linked to the resulting shear stress σXY . Figure 4.14c indicates that keloid’s corners are subjected to
relatively intense shear, which may cause a twist inward. If no solution were applied to annihilate
σXY on those areas, it would be prognosticated that lobes would become more rounded.

4.3.1.3 Complementary Operations

The first utilization of the original fields of σXX and σYY is removing the prestress from the Cauchy
stress tensor components to visualize only the critical areas. In Figures 4.15a and 4.15b, the color
map was rescaled such that the minimum value was zero (to count only for the stretches in the keloid)
and discretized into 20 levels. This manipulation confirms the observations made for the original
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(a) σXX

(b) σYY

(c) σXY

Figure 4.14: Cauchy stress field of the patient-specific sample under bi-axial prestress for σmax = 1.5 and
σmin = 1 kPa.

SofTI outputs in Figure 4.14: the critical areas for σXX , respectively σYY , are the inner zone between
the lobes, respectively the lobes’ outer curved sides.

The surgeon would use medical solutions with a uni-directional effect along the targeted component
when it comes to countering the normal stress in the keloid and around it. On its side, the solution to
annihilate the shear stress is not trivial. An alternative way is countering only the normal components
of the diagonalized Cauchy stress tensor σ̄. Thus, the stresses are expressed on a new basis with a
null shear stress component.

σ̄ =

[
σ̄max 0

0 σ̄min

]
(4.7)

The diagonal element, namely, the principal stresses, are obtained by solving a 2-D eigenvalue problem
det(σ − σ̄iI ) = 0 (i refers to the subscripts max and min). One could write
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(a) σXX − σ
prestress
X (b) σYY − σprestress

Y

Figure 4.15: Subtraction of the prestress from the Cauchy stress field.

σ̄i =
1
2

(
σXX + σYY ±

√
(σXX + σYY )2 − 4(σXXσYY − σ

2
XY )

)
(4.8)

In solid mechanics, the eigenvalues of σ are generally distinct, guaranteeing its denationalization and
a new basis with orthogonal directions labeled eigenvectors. They are calculated for each eigenvalue
by solving the system [

σXX − σ̄i σXY

σXY σYY − σ̄i

] [
n̄iX
n̄iY

]
=

[
0
0

]
(4.9)

with n̄iX and n̄iY the components of one principal vector for the respective eigenvalue. With respect to
the cartesian basis, the new basis is oriented with an angle ψ̄i.

ψ̄i = tan−1

(
n̄iY
n̄iX

)
(4.10)

The equations above were implemented in SofTI and applied to the patient-specific outputs. The
reader can refer to Appendix C.1 for the detailed code. Since the principal stresses witnessed similar
values as the nominal stress, σ̄max ≡ σXX , and σ̄min ≡ σYY , it is preferable to address the eigenvector
for the case of maximum principal stress. Since the objective of the method is to prevent the keloid
growth, evaluating locally (on every element) ψ̄max would guide the surgeon to counter the internal
load in such a way the shear stress is null.

Figure 4.16 shows the local assessment of ψ̄ for the maximum eigenvalue all over the domain. The
black arrows, mapped over the principal stress magnitude (σ̄magnitude =

√
σ̄ : σ̄), would indicate the

privileged direction of the materials under the permanent bi-axial prestress. With both information,
magnitude, and direction, the keloid propagation would be stopped providing that the counter-stress
should be higher than the residual one and applied in the opposite direction to the eigenvector.

Implementing the two visualization methods, the primary Cauchy stress field and its relative eigen-
vector field, illustrated in Figures 4.14 and 4.16, provides the surgeon with more than a strategy. A
qualitative confrontation for the present patient-specific case reveals that the solutions could be too
different. Either removing the nominal stress globally based on Figures 4.14a and 4.14b (or Figures
4.15a and 4.15b) and the shear stress according to Figure 4.14c or proceed locally based on Figure
4.16 without paying attention to the shear stress. In our specific case, the second option appears to
be challenging with an inconsistent distribution of eigenvectors. As for the first option, considered as
naive method, the difficulty lies in compensation for the twists caused by σXY .

123



Figure 4.16: Eigenvectors distribution for the maximum principal stress.

4.3.1.4 Parametric Study

The analysis performed with recent results would be available under the assumption of a known
prestress field. In reality, measuring the prestress could be beyond our possibilities to date. Therefore,
shedding light on the prestress’ influence on the keloid can help set rules about its adjustment. We
propose then to simulate the bi-axial stretch problem for different cases where the Neumann boundary
conditions are varied. For each case, the maximum values of σXX , σYY , and σXY , are retrieved.
Besides, stress fields were mapped in Figure 4.17 for some cases.

Table 4.1 summarizes the resulting maximum stresses for the cases combining 2 values of σmax/σmin
and 3 values of σmin. By augmenting the bi-axial prestress ratio, all the components of σ rise, even
the YY-component, which would be expected to be compensated by the compression caused by Pois-
son’s effect. Augmenting themagnitude of the prestress resulted, trivially, in an increase ofσ elements.

If the change in prestress ratio and magnitude had a clear impact on the stress in keloid, the distribution
of the latter remained similar as the studied case in Section 4.3.1.2, where σmax/σmin = 1.5 and
σmin = 1 kPa. Indeed, for the same stress component, σXX for example, the comparison of Figures
4.14a, 4.17a, and 4.17b, indicates that most critical zone is the inner area between the lobes, and
more precisely on edge. By analogy, the critical zone positions for σYY and σXY were more likely
sensitive to the prestress variation. Those observations can be exploited to our advantage as follows.
For any random prestress field, the zones with the highest stress prevail the same. And, even though
the prestress magnitude is indeterminable, the surgeon would apply very high compression to ensure
that the tensions are countered. At the same time, the compression should be comfortable for the
patient and not lead to side effects.

Table 4.1: Maximum values of the components of Cauchy stress tensor for several prestress conditions.

max
Ω

σXX [kPa] max
Ω

σYY [kPa] max
Ω

σXY [kPa]

σmin 1 kPa 5 kPa 10 kPa 1 kPa 5 kPa 10 kPa 1 kPa 5 kPa 10 kPa
σmax/σmin = 1.5 2.3 38 180 1.3 11 41 0.43 13 72
σmax/σmin = 2 3.1 70 300 1.4 15 62 0.58 24 120

4.3.2 Clinical Solution

The user of SofTI, at the end of the pipeline, will need to implement the findings in order to come
up with a clinical solution to contain the patient-specific scar. With a lack of mechanical experience,
the surgeon would have, in the first position, to explicit the technical requirements, precautions, and
safety measures, within specifications. The specifications will be recast into realistic equipment as
part of the bio-engineering activities.
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(a) σmax/σmin = 1.5, σmin = 5 kPa (b) σmax/σmin = 2, σmin = 5 kPa

(c) σmax/σmin = 1.5, σmin = 5 kPa (d) σmax/σmin = 2, σmin = 5 kPa

(e) σmax/σmin = 1.5, σmin = 5 kPa (f) σmax/σmin = 2, σmin = 5 kPa

Figure 4.17: Parametric study of prestress’s influence on keloid. (a) and (b): Cauchy stress σXX . (c) and (d):
Cauchy stress σYY . (e) and (f): Cauchy stress σXY .

4.3.2.1 Specifications

In a recent article by Limmer and Glass [401], different types of keloid treatment methods were
listed: chemical, electromagnetic, etc. The wound healing may be improved via the manipulation of
its mechanical environment. Given our requirements, the specifications established for the present
specific-patient share some common featureswith themechanical-based solution, principally regarding
health safety. Table 4.2, inspired from a random World Health Organization specification, reports the
first version of the main characteristics of the targeted solution. The specifications will be updated
according to the feedback from the engineers and the patients.

4.3.2.2 Exemplar

We discuss in this part a probable technical solution that satisfies the requirements in Table 4.2. One
should focus on the device’s utility to prevent keloid enlargement if the patient refuses a surgical
excision. As for the safety side, it will be considered in the improvement phase. In Section 1.1.3.2,
it was mentioned that an innovative technique, known as pressotherapy, was processed after keloid
surgery and consisted in pressing the earlobe from both sides to minimize the stretching tensions [116].
We can imagine a technique motivated by the latter approach.

The primary function of the proposed solution is uniaxial compression, which involves a system
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Table 4.2: Specifications of a clinical solution to prevent keloid growth adapted to patient-specific.

MEDICAL DEVICE SPECIFICATION
i Version No. 1.0

ii Date of initial ver-
sion 02/02/2023

iii Date of last mod-
ification 02/02/2023

iv Completed / sub-
mitted by Aflah Elouneg

v Generic name Keloid Container
PURPOSE OF USE
1 Clinical purpose Total stoppage of the keloidic scar’s propagation after or without excision.
2 Level of use University Hospital Center / Dermatology Service

3
Overview of
functional re-
quirements

- Has the ability to counter the predominant natural tensions, normal and
shear stresses, in the keloidic scar and on its interface with the surrounding
undamaged skin
- Is exclusively designed for the current scar shape of the patient-specific
- It can be applied comfortably on the patient’s skin for as long as possible
to reach the scar remodeling phase
- Ensures biocompatibility with the skin to avoid any kind of allergic
reaction
- Grants autonomy for the patient to remove it and set it up

TECHNICAL CHARACTERISTICS

4 Detailed require-
ments

- Access to all keloid’s plane surfaces and curved edges
- Contact or contactless elimination of stress
- Local adjustment of the applied counter-stress
- Resistance to the relative humidity up to 100 %
- Working temperature between −50 to 50 ◦C
- Waterproof and washability
- Resistance to sterilization under high temperature
- Design color mostly similar to the skin
- Protection alarm for high compression risks
- Anti-accumulation of moisture
- Portability and stability for high-tense physical activities

5 Displayed param-
eters

- Counter-stress magnitude for each Cauchy stress component
- Date of first use

PHYSICAL/CHEMICAL CHARACTERISTICS
6 Components - Compatible with the skin with no allergic reaction
7 Raw materials - Environmentally friendly
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of micro belts positioned on the critical zone and aligned with the dominant tension component as
demonstrated in Figure 4.14 or 4.15. Each belt is composed of two small pads attached to the skin
(with biological adhesives) and connected by a solid strip, which can be adjusted to stretch inward
and provide compression. These belts, illustrated by a line and double arrows in Figure 4.18, can be
positioned to eliminate normal stress and, in turn, eliminate shear stress, according to the proposed
theory.

Figure 4.18: Proposal of a medical device to contain the keloid according to the specifications.

Conclusions

The present Chapter treated the application of SofTI to a patient-specific case, where the material pa-
rameters of the keloid scar and the surrounding healthy-skin were calibrated via the Gent model. The
model calibration was based on a dataset that combined measurement of displacement and reaction
force captured during a uni-axial extension experiment. The recommendations formulated in Chapter 2
regarding the uncertainty analysis on themeasurement and discretization errors, and also the data quan-
tity, were fulfilled to ensure accurate parameter identification. However, a substantial inconsistency (as-
sociated with a lack of the DIC speckle pattern) was noticed on the displacement fields. Thus the obser-
vation area had to be restricted. With fewer displacement data, especially for the healthy-skin medium,
the optimization of the Lagrange-Multiplier-based objective function failed to identify Jmhs, unlike
with synthetic data in Chapter 2. To overcome the issue, a set of data gathered from a contra-lateral test
was employed to back up the identification. As a result, the definitive material parameter set for the
patient-specific was m̂PS = {µk = 0.0491 MPa, Jmk = 0.0175, µhs = 0.03692 MPa, Jmhs = 0.103},
revealing that the keloid is 33 % stiffer than undamaged skin. The application of the pipeline to real
data witnessed its ability to assess the material parameters and its adaptability to the low data quantity
case. In addition to the uni-axial extension test performed on the scar, performing a second one at a
closer undamaged site is recommended as a backup. Besides, the results led to the validation of the
Gent model, which has been chosen for its extensibility-limited characteristic. Model calibration with
other hyperelastic constitutive laws may be fruitful for the study and can be proposed as a perspective.

In the post-treatment phase, the Cauchy stress field was mapped for normal and tangential components
by utilizing the output m̂PS. For that, an arbitrary bi-axial prestress, representing the natural tension
in the skin, was put in place. The primary results showed stability of stress concentration zones for
different values of prestress ratio and magnitude. Annihilating the stresses on those zones would
help stop the propagation of keloid growth. Furthermore, an alternative way to contain the keloidic
scar was addressed. The stress data were expressed on a new basis such that the shears are null by
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solving the eigenvalues problem. Therefore, stopping the scar’s propagation would be equivalent to
eliminating the maximum principal stress along the principal vectors determined locally. At that level,
the surgeon has two techniques to identify the critical zones, either with the Cauchy stress tensor or
its diagonalized form. At the end of the pipeline, specifications of a clinical solution adapted to the
patient-specific set were suggested, which led to the proposal of a medical device.

Two weaknesses of the SofTI framework in its actual version must be pointed out. First, the user
without experience in mechanical modeling would need technical assistance to convert recorded tests
into DIC fields, mesh the domain and the observation zone, and configure the optimizer to ensure
convergence in the parameter identification. Consequently, one should consider developing a user
interface for the sake of ergonomy in the future. Second, even though the change in the prestresses
doesn’t affect the position of the critical zone, the magnitude of the stress to eliminate is highly
impacted. In other words, measuring accurately the prestress a priori would help adjust the medical
device to counter the exact stress.
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Chapter 5

Characterization of the Anisotropy of the
Human Skin: Preliminary Study

The secondmajor topic of the thesis, originally independent fromChapters 2, 3, and 4, covers the study
of the anisotropy aspect in living skin. The approach of dividing the problem into segments involved
modeling healthy skin as an isotropic material in the anterior sections. Nevertheless, previous research
has shown that undamaged skin exhibits an anisotropic behavior when subjected to mechanical loads,
contrary to the assumption of isotropy. The anisotropy can be related to the alignment of collagen
fibers in the mechanically dominant layer, the dermis. It is indicated by a greater stiffness of the
undamaged skin in a particular direction, namely, Langer’s line. The method and results reported in
this chapter, published recently [402], aim to explore the usability and the limits of a system exper-
iment/framework in identifying the anisotropic material parameters of the skin. The study includes
the application of the methodology to a series of multi-axial stretch tests conducted on one patient.
The day-to-day comparison of the mechanical response would indicate the system’s reliability and the
skin behavior’s variability. The latter was labeled intra-subject variation.

The importance of identifying the anisotropy axis orientation resides in assisting the surgeons in
performing incisions without causing undesirable scars. This perspective could be accounted for as
a parallel approach to prevent the apparition of keloids if one establishes a link with the previous
chapters. To recall, in Section 1.1.3.1, it has been shown that keloids on a patient’s back seemed to
follow the direction of Langer’s line. Another lead that can be investigated regarding Langer’s line’s
effect on keloid prorogation is modeling the healthy-skin with an anisotropic hyperelastic law. The
chapter is structured as follows: (i) describing the in vivo apparatus and the experimental protocol
allowing the measurement of the displacement under multi-axial stretch, (ii) analyzing the numerical
methodology leading to identify the anisotropic parameters based on data, (iii) providing results of
intra-subject variation application.

5.1 Experiments

Characterizing the anisotropic behavior of soft tissue could be done by studying the mechanical
response under a multi-axial loading (Sec. 1.2.1.2). The test can be in the form of multiple uni-axial
stretches carried out combinedly in many directions, either in vivo [18] or ex vivo [146]. If the test
allows us to identify the direction of the highest stiffness correlated with the abundance of collagen
fibers, it would have one major drawback. Gathering the uni-axial response in each direction is time-
consuming and would necessitate meticulous protocol. At the same time, reducing the resolution by
conducting fewer numbers of them will affect the identification accuracy. In this Section, we describe
a novel technique to overcome the reported issue and the numerical tool implemented to treat data.
The anisotropy could be quantified also with elastic waves [403,404] and optical method [202].
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5.1.1 Materials and Methods

The experimental apparatus in the present study includes two essential parts: a commercial device
to apply an annular-suction-based test and record the deformation and an open-source software to
convert the test records into displacement field data.

5.1.1.1 Multi-Axial Annular Suction Test

In this experimental method, the multi-axial stretch on a plane circular membrane is caused by an
out-plane suction around it, hence the designation "annular suction" or "ring suction." The equipment
was built around a commercial apparatus CutiScan® CS 100 (referenced with CutiScan®for easiness
throughout the manuscript), developed by Courage + Khazaka electronic [149] (same company as
Reviscometer® used for characterizing anisotropy with elastic waves) (Fig. 5.1a). It includes a central
device and a probe, the main parts of CutiScan®, and a support to hold the specimen and the probe,
manufactured and designed in the Department Applied Mechanics in FEMTO-ST.

The central device, where the vacuum pump is situated, supplies negative pressure to the probe to
vacuum the biological tissue. As seen in the sectional view of Figure 5.1a, the annular suction fits the
opening between the blue plastic and the yellow conic reflector made of aluminum. The inner and
outer diameters of the ring-shaped opening are 5 mm and 14 mm, respectively. The purple rectangles
surrounding a camera in the center emit ultra-violet light. The camera, visible in Figure 5.1b, is
a black-and-white charge-coupled device that records soft tissue deformation. The pink medium
represents the soft tissue, and black arrows display the direction of the observable area extension.
When applying a constant suction pressure uniformly, denoted p, for a predefined phase tcreep, the
central zone is subjected to a radial extension (Fig. 5.1b). Afterward, the pressure is instantaneously
released for another phase with duration trelax. For the total creep-relaxation cycle, the deformation of
the studied sample within the observation zone of 5 mm diameter is recorded with a µEye® camera. In
addition, a double-sided adhesive was placed to prevent slippage between the probe and the sample’s
surface beyond the outer diameter.

Despite the way of analyzing data, the experiment technique of the proposed method could be identical
to Laiacona et al.’s [148], but it has the potential for superior performance. One key advantage is
that the CutiScan® device has a smaller application area (ring diameter: 5-14 mm) versus (ring
diameter: 30-49 mm), allowing for more precise and localized measurements on various parts of the
body. Additionally, CutiScan® allows for easy and direct pressure control, while the Laiacona et al.’s
device relies on a valve to control pressure.

A closed-source framework is provided with the commercial device for setpoint adjustment and
configuration and for treating the raw data. For all tests performed for the presented anisotropy studies
in the thesis, it had been set tcreep = 1 s and trelax = 1 s in the pre-cycle, then tstandby = 10 s. The
latter is the waiting time between a pre-cycle and the principal recorded cycle. For the principal cycle
(or measurement cycle), tcreep = 3 s, and trelax = 3 s (Fig. 5.2). Due to viscous effects, the pre-cycle
could be skipped as soft materials may take longer to recover their initial configuration. However,
it is recommended to maintain the pre-cycle to regulate brightness inside the probe. A brightness
perturbation may cause artifacts in a DIC-based treatment.

5.1.1.2 Digital Image Correlation

The other function in the CutiScan®software is converting the videos into temporal displacement
through an optical flow algorithm, namely, Horn–Schunck, which assumes smoothness in the flow
over the whole image. Therefore, the outputs are creep-relaxation curves and maximum extension
(V1) along every angle, as illustrated in Figure 5.3. However, the exact position of the point where the
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(a)

(b)

Figure 5.1: Multi-axial annular suction test apparatus. (a) CutiScan® CS 100 equipment with a CAD model
showing the internal elements in the probe (permission granted from Courage + Khazaka GmbH). Adapted
from [402]. (b) A cross-section view of the probe before and during the suction (published in [124]).

curves are built is unknown, and the user cannot access the full-field data. Moreover, the last subfigure
on the right in Figure 5.3 does not indicate the presence of a symmetry axis that can be considered as
Langer’s line.

To overcome the limitation, Quentin Lucot, a former intern in the Biomechanics team – Department
Applied Mechanics/FEMTO-ST, constructed during his Master internship a Python program based on
the PyDIC tool [406]. Its main function is splitting the videos recorded with CutiScan®into frames and
computing the displacement vectors at uniformly-mapped nodes. To track motions, the program uses
the Lucas-Kanade method (Sec. 2.1.2.2). For better adaptability, the program has been modified and
shared publicly on https://github.com/aflahelouneg/MARSAC/blob/main/pydic.py. The
nodes can be either mapped following the Cartesian or the polar coordinates (Fig. 5.4)

Considering the characteristics of radial stretch, it would be more appropriate to opt for a polar
mapping. However, since the subset correlation windows are square-shaped, arranging them radially
could potentially cause conflicts with the adjacent windows. Consequently, the Cartesian mappings
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Figure 5.2: Pressures setpoints for the two loading cycles. Modified from [405].

Figure 5.3: Outputs of the software provided with the commercial device CutiScan®.

were used to generate displacement data for all video frames. On the basis of an auxiliary calibration
study (similar to Sec. 4.1.2.2), the correlation parameters, grid resolution, and correlation window
size were fixed to be dG = 20 px and aW = 40 px, respectively. The coordinate grid is mapped with
49 × 49 nodes (Fig. 5.4a).

5.1.1.3 Displacement Data

With the alternative developed tool, it is henceforth possible to get information all over the field. If
the targeted point is situated between grid nodes, a linear interpolation of the quantity of interest
is operated. With the cubic interpolation, the relative change in displacement was 0.4%. The DIC
process supplies the new positions of the grid nodes from one video frame to another. The program
computes the displacements in pixels and millimeters a second time if a scale is provided. The
displacement can be expressed both with Cartesian and polar components. In the actual study, the
experimental data were expressed in a coordinate system {e′1, e

′
2}, corresponding to the probe-camera

referential, with e′1 oriented along the angle 0 ◦ (Fig. 5.5).

5.1.2 In vivo Tests on Human Skin

A series of multi-axial stretch tests were carried out on a volunteer to study the reproducibility and
robustness of the experimental design. This part will address the experimental protocol and the
relevant mechanical responses in the form of displacement. The entire dataset was shared for free and
dully described in a data paper [405].
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(a) Cartesian (b) Polar

Figure 5.4: DIC coordinate grid in the initial configuration.

5.1.2.1 Protocol

The volar left forearm of a 28-year-old Caucasian male was tested 30 times, as often as possible, at
the same time slot. The anatomical site, located at a distance of 15 cm from the wrist, was chosen for
its flatness and exposedness. The CutiScan®probe-camera was positioned perpendicular to the site,
whose position is controlled with a sliding column designed by myself and fabricated in the laboratory
for that purpose. A level tool was used to ensure the horizontality of the site. The orientation of the
probe with respect to the arm axis is indicated in Figure 5.5.

Figure 5.5: Orientation of the probe and observation zone. Adapted from [405].

One annular suction test series consists of 21 creep-relaxation cycles (Figure 7a in [405]) with pressure
setpoints varying from 100 to 500 mbar with an increment of 20 mbar. Between every two cycles,
a delay of 2 minutes inactivity was arbitrarily set, considering that a weak load has a non-significant
impact on skin conditioning. In Takema et al.’s study [407], the relaxation period was 2 seconds for
3 pressure levels, 200, 300, and 400 mbar, with a Cutometer device. In addition, CutiScan®applies a
pre-load cycle of 10 s before each recordable process, making the influence of the delay period less
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significant.

5.1.2.2 Intra-Subject Tests

The video files (primary data) recorded with CutiScan®probe-camera were collected in a public
repository http://dx.doi.org/doi:10.25666/DATAOSU-2021-08-25 and were converted into
displacement fields (secondary data) using the DIC-based program. As the present study focuses on
the anisotropy characterization in healthy skin independently of viscoelastic effects, only the video
frame at the end of the creep phase (around 3 s) was employed. Also, among the pressure setpoints,
the median level p = 300 mbar was exploited. According to our observations, the experimental data
could be more reproducible around that pressure level.

As a demonstration, the average of displacement curves over all tests (for better visualization) is plotted
in Figure 5.6. In Figure 5.6b, the radial component of displacement vector, ur (θr ), is interpolated
along every circle with radius in {0.5, 1.0, 1.5, 2.0, 2.5}mm, such that θ is the angle with respect to the
axis e′1. As a result, the angular distribution of the radial displacement exhibits an anisotropic aspect
with 2 dips and 2 peaks (except for the radius 2.5 mm) that could match, respectively, Langer’s line
(minimum displacement) and its transverse (maximum displacement). The latter are called principal
directions in our context. The plots shows that ur grows gradually for circles with radii 0.5, 1.0, then
1.5 mm then drops for 2.0, then 2.5. It is possible that the drop may be caused by several phenomena,
including the edge effect on the DIC process and friction. Additionally, Figure 5.6c, demonstrating ur
interpolated along 4 distinctive directions, reveals that displacement could be considered linear within
the radius 1 mm. Subsequently, one should restrict the zone of interest (ZOI) used for the analysis
with a maximum radius of 1.0 instead of 2.5 mm.

Instead of analyzing the anisotropy based on the displacement curves, it may be interesting to process
with the deformed configuration, as illustrated in Figure 5.7 (with a scale of a factor of 5). The
initial circle became elliptic in the deformed state, whose semi-axes designate the principal directions.
Langer’s line angle is visually around 45 ◦. As will be described later, making use of the deformed
state’s ellipses was a suitable approach to calibrate the material parameters, one of which is Langer’s
line angle.

5.2 Modeling

Analyzing the experimental data to characterize the anisotropic behavior of biological tissue, for
instance, human skin, can be achieved through modeling. This Section describes building an ana-
lytical mechanical model to fit the observations and identify the material parameters based on the
misfit optimization. An open-source pipeline baptized MARSAC (Multi-Axial Ring Suction for Anis-
totropy Characterization), available on https://github.com/aflahelouneg/MARSAC, has been
established to calibrate the model parameters starting from the experiment record video file. Ad-
ditionally, the application of the Bayesian inference, not implemented into MARSAC yet, will be
explored in this part. The latter could be helpful in simultaneously assessing the material parameters
and their uncertainties.

5.2.1 Orthotropic Linear Elasticity

It was noticed earlier that the elastic deformation seemed to exhibit two principal orthogonal direc-
tions, roughly along 45 ◦ and 135 ◦ according to the basis {e′1, e

′
2}. Through an intuitive argument,

one could assume that the constitutive law is transverse isotropic like once adopted by Reihsner et
al. [18]. Besides, the measured displacements for one sample representing the mean values exhibit
strains under 3%, regarding the ZOI, as plotted in Figure 5.6. For such a small strain, we assume that
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Figure 5.6: Demonstration of displacement data projected on distinctive circles and lines.

the mechanical behavior of the skin is within the toe region, as stated in the literature 1.3.1.2. Jacquet
et al. carried out in vivo extension measurements on the forearm along several directions [143], and
all stress-strain curves proved linear for strains up to 3%. To incrementally increase the complexity of
the model, this study initially focuses on exploring the linear relationship between applied load and
deformations. This involves approximating the resulting coefficients, which are the elastic moduli. In
Section 5.4.1, the study will then address the nonlinearity aspect at small strains.

5.2.1.1 Continuum Mechanics

Modeling the annular suction test was achieved with a 2D problem governed by plane stress condi-
tions in the (X1, X2) plane (as coordinates of the basis {e1, e2})1. The angle (φ = e′1, e1), with e′1
oriented parallel to the left volar forearm toward the hand, represents the orientation of the Langer’s
line (Fig. 5.8). The boundary conditions are characterized by (i) the radial traction force t applied to
the edge, (ii) the locking conditions with null displacements at the center of the domain to avoid rigid
body displacements (Fig. 5.9a). Other facts about the current approach are summarized as follows.
The friction effects between the skin and the CutiScan®probe are not considered. Besides, A uniform
in-plane radial stress σr taking place over all the observable zone is assumed to be linearly correlated
with the supplied vacuum pressure.

1The Cartesian basis {e1, e2} on which the model is expressed is not to be confused with the basis {e′1, e
′
2} used for the

experimental displacement fields
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Figure 5.7: Orientation of the probe and observation zone. X ′1 and X ′2 are the coordinates in the basis {e
′
1, e
′
2}.

Langer’s line is succinctly drawn in a magenta dashed line.
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Figure 5.8: Langer’s line orientation with respect to the probe referential.

In the coordinate system {e1, e2}, (X1 = 0) and (X2 = 0) are symmetry axes. From geometrical
and material points of view, only a quarter of the problem can be taken into account (Fig. 5.9b).
Subsequently, the edge ∂Ω of the domain Ω can be split into a Dirichlet part ∂ΩD and a Neumann
part ∂ΩN such as ∂Ω = ∂ΩD ∪ ∂ΩN.

The local formulation of the static problem consists in finding the displacement vector u = {u1, u2},
strain vector ε = 1

2
(
∇u + (∇u)T

)
, and second-order stress tensor σ, that satisfy in the absence of

body forces the following equations :

∇ · σ = 0 in Ω
σ · n = σr n on ∂ΩN

u1(0, X2) = 0 and u2(X1, 0) = 0 on ∂ΩD

σ = Ce : ε

(5.1)

Eq. (5.1a) represents the equilibrium equations within the deformable domain. Eq. (5.1b) stands for
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(a) Global problem (b) Reduced problem

Figure 5.9: Boundary conditions of the annular suction test model. Published in [402].

the Neumann boundary conditions such that n is the normal vector to the edge and σr is the radial
stress, resulted from the applied t . Eq. (5.1c) is for the Dirichlet boundary conditions. Eq. (5.1d)
constitutes the stress-strain equations with Ce a the fourth-order tensor representing the transverse
isotropic linear stiffness. It is given under plane-stress conditions by [408]:

σ11
σ22
σ12

 =
1

1 − ν12ν21


E1 ν21E1 0

ν12E2 E2 0
0 0 (1 − ν12ν21)G12



ε11
ε22

2ε12

 (5.2)

σ11, σ22 andσ12 (respectively, ε11, ε22 and ε12) are the components of the stress tensorσ (respectively,
the strain tensor ε). E1 and E2 are the elastic moduli along the axes e1 and e2. This study could
interpret them as stiffness along and across Langer’s line, respectively. ν12 and ν21 are the Poisson’s
ratios along and across Langer’s line. G12 is the shear modulus. Since the in-plane radial stress σr

presupposed to be uniform all over the domain, we set σ11 = σ22 = σr .

For symmetry conditions on the compliance and stiffness matrices, one reads:

ν12
E1
=
ν21
E2

(5.3)

Consequently, 4 material parameters out of 5 are independent: E1, E2, ν12, and G12. For pure radial
stretch, there might be no way to identify the shear modulus. The annular suction test allows then
identifying potentially three parameters.

5.2.1.2 Analytical Solution

According to the deformed elliptical shape observed in Figure 5.8, with the semi-axes a and b, the
analytical displacement components in the model referential take the form:{

u1(r, θ) = A1r cos θ
u2(r, θ) = A2r sin θ

; r ∈ [0, R] ; θ ∈ [0, 360 ◦] , (5.4)
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with r and θ are the cylindrical coordinates defined by r = ‖
−−→
OM ‖ and θ = (e1,

−−→
OM), in which

−−→
OM is the position vector of a material point in the Cartesian system {O; e1, e2} (Fig. 5.9a). The
radius R corresponds to the frontier of the observable zone. A1 and A2 are constants calculated from
Neumann boundary conditions (5.1b). The infinitesimal strain-displacement relations, u = {u1, u2},
combined to the constitutive equations in Equation 5.2 lead to uniform strain for any point in Ω. After
computations, we express A1 and A2 as: 

A1 =
σr (1 − ν12)

E1

A2 =
σr (1 − ν21)

E2

(5.5)

Finally, the analytical solution for the displacement field in terms of Cartesian material coordinates
X1, and X2 is given by: 

u1(X1, X2) =
σr (1 − ν12)

E1
X1

u2(X1, X2) =
σr (1 − ν21)

E2
X2

(5.6)

As far as I know, the proposed solutions to the radial stretch problem for transverse isotropic elasticity
could not be found in the literature. Thus, it may be considered a scientific contribution. In a non-
classical approach, the finite element method was employed as a reference to validate the solution (Eq.
5.6) and check its unicity.

5.2.1.3 FEM Solution

The same 2D problem (Fig. 5.9) can be written in a weak formulation for the domain Ω and its
boundary boundary ∂Ω in the absence of body force as

Find u ∈ U such that ∀v ∈ V0,

∫
Ω

σ(u) : ∇symv dΩ =
∫
∂Ω
(σrn) · v dΓ (5.7)

U denotes a space of sufficiently smooth functions that verifies Dirichlet conditions andV0 its coun-
terpart satisfying homogeneous boundary condition on the Dirichlet boundary ∂ΩD.

The FE-model was solved for various parameter sets with the FEniCS framework, where Ω, taking
the shape of a quarter of a disk, was meshed into quadratic triangular finite elements (55 k cells
and Nn = 110 k nodes). The FE solver was executed and its solutions uFE were confronted with
the analytical ones u for different orders of E1-magnitude (E1 = {0.01, 0.1, 1, 10} MPa) and ratio
E1/E2 = {1, 2, . . . , 19, 20}, combinedwith the values ν12 = {0, 0.05, . . . , 0.90, 0.95} andG12 = 1MPa.
E1 and E2 value ranges were set from the literature [106, 128, 131–135, 141, 357]. For each set, the
maximum absolute errors between the numerical and analytical displacement solution was evaluated
for all nodes (Eq. 5.8). See Figure D.1 in Appendix D for all results. The maximum and minimum
absolute errors between the numerical and analytical displacement solution evaluated on nodes are
2.81e − 6 mm and 3.0e − 15 mm, respectively. Given a parameter set for the maximum error,
E1 = 0.01MPa, E1/E2 = 20 kPa, ν12 = 0.5, G12 = 1MPa, the displacement vectors for both analytical
and FE models were compared each other along the usual circles with radii {0.5, 1.0, 1.5, 2.0, 2.5}mm
in Figure 5.10.

εmax = max
i=1,...,Nn

√
‖uFE(i) − u(i)‖2 (5.8)

The last result confirmed that the analytical solutions fit perfectly the FE data. One of the relevant
benefits of its application is the ease of calculating the Gradient and Hessian matrix for parameter
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Figure 5.10: Validation of the analytical solution based on FE simulation.

optimization. As its computation cost is too low, it can be used for stochastic optimization requiring
thousands of calculations, such as the Bayesian calibration.

5.2.2 Parameter Identification

The strategy established to identify the targeted material parameters {φ, E1, E2} follows two steps.
First, the geometrical parameters mg = {a, b, φ}, the semi-axes of the deformed ellipse and Langer’s
line, are calibrated from the elliptic deformation. After that, the remaining material parameters are
deducted from the constitutive law linking observed displacement to the applied stress. Although φ is
a material characteristic, it is identified in the first phase, outside a mechanical model, because of its
geometric feature (orientation with respect to the arm axis).
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5.2.2.1 Geometrical Parameters

For the study of the presented methodology, the data used for model fitting are gathered from a
circle of radius rfit. The minimization of the objective function can be processed within a non-linear
least-squares problem solved with Newton’s algorithm. With the results witnessing the linearity of
the mechanical response within the circular zone r < 1 mm in Figure 5.6), we opt for fitting model
to data from one circle instead of full-field measurement. For a defined circle, its deformed ellipse
spatial coordinates read: {

x1(rfit, θ) = a(rfit) cos θ
x2(rfit, θ) = b(rfit) sin θ

; θ ∈ [0, 360 ◦] (5.9)

Similarly, as in [167], the objective function Janiso evaluates for each angle θk the difference of
euclidean distances between an observed deformation point and the referential origin, for the model
and experimental data. The model includes geometrical transformations of its respective ellipse points
to fit a fixed experimental one in the deformation state. Thereby, the basis {e1, e2} is oriented with
φ and shifted with {x10, x20}

T vector to match the basis {e′1, e
′
2}. Therefore, the targeted geometrical

parameters set is extended to m̃g = mg ∪ {x10, x20}.

Janisok(m̃g, rfit, θk) =
1
2

(
dmodel(m̃g, rfit, θk) − dexp(rfit, θk)

)2
(5.10)

For the experimental data the euclidean distance reads:

dexp(rfit, θk) =
√

x1
′
k

2 + x2
′
k

2 ; θk = arctan
(
x2
′
k/x1

′
k

)
(5.11)

Let us express the rotated spatial coordinates related to the model. They are introduced by{
xR

1 (rfit, θ, a, b, φ) = a(rfit) cos (θ − φ) cos φ − b(rfit) sin (θ − φ) sin φ
xR

2 (rfit, θ, a, b, φ) = a(rfit) cos (θ − φ) sin φ + b(rfit) sin (θ − φ) cos φ
(5.12)

As a result, the euclidean distance for model data is defined as

dmodel(m̃g, rfit, θk) =

√(
xR

1 (rfit, θk, a, b, φ) − x10
)2
+

(
xR

2 (rfit, θk, a, b, φ) − x20
)2 (5.13)

Since the displacement vectors are independent of each other, the total mismatch is quantified for all
NE points as

Janiso(rfit, m̃g) =
1

NE

NE∑
k=1
Janisok(m̃g, rfit, θk) (5.14)

Starting from an initial guess m̃(0)g , the change in the parameters δm̃g is iteratively computed by way
of the Newton-Raphson method (Eq. 5.15)) until reaching the absolute convergence criteria of 10−9

for every model parameter.

m̃(n+1)
g = m̃(n)g −

[
∂2Janiso

∂m̃2
g

]−1

·

[
∂Janiso
∂m̃g

]
(5.15)

The detailed expressions of the Gradient vector ∂Janiso/∂m̃g and Hessian matrix ∂2Janiso/∂m̃
2
g were

shared publicly on https://github.com/aflahelouneg/MARSAC/blob/main/newton.py.
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5.2.2.2 Material Parameters

Once the optimal set of m̃g is identified, and among them the anisotropy axis, the remaining material
parameters in mm can derive from the principal minor and major semi-axes of the ellipse, via the
model (Eq. 5.6) as 

a(rfit) = rfit + u1(rfit) = rfit

(
1 +

σr (1 − ν12)

E1

)
b(rfit) = rfit + u2(rfit) = rfit

(
1 +

σr (1 − ν12E2/E1)

E2

) (5.16)

In consequence, 
E1(rfit) =

σr (1 − ν12)rfit
a − rfit

E2(rfit) =
σr (1 − ν12)rfit

b(1 − ν12) + ν12a − rfit

(5.17)

One should point out that the multi-axial stretch does not lead to identifying the Poisson’s ratios, ν12.
Ting and Chen [409] showed that Poisson’s ratio for anisotropic materials could have no theoretical
bounds. Though, it was fixed arbitrarily for human skin between 0.3 and 0.5 because of its rubber-
like mechanical properties [30, 134, 410, 411]. Destrade et al. [412] reported that the usual practice
of arbitrarily choosing a value of Poisson’s ratio almost certainly, led to a significant difference
between the simulated and actual normal stresses in a sheared block. Moreover, the collagen fiber
orientation affects Poisson’s ratio variation [413]. Given the latter remarks, the modeler would need
a strong hypothesis to associate the classical Poisson’s ratio (determined by a uni-axial test) with the
parameter ν12. Hence, based on an multi-axial study conducted by Reihsner et al. [18], we define:
ν12 = Ce12/Ce22 with Ce12 = ν12E2/(1 − ν12ν21) and Ce22 = E2/(1 − ν12ν21) are elastic coefficient
(Eq. 5.2).

5.2.3 Calibration Study

A calibration study was carried out on a soft material whose mechanical properties are known
to analyze the method’s efficacy in identifying the material parameters. By combining numerical
simulation and experimental characterization, an adjustment of ratio p/σr took place in the model for
posterior applications.

5.2.3.1 Reference Material

The multi-axial annular suction test was performed 3 times at constant pressure p = 300 mbar on a
thin homogeneous and isotropic layer of rubber latex of 220 µm thickness. As the radial in-plane
stress σr is uniform, the anisotropy is due only to the directional variation of the stiffness. Thus, using
an isotropic latex material for validation of an transverse isotropic model (Eq. 5.6) is plausible for the
condition E1 = E2 (and ν12 = ν21 = 0.5).

In the central observable zone (1) in Figure (5.11), the UV camera captures the displacement of the
stretched layer subjected to suction applied to the annular zone (2). A double-sided annular sticker
was settled on the annular zone (3). From the recorded video, the displacement field, expected to
be purely radial, was computed with the DIC process. In a second experiment, the uni-axial tensile
test was applied to 3 rectangular samples from the same tissue, cut out along the directions 0 ◦, 45 ◦,
and 90 ◦. From the initial tangent of the stress-stretch curves, one may obtain the elastic modulus
Elatex = 2.7 ± 0.42 MPa. The results of the multi- and uni-axial experiments were used afterward for
the model adjustment.
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(a) Initial configuration (b) Deformed configuration (c) Observable zone

Figure 5.11: Multi-axial annular suction experiment on a latex tissue. Published in [402]. (a), (b) Bottom
view before and after loading. (c) Top view of the observable zone obtained by the camera.

One must check that the captured deformation of the reference material is radially regular. Through
the linear interpolation all over the grid (provided by SciPy library), the value of the radial component
of the displacements, ur , was computed and displayed in Figure 5.12 as a form of contour lines, as
well as along the radial lines with the respective orientations {0 ◦; 45 ◦; 90 ◦; 135 ◦}. The index "CL"
in Figure 5.12b stand for the usual circle cutlines for different radii.
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Figure 5.12: Radial displacement component of the latex material under multi-axial ring suction load for
p = 300 mbar. Published in [402].

Figures 5.12a and 5.12b demonstrate isotropic and spatially linear behaviors in the material within a
limited area. Indeed, the displacement data captured between the circles of r = 1.3 mm and r = 2 mm
(zone Za) are highly perturbed. While between r = 2 mm and r = 2.5 mm (zone Zb), the displace-
ments decrease drastically until they reach 0 mm. This edge effect occurs because the material slips
under the observable limit during the ring suction process. The disappearing zone is then interpreted
as zero displacements with the DIC reader. This abnormality spreads toward the center and impacts
the data in zones Za and Zb.
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Starting from an initial guess corresponding to an anisotropic situation m̃(0)g = {a = 1.0 mm; b =
1.1 mm; φ = 0 ◦; x10 = 0 mm; x20 = 0 mm} and by choosing NE = 100, the inverse identification
performed on each test data over the circle (rfit = 1 mm) led to converging set I, II, and III, stand
for 3 tests, respectively) m̃I

g = {a = 1.0708 mm; b = 1.071 mm; φ = −0.67 ◦; x10 = 11.2 µm; x20 =

9.8 µm} with coefficient of correlation Rcor = 0.973. Results from 2 similar test conducted in the same
conditions are m̃II

g = {a = 1.0707 mm; b = 1.0721 mm; φ = −17.97 ◦; x10 = 11.7 µm; x20 = 12.1 µm}
(Rcor = 0.9813) and m̃III

g = {a = 1.0718 mm; b = 1.0727 mm; φ = −34.53 ◦; x10 = 10.8 µm; x20 =

11.0 µm} (Rcor = 0.9753). Thus, the ratio u1/u2 used to quantify the isotropicity of the latex material
over the 3 tests is 0.9875 ± 0.0097. The optimization algorithm did not calibrate a specific value
of φ in m̃I

g, m̃II
g , and m̃III

g , which may be explained by an absence of anisotropy effect characterized
a substantial discrepancy between u1 and u2. The converged values were the same on fixing the
parameter φ = 0 ◦ in the inverse solver arbitrarily. To illustrate the isotropic behavior of the latex
material, the model fitting for the first test is represented in Figure 5.13 before and after the recentring.
For that, the distance dexp (or rdeformed) as rfit + ur are recalculated to the new center position marked
with the green dot (the black dot refers to the zero position). In Figure 5.13b, experiment and model
data after the recentering could exhibit alignment,i.e.isotropicity. For the same curve, the fluctuation
of the experimental points near themodel curve was exploited to quantify themeasurement uncertainty
∆u. It denotes the average distance between the two data sets, hence ∆u = 2.7 µm.
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Figure 5.13: Model fitting with the identified parameters of the latex material mI
g. Published in [402].

5.2.3.2 Model Adjustments

The radial stress in the mechanical model (Eq. 5.6) is unknown and results from the suction with
pressure p. From an established correlation with he latter one can predict the value of radial stress to
complete inverse problem and evaluate the material parameters. Some adjustments could be brought
to the model to ensure their exactness.
This part emphasizes the study of the relation between the applied pressure, p, on the annular section
and the unknown radial stress, σr . From an established correlation one can predict the radial stress
to evaluate the material parameters. Some adjustments could be brought to the model to ensure their
exactness.

A frictionless-contact-based 2D axisymmetric FE model was constructed with the ability to assess
σr in the observable zone (Fig. 5.14). The details about the mesh and the boundary conditions are
described in Figure 5.15. A thickness of 0.22 mm and elastic modulus E = 2.7 MPa were assigned
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to the incompressible latex rubber domain. To simulate incompressibility, the Poisson’s ratio was
set to νlatex = 0.495. σ̃r represents the radial stress in the 2D axisymmetric FE model, while σr is
associated with the analytical plane model (Eq. 5.6). An adjustment coefficient η was introduced
through σr = ησ̃r , such that the elastic moduli in both models are equivalent, to compensate for the
discrepancy resulting from model simplification. It could be associated with the transition from a
thick to plane geometry.

Figure 5.14: Deformed configuration of a 2D axisymmetric model subjected to a multi-axial annular suction
test. The FE model was built in COMSOL Multiphysics® software. Published in [402].

Figure 5.15: 2D axisymmetric FE model boundary conditions. Published in [402].

Before exploiting the FE model, it had to be validated with the first multi-axial test dataset. Once the
rigid body motion was removed (recentring), the displacement of the latex was confronted against the
simulation, performed at p = 300 mbar, in Figure 5.16 and confirmed that FEmodeling was accurately
formulated. Given the stress value σ̃r = 0.47 MPa and the measured displacements, evaluated in
post-treatment along one principal axis u1(rfit = 1 mm) = a − rfit = 71 µm, and Elatex = 2.7 MPa, one
can obtain η = 0.81 based on Equation 5.17 and the relation σr = ησ̃r .

The validated simulation was run for different pressure p ∈ {50, 100, 150, 200, 250, 300} mbar and σ̃r

was evaluated on for each step. The FE model struggled to converge for pressures equal to or bigger
than 350 mbar. As exhibited in Figure 5.17, p seems to be linearily correlated to σ̃r with a slope of
ξ = 633 (correlation coefficient Rcor = 0.995). As such, we may establish a function to assess the
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Figure 5.16: Comparison of radial displacements obtained for the latex layer with the FE model and the
CutiScan®for the deformation of the latex layer. The gray area represents the 95% confidence interval of radial
displacement obtained using a range of Elatex = 2.7 ± 0.42 MPa. Published in [402].

radial stress for any applied pressure, between 0 and 300 mbar at least, as following

σr (p) =
ηp
ξ

(5.18)
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Figure 5.17: Correlation between the suction pressure p and the radial stress σr , with the slope ξ = 633.
Published in [402].

Such a result would help simplify the full 2D axisymmetric into a radial stretch since the stress can be
deduced directly from the applied pressure (Fig. 2.6). A further analysis revealed that ξ was different
in 5 times thicker geometry, but was insensitive to the change in stiffness. Simply put, to model a soft
material with different E but as thick as the studied latex sample, it would be possible to set ξ = 633
and η = 0.81. However, for another material with different thickness, ξ and η should be calibrated
based on FE simulations.
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5.3 Application

The method was applied to one volunteer’s skin for 30 data series introduced in Section 5.1.2.2. For
each one of them, the material parameters were estimated. The results will tackle the robustness
of the experiment/analysis system in characterizing the anisotropy of variability of the mechanical
response intra-subject. They are structured into the subsections hereinafter: introducing the parameter
estimation process on the human skin case and analyzing the day-to-day variability of the determined
parameters quantitatively and qualitatively. The value of ν12, defined as ν12 = Ce12/Ce22, as a
reminder, was calculated from the study in [18]. Ce12 = 4.0 ± 0.6 Nm/g and Ce22 = 9.4 ± 1.4 Nm/g
were experimentally determined on 16 sites of a 30-years-old subject skin. Thus, ν12 = 0.43 ± 0.09.

5.3.1 Parameters Identification

The parameter identification was performed on the fitting circle with the radius 1 mm to avoid edge
effects. In the meantime, it is not recommended to select data near the center rfit < 0.5, where
displacements are not predominant against ∆u. For that living material, an ultrasound echography
(see Sec. 6.1.1.1) was processed to quantify the epidermis-dermis layer’s thickness: thh = 1.47 mm.
The latter was assigned to a similar calibration study as in Section 5.2.3.2 to determine the adjustments
coefficients, ξh = 24300 and ηh = 1.033 (Tab. 5.1).

Table 5.1: ξ and η calibration for different stiffness variation with thh = 1.47 mm. ξ is obtained from linear
regression as in Figure 5.17, and the corrective coefficient η is set such that E = EFE. EFE and uFE are elastic
modulus and radial displacement at r = 1 mm in the simulation model. The choice of ξ and η was based on
the value of uFE = 25.5 µm in line with the captured displacement across Langer’s line, u2. u2 was prioritized
compared to u1 for its reproducibility.

E [MPa] 0.25 0.5 1.0 2.0 3.0 4.0 5.0
ξ 2.43 2.25 2.2 2.18 2.17 2.16 2.16

uFE [µm] 25.5 13.7 7.2 3.6 2.4 1.8 1.46
EFE [MPa] 0.242 0.487 0.947 1.91 2.88 3.86 4.76

η 1.033 1.028 1.056 1.046 1.042 1.037 1.051

5.3.1.1 Results Sample

As an example, the model fitting for the first data set is plotted in Figure 5.18. for a converging pa-
rameter, set m̃(1)g = {a = 1.0029 mm; b = 1.0632 mm; φ = 60.24 ◦; x10 = −17.8 µm; x20 = 14.9 µm}
with Rcor = 0.9849. Afterward, based on Equation 5.17 (where σr = 0.0123 MPa), elastic moduli
along and across Langer’s line are E (1)1 = 2.42±0.38 MPa and E (1)2 = 0.188±0.002 MPa, respectively.

Figure 5.18b shows the offset rigid body motion parameters, {x10, x20} is of major concern. The
model and experimental data expressed to the new origin are seemingly symmetrical. The center
shift distance was of the order of magnitude of the displacements. Differently said, it must not be
neglected. Three technical reasons may describe the necessity of recentering. First, the real center of
the deformed skin is unknown. In fact, the origin of the DIC grid was arranged in a such way that
the width matches the diameter of the observable zone of the CutiScan®probe (Fig. 5.4a). Second,
even though the pressure is uniformly applied around the observable zone, some factors may lead
to imperfect load distribution. Among them is the non-perpendicularity of the probe (the device is
not perfectly tangent to the skin surface). Third, the friction between them could affect the contact
skin/probe and result in a non-uniform load radial distribution. A thorough tribology investigation is
suggested to study the friction’s effect on the center shifting.
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Figure 5.18: Model fitting with the identified parameters of the volunteer’s skin on the day 1. Published
in [402].

5.3.2 Quantitative Analysis

The geometrical parameters m̃g were assessedwithMARSAC for all 30 tests (available in AppendixD,
Table E.1 and Figure E.1). The initial parameter values were fixed to be {φ = 45°; x10 = 0 mm; x20 =

0 mm}, whereas a and b are chosen according to the circle used for identification such that a < b.
In our case, for r = 1 mm, we choose a = 1 mm and b = 1.01 mm At first glance, the values of
the correlation coefficient witness an accurate model fit for 28 tests (Rcor > 0.95). Again through
Equation 5.17, we deduce the material parameters for every test.

5.3.2.1 Overview

Based on the interquartile range (IQR) method, outliers were removed from calculating the day-to-day
mean and standard deviation. IQR is the interval [median - 1.5×IQ, median + 1.5×IQ], such that IQ
is the difference between the 3rd and the 1st quartiles. The median was computed regarding all tests,
while the mean was computed after discarding the outliers. Therefore, as can be seen in Figure 5.19,
12 values were removed for E1, 4 for E2, and 3 for φ.

5.3.2.2 Frequentist Statistics

Ê1, Ê2, and φ̂, describe the average over the tests of E1, E2, and φ, respectively. The global uncertainty
of Êj ( j = {1, 2}) takes into account the day-to-day variation of the mechanical response and the
uncertainty in ν12 (∆ν12). The values were computed according to the weighted standard deviation
method,

Ēj =

∑n j

i wiE
(i)
j∑n j

i wi

∆̄Ej =

√√√√√√∑n j

i wi(E
(i)
j − Ēj)

2

(nj − 1)
∑nj

i wi

n j

(5.19)

with nj the number of admissible values within the interquartile range, and the weights wi = ∆
(i)
Ej

−2
,

such that ∆(i)Ej
is the uncertainty of E (i)j for each test i. In practice, Êj = Ēj ± ∆̄Ej .
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(a) Stiffness along Langer’s line (b) Stiffness across Langer’s line

(c) Anisotropy angle φ

Figure 5.19: Skin material parameters E1, E2, and φ for every test. The grey bands in all subfigures represent
the interquartile range. The thin black lines in (c) represent the identified anisotropy axes oriented with φ to the
axis 0 ◦. Published in [402].

148



Subsequently, one can get φ̂ = 40.9 ± 8.2 ◦, Ê1 = 1.35 ± 0.65 MPa, and Ê2 = 0.43 ± 0.07 MPa. The
plots in Figure 5.19 demonstrate the weak deviations on φ̂, ∆̂φ = 8.2 ◦, and on Ê2, ∆̂E2 = 0.07 MPa,
whose removing outliers were no more than 4, unlike Ê1 (∆̂E1 = 0.65 MPa), whose 12 outliers were
discarded, as occurring in one of the two following situations: (i) E1 takes a negative value, (ii)
u1 is almost zero along Langer’s line, and thus E1 reaches higher stiffness. In the former scenario,
negative E1 indicates that the skin is compressed along Langer’s line instead of being stretched. A
dome inside the observable zone takes shape by pressing the probe strongly against the skin. A high
sensitivity of E1 assessment could be related to the fact that u1 values are within the measurement
uncertainty evaluated earlier, ∆u = 2.7 µm. On the other hand, the displacement u2 is substantial com-
pared to ∆u, which may justify the reliability of its assessment. As for φ, completely independent to
E1 and E2, regarding the deviation ∆̂φ = 8.2 ◦, the process of its identification can be considered robust.

The Langer’s line on the studied subject is oriented obliquely at a mean angle φ̂ = 40.9 relative
to the forearm axis. This result is in accordance with the literature [47, 141, 414, 415] but sensibly
different from Khatyr et al. [134] (0–10 ◦). If the symmetry is admitted in a contralateral study on the
right forearm, φ would be similar to the one reported by Lakhani et al. [416] and Kirby et al. [201].
Nevertheless, most recent studies described efficient tools and methodology to determine the Langer’s
line orientation, which was historically defined to be parallel to the forearm’s long axis [74, 76, 417].

The ratio Ê1/Ê2 = 3.14 ± 1.60 could be in line with the results in [128, 132, 134, 139, 141, 417].
Ê1 = 1.35 ± 0.65 MPa and Ê2 = 0.43 ± 0.07 MPa are in line with the Elastic modulus in some of the
earlier papers [128,134] but stiffer compared to [139,141]. Higher stiffness may occur if the effect of
the epidermis, known to be stiffer than the dermis [30, 36, 63], is not neglected. This assumption is
adequate with the nature of the CutiScan®device’s function, which applies out-plane suction to cause
an in-plane stretch in the superficial layers. Even though the epidermis under superficial stretch tends
to dominate the skin stiffness, the dermis has an important effect on the homogenized mechanical
response since the collagen and elastin fibers are present in the dermis, not in the epidermis.

5.3.3 Qualitative Analysis

To elucidate the variability of the material parameters from one day to another, we display in Fig-
ure 5.20 a series of skin pictures recorded at the first 6 tests. A change in the texture of the skin surface
was noticed. If one observes the frames from tests {3, 4, 5, 6}, the furrows are mostly oriented along
the same Langer’s line identified with the respective angles 30.77 ◦, 27.61 ◦, 31.25 ◦, and 50.26 ◦, but
not on test 1 with φ = 60.24◦ (Table E.1). This result may support the observations made in [414,418].
However, this equivalence could not be observed for the test 2, where the skin lines are almost absent,
and the relative φ is the most extreme with respect to the median. The skin microrelief change may
depend on hydration conditions: the wrinkles are more pronounced in a dry stratum corneum [419].

The experimental protocol should consider particular attention to skin hydration to reduce the fluctua-
tions of the material parameters, for instance, avoiding exposing the studied site to any liquid. Despite
that, the day-to-day variation of skin wrinkles observed in Figure 5.20 could be associated with the
change in the anisotropy axis. Considering that the uppermost layer’s deformation is directly corre-
lated to the radial stretch, any change in its texture would have an impact on the radial displacement
distribution and thus on φ.

5.4 Extended Study: Bayesian Inference

To recap, the primary functions of theMARSAC pipeline involve convertingmechanical test video into
displacement data, calibrating geometrical parameters through a deterministic nonlinear least-squares
algorithm, and deriving material parameters using an transverse isotropic linear elastic model. While
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(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

Figure 5.20: Snapshots of skin texture taken by the probe-camera for the 6 first tests. Published in [402].

the pipeline is considered operational for large-scale studies, there are two areas that could benefit from
improvement. These areas stem from two assumptions made in the methodology. Firstly, the stiffness
is assumed to be constant over the subdomain between the circles of r = 0.5 mm and r = 1 mm; as a
result, fitting the model with data over the rfit circle is sufficient. Secondly, the stress-strain relation is
assumed to be linear based on the small strain hypothesis.

Hence, to expand the potential applications of MARSAC, additional inquiries were pursued. Firstly,
the transverse isotropic elastic material was evaluated with regards to its non-linear properties. In a
concurrent investigation, the Bayesian method was utilized in place of the deterministic optimization
algorithm to evaluate both the uncertainty surrounding the identifiedmaterial parameters, as well as the
parameters themselves. It was posited that utilizing all available displacement data in the observable
valid zone could greatly augment understanding of the parameters. Due to time constraints, however,
the proposed extensions were not implemented for supplementary data.

5.4.1 Nonlinear Anisotropic Hyperelasticity

The stress-strain curves plotted along different directions could exhibit a nonlinear behavior even
for small deformations. Fitting them with a nonlinear hyperelastic constitutive law might lead to
identifying more accurate material parameters.

5.4.1.1 Inverse Problem

Similarly to the forward solver in Section 2.1.3.2, the displacements are solved under applied loads
and boundary conditions through a weak formulation as in Equation 2.9, for the assigned material
parameters. Inversely, the material parameters can be calculated for the known displacement field.
Hence, the inverse problem consists in updating the forward solution by changing the parameters until
the mismatch minimum with the measured displacement is reached.

The mesh used for this FE-based forward solver was subdivided into 3 parts (Fig. 5.21). A central
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zone with the radius 0 < r < 0.5 mm, an annular zone ΩMARS
msr subjected to the fitting area with the

radius 0.5 < r < 1 mm, and the external zone. MARS stands for Multi-Axial Ring Suction. The
objective function assembles the mismatch ‖u − uMARS‖2 for all points in ΩMARS

msr and for all the 21
pressures from 100 mbar to 500 mbar.

Figure 5.21: Domain meshing for the muti-axial radial stretch problem. The mesh contains 8 k quadratic
elements.

For nonlinear FE solvers, the behavior law takes the shape of a strain energy density function. For
anisotropic materials, this function is a sum of an isotropic and anisotropic expression (Eq. 1.38).
Built around the invariants I1 and I4, I propose an energy function as a combination of the isotropic
Gent model (incompressible) and the fiber-part function in [167], such that:

ψ(I1, I4,m) = −
µJm

2
ln

(
1 −

J−2/3I1 − 3
Jm

)
+
µfib
4
(I4 − 1)2 (5.20)

I4 corresponds to the stretch along the privileged direction, like the main collagen fibers direction. As
introduced in Equation 1.39, I4 is based on the identified fiber direction vector N f = {cos φ, sin φ, 0}T .
The targeted material parameters vector m in the presented problem is mnonlin = {µ, Jm, µfib, φ}.
The algorithm’s functions used for that purpose were adapted from the SofTI framework, such as the
inverse solver. The equation above suggests that the isotropic part will stiffenmore than the anisotropic
part when the stretch gets close to the asymptote due to J−2/3I1 − 3 ≈ Jm. One should verify that it is
not the case for the given parameters.

5.4.1.2 Application

The abovementioned method was applied to the first among the 30 test data to investigate its potential.
For numerical reasons, the parameter φ was not calibrated with the others. In the first step, it was
calculated with MARSAC and used to rotate the experimental displacement vectors with respect to
the mesh referential with φ. As such, the vector N f is always {1, 0, 0}T .

Starting from an initial set m0 = {µ = 1.0 MPa, Jm = 0.1, µfib = 5 MPa}, and knowing that
ξh = 24300, and ηh = 1.033 (Eq. 5.18), the identified optimal set was m̂ = {µ = 0.1494 MPa, Jm =
0.0016, µfib = 3.27 MPa}.

As a result, the experimental and optimized stress-strain curves were superposed in Figure 5.22. The
curve of direction 90 ◦, representing the direction across the Langer’s line, was so far the best fit, and
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to a lesser extent, the direction along the Langer’s line (0 ◦ direction). For the latter, the fitting was
more accurate for pressure higher than 300 mbar. The curves along the diagonal direction, 45 ◦ and
135 ◦, supposed to be aligned, matched the model poorly. Nevertheless, the proposed method could
identify the material parameters through a full data series.
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Figure 5.22: Model fitting for the nonlinear anisotropic case with data from the test 1.

MARSAC could improve SofTI’s accuracy once the healthy skin is modeled with an anisotropic
behavior law in the latter. Closely to the approach around Equation 5.20, the collagen’s main direction
N f can be determined with MARSAC, but not with the uni-axial test. We could imagine an advanced
version of SofTI, where the bi-material soft tissue is composed of isotropic and anisotropic materials,
where MARSAC has a crucial role in identifying the anisotropy axis orientation.

5.4.2 Bayesian Inference

As an alternative to the classical least-squares optimization, the Bayesian method has been employed
for the inverse problem with the aim of assessing the uncertainty while identifying the material
parameters [420]. The principle of the method lies in the uncertainty reduction of prior knowledge
with every additional measurement data. The Bayesian theory output, the a posteriori knowledge,
will contain two valuable pieces of information: the average value of estimated parameters and their
respective uncertainties. Therefore, the application of the Bayesian inference to theMulti-Axial stretch
study examines the accuracy of identifying the parameters m = {φ, E1, E2, ν12}

T . Some Bayesian
studies state that using a huge amount of datawill improve themethod’s efficiency and that the influence
of the prior knowledge (generally misunderstood) on the posterior results decreases [292, 397, 421].
Hence the interest is to use measurement data of a whole zone for model fitting instead of a circle.

5.4.2.1 Methods

The Bayesian inference is a stochastic approach to replace the deterministic one in optimizing the
mismatch ‖u − uMARS‖2 over ΩMARS

msr . Its methodology may be introduced as follows. Starting from
an a priori assumption on the parameter values, and based on observation data, we look for their
posterior distribution (or the posterior), according to Bayes’ theorem hereafter.

P(m |y) ∝ P(m)P(y |m) (5.21)
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y ∈ RNd contains Nd measurement values evaluated on nodes in ΩMARS
msr . The prior P(m) is the

probability of a certain parameter material set to exist. P(y |m), namely, the likelihood, is the proba-
bility of the observation to happen regarding an arbitrary parameter set. The posterior P(m |y) is the
probability that material has m if the observations y occur certainly. Once the posterior expressions
are established, three statistical quantities are evaluated: the mean mpost, the covariance matrix Γpost,
and the ‘maximum-a-posteriori-probability’ point (MAP), at which the posterior is maximum. The
reader can look through Appendix F for the details.

5.4.2.2 Application

The investigation of the Bayesian inference in identifying m concerned all the 30 tests carried out at
p = 300 mbar. All the priors was set with Gaussian distribution:

• φprior ∼ N(45, 102) ◦

• E1prior ∼ N(5, 52)MPa

• E2prior ∼ N(5, 52)MPa

• ν12prior ∼ N(0.25, 0.252)

The number of valid samples was set to Ns = 4 × 104, with 4000 (10 %) first samples discarded after
convergence. Accordingly,

mpost =


φ = 41.059 ◦

E1 = 4.059 MPa
E2 = 0.428 MPa
ν12 = 0.264

 ; Γpost =


0.5287 0.04909 0.0006 −0.0039
0.04909 2.5517 0.0141 −0.1350
0.0006 0.0141 0.0002 −0.0019
−0.0039 −0.1350 −0.0019 0.0241


The diagonal elements of Γpost introduce the variance for each parameter, whose square root is the
standard deviation or the uncertainty in our context. The extra-diagonal values indicate how every
two parameters are mutually correlated. Thus, the binaries with strong correlation are φ/E1 (as E1 is
the stiffness along φ), and E1/ν12. E2 is apparently weakly uncorrelated with all parameters.

The identified material parameters are then given in terms of normal distribution in Table 5.2, along
with theMAPvalues, and the results for the same parameters assessed earlier withMARSAC in Section
5.3.2.2 (frequentist statistics). The posterior values above align with the MAP point approving that the
sampling, performed with the Hasting-Metropolis scheme, could converge toward the optimal region
while narrowing the standard deviations. The evolution of the samples can be plotted in two forms:
iterativelywith a continuous curve (Fig. F.2) andwith histogram to highlight the distribution (Fig. F.3).

Table 5.2: Comparison of the identified anisotropic material parameters for the Bayesian and MARSAC ap-
proaches.

Bayesian Inference MAP MARSAC
m Mean Standard deviation Mean Standard deviation
φ [ ◦] 41.059 0.727 40.491 40.9 8.2

E1 [MPa] 4.059 1.597 3.635 1.35 0.65
E2 [MPa] 0.428 0.016 0.442 0.43 0.07

ν12 0.264 1.552 0.228 from literature

Afterward, comparing the optimal parameter sets and their related uncertainty showed an equivalence
of φ and E2 between the Bayesian inference and MARSAC. One could affirm CutiScan®’s ability
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to assess φ and E2 accurately and its incapacity to identify E1 (because of quasi-null displacement
along Langer’s line) and ν12 (because of the radial nature of the mechanical load). The comparison
shows that the Bayesian method led to lower uncertainties for φ and E2 as the objective function was
extended to more informative data. In Appendix F, Figure F.4 illustrates the Bayesian inference’s role
in improving prior parameter knowledge. By considering more valuable data, our uncertainty about
the mechanical properties decreases.

Furthermore, despite the Bayesian inference not improving the uncertainty about ν12, the modeler
did not need to look for their values in the literature, unlike for MARSAC. With a considerable data
quantity, some necessary knowledge can be bypassed without altering the final results. However,
the Bayesian approach, which needs a massive amount of random samples, may struggle with non-
analytical forward solvers, which are computationally costly.

Conclusions

Skin anisotropy is defined by two principal directions, which correspond to the maximum and min-
imum stiffness, respectively. The direction with the highest stiffness is introduced as Langer’s line,
whose identification aroused the interest of many studies. This first chapter of the second thesis’s
branch addressed the analysis of a pipeline combining in vivo experiment and modeling to evaluate
Langer’s line locally and rapidly and side material parameters. In a nutshell, the pipeline consists of
two main procedures: measuring the displacement of the sample subjected to the multi-axial stretch
and identifying the parameters by optimizing the misfit between the experimental data and a model.

For the experimental procedure, support was designed to hold and stabilize a commercial device
probe, CutiScan® CS 100, responsible for the multi-axial extension resulting from annular suction.
The software accompanying the apparatus provided incomplete data, so an OpenCV-based framework
has been adapted to extract the displacement full-field from the recorded videos during the tests, based
on the DIC technique. The correlation parameters, the window correlation size, and the grid nodes
step were calibrated to meet the lowest errors.

The parameter identification procedure includes modeling the anisotropic behavior and optimizing the
error between the latter and the experimental data. Once observing that the principal directions are
orthogonal, transverse isotropic linear elasticity was assumed within the continuum mechanics theory
to capture the skin deformation. The solution of the displacement-based problem exhibits an elliptical
shape, which matches the deformed configuration of circles defined on the undeformed field. Thus,
the identification scheme was split into two steps: evaluating the center shift, the rotation, and the
semi-axes of the deformed ellipses, and later deducing the material parameters via the physical model.
With this strategy, one can propose a mechanical model and identify its parameters without affecting
the geometrical values assessed in the first step. A calibration study was conducted on a latex material
formerly characterized to adjust the mechanical model to ensure that the calibrated elastic moduli,
along and across Langer’s line, represent accurate stiffnesses.

The analyzed methodology, labeled MARSAC, was applied to a 30 tests series carried out on a volun-
teer’s forearm. For each, the parameters set were identified. The day-to-day variation of parameters
gave insight into the reproducibility of the whole system experiment/analysis. The results revealed
that with the actual equipment, it would be possible to assess Langer’s line and the stiffness across
it with high confidence. The development of a DIC tool as a replacement for commercial software,
and the addition of a center shift to the deformed ellipse, have shown how CutiScan®can be useful.
Previous experimental studies in the literature have disclosed a lack of its robustness. It is important
to emphasize another scientific contribution. Based on the results of model fitting, it seems that the
skin may be more likely to exhibit a transverse isotropic behavior under multi-axial extension, as had
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been previously suggested by Reihsner et al. [18].

Apart from this, secondary paths were investigated with the view to improving the efficiency of the
method. To begin with, a FE simulation model with a non-linear anisotropic hyperelastic behavior law
was implemented to fit the stress-strain curve along different directions, considering all the pressure
levels. Therefore, the optimal solution displayed an acceptable fit. However, the identified parameters
that were supposed to represent skin stiffness significantly differed from the values evaluated with
SofTI in Section 4.2.2.3. Even so, this experience showed that SofTI could be improved by adding
an anisotropy feature to the peripheral medium hyperelastic model in the bi-material (Sec. 2.2). In
this situation, the anisotropy axis direction will be quantified a priori with MARSAC.

The second investigation addressed the application of Bayesian inference to estimate the anisotropy
parameters and their uncertainty simultaneously. The theory stipulates that adding informative data,
even with moderate measurement error, will help narrow prior knowledge about the parameters. Con-
sequently, the posterior distribution of the parameters confirmed that CutiScan®’s efficiency comprises
an accurate assessment of Langer’s line and the stiffness across it. Thanks to the mechanical model’s
analytical aspect, using the Bayesian method would be plausible for further studies with massive data
quantity in a reasonable time.

With a free-ready-to-use framework, available on https://github.com/aflahelouneg/MARSAC,
the surgeon can rapidly determine Langer’s line on the patient before operating the incision. The next
chapter will examine the use of MARSAC in a clinical trial and study the variability subjet-to-subject
of skin anisotropy.
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Chapter 6

Characterization of the Anisotropy of the
Human Skin: Subject-to-Subject
Variability

The mechanical behavior of living organs is known to vary between individuals, even with common
characteristics, such as age, sex, ethnicity, etc. This variability, a natural part of human performance,
could be significant or not for several anatomical factors. Identifying them and studying their role
in the non-reproducibility of measurements by considering individual specificities is a step forward
in understanding skin biomechanics. One way to accomplish it is by conducting a clinical trial and
analyzing the data with appropriate statistical methods. Given the thesis’s context, a clinical investiga-
tion was realized for 30 volunteers to analyze the inter-subject variability of the anisotropic material
parameters belonging to the model developed and reviewed in the previous chapter.

This last chapter is presented with twomain topics. Foremost, the experimental part of the clinical trial
is fully described with an accent on the protocol adaptation, which accounted for one of the thesis’s
contributions. The latter includes the volunteers’ inclusion, the measurement of their skin thickness,
and the characterization of their anisotropic material parameters based on the CutiScan®device.
Ulteriorly, the results in raw and treated measurement data, based on MARSAC framework, are
discussed and used to statistically analyze the subject-to-subject variability’s significance to age and
sex. This significance was evaluated with the well-known P-value [422]. Carrying out the actual
clinical trial aimed to contribute to assessing Langer’s line’s variability and exploring the performance
of the method depending on the CutiScan®. The latter showed substantial sensitivity for clinical trials
in its original configuration [151,154].

6.1 Clinical Trial

In collaboration with the University Hospital of Besançon, a clinical study under the name SKUM
(SKin Uncertainties Modeling) was initiated with the help of Dr. Thomas Lihoreau and Dr. Gwenaël
Rolin, as the project chiefs, and Dr. Brice Chatelain, as the principal investigator. The project was first
submitted to the CPP (Committee of Person Protection) and then approved under the study registration
number: 2020-A01863-36. The campaign aimed to collect data on anisotropic viscoelastic properties
of the forearm skin among healthy volunteers using the CutiScan®. 30 volunteers participated in the
trial according to two clusters. One involved all of them for the inter-subject variability analysis, with
3 mechanical measurement sessions for each. The other one involved only 5 subjects for an intra-
subject variability with 30 mechanical measurement sessions for each. Because of time limitations
and the considerable amount of data, the second case has not been analyzed yet. For the same reason,
viscoelasticity has not been studied. Table 6.1 summarizes preliminary information about the clinical
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trial.

Table 6.1: SKUM clinical trial description sheet.

Study title Construction of a human skinmechanics database for mathematical
modeling of uncertainties in cutaneous tissue

Identification number 2020-A01863-36
Objective Providing a database of transient displacement fields of the forearm

skin undergoing multi-axial extension.
Duration 55 days
Type Interventional
Emplacement Department of Dermatology, Centre Hospitalier Universitaire de

Besançon (France)
Principal investigator Dr. Brice Chatelain
Project chiefs Dr. Thomas Lihoreau, Dr. Gwenaël Rolin

Number of subjects and tests inter-subject study: 30 subjects (3 tests each)
intra-subject study: 5 subjects (30 tests each)

Inclusion criteria

- Healthy volunteer
- Age between 18 and 50-year-old
- Non-opposition to participating in the SKUM study
- Affiliation to the French social security

Operators Operator 1: Mr. Aflah Elouneg: 29 subjects
Operator 2: Mrs. Intissar Ben Moussa

6.1.1 Measurements

Every volunteer from the subject-to-subject study that meets the inclusion criteria participated in
3 tests, mostly scheduled in the same time slot over three days. The test, consisting of mechanical
measurement, lasted 1 hour, except for the first one, which lasted 1 hour and 15minutes, as an additional
measurement of the skin thickness was processed. Both measurements introduced hereinafter.

6.1.1.1 Skin Thickness Measurement

By means of an ultrasound echography system, DUB SkinScanner75 [423], the epidermis and dermis
thickness were measured on a site located in the left forearm at 15 cm from the wrist, where the
multi-axial extension with the CutiScan®was performed. The system is equipped with a probe to emit
a wave of frequency of 22 MHz through the rectangular slot in contact with the skin (Fig. 6.1a). The
skin surface was soaked with pure water to favor the impedance gradient for clear visibility of the skin
layer. Once the echography was obtained, correctness was applied to the skin surface and the color
with the associated tools to emphasize the skin layers boundaries, which could be determined visually
(Fig. 6.1b). For the set frequency, 22 MHz, the penetration, and resolution were 10 mm and 72 µm.
The thicknesses of the epidermis and dermis are represented with thed and thd.

6.1.1.2 Mechanical Measurement

The term "mechanical measurement," as mentioned in the official document of the clinical trial autho-
rization, refers to the multi-axial extension to characterize the transient anisotropy behavior of the skin.
The mechanical measurement arose from the protocol in Section 5.1.2.1 and was slightly modified in
such a way the CutiScan®probe support is identical for all volunteers. The most significant difference
between the two protocols lies in ensuring the reproducibility technique of the horizontal equilibrium
of the studied site. Carving arm support made of plaster helped fix the arm’s perpendicularity to
the probe-camera over 30 days with the 28-year-old volunteer in the preliminary study (Fig. 5.5).
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(a)Measurement probe (b) Skin echography

Figure 6.1: Skin thickness measurement with DUB SkinScanner75 system.

However, in a clinical trial, the fixing process should be standardized. Also, modeling a handler
conforms to the arm shape requires artistic skills and is time-consuming. The fixation method was
replaced by two elements: an NBR-made (Nitrile Butadiene Rubber) layer to reduce the gap between
the arm and the U-shaped support and a mini lifting table adjusted according to the subject’s arm
morphology. Figure 6.2 exhibits a rear view of the standardized equipment used in the clinical trial to
characterize the anisotropy for 30 subjects.

The mechanical measurement’s duration was 60 minutes, divided into two phases: pre-test (20 min-
utes) and loading series (40 minutes). During the pre-test, acclimation occurred, and adjustments
were processed for the sake of reproducibility. The length Lh is fixed to 200 mm. The heights Hs and
Lv were noted for each test. Also, the temperature and the relative humidity were recorded. As for the
loading series, as described in Section 5.1.2.1, it consisted of 21 creep-relaxation loads with pressures
sweeping uniformly from 100 to 500 mbar.

After including a subject from the intra-individual case, 3 mechanical measurements were performed
on the volunteer’s left forearm at mainly the same time slot. The loading series, which lasts exactly
40 minutes, was carried out after 20 minutes of acclimatization, namely, pre-test, to the ambient
conditions. The protocol operations for the two phases are detailed below.

Pre-Test (20 minutes):

1. Adjust the chair to a height such that the subject places its arm on the support ergonomically
for one hour.

2. Disinfect the NBR layer placed on the inner surface of the U-shaped holder with a wipe (Fig.6.2).

3. Place the subject’s arm with the wrist coinciding with the edge of the U-shaped holder. The
arm is oriented as shown in Figure 5.5. If the arm is not large enough, another NBR layer can
be added to compensate for the gap.

4. Loosen the clamping lever and turn the endless screw of the mini-lifting table until the probe
is perfectly parallel to the studied site on the forearm, located at 15 cm from the wrist. Use a
needle or digital level to adjust the parallelism since the probe and the skin surface must be both
horizontal. Measure and note the height Hs with a caliper (0.01 mm accuracy).
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Figure 6.2: Standardized annular suction equipment for the subject-to-subject variability study.

5. Attach the forearm without pressure at two ends of the support, meeting the elbow and wrist,
with the velcro tapes.

6. Stick one of the annular adhesive sides to the bottom side of the probe with its rod pointed in
the 0 ◦ direction.

7. Lower the probe to a position about 1 mm above the skin surface. Technically it is done by
loosening and then tightening the screws on the vertical column.

8. Run the CS100 software to monitor the measurement zone captured by the camera inside the
probe. If the area is not hairless, move the arm barely back or forth until securing a clear zone.

9. Higher the probe up to 2 cm to have enough space to remove the cover from the stick on the
bottom. The second face is now ready to adhere to the skin surface.

10. Lower the probe one last time very slowly until ensuring tangent contact without pressure, then
tighten the screws immediately. This operation is decisive. The first contact could have a
significant influence on the amplitude of the displacement. Measure the value Lv with a caliper
and report it.

Loading Series (40 minutes):

1. In case of a new inclusion, create in the database a folder with the name volunteer_XXX (XXX
stands for the subject’s code number in 3 digits).

2. Create a folder with the current date YYYY_MM_DD_XXX inside the folder volunteer_XXX.
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3. For set pressures from 220 to 500 mbar, skip this step. Otherwise, increase the pressure setpoint
by 20 mbar and prepare to start suction but do not execute it. Redefine the setpoint to the
targeted pressure, then start the creep-relaxation cycle. By way of explanation, to perform
loading at p = 120 mm, we need to set the micro-compressor setpoint at p = 140 mm, then
program the set point for p = 120. This maneuver is used to overcome a CutiScan®bug that
constantly occurs for low pressures, between 100 and 200 mbar. Forcing the compressor to
release pressure instead of accumulating avoids the software crash.

4. Save the video recorded by the probe-camera at the end of the second creep-relaxation phase in
the directoryvolunteer_XXX\YYYY_MM_JJ_XXX\p_pressure under the namepressure.avi.
For a pressure 240 mbar, e.g., the complete directory is volunteer_001\2021_11_15_001\
p_240\240.avi. It is important to mention the code number in different folders to avoid
inadvertence mistakes while chaining tests with a gap of 2 minutes.

5. Process the image correlation with the commercial software even though it will not be analyzed
since the outputs are incomplete. Save the files with the extensions .ctm and .xml in the same
directory alongside the video file under the respective pressure, for example, 240.ctm and
240.xml.

6. Repeat steps 3, 4, and 5 for all 21 pressure steps within precisely 2 minutes.

7. Disinfect the tools used and the entire device except for the observable zone of the probe, which
must remain intact from any physical or chemical change.

6.1.2 Data Management

Considering only the inter-subject study, 1890 original video files were collected across the tests.
Those raw data appertain jointly to the Hospital of Besançon and FEMTO-ST institute. Sharing the
raw data or any derivative data must be concluded upon agreement with the instances. Hence, the
clinical trial outputs are not public for the time being.

6.1.2.1 Raw Data

A test video lasts 6 s and can be fragmented with an average frequency of 14 frames/s. Subsequently,
around 86 frames are extracted for each test among the 21 pressure series. The fastest way to exploit the
data (for mechanical characterization, for instance) one can use the 360 viscoelastic curves obtained
by the commercial software (Fig. 5.3). They were stored in the database. Despite that, as explained
in Section 5.1.1.2, the positions on which the curves were calculated are unknown. The user also has
no access to full-field data from the observable zone.

6.1.2.2 Secondary Data

With the help of the DIC framework shared in MARSAC (see the example on https://github.
com/aflahelouneg/MARSAC/blob/main/sample/pydic.py), the frames from the 1890 video
files were fully converted into 2D displacement fields (analogically to Fig. 5.7) using the correlation
parameters dG = 20 px and aW = 40 px. Bearing in mind that the anisotropy characterization treated
the quasi-static state, only the 41st displacement field was retained for the analysis.

6.2 Variability Study

Analyzing the variability significance of the physical properties is conditional on the existence of
clusters sharing similar features. If the quantification of how the difference is relevant between the
groups to a defined factor is based on a P-value, the population is subdivided into two groups. The
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subject was asked to provide data susceptible to being correlated with variability, especially age, sex,
preferred hand, and profession. The two latter were excluded since all the subjects are related to the
research domain, and only 3 are left-handed, i.e., the clustering would be unbalanced. Therefore, the
groups are formed according to two features, age and sex.

Figure 6.3 concisely informs the two studied factors for all volunteers. To begin with the biological
factor, two groups were composed automatically of 7 males and 23 females. As for age, one could
organize almost equal groups [151] separated by the black line: Generation I, under 28 years old,
rallying 16 subjects, and Generation II, with the remaining 14 subjects. Additional information can
be directly observed on the diagram if the subjects are sorted by age. Consequently, new indexes were
assigned to the volunteers and are valid only for the present study.
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Figure 6.3: Age and sex data of the subjects.

P-value Calculation
Statistically, significance indicates that the result was not produced by chance and must have a reason.
One needs to state the Null Hypothesis, which assumes the observation is not statistically significant.
The Two-Tailed Test (or T-test) checks the Null Hypothesis following a normal distribution. A T-value
is calculated and associated with a P-value. The T-value is a way to quantify the difference between
means belonging to different populations. If the Null Hypothesis is true, the P-value is the probability
of obtaining the T-value.

An example is proposed to clarify the point. To determine the significance of the elastic modulus
variability between two groups of young and old volunteers, the Null Hypothesis is stated:

"there is no significant difference in skin stiffness between young and old subjects."

The T-value corresponds to the discard between the mean elastic moduli in the two populations,
named ∆Ē . P-value (designed with Pv in the next sections), evaluates the probability of ∆Ē to occur.
The Null Hypothesis is rejected if the P-value is close to 0. In other words, if we assume that the
two populations have equal skin stiffnesses and that there is most likely no chance that this "small"
difference exists, then the situation is paradoxical. Therefore, the difference must be significant. The
module scipy.statswas implemented to easily compute the T-values and their respective P-values.

6.2.1 Skin Thickness

Skin thickness is a physical characteristic that may affect the stiffness variation. If the results conform
with similar studies in the literature, it will enhance the reliability of the material used to measure the
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thickness. The analysis treats the data related to the epidermis and dermis thicknesses independently
and conjointly.

Table 6.2 recaps the thickness data by means and standard deviation for the groups organized based
on sex and age. Relating to the P-values, a tendency of the thickness of the dermis regarding sex
was noticed. The dermis’ thickness would be more pronounced for Males with Pv < 0.0001. Similar
observations were made for the composition of epidermis-dermis considering that the dermis is most
abundant. On the contrary, the epidermis between Females and Males did not differ considerably.
As for age, it seemed that the population under 50 exhibited equivalent dermis and epidermis skin
thickness. Those remarks can be recognized in Figure 6.4. Another way to emphasize the significance
of a quantity between groups is through Whisker boxes. Figure 6.5 condenses much information in a
rectangle centered on the sample mean, whose orange line indicates the median, and the box’s length
the interquartile range. The extreme bars imply the minimum and maximum permissible values. The
outliers are shown with isolated circles.

Table 6.2: The study of age and sex factors in the skin thickness variability. Nv denotes the number of volunteers
for a category.

Analysis Groups Epidermis Dermis Total

Thickness vs. sex Female (Nv = 23) 197 ± 47 µm 919 ± 96 µm 1117 ± 86 µm
Male (Nv = 7) 192 ± 18 µm 1158 ± 67 µm 1351 ± 65 µm

Pv = 0.78 Pv = 2.5e−6 Pv = 5.9e−7

Thickness vs. age Generation I (Nv = 16) 192 ± 51 µm 962 ± 107 µm 1155 ± 102 µm
Generation II (Nv = 14) 199 ± 27 µm 989 ± 161 µm 1190 ± 151 µm

Pv = 0.66 Pv = 0.59 Pv = 0.47
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Figure 6.4: Skin layer thicknesses variability.

The dermis thickness may correlate with the quantity of collagen in the medium affected by hormones.
Males have more hormone testosterone in their bodies, making their skin thicker than Females [424].
The results above agree with Rahrovan et al.’s study [425]. The latter also reported no sex or skin
type-related differences in epidermal thickness. As for the aging effect, according to Leveque et
al. [426], the skin thickness decreases starting from 45 years for both Males and Females, unlike for
Shuster et al. [48], who demonstrated that skin thickness in Males decreased linearly with age, starting
at age 20 but remained constant in women until approximately 50 years. In our case, with Pv = 0.66,
and maximum age of 49, one cannot conclude the aging effect on skin thickness. Further, linear
regression was applied to skin thickness data versus the age for all volunteers (Fig. 6.6). The results
show no correlation between age and thickness change for people under 50 in the studied population.
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Figure 6.5: Comparison of the epidermis-dermis thickness regarding subjects’ sex and age.
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Figure 6.6: Study of the aging effect on epidermal and dermal thicknesses.

6.2.2 Material Parameters

By following the same logic in Section 5.2.2, the material parameters mm = {φ, E1, E2}were identified
with data from the circle rfit = 1 mm for each subject and each test after initial calibration of mg
elements. Subsequently, for every subject, one can define the median for each mi in mm among the
three tests. The complete sets of optimal parameters are summarized in Table G.1. For illustrative
purposes, model fitting results of plenty of tests are exposed in Figure 6.7. They are composed
of: (i) radial displacement heatmap to visualize roughly the symmetry axis that represents Langer’s
line, (ii) superposition of the deformed experimental- andmodel-issued ellipses, and (iii) model fitting.

Afterward, the subject-to-subject variability over 30 subjects is assessed by averaging the medians
array to obtain m̂i = µmi ± ∆mi . µmi and ∆mi are the global mean and standard deviation given a
population or group with the size Ns (Ns = 30 for all subjects, or Ns = 23 for Females, etc.). One
must point out that 5 subjects participated in more than 3 tests because they volunteered for the intra-
individual study, with 30 tests carried out. Their code numbers after the sorting are {12, 16, 17, 27, 30}.
Selecting tests among 30 would be taking trivially the three first ones. However, as the calibrated
geometrical parameter a can sometimes be negative (occurring when the probe is not correctly
positioned perpendicular to the skin), the selection involved the 3 first tests with a valid a value.

6.2.2.1 Langer’s Line

The averaging of identification results of φ between subjects led to a global value of φ̃all = 21.6±8.3 ◦.
The periodic nature of the quantity does not aid in qualifying the variability by looking only at the
standard deviation. Normalizing ∆all

φ = 8.3 ◦ to µall
φ = 21.6 ◦ is counter intuitive. Supposing that

8.3 ◦ is not considerable compared to 90 ◦, referring to the orthogonality of the coordinate system,
one would suggest that the Langer’s line has a predefined direction in the forearm, for all human bodies.

A qualitative and quantitative study of the variability was conducted individually within the popu-
lation. Figure 6.8a displays the identified values φ̃ and their respective deviation over 3 tests. At
first sight, ∆(j)φ ( j referring a subject) does not exceed 10 ◦ for 24/30 cases, with 6 cases less than 3 ◦.
As the soft tissue measurement demonstrates minor reproducibility, one can put forward the success
of the clinical trial. The collected data could be of good use to the scientific community. An ex-
planation of the individual variation of φwill eventually be proposed according to the raw video frame.

The last-mentioned figure implies that the Langer’s line could deviate more from the arm’s axis (0 ◦)
for Males than Females. Looking through this hypothesis requires quantifying how much the dif-
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(a) Subject 6, test 3

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x′

1 [mm]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x′ 2 [
m

m
]

−80

−60

−40

−20

0

20

40

60
ur [μm]

−1.0 −0.5 0.0 0.5 1.0
x′

1 [mm]

−1.0

−0.5

0.0

0.5

1.0

x′ 2 [
m

m
]

undeformed
deformed (model)
deformed (data)

−2.5 0.0 2.5
1e−2

−2.5

0.0

2.5
1e−2

0 100 200 300
θ ′ [°]

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

r d
ef

or
m

at
io

n [
m

m
]

model
data

(b) Subject 2, test 1
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(c) Subject 9, test 3
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(d) Subject 10, test 3

Figure 6.7: Inverse solution for the four highest fitting score cases. The values are reported in Table G.1.
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ference is statistically significant. For this reason, the results were averaged the two groups; hence,
φ̃Female = 20.6 ± 7.9 ◦ and φ̃Male = 31.4 ± 7.5 ◦ (Fig. 6.8b). With Pv = 0.0038, the assumption could
be considered correct regarding the validation criteria of the P-value. The analysis theorizes that
Langer’s line is sex-related. The latter result is one of the main contributions of the clinical trial.

In relation to age, Figure 6.8c might reveal no significant difference in terms of Langer’s line di-
rection between the two generations. The statistical analysis resulted in φ̃G.I = 18.4 ± 6.3 ◦ and
φ̃G.II = 24.3 ± 9.1 ◦ (G. designates Generation), confirms through Pv = 0.69 that φ parameter is not
correlated to age under 50.
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Figure 6.8: Variability of Langer’s line per subject and for all tests.

The interpretation of Langer’s line difference between Females and Males may be related to purely
anatomical factors. Further studies should be followed up at micro and macro scales. One could imag-
ine that hormones impact the collagen network nesting with maximum abundance along Langer’s line.
Or else the arm morphology would drive and drag the collagen bundles. In the future, the protocol
should include the measurement of the arm’s circumference at different locations (wrist, forearm,
elbow) [427,428].

Let us have a closer look at the extreme cases for each sex and compare the most and the least repro-
ducible data in Table 6.3. The comparison involving volunteers, 20 and 4 for Females, and 7 and 25 for
Males, included the standard deviations and measurable variables, the preferred hand, the experiment
quality, the temperature, and the relative humidity. Experiment quality is an arbitrary evaluation
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of mechanical response reproducibility based on primary data provided by the CutiScan®software.
Globally, the juxtaposition of the φ variation from one side and the variables on the other did not
reveal any correlation between them.

Table 6.3: Comparison of Langer’s line and experiment variables for the most and the least reproducibility.

Variables Females Males
Volunteers 20 4 7 25

Age 32 23 24 39
Preferred hand Right Right Right Right

Langer’s line
22.1 ◦
25.7 ◦
22.0 ◦

53.2 ◦
43.6 ◦
8.1 ◦

24.4 ◦
28.2 ◦
34.7 ◦

56.8 ◦
22.5 ◦
31.8 ◦

Langer’s line (average) 23.3 ± 1.7 ◦ 35.0 ± 19.4 ◦ 29.1 ± 4.3 ◦ 37.1 ± 14.5 ◦

Experiment quality
4/5
3/5
4/5

4.5/5
5/5
5/5

4.5/5
4/5
4.5/5

2/5
4/5
3/5

Temperature ◦C
22.8
22.0
25.0

22.4
22.3
20.0

24.2
34.2
37.1

25.3
27.9
25.5

Relative humidity [%]
31.2
30.8
27.2

27.6
23.5
28.1

24.2
34.2
37.1

25.3
27.9
25.5

Similarly to the qualitative study in the preliminary research (Sec. 5.3.3), the captured skin surfaces
of the studied four subjects are displayed to investigate their link with the minimum and maximum
deviations of the respective Langer’s line identified values. For the volunteer 4, corresponding to the
most substantial variation of φ among Females (and all subjects), we observe an apparent change in
the skin texture at the third test (Fig. 6.9). A similar observation arose in Table 6.3 for the third
value of φ (8.1 ◦), showing a significant shift with respect to the mean value (35.0 ◦). Superficially, the
furrows’ direction seems to have changed, conversely to volunteer 20 whose skin’s texture was nearly
the same, which is compatible with the weak variation of her Langer’s line (Fig. 6.10).

Test 1: φ = 53.2 ◦ Test 2: φ = 43.6 ◦ Test 3: φ = 8.1 ◦

Figure 6.9: Test frame of the quasi-static state with pressure 300 mbar for the volunteer 4. Model fitting results
are plotted in Figure G.1a and detailed in Table G.1.

As for Males, subjects 7 and 25, the skin texture frames were exhibited in Figures 6.11 and 6.13,
respectively. The hairs present in subject 7’s skin might perturb the DIC process quality. Figure 6.12
supplied model fitting curves for the three tests to check a possible artifact effect. Therefore, the plots
exhibit unsatisfactory fitting goodness, leading to inaccurate identification of a and b parameters.
However, the position of the peaks and dips seems to be not perturbed by the hair’s presence. The
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Test 1: φ = 22.1 ◦ Test 2: φ = 25.7 ◦ Test 3: φ = 22.0 ◦

Figure 6.10: Test frame of the quasi-static state with pressure 300 mbar for the volunteer 20. Model fitting
results are plotted in Figure G.1b and detailed in Table G.1.

estimation of φ in such conditions was somehow reproducible (29.1 ± 4.3 ◦). As an outcome, one
could emphasize the ability of the DIC algorithm used inMARSAC to identify the skin anisotropy axis
in the presence of potential artifacts. For the second case, subject 25, the confrontation of Langer’s
line variation with the skin texture change could not provide a factual finding. Establishing a clear
correlation between skin texture change and φ variation ought to conduct quantitative analysis about
furrows distribution at the micro-scale, which demands advanced scan techniques and post-treatment
algorithm [418].

Test 1: φ = 24.4 ◦ Test 2: φ = 28.2 ◦ Test 3: φ = 34.7 ◦

Figure 6.11: Test frame of the quasi-static state with pressure 300 mbar for the volunteer 7. Model fitting
results are plotted in Figure 6.12 and detailed in Table G.1.
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Test 1: φ = 24.4 ◦
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Test 2: φ = 28.2 ◦
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Test 3: φ = 34.7 ◦

Figure 6.12: Model fit on the circle rfit = 1 mm for the volunteer 7.
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Test 1: φ = 56.8 ◦ Test 2: φ = 22.5 ◦ Test 3: φ = 31.8 ◦

Figure 6.13: Test frame of the quasi-static state with pressure 300 mbar for the volunteer 25. Model fitting
results are plotted in Figure G.1c and detailed in Table G.1.

6.2.2.2 Skin Stiffness

Similarly to φ, the elastic modulus along and across Langer’s line were identified for an applied
pressure p = 300 mbar, which causes a radial stress of σr = 0.0123 (see Sec. 5.3.1.1). The Poisson’s
ratio ν12 was set to 0.43 according to the literature as described in Section 5.3. Figure 6.14 shows
E1 and E2 error bars and scatters. For 9 subjects, only one valid value was accounted for because
E1 was negative for the two other tests. As E2 is linked to E1, such that E2 = ν21E1/ν12, it was not
counted for the same 9 subjects. Subjects 7 and 24 were discarded entirely from this analysis since
all three tests provided E1 < 0. Because of hair presence (Fig. 6.15), the DIC technique failed to
capture accurate semi-axis a displacement. To overcome the issue, the subject should be kindly asked
to shave the studied site at home off the protocol for later clinical trials. Regardless, the DIC quality
did not severely impact the φ parameter for both subjects, thanks to the data quantity. Back to Figure
6.8a, Langer’s line over 3 tests showed moderate variation.
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Figure 6.14: Variability of the skin stiffness per subject and for all tests.

With a global weightedmean Êall
1 = 2.70±1.76MPa, assessing the elastic modulus along Langer’s line

is hugely fluctuating, even if a bunch of subjects witnesses reproducibility of E1 (standard deviation
< 1 MPa), for volunteer 6, 9, 13, 16, 18, and 28. As expected, according to the pre-clinical study (Sec.
5.3.2.2), the identification of E1, interpreted as the collagen stiffness, was highly fluctuating. The
displacements along the semi-axis with minimum deformation are almost null, so its associated elastic
moduli sensitivity would be high. Besides, E2 revealed a global mean of Êall

2 = 0.35 ± 0.18 MPa.
Since the displacement is higher across Langer’s line direction, their fluctuation is relatively low.
Therefore, E2 exhibited less sensitivity compared to E1. Although several E2 values were discarded,
the majority of them are within the interval 0.35 ± 0.18 and could be considered valid. In reality, in
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(a) Subject 7, Rcor = 0.7561

(b) Subject 24, Rcor = 0.8836

Figure 6.15: model fitting results of the discarded subjects. The frames were taken from the quasi-static state
from the second test.

Table 6.4: Study of skin stiffness variability between groups constituted according to sex and age.

Females (Ns = 23) vs. Males (Ns = 5) Generation I (Ns = 15) vs. Generation II (Ns = 13)

E1

EFemales
1 = 2.29 ± 2.58 MPa EG.I

1 = 2.38 ± 1.80 MPa
EMales

1 = 2.70 ± 1.76 MPa EG.II
1 = 2.42 ± 2.97 MPa

Pv = 0.92 Pv = 0.94

E2

EFemales
2 = 0.32 ± 0.10 MPa EG.I

2 = 0.35 ± 0.11 MPa
EMales

2 = 0.45 ± 0.32 MPa EG.II
2 = 0.35 ± 0.22 MPa

Pv = 0.09 Pv = 0.76

Table G.1, only 4/90 were negative. It could be possible to account for positive E2 values associated
with negative E1 for the mean calculation, but the whole couple was eliminated for ease. Above all, the
clinical trial results witnessed, at some level, a consistency of identified skin stiffness across Langer’s
line.

Furthermore, the quantification of the variability significance concerning sex and age was addressed
as well. The results for all situations are organized in Table 6.4. Following P-values, no substantial
difference was sensed between Females and Males, as noticed in [429, 430], and between the two
Generations. The results were not in line with Vexler et al.’s findings [431]. The authors found a
strong statistical significance of skin elasticity difference between the two sexes, i.e., Females’ skin
softer than Male’s. Besides, one remark could intrigue the reader concerning the variability according
to age. Through the age column, the standard deviation for younger subjects is smaller for both cases,
E1 and E2. The interpretation forwarded here is that aging induces higher fluctuation of themechanical
response. Figure 6.14b shows higher sensitivity for the second half of the subjects (ascendingly sorted
by age). This comparison would not be credible if two sample sizes were not close, like for Females
vs. Males case.

170



6.2.3 Sensitivity Analysis

We discuss in this last part the sensitivity of the mechanical response to a change in intrinsic and
extrinsic factors. The formers include the skin layer thicknesses. The latters consist of the ambient
temperature, ambient relative humidity, and the adjustment variables. The study aims to spot the
sources of data variability within and between subjects.

6.2.3.1 Skin Layer Thicknesses

The continuum mechanics theory stipulates that applying annular suction on a thicker layer would
cause less deformation in the central surface zone. Still, it would not be the case if the radial stress
was uniform in depth. In this situation, the change in skin thickness will not affect the displacement
measurement on the surface. Assuming the thickness is directional invariable, its influence on Langer’s
line orientation is not considered. The linear regression between the thickness and skin stiffness does
indicate a negligible linear correlation in Figure 6.16. Nothing suggests that the volume of collagen,
which may define the dermis thickness, nor the epidermis thickness, has no contribution to the
homogenized elastic moduli. The thickness values were likely too close to let appear the predicted
correlation. Quentin Lucot, an intern who collaborated in the analysis of CutiScan®’s performance,
has performed 3D simulations to study the effect of skin layer thicknesses sensitivity combined with
a change in the stiffness on the mechanical response. It would be interesting to extend his work
considering the last findings.
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Figure 6.16: φ assessment sensitivity regarding the change in the thickness.

6.2.3.2 Environmental Conditions

In a clinical trial, an air conditioning system generally controls the ambient temperature and humidity.
It sometimes happens that the environmental conditions need to be better regulated, and hence they
vary considerably. With the intention of studying the consequences of their variations on the skin’s
mechanical response, a linear regression was performed on six scatter plots, three for temperature Te
and three for the relative humidity RH. For each case, the points link the variation of the ambient condi-
tions, ∆Te and∆RH , with the variation of a material parameter in mm, for every subject over the 3 tests.

As reported in Figure 6.17, the Langer’s line direction fluctuation does not appear to be linearly corre-
lated with ∆Te, and neither with ∆RH . Subsequently, one could be confident about the insensitivity of
skin’s behavior measurement to the technical irregularity of the air conditioner. Under the hypothesis
that temperature change could have an effect on the orientation of collagen fibers, one way to accom-
plish it is through thermal expansion. The latter, yet to be characterized according to the literature,
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would have a non-negligible contribution in the case of high-temperature gradients. Whereas for the
relative air humidity, it was speculated that it affects the skin water content. It seems that a deviation of
5% of RH was not significant enough to alter the collagen network formation. By analogous analysis,
referring to scatter plots in Figures 6.18 and 6.19, the skin stiffness along and across Langer’s line
exhibited insensitivity to the variation of Te and RH, with standard deviations up to 2 ◦C and 5.5%,
respectively.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
ΔTe [∘C]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Δ ϕ
 [∘ ]

Rcor = 0.1626

(a)

1 2 3 4 5
ΔRH [%]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Δ ϕ
 [∘ ]

Rcor = 0.3196

(b)

Figure 6.17: φ assessment sensitivity regarding the change in the environmental conditions.
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Figure 6.18: E1 assessment sensitivity regarding the change in the environmental conditions.

6.2.3.3 Operator Influence

It has been reported in Table 6.1 that two operators carried out the mechanical experiment. Except
for subject 17’s forearm, on which the operator 2 performed the tests, all the other 29 inclusions
were assisted by the operator 1. To investigate the operator factor on the variability of skin stiffness
measurement, one must compare the identification results from tests performed on the same subject.
Hopefully, subject 17 had participated in the pre-clinical study in Section 5.1.2.2. Hence, the optimal
parameters from both datasets are confronted with each other in Table 6.5 under the assumption that
the experimental protocols (slightly different) produce the same outputs.

The results above revealed that the characterization of Ẽ1 and Ẽ2 significantly differed from operator
to operator. It means that the accuracy of elastic moduli assessment is crucially impacted by the
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Figure 6.19: E2 assessment sensitivity regarding the change in the environmental conditions.

Table 6.5: Comparison of the anisotropic material parameters characterization conducted by two operators on
subject 17.

Operator 1 Operator 2
φ̃ 40.9 ± 8.2 ◦ 43.07 ± 14.14 ◦
Ẽ1 1.35 ± 0.65 [MPa] 4.60 ± 2.40 [MPa]
Ẽ2 0.43 ± 0.07 [MPa] 1.08 ± 0.20 [MPa]

operator’s interaction with the equipment. Suppose one examines in detail the human actions in the
experimental protocol (Sec. 6.1.1.2). In that case, some tasks will be recognized as a potential reason
for the mechanical response variability between operators, for instance, in step 10. In this task, the
operator needs to lower the probe progressively until making very light contact with the skin. The
latter is executed while guided by personal perception, unlike other tasks, where measurement tools
are used, hence less variability. As a matter of fact, laying the probe on the skin surface with some
indentation would increase the friction on the interface. Consequently, the deformation may encounter
energy loss. The captured displacement would then be smaller, and the stiffness would increase. For
identification accuracy, step 10 in the protocol must be assisted with a standardized measurement tool.

Nevertheless, one encouraging result to deduce from this study is that the assessment of Langer’s line
faced negligible operator effect. The values of φ̃ were in accordance with both operators. Therefore,
one could state that the MARSAC-CutiScan®system is robust in identifying the anisotropy axis on the
skin.

Conclusions

After describing in the previous chapter themethodology developed around theCutiScan®for anisotropy
characterization, the actual chapter addresses its application to a clinical trial dataset. The study aimed
first place to analyze the intra-subject variability of the anisotropic material parameters, for instance,
the Langer’s line and the elastic moduli along and across it. Therefore, 30 subjects (7 Males and 23
Females), aged between 18 and 50, took part in the campaign at the University Hospital of Besançon.
Every subject participated in a mechanical measurement on the interior left forearm for 1 hour, con-
ducted three times, and preceded by a measure of skin thickness. The mechanical measurement
consisted of a multi-axial annular suction at 21 pressure levels, from 100 to 500 mbar. By means
of the DIC technique, whose algorithm is embedded in MARSAC, the video frames that cover the
full creep-relaxation periods during the skin deformation were converted into 360-degree transient
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displacement fields. By the end of the trial, 30 × 3 × 21 sets were collected and ready to use for
studying the viscoelasticity and anisotropy behaviors. The database is itself an achievement, which
can be helpful for the biomechanics community in the context of open science if the owners, University
of Franche-Comté and the hospital of Besançon, accept to share it publicly.

With a focus on the anisotropy aspect, the data analysis was conducted exclusively to the quasi-static
state, at pressure 300 mbar, i.e., the viscoelasticity has not been addressed. Frequentist statistics
methods were used to quantify: (i) the variability of mechanical properties between all subjects and
(ii) the significance of discards regarding a quantity between two groups. The groups were formed
accordingly to sex, Females and Males, and age, Generation I (16 subjects under 29) and Generation
II (14 subjects above 29). For the inter-subject variability, the averages values were φ̃all = 21.6±8.3 ◦,
Ẽall

1 = 2.70 ± 1.76 MPa, and Ẽall
2 = 0.35 ± 0.18 MPa. One could conclude from the deviation in

φ̃all = 21.6 ± 8.3 ◦ that Langer’s line orientation on a human’s forearm is in 95% of the cases between
13 and 30 ◦. The relative variability between individuals of E1 and E2, no less than 50 %, combined
with high discard of elastic moduli in the literature, does not lead to stipulating the existence of
universal skin stiffness. On that account, on the issue of modeling the peripheral healthy skin to the
keloid scar, one needs to identify specifically the patient’s material parameters interpreted as the skin
stiffness. As for the anisotropy, the modeler could rely on the presented clinical trial results to fix the
parameter representing the main collagen fiber direction, with an uncertainty of 8.3 ◦.

The quantification of variability significance was run between partial groups for different quantities:
skin thickness and material parameters. As such, the Males’ dermis is mostly thicker than the Fe-
males’ with a Pv < 0.0001, but not the epidermis. The aging did not affect the skin thickness variation
(at least for subjects under 50) since the difference was insignificant for the dermis and epidermis.
Besides, the analysis of the material parameters revealed that Langer’s line is sex-related according
to the result Pv < 0.005. Actually, the anisotropy axis for both sexes was φ̃Female = 20.6 ± 7.9 ◦ and
φ̃Male = 31.4± 7.5 ◦. As far as I know, this finding has not been reported in the literature and might be
one of the relevant contributions of the thesis. In addition, the investigation of the operator’s influence
led to pertinent results about the accuracy of the methodology. Precisely, two operators characterized
the anisotropy of the same subject’ skin. The identification outcomes displayed large discards for the
elastic moduli but negligible for Langer’s line. Accordingly, the MARSAC-CutiScan®pipeline is a
serious candidate for identifying the anisotropy axis in human skin with encouraging accuracy.
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Conclusions

Contributions

No matter how many studies are carried out to characterize the mechanical properties of the skin and
relative scars, they remain ill-defined and uncertain. Like dozens of recent studies, this dissertation
participated in answering questions arising from the observations with model-based approaches. By
the end of the journey, we need to highlight the contributions for better novelty emphasizing. They
are inventoried hereafter within two interconnected topics. The first topic focuses on the mechanical
characterization of a bi-material composed of keloid scar and healthy skin, which undergoes large de-
formation. Both materials were initially assumed to be isotropic to increase the complexity gradually.
Later, the undamaged skin’s anisotropy was addressed in the second topic to improve the bi-material
modeling. Another link to be hinted between the two topics is that assessing precisely Langer’s line
could spare the incised skin (in surgery, for instance) from developing abnormal wounds that would
become keloids later.

Bi-material Mechanical Characterization
This project sought to forward a medical solution to contain a patient-specific keloid scar and prevent
its growth. For that purpose, an open-source numerical pipeline, namely, SofTI, has been built in
FEniCS based on continuum mechanics, scientific computing, and in vivo experiments. Given the
similarities inter living tissues, from a mechanical point of view, SofTIwas conceived to include all
soft tissues.

Chapter 2 described the structure and methods of SofTI as follows. Experimental data, such as
force-displacement curves and displacement 2D fields captured from a uni-axial extension, are input
for primary treatment and formatting. A part of them is used to set boundary conditions of a forward
FE solver that simulates the keloid/healthy-skin deformation. The geometry of tested heterogeneous
bi-material needs to be provided. As for the behavior law, it can be implemented effortlessly with
a strain energy density function. Next, an optimization algorithm iteratively updates the forward
solver (for each new parameter set) until reaching a small discrepancy between the simulation and
experimental data. In the outputs, the stress field of the whole domain is obtained for the optimal pa-
rameters. With further processes, the forthcoming shape of the keloid could be predicted. Therefore,
a medical solution would be advised. Besides, the validation of the forward and optimization solvers
showed two promising results: the simulation with Gent model using FEniCS framework, and inverse
identification of bi-material parameters through a constrained optimization.

In Chapter 3, the accuracy of the identified model parameters was quantified for different uncertainty
sources, mesh discretization, measurement noise, data quantity, boundary conditions, and the 3D di-
mension. The latter could significantly affect the estimation. Hence, defining low uncertainty ranges
and criteria was aimed in that study. To achieve this objective, synthetic data used as reference were
generated on an extremely fine mesh using an arbitrary parameter set, taken as reference. Quantifying
the influence of mesh discretization on the parameter identification led to generating an optimal mesh
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that could produce approximately the same solutions as the reference but with a lower computation
cost. The discretization study revealed that linear elements increase the possibility of converging
toward the optimal set and that quadratic elements improve accuracy. Accordingly, a strategy assem-
bling the two types of elements was made up to ensure convergence starting from a far initial guess.
Furthermore, with the measurement deviation analysis, it was possible to set a threshold for data noise
to secure accuracy in parameter estimation. Additionally, testing several subsets with different steps
from the entire dataset could shed light on the data quantity needed to reduce uncertainty. As for
the boundary conditions, a parametric study with varying proportions of topology was conducted.
As a result, a mesh domain whose boundaries have negligible influence on the mechanical response
was determined. Last but not least, exploring the forward solver in 3D dimensions could confirm the
necessity of considering the thickness in the model.

Considering the accuracy limits set in the previous study, Chapter 4 presents the application of the
method on a dataset acquired from an actual experiment performed on the upper arm of a 22-year-old
Caucasian female subject. By combining the force-displacement curve and DIC-issued displacement
fields, the material parameters of the keloid and the surrounding skin were assessed, with and without
an additional contra-lateral test. Because of imperfections in the extension test, the observation zone
for the DIC field had been restricted. Thus, identifying the bi-material parameters at once could not
succeed. Conversely, with additional data from a similar experiment on the other upper arm, the
inverse solver could determine the parameters. The results might witness the advantage of employing
the Gent energy function to fit the experimental data for keloid scar and healthy skin undergoing large
deformation. After all, the Gent model was selected for its similarity with skin in terms of limited
extensibility when approaching singularity. Later, by imposing a pre-stress field, the Cauchy stress
tensor was solved on every element and interpolated all over the domain. Consequently, maps of the
normal and shear components have exposed the stress concentration areas that could be responsible for
keloid propagation. Containing the tumor would start by countering the effort in those critical zones.
A medical device specification, as well as technical suggestion, were proposed for this patient-specific
case.

Characterization of the Anisotropy of the Human Skin
The second project addresses the anisotropy aspect of undamaged skin. With the aim to identify
Langer’s line, another open-source numerical framework, MARSAC, has been developed and de-
scribed in Chapters 5 et 6. It consists of two principal procedures: (i) deformation measurement with
a multi-axial annular section test and (ii) anisotropic material parameters identification by fitting an
analytical model.

Chapter 5 describes the experimental, analytical, and numerical methods linked to MARSAC. In the
first step, by applying negative pressure over an annular section on the skin surface, the tissue is sucked
perpendicularly, causing a stretch in the central area in all directions. This procedure is performed
with a commercial device probe, CutiScan® CS 100. Two technical weaknesses had to be overcome
for better use of the equipment. For reproducibility, a support was designed and fabricated to hold
the probe firmly and guarantee reasonable control of its motion. Since the original software provides
incomplete data, a DIC-based framework has been adapted to extract the full displacement data from
the recorded videos during the tests. The second step consists of establishing an analytical solution
deriving from the orthotropic linear elasticity to capture observed deformation, which is more likely
ellipse-shaped. The presence of principal orthogonal directions characterizes the model. The last
step is the identification of the material parameters, which is accomplished in two levels. Geometrical
ellipse-curve parameters are assessed with an inverse problem, then used to retrieve the mechanical
parameters. The latter are Langer’s line and skin stiffness along and across it. Thanks to the center
shift parameters added to the optimization problem, the model fitting was highly accurate, which may
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help secure the reproducibility of the test. To test its robustness, MARSAC methdology was applied to
a 30-test series, where the mechanical parameters were identified for each. The day-to-day variability
study revealed that the equipment allows determining Langer’s line and the stiffness across it with high
confidence. With a free-ready-to-use framework, the surgeon could rapidly determine Langer’s line
on the patient before operating an incision. In a further study, two contributions were proposed. First,
an orthotropic extension of the hyperelastic Gent model was implemented within FEniCS. Second,
an application of the Bayesian inference in the optimization to estimate the mechanical parameters
along with uncertainty directly. These results showed that adding more informative data, even with
moderate measurement error, will help decrease the uncertainty.

The last Chapter reports the results of a clinical trial at the University Hospital of Besançon, involving
30 volunteers to analyze the subject-to-subject variability of anisotropic material parameters. By the
campaign’s end, the database contained 1890 multi-axial stretch test records. Every record can be
divided intomultiple frames processedwithDIC to generate 360-degree creep-relaxation displacement
fields. In the context of open science, the database could be helpful for the biomechanics community
if the owners, FEMTO-ST institute and University Hospital of Besançon, agree to share it publicly.
By ignoring the viscoelasticity effects, the study focused on quantifying the variability of mechanical
properties at the quasi-static state between all subjects and the significance of differences regarding a
factor between two given groups. The groups were formed accordingly to sex, Females and Males,
and age, Generation I and Generation II (with almost the same number of subjects each). Global
mean and standard deviation over all the subjects showed that Langer’s line could have a universal
orientation on the forearm, unlike skin stiffness in both orthogonal directions. Therefore, when
modeling the peripheral healthy skin to the keloid scar, one would fix the parameter representing
the main collagen fiber direction in the hyperelastic energy function. Moreover, The quantification
of variability significance was conducted between partial groups for skin thickness and material
parameters. Consequently, the Males’ dermis was found to be mostly thicker than the Females’. Also,
the analysis revealed that Langer’s line is sex-related. This finding could not have been reported
in the literature and might be one of the relevant contributions of the clinical trial. In addition,
the investigation addressed the operator’s influence on reproducibility. Therefore, the Langer’s line
values obtained by two different operators displayed negligible discards, which encourages confidently
applying the MARSAC-CutiScan pipeline in the future.

Limitations

If not for several limitations listed below, the results would have been more conclusive.

• Computation capacity. Analytical solutions are known to be a time and memory saver. How-
ever, advanced problems in physics are commonly approximated with numerical solutions. The
duration and the memory size required for the computational process represent a considerable
impediment for numerical models like the FEMU-based inverse problem, given the hardware
supplied to conduct the thesis, . Concerning the memory size, the forward solver ought to fail if
the linear system is on the order of millions of degrees of freedom. In other words, simulating
the 3D model with finer elements (to reach convergence) is difficult. On top of that, for the
optimization process, the FE solver must run for many iterations, and thus the computation
time will increase drastically. Although parallel programming could be considered to reduce
the cost, it is still demanding in terms of memory in our situation. Improving the computer
performance would secure fast and recursive simulations, such as applying Bayesian inference
to full 3D FE models.

• Patient-specific data. The SofTI method was applied to the dataset available in Biomecat’s
repository. With lots and various cases of keloidic scars, we could have analyzed the method’s
robustness and had first-hand experience to improve the efficiency. One of the proposals
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to overcome this constraint is initiating collaborations with hospitals in countries with high
abundance rates of keloid and conducting the experiments. Or, one could create an open
international database to receive data compatible with SofTI’s input format: force-displacement
curve and deformation video records. The collaborators would have to follow a standardized
protocol for better DIC accuracy, for instance, camera position and ambient brightness.

• CutiScan reproducibility. The intra- and inter-subject variability study of anisotropic prop-
erties exhibited weak reproducibility of skin stiffness along Langer’s line. According to the
adopted model, higher stiffness is inversely proportional to strain. The latter was mostly in-
significant. Therefore, its sensitivity had a major impact on the variability of skin stiffness along
Langer’s line. It has been reported that the perpendicularity of the probe with the skin surface
was manually controlled, which may contribute to the fluctuation of the small strains. As such,
adding a function to the device to achieve perfect perpendicularity and quasi-null contact with
the tested sample automatically.

• Sexual parity In the clinical trial, there were three times more Females than Males. The
statisticalmethods used in data analysis accounted for the sample size, such as P-value. However,
the difference in sample sizes between the two groups could not impact some results if the
variability is too significant, like for the dermis thickness. Nevertheless, ensuring parity between
volunteers would eliminate doubts.

Perspectives

With a multifaceted problem and due to technical limitations and time constraints, some specific
questions were left unanswered and can be addressed later as partial or complete research projects.
The following items detail proposals for future research:

• Upgrade the SofTI method to full 3D geometry. The actual 2D geometry of SofTI incorpo-
rates the average thickness of the keloid body and neglects its out-plane height variation. The
next step will be considering the real shape of keloids and the site’s curvature, which would
allow characterizing non-flat anatomical sites too.

• Develop a user-friendly version of the SofTI framework for surgeons with no prior experi-
ence inmechanical modeling. SofTI has no graphical interface and some principal operations,
for instance, data treatment and parameter identification, are performed by hand. As a consid-
erable amount of patient-specific cases is required to improve the results, the process should be
executed autonomously in the easiest possible way.

• Apply the DWR method to automatically generate adaptive meshes. The adaptive mesh
studied and applied in Chapters 2, 3, and 4, was generated with manually-mapped nodes
over the discretization error zones. Generating automatic adaptive mesh could optimize error
minimization for optimal computation cost.

• Test several hyperelastic models for the keloid/healthy-skin bi-material and investigate
their dependency on the Cauchy stress field. The Gent model was implemented to fit
experimental data and identify the material parameters, which led to the mechanical stress
quantification in and around the keloid. It would be more convincing to compare those stresses
against other hyperelastic models fitting the data.

• Master the contact of the CutiScan® probe with the skin surface. The experimental device
showed low reproducibility of the displacement measurement along Langer’s line. It was linked
to the contact probe/skin operated by hand. For such low deformation correlated with stiffer
direction, it would be necessary to design a technical solution to ensure a uniform and consistent
contact.
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• Construct an in vivo Langer’s lines map. The MARSAC method could be applied to different
areas of the human body to establish a global new Langer’s lines map. The actual one referenced
in the literature was retrieved from corpses one century and a half ago. The quick process of
MARSAC and the small size of its relative device are assets for carrying out such an ambitious
work.

• Extend the analysis of data from the clinical trial. Besides the identification of Langer’s
line on every volunteer, the clinical trial data could be utilized to (i) analyze the effects of
viscoelasticity (using the whole creep-relaxation cycle), (ii) fit nonlinear hyperelastic models
(for all suction pressures), (iii) employ the Bayesian inference (to study subject-to-subject
uncertainty), (iv) train artificial neural networks, etc.
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Figure A.1: Parameter identification performed on noisy dummy data for the weakly nonlinear behavior case.
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Figure A.2: Parameter identification performed on noisy dummy data for the highly nonlinear behavior case.
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B Patient-Specific Data: Contra-Lateral Experiment
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Figure B.1: Initial and final configuration of the healthy-skin measurement domain.
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Figure B.2: Uncertainty analysis of the DIC process and validation range of the experimental data for the
healthy-skin case.
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C Principal Stresses and Vectors

1

2 import ufl
3 import dolfin
4

5 INTERPOLATION_DEGREE = 2
6

7 def stress_tensors(u, material_parameters , material_markers):
8 # u: displacement field
9

10 I = dolfin.Identity(2)
11 F = dolfin.variable(I + u)
12 C = F.T*F
13 J = dolfin.det(F)
14 I1 = dolfin.tr(C)
15 mu = material_parameters[0]
16 jm = material_parameters[1]
17 bool_keloid = material_markers[0]
18 bool_healthy = material_markers[1]
19 psi = -0.5*mu*(jm*dolfin.ln(1 - (I1 - 3)/jm) + 2*dolfin.ln(J))
20 psi_all = psi*bool_keloid + psi*bool_healthy
21 PK1 = dolfin.diff(psi_all, F) # Piola-Kirchoff I tensor
22 Sigma = dolfin.inv(J)*PK1*F.T # Cauchy stress tensor
23

24 return dolfin.as_tensor([[Sigma[0, 0], Sigma[0, 1]],
25 [Sigma[1, 0], Sigma[1, 1]]])
26

27 V_stress = dolfin.TensorFunctionSpace(mesh_domain , ’DG’, INTERPOLATION_DEGREE)
28 U_stress = dolfin.FunctionSpace(mesh_domain , ’CG’, INTERPOLATION_DEGREE)
29 stress_tensor = stress_tensor_func(u, material_parameters , material_markers)
30 stress_tensor = dolfin.project(stress_tensor , V_stress)
31

32 sXX = stress_tensor.sub(0)
33 sYY = stress_tensor.sub(3)
34 sXY = stress_tensor.sub(1)
35

36 eig_max = (sigma_XX + sigma_YY)/2 + dolfin.sqrt(((sigma_XX - sigma_YY)/2)**2 +
sigma_XY**2))

37 eig_min = (sigma_XX + sigma_YY)/2 - dolfin.sqrt(((sigma_XX - sigma_YY)/2)**2 +
sigma_XY**2))

38

39 nX_max = -stress_tensor[0, 1]/(stress_tensor[0, 0] - eig_max)
40 nY_max = 1
41

42 nX_min = -stress_tensor[0, 1]/(stress_tensor[0, 0] - eig_min)
43 nY_min = 1
44

45 sigma_bar = dolfin.Function(V_stress, name="Principal_Stress")
46 sigma_bar.assign(dolfin.project(dolfin.as_tensor(((eig_max ,0.),(0.,eig_min))),

V_stress))
47

48 psi_bar_max = ufl.atan_2(nY_max, nX_)
49 psi_bar_max = ufl.atan_2(nY_min, nX_min)
50 eig_dir_max = dolfin.project(psi_bar_max , tress)
51 eig_dir_min = dolfin.project(psi_bar_min , tress)
52

53

Algorithm C.1: Implementing the eigenvalues and eigenvectors of the Cauchy stress.

207



D Orthotropic Linear Model: Finite Element versus Analytical Solu-
tions
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Figure D.1: Comparison of the model FEM and analytical solutions for several parameters.
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E Intra-Subject’s Skin Anisotropy Characterization

Table E.1: Numerical results of the inverse identification of m̃g for every test. Published in [402].

Test a [mm] b [mm] φ[°] x10[µm] x20[µm] Rcor

1 1.0029 1.0632 60.24 −17.8 14.9 0.9849
2 0.9990 1.0072 72.21 −8.3 1.7 0.9424
3 0.9992 1.0290 30.77 −4.7 −2.7 0.9687
4 1.0028 1.0306 27.61 −2.6 3.0 0.9685
5 1.0035 1.0282 31.25 −3 −8.0 0.9578
6 1.0020 1.0221 50.26 −2.7 18.9 0.9813
7 1.0039 1.0337 33.41 1.3 5.8 0.9774
8 1.0078 1.0381 43.09 −1.0 9.5 0.9868
9 1.0041 1.0301 42.35 −0.9 8.4 0.9774
10 1.0039 1.0485 36.95 −6.3 21.5 0.9889
11 1.0073 1.0321 50.80 −8.1 9.2 0.9648
12 1.0061 1.0363 46.39 2.3 13.4 0.9585
13 0.9948 1.0230 40.82 4.6 0.7 0.9826
14 1.0024 1.0265 26.25 −8.7 8.5 0.9834
15 1.0004 1.0316 37.36 −1.5 −19.5 0.9865
16 1.0058 1.0337 40.65 −6.9 6.5 0.9710
17 0.9991 1.0289 42.15 −4.0 0.3 0.9696
18 1.0063 1.0327 64.82 −9.4 −13.3 0.9866
19 1.0002 1.0260 28.81 6.0 7.0 0.9730
20 0.9960 1.0255 48.23 −1.7 17.0 0.9887
21 1.0017 1.0323 43.45 −11.7 6.7 0.9727
22 1.0002 1.0266 30.70 −1.3 12.1 0.9700
23 1.0024 1.0165 42.41 −1.9 −20.4 0.9902
24 0.9975 1.0266 49.16 3.0 3.4 0.9751
25 1.0077 1.0408 49.72 6.3 −13.0 0.9820
26 1.0039 1.0287 45.48 −2.2 −20.9 0.9786
27 1.0007 1.0201 43.09 5.4 −5.6 0.9660
28 0.9960 1.0368 46.48 12.9 −0.1 0.9861
29 0.9986 1.0175 63.46 6.7 7.5 0.9487
30 1.0024 1.0376 36.34 −0.2 8.6 0.9746
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Figure E.1: Model fitting with the identified parameters of the volunteer’s skin for all test.
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F Bayesian Inference

The likelihood links the model to the measurement data and equals 1 when the model and observations
are exactly the same. But in reality, a discard vector εnoise between them takes place and corresponds
to measurement and modeling errors. For a fixed pressure p, one could write

y = f (m, X) + εnoise (6.1)

where f : RNd → RNd is the model (5.6) dependent on the set parameters and the grid nodes
coordinates X . The likelihood is set as the probability of the difference εnoise to be null with respect
to a sampled parameter set. It is also interpreted as a distribution of the ’nullness’ of the objective
function JB to be maximized. According to Gaussian law properties vis-à-vis variables independency,
the posterior for measurement point i can play the role of the prior for measurement point i + 1. Thus,
employing the likelihood expression for independent measurements uMARS(X i) (i = 1, 2, ..., Nd) reads

P(y |m) =
Nd∏
i=1

πlikelihood (
JB(X i,m, yi)

)
(6.2)

with the cost function

JB(X i,m, yi) = ‖u(X,m) − uMARS
i (X i)‖2 (6.3)

According toRappel et al.’s tutorial [397], we propose correlating likelihood distributionwith available
standard deviation from the experiment, si on every X i node. As the number of data series is 30 for a
given pressure, the noise is assumed to be normally distributed around the cost.

πlikelihood (
JB(X i,m, yi)

)
=

1
√

2πsi
exp

(
−
J 2

B (X i,m, yi)

2s2
i

)
(6.4)

The observation data are the interpolated displacement uMARS and their respective standard devia-
tions si obtained from one displacement field resulting from the averaging of the 30 fields. Figure F.1
demonstrates the displacement norm and the deviations evaluated along a circle.

The prior distribution for any m must be physically correct and consists of two quantities, mprior and
Γprior, respectively, the mean vector and the covariance matrix of the prior. Setting the prior is the
most challenging procedure for the Bayesian inference regarding its interpretation difficulty. The user
must establish it.

P(m) ∝

{
exp

(
−1

2 (m − mprior
)T
Γ−1

prior(m − mprior
) )
, if E1 > 0 and E2 > 0

0, otherwise
(6.5)

Through Equations 5.21 and 6.5, we obtain the expression of the posterior (Eq. 6.6). The latter
is used then to drive the random samples toward ’best’ parameters among thousands, based on the
Metropolis-Hastings algorithm, a Markov Chain Monte Carlo technique (MCMC).

P(m |y) ∝ exp

(
−

1
2

[
(m − mprior

)T
Γ−1

prior(m − mprior
)
+

Nd∑
i=1

J 2
B (X i,m, yi)

2s2
i

])
(6.6)

MCMC method can be divided into two sub-methods: Markov-Chain for drawing parameter samples
strategy to ensure the convergence, and Monte-Carlo for approximating the quantities of interest
numerically. Once the posterior is established after Ns drawn samples, let us quantify three quantities:
the MAP, the mean mpost, and the covariance matrix Γpost.

MAP = argmax
ms ;s=1,2,...,Ns

P(m |y) (6.7)
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The mean of the posterior is by definition (Np is obtained after burning a part of Ns)

mpost =

∫
RNp

mP(m |y) dm (6.8)

However, as m is not continuous, theMonte-Carlo method is implemented to approximate the integral.
For a large number of samples [397]:

mpost = lim
Ns→∞

1
Ns

Ns∑
s=1

ms (6.9)

Moreover, the Γpost matrix elements are obtained as follows [348]:

(Γpost)i j =
1

Ns − 1

Ns∑
s=1

(
(ms)i − (m̄post)i

) (
(ms)j − (mpost)j

)
, i = 1, 2, ..., Np, j = 1, 2, ..., Np (6.10)

(a) 2D mean-displacement field (b) Standard deviation over yellow ring, r = 1.5 mm

Figure F.1: Example of observation data to be used for the Bayesian inference. (a) the mean value of
displacement vector on all nodes for a given pressure (p = 300 mbar in this case). (b) the displacement uMARS

i
and its relative standard deviation si for all angles.
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Figure F.2: Evolution of the parameter samples processed with the Metropolis-Hastings algorithm.
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Figure F.3: Distribution of the parameter samples processed with the Metropolis-Hastings algorithm.
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Figure F.4: Improving the prior knowledge the with Bayesian inference.
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G Clinical Trial

Table G.1: Complete results of the parameter identification process on the clinical trial data.

Subject Sex Age φ [◦] a [mm] b [mm] x10 [µ m] x20 [µ m] Rcor E1 [MPa] E2 [MPa]

1 F 20
20.3 1.0073 1.0401 -4.9 -9.0 0.9456 0.9612 0.2699
9.2 1.0084 1.0727 -2.9 10.0 0.9729 0.8358 0.1557
20.3 1.0038 1.0465 0.1 -10.1 0.9694 1.8676 0.2495

2 F 20
25.6 0.9953 1.0150 1.3 -18.2 0.9910 -1.4831 1.0789
16.2 1.0013 1.0212 -4.0 -15.7 0.9834 5.5031 0.5538
18.7 1.0029 1.0217 4.9 -10.3 0.9327 2.4412 0.5149

3 M 22
46.6 1.0018 1.0284 -0.5 -23.6 0.9650 3.9790 0.4136
40.8 0.9798 1.0027 3.9 -7.8 0.9796 -0.3476 -0.9809
23.6 0.9936 0.9995 2.0 -1.4 0.6123 -1.0895 -2.3110

4 F 23
53.2 1.0010 1.0255 5.0 -34.8 0.9905 7.0251 0.4694
43.6 0.9982 1.0331 -3.9 -19.2 0.9795 -3.9987 0.3876
8.1 0.9990 1.0280 -0.4 -4.9 0.9674 -7.0110 0.4510

5 F 23
12.1 1.0088 1.0401 -4.7 -2.1 0.9719 0.7972 0.2635
24.7 1.0207 1.0456 -3.9 -11.9 0.9001 0.3381 0.2007
28.7 1.0038 1.0210 1.2 -16.5 0.9770 1.8577 0.5165

6 F 24
38.7 1.0143 1.0401 -14.1 -12.8 0.9804 0.4899 0.2419
10.9 0.9854 1.0256 -6.0 -1.7 0.9259 -0.4818 0.8396
33.3 0.9991 1.0440 -2.2 -12.5 0.9935 -7.5112 0.2844

7 M 24
24.4 0.9985 1.0264 -1.9 -2.3 0.9270 -4.5320 0.4872
28.2 0.9982 1.0173 -4.2 -11.6 0.7561 -3.9189 0.7693
34.7 0.9829 1.0222 -2.3 -5.7 0.8164 -0.4111 1.3137

8 F 24
28.0 1.0058 1.0419 -0.9 1.1 0.9694 1.2111 0.2657
22.5 1.0017 1.0499 -0.4 0.6 0.9405 4.0456 0.2401
22.5 1.0080 1.0420 -0.6 0.1 0.9319 0.8817 0.2564

9 F 24
28.0 1.0018 1.0281 1.2 -10.3 0.9575 4.0017 0.4177
40.1 0.9958 1.0236 -7.5 -18.8 0.9875 -1.6850 0.6013
44.7 0.9985 1.0067 -5.3 -31.3 0.9967 -4.5827 2.2051

10 F 25
12.6 1.0154 1.0744 -17.2 -25.3 0.9679 0.4544 0.1430
17.2 0.9999 1.0473 5.1 -6.8 0.9018 -85.0850 0.2602
13.7 1.0027 1.0548 -1.6 9.2 0.9732 2.5880 0.2162

11 F 25
22.4 0.9988 1.0397 -2.5 -10.3 0.9795 -6.0628 0.3170
59.5 0.9978 1.0036 2.0 -8.4 0.9830 -3.2526 6.1349
36.1 1.0085 1.0340 -10.5 -6.3 0.9157 0.8216 0.3038

12 F 25
4.4 1.0052 1.0447 0.3 -0.1 0.9759 1.3522 0.2532
12.4 1.0141 1.0287 -11.9 -18.2 0.9905 0.4989 0.3128
10.3 1.0075 1.0378 2.2 -7.1 0.9805 0.9297 0.2829

13 F 26
33.2 0.9983 1.0293 -3.0 -0.3 0.9515 -4.2063 0.4382
17.4 1.0199 1.0332 -6.2 -31.0 0.9911 0.3528 0.2553
25.2 1.0009 1.0203 0.8 -26.2 0.9903 7.7214 0.5853

14 F 26
16.5 1.0090 1.0385 -6.9 -4.3 0.9167 0.7802 0.2717
17.5 1.0067 1.0454 4.0 -7.5 0.9443 1.0524 0.2442
13.2 1.0050 1.0433 0.1 -1.3 0.9806 1.3938 0.2610

15 F 26
15.7 1.0053 1.0389 9.2 0.5 0.9600 1.3281 0.2867
23.1 1.0000 1.0342 4.2 -10.0 0.9290 -195.8380 0.3601
16.3 1.0019 1.0367 1.5 9.2 0.9684 3.7673 0.3231

16 F 26
13.9 1.0006 1.0139 -1.6 -12.4 0.9480 11.7634 0.8544
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24.5 1.0029 1.0192 0.0 -14.9 0.9811 2.4276 0.5761
28.0 1.0077 1.0247 3.6 -0.8 0.9512 0.9062 0.4028

17 M 29
27.1 1.0010 1.0132 -0.1 -2.4 0.9584 7.0040 0.8812
43.1 1.0032 1.0072 1.2 10.1 0.9843 2.1978 1.2809
61.7 0.9883 1.0012 0.9 -15.4 0.9526 -0.5991 -1.6150

18 F 30
18.7 0.9965 1.0097 -7.2 -13.2 0.9887 -2.0174 1.7419
-0.5 1.0121 1.0377 1.0 -6.5 0.9221 0.5771 0.2624
8.1 0.9934 1.0200 0.1 -16.0 0.9895 -1.0555 0.8208

19 F 30
-0.6 1.0134 1.0342 -3.6 -18.4 0.9753 0.5234 0.2776
14.3 1.0025 1.0224 -6.4 -9.5 0.9607 2.8191 0.5063
14.6 0.9969 1.0217 -9.0 -18.8 0.9819 -2.2483 0.6363

20 F 32
22.1 1.0074 1.0297 -7.4 -4.2 0.9518 0.9431 0.3486
25.7 1.0011 1.0170 -4.8 -10.1 0.9713 6.1926 0.6887
22.0 1.0116 1.0355 -13.1 -2.4 0.9570 0.6031 0.2776

21 F 32
16.4 1.0061 1.0263 -5.9 -22.7 0.9861 1.1469 0.3981
18.2 1.0108 1.0352 1.0 -13.1 0.9758 0.6515 0.2839
12.7 1.0110 1.0402 2.1 -13.0 0.9711 0.6349 0.2534

22 F 33
12.7 0.9995 1.0493 1.2 -16.7 0.9802 -14.5035 0.2512
-1.0 0.9761 1.0428 13.7 -4.2 0.8495 -0.2932 0.4975
1.5 1.0034 1.0491 -8.6 -20.0 0.9680 2.0798 0.2382

23 F 35
9.1 0.9949 1.0311 -6.0 -10.8 0.9248 -1.3689 0.4511
10.3 0.9951 1.0359 -0.5 3.3 0.9705 -1.4315 0.3814
29.6 1.0006 1.0381 -10.6 -19.8 0.9876 11.6076 0.3187

24 M 38
43.5 0.9889 1.0187 -14.8 -4.0 0.9668 -0.6337 1.1856
38.7 0.9953 1.0108 1.0 -1.6 0.8838 -1.4947 1.6962
16.8 0.9915 1.0124 5.6 -2.8 0.9629 -0.8226 2.0657

25 M 39
56.8 0.9969 1.0125 -1.5 -32.5 0.9910 -2.2640 1.2099
22.5 1.0139 1.0305 -5.5 -19.2 0.9682 0.5060 0.3002
31.8 0.9970 1.0241 -10.5 -7.3 0.9848 -2.3570 0.5616

26 F 42
35.8 1.0079 1.0386 4.6 -1.3 0.9241 0.8890 0.2758
39.7 1.0109 1.0302 -2.2 -4.5 0.8251 0.6403 0.3201
35.3 0.9978 1.0349 -4.6 -8.2 0.9421 -3.2312 0.3702

27 M 45
23.4 1.0031 1.0447 -10.6 -6.1 0.9640 2.2645 0.2613
35.3 1.0389 1.0666 3.0 4.2 0.9366 0.1803 0.1282
19.0 1.0111 1.0697 -7.1 -3.1 0.9115 0.6309 0.1575

28 F 47
26.5 1.0110 1.0604 14.8 -18.2 0.9714 0.6369 0.1790
24.9 1.0208 1.0507 -4.4 -6.4 0.9506 0.3377 0.1852
32.4 1.0177 1.0520 -17.3 -30.5 0.9771 0.3971 0.1883

29 F 48
23.3 0.9912 1.0211 2.3 -7.1 0.9340 -0.7952 0.8485
15.7 0.9905 1.0019 -1.9 -26.7 0.9794 -0.7398 -2.3606
35.1 1.0022 1.0307 -12.9 -22.4 0.9914 3.2549 0.3806

30 M 49
43.8 1.0017 1.0363 -21.7 8.4 0.9798 4.1732 0.3278
43.8 1.0019 1.0171 -3.1 -5.3 0.7406 3.7754 0.6641
22.9 1.0027 1.0370 -3.8 -2.7 0.9403 2.5588 0.3147
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(a) Volunteer 4
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(b) Volunteer 20
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(c) Volunteer 25

Figure G.1: Model fitting with the identified parameters of the volunteer’s skin for some volunteers.
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