
HAL Id: tel-04216854
https://theses.hal.science/tel-04216854

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytique des données massives basée sur des
ontologies : application à la plateforme de formation

SIDES 3.0 en médecine
Adam Hegel Sanchez Ayte

To cite this version:
Adam Hegel Sanchez Ayte. Analytique des données massives basée sur des ontologies : application à
la plateforme de formation SIDES 3.0 en médecine. Modélisation et simulation. Université Grenoble
Alpes [2020-..], 2023. Français. �NNT : 2023GRALM022�. �tel-04216854�

https://theses.hal.science/tel-04216854
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques et Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Analytique des données massives basée sur des ontologies :
application à la plateforme de formation SIDES 3.0 en médecine

Large-scale ontology-based data analytics: application to the SIDES
3.0 training platform in Medicine

Présentée par :

Adam Hegel SANCHEZ AYTE
Direction de thèse :

Marie-Christine ROUSSET
Professeur des Universités, Université Grenoble Alpes

Directrice de thèse

Fabrice JOUANOT
 Université Grenoble Alpes

Co-encadrant de thèse

Rapporteurs :

BERND AMANN
Professeur des Universités, SORBONNE UNIVERSITE
FRANÇOIS GOASDOUE
Professeur des Universités, UNIVERSITE DE RENNES

Thèse soutenue publiquement le 19 juin 2023, devant le jury composé de :

BERND AMANN
Professeur des Universités, SORBONNE UNIVERSITE

Rapporteur

FRANÇOIS GOASDOUE
Professeur des Universités, UNIVERSITE DE RENNES

Rapporteur

NABIL LAYAIDA
Directeur de recherche, INRIA CENTRE GRENOBLE-RHONE-ALPES

Président

MARLENE VILLANOVA-OLIVER
Maître de conférences HDR, UNIVERSITE GRENOBLE ALPES

Examinatrice

Invités :

MARIE-CHRISTINE ROUSSET
Professeur des Universités, UNIVERSITE GRENOBLE ALPES
FABRICE JOUANOT
Maître de conférences, UNIVERSITE GRENOBLE ALPES

Large-scale ontology-based data

analytics: application to the SIDES 3.0

training platform in Medicine

by

Adam Hegel Sánchez Ayte

A thesis
presented to the University of Grenoble Alpes

in fulőllment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Mathematics and Computer Science

Grenoble, France, 2023

© Adam Hegel Sánchez Ayte 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis.

• Nabil LAYAIDA
DIRECTEUR DE RECHERCHE, INRIA
Examinateur, Président

• Bernd AMANN
PROFESSEUR DES UNIVERSITES, Sorbonne Université
Rapporteur

• François GOASDOUÉ
PROFESSEUR DES UNIVERSITES, Université de Rennes 1
Rapporteur

• Marlène VILLANOVA-OLIVER
MAITRE DE CONFERENCES, Université Grenoble Alpes
Examinatrice

iii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required őnal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

v

Abstract

Modern Big Data technologies are utilized to construct scalable RDF data infrastructure
for enabling reasoning at scale. The goal of this thesis is to conceptualize, design, and
implement a comprehensive and scalable RDF data management infrastructure, leveraging
state-of-the-art Big Data technologies. The core of the research is centered on addressing
critical aspects of RDF data management including extraction, storage, processing, and
execution of reasoning along with complex analytical queries.

This thesis takes place in the context of the SIDES 3.0 project. The aim is to transform
the current French national e-learning platform for medical education, called SIDES, into
an intelligent learning environment based on Semantic Web and Big Data technologies.

The contributions have substantial and varied impacts across different areas related with
scalable RDF data management infrastructure. The őrst is the development of an Ontology-
Based Data Access (OBDA) methodology to facilitate the evolution of a comprehensive
knowledge base, named OntoSIDES. The methodology consists of two steps: the őrst step is
manual, based on expert guidance, and involves the manual construction of the OntoSIDES
ontology enriched with rules, while the second step is automatic and involves the automatic
population of the ontology using OBDA mappings. The OBDA mappings can also be
used to modularize a RDF graph by mapping RDF quads to queries in the datasources.
This contribution showcases the feasibility of scaling ontology-based learning management
systems in the őeld of Medicine.

The second contribution is the design and implementation of a Big RDF triplestore called
TESS. TESS has a modular architecture that supports massive and reliable data updates,
complemented by GPU acceleration for enhanced processing capabilities. The layers of
TESS are data distribution, storage, query processing, transactional metadata layer, and
reasoning.

The őnal contribution is a performance evaluation of complex queries and reasoning
mechanisms to discern the most effective methods for implementing forward-chaining rea-
soning at scale in TESS. In this regard, diverse CPU-based implementations are evaluated:
serial, parallel, incremental and modular. Additionally, GPU versus CPU performance is
assessed in the context of serial forward chaining.

vii

Acknowledgements

With these lines, one of the greatest intellectual adventures of my life comes to a close.
The spark was ignited many years ago, reading Tim Berners Lee’s "Weaving the Web." It
made me understand that the web would be at the heart of a technological revolution where
knowledge could őnally be accessible to all of society.

I set myself the goal of being part of this revolution and charted a course of self-learning.
I never envisioned this journey leading to a doctorate; my only desire was to learn and share
as I learned. Looking back on my life, my passion for knowledge equipped me with an
immense willpower that enabled me to overcome the material hardships of my upbringing.

A doctoral journey is not walked alone. I owe a great deal to so many people who
guided me on which path to follow throughout my life. Within my doctoral studies, I am
eternally grateful to my supervisors Marie-Christine Rousset and Fabrice Jouanot.

Marie-Christine welcomed me under her supervision while I was working as a software
engineer in GRICAD for the SIDES 3.0 project. She taught meÐwith extraordinary
patienceÐthe essentials I needed to transition into a researcher. Her ability to instantly
comprehend the core of a problem and formalize it is truly amazing. On the other hand,
Fabrice Jouanot, with his profound knowledge about databases, played a crucial role in my
research, guiding me safely while I was building the core architecture of my triplestore. His
kindness and readiness to assist students are qualities that I will always admire.

In the SIDES 3.0 project, I am very grateful to Olivier Palombi and Grégory Mathes
from UNESS. Olivier is a visionary at the intersection of computer science and medicine.
He is always open to new ideas, a thorough researcher, and an incredibly kind person. He
was an early promoter of the digitalization of the medical education in France. Grégory
was always very comprehensive when it was difficult to őnd the right balance between my
work as a software engineer and my duties as a PhD student.

My experience at GRICAD brought me closer to Christian Lenne, Christophe Cance,
Alireza (Adrien) Moussaei and Mohannad Almasri. They are very close friends, always
willing to discuss my ideas, and I am grateful for their support throughout my years as a
software engineer, along with many others, including Yves Jacques, Lucy Ruffier, Myriam
Laurens, Nicolas Gibelin, Pierre-Antoine Bouttier, Glenn Cougoulat, and Violaine Louvet.

Before my PhD, I worked in Rome and Grenoble. In Rome, I am very grateful to
my friends at FAO: Johannes Keizer, Valeria Pesce, Antonella Picarella, Giampaolo Rugo,
Ahsan Morshed, Erna Klupacs, Teresa Iniesta, Caterina Caracciolo, and Imma Subirats.
They helped me settle in Rome during my őrst years in Europe when I barely spoke English.
Johannes, in particular, had faith in my abilities and recommended me for a PhD.

In Grenoble, I met extraordinary people who later became dear friends. While working
at INRIA, I met Armen Inants, Tatiana Lesnikova, Nicola Guillouet and Shreyas Saxena.

ix

Jerome Euzenat and Jerome David, also at INRIA, taught me the őrst steps of becoming a
researcher, and their lessons will always be cherished.

Before coming to Europe, I lived 38 years in Peru and I must express my gratitude to
my teachers and lifelong friends there. At school, Gloria Medina, Susana Ricalde, Felícita
Espino, Alicia Ypanaqué, Manuela Vásquez, Olinda Segovia, Pedro Castañeda, Manuela
Medina, and Juanita Guillén, among others, shared their wisdom and companionship with
me as I was building the pillars of my academic career. At university, Walter Gomez,
Raul Morales and Julio Tello among others with whom I shared memorable moments as
mechanical engineering students. I also want to acknowledge my lifelong friends: Juan
Alvarez, Efrain Quispe, Grober Nolasco, and Yissella Acuache. Our friendship, formed in
the early days of our lives, has endured the test of time.

Miguel Saravia, a dear friend, deserves special mention. He believed in my capabilities
at a time when my overqualiőcation made it difficult to őnd a job. Miguel was one of the
őrst to promote the expansion of Internet connectivity in rural Peru. Luis Fernando Crespo,
Andrés Gallego, and Gustavo Gutiérrez, the wise masters of the UNEC, equally deserve
acknowledgement. These mentors illuminated my university days, instilling the mantra,
"knowledge is for serving". Angel Palacios and Lourdes Puma also played vital roles, their
constant inquiries over the years demonstrating their care. Furthermore, a special nod to
Luis Huacho, who was an unwavering source of support during my initial years in Europe.
As a lifelong friend, his companionship, albeit from a distance, has been steadfast and
unfailing.

The presence of Arturo Vilca, my thesis advisor at the National University of Engineer-
ing (UNI) in Peru, was also providential throughout this journey. He supported me with
timely advice to overcome all the difficulties I encountered.

Finally, I would like to express my deepest gratitude to my family in both Lima and
Grenoble. I am profoundly grateful to my father, Feliciano, my mother, Ana, and my
siblings, Javier, Jorge, Diana, and Ricardo, who have witnessed őrsthand the challenges I
have overcome to reach this point. I extend my heartfelt thanks to their partners, Andrea,
Milagros, and Blue, for their unwavering support. I would also like to express my gratitude
to the family of my wife: Victor, Felícita, Victor Alberto, Jesús, and Angélica, who have
always been available whenever needed.

In Grenoble, words fall short to express my appreciation for my beloved wife Rosa
(Rosita) and my cherished son Elias, who together make up my whole heart. I met Rosita
when I was just 17, and since then, I’ve been blessed with her unwavering companionship.
Elias Galileo, the joy of my existence, completes our family in a way that words cannot
articulate. You two have been the bedrock of this extraordinary journey. I publicly apologize
for the times when my studies took precedence over our precious shared moments.

To everyone mentioned and those who silently supported me, thank you. This journey
has been an embodiment of a shared passion for knowledge and the power of resilience.

x

Table of Contents

Examining Committee Membership iii

Author’s Declaration v

Abstract vii

Acknowledgements ix

Table of Contents xi

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Context . 1

1.2 Our Research Focus . 2

1.3 Main contributions of the thesis . 3

1.4 Thesis outline . 3

2 Preliminaries 5

2.1 RDF data model . 5

2.2 SPARQL queries . 8

2.3 Ontology-Based Data Access (OBDA) . 11

2.4 Rule-based reasoning . 16

2.5 Summary . 20

xi

Large-scale ontology-based data analytics

3 OBDA architecture and data modularization in OntoSIDES 21

3.1 The OBDA architecture of OntoSIDES . 22

3.2 Data modularization and module extraction 36

3.3 Summary . 44

4 TESS infrastructure for Big RDF triplestores 45

4.1 State of art . 46

4.2 TESS architecture . 54

4.3 Summary . 63

5 Comparative performance evaluation of complex queries and reasoning 65

5.1 Experimental protocol . 66

5.2 Serial forward-chaining reasoning performance 72

5.3 Serial vs Parallel forward chaining performance 77

5.4 Parallel vs Incremental forward chaining performance 78

5.5 Parallel vs Modular forward chaining performance 88

5.6 CPU vs GPU serial forward chaining performance 95

5.7 Summary . 101

6 Conclusion 103

6.1 Summary of the contributions . 103

6.2 Perspectives . 104

A Other Information 107

A.1 The OBDA mappings . 107

References 121

xii

List of Figures

2.1 A RDF graph . 6

2.2 Example of SPARQL query . 9

2.3 Example of CONSTRUCT query . 10

2.4 Example of Quad CONSTRUCT query . 11

2.5 SELECT query induced by the query of Figure 2.3 11

2.6 An RDFS ontology. 13

2.7 An abstract Ontop mapping syntax . 14

2.8 A concrete Ontop mapping syntax . 14

2.9 CONSTRUCT-based forward chaining algorithm 19

3.1 OBDA architecture of OntoSIDES . 22

3.2 Extract of the OntoSIDES ontology visualized in TopBraid 24

3.3 Extract of the VOWL visualization of the full OntoSIDES ontology 26

3.4 SPIN rules based deőnition of properties 30

3.5 An example of an Ontop mapping . 31

3.6 An example of materialized view . 33

3.7 Examples of OBDA mappings using a materialized view in the source . . . 33

3.8 The dependency graph built from the 18 CONSTRUCT-based rules 35

3.9 A CONSTRUCT query to extract a speciőc module speciőed in Example
3.2.1 . 39

3.10 Example of Ontop mappings to materialize modules using RDF quads
templates . 42

3.11 A Quad CONSTRUCT query to specify a module for a speciőc student . . . 43

4.1 A generic Big RDF framework [1] . 46

4.2 HDFS architecture [2] . 48

4.3 TESS triplestore architecture . 54

xiii

Large-scale ontology-based data analytics

4.4 TESS triplestore technology stack . 55

4.5 TESS transactional metadata layer . 58

4.6 GPU scheduling [3] . 59

4.7 GPU columnar data processing [3] . 60

4.8 Adaptive query execution [4] . 60

4.9 CONSTRUCT-based parallel forward chaining algorithm 62

4.10 TESS parallel forward chaining . 63

5.1 Performance evaluation . 65

5.2 18 CONSTRUCT queries over OntoSIDES knowledge graph 68

5.3 Serial performance comparison . 72

5.4 Forward-chaining completeness . 73

5.5 Correctness of the induced SELECT queries 74

5.6 Evaluation of serial forward-chaining reasoning time. Best viewed in color. 75

5.7 CONSTRUCT queries performance. Best viewed in color. 76

5.8 The 5 most expensive queries performance. Best viewed in color. 77

5.9 Serial vs Parallel performance comparison 77

5.10 Parallel vs serial performance. Best viewed in color. 78

5.11 Parallel vs Incremental performance comparison 79

5.12 Reformulation of the CONSTRUCT queries (from Q1 to Q9) for incremental
reasoning. 81

5.13 Reformulation of the CONSTRUCT queries (from Q10 to Q18) for incre-
mental reasoning. 82

5.14 Reformulation of Q3 conform to SPARQL 83

5.15 SQL translation of the reformulated query Q3 shown in Figure 5.14 . Dis-
played in two columns because it is a very long query. 86

5.16 Optimised SQL translation using SQL IN operators in red color 87

5.17 Incremental vs Parallel forward chaining reasoning time 88

5.18 Parallel vs Modular performance comparison 89

5.19 Query Q3 . 90

5.20 CONSTRUCT QUAD reformulation for query Q
′
3 90

5.21 18 CONSTRUCT queries for modular reasoning. Showing queries from
Q1 to Q9. 92

5.22 18 CONSTRUCT queries for modular reasoning. Showing queries from
Q10 to Q18. 93

xiv

List of Figures

5.23 Modular-based forward-chaining reasoning time 94

5.24 Modular-based forward-chaining reasoning time 95

5.25 CPU-based vs GPU-based serial performance comparison 96

5.26 CPU vs GPU comparison of the CONSTRUCT queries performance over
datasets D1, D5, and D10 . 99

5.27 CPU vs GPU comparison of the CONSTRUCT query performance on the
very large dataset . 100

5.28 CPU vs GPU serial forward-chaining reasoning time applied to the very
large dataset . 100

xv

List of Tables

2.1 RDFS assertion rules . 17

2.2 RDFS constraint rules . 17

3.1 The evolution of OntoSIDES’ size over the years 34

3.2 The evolution of the size of inferred data in OntoSIDES over time 36

5.3 Ontosides datasets . 70

5.4 Datasets and incremental deltas (size in millions triples). Best viewed in
color. 84

5.5 Size of module-based datasets (size in billions triples/quads) 91

5.6 Spark parameters for TESS . 97

xvii

Chapter 1

Introduction

1.1 Context

Nowadays, Big Data is revolutionizing the way we think about data management systems.
Technological advances in computing and large-scale storage are allowing these systems to
evolve and address increasingly complex challenges in processing and analyzing massive
volumes of data. Big Data technologies are at the center of an unprecedented revolution
in history, where the processing of vast amounts of information on an industrial scale
is leading to important discoveries and advances in őelds as important as medicine and
artiőcial intelligence.

In recent years, RDF (Resource Description Framework) has become one of the most
popular options for representing complex knowledge. RDF uses graphs to model knowledge,
making it easier for humans to represent and more efficient for machines to process. As
one of the pillars of the Semantic Web, RDF is commonly used to provide a graph-based
representation of ontologies. Data modeled with RDF can be queried using SPARQL,
a query language with powerful querying and reasoning capabilities. RDF’s ability to
represent complex relationships between data and its graph-based structure allows for easy
integration and querying of data from various sources, making it a valuable tool for many
industries and domains.

As RDF knowledge bases have become increasingly large, new challenges have arisen,
many of them related to heavy querying and data consistency. Current systems have shown
their limits and do not provide all data management services required to handle RDF data
at scale. Among the RDF tasks challenged by the growing size of a dataset, we can őnd
reasoning and the execution of complex (aggregated) queries.

Reasoning at scale involves the efficient processing and updating of large volumes of
RDF data, making it critical to detect and correct errors in data modiőcation operations.
Optimizing these operations becomes essential to ensure the integrity and consistency of

1

Large-scale ontology-based data analytics

the data at all times, and to avoid errors in the reasoning processes, which in turn ensures
the quality and reliability of the results obtained.

Executing complex (aggregated) queries at scale often requires retrieving large amounts
of data and satisfying a large number of conditions before aggregating the query. Failure
to satisfy any of these conditions can result in an inconsistent response due to scalability
issues.

Big Data technologies have proven to be effective in managing large amounts of RDF
data, as evidenced by various studies [1, 5ś7]. Many of these works have focused on
optimizing data retrieval operations by proposing efficient data partitioning [8] and algo-
rithms to optimize joins plans during a query [9]. By leveraging Big Data technologies,
organizations can address the challenges associated with handling RDF data at scale, such
as reasoning and executing complex queries. This enables them to access valuable insights,
facilitate decision-making, and improve data-driven processes.

This thesis takes place in the context of the SIDES 3.0 project. The aim is to transform
the current French national e-learning platform for medical education, called SIDES, into
an intelligent learning environment based on Semantic Web and Big Data technologies.
Since 2013, SIDES has been used by all French medical schools (34 nationwide) for
assessments and diplomas. The new environment aims to replace the complex relational
data model of SIDES, which is difficult to query and analyze efficiently, with an ontology
called OntoSIDES, which provides students with a clear representation of their learning
process and allows them to track their evaluation transparently.

The goal of this thesis is to conceptualize, design, and implement a comprehensive and
scalable RDF data management infrastructure, leveraging state-of-the-art Big Data tech-
nologies. This infrastructure will address key aspects of RDF data management, including
the extraction, storage, and processing of RDF data, as well as the execution of reasoning
and complex analytical queries.

1.2 Our Research Focus

This thesis aims to address the challenges associated with creating a scalable and efficient
RDF data management infrastructure that can effectively handles extraction, storage, rea-
soning, and complex analytical queries. In particular, we will focus on leveraging Big Data
technologies to improve the reliability and integrity of RDF data management at scale,
minimizing the impact on reasoning process performance. This research will include the
design and experimentation of scalable infrastructures for large RDF triplestores, resulting
in two potential research directions

• Big data architectures for reasoning at scale

Investigate various cutting-edge technologies and techniques that can be used to

2

Chapter 1. Introduction

support reliable and efficient rule-based reasoning and heavy querying at scale. In
particular, this investigation will explore how to integrate them into a modular archi-
tecture that is capable of handling the increasing size and complexity of big RDF data
sets, as well as a variety of rule-based reasoning tasks.

• Data modularization

Explore the potential connection between the modularization of RDF data and the
massive and consistent updating of RDF data to improve the efficiency and reliability
of RDF reasoning processes. In particular, we want to study how modularization
can efficiently support the inference and querying of data from a subset of the graph,
without the need to involve the entire graph in the process.

1.3 Main contributions of the thesis

In summary, the main contributions of this thesis are:

• An OBDA methodology to support the evolution of a big knowledge base called
OntoSIDES. This contribution also shows the feasibility of an ontology-based learning
management system at scale in Medicine.

• A Big RDF triplestore called TESS with a modular architecture that include support
for massive and reliable data updates while also incorporating GPU acceleration for
enhanced processing capabilities.

• A comparative performance evaluation for complex queries and reasoning to identify
the most optimal ways to implement forward chaining reasoning at scale in TESS
during a reasoning process.

The őrst contribution has been published in the Journal of Artiőcial Intelligence in
Medicine in 2019 [10]. The second contribution and part of the third contribution have
been published at the European Semantic Web Conference (ESWC) in 2022 [11].

1.4 Thesis outline

Chapter 2 covers the deőnition of the relevant notions used in this thesis, particularly those
of related with Ontology Based Data Access and Rule-based reasoning.

Chapter 3 presents the methodology and the output of the OBDA-based approach that
we have followed for constructing the different versions of the OntoSIDES knowledge base.
In addition, it shows a novel use case of OBDA to modularize a RDF graph.

3

Large-scale ontology-based data analytics

Chapter 4 presents the novel Big RDF triplestore architecture that we propose for
solving the scalability issues. Among the novel components are a metadata management
layer during transactions and the addition of GPU support to enhance performance.

In Chapter 5, we presented a comparative performance evaluation of complex queries
and reasoning. To achieve this, we examined several forward chaining reasoning imple-
mentations, including serial, parallel, incremental, modular, and GPU, and compared their
performance.

Chapter 6 concludes the thesis and discusses some possible research perspectives.

4

Chapter 2

Preliminaries

In this chapter, we introduce the main deőnitions and techniques on which this thesis is
based. In Sections 2.1 and 2.2, we summarize the RDF data model and SPARQL that are
the building blocks of the Semantic Web. Ontology-Based Data Access is presented in
Section 2.3 while rule-based reasoning for data saturation is presented in Section 2.4.

2.1 RDF data model

RDF is a graph data model speciőed in a W3C recommendation [12], the last version
of which is dated 2014. An RDF statement relates two nodes, representing respectively
a subject and an object, by a directed edge corresponding to a property. Properties are
identiőed by IRIs, while subjects and objects can be IRIs or blank nodes, and objects can
also be literals. An IRI is an acronym for Internationalized Resource Identifier and it
can provide built-in information about processing type (e.g. http protocol), the authority
domain, the access path and, provided parameters. Instead, a literal is value which can be
a string, boolean or a number, while a blank represents an unnamed node.

RDF uses namespaces to distinguish one set of IRIs from another, to avoid collissions, and
to give them all unique identiőers. However, since namespaces can make IRIs very long,
the use of a preőx is recommended instead. A preőx is the the compact representation of a
namespace. For example, for a given namespace http://www.sides-sante.fr/sides#
represented by the preőxsides, an IRI such ashttp://www.sides-sante.fr/sides#student
can be shortened to sides:student. The absence of a preőx indicates a default namespace
e.g :student.

Figure 2.1 shows an example of RDF graph. The RDF graph shows a representation of
a student’s answer to a question that has a result. Note that there is a typing edge rdf:type
between the node sides:stu34 and the node sides:student. The preőx rdf: refers
to the namespace http://www.w3.org/1999/02/22-rdf-syntax-ns#. Note also that

5

Large-scale ontology-based data analytics

nodes are represented by ellipses and rectangles. The ellipsis contains IRIs and the rectangle
contains a literal, a string value.

sides:answer1 sides:stu34sides:question34

sides:student"0.2"

sides:done_bysides:correspond_to_question

rdf:typesides:has_for_result

Figure 2.1 A RDF graph

2.1.1 RDF graphs

An RDF graph can be visualized as a diagram like in Figure 2.1 but it is formally deőned as a
collection of triples. For example, (sides:answer1, sides:done_by, sides:stu34)
and (sides:stu34, rdf:type, sides:student) are two triples corresponding to two
edges of the graph depicted in Figure 2.1. They state that sides:answer1 is related
by the property sides:done_by to sides:stu34 that is an instance of the class
sides:student.

Definition 2.1 (RDF graph). Let 𝐼, 𝐿, and 𝐵 be pairwise disjoint sets of IRIs, literals and
blank nodes, respectively.

An RDF triple is of the form (𝑠, 𝑝, 𝑜) where 𝑠 is the subject, 𝑝 the property and 𝑜 the
object and 𝑠 ∈ (𝐼 ∪ 𝐵), 𝑝 ∈ 𝐼, and 𝑜 ∈ (𝐼 ∪ 𝐿 ∪ 𝐵).

An RDF graph is a set of RDF triples.

2.1.2 RDF named graphs and datasets

Named graphs and datasets [13] are a simple extension of the RDF data model allowing to
associate IRIs to some RDF graphs. They are very useful for structuring RDF data within
an RDF store, and can be exploited by SPARQL [14] to limit the scope of queries to subsets
of triples.

Definition 2.2 (RDF named graph). An RDF named graph is a pair consisting of an IRI
(the graph name), and an RDF graph.

6

Chapter 2. Preliminaries

Named graphs can be represented as quads statements indicating for each triple the
named graph it belongs to. In this thesis, we restrict the usage of quads to the representation
and the storage of named graphs

Definition 2.3 (RDF quad). A RDF quad (𝑠, 𝑝, 𝑜, 𝑔) is a quadruplet where 𝑔 is the IRI
identifying a named graph, and (𝑠, 𝑝, 𝑜) is an RDF triple in the RDF graph named by 𝑔.

Definition 2.4 (RDF datasets). An RDF dataset is a set of RDF named graphs, and can then
be represented as a set of RDF quads.

2.1.3 RDF Schema

RDF Schema (RDFS) is part of the RDF 1.1 speciőcation [12]. It provides two namespaces
rdf: and rdfs:with predeőned properties to state relationships between instances, classes
and properties:

• rdf:type is used to express that a resource identiőed by an IRI is an instance of a
class (also identiőed by an IRI);

• rdfs:subClassOf is used to specify subsumption relationships between classes,
i.e., that a class is a subclass of another.

• rdfs:subPropertyOf is used to denote that a property is a subproperty (specializa-
tion) of another

• rdfs:domain relates a property to a class to express that the subjects of the property
are instances of the class.

• rdfs:range relates a property to a class to express that the objects of the property
are instances of the class.

• rdfs:label associates a human-readable name to an IRI identifying an RDF re-
source.

Triples in which the property is an RDFS propertyrdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain or rdfs:range are called schema triples (also called RDFS triple), as they
express semantic constraints on the classes and properties used to describe RDF data of a
given domain.

Within an RDF graph, we will distinguish schema triples from data ones. Though they
are all denoted as RDF triples, the former ones convey a rule-based semantics and can be
used to infer implicit triples from data triples.

7

Large-scale ontology-based data analytics

For example, from the data triple (sides:question34, rdf:type,sides:QMA), ex-
pressing that the IRI sides:question34 is an instance of the class sides:QMA of questions
with multiple answers, and the schema triple(sides:QMA, rdfs:subClassOf, sides:question)
the implicit data triple (sides:question34, rdf:type, sides:question) can be in-
ferred.

2.2 SPARQL queries

SPARQL is a query language based on matching graph patterns onto RDF graphs to retrieve
data. Graph patterns extend RDF graphs by allowing variables in the subject, property or
object positions. Matching is the operation consisting in replacing variables with URIs,
blank nodes or literals in order to obtain a set of triples contained in the queried RDF graph.

In this thesis, we consider queries covering the full expressive power of SPARQL 1.1 [14].

Definition 2.5 (SPARQL 1.1 graph pattern). :
Given a set 𝑉 of variables disjoint from 𝐼 ∪ 𝐿 ∪ 𝐵:

- A basic graph pattern BGP is a set of triple patterns (𝑠, 𝑝, 𝑜) ∈ (𝐼∪𝑉)×(𝐼∪𝑉)×(𝐼∪𝐿∪𝑉).

- A SPARQL 1.1 graph pattern is an expression 𝑃 generated from the following grammar:

𝑃 : := 𝐵𝐺𝑃 | (𝐵𝐺𝑃 𝑈𝑁𝐼𝑂𝑁 𝐵𝐺𝑃′) | (𝐵𝐺𝑃 𝑂𝑃𝑇𝐼𝑂𝑁𝐴𝐿 𝐵𝐺𝑃′) | 𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑅 |

𝑃 𝐹𝐼𝐿𝑇𝐸𝑅 𝑁𝑂𝑇 𝐸𝑋𝐼𝑆𝑇𝑆 𝐵𝐺𝑃 | 𝐺𝑅𝐴𝑃𝐻 𝑔 𝑃

where 𝐵𝐺𝑃 and 𝐵𝐺𝑃′ are basic graph pattern, 𝑔 ∈ 𝑉 ∪ 𝐼 and 𝑅 is a constraint expression
over variables in 𝑃.

In this thesis, we consider SELECT and CONSTRUCT queries.

Definition 2.6 (SELECT queries).
By 𝑥 we denote a vector of variables.

- A simple SELECT query is of the form:

SELECT 𝑥 WHERE { 𝐺𝑃 } where 𝐺𝑃 is a SPARQL 1.1 graph pattern including
variables in 𝑥 . When evaluated over an RDF graph 𝐺 (or a dataset𝑈𝐺) , there are as many
answers 𝜇(𝑥) as mappings 𝜇 allowing to match 𝐺𝑃 with a subgraph of 𝐺 (or of RDF graph
in 𝑈𝐺).

- An aggregate SELECT query is of the form

SELECT 𝑥, 𝑓 (𝑦) WHERE { 𝐺𝑃 } GROUP BY 𝑥

where 𝑓 is an aggregate function and 𝐺𝑃 a SPARQL 1.1 graph pattern including variables
in 𝑥 ∪ 𝑦. When evaluated over 𝐺, there are as many groups as mappings allowing to match
the tuple 𝑥 with tuples of values �̄� and as many answers (�̄�, 𝑎𝑣) where 𝑎𝑣 is computed by
the aggregate function on the corresponding group.

8

Chapter 2. Preliminaries

- A nested SELECT query is a SELECT query for which the WHERE clause is of the form
{ 𝐺𝑃 { 𝑆𝑄 } } where 𝐺𝑃 is a SPARQL 1.1 graph pattern and 𝑆𝑄 is a (simple or aggregate)
SELECT query. The inner SELECT query is called a subquery and is evaluated őrst. The
subquery result variable(s) can then be used in the outer SELECT query.

Example 2.2.1. An example of an aggregate SELECT query is shown in Figure 2.2. The
query asks for information about a speciőc student identiőed by the IRI sides:stu96154. The
information requested is the number of graded responses to the questions associated with a
specialty, and the average of the obtained results (scores) since 2015. The graph pattern of
the query is shown between lines 3 and 10.

1 SELECT ?year (count(?answer) AS ?NumberOfAnswers)

(AVG(?r) AS ?AverageResult))

3 {

?answer sides:done_by sides:stu96154.

5 ?answer sides:has_for_timestamp ?t.

?answer sides:has_for_result ?r.

7 ?answer sides:correspond_to_question ?q.

?q sides:is_linked_to_the_medical_speciality ?speciality.

9 FILTER (str(year(?t)) > "2014")

}

11 GROUP BY (year(?t) as ?year

Figure 2.2 Example of SPARQL query

CONSTRUCT queries are SPARQL queries that enable ETL1 data pipelines (to reduce
large datasets to workable datasets), graph interoperability (to merge graphs from different
sources) and are a key component in several W3C speciőcations (e.g., SPIN2, and later
SHACL3) for supporting rule-based inference.

Definition 2.7 (CONSTRUCT queries). :
- A simple CONSTRUCT query is of the form:

CONSTRUCT { 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 } WHERE { 𝐺𝑃 [{ 𝑆𝑄 }] }

where 𝐺𝑃 is a SPARQL 1.1 graph pattern, 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is a basic graph pattern (possibly
containing blank nodes) with variables appearing in 𝐺𝑃, and 𝑆𝑄 is an optional SELECT
subquery.

1Extraction, Transformation, Load
2https://spinrdf.org/spin.html
3https://www.w3.org/TR/shacl-af/#rules

9

Large-scale ontology-based data analytics

The result of the evaluation over an RDF graph G is the union of graphs obtained by
instantiating the variables 𝑥 in 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 with values 𝜇(𝑥) for each mapping 𝜇 satisfying
the WHERE clause.

- A Quad CONSTRUCT query is of the form:

CONSTRUCT { 𝑄𝑢𝑎𝑑𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 } WHERE { GRAPH 𝐺𝑁 { 𝐺𝑃 [{ 𝑆𝑄 }] }}

where 𝐺𝑃 is a SPARQL 1.1 graph pattern, 𝐺𝑁 is a graph name or a variable and
𝑄𝑢𝑎𝑑𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is a quad pattern (i.e., a quad in which variables can appear in subject,
property, object or named graph positions) and 𝑆𝑄 is an optional SELECT subquery.

The result of the evaluation over a dataset is the set of quads obtained by instantiating the
variables 𝑥 in 𝑄𝑢𝑎𝑑𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 with values 𝜇(𝑥) for each mapping 𝜇 satisfying the WHERE
clause.

Example 2.2.2. An example of a CONSTRUCT query is presented in the Figure 2.3. The
query returns a single RDF graph where each triple contains information about the number
of proposals of answer per question.

1 CONSTRUCT {

?question sides:has_for_number_of_proposals ?np

3 }

WHERE

5 {

SELECT ?question (COUNT (?p) As ?np) {

7 ?question sides:has_for_proposal_of_answer ?p

}

9 GROUP BY ?question

}

11

Figure 2.3 Example of CONSTRUCT query

Example 2.2.3. Figure 2.4 exhibits an example of a Quad CONSTRUCT query. It is
similar to the query shown in Figure 2.3 except that it returns quads associating the number
of proposals of answer per question to the named graph which the question belongs to. The
quad pattern is shown in line 2.

10

Chapter 2. Preliminaries

CONSTRUCT {

2 ?question sides:has_for_number_of_proposals ?np ?g

}

4 WHERE {

SELECT ?g ?question (COUNT (?p) As ?np){

6 GRAPH ?g {?question sides:has_for_proposal_of_answer?p}

}

8 GROUP BY ?g ?question

}

Figure 2.4 Example of Quad CONSTRUCT query

Definition 2.8 (SELECT query induced by a CONSTRUCT query).
Given a CONSTRUCT query

CONSTRUCT { 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 } WHERE { 𝐺𝑃 [{ 𝑆𝑄 }] }

Its induced SELECT query is:

SELECT 𝑥 WHERE { 𝐺𝑃 [{ 𝑆𝑄 }] }

where 𝑥 is made of all the variables in the graph pattern 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒.

Example 2.2.4. Figure 2.5 shows the SELECT query induced by the CONSTRUCT query
shown in Figure 2.3.

1 SELECT ?question (COUNT (?p) As ?np) {

?question sides:has_for_proposal_of_answer ?p

3 }

GROUP BY ?question

Figure 2.5 SELECT query induced by the query of Figure 2.3

The computation of the result of a CONSTRUCT query can be decomposed into the
evaluation of its induced SELECT query followed by the construction of a RDF graph as
the union of the template instances obtained by replacing each variable by its corresponding
value in the answer set of the SELECT query.

The computation of a Quad CONSTRUCT query is performed in a very similar way
except that the evaluation of its induced SELECT query is followed by the construction of
a RDF dataset.

2.3 Ontology-Based Data Access (OBDA)

An OBDA system provides a single access point for query answering across multiples
datasources with different schemas. Overall, an OBDA system consists of three components:

11

Large-scale ontology-based data analytics

an ontology, a set of mappings and the datasource(s). The ontology provides the user with
a high-level domain representation of the data to build the input query. The high level
representation abstracts away the complex intricacies of the data source(s) model.

The mappings are a declarative way to deőne a correspondence between an RDF tem-
plate and a datasource query. The query output provides the bindings to instantiate the
corresponding placeholders in the RDF template.

2.3.1 Ontologies

Ontologies are used to provide a uniőed and abstract view to the user of the speciőc and low-
level terms deőning schemas of (possibly heterogeneous) data sources. They allow users to
formulate their queries using a high-level vocabulary that is more familiar to them because
related to their domain of expertise and not to the names chosen by database managers for
the tables used to store the data.

The W3C has standardized several ontology languages. RDFS is the simplest language
for describing ontological statements on top of RDF data, which has the advantage to be
fully conform to RDF and SPARQL. At the other end of the spectrum, the full ontology
language OWL [15] is too expressive to be exploited in OBDA systems. To address this
issue, the W3C introduced distinguished tractable subsets of OWL, called proőles. The
OWL2 QL proőle [16] is based upon the DL-Lite family [17] and was designed speciőcally
for OBDA systems.

Ontological statements can also be expressed as positive őrst-order rules of the form
𝑏𝑜𝑑𝑦 ⇒ ℎ𝑒𝑎𝑑 where the 𝑏𝑜𝑑𝑦 (also called the 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 or the 𝑝𝑟𝑒𝑚𝑖𝑠𝑠𝑒𝑠 of the rule)
and the ℎ𝑒𝑎𝑑 (also called the 𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 of the rule) are conjunctions of atoms (without
functions). Datalog [18] is a popular rule-based language in the database community in
which the rules are safe, i.e., all variables in the head occur in the rule body. Recently,
an extension of Datalog, called Datalog+/− [19], has been considered in the knowledge
representation community to express existential rules in which some variables in the head
may be existential variables that do not occur in the rule body.

RDFS and OWL2 QL can both be captured by Datalog and a decidable fragment of
Datalog+/− respectively. In practice, Datalog and Datalog+/− rules can be encoded as SPIN
rules [20] in which the body is a basic graph pattern.

For example, the following Datalog rule expressing that any answer with 0 discordance w.r.t
the expected answers (among the multiple answer options of a question) is graded 1.

R: hasForNumberOfDiscordance(?answer, 0)⇒ hasForResult(?answer, 1)

can be encoded by the following CONSTRUCT query in which the binary relations
hasForNumberOfDiscordance and hasForResult are encoded by the RDF properties
sides:has_for_number_of_discordance and sides:has_for_result.

12

Chapter 2. Preliminaries

Q: CONSTRUCT { ?answer sides:has_for_result "1" }

WHERE {?answer sides:has_for_number_of_discordance "0"}

In fact, general SPIN rules extend the expressive power of Datalog+/− rules by allowing
RDF 1.1 graph patterns (deőned in Deőnition 2.5) in the body.

In this thesis, we consider ontologies made of RDFS statements enriched with SPIN
rules implemented as CONSTRUCT SPARQL queries, which became the main reference
for recent W3C speciőcations on SPARQL-based rules.

More precisely the SPIN rules that we consider do not have blank nodes in their template,
and thus can be seen as extending Datalog by allowing RDF 1.1 graph patterns in their body.

Figure 2.3 is an example of such a SPIN rule.

Figure 2.6 shows an example of an RDFS ontology in the form of an RDF graph the
nodes of which are classes or properties and the edges are RDFS predeőned properties
presented in Section 2.1.3.

:question

:answer

xsd:decimal

:correspond_to_question

:correspond_to

QMA

QSOA

QUA

:is_linked_to_the_medical_speciality

:speciality

:is_linked_to

:has_for_number_of_discordance

:has_for_number_of_proposals

:has_for_proposal_of_answer

:proposal_of_answer

:evaluation_content

:content

rdfs:range

:has_for_result

rdfs:range

rdfs:domain

rdfs:subPropertyOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:domain
rdfs:range

rdfs:subPropertyOf

rdfs:domain

rdfs:domain
rdfs:domain

rdfs:range

rdfs:subClassOf

rdfs:subClassOf

Figure 2.6 An RDFS ontology.

2.3.2 OBDA system

Definition 2.9 (OBDA speciőcation 4). An OBDA speciőcation P has the form of P =

(S ,M,O) where S is the source schema of a source database D, O is an ontology, and M,
a set of mappings 𝑚 : 𝜎(®𝑥) { 𝜓(®𝑥) from S to O.

4This presentation mainly follows the deőnition presented in [21]

13

Large-scale ontology-based data analytics

The set of mappings M in P describe how the ontology properties are populated with
data from the source D. In a mapping 𝑚: 𝜎(®𝑥) { 𝜓(®𝑥), 𝜎(®𝑥) is an FOL query over the
source schema with output variables ®𝑥, and 𝜓(®𝑥) is a conjunction of RDF triple templates
whose only variables are those in 𝜓(®𝑥).

The pair (P ,D) of an OBDA speciőcation P and a source database is called an OBDA

system.

Several languages have been proposed to express mappings. R2RML [22] is a W3C
recommendation to express in RDF customized mappings from relational databases to RDF
datasets. In our thesis, we have chosen to use Ontop [23] as the OBDA framework software
to implement our OBDA system.

Example 2.3.1. The abstract and concrete syntax version of an Ontop mapping are shown
in Figure 2.7 and Figure 2.8 respectively. The abstract mapping relates an SQL query
(in the left hand side of {) to a simple RDF template (in the right hand side of {) on
the property sides:has_for_proposal_of_answer (part of the ontology shown in the
Figure 2.6) that links a question to its answer options (also called its proposals of answers).
The concrete syntax version is the machine-readable speciőcation of the mapping to be
processed.

select c.question_id as question_id,

c.id as choice_id from public.

choice c

{ sides:q{question_id} sides:

has_for_proposal_of_answer

sides:prop{choice_id} .

Figure 2.7 An abstract Ontop mapping syntax

target sides:q{question_id} sides:

has_for_proposal_of_answer

sides:prop{choice_id} .

source select c.question_id as

question_id, c.id as choice_id

from public.choice c

Figure 2.8 A concrete Ontop mapping syntax

This mapping can be used to populate the target RDF property by evaluating the SQL
query over the source database, and by replacing the two placeholders in the RDF template
by values returned as answers to the SQL query.

For instance, if the following table is in the source database:

question_id choice_id

7689 4343

7690 8765

The output of the mapping will be the following set of RDF triples:

sides:q7689 sides:has_for_proposal_of_answer sides:prop4343 .

14

Chapter 2. Preliminaries

sides:q7690 sides:has_for_proposal_of_answer sides:prop8765 .

Virtual RDF graph versus Materialization approach

Query answering in OBDA systems can be based on Virtual RDF graph or Materializa-
tion or both (hybrid).

In Virtual RDF graph, query answering is always performed over the original datasource
through a SPARQL/SQL query rewriting based on a set of mappings. The query rewriting
keeps the RDF graph virtual because RDF data does not need to be materialized and stored
in a triplestore. The Virtual RDF graph is recommended when there is a shortage of memory
or disk space. The main drawback is that the query rewriting can be slow in the cases where
the query rewriting is complex and difficult to optimize.

Materialization consists in the computing of the output of all mappings and storing it
in a triplestore for query answering. Materialization is a valid option when there are no
limitations on disk space or memory and fast query response is required. The main drawback
is that each time the mappings are changed to reŕect changes in the ontology or data schema,
the computation of all the mappings must be performed, which is a time-consuming and
resource-intensive task.

The hybrid approach is a system in which both approaches complement each other. For
example, the same OBDA system that serves to make real-time queries to the data can also
be used to generate periodic materializations of the data to perform data analytics tasks.

Ontop

Ontop [23] is an hybrid OBDA framework software with solid theoretical foundations. It
supports RDF 1.1, OWL 2 QL/RDFS ontologies and SPARQL 1.1 . A large part of Ontop’s
success is due to its modular architecture. Such an architecture allows its open source
community to extend its support as soon as a new database emerge.

Regarding the mappings, Ontop provides both a simple mapping language and R2RML,
the W3C mapping speciőcation. The simple mapping language is an alternative for those
users who őnd it difficult to write mappings directly in R2RML. However, it also provides a
translator to convert mappings in Ontop format to R2RML format to enable interoperability.

Ontop’s main limitations lie in its query rewriting capabilities, rather than in its mapping
materialization. Speciőcally, there are three primary issues with query rewriting: a) On-
top’s translation of complex SPARQL queries into SQL queries can result in performance
degradation, b) Ontop doesn’t fully support SPARQL queries with RDFS entailments based
on property paths, and c) Ontop doesn’t fully support negation queries using the FILTER
NOT EXISTS operator. As for mapping materialization, Ontop currently lacks the ability
to efficiently stream the output of SQL queries for large amounts of data.

In this thesis, we chose to use OBDA for RDF data materialization instead of Virtual
RDF graph to have full SPARQL 1.1 support. We built a custom version of Ontop 3.x

15

Large-scale ontology-based data analytics

where we őxed the following: a) output streaming during mapping materialization and b)
some unsupported RDF 1.1 features (e.g rdf:Seq) that were not available at the time of
starting this thesis.

2.4 Rule-based reasoning

Rule-based reasoning is the process of inferring new knowledge from existing facts (encoded
as RDF triples) and rules. Given a set of rules (and possibly a query), there are two main
approaches for implementing reasoning.

• Forward reasoning is a saturation process that applies the rules from their conditions
to their conclusion to infer facts: at each iteration, each rule whose conditions can
be matched to existing (input or previously inferred) facts allows to infer new facts
obtained by replacing each variable in the conclusion by the constant to which it is
mapped in the matching. The iterative process continues until a őxpoint is reached
(i.e., no new fact is inferred).

• Backward reasoning takes as input a target goal to prove (e.g., an atomic query) and
consists in applying the rules from their conclusion to their conditions to rewrite
each goal into sub-goals until producing sub-goals that can be matched to facts or no
rewriting is possible (leading to a failure of reasoning to prove the input goal). Each
rewriting step consists in őnding a rule such that its conclusion can be matched to a
current goal and to replace this goal by sub-goals obtained from each condition of
the rule in which the variables in common with the conclusion are replaced by the
constants to which they are mapped in the matching.

In this thesis, we consider two types of rules: RDFS entailment rules, which capture the
semantics of RDFS ontological statements to infer implicit RDF (data or schema) triples,
and domain-speciőc SPIN rules expressed as CONSTRUCT queries (deőned in Section
2.2).

2.4.1 Reasoning on RDFS entailment rules

RDFS entailment rules [24] are a collection of 13 predeőned rules to perform logical
inference over a RDF graph until a őxpoint is reached.

For real-world datasets, the number of iterations for reaching the őxpoint can be time-
consuming and computationally expensive. Different optimizations have been considered
to limit the number of iterations such as ordering the execution of rules as shown in [25],
or splitting the set of rules into subsets like in [26].

16

Chapter 2. Preliminaries

Following [26], we consider RDFS ontologies satisfying the őrst-order restriction, i.e.,
in which the predeőned RDFS properties do not occur as subjects or objects in RDFS
statements. In such cases, the forward reasoning process can be divided in two steps of
saturation that can be done in any order. One step of saturation considers only the subset of
RDFS rules in Table 2.1, that are called assertion rules in [26].

RDFS rule body⇒ head

rdfs2 𝑝 rdfs:domain 𝑐 , 𝑠 𝑝 𝑜⇒ 𝑠 rdf:type 𝑐

rdfs3 𝑝 rdfs:range 𝑐 , 𝑠 𝑝 𝑜⇒ 𝑜 rdf:type 𝑐

rdfs7 𝑝 rdfs:subPropertyOf 𝑞 , 𝑠 𝑝 𝑜⇒ 𝑠 𝑞 𝑜

rdfs9 𝑐 rdfs:subClassOf 𝑑 , 𝑠 rdf:type 𝑐⇒ 𝑠 rdf:type 𝑑

Table 2.1 RDFS assertion rules

The other step of saturation considers the subset of RDFS rules in Table 2.2, that are
called constraint rules in [26].

RDFS rule body⇒ head

rdfs5 𝑝1 rdfs:subPropertyOf 𝑝2 , 𝑝2 rdfs:subPropertyOf 𝑝3

⇒ 𝑝1 rdfs:subPropertyOf 𝑝3

rdfs11 𝑐1 rdfs:subClassOf 𝑐2 , 𝑐2 rdfs:subClassOf 𝑐3⇒ 𝑐1 rdfs:subClassOf 𝑐3

ext1 𝑝 rdfs:domain 𝑐1 , 𝑐1 rdfs:subClassOf 𝑐2⇒ 𝑝 rdfs:domain 𝑐2

ext2 𝑝 rdfs:range 𝑐1 , 𝑐1 rdfs:subClassOf 𝑐2⇒ 𝑝 rdfs:range 𝑐2

ext3 𝑝 rdfs:subPropertyOf 𝑝1 , 𝑝1 rdfs:domain 𝑐⇒ 𝑝 rdfs:domain 𝑐

ext4 𝑝 rdfs:subPropertyOf 𝑝1 , 𝑝1 rdfs:range 𝑐⇒ 𝑝 rdfs:range𝑐

Table 2.2 RDFS constraint rules

Backward reasoning can be applied for query rewriting but some restrictions must
be considered for guaranteeing termination. In this thesis, the queries that we consider
correspond to the BGPQ-CQ fragment deőned in [26], i.e., queries in which no variable
appears in a property or class position. In such cases, backward reasoning can be applied
only on the set of assertion rules to obtain the full set of rewritings.

17

Large-scale ontology-based data analytics

2.4.2 Reasoning on SPIN rules

As indicated in Section 2.3.1, the SPIN rules that we consider are CONSTRUCT queries
that do not have blank nodes in their template (i.e., they are not existential rules), but that
can have RDF 1.1 graph patterns in their body (i.e., they are more expressive than Datalog
rules). For this reason, standard backward reasoning cannot be applied.

Therefore, we focus on forward reasoning for rules encoded as CONSTRUCT queries.

A forward-chaining reasoner can be implemented on top of any RDF triplestore by
iterating the triggering of the CONSTRUCT queries and the corresponding update of the
RDF graph/dataset until no new triple/quad is added. The termination is guaranteed when
the rules are safe, i.e., when no blank nodes appear in the template of the corresponding
CONSTRUCT queries.

In this thesis, we will consider a set of CONSTRUCT queries encoding a set of non

recursive rules: a set of rules is non recursive if and only if its dependency graph is acyclic.

The dependency graph of a set of rules (possibly encoded as CONSTRUCT queries) is
deőned as follows:

• The nodes are the identiőers of the rules (or the identiőers of CONSTRUCT queries
encoding the rules)

• There is an edge from a node Q to a node Q’ if one relation in the head of the rule
(i.e., one property in the output of Q) appears in the body of Q’

When the dependency graph is acyclic, the saturation of an input dataset by a forward-
chaining reasoning can be computed by applying each CONSTRUCT query only once, by
following a topological ordering of the dependency graph. A topological ordering is a
graph traversal in which each node is visited only after all its dependencies are visited. It
allows to take into account that the evaluation of some queries must occur after the update
of the dataset by the evaluation of other queries.

Figure 2.9 shows such a forward chaining algorithm that takes as input an RDF dataset
and a set CONSTRUCT queries corresponding to non recursive rules, and compute the
saturation of the dataset.

18

Chapter 2. Preliminaries

Algorithm 1 CONSTRUCT-based forward chaining
Input: Dataset 𝐷 and 𝑛 (Quad) CONSTRUCT queries

{𝑞1, ..., 𝑞𝑛} ordered by a topological order
Output: Saturated dataset 𝐷

′

𝐷
′
← 𝐷

for 𝑗 ← 1 to 𝑛 do

𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑆𝑝𝑎𝑟𝑞𝑙 (𝑞𝑛, 𝐷
′
)

𝐷
′
← 𝐷

′
∪ 𝑜𝑢𝑡𝑝𝑢𝑡 // update operation

end

Figure 2.9 CONSTRUCT-based forward chaining algorithm

Based on the dependency graph, the CONSTRUCT queries can also be grouped into layers

of increasing depth. Since, there is no dependency between queries of a given layer, they can
be evaluated independently. This structuration of the queries in layers can thus be exploited
to implement a parallel forward-chaining reasoning algorithm that handles sequentially the
layers (by ascending order of the depth) and evaluates in parallel the queries of each layer.

2.4.3 Combining forward and backward reasoning

In our thesis, we follow an hybrid reasoning approach made possible by the fact that the
two types of rules that we consider (RDFS rules and domain-speciőc SPIN rules) do not
interfere.

We use the forward reasoning algorithm given Figure 2.9 for saturating the datasets by
a set of domain-speciőc SPIN rules (that will be given in Chapter 2).

We encapsulate a restricted backward reasoning on RDFS rules for rewriting queries by
exploiting the possibility to express property paths in SPARQL 1.1 .

For each query Q we rewrite it in a query RQ obtained from Q:

• by replacing each triple pattern ?i rdf:type c with ?i rdf:type/rdfs:subClassOf* c (if c
is not a leaf class)

• by replacing each triple pattern ?s prop ?o with "?s ?p ?o. ?p rdfs:subPropertyOf*
prop" (if prop is not a leaf property)

This rewriting corresponds to the backward chaining exploiting the two assertion rules rdfs7
and rdfs9 of Table 2.1 only.

In theory, such a rewriting process is incomplete since it does not exploit the assertion rules
rdfs2 and rdfs3 (see Table 2.1).

19

Large-scale ontology-based data analytics

In practice, exploiting these rules is useless for RDF ontologies and datasets built following
a methodololy ensuring that the following property is satisőed: all the instances are typed
such that if there exists triples s prop o, s type c, o type d, prop domain c’, prop range d’,
there exist a subclass path between c and c’ and a subclass path between d and d’.

When this property is satisőed, the rules rdfs2 and rdfs3 are redundant with the rule rdfs7.

2.5 Summary

In this chapter, we introduced the core deőnitions that underlie this thesis. We started by
introducing the basic components of the Semantic Web: RDF, RDFS, and SPARQL, along
with the deőnitions of RDF quad, RDF datasets, and quad CONSTRUCT query, which will
be used extensively in this thesis. Then, we explained the type of ontologies and mappings
we used in our OBDA system. Finally, we presented a hybrid approach for rule-based
reasoning based on a combination of forward and backward chaining.

20

Chapter 3

OBDA architecture and data

modularization in OntoSIDES

In this chapter, we describe the OBDA methodology that we have followed for the construc-
tion of the OntoSIDES RDF knowledge base built on top of relational database SIDES.
SIDES is the operational database of the national e-learning platform used since 2013 by
all the French medical schools for student self-assessment and graduation.

For the semi-automatic construction of OntoSIDES we have chosen an expert-based
methodology for building manually a lightweight domain ontology enriched with rules,
and an OBDA materialization approach for the automatic population of the ontology using
mappings.

The materialization step consists in applying the mappings to a particular dump of
the SIDES database. During the duration of this thesis, in order to take into account the
increasing of the SIDES database over time, we have performed 8 times the materialization
step on dumps of increasing size of the SIDES database.

The őrst SIDES dump that we considered corresponded to the activities over a period
of 3 months (May, June and July 2015) of the students registered in Grenoble medical
school. The resulting mapping-based OBDA materialization was an RDF graph containing
5,248,288 RDF triples. The result of the materialization computed from the last dump
is a huge RDF graph containing approximately 12 billion triples describing training and
assessment activities performed by more than 145,000 students over nearly 6 years.

Although OBDA is mainly used to materialize a single RDF graph, it can also be used
to scale the materialization of a collection of RDF graphs. This is possible by mapping
RDF quad templates to queries in the datasources. In this way, OBDA can be extended to
structure a big RDF graph into modules to reduce complexity of data analytics, facilitate
maintenance and enable the reuse of components across different datasets and applications.

Section 3.1 describes the OBDA-based construction of successive versions of Onto-

21

Chapter 3. OBDA architecture and data modularization in OntoSIDES

statements and of a set of rules (expressed using the SPIN syntax) for deőning classes and
properties that are meaningful for the target end-users. Within the OntoSIDES knowledge
base, we distinguish the OntoSIDES ontology and rules from the OntoSIDES data that is
obtained by two distinct processes: data materialization, which is the process of exploiting
the mappings in order to generate the RDF data corresponding to the instances of the classes
and the properties deőned in the OntoSIDES ontology ; and data saturation which, given
the materialized data stored in a triplestore, is the process of making explicit the RDF data
that can be logically derived from the SPIN rules.

After summarizing in Section 3.1.1 the OntoSIDES ontology, we describe the materi-
alization process and the saturation process in Section 3.1.2 and Section 3.1.2 respectively.

3.1.1 The OntoSIDES ontology

We have manually built the OntoSIDES ontology [27] with the help of the national coordi-
nator for e-learning in Medicine (Prof. Olivier Palombi1), with the support of the TopBraid
Composer software suite [28] for editing both the RDFS ontology and the domain-speciőc
rules as SPIN rules.

Such an expert-based construction of the OntoSIDES ontology has been facilitated by
the unique position of Prof. Olivier Palombi as a domain expert who has (i) a recognized
and shared expertise on the organization and requirements of medical studies in France, (ii)

a detailed technical knowledge on the SIDES database, and (iii) a previous experience in
building ontologies in the related domain of anatomy [29, 30].

3.1.1.1 The RDFS ontology

The resulting RDFS ontology consists of a taxonomy of 93 classes and a set of 75 properties
among which 6 are deőned by rules.

Figure 3.2 shows an extract of the OntoSIDES class taxonomy (left) and of properties
(right) as displayed by the TopBraid editor.

1https://www.univ-grenoble-alpes.fr/universite/organisation/la-gouvernance/la-presidence/olivier-
palombi-838094.kjsp

23

Large-scale ontology-based data analytics

Figure 3.2 Extract of the OntoSIDES ontology visualized in TopBraid

The class taxonomy is built by successive reőnements of 7 main classes which respec-
tively denote:

• the set of possible actions of students when using the SIDES pedagogical online
resources (denoted by the class sides:action in Figure 3.2),

• the types of pedagogical resources (training or evaluation) available in the SIDES
platform (denoted by the class sides:content in Figure 3.2),

• the set of reference items of the French educational program in Medicine (denoted
by the class sides:referential_entity in Figure 3.2), published by the French
Ministry of Higher Education in Bulletin Officiel [31] and also used in SIDES as
metadata,

24

Chapter 3. OBDA architecture and data modularization in OntoSIDES

• the sets of French cities, universities and medical schools (denoted by the classes
sides:city and sides:institute in Figure 3.2) for which there are as many local
SIDES platforms that are indexed in the central SIDES database,

• the set of milestones (years, periods of practical internships) to register and validate
by students to get their diploma (denoted by the class sides:group in Figure 3.2),
that are encoded in the SIDES database by speciőc identiőers,

• the categories of persons (students, academic staff, administrative staff) involved in
medical studies (denoted by the class sides:person in Figure 3.2), that correspond
to speciőc roles of users in the SIDES database.

The declaration of properties and their signature (using the pre-deőned rdfs:domain and
rdfs:range) completes the RDFS ontology by establishing how the instances of different
classes can be related or described. For instance, the following RDF statements

sides:done_by rdfs:domain sides:action.

sides:done_by rdfs:range sides:student.

express that the property sides:done_by serves to relate (identiőers of) actions extracted
from SIDES log traces with (the identiőers of) the students who performed these spe-
ciőc actions. Some temporal properties such as sides:starting_date_of_test and
sides:ending_date_of_test serve to associate the starting / ending time and date to the
training tests taken by students. Another property, sides:has_for_list_of_questions,
relates an instance of an evaluation to an instance of rdf:Seq, an ordered list of questions.
The position of each question in such a list of questions is denoted by a numerical ordering
property rdf:_nnn where _nnn is an integer that is given explicitly.

We also use the ontology visualization tool VOWL [32] to display the ontology to expert
users. Figure 3.3 shows an extract of the visualization of the OntoSIDES ontology produced
by VOWL.

25

Chapter 3. OBDA architecture and data modularization in OntoSIDES

3.1.1.2 SPIN Rules for defining some properties

With the help of the expert, we wrote 18 SPIN rules to deőne 6 properties (speciőed in the
RDFS ontology) in function of other properties. They are shown in Figure 3.4.

The property sides:has_for_result is the target property that makes explicit the
calculation rules of the students’scores to multiple choice questions. The scores are com-
puted based on the recorded (wrong of right) clicking actions done by the students for
ticking the answer options within each question.

The scoring techniques for multiple choice questions can be complex and varying
depending on the intended pedagogical goal (quantifying a level of knowledge for assessing
individual students or for ranking a group of students). They can take into account differently

several criteria such as the type of the questions (with a unique answer option to be ticked
versus the possibility for students to tick several options) the number of answer options
for each question, the number of correct (respectively false) answer options chosen by
the student, but also the number of correct answer options not chosen by the student, and
whether the choice of a false (respectively correct) answer option is eliminatory (respectively
mandatory).

Following a rule-based declarative approach to make explicit the score calculation rules
is useful because it enables to easily change them and to adjust them based on measuring
the impact of such changes for example on minimizing the ties in the resulting ranking.

The student’s scoring in OntoSides is deőned by a set of 11 different rules (expressed
by the CONSTRUCT queries Q8 to Q18 in Figure 3.4) to infer values of the property
sides:has_for_result for each student’s answer to a question. the scores of students’
answers to questions.

In contrast with simple scoring techniques, it is not restricted to the computation of the
ratio of correct options ticked by the student but it is based on the number of discordances

that is the sum of the number of ticked options that are not correct and of the number of

correct options that have not been ticked. Zero discordance leads to the maximal score of 1
for the question. On the other hand, not ticking a correct option marked as mandatory and
ticking a wrong option marked as eliminatory leads to a score equal to 0. In the other cases,
the score (between 0 and 1) depends on the number of answer options of the question and
on the number of discordances of the student’s answer to this question.

For taking into account this complex scoring method, the rule-based deőnition of the
property sides:has_for_result relies on the deőnition of the following intermediary
properties:

1. The property sides:has_for_number_of_proposals is deőned by a single rule
expressed by the CONSTRUCT query Q1, which is an aggregate query that counts the
number of answer options per question (i.e., the number of values of the materialized

27

Large-scale ontology-based data analytics

propertysides:has_for_number_of_proposals grouped by question) and relates
each question to this number.

2. The property sides:has_for_number_of_wrong_tick relates each student’s an-
swer corresponding to a given question to the number of ticked options that are not
correct (if this case happens). It is deőned by a single rule expressed by the CON-
STRUCT query Q2, which is an aggregate query that counts the number of wrong
clicking actions within each answer of a student to a question (i.e., the number of val-
ues grouped by answer of the materialized property sides:has_wrongly_ticked
relating a clicking action to a false option).

3. The property sides:has_for_number_of_missed_right_tick relates each stu-
dent’s answer corresponding to a given question to the number of correct answer
options of the question that has not been ticked (if this case happens). This property
is also deőned by a single aggregate CONSTRUCT query (namely Q3). However,
this query is more complex than the two previous counting queries because it contains
a sub-query counting for each answer of a student to a question the number of correct
options of this question for which there does not exist a right clicking action recorded
for this student’s answer.

4. The property sides:has_for_number_of_discordance relates each student’s an-
swer corresponding to a given question to its number of discordance. It is deőned by
4 rules expressed by the CONSTRUCT queries Q4, Q5, Q6 and Q7. The query Q4
handles the case where the number of discordances is equal to 0 because there
is no wrong tick and no missing right tick. This requires to express negation
by absence of the two properties sides:has_for_number_of_wrong_tick and
sides:has_for_number_of_missed_right_tick using the FILTER NOT EX-
ISTS constructor of SPARQL. Since these two properties are deőned by rules, the
corresponding CONSTRUCT queries Q2 and Q3 must be evaluated beforehand and
the dataset must be updated by their results before evaluating the query Q4, and
also Q5, Q6 and Q7 that relies on the computation of these two properties too: Q5,
for computing the number of discordances of answers for which there exists both
wrong ticks and missed right ticks ; Q6 (respectively Q7) for computing the number
of discordances of answers for which there is no missed right tick (respectively no
wrong tick) but there exists wrong ticks (respectively missed right ticks) the number
of which has been computed by the dataset updating resulting from the evaluation of
the CONSTRUCT query Q2 (respectively Q3).

5. The property sides:stronglyWrong is a boolean property deőned by the 3 CON-
STRUCT queries Q9, Q10 and Q11 to specify cases where students’ answers must
be scored to 0 either because an eliminatory wrong option has been ticked by the

28

Chapter 3. OBDA architecture and data modularization in OntoSIDES

student (Q9), or a mandatory correct option has not been ticked by the student (Q10),
or the number of discordances is strictly greater than 0 and the question is of type
sides:QUA (i.e., such that only one answer option has to be ticked by students). These
3 queries have the distinguishing feature that the result is not restricted to a triple pat-
tern but is a graph pattern of size 2 to infer simultaneously 𝑡𝑟𝑢𝑒 as value for property
sides:stronglyWrong and 0 as value of the property sides:has_for_result
for answers recognized as strongly wrong. Among these queries, Q9 is a simple
conjunctive query, while Q10 contains a FILTER NOT EXISTS constructor to check
negation by absence and Q11 contains a FILTER constructor.

Finally, in addition of the 3 queries Q9, Q10 and Q11 mentioned above, the property
sides:has_for_result, that relates each student’s answer (corresponding to a given
question) to its score, is deőned by 8 other CONSTRUCT queries of varied complexity
to cover the remaining different cases depending on the number of discordances and the
number of answer options in the question:

• The CONSTRUCT query Q8 is a very simple query with a single triple pattern in
its body and in its output to specify that for answers with no discordance the score
is equal to 1. Its evaluation requires that the number of discordances has been
inferred beforehand and added to the dataset (as the result of the evaluation of the
CONSTRUCT queries Q4, Q5, Q6 and Q7).

• The CONSTRUCT queries Q12, Q13, Q14, Q15 and Q17 have in common a FILTER
NOT EXISTS condition to handle the cases in which the answers have not been
recognized as strongly wrong (thus requiring the previous evaluation of the queries
Q9, Q10 and Q11). Each of them assigns a score value (between 0 and 1) depending on
the number of discordances and the number of options in the corresponding question.
Q12 and Q13 handle the frequent case of questions with 5 answer options (only one
discordance leads to a score of 0.5 ; 2 discordances lead to a score of 0.2) while Q14
and Q15 handle the case of questions with 4 answer options (only one discordance
leads to a score of 0.425 ; 2 discordances lead to a score of 0.1) and Q17 handles the
case of questions with 3 options (only one discordance leads to a score of 0.3).

• The CONSTRUCT queries Q16 and Q18 assign 0 as score for answers with a number
of discordances strictly greater than 2 for all cases, and strictly greater than 1 for
answers corresponding to questions with 3 options.

29

Large-scale ontology-based data analytics

Q1

CONSTRUCT {

?question sides:has_for_number_of_proposals ?np}

WHERE {

SELECT ?question (COUNT (?p) As ?np) {

?question sides:has_for_proposal_of_answer ?p}

GROUP BY ?question}

Q2

CONSTRUCT {

?answer

sides:has_for_number_of_wrong_tick ?nw }

WHERE {select ?answer (COUNT (?a) As ?nw)

{?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p}

GROUP BY ?answer

}

Q3

CONSTRUCT {

?answer

sides:has_for_number_of_missed_right_tick ?nm}

WHERE {SELECT ?answer (COUNT(?p) As ?nm)

{?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p}

} GROUP BY ?answer

}

Q4

CONSTRUCT {

?answer sides:has_for_number_of_discordance

"0"^^xsd:integer}

WHERE {

?answer a sides:answer.

FILTER NOT EXISTS {

?answer sides:has_for_number_of_wrong_tick ?nw.

?answer sides:

has_for_number_of_missed_right_tick ?nm.

}}

Q5

CONSTRUCT {

?answer

sides:has_for_number_of_discordance ?count}

WHERE {

SELECT ?answer (?nw + ?nm as ?count) {

?answer

sides:has_for_number_of_wrong_tick ?nw.

?answer

sides:has_for_number_of_missed_right_tick ?nm

}

}

Q6

CONSTRUCT {

?answer

sides:has_for_number_of_discordance ?nw

} WHERE {

?answer sides:has_for_number_of_wrong_tick ?nw.

FILTER NOT EXISTS {

?answer sides:

has_for_number_of_missed_right_tick ?nm}

}

Q7

CONSTRUCT {

?answer

sides:has_for_number_of_discordance ?nm}

WHERE {

?answer sides:

has_for_number_of_missed_right_tick ?nm.

FILTER NOT EXISTS {

?answer sides:has_for_number_of_wrong_tick ?nw.

}

}

Q8

CONSTRUCT {

?answer sides:has_for_result 1}

WHERE {

?answer

sides:has_for_number_of_discordance "0"^^xsd:

integer

}

Q9

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:

boolean .}

WHERE {

?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p.

?p

sides:has_for_weight_of_correction

"Unacceptable"^^xsd:string .

}

Q10

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean .

}

WHERE {

?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean .

?p sides:has_for_weight_of_correction "

Indispensable"^^xsd:string .

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p

}}

Q11

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean .

}

WHERE {

?answer sides:correspond_to_question ?q.

?q rdf :type sides:QUA.

?answer sides:has_for_number_of_discordance ?d.

FILTER (?d > 0)

}

Q12

CONSTRUCT {

?answer sides:has_for_result 0.5^^xsd:decimal}

WHERE {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "5"^^xsd:

integer.

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }

}

Q13

CONSTRUCT {

?answer sides:has_for_result "0.2"^^xsd:decimal}

WHERE {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "5"^^xsd:

integer .

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}

Q14

CONSTRUCT {

?answer sides:has_for_result "0.425"^^xsd:decimal}

WHERE {?answer sides:

has_for_number_of_discordance "1"^^xsd:

integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "4"^^xsd:

integer .

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }}

Q15

CONSTRUCT {

?answer sides:has_for_result "0.1"^^xsd:decimal }

WHERE {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "4"^^xsd:

integer .

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean

}}

Q16

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer}

WHERE {

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals ?np.

?answer sides:has_for_number_of_discordance ?n.

FILTER (?np > 3 && ?np < 6 && ?n > 2).}

Q17

CONSTRUCT {

?answer sides:has_for_result "0.3"^^xsd:decimal}

WHERE {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "3"^^xsd:

integer .

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}

Q18

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer }

WHERE {

?answer sides:has_for_number_of_discordance ?n.

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "3"^^xsd:

integer.

FILTER (?n > 1) }

Figure 3.4 SPIN rules based deőnition of properties

30

Chapter 3. OBDA architecture and data modularization in OntoSIDES

3.1.2 Mapping-based data materialization

In this section, we describe our approach for populating classes and properties of a given
ontology by extracting data from an existing relational database and by transforming them
into RDF triples.

In our setting, the (OntoSIDES) ontology is made of a hierarchy of classes and a hierarchy of
properties (deőned as a set of RDFS statements) among which some properties are deőned
by rules. Therefore, the classes and properties that we populate by data extraction are the
classes and properties the instances of which cannot be derived by RDFS or domain-speciőc
rules, which are:

- the most speciőc classes, i.e., the classes that do not have any sub-class

- the properties that do not have any sub-property and that are not in the conclusion of
any domain-speciőc rule.

The existing data source from which we extract data is the operational relational database
SIDES that is a large database whose schema contains 400 tables.

As explained in Section 2.3.2, mappings are a declarative way to specify the correspon-
dence between (simple) RDF templates (described using the terms of a target ontology)
and SQL queries over the schema of a source database. An RDF template in a mapping
is an RDF pattern in which some placeholders indicate how to instantiate this pattern by
URIs or literals created from answers returned by the SQL query. Mapping can then be
used to populate a target ontology by evaluating for each mapping the SQL query over the
source database, and by replacing the placeholders in the RDF template by values returned
as answers to the SQL query.

We use Ontop to declare and materialize mappings. Figure 3.5 shows an example of an
Ontop mapping declaration given a set of preőxes that must be declared beforehand.

Each mapping consists of three parts: mappingId, the mapping identiőer; target, the
triple template(s); and source, which contains the SQL query.

mappingId urn:test

target sides:test{id} a sides:test ; sides: has_for_title { title }^^xsd:string .

source select id, title from public.assessment

Figure 3.5 An example of an Ontop mapping

This mapping shows how to populate the class sides:test i.e., how to populate the
typing property rdf:type, shortened as a, for the instances of the sides:test class, and
how to extract their value for the property sides:has_for_title. The target is thus an
RDF template with two triples. The source is a simple SQL query over the single SIDES
table called public.assessment.

31

Large-scale ontology-based data analytics

The template placeholders are enclosed in curly brackets and their names correspond
to the same column names in the SQL query. The őrst placeholder shows how we create
automatically URIs involved in the RDF triples from identiőers in the SIDES tables. The
second one illustrates the extraction of (typed) literals from values found in the SIDES
tables.

Similar simple mappings can be speciőed for populating the other properties having
sides:test as domain: sides:starting_date_of_test, sides:ending_date_of_test.

The reason is that all the useful information that we need to extract concerning the
instances of the sides:test class are grouped into a single table of SIDES, in particular
with a direct correspondences between the column names of the table and the datatype
properties of sides:test.

This simple case is however not the rule: most of the OntoSIDES classes do not
correspond to a single table in SIDES.

We now summarize the methodology that we have applied for creating mappings for
each properties that have to be populated by data extraction from the source SIDES. First,
we create one mapping for each object property, and we group data type properties with
same domain in the same mapping. We then examine the tables in the database to construct
SQL queries with the minimum number of joins for these templates.

We have used materialized views to reduce the complexity of the SQL queries and the
size of the data to be queried. A materialized view is the precomputation of the output of
an SQL query. This solution relies on data redundancy, as the materialized view duplicates
existing data. This solution is a good alternative in cases where additional storage space is
not an issue. In addition, a materialized view has the advantage of preserving the original
database schema.

We have created őve types of materialized views: The őrst type is a single-column
lookup table, which reduces the number of record IDs to process during joins. The second
type is an entity table, which consolidates attributes of a record that are scattered across
multiple tables into one table (denormalization). The third type is a two-column relationship

table, which stores the relationships between record ids of other tables. The fourth type is a
hybrid, a combination of the previous types. The őfth type is a repair table, which reshapes
malformed data. An example of malformed data is the presence of duplicate ticks stored as
a result of a user interface failure.

The creation of materialized views is a very complex task because it requires to examine
all the objects in a database (e.g. table attributes, primary keys, foreign keys, indexes)
to őnd the optimal queries. To facilitate the task, we have built an Entity Relation (ER)
diagram of all relationships and schema information about the SIDES tables. We have used
SchemaSpy2 software to automate the ER diagram extraction.

2https://schemaspy.org/

32

Chapter 3. OBDA architecture and data modularization in OntoSIDES

We have completed the construction of the mappings once all the materialized views
have been computed. In this context, each template containing an object property is mapped
to a materialized view of the type relationship. Regarding the templates containing datatype
properties, some of them are mapped directly to a materialized view of type entity or hybrid,
and the remaining templates are mapped to the corresponding SQL queries built by joining
materialized views of type lookup, entity, relationship, and repair against existing SIDES
tables.

An example of materialized view of the hybrid type is shown in the őgure 3.6. The con-
tents of the seven tables response_table, responses_choices, assessment_session,
participant, assessment, choice, and choice_correction are denormalized into a
new table namedontosides.responseusing the SQL commandCREATE MATERIALIZE VIEW.
The correct selection of join columns was facilitated by the ER diagram.

CREATE MATERIALIZED VIEW

ontosides.response AS (

SELECT CONCAT(CAST(response_id AS text), CAST(choice_id AS text), LENGTH(choice_id::text)) AS response_id_new, rt.id AS response_id, rc.

choice_id, p.participant_id, a.id AS assessment_id, ass.begindate, cc.valid, case cc.valid WHEN true THEN false WHEN false THEN

true END AS invalid

FROM response.response_table rt

INNER JOIN response.responses_choices rc ON rc.response_id = rt.id

INNER JOIN response.assessment_session ass ON ass.id = rt.test_participant_id

INNER JOIN participant p ON p.id = ass.participant_id

INNER JOIN assessment a ON a.id = p.assessment_id

INNER JOIN choice c ON c.id = rc.choice_id

INNER JOIN correction.choice_correction cc ON cc.id = c.correction_id

);

Figure 3.6 An example of materialized view

A materialized table such as ontosides.response allows the declaration of simple
OBDA mappings that are easy to read and verify. For example, Figure 3.7 shows three OBDA
mappings using Ontop syntax that declare a simple SELECT query on the materialized view
ontosides.response as the source.

mappingId urn:relation_answer_action_to_answer

target sides:adr{response_id_new} sides:is_part_of sides:answer{response_id} .

source select response_id_new, response_id from ontosides.response

mappingId urn:relation_answer_student

target sides:answer{response_id} sides:done_by sides:stu{participant_id} .

source select response_id, participant_id from ontosides.response

mappingId urn:relation_has_wrongly_ticked

target sides:adr{response_id_new} sides:has_wrongly_ticked sides:prop{choice_id} .

source select response_id_new, choice_id from ontosides.response r where r.invalid = true

Figure 3.7 Examples of OBDA mappings using a materialized view in the source

33

Large-scale ontology-based data analytics

We created 76 OBDA mappings to materialize OntoSIDES. The list can be reviewed in
Appendix A.1. Over time, the number of mappings did not change. Each time there was a
change in the SIDES schema, we just modiőed the source of the mapping but kept the same
target. Table 3.1 shows the size of the materialized data, the size of the database dump and
its release date.

Version materialized
data size
(billion
triples)

database
dump size
(GB)

dump re-
lease date

v1 0.0052 2.1 2015-07-31

v2 0.12 4.51 2016-06-19

v3 5.26 191 2019-01-31

v4 5.53 197 2019-03-20

v5 7.67 264 2020-03-23

v6 9.86 424 2021-03-30

v7 11.06 447 2021-07-01

v8 11.09 485 2021-08-01

Table 3.1 The evolution of OntoSIDES’ size over the years

To provide context for the scale of the data generated, the last version of Ontosides data
contains almost 219 000 students, 817 millions answers and 2.4 millions questions.

By default, Ontop stores the output of each mapping sequentially in a single őle,
which creates a bottleneck when materializing a large dataset. To solve this problem,
we modiőed Ontop’s source code to stream the output of each mapping into a single
őle to parallelize the process and improve performance. The solution not only improved
performance during materialization but also enabled parallelization during loading the RDF
data into a triplestore.

We selected Virtuoso as our preferred triplestore to store the materialized data generated
by the mappings. While later research revealed that it may lack reliability for certain types
of types of queries, our selection was based on its suitability for our storage requirements
and the resources available at the time.

3.1.3 Rule-based data saturation

The data saturation consists in applying a forward reasoning algorithm to the 18 SPIN rules
given in Figure 3.4 and to the RDF graph resulting from the data materialization process
described in the previous section. This saturation process allows to őnalize the population
of the properties in the ontology that are deőned by rules (and not extracted by mappings).

34

Large-scale ontology-based data analytics

Version materialized
data size
(billion
triples)

inferred
data (billion
triples)

v1 0.0052 0.0027

v2 0.12 0.052

v3 5.26 1.35

v4 5.53 1.44

v5 7.67 1.58

v6 9.86 1.95

v7 11.06 2.21

v8 11.09 2.26

Table 3.2 The evolution of the size of inferred data in OntoSIDES over time

3.2 Data modularization and module extraction

Although extracting modules from ontologies have been largely studied, mainly from a
theoretical perspective (e.g. [33]), the extraction of modules from RDF triplestores has
been the subject of little research. The most inspiring approaches for our work are the
following:

- the SOMET framework [34] is based on a parameterised graph traversal algorithm that
is implemented using CONSTRUCT SPARQL queries, and captures in a uniform setting
different module extraction approaches ([35], [36], [37] and [38]),

- in [39], modules can be obtained from, or are related to, a set of pre-computed modules
of the same ontology,

- in [40], the speciőcation of bounded-level modules allows for controlling the size of
extracted modules.

Despite all these works come with implementations, they did not deal with the scalability
issues that we had to face with for modularizing big RDF graphs.

A module is a subset of a given input RDF graph that is built for various purposes. In
particular, it can be used for:

1. retrieving a subset of interest for a user from a reference RDF triplestore, for example
for extracting easily data speciőc to a given student who would like to delete all the
data about her/him that he/she considers as sensitive,

2. modularizing a large single RDF graph to structure it into subgraphs for optimization
purposes, for example for optimizing rule-based reasoning.

36

Chapter 3. OBDA architecture and data modularization in OntoSIDES

In this thesis, we propose a unifying approach for handling the two above cases, based
on the explicit speciőcation of the properties paths to be extracted either because they
correspond to sensitive data for instances of a given class, or because they are involved in
the conditions of rules to infer new properties of some classes. In Section 3.2.1, we formalize
the notion of modules we consider, and in Section 3.2.2, we describe the methodology that
we followed for their effective extraction.

3.2.1 Module specification and semantics

Modules are deőned based on property paths rooted at a given instance of a class.

Definition 3.1 (rooted property path).
Given a set of properties of an RDFS ontology, a property path is a sequence, denoted
𝑞1/𝑞2, .../𝑞𝑛, where each 𝑞𝑖 is either a property 𝑝 of the ontology or the inverse 𝑝− of a
property of the ontology.

Given an instance 𝑖0 of a class 𝐶 in an RDF graph 𝐺, a property path rooted at 𝑖0, denoted
[𝑖0 : 𝐶] (𝑞1/𝑞2, .../𝑞𝑛), is a set of triples {(𝑖𝑂 , 𝑞1, 𝑖1),(𝑖𝑛−1, 𝑞𝑛, 𝑖𝑛)} such that for every
𝑘 ∈ [1..𝑛] 𝑖𝑘−1 ≠ 𝑖𝑘 and (𝑖𝑘−1, 𝑞𝑘 , 𝑖𝑘) ∈ 𝐺, where (𝑖𝑘−1, 𝑞𝑘 , 𝑖𝑘) denotes the triple (𝑖𝑘 , 𝑝, 𝑖𝑘−1)

if 𝑞𝑘 = 𝑝−.

Definition 3.2 (Module). Given an RDF data graph 𝐺, a module rooted at a given instance
𝑖0 of a class 𝐶, speciőed by [𝑖0 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘), where for each
𝑖, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑖 is a property path, is the subgraph of𝐺 that is the union of all the property
paths rooted at 𝑖0:

[𝑖0 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘) =
⋃𝑘

𝑖=1 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑖 (𝑖0, 𝐶)

where 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑖 (𝑖0, 𝐶) is the set of all the property paths [𝑖0 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑖)
in 𝐺.

It is often the case that the modules of interest correspond to the same speciőcation for all
the instances of a given class. This is captured by the deőnition of a module pattern that is
a graph pattern built on property path patterns, as deőned in Deőnition 3.3

Definition 3.3 (Module pattern).
Given an RDFS ontology:

- a property path pattern, speciőed by [?𝑠𝑜 : 𝐶] (𝑞1/𝑞2, .../𝑞𝑛), where 𝑞1/𝑞2, .../𝑞𝑛 is a
property path, is a graph pattern {(?𝑠0, 𝑞1, ?𝑠1),(?𝑠𝑛−1, 𝑞𝑛, ?𝑠𝑛)} where all the variables
are pairwise distinct and (?𝑠𝑘−1, 𝑞𝑘 , ?𝑠𝑘) denotes the triple pattern (?𝑠𝑘 , 𝑝, ?𝑠𝑘−1) if 𝑞𝑘 = 𝑝−.

- a module pattern, speciőed by [?𝑠𝑜 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘) is the
union of the property path patterns [?𝑠𝑜 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘) in which all the variables
are pairwise distinct.

37

Large-scale ontology-based data analytics

Theorem 3.1 is a straightforward consequence of Deőnition 3.2 and Deőnition 3.3. It gives
a constructive way to extract modules by computing all the projections of a module pattern
on the input RDF graph, which is precisely what SPARQL does.

Definition 3.4 (Projection of a graph pattern onto an RDF graph). A projection of a graph
pattern 𝐺𝑃 onto an RDF graph 𝐺 is the image of 𝐺𝑃 by an homomorphism 𝜇 that replaces
each variable in the graph pattern 𝐺𝑃 by a constant (i.e., an URI, a literal or a blank node)
such that for each triple pattern 𝑡 𝑝 in 𝐺𝑃, 𝜇(𝑡 𝑝) ∈ 𝐺.

Theorem 3.1. Given a module pattern specified by [?𝑠𝑜 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘),

and given a RDF graph 𝐺 and an instance 𝑖 of the class 𝐶 in 𝐺, the module [𝑖 :
𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘) can be obtained as the union of all the pro-

jections onto 𝐺 of the graph pattern obtained by replacing the variable ?𝑠0 in the module

pattern [?𝑠𝑜 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘).

We will say that a module [𝑖 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘) is an instance of

the module pattern [?𝑠𝑜 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘), and that the module
pattern [?𝑠𝑜 : 𝐶] (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ1, ..., 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑃𝑎𝑡ℎ𝑘) is a module specification for the
class 𝐶.

The following example shows a module speciőcation for the class 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 for deőning the
sensitive information that each student could ask to delete to protect his/her privacy. Such
a speciőcation must be given by an expert user who is helped by the visualization of the
ontology (see Figure 3.3) for inspecting the different property paths related to the class of
interest.

Example 3.2.1. Suppose that the expert user (here the data protection officer) speciőes that
the sensitive information about students (thus the information that each student should be
enabled to ask to be removed), consists in:

- their rank at the ECN (which is the national grading exam at the end of second cycle),

- the different tests they registered to,

- the questions they have answered to, with the grade they obtained for each of them,

- and the information about their successive enrolments.

Based on the properties in the ontology, this will result in the following module speciőcation:

[?𝑠0 : 𝑠𝑡𝑢𝑑𝑒𝑛𝑡] (
ℎ𝑎𝑠_𝑒𝑐𝑛𝑝_𝑟𝑎𝑛𝑘,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑛𝑡−,
𝑑𝑜𝑛𝑒_𝑏𝑦−/𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛,
𝑑𝑜𝑛𝑒_𝑏𝑦−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑟𝑒𝑠𝑢𝑙𝑡,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑙𝑎𝑐𝑒,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑒,

38

Chapter 3. OBDA architecture and data modularization in OntoSIDES

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
)

3.2.2 Module extraction

Theorem 3.1 is the formal basis for showing how to use SPARQL to extract modules. For ex-
ample, Figure 3.9 provides the SPARQL CONSTRUCT query to extract the student module
in Example 3.2.1 for a speciőc student (𝑠𝑖𝑑𝑒𝑠:𝑠𝑡𝑢𝑑𝑒𝑛𝑡2023). It is a direct implementation
in SPARQL of the module speciőcation.

1 CONSTRUCT {

?s_0 sides:has_for_ecnp_rank ?rank .

3 ?test sides:has_for_registrant ?s_0.

?answer sides:done_by ?s_0 .

5 ?answer sides:correspond_to_question ?question .

?answer sides:has_for_result ?result.

7 ?enrolment sides:correspond_to_student ?s_O.

?enrolment sides:has_for_registration_place ?place.

9 ?enrolment sides:has_for_registration_date ?date.

?enrolment sides:correspond_to_training ?training.

11 }

WHERE {

13 ?s_0 sides:has_for_ecnp_rank ?rank .

?test sides:has_for_registrant ?s_0.

15 ?answer sides:done_by ?s_0 .

?answer sides:correspond_to_question ?question .

17 ?answer sides:has_for_result ?result.

?enrolment sides:correspond_to_student ?s_O.

19 ?enrolment sides:has_for_registration_place ?place.

?enrolment sides:has_for_registration_date ?date.

21 ?enrolment sides:correspond_to_training ?training.

FILTER (?s_0 = sides:student2023)

23 }

Figure 3.9 A CONSTRUCT query to extract a speciőc module speciőed in Example 3.2.1

However, in practice, this naive approach does not scale to the size of the large RDF
graphs that we consider in this thesis, even if we split the process by evaluating several
CONSTRUCT SPARQL queries (one by property path of the module speciőcation) to have
templates with less joins in the output of the CONSTRUCT queries.

39

Large-scale ontology-based data analytics

The scalability issues are related both to the large size of some modules (like modules of
students that may contain millions of triples) as well as to the large number of modules
(for instance if the target class is the class 𝑎𝑛𝑠𝑤𝑒𝑟 having 817 million instances in the last
version of OntoSIDES).

For scaling up module extraction, we have chosen to represent modules as RDF named

graphs identiőed by the roots of the modules, which can be materialized or computed on
the ŕy. Module materialization (like view materialization used in Section 3.1.2) allows
to compute some modules only once, and to re-use them for computing other modules by
module combination.

We now explain our approach for module materialization in Section 3.2.2.1 and for module
combination in Section 3.2.2.2.

3.2.2.1 Mapping-based module materialization

We have designed Ontop mappings to materialize modules as sets of RDF quads where the
őrst three elements correspond to triple patterns in the module and the fourth element to its
module root.

More precisely, given the speciőcation of a module, each property path pattern is splitted
into its triple patterns that are transformed into quad templates with four placeholders:
the őrst three placeholders of the quad template correspond to the three variables of the
triple template and the fourth placeholder corresponds to the root variable of the module
speciőcation. The Ontop mappings are then completed by building the corresponding SQL
queries for populating the quad templates. Finally, the mappings are materialized and the
resulting RDF quads are stored in the triplestore.

In the setting of OntoSIDES, we have used this mapping-based approach to extract (and
store in Virtuoso) the modules of the classes answer, question and enrolment according
to their following speciőcation.

Module specification for the class 𝑎𝑛𝑠𝑤𝑒𝑟: This speciőcation has been guided both by
the need to get the properties appearing in the conditions of rules in the ontology, and by the
need to relate the answers to the corresponding questions, the students who entered them,
with the corresponding time stamp, and also the tests during which they have been done.

[?𝑠0 : 𝑎𝑛𝑠𝑤𝑒𝑟] (
𝑑𝑜𝑛𝑒_𝑏𝑦,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛,
𝑖𝑠_𝑝𝑎𝑟𝑡_𝑜 𝑓 −/ℎ𝑎𝑠_𝑟𝑖𝑔ℎ𝑡𝑙𝑦_𝑡𝑖𝑐𝑘𝑒𝑑,
𝑖𝑠_𝑝𝑎𝑟𝑡_𝑜 𝑓 −/ℎ𝑎𝑠_𝑤𝑟𝑜𝑛𝑔𝑙𝑦_𝑡𝑖𝑐𝑘𝑒𝑑,
𝑖𝑠_𝑝𝑎𝑟𝑡_𝑜 𝑓 −/𝑑𝑜𝑛𝑒_𝑑𝑢𝑟𝑖𝑛𝑔,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,

𝑡𝑦𝑝𝑒)

40

Chapter 3. OBDA architecture and data modularization in OntoSIDES

Module specification for class 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛: This speciőcation has been guided by the need
to isolate all the information describing questions to facilitate their access for allowing
teachers to analyse of their pedagogical content, and the UNESS administrators to őnd
easily the authors and co-authors of each question.

[?𝑠0 : 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛] (
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛−,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑜 𝑓 _𝑎𝑛𝑠𝑤𝑒𝑟/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎_𝑐𝑜𝑛𝑡𝑒𝑛𝑡/𝑡𝑦𝑝𝑒,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑜 𝑓 _𝑎𝑛𝑠𝑤𝑒𝑟/𝑡𝑦𝑝𝑒,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑜 𝑓 _𝑎𝑛𝑠𝑤𝑒𝑟/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑜 𝑓 _𝑎𝑛𝑠𝑤𝑒𝑟/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑡𝑒𝑥𝑡𝑢𝑎𝑙_𝑐𝑜𝑛𝑡𝑒𝑛𝑡,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑜 𝑓 _𝑎𝑛𝑠𝑤𝑒𝑟/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑤𝑒𝑖𝑔ℎ𝑡_𝑜 𝑓 _𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙_𝑜 𝑓 _𝑎𝑛𝑠𝑤𝑒𝑟/ℎ𝑎𝑠_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,
𝑐𝑜_𝑎𝑢𝑡ℎ𝑜𝑟,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑤𝑒𝑖𝑔ℎ𝑡,
𝑖𝑠_𝑙𝑖𝑛𝑘𝑒𝑑_𝑡𝑜_𝑡ℎ𝑒_𝑐𝑟𝑜𝑠𝑠_𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒_𝑒𝑛𝑡𝑖𝑡𝑦,
𝑖𝑠_𝑙𝑖𝑛𝑘𝑒𝑑_𝑡𝑜_𝑡ℎ𝑒_𝑚𝑒𝑑𝑖𝑐𝑎𝑙_𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑡𝑦,
𝑖𝑠_𝑙𝑖𝑛𝑘𝑒𝑑_𝑡𝑜_𝐸𝐶𝑁_𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙_𝑒𝑛𝑡𝑖𝑡𝑦,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑡𝑖𝑡𝑙𝑒,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑐𝑜𝑚𝑚𝑒𝑛𝑡,

ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑎𝑛𝑠𝑤𝑒𝑟_𝑡𝑒𝑥𝑡,
ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑡𝑒𝑥𝑡𝑢𝑎𝑙_𝑐𝑜𝑛𝑡𝑒𝑛𝑡,
ℎ𝑎𝑠_𝑟𝑎𝑡𝑖𝑛𝑔/𝑡𝑦𝑝𝑒,
ℎ𝑎𝑠_𝑟𝑎𝑡𝑖𝑛𝑔/𝑔𝑖𝑣𝑒𝑛_𝑏𝑦,
ℎ𝑎𝑠_𝑟𝑎𝑡𝑖𝑛𝑔/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,

ℎ𝑎𝑠_𝑟𝑎𝑡𝑖𝑛𝑔/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑣𝑎𝑙𝑢𝑒,
𝑡𝑦𝑝𝑒)

Module specification for class 𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡: This corresponds to the need to have a view
of all the history of the enrolments of students that can have changed university and training
levels over the years.

[?𝑠0 : 𝑒𝑛𝑟𝑜𝑙𝑚𝑒𝑛𝑡] (

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑙𝑎𝑐𝑒,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑝𝑟𝑜𝑣𝑒𝑛𝑎𝑛𝑐𝑒,
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑠𝑡𝑢𝑑𝑒𝑛𝑡−/ℎ𝑎𝑠_ 𝑓 𝑜𝑟_𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑎𝑡𝑒,
𝑡𝑦𝑝𝑒)

For all these 3 module speciőcations, the mappings to extract the data of the modules

41

Large-scale ontology-based data analytics

are direct extensions to quad templates of the corresponding mappings used for extracting
triples. For example, Figure 3.10 shows 3 mappings to extract RDF quads corresponding
to the 3 property paths 𝑑𝑜𝑛𝑒_𝑏𝑦 and 𝑖𝑠_𝑝𝑎𝑟𝑡_𝑜 𝑓 −/ℎ𝑎𝑠_𝑤𝑟𝑜𝑛𝑔𝑙𝑦_𝑡𝑖𝑐𝑘𝑒𝑑 of the modules
As we can see, the fourth position of the quad templates is bound to the root variable of the
module speciőcation, which in this case is represented by sides:answer{response_id}.
The {response_id} placeholder is instantiated with values from a column named "re-
sponse_id" that is available in the SQL query mapping source.

mappingId urn:relation_answer_action_to_answer_nquad

target sides:adr{response_id_new} sides:is_part_of sides:answer{response_id} sides:

answer{response_id} .

source select response_id_new, response_id from ontosides.response

mappingId urn:relation_answer_student_nquad

target sides:answer{response_id} sides:done_by sides:stu{participant_id} sides:answer{

response_id}.

source select response_id, participant_id from ontosides.response

mappingId urn:relation_has_wrongly_ticked_nquad

target sides:adr{response_id_new} sides:has_wrongly_ticked sides:prop{choice_id} sides:

answer{response_id}.

source select response_id_new, choice_id, response_id from ontosides.response r where r.

invalid = true

Figure 3.10 Example of Ontop mappings to materialize modules using RDF quads templates

It is important to note that using such mappings enables the construction of all the
modules rooted in instances of the class 𝑎𝑛𝑠𝑤𝑒𝑟 by evaluating a few SQL queries the
number of which does not depend on the number of instances of the class.

3.2.2.2 CONSTRUCT-based module combination

Large modules can be obtained by combining modules already stored in the triplestore as
RDF quads. This combination can be expressed by quad CONSTRUCT queries whose
evaluation will generate the RDF quads making up the module.

For example, Figure 3.11 shows a Quad CONSTRUCT query that speciőes a module of
a speciőc student (𝑠𝑖𝑑𝑒𝑠:𝑠𝑡𝑢𝑑𝑒𝑛𝑡2023) as a combination of the modules corresponding to
his/her answers, the related questions, and his/her enrolments. This module differs from the
module speciőed in Example 3.2.1 since it contains, for each answer, question or enrolment
related to the student, all the information in the union of their respective modules. For the
experiments that we will report in Chapter 5, we have used this module speciőcation both

42

Chapter 3. OBDA architecture and data modularization in OntoSIDES

for constructing datasets of increasing size (as the union of such modules extracted for an
increasing number of students), and for a module-based optimization of reasoning.

Extracting the corresponding data can be done by evaluating this query. The body of the
query consists of a basic graph pattern (lines 6-8) and a collection of subqueries (lines
11-13). The basic graph pattern is a set of chained triple patterns connecting the answer,
question, enrolment and student variables, one of which is őltered by a value speciőed in
line 9. This value is the URI of the new module (i.e. 𝑠𝑖𝑑𝑒𝑠:𝑠𝑡𝑢𝑑𝑒𝑛𝑡2023). As for the
subqueries, each one retrieves data from a named graph whose identiőer matches a variable
of the basic graph pattern.

1 CONSTRUCT {

?s ?p ?o ?student .

3 }

WHERE {SELECT ?s ?p ?o ?student{

5 {

?answer sides:done_by ?student .

7 ?answer sides:correspond_to_question ?question .

?enrolment sides:correspond_to_student ?student .

9 FILTER (?student = sides:student2023)

}

11 {SELECT ?s ?p ?o ?answer1 {GRAPH ?answer1 {?s ?p ?o}}}

{SELECT ?s ?p ?o ?question1 {GRAPH ?question1 {?s ?p ?o}}}

13 {SELECT ?s ?p ?o ?enrolment1 {GRAPH ?enrolment1 {?s ?p ?o}}}

FILTER (?answer1=?answer && ?question1 = ?question && ?enrolment1

= ?enrolment)

15 }}

Figure 3.11 A Quad CONSTRUCT query to specify a module for a speciőc student

Quad CONSTRUCT queries are not within the SPARQL 1.1 speciőcation and thus are
not supported by the existing triplestores such as Virtuoso or GraphDB. An alternative
solution would consist in evaluating the induced SELECT queries and then constructing the
output quad triples from the results of the SELECT queries. However, this solution does
not work either in practice for big RDF data, mainly due to the multiple GRAPH subqueries
involved, and the fact that their big results have then to be processed by multiple joins and
multiple őltering conditions.

To solve this issue, we have implemented an application for evaluating efficiently Quad
CONSTRUCT queries on top of the TESS Spark-based infrastructure for big RDF triple-
stores that we have developed and that will be described in the next chapter.

43

Large-scale ontology-based data analytics

3.3 Summary

In this chapter, we have introduced an OBDA architecture for periodically releasing big
RDF graphs, and we have shown how we have used it to build the OntoSIDES knowledge
base. We have described the OntoSIDES ontology and the mappings used to materialize
RDF data. The ontology contains SPIN rules used to saturate the data.

We have also explained the usefulness of modularizing big RDF graphs, and we have
described our methodology for facing the scalability issues by materializing modules as
named graphs and by combining them. The combination of modules based on quad
CONSTRUCT queries led us to design a novel architecture for big RDF triplestores that is
described in the next chapter.

44

Chapter 4

TESS infrastructure for Big RDF

triplestores

Scalability is still an open issue for state-of-art triplestores, when it concerns large RDF
datasets constantly growing. Our initial decision to use Virtuoso as the triplestore to hold
the RDF data produced by materialization proved to be inadequate. As the size of the data
increased, performance problems began to surface in queries, indicating that triplestores are
still struggling with the challenge of scalability. We showed in [11] that classic triplestores
like Virtuoso and GraphDB fall into completeness, correctness and timeouts issues when
dealing with aggregated/complex queries and large outputs.

There are two ways to deal with scalability of management and querying big RDF data:
extending traditional Data Base Management Systems (DBMS) or exploiting Big Data
technologies. The choice depends on the support for columnar storage: native or hybrid.

Native column storage saves data columns contiguously to speed up queries that require
large data retrieval (e.g. analytical queries). In a hybrid column storage, there are two
versions of the same data. While a version remains in disk, the other version is kept in
RAM memory but in columnar format. Hybrid column storage has been implemented by
traditional DBMS like SQL server and Oracle but it does not yield good performance [41] .

Big Data technologies cover a broad spectrum of software tools that can be used and
combined for developing data-intensive applications. Spark [42] is one of the most powerful
big data technologies based on parallelization optimizations over distributed environments.

Sansa [43] and Bellman [44] are Spark-based engines for scalable processing of large-
scale RDF data. A variety of tools and technologies can be combined for handling efficiently
the different aspects of distributed RDF data management. The diversity of big data
technologies for building so-called Big RDF frameworks is summarized in Figure 4.1
extracted from [1].

Big RDF frameworks emulate some DBMS features at scale such as storage, partitioning,

45

Large-scale ontology-based data analytics

Figure 4.1 A generic Big RDF framework [1]

indexing, query optimization and processing. However, up to our knowledge, no existing
big RDF framework supports metadata management, and transactional updating that are
two important DBMS features.

In our PhD work, through TESS, we propose a transition from Big RDF frameworks to
Big RDF triplestores for a full implementation of DBMS operations. This transition is not
trivial because such as implementation must interplay with an ecosystem of technologies
under constant evolution.

We have designed and implemented a Big RDF triplestore, called TESS, offering DBMS
service layer to cover data updates as transactions. By adding this layer, we extend the dimen-
sions considered in [45] for describing triplestores, and we propose a Big RDF triplestore
of őve layers: Data distribution, Storage, Query processing, Transactional Metadata layer
and Reasoning.

The remaining content of this chapter is presented as follows. In Section 4.1, we survey
the Big Data technologies according the different layers of a Big RDF triplestore. In Section
4.2, we describe the layers of the TESS architecture. Finally, in Section 4.3 we provide a
summary of the topics above discussed.

4.1 State of art

Big Data technologies are not a source of long-term solutions for semantic web applications.
Instead, it offers a buoyant ecosystem of technologies where the best tool for the job

46

Chapter 4. TESS infrastructure for Big RDF triplestores

yesterday, it is not necessarily the best tool for the job today. For this reason, each time
a semantic web application requires to use Big Data technologies, a deep review must be
conducted in the state of the art.

To narrow the review, we inspect those technologies that are the most compatible with
Spark. We chose Spark because: a) an extense survey about Big RDF frameworks [46]
shows its versatility for many high performance scenarios, b) it has been awarded with
the 2022 ACM SIGMOD Systems Award 1 as "an innovative, widely-used, open-source,
uniőed data processing system encompassing relational, streaming, and machine-learning
workloads", and c) it catches up latest hardware improvements (e.g. GPUs).

Big RDF frameworks based on Spark has been studied in [46]. Overall, the frameworks
are aligned with the two main Spark data abstractions: Resilient Distributed Dataset (RDD)
and Dataframe. A RDD is an in-memory datastructure that enables data sharing between
computation stages. Dataframe is built on top of RDD and it contains additional schema-
level information to deal with structured data. SANSA 2 and Bellman are two Spark-based
frameworks that have gained some traction among researchers and practitioners. In contrast
with SANSA [47], Bellman [44] loads RDF data directly into Dataframes and execute
SPARQL queries (even CONSTRUCT queries) translated into Spark-SQL. However, it
does not support full SPARQL 1.1 and it is not clear if it supports aggregate queries due to
lack of documentation.

The survey in [1] shows how distributed storage and query processing have evolved over
time. For SPARQL parallel query processing, MapReduce has been replaced gradually
by Spark, whereas for distributed storage and storage format, Hive3 and HBase4 has been
superseeded by HDFS5 and Parquet6. Although some of the frameworks considered aggre-
gate queries in their performance studies, none of them dealt with FILTER NOT EXISTS
queries.

In this section, we review the most reliable parallelization technologies on each layer of
Big RDF triplestores.

4.1.1 Data distribution

The distribution of data over a cluster of disk nodes allows to scale storage as data grows.
As of today, there are two widely-used alternatives to distribute data: HDFS and Object
Storage. The former is deployed on cloud while the latter is deployed on-premise using
local infrastructure.

1https://sigmod.org/2022-sigmod-awards

2https://sansa-stack.net/

3https://hive.apache.org/

4https://hbase.apache.org/

5https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction

6https://parquet.apache.org/

47

Large-scale ontology-based data analytics

1. Hadoop Distributed File System (HDFS). It consists of a őlesystem where data is
stored over a cluster of low-cost hardware. The use of a őlesystem allows a direct
interaction between an user and typical command line operations for maintenance
tasks. In HDFS, data is broken down into blocks. The default size block is 128MB.
The blocks are distributed and replicated over the cluster to guarantee fault tolerance
and data availability. The default replication factor is 3 and it means that 3 copies of
the same block are distributed in the cluster. The replication factor is costly because
it transforms a large dataset into one even larger.

Figure 4.2 HDFS architecture [2]

A HDFS cluster is conformed by a namenode (master) and a set of datanodes (slaves).
The namenode contains all metadata (name, replicas, location, etc) about all the
datanodes.

In Figure 4.2, the namenode (light blue color) receives read/write requests from two
clients (orange color). The data is splitted in blocks (green color) and, distributed
and replicated in 5 datanodes (yellow color) across two racks (curly brackets).

HDFS does not come with a DBMS but there are some open source technologies like
Hive or Spark which provides basic DBMS support to handle tables schema metadata.

2. Object Storage. It is a key-value store where a ŕat list of objects is stored in a bucket.
Each object contains data and is associated to an identiőer, custom attributes and
metadata. Object Storages are generally deployed in cloud environments and up to

48

Chapter 4. TESS infrastructure for Big RDF triplestores

date, the main providers are Amazon S3, Azure Blob Storage, Google Cloud Storage
and Openstack Swift.

The use of an object storage allows a very basic interaction between an user and the
remote storage through an REST API. The REST API uses standard HTTP requests
to create, fetch, and delete buckets and objects 7.

Object Storage does not come with a DBMS either but there are paid services which
provides basic DBMS support. For example, Amazon SimpleDB can be used to
support a basic DBMS for storing metadata and for object metadata querying.

The selection of a data distribution framework depends on several requirements. Object
Storage can be the right choice for: high throughput, cross-zone data durability, high data
availability and cloud-based querying based on simple SPARQL queries as AMADA shows
in [48]. Instead, HDFS could be the right option to follow for very intensive I/O data
operations on on-premise8 cluster installations 9 with support for metadata, directories,
appending data, low latency and complex SPARQL queries.

Although a data distribution framework already provides parallelization and replication,
I/O operations can be accelerated if data in each cluster node is distributed over more than
one disk. RAID 10 is a virtualization technique that allows to run an operating system on
top an array of disks as if they were a single one. RAID has 3 properties: mirroring to
secure data by redundancy, striping to split data in different disks, and parity that uses a
calculated value to restore eventually lost data from still available disks.

In RAID, the different disks arrangements are denominated levels. The best known
levels are 0,1,5,6 and 10. Level 0 enables mirroring, Level 1 enables striping and Level 10
combines both. Levels 5 and 6 add parity.

The selection of the proper RAID level depends on the critical feature to be tackled by
the architecture. If the critical feature is resilience to disk failure, then best choice is Level
5 or 6 although the controller is expensive. If the critical feature is I/O acceleration then the
best choice is Level 10.

4.1.2 Storage

The storage format refers to how a data table is stored physically: row or columnar. In a
row storage, table rows are stored contiguously keeping the order of the attributes values in
each row. This type of storage is widely used for read/write single-record operations when

7https://docs.aws.amazon.com/AmazonS3/latest/userguide/developing-rest-api.html

8It refers to an installation under the infrastructure of the person or organization
9https://cloud.google.com/architecture/hadoop/migrating-apache-spark-jobs-to-cloud-dataproc

10It stands for "Redundant Array of Inexpensive Disks"

49

Large-scale ontology-based data analytics

data changes at very fast pace : for example, to select all attributes of a record or to update
a particular attribute value as in an Online Transaction Processing (OLTP) database.

In a column storage, table columns are stored contiguously. Column storage is used
for read/write batch operations when data changes very slow. A frequent use case is to
aggregate some attributes from a large amounts of records as in an Online Analytical
Processing (OLAP) database.

ORC and Parquet are column storage formats widely used to handle large volumes of
data with Big Data technologies. Whereas ORC is highly optimized to work with Hive,
Parquet offers high data compression rate and performs better when works with Spark. In
recent years, with the rise of Spark as leading cluster-based query engine, Parquet appears
to have become the preferred option for columnar storage formats.

There are three optimization techniques that Spark can apply when works with Parquet:
Partitioning pruning, Predicate push down and Min/max statistics.

Partitioning pruning is a technique to reduce input data size before query execution. In
partitioned pruning, partitioned data is organized in a hierarchy of directories and subdi-
rectories. The data is contained in each leaf directory. Based on a given őlter, it allows to
Spark to retrieve data from speciőc folders and skip the rest.

In Predicate push down, Spark őlters query predicates based on metadata stored in the
Parquet őles. The őltering operations are tunneled into the scan operator which reads data
before query execution. In Min/max statistics, data is skipped based on min/max value
statistics available in each row group.

4.1.3 Query processing

Query processing can be distributed if it lies on a robust cluster programming model that
abstracts away critical networking issues like data replication, input/output operations, fault
tolerance, load balancing and data serialization.

• MapReduce. It is a programming model to process large datasets presented in [49].
The pipeline is a collection of succesive operations where the shared data between
intermediate steps are key/value pairs obtained from a reduce operation to all the
values that shared the same key. Although MapReduce can emulate many real world
tasks, the main drawback is that its computing intermediate steps requires disk access
to read/write.

• Resilient Distributed Framework (RDD). It is an uniőed cluster programming
abstraction able to emulate almost any cluster programming model (e.g. MapReduce,
Pregel, etc) [50]. RDD enable composed computations, an efficient in-memory data
sharing across parallel computation stages.

50

Chapter 4. TESS infrastructure for Big RDF triplestores

RDD is an efficient programming model for batch analysis and streaming based
on micro-batches. A RDD pipeline is made of transformations and actions. A
transformation is a lazy operation that only deőnes a new RDD but without computing
it. Instead, an action triggers a computation which will return a value or will write data
in the storage. Although RDD is a very versatile abstraction, it is not recommended
for applications that makes asynchronous őne-grained updates over a shared state[50].

MapReduce was implemented by Apache Hadoop and although is still available, its usage
have decreased dramatically in the last years due to its inability to share in-memory between
intermediate steps. Instead, the Spark implementation of RDD, can emulate MapReduce
operations and has become the facto standard for distributed query engines. Spark also
offers high level datastructures like Dataframes and Datasets on top of RDD to deal with
structured data. The dataframes are the core of Spark-SQL and all their optimizations are
available for SPARQL queries if they are translated into SQL.

Regarding querying workload, SPARQL queries can be classiőed into 2 groups: CPU

Bound and I/O Bound. CPU bound refers to queries which execution depends far more on
the CPU, whereas the other components of the computer system are almost not used. I/O

bound refers to queries that executes a large amount of read/write operations from/to disks
or peripheral devices. To the best of our knowledge, much research has been done on CPU

Bound queries (e.g. read queries) rather than I/O Bound queries (e.g. update queries), and
no research on queries involving both cases (e.g. forward chaining reasoning).

The use of GPUs can improve the performance for CPU Bound queries by increasing
dramatically the number of parallel operations with thousands of cores. A GPU does not
replace a CPU in a hardware system. Instead, it is an additional device which allow to run a
query plan through different stages, that are executed either on the CPU (host) or the GPU
(device).

The addition of a GPU could mean the redesign of a software from the ground up to
ensure efficient use of GPU hardware while catching up latest improvements at the same
time [51]. Fortunately, Spark can also provide GPU acceleration via RAPIDS, a external
library based on cuDF and Apache Arrow, a columnar memory format. In this way, a Spark
program can run in a GPU-based cluster without any change.

Regarding I/O Bound queries, the performance depends on the implementation of a
direct data path between the storage and the GPU memory to increase I/O bandwidth (e.g.
GPUDirect Storage). The potential bottlenecks when working with GPUs at scale have
been are outlined in [51, 52]. For example, the addition of a GPU could degradate the
overall performance when in-memory data have to be spilled into the disk because it does
not őt into the GPU global memory, or when there are many intermediate results and the
data transference among the host and the GPU device is slow.

51

Large-scale ontology-based data analytics

Despite the GPU performance in Spark is limited by the amount of data that can be
loaded in the GPU memory, the beneőts that the use of GPUs brings to CPU bound queries
largely pay the eventual shortcoming. Further, the suitable use of partitioning pruning can
avoid the bottleneck produced by I/O Bound queries when reducing the size of data to be
read.

4.1.4 Transactional metadata layer

In traditional DBMS, a transaction is an unit of work that consists of a sequential execution
of SQL operations. There are three basic commands to group SQL statements inside a
transaction:

• begin transaction, to start a transaction.

• end transaction, to commit (save) updates, and

• rollback, to undo changes.

A transaction is characterized by four properties to guarantee consistency and correctness
in data operations. Those properties are better know by the acronym ACID, which stands
for:

• Atomicity, all transaction items are processed or none.

• Consistency, data remains in consistent state after transaction.

• Isolation, no interference between multiple transactions, and

• Durability, changes produced by transactions are preserved even after system failure.

A Big RDF triplestore requires ACID support to ensure consistency and data integrity
for update operations. As of today, transactions support for Big Data is still basic and it is
not fully featured like in traditional DBMS.

Big Data transactions have not commands to group SQL statements. Instead, a trans-
action is triggered whenever an operation (INSERT, UPDATE or DELETE) is performed
upon a table with ACID support, hereafter known as an ACID table. Once a transaction
is initiated, is broken down into its components parts: actions. A commit is deőned as an
action recorded in a transaction log which in turn, it is stored along with the data.

In this regard, we offer an illustrative example. Suppose that a column is added to an
ACID table and then, some data is populated in the new column. This process would result
in two commits being added to the transaction log: a) Updating the table’s metadata to track

52

Chapter 4. TESS infrastructure for Big RDF triplestores

the addition of a new column to the table schema, and b) Adding a őle containing the new
data to the table. This ensures that the addition of the new column and the insertion of
data into it are performed atomically and consistently, providing ACID guarantees for the
operation.

Big Data transactions are supported for only a single table instead of many as occurs
in traditional DBMS. Regarding isolation levels, traditional databases offer four levels of
isolation, namely Read uncommitted, Read committed, Repeatable read, and Serializable.
In contrast, Big Data systems prioritize scalability and performance over strict consistency
guarantees, and therefore, offer a limited number of isolation levels. The two isolation levels
provided by Big Data systems, Serializable and WriteSerializable, are designed to ensure
high consistency in transactions, with WriteSerializable providing stronger guarantees than
Serializable. This approach applies the stronger isolation level only to write transactions,
allowing for improved performance and concurrency for read transactions. Despite the
limited number of isolation levels, both Serializable and WriteSerializable provide strong
consistency guarantees for write transactions, ensuring that the data is always reliable in
Big Data environments.

There are two ways to implement an ACID table in Big Data systems, either using Hive
with ORC ACID storage format or using Spark with Delta Lake[53] metadata layer. In both
cases, the transactions metadata are logged along with the data. The main drawback of
ORC ACID is that data can only be read by Hive and it is not available for other distributed
frameworks like Spark. Conversely, Delta Lake adds metadata management for ACID
service to Spark by: a) using a transaction log for keeping track of all the updates made to
the ACID table and b) using time travel for loading the ACID table at a given version or
timestamp [54].

To the best of our knowledge, ACID tables have not been considered for any Big RDF
triplestore so far. The implementation of ACID tables restricts the data layout of a Big RDF
triplestores to a single table layout. Although the experiments reported in [55] have shown
that single table layout is outperformed by vertical partitioning and property tables, single
table layout remains as the dominant layout in real-world deployments (e.g. Virtuoso).

The implementation of non-single layouts is a time consuming task that requires data
normalization and query rewriting. In addition, updates are easier in a single table layout
because it does not need to be propagated to other tables like in other layouts.

4.1.5 Reasoning

There are no Big Data technologies speciőcally designed for reasoning processes. Instead,
existing technologies are repurposed to execute such processes. Spark-based reasoners have
been explored in a limited capacity, as there are only a few examples in the literature [56, 57].
These reasoners typically perform either full or incremental materialization and use Spark

53

Large-scale ontology-based data analytics

RDD operators to implement RDFS rules, which do not fully leverage the performance
optimizations available for Spark Dataframes.

4.2 TESS architecture

TESS is a Big RDF triplestore with a modular architecture. Figure 4.3 shows the őve
layers of TESS. The modular architecture makes possible to disable some of them, like
the transactional metadata layer or the data distribution if they are not useful, for instance
if the CONSTRUCT queries are not used for updates or if data is not distributed. Also,
modularity allows to add extra layers (e.g. streaming) or replace some of them (e.g. a graph
analytics application instead of the reasoner).

Reasoning

Query processing

Storage

Data distribution

TESS layers

Transactional metadata layer

Spark Application
CONSTRUCT-based forward chaining reasoning

SPARQL query

Output query

Figure 4.3 TESS triplestore architecture

TESS supports two inputs: A SPARQL query and a Spark Application for CONSTRUCT-
based forward-chaining reasoning. Notice in Figure 4.3 that only SPARQL queries have
external output. Instead, the outcome of the forward chaining reasoning is meant to be
stored in the distributed storage for later querying.

The TESS technology stack is presented in Figure 4.4. It considers selected technologies
on the basis of the reviews done in the previous section. At glance, it allows to visualize the
distinguished technologies used by TESS: the Rapids GPU accelerator (part of the Query
processing layer) and Delta Lake (which manages the Transactional Metadata layer).

54

Chapter 4. TESS infrastructure for Big RDF triplestores

SPARQL-based reasoner

Parquet

Hadoop File System

TESS technology stack

Delta Lake

sparql_to_sql_text() Virtuoso function

Spark-SQL

Rapids GPU accelerator

Spark cluster resource manager

Reasoning

Query
processing

Transactional
metadata layer

Storage

Data
distribution

Query application

Figure 4.4 TESS triplestore technology stack

In the following, we review each layer of TESS along with its selected technologies.

4.2.1 Data distribution

We deal with a scenario where HDFS can run out of space due to lack of additional hardware
to deal with the increasing size of a dataset. Looking for ways to save space, we found that
the default HDFS replication scheme is expensive because it has 200% overhead in storage
space [58]. After conőrming that Big Data players like Facebook had identiőed the same
issue [59], we decided to eliminate replicability by minimizing the number of HDFS nodes
as much as possible to maximize available space.

Based on the proposed scenario and the review of previous section, we conclude that
the best strategy for data distribution is to deploy HDFS on top of RAID. We believe that
working together, data storage could be optimized by reducing the amount of storage that
HDFS needs for replication11. However, since this deployment is not given by default, it
will require an on-premise installation to customize the setup.

We used a hybrid approach to distribute data. On this approach, a minimal HDFS
conformed by one namenode and one datanode is deployed on top of a collection of n disks
merged into one unit using RAID 0. There is not replication to save space and, in case of
failure, it uses an external backup service to recover data.

The ingestion of data is a process that lies on an external library for parsing and syntax
checking. In general, there are two main Java-based libraries widely used in the semantic

11https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.4/data-storage/content/

increasing_storage_capacity_with_hdfs_erasure_coding.html

55

Large-scale ontology-based data analytics

web community: Apache Jena12 and Eclipse RDF4J13. Apache Jena is used by other Spark-
based RDF frameworks like Sansa and Bellman, but we discarded it because the parsing
of a single RDF string requires the creation of a bunch of auxiliary in-memory objects that
end up hitting loading performance [60]. Instead, we developed a Spark library14 on top of
Eclipse RDF4J. The library parses n-triples and quads by column chunks instead of single
rows to increase loading speed.

Data is ingested into a directory tree that needs periodical maintenance. An example of
maintenance task is the recreation of an outdated data partition without need to recreate the
full dataset. HDFS maintenance is performed using the File System (FS) shell. Each FS
command bears a close ressemblance with a Linux command and it receives a path URIs
as arguments to act over a directory. The format of the URIs is scheme://authority/path and
allows to access all the subdirectories under that path.

The simple access to the HDFS data through a path URI also facilitates the connection
to other Big Data applications. For example, an user can use a popular visualization tool
like Tableau15 to connect to the HDFS, launch some SQL queries, and present the results in
statistical dashboard. As another example, an user can use a distributed query engine like
Presto 16 to query data accross multiple datasources, one of which is HDFS.

4.2.2 Storage

We conceptualize storage as a customizable layer composed of a directory structure, a
storage format and a logical layout. The storage aims to provide swiftest access to that
portion of the data that participates in a query.

The directory structure depends on a partitioning operation carried out by Spark at
loading time. Partitioning creates as many directories as RDF predicates there are in the
data to enable an operation called partitioning pruning.

Partitioning pruning is essential because it reduces the input data size for queries. This
is crucial for self-join queries that run over multiples copies of a same large table. In that
case, partitioning pruning enables the replacement of the full version of a self-join table
by a reduced version retrieved from a partition. We use this feature for self-join queries
resulting from a SPARQL/SQL translation.

Data is saved in Parquet storage format. At loading time, data is splitted by Spark in
default Parquet blocks of 128 MB size each. We kept the default block size in 128 MB for
two reasons. The őrst reason is that the size of a Parquet block should not be larger than

12https://jena.apache.org/

13https://rdf4j.org/

14https://github.com/asanchez75/thesis_experiments_source_code

15https://www.tableau.com/

16https://prestodb.io/

56

Chapter 4. TESS infrastructure for Big RDF triplestores

the size of a HDFS block size that is also 128 MB. A mismatch between both sizes hits
performance. If the size of a Parquet block is bigger than a HDFS block, it would have to
be stored in many HDFS blocks. This could slow down the retrieval of a Parquet block
because it would have to be performed from many HDFS blocks located at different HDFS
nodes. The second reason is that this Parquet block size is the minimal recommended value
to keep parallelism in very large datasets. A lower value is costly, because it increases both
the number of blocks to process and the metadata size to handle in memory. Conversely, a
higher value could hit parallellism by processing large blocks sequentially.

The logical layout of the data is based on a single table with a schema of four columns
(<s, p, o, g>) to store RDF quads. This table is referred to as the main storage table.
Before being stored, RDF data is encoded into long integers using a Spark implementation
of the XXhash64 algorithm. The encoding improves the speed of in-memory operations
and reduces storage size. The XXhash64 encoding algorithm is fast because it processes
data at RAM speed limits [61].

4.2.3 Transactional metadata layer

We use Delta Lake to add ACID properties to the main storage table. Data is updated
directly in the main storage table but when the update is very large to őt in memory, an
auxiliary ACID table is added as intermediate storage to guarantee data consistency. We
do not use the default data spilling into disk provided by Spark when data is larger than
available memory. Such data can be corrupted during data spilling.

Figure 4.5 shows an example where the output of a query is saved in a temporary ACID
table when the output is very large to be handled totally in memory.

In such as example there are 4 steps. In the őrst step, the main table containing RDF data
is loaded from HDFS storage to RAM memory. At this step, Spark reads all the changes
recorded in the transaction log to build a versions history. When reading is őnished, Spark
loads the latest data version.

Next, the SPARQL query is translated into SQL query and executed on Spark-SQL.

In the third step, the large query output is saved in a temporary ACID table to guarantee
data reliability. The temporary ACID table has its own transaction log that we can use in
case of error debugging. Finally, in step 4, the temporary data is added to the main ACID
table and a new entry is added to the transaction log to record the operation.

In this layer, the ACID properties enforce data reliability as follows:

• Atomicity. Data is saved complete as commit or it is not saved. Partial saving is
rejected.

• Consistency. The ACID table rejects update operations that do not match its data
schema. This is called Schema enforcement. The rejection occurs if data to be

57

Large-scale ontology-based data analytics

added: a) has a bigger number of columns that the target schema of the table. b)
contains columns which datatypes are different from the target table. c) the name of
the columns does not coincide exactly because the ACID table is case sensitive for
column names.

• Isolation. Each operation running in parallel works over an in-memory snapshot of
the data. To ensure the order of the changes during commit, it uses an optimistic
concurrency control algorithm under the assumption that conŕicts are rare.

• Durability. It is supported on the basis of a transactions log that are read when data is
loaded. Delta Lake enables Spark to perform some metadata management to reduce
a huge list of transaction logs by performing checkpoint at the current state of a table.

In-memory
view

main
ACID table

Temporary
ACID table

query

query output

storage

query engine

transactional metadata layer

1

2

3

4

Figure 4.5 TESS transactional metadata layer

4.2.4 Query processing

We select Spark for query processing because: a) it is fault tolerant, b) SPARQL queries
can be executed by Spark-SQL if they are translated into SQL, c) it keeps in memory shared
data between intermediate steps, d) it supports GPU, and e) it is extendable with Scala
programs.

This layer consists of 4 components: a cluster resource manager, a GPU accelerator
interface, a Spark-SQL query engine and a SPARQL/SQL translator.

Cluster resource manager. This component allows to distribute the execution of a
query over a standalone Spark cluster. It comprises a master and workers nodes, usually as
many workers as queries/rules to manage with.

The cluster manager (master) receives Spark applications and schedules worker re-
sources to be run among them. A Spark application is organized around jobs, the top level

58

Chapter 4. TESS infrastructure for Big RDF triplestores

Query Application.

This component is responsible for processing SPARQL queries. First, it translates a
query into SQL using the SPARQL/SQL translator. Next, it parses the query and encodes
all URIs and őlter values using long integers, as described in the 4.2.2 Subsection. It
then executes the query using the Spark-SQL component. Finally, the Query Application
component retrieves the result from the Spark-SQL component and returns the output to the
user after decoding the long integers into strings.

If the query is a (Quad) CONSTRUCT query, an additional step is required. Upon receiv-
ing the query, this component extracts the induced SELECT query and its corresponding
template, as described in the Subsection 2.8 . The SELECT query is then executed by
the Spark-SQL component. Next, the template is instantiated multiple times, equal to the
number of rows in the query output provided by the Spark-SQL component. Finally, the
Query Application component returns the union of all instantiated templates to the user.

In TESS, we faced the challenge of providing unlimited output size for CONSTRUCT
queries, a problem that had previously defeated Virtuoso. The issue with Virtuoso was that
it loaded output rows into a vector of őxed and monolithic size, limited to 1 million rows.
To overcome this, we replaced the vector with a column data structure that is parallelizable
and can be distributed in chunks across the cluster. This approach enabled TESS to handle
CONSTRUCT queries of any output size by exploiting hardware capabilities at maximum.

4.2.5 Reasoning

This layer executes serial and parallel forward chaining reasoning for rules encoded as
CONSTRUCT queries. The serial forward chaining is an implementation of the algorithm
presented in Figure 2.9 that executes the rules ordered by the topological order of the
dependency graph. The parallel forward chaining is an implementation of the algorithm
depicted below in Figure 4.9. The algorithm iterates over a group of incrementally deepening
layers, computing the rules that compose each layer in parallel and in any order.

We implemented a Spark reasoning application 18 to automate the forward chaining
reasoning described above. This program uses the Query Application presented above to
execute rules encoded as CONSTRUCT queries. After each rule computation, the program
stores the data in the HDFS whether the transaction has been validated in the transactional
metadata layer.

Forward chaining reasoning requires to ensure consistency and data integrity for update
operations during each iteration. We support ACID properties for each iteration as follows:

• The complete output is saved or none (atomicity),

18https://github.com/asanchez75/thesis_experiments_source_code

61

Large-scale ontology-based data analytics

Algorithm 2 Parallel
Input: Dataset 𝐷, 𝑁 layers of 𝑄𝑁 CONSTRUCT queries each
Output: Saturated dataset 𝐷

′

𝐷
′
← 𝐷

for 𝑖 ← 1 to 𝑁 do
𝑚 ← 𝑄𝑁

for 𝑗 ← 1 to 𝑚 do in parallel

𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑆𝑝𝑎𝑟𝑞𝑙 (𝑞 𝑗 , 𝐷
′
)

𝐷
′
← 𝐷

′
∪ 𝑜𝑢𝑡𝑝𝑢𝑡 // update operation

end

Figure 4.9 CONSTRUCT-based parallel forward chaining algorithm

• The output is saved only if data schema is validated (consistency),

• Parallel rules do not interfere each other (isolation) and

• once output is saved, it is safely persistent (durability).

Figure 4.10 shows how forward chaining works when it is computed in parallel. The
queries of the same layer are computed in parallel and the output is saved in temporary
ACID table to avoid memory issues. Next, all the outputs are stored in main ACID table.

62

Chapter 4. TESS infrastructure for Big RDF triplestores

ACID
table

Temporary
ACID table 1

Temporary
ACID table 2

Temporary
ACID table 3

Temporary
ACID table n

query 1

query 2

query 3

query n

Figure 4.10 TESS parallel forward chaining

4.3 Summary

The performance of a Big RDF triplestore depends on how their components interplay
together. Although the selection of the components could be overwhelming due to the
amount of criteria to consider, the initial choice of Spark as essential component narrows
the scope of the selection.

The hardware for Big Data evolves faster than software. To catch up latest hardware
improvements, the software must be upgraded or extended as soon as possible. Spark has
adapted quite well to these new challenges and shows GPU support as its latest achievement.

Spark reaches high performance if input data is reduced to that of portion of the data
that participates in a query. Data partitioning improves performance by reducing input data
size. Keeping in mind that input data size must be as minimal as possible, also prevents
slow data transference between nodes and RAM memory issues.

TESS is distinguished from other Spark-based frameworks because it provides ACID
support for update queries and forward-chaining reasoning based on rules encoded as
CONSTRUCT queries. However, it should be noted that TESS is not a true ACID-compliant
and transactional DBMS service. It is designed to ensure data consistency in some internal

63

Large-scale ontology-based data analytics

operations rather than at the user level.

TESS is based on a modular architecture that supports metadata management for log-
based transactions that track data updates.

64

Chapter 5

Comparative performance evaluation of

complex queries and reasoning

We use TESS in conjuction with state-of-the-art triplestores such as Virtuoso and GraphDB
to evaluate the performance of complex queries and forward chaining reasoning. The aim
is to study how CONSTRUCT query performance is affected by the growing size of the
input RDF datasets.

In the absence of appropriate benchmarks (for CONSTRUCT queries or for SELECT
queries on large knowledge graphs), we decided to conduct our performance evaluation on
the OntoSIDES knowledge graph, the size of which (12 billion triples) is comparable to
that of Wikidata (14 billion triples as of 2020) and DBpedia (21 billion triples as of 2021).

Performance evaluation

CPU

Serial Parallel

ModularIncremental

GPU

Serial

Figure 5.1 Performance evaluation

For the evaluation, we consider a collection of SPARQL CONSTRUCT queries that
cover a variety of SPARQL 1.1 features. The performance of forward chaining reasoning is

65

Large-scale ontology-based data analytics

evaluated in the context of several implementations, depending on the type of hardware (cpu
or gpu), parallel rules execution, incremental data updates, and data modularization. For
data modularization, we replace the OntoSIDES knowledge graph with a union of named
graphs so that forward chaining can be done in parallel on independent groups of named
graphs, called modules as presented in Section 3.2.

Figure 5.1 shows a tree of comparative performance evaluations of forward chaining
implementations:

• Serial versus Parallel. The performance of the implementations of the serial and
parallel algorithms presented in the subsection 4.2.5 are compared.

• Parallel versus Incremental. The performance of the implementation of the paral-
lel algorithm of subsection 4.2.5 is compared against a modiőed version handling
incremental data updates.

• Parallel versus Modular. The performance of the implementation of the parallel
algorithm of subsection 4.2.5 is compared against an adapted version that takes
advantage of data structuration in modules.

• CPU Serial versus GPU Serial. The performance of the implementation of the serial
forward chaining algorithm presented in subsection 4.2.5 is compared when running
on either CPU or GPU.

In this chapter, after presenting in Section 5.1 the experimental protocol that we have
followed, we report in Section 5.2 the experimental results we obtained for assessing the
performances of both complex (SELECT and CONSTRUCT) queries evaluation and the
serial algorithm of forward chaining reasoning based on the iteration of CONSTRUCT
queries. The results show that Virtuoso and GraphDB do not scale to large RDF datasets,
in contrast to TESS, which outperforms them on all the datasets. Then, Section 5.3,
Section 5.4 and Section 5.5 are respectively dedicated to the comparisons of the runtime
performance on TESS between the serial and parallel, parallel and incremental, parallel and
modular variants of the forward chaining algorithm. Finally, in Section 5.6, we report on
experimental results for comparing the performances of TESS when using CPU or GPU
for running the serial algorithm of forward chaining reasoning based on the iteration of
CONSTRUCT queries.

5.1 Experimental protocol

We őrst describe in Section 5.1.1 the queries that we have used in our experiments and we
explain in Section 5.1.2 how we have built the different RDF datasets of increasing size over

66

Chapter 5. Comparative performance evaluation of complex queries and reasoning

which the queries have been evaluated. In Section 5.1.3, we deőne the different measures
that we use for evaluating the performance for evaluating queries in isolation as well as for
the whole process of forward-chaining reasoning.

5.1.1 CONSTRUCT queries used as rules in OntoSides

As explained in Chapter 3 (Section 3.1.1.2), 18 CONSTRUCT queries are used to specify
rules for deőning some properties in function of other properties. They are recalled in
Figure 5.2.

These 18 queries cover a variety of SPARQL 1.1 features that are rarely encountered in
the existing benchmarks used for experimentally evaluating SPARQL queries.

- Only 6 of them (Q5,Q8,Q9,Q11,Q16,Q18) are simple conjunctive queries possibly
with FILTER conditions.

- The other queries are complex queries that can be categorized as follows:

• 3 aggregate queries (Q1, Q2 and Q3) used to count some useful numbers.

• 10 queries with negative conditions expressed using the FILTER NOT EXISTS
constructor, among which

– 7 queries (Q6, Q7, Q12, Q13, Q14, Q15, Q17) have single negative conditions
(corresponding to FILTER NOT EXISTS expressions restricted to a single triple
patterns)

– 3 queries (Q3, Q4 and Q10) have multiple negative conditions with graph
patterns of size 2 in their FILTER NOT EXISTS expressions.

Q3 combines GROUP BY and FILTER NOT EXISTS constructors and thus appears in the
two corresponding rows in Table 5.1.

Category Queries

Simple Q5,Q8,Q9

Aggregated Q1,Q2,Q3

FILTER on terms (FRT) Q11,Q16,Q18

FILTER NOT EXISTS on
graph patterns (FGP)

Q3,Q4,Q6,
Q7,Q10,Q12,
Q13,Q14,Q15,
Q17

Table 5.1 Query classiőcation by category

The size of the graph pattern (i.e., the number of triple patterns) in the query bodies is
also likely to impact the complexity of the query evaluation. It is distributed as follows:

67

Large-scale ontology-based data analytics

Q1

CONSTRUCT {

?question sides:has_for_number_of_proposals ?np}

WHERE {

SELECT ?question (COUNT (?p) As ?np) {

?question sides:has_for_proposal_of_answer ?p}

GROUP BY ?question}

Q2

CONSTRUCT {

?answer

sides:has_for_number_of_wrong_tick ?nw }

WHERE {select ?answer (COUNT (?a) As ?nw)

{?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p}

GROUP BY ?answer

}

Q3

CONSTRUCT {

?answer

sides:has_for_number_of_missed_right_tick ?nm}

WHERE {SELECT ?answer (COUNT(?p) As ?nm)

{?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p}

} GROUP BY ?answer

}

Q4

CONSTRUCT {

?answer sides:has_for_number_of_discordance

"0"^^xsd:integer}

WHERE {

?answer a sides:answer.

FILTER NOT EXISTS {

?answer sides:has_for_number_of_wrong_tick ?nw.

?answer sides:

has_for_number_of_missed_right_tick ?nm.

}}

Q5

CONSTRUCT {

?answer

sides:has_for_number_of_discordance ?count}

WHERE {

SELECT ?answer (?nw + ?nm as ?count) {

?answer

sides:has_for_number_of_wrong_tick ?nw.

?answer

sides:has_for_number_of_missed_right_tick ?nm

}

}

Q6

CONSTRUCT {

?answer

sides:has_for_number_of_discordance ?nw

} WHERE {

?answer sides:has_for_number_of_wrong_tick ?nw.

FILTER NOT EXISTS {

?answer sides:

has_for_number_of_missed_right_tick ?nm}

}

Q7

CONSTRUCT {

?answer

sides:has_for_number_of_discordance ?nm}

WHERE {

?answer sides:

has_for_number_of_missed_right_tick ?nm.

FILTER NOT EXISTS {

?answer sides:has_for_number_of_wrong_tick ?nw.

}

}

Q8

CONSTRUCT {

?answer sides:has_for_result 1}

WHERE {

?answer

sides:has_for_number_of_discordance "0"^^xsd:

integer

}

Q9

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:

boolean .}

WHERE {

?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p.

?p

sides:has_for_weight_of_correction

"Unacceptable"^^xsd:string .

}

Q10

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean .

}

WHERE {

?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean .

?p sides:has_for_weight_of_correction "

Indispensable"^^xsd:string .

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p

}}

Q11

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean .

}

WHERE {

?answer sides:correspond_to_question ?q.

?q rdf :type sides:QUA.

?answer sides:has_for_number_of_discordance ?d.

FILTER (?d > 0)

}

Q12

CONSTRUCT {

?answer sides:has_for_result 0.5^^xsd:decimal}

WHERE {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "5"^^xsd:

integer.

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }

}

Q13

CONSTRUCT {

?answer sides:has_for_result "0.2"^^xsd:decimal}

WHERE {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "5"^^xsd:

integer .

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}

Q14

CONSTRUCT {

?answer sides:has_for_result "0.425"^^xsd:decimal}

WHERE {?answer sides:

has_for_number_of_discordance "1"^^xsd:

integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "4"^^xsd:

integer .

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }}

Q15

CONSTRUCT {

?answer sides:has_for_result "0.1"^^xsd:decimal }

WHERE {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "4"^^xsd:

integer .

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean

}}

Q16

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer}

WHERE {

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals ?np.

?answer sides:has_for_number_of_discordance ?n.

FILTER (?np > 3 && ?np < 6 && ?n > 2).}

Q17

CONSTRUCT {

?answer sides:has_for_result "0.3"^^xsd:decimal}

WHERE {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "3"^^xsd:

integer .

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}

Q18

CONSTRUCT {

?answer sides:has_for_result "0"^^xsd:integer }

WHERE {

?answer sides:has_for_number_of_discordance ?n.

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "3"^^xsd:

integer.

FILTER (?n > 1) }

Figure 5.2 18 CONSTRUCT queries over OntoSIDES knowledge graph

68

Chapter 5. Comparative performance evaluation of complex queries and reasoning

• Q1, Q4, Q7, Q6 and Q8 have a graph pattern reduced to a single triple pattern

• Q2 and Q5 have a graph pattern with 2 triple patterns

• Q3, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16 and Q17 have a graph pattern with 3
triple patterns

• Q10 has a graph pattern with 4 triple patterns

Finally, the size of the output template may also impact the performances. As summa-
rized in Table 5.2, in the considered CONSTRUCT queries, the output template can contain
1 or 2 triple patterns.

Template size Queries

1 Q1,Q2,Q3,Q4,Q5,
Q6,Q7,Q8,Q12,Q13,
Q14,Q15,Q16,Q17,
Q18

2 Q9,Q10,Q11

Table 5.2 Query classiőcation by output template size

When used for implementing forward-chaining reasoning, the 18 CONSTRUCT queries
(encoding rules with negation) must be ordered to take into account that the evaluation of
some queries must occur after the update of the dataset by the evaluation of other queries.
Such an ordering has been determined in Chapter 3 (Section 3.1.3), where it has been shown
that, based on their dependency graph (shown in in Figure 3.8, Chapter 3, Section 3.1.3),
the 18 CONSTRUCT-based SPIN rules can be structured in 4 layers of increasing depth:

- Layer 1 = {Q1, Q2, Q3, Q9, Q10}

- Layer 2 = {Q4, Q5, Q6, Q7}

- Layer 3 = {Q8, Q12, Q11}

- Layer 4 = {Q13, Q14, Q15, Q16, Q17, Q18}

Since, there is no dependency between queries of a given layer, they can be evaluated
independently within each layer. This structuration of the queries in layers can thus be
exploited to implement a parallel forward-chaining reasoning algorithm that handles se-
quentially the layers (by ascending order of the depth) and evaluates in parallel the queries
of each layer.

5.1.2 RDF datasets

Since the goal of the experiments is to measure the impact of the dataset size on the
performances of query evaluation and reasoning, we have to build datasets of increasing

69

Large-scale ontology-based data analytics

size on which the execution of the 18 queries described in the previous section can be
compared meaningfully.

To achieve this, we utilized the concept of modularization introduced in Chapter 3 and
structured the OntoSIDES knowledge graph (prior to saturation) as a collection of named
graphs, where each named graph corresponds to a speciőc student’s IRI. Each student’s
named graph contains RDF descriptions of all their answers, as well as the correspond-
ing questions and enrollments obtained through the combination of their corresponding
modules.

We have created 10 nested datasets obtained by grouping increasing numbers of students’
named graphs (from 880 students’ named graphs for the D1 dataset to 8845 students’ named
graphs for the D10 dataset). Since the obtained datasets contain RDF quads, we removed
the fourth column to have RDF triples. Figure 5.3 shows the size of the resulting 10 datasets
extracted from OntoSIDES.

Dataset Students Size (millions triples)

𝐷1 880 121

𝐷2 1760 194

𝐷3 2640 273

𝐷4 3520 380

𝐷5 4400 497

𝐷6 5280 633

𝐷7 6160 791

𝐷8 7040 977

𝐷9 7920 1209

𝐷10 8845 1604

Table 5.3 Ontosides datasets

By construction, each extracted dataset contains the required data for each of the 18 CON-
STRUCT queries to produce a sound and complete result for the computation of the inferred
properties on meaningful fragments of the full OntoSIDES knowledge graph.

In addition, since they are nested (i.e., D1 ⊂ D2 ⊂ D3 ⊂ D10), query evaluation and
reasoning over these 10 datasets provide (output and time performance) results that are
monotonic. The goal of the experiments is to study their variations in a more őne-grained
manner.

5.1.3 Performance measures.

For each CONSTRUCT query, in addition to measuring its execution time that we denote

70

Chapter 5. Comparative performance evaluation of complex queries and reasoning

the construct execution time, we will also measure:

- the body execution time, the time to evaluate its induced SELECT query (see Deőnition
2.8 in Chapter 2)

- the template execution time, the time to instantiate the template. Since triplestores do
not provide the template execution time, we will compute it as the difference between the
construct execution time and the body execution time

- the construct storing time, the update time needed to add the output of a CONSTRUCT
query to the triplestore

- the inference time, the sum of the construct execution time and the construct storing

time, which estimates the cost of a CONSTRUCT query used as an update rule.

Given the set of the 18 CONSTRUCT queries in Fig. 3.4 used as rules, and their structuration
in 4 layers grouping queries that can be evaluated independently, we will also evaluate the
performance of both serial and parallel implementations of CONSTRUCT-based forward-
chaining reasoning.

The serial versus parallel implementations of CONSTRUCT-based forward-chaining
reasoning differ in the sequential versus parallel execution of the CONSTRUCT queries
within each layer, handled by increasing depth. The serial implementation is thus de-
composed in 18 inference steps, whereas the parallel implementation is decomposed in 4
inference steps.

We will measure and compare:

- the serial forward-chaining reasoning time, as the sum of inference times of all the
queries applied sequentially in the order induced by the different layers,

- the parallel forward-chaining reasoning time, as the sum of the parallel execution and
update times for each of the 4 reasoning layers.

5.1.4 Hardware and software setup

The server used in our experiments has the following characteristics:

- Processor: 32 cores, Intel(R) Xeon(R) Gold 6144 CPU @ 3.50Ghz.

- Disk: 7 disks, 2 Terabytes size each.

- Memory: 566 Gigabytes RAM.

For our experiments, we used Spark 3.1.1, Delta Lake 0.8.0 and HDFS 2.9.2. Each
dataset from Table 5.3 was stored in the HDFS as an ACID table.

All the software used in the experiments was containerized to simplify the startup and
to package all dependencies and associated conőguration. In this respect, we used Docker
version 19.03.8 for containerization.

71

Large-scale ontology-based data analytics

5.2 Serial forward-chaining reasoning performance

Performance evaluation

CPU

Serial Parallel

ModularIncremental

GPU

Serial

Figure 5.3 Serial performance comparison

In this section, we address serial performance comparison as shown in Fig. 5.3. We
perform two experiments.

In the őrst experiment, we conduct a performance evaluation between Virtuoso, GraphDB
and TESS. The results show the limitations of Virtuoso and GraphDB. We chose Virtu-
oso and GraphDB because they have different SPARQL querying processing. Virtuoso
is a column-store triplestore where SPARQL queries are translated into SQL to be exe-
cuted. GraphDB is a native triplestore where SPARQL queries are executed directly on
data. Blazegraph, a self-described "Big Data" triplestore was not considered because it was
outperformed by Virtuoso in 3 of 4 tasks in Mocha 2018 [63] (RDF data ingestion, data
storage, versioning).

In the second experiment, we examine in detail the performance of TESS during serial
forward chaining reasoning. First of all, we show the performance contribution of the body
and template computation to the overall construct computation in terms of execution time.
Finally, we go further and break down the TESS performance into the performance of the
queries to determine individual performance contributions.

Software setup

For both experiments, TESS was conőgured to run on top of a network of 5 Docker
containers: 2 containers for the Hadoop namenode and datanode. 2 containers for the
Spark Standalone cluster (1 for the master node, 1 for the worker node) and 1 container for
sending the Spark application to the Spark standalone cluster in client mode. We allocated
128GB RAM and 32 CPU cores to each container member of the Spark standalone cluster.
We reduce TESS to its minimal conőguration with only one worker node to get a fair
comparison with other triplestores.

72

Chapter 5. Comparative performance evaluation of complex queries and reasoning

In addition, for the őrst experiment, we used Virtuoso 07.20.3229 Community Edition
and GraphDB 9.0.0 Enterprise Edition. Both were conőgured for optimal parallelization
and memory usage according their online documentation. Each triplestore ran on top of a
Docker container conőgured for 32 CPU cores and 128GB of RAM.

Finally, each dataset from the Table 5.3 was stored in an dockerized instance of Virtuoso,
GraphDB and TESS.

First experiment: Limitations of Virtuoso and GraphDB

We have two results, shown in Figure 5.4 and Figure 5.5.

Figure 5.4 shows how the forward-chaining reasoning time (y axis) evolves in function
of the sizes (x axis) of the 10 datasets reported in Table 5.3:

- for GraphDB, the CONSTRUCT-based forward-chaining rules reasoning can be com-
pleted in a reasonable time for D1, D2 and D3 datasets only.

- Instead, TESS completes the reasoning for all the datasets in linear time.

- Virtuoso does not show up at all because the output of each of the 18 CONSTRUCT
queries was greater than 1 million triples which is the maximum limit for a CONSTRUCT
query output in Virtuoso.

0 0.5 1 1.5 2 2.5

0

20

40

60

Size (billion triples)

T
im

e(
m

in
)

TESS
Virtuoso

Figure 5.4 Forward-chaining completeness

In Figure 5.5, the y axis corresponds to the sum of the execution times of the SELECT

queries induced by the 18 CONSTRUCT queries. Virtuoso does not suffer of the above
limitations on output size for SELECT queries. However, we have discovered that for
the datasets greater than D4 (380 million triples), Virtuoso does not compute the correct
answers for aggregate queries like Q3 (and others aggregated queries outside the strict
setting of our experiment). On the contrary, TESS outputs the correct answers for all the

73

Large-scale ontology-based data analytics

datasets. We have used PostgreSQL as reference to validate the correctness of the results
after transforming the SELECT queries into SQL queries.

0 0.5 1 1.5 2 2.5

0

20

40

60

Size (billion triples)

T
im

e(
m

in
)

TESS
Virtuoso
GraphDB

Figure 5.5 Correctness of the induced SELECT queries

These results show the limitation of Virtuoso for outputting CONSTRUCT results of
more than 1 million triples, and to compute correct answers to aggregate SELECT queries
over datasets of size greater than 380 millions triples. They also show the limitation of
GraphDB to compute SELECT or CONSTRUCT queries in a reasonable time over datasets
of size greater than 275 millions triples.

Second experiment: Evaluation of serial forward-chaining reasoning on TESS

Figure 5.6 shows that TESS completes the forward-chaining reasoning for all datasets in
reasonable time and that the time grows linearly w.r.t the size of the input datasets. (see blue
curve CONSTRUCT with square shaped dots). It also makes explicit how the construct

execution time is split into the body execution time (see black curve with triangle shaped
dots) and the template execution time (see red curve with circle shaped dots). We observe
that the impact of body execution time is much greater than the template execution time for
CONSTRUCT-based forward-chaining reasoning.

Figure 5.7 shows the individual performance of each of the 18 queries. We observe
that for most of the queries, the coefficient of the linear progression of time in function of
dataset size is very small (for Q1, Q14, Q15, Q17 and Q18) or small (for Q5, Q6, Q7, Q9,
Q11, Q12, Q13 and Q16). The same őgure shows that the difference between construct

execution time and body execution time may be important when the graph output of the
CONSTRUCT queries is not restricted to a single triple pattern, like in the queries Q9, Q10
and Q11.

In Figure 5.8, we focus on the 5 most expensive queries, namely Q2, Q3,Q4, Q8 and

74

Chapter 5. Comparative performance evaluation of complex queries and reasoning

0 0.5 1 1.5 2

0

10

20

30

40

50

Size (billion triples)

T
im

e(
m

in
)

Construct execution time
Body execution time

Template execution time

Figure 5.6 Evaluation of serial forward-chaining reasoning time. Best viewed in color.

Q10, and we show the correlation between the query output size and the construct execution
time. In this Figure, the center of each circle represents the construct execution time (y
axis) of a query for a given dataset size (x axis), and the radius of each circle represents the
size of the query output size.

For Q2,Q3,Q4, the query cost can be explained both by the complexity of graph patterns
in their body and the size of their output. For Q8, the cost is due to the size of its output
since its graph pattern is very simple: a single triple pattern with a single variable. Yet, its
execution time is close to the execution time of Q2 (whose body has an aggregate subquery)
or of Q3 and Q4 (whose body has FILTER NOT EXISTS clauses).

Figure 5.8 also shows that for queries like Q10 with a template size greater than 1,
the CONSTRUCT performance can be costly despite a small query output size. We have
analyzed that its high cost is due to join operations between tables of very different size
(with a ratio of 1/453), and the fact that the query plan computed by Spark SQL did not
choose the most efficient type of joins.

75

Large-scale ontology-based data analytics

0

0.
5 1

1.
50

2

4

6

8
Q1

0

0.
5 1

1.
50

2

4

6

8
Q2

0

0.
5 1

1.
50

2

4

6

8
Q3

0

0.
5 1

1.
50

2

4

6

8
Q4

0

0.
5 1

1.
50

2

4

6

8
Q5

0

0.
5 1

1.
50

2

4

6

8
Q6

0

0.
5 1

1.
50

2

4

6

8
Q7

0

0.
5 1

1.
50

2

4

6

8
Q8

0

0.
5 1

1.
5 20

2

4

6

8
Q9

0

0.
5 1

1.
5 20

2

4

6

8
Q10

0

0.
5 1

1.
5 20

2

4

6

8
Q11

0

0.
5 1

1.
5 20

2

4

6

8
Q12

0

0.
5 1

1.
5 20

2

4

6

8
Q13

0

0.
5 1

1.
5 20

2

4

6

8
Q14

0

0.
5 1

1.
5 20

2

4

6

8
Q15

0

0.
5 1

1.
5 20

2

4

6

8
Q16

0

0.
5 1

1.
5 20

2

4

6

8
Q17

0

0.
5 1

1.
5 20

2

4

6

8

Size (billion triples)

T
im

e(
m

in
)

Q18

Body execution time Template execution time Construct execution time

Figure 5.7 CONSTRUCT queries performance. Best viewed in color.

76

Chapter 5. Comparative performance evaluation of complex queries and reasoning

0

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

0

2

4

6

Size (billion triples)

T
im

e(
m

in
)

Queries

Q2
Q3
Q4
Q8
Q10

Figure 5.8 The 5 most expensive queries performance. Best viewed in color.

5.3 Serial vs Parallel forward chaining performance

Performance evaluation

CPU

Serial Parallel

ModularIncremental

GPU

Serial

Figure 5.9 Serial vs Parallel performance comparison

In this part, as depicted in Fig. 5.9, we conduct a performance comparison between the
serial implementation of forward chaining reasoning considered in the previous section and
the implementation of the parallel chaining reasoning algorithm seen in Subsection 4.2.5.

For the experiment with the parallel algorithm, TESS runs on top of a network of 10
Docker containers: 2 containers for the Hadoop namenode and datanode. 7 containers

77

Large-scale ontology-based data analytics

for the Spark Standalone cluster (1 for the master node, 6 for the worker nodes) and 1
container for sending the Spark Application to the Spark Standalone Cluster in client mode.
We deployed 6 worker nodes because it is the maximum number of queries in a layer of
reasoning. The Spark Application executes a query per worker node. We reduce the number
of workers from 6 to 1 for setting up the experiment with the serial algorithm for comparison
purposes. Furthermore, we assign 64GB RAM and 4 CPU cores to each container member
of the Spark standalone cluster.

Figure 5.10 shows how the TESS implementation of the parallel forward-chaining
algorithm outperforms the serial algorithm for all the datasets. The execution time seems
to grow linearly but with a much smaller coefficient than for the serial case.

0 0.5 1 1.5 2
0

20

40

60

80

Size (billion triples)

T
im

e(
m

in
)

Parallel
Serial

Figure 5.10 Parallel vs serial performance. Best viewed in color.

5.4 Parallel vs Incremental forward chaining performance

In this part, we focus on the comparison highlighted in Fig. 5.11 between the parallel
forward chaining reasoning considered in the last section and its incremental variant that
may be implemented when the input dataset 𝐺 is updated regularly with sets Δ of new
triples.

In Section 5.4.1, we őrst describe our approach for designing and implementing incre-
mental forward-chaining reasoning. In Section 5.4.2, we explain the experimental protocol
that we have followed to obtain the results summarized in Section 5.4.3.

78

Chapter 5. Comparative performance evaluation of complex queries and reasoning

Performance evaluation

CPU

Serial Parallel

Incremental Modular

GPU

Serial

Figure 5.11 Parallel vs Incremental performance comparison

5.4.1 Incremental forward-chaining reasoning

For avoiding to apply the (parallel or serial) forward chaining reasoning to the whole updated
dataset 𝐺 ∪ Δ and thus to redo many inferences for computing 𝑠𝑎𝑡 (𝐺 ∪ Δ) at each new Δ ,
it may be worthwhile to compute 𝑠𝑎𝑡 (𝐺) once and to update it with the set 𝑠𝑎𝑡Δ(𝐺) of the
new triples inferred using some triples of Δ.

Without any knowledge about Δ, the completeness of 𝑠𝑎𝑡Δ(𝐺) requires to consider in
turn each condition within each rule for checking whether it can be matched with facts
in Δ and if this is the case to evaluate the other conditions over 𝐺 ∪ Δ, and to update Δ

accordingly.

In our case, we can exploit the knowledge that we have on the update process of the
OntoSides knowledge graph: each update consists in adding to Δ new students’s answers to

questions. These new answers can be done by students that are already identiőed in 𝐺 or by
students with new identiőers on which Δ may contain additional information. Similarly, the
answers added to Δ can correspond to existing questions (already identiőed and described
in 𝐺) or novel questions that are thus described in Δ.

Based on this knowledge and the fact that the CONSTRUCT queries encoding rules
have been speciőed to infer properties for new questions (query Q1) or new answers, we
have designed a speciőc incremental forward-chaining algorithm that can be summarized
as follows:

• The CONSTRUCT queries Q1, Q2, Q4, Q5, Q6 , Q7 and Q8 can be evaluated over
Δ only, with the guarantee to provide the same new results as if they were evaluated
over 𝐺 ∪ Δ. The reason is that all the triple patterns in their body involve the output
variable ?question, ?answer or variables related to it through functional properties

79

Large-scale ontology-based data analytics

(such as the variable ?a related to the output variable ?answer by the property is part

of which is functional, in Q2).

• The other queries (Q3, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18) can be
splitted at compile time into two sub-queries such that evaluating the őrst one against
Δ only (and the other one against 𝐺 ∪ Δ) provides the same new results as if the
original queries were evaluated over 𝐺 ∪ Δ. The splitting is done by grouping in
the őrst sub-query the triple patterns involving the output variable ?answer, and the
remaining triple patterns in the second sub-query.

For implementing this algorithm using SPARQL, the 18 CONSTRUCT queries can
be reformulated by exploiting the GRAPH operator of SPARQL 1.1 that allows to restrict
the evaluation of some patterns in the query against named graphs. For our purpose, the
considered named graphs are Δ and 𝐺. Despite that in SPARQL 1.1 the GRAPH operator
cannot apply to unions of two named graphs, by slight abuse of notation, we will also
consider 𝐺 ∪Δ as a possible parameter of the GRAPH operator in the reformulations of the
queries for clarity purpose.

The result of the corresponding reformulation of the 18 CONSTRUCT queries is pro-
vided in Figures 5.12 and 5.13.

80

Chapter 5. Comparative performance evaluation of complex queries and reasoning

Q1

CONSTRUCT

{?question sides:has_for_number_of_proposals ?

np}

WHERE { select ?question (COUNT (?p) As ?np)

{{GRAPH <delta> {?question sides:

has_for_proposal_of_answer?p }}

}

GROUP BY ?question

}

Q2

CONSTRUCT

{?answer sides:has_for_number_of_wrong_tick ?

nw }

WHERE {

SELECT ?answer (COUNT (?a) As ?nw)

{{GRAPH <delta> {?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p}}}

GROUP BY ?answer

}

Q3

CONSTRUCT

{?answer

sides:has_for_number_of_missed_right_tick ?nm}

WHERE {SELECT ?answer (COUNT(?p) As ?nm)

{{

{GRAPH <delta> {

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p}

}

}

{GRAPH <g ∪ delta> {

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean. }

}

}

GROUP BY ?answer

}

Q4

CONSTRUCT

{?answer sides:has_for_number_of_discordance

"0"^^xsd:integer}

WHERE {GRAPH <delta> {

?answer a sides:answer.

FILTER NOT EXISTS {

?answer sides:has_for_number_of_wrong_tick ?

nw

?answer sides:

has_for_number_of_missed_right_tick ?nm}

}}

Q5

CONSTRUCT

{?answer sides:has_for_number_of_discordance ?

count}

WHERE {

SELECT ?answer (?nw + ?nm as ?count)

{{GRAPH <delta>{

?answer sides:has_for_number_of_wrong_tick ?

nw.

?answer sides:

has_for_number_of_missed_right_tick ?nm

}

}}}

Q6

CONSTRUCT

{?answer sides:has_for_number_of_discordance ?

nw}

WHERE {{GRAPH <delta> {?answer sides:

has_for_number_of_wrong_tick ?nw.

FILTER NOT EXISTS {?answer sides:

has_for_number_of_missed_right_tick ?nm}

}}}

Q7

CONSTRUCT

{?answer sides:has_for_number_of_discordance

?nm}

WHERE {{GRAPH <delta> {?answer sides:

has_for_number_of_missed_right_tick ?nm.

FILTER NOT EXISTS {?answer sides:

has_for_number_of_wrong_tick ?nw. }

}}}

Q8

CONSTRUCT

{?answer sides:has_for_result 1}

WHERE {{GRAPH <delta> {?answer sides:

has_for_number_of_discordance "0"^^xsd:

integer

}}}

Q9

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean

.}

WHERE {{GRAPH <delta> {

?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p. }}

{GRAPH <g ∪ delta> {?p

sides:has_for_weight_of_correction

"Unacceptable"^^xsd:string}}

}

Figure 5.12 Reformulation of the CONSTRUCT queries (from Q1 to Q9) for incremental reasoning.

Note that when 𝑔 ∪ 𝑑𝑒𝑙𝑡𝑎 appears in the reformulated queries, it is actually a shorcut to
abbreviate a much longer query expression that uses the SPARQL UNION operator. As an
example, the reformulation conform to SPARQL of the query Q3 in Figure 5.12 is provided
in Figure 5.14.

81

Large-scale ontology-based data analytics

Q10

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean .

}

WHERE {

{GRAPH <delta> {

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p

}}}

{GRAPH <g ∪ delta> {

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean .

?p sides:has_for_weight_of_correction "

Indispensable"^^xsd:string .}}

}

Q11

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer .

?answer sides:stronglyWrong "true"^^xsd:boolean .

}

WHERE {

{GRAPH <delta> {?answer sides:

correspond_to_question ?q.

?answer sides:has_for_number_of_discordance ?d

.}}

{GRAPH <g ∪ delta> {?q rdf:type sides:QUA.}}

FILTER (?d > 0)

}

Q12

CONSTRUCT

{?answer sides:has_for_result 0.5^^xsd:decimal}

WHERE {

{GRAPH <delta>{

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }

}}

{GRAPH <g ∪ delta> {

?q sides:has_for_number_of_proposals "5"^^xsd:

integer.}}

}

Q13

CONSTRUCT

{?answer sides:has_for_result "0.2"^^xsd:decimal}

WHERE {{GRAPH <delta> {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}}

{GRAPH <g ∪ delta> {

?q sides:has_for_number_of_proposals "5"^^xsd:

integer .}}

}

Q14

CONSTRUCT

{?answer sides:has_for_result "0.425"^^xsd:decimal

}

WHERE {

{GRAPH <delta> {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}}

{GRAPH <g ∪ delta> {

?q sides:has_for_number_of_proposals "4"^^xsd:

integer . }}

}

Q15

CONSTRUCT

{ ?answer sides:has_for_result "0.1"^^xsd:decimal

}

WHERE

{{GRAPH <delta> {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean

}}}

{GRAPH <g ∪ delta> {

?q sides:has_for_number_of_proposals "4"^^xsd:

integer .}}

}

Q16

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer}

WHERE

{{GRAPH <delta> {?answer sides:

correspond_to_question ?q.

?answer sides:has_for_number_of_discordance ?n.

}}

{GRAPH <g ∪ delta> {?q sides:

has_for_number_of_proposals ?np.}}

FILTER (?np > 3 && ?np < 6 && ?n > 2).

}

Q17

CONSTRUCT

{?answer sides:has_for_result "0.3"^^xsd:decimal}

WHERE {

{GRAPH <delta> {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?answer sides:stronglyWrong "true"^^xsd:boolean }

}}

{GRAPH <g ∪ delta> {?q sides:

has_for_number_of_proposals "3"^^xsd:

integer . }}

}

Q18

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer }

WHERE

{{GRAPH <delta> {?answer sides:

has_for_number_of_discordance ?n.

?answer sides:correspond_to_question ?q. }}

{GRAPH <g ∪ delta> {?q sides:

has_for_number_of_proposals "3"^^xsd:

integer. }}

FILTER (?n > 1)

}

Figure 5.13 Reformulation of the CONSTRUCT queries (from Q10 to Q18) for incremental reason-

ing.

82

Chapter 5. Comparative performance evaluation of complex queries and reasoning

CONSTRUCT {

?answer sides:has_for_number_of_missed_right_tick ?nm.

}

WHERE

{

SELECT ?answer (COUNT(?p) AS ?nm)

{{GRAPH <delta> {

?answer sides:correspond_to_question ?q.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p.

}

}}

{

{GRAPH <delta> {

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean

}}

UNION

{GRAPH <g> {

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean

}}

}

}

GROUP BY ?answer

}

Figure 5.14 Reformulation of Q3 conform to SPARQL

Algorithm 3 corresponds to the parallel version of the incremental forward-chaining
reasoning algorithm described above.

Algorithm 3 Incremental parallel algorithm
Input: 𝐺, update Δ , the reformulated queries organized in 4 layers
Output: The set 𝑠𝑎𝑡Δ(𝐺) of the new triples inferred from 𝐺 ∪Δ using Δ

𝑠𝑎𝑡Δ(𝐺) ← ∅

for each Layer from Layer1 to Layer4 do

for each 𝑞 ∈ 𝐿𝑎𝑦𝑒𝑟 do in parallel

𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑆𝑝𝑎𝑟𝑞𝑙 (𝑞)

𝑠𝑎𝑡Δ(𝐺) ← 𝑠𝑎𝑡Δ(𝐺) ∪ 𝑜𝑢𝑡𝑝𝑢𝑡 // update operation

end

By construction, we have: 𝑠𝑎𝑡 (𝐺 ∪ Δ) = 𝑠𝑎𝑡 (𝐺) ∪ 𝑠𝑎𝑡Δ(𝐺)

5.4.2 Experimental protocol

The goal of the experiment is to determine whether incremental forward chaining can
outperform parallel forward chaining reasoning for a given delta size. For performance
measures and hardware setup we follow those of Subsection 5.1.3 and Subsection 5.1.4.

83

Large-scale ontology-based data analytics

For this experiment, TESS keeps the same conőguration used in the experiment with the
parallel algorithm in Section 5.3, and the implementation of the forward chaining reasoning
has been adapted accordingly to include the reformulated queries.

Datasets and incremental deltas

We have created 9 datasets as shown in Table 5.4 in blue color. 𝐺 is the original dataset
𝐷1 from Table 5.3. Each dataset 𝐷

′
is the union of 𝐺 and an incremental delta Δ. The

deltas were computed from the difference between each dataset from Table 5.3 and 𝐺.

For example, 𝐷
′

2 = 𝐺 ∪ Δ1 and 𝐷
′

9 = 𝐺 ∪ Δ8.

In addition, we deőne 𝑟 as a measure of the size variation of Δ regarding 𝐺:

𝑟 =
Δ

𝐺

The Table 5.4 also shows in red color, the corresponding datasets used in the parallel
forward chaining reasoning for the performance comparison.

Incremental Parallel

Datasets 𝐺 size Δ size r Datasets size

𝐷
′

2 121 73 0.60 𝐷2 194

𝐷
′

3 121 152 1.26 𝐷3 273

𝐷
′

4 121 259 2.14 𝐷4 380

𝐷
′

5 121 376 3.10 𝐷5 497

𝐷
′

6 121 512 4.23 𝐷6 633

𝐷
′

7 121 670 5.54 𝐷7 791

𝐷
′

8 121 856 7.07 𝐷8 977

𝐷
′

9 121 1088 8.99 𝐷9 1209

𝐷
′

10 121 1483 12.26 𝐷10 1604

Table 5.4 Datasets and incremental deltas (size in millions triples). Best viewed in color.

Optimization of the SQL translations of the SPARQL queries with UNION

When we use the Virtuoso function sparql_to_text() to translate the reformulation of
the CONSTRUCT queries that contain a UNION (such as the SPARQL-compliant refor-
mulation of the query Q3 provided in Figure 5.14), the returned SQL queries are long and
contain many joins. For example, Figure 5.15 shows the translation returned by the Virtuoso
function sparql_to_text() of the reformulation with UNION of the query Q3 provided in
Figure 5.14. This results in SQL queries for which the evaluation has poor performance
even in Spark.

For better performance, we do not use query reformulations based on UNION operators.
Instead, we apply a two-step post-processing to the 11 queries that use 𝐺 ∪ Δ as a named
graph in Figure 5.12 and Figure 5.13.

84

Chapter 5. Comparative performance evaluation of complex queries and reasoning

The őrst step starts by taking replacing "𝐺 ∪ Δ" with "g_union_delta" in each query
so that it can be translated into a SQL query using the Virtuoso function sparql_to_text().
Each resulting SQL query contains a collection of joins between copies of the same table
"rdf_quad". The table "rdf_quad" is the 4-column table < 𝑠, 𝑝, 𝑜, 𝑔 > introduced in
Subsection 4.2.2 as the main storage table. Note that in each SQL translated query, if a
copy of the table "rdf_quad" is denoted by an alias such as table_alias, a reference to its 𝑔
column in the query is given by table_alias.g.

In the second step, we use the output of the previous step as input. Here, the
post-processing consists in replacing all ocurrences in each SQL query of the condition
"table_alias.g = g_union_delta" with the condition "table_alias.g IN (’g’, ’delta’)" for all
WHERE clauses.

By doing so, the very complex translation of query Q3 shown in Figure 5.14 is replaced
by the optimised translated query shown in Figure 5.16.

85

Large-scale ontology-based data analytics

SELECT s_0_27.answer AS answer,

COUNT (

s_0_27.p) AS nm

FROM (

SELECT s_1_4_t1−u28−u29.s AS answer,

s_1_8_t3−c5−u28−u29.s AS p

FROM rdf_quad AS s_1_4_t1−u28−u29

INNER JOIN rdf_quad AS s_1_8_t2−c5−u28−u29

ON (

s_1_4_t1−u28−u29.o = s_1_8_t2−c5−u28−u29.s)

INNER JOIN rdf_quad AS s_1_8_t3−c5−u28−u29

ON (

s_1_8_t3−c5−u28−u29.s = s_1_8_t2−c5−u28−u29.o)

WHERE

s_1_4_t1−u28−u29.g = ’delta’

AND

s_1_4_t1−u28−u29.p = ’http://www.side−sante.fr/sides#

correspond_to_question’

AND

s_1_8_t2−c5−u28−u29.g = ’delta’

AND

s_1_8_t2−c5−u28−u29.p = ’http://www.side−sante.fr/sides#

has_for_proposal_of_answer’

AND

s_1_8_t3−c5−u28−u29.g = ’delta’

AND

s_1_8_t3−c5−u28−u29.p = ’http://www.side−sante.fr/sides#has_for_correction’

AND

s_1_8_t3−c5−u28−u29.o = 1

AND

not (EXISTS ((

SELECT 1

FROM rdf_quad AS s_1_18_t6−c3

INNER JOIN rdf_quad AS s_1_18_t7−c3

ON (

s_1_18_t7−c3.s = s_1_18_t6−c3.s)

WHERE

s_1_18_t6−c3.g = ’delta’

AND

s_1_18_t6−c3.p = ’http :// www.side−sante.fr/sides#is_part_of’

AND

s_1_18_t7−c3.g = ’delta’

AND

s_1_18_t7−c3.p = ’http :// www.side−sante.fr/sides#has_rightly_ticked’

AND

s_1_18_t7−c3.o = s_1_8_t2−c5−u28−u29.o

AND

s_1_18_t6−c3.o = s_1_4_t1−u28−u29.s

)))

UNION ALL SELECT s_1_4_t1.s AS answer,

s_1_12_t5−c11.s AS p

FROM rdf_quad AS s_1_4_t1

INNER JOIN rdf_quad AS s_1_12_t4−c11

ON (

s_1_4_t1.o = s_1_12_t4−c11.s)

INNER JOIN rdf_quad AS s_1_12_t5−c11

ON (

s_1_12_t5−c11.s = s_1_12_t4−c11.o)

WHERE

s_1_4_t1.g = ’delta ’

AND

s_1_4_t1.p = ’ http :// www.side−sante.fr/sides#correspond_to_question’

AND

s_1_12_t4−c11.g = ’g’

AND

s_1_12_t4−c11.p = ’http :// www.side−sante.fr/sides#has_for_proposal_of_answer’

AND

s_1_12_t5−c11.g = ’g’

AND

s_1_12_t5−c11.p = ’http :// www.side−sante.fr/sides#has_for_correction’

AND

s_1_12_t5−c11.o = 1

AND

not EXISTS (

SELECT 1

FROM rdf_quad AS s_1_18_t6−c9

INNER JOIN rdf_quad AS s_1_18_t7−c9

ON (

s_1_18_t7−c9.s = s_1_18_t6−c9.s)

WHERE

s_1_18_t6−c9.g = ’delta’

AND

s_1_18_t6−c9.p = ’http :// www.side−sante.fr/sides#is_part_of’

AND

s_1_18_t7−c9.g = ’delta’

AND

s_1_18_t7−c9.p = ’http :// www.side−sante.fr/sides#has_rightly_ticked’

AND

s_1_18_t7−c9.o = s_1_12_t4−c11.o

AND

s_1_18_t6−c9.o = s_1_4_t1.s

)) AS s_0_27

GROUP BY s_0_27.answer

) AS s_1_23

))

Figure 5.15 SQL translation of the reformulated query Q3 shown in Figure 5.14 . Displayed in two

columns because it is a very long query.

86

Chapter 5. Comparative performance evaluation of complex queries and reasoning

SELECT s_1_1_t0.s AS answer, COUNT (s_1_5_t2.s) AS nm

FROM rdf_quad AS s_1_1_t0

INNER JOIN rdf_quad AS s_1_5_t1

ON (

s_1_5_t1.s = s_1_1_t0.o)

INNER JOIN rdf_quad AS s_1_5_t2

ON (

s_1_5_t2.s = s_1_5_t1.o)

WHERE

s_1_1_t0.g = ’delta ’

AND

s_1_1_t0.p = ’ http :// www.side−sante.fr/sides#correspond_to_question’

AND

s_1_5_t1.g in (’g’,’delta’)

AND

s_1_5_t1.p = ’ http :// www.side−sante.fr/sides#has_for_proposal_of_answer’

AND

s_1_5_t2.g in (’g’,’delta’)

AND

s_1_5_t2.p = ’ http :// www.side−sante.fr/sides#has_for_correction’

AND

s_1_5_t2.o = 1

AND

not EXISTS (

SELECT 1

FROM rdf_quad AS s_1_9_t3

INNER JOIN rdf_quad AS s_1_9_t4

ON (

s_1_9_t4.s = s_1_9_t3.s)

WHERE

s_1_9_t3.g = ’delta ’

AND

s_1_9_t3.p = ’ http :// www.side−sante.fr/sides#is_part_of’

AND

s_1_9_t4.g = ’delta ’

AND

s_1_9_t4.p = ’ http :// www.side−sante.fr/sides#has_rightly_ticked’

AND

s_1_9_t4.o = s_1_5_t1.o

AND

s_1_9_t3.o = s_1_1_t0.s

)

GROUP BY s_1_1_t0.s

Figure 5.16 Optimised SQL translation using SQL IN operators in red color

5.4.3 Evaluation results

Fig.5.17 shows that the incremental parallel reasoning outperforms parallel reasoning from
D1 to D7. The x axis at the bottom shows the datasets used in this experiment and the x axis
at the top shows the corresponding datasets used in the previous parallel forward chaining
experiment. As we can see, beyond size D7, incremental reasoning performs similarly to
simple parallel reasoning. We believe that this similar performance is transient, that beyond
D10, is reasonable to assume that the performance of incremental parallel reasoning will
falls behind parallel reasoning as the delta size continues to grow.

The results also show that our implementation works for an interval of ratio 𝑟

0.6 < 𝑟 < 5.54

87

Large-scale ontology-based data analytics

This is much better than expected if we assume that a set of incoming triples is considered
a Δ if and only if its size is less or equal to the size of 𝐺 such that

𝑟 ≤ 1

However, in response to the question about why there is a drop in performance for
𝑟 > 5.54 , we found that a possible explanation lies in the addition of inferred data. For the
addition of data, we used Spark’s 𝑢𝑛𝑖𝑜𝑛 operations to put together 𝑠𝑎𝑡 (𝐺) and 𝑠𝑎𝑡Δ(𝐺) in
the implementation of the incremental algorithm. We found that 𝑢𝑛𝑖𝑜𝑛 operations are not
optimised in Spark for large amounts of data 1.

𝐷
′

2 𝐷
′

3 𝐷
′

4 𝐷
′

5 𝐷
′

6 𝐷
′

7 𝐷
′

8 𝐷
′

9 𝐷
′

10

0

5

10

15

20

Datasets

T
im

e(
m

in
)

Incremental

𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8 𝐷9 𝐷10

0

5

10

15

20
Parallel

Figure 5.17 Incremental vs Parallel forward chaining reasoning time

5.5 Parallel vs Modular forward chaining performance

In this section, we focus on the comparison shown in Fig. 5.18 between the parallel
forward chaining reasoning considered in the section 5.3 and its modular variant that may
be implemented when the input dataset 𝐺 is a union of named graphs.

In Section 5.5, we őrst describe our approach for designing and implementing modular
forward-chaining reasoning. In Section 5.5.2, we explain the experimental protocol that we
have followed to obtain the results summarized in Section 5.5.3.

1https://www.databricks.com/dataaisummit/session/goodbye-hell-unions-spark-sql

88

Chapter 5. Comparative performance evaluation of complex queries and reasoning

Performance evaluation

CPU

Serial Parallel

Incremental Modular

GPU

Serial

Figure 5.18 Parallel vs Modular performance comparison

5.5.1 Modular forward-chaining reasoning

Modular reasoning exploits the process described in Chapter 3 of building 𝐺 as a union of
named graphs 𝑔 where each named graph groups the data of one student.

A őrst approach for the modular implementation of forward chaining reasoning con-
sists in executing the 18 original CONSTRUCT queries encoding rules on each named
graph (serially or in parallel). However, this solution would cause a bottleneck due to the
large number of queries to be executed, since for a dataset with 𝑛 named graphs, 18 × 𝑛

CONSTRUCT queries would have to be evaluated.

We tackle the problem by reformulating the 18 CONSTRUCT queries into 18 CON-
STRUCT queries that output quadruplets (quads) and that contain a GRAPH operator
applied to a graph variable ?𝑔 denoting named graphs corresponding to each student data.
We have deőned the following steps to reformulate the queries:

a. enclosing the body of the query with the operator GRAPH and the variable ?g,

b. adds the variable ?g to the projection of the query,

c. extending each triple in the query template to a quad by adding the variable ?g,

d. adding the variable ?g to the operator GROUP BY where it applies.

For example, the CONSTRUCT query in Figure 5.19 is reformulated as a CONSTRUCT
quad in Figure 5.20.

As CONSTRUCT quads are not supported in the current SPARQL 1.1 speciőcation, we
implemented our solution at the application level.

89

Large-scale ontology-based data analytics

CONSTRUCT {

?answer sides:has_for_number_of_missed_right_tick ?nm}

WHERE {

SELECT ?answer (COUNT(?p) As ?nm)

{?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean.

FILTER NOT EXISTS {?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p}

}

GROUP BY ?answer

}

Figure 5.19 Query Q3

CONSTRUCT {

?answer sides:has_for_number_of_missed_right_tick ?nm ?g}

WHERE {

SELECT ?g ?answer (COUNT(?p) As ?nm) { GRAPH ?g {

?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p

} }}

GROUP BY ?g ?answer

}

Figure 5.20 CONSTRUCT QUAD reformu-

lation for query Q
′
3

5.5.2 Experimental protocol

The goal of the experiment is to determine whether modular forward chaining can outper-
form parallel forward chaining reasoning. For performance measures and hardware setup
we follow those of Subsection 5.1.3 and Subsection 5.1.4.

For this experiment, TESS keeps the same conőguration used in the experiment with
the parallel algorithm in Section 5.3, and the forward chaining implementation has been
adapted accordingly to include the reformulated queries.

Datasets

We built 10 datasets shown in Table 5.5 in blue color. Each dataset is the union of
named graphs of students. The forward chaining reasoning can run in each student named
graph as it was in the whole dataset because each named graph contains all the data that
corresponds to one student.

Note that the size of some datasets can be very large because when a large number of
student named graphs are joined together, it turns out that the same triple can correspond
to several named graphs.

The same table also shows in red color, the corresponding datasets used in the parallel
forward chaining reasoning for the performance comparison.

90

Chapter 5. Comparative performance evaluation of complex queries and reasoning

Modular (quads) Parallel (triples)

Students named graphs Dataset Size Dataset Size

880 𝑫
′′

1
0.33 𝐷1 0.12

1760 𝑫
′′

2
0.97 𝐷2 0.19

2640 𝑫
′′

3
1.90 𝐷3 0.27

3520 𝐷
′′

4 3.26 𝑫4 0.38

4400 𝐷
′′

5 5.19 𝑫5 0.49

5280 𝐷
′′

6 7.86 𝑫6 0.63

6160 𝐷
′′

7 11.60 𝑫7 0.8

7040 𝐷
′′

8 16.95 𝑫8 0.98

7920 𝐷
′′

9 25.20 𝑫9 1.2

8845 𝐷
′′

10 43.81 𝑫10 1.6

Table 5.5 Size of module-based datasets (size in billions triples/quads)

Queries

The 18 reformulated queries are presented in Figure 5.21 and Figure 5.22.

Join optimization technique

The reformulated queries could increase the number of joins when translated into SQL.
To mitigate potential bottlenecks, we implemented bucketing, a Spark join optimisation
technique to minimise the performance hit. Based on the values of a column, bucketing
pre-calculates a predeőned number of buckets into which the data is shuffled and sorted.
Bucketing is performed on one or more columns before the query is executed.

For this experiment, for the given 4-column table (<s,p,o,g>) where the data is stored,
we used bucketing over column 𝑔 to gain performance when such a table is self-joined in
the SQL translation query.

5.5.3 Evaluation results

The results are shown in Fig.5.23 and Fig.5.24. The x axis at the bottom shows the datasets
used in this experiment and the x axis at the top show the corresponding datasets used in
the previous parallel forward chaining experiment.

Fig.5.23 shows that modular forward chaining is comparable to parallel forward chain-
ing when the bucketing optimisation technique is applied. This can be seen in the signiőcant
performance improvement showed between modular (dashed line) and modular with bucket-
ing (blue color with squares). This is expected because once SPARQL queries are translated
into SQL queries over self-joined tables, the joins involving the column𝐺 is involved beneőt
greatly from the precomputation of buckets.

91

Large-scale ontology-based data analytics

Q1

CONSTRUCT

{?question

sides:has_for_number_of_proposals ?np ?g}

WHERE {

SELECT ?g ?question (COUNT (?p) As ?np)

{GRAPH ?g {?question sides:

has_for_proposal_of_answer?p}}

GROUP BY ?g ?question

}

Q2

CONSTRUCT

{?answer

sides:has_for_number_of_wrong_tick ?nw ?g}

WHERE {

SELECT ?g ?answer (COUNT (?a) As ?nw)

{GRAPH ?g {?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p}}

GROUP BY ?g ?answer

}

Q3

CONSTRUCT

{?answer

sides:has_for_number_of_missed_right_tick ?nm

?g}

WHERE {

SELECT ?g ?answer (COUNT(?p) As ?nm) {

GRAPH ?g {

?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction 1.

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p

} }}

GROUP BY ?g ?answer

}

Q4

CONSTRUCT

{?answer

sides:has_for_number_of_discordance "0"^^xsd:

integer ?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {?answer a

sides:answer.

FILTER NOT EXISTS {

?answer sides:has_for_number_of_wrong_tick ?nw

?answer sides:

has_for_number_of_missed_right_tick ?nm}

}

}

}

Q5

CONSTRUCT

{?answer

sides:has_for_number_of_discordance

?count ?g}

WHERE {

SELECT ?g ?answer (?nw + ?nm) as ?count

{GRAPH ?g {

?answer sides:has_for_number_of_wrong_tick ?nw.

?answer sides:

has_for_number_of_missed_right_tick ?nm

}}

}

Q6

CONSTRUCT

{?answer

sides:has_for_number_of_discordance ?nw ?g}

WHERE {

SELECT ?g ?answer ?nw {GRAPH ?g {?answer

sides:has_for_number_of_wrong_tick ?nw.

FILTER NOT EXISTS {?answer sides:

has_for_number_of_missed_right_tick ?nm

}}}

}

Q7

CONSTRUCT {?answer

sides:has_for_number_of_discordance ?nm ?g}

WHERE {

SELECT ?g ?answer ?nm {GRAPH ?g {?answer

sides:

has_for_number_of_missed_right_tick ?nm.

FILTER NOT EXISTS {?answer sides:

has_for_number_of_wrong_tick ?nw. }}}

}

Q8

CONSTRUCT

{?answer sides:has_for_result 1 ?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance 0

}}

}

Q9

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer ?g .

?answer sides:stronglyWrong "true"^^xsd:boolean

?g .}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?a sides:is_part_of ?answer.

?a sides:has_wrongly_ticked ?p.

?p sides:has_for_weight_of_correction "

Unacceptable"^^xsd:string.

}}

}

Figure 5.21 18 CONSTRUCT queries for modular reasoning. Showing queries from Q1 to Q9.

92

Chapter 5. Comparative performance evaluation of complex queries and reasoning

Q10

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer ?g .

?answer sides:stronglyWrong "true"^^xsd:

boolean ?g. }

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:correspond_to_question ?q.

?q sides:has_for_proposal_of_answer ?p.

?p sides:has_for_correction "true"^^xsd:boolean .

?p sides:has_for_weight_of_correction "

Indispensable"^^xsd:string .

FILTER NOT EXISTS {

?a sides:is_part_of ?answer.

?a sides:has_rightly_ticked ?p

}

}}

}

Q11

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer ?g .

?answer sides:stronglyWrong "true"^^xsd:boolean

?g . }

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:correspond_to_question ?q.

?q rdf :type sides:QUA.

?answer sides:has_for_number_of_discordance ?d.

FILTER (?d > 0)

}}

}

Q12

CONSTRUCT

{?answer sides:has_for_result "0.5"^^xsd:decimal

?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "5"^^xsd:

integer.

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }}}

}

Q13

CONSTRUCT

{?answer sides:has_for_result "0.2"^^xsd:decimal

?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "5"^^xsd:

integer .

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }}}

}

Q14

CONSTRUCT

{?answer sides:has_for_result "0.425"^^xsd:decimal

?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "4"^^xsd:

integer .

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }}}

}

Q15

CONSTRUCT

{?answer sides:has_for_result "0.1"^^xsd:decimal

?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance

"2"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "4"^^xsd:

integer.

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean }}}

}

Q16

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer ?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals ?np.

?answer sides:has_for_number_of_discordance ?n.

FILTER (?np > 3 && ?np <6 && ?n > 2).}}

}

Q17

CONSTRUCT

{?answer sides:has_for_result "0.3"^^xsd:decimal

?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance

"1"^^xsd:integer .

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "3"^^xsd:

integer.

FILTER NOT EXISTS {?answer sides:

stronglyWrong "true"^^xsd:boolean}}}

}

Q18

CONSTRUCT

{?answer sides:has_for_result "0"^^xsd:integer ?g}

WHERE {

SELECT ?g ?answer {GRAPH ?g {

?answer sides:has_for_number_of_discordance ?n.

?answer sides:correspond_to_question ?q.

?q sides:has_for_number_of_proposals "3"^^xsd:

integer.

FILTER (?n > 1)}}

}

Figure 5.22 18 CONSTRUCT queries for modular reasoning. Showing queries from Q10 to Q18.

93

Large-scale ontology-based data analytics

Fig.5.23 also shows that modular reasoning with bucketing has similar performance to
parallel from D1 to D5. However, modular is outperformed by parallel for datasets larger
than D5.

𝐷
′′

1 𝐷
′′

2 𝐷
′′

3 𝐷
′′

4 𝐷
′′

5 𝐷
′′

6 𝐷
′′

7 𝐷
′′

8 𝐷
′′

9 𝐷
′′

10

0

20

40

60

80

100

120

140

160

Size (billion quads)

T
im

e(
m

in
)

Modular
Modular with bucketing

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝐷7 𝐷8 𝐷9 𝐷10

0

20

40

60

80

100

120

140

160Parallel

Figure 5.23 Modular-based forward-chaining reasoning time

As a possible explanation we analyse whether performance is affected by data distribu-
tion. First of all, we calculated the total number of triples per each student named graph.
Next, we use the numerical values obtained to create a histogram for each dataset.

We found that datasets D1,D2,D3,D4 and D5 have few named graphs with small number
of triples and a larger number of named graphs with a large number of triples.

On the other hand, we found that D6,D7,D8,D9 and D10 have a large number of named
graphs with a small number of triples each and a smaller number of named graphs with a
large number of triples each.

We believe that bucketing does not work as expected from D6 to D10 due to the large
number of named graphs with small number of triples. A possible explanation is that prior
the experiment, all the datasets were created by grouping named graphs that were sorted in
ascending order of size. The large number of named graphs with small number of triples
generates tons of self-joined queries with high latency due to memory limitations.

Figure 5.24 shows a comparison between datasets of comparable size taken from the
Table 5.5. The modular datasets are 𝐷

′′

1 , 𝐷
′′

2 and 𝐷
′′

3 in bold blue, and the datasets used
in the parallel forward chaining experiment are in bold red (𝐷4, 𝐷5, 𝐷6, 𝐷7, 𝐷8, 𝐷9 and
𝐷10). We observe that, given datasets of comparable size, modular forward chaining (with
bucketing) outperforms parallel forward chaining. One possible explanation is that the

94

Chapter 5. Comparative performance evaluation of complex queries and reasoning

number of named graphs with a large number of triples is larger than the number of named
graphs with small number of triples in these modular datasets. This reduces the number of
queries and therefore, makes the query execution faster.

𝐷
′′

1 𝐷
′′

2 𝐷
′′

3

0

20

40

60

80

100

120

140

160

Size (billion quads)

T
im

e(
m

in
)

Modular
Modular with bucketing

𝐷4 𝐷5 𝐷6 𝐷7 𝐷8 𝐷9 𝐷10

0

20

40

60

80

100

120

140

160Parallel

Figure 5.24 Modular-based forward-chaining reasoning time

5.6 CPU vs GPU serial forward chaining performance

In recent years, the usage of GPUs has dramatically reduced the computation time for
Big Data pipelines by massively increasing the number of parallel tasks . We argue that
SPARQL query performance can achieve a similar beneőt when GPU support is enabled
for a triplestore.

To investigate the impact of GPUs on SPARQL query performance, we extended the
TESS architecture to include GPU acceleration, a hardware enhancement. In this section,
we address CPU versus GPU serial forward chaining performance comparison as shown in
Fig. 5.25.

5.6.1 Experimental protocol

We conducted two experiments to study how increasing data size affects the performance
of CPU and GPU forward chaining reasoning. In the őrst, we evaluate the performance
contribution of individual queries. during parallel forward chaining reasoning over datasets
that are smaller than 2 billion triples. In the latter, we evaluate the serial forward chaining

95

Large-scale ontology-based data analytics

Performance evaluation

CPU

Serial Parallel

ModularIncremental

GPU

Serial

Figure 5.25 CPU-based vs GPU-based serial performance comparison

reasoning performance on a very large dataset of 12 billion triples. In both cases, TESS is
deployed on a 4-node Spark cluster, where each node has 50G of CPU RAM memory and
64G of GPU memory. As for the forward chaining implementation, we have reused its serial
and parallel versions used in the experiments in Section 5.3 without any modiőcations.

Datasets

For the őrst experiment, we selected only 3 datasets: the small size D1, the medium
size D5 and the large size D10 from the Table 5.3 For the second experiment, we use the
full Ontosides dataset with 12 billion triples.

Hardware setup

We used the same hardware for both experiments except that we did not enable GPU
acceleration for the CPU forward chaining reasoning. We used Amazon Web Services
(AWS) to host TESS on a EC2 P3 (p3.8xlarge) instance server with 4 Tesla V100 GPUs,
64G for GPU memory, 244G for CPU memory and 32 vCPUs.

The table 5.6 shows the Spark parameter settings used to conőgure TESS for optimal
CPU/GPU parallelization and memory usage according to its online documentation2.

2https://nvidia.github.io/spark-rapids/docs/configs.html

96

Chapter 5. Comparative performance evaluation of complex queries and reasoning

Hardware Spark parameters for TESS Values

driver-memory 40g
CPU executor-memory 50g

executor-cores 7
num-executors 4
spark.rapids.memory.pinnedPool.size 32G
spark.rapids.memory.gpu.pool ARENA
spark.rapids.memory.gpu.pooling.enabled true
spark.executor.resource.gpu.amount 1
spark.task.resource.gpu.amount 0.25

GPU spark.rapids.sql.concurrentGpuTasks 1
spark.locality.wait 0s
spark.sql.őles.maxPartitionBytes 512m
spark.plugins com.nvidia.spark.SQLPlugin
spark.rapids.memory.gpu.maxAllocFraction 0.7
spark.rapids.memory.gpu.allocFraction 0.5
spark.rapids.sql.enabled true
spark.sql.shuffle.partitions 200
spark.rapids.shuffle.enabled false
spark.rapids.memory.gpu.unspill.enabled true

Table 5.6 Spark parameters for TESS

In terms of disk storage, we stored the data in an Amazon EBS volume with a 1T size
disk with 125 MB/s throughput and 3000 IOPS. An IOP is a unit of measure that represents
input/output operations per second.

For cache storage, we stored cache data in an Amazon EBS volume of size 2T disk at
800 MB/s and 12000 IOPS.

In both experiments, for performance measures and queries we follow those of Subsec-
tion 5.1.3 and Figure 3.4 respectively.

Evaluation results

The őrst experiment, parallel forward chaining reasoning is performed on three datasets
of the Table 5.3: D1, D5 and D10 whose size is less than 2 billion triples. Figure 5.26
shows the construct execution time performance of each query that makes up the forward
chaining. It clearly shows that queries executed via CPU outperform those executed via
GPU. This is particularly evident for queries Q3 and Q10 where the coefficient for GPU
performance grows linearly but with a much larger value than in CPU case.

A possible explanation lies on the query plan. A query plan in Spark can be optimised in
runtime based on statistics that may not have been available when the query was originally

97

Large-scale ontology-based data analytics

planned. We believe that once the data is read into in-memory columnar format, the query
plan analyser evaluates that some parts of the plan may run faster on the CPU than on the
GPU due to the relatively small size of the data to be processed. The query plan is then
modiőed accordingly, but there is a bottleneck in the process of converting the data back
from GPU columnar format to the CPU row format.

In the second experiment, serial forward chaining reasoning is performed on the large
dataset Ontosides with 12 billion triples. The results differ from the previous experiment
because a signiőcant performance gain is achieved by using the GPU. We observe in Fig.5.27
that the construct execution time performance of all the queries is improved when GPU
acceleration is enabled (red bars). We hypothesise that once the data is loaded into in-
memory columnar format, the query plan analyser does not implement a fallback to row
format because CPU processing cannot outperform GPU processing when a dataset is very
large. We also observe that the performance boost is very signiőcant for queries Q2, Q3
and Q10. One explanation could be that Q2, Q3 and Q10 are queries that are best suited for
GPU acceleration, since Q2 and Q3 are group by operations with high cardinality, while
Q10 contains joins operations with high cardinality.

Finally, Figure 5.28 shows how the GPU outperforms the CPU serial forward chaining
performance by a factor of 1.5x on the very large dataset.

98

Chapter 5. Comparative performance evaluation of complex queries and reasoning

0

0.
5 1

1.
5

0

2

4

6

8
Q1

0

0.
5 1

1.
5

0

2

4

6

8
Q2

0

0.
5 1

1.
5

0

2

4

6

8
Q3

0

0.
5 1

1.
5

0

2

4

6

8
Q4

0

0.
5 1

1.
5

0

2

4

6

8
Q5

0

0.
5 1

1.
5

0

2

4

6

8
Q6

0

0.
5 1

1.
5

0

2

4

6

8
Q7

0

0.
5 1

1.
5

0

2

4

6

8
Q8

0

0.
5 1

1.
5

0

2

4

6

8
Q9

0

0.
5 1

1.
5

0

2

4

6

8
Q10

0

0.
5 1

1.
5

0

2

4

6

8
Q11

0

0.
5 1

1.
5

0

2

4

6

8
Q12

0

0.
5 1

1.
5

0

2

4

6

8
Q13

0

0.
5 1

1.
5

0

2

4

6

8
Q14

0

0.
5 1

1.
5

0

2

4

6

8
Q15

0

0.
5 1

1.
5

0

2

4

6

8
Q16

0

0.
5 1

1.
5

0

2

4

6

8
Q17

0

0.
5 1

1.
5

0

2

4

6

8

Size (billion triples)

T
im

e(
m

in
)

Q18

CPU GPU

Figure 5.26 CPU vs GPU comparison of the CONSTRUCT queries performance over datasets D1,

D5, and D10

99

Large-scale ontology-based data analytics

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
0

0,5

1

1,5

Queries

T
im

e(
m

in
)

CPU GPU

Figure 5.27 CPU vs GPU comparison of the CONSTRUCT query performance on the very large

dataset

11 12 13 14
0

2

4

6

8

Size (billion triples)

T
im

e(
m

in
)

CPU GPU

Figure 5.28 CPU vs GPU serial forward-chaining reasoning time applied to the very large dataset

100

Chapter 5. Comparative performance evaluation of complex queries and reasoning

5.7 Summary

We have evaluated several forward chaining reasoning implementations: serial, parallel and
incremental and modular on datasets of increasing size. The results show that a) parallel
outperforms serial, b) incremental can outperform parallel for delta sizes below a threshold,
c) the information about how deltas are built is a valuable resource for reformulating queries,
d) modular has a comparable performance to parallel when join columns are bucketed.

TESS has also been evaluated under GPU acceleration. The results show that: a) for
datasets smaller than 2 billion triples, CPU forward chaining is a better choice than GPU. b)
the use of GPU is recommended for very large datasets with group by and join operations
with high cardinality.

We have identiőed some missing features in the SPARQL speciőcation regarding the
use of both UNION operation on named graphs and CONSTRUCT quads. In this respect,
we have őlled the gap by implementing these features at the application level.

101

Chapter 6

Conclusion

6.1 Summary of the contributions

The objective of this thesis is to design and implement a Big Data infrastructure to support
the extraction, storage, reasoning and on-demand analytics queries of large amounts of
educational data produced by SIDES. To achieve this goal, we followed two directions: Big
Data architectures for reasoning at scale and Data modularization. We have discovered that
both directions go hand in hand because they both aim to handle large volumes of data
efficiently. While one approach őnds the solution in scaling the infrastructure, the other
approach őnds it in optimizing computation by reducing the amount of data to be processed.

Chapters 1 and 2 of this thesis presented the introduction and the preliminary notions
to be used throughout the thesis. We discussed Big Data and RDF knowledge graphs and
we explored the potential challenges that Big Data technologies face in terms of reasoning
and executing heavy and complex queries. Additionally, we provided formal deőnitions of
some of the concepts related to Semantic Web, Ontology-based Data Access, and Rule-based
Reasoning used in this thesis.

In Chapter 3 we presented the őrst contribution of this thesis: an OBDA methodology
to support the evolution of a big knowledge base called OntoSIDES. The methodology
consists of two steps: the őrst step is manual, based on expert guidance, and involves the
manual construction of the OntoSIDES ontology enriched with rules, while the second
step is automatic and involves the automatic population of the ontology using OBDA
mappings. In this chapter, we also showed that OBDA mappings can be adapted to scale the
materialization of a collection of RDF graphs by mapping RDF quad templates to queries
in the data sources. Consequently, OBDA can be extended to organize a large RDF graph
into modular components, effectively reducing the complexity of data analytics.

In Chapter 4, we presented the second contribution of this thesis: a big RDF triplestore
called TESS with a modular architecture that includes support for massive and reliable data

103

Large-scale ontology-based data analytics

updates, while also incorporating GPU acceleration for enhanced processing capabilities.
We explored the features of the most reliable parallelization technologies on each layer of
big RDF triplestores, including data distribution, storage, query processing, transactional
metadata layer, and reasoning. As a result of this exploration, we described the selected
components of TESS layer by layer, highlighting its unique features and advantages.

In Chapter 5, we presented the third contribution of this thesis: a comparative perfor-
mance evaluation for complex queries and reasoning, aimed at identifying the most optimal
approaches to implement forward chaining reasoning at scale in TESS. We described the
experimental protocol employed to conduct our experiments. The experimental results were
presented as follows: őrst, we presented the experimental results obtained for assessing the
performance of complex query evaluations and the serial algorithm of forward chaining
reasoning based on the iteration of CONSTRUCT queries. The results demonstrate that
Virtuoso and GraphDB do not scale well with large RDF datasets, in contrast to TESS,
which outperforms both systems across all datasets. Subsequently, we reported the results
derived from comparing the runtime performance of TESS between the serial, parallel,
parallel and incremental, and parallel and modular variants of the forward chaining al-
gorithm. Additionally, we discussed the experimental outcomes from comparing TESS’s
performance when using either a CPU or GPU for executing the serial algorithm of forward
chaining reasoning based on the iteration of CONSTRUCT queries.

6.2 Perspectives

There are several directions in which our research can potentially be extended but we focus
on three main perspectives:

Mass updating of data in triplestores

In our research, the transactional metadata layer is exclusively responsible for ensuring
the data consistency during mass updatings in triplestores, without user intervention. We
believe that transactions support can be extended at user level by adding declarative state-
ments to the SPARQL speciőcation. With these declarative statements, a set of SPARQL
queries could be grouped as a transaction in the same way that PostgreSQL does to guar-
antee ACID properties. SPARQL transactions could be a clear way to declare a set of
CONSTRUCT queries used for rule-based reasoning. The theoretical implications and the
practical implementation of this type of transaction have not yet been explored.

Modularization of RDF data at scale

The potential of OBDA systems to modularize RDF data is not limited to having a
SQL/NoSQL database as a data source. In fact, an OBDA system can also be used to
modularize an existing RDF graph by using SPARQL queries in the mapping sources. The
query output can populate quad templates. We have started to use TESS as a data source

104

Chapter 6. Conclusion

for an OBDA system and the results are promising. However, the use of complex SPARQL
queries as a mapping source is limited due to the lack of materialized RDF views. A
materialized RDF view could store the pre-computed output of a SPARQL complex query.
The execution of a mapping could then perform a simple query over this materialized RDF
view. We could use a named graph to store the precomputed output, but the named graph
could become outdated very quickly if its data is frequently updated. One line of research
would be to represent a named graph as a materialized RDF view that is automatically
recomputed whenever data changes.

Development of a new generation of triplestores based on GPU technologies

Hardware technology such as GPUs evolves so quickly that it is difficult for data man-
agement to keep up with the latest improvements. The main limitation is that adopting new
hardware would require rewriting the software of many triplestores from scratch to take
advantage of the new GPU parallelization techniques. To avoid this, we have shown that
a modular architecture for a triplestore can be a good alternative to take advantage of new
hardware capabilities. However, our architecture is limited to using GPU optimizations
designed for the SQL translation of a SPARQL query. We believe that more research is
needed to eliminate the SPARQL/SQL translation and develop GPU optimizations that
target SPARQL queries directly.

105

Appendix A

Other Information

A.1 The OBDA mappings

[PrefixDeclaration]

: http :// www.side−sante.fr/sides#

owl: http :// www.w3.org/2002/07/owl#

rdf : http :// www.w3.org/1999/02/22−rdf−syntax−ns#

xml: http :// www.w3.org/XML/1998/namespace

xsd: http :// www.w3.org/2001/XMLSchema#

rdfs : http :// www.w3.org/2000/01/rdf−schema#

spin: http :// spinrdf .org/spin#

sides: http :// www.side−sante.fr/sides#

[SourceDeclaration]

sourceUri sides

connectionUrl jdbc:postgresql://XX.XX.XX.XX:9009/sides

username sides

password XXX

driverClass org.postgresql.Driver

[MappingDeclaration] @collection [[

mappingId urn:test

target sides:test{id} a sides:test .

source select a.id as id, a.title, a.startdate, a.enddate from public.assessment a

mappingId urn:test_has_for_title

target sides:test{id} sides:has_for_title "{ title }"^^xsd:string .

107

Large-scale ontology-based data analytics

source select a.id as id, a.title as title , a.startdate , a.enddate from public.assessment a

mappingId urn:test_start_date

target sides:test{id} sides:starting_date_of_test "{startdate}"^^xsd:dateTime .

source select a.id as id, a.title, a.startdate as startdate , a.enddate as enddate from public.

assessment a where a.startdate is not null

mappingId urn:test_end_date

target sides:test{id} sides:ending_date_of_test "{enddate}"^^xsd:dateTime .

source select a.id as id, a.title, a.startdate as startdate , a.enddate as enddate from public.

assessment a where a.enddate is not null

mappingId urn:evaluation_has_for_textual_content

target sides:eval{id} sides:has_for_textual_content "{eval_introduction}"^^xsd:string .

source SELECT di.id as id, string_agg(di.introduction, ’’) as eval_introduction from ontosides.

docimocontent_introduction di

inner join ontosides.evaluation ev on ev.pool_id = di . id

group by di. id

mappingId urn:relation_evaluation_type_question

target sides:eval{pool_id} sides:has_for_question sides:q{question_id} .

source select pq.pool_id as pool_id, pq.question_id as question_id, pq.position from

pool_question pq

inner join ontosides.evaluation ev on pq.pool_id = ev.pool_id

mappingId urn:relation_test_evaluation_type_qi

target sides:test{assessment_id} sides:is_made_of sides:eval{pool_id} .

source select ae.assessment_id, ae.pool_id from ontosides.assessment_evaluation ae

inner join docimocontent dc on dc.id = ae.pool_id

where dc.discr in (’ qi ’)

mappingId urn:relation_test_evaluation_type_dp_tcspool_lca

target sides:test{assessment_id} sides:is_made_of sides:eval{docimocontent_id} .

source select assessment_id, docimocontent_id from docimocontentassessment dca

inner join docimocontent dc on dc.id = dca.docimocontent_id

where dc.discr in (’ dp’, ’ tcspool ’, ’ lca ’)

mappingId urn:relation_test_student

target sides:test{assessment_id} sides:has_for_registrant sides:stu{participant_id} .

source select p.assessment_id as assessment_id, p.participant_id as participant_id from

public.participant p

108

Appendix A. Other Information

mappingId urn:student

target sides:stu{participant_id} a sides:student ; sides:has_for_id "{ participant_id }"^^xsd:

integer .

source select participant_id from ontosides.student

mappingId urn:proposal_of_answer

target sides:prop{id} a sides:proposal_of_answer .

source select c.id as id, c.question_id as question_id from public.choice c

inner join ontosides.question q on c.question_id = q.question_id

mappingId urn:relation_question_proposal_of_answer

target sides:q{question_id} sides:has_for_proposal_of_answer sides:prop{id}.

source select c.question_id as question_id, c.id as id from public.choice c

inner join ontosides.question q on c.question_id = q.question_id

mappingId urn:proposal_of_answer_label

target sides:prop{id} sides:has_for_textual_content "{label}"^^xsd:string .

source SELECT cc.id as id, string_agg(cc.label, ’’) as label from choice c inner join

ontosides.choice_label cc on cc.id = c. id

where coalesce(cc.label, ’’) != ’’

group by cc.id

mappingId urn:proposal_of_answer_valid

target sides:prop{id} sides:has_for_correction "{is_valid}"^^xsd:boolean .

source select c.id as id, ccc.valid, CASE ccc.valid WHEN ’t’ THEN ’true’ WHEN ’f’ THEN ’

false’ END as is_valid

from public .choice c

inner join correction .choice_correction ccc on c.correction_id = ccc.id

inner join ontosides.question q on c.question_id = q.question_id

mappingId urn:speciality

target sides:{uri} a sides:speciality ; rdfs : label "{name}"@fr .

source select s.uri as uri, me.name from meta_speciality me inner join ontosides.speciality s

on s.speciality_id = me.id

mappingId urn:relation_eval_medical_specialty

target sides:eval{docimocontent_id} sides:is_linked_to_the_medical_speciality sides:{uri} .

source select ds.docimocontent_id as docimocontent_id, s.uri as uri from

docimocontent_speciality ds

inner join meta_speciality me on ds.speciality_id = me.id

inner join ontosides. speciality s on s. speciality_id = me.id

inner join docimocontent d on d.id = ds.docimocontent_id

109

Large-scale ontology-based data analytics

inner join ontosides.evaluation ev on d.id = ev.pool_id

mappingId urn:relation_question_medical_specialty

target sides:q{docimocontent_id} sides:is_linked_to_the_medical_speciality sides:{uri} .

source select ds.docimocontent_id as docimocontent_id, s.uri as uri from

docimocontent_speciality ds

inner join meta_speciality me on ds.speciality_id = me.id

inner join ontosides. speciality s on s. speciality_id = me.id

inner join docimocontent d on d.id = ds.docimocontent_id

inner join ontosides.question q on d.id = q.question_id

mappingId urn:meta_cross_knowledge

target sides:{uri} a sides:referential_entity ; rdfs : label "{name}"@fr .

source select cke.cke_id as id, cke.uri as uri, mck.name as name from ontosides.

cross_knowledge_entity cke inner join

meta_cross_knowledge mck on mck.id = cke.cke_id

mappingId urn:relation_eval_cross_knowledge_entity

target sides:eval{docimocontent_id} sides:is_linked_to_the_cross_knowledge_entity sides:{

uri} .

source select dc.docimocontent_id as docimocontent_id, cke.uri as uri from

docimocontent_crossknowledge dc

inner join ontosides.cross_knowledge_entity cke on cke.cke_id = dc.crossknowledge_id

inner join docimocontent d on d.id = dc.docimocontent_id

inner join ontosides.evaluation ev on d.id = ev.pool_id

mappingId urn:relation_question_cross_knowledge_entity

target sides:q{docimocontent_id} sides:is_linked_to_the_cross_knowledge_entity sides:{uri} .

source select dc.docimocontent_id as docimocontent_id, cke.uri as uri from

docimocontent_crossknowledge dc

inner join ontosides.cross_knowledge_entity cke on cke.cke_id = dc.crossknowledge_id

inner join docimocontent d on d.id = dc.docimocontent_id

inner join ontosides.question q on d.id = q.question_id

mappingId urn:question_QMA

target sides:q{id} a sides:QMA ; sides:has_for_title "{title }"^^xsd:string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.question q on d.id = q.question_id

where d.discr = ’qrm’

mappingId urn:question_QUA

target sides:q{id} a sides:QUA ; sides:has_for_title "{ title }"^^xsd:string .

110

Appendix A. Other Information

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.question q on d.id = q.question_id

where d.discr = ’qru’

mappingId urn:question_QSOA

target sides:q{id} a sides:QSOA ; sides:has_for_title "{title }"^^xsd:string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.question q on d.id = q.question_id

where d.discr = ’ textq ’

mappingId urn:question_TCS_question

target sides:q{id} a sides:TCS_question ; sides:has_for_title "{ title }"^^xsd:string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.question q on d.id = q.question_id

where d.discr = ’ tcsquestion’

mappingId urn:question_has_for_textual_content

target sides:q{question_id} sides:has_for_textual_content "{statement}"^^xsd:string .

source select q.question_id as question_id, string_agg(dc.statement, ’’) as statement from

ontosides.question q

inner join ontosides.docimocontent_statement dc on dc.id = q.question_id

where dc.statement is not null

group by q.question_id

mappingId urn:evaluation_type_set_isolation_question

target sides:eval{id} a sides:set_of_isolated_questions ; sides:has_for_title "{ title }"^^xsd:

string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.evaluation ev on d.id = ev.pool_id where d.discr = ’ qi ’

mappingId urn:evaluation_type_progressive_clinical_case

target sides:eval{id} a sides:progressive_clinical_case ; sides:has_for_title "{ title }"^^xsd:

string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.evaluation ev on d.id = ev.pool_id where d.discr = ’dp’

mappingId urn:evaluation_type_TCS

target sides:eval{id} a sides:TCS ; sides:has_for_title "{ title }"^^xsd:string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.evaluation ev on d.id = ev.pool_id where d.discr = ’ tcspool ’

mappingId urn:evaluation_type_LCA

111

Large-scale ontology-based data analytics

target sides:eval{id} a sides:LCA ; sides:has_for_title "{ title }"^^xsd:string .

source select d.id as id, d.title as title , d.discr from public .docimocontent d

inner join ontosides.evaluation ev on d.id = ev.pool_id where d.discr = ’ lca ’

mappingId urn:relation_question_learning_objective

target sides:q{resourceid} sides:is_linked_to_ECN_referential_entity sides:

learning_objective_{code} .

source select st.resourceid as resourceid, lo.code as code from public.skilllink st

inner join ontosides.learning_objective lo on lo . id = st . skillid

inner join ontosides.question q on st .resourceid = q.question_id

mappingId urn:relation_question_learning_sub_objective

target sides:q{resourceid} sides:is_linked_to_ECN_referential_entity sides:

learning_sub_objective_{code_parent}_{code_child} .

source select st.resourceid as resourceid, lso.code_parent as code_parent, lso.code_child

as code_child from public.skilllink st

inner join ontosides.learning_sub_objective lso on lso . id_child = st . skillid

inner join ontosides.question q on st .resourceid = q.question_id

mappingId urn:relation_eval_learning_sub_objective

target sides:eval{resourceid} sides:is_linked_to_ECN_referential_entity sides:

learning_sub_objective_{code_parent}_{code_child} .

source select st.resourceid as resourceid, lso.code_parent as code_parent, lso.code_child

as code_child from public.skilllink st

inner join ontosides.learning_sub_objective lso on lso . id_child = st . skillid

inner join ontosides.evaluation ev on st .resourceid = ev.pool_id

mappingId urn:relation_eval_learning_objective

target sides:eval{resourceid} sides:is_linked_to_ECN_referential_entity sides:

learning_objective_{code} .

source select st.resourceid as resourceid, lo.code as code from public.skilllink st

inner join ontosides.learning_objective lo on lo . id = st . skillid

inner join ontosides.evaluation ev on st .resourceid = ev.pool_id

mappingId urn:sequence_of_questions_by_evaluation

target sides:lq{pool_id} rdf:_{pos} sides:q{question_id} .

source select pq.pool_id as pool_id, pq.question_id as question_id, (pq.position +1) as pos

from public.pool_question pq

inner join ontosides.evaluation ev on ev.pool_id = pq.pool_id

mappingId urn:relation_evaluation_list_of_questions_dp

112

Appendix A. Other Information

target sides:lq{pool_id} a rdf:Seq . sides:eval{pool_id} sides:has_for_list_of_questions sides:

lq {pool_id} .

source select ev.pool_id as pool_id from ontosides.evaluation ev inner join

public .docimocontent d on d.id = ev.pool_id where d.discr = ’dp’

mappingId urn:relation_evaluation_list_of_questions_lca

target sides:lq{pool_id} a rdf:Seq . sides:eval{pool_id} sides:has_for_list_of_questions sides:

lq {pool_id} .

source select ev.pool_id as pool_id from ontosides.evaluation ev inner join

public .docimocontent d on d.id = ev.pool_id where d.discr = ’ lca ’

mappingId urn:relation_answer_question

target sides:answer{response_id} sides:correspond_to_question sides:q{question_id} .

source select concat(cast(response_id as text), cast(choice_id as text)) as response_id_new

,

rt . id as response_id, rc.choice_id as choice_id, c.question_id as question_id

from response.responses_choices rc

inner join response.response_table rt on rt. id = rc .response_id

inner join choice c on c. id = rc .choice_id

inner join correction .choice_correction ccc on ccc.id = c.correction_id

where response_id not in (select response_id from ontosides.

excluded_responses_ids)

mappingId urn:action_to_answer

target sides:adr{response_id_new} a sides:action_to_answer .

source select response_id_new, begindate from ontosides.response where response_id not

in (select response_id from ontosides.excluded_responses_ids)

mappingId urn:relation_action_to_answer_test

target sides:adr{response_id_new} sides:done_during sides:test{assessment_id} .

source select response_id_new, assessment_id from ontosides.response where

response_id not in (select response_id from ontosides.excluded_responses_ids)

mappingId urn:answer

target sides:answer{response_id} a sides:answer .

source select response_id from ontosides.response where response_id not in (select

response_id from ontosides.excluded_responses_ids)

mappingId urn:relation_answer_has_for_timestamp

target sides:answer{response_id} sides:has_for_timestamp "{begindate}"^^xsd:dateTime .

source select distinct response_id, begindate from ontosides.response where begindate is

not null and response_id not in (select response_id from ontosides.

113

Large-scale ontology-based data analytics

excluded_responses_ids)

mappingId urn:relation_answer_action_to_answer

target sides:adr{response_id_new} sides:is_part_of sides:answer{response_id} .

source select response_id_new, response_id from ontosides.response where response_id

not in (select response_id from ontosides.excluded_responses_ids)

mappingId urn:relation_answer_student

target sides:answer{response_id} sides:done_by sides:stu{participant_id} .

source select response_id, participant_id from ontosides.response where response_id not in

(select response_id from ontosides.excluded_responses_ids)

mappingId urn:relation_has_rightly_ticked

target sides:adr{response_id_new} sides:has_rightly_ticked sides:prop{choice_id} .

source select response_id_new, choice_id ,valid from ontosides.response r where r.valid =

true and response_id not in (select response_id from ontosides.excluded_responses_ids)

mappingId urn:relation_has_wrongly_ticked

target sides:adr{response_id_new} sides:has_wrongly_ticked sides:prop{choice_id} .

source select response_id_new, choice_id, valid from ontosides.response r where r.invalid =

true and response_id not in (select response_id from ontosides.excluded_responses_ids)

mappingId urn:relation_answer_question_fixed

target sides:answer{response_id_fixed} sides:correspond_to_question sides:q{question_id} .

source select response_id_fixed, question_id from ontosides.responses_fixed

mappingId urn:action_to_answer_fixed

target sides:adr{response_id_new} a sides:action_to_answer .

source select response_id_new, begindate from ontosides.responses_fixed

mappingId urn:relation_action_to_answer_test_fixed

target sides:adr{response_id_new} sides:done_during sides:test{assessment_id} .

source select response_id_new, assessment_id from ontosides.responses_fixed

mappingId urn:answer_fixed

target sides:answer{response_id_fixed} a sides:answer .

source select response_id_fixed from ontosides.responses_fixed

mappingId urn:relation_answer_has_for_timestamp_fixed

target sides:answer{response_id_fixed} sides:has_for_timestamp "{begindate}"^^xsd:

dateTime .

source select distinct response_id_fixed, begindate from ontosides.responses_fixed where

114

Appendix A. Other Information

begindate is not null

mappingId urn:relation_answer_action_to_answer_fixed

target sides:adr{response_id_new} sides:is_part_of sides:answer{response_id_fixed} .

source select response_id_new, response_id_fixed from ontosides.responses_fixed

mappingId urn:relation_answer_student_fixed

target sides:answer{response_id_fixed} sides:done_by sides:stu{participant_id} .

source select response_id_fixed, participant_id from ontosides.responses_fixed

mappingId urn:relation_has_rightly_ticked_fixed

target sides:adr{response_id_new} sides:has_rightly_ticked sides:prop{choice_id} .

source select response_id_new, choice_id ,valid from ontosides.responses_fixed r where r.

valid = true

mappingId urn:relation_has_wrongly_ticked_fixed

target sides:adr{response_id_new} sides:has_wrongly_ticked sides:prop{choice_id} .

source select response_id_new, choice_id, valid from ontosides.responses_fixed r where r.

invalid = true

mappingId urn:picture

target sides:picture{file_id} a sides:picture .

source select id, file_id from (

select id , file_id from ontosides.docimocontent_comment_images

union

select id , file_id from ontosides.docimocontent_introduction_images

union

select id , file_id from ontosides.docimocontent_statement_images

) as t

mappingId urn:video

target sides:video{file_id} a sides:video .

source select id, file_id from (

select id , file_id from ontosides.docimocontent_comment_videos

union

select id , file_id from ontosides.docimocontent_introduction_videos

union

select id , file_id from ontosides.docimocontent_statement_videos

) as t

mappingId urn:relation_question_picture_multimedia_content

target sides:q{question_id} sides:has_for_multimedia_content sides:picture{file_id} .

115

Large-scale ontology-based data analytics

source select question_id, file_id from (

select q.question_id, dci . file_id from ontosides.question q

inner join ontosides.docimocontent_comment_images dci on dci.id = q.

question_id

union

select q.question_id, dii . file_id from ontosides.question q

inner join ontosides.docimocontent_introduction_images dii on dii.id = q.

question_id

union

select q.question_id, dsi . file_id from ontosides.question q

inner join ontosides.docimocontent_statement_images dsi on dsi.id = q.

question_id

) as t

mappingId urn:relation_question_video_multimedia_content

target sides:q{question_id} sides:has_for_multimedia_content sides:video{file_id} .

source select question_id, file_id from (

select q.question_id, dcv. file_id from ontosides.question q

inner join ontosides.docimocontent_comment_videos dcv on dcv.id = q.

question_id

union

select q.question_id, div . file_id from ontosides.question q

inner join ontosides.docimocontent_introduction_videos div on div.id = q.

question_id

union

select q.question_id, dsv. file_id from ontosides.question q

inner join ontosides.docimocontent_statement_videos dsv on dsv.id = q.

question_id

) as t

mappingId urn:relation_evaluation_picture_multimedia_content

target sides:eval{pool_id} sides:has_for_multimedia_content sides:picture{file_id} .

source select pool_id, file_id from (

select ev.pool_id, dci . file_id from ontosides.evaluation ev

inner join ontosides.docimocontent_comment_images dci on dci.id = ev.pool_id

union

select ev.pool_id, dii . file_id from ontosides.evaluation ev

inner join ontosides.docimocontent_introduction_images dii on dii.id = ev.pool_id

union

select ev.pool_id, dsi . file_id from ontosides.evaluation ev

inner join ontosides.docimocontent_statement_images dsi on dsi.id = ev.pool_id

116

Appendix A. Other Information

) as t

mappingId urn:relation_evaluation_video_multimedia_content

target sides:eval{pool_id} sides:has_for_multimedia_content sides:video{file_id} .

source select pool_id, file_id from (

select ev.pool_id, dcv. file_id from ontosides.evaluation ev

inner join ontosides.docimocontent_comment_videos dcv on dcv.id = ev.pool_id

union

select ev.pool_id, div . file_id from ontosides.evaluation ev

inner join ontosides.docimocontent_introduction_videos div on div.id = ev.pool_id

union

select ev.pool_id, dsv. file_id from ontosides.evaluation ev

inner join ontosides.docimocontent_statement_videos dsv on dsv.id = ev.pool_id

) as t

mappingId urn:question_comment_has_for_textual_content

target sides:q{id} sides:has_for_comment sides:comment{comment_block_id} . sides:

comment{comment_block_id} a sides:comment ; sides:has_for_textual_content "{comment

}"^^xsd:string .

source select c.id as id, comment_block_id, string_agg(c.comment, ’’) as comment from

ontosides.docimocontent_comment c

inner join ontosides.question q on q.question_id = c. id

where coalesce(c.comment, ’’) != ’’

group by c.id , comment_block_id

mappingId urn:question_comment_has_for_multimedia_content_images

target sides:q{id} sides:has_for_comment sides:comment{comment_block_id} . sides:

comment{comment_block_id} a sides:comment ; sides:has_for_multimedia_content sides:

picture{file_id} .

source select c.id as id, c.comment_block_id, c.file_id from ontosides.

docimocontent_comment_images c

inner join ontosides.question q on q.question_id = c. id

mappingId urn:question_comment_has_for_multimedia_content_videos

target sides:q{id} sides:has_for_comment sides:comment{comment_block_id} . sides:

comment{comment_block_id} a sides:comment ; sides:has_for_multimedia_content sides:

video{file_id} .

source select v.id as id, v.comment_block_id, v.file_id from ontosides.

docimocontent_comment_videos v

117

Large-scale ontology-based data analytics

inner join ontosides.question q on q.question_id = v. id

mappingId urn:proposal_of_answer_comment_has_for_textual_content

target sides:prop{id} sides:has_for_comment sides:comment{comment_block_id} . sides:

comment{comment_block_id} a sides:comment ; sides:has_for_textual_content "{comment

}"^^xsd:string .

source select c.id as id, comment_block_id, string_agg(c.comment, ’’) as comment from

ontosides.choice_comment c

where coalesce(c.comment, ’’) != ’’

group by c.id , comment_block_id

mappingId urn:proposal_of_answer_comment_has_for_multimedia_content_images

target sides:q{id} sides:has_for_comment sides:comment{comment_block_id} . sides:

comment{comment_block_id} a sides:comment ; sides:has_for_multimedia_content sides:

picture{file_id} .

source select id, comment_block_id, file_id from ontosides.

choice_comment_content_images

mappingId urn:proposal_of_answer_comment_has_for_multimedia_content_videos

target sides:q{id} sides:has_for_comment sides:comment{comment_block_id} . sides:

comment{comment_block_id} a sides:comment ; sides:has_for_multimedia_content sides:

video{file_id} .

source select id, comment_block_id, file_id from ontosides.choice_comment_content_videos

mappingId urn:multimedia_image_metadata

target sides:picture{id} sides:has_filename "{filename}"^^xsd:string; sides:has_basepath "{

basepath}"^^xsd:string .

source select f.filename, f.basepath, f.id from file f

inner join filecontext fc on fc . file_id = f . id

inner join theia_block tb on tb. filecontext_id = fc . id

where tb.dtype = ’ image’;

mappingId urn:multimedia_video_metadata

target sides:video{id} sides:has_filename "{filename}"^^xsd:string; sides:has_basepath "{

basepath}"^^xsd:string .

source select f.filename, f.basepath, f.id from file f

inner join filecontext fc on fc . file_id = f . id

inner join theia_block tb on tb. filecontext_id = fc . id

where tb.dtype = ’ image’;

118

Appendix A. Other Information

mappingId urn:test_has_for_context_national_training

target sides:test{id} sides:has_for_context "{context}"^^xsd:string .

source select id, ’national training’ as context from assessment

where discr = ’docimocontenttraining’ and isnational is true

mappingId urn:test_has_for_context_local_training

target sides:test{id} sides:has_for_context "{context}"^^xsd:string .

source select id, ’local training’ as context from assessment

where discr = ’docimocontenttraining’ and isnational is not true

mappingId urn:test_has_for_context_exam

target sides:test{id} sides:has_for_context "{context}"^^xsd:string .

source select id, ’exam’ as context from assessment

where discr = ’exam’

mappingId urn:relation_has_for_weight_of_correction

target sides:prop{id} sides:has_for_weight_of_correction "{weight_of_correction}"^^xsd:string

.

source select c.id, cc.fatal, cc.valid,

case

when cc.fatal = false then ’Normal’

when cc.fatal = true and cc.valid =false then ’Unacceptable’

when cc.fatal = true and cc.valid =true then ’ Indispensable’

end

as weight_of_correction

from choice c

inner join correction .choice_correction cc on cc.id = c.correction_id

mappingId urn:question_has_for_weight

target sides:q{id} sides:has_for_weight "{weight}".

source select id, weight from docimocontent dc where dc.discr in (’qrm’, ’qru’, ’textq’, ’

tcsquestion ’)

mappingId urn:rating_questions

target sides:q{question_id} sides:has_rating sides:rating{rating_id}. sides:rating{rating_id} a

sides: rating ; sides:given_by sides:stu{user_id} ; sides:has_for_timestamp "{updatedat

119

Large-scale ontology-based data analytics

}"^^xsd:dateTime ; sides:has_for_value "{value}"^^xsd:integer .

source select ass.docimocontent_id as question_id, tur.id as rating_id, tur.user_id, tur.

createdat, tur.updatedat, tur.value

from theiacar_user_rating tur

left join theiacar_comment_rating_thread tc on tur.commentratingthread_id=tc.id

left join docimocontentassessment ass on tc.identity = ass.assessment_id

left join assessment as ass1 on ass1.id = ass.assessment_id

left join docimocontent dc on dc.id=ass.docimocontent_id

where ass1.isnational=true and user_id is not null

and (dc.discr = ’qrm’ or dc.discr = ’qru ’)

mappingId urn:rating_evaluations

target sides:eval{eval_id} sides:has_rating sides:rating{rating_id}. sides:rating{ rating_id } a

sides: rating ; sides:given_by sides:stu{user_id} ; sides:has_for_timestamp "{updatedat

}"^^xsd:dateTime ; sides:has_for_value "{value}"^^xsd:integer .

source select ass.docimocontent_id as eval_id, tur.id as rating_id, tur.user_id, tur.createdat,

tur.updatedat, tur.value

from theiacar_user_rating tur

left join theiacar_comment_rating_thread tc on tur.commentratingthread_id=tc.id

left join docimocontentassessment ass on tc.identity = ass.assessment_id

left join assessment as ass1 on ass1.id = ass.assessment_id

left join docimocontent dc on dc.id=ass.docimocontent_id

where ass1.isnational=true and user_id is not null

and dc.discr = ’dp’

mappingId urn:has_for_expected_answer_text

target sides:q{question_id} sides:has_for_expected_answer_text "{textvalue}" .

source select question_id, textvalue from correction.text_correction where textvalue is not

null and textvalue <> ’’ and question_id is not null

]]

120

References

[1] T. Chawla, G. Singh, E. S. Pilli, M. Govil, Storage, partitioning, indexing and retrieval in

big rdf frameworks: A survey, Computer Science Review 38 (2020) 100309. URL: https:

//www.sciencedirect.com/science/article/pii/S1574013720304093. doi:https:

//doi.org/10.1016/j.cosrev.2020.100309.

[2] Hadoop architecture, https://hadoop.apache.org/docs/r3.3.0/

hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, 2022. Accessed: 2022-10-26.

[3] Acelerating apache spark 3, https://www.nvidia.com/en-us/deep-learning-ai/

solutions/data-science/apache-spark-3/ebook-sign-up/, 2022. Accessed: 2022-

11-30.

[4] Spark ai summit 2020 highlights: Innovations to improve spark 3.0 performance, https:

//www.infoq.com/news/2020/07/spark-ai-summit-performance-gpu/, 2022. Ac-

cessed: 2022-11-30.

[5] Z. Kaoudi, I. Manolescu, RDF in the clouds: a survey, VLDB J. 24 (2015) 67ś91. URL:

https://doi.org/10.1007/s00778-014-0364-z. doi:10.1007/s00778-014-0364-z.

[6] W. Ali, M. Saleem, B. Yao, A. Hogan, A. N. Ngomo, Storage, indexing, query processing, and

benchmarking in centralized and distributed RDF engines: A survey, CoRR abs/2009.10331

(2020). URL: https://arxiv.org/abs/2009.10331. arXiv:2009.10331.

[7] G. Agathangelos, G. Troullinou, H. Kondylakis, K. Stefanidis, D. Plexousakis, RDF query

answering using apache spark: Review and assessment, in: 34th IEEE International Conference

on Data Engineering Workshops, ICDE Workshops 2018, Paris, France, April 16-20, 2018,

IEEE Computer Society, 2018, pp. 54ś59. URL: https://doi.org/10.1109/ICDEW.2018.

00016. doi:10.1109/ICDEW.2018.00016.

[8] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, G. Lausen, S2rdf: Rdf querying with sparql

on spark, Proc. VLDB Endow. 9 (2016) 804ś815. URL: https://doi.org/10.14778/

2977797.2977806. doi:10.14778/2977797.2977806.

[9] H. Naacke, O. Curé, B. Amann, SPARQL query processing with apache spark, CoRR

abs/1604.08903 (2016). URL: http://arxiv.org/abs/1604.08903. arXiv:1604.08903.

[10] O. Palombi, F. Jouanot, N. Nziengam, B. Omidvar-Tehrani, M.-C. Rousset, A. Sanchez, Onto-

sides: Ontology-based student progress monitoring on the national evaluation system of french

medical schools, Artiőcial intelligence in medicine 96 (2019) 59ś67.

[11] A. Sanchez-Ayte, F. Jouanot, M.-C. Rousset, Construct queries performance on a spark-

based big rdf triplestore, in: P. Groth, M.-E. Vidal, F. Suchanek, P. Szekley, P. Kapanipathi,

121

Large-scale ontology-based data analytics

C. Pesquita, H. Skaf-Molli, M. Tamper (Eds.), The Semantic Web, Springer International

Publishing, Cham, 2022, pp. 444ś460.

[12] Rdf 1.1 concepts and abstract syntax, https://www.w3.org/TR/rdf11-concepts/, 2023.

Accessed: 2023-02-19.

[13] Rdf 1.1 datasets, https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

#section-dataset, 2023. Accessed: 2023-02-19.

[14] Sparql 1.1 query language, https://www.w3.org/TR/sparql11-query, 2023. Accessed:

2023-02-19.

[15] Owl 2 web ontology language document overview, https://www.w3.org/TR/

owl2-overview/, 2023. Accessed: 2023-02-19.

[16] Owl 2 web ontology language proőles (second edition), https://www.w3.org/TR/

owl2-profiles/, 2023. Accessed: 2023-02-19.

[17] D. Calvanese, G. De Giacomo, D. Lemho, M. Lenzerini, R. Rosati, Dl-lite: Tractable de-

scription logics for ontologies, in: Proceedings of the 20th National Conference on Artiőcial

Intelligence - Volume 2, AAAI’05, AAAI Press, 2005, p. 602ś607.

[18] D. Maier, K. T. Tekle, M. Kifer, D. S. Warren, Datalog: Concepts, History, and Outlook,

Association for Computing Machinery and Morgan amp; Claypool, 2018, p. 3ś100. URL:

https://doi.org/10.1145/3191315.3191317.

[19] A. Calì, G. Gottlob, T. Lukasiewicz, Datalog±: A uniőed approach to ontologies and integrity

constraints, in: Proceedings of the 12th International Conference on Database Theory, ICDT

’09, Association for Computing Machinery, New York, NY, USA, 2009, p. 14ś30. URL:

https://doi.org/10.1145/1514894.1514897. doi:10.1145/1514894.1514897.

[20] Reasoning and validation with spin, https://rdf4j.org/documentation/programming/

spin/, 2021. Accessed: 2021-02-11.

[21] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Ontology-Based

Data Access and Integration, Springer New York, New York, NY, 2018, pp. 2590ś

2596. URL: https://doi.org/10.1007/978-1-4614-8265-9_80667. doi:10.1007/

978-1-4614-8265-9_80667.

[22] R2rml: Rdb to rdf mapping language, https://www.w3.org/TR/r2rml/, 2023. Accessed:

2023-02-19.

[23] Ontop, a virtual knowledge graph, https://ontop-vkg.org/guide://ontop-vkg.org/

guide/l, 2023. Accessed: 2023-02-19.

[24] Rdfs semantics, https://www.w3.org/TR/rdf-mt/#RDFSRules, 2023. Accessed: 2023-

02-19.

[25] J. Urbani, S. Kotoulas, E. Oren, F. van Harmelen, Scalable distributed reasoning using

mapreduce, in: A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta,

K. Thirunarayan (Eds.), The Semantic Web - ISWC 2009, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009, pp. 634ś649.

[26] M. Buron, Efficient reasoning on large and heterogeneous graphs, Theses, École Polytechnique,

2020. URL: https://hal.inria.fr/tel-03107689.

[27] O. Palombi, M.-C. Rousset, F. Jouanot, Ontosides ontology, https://perscido.

univ-grenoble-alpes.fr/datasets/DS388, 2023. Accessed: 2023-04-07.

122

References

[28] Top braid composer from topquadrant software, http://www.topquadrant.com/, 2019.

Accessed: 2019-09-01.

[29] O. Palombi, F. Ulliana, V. Favier, J.-C. Leon, M.-C. Rousset, My corporis fabrica: an ontology-

based tool for reasoning and querying on complex anatomical models, Journal of Biomedical

Semantics (JOBS 2014) 5 (2014).

[30] P.-Y. Rabattu, B. Masse, F. Ulliana, M.-C. Rousset, D. Rohmer, J.-C. Leon, O. Palombi, My

corporis fabrica embryo: An ontology-based 3d spatio-temporal modeling of human embryo

development, Journal of Biomedical Semantics (JOBS 2015) 6 (2015).

[31] French Ministry for Higher Education and Research, Etudes Médicales, http:

//www.enseignementsup-recherche.gouv.fr/pid20536/bulletin-officiel.

html?cid_bo=71544&cbo=1, 2013. Bulletin Officiel 𝑛𝑜 20, May 16th.

[32] S. Lohmann, S. Negru, F. Haag, T. Ertl, Visualizing ontologies with VOWL, Semantic

Web 7 (2016) 399ś419. URL: http://dx.doi.org/10.3233/SW-150200. doi:10.3233/

SW-150200.

[33] B. Grau, I. Horrocks, Y. Kazakov, U. Sattler, Just the right amount: Extracting modules from

ontologies, in: 16th International World Wide Web Conference, WWW2007|Int. World Wide

Web Conf., 2007, pp. 717ś726. URL: http://dblp.uni-trier.de/rec/bibtex/conf/

www/KolovskiHP07. doi:10.1145/1242572.1242669, 16th International World Wide Web

Conference, WWW2007 ; Conference date: 01-07-2007.

[34] P. Doran, I. Palmisano, V. A. M. Tamma, SOMET: algorithm and tool for SPARQL based

ontology module extraction, in: U. Sattler, A. Tamilin (Eds.), Proceedings of the Workshop on

Ontologies: Reasoning and Modularity, WoMO 2008, Tenerife, Spain, June 2, 2008, volume

348 of CEUR Workshop Proceedings, CEUR-WS.org, 2008. URL: http://ceur-ws.org/

Vol-348/worm08_contribution_8.pdf.

[35] P. Doran, V. Tamma, L. Iannone, Ontology module extraction for ontology reuse: An ontology

engineering perspective, in: Proceedings of the Sixteenth ACM Conference on Conference

on Information and Knowledge Management, CIKM ’07, Association for Computing Machin-

ery, New York, NY, USA, 2007, p. 61ś70. URL: https://doi.org/10.1145/1321440.

1321451. doi:10.1145/1321440.1321451.

[36] M. d’Aquin, M. Sabou, E. Motta, Modularization: a key for the dynamic selection of relevant

knowledge components, in: International Workshop on Modular Ontologies, 2006.

[37] J. Seidenberg, A. Rector, Web ontology segmentation: Analysis, classiőcation and use, in:

Proceedings of the 15th International Conference on World Wide Web, WWW ’06, Association

for Computing Machinery, New York, NY, USA, 2006, p. 13ś22. URL: https://doi.org/

10.1145/1135777.1135785. doi:10.1145/1135777.1135785.

[38] N. Noy, M. A. Musen, Prompt: Algorithm and tool for automated ontology merging and

alignment, in: AAAI/IAAI, 2000.

[39] S. Ben Abbès, A. Scheuermann, T. Meilender, M. d’Aquin, Characterizing Modular Ontologies,

in: 7th International Conference on Formal Ontologies in Information Systems - FOIS 2012,

Graz, Austria, 2012, pp. 13ś25. URL: https://hal.science/hal-00710035.

[40] M.-C. Rousset, F. Ulliana, Extracting bounded-level modules from deductive rdf triplestores,

in: AAAI Conference on Artiőcial Intelligence, 2015.

123

Large-scale ontology-based data analytics

[41] What does "big data" mean and who will win, https://youtu.be/KRcecxdGxvQ?t=228,

2022. Accessed: 2022-12-05.
[42] The Apache Software Foundation, Apache spark, https://spark.apache.org/, 2021. Ac-

cessed: 2021-12-05.
[43] Sansa Stack, Apache spark, https://sansa-stack.net/, 2021. Accessed: 2022-11-30.
[44] G. GSK, Bellman, https://github.com/asanchez75/bellman, 2022. Accessed: 2022-

11-30.
[45] O. Curé, G. Blin, RDF Database Systems: Triples Storage and SPARQL Query Processing,

1st ed., Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2014.
[46] G. Agathangelos, G. Troullinou, H. Kondylakis, K. Stefanidis, D. Plexousakis, Rdf

query answering using apache spark: Review and assessment, in: 2018 IEEE 34th

International Conference on Data Engineering Workshops (ICDEW), 2018, pp. 54ś59.

doi:10.1109/ICDEW.2018.00016.
[47] C. Stadler, G. Sejdiu, D. Graux, J. L. 0001, Querying large-scale rdf datasets using the sansa

framework, in: M. C. Suárez-Figueroa, G. Cheng, A. L. Gentile, C. Guéret, C. M. Keet,

A. Bernstein (Eds.), Proceedings of the ISWC 2019 Satellite Tracks (Posters Demonstrations,

Industry, and Outrageous Ideas) co-located with 18th International Semantic Web Conference

(ISWC 2019), Auckland, New Zealand, October 26-30, 2019, volume 2456 of CEUR Workshop

Proceedings, CEUR-WS.org, 2019, pp. 285ś288. URL: http://ceur-ws.org/Vol-2456/

paper74.pdf.
[48] A. Aranda-Andújar, F. Bugiotti, J. Camacho-Rodríguez, D. Colazzo, F. Goasdoué, Z. Kaoudi,

I. Manolescu, AMADA: Web Data Repositories in the Amazon Cloud, in: ACM CIKM -

International Conference on Information and Knowledge Management, Maui, United States,

2012. URL: https://hal.inria.fr/hal-00730687.
[49] J. Dean, S. Ghemawat, Mapreduce: Simpliőed data processing on large clusters, Commun.

ACM 51 (2008) 107ś113. URL: https://doi.org/10.1145/1327452.1327492. doi:10.

1145/1327452.1327492.
[50] M. Zaharia, An Architecture for Fast and General Data Processing on Large Clusters, vol-

ume 11, Association for Computing Machinery and Morgan amp; Claypool, 2016.
[51] J. Paul, S. Lu, B. He, Database Systems on GPUs, Now Publishers, 2021.
[52] Cedar, activity report 2021, https://raweb.inria.fr/rapportsactivite/RA2021/

cedar/CEDAR-RA-2021.pdf, 2022. Accessed: 2022-11-12.
[53] The Linux Foundation, Delta lake documentation, https://delta.io/, 2021. Accessed:

2021-12-05.
[54] J. Laskowski, The internals of delta lake, https://books.japila.pl/

delta-lake-internals/, 2021. Accessed: 2021-12-05.
[55] M. Ragab, S. Sakr, R. Tommasini, Benchmarking spark-sql under alliterative rdf relational

storage backends., 2019.
[56] R. Gu, S. Wang, F. Wang, C. Yuan, Y. Huang, Cichlid: Efficient large scale rdfs/owl reasoning

with spark, in: 2015 IEEE International Parallel and Distributed Processing Symposium, 2015,

pp. 700ś709. doi:10.1109/IPDPS.2015.14.
[57] M. A. Farvardin, Scalable Saturation of Streaming RDF Triples, Theses, Université Paris

sciences et lettres, 2021. URL: https://theses.hal.science/tel-03580501.

124

References

[58] Hdfs erasure coding, https://hadoop.apache.org/docs/stable/

hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html, 2022. Accessed:

2022-12-05.

[59] Saving capacity with hdfs raid, https://engineering.fb.com/2014/06/05/core-data/

saving-capacity-with-hdfs-raid/, 2022. Accessed: 2022-12-07.

[60] Parse one quad, https://lists.apache.org/thread/

l9otgzvb5szhvjy6y0wk5l4xlzg3bbm8, 2022. Accessed: 2022-12-07.

[61] xxhash - extremely fast hash algorithm, https://github.com/Cyan4973/xxHas://

github.com/Cyan4973/xxHash, 2022. Accessed: 2022-12-07.

[62] OpenLink Software, Virtuoso universal server, https://virtuoso.openlinksw.com/,

2021. Accessed: 2021-12-05.

[63] M. Jovanovik, M. Spasić, Benchmarking virtuoso 8 at the mighty storage challenge 2018:

Challenge results, in: D. Buscaldi, A. Gangemi, D. Reforgiato Recupero (Eds.), Semantic Web

Challenges, Springer International Publishing, Cham, 2018, pp. 24ś35.

125

