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Abstract
Traditional cloud infrastructure will face a series of challenges due to the centralization of

computing, storage, and networking in a small number of data centers, and the long-distance

between connected devices and remote data centers. To meet this challenge, edge computing

seems to be a promising possibility that provides resources closer to IoT devices.

In the cloud computing model, compute resources and services are often centralized in

large data centers that end-users access from the network. This model has an important

economic value and more efficient resource-sharing capabilities. New forms of end-user

experience such as the Internet of Things require computing resources near to the end-user

devices at the network edge.

To meet this need, edge computing relies on a model in which computing resources are

distributed to the edge of a network as needed, while decentralizing the data processing from

the cloud to the edge as possible. Thus, it is possible to quickly have actionable information

based on data that varies over time.

In this thesis, we propose novel optimization models to optimize the resource utilization

at the network edge for two edge computing research directions, service offloading and

vehicular edge computing. We study different use cases in each research direction. For the

optimal solutions, First, for service offloading we propose optimal algorithms for services

placement at the network edge (Tasks, Virtual Network Functions (VNF), Service Function

Chain (SFC)) by taking into account the computing resources constraints. Moreover, for

vehicular edge computing, we propose exact models related to maximizing the coverage

of vehicles by both Taxis and Unmanned Aerial Vehicle (UAV) for online video streaming

applications. In addition, we propose optimal edge-autopilot VNFs offloading at the network

edge for autonomous driving. The evaluation results show the efficiency of the proposed

algorithms in small-scale networks in terms of time, cost, and resource utilization.

To deal with dense networks with a high number of devices and scalability issues, we propose

large-scale algorithms that support a huge amount of devices, data, and users requests.

Heuristic algorithms are proposed for SFC orchestration, maximum coverage of mobile

edge servers (vehicles). Moreover, The artificial intelligence algorithms (machine learning,

deep learning, and deep reinforcement learning) are used for 5G VNF slices placement,
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edge-autopilot VNF placement, and autonomous UAV navigation. The numerical results

give good results compared with exact algorithms with high efficiency in terms of time.

Keywords: Internet of things (IoT), Cloud Computing, Edge/Fog Computing, Mo-

bile Edge Computing, Artificial Intelligence, Optimization.

Résumé
Dans le cloud computing, les services et les ressources sont centralisés dans des cen-

tres de données auxquels l’utilisateur peut accéder à partir de ses appareils connectés.

L’infrastructure cloud traditionnelle sera confrontée à une série de défis en raison de la

centralisation de calcul, du stockage et de la mise en réseau dans un petit nombre de centres

de données, et de la longue distance entre les appareils connectés et les centres de données

distants.

Pour répondre à ce besoin, l’edge computing s’appuie sur un modèle dans lequel les

ressources de calcul sont distribuées dans le edge de réseau selon les besoins, tout en

décentralisant le traitement des données du cloud vers le edge autant que possible. Ainsi,

il est possible d’avoir rapidement des informations exploitables basées sur des données qui

varient dans le temps.

Dans cette thèse, nous proposons de nouveaux modèles d’optimisation pour optimiser

l’utilisation des ressources dans le edge de réseau pour deux domaines de recherche de

l’edge computing, le "service offloading" et "vehicular edge computing". Nous étudions

différents cas d’utilisation dans chaque domaine de recherche. Pour les solutions optimales,

Premièrement, pour le "service offloading", nous proposons des algorithmes optimaux pour

le placement des services dans les serveurs edge (Tasks, Virtual Network Functions (VNF),

Service Function Chain (SFC)) en tenant compte des contraintes de ressources de calcul.

De plus, pour "vehicular edge computing", nous proposons des modèles exacts liés à la

maximisation de la couverture des véhicules par les taxis et les Unmanned Aerial Vehicle

(UAV) pour les applications de streaming vidéo en ligne. De plus, nous proposons un edge-

autopilot VNFs offloading dans le edge de réseau pour la conduite autonome. Les résultats de

l’évaluation montrent l’efficacité des algorithmes proposés dans les réseaux avec un nombre

limité d’appareils en termes de temps, de coût et d’utilisation des ressources.

vi



Pour faire face aux réseaux denses avec un nombre élevé d’appareils et des problèmes

d’évolutivité, nous proposons des algorithmes à grande échelle qui prennent en charge une

énorme quantité d’appareils, de données et de demandes d’utilisateurs. Des algorithmes

heuristiques sont proposés pour l’orchestration SFC, couverture maximale des serveurs

edge mobiles (véhicules). De plus, les algorithmes d’intelligence artificielle (apprentissage

automatique, apprentissage en profondeur et apprentissage par renforcement en profondeur)

sont utilisés pour le placement des "5G VNF slices", le placement des "VNF-autopilot" et

la navigation autonome des drones. Les résultats numériques donnent de bons résultats par

rapport aux algorithmes exacts avec haute efficacité en temps.

Mots clés: Internet des objets (IoT), Cloud Computing, Edge/Fog Computing,

Mobile Edge Computing, Intelligence Artificielle, Optimisation.

vii



Thesis Publications

Journals

1. Mohammed Laroui, Hatem Ibn-Khedher, Moussa Ali Cherif, Hassine Moungla, Hos-

sam Afifi, and Ahmed E Kamel. SO-VMEC: Service offloading in virtual mobile edge

computing using deep reinforcement learning. Transactions on Emerging Telecommu-

nications Technologies (ETT), e4211, 2021. [1]

2. Mohammed Laroui, Boubakr Nour, Hassine Moungla, Moussa Ali Cherif, Hossam

Afifi, and Mohsen Guizani. Edge and Fog Computing for IoT: A Survey on Current

Research Activities & Future Directions. Computer Communications (ComCom), 2021.

[2]

Conferences

1. Mohammed Laroui, Hatem Ibn-Khedher, Hassine Moungla, and Hossam Afifi. Au-

tonomous UAV Aided Vehicular Edge Computing for Service Offering. In IEEE Global

Communications Conference (Globecom), 7-11 December 2021, Madrid, Spain. [3]

2. Mohammed Laroui, Hatem Ibn-Khedher, Hassine Moungla, and Hossam Afifi. Artifi-

cial Intelligence Approach for Service Function Chains Orchestration at The Network

Edge. In IEEE International Conference on Communications (ICC), (pp.1-6), 14-23

June 2021, Montreal, QC, Canada. [4]

3. Hatem Ibn-Khedher, Mohammed Laroui, Mouna Ben Mabrouk, Hassine Moungla,

Hossam Afifi, Alberto Nai Oleari, and Ahmed E Kamal. Edge Computing Assisted

Autonomous Driving Using Artificial Intelligence. In IEEE International Wireless

Communications and Mobile Computing (IWCMC), (pp.254-259), 28 June-2 July 2021,

Harbin City, China. [5]

4. Mohammed Laroui, Hatem Ibn Khedher, Hassine Moungla, Hossam Afifi, and Ahmed

E Kamal. Virtual Mobile Edge Computing Based on IoT Devices Resources in Smart

viii



Cities. In IEEE International Conference on Communications (ICC), (pp.1-6), 7-11

June 2020, Dublin, Ireland. [6]

5. Mohammed Laroui, Moussa Ali Cherif, Hatem Ibn Khedher, Hassine Moungla, and

Hossam Afifi. Scalable and Cost Efficient Resource Allocation Algorithms Using

Deep Reinforcement Learning. In IEEE International Wireless Communications and

Mobile Computing (IWCMC), (pp.946-951), 15-19 June 2020, Limassol, Cyprus. [7]

6. Mohammed Laroui, Boubakr Nour, Hassine Moungla, Hossam Afifi, and Moussa Ali

Cherif. Mobile Vehicular Edge Computing Architecture using Rideshare Taxis as a

Mobile Edge Server. In IEEE 17th Annual Consumer Communications & Networking

Conference (CCNC), (pp.1-2), 10-13 January 2020, Las Vegas, NV, USA. [8]

7. Mohammed Laroui, Aicha Dridi, Hossam Afifi, Hassine Moungla, Michel Marot, and

Moussa Ali Cherif. Energy Management For Electric Vehicles in Smart Cities: A Deep

Learning Approach. In IEEE International Wireless Communications and Mobile

Computing (IWCMC), (pp.2080-2085), 24-28 June 2019, Tangier, Morocco. [9]

8. Mohammed Laroui, Akrem Sellami, Boubakr Nour, Hassine Moungla, Hossam Afifi,

Sofiane Boukli Hacene. Driving Path Stability in VANETs. In IEEE Global Communi-

cations Conference (GLOBECOM), (pp.1-6), 9-13 December 2018, Abu Dhabi, United

Arab Emirates. [10]

ix





Table of contents

List of figures xiii

List of tables xv

1 General Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Edge Computing For IoT: Overview & Related Works 5

2.1 Edge Computing for IoT: Overview . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Cloud Computing (CC) . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Mobile Cloud Computing (MCC) . . . . . . . . . . . . . . . . . . 13

2.1.4 Edge Computing (EC) . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.5 Mobile Edge Computing (MEC) . . . . . . . . . . . . . . . . . . . 23

2.2 Edge Computing for IoT: Related Works . . . . . . . . . . . . . . . . . . . 29

2.2.1 Service Offloading In EC . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Vehicular Edge Computing . . . . . . . . . . . . . . . . . . . . . . 35

3 Optimal Solutions For Edge Computing Networks 47

3.1 Service Offloading In EC . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 UseCase 1: 5G VNF Slices Placement in EC . . . . . . . . . . . . 48

3.1.2 Use Case 2: Task Offloading in Virtual Mobile Edge Computing

(VME) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



Table of contents

3.1.3 Use Case 3: Service Offloading in Virtual Mobile Edge Computing

(SO-VMEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.4 Use Case 4: Service Function Chains Orchestration in Virtual Mobile

Edge Computing (VMEC) . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Vehicular Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.1 Use Case 1: Edge Computing Assisted Vehicular Networks for

Service Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.2 Use Case 2: Edge Computing Aided Autonomous Vehicles . . . . . 83

3.2.3 Use Case 3: Edge Computing Assisted Autonomous UAV . . . . . 89

4 Large Scale Solutions For Edge Computing Networks 99

4.1 Service Offloading In EC . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 Use Case 1: 5G VNF Slices Placement in EC . . . . . . . . . . . . 99

4.1.2 Use Case 2: Service Offloading in Virtual Mobile Edge Computing

(SO-VMEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.3 Use Case 3: Service Function Chains Orchestration in Virtual Mobile

Edge Computing (VMEC) . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Vehicular Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 Use Case 1: Edge Computing Assisted Vehicular Networks for

Service Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.2 Use Case 2: Edge Computing Aided Autonomous Vehicles . . . . . 109

4.2.3 Use Case 3: Edge Computing Assisted Autonomous UAV . . . . . 112

5 Conclusion and Perspectives 115

References 117

xii



List of figures

2.1 IoT Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 3-Tiers IoT Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Categories of Cloud Computing Services. . . . . . . . . . . . . . . . . . . 13

2.4 Cloud Computing Architecture for IoT. . . . . . . . . . . . . . . . . . . . 14

2.5 Mobile Cloud Computing Architecture. . . . . . . . . . . . . . . . . . . . 15

2.6 Edge Computing Architecture for IoT. . . . . . . . . . . . . . . . . . . . . 18

2.7 Mobile Edge Computing Framework. . . . . . . . . . . . . . . . . . . . . 24

2.8 Mobile Edge Computing Architecture. . . . . . . . . . . . . . . . . . . . . 26

3.1 VNF Slices Placement in Edge Computing Over 5G Network [7]. . . . . . 48

3.2 Virtual Mobile Edge Computing Architecture [6]. . . . . . . . . . . . . . . 51

3.3 Failed Tasks [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Service Time [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Processing Time [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Average Edge Devices Utilization [6]. . . . . . . . . . . . . . . . . . . . . 56

3.7 Failed Tasks due to Edge Device Capacity [6]. . . . . . . . . . . . . . . . . 57

3.8 Virtual Mobile Edge Computing Architecture [1]. . . . . . . . . . . . . . . 59

3.9 SO-VMEC Communication Model [1]. . . . . . . . . . . . . . . . . . . . 60

3.10 Mobility Prediction for Three Mobility Models (Low, Medium, and High) [1]. 69

3.11 Energy Prediction for Three Energy Models (Low, Medium, and High) [1]. 70

3.12 Energy Prediction Impact on VNF Slices Execution [1]. . . . . . . . . . . . 71

3.13 SO-VMEC Evaluation Results [1]. . . . . . . . . . . . . . . . . . . . . . . 72

3.14 Proposed IoT-VMEC Architecture. . . . . . . . . . . . . . . . . . . . . . . 74

3.15 Energy Prediction for Three Energy Models (Low, Medium, and High). . . 79

xiii



List of figures

3.16 Mobility Prediction for Two Different Mobility Models (Low and High). . . 79

3.17 MVEC architecture overview [8]. . . . . . . . . . . . . . . . . . . . . . . . 81

3.18 CEC with/out Edge Servers [8]. . . . . . . . . . . . . . . . . . . . . . . . 83

3.19 OVEAP Performance Evaluation [5]. . . . . . . . . . . . . . . . . . . . . . 90

3.20 Proposed FMU Architecture [3]. . . . . . . . . . . . . . . . . . . . . . . . 91

3.21 Abstraction Model For FMU [3]. . . . . . . . . . . . . . . . . . . . . . . . 92

3.22 System Evaluation for Different Communication Scenarios [3]. . . . . . . . 96

4.1 RL application to VNF placement in Edge Computing [7]. . . . . . . . . . 100

4.2 Performance Evaluation of VNF Slices Placement in the edge using ILP,

Q-Learning, DQN in Large Scale Networks [7]. . . . . . . . . . . . . . . . 103

4.3 Deep Reinforcement Learning for VNF Slices Offloading [1]. . . . . . . . . 104

4.4 VME Based on ILP and DQN Models For VNFs Slices Offloading [1]. . . . 105

4.5 Total Resources Utilization for Different Flow Rates of SFC VNFs. . . . . . 108

4.6 Real Routes With Taxis Coverage [8]. . . . . . . . . . . . . . . . . . . . . 109

4.7 OVEAP and DVEAP for autopilots VNFs Offloading [5]. . . . . . . . . . . 111

4.8 OFMU & AFMU Evaluation [3]. . . . . . . . . . . . . . . . . . . . . . . . 113

xiv



List of tables

1 List of abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

2.1 CC & MCC vs EC & MEC . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Summary of the existing works for service offloading in EC. . . . . . . . . 35

2.3 Summary of the existing works for V2X-assisted EC. . . . . . . . . . . . . 41

2.4 Summary of the existing works for UAV-assisted EC. . . . . . . . . . . . . 44

3.1 The notations used in the proposed VNF slices placement model. . . . . . . 49

3.2 The notations used in the proposed VEnPA model. . . . . . . . . . . . . . 53

3.3 VEnPA parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The notations used in the proposed SO-VMEC model. . . . . . . . . . . . . 63

3.5 SO-VMEC parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 The main strong points of VME against AME and AMC. . . . . . . . . . . 68

3.7 The parameters used in the proposed OSPV model. . . . . . . . . . . . . . 76

3.8 MVEC parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.9 OVEAP Parameters and Decision Variables . . . . . . . . . . . . . . . . . 85

3.10 Autonomous Vehicles Configuration. . . . . . . . . . . . . . . . . . . . . . 87

3.11 Summary of autopilot edge servers (AES) parameters. . . . . . . . . . . . . 88

3.12 The used notations in the FMU model. . . . . . . . . . . . . . . . . . . . . 91

3.13 FMU parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Servers Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 VNF Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Summary of the parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 OFMU and AFMU Algorithms Complexity. . . . . . . . . . . . . . . . . . 112

xv





Chapter 1

General Introduction

1.1 Motivation

The Internet of Things (IoT) has been a huge factor in the development of the high-tech

industry. With the large number of devices and profits to be made over the coming years,

the IoT will have a profound and dominant impact on the high-tech industry in general and

the semiconductor industry in particular. IoT devices can actually be any type of sensors

and chips with different capabilities made by different manufacturers, and there are many

applications that can be built to enable smart cities, smart transportation, smart homes, and

smart healthcare.

In the IoT, connected devices can generate an enormous amount of data at very high

speeds and some applications can require very low latency. The data is directly sent to the

cloud for storage and processing in the data centers. Traditional cloud infrastructure will face

a series of challenges due to the centralization of storage, computing, and networking in a

small number of data centers, and the long-distance between connected devices and remote

data centers.

To meet this challenge, edge computing seems to be a promising technology that provides

computing resources closer to IoT devices.

In this thesis, we are motivated to identify and troubleshoot problems of edge computing

architecture and the integration of this architecture with IoT applications. Further, the
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General Introduction

literature lacks general edge-IoT architectures, this leads us to design recent architectures,

especially for service offloading and vehicular edge computing.

Furthermore, despite the optimization tasks importance, such efficient functions are

missing in the global edge-IoT architectures.

For this, we propose novel different optimization models (exact and large-scale algorithms)

at the edge layer that solve both service offloading problems related to placement at the

network edge, and vehicular edge computing problems that uses vehicles as mobile edge

servers to provide services to end-users such as caching, computing, and streaming.

1.2 Contribution

Our contribution presents new optimization algorithms to improve the quality of service in

the Internet of things based on edge computing networks to achieve maximum reliability and

efficiency for both service offloading and vehicular edge computing.

First, for service offloading, we propose optimal placement models at the network edge for

end-users tasks (ie. Optimal Virtual Edge nodes Placement Algorithm (VEnPA)), VNFs

slices (ie. Service Offloading in Virtual Mobile Edge Computing (SO-VMEC)), and SFCs (ie.

Optimal SFC Placement in IoT-VMEC (OSPV)). Then, for vehicular edge computing, we

propose optimal model for mobile edge servers (Taxis and UAV) coverage for video stream-

ing application (ie. Mobile Vehicular Edge Computing (MVEC), Optimal Follow Me UAV

(OFMU)), and Edge autopilot for autonomous driving (ie. Optimal Virtual Edge-Autopilot

Placement (OVEAP)).

Further, to cope with the high complexity problems of optimal algorithms in dense networks,

we propose large scale algorithms for both service offloading and vehicular edge computing

use cases. The artificial intelligence algorithms reinforcement learning and deep reinforce-

ment learning are used for the placement of end-users tasks and VNFs slices (Q-learning and

Deep Q-learning (DQN)), while an Efficient SFC Placement algorithm (ESPV) based on the

Bin Packing model is implemented for SFCs placement in virtual edge servers.

Moreover, for vehicular edge computing, we propose different heuristic algorithms to cover

the high requirement in dense networks. For the first use case, to maximize the client vehicles

coverage using mobile edge server (Taxis) we propose an heuristic algorithm that select
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only the taxis that share the same path segment(s) with the client vehicle to decrease the

complexity of the algorithm. For the second use case, we propose heuristic algorithm for

FMU (AFMU) based on the Weighted Set Cover (WSC) model to increase the UAV avail-

ability during the service. Finally, for the last use case, we propose Efficient Edge Autopilot

Placement (DVEAP) based on deep reinforcement learning to place efficiently the autopilot

chains in the edge server.

To assess the efficiency of the proposed algorithms for both small scale and large scale

networks we use different tools including programming language, platforms for artificial

intelligence models, and simulators for both networking and computing.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter (2) consists of two parts, first,

we overview the Internet of things (IoT) and the use of cloud to provide computing services

to IoT devices. Moreover, because of the latency issue of the cloud especially for real-

time applications, we introduce the edge computing technology with its main applications

and use cases. Then, we present the related works proposed by the research community

for both service offloading and vehicular edge computing to show the main contributions

and enhancements to place efficiently the services in the edge servers, and maintain the

high availability of the services in a vehicular environment. Then, in the chapter (3), we

present the optimal algorithms for both service offloading (VEnPA, SO-VMEC, OSPV),

and vehicular edge computing (MVEC, OFMU, OVEAP) with its variables, constraints and

objective function. Chapter (4) outlines the large-scale solutions for both service offloading

(Q-learning, DQN, ESPV), and vehicular edge computing (Maximum coverage, AFMU,

DVEAP). Finally, chapter (5) present the conclusion and the future topics and issues for edge

computing networks.
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Chapter 2

Edge Computing For IoT: Overview &

Related Works

The rapid increase of smart devices in recent years and the change of applications’ require-

ments led to the innovation of current network architecture to satisfy the needs of user

applications to allow fast data processes and reliable services. Moreover, due to the per-

petual emergence of greedy Internet applications and user demands that are challenging

communication and computation, Edge Computing has been proposed to overcome cloud

computing issues and to bring data computation closer to end-users. The first part of this

chapter highlight the evolution of edge computing to cope with IoT applications by analyzing

the need of edge servers with the cloud to overcome the existing issues. Then, the second

part presents the state of the art for the two research directions that are studied in this thesis,

service offloading and vehicular edge computing.

2.1 Edge Computing for IoT: Overview

2.1.1 Internet of Things (IoT)

The development of communication technology across generations and the competition of

various international companies in order to provide fast and advanced communication services

with the lowest cost led to the rapid evolution of connected vehicles, embedded systems, and

mobile devices which resulted in the emergence of a smart world of interconnected devices
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that collaborate, collect data, sense, and take decisions without the need to interact with the

human. This smart world is called the Internet of things.

Definition

The Internet of things (IoT) [11, 12] allows connecting any things including vehicles, drones,

devices, solar panels, etc that exchange data with each other. IoT is one of the important

topics of future network technologies, in addition, it has an important interest from companies

in different domains [13, 14] such as agriculture, medicine, airlines, energy, and telecommu-

nication. The IoT aims to create a smart world based on different systems of interconnected

objects. The different connected objects communicate with each other without the need to

interact with a human using different models such as Bluetooth, Zigbee, and Wi-Fi. The main

characteristic of IoT is the use of different communication technologies (e.g., identification,

tracking, and actuator networks, wireless and wired sensors, etc.) to improve the interaction

and the cooperation of various technologies.

An IoT system, for example, a smart home works by sending, analyzing, and receiving

data continuously. Depending on the type of IoT system, analyzes can be performed by

humans or by artificial intelligence aided by machine learning (AI / ML), in near real-time or

over a long time. In the example of the smart home, to predict the optimal time to set the

thermostat before return to home, the IoT system can connect to the Google Maps API to

obtain real-time traffic modeling in the user area, or use data relating to the usual journeys

that the car has collected over a long time. In addition, IoT data collected by each customer’s

thermostat can be analyzed by energy providers to optimize their services on a larger scale.

From an IT perspective, IoT solutions allow businesses to enhance their existing systems

and create new points of connection with customers and partners. However, they also bring

their share of new computer problems. A system of connected devices can generate massive

amounts of data, which is referred to as “Big Data”. However, integrating this Big Data

into existing systems and setting up analyzes that allow it to be exploited is a challenge. In

addition, security can become a critical issue depending on the degree of openness of the

future IoT platform. Despite this, the benefits that the IoT brings to businesses more than

outweigh the efforts required to implement it, and businesses in virtually every industry are

already using it successfully.
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In agriculture, the IoT is revolutionizing the world of agriculture on several levels,

especially with the use of humidity sensors. By installing a network of humidity sensors in

their fields, farmers are now able to receive more accurate data that allows them to determine

the best time to irrigate their crops. The IoT can be taken advantage of further in this case,

by connecting humidity sensors to IoT applications that control irrigation systems; Then

irrigation is triggered automatically from the data received from the sensors, without any

human intervention.

As with all technological progress, users remain wary of the IoT, however, because

even if this trend opens up new and very interesting possibilities, it raises questions about

the confidentiality and security of its data. So, cannot ignore this aspect when planning to

implement an enterprise-wide IoT project, especially when targeting the general public as

the end-user.

Figure 2.1 displays the IoT application domains.

FOOD CHAIN...

Smart City

Smart Home

Smart Healthcare

Smart Vehicle

Industrial Automation

Security & Surveillance

Internet of things
application domains

Fig. 2.1 IoT Application Domains
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Essential Technologies

The IoT consists of three different components: (a) actuator: is the hardware of sense. (b)

storage module and data analytics tools, and (c) visualization and interpretation tools. The

following technologies represent the components defined above:

• Radio Frequency Identification (RFID) [15]: RFID enables the development and the

design of microchips. It allows the numerical identification of anythings (e.g. card, vehicle,

smart device, etc.) attached with a barcode. There are two main components of the RFID

system, (a) RFID tags: are devices represented as microchips used to send data using

wireless transmission. (b) RFID reader recovers the incoming signal from the microchips, is

responsible for the object identification. The RFID system is one of the most used devices

in IoT applications [16–18] including social applications, smart healthcare, and controlling

privacy.

• Wireless Sensor Networks (WSN) [19]: is a set of sensors that collect data (e.g.,

temperature, movement, etc.), process, and transfer the collected information. WSN is

composed of the following components: (a) the sensor (unit of capture) is responsible for

data collecting from an environment as signals, and transfer it into digital data. (b) processing

unit: allows the analysis of the captured data. (c) transmission unit: responsible for data

transmission/reception, and (d) energy control unit: represent an essential part of the WSN

system, responsible for optimal energy distribution to the other modules. WSN is used in

different domains including medical application (e.g., remote medical monitoring), military,

commercial, and environmental monitoring (e.g., forest fires, landslides, pollution, etc).

• Data Storage and Analytics [20]: the use of sensors and connect the different objects

in the IoT network lead to generating a massive amount of data that require a huge storage

capacity. Because of this reason, the data storage is an important issue in the IoT network. To

overcome this issue, different solutions have been proposed to provide efficient data storage

and analytic. Moreover, in the last years the use of the cloud is become more attractive

and popular, where nowadays the use of cloud for data analytics and storage is mostly

preferred because it provide huge storage capacity as well as high computing resources for

data analytics.
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Architecture

Different IoT architectures have been proposed for generic and specific use cases. In general,

the basic IoT architectures consists of three parts [21] as follow: (a) perception layer: includes

RFIDs, sensors, cameras, etc., (b) network layer: is responsible for transmitting the data

collected from the perception layer, and (c) application layer that represents the application

such as smart home and smart healthcare. Figure 2.2 display the 3-tier IoT architecture. The

rapid development of IoT networks with the new generation of applications led to generate

a huge amount of data that can not be processed in both the source devices and the access

points because of it’s computing requirement that exceeds the existing computing limit. For

this, a 2-tier architecture called cloud computing has been deployed to process data in the

cloud that offer a high capacity for storage and computing.

2.1.2 Cloud Computing (CC)

The rapid development of the new generation of applications the IoT led to new challenges

for data processing and storage to satisfy the resources required for these applications. Cloud

computing is an innovative technology that provides high computing resources for IoT

applications including fast processing and huge storage capacity of data.

Overview

The use of computers and smartphones has dramatically increased in the last years. This

growth led to the need for efficient architectures to provide the required processing, especially

for data processing and storage. Moreover, support the increase of devices as well as the

development of applications. Cloud computing [22, 23] is an innovative technology that

allows providing a centralized environment for data processing including high computing

resources and huge data storage capacity. Different types of cloud have been deployed [24]

including public, private, community, and hybrid. The public cloud offers different services

to connected users on the Internet. On the contrary, the private cloud provides services to

specific organizations. Where the community cloud allows to offers services to a group of

companies. The last type is the hybrid cloud that offers services where it’s a good choice for

companies because of the balance between both resource control and the utilization cost.
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Fig. 2.2 3-Tiers IoT Architecture.

Cloud Computing Deployment Models

1. Public Cloud:

The public cloud is a fully connected network of high computing resources accessible

to the general public users via the Internet. It allows the storage and processing of data,

but also the development of applications and various technologies (Artificial Intelligence,

Machine Learning, etc.). Public cloud services are provided by service providers, besides,

these services can be free or billed peruse. The largest providers offer many services on their

public cloud platforms, to guarantee their users an ever richer experience and an ever greater

variety of products.
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The public cloud has several advantages: ease of configuration and use, great flexibility,

quick adaptation to business needs, and pay-as-you-go according to user needs.

2. Private Cloud:

The private cloud is a storage or data processing space only accessible by its owner,

whether he is a single customer or a group of companies. Only users linked to this client can

access the data and applications developed in this private area.

This configuration has several advantages: increased confidentiality, better control of the

stored data, and a feeling of security.

3. Hybrid Cloud:

The hybrid cloud generally describes a cross form between a public and a private cloud.

As a result, some of the applications and data processed on company servers and some on

the servers of a dedicated provider. Ideally, a hybrid cloud combines both private and public

clouds together in a transparent and symbiotic fashion. The company alone decides which

type of data kept locally and the data sent to the cloud servers, for example, preserve the

data protection files locally and store the remaining data on the cloud servers. while some

other companies prefer to outsource only cloud computing and keep full storage locally. Or

conversely, storing the data in the cloud to allow remote access, and use the computing power

locally.

Cloud Computing Service Models

The cloud provides different services categorized by the type of service. The three categories

of cloud services can be defined as follows:

1. Software as a service (SaaS): [25] is an online service in the cloud allowing developers

to create their applications via the Internet without the need to install any software on their

local computer. When users use SaaS, the data is permanently stored on the cloud. In

addition, users do not have the possibility to control or manage the network, storage of data

and the operating system used. SaaS has different advantages for both service providers and

end users. Service providers enjoy maintenance, installation, and control of versions, while

the end users enjoy access the services anywhere and anytime. Also, collaborate and share

data becomes more easily.
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2. Platform as a service (PaaS): [26] this type provides users the control of different

resources in the cloud over the Internet including network capacity, operating systems, hard-

ware and storage management, etc,. The PaaS offers a virtualized environment for users

to design, deploy, and run their applications without the need to extend the capacity of the

resources in their computers. This platform consists of software that includes development

tools, middleware and databases. The main advantages of PaaS are: manage and update regu-

larly the operating system features, provide an efficient scalability, offer quick development

of softwares and applications, and provide efficient and better technology to businesses.

3. Infrastructure as a Service (IaaS): [27] offers to users the possibility to control and

manage both hardware and software in the cloud. Moreover, IaaS provides online access

to platforms and applications anywhere, using any connected device from any network,

provides virtual infrastructure, load balancing, as well as a large capacity for computing. The

storage services provide a large amount of data storage and retrieval services from anywhere

using any device. In addition, provides security and compliance features that meet the most

stringent data security requirements. Moreover, offers many advantages such as managing

data with optimized costs. The computing services offers a resizable computing capacity

in the cloud. It is designed to offers developers easier services such as a large capacity

of computing and tools to build different applications, In addition, it guarantees flexibility,

security, and a reliable environment. The use of IaaS has different benefits where users can

access applications and platform (that are always available) from anywhere, using any device,

and from any network, provide virtual infrastructure (i.e. network virtualization, storage, and

servers), as well as provide services of load balancing and a large capacity for computing.

Figure 2.3 display the three categories of cloud computing services.

CC for Internet of Things

Both IoT and cloud computing are two innovative technologies that offer various services to

our daily life. The cloud can serve the IoT technology by providing high computing resources

for processing and a huge capacity for storage, that represent the main requirements for IoT

to support the new generation of applications. For this, the CloudIoT paradigm is the merge

of the two technologies into one architecture that connects the IoT devices directly with the

cloud. Botta et al. [28] presented an integration of IoT with the cloud by providing services
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Fig. 2.3 Categories of Cloud Computing Services.

to IoT such as computing resources and data storage. Similarly, Neagu et al. [29] proposed a

monitoring service for healthcare that offers different medical facilities by using cloud-IoT

architecture. Ismail et al. [30] presented a study for task scheduling algorithm and virtual

machine placement in Cloud-IoT architecture where they focused on the consumed energy

in data centers. In the CloudIoT system, the devices connect directly with the cloud over

the Internet and start exchanging data where the cloud provides processing resources and

storage capacity to the end-user devices which form an interconnected system represent the

IoT network. Figure 2.4 outline the CloudIoT architecture.

2.1.3 Mobile Cloud Computing (MCC)

Despite the rapid increase in mobile computing usage, it is difficult to exploit all its resources

because of its inherent problems including frequent disconnections, mobility, and resource

scarcity. Mobile cloud computing can resolve these issues by using providers’ resources to

execute mobile applications outside to the end-user devices (mobile devices).
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Fig. 2.4 Cloud Computing Architecture for IoT.

Overview

In a time of profound change in the computing field, the main developments have been on

both mobile Internet and cloud computing. These two technologies overlap in mobile cloud

computing.

The mobile cloud computing (MCC) [31–33] is a technology that combines both mobile

computing and cloud computing to bring rich computational resources to network operators,

cloud computing providers as well as mobile users. In MCC technology, data storage, and

data processing happen outside of end-user devices (mobile devices) which offer many

benefits such as extend battery life, improved scalability, and reliability, improve processing
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power and data storage capacity, as well as access to data from anywhere. MCC is also

widespread within companies by making cloud services available to mobile personnel who

can access them in the field or on the move.

Architecture

Based on the general concept of MCC [34], figure 2.5 display the typical architecture of

MCC. From the figure, the mobile devices (smartphones, laptops,...) are connected to the

base station (satellite, access point, base transceiver station, etc) that allows to create the

communication link, control the connection state, and functional interfaces between the

mobile devices and the network. The requests of mobile users are transmitted to the mobile

network that provides local services such as authorization, accounting, and authentication.

For computing requests, the users demands are forwarded from the mobile network to the

cloud over the Internet. In the cloud, the controllers process the users requests to provide

services including computing, database servers, web applications, and virtualization, etc.
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Fig. 2.5 Mobile Cloud Computing Architecture.

The centralized architecture of the cloud is not efficient to process large size of data

generated by the IoT devices that require a short response time. To overcome such issues,

an alternative paradigm namely edge computing has been used that processes the data in

connected devices or the local gateways.
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2.1.4 Edge Computing (EC)

In the incoming years, the number of connected devices in the IoT network will increase

rapidly [35], this lead to generate a huge quantity of data [36]. Moreover, the new generation

of applications such as online gaming, video streaming,.., etc. requires a very short response

time to satisfy the quality of service requirements and provide efficient service to end-users.

In addition, energy consumption in wireless communication is an important issue because

of the limited capacity of the battery in IoT devices, which by consequence lead to the

impossibility of processing in the local device. Thus, the centralized platform does not

satisfy the IoT applications requirements by providing computation, storage, and networking

resources in the cloud owned by companies that require payment for any service. Moreover,

the huge amount of data sent to the cloud need to be processed in a short time which can not

be provided in a centralized architecture.

Overview

The edge computing [37, 38] paradigm aims to be an innovative computing solution for

future networks. Thus, it allows solving critical issues including computation-based and

time-constrained applications. The main benefits of processing data at the edge of the network

are: reduce the energy consumption of mobile devices, reduce communication latency and

network load, give the new inventors chances to help future network innovations, provide

security, privacy, and reliability, as well as eliminating the congestion within the network

core.

Concepts & Relationships

To cope with the ambiguity related to the difference between fog computing and edge

computing, we describe both fog and edge computing from different perspectives.

In the research community, some researchers considered edge computing and fog comput-

ing as the same technology with differences only in their names [39]. While other researchers

defined the two as different concepts. Chiang et al. [40] said the edge refers to the edge

network, with equipment such as edge routers, home gateways, and base stations. While fog

computing is an end-to-end platform that distributes the computing, storage, control, and
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networking function closer to end-user devices over the cloud-to-things. On the other hand,

Goscinski et al. [41] claims that fog computing is located out between the edge cloud and the

cloud, and thereby include the edge, while edge computing focuses on the processing of data

at the edge. Moreover, Pan et al. [42] said that edge computing pushes applications, services,

and data from the core to the network edge, based on the core-edge topology [36, 43]. The

smart city, video analytics, cloud offloading and smart home are examples of edge computing

applications. While fog computing is a background of the IoT, it extends cloud computing

and different services to the devices such as multiplexers routers, switches, etc.

In a nutshell, both fog and edge computing have the same research topics and both of

them aim at providing the computing services closed to end-users by the decentralization of

data processing from the cloud to the edge of the network.

Architecture

The fog/edge layer is located between the end-users and the cloud, as is shown in the

figure 2.6, is composed of the following components [44]:

(a) Authentication and Authorization: identify the access policies and the control roles,

(b) Offloading Management: defines the manner to design an optimal offloading scheme, the

partition for offloading, and the types of information in the offloading process, (c) Location

Services: allows learning the mobility model by mapping the physical locations with the

network, (d) System Monitor: offer information such as energy, usage, and workload to the

other components, (e) Resource Management: is responsible for resource allocation and

discovery, dynamic joining and leaving of the fog node, provisioning, and maintaining of

resources, and (f) VM Scheduling: that aims to provide an optimal strategy and management

for virtual machine scheduling.

EC for Internet of Things

The edge offers networking services, computation, and storage to end-users in IoT networks

[45]. For example, an intelligent surveillance system doesn’t need to send all recorded data to

the cloud, the facial recognition and movement detection algorithms running on the fog/edge

layer, hence saving bandwidth and storage space. So, the fog/edge will be the best option for

applications that require temporary storage. In addition, the fog/edge can play an important
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Fig. 2.6 Edge Computing Architecture for IoT.

role in the future, where the wireless sensors networks and IoT present with the integration

of heterogeneous devices and protocols for enhancing services [46]. The edge computing is

an appropriate architecture for the current and future Internet in general and the IoT networks

in particular in which this distributed architecture may provide high-level communication

and efficiency in the edge of the network rather than at the cloud-level. It supports a wide

range of today’s IoT applications, especially those that require a short response time.
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Edge Computing for IoT: Use Cases & Applications

The edge computing offers an efficient platform for current and future IoT applications

including smart cities, smart homes, smart grid, smart healthcare, etc. Different applications

have been proposed for IoT based on edge computing as follow:

(a) Smart City Systems: A smart city [47] is an urban area composed of connected sectors

that pull together to provide services to users through the data analysis that is collected from

different sources. Smart cities aim to decrease traffic congestion and energy consumption

which contribute to improving the quality of life.

Different technologies are used in smart cities that will create an important economic

market which by consequence that reflected on the economic development of countries.

Though, different issues and challenges can still face the deployment of smart cities such

as large-scale sensing networks deployed in a large geographic area, big data analysis,

cooperative communication in a wireless network, and energy and mobility management in

intelligent traffic systems.

Smart cities require intelligent and efficient data monitoring and analysis in order to

achieve an automated and fast decision without any human intervention [48]. Hereby, ensure

people’s safety and the reliability of components. Furthermore, smartness has some require-

ments such as efficient platforms with advanced algorithms including artificial intelligence

models (machine learning [49], deep learning [50], and deep reinforcement learning [51]).

The edge computing technology is an efficient platform for smart cities [52], due to its

architecture, the process of data will happen at the edge of the network instead of the cloud

[36] and enhance both the network delay and the user experience. This is an important and

essential element to build reliable and efficient smart cities that can manage the following

challenges:

• Huge Quantity of Data: A huge amount of data will be generated by future applications

in smart cities varies from smart traffic lights, utility, transport, etc. The process of all this

data in the cloud is inefficient because of the long distance between the cloud and end-users

which takes more time for data transfer. For this, the process of data at the edge of the

network close to end-users will resolve the issues of data processing in the centralized cloud

by offering an efficient processing service that is required by current and future applications

in smart cities.
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• Low Latency: The latency requirement is one of the most important issues in smart

cities, where most applications such as health emergencies and public safety require a low

latency to provide efficient services to end-users and enhance the quality of experience. The

edge computing provide a promising platform for smart cities, it could decrease the time

for data transmission and organize the network structure. Both pre-processing and decision

could be made in the edge layer which lead to decrease the latency compared to the use of

the centralized cloud only that is far from end-users which increase the latency [36].

• Location Awareness: Most smart cities applications such as intelligent transportation

systems and utility management are geographic-based applications in nature. The edge

computing provide efficient platform for the location awareness in smart cities by collecting

the data based on geographic sites which increase the QoS and prevents the data access delay,

as well as providing the transparency of the transferred information [36].

(b) Smart Home Systems: The smart home [53] allows controlling intelligent smart

devices inside homes including fridge, cooker, air-conditioner, TV, etc. The smart services

[54] inside a smart home can be classified into three categories:

• Home Management Services: such as smart control of connected devices such as cooker

and TV.

• Home Automation Services: allows the automation of smart devices such as air-

conditioners, cleaners, etc. And lastly,

• Home Security Services: such as detection of potential crimes, prevention from gas

leakage, and explosions.

The connected devices inside a smart home generate a massive amount of data for

decisions and smart control inside the home. The process and the analysis of the generated

data require many resources and storage which need an efficient architecture to ensure the

continuity and the quality of service. The edge computing provides a distributed architecture

for smart home systems [55, 56] by processing data at the network edge in an efficient way

without any degradation which provides: efficient data processing, low latency, and less

energy consumption.

The edge computing platform aided smart home systems aims to provide an efficient

architecture for future IoT applications, especially real-time applications that require short

20



2.1 Edge Computing for IoT: Overview

response time such as online streaming [57] and intelligent surveillance inside the home [58],

etc.

(c) Smart Transportation Systems & Vehicular Networks: A smart vehicle system [59, 60]

consists of a connected vehicle embedded with devices for computing and storage that allow

the vehicle to send and receive data from other vehicles which is known as a vehicle-to-

vehicle network (V2V) also with roadside units known as vehicle-to-infrastructure (V2I), and

communication with other connected devices known as vehicle-to-everything (V2X). The

edge computing provides an efficient platform for smart vehicles system, it can support both

the interactions among vehicles, the high mobility, collisions and obstacles detection, etc.

Different application types can be developed and deployed for smart transportation systems

aided edge computing, including:

• Safety Applications: This type of application can be used to send warnings and noti-

fications about crashes, traffic violations, pre-crash sensing, as well as they could include

sensing of approaching emergency vehicles.

• Convenience Applications: include advice on congestion situations [61], personal

routing, in addition to some incidents such as power failure and network breakdown. In

some scenarios, the smart vehicle can provide SOS and emergency calls, as well as can play

important role in the monitoring of weather and road by sharing information from vehicle

sensors.

• Smart Traffic Lights: smart lights synchronize the smart vehicles by sending warning

messages using wireless networks to share traffic data which can help vehicles in different

situations such as warning messages when approaching the pedestrian corridor, as well as

the different problems related to the traffic light [62].

• Smart Parking Systems: Most big cities face traffic congestion, consequently, finding an

empty place in parking is expensive and difficult [63]. To overcome this issue, it is important

to build smart parking connected directly with smart vehicles to automatically check available

places inside the parking. The parking system sends notifications messages using a wireless

network to inform smart vehicles if there are empty places inside the parking. This aims

peoples to gain both time and effortlessly find a place in the parking.

• Commercial Applications: represents paid location-based services [64] such as adver-

tisements and entertainment, as well as services of diagnostics for vehicle problems and
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updates of social networks. These services are provided by companies by offering special

sensors or applications installed in the vehicles which can connect directly to the edge server

of the associated company.

The edge computing provides an efficient platform that offers different benefits to smart

vehicles and intelligent transportation system. The edge servers are localized nearby to

connected vehicles, which provide efficient and rapid service to enhance the quality of

service in smart cities.

(d) Smart Grid Systems: [65] composed of smart meters in different locations used to

measure the status of electricity distribution. This information is analyzed by a server called

SCADA [66], that manage the system by sending information about emergency and responds

to different change requests to protect the power grid and stabilize the system.

The edge computing can be integrated with smart grid systems [67] which may offer great

services to enhance the efficiency of this smart system. With the edge computing paradigm,

the power generators (e.g., wind farms, solar panels, etc.) can be integrated with the main

power grid which offers efficient control of the power networks. Moreover, the SCADA can

be linked with the edge which can improve the security [68] and the network cost [69].

The edge computing aided smart grid will turn into a hierarchical system (multi-tier

architecture) that aims to create interactions among different SCADA [70]. In this system,

the edge layer manages the micro-grid, and exchange data and information with neighboring

edge servers and the higher tiers.

(e) Smart Healthcare Systems: Remote Patient Monitoring (RPM) [71, 72] aims to

create smart system allows remote patients monitoring. This system is composed of three

components: data acquisition module, diagnostics module, and visualization module. To

get data, the sensors are deployed on patient (e.g., blood glucose sensor). The first step

is acquiring the data, then it will be sent to the diagnostic module (processing unit) for

processing. And finally, the visualization module display the calculated analytic. In healthcare

system [13], the data management is an important issue because the patient data contain

private and important information that need to be processed in a secure and an efficient way.

The edge computing system provides efficient platform for smart medical systems which

is one of the important technology in the Internet of things ecosystem. The patient data
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analysis requires short response time and security, etc., which can be provided only by

efficient platform and full distributed system offered by the edge computing architecture.

2.1.5 Mobile Edge Computing (MEC)

The path toward defining the next generation of cellular networks systems encompasses

all the requirements of the communication network to cope with massive data generated

that needs efficient processing so as to allow operators to offer services and provide content

efficiently and profitably. Driven by the visions of cellular networks and the Internet of

things, recent years have seen a rapid increase in computing requests due to the development

of applications which led to a paradigm shift in mobile computing, from mobile cloud

computing to mobile edge computing.

Overview

Mobile edge computing (MEC) [73, 74] also know as Multi-access Edge Computing in-

troduced by the ETSI ISG (European Telecommunications Standards Institute, Industry

Specification Group) standardization organization [75, 76]. It provides a combination of

computing on a radio access network (RAN) on the network edge. The MEC aims to

push storage, mobile computing, and network control to the edge of the network (e.g., ac-

cess points and base stations) so as to provide resources especially for latency-critical and

computation-intensive applications. MEC promises a spectacular reduction in mobile energy

consumption and latency, tackling the main challenges for materializing the new generation

of cellular networks vision. The promised benefits of MEC have motivated global efforts in

both industry and academia on developing and deploying this technology.

MEC Framework & Architecture

The MEC framework (shown in figure 2.7), displays the involved high-level functional

entities. These entities are grouped into the network-level, system-level, and host-level

entities.

The network-level contains related entities are the external networks, local networks,

and the 3rd Generation Partnership Project (3GPP) cellular network. This layer allows
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connectivity to cellular networks, local area networks, and external networks such as the

Internet.

The ME host-level consists of the management entity and the ME host that also includes

the virtualization infrastructure, the ME platform, and ME applications.

The top-level is the ME system-level that has the overall visibility to all ME system. This

layer consists of ME management to run applications on the operator network.
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Fig. 2.7 Mobile Edge Computing Framework.

The reference MEC architecture defined in figure 2.8, represents a thorough understanding

of the mobile edge (ME) system. It defines in detail the functional entities with the relations

between them. The ME entity is a host consisting of the ME platform and the network

resources, storage, and computing virtualization infrastructure. Besides, the ME host can

offer permanent storage and real-time information related to applications. The data plane

included in the virtualized infrastructure routes traffic between the services, networks, and

applications, as well as forward the rules received by the ME.

The ME platform consists of a collection of functionalities that are important to run

applications on ME and to enable ME applications to advertise, offer, and discover the ME
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services. Both the applications and platform provides ME services, while the applications

and the platform use ME services.

In the ME platform, a local domain name system (DNS) server/proxy can be configured

to direct the user requests to selected ME applications. Many ME platforms can communicate

with each other or grouped together to form a communication grid through an Mp3 interface.

On top of the virtualization infrastructure in the ME host, the ME applications are running

as virtual machines (VMs), where the applications communicate with the platform through

an Mp1 interface to use the services offered by the platform. The Mp1 interface is also

used to prepare the relocation for the application state in the case of handover, in addition,

indicating the application availability. Each ME application has its own resources or services

needed, the system level validates these requirements, then, the selection of ME host(s) is

performed based on the availability of application requirements in the host(s).

The ME platform manager (MEPM) consists of ME application lifecycle management,

ME application rules management functions (AMF). and ME platform element management

(PEM). The ALM provides the application events to the ME orchestrator (MEO). The AMF

includes DNS configurations, traffic rules, authorizations, as well as resolving issues in the

case of conflict between rules. The reference point between the MEPM and the ME platform

is to manage the relocation of applications, configure the rules and the platform, and support

the application lifecycle.

Strategic Relevance of MEC

MEC led to an evolution of telecommunications networking, and mobile base stations by

shifting the load of the cloud to local servers in the network edge. Which enhancing the

quality of experience (QoE) for end-users and helps reduce both latency and congestion

on mobile networks. MEC allows applications to benefit from local computing resources,

and real-time information related to the network. By deploying various caching content

and services near mobile devices, the core of the networks can efficiently serve applications

purpose which will act for interesting revenues for the industry including vendors, operators,

and third-parties. Use cases include:

1. Connected Autonomous Vehicle Functions
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Used to share information about positions of cars, animals, pedestrians, as well as

the weather conditions and the road infrastructure directly to the vehicles. instead

of interact with the central cloud, the combination of MEC with AI/ML will allow

autonomous vehicles to be real-time synchronized with their surrounding situations

and critical changes such as accidents, and incoming emergency vehicles, etc. The

MEC provides low latency to autonomous vehicles system in order to operate safely

which is important and critical as vehicles cannot wait for the data to be processed in

the cloud.

2. Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR)

The AR/VR can be used by the workers to repair and conduct maintenance tasks

remotely. The MEC would provide an efficient platform that offers an overlay of

important information related to a particular problem they are required to repair. The

workers can fixe the problem on the screen field display on mobile devices. The 3D

models require lot of resources because are too heavy so cannot be done in both the
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remote cloud and the mobile device, as the latency is high. The MEC allows rendering

the broken down device as 3D models of as well as process the data near to end-users

(workers) devices, which allows a remote expert to comment the displayed model as

well as increase the number of digital models displayed on the screen of the worker

device.

Another use case for MR assisted MEC for enterprise application, is a collaboration of

multi-user for construction, architecture, and engineering teams. It allows real-time

cooperation by rendering 3D models for projects that will be done by the team on

jointly in the network edge. This reduces the latency, especially for the 3D models

that are often massive files. The MEC system allows easy collaboration between

stakeholders, over a distributed network that offer efficient resources near to team

devices.

3. Cloud Gaming and Multiplayer Gaming

With MEC, the intensive graphics/compute processing would be moved from the

gaming console to the edge of the network. This allows gamers to play different games

with high graphics quality from a near edge server from anywhere and any time without

the need to massive dedicated resources in their gaming console. Since the MEC offers

a very low latency, cloud gaming will give to audience and developers a wider access

to gaming studio and enjoy high gaming experiences, as well as create a potentially

new income models for emerging companies in the field of electronic games.

4. Real-time Unmanned Aerial Vehicles (UAV) Detection

The UAVs are getting a lot of attention from both researchers and developers because

of its development in different field such as security, data transmission, packages

delivery, etc. There is an important increasing necessity for innovative solutions that

can detect when an UAV has entered a geo-fenced zone or a secure zone to trigger

alarms to inform the teams that secure the site. As well as, this technology can be

used in hospitals and prisons because the respond to threats must be immediately in

these locations, which is provided by the MEC system. The use of MEC offers a lower

latency for detecting a foreign UAV and get its path to show if its close to an exclusion
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zone, where the MEC keeps the UAV data closer to its source, decreasing the taken

time to react for any threat or a security breach.

5. Video Analytics

The video surveillance is one of the most systems used in smart cities such as the

surveillance of road, homes, markets, and enterprises, with the massive increase of

data volume due to both video quality and the number of cameras. MEC enables data

analysis in the edge of the network instead of send the videos traffic to remote central

processing. This allows the collect of video streams from different cameras types, as

well as, enable analytics of other video applications such as facial recognition. MEC

decrease the volume, cost and time it takes to send the video chunks from the camera

to the edge server, and allows real-time triggers during the analysis.

Table 2.1 outlines the main characteristics of the cloud computing and mobile cloud

computing compared with edge computing and mobile edge computing.

CC MCC EC MEC

Ownership
Private
entities Private entities, companies, individuals

Deployment
Network

core Network edge, devices

Hardware Servers

Servers,
user

devices Heterogeneous servers
Service Virtualization

Net.
Architecture Centralized N-tiers, decentralized, distributed

Mobility Yes
Latency Low Average
Local

awareness Yes
Availability High
Scalability Average High

Table 2.1 CC & MCC vs EC & MEC

This part has presented an overview of cloud, edge, and fog computing for the Internet

of things. First, we detailed the IoT system and architecture. Then, we detailed the cloud
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computing technology by presenting the necessary components of the cloud system and

mobile cloud computing mechanism. Further, we surveyed the edge computing technology

by presenting a detailed overview of edge computing and mobile edge computing for IoT

with its innovative strategies and solutions provided to next-generation networking with the

different applications in smart cities, smart homes, smart vehicles, and healthcare.

The state of the art will be the following step in the next part to fully understand the

problem and to have a detailed idea of the solutions proposed by different researchers around

the world.

2.2 Edge Computing for IoT: Related Works

The integration of edge computing with the Internet of things (Edge-IoT) faces many issues

and challenges related to QoS. For this, different research directions related to Edge-IoT have

been studied to cover all communication models to satisfy the applications’ requirements

and provide efficient services to end-users. This chapter presents the state of the art for two

Edge-IoT research directions, service offloading and vehicular edge computing.

2.2.1 Service Offloading In EC

Service offloading refers to uploading some computationally intensive services to the edge

servers for processing. Resource allocation for these uploads refers to allocating some

computing resources on edge servers depending on the requirements of the service. Moving

services to the network edge facilitates storage, service delivery, content caching, and IoT

management, which allows for improving response times and transfer rates, in this way

ensuring that users have the fastest and the best service possible. Service offloading is an

important network optimization task that still painstakingly tune heuristics to get sufficient

solution. These algorithms use data as input and output near-optimal solutions. Service

offloading in this novel concept is a complex task. It has to design efficient strategies to

optimize the service offloading and allocation decisions. Despite the huge effort in ETSI

research group, service offloading functionalities still suffer from the legacy heuristics used to

design optimal resource management (orchestration, placement, scheduling, etc.) algorithms
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and place concurrent slices within virtual network operators (VNO). In the following, we

present a review of the existing solutions for service offloading in edge computing.

Miluzzo et al. [77] proposed mClouds, a mobile computing architecture where submitted

tasks are executed on smart mobile devices that form a cooperative computing platform.

Although he discussed the different steps of tasks execution and mClouds management, the

authors ignored the mobility impact which is missed in their work. Moreover, both problem

formulation and evaluation results are not presented in this work.

Fahim et al. [78] proposed a task offloading environment to execute tasks in mobile

devices. Real mobile phones are used to validate the proposed system. The evaluation results

prove the efficiency of the proposed system where the potential gain is high in both energy

consumption and processing time. However, the proposed system and its formulation is

limited to small network scale. Moreover, the impact of device mobility is not studied in this

work.

Van et al. [79] proposed a workload offloading based on Markov decision process

(MDP). The mobile cloudlets are used to process tasks by considering the impact of channel

properties, distance and cloudlets mobility. The obtained results show that the efficiency of

the proposed work. However, the formulation should be enhanced with energy and mobility

parameters to model the transition behavior of the MDP algorithm.

Hasan et al. [80] proposed Aura; a mobile adhoc cloud (MAC) computing architecture

for IoT task offloading. The framework consists of three main components: i) Mobile Agents

(MA) that includes smartphones and other end-user smart devices. They are used to run the

tasks that are needed to be offloaded and executed in the Aura. ii) IoT devices that form

a part of the global Aura architecture. It forms the ad-hoc cloud, and iii) Controllers that

form the link between IoT devices and MA. They ease the creation and the distribution of

sub-tasks, the programmability of IoT devices, the MA action selection strategies, etc. It is

worth mentioning that the obtained results demonstrate the efficiency of the Aura architecture

in MAC cloud computing fields in terms of memory/CPU usage, cost of execution, and task

completion time. However, the impact of IoT devices mobility (and energy) is missed in

their work.

Van et al. [81] proposed a deep reinforcement learning (DRL) approach for tasks

offloading in adhoc mobile cloud environment. The MDP theory is used to find tasks
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processing actions. Then, the Deep-Q-Network (DQN) is used to find the efficient solution

for the MDP model. The evaluation results show that the proposed model is efficient based

on different metrics. However, the prediction of the dynamic parameters used in the MDP

formulation is missed in this work.

In [82], the authors proposed an offloading technique in mobile adhoc cloud environment

based on constrained Markov decision process (CMDP). An Q-Learning and LP schemes

are proposed to find efficient solution of the CMDP model. The LP to find the optimal

solution, while the QL is used to receive the offloading decision. The obtained results show

the efficiency of the proposed schemes. However, the application of the proposed works in

real environment is missed in this work.

Alam et al. [83] proposed a computation offloading solution in mobile fog/edge comput-

ing. They consider access points and controllers as on-demand fog nodes. A framework based

on deep Q-learning is proposed to handle the resource demand for computation offloading.

The authors prove the efficiency of the proposed solution in terms of computation offloading

cost and service latency. However, the work missed the impact of the IoT devices mobility

on the computation offloading decisions. Moreover, we believe that the IoT devices energy

should be considered to deal with resource constrained devices.

Zhang et al. [84] proposed an optimal task offloading scheme based on deep Q-learning

in heterogeneous vehicular edge computing networks. First, the authors used the intrinsic

reward variable to minimize the utility of task offloading. Then, in order to guarantee the

offloading reliability in the presence of tasks transmission failure, they proposed an adaptive

redundant offloading algorithm. The overall approach guarantees the offloading process

reliability and enhances the system utility. Further, they used a real traffic trace to evaluate

their solution. The analytical results prove the efficiency of the proposed solution in terms of

reliable offloading and latency as well as tasks offloading with optimal utility. However, the

authors did not provide details about the implementation of the proposed solution, and its

applicability in the real-world.

Wang et al. [85] proposed an optimal data offloading algorithm to ensure the resource

provider privacy and achieve efficient resource usage. In addition, the proposed model

takes into account the maximization of the resource buyer benefits and the minimization of

resource provider cost. The obtained results prove the feasibility of the proposed solution and
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its efficiency to identifying malicious resource providers. However, this work did not provide

any details about the adaptation of this solution in a real mobile Adhoc cloud environment. In

addition, this work needs to address important issues in the mobile Adhoc cloud such as the

resources management of devices and the problem of offloading failure caused by obstacles

and non-existing devices.

Lin et al. [86] proposed Circa, a framework for code offloading between a set of neighbor

mobile devices. They used an indoor positioning system (iBeacons) for transmitting in

short-range with lower energy and cost for sharing tasks among devices without the need for

a centralized server. in addition, task allocation algorithms are proposed in order to select the

set of reliable collaborators from the neighbors’ mobile devices and offload efficiency the

tasks among the selected devices in a fair fashion. The experiment results show that Circa

reduces the execution time and preserving the mobile application performances. However, the

impact of obstacles on offloading is not studied in this work. In addition, the communication

range is very low which decreases the selected devices which by consequence leads to task

failure caused by non-existing devices.

Saha et al. [87] developed a mobile device cloud framework where the resourceful and

reputed worker devices execute the different application tasks. The user devices request

service offloading for their application (set of tasks). After getting the willingness from

the worker device, the cloudlet selects the optimal task mapping to minimize the cost and

maximize the quality of experience (QoE). The results prove the efficiency of the proposed

work. However, the evaluation in real-world large-scale networks is missing in this work.

Roy et al. [88] Proposed a task allocation framework for mobile device cloud. In

addition, a workers auction mechanism is proposed to select buyer devices. Moreover,

authors introduced the federated learning and the multi-weight subjective scheme to check

the reliability and the trustworthiness of worker devices’. The simulation results prove the

efficiency of this work in terms of buyer utility and QoE. However, the evaluation in dense

networks is missing in this work.

Table 2.2 shows the summary of the existing works for service offloading in EC.
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Paper Main Idea Problem

Formula-

tion

Edge Po-

sition

Advantages Limitations

Miluzzo et

al. [77]

Tasks ex-

ecution in

smart mobile

devices.

Some equa-

tions for

service

payment,

etc.

Mobile Execute

tasks for

other users.

Long re-

sponse

time.

Fahim et al.

[78]

Task offload-

ing using

mobile devices

as computing

nodes.

No mathe-

matical for-

mulation is

used.

Mobile Efficient

energy

consump-

tion and

processing

time.

The mobility

impact is not

studied.

Van et al.

[79]

Tasks process-

ing in mobile

cloudlets.

Markov

decision

process

(MDP).

Mobile Enhance

time, and

total energy

consump-

tion.

The imple-

mentation

details is

missing.

Hasan et al.

[80]

Aura, a task

offloading

in mobile

ad-hoc cloud

architecture.

Equations

for cost,

time, and

resources

measure-

ment.

Mobile Enhance ex-

ecution cost

and time.

The mobility

impact is not

studied.
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Van et al.

[81]

Tasks of-

floading in

an ad-hoc

mobile cloud

environment.

- Markov

Decision

Process

(MDP).

- Deep-Q-

Network

(DQN).

Mobile Enhance

energy con-

sumption,

payment,

and delay.

The eval-

uation in

large-scale

networks is

missing.

Van et al.

[82]

Offloading

technique in

mobile ad-hoc

cloud.

Markov de-

cision pro-

cess.

Mobile Enhance task

loss ratio,

average

delay, and

energy con-

sumption.

The evalua-

tion in real

environment

is missing.

Alam et al.

[83]

Computation

offloading in

mobile edge

computing.

- Markov

Decision

Process

(MDP).

- Deep

Q-learning.

Mobile - Mini-

mize the

computing

latency.

The mobility

impact is not

studied.

Zhang et al.

[84]

Optimal task

offloading

in a mobile

environment.

Deep Q-

learning

approach.

Fixed Reliable and

optimal task

offloading.

The com-

plexity is not

discussed.

Wang et al.

[85]

Optimal of-

floading model

in mobile

Adhoc cloud

environment.

Distributed

opti-

mization

algorithm.

Mobile Identify

malicious

resource

providers.

The Imple-

mentation

detail is

missing.
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Lin et al.

[86]

Circa, an

offloading

framework

among mobile

devices.

Tasks allo-

cation algo-

rithms.

Mobile Enhance the

execution

time.

High risk

of commu-

nication

failure.

Saha et al.

[87]

Mobile de-

vice cloud

framework.

Optimal

model and

greedy

algorithms

for tasks

provision-

ing.

Mixed Low cost. The eval-

uation in

large-scale

networks is

missing.

Roy et al.

[88]

Task allocation

framework for

mobile device.

Task al-

location

algorithms.

Mobile Efficient

both buyer

utility and

QoE.

The eval-

uation in

large-scale

networks is

missing.

Table 2.2 Summary of the existing works for service offloading in EC.

Service offloading algorithms in the literature are based on formulating exact models to

measure the optimal behavior of such a solution. However, in practice, network operators

always design intelligent heuristics to deal with scalability problems in large-scale networks

with huge amounts of data. Currently, these heuristics are near-optimal solutions and

sometimes are very far from optimal. Further, heuristics are unused when system input

(e.g. demand matrix, etc..) changes and gives wrong and fatal errors when unexpected input

arrives in the system.

2.2.2 Vehicular Edge Computing

Smart vehicles are considered as mobile devices equipped with sensors, having the capability

of data collection, computation, and communication. The information is collected from both

35



Edge Computing For IoT: Overview & Related Works

in-vehicle sensors and the external environment. Edge computing can provide an efficient

and scalable architecture for vehicular networks by improving data processing and traffic

in real-time. We present in the following parts a review of the existing edge and fog-based

solutions for vehicular networks.

V2X and EC Convergence

The V2X model allows the passing of information from the connected vehicle to any other

connected devices including other vehicles, UAV, end-user devices, edge servers, cloud,

etc. Also, it incorporates other types of vehicular communication such as V2N (vehicle-to-

network), V2P (vehicle-to-pedestrian), V2D (vehicle-to-device), V2V (vehicle-to-vehicle),

V2I (vehicle-to-infrastructure), and V2G (vehicle-to-grid). The main motivations for the

V2X model are traffic efficiency, energy savings, and road safety. In the following we present

the existing works for V2X assisted Edge computing.

Kim et al. [89] presented parking management in a vehicular network based on the

Fog-Cloud environment. The proposed model consists of many parking slots, the status of

slots inside the parking lot (i.e. reserved or vacant) are sent to the fog server that is located

at different areas (e.g., shopping malls, restaurants, banks, etc). The fog server provides

information of their managed vacant spaces to the RSUs. At each RSU, the roadside cloud

and fog computing communicate with the fog servers aiming to direct drivers to the optimal

space. The performance evaluation shows that this approach is reliable for finding a vacant

slot. However, this approach requires a scalable fog system.

Zhang et al. [90] proposed a task offloading mechanism in a vehicular edge computing

framework. They formulated the proposed mechanism as a stackelberg game, and developed

a distributed algorithm in order to obtain optimal strategies of the vehicular edge computing

servers. In the proposed algorithm, each vehicular edge computing server (VEC) starts

selecting the selling price and the amount of resources to purchase from the backup computing

server (BCS) where both the price and the resources are limited in an interval. Numerical

results show that the proposed mechanism guarantees an optimal delay of the computation

tasks. However, this work did not take into account the risk of link failure between vehicles

and RSUs.
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Zhu et al. [91] proposed a solution for task allocation in vehicular fog computing, namely

Fog Following Me (Folo). They formulated the task allocation as an optimization problem

and solved it using mixed integer linear programming. The Folo composed of two types

of fog nodes: stationary fog nodes located with WiFi access points and RSUs, and mobile

fog nodes that are mobile edge nodes carried by vehicles. Moreover, there are other types

of vehicles, named client vehicles, which generate tasks and send them to the fog nodes.

Furthermore, a service zone is used in the Folo system as a service coverage zone inside the

city. Although The obtained results show that the proposed solution reduces the latency, the

proposed solution for task allocation requires computation resources.

Gillam et al. [92] Proposed a distributed computing architecture for off-vehicle and

on-vehicle computation to support autonomous and connected vehicles. They suggested

a local computation in the edge rather than the central cloud to reduce the latency. The

evaluation is missing in this work to validate the efficiency of the proposed architecture.

Caminha et al. [93] proposed SensingBus, a smart city architecture using buses and a fog

system. The SensingBus architecture contains three levels: (i) sensing level that is composed

of sensing nodes installed in buses, allows the gathering of data about the city, registers the

geographic coordinates from the GPS; (ii) fog level that consists of nodes installed in strategic

locations around the city, e.g., bus stops, these nodes are responsible for pre-processing data

that has been received from the sensing nodes and forwards it to the cloud; and (iii) cloud

level that is considered as the final destination of collected data and consists of nodes, each

node contains a set virtual machine. The performance analysis of the proposed prototype

proves the enhancing of memory and CPU utilization. However, SensingBus is limited

because the buses cover only some areas in the city, and can-not provide wide coverage.

In [94], authors studied connected vehicle-based congestion identification techniques.

Computing strategies for vehicular networks are studied to develop feasible solutions to detect

congestion that performs efficiently for multiple scenarios with large coverage. The authors

expected that the designed system can detect congestion to achieve traffic management

objectives that are important in transportation systems. However, the proof of work is

missing in this study.

Ning et al. [95] proposed a three-layer traffic management model in a vehicular fog

environment to minimize the response time of the events that are reported and collected
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in the city by vehicles. Moreover, an offloading scheme using optimization techniques is

formulated by leveraging parked and moving vehicles as fog nodes. The obtained results are

evaluated based on real-world taxi trajectory data. However, the vehicle’s mobility impact is

not studied in this work.

Moubayed et al. [96] proposed a V2X service placement in a mobile edge computing

environment. An optimal model is formulated for service placement. Hence, to deal with

dense networks they proposed a heuristic algorithm that offers efficient service placement

with less complexity compared with the optimal model. The numerical results validate

the efficiency of the proposed approach in terms of delay/latency and resource utilization.

However, the impact of vehicle’s mobility is not studied in this work.

Similarly, Shaer et al. [97] targeted V2X service placement in an edge computing

environment. An optimal model is formulated to minimize the delay and satisfying the

requirements of V2X services. The obtained results prove the soundness of the proposed

approach in terms of delay. However, important metrics are missing in this work such as

resource utilization.

In [98], authors proposed a real-time autonomous driving system in the edge computing

environment. an offloading strategy is proposed to decide where and when to offload the

tasks of autonomous driving. The authors considered only the edge power consumption

minimization. However, more important metrics are not studied in this work such as resource

utilization and QoS.

Hameed et al. [99] proposed a dynamic clustering approach in vehicular fog environment

by creating clusters based on the vehicles’ network. Further, a load balancing technique

is used for inter and intra-cluster for IoT jobs. The division of vehicle networks into

clusters increases the efficiency of the resource management, as well as provides an efficient

distribution of job load among vehicles’. The performance evaluation proves the efficiency

of the proposed approach in terms of QoS and energy. However, the authors used only one

mobility model in this work.

Table 2.3 shows the summary of the existing works for V2X-assisted EC.
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Paper Main Idea Problem

Formula-

tion

Edge Po-

sition

Advantages Limitations

Kim et al.

[89]

Parking man-

agement in

fog-cloud

environment.

Many-

to-one

match-

ing game

model.

Fixed Reliability to

find available

parking slot.

The scalabil-

ity of the fog

system is not

studied.

Zhang et al.

[90]

Task offload-

ing in mobile

environment.

Stackelberg

game.

Fixed Optimal

delay for

tasks compu-

tation.

The risk of

link failure is

not studied.

Zhu et al.

[91]

Task allocation

mechanism

in mobile

environment.

An exact

model

for task

allocation

problem.

Mixed Enhance the

end-to-end

latency.

Requires

high com-

putation

resource.

Gillam et al.

[92]

Distributed

computing

architecture

for vehicles

N/A Fixed Reduce

latency.

No eval-

uation is

presented.

Caminha et

al. [93]

SensingBus, a

data collecting

system from

sensors on

urban buses.

N/A Mobile Enhance

CPU and

Memory

utilization.

The buses

can not

provide wide

coverage.
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Thakur et

al. [94]

Connected

vehicle-based

congestion

identification

techniques

N/A Fixed System

can detect

congestion

to achieve

traffic man-

agement

objectives

The proof of

work is miss-

ing

Ning et al.

[95]

Traffic man-

agement

model in a

vehicular fog

environment

Exact of-

floading

model

Fixed Reduce the

response

time

The vehicle’s

mobility im-

pact is not

studied

Moubayed

et al. [96]

V2X service

placement in

a mobile edge

computing

environment

Optimal

V2X

service

placement

model

Fixed Enhance de-

lay/latency,

and resource

utilization

The impact

of vehicle’s

mobility is

not studied

Shaer et al.

[97]

V2X service

placement

in an edge

computing

environment

Optimal

model for

service

placement

Fixed Minimize de-

lay

Resource

utilization

metric is not

studied

Tang et al.

[98]

Real-time au-

tonomous driv-

ing system in

the edge com-

puting environ-

ment

Task of-

floading

model

Fixed Efficient

resource

utilization

and power

consumption

Resource uti-

lization and

QoS metrics

are not stud-

ied
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Hameed et

al. [99]

Dynamic

clustering

approach in

vehicular fog

environment

Optimal

model for

network’s

utilization

Mobile Enhance

QoS and

energy

consumption

One mobility

model is

used

Table 2.3 Summary of the existing works for V2X-assisted EC.

Current convergences between V2X and EC technology should take into consideration

safety metrics and real-time reactions in critical situations. Therefore, despite the existing

works in EC-assisted vehicular communications, next-generation applications such as road

safety and autonomous driving require efficient deployment to achieve ultra-low latency in

dense vehicular networks.

UAV and EC Convergence

Unmanned Aerial vehicles (UAVs) are introduced in almost wireless communication fields

to aid the EC technology due to their deployment, mobility, and cost-effective. The UAV

meets EC to increase the efficiency of the offered services to end-users to achieve ultra-low

latency especially for new-generation of applications. Next, we overview the existing works

for UAV-aided EC technology.

Zhou et al. [100] tackled the UAV-enabled mobile edge computing system where the

UAVs are used as mobile edge servers to offers both offloading services and energy to mobile

end-users. The results prove that the proposed solution achieves efficient energy consumption.

However, the mobility impact for both UAVs and mobile end-user devices is not studied in

this work.

Hu et al. [101] proposed a UAV-enabled mobile edge computing where mobile end-users are

served by UAVs that have more computing resources. The user tasks can be offloaded to the

UAV or served locally depending on the task type and its requirements. The results prove the

efficiency of the proposed approach. However, the mobility of both UAVs and end-users is

not studied in this work.

Similarly, Xiong el al. [102] proposed a UAV-assisted edge computing solution where UAV
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equipped with edge server and employed as a mobile base station to serve mobile end-users

by offering tasks processing service. The performance evaluation demonstrates the efficiency

of the proposed approach. However, the mobility is not studied in this work.

Zhan el al. [103] proposed a UAV-assisted edge computing solution where UAVs are con-

sidered as edge servers to serve IoT by offering computing resources to process tasks. The

obtained results show that the proposed solution is efficient by ensuring the trade-off between

completion time and energy consumption. However, the impact of mobility is not studied in

this work.

Wu el al. [104] proposed a UAV-assisted edge computing architecture where UAVs are

used as edge servers to accomplish IoT tasks. The obtained results prove the feasibility and

the efficiency of the proposed solution in terms of energy consumption. However, more

evaluation metrics need to be considered in this work.

Yang el al. [105] proposed a UAV-aided mobile edge computing system where a group of

UAVs cooperates to provide service as edge server to IoT by considering both tasks pro-

cessing and load balancing. Simulation results prove the efficiency of the proposed solution.

However, both UAVs’ energy consumption and computing metrics are not studied in this

work.

Deng el al. [106] proposed a tracking system based on edge computing where UAV track

target vehicle inside the city and send the captured video to the edge server. Moreover, when

the target vehicle is out of the UAV coverage, it stays tracked by the camera deployed inside

the city. The results show that this approach is efficient in terms of tracking timeliness and

reliability. The UAV energy consumption is not studied in this work.

In [107], authors studied the integration of UAVs with the edge computing environment. The

video captured by UAVs is offloaded to the edge server for processing. The proposed frame-

work is efficient since the UAV intensive computing is offloaded to the edge which decreases

resource utilization in the UAV, consequently maintain energy for a long time. However,

UAVs require real-time processing with ultra-low latency which is an open challenge.

Table 2.4 shows the summary of the existing works for UAV-assisted EC.
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Paper Main Idea Problem

Formula-

tion

Edge Po-

sition

Advantages Limitations

Zhou et al.

[100]

End-user

devices com-

putation

offloading in

UAV-enabled

MEC system.

Optimal

model for

energy, re-

source, and

trajectory.

Mobile Efficient

energy con-

sumption.

The mobility

of both UAV

and users is

not studied.

Hu et al.

[101]

UAV-enabled

MEC system

to serve mobile

end-users.

Optimal

model

for tasks

offloading.

Mobile Minimize la-

tency.

The mobility

of both

UAVs and

users is not

studied.

Xiong el al.

[102]

UAV-aided

edge comput-

ing to serve

IoT devices.

Optimal

model for

energy and

resources

allocation.

Mobile Efficient

energy con-

sumption.

The mobility

impact is not

studied.

Zhan el al.

[103]

UAV-assisted

edge comput-

ing to serve

IoT devices.

Optimal

model to

minimize

resource

utilization.

Mobile Efficient

energy con-

sumption

and resource

utilization.

The impact

of mobility is

not studied.

Wu el al.

[104]

UAV-assisted

edge com-

puting to

accomplish

IoT tasks.

Optimal al-

gorithm for

UAV posi-

tion.

Mobile Efficient

energy con-

sumption.

The resource

utilization is

not studied.
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Yang el al.

[105]

UAV-aided mo-

bile edge com-

puting system

to provide ser-

vice to IoT.

Optimal

and deep

reinforce-

ment

learning

algorithms.

Mobile Efficient

tasks offload-

ing.

UAV energy

consump-

tion is not

studied.

Deng el al.

[106]

Tracking sys-

tem based on

edge comput-

ing and UAV.

Set cov-

erage

and short-

est path

models.

Fixed Efficient

tracking

timeliness

and reliabil-

ity.

UAV energy

consump-

tion is not

studied.

Chen el al.

[107]

UAV-edge

integration

for video

offloading.

Framework

for au-

tonomous

UAV and

video

offloading.

Fixed Decreases

resource

utilization.

Ultra-low la-

tency is not

studied.

Table 2.4 Summary of the existing works for UAV-assisted EC.

Future network generation architectures based on UAV-EC require intelligent optimization

algorithms that decide the optimal point of operations where UAV should be deployed in

dense networks without neglect the energy factor that represents the important issue in UAV

networks.

Conclusion

This chapter presents an overview of IoT, Cloud Computing, Mobile Cloud Computing,

Edge Computing, and Mobile Edge Computing with the need of these technologies for

next generation applications to satisfy the users requirements and enhance the Quality of

Service. Moreover, in the second part, I presented the state of the art for both studied research

44



2.2 Edge Computing for IoT: Related Works

directions, service offloading and vehicular edge computing. In the following chapter, we

presents our optimal proposed models for service placement in edge servers, maximize

the vehicles coverage, and service offering to resolve different issues at the network edge

including latency, computing resource utilization, energy consumption, etc.
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Chapter 3

Optimal Solutions For Edge Computing

Networks

The network optimization procedure is still an important task that needs to be carefully

studied due to rapid networks evolutions and user demands. In this chapter, we present our

exact models for different use cases in service offloading and vehicular edge computing

research directions. For each use case, we present a detailed optimal model with the used

constraints, objective function, and variables.

3.1 Service Offloading In EC

With the rapid evolution of network generations and applications requirements, service

offloading is considered as one of the most important network tasks that allow to offload

resource-intensive services to optimal computation hardware in both edge servers and the

central cloud for processing. This complex task requires efficient communication, optimiza-

tion strategies, and virtualization technologies to deal with different services and provide

efficient QoS for users. In the following, we present our optimal algorithms for service

offloading in EC networks.
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3.1.1 UseCase 1: 5G VNF Slices Placement in EC

ETSI recently expected the benefits of MEC architecture to run all of its applications and

entities as VNFs in an NFV environment [108].

The cloud VNF placement issue has gained more attention. It is similar to the placement

of virtual machines (VMs), where VNFs are made up of VMs or containers that can perform

network functions. Indeed, the placement of VNF at the edge of the network offers many

advantages, in particular the proximity of the end-users, which decreases the latency and

improves the quality of the services.

5G network slicing allows multiplexing of virtualized and independent networks, where

each slice corresponds to an isolated network to meet application requirements.

The Proposed 5G-edge Computing Architecture For VNF Slices Placement

The proposed architecture allows the placement of VNF slices at the edge of the network

in the context of 5G network where the physical network is divided into isolated logical

networks called slices, each slice corresponds to a type of application including augmented

reality (AR), IoT, unmanned aerial vehicles (UAVs), and so on.

Figure 3.1 shows the proposed 5G-edge computing architecture for VNF slices placement.
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Fig. 3.1 VNF Slices Placement in Edge Computing Over 5G Network [7].
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VNF Slices Placement Model Over 5G

In this part, we present the formulation of the exact model for VNF slices placement in a

5G-edge computing environment. Table 3.1 display the used notations in the proposed model.

The model formulation is as follows:

Table 3.1 The notations used in the proposed VNF slices placement model.

Notations Definition
N The set of servers in the edge.
M The set of vnf for the placement.
w j The number of slices in the vnf

j ∈M.
ci The number of cpu slots in the

server i ∈ N.
αi Server characteristic fixed by net-

work operators.
Decision variables Definition
yi A binary variable indicate if the

server i ∈ N is used.
xi j A binary variable that assigns the

vnf j ∈M to the server i ∈ N.

We present in the following the decision variables used to solve the proposed model:

• The binary variable yi indicates if the server i is used or not. It is defined as follows:

yi =

1 if the server i is used;

0 Otherwise.
(3.1)

• The binary variable xi j indicates the assignment of the vnf j to the optimal server i. It

is defined as follows:

xi j =

1 if vnf j is assigned to the server i;

0 Otherwise.
(3.2)

min
n

∑
i=1

αiyi (3.3)
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Subject to
m

∑
j=1

w jxi j ≤ ciyi, i ∈ N = {0, ...,n} (3.4)

n

∑
i=1

xi j = 1, j ∈M = {0, ...,m} (3.5)

yi ∈ {0,1} , i ∈ N (3.6)

xi j ∈ {0,1} , i ∈ N, j ∈M (3.7)

The equation 3.3 formulates the proposed objective function. It represents the number of

used servers. Note that each server is characterized by αi which also depends on the server

i and the operator’s policy. The equation 3.4 guarantees that each server cannot exceed its

computing capacity represented in the form of CPU slots. The equation 3.5 ensures that each

VNF can be associated with at most one server.

The formulated problem is NP-hard because of our complex system, thus, the proposed

exact algorithm is difficult to provide a decision for VNF slices placement in dense networks.

Accordingly, efficient heuristic algorithms will be proposed in the next chapter.

3.1.2 Use Case 2: Task Offloading in Virtual Mobile Edge Computing

(VME)

Several edge computing architectures have been proposed by using edge servers in fixed,

mobile, or mixed positions each one offers benefits to the next network generations. We

proposed to use the connected IoT devices in smart cities as a virtual edge server to process

data at the network edge. Each selected device can execute sub-task(s) depending on its

available resources for computing and the sub-tasks requirements.

VME Architecture

Figure 3.2 outlines the proposed VME architecture where IoT devices including drones,

laptops, smartphones, etc. are connected in a smart city. All the devices are connected to an

access point that is connected to a central cloud. When a request comes to the access point

for task execution, it selects a set of IoT devices to accomplish the submitted task according

to the task processing requirements and the resource availability in the connected devices that
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form a virtual edge server. If the task processing requirements are higher than the available

resources in the IoT devices, the task is forwarded directly to the cloud.

The aim of the network architecture design is to clarify the network communication

scenarios, including the different entities that participate in the communication such as IoT

devices. Thus, the proposed architecture allows to provide data processing in virtual edge

servers made up of connected IoT devices, consequently, improves the efficiency of the

offered services in the network by reducing the computation cost.

Fig. 3.2 Virtual Mobile Edge Computing Architecture [6].

Virtual Edge nodes Placement Algorithm (VEnPA)

We designed an optimal algorithm for task allocation, where the main objective is to maximize

tasks allocation in virtual edge servers.

The proposed algorithm Optimal Virtual Edge nodes Placement Algorithm (VEnPA) give

the optimal solution for tasks placement by allocate IoT devices to execute sub-tasks. The

model input takes the network topology that consists of: IoT devices, network elements, and

the cloud.

1. Problem Definition

First, we overview the system hypotheses, after that, we present the tasks offloading

model based on the exact optimization technique.
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The submitted task is fragmented into sub-tasks dispatched to the IoT devices (virtual

edge server) to be executed. After that, the received results of sub-tasks are combined

together as the main result of the task.

Moreover, each selected IoT device has its available resources for processing (CPU,

GPU, RAM, and Storage).

2. Mathematical formulation

(a) VEnPA: System parameters

In this part, we present the model parameters and constraints that are proposed to

formulate the optimization model. This formulation defines the optimal location

for task offloading and partitioning.

We present in Table 3.2 the main VEnPA parameters and decision variables.

(b) VEnPA: Decision variables

i. The binary variable x represents the sub-tasks placement, and its offloading

from the client device ud to the virtual edge device ve It is formulated as:

xve
ud,k =

1, if service subtask (ud,k) is placed on the virtual edge ve

0, Otherwise
(3.8)

ii. The binary variable y represents the virtual edge usage. It is defined as

follows:

yve =

1, if the virtual edge ve ∈V is used

0, Otherwise
(3.9)

(c) VEnPA: Algorithm constraints

The formulation of the exact partitioned and offloading algorithm, Optimal

Partitioned and Offloading (OPO) is as follows:

max ∑
ud∈U

∑
ve∈V

xve
ud,k (3.10)
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Table 3.2 The notations used in the proposed VEnPA model.

Notations Definition
U The set of User Applications.
V The set of virtual edge servers.
K The set of user application

sub-tasks.
Rve Maximum RAM available in

the edge device ve.
Cve Maximum CPU available in

the edge device ve.
Sve Maximum Storage available

in the edge device ve.
Gve Maximum GPU available in

the edge device ve.
rud,k Required RAM for the appli-

cation sub-task (ud,k).
cud,k Required CPU for the applica-

tion sub-task (ud,k).
sud,k Required Storage for the ap-

plication sub-task (ud,k).
gud,k Required GPU for the applica-

tion sub-task (ud,k).
Decision variables Definition
xve

ud,k A binary variable that assigns
the sub-task k ∈ K of user ap-
plication ud ∈ N to the virtual
edge ve ∈V .

Subject to

∑
ve∈V

xve
ud,k ≤ 1, ∀ud ∈U,k ∈ K (3.11)

∑
ud,k

cud,kxve
ud,k ≤Cve, ∀ve ∈V (3.12)

∑
ud,k

gud,kxve
ud,k ≤ Gve ∀ve ∈V (3.13)
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∑
ud,k

rud,kxve
ud,k ≤ Rve, ∀ve ∈V (3.14)

∑
ud,k

sud,kxve
ud,k ≤ Sve, ∀ve ∈V (3.15)

xve
ud,k ∈ {0,1} (3.16)

Algorithm constraints represent conditions that need to be verified. Equations

(3.12), (3.13), (3.14), and (3.15) guarantee that the selected virtual edge device

has enough amount of CPU, GPU, RAM, and storage respectively to execute the

submitted user application sub-tasks. Besides, the constraint (3.11) ensure the

offloading of each sub-task to only one virtual edge device.

(d) VEnPA: Algorithm complexity

The formulated OPO model is NP-hard because of the system constraints, the

number of IoT devices, and the available resources that change over time in each

IoT device. Accordingly, an efficient algorithm will be proposed in the next

chapter.

VEnPA: evaluation of the OPO model

1. Simulation Setup

The performance of the proposed VME architecture is evaluated using three different

tasks (applications) in a simulated environment. We used the simulator EdgeCloudSim

[109] to simulate the VME communication and the offered services. For each appli-

cation we define parameters including CPU, GPU, RAM, storage, and the number of

connected devices. Table 3.3 outlines the VEnPA parameters.

2. Metrics

The performance of the VME system is based on resources utilization. Therefore, we

focused on the measurement of Processing Time, Service Time, Average Edge Devices

Utilization, Failed Tasks, and Failed Tasks due to Edge Devices Capacity.
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Table 3.3 VEnPA parameters.

Parameter Value
CPU slots (Min/Max) (1/15)
GPU slots (Min/Max) (1/10)
RAM (Min/Max) (Megabytes) (20/2000)
Storage (Min/Max) (Megabytes) (50/20000)
Number of connected devices (Min/Max) (100/1000)

3. Simulation Results
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Fig. 3.3 Failed Tasks [6].
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Fig. 3.4 Service Time [6].

Figures 3.3, 3.4, 3.5, 3.6, and 3.7 shows a comparison among the proposed architecture

VME, with both Adhoc Mobile Cloud (AMC) that represent the architecture proposed
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Fig. 3.6 Average Edge Devices Utilization [6].

in [77, 78, 80, 81]. And Adhoc Mobile Edge (AME) architecture that allow to create

edge servers based on end-user devices in Adhoc mode.

Figure 3.3, show the percent of failed tasks. From the figure we show that the failed

tasks increase at the same time when the number of mobile devices increase for the

three architectures. For the VME, the increase level is low compared to the AMC and

AME because of the proposed offloading algorithm can select virtual edge server for

each task. Wherein the offloading take a long time in AMC and AME wich leads to

task failure.
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Fig. 3.7 Failed Tasks due to Edge Device Capacity [6].

Figures 3.4 and 3.5, display the service/processing time for task execution. From the

figure we show that the VME service/processing time is low compared to the AMC

and the AME when the number of mobile devices is less than 500. However, when the

number of mobile devices exceed 500, the VME is greater than the AME because the

AME failed tasks is high compared the VME (as shown in figure 3.3) which signify

that the VME execute tasks more than AME this is because the VME take more time.

Beside, in the AMC, the end-user devices are used as cloud which leads to high level of

tasks failure (as shown in figure 3.3) due to insufficient mobile cloud devices or high

tasks requirements.

Figure 3.6 display the Average Edge Devices Utilization, we show that the edge devices

utilization increase when the mobile device increase, because of the submitted tasks,

in addition, the VME has the highest value of edge utilization because it has lowest

failed tasks (as shown in figure 3.3).

Figure 3.7, show the Failed Tasks due to Edge Devices Capacity, we show that the

VME has the lowest failed tasks due to edge capacity because of the proposed VEnPA

model that ensure efficient offloading and placement.
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3.1.3 Use Case 3: Service Offloading in Virtual Mobile Edge Computing

(SO-VMEC)

As mentioned before, edge computing allows creating an intermediate layer between end-user

devices and the cloud. This layer consists of access points, servers, routers, switches, etc.

These devices can be replaced by IoT devices that can be used as virtual mobile edge servers

(VMES).

The VMES is an edge server that offers different services such as caching and processing.

It consists of connected IoT devices such as connected vehicles, UAVs, tablets, and smart-

phones, etc. When client devices require computation service, it offloads the VNF to the

access point, after that, the VNF is split into slices. Then, the access point selects a set of IoT

devices that satisfy the slices computing requirements including GPU, CPU, RAM, Energy,

and Storage. These selected devices form a VMES. If the slice computing requirements are

high compared with available resources in IoT devices, the slice is offloaded to the cloud.

After computation, the results are sent back to the access point that combines the results to

form the main result for the VNF. And finally, the result is forwarded to the source device.

The VME can reduce latency, network delay, and the total cost. Further, it guarantees services

with a short response time which is required in the new generation of applications.

SO-VMEC Architecture

The proposed SO-VMEC architecture consists of three layers as follows:

1. Cloud Layer: It is the top layer allows to process VNFs that require high processing

resources.

2. Edge Layer: It is the medium layer composed of connected IoT devices. It provide

processing services at the network edge according to the available resources in IoT

devices.

3. End-users Layer: It is the bottom layer, represents the clients devices that require

processing due to insufficient computing resources.

Figure 3.8 show the Virtual Mobile Edge Computing Architecture.
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Fig. 3.8 Virtual Mobile Edge Computing Architecture [1].

SO-VMEC Communication Model

Figure 3.9 display the main steps of the SO-VMEC communication model that are detailed

as follows:

1. VNF Submission and Slicing: client devices send their VNF for execution to the access

point that allows resources discovery and selection of a VMES for slice allocation.

2. Resources Discovery in IoT Devices: when the access point receives the VNF from

the client device, it divides the VNF into slices. After that, it starts the selection

of IoT devices to form the VMES. The selection is based on the slices’ computing

requirements in terms of GPU, CPU, Storage, Energy, and RAM. This step taking into

account the mobility of IoT devices by using the prediction technique for both mobility

and energy consumption as follow:

(a) IoT devices mobility prediction: The IoT device mobility prediction is an es-

sential step to prevent the network from crashes during the processing such as
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Fig. 3.9 SO-VMEC Communication Model [1].

disconnection, which decreases the efficiency of the proposed system, especially

where the IoT devices are used as edge servers for processing. For this we used

three different mobility models depend on the IoT device type as follow: i) Low

Mobility Model: includes smart devices such as tablets, smartphones, laptops,

etc. ii) Medium Mobility Model: This type of device includes drones, city buses,

etc. iii) High Mobility Model: includes UAVs, vehicles, and all transportation

systems in general, etc.

(b) IoT devices energy prediction: Most IoT devices are based on batteries as an

energy source, for this, energy management is an important feature in the SO-

VMEC when using the IoT devices as an edge server to process VNFs that require

high processing resources include energy. The prediction technique is used to

predict the IoT device energy consumption which can prevent the edge device

from disconnection because of discharge during VNF slices processing.

3. Slices Offloading and Resources Allocation: When the VMES is selected and is ready

for processing, the access point starts the slice offloading process by allocating devices

from the selected VMES that satisfy the slices processing requirements. An optimiza-

tion algorithm is used for devices allocation according to the network requirements.
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Moreover, the cloud computing is used when no device can process slices due to

resource miss.

4. Slice Computation Results: when the slices processing is finished in the VMES or/and

the cloud, the results are sent to the access point that merges all results to form the

main result of the submitted VNF.

5. Results Forward: in the last step, the access point sends the VNF processing result to

the source device.

IoT Devices Mobility & Energy Prediction

1. Algorithms Overview:

(a) Long Short-Term Memory (LSTM): The LSTM proposed for language modeling

[110], that came to resolve the vanishing gradient problem in Recurrent Neural

Networks. The LSTM is composed of memory blocks called gates that contain

multiplicative units. Each memory block is composed of three gates: the input

gate, the output gate and the forget gate. LSTM based neural network techniques

have been proposed to solve difficult problems in different fields, such as acoustic

modeling, speech recognition, and traffic prediction.

The LSTM model is important to understand what to forget, what to remember,

and what to output. So when a new input arrives in the neural network module,

the model first forgets any long-term information it decides it no longer needs.

Then it learns which parts of the new input are worth using, and saves them into

its long-term memory.

(b) Gated Recurrent Units (GRU): The GRU model is an improved version of the

vanilla recurrent neural network, proposed to solve the vanishing gradient prob-

lem. Basically, it uses update and reset gates to store and filter the incoming

information. It has gates responsible for modulating the information flow inside

the central blocks. A GRU block consists of a couple of gates as follows: an

update gate that is responsible for specifying the block updates content or acti-

vation, and a reset gate that makes the block read each input sequence without

considering the previous sequence (i.e., forget the previous state).
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We used both LSTM and GRU to predict the IoT devices mobility and energy

consumption for the three mobility and energy consumption models based on real

data-sets. The prediction step is required later to feed the proposed SO-VMEC

optimization algorithms.

2. Data-sets Description:

(a) Real mobility traces: Three datasets (Low mobility, medium mobility, and high

mobility) are used for the mobility prediction.

i. Low mobility (Smartphone): The data represents the walker mobility recorded

every 0.6 seconds in the Ostermalm area inside Stockholm city, Sweden

[111].

ii. Medium mobility (City Bus): The dataset represents buses mobility in Rio

de Janeiro, Brazil [112]. The data is represented as follows: the date and

time, the bus id, the speed, the bus line, the longitude, and the latitude. The

CSV file contains the positions of more than 12000 buses.

iii. High mobility (Vehicle): The data represents taxis positions for one month

in Rome city, Italy [113]. The data is classified in a text file represented as

follows: taxi id, date and time (timestamp), and taxi position.

(b) Real IoT devices energy consumption traces: We used three datasets for different

battery types (low capacity (smartphone), medium-capacity (laptop), and high

capacity (smart TV)).

i. Low energy consumption (Smartphone): the dataset contains mobile phone

usage of 342 persons for 3 months in Spain [114]. The dataset contains

the events of 25 sensors such as location and received notifications. The

sensors such as data consumption, phone calls, cell tower, airplane mode,

Wifi details, SMS events, etc.

ii. Medium energy consumption (Laptop): The dataset contains the electrical

devices power consumption collected in Darmstadt city, Germany [115]. the

data is grouped into directories and stored in CSV files where each directory

corresponds to a device type. The data is represented as follows: date, time,

and power consumption.
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iii. High energy consumption (Smart TV): The dataset contains real power

consumption data of electrical devices inside 22 houses in Korea [116]. The

data is grouped in directories where each directory contains the data for a

house. The data contains the timestamp and the power.

Optimization Model for SO-VMEC

In this section, we present the exact optimization model for the proposed SO-VMEC. The

model takes as inputs the results of the mobility and the energy prediction, as well as the

system capacity in terms of network, capacity, computing, and storage. It allows to optimally

place the VNF slices in the selected VMES.

Table 3.4 The notations used in the proposed SO-VMEC model.

Edge notations Definition
U The set of User Devices, It represents user demands in term

of VNF slices.
V The set of virtual edge servers.
K The set of (user) VNF slices.
Eve The maximum Energy available in the edge device ve (i.e.,

at a specific time slot according to the periodicity of the
algorithm).

Mve The predicted (required) Mobility for the edge device ve
during the VNF slice service time. It is represented as a
Boolean matrix, detecting if the edge device is available or
not during the service period.

Rve The maximum RAM available in the edge device ve.
Cve The maximum CPU available in the edge device ve.
Sve The maximum Storage available in the edge device ve.
Gve The maximum GPU available in the edge device ve.
VNF slices notations Definition
eud,k The predicted (required) Energy for the VNF slice (ud,k).
rud,k The required RAM for the VNF slice (ud,k).
cud,k The required CPU for the VNF slice (ud,k).
sud,k The required Storage for the VNF slice (ud,k).
gud,k The required GPU for the VNF slice (ud,k).
Decision variables Definition
xve

ud,k A binary variable that assigns the slice k ∈ K of an end-user
device ud ∈U to the virtual edge ve ∈V .
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1. Algorithm Constraints and Objective

The studied problem considers VNF slices offloading to VMES served by the network

operator. The problem objective is to determine where to offload the submitted VNF

slices in an optimal way by taking into account the resource allocation and the mobility

of the devices.

We considered different constraints for the proposed SO-VMEC optimization model

such as GPU, RAM, Storage, CPU, and IoT devices energy/mobility prediction. The

main objective is to maximize the offload of VNF slices.

2. Model Formulation

In this part, we present the defined parameters, constraints, and the proposed optimiza-

tion model. This formulation represents the optimal offloading of VNF slices to the

available devices that form the VMES.

(a) Decision Variables: We quote in Table 3.4 the used parameters and variables.

They are defined as follows:

i. The binary variable x represents the VNF slices placement, and its offloading

from the client device ud to the optimal device ve in the VMES. It is defined

as:

xve
ud,k =


1 if VNF slice (ud,k) is placed

on the virtual edge ve

0 Otherwise

(3.17)

ii. The binary variable y represents the VMES usage. It is formulated as follows:

yve =

1 if the virtual edge ve ∈V is used

0 Otherwise
(3.18)

(b) Constraints: depending on the proposed communication model, the step of VNF

slices placement is constrained by the computing resources (GPU, RAM, CPU,

Storage, Energy), and the mobility of the devices. Hereafter, we present the

constraints related to the proposed SO-VMEC.
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i. We propose that only one optimal VMES ve∈V should execute the offloaded

VNF slice (ud,k) ∈ (U,K). The constraint formulation is as follows:

∑
ve∈V

xve
ud,k ≤ 1, ∀ud ∈U,k ∈ K (3.19)

ii. According to the energy prediction, the selected device should have the

necessary energy to execute the VNF slice(s), the formulation is as follow:

∑
ud,k

eud,kxve
ud,k ≤ Eve, ∀ve ∈V (3.20)

iii. The available RAM in the server ve should be enough to execute the VNF

slice(s), the constraint formulation is as follow:

∑
ud,k

rud,kxve
ud,k ≤ Rve, ∀ve ∈V (3.21)

iv. The available storage in the server ve should be enough, the constraint

formulation is as follow:

∑
ud,k

sud,kxve
ud,k ≤ Sve, ∀ve ∈V (3.22)

v. The available CPU slots of the server ve should be enough to process the

VNF slice(s), the constraint formulation is as follow:

∑
ud,k

cud,kxve
ud,k ≤Cve, ∀ve ∈V (3.23)

vi. The GPU capacity of the server ve should be enough to process the VNF

slice(s), the constraint formulation is as follow:

∑
ud,k

gud,kxve
ud,k ≤ Gve ∀ve ∈V (3.24)
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vii. Guaranteeing the non-negativity of decision variables:

xve
ud,k ∈ {0,1} (3.25)

(c) Objective Function Formulation: The general model formulation allows maxi-

mizing the VNF slices placement in the VMES. The formulation of the objective

function is as follows:

max ∑
ud,k

∑
ve∈V

xve
ud,k (3.26)

SO-VMEC Performance Evaluation

To evaluate the proposed SO-VMEC models, we used Keras 1 and TensorFlow 2 platforms

for the devices mobility and energy prediction. Moreover, we used CPLEX for python tool 3

and EdgeCloudSim [109] to assess the efficiency of the SO-VMEC in both small and dense

networks. Table 3.5 show the SO-VMEC parameters.

Table 3.5 SO-VMEC parameters.

Parameter Value
CPU slots (Min/Max) (1/30)
GPU slots (Min/Max) (1/15)
RAM (Min/Max) (Megabytes) (20/8000)
Storage (Min/Max) (Megabytes) (50/50000)
Number of Devices (Min/Max) (100/1000)

1. Key Performance Indicators (KPIs)

To evaluate the efficiency of the proposed approach, we used the following KPIs:

(a) Failed VNFs Execution: We proposed to measure the failed VNFs to evaluate the

proposed model. Because the increase of failed VNFs decreases the efficiency of

the offered service. We defined the successfully allocated VNF slices (NOS) as

follow:

NOS = ∑
ud∈U

∑
k∈K

xve
ud,k (3.27)

1https://keras.io/
2https://www.tensorflow.org/
3https://pypi.org/project/cplex/
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In the case of resource lack on VMES, the VNFs slices are offloaded to the cloud.

The formulation of offloaded slices is as follows:

∑
ud∈U

∑
k∈K

(
1− xve

ud,k

)
. (3.28)

(b) Service Time: It allows measuring the total service duration that includes the

VNF submission, slicing, VMES selection, slices offloading, and the results

forwarding to the client device.

(c) Processing Time: represents the duration required to process the VNF slices in

the selected VMES.

(d) Failed VNFs Execution Due To Edge Capacity: resource availability is important

during processing to decrease the failed VNFs. When the GPU, RAM, CPU, and

Storage satisfy the VNFs requirements, it increases the QoS. We defined the cost

of the resources as follow:

CPU Cost =
∑ud,k cud,kxve

ud,k

∑ve∈V Cve
(3.29)

GPU Cost =
∑ud,k gud,kxve

ud,k

∑ve∈V Gve
(3.30)

RAM Cost =
∑ud,k rud,kxve

ud,k

∑ve∈V Rve
(3.31)

Storage Cost =
∑ud,k sud,kxve

ud,k

∑ve∈V Sve
(3.32)

(e) Failed VNFs Execution Due To Mobility: the IoT devices mobility impacts the

SO-VMEC system which leads to decrease the QoS. For this, the prediction

is used to estimate the future devices movement and prevent the system from

disconnection because of devices mobility.

(f) Failed VNFs Execution Due To Energy: most IoT devices use battery as an energy

source, for this we used the prediction to estimate the energy consumption to

prevent the system from disconnection that leads to failed VNF slices processing.
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The IoT device energy cost is formulated as follows:

Energy Cost =
∑ud,k eud,kxve

ud,k

∑ve∈V Eve
(3.33)

(g) Average Edge Devices Utilization: it represents the average number of used

VMES for VNF slices processing. it depends on the available resource in the

VMES, and the number of clients requests.

2. Comparative Analysis

To assess the behavior of the proposed SO-VMEC, we compared the efficiency of the

proposed approach with other networking architectures from the state-of-the-art. We

summarize these architectures as follows:

(a) Adhoc Mobile Cloud (AMC): proposed in [77, 78, 80, 81, 85, 86], this architec-

ture allows using connected devices as adhoc cloud for processing. However, the

risk of offloading failure is high in the case of unavailable devices, or when the

VNF requirements are high compared with available resources.

(b) Adhoc Mobile Edge (AME): This architecture allows using connected devices

as on-demand edge servers in adhoc mode, the submitted VNF is processed in

the selected edge servers, wherein in the case of resource unavailability, the VNF

is offloaded to the cloud. The risk of VNF failure is high in this architecture

because of device disconnection.

Table 3.6 show a summary of the main problems studied in this work compared with

existing architectures.

Architecture Mobility impact Energy impact Failure offloading management

AMC ✗ ✗ ✗

AME ✗ ✗ ✗

VME ✓ ✓ ✓

Table 3.6 The main strong points of VME against AME and AMC.
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Hereafter, we evaluate the proposed algorithms under the above KPIs, and we present

the comparison of the proposed architecture (VME) with both AMC and AME.

3. Prediction Results
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Fig. 3.10 Mobility Prediction for Three Mobility Models (Low, Medium, and High) [1].

Figure 3.10 shows the mobility prediction for three different mobility models (low,

medium, and high). The obtained results show that both LSTM and GRU are efficient

in terms of prediction accuracy.

Figure 3.11 show the energy prediction results of LSTM and GRU algorithms. From

the figure, we show that both algorithms converge to real energy values which help the

system to prevent crashes during the processing step.
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Fig. 3.11 Energy Prediction for Three Energy Models (Low, Medium, and High) [1].

Figure 3.12 shows the energy prediction impact on VNF slices execution. In figure

(3.12a), the selection of VMES without prediction leads to processing interruption

because the battery is running out of power during the VNF slices processing. Where

in figure (3.12b), the selection of VMES using the prediction prevents the system from

execution failure which improves the offloading efficiency on the VMES.

4. Optimization Results

Figure 3.13 shows the performance evaluation of the proposed VME architecure

compared with both AMC et AME architectures.
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Fig. 3.12 Energy Prediction Impact on VNF Slices Execution [1].

Figure (3.13a) displays the failed VNFs percentage when the number of client devices

increases. We show that when the number of client devices increases the failed VNFs

increase also for the three architectures. But, the percent of failed VNFs is very low

in the VME compared with the other architectures because both AMC and AME take

more time to select the edge devices which leads to a failure in VNF slices execution.

Figures 3.13b and 3.13c, shows the service/processing time for VNF slices execution.

From the figure we show that the VME service/processing time is low compared to the

AMC and the AME when the number of client devices is less than 550. However, when

the number of client devices exceed 550, the VME is greater than the AME because the

AME failed tasks is high compared the VME (as shown in figure 3.13a) which signify

that the VME execute tasks more than AME this is because the VME take more time.

While the service/processing time for the AMC is stay high because of the high failed

VNF slices execution (as shown in figure 3.13a) due to high VNF slices requirements

or insufficient edge devices.

Figure (3.13d) shows the failed VNFs processing due to edge capacity. From the figure,

we show that the VME outperforms the other architectures because it offloads VNFs

correctly (fewer VNFs failed due to edge capacity). Moreover, the proposed model

manages optimally the IoT devices resource.
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Fig. 3.13 SO-VMEC Evaluation Results [1].

Figure (3.13e) displays the impact of device mobility in terms of failed VNFs. The

proposed VME architecture outperforms both AME and AMC because of the used pre-

diction technique that prevents the system from disconnection which by consequence

decrease the failed VNFs.

Figure (3.13f) shows the impact of the energy consumption of IoT devices on the

failed VNFs processing. The obtained results show that the failed VNFs is very low in

the VME compared to both AME and AMC because of the used prediction technique
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that helps the system to prevent crashes during the processing which by consequence

decrease the number of failed VNFs.

Figure (3.13g) displays the VMES utilization. From the figure, we show that the

VMES utilization increase because of the increase of incoming VNFs from the client

devices. Indeed, the VME architecture needs many VMES since it offloads a high

number of VNFs (less failed VNFs as presented in the figure 3.13a).

Figure (3.13h) shows the number of failed VNFs with and without prediction. From

the figure, we show that the failed VNFs is decreased when the prediction technique is

used for both energy and mobility as proved in the figures ((3.13e) and (3.13f)).

3.1.4 Use Case 4: Service Function Chains Orchestration in Virtual

Mobile Edge Computing (VMEC)

IoT-VMEC Architecture

1. IoT-VMEC System

The huge proliferation of IoT devices led to creates a complex network that generates

a high amount of data that require a short time for processing. Edge computing offers

a distributed architecture that provides efficient processing at the network edge. We

proposed to use IoT devices as virtual mobile edge server (VMES) for service function

chain (SFC) orchestration where artificial intelligence (AI) is used to help using both

cloud and edge in an intelligent way. Figure 3.14 show the proposed IoT-VMEC

architecture.

The integration of AI at the network edge aims at:

(a) Data collection and analysis: based on New Radio (NR) gNB network gateways.

(b) Mobility prediction of IoT devices: at the gNB, we used deep learning to predict

the IoT devices mobility to prevent the network from SFC VNFs execution failure

due to mobility.

(c) Energy prediction of IoT devices: based on deep learning, the gNB node predict

the IoT devices energy consumption to prevent the network from SFC VNFs

processing failure due to energy or battery crashes.

73



Optimal Solutions For Edge Computing Networks

vCDN Operator

MVNO Operator

Internet Service Provider

vCDN Chain
Vnf0 Vnf0 Vnf1

vRAN Chain

Vnf2
Vnf3

Vnf4

vFirewall Chain

Vnf3
Vnf3

Vnf3
Vnf5

Vnf5

Cloud

VME 1

VME 2

Slices

Migration

1

1

1

3

2

2

4

4

4

4

gNB

Fig. 3.14 Proposed IoT-VMEC Architecture.

(d) Self-Organizing Network (SON) resources: based on the AI outputs (the

predicted mobility and energy), an optimization module is used to organize the

SFC VNFs offloading (MVNO, vCDN,...) to available IoT devices (VMES).

For the purpose of efficient SON resources management, the different network entities

cooperate together to ensure the processing of SFC parts (VNF slices) in an efficient

way as follows:

(a) Local processing of VNF slices at the VMES where each IoT device process

VNF slice(s) according to their available computing resources.

(b) Migration of VNF slices between VMESs in the case of lack of resources in the

selected VMES.

(c) Offloading of VNF slices to the centralized cloud in the case of a lack of

computing resources for both local processing and migration.
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2. IoT-VMEC Communication Model

Figure 3.14 shows the main system entities for SFC orchestration in VMEC. The

communication steps (from 1 to 4) are presented as follows:

(a) Step (1): the distributed entities (vCDN, MVNO operators, etc) offload their SFC

to the gNB for placement.

(b) Step (2): happens in the gNB allow to find a set of IoT devices that satisfy the

requirements (vRAM, vGPU, vCPU, and vStorage) of the received SFC based

on the energy and mobility prediction to create a VMES.

(c) Step (3): If the selected VMES does not satisfy all the SFC parts (VNF slices)

requirements, the gNB tries to find IoT devices connected to the neighbor’s gNB

(using the migration) that can satisfy the rest of VNF slices requirements.

(d) Step (4): The last step is to send the VNF slices to the IoT devices in the selected

VMES. Moreover, the rest of VNFs slices where their requirements are not

satisfied in the selected VMES or the other VMES selected by migration, it

offloaded to the cloud.

OSPV: Optimal SFC Placement in IoT-VMEC

We proposed an optimal SFC placement algorithm in IoT-VMEC using optimization tech-

nique. Table 3.7 outlines the main parameters and decision variables.

The Equations (3.34) and (3.35) represent the decision variables. The binary variable x

indicates the placement of the VNF slices on the VMES. The binary variable y represent the

VMES usage.

xgnb,ve
sc,vs =


1 if the VNF slices vs ∈Vs is placed

on the server ve of the gnb ∈ Gnb.

0 Otherwise.

(3.34)
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Table 3.7 The parameters used in the proposed OSPV model.

Notations Definition
Sc The set of Service Chains.
Vs The set of VNFs. Each VNF is

composed of slices.
Gnb The set of gNBs (gnb).
V The set of IoT devices available at

gnb ∈ Gnb.
Ksc The number of VNFs in each ser-

vice chain sc ∈ Sc.
Cve The maximum vCPU available in

the server ve ∈V .
Gve The maximum vGPU available in

the server ve ∈V .
Rve The maximum vRAM available in

the server ve ∈V .
Sve The maximum vStorage available

in the server ve ∈V .
Eve The maximum Energy available in

the edge server ve ∈V .
SFC slices notations Definition
esc,vs The predicted (required) Energy

for the SFC slice (sc,vs).
rsc,vs The required RAM for the SFC

slice (sc,vs).
csc,vs The required CPU for the SFC

slice (sc,vs).
ssc,vs The required Storage for the SFC

slice (sc,vs).
gsc,vs The required GPU for the SFC

slice (sc,vs).
Decision Variable Definition
xgnb,ve

sc,vs A binary variable that allocates the
SFC slice vs ∈ Vs of the service
chain sc ∈ Sc to the server ve ∈V
of the gnb ∈ Gnb.

ygnb,ve A binary variable that indicates if
the server ve ∈V of the gnb ∈Gnb
is used.

ygnb,ve =


1 if the server ve ∈V of the gnb ∈ Gnb

is used.

0 Otherwise.

(3.35)

The objective function Optimal SFC Placement in VMEC (OSPV) represented in the

equation (3.36) allow to maximize the allocated SFC by using the minimum number of

VMES.
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max ∑
sc∈Sc,vs∈Vs

∑
gnb∈Gnb,ve∈V

xgnb,ve
sc,vs − ∑

gnb∈Gnb,ve∈V
ygnb,ve

(3.36)

Subject to

∑
gnb∈Gnb,ve∈V

xgnb,ve
sc,vs ≤ 1, ∀sc ∈ Sc,vs ∈Vs (3.37)

∑
sc∈Sc,vs∈Vs

esc,vsxgnb,ve
sc,vs ≤ Eveygnb,ve,∀gnb ∈ Gnb,ve ∈V (3.38)

∑
sc∈Sc,vs∈Vs

rsc,vsxgnb,ve
sc,vs ≤ Rveygnb,ve,∀gnb ∈ Gnb,ve ∈V (3.39)

∑
sc∈Sc,vs∈Vs

ssc,vsxgnb,ve
sc,vs ≤ Sveygnb,ve,∀gnb ∈ Gnb,ve ∈V (3.40)

∑
sc∈Sc,vs∈Vs

csc,vsxgnb,ve
sc,vs ≤Cveygnb,ve,∀gnb ∈ Gnb,ve ∈V (3.41)

∑
sc∈Sc,vs∈Vs

gsc,vsxgnb,ve
sc,vs ≤ Gveygnb,ve,∀gnb ∈ Gnb,ve ∈V (3.42)

∑
gnb∈Gnb,ve∈V

xgnb,ve
sc,vs = ∑

gnb∈Gnb,ve∈V
xgnb,ve

sc,vs+1,

∀sc ∈ Sc,vs ∈Vs \{Ksc}
(3.43)

0≤ xgnb,ve
sc,vs ≤ 1,∀gnb ∈ Gnb,ve ∈V,sc ∈ Sc,vs ∈Vs (3.44)

0≤ ygnb,ve ≤ 1,∀gnb ∈ Gnb,ve ∈V (3.45)

The constraints of the proposed OSPV model are presented as follows:

Equation (3.37) ensures that the VNF slices vs ∈Vs of the service chain sc ∈ Sc is placed

in only one server ve ∈V of a gnb ∈ Gnb.
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1. Equations (3.38), (3.39), (3.40), (3.41), and (3.42) guarantees that the selected server

has enough energy, vRAM, vStorage, vCPU, and vGPU resources to execute the VNF

slices vs ∈Vs of the service chain sc ∈ Sc.

2. Equation (3.43) guarantee that all the VNF slices vs ∈Vs of the service chain sc ∈ Sc

are placed.

3. Equations (3.44) and (3.45) ensures the non-negativity of the decision variables.

The proposed model is adapted to small-scale networks. Because of the high complexity

in dense networks, we will propose a heuristic placement technique to solve the SFC

placement in the IoT-VMEC architecture. The heuristic algorithm will be presented in the

next chapter.

LSTM and GRU Models Evaluation

We used LSTM and GRU to predict both the energy and the mobility of IoT devices (Section

3.1.3), The obtained results are presented as follows:

1. Energy Prediction

Figure 3.15 show the energy consumption of IoT devices in three different consumption

models (low, medium, and high). The obtained prediction results prove the efficiency

of both LSTM and GRU models that is near to real energy data which is accurate

the three consumption models 3.15a, 3.15b, and 3.15c respectively which prevent the

system from problems such as crashes during the process step.

2. Mobility Prediction

Figure 3.16 display the IoT mobility prediction. We predict the coordinates (x,y)

correspond to the positions for both pedestrian (smartphone) and city bus that represents

two different mobility models. From the figures 3.16a, and 3.16b we show that the

LSTM and GRU models are efficient in terms of prediction where the two are near to

real positions, by consequence prevent the virtual mobile edge from crashes during

processing caused by mobility.

78



3.1 Service Offloading In EC

 0

 20

 40

 60

 80

 100

15-0
6 (0

0:0
0:0

0)

15-0
6 (1

2:0
0:0

0)

16-0
6 (0

0:0
0:0

0)

16-0
6 (1

2:0
0:0

0)

17-0
6 (0

0:0
0:0

0)

17-0
6 (1

2:0
0:0

0)

18-0
6 (0

0:0
0:0

0)

18-0
6 (1

2:0
0:0

0)

19-0
6 (0

0:0
0:0

0)

19-0
6 (1

2:0
0:0

0)

20-0
6 (0

0:0
0:0

0)

20-0
6 (1

2:0
0:0

0)

21-0
6 (0

0:0
0:0

0)

E
n

e
rg

y 
(%

)

Day-Month (Hour)

Real Energy LSTM Prediction GRU Prediction

(a) Smartphone (Low)

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

1324508240

1324508260

1324508280

1324508300

1324508320

1324508340

1324508360

1324508380

1324508400

En
e

rg
y 

(W
)

Timestamp

Real Energy LSTM Prediction GRU Prediction

(b) Laptop (Medium)

 85

 85.1

 85.2

 85.3

 85.4

 85.5

 85.6

 85.7

 5  10  15  20  25  30  35  40  45

E
n

e
rg

y 
(W

)

Hours

Real Energy LSTM Prediction GRU Prediction

(c) Smart TV (High)

Fig. 3.15 Energy Prediction for Three Energy Models (Low, Medium, and High).
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3.2 Vehicular Edge Computing

With the recent development of urban networks, smart vehicles are considered as mobile

devices equipped with different on-board sensors. Nowadays vehicles start to have the

capability to communicate with each others (vehicle-to-vehicle) and with urban infrastructure

(vehicle-to-infrastructure), collect data, and perform computation and in-vehicle processing.

Today, typically, high computation applications are executed on the cloud. However, delay-

sensitive applications can suffer from the long-time response and may suffer bad quality of

experience.

The new vehicular networks generations allow using vehicles as an edge server in the

context of vehicular edge computing systems (VEC) for data processing, video caching, etc.

It allows to provide information to other connected devices included end-user devices, other

vehicles, etc.

3.2.1 Use Case 1: Edge Computing Assisted Vehicular Networks for

Service Offering

We proposed to use rideshare taxis as mobile edge server to offer video chunks to connected

vehicles inside the city. We designed a distributed vehicular edge computing architecture that

provide data caching and low latency communication.

MVEC: Mobile Vehicular Edge Computing Architecture

The main objective of designing any network architecture or protocol is to provide efficient

communication with high scalability support, which is considered as a fundamental chal-

lenge. Adding the huge number of users, applications, and the dynamic mobility make the

design more challenging. Thus, MVEC architecture (Figure 3.17) aims to distribute the

communication and computation in a vehicular environments. This is achieved by using

rideshare taxis as Mobile Edge Server, which covers a large city and provides ubiquitous

content distribution and computation. That by consequence enhances the communication

and data delivery in delay-sensitive applications.
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Fig. 3.17 MVEC architecture overview [8].

Problem Formulation & Proposed Solution

We used the prediction technique in Section 3.1.3 to estimate the future positions of vehicles

inside Rome city. In addition, the formulation of the proposed model is based on the set

cover problem (SCP) that is used to maximize the coverage (shared path distance between

the taxis and the client vehicle) inside the city. The problem formulation is as follows:

Let S = {s1,s2,s3, ...,sn} a set that represents the taxis routes, E = {e1,e2,e3, ...,em}
the representation of the client vehicle route as a set of segments e where

⋃
S = E, and

H = {h1,h2,h3, ...,h4} a set of handovers correspond to taxis route. The objective is to find

a subset X of S where
⋃

X = E and |X |, h(
⋃

X) are small.

min
n

∑
i=1

xihi (3.46)
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Subject to:

∑
{i|e j∈si}

xi ≥ 1 ∀e j ∈ E (3.47)

xi ∈ {0,1} ,∀i ∈ {1...n} (3.48)

• Complexity:

The problem formulation is a variant of the SCP, that allows maximizing the coverage

of elements. The entry of the problem is a set of elements, a list of subsets of this set, and

an integer k, and one must find k subsets such as the number of elements belonging to at

least the subset. one of these is maximized. An element is said to be covered if it belongs to

one of the selected subsets. The SCP model is one of the Karp’s 21 NP-complete problems

[117], for this, an approximate algorithm is proposed in the next chapter to support the dense

networks.

Performance Evaluation

The performance evaluation of the proposed MVEC is evaluated in a simulated environment.

We used Cloud Report4 to simulate communications with the cloud, and SUMO5 for urban

mobility, and real tracking inside Rome city. Table 3.8 outlines the parameters used in the

simulation.

Table 3.8 MVEC parameters.

Parameter Value
Execution time 30 minutes

Number of taxis per zone 50
Number of client vehicles per zone 200

Figure 3.18 shows the cloud energy consumption (CEC) with/out edge servers for two

different vehicle routes. The results are presented for three different cases. First, CEC

for only cloud utilization (OCU), represents the use of only the cloud as a source of video

chunks. Second, CEC during cloud utilization (CU), represents the use of cloud with the

edge sometimes. Finally, the CEC during edge utilization (EU), represents the use of edge as

a source of video chunks.
4Cloud Report: www.github.com/thiagotts/CloudReports
5SUMO: www.sumo.dlr.de/docs/index.html
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Fig. 3.18 CEC with/out Edge Servers [8].

In Figure 3.18a we show that the energy consumption for both CU and OCU is the same

in the first 14 minutes because no taxis coverage exists. Then, the energy is decreased when

the taxis (edge servers) are used which increases the energy gain.

Similarly, in Figure 3.18b we show that the taxis with high coverage leads to increase the

gain of energy. Also we show that when no taxis coverage exists, the energy consumption of

cloud increase (red circles in Figures 3.18a and 3.18b) caused by the handover during the

communication which leads to send many video requests to the cloud.

3.2.2 Use Case 2: Edge Computing Aided Autonomous Vehicles

We propose to use edge computing for autonomous driving where the autopilot VNFs are

offloaded to the edge for efficient self-driving. The proposed solution is summarized as

follows:

1. We propose a reliable, end-to-end, and low-latency communication edge autopilot

architecture that allows the offloading of autopilot VNFs services to edge servers to

improve the driving efficiency for autonomous vehicles.

2. We propose a communication protocol for dense moving vehicles.

3. The optimization technique is used to model the edge-assisted autonomous driving for

optimal autopilot VNFs allocation on edge servers.
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Proposed Edge Autopilot Architecture

The proposed architecture for edge autopilot consists of three layers as follows:

1. Centralized Cloud Layer: represents the cloud autopilot, is responsible for processing

a part of the autopilot VNFs.

2. Distributed Edges Layer: consists of edge servers responsible for autopilot VNFs

analyzing and processing.

3. Autonomous Vehicles Layer: represents the autonomous vehicles that request autopi-

lot VNFs services offloading because of the scarcity of local resources.

Proposed Edge Autopilot Protocol

1. Autopilot VNFs: the autonomous vehicles can offload some autopilot VNFs for

processing. It requests the edge server in the near gNB or RSU to enable edge resource

discovery and allocation.

2. Resources Discovery in Edge Servers: when the gNB receives the autopilot VNFs,

it selects the edge servers that satisfy the VNFs requirement in terms of computing

resources and network capabilities.

3. Autopilot VNFs Offloading: when the edge servers are selected, the gNB starts the

allocation process by placing each VNF in the optimal edge server. Still, the cloud

may represent the alternative solution in the case of a lack of resources at the network

edge to ensure the autopilot VNFs processing.

4. Vehicle-Edge/Cloud Connection: in the last step, the gNB forwards the control

commands to the autonomous vehicle by creating a communication link between the

edge/cloud and the autonomous vehicle while satisfying its requirements.

Problem Formulation for Edge Autopilot

We proposed an optimal model for autopilot VNFs placement (OVEAP) based on the

optimization technique. It takes as input the computing resources for each edge server. Then,
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it allows to allocate optimally the autopilot VNFs upon the edge servers. The autopilot VNFs

are offloaded to the edge server to reduce the processing time and enhance driving safety.

The OVEAP model is formulated as follow:

1. OVEAP Parameters and Decision Variables

Table 3.9 outlines the parameters and decision variables of the proposed OVEAP

model.

Table 3.9 OVEAP Parameters and Decision Variables

Notations Definition
E The set of Edge Autopilots in

terms of services chain.
V The set of Edge Autopilot VNFs.

Each Edge Autopilot VNF is com-
posed of slices.

A The set of Autonomous Vehicles.
M The set of MEC servers at the net-

work edge.
Lea The number of VNFs in each Edge

Autopilot ea ∈ E. It represents the
length of the Edge Autopilot.

Gmec The maximum computing capacity
vGPU available in the MEC server
mec ∈M.

gea,vn f Required vGPU resources for the
VNF slices vn f of the Edge Au-
topilot services chain ea.

Decision variables Definition
amec

ea,vn f A binary variable that allocates the
Edge Autopilot VNF vn f ∈ V of
the Edge Autopilot ea ∈ E to the
MEC server mec ∈M.

bmec A binary variable that indicates if
the MEC server mec∈M is used to
process the edge autopilot VNFs.

The binary variable a indicates the allocation of the autopilot VNF (ea,vn f ) on the

MEC server mec.

amec
ea,vn f =


1 if the VNF v f n of the autopilot service chain ea

is allocated on the MEC server mec

0 Otherwise

(3.49)

Further, the binary variable y is used to track the MEC server usage. The variable

formulation is as follows:
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bmec =

1 if the MEC server mec ∈M is used

0 Otherwise
(3.50)

2. OVEAP Model Formulation

The OVEAP objective function (3.51) allows to maximize the autopilot VNFs place-

ment in the edge servers. The general model formulation is as follows:

max ∑
ea∈E

∑
mec∈M

amec
ea,Lea

− ∑
mec∈M

bmec (3.51)

Subject to

∑
mec∈M

amec
ea,vn f ≤ 1, ∀ea ∈ E,vn f ∈V (3.52)

∑
ea∈E

∑
vn f∈V

gea,vn f ×amec
ea,vn f ≤ Gmecbmec,

∀mec ∈M

(3.53)

∑
mec∈M

amec
ea,vn f = ∑

mec∈M
amec

ea,vn f+1,∀ea ∈ E,

vn f ∈V \{Lea}
(3.54)

bmec ≤ ∑
ea,vn f

amec
ea,vn f ,∀mec ∈M (3.55)

0≤ amec
ea,vn f ≤ 1,∀mec ∈M,ea ∈ E,vn f ∈V (3.56)

0≤ bmec ≤ 1,∀mec ∈M (3.57)
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The model constraints are detailed as follows:

Constraint (3.52) guarantee that the VNF slices vn f ∈V of the autopilot chain ea ∈
E is placed on a unique MEC server mec ∈ M. Constraint (3.53) ensures that the

vGPU resources in the selected MEC server is enough to process the VNF slices of

the autopilot chain. Constraint (3.54) ensure the respect of VNFs chaining during

the process in the edge servers, where the allocation of one VNF should be done

completely in the edge server to allocate the next VNF in the chain. Constraint (3.55)

are formulated to select the minimum number of edge servers for the VNFs allocation.

Finally, constraints (3.56) and (3.57) guarantee the non-negativity of the decision

variables.

3. OVEAP complexity

OVEAP is NP-hard which is feasible only with a few instances within a reasonable

time in small-scale networks. For this, a suitable algorithm for dense networks is

presented in the next chapter.

Edge Autopilot Performance Evaluation

We considered different autopilot VNFs: vPerception, vLocalisation, vPlanner, and vControl.

The service chain is composed of a set of autopilot VNFs. The objective is to place autopilot

services in the edge server while guaranteeing the VNFs chaining. Tables 3.10 and 3.11 show

the different configurations used in the evaluation.

Table 3.10 Autonomous Vehicles Configuration.

Autonomous Vehicles Autopilot Chain
Vehicle 1 vPerception
Vehicle 2 vPerception, vLocalisation
Vehicle 3 vPerception, vLocalisation, vPlanner
Vehicle 4 vPerception, vLocalisation, vControl
Vehicle 5 vPerception, vLocalisation, vPlanner, vControl

Embedded Autopilots Number of servers
Embedded vehicle 1

1. Key Performance Indicators (KPIs) To evaluate the proposed model, we proposed the

following KPIs:
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Table 3.11 Summary of autopilot edge servers (AES) parameters.

Parameter Min value Max value
Number of AES 3 5

Number of Autonomous vehicles 5 (small scale) 100
Available vCPU in AES 50 (slot) 200 (slot)
Available vGPU in AES 10 (slot) 150 (slot)
Available vRAM in AES 50 (Gigabytes) 200 (Gigabytes)

Available vStorage in AES 10 (Terabytes) 100 (Terabytes)
Available Bandwidth in AES 10 (Mbps) 150 (Mbps)
Latency in Autopilot Chain 1/8 (ms) 1 (ms)

(a) Average Network Delay: it represents the network delay between the edge

servers and the autonomous vehicles.

(b) Service Time: represents the end-to-end time to accomplish the service from the

autopilot VNF submission to the results forwarding to the autonomous vehicle.

It is depend on the offloading decisions and availability of resources where an

efficient service has low execution time.

(c) Processing Time: represents the duration needed to complete the execution of

the autopilot VNFs. In general, the processing time is related to the availability

of resources in edge servers.

2. Comparative Analysis

To assess the behavior of the proposed OVEAP at the network edge, we compared

three different computing architectures. We summarize the architecture as follows:

(a) Embedded Computing: allows the processing of autopilot VNFs in the au-

tonomous vehicle (local processing) while the edge is still active to receive

VNFs.

(b) Edge Computing: this architecture prioritizes the edge servers for autopilot

VNFs processing.

(c) Cloud Computing: this architecture allows the use of the centralized cloud for

autopilot VNFs processing.

3. Obtained Results
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3.2 Vehicular Edge Computing

Figure 3.19 outlines the performance evaluation of the proposed approach.

In Figure 3.19a, We plot the network average delay between autonomous vehicles and

the computing servers. The result shows that the delay is low for embedded computing

because the processing happens locally, while the delay of the edge is lower than

the cloud since the edge offers a short response time because is near to autonomous

vehicles. In Figure 3.19b we show that edge reduces the service time compared to

cloud architecture. Indeed, the heavy autopilot VNFs are offloaded to the near edge

for efficient processing. In Figures 3.19c and 3.19d we show that the edge computing

reduces the service/processing time compared to both cloud and embedded computing

since the edge offer efficient processing service near to autonomous vehicles.

3.2.3 Use Case 3: Edge Computing Assisted Autonomous UAV

We propose to use autonomous mobile UAVs as mobile edge servers to offer video chunks to

connected vehicles in vehicular edge computing architecture. Each connected vehicle inside

the city can receive video chunks from a UAV(s) that cover the vehicle route.

Proposed UAV-assisted V2X Architecture

Figure 3.20 display the proposed Follow Me UAV (FMU) architecture with the communication

entities described as follow:

1. Connected Vehicles: represent the end-user layer consists of a high number of vehicles.

2. Autonomous Mobile UAVs: is an intermediate layer that represents the MEC servers

responsible for reducing the communication load on the centralized cloud. It guarantees

ultra low latency communication (ULLC) and safety for sensitive delay applications.

In ULLC, UAVs serve the high dynamic connected vehicles according to their quality

requests.

3. The Centralized Cloud: represents a set of servers that provide high computing and

storing services for insensitive delay applications.
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Fig. 3.19 OVEAP Performance Evaluation [5].

FMU Optimization Algorithm

1. The Optimal FMU (OFMU) Algorithm The FMU objective is to find the shared path

between UAVs and connected vehicles to maximize the vehicles coverage using avail-

able UAVs. For this, we propose an optimal model based on optimization technique.

Table 3.12 displays the used notations in the FMU model.

Let S = {s1,s2,s3, ...,sn} represent UAVs routes as a collection of sets.

Let W = {w1,w2,w3, ...,wn} a collection of sets represent the energy consumed in

each UAV routes.
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Cloud

Connected Vehicle

UAV Communication Range

UAV for
Delivery

UAV for
Journalism

UAV for
Surveillance

Video Chunks

Fig. 3.20 Proposed FMU Architecture [3].

Table 3.12 The used notations in the FMU model.

Notations Definition
C Cloud service.
CV The set of Connected Vehicles cv ∈CV = {1..|CV |}
U Set of connected UAVs in service.
Dv,u Vehicle v ∈V consumes the content from u ∈U
Cv,c Vehicle v ∈V is connected with c ∈C
huav The handover delay required by UAV uav ∈UAV
wuav The energy consumption required by UAV uav ∈UAV
Muav

max Maximum association links of the UAV uav ∈UAV
θ It represents the minimum threshold of the covered

connected vehicles cv ∈CV

E = {e1,e2,e3, ...,em} is a set of adjacent segments ei, i ∈ {1..m} represent the vehicle

route where
⋃

S = E.

H = {h1,h2,h3, ...,hm} a set of handovers of UAVs route.
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The main objective is to find a subset X of S such that
⋃

X = E and |X |, h(
⋃

X) are

small as possible while minimizing the UAVs energy consumption and the number of

handover.

To clarify better the proposed OFMU algorithm, we show in Figure 3.21 an example

of UAV selection to cover the vehicle route while minimizing the number of handovers

and the UAVs energy cost. We have as an input the predicted vehicle’s route using

deep learning (detailed in the Section 3.1.3), and the UAVs routes with predefined

energy cost for each UAV. The OFMU algorithm selects the most cost-effective UAVs

according to the algorithm constraints.

e1 e2 e3 e4

Connected 
Vehicle

UAV for
Journalism

UAV for
Security

UAV for
Delivery

Handover (h)

The Parts of UAVs Routes 
Shared With The Vehicle

Connected Vehicle Route (E)

s1

s2

s3

Fig. 3.21 Abstraction Model For FMU [3].

2. Decision variables

The binary variable x indicates the UAV usage. It is formulated as:

xuav =

1 if the UAV uav is active

0 Otherwise
(3.58)
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The binary variable y represents the association link between the UAV and the vehicle.

It is defined as follow:

yuav
cv =

1 if CV cv is associated with UAV uav

0 Otherwise
(3.59)

The binary variable z represents the communication links among UAVs. It is defined

as follows:

zuav1,uav2 =


1 if UAV uav1 is within UAV uav2’s

communication range

0 Otherwise

(3.60)

3. The FMU exact formulation and constraints

The objective function of the problem is formulated as follows:

min ∑
uav∈U

xuav(αhuav +(1−α)wuav) (3.61)

Where α is a metric related to the operator strategy.

Moreover, the OFMU constraints are defined as follows:

Maximum Coverage: constraint (3.62) guarantees the maximum coverage of vehicles

using UAVs:

∑
{uav|e j∈suav}

xuav ≥ 1 ∀e j ∈ E (3.62)

Minimum Energy: guarantees that each UAV must respect the maximum energy

threshold authorized for mission achievement:

∑
uav∈U

xuav×wuav ≤ |N|×W (3.63)

The set W represents the maximum energy consumed for each UAV.
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Minimum Handover Delay: This constraint guarantees that the UAV route handover

must be lower as possible:

∑
uav∈U

xuav×huav ≤ H (3.64)

The set of handover H, is the number of handover for each UAV route.

Dynamic Association: this constraint ensures that the connection of connected vehi-

cles is not permitted to deleted UAVs:

∀uav,cv : yuav
cv ≤ xuav (3.65)

Single UAV-CV Association: ensures that a connected vehicle can be served by at

most one UAV:

∀cv ∈CV : ∑
uav∈UAV

yuav
cv ≤ 1 (3.66)

UAV Association Capacity: represents the upper bound number of connected vehicles

that can be covered by one UAV:

∀uav : ∑
cv∈CV

yuav
cv ≤Muav

max (3.67)

QoE Constraints: this constraint ensures that the percentage of non successfully

served vehicles should not exceed a predefined threshold θ . The constraint formulation

is as follow:

∑
uav∈UAV

∑
cv∈CV

yuav
cv ≥ (1−θ)×|CV | (3.68)

Bi-connection: this constraint ensures the bi-connection between the UAVs:

∑
uav1,uav2∈UAV

zuav1,uav2 ≥ 2 (3.69)
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Non negativity: this constraint ensure the non-negativity of the used variable for the

UAV usage:

xuav ∈ {0,1} ,∀uav ∈ {1...n} (3.70)

FMU Performance Evaluation

To assess the efficiency of the proposed approach we proposed different communication

scenarios as follows:

1. Low Quality Cloud (LQC): The connected vehicles receive low-quality video chunks

for live streaming from the cloud only.

2. Low Quality Edge (LQE): The UAVs (edge servers) are introduced as intermediate

nodes to offer a low-quality video for live streaming to connected vehicles.

3. Medium Quality Cloud (MQC): The cloud offers medium-quality video for live

streaming to connected vehicles.

4. Medium Quality Edge (MQE): The intermediate UAVs offer medium-quality video

for live streaming to connected vehicles.

5. High Quality Cloud (HQC): The cloud offers high-quality video for live streaming

to connected vehicles.

6. High Quality Edge (HQE): The UAVs offer high-quality video for live streaming to

connected vehicles.

For the above cloud scenarios (LQC, MQC, and HQC), the vehicles are connected directly

to the cloud without the use of edge servers (UAVs).

Table 3.13 outlines the FMU parameters.

Figure 3.22a shows the lost video chunks due to mobility. From the figure, we show

that the use of edge servers (UAVs) decrease the lost video chunks compared to the use of

cloud only. This lead to increase both the user satisfaction index and the QoS. Moreover,

from the obtained results, the use of suitable computing is recommended (cloud and/or edge)

regarding the streaming quality and the Service Level Agreement between network operators

and Over the Top (OTT) providers.
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Table 3.13 FMU parameters.

Parameter Value
Max Data Download 4000 Megabytes
Number of UAVs per zone (Min/Max) (2/10)
Number of Vehicle (Min/Max) (100/1000)
Max Low Quality Video Size 200 Megabytes
Max Medium Quality Video Size 400 Megabytes
Max High Quality Video Size 600 Megabytes

Figure 3.22b, we measure the average network delay for the proposed scenarios against

the number of vehicles. The result show that the UAV edge layer reduces the network delay

which enhances the quality of service. We remark that all the edge based scenarios (LQE,

MQE, and HQE) gives less network delay comparing to the cloud based scenarios (LQC,

MQC, and HQC). Therefore, the results suggest always the use of UAV as mobile edges.

Figure 3.22b shows the average network delay for different video quality. The results

show that the use of UAV as edge servers reduce the delay compared to the use of cloud only

because the content (video chunks) is near to connected vehicles which leads to decrease the

delay and enhances the QoS.
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Fig. 3.22 System Evaluation for Different Communication Scenarios [3].
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Conclusion

We proposed different optimal models based on optimization techniques to enhance the

QoS and improve user satisfaction according to the offered services. We studied two

different communication technology-based edge computing called service offloading and

vehicular edge computing, where for each technology we proposed optimal models each one

is dedicated to a problem. The common factor between all the proposed models is the high

complexity that restricts the use of these models. This makes its usability in only small-scale

networks with a limited number of devices. For this, approximate algorithms are proposed in

the next chapter to support the huge amount of requests and connected users in large-scale

networks.
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Chapter 4

Large Scale Solutions For Edge

Computing Networks

Large-scale algorithms are introduced as the alternative solution for the optimal solutions in

dense networks due to their feasible execution time and the given efficient solutions. Different

large-scale algorithms are proposed by the researchers to resolve several networks problems

such as services placement at the edge servers taking into account the network, storage, and

computing resources constraints. Most of these algorithms proved their efficiency in dense

networks with a huge amount of produced data and users demands.

4.1 Service Offloading In EC

4.1.1 Use Case 1: 5G VNF Slices Placement in EC

We proposed to use Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL)

techniques for large scale VNF slices placement in edge computing.

The RL algorithm

In this part, we present our proposed scheme for online VNF slices placement with reinforce-

ment learning. We formulate the problem (3.3) and represent it as a RL model.

Q-learning is the main algorithm used for the RL model. The Q-function allows estimating

the future VNF placement reward. We define hereafter the proposed model.
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Ac�on (Placement)

State

Reward

Server 1
Server 2
Server 3
Server 4
Server 5
Server 6
Server 7

CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

Agent

Fig. 4.1 RL application to VNF placement in Edge Computing [7].

1. The proposed model

We consider a cluster with the CPU as a computing resource. The incoming VNF

slices to the cluster are jobs that arrive in discrete time steps. The cluster manager

places the VNF in the server according to the VNF size and the available CPU slots in

the server. Figure 4.1 show the RL application to VNF placement in edge computing.

2. The proposed formulation

We represent the system state as the current VNF slices placement in the server slot.

Figure 4.1 (right side) display the proposed state-space (edge server) that is considered

as the environment.

The action represents the placement function that takes the decision on the efficient

placement of the VNF slice by taking into consideration the server capacity in terms of

CPU slots. Moreover, the agent can not place a VNF slice in an occupied server slot.

The action allows the agent to process one by one the incoming VNFs until process all

the arrived requests.

The proposed reward represents the placement cost of VNFs. It is calculated based on

the used server after performing an action. It is defined as follows:

Rt =

100× i if i servers are opened

0 Otherwise.
(4.1)

100



4.1 Service Offloading In EC

As shown in the equation 4.1, the main objective is to minimize the total used servers.

In other words, the objective of the agent is to minimize the total discounted cumulative

rewards.

In Algorithm. 1 we present the proposed RL algorithm.

Algorithm 1 : RL-driven VNF slices placement in Edge Computing Over 5G Network
[7].
1: Input: Servers, the number of slots per Server (CPUs or GPUs), the number of VNFs, and the number of

slices per VNF
2: Output: Q∗(state(s),action(a))
3: Initialise Q(state(s),action(a)) arbitrary.
4: Observe an initial state s (current allocation and first incoming VNF slice)
5: repeat
6: Select and place a VNF slice on the edge computing server
7: r, s′← Observe the placement cost r and the new state s′ (new allocation and another incoming VNF

slice)
8:

Q(s,a) = Q(s,a)+α(r+ γ×max
a′

Q(s′,a′)−Q(s,a)) (4.2)

9: s = s’
10: until no incoming VNF slices

The DRL algorithm

In the DRL algorithm, the deep neural network is used to approximate the RL algorithm. A

succession of neural network layers are used to map the input to the output (state to action).

The Stochastic Gradient Descent (SGD) algorithm [118] is used in the deep neural network to

train the deep q-learning network (DQN) [119]. The objective of the DRL model is to reduce

the complexity of both the exact model (3.3) and the RL model by reducing the iterations to

be considered in the optimization. Algorithm 2 presents the proposed DRL algorithm.

Performance Evaluation

To assess the performance of the proposed algorithms, we evaluate three key performance

indicators: placement time, server utilization, and energy consumption.

For each environment, we present a set of parameters. First, servers configuration as

mentioned in table 4.1. Then, we specify the VNF configuration as depicted in table 4.2.

Figure 4.2 shows the performance evaluation of the proposed algorithms: the exact ILP

model (3.3), Q-learning, and DQN in dense networks.
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Algorithm 2 : DRL-driven VNF slices placement in Edge Computing Over 5G Network
[7].
1: Input: Servers, the number of slots per Server (CPUs or GPUs), the number of VNFs, and the number of

slices per VNF
2: Output: Q∗(state(s),action(a))
3: Initialize a reply memory D
4: Initialise action-value Q with random weights
5: Observe initial state s
6: repeat
7: Select an edge computing server a .

• with probability ε select a random edge computing server

• Otherwise select the server that has the maxa′Q(s,a′)

8: Place the VNF slice on the selected edge computing server a.
9: r, s′← Observe the placement cost r and the new state s′ (new allocation and another incoming VNF

slice)
10: store the experience {s,a,r,s′} in the replay memory.
11: sample a random transition from the replay memory.
12: Calculate the target for each mini-batch transition (r+ γ×maxa Q(s′,a′))
13: Train the Q network using the following loss

Loss =
1
2
∗ (r+ γ×max

a′
Q(s′,a′)−Q(s,a))2 (4.3)

14: s = s’
15: until no incoming VNF slices

Table 4.1 Servers Configuration.

Environments The number of servers The number of cpu in
servers (slots/servers)

Environment 1 (Small) 5 5/5
Environment 2 (Medium) 10 3/3, 4/3, 5/2, 6/2
Environment 3 (Large) 15 3/2, 4/3, 5/4, 6/3, 7/3

Table 4.2 VNF Configuration.

VNF Configuration The number of vnf The number of slices in vnf
(slices/vnf)

Configuration 1 5 2/3, 3/2
Configuration 2 10 1/3, 2/3, 3/4
Configuration 3 15 1/8, 2/5, 3/1, 4/1

Figure 4.2a shows the placement time for the proposed algorithms. From the figure, we

show that when the number of VNF increases, the placement time increase for the three

models while the time for the ILP is very high compared to the other algorithms that place

VNF efficiently in terms of time.
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Fig. 4.2 Performance Evaluation of VNF Slices Placement in the edge using ILP, Q-Learning,
DQN in Large Scale Networks [7].

Figure 4.2b display the server utilization for both Q-learning and DQN in dense networks.

From the figure, we show that the DQN algorithm is more efficient compared to the Q-

learning algorithm.

Figure 4.2c displays the energy consumption in the edge when using the proposed

algorithms. We show that the ILP gives less energy consumption compared to both Q-

learning and DQN when the number of VNF is less than 400. While the energy is very

high for the ILP compared to the other algorithms when the number of VNF is higher than
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400 because the ILP uses high computation resources. Moreover, the DQN is an efficient

algorithm with lower energy consumption.

4.1.2 Use Case 2: Service Offloading in Virtual Mobile Edge Computing

(SO-VMEC)

Deep Reinforcement Learning Model for SO-VMEC

The exact optimization algorithm is a high-cost model in terms of computation resources,

which is not adapted for dense networks. For this, we use the deep reinforcement learning

(DRL) to solve the exact model (3.26) that places the VNF slices in virtual edge servers.

1. The Proposed DRL Algorithm

We used the equation Q(s,a) = r(s)+ γ ×maxa′Q(s′,a′) to update the state-action

pairs. Then, the policy equation π(s) = maxa Q(s,a) is used to select the action. By

using deep learning, the Q-values are updated based on the loss value in minθ ||
r +maxa′Q(s′,a′)−Q(s,a;θ ||2 + || λ × θ ||2 where r represents the reward, and

θ represents the shared weights in the neural network. Deep Q-learning (DQN)

represents a DRL instance. It is the brain of the proposed SO-VMEC where the agent

is responsible for the placement process.

Figure 4.3 display the DRL process, The main objective is to place the VNF slices in

the VME.

Ac�on (O�oading)
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Reward

Device 1

Device 2

Device n

.

.

.

CPU
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Storage

CPU
GPU
RAM
Storage

CPU
GPU
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Storage

Neural Network

Observa�on

Environment

 (Selected VME)

Fig. 4.3 Deep Reinforcement Learning for VNF Slices Offloading [1].

In the algorithm 3, we present the detail of the proposed DRL model.
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Algorithm 3 : Deep SO-VMEC Algorithm for Service Offloading Optimization [1].
Input: The big network resources image (i.e., environment settings)
Output: Q∗(state(s),action(a))
Do a feed-forward pass for the current states to get predicted Q-values for all actions.
Do a feed-forward pass for the next states and calculate maximum overall network outputs maxa′Q(s′,a′).
Set Q-value target for action to r+ γ×maxa′Q(s′,a′) (use the max calculated in step 2). For all other actions,
set the Q-value target to the same as originally returned from step 1, making the error 0 for those outputs.
Update the weights using back-propagation. The loss function that should be minimized is || (r +
maxa′Q(s′,a′)−Q(s,a)2 ||2

To simplify the behavior of the DQN algorithm during the execution, the agent must

be able to match VNF slices to the server slots by minimizing the occupied servers.

Performance Evaluation

To assess the efficiency of the proposed approach, we compare the DQN algorithm with the

exact ILP model (3.26) using the parameters mentioned in table 3.5. We measured both the

number of selected VME and the time.
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Fig. 4.4 VME Based on ILP and DQN Models For VNFs Slices Offloading [1].

Figure 4.4 display the performance evaluation of the proposed SO-VMEC based on both

DQN and ILP algorithms.
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Figure (4.4a) displays the number of IoT devices in VME for different number of requests

(VNF slices). The results prove the efficiency of the proposed DQN algorithm since it gave a

solution equal/converge to the optimal ILP model.

Further, Figure (4.4b) shows the required time to select the VME for different VNF slices

requests. The obtained results show that the DQN algorithm is efficient in terms of time in

dense networks. In addition, the ILP is feasible since it gave a good selection time.

4.1.3 Use Case 3: Service Function Chains Orchestration in Virtual

Mobile Edge Computing (VMEC)

The exact OSPV algorithm (3.36) is a high-cost model in terms of computation resources,

which is no suitable for dense network. For this, we propose a heuristic algorithm for SFC

placement in VMEC-IoT architecture.

ESPV: Efficient SFC Placement in VMEC over AI-IoT

The optimization targets a high number of SFC instances, where the objective relies on

the Bin Packing problem [120]. The proposed algorithm allows satisfying the large SFC

instances to deal with dense networks. it is noteworthy that the optimal OSPV algorithm

could not be used for dense networks due to its complexity.

Algorithm 4 show the ESPV details.

Algorithm 4 : Efficient SFC Placement in VMEC (ESPV)
1: Input: Sc, Vs, Gnb, V , Cloud
2: Output: Z
3: repeat
4: repeat
5: Predict mobility sequences (x,y) of ve ∈V using deep learning (Section 3.1.3)
6: Predict energy values of ve ∈V using deep learning (Section 3.1.3)
7: until All servers ve in V are verified.
8: repeat
9: Check future positions from the prediction of ve.

10: Check resource availability (vCPU, vRAM, vGPU, vStorage, and Energy) in the server ve.
11: until Find a server ve to place the vs (True or False).
12:
13: if (resource available in ve) then
14: Place the VNF slices vs on the server ve.
15:
16: else
17: Offload the VNF slices vs to the Cloud.
18: end if
19: until no incoming SFC (VNFs).
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Performance Evaluation

To measure the efficiency and feasibility of the proposed algorithm, we propose different

system parameters to cover real-world scenarios as shown in the table 4.3.

Table 4.3 Summary of the parameters.

Parameter Min value Max value
Number of gnb 3 5
Number of IoT 3 10

Available vCPU in IoT 5 (slot) 20 (slot)
Available vGPU in IoT 1 (slot) 15 (slot)
Available vRAM in IoT 20 (Megabytes) 2000 (Megabytes)

Available vStorage in IoT 50 (Megabytes) 20000 (Megabytes)
Available Energy in IoT 25 (Energy unit) 100 (Energy unit)

1. Key Performance Indicators (KPIs)

To study the performance of the proposed algorithm, we propose to measure the

following KPIs:

(a) The Total Allocated Servers: represent the number of used servers (IoT devices)

in the VME.

(b) The Placement Time : represent the required time for SFC VNFs placement.

2. Comparative Analysis

To assess the performance of the proposed approach, we compare the proposed ESPV

algorithm with our OSPV exact model and the exact model (other) in [121].

3. Obtained Results

Figure 4.5 displays the total allocated servers and the required time for the EPSV and

OPSV compared with other algorithm.

Figure 4.5a shows the total servers utilization for SFC VNFs placement, we show that

both the exact algorithms (OPSV and Other) give equal results for servers allocation

cost where the EPSV algorithm allocates more servers but is near the optimal model.
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Fig. 4.5 Total Resources Utilization for Different Flow Rates of SFC VNFs.

Figure 4.5b displays the SFC VNFs placement time, we show that the OPSV gives

a lower time compared with the Other algorithm which proves the efficiency our

optimal OPSV model. Moreover, the ESPV algorithm gives a very low placement

time compared to the exact models, since it provides an efficient placement cost with a

lower time.

4.2 Vehicular Edge Computing

4.2.1 Use Case 1: Edge Computing Assisted Vehicular Networks for

Service Offering

Rideshare Taxi Selection and Service Offering Algorithm

The formulated SCP problem (model 3.46) is NP-complete. For this, Algorithm 5 is proposed

to deal with dense networks. it uses only a subset of the main set of taxi paths which by

consequence reduces the execution time. This subset contains only the taxis that share part(s)

of the route with the client vehicle, which minimize the data processing complexity.
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Algorithm 5 : Maximum Coverage For Rideshare Taxi Selection [8].
1: Input: RideshareTaxisRoutesList, VehiclesRoutesList
2: Output: RideshareTaxisList
3: Find rideshare taxis that cover each vehicle route.
4: for (i in VehiclesRoutesList) do
5: for ( j in RideshareTaxisRoutesList) do
6: if (Intersect(i, j) ! = Null) then
7: append j in RideshareTaxisList(i)
8: end if
9: end for

10: end for
11: return RideshareTaxisList.

Performance Evaluation

We defined a set of parameters for each proposed scenario such as the number of taxis and

client vehicles where both of them use a predefined route to reach the destination. The route

of each vehicle is represented as a connected road segments in Rome city.
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Fig. 4.6 Real Routes With Taxis Coverage [8].

Figure 4.6 shows the real routes with taxis coverage in two different cases. In the figure

4.6a we show that there are only some few coverage of taxis in short distance, where in

Figure 4.6b we show that the coverage of taxis is large in long distance.

4.2.2 Use Case 2: Edge Computing Aided Autonomous Vehicles

The AI-defined optimization tries to be an alternative solution for exact algorithms by the

integration of AI models in the edge to facilitate the analysis and the process of data especially
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for the huge amount of data coming from different sources that need to be processed efficiently

in a short time.

DVEAP: DRL-based autopilot Placement Algorithm

The AI-edge for autopilot VNFs placement provides many benefits including efficient data

processing in a short time that is the important factor for autonomous driving applications,

which by consequence improve the network performance and of course the QoS.

1. The Proposed RL Model

We propose a distributed edge servers that process autopilot VNFs coming from

autonomous vehicles. At each time, the edge manager chose the efficient server to

place the VNFs. We propose an RL model to manage the VNFs placement at the

network edge. The different RL steps are described as follows:

The state space: the state st represents the current placement of autopilot VNFs on

server slots.

The action space: the action at represents the placement process of the autopilot VNF

on the server taking into account the server capacity.

The reward space: represent the placement cost r. It is measured as the number of

used servers after the VNF placement, is formulated as follows:

rt =

i if i Edge Servers are Occupied

0 Otherwise.
(4.4)

As shown in the equation 4.4, the objective of the agent is to minimize the used servers

by reducing the total rewards.

2. The Proposed DRL Algorithm

The deep neural network is used in the DRL algorithm by adding a succession of neural

network layers to map the input to the output (state to action). The main objective of

the DRL algorithm is to reduce the placement complexity compared to the optimal

OVEAP model (3.51). In algorithm 6 we present the DRL details.
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Algorithm 6 DRL-based autopilot Placement (DVEAP) at The Network Edge [5].
1: Input: E A , V N F , Lea, ME C
2: Output: Q∗ (state(s),action(a))
3: Initialize a reply memory D
4: Initialise action-value Q with random weights
5: Observe the initial state s
6: repeat
7: Select a server a .

• with probability ε select a random server

• Otherwise select the server that has the maxa′Q(s,a′)

8: Place the autopilot SFC’s VNF on the Edge Computing Server a.
9: r, s′ ← Observe the incurred allocation cost r and the new edge state s′ (new allocation and another

incoming autopilot SFC’s VNFs)
10: Store the experience {s,a,r,s′} in the replay memory.
11: Sample a random transition from the replay memory.
12: Calculate the target for each mini-batch transition (r+ γ×maxa Q(s′,a′))
13: Train the Q network using the following loss Loss = 1

2 ∗ (r+ γ×maxa′Q(s′,a′)−Q(s,a))2

14: s = s’
15: until No incoming autopilot VNFs from all the SFC

Performance Evaluation

In figure 4.7 we compare the DVEAP algorithm with the exact OVEAP model (3.51) in terms

of offloading time using the parameters in Tab.3.10 and Tab.3.11. From the figure we show

that the DVEAP decrease the offloading time compared with the exact OVEAP model which

proves the efficiency of the DRL algorithm for autopilot VNFs offloading.
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4.2.3 Use Case 3: Edge Computing Assisted Autonomous UAV

The optimal OFMU model (3.61) is NP-hard which is not suitable for dense networks

especially for the video streaming application that requires a short response time. For this, an

approximate algorithm is proposed to deal with dense networks and support ultra-low latency

applications.

The Approximate FMU (AFMU) algorithm

The proposed AFMU algorithm is based on the scalable weighted set cover problem (WSC)

[122], it aim to select the UAVs with the high energy cost to satisfy the client vehicles

requests. Algorithm 7 show the main steps of the AFMU solution where C represent the set

of UAV, and α the average energy cost. The AFMU algorithm chooses the set which is the

most cost-effective.

Algorithm 7 : Heuristic algorithm for FMU (AFMU) [3].
1: Input: C, E, S
2: Output: Picked UAV sets
3: C← 0
4: while C != E do
5: Find the UAV whose energy cost effectiveness is smallest, say S
6: Let α = Cost(S)

|S−C|
7: For each e ∈ S−C, set cost (e) = α

8: C←C
⋃

S
9: end while

Table 4.4 show the complexity and the run-time of both OFMU and AFMU algorithms.

Table 4.4 OFMU and AFMU Algorithms Complexity.

Metrics OFMU AFMU
Algorithm
complexity

NP-Hard O(|E| ∗ log|S|)

Run-time A few seconds in
Small Scale

Network; a few
minutes in Large
Scale Network

A few second in
Small/Large scale

Network
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Performance Evaluation

To assess the performance of the proposed AFMU algorithm, we compare the obtained

results with the optimal OFMU model (3.61). Figure 4.8 shows the algorithms evaluation for

both selection time and energy cost.

Figure 4.8a displays that the OFMU algorithm is efficient because it requires a short time

for UAV selection. In addition, the AFMU algorithm gives a good UAV selection time.

Figure 4.8b shows that the OFMU outperforms the approximate AFMU algorithm in

terms of cost, while both are feasible for UAV selection.
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Fig. 4.8 OFMU & AFMU Evaluation [3].

Conclusion

Large-scale algorithms are suitable for the high number of user requests in dense networks.

It offers efficient solutions to deal with user satisfaction especially the new generation of

applications that requires a short response time with efficient processing. We proposed

different large-scale algorithms for both service offloading and vehicular edge computing to

deal with dense networks. The common factor of these algorithms is the lower complexity

compared to the optimal models, this makes these algorithms suitable for the high number of
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devices and users’ requests. It gives good results for different metrics such as time and cost,

where it was efficient and feasible for all the studied problems.
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Chapter 5

Conclusion and Perspectives

This thesis presents edge computing for the Internet of things technology. The first chapter

presents the general introduction. We reviewed in the second chapter the studied technologies,

Internet of things, cloud computing, mobile cloud computing, edge computing, and mobile

edge computing. After that, we detailed the relation and the evolution of these technologies.

The second part of the chapter presents a review of the related works of two major edge

computing research domains, service offloading and vehicular edge computing.

The third chapter presents the proposed optimal models to optimize the edge usage for

different metrics such as time and resource utilization. We proposed optimal models for tasks,

VNFs, and SFCs orchestration at the network edge (VEnPA, SO-VMEC, OSPV) by taking

into account the computing resources constraints. Moreover, we proposed other optimal

models for vehicular edge computing including maximum coverage (MVEC) for online

video streaming applications by using taxis as mobile edge servers inside the city, optimal

edge-autopilot VNFs offloading at the network edge for autonomous driving (OVEAP), and

UAV-edge model (OFMU) for online streaming by using autonomous UAV as mobile edge

servers. The numerical results show that the proposed algorithm gives good results in terms

of resource utilization at the network edge for small-scale networks.

In chapter four, to deal with dense networks we proposed large-scale algorithms that support

a huge amount of devices, data, and user requests. Heuristic algorithms are proposed for

SFC orchestration (ESPV), maximize the vehicles coverage (AFMU) by mobile edge servers

(Taxis and UAV). Moreover, The artificial intelligence algorithms (Q-learning and Deep

Q-learning (DQN)) are used for VNFs placement, edge-autopilot VNFs placement (DVEAP),
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and autonomous UAV navigation. The obtained results prove the efficiency and the feasibility

of the proposed solutions compared to optimal algorithms.

Despite the existing solutions outlined above, several concerns and challenges must be

investigated in order to fully integrate edge computing on top of IoT applications. The

following challenges examine the major issues, as well as new concepts and guidelines that

the research community should take seriously in future works.

• Service availability must be ensured for the next generation of edge computing applications

through the use of various mechanisms such as monitoring, prediction, and system backups.

• High mobility is an important factor in the Edge-IoT system because most connected

devices, such as vehicles, drones, and mobile devices, are highly mobile, resulting in frequent

service degradations and link failure between servers and devices which decreases the QoS

of the Edge-IoT system. For this, efficient and developed models for obstacles detection and

traffic prediction, etc. need to be proposed to overcome the mobility issue.

• The edge computing architecture is made up of several distributed systems, energy con-

sumption is projected to be considerable, raising expenses. As a result, many efforts must

be made to tackle this problem by developing efficient energy models in edge computing

systems, particularly virtual and Adhoc edge systems, such as resource optimization, Relying

more on environmentally friendly energy, etc.
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1. Introduction générale

1.1 Motivation

L’Internet des objets (IoT) a été un facteur déterminant dans le développement de l’industrie

de la haute technologie. Avec le grand nombre d’appareils et de profits à réaliser au cours

des prochaines années, L’IoT aura un impact profond et dominant sur l’industrie de la

haute technologie en général et sur l’industrie des semi-conducteurs en particulier. Les

appareils IoT peuvent en fait être n’importe quel type de capteurs et de puces avec différentes

capacités fabriqués par différents fabricants, et il existe de nombreuses applications qui

peuvent être conçues pour permettre les villes intelligentes, les transports intelligents, les

maisons intelligentes et les soins de santé intelligents.

Dans l’IoT, les appareils connectés peuvent générer une énorme quantité de données à très

haut débit et certaines applications peuvent nécessiter une très faible latence. Les données

sont directement envoyées dans le cloud pour être stockées et traitées dans les centres de

données. L’infrastructure cloud traditionnelle sera confrontée à une série de défis en raison

de la centralisation du stockage, calcule, et de la longue distance entre les appareils connectés

et les centres de données.

Pour relever ce défi, edge computing semble être une technologie prometteuse qui fournit

des ressources de calcul plus proches des appareils IoT.

Dans cette thèse, nous sommes motivés pour identifier et résoudre les problèmes d’architecture

edge computing et l’intégration de cette architecture avec les applications IoT. De plus, la

littérature manque d’architectures générales edge-IoT, ce qui nous amène à concevoir des

architectures récentes, en particulier pour le service offloading et vehicular edge computing.
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De plus, malgré l’importance des tâches d’optimisation, de telles fonctions efficaces

manquent dans les architectures globales edge-IoT.

1.2 Contribution

Notre contribution présente de nouveaux modèles d’optimisation différents (algorithmes

exacts et à grande échelle) au niveau de la couche edge qui résolvent à la fois les problèmes

de service offloading liés au placement dans le edge de réseau et les problèmes de vehicular

edge computing qui utilisent les véhicules comme des serveurs edge mobile pour fournir des

services aux utilisateurs tels que le calcule et le online streaming.

Tout d’abord, pour le service offloading, nous proposons des modèles de placement

optimaux dans le edge du réseau pour les tâches des utilisateurs. Ensuite, pour vehicular edge

computing, nous proposons des modèles exact pour la couverture des vehicules utilisant des

serveurs edge mobile (Taxis et UAV), et la conduite autonome basé sur le edge computing.

De plus, pour faire face aux problèmes de haute complexité des algorithmes optimaux

dans les réseaux denses, nous proposons des algorithmes à grande échelle pour les cas

d’utilisation du service offloading et vehicular edge computing.

Pour évaluer l’efficacité des algorithmes proposés pour les réseaux à petite et grande

échelle, nous utilisons différents outils, notamment, des plates-formes pour les modèles

d’intelligence artificielle et des simulateurs pour les réseaux edge.

2



2. Edge Computing pour Internet des

Objets: Definitions et État de l’art

2.1 Definitions

2.1.1 Internet des Objets (IoT)

Est une nouvelle technologie envisagée comme un réseau d’appareils et de machines qui

communiquent entre eux et avec Internet. L’IoT est connu comme l’un des catalyseurs

importants des technologies futures. Il suscite également un grand intérêt auprès des en-

treprises. Dans un sens plus large, l’IoT vise à créer des systèmes basés sur l’interconnexion

d’objets intelligents. Ces objets échangent des informations entre eux en utilisant différents

protocoles, tels que Wi-Fi, Bluetooth, ZigBee, etc. La principale caractéristique de l’IoT est

l’intégration de différentes technologies de communication (par exemple, capteurs filaires et

sans fil, etc.) pour améliorer la coopération et l’interaction entre les différentes technologies.

La figure 1 montre les domaines d’application de l’IoT.

L’augmentation rapide des appareils connectés/intelligents dans le monde et l’évolution

des besoins des utilisateurs et des applications avec une grande quantité de traitement de

données ont conduit à un ensemble de nouvelles technologies permettant un traitement rapide

des données et des services fiables. Le cloud computing fait partie de ces technologies.

2.1.2 Cloud Computing

Le cloud computing [11] vise à fournir divers services aux utilisateurs dans le cloud. Dif-

férents types de cloud peuvent être déployés, notamment privé, public, hybride et commu-
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Fig. 1 Les Domaines d’application de l’IoT.

nautaire. Le cloud public [12] fournit des services à un grand nombre d’utilisateurs sur

Internet. Le cloud privé [13] offre des services spécifiques aux organisations privées. Le

cloud communautaire [14] vise à fournir des services à un groupe d’organisations. Enfin,

le cloud hybride [15] permet aux organisations d’équilibrer les coûts et les problèmes de

contrôle.

La figure 2 affiche l’architecture du cloud computing.

Dans le cloud computing, les utilisateurs se connectent directement au cloud via Internet

et commencent à échanger des données sur le réseau, ce qui entraîne une quantité massive de

données en peu de temps. Cependant, l’architecture centralisée du cloud n’est pas efficace

pour traiter la quantité massive de données générées par les appareils IoT qui nécessitent

un temps de réponse court. Pour surmonter un tel problème, une technologie alternatif, à

savoir l’edge computing, a été utilisé qui traite les données dans les appareils connectés ou

les passerelles locales.

2.1.3 Edge/Fog Computing

L’edge computing vise à être la future solution IoT qui résout différents problèmes, y compris

les applications limitées dans le temps et basées sur le calcul. Les avantages du traitement

des données dans le edge du réseau sont les suivants : réduire la charge du réseau et la latence
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des communications, donner aux petits et moyens inventeurs toutes les chances d’aider à

soutenir les innovations futures, réduire la consommation d’énergie des nœuds mobiles et

éliminer la congestion au sein du réseau central, tout en offrant plus de fiabilité, de sécurité

et de protection de la vie privée. Dans la section suivante, nous présentons l’état de l’art pour

les deux axes de recherche étudiés, service offloading et vehicular edge computing.

La figure 3 montre l’architecture edge computing.

2.2 État de l’art

L’intégration de l’edge computing avec l’Internet des objets (Edge-IoT) fait face à de nom-

breux problèmes et défis liés à la QoS. Pour cela, différentes axes de recherche liées à

Edge-IoT ont été étudiées pour couvrir tous les modèles de communication afin de satisfaire
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les exigences des applications et fournir des services efficaces aux utilisateurs. Cette partie

présente l’état de l’art pour deux axes de recherche pour Edge-IoT; service offloading et

vehicular edge computing.

2.2.1 Service Offloading

Service offloading fait référence au déplacé certains services à forte intensité de calcul

vers les serveurs edge pour traitement. L’allocation de ressources pour cette procédure fait
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référence à l’allocation de certaines ressources de calcul sur des serveurs edge en fonction

des exigences du service. Le déplacement des services vers le edge du réseau facilite le

stockage, la prestation de services, la mise en cache du contenu et la gestion de l’IoT, ce

qui permet d’améliorer les temps de réponse et les taux de transfert, garantissant ainsi aux

utilisateurs le service le plus rapide et le meilleur possible.

Le tableau 1 affiche le résumé des travaux de recherche existants pour le service offloading

dans l’environment edge computing.

Article de

recherche

Idée princi-

pale

Formulation

du prob-

lème

Position

du edge

Avantages Limites

Miluzzo et

al. [16]

Exécution

des tâches

dans des ap-

pareils mobiles

intelligents.

Quelques

équations

pour le

paiement

des ser-

vices,

etc.

Mobile Exécuter des

tâches pour

d’autres util-

isateurs.

Temps de

réponse

long.

Fahim et al.

[17]

Task offload-

ing à l’aide

d’appareils

mobiles

comme nœuds

de calcul.

Aucune

formulation

mathéma-

tique n’est

utilisée.

Mobile Consommation

d’énergie

et temps de

traitement

efficaces.

L’impact de

la mobilité

n’est pas

étudié.
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Van et al.

[18]

Traitement des

tâches dans les

cloudlets mo-

biles.

Processus

décisionnel

de Markov

(MDP).

Mobile Améliorer

le temps

et la con-

sommation

d’énergie.

Les dé-

tails de

l’implémenta-

tion de la

solution sont

manquants.

Hasan et al.

[19]

Aura, task

offloading

dans une archi-

tecture cloud

ad-hoc mobile.

Équations

pour la

mesure

des coûts,

du temps

et des

ressources.

Mobile Améliorer

le coût et

le temps

d’exécution.

L’impact de

la mobilité

n’est pas

étudié.

Van et al.

[20]

Tasks of-

floading dans

un environ-

nement cloud

mobile ad hoc.

- Processus

décisionnel

de Markov

(MDP).

- Deep-Q-

Network

(DQN).

Mobile Améliorer

la consom-

mation

d’énergie, le

paiement et

les délais.

L’évaluation

dans les

réseaux

à grande

échelle n’est

pas étudiée.

Van et al.

[21]

Technique de

’task offload-

ing’ dans le

cloud mobile

ad-hoc.

Processus

décisionnel

de Markov

(MDP).

Mobile Améliorer le

taux de perte

de tâches, le

délai moyen

et la con-

sommation

d’énergie.

La solution

n’est pas

étudiée dans

un envi-

ronnement

réel.
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Alam et al.

[22]

Offloading

des calculs

dans un en-

vironnement

mobile edge

computing.

- Processus

décisionnel

de Markov

(MDP).

- Deep

Q-learning.

Mobile Minimiser la

latence.

L’impact de

la mobilité

n’est pas

étudié.

Zhang et al.

[23]

Task offload-

ing dans un en-

vironnement

mobile.

Deep

Q-learning.

Fixed Task offload-

ing fiable et

optimal.

La complex-

ité n’est pas

étudiée.

Wang et al.

[24]

Task offload-

ing optimal

dans un en-

vironnement

cloud Adhoc

mobile.

Algorithme

d’optimisati-

on dis-

tribué.

Mobile Identifier les

fournisseurs

de ressources

malveillants.

Le détail de

l’implément-

ation de la

solution est

manquant.

Lin et al.

[25]

Circa, offload-

ing framework

basé sur les

appareils mo-

biles.

Algorithmes

d’allocation

des tâches.

Mobile Améliorer

le temps

d’exécution.

Risque élevé

d’échec de la

communica-

tion.
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Saha et al.

[26]

Cloud frame-

work pour les

appareils mo-

biles.

Modèle

optimal et

algorithme

’greedy’

pour le

provision-

nement des

tâches.

Mixed Faible coût. La solution

n’est pas

étudiée dans

un envi-

ronnement

réel.

Roy et al.

[27]

Task allocation

framework

pour les

appareils

mobile.

Algorithmes

pour task

allocation.

Mobile Efficace à

la fois pour

l’utilité de

l’acheteur et

la QoE.

La solution

n’est pas

étudiée dans

un envi-

ronnement

à grande

échelle.

Table 1 Résumé des recherches existant sur le service offloading dans le edge computing.

Les algorithmes de service offloading dans la littérature sont basés sur la formulation

de modèles exacts pour mesurer le comportement optimal d’une telle solution. Cependant,

dans la pratique, les opérateurs de réseau conçoivent toujours des heuristiques pour traiter

les problèmes d’évolutivité dans les réseaux à grande échelle avec d’énormes quantités de

données. Actuellement, ces heuristiques sont des solutions quasi-optimales et sont parfois

très loin d’être optimales. De plus, les heuristiques ne sont pas utilisées lorsque l’entrée

du système change et donne des erreurs fatales lorsqu’une entrée inattendue arrive dans le

système.

2.2.2 Vehicular Edge Computing

Les véhicules intelligents sont considérés comme des appareils mobiles équipés de capteurs,

ayant la capacité de collecter, de calculer et de communiquer des données. Les informations
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sont collectées à la fois à partir de capteurs embarqués dans le véhicule et de l’environnement

extérieur. Edge computing peut fournir une architecture efficace et évolutive pour les réseaux

de véhicules en améliorant le traitement des données et le trafic en temps réel. Nous

présentons dans cette partie les solutions existantes pour les réseaux véhiculaires basées sur

le edge computing (vehicular edge computing).

Le tableau 2 présente le résumé des travaux existants de vehicular edge computing.

Article de

recherche

Idée princi-

pale

Formulation

du prob-

lème

Position

du edge

Avantages Limites

Kim et al.

[28]

Gestion du

stationnement

dans un en-

vironnement

fog-cloud.

’Many-

to-one

match-

ing game

model’.

Fixed Fiabilité

pour trouver

une place

de parking

disponible.

L’évolutivité

du système

fog n’est pas

étudiée.

Zhang et al.

[29]

Task offload-

ing dans un en-

vironnement

mobile.

’Stackelberg

game’.

Fixed Délai opti-

mal pour le

calcul des

tâches.

Le risque de

coupure de

liaison n’est

pas étudié.

Zhu et al.

[30]

Allocation

des taches

dans un en-

vironnement

mobile.

Un modèle

exact pour

le problème

d’allocation

des tâches.

Mixed Améliorer la

latence.

Nécessite

une

ressource

de calcul

élevée.

Gillam et al.

[31]

Architecture

de calcul

distribuée pour

les véhicules.

N/A Fixed Réduire la la-

tence.

Aucune éval-

uation n’est

présentée.
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Caminha et

al. [32]

SensingBus,

un système

de collecte de

données à par-

tir de capteurs

sur les bus

urbains.

N/A Mobile Améliore

l’utilisation

du pro-

cesseur et de

la mémoire.

Les bus ne

peuvent pas

assurer une

large couver-

ture.

Thakur et

al. [33]

Techniques

d’identification

de la conges-

tion basées sur

les véhicules

connectés.

N/A Fixed Le système

peut détecter

la conges-

tion pour

atteindre les

objectifs de

gestion du

trafic.

La solution

nécessite une

évaluation

dans des

réseaux

à grande

échelle.

Ning et al.

[34]

Modèle de ges-

tion du trafic

dans un en-

vironnement

vehiculaire-

edge.

Modèle

exact pour

le ’offload-

ing’.

Fixed Réduire le

temps de

réponse.

L’impact

de la mo-

bilité des

véhicules

n’est pas

étudié.

Moubayed

et al. [35]

Placement de

service V2X

dans un en-

vironnement

edge-mobile.

Modèle de

placement

de ser-

vice V2X

optimal.

Fixed Améliorer

le délai et

l’utilisation

des

ressources.

L’impact

de la mo-

bilité des

véhicules

n’est pas

étudié.
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Shaer et al.

[36]

Placement

de service

V2X dans

un environ-

nement edge

computing.

Modèle op-

timal pour

le place-

ment des

services.

Fixed Minimiser le

délai.

La métrique

d’utilisation

des

ressources

n’est pas

étudiée.

Tang et al.

[37]

Système de

conduite

autonome

en temps

réel dans

l’environnement

edge comput-

ing.

Modèle

de ’Task

offloading’.

Fixed Utilisation

efficace des

ressources

et consom-

mation

d’énergie.

L’utilisation

des

ressources et

les métriques

de QoS ne

sont pas

étudiées.

Hameed et

al. [38]

Approche de

’clustering’

dynamique

dans un en-

vironnement

’vehicular edge

computing’.

Modèle op-

timal pour

l’utilisation

du réseau.

Mobile Améliorer

la qualité

de service

et la con-

sommation

d’énergie.

Un seul

modèle de

mobilité est

utilisé qui

représente

juste un

cas de

l’environnem-

ent réel.

Table 2 Résumé des recherches existant sur le vehicular edge computing.

Les convergences actuelles entre la technologie edge computing et les réseaux vehiculaire

devraient prendre en compte les métriques de sécurité et les réactions en temps réel dans les

situations critiques. Par conséquent, malgré les travaux existants dans les communications

véhiculaires assistées par le Edge computing, les applications de nouvelle génération telles
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que la sécurité routière et la conduite autonome nécessitent un déploiement efficace pour

atteindre une latence ultra-faible dans les réseaux de véhicules denses.
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3 Nos Solutions Proposées Pour Les

Réseaux Edge Computing

La procédure d’optimisation du réseau reste une tâche importante qui doit être soigneusement

étudiée en raison des évolutions rapides du réseau et des demandes des utilisateurs. Dans

cette partie, nous présentons nos différents solutions pour le service offloading et vehicular

edge computing.

3.1 Service Offloading dans Edge Computing

Avec l’évolution rapide des générations de réseaux et les exigences des applications, le service

offloading est considéré comme l’une des tâches réseau les plus importantes qui permettent

de ’offload’ les services gourmands en ressources vers un centre de calcul optimal dans les

serveurs edge et le cloud central pour le traitement. Cette tâche complexe nécessite une

communication efficace, des stratégies d’optimisation et des technologies de virtualisation

pour gérer différents services et fournir une qualité de service efficace aux utilisateurs.

Nous avons proposé des modèles optimaux [7, 6, 1, 4] d’orchestration des tâches, des

VNF et des SFC dans le edge de réseau (Optimal Virtual Edge nodes Placement Algorithm

(VEnPA), Service Offloading in Virtual Mobile Edge Computing (SO-VMEC), Optimal SFC

Placement in IoT-VMEC (OSPV)) en tenant compte des contraintes de ressources de calcul.

Pour gérer les réseaux denses, nous avons proposé des algorithmes à grande échelle

[7, 6, 1, 4] qui prennent en charge une énorme quantité d’appareils, de données et de

demandes d’utilisateurs. Les algorithmes d’intelligence artificielle d’apprentissage par

renforcement et d’apprentissage par renforcement profond sont utilisés pour le placement des

tâches des utilisateurs et les tranches VNF (Q-learning et Deep Q-learning (DQN)), tandis
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qu’un algorithme Efficient SFC Placement (ESPV) basé sur le modèle Bin Packing [39] est

implémenté pour le placement des SFC dans les serveurs edge virtuel.

Dans ce qui suit, nous présentons nos solutions pour le vehicular edge computing.

3.2 Vehicular Edge Computing

Avec le développement récent des réseaux urbains, les véhicules intelligents sont considérés

comme des appareils mobiles équipés de différents capteurs embarqués. De nos jours, les

véhicules commencent à avoir la capacité de communiquer entre eux (véhicule à véhicule) et

avec l’infrastructure urbaine (véhicule à infrastructure), de collecter des données et d’effectuer

des calculs et des traitements dans le véhicule. Aujourd’hui, généralement, les applications

de calcul intensif sont exécutées sur le cloud. Cependant, les applications sensibles aux

retards peuvent souffrir de la réponse longue durée et peuvent souffrir d’une mauvaise qualité

d’expérience.

Les nouvelles générations de réseaux véhiculaires permettent d’utiliser les véhicules

comme serveur edge dans le contexte des systèmes vehicular edge computing (VEC) pour

le traitement des données, etc. Il permet de fournir des informations à d’autres appareils

connectés, y compris les appareils des utilisateurs, d’autres véhicules, etc.

Nous avons proposé des modèles optimaux [8, 3, 5] pour vehicular edge computing, y

compris une couverture maximale (MVEC) pour les applications de streaming vidéo en ligne

en utilisant des taxis comme des serveurs edge mobiles à l’intérieur de la ville, le offloading

optimal des VNF de la conduite autonome (OVEAP) dans les serveurs edge, et le modèle

UAV-edge (OFMU) pour la diffusion de video en ligne en utilisant des UAV autonomes

comme serveurs edge mobile.

De plus, pour couvrir les fortes exigences des réseaux denses. nous avons proposé des

algorithmes à grande échelle [8, 3, 5]. Pour le premier cas d’utilisation, afin de maximiser

la couverture des véhicules clients à l’aide du serveur edge mobile (Taxis), nous proposons

un algorithme heuristique qui sélectionne uniquement les taxis qui partagent le(s) même(s)

segment(s) de chemin avec le véhicule client afin de réduire la complexité de l’algorithme.

Pour le deuxième cas d’utilisation, nous proposons un algorithme heuristique pour FMU

(AFMU) basé sur le modèle Weighted Set Cover (WSC) pour augmenter la disponibilité du
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drone pendant le service. Enfin, pour le dernier cas d’utilisation, nous proposons Efficient

Edge Autopilot Placement (DVEAP) basé sur l’apprentissage par renforcement profond pour

placer efficacement les VNF de conduite autonome dans le serveur edge.
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4 Conclusion et perspectives

Cette thèse présente edge computing pour l’Internet des objets. La première partie présente

l’introduction générale. La deuxieme partie presente les technologies étudiées (l’Internet des

objets, le cloud computing, l’edge computing) et les travaux proposés par la communauté de

recherche pour deux grands domaines de edge computing, service offloading et vehicular

edge computing.

La troisième partie présente nos solutions proposé (optimal et grand echelle) pour service

offloading et vehicular edge computing.

les modèles optimaux proposés pour optimiser l’utilisation de edge pour différentes

métriques telles que le temps et l’utilisation des ressources. Nous avons proposé des modèles

optimaux d’orchestration des tâches, des VNF et des SFC dans le edge (VEnPA, SO-VMEC,

OSPV). De plus, nous avons proposé d’autres modèles optimaux pour vehicular edge com-

puting, y compris la couverture maximale (MVEC), la conduite autonome (OVEAP), et le

modèle UAV-edge (OFMU) utilisant des UAV autonomes comme serveurs edge mobile. Les

résultats numériques montrent que l’algorithme proposé donne de bons résultats en termes

d’utilisation des ressources dans le edge pour les réseaux à petite échelle.

De plus, pour gérer les réseaux denses, nous avons proposé des algorithmes à grande

échelle qui prennent en charge une énorme quantité d’appareils, de données et de demandes

d’utilisateurs pour service offloading et vehicular edge computing. Des algorithmes heuris-

tiques sont proposés pour l’orchestration SFC (ESPV), maximiser la couverture des véhicules

(AFMU) par les serveurs edge mobile (Taxis et UAV). De plus, les algorithmes d’intelligence

artificielle (Q-learning et Deep Q-learning (DQN)) sont utilisés pour le placement des VNF

de conduite autonome (DVEAP) et la navigation autonome des drones. Les résultats obtenus

prouvent l’efficacité et la faisabilité des solutions proposées par rapport aux algorithmes

optimaux.
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Malgré les solutions existantes décrites ci-dessus, plusieurs préoccupations et défis

doivent être étudiés afin d’intégrer pleinement edge computing aux applications IoT. Les

défis suivants examinent les principaux enjeux, ainsi que les nouveaux concepts que la

communauté de la recherche devrait prendre au sérieux dans les travaux futurs.

• La disponibilité des services doit être assurée pour la prochaine génération d’applications

de edge computing grâce à l’utilisation de divers mécanismes tels que la surveillance, la

prédiction et les sauvegardes du système.

• La mobilité est un facteur important dans le système Edge-IoT, car la plupart des

appareils connectés, tels que les véhicules, et les drones, sont mobiles, ce qui entraîne de

fréquentes dégradations de service et des pannes de liaison entre les serveurs et les appareils,

ce qui diminue la qualité de service de système Edge-IoT. Pour cela, des modèles efficaces

et développés pour la détection des obstacles et la prévision du trafic, doivent être proposés

pour surmonter le problème de mobilité.

• L’architecture edge computing est composée de plusieurs systèmes distribués, la

consommation d’énergie devrait être considérable, ce qui augmentera les dépenses. En

conséquence, de nombreux efforts doivent être faits pour résoudre ce problème en dévelop-

pant des modèles énergétiques efficaces dans les systèmes edge, tels que l’optimisation des

ressources, le recours à une énergie plus respectueuse de l’environnement, etc.
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