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General introduction 

General context  

“Land cover” and “land use” refer to the physical ground cover information of the 

land (Meyer & Turner, 1994) and the socio-economic and cultural utility of the land 

occupied by humans (Turner, 1997), respectively. Land use and land cover (LULC) 

information have long been considered the key element to understanding the Earth’s 

surface and the purpose the land serves. Moreover, land use and land cover change 

(LULCC) driven by various factors (e.g., economic, biophysical, political, social) (Verburg 

et al., 2006) has emerged as a fundamental component of global environmental change 

and sustainability research (Turner et al., 2007). In recent years, LULCC has attracted 

significant attention from the scientific community, government, and decision-makers 

because LULCC reflects the pattern of human use in a region (Y. Chang et al., 2018), which 

significantly affects the function of the Earth’s system (Lambin et al., 2001).  

Coastal areas—due to the interactions between land, water, and atmosphere that 

are constantly being altered by natural and human forces (Beatley et al., 2002)—have 

always played an essential role in LULC studies for their high concentration of functions, 

socio-economic activities and population, and natural resources (Mossinger et al., 2013). 

Global economic, social, and environmental changes have been observed on different 

scales since the late 1990s; coastal LULC issues have become of increasing scientific 

interest nowadays, considering that more than half of the world’s population lives in 

coastal regions (Neumann et al., 2015), of which only 15% remain in their natural state. 

In particular, urbanization, the development of infrastructure and associated facilities at 

high speed, growing intense agriculture production, and the increasing exploitation of 

natural resources are the main driving factors of dramatically rising LULCC in coastal 

areas in recent decades.  

In the meantime, remote sensing technologies have brought a significant 

breakthrough in this new scientific discipline known as “land change science” (Turner et 

al., 2007) with automatic classification algorithms and high spatial, spectral, and temporal 

resolution, and radiometric satellite imagery. It has become possible to map LULC 

accurately and monitor the changes that cannot be observed in ground research. In 
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addition, remote sensing has become an essential tool for LULC studies because it 

facilitates global, recurrent, and long-term observation. Moreover, the latest generation 

of satellite imagery from Europe’s Copernicus Programme—which provides free access, 

high-quality multispectral sensors—as well as the development of different digital data, 

have brought LULC classification and LULCC detection into a new era.  

Our study area, Pays de Brest, located on the west coast of France, is the most 

important metropolitan and agglomeration in the northwestern Finistère department in 

Brittany region, where around 80% of the population live in coastal areas (i.e., within 30 

km of a coastline). The LULC of the Pays de Brest coastline, however, appears to be 

relatively fragmented due to its particular geographical configuration (e.g., fragmented 

peninsula, uneven topography) and a long history of land reclamation.  

Like the majority of coastland worldwide, Pays de Brest has experienced 

considerable LULCC since the 1990s and today faces increasing and varied types of 

pressure, including natural, demographic, residential, economic, and environmental 

(Adeupa, 2009). The coastline changes in Pays de Brest are driven mostly by rising 

population, development of tourism, urban expansion, and intense agricultural activities 

(Adeupa, 2009; Sparfel, 2011). Those factors have led to environmental degradation and 

conflicts of interest among the private sector, public services, housing, local planning, 

tourist sectors, and public authorities seeking protection for the natural landscape 

(ADEUPa Brest, n.d.; Sparfel, 2011). For example, the conflict between permanent or 

vacation housing construction on coastlines with aquaculture and croplands and natural 

landscape, which are often encroached upon by urban expansion and the artificialization 

of coastland.  

Thus, the use of high spatial and temporal resolution satellite data could offer fresh 

perspectives for LULC studies in Pays de Brest. In particular, near-real-time remote 

sensing data (e.g., Sentinel data) appear to be perfectly complementary to large-scale 

vector data (e.g., BDTopo IGN, CORINE Land Cover, digital cadastral plan) of 

infrastructure, construction, vegetation cover, and their evolution. Moreover, the vector 

data are usually annual; satellite observation data, in contrast, are able to provide data at 

a higher frequency (nearly daily). 
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However, although remote sensing has become the principal source of LULC 

information, the European Copernicus Programme and national facilities (e.g., Equipex 

GEOSUD, THEIA) provide access to a particularly large amount of satellite data for local 

communities, scientist communities, and industries. LULC information in coastal Pays de 

Brest is insufficient, and very few previous studies have focused on vegetation cover.  

Therefore, local governments and communities seek an efficient way to gain an 

understanding of LULC in the region and follow the changes that occurred over time to 

manage urban development and the evolution of LULC, also protecting the natural 

landscape. In this context, local public sectors are interested in the potential contribution 

of the new technologies to environmental data processing. In particular, multi-source 

remote sensing data are available and access is free. 

In this thesis, three specific LULC studies were conducted in three different studies 

areas located within Pays de Brest according to the immediate need of local communities 

(especially ADEUPa Brest, Parc Naturel Régional d’Armorique, Brest Métropole). 

 

Problematic 

The general problematic of the thesis is how remote sensing technologies contribute to 

fundamental local issues such as coastal LULCC in the context of population growth, urban 

sprawl and climate change, as well as how remote sensing technologies—especially the 

latest generation of satellite imagery and advanced classification—bring important 

breakthroughs to LULC studies of Pays de Brest. 

Moreover, some detailed problematics must also be found out: 

1) How can the application of the latest generation of high spatial and spectral resolution 

satellite imagery be strengthened to better respond to environmental management 

and urban planning issues?  

 

2) What are the significant past and current changes in the coastal Pays de Brest that 

have not yet been observed by ground research and vector data? In addition, what are 

their driving factors, as well as short or long-term environmental and socio-economic 

influences? 
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3) What are the most suitable tools and methodologies for better detecting, identifying, 

and monitoring LULCC over time at different spatial scales? 

 

4) Is it possible to generate change models in order to develop forward-looking scenarios?  

 

Apart from the general problematic, local communities are also interested in three 

specific LULC questions: 

1) How can machine learning (ML) classification methods contribute to vegetation cover 

mapping in Brest? 

 

2) What were the major LULCCs on the Crozon Peninsula (Pays de Brest) from 2007 to 

2018, and what are the most commonly adopted classification methods for LULCC 

detection? 

 

3) How to map winter crops in Pays de Brest and monitor their phenology using open-

access, high spectral and spatial resolution Sentinel-1 and -2 data. 

 

Objective 

In order to address this issue, this thesis focuses on the different ways to explore 

the potential of European satellite data (e.g., Vénμs, Pleiades, SPOT, and Sentinel) to 

propose a robust ML methodology for LULCC analysis and mapping. This methodology 

has been partially transferred to some local authorities of the Pays de Brest to use them 

in their territorial governance mission. The main objective can be decomposed into 

several steps. First, LULC classification was performed to provide accurate thematic maps 

using different ML and deep learning (DL) algorithms. The observation and monitoring of 

LULCC were then carried out, mainly using post-classification processing methods. 

Moreover, we sought to identify and understand the socio-economic factors behind these 

changes, eventually modeling the changes and impacts, and forecasting the potential 

changes in a context of global change.  
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The following specific objectives were also formulated for local government and 

communities:  

1) To propose specific and reproductive image-processing methodology to enable better 

analysis, modeling and definition of LULC, as well as improved monitoring of LULCC 

in Pays de Brest. The methodology proposed should effectively improve the accuracy 

of LULC and vegetation cover maps. 

 

2) Evaluate and validate the classification results and compare different methodologies 

to select the most suitable methodology for coastal LULC classification in Pays de 

Brest.  

 

3) To transfer high-resolution remote sensing data to managers for operational purposes, 

and to propose a three-dimensional (i.e., natural areas, agricultural areas, and built-

up areas) LULC model at different scales (e.g., city, municipality, or region). 

 

Moreover, three specific aims have been formulated according to the needs of local 

communities: 

1) To detect, identify, and classify urban green land in three years (2016–2018) in the 

city of Brest and eventually to study the changes. 

 

2) To map different LULCs and then monitor LULCC from 2007 to 2018, eventually look 

for abandoned agricultural land on the Crozon Peninsula. 

 

3) To study the feasibility of mapping winter crops with Sentinel-2 data in a fragmented 

area dominated by small-size fields. 

 

4) To study the correlation between winter crop phenology and Sentinel-1 C-band 

Synthetic-Aperture RaDAR (SAR) backscattering time-series data. 
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Outline of thesis 

This thesis consists of three parts comprising seven chapters. The first part 

presents the context of the work; part two discusses the general methodologies, including 

data and image-processing methodologies. The third part presents the three specific case 

studies (and publications) carried out during the thesis. The seven chapters are 

summarized below:  

1) Chapter 1 presents the definition of LULC, LULCC and its impacts, as well as the 

importance of LULC monitoring and management. This is followed by an extensive 

literature review of previous studies of LULC classification and LULCC detection using 

remote sensing technologies, especially LULC studies in coastal areas.  

 

2) Chapter 2 analyzes geographical characteristic of the study area essential for our study, 

such as the localization and geographical condition. In addition, the major LULC in 

Pays de Brest, including salient issues and conflicts of interest, are presented. This 

chapter concludes with the detailed research objectives of each case study. 

 

3) Chapter 3 deals with the data employed in our works, including various optical images 

and SAR time series, auxiliary data, and field studies.  

 

4) Chapter 4 outlines the methodologies of image processing applied in our case studies, 

namely image pre-classification processing, image classification by using different 

shallow machine learning or deep architectures, and methods of post-classification 

processing.  

 

5) Chapter 5 presents the first case study, “Machine Learning Methods and Classification 

of Vegetation in Brest, France.”  

 

6) Chapter 6 presents the second case study, “Mapping and monitoring of land cover / 

land use (LULC) changes on the Crozon Peninsula (Brittany, France) from 2007 to 

2018 by Machine Learning algorithms (Support Vector Machine, Random Forest, 

Convolutional NN) and by Post-classification comparison (PCC).” 
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7) Chapter 7 presents the third case study, “Mapping crop types using Sentinel-2 data 

Machine Learning and monitoring crop phenology with Sentinel-1 backscatter time 

series in Pays de Brest, Brittany, France.”  

 

The thesis concludes with a synthesis of the results, a discussion of the success and 

limitations of the works, and, ultimately, the proposition for further research. 
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Chapter 1. Detection of land use/land cover changes 

in coastal area with remote sensing  

1.1. Definition of land use/land cover 

Land cover  and Land use have often been confused in daily practice (Giri, 2012) 

and are often used interchangeably. However, these are two distinct concepts. 

1.1.1. Land cover and land use 

Land cover has been defined as the observed biotic and abiotic assemblage of the 

Earth's surface and immediate subsurface (Meyer & Turner, 1994), which refers to the 

physical ground cover information of the land. Land cover refers to the quantity and type 

of certain surfaces on the ground in a geographical area, such as vegetation cover, 

croplands, urban areas, water bodies, and glaciers (Meyer & Turner, 1994). 

As the most important descriptor of the Earth's terrestrial surface, land cover 

allows for studying the operational relationship between terrain, climate, and soil, the 

characteristics of anthropogenic activity, and biogeographical and eco-climatic diversity 

(Loveland et al., 2000; Turner et al., 2007; Wulder et al., 2018). Therefore, land cover 

information monitoring is critical to foreground a range of natural resource management 

decisions at local, national, and global levels (Wulder et al., 2018). 

Land use, on the other hand, refers to the purpose the land serves and describes 

the social, economic, and cultural utility of the land occupied by humans (Turner, 1997). 

Therefore, compared to land cover (which is most often pertinent to the natural sciences), 

land use is more likely related to social sciences such as economy, sociology, anthropology, 

and social geography (Meyer & Turner, 1994).  

The same land use can relate to several different lands covers reciprocally. For 

example, a vegetated area can be used as grassland, forest, or public green space, and an 

artificial surface can be a commercial area, residence for inhabitants, or industrial zone. 

By contrast, urban parks and residential areas generally comprise built-up area and 

vegetation cover. 
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According to World Bank (World Bank Group, n.d.) statistics and FAO (FAO, n.d.), 

the most important land uses worldwide are livestock grazing land and cropland, forested 

area, built-up area, shrubland, barren land, glacier, and fresh air and water resources. 

However, most land uses nowadays—mainly built-up areas—have various important 

impacts on ecosystem service, including biodiversity degradation, greenhouse effect, and 

deforestation. For example, agriculture—the most critical land use worldwide, which 

occupies half of the Earth’s habitable land—is threatening biodiversity due to the 

ceaseless expansion of croplands and intensive agricultural activities.  

Thus, knowledge of land use is crucial for understanding the conflict between 

different land uses and developing strategies to balance the conflict for sustainable 

development. 

1.1.2. LULC changes and the importance of management 

Land cover change and Land use change can also be interpreted separately. Land 

cover change refers to the complete modification from one class of land cover to another 

or to the anthropologic or natural change within the same land cover class (Meyer & 

Turner, 1994). One example would be conversion from cropland to urban area or forest 

degradation due to natural disaster (e.g., forest fire and storm damage). Nonetheless, the 

principal land cover change nowadays is converting the natural environment for human 

use or changing practices on human-occupied lands (Foley et al., 2005). 

Land use change, in comparison, refers either to a shift toward a different 

employment of land occupied by humans or to an intensification of the current land use. 

In addition, land use change is human-induced; it can be conducted without land cover 

change. For example, a primary forest can be occupied by humans and used to produce 

wood, without ceasing to be forest. Overall, land use and land cover change (LULCC) 

reflects the pattern of human land use in a region (Y. Chang et al., 2018) and significantly 

affects the function of the Earth’s system (Lambin et al., 2001).  

Although various factors are driving LULCC, including biophysical, economic, 

social, cultural, political, or institutional factors (Verburg et al., 2006), human-induced 

LULCCs are far more common than natural changes in recent decades (Giri, 2012). 

Humanity’s growing impact on the environment is responsible for most of the recent 

changes in the biosphere and modification of the Earth (Meyer & Turner, 1994). As shown 
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in Figure 1, human activities are changing the Earth’s surface in pervasive and 

unprecedented ways, especially after the industrial revolution (1760s–1840s)(R. S. 

DeFries et al., 2004; Foley et al., 2005). 

 

Figure 1Land use changes of the world from 1600 to 2016 (Source: History Database of the Global Environment 
(HYDE)) 

Moreover, LULCC is usually related to population growth and poverty and mostly 

drove by people’s immediate needs for natural resources (Foley et al., 2005) as well as 

their responses to economic opportunities (Lambin et al., 2001). Consequently, rapid 

LULCC is mainly due to economic globalization, which can directly determine the LULC of 

a region or indirectly affect LULC through information and technological development 

(Lambin et al., 2001).  

Furthermore, LULCC is not unidirectional; the environmental changes induced by 

human activities or natural changes generally impact LULC (Y. Chang et al., 2018). Lambin 

et al. (2001) have summarized that the most essential current LULCC representation on 

Earth is tropical deforestation (forest shifting to cultivation), rangeland modification and 

degradation, agricultural intensification, and urbanization in the form of built-up or 

paved-over areas. In addition, LULCC has direct effects on biodiversity (Sala et al., 2000; 

Falcucci et al., 2007; Cousins et al., 2015), global carbon cycle change (Houghton et al., 

1999; J. Olofsson & Hickler, 2008), and the global climate warming effect (Houghton et al., 
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1999; Fearnside, 2000; J. Li et al., 2021), as well as regional or local climate change such 

as the urban island heat effect (X.-L. Chen et al., 2006; X. Deng et al., 2013), soil 

degradation (X. Wang et al., 2016; Borrelli et al., 2017), degradation of sustainable natural 

resources—especially forest resources (Vitousek et al., 1997; Lira et al., 2012)—water 

and air pollution (S. T. Y. Tong & Chen, 2002; Ren et al., 2003; S. Wu et al., 2012), and 

increases in infectious disease due to the increased proximity of people and livestock 

brought on by urbanization (M. X. Tong et al., 2015; Hassell et al., 2017). 

Even though LULCC has some positive effects on human society—for instance, the 

conversion from forests to croplands allows it to feed the rapidly growing population 

worldwide—it also entails a variety of adverse effects that lead to the significant 

degradation of the Earth's ecosystem (Giri, 2012). Therefore, monitoring and 

understanding the distribution and dynamics of LULC (Giri, 2012) as well as modeling, 

predicting, and managing LULCC at the local or/and global level (Meyer & Turner, 1994) 

have become crucial and have led to the demand for maintaining a balance between 

immediate human needs and the sustainable capacity of the ecosystem, in addition to 

ensuring resources and services in the future (Foley et al., 2005). Moreover, as a critical 

element in current strategies for natural resource management and environmental 

changes following up (Turner et al., 1995; Attri et al., 2015), LULC monitoring can provide 

valuable information—first of all, to governments (from national to local) for implanting 

sustainable development policies—as well as to nongovernmental organizations and 

scientists for studying the Earth’s ecosystem and human societies (Giri, 2012). 

Considering the indispensability of, and increasing need for, understanding LULC 

and LULCC mechanisms (Petit et al., 2001; Foley et al., 2005), the link between LULC and 

human activities has been intensively studied in recent decades. The connection has been 

analyzed on the American and African continents since the 1930s; however, the studies 

were highly focused on planning and managing land use (Y. Chang et al., 2018). Sixty years 

on, LULC researches were beginning to attract considerable attention and interact with 

other disciplines; the LULCC mechanism has since been studied at a regional or global 

scale (Y. Chang et al., 2018). Also in the 1990s, remote sensing technologies were 

introduced and developed in the LULC research field for mapping LULC and simulating 

the major socio-economic and biophysical driving factors and consequences of LULCC 
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(Verburg et al., 2006). Afterward, remote sensing technologies soon improved to meet 

research needs, leading to a massive breakthrough in LULC and LULCC studies. 

 

1.2. LULC mapping and detecting changes with remote sensing 

techniques 

Remote sensing technologies can directly detect land cover, and infer land uses, 

generally with the help of prior knowledge and auxiliary data. As a revolutionary 

breakthrough, remote sensing provides near-real-time, spatially continuous, and highly 

consistent information at a variety of spatial and temporal scales in order to accurately 

detect LULC on diverse scales and help to identify the different characteristics of LULCC 

that occur over time and cannot be observed by ground research (Foody, 2002; Verburg 

et al., 2006; Weih & Riggan, 2010), including the types, spatial distribution, and quantity 

of changes.  

Overall, remote sensing technologies facilitate dynamic monitoring and 

quantitative analysis (Y. Chang et al., 2018) and have become the major sources for LULC 

mapping and LULCC detection for their rich spectral information of ground objects, a wide 

selection of spatial and spectral resolutions, high temporal frequency, and low 

computational complexity (Lunetta et al., 2004; Coops et al., 2006; G. Chen et al., 2012). 

Meanwhile, LULC research has reciprocally always been in a key position and has 

made significant contributions in the remote sensing field, especially in environmental 

science (Kalnay & Cai, 2003; Aplin, 2004; Y. Chang et al., 2018). In the beginning, LULC 

information was collected using visual photo interpretation; however, this method was 

hindered by increasing labor costs, long processing times for outputs, and human 

subjectivity (because photo interpretation is highly dependent on a priori knowledge) 

(Wulder et al., 2018). 

The breakthrough occurred in 1972 when the first Earth’s Observation (EO) 

satellite, Landsat (originally named Earth Resources Technology Satellite), was launched. 

This first-generation EO satellite was efficient in providing stable, global, and 

multispectral satellite data, which officially started the satellite era of LULC research. As 

one of the earliest representative works of LULC classification, Townshend (1992) 
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summarized a wide range of applications of land cover information with the first 

generation of remote sensing data of coarse spatial resolution (Loveland, 2012) and 

highlighted the necessity to focus on the activities of land cover monitoring over time, and 

eventually expand the study area by including land use.  

The first works were derived from coarse-resolution USA sensor systems, namely 

the four-spectral-band Landsat MultiSpectral Scanner (MSS), which collected in 79 m (re-

sampled to 60 m in processing). For instance, among the most-cited work, Todd et al. 

(1977) explored the use of four-band Landsat MSS digital images to identify six diverse 

LULC categories and therefore detect LULCCs between 1972 and 1974 in the urban area 

of the city of Atlanta. In this study, two satellite images were digitally overlaid, after which 

LULCCs were extracted by directly comparing two images on a pixel-to-pixel basis. The 

final decision was made by the ratio of the intensity of reflected electromagnetic radiation 

(EMR) between two images; the ratio of an unchanged area was around 1.0, yet, whereas 

the ratio was significantly different where LULC had changed between 1972 and 1974.  

Afterward, Byrne et al. (1980) conducted a study of land cover change monitoring 

by performing the principal component analysis (PCA) of an eight-dimensional data array 

composed of two four-band Landsat MSS images. PCA effectively identifie areas in which 

changes have occurred between two dates. Moreover, numerous features were detected 

in the study, including vegetation growth, deforestation activity, intensive management 

in forest areas, and urban development. 

In the same year, Gordon (1980) applied two Landsat images to monitor land use 

change in Franklin County, Ohio, USA, induced by an extensive regional project. The 

results showed that some major errors remained in the image processing and 

classification (such as misalignment and misclassification) especially in an urban 

environment. In contrast to the complex and heterogeneous landscape of urban 

categories, agriculture and open spaces were the most accurately classified categories. 

However, the author indicated that remote sensing techniques were not yet mature. The 

direct application of satellite images must await advancements in classification to 

improve accuracy. 
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In the 1980s, the spatial resolution of Landsat images was improved from 69 m to 

30 m; in addition, three more spectral bands were appended (Loveland, 2012), thus 

facilitating better classification of LULC.  

Several papers in the 1980s and 1990s are well-recognized for their contribution 

to LULC classification with medium spatial resolution satellite data. Toll (1985) and Haack 

et al. (1987) both assessed Landsat Thematic mapper (TM) and MSS through the 

classification performance of urban/suburban land cover by using the maximum-

likelihood classifier (MLC) and transformed divergence (TD) calculations, respectively. 

Both authors indicated that TM data could significantly improve accuracy in the 

homogenous suburban land cover because the TM data possessed finer spatial and 

spectral resolution in comparison to MSS. Especially in Toll’s study, TM provided 

considerable improvements in accuracy (from 74.8% to 83.2%). However, both studies 

also mentioned that the TM data might cause a reduced classification accuracy in 

heterogeneous complex urban land covers. 

Fuller et al. (1994) presented the land cover map of Great Britain that records 25 

land cover types, including 18 semi-natural vegetation types. The map was produced 

using a supervised MLC in Landsat TM multitemporal data acquired in summer and 

winter. The proposed method effectively classified land cover in Great Britain with high 

accuracy (around 80% to 85%) and separated a wide range of vegetation cover types. At 

the same time, the European satellite system arose in the late 1980s with the first launch 

of the SPOT mission, which was equipped with high-resolution visible instrument (HRV) 

(20 m); with this advance, urban LULC mapping emerged. 

Some research are well-established and presentative for LULC mapping in the 

urban area, (Gong & Howarth, 1992) developed a cover-frequency method for extracting 

land use in a rural–urban fringe environment in the town of Markham, Toronto, Canada, 

which was a typical rural–urban with much agricultural and natural land converted into 

an urban area for commercial, industrial, and residential uses. A classification with 12 

land cover categories was first performed on a single SPOT HRV multispectral data point 

using MLC, and then cover frequencies were extracted from the classified map for another 

classification of 14 land use classes using a supervised minimum-city-block classifier. The 

cover-frequency method proved more efficient than the traditional MLC (with a higher 
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kappa coefficient of 0.2); moreover, SPOT HRV data proved helpful for LULC mapping in 

the urban environment.  

In another study of rural–urban fringe LULC mapping in Toronto, Treitz et al. 

(1992) employed both SPOT HRV multispectral and panchromatic data for LULC 

classification at the rural–urban fringe. First, multispectral and panchromatic data were 

combined, resampled, and corrected to preserve the spectral and spatial resolution. 

Second, the LULC classification was performed by using the convolutional supervised MLC. 

The classification of eight rural–urban fringe LULC classes achieved a high kappa 

coefficient of 82.2% for training data and 70.3% for test data.  

Later on, Alves & Skole (1996) analyzed land cover dynamics in the western 

Brazilian Amazon from 1986 to 1992, using a time series composed of five SPOT HRV 

images and MLC, to delimit the total deforested area and characterize areas of secondary 

vegetation growth. The results indicated that land cover change classification accuracy 

was significantly increased by using SPOT HRV Multitemporal satellite data.  

Since the 1990s, large-area land cover mapping has become possible with the 

emergence of National Oceanic and Atmospheric Administration (NOAA) Advanced Very 

High Resolution Radiometer (AVHRR) sensors. The new series of sensors provided global 

remote sensing data (Loveland, 2012), which are widely used for LULC mapping at 

regional, national, or even global scales. 

Some earliest presentative works have successfully demonstrated the excellent 

performance of this large-scale sensor using different processing methods for different 

purposes. The paper by (Ehrlich et al., 1994) is one of the first studies that discussed the 

general applications of NOAA-AVHRR 1 km data for environmental monitoring and LULC 

characterizing. Cihlar et al. (1996) demonstrated the efficiency of multispectral and 

Multitemporal AVHRR data for providing land cover information in the northern 

environment.  DeFries et al. (1995) improved discrimination between 12 land cover types 

on a global scale from metrics derived from AVHRR data. Lambin & Ehrlich (1997) 

mapped land cover changes at broad spatial scales in sub-Saharan Africa between 1982 

and 1991, identifying seasonal patterns of change using AVHRR data and vegetation index. 

Laporte et al. (1998) presented a new land cover map of the central African region, which 

provided a synoptic view of the extent of dense humid forests. The map was derived from 
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multi-resolution, Multitemporal NOAA AVHRR data by merging Local Area Coverage (1 

km) and Global Area Coverage (8 km).  

In this period, various land cover mapping projects were operated by governments 

or organizations. For example, The European Union COoRdination of INformation on the 

Environment (CORINE) land cover program (CORINE Land Cover — Copernicus Land 

Monitoring Service, n.d.) started to provide ongoing land cover information in Europe 

using Landsat and SPOT data. Moreover, the UN Food and Agriculture Organization (FAO, 

n.d.) launched a land cover mapping project, Africover, to map the land cover of the 

African continent (Loveland, 2012). Furthermore, LULC classification accuracy was highly 

improved during the 1990s. Certain errors (e.g., sub-pixel mixing) were also corrected 

due to the progress of classification methods, such as the first generation of Artificial NN 

(ANN) (Kanellopoulos et al., 1992; Foody, 1996; Atkinson et al., 1997), regression and 

decision trees (Moody & Woodcock, 1995; M. Hansen et al., 1996; Friedl & Brodley, 1997; 

De Fries et al., 1998).  

However, some limitations persisted, mainly induced by the narrow availability 

and lack of accessibility of data, limited types of sensors, processing complexity, and 

relatively poor accuracy of classification results. Therefore, some studies began to discuss 

the possibility of use of multitemporal data or SAR sensors (ERS-1) to break through the 

limitation of meteor impacts, derive phenological variation, and improve land cover 

discrimination (Townshend, 1992). However, the Radio Detection And Ranging (RaDAR) 

data remained complex to interpret in that time.  

Since the development of remote sensing sensors in the late 1990s, LULC maps 

have been increasingly generated from fine-resolution data because higher spatial 

resolution can significantly improve discrimination among different types of land cover 

as well as cloud detection, reduce misclassification errors, and facilitate short-term 

change detection. In addition, more and more studies were carried out to answer defined 

user needs and solve related social and environmental issues instead of simply classifying 

the study area. 

Among the most-cited works, Wardlow et al. (2007) improved and updated LULC 

datasets from regional to global scales in the U.S. Central Great Plains by using time-series 

MODIS 250 m vegetation index datasets for performing large-area crop monitoring in an 
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agriculturally intensive region. Lu et al. (2007) mapped and monitored LULC types in 

rural settlements under human-induced stresses in the western Brazilian Amazon to 

evaluate and map potential land degradation risks associated with deforestation and soil 

erosion. Feyisa et al. (2016) accurately quantified LULC mapping and landscape change 

patterns in the urban environment of Addis Ababa, Ethiopia, using eight Landsat images 

acquired from 1985 to 2012 to understand the relationship among rapid urbanization, 

increased surface thermal intensity, and urban biophysical composition.  

Overall, LULC research has rapidly developed, and LULC classification has been 

significantly more efficient and accurate in recent decades for the reasons presented 

below.  

1) The arrival of the new generation of near real-time, analysis-ready, high-quality (high 

spatial, spectral, radiometric and temporal resolution), standardized, easy-access EO 

satellite data improves spatial information extraction efficiency and results in highly 

accurate LULC classification. 

For instance, van der Sande et al. (2003) used IKONOS-2 to classify land cover 

categories in the southern Netherlands. Afterward, the highly accurate classified maps 

(74% overall accuracy (OA)) were utilized as input to simulate flood hazards, derive 

an inundated areas map, and eventually assess damage to residential properties, 

infrastructure, and agricultural area.  

A decade later, Forkuor et al. (2018) evaluated the use of Landsat-8 and Sentinel-

2 data in LULC mapping in rural Burkina Faso; they examined the contribution of the 

red-edge band of Sentinel-2 in improving classification accuracy by using three ML 

algorithms: Random Forest (RF), Support Vector Machine (SVM), and stochastic 

gradient boosting. The results indicated that Sentinel-2 outperformed Landsat-8 in 

LULC mapping, and the red-edge band of Sentinel-2 can effectively provide added 

value by deriving a more accurate LULC classification than Landsat-8 and Sentinel-2.  

Furthermore, LULC classification was frequently performed using very high-

resolution (VHR) remote sensing data, such as WorldView-1 and -2 (WV-1 and WV-2), 

Pléiades-1, and QuickBird. Compared to HR images, VHR images are generally applied 

for LULC mapping in a highly heterogeneous complex landscape that requires finer 

spatial resolution, such as an urban area.  
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For example, in order to overcome the spectral variation within the same LULC 

class, the spectral confusion among LULC classes, and shadow impacts, Lu et al. (2010) 

examined the uses of VHR QuickBird-2 data, segmentation-based classification 

approach and spatial information to improve urban LULC classification in Lucas do 

Rio Verde in Mato Grosso State, Brazil. The research showed that suitable 

combinations of imagery, classification method, and information could significantly 

improve LULC classification in complex urban areas.  

Jawak & Luis (2013) explored the potential of multi-angle HR WV-2 panchromatic 

and multispectral data for urban LULC information extraction by generating the 

traditional pan-sharpening for data fusion and multiple spectral index ratios for 

spectral distortion reduction.  

Hashim et al. (2019) used Pléiades-1A VHR remote sensing image for urban 

vegetation mapping in the city of Kuala Lumpur by employing the Normalized 

Difference Vegetation Index (NDVI) and MLC. 

 

2) Development of advanced automated processing algorithm, great computational 

capacity, classification approach, and classifiers. For example, the introduction of 

Object-Based Classification (OBC) improves land cover types extraction and reduces 

misclassification errors efficiently. Meanwhile, various reliable non-parametric 

supervised classification methods, such as ML algorithms (Talukdar et al., 2020; 

Pandey et al., 2021) and the emergence of DL classifier (L. Ma et al., 2019; Vali et al., 

2020), have opened a new era of LULC classification.  

Although parametric methods (e.g., MLC) were widely used in the 1970s and 1980s, 

they had a severely limited capacity for dealing with heterogeneous complex land 

covers; moreover, land cover distributions cannot be defined based on data 

distributions due to a great deal of uncertainty (D. Lu & Weng, 2007; Phiri & 

Morgenroth, 2017). In contrast, non-parametric algorithms, including SVM (C. Huang 

et al., 2002; M. Pal, 2008; S. K. Singh et al., 2014), Decision Tree (DT) (Friedl & Brodley, 

1997; De Fries et al., 1998; M. Pal & Mather, 2003), a variety of DL classifiers (e.g., ANN, 

Convolutional NN (CNN), and Recurrent NN (RNN) (Foody, 1995; Srivastava et al., 

2012; Ienco et al., 2017; C. Zhang et al., 2019a; X.-Y. Tong et al., 2020), make no 

assumption before classification and are more efficient and accurate (Wulder et al., 

2018; Talukdar et al., 2020).  
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ML classifiers (whether shallow or deep learning) achieved consistently higher 

accuracy compared to parametric methods in LULC classification in a number of 

previous studies (X.-H. Liu et al., 2002; D. Lu, Mausel, Batistella, et al., 2004; Otukei & 

Blaschke, 2010; Szuster et al., 2011; Talukdar et al., 2020).  

 

3) Advancement of cloud detection algorithms (Goodman & Henderson-Sellers, 1988; 

Foga et al., 2017; Jeppesen et al., 2019) and the emergence of well-functioning cloud 

masks (Baetens et al., 2019), such as MAJA (Lonjou et al., 2016), Sen2Cor (Main-Knorn 

et al., 2017) and FMask (Z. Zhu & Woodcock, 2012; Z. Zhu et al., 2015).  

 

4) For real-value, continuous, or discrete series of data, time-series analysis was widely 

utilized as a powerful tool to reveal land surface dynamics and to analyze the 

magnitude of these dynamics (e.g., socio-economic transformation, urbanization, 

deforestation) (Lasaponara & Lanorte, 2012; Kuenzer et al., 2015). Additionally, the 

time-series employed in LULC classification, especially in LULCC detection, are usually 

annual and may be composed of different satellite sensors. 

Among the works which made a significant contribution of time-series analysis in 

remote sensing, Yang & Lo (2002) extracted LULCC of Atlanta, Georgia, USA, over 25 

years for modeling the impacts on temperature and air quality in Atlanta by using a 

time-series of Landsat MSS and TM images.  

Pouliot et al. (2014) studied annual land cover changes covering Canada from 2000 

to 2011 using MODIS 250 m coarse-resolution data to identify dominant change 

transitions in the country.  

Fu & Weng (2016) used the Continuous Change Detection and Classification 

algorithm on 507 Landsat TM/ETM+ images acquired from 1984 to 2011 to examine 

human-induced LULCCs and their impacts on the urban thermal environment in 

Atlanta, Georgia, USA.  

In an investigation by Yan et al. (2019), MODIS time-series data were also applied 

to detect LULCC in Wuhan, China, from 2000 to 2018. The research achieved very high 

accuracy (over 90%) by using the Prophet algorithm to detect the change point, as 

well as the Dynamic Time Warping algorithm to improve the accuracy of time-series 

classification. 
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5) Data fusion approaches are also commonly performed in LULC classification to 

investigate the potential and characteristics of different satellite sensors. The data can 

be acquired within the same sensors (e.g., data fusion of panchromatic and 

multispectral bands) or from different sensors of the same types (e.g., by merging data 

from different SAR satellites or optical satellites).  

Among the most-recognized works, Bruzzone et al. (1999) proposed using a 

data fusion approach to classify multi-source remote sensing data, based on applying 

the Bayes rule of minimum error to the “compound classification” of multi-source and 

Multitemporal image pairs. The proposed technique was performed on Landsat TM 

and ERS-1 SAR data and was shown to outperform classification using a single sensor.  

Phiri et al. (2018) conducted land cover classification in a heterogeneous 

landscape in Zambia using Landsat-8 data. Meanwhile, the importance of pre-

processing methods (e.g., pan-sharpening) was also exanimated in the study; the 

results indicated that classification accuracy was improved to 93% when using pan-

sharpened data, compared to 86% with standard data.  

Chen et al. (2017) proposed improving land cover classification accuracy by 

fusing remote sensing data from different sources, including Landsat-8, MODIS, China 

Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and 

Reflection (ASTER) digital elevation model (DEM) data. The results showed that the 

fusion of various temporal, spectral angular, and topographic characteristics could 

significantly increase the overall classification accuracy and successfully discriminate 

vegetation types. Such fusion of different types of sensors (e.g., combined satellite data 

from optical and SAR satellite sensors) has been applied in LULC classification since 

the late 1990s (Hall & Llinas, 1997; Solberg et al., 1994) and is still commonly used 

today.  

Clerici et al. (2017) took advantage of the fusion of Sentinel-1 and Sentinel-2 

imagery to increase LULC mapping of Colombia’s Lower Magdalena region by 

combining the all-weather capability of the SAR sensor and the spectral information 

of the optical sensor. The combination of Sentinel-1 and the near-infrared (NIR) band 

in Sentinel-2 produced the most accurate classification.  



Part I Context of the study     
Chapter 1. Detection of land use/land cover in coastal area with remote sensing 
 

40 
 

Furthermore, satellite images can also fuse with other suitable remote sensing data, 

including aerial images (Gianinetto & Scaioni, 2003; Persson et al., 2008), Geographic 

Information System (GIS) data (Weis et al., 2005; Aydöner & Maktav, 2009), and Light 

Detection And Ranging (LiDAR) data (Zabuawala et al., 2009; X. Huang et al., 2011; K. 

K. Singh et al., 2012) in order to achieve greater LULC classification accuracy. 

 

6) Ancillary data from distant sources other than remote sensing data are typically 

utilized to assist image processing and analysis, and the most commonly used ancillary 

data are DEM (Sanyal & Lu, 2004; Dar et al., 2010), maps and prior knowledge (Combal 

et al., 2002; Wright & Gallant, 2007), geospatial data (Maselli et al., 2009; Stevens et 

al., 2015). 

 

7) Ultimately, post-classification processing has become further developed and is more 

common in LULC classification. Various post-classification processes (e.g., post-

classification comparison, accuracy assessment) are effective for error correction (e.g., 

salt-and-pepper effect reduction) to improve final classified maps.  

 

Methods of LULC classification may vary according to the user’s need and the 

research objective. First, LULC classification at a given time, with either a single image or 

multiple images acquired in the short term, was widely carried out to understand the 

LULC and environment of the study area, generating thematic maps for further studies or 

policy-making. LULC classification is mostly multiclass classification and target class 

extraction. Moreover, the most important studies of LULC classification nowadays focus 

on the composition of the main LULC of the study area (Manandhar et al., 2009; Z. Qi et al., 

2012; A. Ghosh et al., 2014; Rwanga & Ndambuki, 2017), the development and the impacts 

of urbanization (Georganos et al., 2018; Cai et al., 2019; Jozdani et al., 2019), agricultural 

land- and crop-type mapping (Wardlow et al., 2007; Hütt et al., 2016; Gibril et al., 2017), 

and spatial distribution of natural area and vegetated cover (e.g., forest) (Moskal et al., 

2011; Sinha et al., 2015; Hurskainen et al., 2019). 

Second, with rapid population growth and urbanization, LULCC has attracted 

significant attention in the remote sensing field. “LULCC detection” refers to the 

comparison of more than one remote-sensing dataset acquired at different times in the 
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same area (Aplin, 2004). Due to its multidisciplinary character, LULCC detection plays a 

crucial role in environment and resource management; it is thus generally employed to 

provide valuable information on social and environmental issues, such as changes in the 

composition of LULC in the area of interest (Alphan, 2003; F. Fan et al., 2007; Srivastava 

et al., 2012; Kindu et al., 2013), urban expansion and the monitoring of its impact (Lo & 

Quattrochi, 2003; Pauleit et al., 2005; Araya & Cabral, 2010), human- or nature-induced 

environment degradation (e.g., deforestation) (Eva & Lambin, 2000; Walker, 2004; 

Symeonakis et al., 2007), or LULC conversion (Roy & Inamdar, 2019; Mardian et al., 2021; 

Moisa et al., 2022). 

In addition, LULCC detection usually involves changed areas and their change rate, 

as well as the spatial distribution, changed types and trajectories, and the precision of the 

change detection (Attri et al., 2015).  

As early as the 2000s, Lepers et al. (2005) summarized the most important rapid 

changes in LULC at the regional to global scale from 1981 to 2000 based on existing 

datasets, revealing the global geographic patterns of land cover changes. One such finding 

was that the most significant rapid land cover changes were concentrated in Asia—

especially dryland degradation and rapid cropland increase in Southeast Asia. Other 

findings included significant forest degradation in the Amazon basin and Siberia, as well 

as rapid cropland decrease in the southeastern USA and eastern China.  

Killeen et al. (2007) documented LULCCs in Bolivia over 30 years (1975–2005). 

The landscapes of eastern lowland Bolivia, known for its rich ecosystem, were primarily 

composed of different tropical forest types (e.g., humid forest, inundated forest, 

seasonally dry forest, and cloud forest). The results showed that eastern Bolivia 

experienced significant deforestation; 9% of the original forest cover had been removed, 

and 17% of the total original land cover had been changed over the 30-year period of 

study. 

Kindu et al.,(2013) studied LULCC mapping in the landscape of the Munessa-

Shashemene area of the Ethiopian highlands from 1973 to 2012 using Landsat and 

RapidEye data. The classification results revealed the change of dominant LULC types 

(from grasslands to croplands); a rapid reduction in woodland cover, natural forest cover, 
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and grassland; and a significant increase in cropland. In addition, 60% of the land cover 

had been changed over the 39-year period of study. 

Accurate LULC mapping and LULCC detection are widely applied in diverse study 

areas; in particular, the LULC of the coastal area is one of the current topics in the remote 

sensing LULC classification field. The coastal area, where the land and ocean are separated 

by the coastline (Figure 2), has be defined as “the dynamic interface zones where land, 

water, and atmosphere interact in a fragile balance that is constantly being altered by 

natural and human influence” (Beatley et al., 2002).  

As the transition point between the sea and the land, offering rich and diverse 

resources (Crossland et al., 2005), the coastal area is known as the most essential food 

production source, a center of transport and industrial development, a significant source 

of minerals and geological production, a repository of biodiversity and ecosystems that 

are critical for the Earth, and the most developed tourism location (Crossland et al., 2005). 

Approximately half of the world’s population, as well as most of its socio-economic 

activities and global interactions, are concentrated in coastal areas.  

 

Figure 2 Total coastlines of the world (Source: World Bank, 2020)  

Naturally, the coastal zone is recognized as an important place of diverse natural 

systems and resources (Figure 3) (Crossland et al., 2005); however, coastlands also 

experience many natural hazards (primarily cyclones and powerful coastal storms), 

which have inflicted incalculable losses (Beatley et al., 2002). 
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Figure 3 Marine ecoregions of the world (data source: Spalding et al. (2007) and The Nature Conservancy, 
n.d. ) 

Besides the environmental vulnerability, most coastal regions are under the 

pressure of human activities. The main driving factors of most of the environmental 

problems in the coastal zone are population growth, intense socio-economic activities, 

and conflict over how the use of limited resources (Beatley et al., 2002; Hadley, 2009). 

These main factors are often manifested as pollution from different sources (R. W. 

Howarth, 2008; Tiquio et al., 2017), such as industrialization (S.-L. Wang et al., 2013; 

Patnaik, 2018), artificialization (Ferreira et al., 2009; Freire et al., 2009), intense 

agricultural production (e.g., aquaculture) (Primavera, 2006; Moreno-González et al., 

2013), overfishing (Jackson et al., 2001; Scheffer et al., 2005), sand mining (Mensah, 1997; 

Masalu, 2002), and waste disposal (Bascom, 1982; Masalu, 2002; Clark, 2018). Thus, most 

coastland development patterns are not sustainable. It is therefore crucial and urgent to 

change human activity patterns in coastal zones, find a balance between the immediate 

needs of humans and the needs of future generations, and develop a solid understanding 

of coastal geography. To achieve these goals, accurate LULC mapping is needed for 

complex and dynamic coastal zone management (Beatley et al., 2002). 

Many studies on LULC classification in coastal areas have been carried out in recent 

years due to the advancement of classification methods and the arrival of HR and VHR 

remote sensing data. First, coastal land cover mapping is applied in physical geography 

studies, such as shoreline extraction (Dellepiane et al., 2004; Maglione et al., 2014; 

Bengoufa et al., 2021; Boussetta et al., 2022), dune extraction (Breed & Grow, 1979; 

Hugenholtz et al., 2012); wetland mapping (Ozesmi & Bauer, 2002; Rebelo et al., 2009), 
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climate and morphological processes analysis (Seker et al., 2003; Mason et al., 2010), and 

coastal ecosystem research (Klemas, 2009; Klemas, 2010).  

Moreover, remote sensing scientist communities are most interested in LULC 

mapping and LULCC detection for multidisciplinary studies—for example, reducing coast 

degradation, improving management for population growth and, ultimately, preparing for 

the coming impacts of sea-level rise caused by climate change (Hadley, 2009). 

Since the launch of the first-generation EO satellite, coastal zones have always been 

among the most researched areas. For instance, Ruiz-Luna & Berlanga-Robles (2003) 

focused on coastal LULCC and coastal lagoon surface reduction in northwest Mexico. In 

their study, supervised classification was performed on Landsat time-series data acquired 

between 1973 and 1997. Every image was classified into six classes (i.e., urban area, 

mangrove, agriculture, natural vegetation cover, aquatic system, and aquaculture). In 

addition, pixel-by-pixel change detection was carried out on the classification results. The 

LULCC results indicated that the urban area were dramatically increased and had become 

the dominant land cover by degrading natural vegetation and cropland. Moreover, two 

lagoons in the study area were found to have been significantly reduced. 

Shalaby & Tateishi (2007) studied mapping and monitoring LULCCs over 14 years 

in the northwestern coastal zone of Egypt using Landsat images acquired in 1987 and 

2001. The results revealed that the intense development of agricultural and tourist 

activities had caused vegetation degradation and waterlogging. 

Abdullah et al. (2019) conducted a detailed analysis of the spatiotemporal pattern 

of LULCC in the coastal region of Bangladesh, which was dominated by a highly 

heterogeneous landscape using a coarse spatial resolution image, object-based image 

analysis (OBIA) approach, and RF classification algorithm. Despite lacking quality remote 

sensing data, the authors successfully revealed increased cropland, built-up area, and 

water bodies. At the same time, vegetation cover had decreased over 28 years. 

Furthermore, like many other coastal regions around the world, Pays de Brest has 

been analyzed and identified as an important coastal area in France, particularly in 

vegetation detection. For instance, Talab Ou Ali et al. (2017) proposed a methodology for 

establishing an interferogram of the main vegetation types in Pays de Brest and 

monitoring vegetation using the backscattering coefficient based on Multitemporal and 
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multi-polarized Sentinel-1 SAR time-series data. In addition, vegetation changes between 

2015 and 2016 have been assessed using interferometric coherence. 

Niculescu et al. (2018) aimed to classify the major vegetation types in the Pays de 

Brest into six classes—forests, moors and lawns, summer crops, winter crops, grasslands 

and water, and no vegetation—by fusing data from Sentinel-1, Sentinel-2, SPOT-6 time-

series and different vegetation indices using a supervised RF classification algorithm.  

Niculescu et al. (2020) deals with the development of a shallow structure ML 

methodology for the identification and mapping of the vegetation of the Pays de Brest 

(France) from a time series of Sentinel-1 and Sentinel-2 data. The main objective of this 

work was to identify and map the vegetation in the Pays de Brest region using a 

multisensor stack of S1 and S2 satellite data via random forests, rotation forests (RoF) 

and canonical correlation forests (CCF). The methodological originality of this work 

consists in the optimization of the RoF model and the CCFs which create diverse learning 

bases using the transformation of the data and the characteristics of the subsets. 

Nonetheless, the previous studies remain inadequate; in particular, the lack of 

LULC and LULCC information may impede sustainable development policies. Therefore, 

this thesis is indispensable to generating LULC maps, detecting LULCC in Pays de Brest 

according to the specific needs of local government and communities, and filling out the 

gaps in LULC information for the region. 
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Chapter 2. Geographic localization and major land 

use / land cover in Pays de Brest  

2.1.  Geographical localization  

 

Figure 4 Localization of study areas. A: localization of Pays de Brest in France; B: Localization of study areas, (1) 
Sentinel-2 satellite image of northern Finistère in 2019, (2) Pléiades image of city of Brest in 2018, (3) Sentinel-2 satellite 
image of the Crozon Peninsula in 2018. 

Our study area, Pays de Brest (Figure 4), located on the west coast of France, is an 

urban cluster in the northwestern part of the Finistère department and the region of 

Brittany. Pays de Brest was created in 2002 and covers a land area of 2,101 km² that 

extends between latitudes 48°05′39″ N and 48°40′39″ N, longitudes 3°52′34″ W and 

4°47′42″ W. Pays de Brest also occupies 599 linear km of coastline. The area’s population 

of 420,000 yields a population density of approximately 200 inhabitants per km². 

Besides the vital concentration of population and its flourishing local socio-

economic system, Pays de Brest has a wealth of natural and environmental resources. 

Despite highly developed economic activities, the city of Brest has preserved a large 

surface of natural area (urban forest, watercourse, valleys). Meanwhile, many urban 

green spaces have been constructed for citizens’ physical and mental health, biodiversity, 
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and environmental protection. Outside the city, the region is occupied by an essential part 

of the natural landscape with high geographical research value, such as coastal wetlands, 

coastlines with dunes and cliffs, mountain ranges, and the regional natural park of 

Armorique. The natural landscape will be discussed in detail in section 2.2, “Geographical 

condition of the study area.” 

 

 

Figure 5 Pays de Brest with the seven intercommunalités: Pays d’Iroise, Pays des Abers, Lesneven-Côte des 
Légendes, Brest Métropole, Pays de Landerneau-Daoulas, Presqu’île de Crozon-Aulne Maritime and Pleyben-Châteaulin-

Porzay (source: Brest Métropole) 

The agglomeration is composed of 103 communes; more than half of them are 

coastal, representing a quarter of the coastline in the French territory. The 103 communes 

are grouped into seven intercommunalités for a joint project and different forms of 

cooperation between them (Figure 5). Most of the urban areas and socio-economic 

activities are clustered together in the coastal zone and near to Brest Métropole, which is 

the most crucial agglomeration with the largest population and economy in the 

department of Finistère. In this chapter, intercommunalité will be used as the smallest 

administrative region in our study area.  

Historically, the region’s population has always preferred to settle near the ocean; 

the inland, by contrast, is sparsely populated and less developed (Ollivro, 2015). First, the 
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region of Brittany is traditionally dominated by various agricultural activities. Thus, 

farmers and fishermen have settled near the water to gain greater access to natural 

resources. After the first military harbor was built in the city of Brest in the 17th century, 

diverse socio-economic activities arose near the harbor, and the harbor clusters were 

quickly formed with substantial employment opportunities. Furthermore, with the 

diverse landscape and rapid development, more and more tourists and retirees searched 

for a second residence at the seaside, intensifying population growth in the coastal 

communes.  

 

Figure 6 Distribution of the population by community in Pays de Brest 

According to Figure 6, the population is highly concentrated in the northern coastal 

intercommunalités, among which Brest Métropole is the most inhabited area with 211,156 

inhabitants in 2019, representing half of the population in Pays de Brest. In addition, the 

neighboring intercommunalités (Pays d’Iroise, Pays des Abers) act as satellite cities 

hosting much of the rest of the population. Therefore, a significant contrast can be 

observed between the populated intercommunalités and the intercommunalités not 

adjacent to, or more distant from, Brest Métropole (Pays de Landerneau-Daoulas, 

Pleyben-Châteaulin-Porzay and Lesneven-Côte des Légendes); the latter communes host 

fewer than 4,000 inhabitants on average, except at the center of each intercommunalité. 

Thus, a significant imbalance in terms of population has emerged between the coastal area, 

which is also close to the metropolis, and the other relatively isolated communes. 
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2.2. Geographical condition  

 

Figure 7 Umbrothermal diagram of the monthly mean temperatures and monthly mean total precipitations 
from 1991 to 2021 of Brest 

Climatically, according to the Köppen–Geiger climate classification, Pays de Brest 

is classified as type Cfb (temperate oceanic climate) (Köppen, 2011). As demonstrated in 

Figure 7, on average, the total annual precipitation of the area is 941 mm; the wetter 

season lasts five months, from October to February, and the highest monthly rainfall of 

110 mm is received in December. Conversely, June and July are the driest months, with 

only 52 mm of rainfall. As a temperate area, the annual average temperature is 12.2 °C. In 

contrast to the wet season, the hottest season lasts from July to August, with an average 

temperature of 16.8 °C; an average minimum temperature of 7.7 °C is observed in 

February. The region’s mild weather and ample rainfall provide an ideal habitat for rich 

biodiversity with landscape heterogeneity as well as optimal conditions for numerous 

agricultural activities, such as crop planting.  
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Figure 8 Topography maps of Pays de Brest with principal landform and summit 

Three types of resistant rock—sandstone, quartzite, and granite—gave rise to the 

prominent landform of Pays de Brest; thus, the topography of Pays de Brest consists 

mostly of plains, which means the low altitude (Figure 8). The elevation of the area ranges 

from 0 m to 385 m. The natural landscape is a mosaic of cliffs, dunes, moors, peat bogs, 

and coastal wetlands. However, a few essential landforms are worth noting in Pays de 

Brest. A vast plateau, Plateau de Leon, occupies a large area in the north, and a local 

mountain range, Mont d’Arrée, with a series of the highest summits of around 385 m, can 

be found in the region’s center. 

Moreover, Montagnes Noires, another essential local mountain range, crosses over 

the south from Menez Hom, a summit on the Crozon Peninsula, to the central department. 

Besides the principal summits, Bassin de Châteaulin, a vast hollow with a mean altitude 

lower than 100 m, lies between two mountain ranges in the south of the study area. The 

basin, originally constituted by soft carboniferous shales, was created by the Aulne River 

and its affluent, which take their source from Mont d’Arrée and Montagnes Noires.  

Because its landform is relatively plains, especially in the coastal area—and with a 

basin in the center of the region that secures water resources from the Aulne River and 

its affluent—Pays de Brest is naturally endowed with excellent geographical features to 

develop all kinds of socio-economic activities. 
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2.3. Land use / land cover in Pays de Brest  

2.3.1. CORINE Land Cover (CLC) 

 

 

Figure 9 CLC 2018 in Pays de Brest 

The CLC geographical database is a biophysics and land use inventory produced in 

the framework of Copernicus, the European Earth observation program (CORINE Land 

Cover). According to Figure 9, cultivated lands are the leading land use in Pays de Brest. 

They are uniformly distributed over the study area, especially in Plateau du Léon, except 

on the western Crozon Peninsula (Presqu’île de Crozon-Aulne Maritime), which is 

occupied by natural coastal moorlands. The presence of arborous, fruticose, and 

herbaceous vegetation is easily identified. Forest can usually be found near water areas, 

either around the coast (such as in the center of Pays de Brest and around the coast of the 

Crozon Peninsula) or near the inner water body—for example, the Bassin de Chateaulin. 

Moors and heathland are found mainly near the coast in the region’s north and the west 

coast in the middle of the Crozon Peninsula. Other vegetation is dispersed throughout the 

region; wetlands are mainly present on the seaside and are easily identified on the Crozon 
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Peninsula and the north coast of the area; lakes on the Plateau du Léon comprise most of 

the water bodies. 

The location of artificial surfaces, known as “urban areas,” is very similar to the 

population distribution described in the previous section. Both are highly concentrated in 

the Brest Métropole and its suburbanization trend, with much of the remainder in some 

small cities located in central intercommunalités. It is worth noting that although Pays de 

Brest was created with the principle of cohesive development between intercommunalités, 

the distribution of population and the urbanization level is highly imbalanced; more than 

half of the population of Pays de Brest is concentrated within the Brest Métropole. The 

presence of artificial areas is essential, even though agricultural land remains the most 

important land use in the region. 

 

2.3.2. Main activities and protected natural areas 

Even though agriculture has always been the region’s primary activity, it is clear 

that for several decades, many other socio-economic activities have been increasing 

sharply and taking over more and more space in Pays de Brest, accompanied by 

urbanization trends. Figure 10 clearly illustrates the significant economic activity in the 

area.  
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Figure 10 Distribution of main economic activities in Pays de Brest 

The two dominant economic activities in Pays de Brest are commerce and industry, 

followed by the “tertiary,” or service sector (which includes transportation, 

restaurants/hospitality, and sales), or some combination thereof. Reflecting the 

concentration of artificial areas and population, construction is generally located in the 

urban areas, mainly on the seaside and in the Brest Métropole. In consequence, the 

majority of economic activities are concentrated near the cluster of construction—in 

particular, commercial activities, tertiary sector activities, and marine activities on the 

northern coast. In addition, some listed activities can also be found near the beaches due 

to the tourism sector’s current rapid development, which—as mentioned previously—is 

one of the principal factors driving the urbanization and artificialization of coastal areas. 

Whereas the tertiary sector and commercial activities can be found only near the 

principal agglomerations, various other activities are located near the small cities and 

countryside or along the coasts. Most industrial activities tend to avoid the big cities, 

where space to build and expand is scarce and more expensive. 

Natural area preservation is also a key to development in Pays de Brest; some 99 

communes in the department of Finistère cover at least one sensitive natural area and 

pre-emption zones. 
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Figure 11 Protected natural areas in Pays de Brest 

Due to its rich biodiversity reserve and diverse landscape, nature has always been 

highly valued in the region of Brittany and the Finistère department (Figure 11). The first 

National Natural Reserves (NNRs) and Regional Natural Reserves (RNRs) were created in 

the region in 1913; these two types of reserves mainly cover the islands in the west of the 

continent and some areas located in the north of the Crozon Peninsula. Since 1979, Special 

Protection Zones (ZPS) have been created to conserve wild birds, and Special 

Conservation Zones (ZSC) were created in 1992 to ensure biodiversity by conserving 

natural habitats as well as wild fauna and flora. ZPSs and ZSCs mainly cover the coasts, a 

part of the coterminous sea area, and the principal vegetated area, such as the moorlands 

of the Crozon Peninsula and the forest in the center of the study area. In addition, natural 

areas with ecological, faunistic, and floristic interest were created in 1982. Sensitive 

natural areas, pre-emption zones, and department-protected natural sites  cover both the 

coasts, the forests, and the drainage basin of the river of Aulne. Eventually, two essential 

natural parks were created: in 1969, the regional natural park of Armorique (located on 

the Crozon Peninsula, Bassin de Châteaulin, and extended to the center of Pays de Brest), 

and in 2007, the natural marine park of Iroise, which covers a vast area of water surface 

in the west. Parks play an essential role in the conservation of biodiversity and the 

environment. 
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2.4. Major LULCC issues  

Despite the fact that the most significant LULCs (artificial area, agricultural land, 

vegetation) remain the same in Pays de Brest, the region has been undergoing a sharp 

transition between these three essential LULCs for several decades, and some problems 

of development—especially the imbalance between intercommunalités—are gradually 

emerging.  

Urban sprawl is the most significant of the major LULCCs. During the rapid 

development and rapid expansion of urban areas between 1984 and 2005 in Pays de Brest, 

some areas experienced a more remarkable change than others (Figure 12).  

 

Figure 12 Artificial area rate in the department of Finistère in 2005, and its evolution between 1984 and 2005 

Pays de Brest has always been a population and economic center in the Finistère 

department; 44% of the department’s population are concentrated within 25% of its 

surface. In particular, the metropolis of Brest provides essential socio-economic activities 

and employment opportunities; 44% of department employment is found in the Brest 

Métropole (Sparfel, 2011). Even though the foundation of Pays de Brest aimed to 

strengthen intercommunalités and develop joint strategies and policies, the communes of 

Brest Métropole—which occupy less than 8% of the departmental surface area—
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generated more than 13% of the urban sprawl between 1984 and 2005 (Adeupa, 2009). 

Furthermore, artificialization is more significant on the coastline; coastal communes 

experienced approximately 46% of urban sprawl, despite representing less than 29% of 

the departmental surface (Adeupa, 2009). Therefore, the coastal area and the Brest 

Métropole have a high artificial area rate ranging from 10% to 76%. Otherwise, the 

surface is highly occupied by construction in the surrounding area of Brest Métropole. By 

contrast, the Crozon Peninsula and some areas far from the coastlines, located in the 

center of the region, experienced a more minor change in the artificial surface rate ranging 

from 0.4% to 10%, because of their isolation and remoteness from socio-economic 

activities relative to the coastal areas. 

The fundamental cause of this significant artificialization is the rising population 

in Pays de Brest due to immigrants who can be placed into one of three categories: (1) 

young workers attracted to the jobs created by rapid economic development in the region; 

(2) vacationers or seasonal residents attracted to the well-protected environment and 

diverse landscape of the region, which has seen a boom in the construction of second 

residences or vacation homes, especially on the coast; and (3) retirees—many of them 

relatively young—are choosing to settle in the region, mainly in the coastal area, owing to 

the reasons enumerated in item (2).  

 

Figure 13 Evolution of the population (a) and density of population (b) in Pays de Brest between 1990 and 2019 

According to Figure 13, the population has, on average, increased in all 

intercommunalités between 1990 and 2019 at a rate between 2% and 35%. In the 

beginning, it can be easily noticed that the population increases are very poor in Presqu’île 

de Crozon-Aulne Maritime and Brest Métropole. Just as all metropolis, Brest Métropole, 
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went through urbanization very early, most of the population and socio-economic 

activities are highly concentrated in these intercommunalités. However, the extension of 

the metropolis is limited by the presence of the sea in the south. Thus, there is a tendency 

to be overloaded for several decades, and the weak population evolution rate can be 

explained. 

On the other hand, as the essential part of the regional natural park of Armorique, 

considering the construction restrictions for environmental protection and biodiversity 

preservation, Presqu’île de Crozon-Aulne Maritime has attracted mainly tourists instead 

of inhabitants. After that, two intercommunalités far from Brest Métropole, Pleyben-

Châteaulin-Porzay, and Lesneven-Côte des Légendes have experimented with slow 

population growth in 29 years in consideration of their isolated geographical location (9% 

of population growth rate for Pleyben-Châteaulin-Porzay and 10% for Lesneven-Côte des 

Légendes). Eventually, the three coastal intercommunalités near Brest Métropole—Pays 

des Abers, Pays d’Iroise, and Pays de Landerneau-Daoula—went through the most 

significant population growth due to the phenomenon of suburbanization. In particular, 

settling in Pays des Abers (29%) and Pays d’Iroise (35%) appear to be the first choice for 

young workers or young retirees, who can have a house with a larger surface area while 

also remaining close to Brest Métropole. However, Pays de Landerneau-Daoulas is 

relatively sparsely populated due to its less convenient location and greater distance from 

Brest Métropole.  

The population density growth rate from 1990 to 2019 is very similar to the 

population growth rate. Excepting Presqu’île de Crozon-Aulne Maritime is protected by 

the regional natural park of Armorique since 1969, the density of the population stay 

weak in the intercommunalités far from the metropolis (Lesneven-Côte des Légendes and 

Pleyben-Châteaulin-Porzay) due to the lack of socio-economic activities. Considering that 

Brest Métropole was already inhabited in the early 1990s, the growth of its population 

density increased relatively slowly (13% in 29 years) compared with its neighboring 

intercommunalités. Mirroring the increase in population, the population density has also 

increased dramatically in the three adjacent intercommunalités of Brest Métropole 

because they are not traditionally densely inhabited areas. More and more people, either 

new arrivals in the area or former urban residents, are choosing to settle in these 

intercommunalités, seeking improved quality of life.  



Part I Context of the study     
Chapter 2. Geographic localization and major land use/land cover in Pays de Brest 
 

58 
 

Population growth and urban sprawl are currently the most important phenomena 

in Pays de Brest, and they have led to the gradual emergence of certain concerns and 

conflicts in recent years. In summary, two imbalance problems are worthy of note in the 

study area: (1) the imbalanced development in space and the expanded gaps between the 

coastal area near the metropolis and (2) the other distant areas. Moreover, the balance of 

different land uses has already been upset. Therefore, conflict and competition between 

different land uses are increasing, accompanied by worsening undesirable consequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part I Context of the study     
Chapter 2. Geographic localization and major land use/land cover in Pays de Brest 
 

59 
 

2.4.1. Imbalance of development between intercommunalités  

 

Figure 14 Evolution of population between (a) 1999 and 2008, (b) 2011 and 2016 (source: Insee) 
 

Other than the Figure 13, the Figure 14 depicts two maps of the evolution of the 

urban area and population from 1999 to 2008 and 2011 to 2016, which makes it easier to 

recognize the tendency of these evolutions over these years and determine the causes of 

socio-economic inequalities in Pays de Brest. At first, the urban area of Brest Métropole 

and its periphery remain unchanged in the two maps, and a new urban area was 

constructed between 1999 and 2010 in Presqu’île de Crozon-Aulne Maritime due to the 

development of tourism in recent years. Otherwise, the extension of urban areas or the 

emergence of new agglomerations can hardly be found in other communes. Then, by 
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comparing two maps of the evolution, it can be concluded that Brest Métropole always 

had the most significant change in the number of inhabitants. However, its annual 

evolution remained at approximately 0%, which means the critical flow of population but 

neither increase nor decrease of population can be observed. This phenomenon is most 

significant between 1999 and 2008. 

Meanwhile, the population growth near Brest Métropole is remarkable. However, 

the demographic growth was concentrated on the coastline in Pays d’Iroise and Pays de 

Landerneau-Daoulas from 1999 to 2008. However, the population grew enormously in 

the adjacent communes of Brest Métropole, with an essential change in the number of 

inhabitants between 2011 and 2016, which brings out the phenomenon of 

suburbanization and decentralization, which is strongly developed in Pays de Brest. It is 

mainly represented by the young workers and retirees seeking improved quality of life. 

Therefore, they usually look for an isolated house with a private garden far from the city 

center but still close to the metropolis (Rieu, 2011). 

Moreover, less population evolution can be seen on the coastline; Lesneven-Côte 

des Légendes has even experienced population decrease on the coast. Besides the 

population evolution near Brest Métropole, the imbalance between inland communes and 

the coast is another significant development issue. In maps, mostly the coastal communes 

had a significant change in the number of inhabitants, which indicates the significant 

inflow of population and a positive annual growth compared with the inland communes, 

which lost population. Even though the population flow was still very weak in inland 

communes, the phenomenon of urbanization was slowly emerging. In 2011–2016, except 

for a few coastal communes (Brest Métropole, Pays d’Iroise, and Pays de Landerneau-

Daoulas), which kept gaining inhabitants, the great majority of communes encountered 

negative population growth of around -1.6%, which means an important number of 

inhabitants has left the inner communes for the more significant agglomerations. The 

process of urbanization and suburbanization between these years created—and then 

aggravated—the socio-economic imbalance between Brest Métropole with its periphery, 

the coast, and the inland communes in Pays de Brest. 

The regional disparity brings a series of consequences. For example, the cities 

(especially Brest Métropole) are highly saturated in term of population, and rapid 

urbanization and suburbanization place different stresses on public city infrastructure, 
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principally traffic congestion (particularly during weekday rush periods), lack of housing 

in the city and its periphery despite urban sprawl, and tension in public facilities (such as 

public transport, schools, hospitals, libraries, and sports facilities). At the same times, the 

high concentration of population and socio-economic activities cause the problems of 

pollution, sanitation, environmental degradation, etc. In contrast to the populated coastal 

and urban areas, the small inland communes far from the coast encounter a serious 

population decrease due to the aging problem. These small cities or villages are slowly 

but steadily emptying due to the loss of young laborers and the lack of immigrants. The 

gaps between the coastal urban area and the isolated inner communes are gradually 

expanding, and the development imbalance is carried to the extreme. 

 

2.4.2. Imbalance between different land uses 

The previous section about LULC explained that the cultivated areas are always the 

leading land use in Pays de Brest, followed by the vegetated and urban areas. However, 

urbanization and suburbanization not only increase regional inequalities but also cause 

competition for land uses. Urbanization is a transitory process to decrease the importance 

of agriculture with artificialization and industrialization. First, the process switches the 

sectoral composition; the secondary and tertiary sectors outpace agriculture to become 

the economic lifeblood of the region. Second, the urbanization process turns agricultural 

land into an artificial surface. Third, the traditional rural agricultural population leaves 

for the urban area, seeking more employment opportunities. (Moomaw & Shatter, 1996; 

Henderson, 2003). In most places, urbanization is usually accompanied by rapid economic 

growth; thus, it is generally considered an indicator of the economic development level (S. 

Li & Ma, 2014). In consequence, the urban area is most often the privileged land use. 

Nevertheless, urbanization has created conflicts between different land uses, especially 

the artificial surfaces, which are slowly occupying not only available unused land, but also 

many agricultural lands or even natural areas. 
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Figure 15 Evolution of land use between natural area, agricultural land and artificial area in Communes in Pays 
de Brest and its coastal area between 1990 and 2018 (Source: CORINE Land Cover 1990, 2018) 

The figure 15 illustrates the evolution of three main types of land use (natural, 

agricultural, and artificial areas) in Pays de Brest between 1990 and 2018. It can be seen 

that the artificial area was the only land use that had a significant growth during 28 years, 

with more than 40 km² increase in surface area. In contrast, agricultural land lost 25 km² 

in surface area, and the natural area surface declined precipitously as well. It is also worth 

noting that the land use changes were usually found in the coastal area; 80% of the 

decrease in agricultural land and 73% of the artificial area growth were on the coast, 

although the degradation of the natural area was more evenly distributed in Pays de Brest, 

with 48% of the decrease on the coast. The evolution indicates the process of urbanization, 

coastalization, and competition for land uses; the result is natural landscape degradation. 

Research has long focused on the delicate balance between urbanization and 

environmental protection (Ahmed et al., 2020; Seto et al., 2010); some studies show that 

urbanization rate and changes in regional environmental quality are closely related (S. Li 

& Ma, 2014; L. Liang et al., 2019). The regional environment is significantly impacted by 

economic development. Typically, the environment is improved when the degree of 

economic development rises. Nonetheless, rapid and extensive economic growth can 

negatively impact the environment and increase social tension (DATAR, 2004; S. Li & Ma, 

2014). The negative impacts include not only the problem of pollution and over-
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exploitation of natural resources but also the transition from agricultural or natural land 

use to artificial areas.  

Several local studies have mentioned that the preservation of agricultural and 

natural areas is essential, not just for landscape harmony and the well-being of the 

population, but also to prevent excessive urbanization and over-development of tourism 

that contribute can ultimately lead to the formation of a mono-economic activity in the 

region (Lebahy & Le Délézir, 2006). Even though the coast is an essential reservoir for 

marine and coastal biodiversity and many natural protected areas were also created in 

order to preserve the environment. However, many natural areas have been eroded due 

to urban sprawl, in particular, the undeniable detriments of the coastline due to 

urbanization and artificialization were observed (Région Bretagne, 2013). For example, 

65% of coastal wetlands have been destroyed by reclamation, diking, or filling in the 

region, and the increasing pollution threatens many natural habitats and species. 

 

2.5. Research objectives and study sites  

As analyzed in the section above, Pays de Brest has experienced significant LULCCs 

over several decades, especially urbanization and artificialization, which have provoked 

various environmental and social issues, such as the conflict between different land uses 

and natural environment degradation due to urbanization and uneven development 

within communes. For this reason, it is crucial to study LULCCs and their consequences in 

Pays de Brest, particularly for decision-makers in the community and local government, 

which has long been aware of the population overload and the natural environmental 

crisis. However, even though the local government is seeking sustainable development, 

no effective solution has been found, and very few recent studies have investigated LULC 

or LULCC monitoring in Pays de Brest. 

In response to that knowledge gap, this thesis focuses on LULC in Pays de Brest. Its 

objective is to detect, monitor, and ultimately follow LULCCs, especially the transition 

between three principal land uses—agricultural lands, vegetated areas, and urban 

areas—as well as the consequences of that transition. This thesis has chosen to discuss 

three essential subjects, using three different study sites in Pays de Brest: 
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 Machine Learning Methods and Classification of Vegetation in Brest, France 

 

 

Figure 16 City of Brest with urban green spaces 

As the largest agglomeration in Pays de Brest, the city of Brest is the most impacted 

by urbanization and artificialization. Nonetheless, by the will of local government and 

citizens, a remarkable number of urban green spaces have been preserved (Figure 16); 

such preservation is considered to be an essential pre-requisite for the economic 

development and population growth (Région Bretagne, 2013). Therefore, it is essential to 

study the urban green spaces changes in the city of Brest and prevent their environmental 

degradation (G. Xie et al., 2019). 
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 Mapping and Monitoring of Land use/land cover (LULC) Change in the Crozon Peninsula 

(Brittany, France) from 2007 to 2018 by Machine Learning Algorithms (Support Vector 

Machine, Random Forest, and Convolutional NN) and by Post-classification Comparison 

(PCC). 

 

Figure 17 Location of the Crozon Peninsula and two bordering regions, located in Pays de Brest, Finistère, 
Brittany, France, with the RGB band combination for Sentinel 2 (2018) 

A highly fragmented coastal area protected by the regional natural park of 

Armorique since 1969, the Crozon Peninsula is a unique but rarely studied area (Figure 

17). Due to the restriction of construction and the relatively isolated location, the 

peninsula is sparsely populated. However, with the sharply developed tourism sector in 

recent years, the problem of artificialization and coastalization of this protected area has 

become severe. Thus, it is essential to learn about the LULCCs and the driving factors of 

the changes (G. Xie & Niculescu, 2021). 
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 Mapping Crop Types Using Sentinel-2 Data Machine Learning and Monitoring Crop 

Phenology with Sentinel-1 Backscatter Time Series in Pays de Brest, Brittany, France. 

 

Figure 18 Location of the study area in Northern Finistère, as per the RGB band combination of a Sentinel-2 
satellite image on April 20, 2019 and the distribution of agricultural land in 2019. 

In the context of rising urbanization and artificialization in Pays de Brest, more and 

more agricultural lands are being turned into artificial surfaces for secondary or tertiary 

sector use, especially in northern Finistère, which is near Brest Métropole and thus 

strongly impacted by the process of suburbanization (Figure 18). Artificialization and 

urbanization negatively impact biodiversity and the environment, thereby diminishing 

agricultural production and food security. Therefore, to ensure agricultural supply and 

facilitate crop management in the region, this study has mapped the croplands, identified 

the main crop types, studied their spatial distribution in Pays de Brest, and ultimately 

monitored their growth pattern(G. Xie & Niculescu, 2022). 
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Chapter 3. Data structure and field research 

This chapter discusses the data structure used in the three case studies of the thesis. 

All data applied will be detailed below.  

To detect LULCCs and study the trend of LULC evolution and its consequences, it is 

necessary to have real-time, ultra-high-precision, and easily accessible data. However, 

traditional ground data are usually quite rare, and involve high labor and time costs. In 

addition, by using coarse spatial resolution data, global or national land cover maps 

generally result in poor local accuracy, especially in a highly fragmented area like Pays de 

Brest. Therefore, high-quality, primarily open-access optical and SAR satellite images, 

which facilitate easy detection of LULCCs, were applied in our studies because such 

satellite data are widely used in the field of LULCC detection. 

Considering that this thesis is based on several projects of collaboration with local 

government and communities, their needs usually dictated the period chosen for each 

study. The first study following the recent changes in vegetation in the city of Brest was 

requested by the local government of Brest Métropole. Thus, the recent data of very high 

resolution were applied. The local engineering office then took an interest in LULCCs on 

the Crozon Peninsula between 2005 and 2020 (due to limited free accessible data and the 

frequent presence of heavy cloud cover in the region, two images from 2007 and 2018 

were finally acquired in this study). At last, the study of winter crop mapping was 

performed with an image from 2019, which corresponds to our auxiliary data, the latest 

version of the graphic parcel register (RPG; French: Registre Parcellaire Graphique) 

published by the French National Institute of Geographic and Forest Information (IGN). 

Apart from the optical and SAR satellite data, some auxiliary data were applied, 

such as RPG in the agricultural field and Google Earth. Several field studies were 

performed to validate the results, including a survey with local farmers (see questionnaire 

in Appendix1). 
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3.1. Satellite imagery  

Pays de Brest is known for its picturesque, highly fragmented landscape. The area 

has been vigorously attacked by artificialization and coastalization in recent years, and its 

small-scale fields have been most severely impacted. However, it is difficult to observe 

these “micro-changes” with coarse-resolution data (Sparfel, 2011). Thus, a new 

generation of high-precision satellite images was acquired in the studies, from the high-

spatial-resolution (HR) image used in crop spatial distribution studying and LULCCs 

detecting to very-high-spatial-resolution (VHR) image for detecting small-scale 

vegetation in the city of Brest. 

Due to the oceanic climate in Pays de Brest, high-quality, cloud-free operational 

satellite images are difficult to obtain due to the high-intensity annual rainfall and 

substantial attendant cloud cover. Despite these limitations, a few optical images were 

acquired from SPOT, Sentinel, and Pléiades platforms during the growing season of 

vegetation or crops. 

Otherwise, compared to a single optical image, the time series is much more 

difficult to access due to frequent rainfall in the area. Thus, the previous study applied the 

SAR backscatter time series to follow the phenology of winter crops during their growing 

season. 

3.1.1. Optical image 

Since the 1972 launch of Landsat—the first EO satellite—began an era of remote 

sensing, optical images have become the most widely used type of satellite data. The 

passive imaging system depends entirely on solar light as the only illumination source. 

The optical sensors produce images of the Earth's surface by detecting the solar radiation 

reflected by the target on the ground (Kumar et al., 2018) (Figure 19). The principle of 

this system is that each object has a unique spectral signature that measures the different 

ratios between the radiation reflected, absorbed and transmitted at different wavelengths. 

A sufficient spectral resolution of the sensing system allows the identification of an object 

from an image with its spectral reflectance profile. 
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Figure 19 Illustration of optical remote sensing (Source: Kumar et al. (2018)) 

The optical imaging system uses the light portion of the electromagnetic spectrum 

(Figure 20), with the wavelength from the visible spectrum to the near-infrared (NIR), the 

middle infrared (MIR), or even thermal infrared (TIR) to gather the radiation reflected 

from the target surfaces. This system facilitates the frequent and wide-ranging 

observation of the Earth’s surface at various electromagnetic radiation wavelengths 

(IREA, n.d.).  

 

Figure 20 The electromagnetic spectrum by wavelength (Source: Topac (2018)) 

An optical image is composed of pixels, the most fundamental element and the 

smallest individual unit of the image, and the criterion to define the quality of an image 

(Fisher, 1997). A pixel is generally square and depicts a certain region on an image; the 

number of pixels utilized in the construction of the image determines the spatial 

resolution, which refers to the size of the finest possible detail in the object being imaged 
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that a system is capable of detecting. For example, 10 m of spatial resolution indicates that 

each pixel on the image represents a 10 m x 10 m area on the ground.  

Furthermore, depending on the number of spectral bands employed for the 

imaging process, optical remote sensing can be categorized into various groups, among 

which panchromatic imaging and multispectral (MS) imaging systems are the most 

known and used. In the panchromatic scheme, the sensor is a single-channel detector 

sensitive to radiation over a wide wavelength range. The resulting image is known as a 

“panchromatic image” when the wavelength range matches the visual range. In contrast, 

the MS scheme is a multi-channel detector with a limited number of spectral bands, and 

each channel is sensitive to radiation within a narrow wavelength band (Kumar et al., 

2018).  

However, each system has its advantages and disadvantages. Panchromatic 

imaging can produce higher spatial resolution images, but it loses spectral information 

and produces black-and-white images. On the other hand, the MS imaging system 

generally has numerous spectral bands (e.g., up to 13 bands for Sentinel-2) but a lower 

spatial resolution. These two imaging systems are usually merged in image processing 

(pan-sharpening) to acquire a high-quality image with multiple spectral bands.  

In recent years, two key problems have received significant attention in the optical 

remote sensing area: object detection and change detection. First, object detection refers 

to identifying and locating an object of interest in images. Object detection has always 

been a fundamental challenge in optical remote sensing, giving rise to numerous studies 

methods (Cheng & Han, 2016). In addition, since the beginning of the application of 

remote sensing data, satellite images have been digitally processed by comparing pixel 

intensities for detecting changes in a variety of applications, including urban sprawl and 

LULCCs, vegetation monitoring (Maktav et al., 2005; Jones & Vaughan, 2010; Abd El-Kawy 

et al., 2011; Tewkesbury et al., 2015). In this thesis, object detection was applied to detect 

urban green spaces in Brest and locate winter crops in northern Finistère with optical 

imaging.  

In recent years, numerous VHR or HR sensors have been developed with different 

spatial, spectral, radiometric, and temporal resolutions. Optical satellite images from 

different platforms were applied in all three case studies featured in this thesis. VHR 
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images of Pléiades-1 were applied to monitor the vegetation changes in the city of Brest 

(i.e., urban green spaces on a small scale). LULCCs on the Crozon Peninsula were detected 

using SPOT-5 VHR images and Sentinel-2 HR images due to the limited open-source data 

and climate conditions. Finally, a single cloud-free Sentinel-2 image acquired during the 

growing season of winter crops was employed for winter crop mapping. 

 

3.1.1.1. Very high spatial resolution image (Pléiades-1, SPOT-5) 

 SPOT-5 

 

Figure 21 SPOT-5 image of the Crozon Peninsula 

SPOT-5 (Figure 21) (Earth Observation Satellite; French: Satellite pour 

l’Observation de la Terre) is a commercial Earth-imaging system from the French National 

Center for Space Studies (CNES; French: Centre national d'études spatiales). As the fifth 

generation of SPOT mission satellites, SPOT-5 was launched in May 2002 (ceased service 

in March 2015) to ensure the continuity of service of the SPOT system and improve the 

quality of data. Thus, the objective was to supply high-resolution, wide-area optical 

imagery to observe the Earth’s surface, monitor human activities, help decision-making 
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for resource management, follow natural phenomena, and identify and predict 

climatology and oceanography-related phenomena (European Space Agency (ESA), n.d.-

c).  

          Table 1 Spatial resolution and wavelength of SPOT-5 product 

 

As the continuity of the SPOT missions, SPOT-5 provided a better quality image 

with a higher spatial resolution other than the previous SPOT missions by significantly 

improving the spatial resolution. SPOT-5 operated in both panchromatic and 

multispectral modes; the spatial resolution was 2.5 m in panchromatic mode and 10 m in 

multispectral mode (Table 1). Furthermore, the stereo pair acquisition capabilities were 

enhanced through a dedicated instrument, the High-Resolution Stereoscopic (HRS) 

operated in panchromatic mode. In addition, SPOT-5 was equipped with a wide swath of 

60 km in both modes and a high frequent revisit capacity of 2 or 3 days (depending on 

latitude).  

The SPOT-5 image of the study was acquired from ESA (earth.eas.int). 
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 Pléiades-1 

 

Figure 22 Pléiades image of city of Brest 

The successor of the SPOT program before the arrival of SPOT-6 and SPOT-7, 

Pléiades-1 (Figure 22) is composed of two Earth-observation spacecraft, Pléiades-1A and 

Pléiades-1B, launched by CNES in December 2011 and 2012, respectively. These two 

identical satellites are placed at 180° on the same sun-synchronous phased obit, which is 

the same orbital plane as the SPOT-6 and SPOT-7. A constellation with the aim of EO is 

therefore forming with these four satellites operated on a single interface. According to 

Table 2, the nominal repeat cycle is 26 days (with a viewing angle of 5°). Nonetheless, the 

revisiting time of Pléiades-1 for global access is as long as 5 days with one single satellite, 

whereas the two satellites of the system can achieve that in 4 days when the viewing angle 

is 30°. 

            Table 2 Revisiting time of Pléiades-1 (Source: eoPortal) 
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Pléiades-1 satellites are well known for their distinctive characteristics, such as the 

broad swath of approximately 120 km x 110 km, their outstanding capacity to provide 

VHR MS imagery with highly accurate geo-location for dual civil/military use, and global 

coverage of Earth’s surface with daily observation accessibility from every location on 

Earth in a variety of modes of operation (eoPortal, 2012c). 

Pléiades-1 is operated in both panchromatic or MS modes; for each image, the 

panchromatic and MS modes are acquired simultaneously. As a VHR image, the resolution 

of Pléiades reaches 70 cm in the panchromatic band, while the four MS bands—blue, 

green, red, and NIR (Table 3)—have a spatial resolution of 2.8 m. Later, the images are 

resampled to the ground at 50 cm in panchromatic mode and 2 m in MS to obtain a robust 

product for further image processing. Eventually, by combining information from the 

panchromatic and MS products, MS data sampled at 50 cm can be acquired (IGN, n.d.-a). 

The Pléiades-1 images are usually applied in studies of such fields as vegetation 

cover, landscape topography, LULC, and ice sheet topography (eoPortal, 2012c). 

   Table 3 Spatial resolution and wavelength of Pléiades product 

 

In this thesis, three Pléiades-1 Level-2 orthorectified MS images from 2018 to 2021 

with 50 cm of spatial resolution used in the study of vegetation in the city of Brest were 

acquired on the DINAMIS platform (https://dinamis.teledetection.fr). The detail of the 

images will be discussed in Part 3, Chapter 5: Machine Learning Methods and 

Classification of Vegetation in Brest, France. 
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3.1.1.2. High-spatial-resolution open-source image (Sentinel-2)  

Even though HR optical imaging systems have rapidly improved in recent years, 

several Sentinel-2 images acquired in different locations and at different times were 

applied in two studies: (1) Mapping and monitoring of LULCCs on the Crozon Peninsula 

(Figure 23) and (2) Mapping crop types in Pays de Brest (Figure 24). 

 

Figure 23 Sentinel-2 image of the Crozon Peninsula 

 

Figure 24 Sentinel-2 image of northern Finistère 
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Sentinel-2 is a constellation of two identical MS optical imaging satellites located 

on the same sun-synchronous orbit, including Sentinel-2A and Sentinel-2B, launched in 

June 2015 and March 2017, respectively (eoPortal, 2012b). The ESA operates the land 

monitoring satellites and participate in the Copernicus Programme, the European Union’s 

Earth observation program.  

The main objectives are to ensure continuity of high-resolution, free-accessed 

satellite images for multiple purposes (e.g., monitoring inland and coastal areas, managing 

crops and forests), complete the current Landsat and SPOT projects, and to provide full 

and systematic coverage of Earth’s land surface with a wide swath of 290 km and a 

significant revisit capability of 5 days with two operational satellites (eoPortal, 2012b). 

Sentinel-2 data are also used to support the production and update of high-level 

geographical products, such as LULCC detection maps, geophysical maps, and CLC maps. 

Table 4 Spatial resolution and wavelength of Sentinel-2 operated bands (Source : Satellite Imageing 
Corporation) 

 

The Sentinel-2 satellite provides 13 HR spectral bands (Table 4): three visible 

bands (blue, green, and red) and a NIR band with 10 m of spatial resolution for primary 

land-cover classification, three NIR vegetation red-edge bands (B5, B6, B7) with a 

resolution of 20 m for advanced land-cover classification and vegetation state detection, 

and finally six short-wave infrared (SWIR) bands with a resolution of 60 m dedicated 

mainly to atmospheric corrections and cirrus-cloud screening.  

All products can be obtained in several processing levels, of which only two—

Levels 1C and 2A—are released to users. Level-1C results from radiometric and geometric 
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corrections with orthorectification and spatial registration on a global reference system 

with sub-pixel accuracy (ESA, Sentinel-2); cloud and water masks are also generated at 

this level. On the other hand, Level-2A is generated with the Sen2Cor atmospheric 

correction processor, which is capable of detecting three different forms of clouds, snow, 

and cloud shadows, thereby creating a corresponding mask. It also outputs an orthoimage 

bottom-of-atmosphere (BOA) corrected reflectance product, which is resampled and 

generated with an equal spatial resolution for all bands (10 m, 20 m, 60 m) (eoPortal, 

2012b). 

Moreover, THEIA platform (theia.cnes.fr) provides Sentinel Level-3A images, an 

utterly cloud-free product created during a synthesis period of 45 days. For each pixel in 

each band of a Sentinel Level-3A image, the average cloud- and shadow-free surface 

reflectance collected during 45 days is calculated to avoid cloudy or shadowed pixels. 

Thus, the Sentinel Level-3A image is a mosaic of the pixels acquired on different dates in 

different view angles. However, to achieve this result, the cloud-free image sacrifices its 

temporal resolution; it is rarely used to detect the evolution of the surface in a short time. 

Thus, it can be applied only in studies that do not require high data accuracy (CESBIO, 

2018) 

 

3.1.2. Synthetic-aperture RaDAR image (Sentinel-1) 

 

Figure 25 SAR system (Source: Lauknes (2011)) 
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SAR is an active system for data collection. To generate a SAR image, sensors 

illuminate the target area with its energy source: a series of radio wave pulses. The 

sensors can record how much of that energy is reflected after interacting with the Earth’s 

surface (Figure 25) (Earth Science Data Systems, n.d.); the spatial resolution of SAR data 

is directly affected by the ratio of the sensor wavelength to the sensor’s antenna length. 

 

Figure 26 SAR bands in electromagnetic spectrum 

Table 5 The most common bands used in SAR imaging systems 

 

Besides optical imaging systems collecting data in the visible, NIR, and SWIR areas 

of the electromagnetic spectrum, RaDAR sensors exploit longer wavelengths at the 

centimeter-to-meter scale (Figure 26). The most frequently used bands in the SAR system 

are L, C, and X (Table 5). The bands with different frequencies and wavelengths are 

determined by how the RaDAR signal interacts with the surface and penetrates objects in 

the target area (Earth Science Data Systems, n.d.). Due to this penetration capacity, SAR 

images are usually used to detect forest, soil, and ice without limitation of cloud cover and 

meteor conditions. In general, longer wavelengths achieve greater penetration (Earth 

Science Data Systems, n.d.).  

Besides the bands, the SAR system can emit and collect signals in different types of 

polarization, which refers to the plane's orientation in which the transmitted 
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electromagnetic wave oscillates. However, the polarization of SAR sensors is generally 

linear—i.e., horizontal or vertical (Earth Science Data Systems, n.d.). In addition, the 

polarization can be different in emission and reception. For example, a signal emitted in 

horizontal (H) and received in vertical (V) is indicated as “HV.” Different structures of 

surfaces are sensitive to different polarizations. 

In this thesis, a Sentinel-1 SAR C-band time series was applied for winter crop 

phenology monitoring. Sentinel-1 consists of two satellites, Sentinel-1A and Sentinel-1B, 

launched in 2014 and 2016, respectively; they are operated on the same orbit and each 

possesses a RaDAR instrument to provide a high-quality image of Earth's surface in day-

and-night, all-weather conditions. Just like Sentinel-2, the Sentinel-1 SAR system was 

developed within the Copernicus Programme by the European Commission (EC) and the 

ESA to perform day-and-night, all-weather C-band SAR imaging in two polarizations with 

the capability of brief revisiting time (6 days of repeat cycle with two satellites), rapid 

product delivery and high global surface coverage. Its outstanding open-access system 

has been developed to provide reliable wide-area monitoring for environmental and 

security purposes (ESA, n.d.-b). 

 

 

Figure 27 Four observation modes of Sentinel-1 (source: ESA) 
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Table 6 Characteristics of four acquisition modes of Sentinel-1 

 

Four observation modes of the Sentinel-1 SAR system for different purposes are 

displayed in the Figure 27 and Table 6, each with a different swath and spatial resolution: 

StripMap (SM), Interferometric Wide swath (IW), Extra Wide swath (EW), and WaVe (WV) 

mode. Among the acquisition modes, SM, IW, and EW equip dual polarization capacity, 

whereas WV acquires an image in single polarization (HH or VV). Following a different 

mode, the swath width is also different. EW has the largest swath of 400 km, so it is usually 

used for maritime, ice, and polar zone observation. IW is performed with a narrower 

swath of 250 km but higher spatial resolution, and is generally employed for land 

monitoring. By contrast, WV and SM were equipped with relatively narrow swaths (20 

km and 80 km, respectively) and are suited for diverse specific uses, such as open ocean 

observation as well as European remote sensing (ERS) and Envisat missions supporting 

(eoPortal, 2012a). 

Like Sentinel-2, Sentinel-1 data are available and freely accessible to the public in 

different types at different processing levels. Level 1, the most common and widely used, 

has already been through pre-processing (raw data analysis, internal calibration), 

Doppler centroid estimation, and focusing. Eventually, output as Single Look Complex 

(SLC) and Ground Range Detected (GRD), two formats of data types are produced. SLC has 

been georeferenced, contains preserved phase information. GRD, on the other hand, 

preserves the amplitude information and multi-looks to minimize the effect of speckle 

(ESA, n.d.-d). 
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3.2. Auxiliary data  

Auxiliary data, also known as reference data structure external to the survey data 

collected, provide supplementary information to the study. In this thesis, apart from 

optical and SAR HR images collected. An auxiliary structure composed principally of 

Google Earth and RPG is used as additional information to produce training data and test 

data for image classification. 

3.2.1. Graphic parcel register 

 

Figure 28 RPG 2019 (Source: Géoportail.gouv.fr) 

RPG is the highly accurate georeferenced agricultural land database produced by 

IGN (Figure 28). The database records the specific crop types (such as wheat, corn, barley, 

and vegetables) or grassland for the livestock sector each year throughout all French 

territory (except Mayotte). RPG 2019, the most recent edition of RPG (at the time of data 

collection for this thesis) was applied in the studies as the ground truth data to be used 

for creating training data and test data, especially for the winter crops monitoring study 

(IGN, n.d.-b). 
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3.2.2. Google Earth  

 

Figure 29 Pays de Brest on Google Earth 

 

Figure 30 Vegetation in small scale on Google Earth 

Google Earth, one of the most well-known and widely used computer programs, 

visualizes the planet Earth by superimposing highly accurate satellite, aerial photography, 

and GIS data (Figure 29). This allows the public to see cities and landscapes from different 

angles, including 3D imagery and Street View. Additional satellite images were provided 

by the Landsat and Copernicus programs. Thus, because Google Earth is a reliable source 
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of ground truth data—particularly data on a small scale in an urban environment—it was 

used to study vegetation detection in the city of Brest (Figure 30). 

 

3.3. Field research 

Field research, which is essential for most scientific studies, refers to a method of 

collecting qualitative data by observing the study area's geographical conditions and 

interacting with groups of people who live in the area to be deeply involved in the 

research subject. In remote sensing, field research generally refers to direct observation 

of the ground by visiting the area and collecting data with recording devices (e.g., Global 

Nativation Satellite System (GNSS) device and camera) or questioning the people on site. 

 

3.3.1. Observation and validation of vegetation in the city of Brest  

 

Figure 31 Urban green spaces in the city of Brest 
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Field research was carried out to study the evolution of vegetation in the city of 

Brest. During the image processing, we visited several areas that were not clearly visible 

from the satellite image to determine the precise vegetation type and structure. After the 

classification, we also visited some areas where vegetation changes were found to verify 

the type of change (i.e., permanent or temporary). 

 

3.3.2. Observation and validation of LULC on the Crozon Peninsula  

 

 

Figure 32 Sentinel-2 image of the Crozon Peninsula with GNSS points for ground truth field research 

The Crozon Peninsula is marked by a highly fragmented landscape on a small scale. 

Thus, direct observation and the validation of the LULCCs detected were indispensable 

for this study. Before image processing, a field study was performed with a GNSS device 

to compare the actual landscape and that seen in the satellite image and collect data to be 

used in the creation of the training dataset (Figure 31). 
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3.3.3. Croplands and winter crops planting situation observation in northern 

Finistère  

 

Figure 33 Croplands in northern Finistère 

Field research was performed before the image processing step to observe and 

understand the study area, especially the croplands (Figure 32). However, due to the crop 

rotation system, planted crops change frequently in the study area, making it impossible 

to confirm the information on RPG 19 (our reference data in the study) and thereby collect 

ground truth. For this reason, we conducted additional fieldwork to interact with local 

farmers using the same questionnaire as that found in Appendix 1. 
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Chapter 4. Analysis and image processing  

In this chapter, different methodologies used in the different topics will be 

discussed in detail.  

Remote sensing refers to the gathering of information in digital or analog form 

using space-based equipment or sensors without direct contact. Remote sensing data with 

various spectral, spatial, radiometric, and temporal resolutions are collected from 

spaceborne or airborne platforms such as satellites, aircraft and drones. Hence, most 

products must be processed before being applied in studies of different thematic 

(Khorram et al., 2013). 

 

Figure 34 General flow path of image processing 

The complete methodology of image processing consists of pre-classification, 

classification, and post-classification (Figure 33); each step is indispensable in the study 

of remote sensing. The chain of satellite image processing transforms raw, unprocessed 

spectral data or radio signals into comprehensible, meaningful and georeferenced data 

that can be used for further analysis and application in different thematics.  

 

 Pre-classification processing: As the preliminary data processing, this step consists 

of preparing the raw data for further processing or analysis. In general, remote sensing 
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data suffer different kinds of distortion, such as atmospheric distortion caused by 

clouds, suspended particles, or other materials present in the atmosphere during 

imaging acquisition (Khorram et al., 2013). Geometric distortions, including 

systematic distortions, result from image motion caused by a forward movement of 

the spacecraft, variations in the mirror scanning rate, panoramic distortions, 

variations in platform velocity, and distortions due to the curvature of the Earth, as 

well as nonsystematic distortions due to variations in satellite altitude and attitude 

acquisition (Khorram et al., 2013) and a variety of radiometric distortions.  

Thus, pre-classification image processing refers to image restoration and 

rectification. It consists of a series of procedures by which imagery is georeferenced 

and orthorectified, as well as atmospherically, geometrically, and radiometrically 

corrected in order to reduce noise caused by irregularities or errors in the sensor 

response, data recording and transmission before further processing and analysis 

such as classification (Government of Canada, 2008). In general, the most commonly 

used preprocessing techniques include converting, calibrating, resampling, merging, 

and reducing and fusing data. For instance, data subsetting allows us to save only the 

information of interest and remove the unrelated information from the image; this 

technique can effectively reduce image size and computation complexity while 

economizing computation time and computer storage. However, each preprocessing 

step depends on different sensors and platforms; specific preprocessing is required 

for each sensor and platform. Furthermore, other procedures—such as vegetation 

index, which is performed by ratio calculating between different spectral bands, and 

segmentation in case of object-based classification—can be carried out according to 

need. 

 

 Image classification: Image processing principally refers to the classification of 

image by employing different methods, from unsupervised pixel-based to non-

parametric supervised object-based methods. Numerous algorithms have also been 

developed for image classification, such as the K-Nearest Neighbor (KNN), MLC, ML 

including rapidly advancing DL methods. In our studies, satellite optical images from 

different sensors were processed with different classifiers (e.g., SVM, RF, CNN, 
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multilayer perceptron (MLP)); moreover, SAR backscattering time series were 

processed using the Google Earth Engine (GEE) platform. 

 

 Post-classification processing: Finally, the image is ready to be analyzed, and 

valuable information can be extracted for thematic study. With this aim, several tools 

can be applied in this step according to the research objectives, such as statistical 

analysis (e.g., accuracy assessment) for validation of the results and PCC for detecting 

land cover transition and studying the spatial distribution of changed types and 

change trajectories between different LULC types. 

 

4.1. Methodology of image pre-classification 

Image pre-classification processing was performed after the study area selection 

and satellite image acquisition.  

Satellite data used in the studies were already preprocessed through atmospheric, 

geometric, and radiometric corrections already applied by the distribution data platform. 

Otherwise, a series of preprocessing procedures have been performed in our studies—for 

instance, area of interest extraction by subsetting the raw images with the boundary, data 

merging, and the two most important techniques: vegetation indices calculation and 

image segmentation. The performance of the two last techniques will be discussed in the 

following subchapter. 

 

4.1.1. Calculation of vegetation indices  

4.1.1.1. Definition of the vegetation index  

 As an essential part of remote sensing data interpretation—especially in image 

pre-classification processing—vegetation indices (VIs) are widely discussed and 

implanted in the remote sensing field. 

The VI is the qualitative and quantitative evolution of the vigor of vegetation as 

assessed by spectral measurements (Campbell, 1987; Bannari et al., 1995), which can be 
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defined as the combination of certain bands to obtain differences and ratios between 

spectral bands by division, addition, subtraction, or multiplication. The indices yielded by 

the calculation can effectively lead to enhanced information for vegetation detection 

(Khorram et al., 2013). These relationships between radiometric response and vegetative 

covers have been a highly active research area. The first research studies of VIs revealed 

that the red and NIR spectral bands were well suited for vegetation detection. Moreover, 

as the spectral response of vegetated areas, these indices can be affected by many factors. 

Various recent studies have sought to maximize the radiant response of vegetative 

covers—including the vegetation mixture and composition—and to minimize 

environmental factors such as soil characteristics (e.g., color, brightness, and humidity), 

and the spatial–temporal atmospheric variations (Bannari et al., 1995). 

As mentioned in Chapter 3, each vegetation type has its specific spectral signature, 

which suggest that each vegetation specy has its unique behavior concerning radiant 

energy (Figure 34). Hence, calculations between different spectral bands reveal different 

results, and more than 100 VIs have been developed over two decades to enhance 

detection of vegetation cover (type and composition). 

 

Figure 35 Spectrum view of vegetation, crop, bare soil and artificial surface 

The earliest VIs focused on calculating red and NIR channels because most light in 

red channels is absorbed by chlorophyll; those in NIR channels are strongly reflected by 

leaf cellular structures. Thus, vegetation in the histogram is usually indicated by the 

decreasing and increasing wavelengths in the red and NIR channels, respectively (Figure 
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34). Thus, it is easy to distinguish green vegetation from other elements on the surface by 

using the combination of red and NIR channels (Major et al., 1990; Bannari et al., 1995). 

The first generation of VIs (i.e., the Ratio Vegetation Index (RVI) and the Vegetation 

Index Number (VIN)), was developed by Pearson & Miller (1972) by simply calculating 

the ratio of red and NIR bands. After that, the RVI and VIN indices were enhanced by 

various studies; the best-known version is the Normalized Difference Vegetation Index 

(NDVI), which was first proposed by Rouse et al. (1974). This VI, which is still widely used 

in the remote sensing field, can not only capture the presence of green vegetation but can 

also monitor crops and precipitation (Sellers, 1985; Nicholson et al., 1990; Bullock, 1992). 

Another well-known index, the Non-Linear Vegetation Index (NLI), also uses NIR and red 

channels, with straightforward modification by adding the square value of the NIR band; 

this slight optimization develops a significant sensitivity for detecting Leaf Area Index 

(LAI) changes by reducing the reflection contrast and saturation (Goel & Qin, 1994; W. 

Feng et al., 2019). 

In addition to chlorophyll and leaf cellular structure—the essential elements of 

vegetation detection—other vegetative factors also have considerable impacts on VI 

calculation, such as water content, leaf form, age, and vegetation diseases. These factors 

are usually more sensitive to radiation in wavelengths outside of the red and NIR channels. 

Thus, many indices have been developed to detect different vegetative factors. Since 2000, 

radiation in other wavelengths, such as green bands or MIR bands, have been exploited 

for VI; such indices help distinguish vegetation from other elements and eliminate 

disturbance factors mentioned earlier.  

For instance, the Normalized Different Greenness Index (NDGI) has been shown to 

help map various active vegetation formations in flooded areas (Chamard et al., 1991). In 

the Normalized Difference Water Index (NDWI), Gao (1996) applies the ratio between 

NIR and SWIR to explore water content at the leaf level. The Green Red Vegetation Index 

(GRVI), which replaces the NIR channel with the green channel, can determine the 

vegetation cover and recognize phenological crop changes, detect heterogeneity in field 

irrigation, and track plant photosynthesis (Tucker, 1979; A. Chen et al., 2019; G. Yin et al., 

2022). The Enhanced Normalized Difference Vegetation Index (ENDVI), developed with 

additional visible blue and green channels compared to traditional NDVI, has been shown 
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to be more efficient for isolating plant health indicators and detecting plant disease. Thus 

it can be applied as a reliable marker of plant health (PrecisionHawk, n.d.). The Visual 

Atmospheric Resistance Index (VARI) (Gitelson et al., 2002) is an index designed to 

minimize atmospheric effects by using blue channels to better detect Earth’s surface and 

provide more accurate vegetation detection. 

VIs are widely used in the remote sensing area, most commonly in vegetation cover 

mapping; various VIs have been developed and applied for this purpose (Bannari et al., 

2002; Y. Xie et al., 2008; Sadeghi et al., 2018). For example, Xavier & Vettorazzi (2004) 

conducted a study in the subtropical rural watershed of Piracicaba in the State of Sao 

Paulo, Brazil, using various spectral ratio as Simple Ratio (SR), NDVI, and Soil Adjusted 

Vegetation Index (SAVI) calculated from Landsat-7 data to generate a LAI map for the 

watershed, which is closely associated with vegetation productivity. NDVI achieved the 

best fit among all three VIs, with a correlation of 0.72. 

Change detection is also a widespread application of VIs, which have been shown 

to have a remarkable ability to detect changes in both forest and urban environments (P. 

J. Howarth & Boasson, 1983; Mouat et al., 1993; Nordberg & Evertson, 2005; Asokan & 

Anitha, 2019). Lyon et al. (1998) showed that VIs were well adapted for monitoring 

temporal changes associated with vegetation. In their study, a variety of vegetation 

indices—Difference Vegetation Index (DVI), Perpendicular Vegetation Index (PVI), RVI, 

Soil Adjusted Ratio Vegetation Index (SARVI), NDVI, SAVI, and Transformed Soil Adjusted 

Vegetation Index (TSAVI)—were applied in order to detect vegetation and land cover 

change between 1975 and 1986 in the State of Chiapas, Mexico, a region plagued by 

deforestation. Even though each index was developed to better detect vegetation, and 

despite their ability to identify changes, most were affected (to varying degrees) by 

topographic factors. Eventually, NDVI was found to be the best vegetation change 

evaluator in this study.  

Various VIs are widely applied to detect and evaluate plant disease (Shafri & Anuar, 

2008; Devadas et al., 2009; W. Feng et al., 2016; Isip et al., 2020). Ashourloo et al. (2014) 

successfully evaluated the effect of various plant diseases and detected wheat leaf rust 

disease. This prevalent disease had different symptoms, using various spectral vegetation 

ratios on hyperspectral images. The authors found that all VIs consistently increased with 
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disease severity; in particular, the narrow-band normalized difference VI (NBNDVI), NDVI, 

Photochemical Reflectance Index (PRI), Greenness Index (GI), and Red-edge Vegetation 

Stress Index (RVSI) showed excellent capacity for plant disease detection.  

VIs provide valuable and helpful information for crop mapping, forecasting 

(Wiegand et al., 1991; Thenkabail et al., 2000; Panda et al., 2010; Sharifi, 2020), and crop 

phenology monitoring (Peña-Barragán et al., 2011; X. Huang et al., 2019). Bolton & Friedl 

(2013) used the MOderate Resolution Imaging Spectroradiometer (MODIS) to develop 

empirical models for maize and soybean prediction in the central US by using MODIS two-

band Enhanced Vegetation Index2 (EVI2) and NDVI. The results indicated that maize 

yields in non-semi-arid countries were better predicted by EVI2. Nonetheless, NDWI was 

more sensitive to irrigation and thus performed better in semi-arid areas with low-

density agriculture. However, NDVI and EVI2 both successfully detected soybean yield in 

the research.  

Moreover, crop irrigation is one of the crucial elements that affect agricultural 

production (Duchemin et al., 2006; B. Yu & Shang, 2017; Coelho et al., 2018; F. Zhang & 

Zhou, 2019). (González-Dugo & Mateos, 2008) conducted a study about irrigation 

performance and water productivity benchmarking in southern Spain. Their study 

developed a method for estimating crop evapotranspiration on sugar beet and cotton 

fields in irrigated areas by appropriating crop coefficients with two vegetation indices 

(SAVI, NDVI). Both indices successfully described the crop growth situation and obtained 

accurate crop coefficients; evapotranspired water productivity was also successfully 

predicted. 

VIs can be an indicator of drought as well; the strong connection between VIs and 

drought was revealed by previous studies. In particular, NDVI and Vegetation Condition 

Index (VCI) are widely applied in the drought detection field (Peters et al., 2002; 

Rahimzadeh Bajgiran et al., 2008; Bushra et al., 2019; Rousta et al., 2020). NDVI was first 

used to evaluate vegetation conditions in a study by Kogan, (1995). Furthermore, the 

AVHRR-based VCI built on NDVI has successfully detected large- and small-scale droughts 

in the USA and provided accurate drought information, such as intensity, duration, and 

impact on vegetation. In addition, the Temperature Condition Index (TCI), which provides 
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additional information by indirectly determining stress caused by excessive wetness, was 

also implanted in Kogan’s study. 

 

4.1.1.2. Choice of VI and calculation 

Among more than 100 VIs developed for various applications, seven of these were 

utilized in this thesis to detect LULCCs and map winter crop types. Some of them were 

implemented in both studies. 

 

 NDVI, proposed in 1973 by Rouse et al. is the most well-known and frequently used 

index in studies on monitoring vegetation. NDVI is defined as the normalized 

difference between the visible red and NIR spectral reflectance of vegetation. The 

expression is as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
      (1) 

Even though some limitations remain in this, one of the earliest developed 

VIs—such as sensitivity to the impacts of soil characteristics and some atmospheric 

factors (Xue & Su, 2017)—it is nevertheless the most commonly employed VI in 

regional or global vegetation monitoring and agriculture-related fields. Thus, NDVI 

was applied in the studies of LULCCs detection and winter crop mapping. 

 

 NDWI, proposed by Gao in 1996 for remote sensing of vegetation liquid water from 

space. The index is well known for its ability to measure liquid water molecules in 

vegetation canopies with weak atmospheric aerosol scattering compared to NDVI. 

However, NDWI does not eliminate the background soil reflectance effects. The 

equation is as follows (B. Gao, 1996): 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
    (2) 

NDWI was used for winter crops mapping in the thesis because several studies 

demonstrated its excellent ability for irrigation and drought detection, as well as for 
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mapping specific crop types, especially winter crops (Mulianga et al., 2015; Hao et al., 

2015; C. Zhang, Pattey, et al., 2018; Valero et al., 2021). 

 

 Green Normalized Difference Vegetation Index (GNDVI), proposed by Gitelson et 

al. in 1996, is documented to be very similar to NDVI. The index was developed to 

evaluate the photosynthetic activity of vegetation. However, GNDVI uses visible green 

light that resists atmospheric effects instead of visible red light. In addition, the new 

index has a wider dynamic range and is much more sensitive than NDVI to chlorophyll-

a concentration. The expression of GNDVI is displayed below (Gitelson et al., 1996): 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
      (3) 

For its numerous advantages and outstanding performance, GNDVI is widely 

applied in vegetation and agriculture research, especially in vegetation cover, 

agricultural estimation, and crop type classification (Shanahan et al., 2001; Barati et 

al., 2011; Ustuner et al., 2014; Rahman & Robson, 2016; Marcial-Pablo et al., 2019). 

Therefore, GNDVI was implemented in LULCCs and winter crop mapping studies. 

 

 Enhanced Vegetation Index (EVI), proposed by the MODIS Land Discipline Group, 

sought to augment the vegetation signal and correct the imprecision of NDVI with 

improved sensitivity in high-biomass areas by adding several extra spectral bands. 

The expression is displayed as follows (A. Huete et al., 2002; Matsushita et al., 2007): 

𝐸𝑉𝐼 =
𝐺∗(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝐶1∗𝑅𝑒𝑑−𝐶2∗𝐵𝑙𝑢𝑒+𝐿)
     (4) 

(L value can be adjusted for canopy background) 

EVI was initially derived from MODIS satellite data; nevertheless, it has been 

shown to be effective and compatible with other satellite data. Due to its sensitivity in 

discriminating vegetation differences and its improved linearity with vegetation in 

highly vegetated areas while minimizing soil and atmosphere influences (A. Huete et 

al., 2002; Z. Wang et al., 2003; Z. Jiang et al., 2008), the index is usually applied for crop 

type mapping and crop phenology detecting (Y. Pan et al., 2012; L. Li et al., 2014; Cao 

et al., 2015). 
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 EVI2 is a two-band VI developed by Jiang et al. in 2008 as a replacement for EVI. 

Although EVI is highly sensitive to vegetation variations in high-biomass regions, 

however, the index was designed with a blue band, which means that it cannot be used 

in a sensor system without a blue channel, such as SPOT-5, AVHRR, and the ASTER 

instruments. Thus, EVI2 was invented to break through the limit of the sensor system, 

with three optimal parameters (L, β, and G) appending in the equation of EVI2 to 

reduce noise and reach the best similarity between EVI and EVI2 (Z. Jiang et al., 2008): 

𝐸𝑉𝐼2 = 2.5 ∗
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+2.4𝑅𝑒𝑑+1
    (5) 

The similarity between EVI and EVI2 was validated; EVI2 can produce the same 

index as EVI without a blue band. It is able to retain the soil–noise adjustment function 

and maintain improved sensitivity and linearity in high-biomass regions (Z. Jiang et al., 

2008). EVI2 has been extensively applied in a variety of research since its invention (J. 

Liu et al., 2012; Qiu et al., 2015; Zou & Mõttus, 2017). In this thesis, EVI2 was used in 

LULCCs, knowing that the study was performed with an image of SPOT-5, which was 

limited by the lack of a blue band (Z. Jiang et al., 2008). 

 

 SAVI was developed by Huete in 1988. Although various VIs were developed with the 

aim of vegetation detection, soil backgrounds continue to be a considerable influence 

factor on VIs, especially soil brightness. Therefore, SAVI can be considered a 

transformation of NDVI to minimize soil brightness influences from VIs calculated 

with visible red and NIR channels by refining or calibrating spectral indices to 

normalize soil substrate variations. With an adjustment factor (L from 0.5 to 1) that 

varies depending on vegetation density, the index was found to be effective in 

eliminating most of the soil-induced variation in vegetation indices (A. R. Huete, 1988): 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑+𝐿)
(1 + 𝐿)   (6) 

As an important step to establish a model that is capable of describing dynamic 

soil-vegetation systems from remote sensing data (A. R. Huete, 1988), SAVI was 

commonly used in the agricultural field for specific crop types monitoring, crop 

growth monitoring, and crop yield forecasting (Gontia & Tiwari, 2011; Z. Li & Chen, 

2011; Messina et al., 2020; Nagy et al., 2021). SAVI was also found helpful in 



Part II General methodology 
Chapter 4. Analysis and image processing 

 
 

97 
 

monitoring winter wheat (Yuping et al., 2008; F. Xu et al., 2020) and distinguishing 

winter crops from spring crops (Palchowdhuri et al., 2018). SAVI was implanted in the 

study of winter crop mapping. 

 

 The Modified Soil-Adjusted Vegetation Index (MSAVI) was proposed by Qi et al. in 

1994. MSAVI improved SAVI with a higher vegetation signal-to-soil noise ratio by 

modifying the L factor; it replaces the constant L in the SAVI equation with a self-

adjustable functional L factor, although the L factor is not visible in the equation of 

MSAVI. Thus, MSAVI can increase the dynamic response of the vegetation signal while 

minimizing the soil background, improving vegetation sensitivity regardless of 

vegetation amounts. MSAVI is calculated by the following equation: 

𝑀𝑆𝐴𝑉𝐼 =
(2∗𝑁𝐼𝑅+1−√(2∗𝑁𝐼𝑅+1)2−8∗(𝑁𝐼𝑅−𝑅𝑒𝑑))

2
     (7) 

With the lower sensitivity to soil background and temporal variations, 

MSAVI can be used in the agricultural fields (H. Wang et al., 2006; Samasse et al., 

2020; Wyawahare et al., 2020) or even more effectively for winter wheat mapping 

(Z. Li & Chen, 2011). MSAVI was therefore applied in the study of winter crop 

mapping. 

 

4.1.2. Methodology of segmentation 

This section will introduce two principal processing methods, OBC and pixel-based 

classification (PBC), to explain the necessity of image segmentation. Then the theory of 

segmentation and two methods of segmentation performed in our studies 

(MultiResolution Segmentation (MRS) and Simple Linear Iterative Clustering (SLIC)) will 

be presented.  
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4.1.2.1. OBC vs PBC 

PBC and OBC are the most common processing methods for image classification; 

the two methods have always been analyzed and compared between them, especially in 

LULC studies. 

The traditional PBC has always been the most used classification method in remote 

sensing, particularly for LULC classification (Weih & Riggan, 2010). Just as its name (pixel-

based classification) suggests, PBC is the traditional and natural way to classify a single 

pixel, considering that remote sensing data are composed of a limited number of pixels, 

which is also the smallest unit of an image. Moreover, only the spectral information of 

each pixel was considered in the classification (G. Xie & Niculescu, 2022). Therefore, the 

operation of PBC relies strongly on spectral heterogeneity between pixels, every 

individual pixel in the area of interest is assigned to one of the predefined classes by the 

chosen classification algorithm (Weih & Riggan, 2010; G. Xie & Niculescu, 2022). 

PBC is widely carried out for LULC studies. Sekertekin et al. (2017) claimed to 

acquire satisfactory classification results with pixel-based MLC in Zonguldak, Turkey. Van 

de Voorde et al. (2007) developed three post-classification techniques to improve pixel-

based land cover classification using VHR images. Otukei & Blaschke (2010) performed a 

land cover changes assessment using three PBC methods: DT, MLC, and SVM; the general 

accuracy achieved exceeded 85% in all cases. Srivastava et al. (2012) investigated LULCCs 

in the Walnut Creek area in Iowa, USA, by applying three PBC classifiers: ANN, SVM, and 

MLC on Landsat ETM+ and researched with over 90% accuracy. 

Even though many studies show the results of PBC and OBC are not significantly 

different (Dingle Robertson & King, 2011; Van de Voorde et al., 2004). However, the 

traditional PBC methods are limited for the pixel topology and it has the defect of not 

taking into account the spatial, contextual information (e.g., texture, context, geometry, 

and shape), which usually improves classification accuracy (de Jong et al., 2001). 

Consequently, PBC methods produce relatively fragmented feature classes (Weih & 

Riggan, 2010). Furthermore, the speckle effect, also known as “salt-and-pepper noise” 

(Figure 35), which refers to a common form of image degradation caused by high local 

spatial heterogeneity between neighboring pixels, may be derived when PBC is performed 
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on HR images (Van de Voorde et al., 2004; Weih & Riggan, 2010; Kelly et al., 2011). For 

these reasons, PBC is often less accurate for most thematic studies.  

 

Figure 36 Comparison of the original image and salt-and-pepper-noised image (Kelly et al., 2011) 

Consequently, OBC, another classification approach, was introduced in the 1970s 

as an alternative to the traditional PBC, especially for the classification of medium- to 

high-spatial resolution data (Y. Gao & Mas, 2008; Whiteside et al., 2011). After that, OBC 

became highly developed starting in the 1990s, when HR remote sensing data began to 

rapidly increase, and the existing PBC methods were limited owing to the “salt-and-

pepper noise” effect.  

Roughly speaking, the OBC approach was developed with the aim of overcoming 

the limitations of PBC. In OBC methods, the individual to be classified is no longer pixel 

but an object, which refers to a group of pixels. Pixels are regrouped into homogeneous, 

continuous, and contiguous objects based on some criterion of homogeneity (spectral and 

contextual) (Y. Gao & Mas, 2008; Whiteside et al., 2011). In contrast with PBC, OBC 

considers not only spectral characteristic features but also spatial and contextual 

characteristic features (e.g., shape, texture, topology, and color), which are the important 

factors for an accurate classification because the contextual features allow for 

distinguishing objects of different forms of land cover that share similar spectral 

information. For example, the crop reaches its mature stage in the cropland, and the 

shrubs nearby are much easier to be distinguished by their shape feature than by their 
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spectral properties (Aggarwal et al., 2016). Thus, OBC was first applied in agriculture to 

identify croplands with clear predefined boundaries. 

Compared to PBC—which performs classification directly on the individual pixel—

to perform OBC, the image must be divided into regions of similar pixels before 

classification. This procedure is known as “image segmentation.” Once the regions (also 

known as “segments”) are created by adjacent grouping pixels with similar spectral and 

contextual properties, they are ready to be assigned to a predefined class by the chosen 

classifier (Van de Voorde et al., 2004).  

Previous publications confirm a variety of advantages of OBC; for instance, OBC is 

able to produce classification with more uniform and meaningful LULC objects (Dingle 

Robertson & King, 2011), produce more accurate results (Oruc et al., 2004; Whiteside et 

al., 2011), detect LULCCs with HR satellite images (Niemeyer & Canty, 2003), facilitate 

meaningful statistic and texture calculation (Benz et al., 2004), and derive better 

comprehension of a landscape (Thenkabail, 2015). 

OBC and PBC were carried out in our studies for different purposes, and the results 

of these two approaches were also used for comparison. In addition, considering that OBC 

was used extensively in our studies, image segmentation and the two most commonly 

used segmentation algorithms must be introduced and presented in the following section. 

 

4.1.2.2. Definition of image segmentation  

After calculating VIs, segmentation can be performed in the case of applying OBC 

methods. Segmentation is one of the essential steps of remote sensing image processing. 

According to Schiewe (2002), segmentation can be defined as the process of completely 

partitioning a scene into non-overlapping regions or segments in scene space.  

The process of image segmentation has been present in remote sensing for at least 

two decades (Benz et al., 2004) following the launch of the first EO satellite, Landsat-1. 

One of the first applications of image segmentation in the remote sensing field was the 

Extraction and Classification of Homogeneous Objects (ECHO), successfully operated by 

Kettig and Landgrebe in 1976 (Dey et al., 2010). Afterward, the first success was rapidly 



Part II General methodology 
Chapter 4. Analysis and image processing 

 
 

101 
 

followed by several extensive fundamental studies of image segmentation applied in 

remote sensing—for example, Haralick & Shapiro (1985), N. R. Pal & Pal (1993), and 

Spirkovska (1993). In addition, recognition is one of the first generations of operational 

software production in the 2000s and the most used OBC software today.  

In the remote sensing field, segmentation can be considered the preliminary step 

in OBC, which plays a crucial and fundamental role in the classification results (Schiewe, 

2002; Dey et al., 2010; Kotaridis & Lazaridou, 2021). Even though a large variety of image 

segmentation techniques have been developed over two decades, the objectives and 

principal processes of all segmentation techniques are relatively similar. The objective of 

segmentation is to produce homogeneous objects and effectively enhance the accuracy of 

classification. The segmentation process generally starts with objects that are one pixel in 

size. Then the adjacent pixels are merged in order to form bigger objects with respect to 

spatial continuity, certain similarities based on spectral and contextual information, and 

the scale parameter, which can be defined by the user (Y. Gao et al., 2011). The principle 

of the process is to minimize the heterogeneities inside the object while maximizing the 

homogeneities among objects with a clear, spatially accurate, and non-ragged boundary 

(Haralick & Shapiro, 1985). After all of the pixels in the image have been clustered into 

regions of a number predefined, the regions or segments are ready to be labeled and 

transformed into a meaningful objects by classification algorithms (Kotaridis & Lazaridou, 

2021). 

Various algorithms and methods have been developed to solve the image 

segmentation problem and improve segmentation performance. Those methods can be 

categorized into many different classes. The most commonly used methods are threshold, 

region-based, edge-based, cluster, and others such as Watershed, ANN, and Partial 

Differential Equation (PDE). 

 

 Threshold: This method may require prior knowledge of the study area to select the 

threshold before processing. In this method, the image is directly divided into regions 

based on intensity value relative to the threshold given by the user.  
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 Region-based: The method is based on the similarities in the image. It usually begins 

by seeking similarity in each element in the area of interest. The segments are then 

created by grouping and merging adjacent elements (e.g., pixels) that share certain 

homogeneities. Region-based segmentation method has two approaches: region 

growing (starting with one individual) and region splitting (starting with the entire 

scene) (Schiewe, 2002). MRS is the most common region-growing-based 

segmentation method. 

 

 Edge-based: This segmentation approach generates the segments through edge 

detection, which operates with contrast, texture, color, and saturation variations. The 

process is then pursued by a contour-generating algorithm that is able to produce 

outlines of segments. Eventually, contour-filling methods produce the segments by 

transitioning from the outlines to the interior regions (Schiewe, 2002). 

 

 Cluster: As with the region-based method, in this method the image is divided into a 

number of clusters with common characteristics (e.g., color, intensity). Each pixel can 

find more similarities with other pixels in the same segment than those in distinct 

segments. The most widely used cluster segmentation method is K-means. 

Broadly speaking, segmentation techniques are powerful tools in image processing, 

and these techniques considerably improve image classification accuracy. Nevertheless, 

several defects persist in the segmentation process. The main reasons for inadequate 

performance are over- or under-segmentation, which refer to too many (small) regions 

and too few (large) segments, respectively. The two problems can occur in the same image 

at the same time. Over-segmentation can be solved by the following classification step, 

although it will cause insignificant boundaries and unnecessary computing time costs. On 

the other hand, under-segmentation might cause the mixed-pixel problem in classification, 

which means that elements belonging to more than one class are found in the same 

segment and will be assigned to the same class in the following processing step. 

Eventually, misclassification, or even a less accurate classification result, may be induced 

by the under-segmentation problem. 
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4.1.2.3. Multiresolution segmentation  

 

Figure 37 Example of MRS applied on Sentinel-2 image 

 “Multiresolution” means that the segments can appear simultaneously on 

different scales in an image to produce highly homogeneous multi-scale image objects 

(Baatz & Schäpe, 2000). In parallel, MRS (Figure 36) is a relatively complex and user-

dependent algorithm; it was proposed by Baatz & Schäpe in 2000 with the purpose of 

creating universal high-quality object primitives as the first step of the OBC process in the 

software eCognition for further processing procedures (Baatz & Schäpe, 2000). MRS is 

also the most commonly used algorithm of region-growing-based segmentation and one 

of the most efficient segmentation algorithms in the OBC framework (Witharana & Civco, 

2014).  

Being a classical region growing-based segmentation algorithm, the process of 

MRS starts with an individual pixel; each pixel is considered an individual segment (so-

called “seeds”). After that, each segment seeks to merge their adjacent segments with 

those possessing similar properties, and pairs of image objects with the smallest increase 

in the predefined local homogeneity criterion are merged to become more extensive 

segments (Darwish et al., 2003). Moreover, the merge decision is based on attributes of 

homogeneous structures of the image objects recently merged in previous steps (Baatz & 

Schäpe, 2000). Decision heuristics are applied to determine the image objects that will 

merge at each step. Eventually, the MRS process is complete when the smallest increase 

of homogeneity exceeds a threshold defined by the user (Darwish et al., 2003).  
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As a user-dependent algorithm, adjusting parameters is crucial for the MRS 

process. The merging decision is determined by three principal parameters: scale, shape, 

and compactness, which are entirely predefined by the user. Additionally, a trial-and-

error process usually takes place to reach the optimal parameter. The three main 

parameters of MRS techniques are:  

 Scale: This parameter is set to specify the maximum standard deviation of the 

heterogeneity to manage the amount of spectral fluctuation within objects and the size 

of their results (G. Xie & Niculescu, 2022). It is usually considered the most critical 

factor among the three parameters because it is able to control the segment size. A 

higher-scale parameter value authorizes more merging, thus creating larger segments 

(Darwish et al., 2003). Additionally, the scale parameter directly affects the following 

classification step (Smith, 2010; Witharana & Civco, 2014).  

 

 Shape: As one of the homogeneity criteria, the shape parameter allows us to define 

the weight between the object's shape and its spectral color. A higher value gives more 

weight to the shape and decreases the influence of color homogeneity on object 

generation (Landmap, n.d.; Rejaur Rahman & Saha, 2008).  

 

 Compactness: Another component of the homogeneity criteria defines the weight for 

representing the compactness of the objects during the segmentation (Landmap, n.d.). 

 

Due to the fact that the parameters are entirely user-defined, a trial-and-error 

process is usually applied with different combinations of the parameter values so that the 

user is able to create a hierarchical network of image objects (Rejaur Rahman & Saha, 

2008). However, the traditional trial-and-error method can be relatively time-consuming 

and tedious. Thus, as one of the most used methods of image segmentation, a variety of 

studies and applications were performed to find the optimal parameters, especially the 

scale parameter (Drǎguţ et al., 2010; Nikfar et al., 2012; Cánovas-García & Alonso-Sarría, 

2015; Aguilar et al., 2016; Saba et al., 2016), and better performance in LULC classification 

(Aksoy & Akcay, 2005; Rejaur Rahman & Saha, 2008).  
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Cánovas-García & Alonso-Sarría (2015) developed a method to optimize the scale 

parameter in MRS in order to perform land cover mapping in a large and heterogeneous 

agricultural area, in which intra-object and inter-object measurements are used to 

evaluate segmentation. The authors discovered that the spectral contrast between objects 

is larger with the local approach by using uniform spatial units than with the global 

approach.  

Aguilar et al. (2016) focused on finding the optimal parameters (particularly the 

scale parameter) of the MRS to extract plastic greenhouses from WV-2 multispectral 

orthoimages. The initial success of plastic greenhouse extraction was achieved with an 

optimum scale parameter calculated on the local variance of object heterogeneity within 

a scene. The parameter value was evaluated with Potential Segmentation Error (PSE), 

Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2).  

In another study, Nikfar et al. (2012) also found optimal parameters of the MRS 

approach by using an efficient genetic algorithm (GA) to replace the traditional trial-and-

error methods, which can be very time-consuming.  

Rejaur Rahman & Saha (2008) demonstrated the advantage of MRS in LULC 

classification and compared the results with those of traditional PBC. The results 

indicated that the OBC with MRS achieved 92% OA (6% higher than PBC) and 90% Kappa 

(7% higher than PBC). Therefore, MRS appeared to be a suitable image segmentation 

method for LULC classification.  

Kavzoglu & Tonbul (2018) evaluated three segmentation approaches (MRS, SLIC, 

K-means) by using them on four LULC classes, including artificial surface and vegetation. 

Overall, MRS achieves the best accuracy not only in segmentation quality but also in 

classification accuracy.  

Because MRS was shown to be well adapted for LULC studies, it was used in the 

study of LULCC detection on the Crozon Peninsula. The image segmentation was 

generated on eCognition 9.0 and 10.0. 
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4.1.2.4. Simple Linear Iterative Clustering Superpixels segmentation 

 

Figure 38 Example of SLIC applied on Pléiades-1 image 

The concept of the superpixel was first introduced by Ren & Malik (2003). 

Superpixels (Figure 37) are the results of clustering pixels carrying common 

characteristics, which are defined by classical Gestalt theory, including proximity, 

similarity (e.g., contour, texture, and brightness), and good continuation (Nixon & Aguado, 

2020; Ren & Malik, 2003). 

Superpixel algorithms refer to segmentation algorithms that can produce the 

desired number of regular, compact, and meaningful superpixels with low computational 

overhead (Achanta et al., 2010). For its numerous advantages—such as possessing the 

perceptual meaning, excellent ability to carry more information than a simple pixel, and 

providing a convenient image representation—superpixel algorithms have attracted 

considerable public attention in the computer sciences area in recent years. The main task 

of superpixel segmentation methods is to reduce the number of pixels, thereby reducing 

image processing complexity, computing time cost, and capture redundancy. 

SLIC, developed by Achanta et al. in 2010, is the most popular superpixel method 

today (Nixon & Aguado, 2020). SLIC was first introduced as an adaptation of the K-means 

segmentation technique to generate superpixels. However, in comparison with K-means, 

SLIC can (1) significantly optimize the distance of calculations by limiting the search space 

of each cluster center and (2) combine color and spatial proximity to control the size and 

compactness of the superpixels (Achanta et al., 2012). It is well known for its capability to 

generate meaningful, nearly uniform sizes that are compact and adhere well to region 
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boundaries’ superpixels by clustering pixels based on their homogeneities and spatial 

proximity in the image scene.  

In SLIC segmentation, local clustering of the pixel is performed in a five-dimension 

(5D) color and image plane space. Among them, L, a, and b are the pixel color vector 

generated with the CIELAB color space, which gives a suitable similarity measure for color 

perception (Nixon & Aguado, 2020), and x and y are the pixel coordinates (Achanta et al., 

2010). Compactness and regularity in the superpixel shapes are enforced using an original 

distance metric. Moreover, the algorithm can also be flawlessly operated in grayscale 

images (Achanta et al., 2010).  

The process of the SLIC segmentation algorithm starts with a single user-defined 

parameter that indicates the desired number of superpixels. Then the initial cluster 

centers are evenly sampled on a regular grid to produce nearly equally sized superpixels. 

Once the primitive superpixels are formed, the cluster centers are moved to locations 

corresponding to the lowest gradient position in a 3 x 3 neighborhood to prevent the 

cluster center from being located on the edge. After that, each pixel is assigned by the 

nearest cluster center whose search region overlaps its location, which is limited. 

Afterward, the cluster centers are adjusted to be the mean vector of all pixels in the 5D 

space, and a residual error between the new and previous cluster center locations is 

calculated. The last two steps can be repeated iteratively until the error converges 

(Achanta et al., 2012).  

SLIC algorithm is effective in image segmentation processing, simple and practical 

to manipulate, capable of adhering to image boundaries and of producing superpixels 

with lower computational cost and memory efficiency, as well as possessing only a single 

parameter to be determine the desired number of superpixels, SLIC has therefore quickly 

surpassed the existing superpixel methods (Achanta et al., 2010, 2012).  

Furthermore, the superior performance of SLIC has been proved by various studies 

in different research fields. For example, Crommelinck et al. (2017) investigated the 

applicability of SLIC to HR unmanned aerial vehicle (UAV) orthoimages; furthermore, its 

ability to delineate object outlines and showed that SLIC was the most accurate and 

complete method compared to other segmentation methods. In a study by J. Yin et al. 

(2022), the SLIC clustering function was modified to adapt the characteristics of 
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polarimetric statistical measures. The proposed method was validated and shown to 

significantly improve the segmentation results with the capability to produce better 

boundary adherence as well as compact, uniform superpixels. In addition, the SLIC 

segmentation technique is widely applied in vegetation cover classification (G. Xie et al., 

2019; Zimudzi et al., 2019; Correa Martins et al., 2021). For instance, Kawamura et al. 

(2021) demonstrated that SLIC was well suited and useful for different kinds of vegetation 

and forest segmentation. SLIC can demarcate similar image objects, such as vegetation 

species, even though they share nearly identical color and texture information. The 

vegetation classification achieved a very high accuracy by combining SLIC with machine 

learning (e.g., RF) and deep learning (e.g., CNN) classification algorithms, especially in the 

urban environment.  

For all the above reasons, SLIC was selected to detect vegetation in the city of Brest. 

The SLIC algorithm was operated in the python language with the scikit library. 

 

4.2. Methodology of image classification   

This section presents two crucial image classification approaches—the shallow 

machine learning classification methods and the recently developed deep learning 

classification methods—along with their most popular and representative algorithms. 

 

4.2.1. Definition of image classification  

Pre-classification processing is the fundamental function of image processing. The 

classification process is the most critical step in the process and the most complex process 

that can be affected by various factors (D. Lu & Weng, 2007).  

Image classification is a computer science technique that aims to classify and label 

all elements (e.g., individual pixels, or segments in the case of OBC) within an image into 

a pre-defined number of classes. During the processing, the classifier chosen by the user 

automatically assigns a suitable class for each element and turns image objects or 

meaningless pixels into an interpretable thematic map. Studies of image classification 
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started in the late 1950s and early 1960s with aircraft data (Cormack, 1971). The 

interpretation of the first generation of remote sensing data was performed in printed 

images, and most classification methods were initially developed in the 1970s and 1980s. 

However, specific classifiers and algorithms have made significant advancements and led 

to wider applications in more recent decades (Phiri & Morgenroth, 2017), owing to the 

development of computer software and hardware (Steiner, 1970). In addition, land cover 

classification has been revolutionized with the introduction of numerical-based pattern 

recognition algorithms (Steiner, 1970; Thompson & Mikhail, 1976).  

Despite making important advances over the decades, accurate classification has 

always been a challenge in the computer science field because the classification result is 

easily affected by the complexity of the landscape, the similarity between different 

categories, the scale of the object to be categorized, and the selection of remote sensing 

data, training sample and classification system; each decision could be crucial for the 

result. Thus, studying the user’s needs before classification processing is essential. The 

complete classification process—which involves several steps, including identifying a 

suitable classification system—selecting training samples, choosing an appropriate 

classification method, and evaluating accuracy (D. Lu & Weng, 2007), is briefly presented 

below. 

As mentioned in the previous chapter, “remote sensing” refers to gathering 

information about Earth’s surface objects by systems located some distance away; thus, 

selecting remote sensing systems and data is critical for classification. Selection of the 

remote sensing data (e.g., airborne vs. spaceborne, RaDAR vs. optical, active vs. passive, 

different spectral and spatial resolutions) is generally the fundamental and the first 

encountered difficulty in image classification. Over three decades, various studies have 

explored the relation of the nature and properties of digital remotely sensed data (e.g., 

their reaction to the physical, chemical, and biological properties of the Earth’s surface) 

acquired from different instruments and platforms with a data processing algorithm in 

order to fundamentally enhance classification. Furthermore, the studies demonstrated 

the importance of the selection of remotely sensed data according to the user’s needs, 

such as the research objectives and the characteristics of the study area, so that the data 

can be used to produce accurate classification results with maximum effectiveness and 
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minimum cost (Trotter, 1991; Richards, 1993; Barnsley, 1999; Estes & Loveland, 1999). 

Selecting a suitable classification system for the user’s purpose determines the 

classification structure; a classification system includes remote sensing data, a 

classification algorithm, as well as preprocessing and postprocessing methods (D. Lu & 

Weng, 2007). 

Training data selection is necessary for supervised classification methods. The 

training data is usually presented and collected in three different forms: individual pixels, 

seeds, and polygons. In addition, the training strategies are affected by the size of the 

training group, the resolution of the images, and the autocorrelation within each class (D. 

Chen & Stow, 2002). The selection of training data directly impacts the classification result, 

especially for HR data and in a highly heterogeneous area. Consequently, the training data 

should be representative of each class and have a reasonable ratio between different 

classes (D. Lu & Weng, 2007). 

The classification algorithm (also called “the classifier”) is the most crucial part of 

the classification process. Many algorithms have been developed for different uses in 

recent decades, especially advanced classification algorithms for image classification. In 

order to choose the optimal classification method, the merits of each method must be 

considered. 

In particular, LULC classification is one of the earliest applications of image 

classification in the remote sensing field. Early on, a variety of studies have contributed 

towards developing efficient and effective classification methods for LULC: classification 

methods for either coarse or fine spatial resolution were developed and summarized for 

large-scale land cover mapping by Cihlar (2000). Franklin & Wulder (2002) reviewed and 

assessed large-area land cover classification with general medium spatial resolution and 

identified the outstanding issues. Phiri & Morgenroth (2017) reviewed the development 

of land cover classification methods since the launches of a new series of Landsat sensors 

and advancements in computer science.  

Overall, the first generation PBC methods for LULC mapping began to emerge in 

the 1970s, right after the launch of Landsat-1, with the development of diverse classifiers, 

such as MLC, K-means, and Iterative Self-Organizing Data Analysis Technique (ISODAT) 

classifiers (Phiri & Morgenroth, 2017). Afterward, many classification approaches were 
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proposed after the 1980s, such as the sub-pixel method, knowledge-based method, 

contextual-based method, OBC, and hybrid approaches in land cover classification (D. Lu 

& Weng, 2007; Phiri & Morgenroth, 2017). The most commonly applied classification 

methods can be categorized as follows:  

 PBC: PBC, which was discussed in the previous section, refers to a direct assignment 

of a suitable class to each pixel in the image (D. Liu & Xia, 2010). The most commonly 

used algorithms in PBC are NNs (NN), SVM, and RF. 

 

 OBC: Pixels are first regrouped into homogenous image objects using a segmentation 

algorithm, after which each image object is assigned to one of the predefined classes 

(D. Liu & Xia, 2010). 

 

 Sub-pixel classification: This method evaluates each pixel spectrum as a linear 

combination of a set of endmember spectra, after which it outputs fraction images 

with one image for each endmember spectrum (D. Lu & Weng, 2007). The most known 

sub-pixel classification algorithm is the Fuzzy Classifier. 

 

 Contextual-based classification: This method exploits spatial information among 

neighboring pixels in order to improve the quality of classification results. 

 

 Knowledge-based classification: In this method, a priori knowledge and ancillary 

data are necessary and incorporated into the classification procedure. 

 

 Hybrid classification: Also known as the Multiple Classifier System (MCS), hybrid 

classification refers to a merging of the classification results from more than one 

classifier to provide the complementary information of the pattern classifiers (Du et 

al., 2012). 

 

However, there is usually more than one characterization of the classification 

methods. Classifiers can also be categorized as “supervised” and “unsupervised” methods: 

Supervised classification refers to the classification process with a priori knowledge. The 
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supervised classification model must be trained in advance with a series of data selected 

and assigned by the user. Unsupervised classification, by contrast, is based solely on the 

information contained in the input data. Alternatively, as in parametric and non-

parametric methods, the parametric classification model is built using a fixed number of 

parameters; however, the number of parameters is flexible in non-parametric methods. 

In addition, parametric methods are used to test the means of groups, whereas non-

parametric methods test the medians. The most widely used parametric algorithms are 

MLC, basic linear SVM, and non-parametric algorithms (most notably including NN 

algorithms such as MLP, or ANN). 

Furthermore, numerous studies have shown several classification algorithms from 

different approaches to be efficient in LULC classification. These include MLC (Hung & 

Ridd, 2002; Dean & Smith, 2003; Shivakumar & Rajashekararadhya, 2018), RF (Gislason 

et al., 2006; Rodriguez-Galiano, Chica-Olmo, et al., 2012; Kulkarni & Lowe, 2016), SVM (C. 

Huang et al., 2002; Kavzoglu & Colkesen, 2009), and ANN (Kavzoglu & Mather, 2003; 

Kadavi & Lee, 2018). Each algorithm has its limitations and advantages in accordance with 

the study area or objective. Thus, the choice of classifier is critical for classification results, 

and diverse classifiers are usually performed simultaneously in a study to make a 

comparison (M. Pal & Mather, 2003; Otukei & Blaschke, 2010; Talukdar et al., 2020).  

The final part of the classification process is post-classification processing, which 

is able to effectively reduce the noise in the map being classified. For example, the speckle 

(also called the “salt-and-pepper-effect”) induced in PBC methods eliminates spectral 

confusion, modifies and completes the classification results with auxiliary data, and 

evaluates the classification results (Section 4.4: Methodology of post-classification). 

 

4.2.2. Shallow machine learning methods  

This section will introduce the concept of ML with various related works. Then, 

two ML methods used in our studies—SVM and RF—will be presented in detail. 
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4.2.2.1. Definition of machine learning  

ML is a subdivision of artificial intelligence and computer science based on the 

biological learning process; it uses data and algorithms to imitate how humans learn. It 

optimizes their performance iteratively over time by learning from data (Waske et al., 

2009; Lary et al., 2016; IBM, 2022).  

For nearly two decades, ML has undergone extensive development as new EO 

satellites are launched with increasing spatial and temporal resolution and revisiting 

frequency. Today, ML has become an important topic and one of the hottest research areas 

in remote sensing data analysis (Waske et al., 2009; Maxwell et al., 2018). Even though 

ML has an excellent capability to deal with multivariate, non-linear, non-parametric 

regression or classification problems (Lary et al., 2016), ML techniques are used mainly 

in image classification tasks to predict a specific phenomenon, create a thematic map of 

an area of interest, and monitor nature- or human-induced environmental changes and 

their impacts. Moreover, ML techniques are applied as a supervised classification method. 

Thus, a training dataset should be generated, and the ML algorithms can make a 

prediction and improve classification accuracy by learning from training data. 

In comparison with traditional classification methods, ML methods provide more 

effective and efficient classification. The strengths of ML can be attributed to its capability 

to generate a variety of data with a high degree of dimension and predict highly complex 

classes. Numerous studies have shown ML to be very effective at classification in different 

domains. For instance, Waske et al. (2009) discussed the general concept of ML 

techniques, their critical role in remote sensing data analysis, and the use of their recent 

advanced developments in supervised classification techniques. Lary et al. (2016) 

highlighted the capacity of ML for solving problems in geosciences and remote sensing by 

presenting its ability in multivariate non-linear nonparametric regression solving as well 

as in multivariate non-linear non-parametric classification dealing. Maxwell et al. (2018) 

reviewed six relatively mature ML methods—SVM, DTs, boosted DTs, RF, ANN, and  k-

NN—and illustrated their performances in image processing. Meanwhile, another study 

by Schulz et al. (2018) aimed to explore the potential applications of ML techniques in the 

remote sensing area, their excellent capacity to solve complex classification problems, and 

their perspectives. Moreover, many papers have sought to describe ML classification 
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techniques and their principal algorithms, as well as their recent attempt to improve 

classification accuracy (Kotsiantis et al., 2006; Akinsola, 2017; Soofi & Awan, 2017; Sen et 

al., 2020). 

ML techniques have been widely used in remote sensing image analysis in recent 

decades; main applications and related works are summarized below:  

Vegetation study is one of the most important application fields of ML classification 

techniques; ML methods provide highly accurate classification and valuable information 

for vegetation cover detection, vegetation health monitoring, and mapping of vegetation 

types or species (Hengl et al., 2018; Tichý et al., 2019; L. Gao et al., 2020; X. Li et al., 2021). 

Y. Xie et al., (2008) presented an overview of the application of remote sensing imagery 

and different classification methods, especially the advanced classifiers such as ANN and 

DT, to perform vegetation cover classification. Mishra & Crews (2014) examined the 

suitability of integrating hierarchical Object-Based Image Analysis (OBIA) with RF—one 

of the most widely used ML methods—with a stack of Landsat TM imagery by mapping 

vegetation morphology types. Moreover, the results indicated a high overall classification 

accuracy and validated the effectiveness of the ML method applied in mapping vegetation 

types. Nay et al. (2018) have successfully produced short-term forecasts of vegetation 

health at high spatial resolution by using global data and an ML approach.  

Agriculture is also one of the most important fields where ML techniques are 

applied; after all, food is a basic need of all human beings. Previous studies have shown 

that progress in the area of ML helped improve agricultural production by providing 

essential insights into crops (Liakos et al., 2018; Benos et al., 2021; Meshram et al., 2021). 

Meshram et al. (2021) demonstrated the efficiency of recent ML techniques by performing 

ML classification for monitoring agricultural activities in three main agricultural stages: 

pre-harvest, harvest, and post-harvest. Moreover, they demonstrated the remarkable 

capability of ML methods to handle non-linear tasks and process highly complex input 

data. Chlingaryan et al. (2018) indicated that the development of ML techniques 

application in accurate crop yield prediction and nitrogen status estimation could 

effectively improve crop forecast, environment state estimation, and decision-making. 

Savla et al. (2015) implemented several classification algorithms, including ML algorithms 

(SVM and NN), for studying precision agriculture, such as soybean crop yield.  
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Urban area classification is one of the most critical and challenging research areas 

of ML techniques, due to the complex and heterogeneous characteristics of urban areas 

and of the objects to be classified (e.g., construction, green space, street), which are 

generally relatively small in scale compared to cropland and forest. Consequently, 

powerful ML techniques and HR data are critical for urban environmental studies. 

Examples include urban area mapping, urban green spaces detection, gentrification, or 

artificialization monitoring (Chan et al., 2001; Donnay et al., 2014; X. X. Yang, 2021). Weng 

(2012) conducted a study of extracting and mapping impervious surfaces in urban areas 

by using and evaluating various remote sensing classification approaches, including ML 

algorithms such as ANN. The author showed that the ANN model outperformed other 

classification methods in urban area mapping and impervious surface estimation by using 

HR imagery. Soergel (2010) revealed the excellent performance of ML algorithms (ANN, 

SVM, DT) in urban environment classification using SAR data. Puissant et al. (2014) 

proposed a methodology to map and monitor the changes in urban tree spaces using an 

object-based RF classifier with VHR optical image in Strasbourg, France. The authors 

found that the RF classifier achieved good accuracy and high robustness of classification 

results in terms of user’s and producer’s accuracy. 

Biomass estimation and monitoring are also among the typical application fields of 

ML classification methods. Mapping and quantifying vegetation biomass is crucial for 

optimizing ecosystem services and effective management. Biomass is usually studied in 

forest ecosystems—especially in tropical ecosystems (Jachowski et al., 2013; L. Chen et 

al., 2018; S. M. Ghosh & Behera, 2018). For example, Pham & Brabyn (2017) conducted 

research on biomass in a mangrove forest. The purpose of their study was to model, map, 

and analyze the biomass changes in the mangrove forests in the Cangio region of Vietnam 

between 2000 and 2011 by using SPOT4 and SPOT5 images with OBC ML methods, 

applying the RF algorithm for modeling and mapping biomass. Their results indicated that 

the ML classifiers had great potential in biomass modeling with a satisfactory 

classification accuracy (77.1% for 2000 and 82.9% for 2011). Dang et al. (2019) 

conducted a study to predict forest aboveground biomass (AGB) in Yok Don National Park 

in Vietnam using a combination of spectral and texture variables extracted from Sentinel-

2 images and the RF algorithm. The authors reported that the RF-based regression 

algorithm had accurately predicted the forest AGB distribution.  
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In addition to these common application fields, the application of ML techniques in 

LULC classifications and change detection has also attracted considerable attention in 

recent years. Due to increasing social as well as natural pressures—such as rising 

population, accelerated industrialization and urbanization, climate change, deforestation, 

and natural disasters—LULC study has become essential to the effective planning and 

management of natural and man-made resources (Karpatne et al., 2016; Camargo et al., 

2019; Talukdar et al., 2020). Moreover, the increasing availability of remote sensing data 

and improving ML techniques allow real-time accurate LULC mapping and change 

detection worldwide (Gómez et al., 2016; Karpatne et al., 2016). Therefore, many prior 

studies have summarized the progress and challenges of ML methods and examined their 

accuracy in land cover classification; the difficulties encountered have attracted particular 

attention. 

LULC classification for change detection and verification remains challenging for 

several reasons, such as the heterogeneity in the characteristics of LULCCs. Each 

classification model must be built and adjusted according to the study area and research 

object. In addition, LULCCs are often negligible and brief. Otherwise, there are natural 

phenomenon that take a long time to detect. For detection purposes, the ML model must 

be trained with available data acquired before and after changes, and must be adjusted in 

case of dealing with multi-source data when the availability of data is limited (J. S. Deng 

et al., 2008; Karpatne et al., 2016). Furthermore, previous studies show that the accuracy 

of the classification can be affected spectrally and spatially by coarse-resolution data 

(Manandhar et al., 2009; C. Yang et al., 2017). The training data dataset may be challenging 

to generate due to the difficulty of accessing the ground truth before changes occur or due 

to the lack of auxiliary data (Karpatne et al., 2016). 

Nevertheless, ML is well known for its capability to produce satisfactory 

classification results even on complex problems. As a result of the emergence and 

development of ML techniques, and in combination with HR remote sensing datasets, 

today it is easier to address the computational difficulties associated with LULC 

classification on a global scale (Gómez et al., 2016; Talukdar et al., 2020). Additionally, the 

great capability of ML techniques—such as multi-task dealing capacity, multi-instance, 
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and multi-view learning—provides accurate, cost-effective, and time-saving classification 

(Karpatne et al., 2016).  

Therefore, despite all the limitations of ML application in LULC classification, a 

number of LULC studies demonstrate the efficiency and effectiveness of ML methods. For 

example, in order to monitor LULC in a complex mix-used boreal landscape in south-

central Sweden, Abdi (2019) utilized four advanced ML non-parametric algorithms—SVM, 

RF, extreme gradient boosting (Xgboost), and DL—in combination with multitemporal 

multispectral HR Sentinel-2 data. The results showed that both ML algorithms achieved 

high accuracy, around 75%, in an extremely complex LULC classification. Due to the 

complex, heterogeneous mixed landscape, the highly accurate classification of urban land 

cover remains a challenge. Lu et al., (2010) explored the possibility of improving urban 

land-cover classification in a highly complex urban–rural landscape with a large surface 

of impervious area by using MLC algorithms combined with the OBC classification 

methods and QuickBird imagery. The authors found that such a combination significantly 

improved urban land cover classification performance. In another study, Rodriguez-

Galiano et al. (2012) applied an ML RF classifier on multiseasonal textural features 

extracted from Landsat TM imagery to perform land cover classification over a complex 

Mediterranean landscape with numerous different types of LULC, obtaining highly 

reliable classification results. 

Overall, ML classification methods have definitively been shown to provide more 

accurate classification results particularly with complex multi-resource data in a 

heterogeneous landscape compared to traditional classification methods (e.g., MLC, 

distance measure, clustering, logistic regression) (M. Hansen et al., 1996; Carranza-García 

et al., 2019; Talukdar et al., 2020). Some studies have compared different ML techniques 

in an effort to determine the best technique for LULC classification, considering that the 

most suitable classifier may vary depending on the research area and objectives (D. Lu, 

Mausel, Brondízio, et al., 2004). Thanh Noi & Kappas (2018) examined and evaluated the 

performance of three ML non-parametric classifiers—RF, k-NN and SVM—in LULC 

classification In Vietnam’s Red River Delta using Sentinel-2 images. Their results showed 

that both classifiers achieved high overall accuracies ranging from 90% to 95%; however, 

SVM outperformed RF and k-NN because it was able to generate fine classification results 
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with a relatively small volume of training data. Jamali (2019) conducted a study to 

evaluate eight ML algorithms—RF, DT, MLP, Non-Nested Generalized Exemplars (NN ge), 

Simple Logistic, DTNB, J48, and Lazy IBK—in LULC classification on Iran’s northern coast. 

The classification results obtained were evaluated based on several accuracy indicators; 

NN ge achieved the highest accuracy score in both accuracy indicators, followed by Lazy 

IBK, RF and MLP, which also showed excellent potential for LULC classification. Keshtkar 

et al. (2017) aimed to compare three ML algorithms—RF, DT and SVM—in land cover 

classification in Thuringia in Germany, a highly heterogeneous area. Afterward, land cover 

changes detected from 1990 to 2010 were generated using Landsat data. The study 

showed that the SVM OBC algorithm obtained the most accurate classification results with 

93.54% of OA; the PBC RF and SVM classifiers had also similar accuracy indices (90%). 

Even though numerous ML algorithms have been rapidly developed for different 

purposes in recent years, some well-known, well-developed, and frequently used ML 

algorithms are still worth noting, such as MLC, SVM, RF, ANN, k-NN, and DT. Among these, 

SVM, RF were applied in our studies; thus, these ML classifications methods will be 

presented in the following section. Moreover, the DL networks and their related 

algorithms will be presented in section 4.2.3.  

 

4.2.2.2. Support vector machine classification 

SVM, is one of the most popular and robust non-parametric statistical ML 

techniques due to its ability to generate good classification results from a small training 

dataset. 

The promising development was first proposed by Cortes & Vapnik in 1995. This 

theoretically superior ML algorithm based on statistical learning theory (C. Huang et al., 

2002) have been applied to the remote sensing classification problem since the early 

2000s (M. Pal & Mather, 2005). 
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Figure 39 Theoretical SVM model 

Initially, the SVM model was designed for solving the linear binary problem with 

two principal factors: support vector and hyperplane (Figure 38). The technique is 

focused on the training dataset; support vectors are the closest samples to the optimal 

boundary (also called the “hyperplane”), which is a single boundary that separates the 

samples from two different classes of datasets in a multi-dimensional space (C. Huang et 

al., 2002).  

Thus, the algorithm aims to generate the optimal hyperplanes that will separate 

the classes with the fewest possible errors, thereby significantly minimizing the confusion 

between classes and maximizing the margin between support vectors of two classes from 

the samples closest to the hyperplane (C. Huang et al., 2002). However, the theoretical 

margin can only be applied in the separable dataset, and the soft margin is usually 

required for non-separable samples, which means relaxing the requirement that all 

training vectors must lie on the same side of the optimal hyperplane in a given class 

(Gualtieri & Cromp, 1999). Moreover, a user-defined c-parameter, the penalty value of 

misclassification errors, can highly impact the selection of a support vector in the case of 

a soft margin applied. In general, a low c value allows more misclassification. In contrast, 

higher c values mean more complex decision boundary and less generalization, and an 

overweight c value might cause overfitting problems and generalization errors (Cortes & 

Vapnik, 1995; Foody & Mathur, 2004; C. Huang et al., 2002; Maxwell et al., 2018).  
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In addition, another critical parameter in the SVM algorithm is γ, which is used to 

determine the extent to which the influence of a single training example reaches. Hence, 

a low value of γ will consider samples at great distances for finding the optimal hyperplane. 

Therefore, more samples will be considered.  

 

Figure 40 SVM non-linear model 

The traditional SVM model was originally developed to solve the linear problem. 

Thus, in the theoretical model, samples belonging to the same class usually lie on the same 

sides of the hyperplane (Gualtieri & Cromp, 1999). However, the ideal case occurs rarely, 

the samples are frequently non-separable, and a misclassification problem might result. 

Consequently, a non-linear surface is built for solving a non-linear problem, assuming that 

a higher dimension might exist. As shown in Figure 39, the input is first projected into 

higher dimensional feature space, and then an optimal hyperplane is generated in the 

same space afterward; this projection to the higher dimensionality is known as kernel 

function K. The choice of the kernel has a critical impact on the applicability of SVMs 

(Mountrakis et al., 2011). Many user-defined kernels are developed since, for example, 

polynomial and radial kernel functions are tested for land cover classification in Kavzoglu 

& Colkesen (2009). 
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Figure 41 Four most frequently used kernel functions of Support Vector Classification (SVC) 

The most used kernel functions are polynomial, sigmoid, linear, and Gaussian 

kernel Radial Basis Function (RBF) (Figure 40) (Maxwell et al., 2018), which are described 

below: 

 Sigmoid: Usually used in the perceptron model of the NN as an activation function for 

artificial neurons. 

 

 RBF: The kernel can be applied when no prior knowledge provides; alternatively, in 

addition, the radial basis function is developed to improve the kernel. 

 

 Linear: This kernel is only considered when the data is linearly separable, which is 

helpful for dealing with a large number of features. 

 

 Polynomial: Fundamentally, this kernel represents the linear kernel in a more 

generalized way. 
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The SVM algorithm was initially developed as a binary classifier; in other words, it 

was designed only to separate two groups, but not to handle multi-class classification. 

However, because multiclass problems frequently appear in real-case applications, 

Gualtieri & Cromp (1999) proposed two strategies for converting a binary classifier 

into N classes classifiers: 

 One-against-all: N binary classifiers are created, and each classifier is trained to 

identify the samples of a class from the rest. The pixel is categorized as the class for 

which the largest decision value was determined (Foody & Mathur, 2004). 

 

 One-against-one: The complex multiclass classification problem is broken down into 

the binary problem: N (N-1)/2 binary classifiers are applied to each pair of classes, 

and each pixel is labeled as the most commonly computed class (Foody & Mathur, 

2004).  

 

However, previous studies have also indicated that multi-class classification may 

be computationally exhaustive, and that the processing time increases with the number 

of classes (Cortes & Vapnik, 1995). 

Various studies report that the SVM classifier has great stability and can usually 

achieve higher accuracy and training speed than other classification methods (C. Huang 

et al., 2002; M. Pal & Mather, 2005; Thanh Noi & Kappas, 2018). Additionally, it can 

generate highly accurate results with high-dimensional data and limited training datasets. 

Especially for the LULC classification problem, SVM has been shown to be a suitable 

and efficient classifier in various study areas with different types of data (Lizarazo, 2008; 

M. Pal, 2008; Gong et al., 2013; Rodriguez-Galiano & Chica-Rivas, 2014; Thanh Noi & 

Kappas, 2018). For example, Deilmai et al. (2014) demonstrated that SVM outperformed 

MLC in a mixed-use landscape including forest, oil palm, rubber, and urban area and 

indicated the effectiveness of SVM for land cover classification. Shao & Lunetta (2012) 

used the SVM classification method in MODIS time-series data for land-cover 

characterization of the Albemarle-Pamlico Estuary System in the USA. The results 

indicated that SVM provided good classification accuracy while having better behavior in 

generalization capability than two other classifiers, namely MLP and classification and 
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regression trees (CART), especially with a small training dataset. He et al. (2005) used a 

multi-class SVM classifier for land cover classification with multi-source data, including 

Landsat TM images and auxiliary data. The experiment showed that SVM was capable of 

generating accurate land cover classification and had the potential to achieve higher 

accuracy with multi-source data.  

Traditionally, SVM is considered and applied as a typical PBC in previously cited 

research. However, we have found that the SVM algorithm also has excellent performance 

for producing satisfactory results as an object-based classifier (Tzotsos & Argialas, 2008; 

H. Li et al., 2010; Devadas et al., 2012; X. Niu & Ban, 2013; Q. Wu et al., 2017). 

 

4.2.2.3. Random forest classification 

RF was first proposed by Ho in 1995 to overcome the DT classifier limitation, which 

is the loss of classification accuracy when processing complex data. Afterward, the idea of 

RF was extended by Breiman (2001), who combined it with bootstrap aggregating 

(bagging) theory.  

RF is a non-parametric classification method that is one of the most widely known 

and used classifiers in the remote sensing field over the past two decades due to its 

efficiency, effectiveness, high processing speed, and ability to handle data of high 

dimensionality and multi-collinearity. In addition, it can generate accurate classifications 

or regression results and survival analyses in both supervised and unsupervised learning 

(Rodriguez-Galiano, Ghimire et al., 2012, p. 201; Belgiu & Drăguţ, 2016). 

Although previous simple classifiers (e.g., SVM, MLC, and CART) are capable of 

generating excellent results, they reach their limits when they encounter the complex 

interplay between factors such as the complexity of study area, scale, and aggregation 

(Marceau et al., 1994). Thus, ensemble learning algorithms based on a number of 

individual identical classifiers—or different classifiers trained with bagging or boosting 

techniques—have been developed to enhance classification accuracy (Gislason et al., 

2006; Belgiu & Drăguţ, 2016). 
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Figure 42 Bagging theory model 

Among the various ensemble learning algorithms, the RF classification algorithm 

employs the technique of bootstrap aggregating, also known as “bagging” (Figure 41). The 

principle of the bagging technique is to decrease the variance of the model without 

increasing bias. First, an ensemble of n classifiers (ordinarily identical to the number of 

features in the training dataset) is created. Then, each classifier is trained on a random 

subset of the complete training datasets. Thus, some of the training datasets can be 

selected and used several times (so-called “in-bag” samples), whereas some others have 

never been used (“out-of-bag” samples). The out-of-bag data can be used as test data for 

evaluating the bagging model (Gislason et al., 2006). 
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Figure 43 RF model 

As shown in Figure 42, the RF algorithm produces an ensemble of n tree-like 

predictors with high variance and low bias to generate a single final prediction (Breiman, 

2001). By using a randomly selected subset of the training dataset and variables, for each 

instance or sample in the subset, each tree in the forest casts a vote independently for the 

most popular class. The final prediction is then determined by the majority of the vote of 

all decision trees in the forest (Breiman, 2001; Belgiu & Drăguţ, 2016). This technique can 

effectively protect the classifiers from variants by minimizing the correlation between the 

classifiers in an ensemble (Gislason et al., 2006). 

In addition, two user-defined parameters are set to train the model: the number of 

decision trees in the forest (Ntree) and the number of variables to be randomly selected 

at each split when growing the tree (Mtry) (Díaz-Uriarte & Alvarez de Andrés, 2006; 

Genuer et al., 2010; Stumpf & Kerle, 2011; Millard & Richardson, 2015). The Ntree value 

can often be extensive, considering that RF algorithms do not have an overfitting problem. 

However, some studies suggest that the tree’s number N has no influence on classification 

results (Du et al., 2015). On the other hand, Mtry is generally set to the square root of the 

number of input samples (Gislason et al., 2006). 

The superiorities of the RF classification algorithm have been enumerated in 

previous literature. For instance, RF is able to combine high classification accuracy with 
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great efficiency and can process high dimensional data with low computational cost, low 

sensitivity to noise, small training sample sizes (Rodriguez-Galiano et al., 2012), and few 

overtraining or overfitting issues (Gislason et al., 2006). Therefore, RF, which is 

considered an essential classifier for multi-source classification, has been shown to make 

significant progress in land cover classification by significantly improving prediction 

accuracy (Cutler et al., 2012; Ghimire et al., 2012; Rodriguez-Galiano, Ghimire et al., 2012; 

Kulkarni & Lowe, 2016). 

In the early years, RF was usually applied in classification as a PBC method (Evans 

& Cushman, 2009; Ghimire et al., 2010; Senf et al., 2012; Grinand et al., 2013; Vanselow & 

Samimi, 2014). However, its applications in OBC have become more and more common, 

and the technique was demonstrated to be effective and useful for improving accuracy by 

combining contextual factors (Schroff et al., 2008; Duro et al., 2012; Stefanski et al., 2013; 

Vogels et al., 2017; Dornik et al., 2018). 

Consequently, the RF technique has been successfully used in various research 

fields with a different types of data, such as LULC and crop mapping. For example, Evans 

& Cushman (2009) performed a prediction of conifer species with Landsat ETM+7 data. 

Loosvelt et al. (2012) presented a methodology based on RF to estimate uncertainty with 

SAR images. C. Deng & Wu (2013) generated an estimation of urban impervious surfaces 

by using a single-date MODIS image. Räsänen et al. (2013) mapped boreal forest habitat 

with WV-2 satellite imagery, a LiDAR DEM, and a canopy height model (CHM). Belgiu & 

Dr Guţ (2014) extracted buildings from VHR imagery of QuickBird and WV-2 with the RF 

technique. Tatsumi et al. (2015) accomplished crop classification with Landsat 7 ETM+ 

time series. H. Wang et al. (2015) detected forest health conditions with IKONOS imagery. 

Vogels et al. (2017) mapped agriculture cropland using black-and-white aerial 

photography. Dornik et al. (2018) classified soil types using the SPOT DEM and a Landsat-

8 satellite image with an ML RF classifier. 

Moreover, the RF classifier is widely used in LULC classification for its capability to 

make accurate mapping of complex LULC categories (Senf et al., 2012; Colditz, 2015; 

Tsutsumida & Comber, 2015; Kulkarni & Lowe, 2016; Phiri et al., 2018). For instance,  

Ghimire et al. (2012) proposed a study of land cover classification in a complex 

landscape in Cape Cod, Massachusetts, USA using ensemble learning algorithms and a 
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classification tree. The ensemble learning algorithms (e.g., RF) were shown to provide the 

highest classification accuracy, especially for heterogeneous areas on a small scale 

accompanied by seasonal variation. 

Rodriguez-Galiano & Chica-Rivas (2014) operated a land cover classification of a 

heterogeneous area with 14 categories by incorporating a suite of multitemporal Landsat 

images and digital terrain model (DTM) variables and RF algorithm. Results showed the 

superiority of RF over traditional single classifiers such as DT. In addition, RF not only 

provided a very high classification accuracy (0.92 in kappa), successfully generated and 

classified the most heterogeneous categories (e.g., shrublands) with 30% better accuracy, 

but it also ran efficiently on high-dimensional data and was able to more clearly 

differentiate between the different categories. 

By contrast, traditional classification trees suffered from data overfitting. Stefanski 

et al. (2013) developed a strategy for a semi-automatic optimization of OBC of 

Multitemporal data using the RF technique and the SupePrpixel Contour (SPC) 

segmentation algorithm. To find the best parameter combination of SPC, various 

combinations were tested on land cover classification using multitemporal RapidEye and 

SPOT-5 data. Eventually, the best parameter was found based on the cross-validation-

like out-of-bag error provided by RF. 

 

4.2.3. Deep learning methods 

4.2.3.1. Definition of deep learning  

As part of a broader family of ML, deep structured learning, known as “deep 

learning” (DL) or “hierarchical learning,” first emerged in 2006 with the study of NNs by 

Hinton & Salakhutdinov (2006). Thereafter, between 2006 and 2012, the first generation 

of simple DL models was developed, including AutoEncoder (AE) (Hinton & 

Salakhutdinov, 2006), deep belief networks (DBNs) (Hinton, 2009), and Stacked 

Autoencoder (SAE) (Vincent et al., 2010). Until recent years, DL has been developed at a 

surprising speed, and has already become a powerful tool in many application fields, 
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although it remains a highly active research area for science and industry (X. X. Zhu et al., 

2017). 

            

Figure 44 Machine learning and deep learning in visual data analysis 

ML algorithms (Figure 43), also known as “shallow-structured architectures,” are 

generally composed one or two of non-linear feature transformation, such as SVM and RF 

presented in previous sections. ML methods are widely recognized for their capability and 

effectiveness of solving simple or well-constrained problems; however, they are usually 

limited by the modeling and representational power, which is their main barrier to 

accomplishing more difficult tasks (L. Deng & Yu, 2014). Meanwhile, the development of 

technologies, including equipment such as Graphics Processing Unit (GPU), encourages 

the birth of a more advanced technique that is able to exploit complex, non-linear 

compositional functions (L. Deng & Yu, 2014). 

Consequently, DL was born in the ANN research, which refers to the use of deep 

architecture, a multiple-layer network for signal and information processing (Figure 43). 

Inspired by neuron systems and functions of the human brain, the deep structure is 

composed of numerous artificial neurons, each of which can receive and process 

information, and then send it to the next neuron—just as a biological neuron deals with 

electrical impulse.  

Although DL has many definitions, roughly speaking, it can be defined as “a class of 

machine learning techniques that exploit multiple layers (usually but not necessarily with 
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more than two hidden layers) of non-linear information processing for supervised or 

unsupervised complex feature extraction and transformation, and for pattern analysis 

and classification.” (L. Deng & Yu, 2014; X. X. Zhu et al., 2017). Moreover,  Deng & Yu also 

categorized most of the related researches into three major classes by application of the 

architectures: deep networks for unsupervised or generative learning, deep networks for 

supervised learning, and hybrid deep networks. Given its basis of imitating human 

information processing mechanism, visual data processing is one of the most important 

DL research areas. 

DL methods, capable of learning complex representations from data and 

significantly enhancing classification accuracy, have recently gained ground in the ML 

community (Karpatne et al., 2016). Furthermore, as a subset of ML, the introduction of DL 

has become a growing trend that is considered a breakthrough and a robust solution in 

the remote sensing field (Carranza-García et al., 2019), where DL has experienced an 

exponential increase, particularly since 2014 (X. X. Zhu et al., 2017). 

Meanwhile, remotely sensed image processing also represents a new challenge for 

DL (Zhu et al., 2017) for several reasons: (1) the data are usually multi-source and multi-

modal, and the fusion of different types of data is commonly applied in the classification 

problem; (2) the data are geolocated and geodetic measurements; (3) satellite revisiting 

times are considerably shortened, which yields an increased production rate of remote 

sensing data and indicates that time-series processing is now practicable; and (4) large 

data volumes are typical on a global scale.  

Consequently, various DL algorithms are designed and/or employed to overcome 

these difficulties and improve the processing procedure and/or result. The algorithms can 

be categorized according to their applications. For example, two main categories are 

widely applied for visual data processing: 

 

 AE models (e.g., AE (Cheng et al., 2020), sparse autoencoder (Ng, 2011), restricted 

Boltzmann machine (Fischer & Igel, 2012) and DBNs (Hinton, 2009)) constitute a type 

of feedforward ANN for unsupervised learning. These models were specifically 
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designed for representation learning and trained to ignore unnecessary noise to 

perform dimensionality reduction.  

 

 Convolutional NNs (CNNs) (e.g., AlexNet (Krizhevsky et al., 2012), Visual Geometry 

Group (VGG) Networks (Sengupta et al., 2019), ReST-Net (B. Li et al., 2018), Fully 

Convolutional Network (FCN) (J. Long et al., 2015)), constitute supervised deep NNs 

with the filters involved to perform convolutions in the image domain. CNNs have 

demonstrated their ability to extract mid- and high-level abstract features from raw 

images by combining convolutional and pooling layers, and have shown efficiency in 

large-scale recognition, object detection, and semantic segmentation (X. X. Zhu et al., 

2017). 

With such advanced deep architectures, DL is widely applied in remote sensing 

with various remotely sensed data types. For instance, hyperspectral imagery—a specific 

type of optical imagery characterized by hundreds of narrow spectral bands—allows us 

to identify a better characterization and exploitation of the Earth's surface. However, the 

difficulty of processing is accordingly increased, and hyperspectral image analysis has 

always been an active research area in image processing and classification. As a practical 

feature extraction approach, DL techniques have brought revolutionary advancement in 

this field (S. Li et al., 2019).  

The most familiar deep architectures used for hyperspectral image processing are 

SAEs (Zabalza et al., 2016), DBNs, supervised CNNs (Goodfellow et al., 2016; Lee & Kwon, 

2016), RNNs (Mou et al., 2017; Y. Liu et al., 2018), and Generative Adversarial Networks 

(GANs) (Goodfellow et al., 2020; Zhong et al., 2020). As presented in Chapter 3, SAR data 

has become increasingly popular, particularly after the launch of the Sentinel-1 C-band 

SAR satellite of the ESA’s Copernicus Programme. Moreover, the advent of DL methods 

has revealed increased potential for SAR data application. Examples include Automatic 

Target Recognition (ATR) with mostly CNN architectures (S. Chen & Wang, 2014; 

Wilmanski et al., 2016; Pei et al., 2018), terrain surface classification using polarimetric 

SAR (PolSAR) with AE models (H. Xie et al., 2014; Hou et al., 2016; L. Zhang, Ma, et al., 

2016), CNNs (Y. Zhou et al., 2016; Y. Wang et al., 2018; L. Wang et al., 2018), and parameter 

inversion and de-speckling with CNN models as well (Chierchia et al., 2017; P. Wang et al., 



Part II General methodology 
Chapter 4. Analysis and image processing 

 
 

131 
 

2017; T. Song et al., 2018; S. Niu et al., 2020). Ultimately, one of the most significant 

contributions of DL is to bring significantly enhanced LULC classification and object 

detection with optical imagery, especially with the new generation of VHR optical images. 

Even though a great number of ML algorithms were already developed for this purpose, 

and they have achieved excellent performance before the arrival of DL, some limitations 

yet remain. Therefore, it is increasingly common to use DL methods by combining them 

with HR images for LULC classification (L. Ma et al., 2019). 

First, deep structures show great achievements in image representation, 

considering that hierarchical structures can provide high-level spatial information (H. 

Liang & Li, 2016; P. Li et al., 2018). Thus, the earliest studies of LULC classification revolve 

around simple feature representation rather than the final classification (Karalas et al., 

2015; Romero et al., 2016; L. Ma et al., 2019). Then, CNNs have attracted remarkable 

attention and have become the most commonly used DL algorithms in land cover 

classification. Furthermore, CNN models are most often used with HR images in order to 

achieve significant breakthroughs (L. Ma et al., 2019).  

Classical CNNs were first widely applied (Al-Najjar et al., 2019; Y. Chen et al., 2019; 

Mazzia et al., 2020; Memon et al., 2021). For instance, Castelluccio et al. (2015) have 

generated LULC classification tasks by using two pretrained architectures, CaffeNet and 

GoogleNet, adapted by two distinct datasets. Kussul et al. (2017) first attempted to apply 

two different CNN architectures (1-D with spectral convolution and 2-D with spatial 

convolution) to the fusion data of multitemporal and multisensor satellites (Landsat-8 

and Sentinel-1A) for large-scale classification of land cover and crop types. The ensemble 

of 1-D and 2-D CNNs outperformed the other classifiers used to compare with CNNs (e.g., 

RF, MLP) with better accuracy and better discrimination of summer crops. In the research 

of Carranza-García et al. (2019), a general 2-D CNN model was applied to LULC 

classification with a fixed architecture and standard parametrization trained by a patch-

based approach and using multi-source satellite data (SAR and hyperspectral). The results 

showed that the CNN models considerably improved LULC classification in both accuracy 

indicators.  

Furthermore, CNN models have been improved and performed for specific 

conditions (C. Zhang et al., 2019b; K. Zhou et al., 2019; R. Fan et al., 2020; Seydi et al., 2020). 
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For instance, Luus et al. (2015) proposed a multi-scale input strategy for multi-view DL 

applied in supervised multispectral land use classification. The results indicated that a 

single deep CNN, trained simultaneously with multi-scale views, could significantly 

outperform multiple single-scale views. Gaetano et al. (2018) introduced MultiResoLCC, 

a new two-branch CNN architecture, to jointly use panchromatic and multispectral 

imagery for a direct classification without any pre-processing procedure. This novel end-

to-end network extracted features from panchromatic and multispectral images at their 

original spatial resolution. The features from different sources are combined to perform 

direct land cover classification at the finest resolution. CNNs are also developed to 

overcome the usual limitations encountered in LULC classification, such as the large and 

complex volumes of training data required for DL model training. Thus, some 

enhancements are developed to accelerate the training dataset creation (Shin et al., 2016; 

Lyu et al., 2018) or to use small training datasets to achieve high classification accuracy 

(B. Pan et al., 2017). 

Overall, CNNs are the most commonly used DL algorithms in LULC classification, 

although other deep architectures are occasionally used as well. For example, Y. Chen et 

al. (2015) introduced a new feature extraction and image classification framework based 

on DBN for hyperspectral image analysis. Their proposed framework—which combines 

PCA, hierarchical learning-based feature extraction, and logistic regression—obtained 

satisfactory classification results, even when compared to other well-known methods. B. 

Liu et al. (2018) performed spectral–spatial classification of land cover with a novel RNN 

model using hyperspectral data. To correctly label each pixel, an RNN model with five 

layers was constructed and fed with the information of the center pixel and the 

neighborhood pixels. The authors demonstrated that RNN has effectively improved the 

accuracy of hyperspectral image classification by modeling the spatial neighborhood 

relation. Jozdani et al. (2019) compared different classifiers of shallow or deep 

architecture for urban LULC classification using GEOBIA approach with two VHR satellite 

images. The classification methods used in this work included five DL methods (i.e., MLP, 

regular AE, SAE, AE, CNN) and five classical shallow ML methods (i.e., RF, Bagging Trees 

(BT), GB, Extreme GB and SVM). The authors found that the deep structure MLP algorithm 

obtained the most accurate classification result. However, neither unsupervised 
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pretrained AE models nor the integration of CNN and GEOBIA produced any improvement 

in classification accuracy. 

Two standard DL models—MLP and CNNs—were applied in the studies on 

detecting vegetation in the city of Brest and mapping LULCCs in the Crozon Peninsula, 

respectively. 

 

4.2.3.2. MLP deep architecture 

The first concept of perceptron was developed by Rosenblatt in the late 1950s, 

becoming the first model of a NN. The original simple perceptron consists of a superficial 

layer and a simple node that receives weighted input and therefore addressed binary 

linear separable data (Atkinson & Tatnall, 1997). Due to the multiple layers, MLP is a more 

sophisticated version of the perceptron that can resolve the non-linear problem of 

regression and supervised classification with inseparable datasets (Murtagh, 1991). 

 

 

Figure 45 Example of an MLP model with two hidden layers 

A MLP model is characterized by its architecture, such as the number of layers and 

the number of neurons in each layer, as well as the activation methods used at various 

neurons (Murtagh, 1991). The most common network is a feedforward network with 3 
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(or >3) layers, as shown in Figure 44. The first layer is always the input layer, which 

receives training data in the form of a vector; it is followed by at least one hidden layer. 

Ultimately, the model is completed with an output layer that presents the output data 

(Atkinson & Tatnall, 1997). As a fully connected algorithm, all nodes at one level have links 

to all nodes at another level (called “interconnected nodes”), and each node is designed to 

process the weight it receives from other nodes of the previous layer (Atkinson & Tatnall, 

1997). In addition, the arrangement of the number of hidden layers and the number of 

nodes (also called “units”) can vary according to the user’s needs. Although more nodes 

generally mean better sensitivity too many can also cause an overfitting problem 

(Murtagh, 1991). 

Since the late 1980s, many studies have attested to the performance of MLP 

(Hecht-Nielsen et al., 1987; Lippmann, 1987; Hornik et al., 1989; Lapedes & Farber, 1989; 

Chester, 1990), although its performance relies highly on training method, suitable 

representative training dataset, and optimal network parameter adjustment to reduce 

overall error.  

The training method plays a crucial role in MLPs’ deep structure, as MLPs have the 

ability to learn through training (Gardner & Dorling, 1998), which is the process of 

determining the value of individual weights in order to accurately resolve the relationship 

that the network is modeling (Gardner & Dorling, 1998). The most commonly used 

training method is backpropagation. 

The backpropagation algorithm, introduced in 1986 by Rumelhart et al. is 

considered the most computationally straightforward algorithm for training the MLP 

(Gardner & Dorling, 1998). The backpropagation algorithm is about to use the gradient 

descent technique to locate the minimum error. Initially, the weights in the network are 

set to random values, and the first sample (in the form of a vector) from the training 

dataset is fed to the network as input to obtain the output. Afterward, an error signal is 

calculated based on the deviation between the desired result and the actual output; this 

is then propagated back through the network to adjust weights to minimize overall errors. 

Finally, each training vector is fed to the network individually and repeats all the steps of 

error calculation until the overall error is acceptable (Bishop, 1995; Gardner & Dorling, 

1998). The backpropagation algorithm can be adjusted by two user-defined parameters—
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learning rate and momentum term—the former to control the step size while updating 

the weights, and the latter to help accelerate gradient descent (Gardner & Dorling, 1998).  

Optimizing the MLP structure has always been challenging, and many studies have 

sought to establish optimal parameters. For example, in response to the poor convergence 

times of the backpropagation algorithm, Swanston et al. (1994) presented a simple 

adaptive momentum training algorithm that was much more efficient in convergence and 

significantly improved the computational cost compared to the classical backpropagation. 

Thimm & Fiesler (1997) aimed to determine the optimal variance for the random weight 

initialization for MLP using different weight distribution and activation functions. Nearly 

a decade later, Thomas & Suhner (2015) introduced a new pruning approach for finding 

the optimal parameters based on variance sensitivity analysis by pruning the different 

types of units sequentially. Soon afterward, Tang et al. (2016) proposed the Extreme 

Learning Machine (ELM)-based hierarchical learning framework with a single hidden 

layer to randomly generate hidden nodes for MLP. Most recently, Heidari et al., (2020) 

proposed an efficient hybrid training technique, Ant Lion Optimizer MLP (ALOMLP), by 

combining Ant Lion Optimizer—a swarm-based meta-heuristic—with MLP, in order to 

find the optimal weights and biases of MLP parameters for achieving a minimum error 

with the highest possible classification accuracy.  

Beginning in the late 1980s, various NNs have come into public view (Lippmann, 

1987); for many years, the networks most widely used for remote sensing image 

processing were MLPs—until the emergence of CNNs (Paola & Schowengerdt, 1995; 

Atkinson & Tatnall, 1997; C. Huang et al., 2002). MLP is well regarded for its ability to 

solve regression and classification problems. It is, therefore, one of the typical supervised 

DL methods used for image recognition.  

In order to learn the weights in the learning phase, the MLP model is trained by a 

training dataset composed of positive and negative samples. Afterward, the input image 

should be reshaped into a vector for image classification. A final feature representation 

generated by the fully connected layers is sent to the classification layer to label the input 

image. The number of nodes in the output layer should match the number of classes in the 

classification (Atkinson & Tatnall, 1997; L. Zhang et al., 2016). 



Part II General methodology 
Chapter 4. Analysis and image processing 

 
 

136 
 

This innovative methodological approach of DL algorithms is usually used 

simultaneously with HR images (L. Ma et al., 2017). For instance, Del Frate et al. (2007) 

investigated the capabilities of MLP as a tool for the fully automatic classification of VHR 

or HR satellite image collections. C. Zhanget al. (2018) successfully mapped a strongly 

heterogeneous urban area with an anthropogenic urban surface mixture using a hybrid 

method based on MLP and CNN algorithms and aerial imagery of 50 cm spatial resolution. 

Vafaei et al. (2018) improved the accuracy of AGB measurement by combining MLP and 

other DL methods with Sentinel-2 and Advanced Land Observing Satellite-2 Phased Array 

type L-band Synthetic Aperture RaDAR-2 (ALOS-2 PALSAR-2). Hoa et al. (2019) 

conducted a study of soil salinity mapping using Sneinel-1 HR data with the MLP method. 

A. Zhang et al. (2019) used a gravitational-optimized MLP model and Sentinel-2 imagery 

to identify coastal wetlands. W. Zhang et al. (2020) identified rice paddies with Sentinel-

2 data and various ML and DL methods, including CNN, MLP, and SVM. Debella-Gilo & 

Gjertsen (2021) detected seasonal agriculture land use types by applying DL methods 

(MLP and CNN) on Sentinel-2 time series. Safari et al. (2021) proposed a DL strategy for 

HR hyperspectral imagery classification based on different deep architectures, including 

MLP. Adagbasa et al. (2022) applied MLP to discriminate grass species in mountainous 

regions using Sentinel-2 HR images. 

Although MLP is no longer the most commonly used DL method, it remains a 

powerful tool for image classification due to its remarkable ability to achieve high 

accuracy with minimum error. Thus, MLP is widely applied for many applications, such as 

vegetation cover detection, LULC classification and change detection, and mapping urban 

areas. For urban area studies, Fiset et al. (1998) conducted a study of road network 

mapping using a MLP model trained by two template-machining methods to identify road 

segments and intersections in the SPOT-HRV panchromatic image and thereby match a 

rasterized road map to a georeferenced SPOT image. The authors showed that using a 

deep NN (MLP) considerably improved classification over the previous methods. 

Moreover, it was shown that reliable results could be obtained by combining several 

classification approaches.  

Ozturk (2015) determined the urban growth dynamics of the Atakum District in 

Samsun, Turkey, with two hybrid models: Cellular Automata-Markov Chain (CA-MC) and 
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MLP-Markov Chain (MLP-MC). In order to examine and compare the ability of the two 

models to accurately determine future urban growth, the authors simulated the urban 

growth of 2013 based on two Landsat TM/ETM+/OLI images from 1989 and 2000. The 

simulation results were compared with the 2013 LULC data for validation. The study 

results indicated that the models could effectively predict future urban growth, especially 

the MLP-MC method devoted to the most accurate simulation. In a similar study 

conducted by Losiri et al. (2016), CA-MC and MLP-MC were also applied to model LULC 

and urban expansions in Thailand’s Bangkok Metropolitan Region. The use of these 

models has indeed improved prediction accuracy (exceeding 90% Overall Accuracy (OA)), 

especially in the MLP-MC model.  

W. Jiang et al. (2018) attempted to extract surface water bodies in specific regions for 

natural resource management by performing the MLP algorithm on Landsat-8 OLI images. 

In addition, the results were compared with those of a water index and SVM. The results 

demonstrated the excellent performance of MLP for precisely extracting different types 

of surface water bodies and suppressing noise in comparison with the water index and 

SVM. Additionally, the accuracy assessment showed that MLP could provide the most 

accurate classification results.  

In a recent study, Redowan et al. (2022) analyzed the historical tendency and LULC 

transitions from 1995 until 2015 at a 10-year interval at Raghunandan Hills Reserve, 

which had suffered severe forest degradation. Afterward, the future trend of forest LULC 

transitions for 2025 and 2035 was predicted by using the MLP-MC model. The authors 

found that the model effectively predicted the trend of increasing forest cover due to 

afforestation activities by 2025 and 2035 as well as the possibilities of forest expansions, 

which was valuable and useful to local forest resource management and deforestation 

monitoring. 

Ultimately, as one of the most critical factors and indicators of environmental changes, 

LULC has always been a focus of studies. V. N. Mishra & Rai (2016) revealed LULCCs in 

India’s Patna district between 1988 and 2013 with the ML MLC method, after which an 

integrated MLP-MC model was trained to predict LULCCs for 2013 and subsequently 

validated by the 2013 LULC data. Eventually, the future LULC predictions of 2038 and 

2050 were performed with the well-trained and validated MLP-MC model. The results 



Part II General methodology 
Chapter 4. Analysis and image processing 

 
 

138 
 

provided accurate and reliable predictions about the amount and location of potential 

changes, revealing the trend of decreasing agricultural land and rapidly increasing 

artificial area.  

Silva et al. (2020) sought to model land degradation in Brazil’s Taperoá River Basin. Three 

classifications—1990, 1999, and 2002—were performed on Landsat–5 and Landsat-7 

medium spatial resolution images using MLP algorithms (the main land cover change was 

detected with images from 1990 and 2002). After obtaining very satisfactory results with 

the MLP model (around 90% OA and 0.61 kappa coefficient), a predicted scenario for 

2035 showed a significant increase in the herbaceous class but a decrease in the tree-

shrub class. 

 

4.2.3.3. Convolutional NNs deep architecture  

 

Figure 46 Example of CNN model 

As shown in Figure 45, a typical CNN model inspired by a human visual system is 

a multilayer architecture composed of at least one feature extraction stage and a 

classification stage; the former stage refers to one or more fully connected layers and the 

latter to a final classifier. The model takes image patches as input and outputs a final 

prediction of each object in the image. The feature extraction stage can be decomposed 

into two principal layers (i.e., a convolutional layer and a pooling layer), and non-linearity, 

flatten and fully connected layers (L. Zhang et al., 2016). These layers are described below: 
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 Convolutional: The essential layers of the CNN model refer to the filters, which 

perform convolution operations on feature maps (also called “activation maps”) or 

raw image received, generating a block of feature maps as output. In addition, a non-

linear activation function is usually performed after the convolutions. Within the 

feature maps of a convolutional layer, each unit is connected to local patches, which 

are located in the feature maps of the previous layer by a set of weights known as a 

“filter bank” or “kernel.” The filter bank can be differentiated according to feature 

maps. Overall, the convolutional layer aims to detect local conjunctions of features 

(e.g., lines, structure and shapes) from the previous layers (LeCun et al., 2015; Cheng 

et al., 2020).  

 

 Non-linearity: In this layer, a pointwise non-linearity function is applied to each 

component of a feature map (L. Zhang et al., 2016).  

 

 Max-pooling: The max-pooling layer aims to merge semantically similar features into 

a single feature; decrease redundant information in images; and reduce the spatial size 

of the feature maps, the number of parameters, and network computational cost. This 

layer is applied after the convolutional function for generating the pooling operation. 

In other words, the maximum value of the current view is selected with a predefined 

window in the max-pooling layer (LeCun et al., 2015; S. Li et al., 2019). 

 

 Flatten: This layer refers to the transition function from the feature extraction stage 

to the classification of fully connected layers; it consists of converting the multi-

dimensional-pooled feature map into a one-dimensional array. 

 

 Fully connected: The fully connected layer is the fundamental component of the 

classification stage, based on the flattened input created by the previous flatten layer. 

As a traditional fully connected model, each input in this layer is connected to all 

neurons; each neuron is then connected to every neuron in the next layer until 

reaching the end of CNN architectures. In order to generate the probability of each 

class for the classification task, the last fully connected layer is generally followed by 

a softmax classifier as a normalization function (Cheng et al., 2020). 
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Finally, the output results that include one unit for each class predicted can be 

acquired at the end of the classification stage. Furthermore, the backpropagation 

gradients are used for the learning procedure. Initially, the process data are in the form of 

multiple arrays (LeCun et al., 2015; L. Ma et al., 2019); thus, they are well adapted for 

processing multispectral remotely sensed data in which the pixels are generally arranged 

(L. Ma et al., 2019). Depending on the data modalities, CNNs may be constructed 

differently. In primitive 1-D CNNs (Kiranyaz et al., 2021), the kernel moves in one 

dimension in the form of signals and sequences used for speech recognition and document 

reading. In 2-D CNNs, the kernel moves in two dimensions (x, y), the model recognizes 

spatial features of image for images or audio spectrograms processing. When the kernel 

moves in three dimensions, the 3-D CNNs are usually performed in spatial and spectral 

dimension, for video or volumetric image processing (LeCun et al., 2015; S. Li et al., 2019). 

Advanced deep CNNs began their ascendance when AlexNet (Krizhevsky et al., 

2012) emerged victorious from the Large-Scale Visual Recognition Challenge (LSVRC) in 

2012; since then, they have steadily become the leading DL model (X. X. Zhu et al., 2017; 

Cheng et al., 2020). CNNs are principally designed for image classification with the 

advantage of end-to-end feature learning; they have been shown to be effective for solving 

complex classification problems by many studies (T. Fu et al., 2018; Timilsina et al., 2019; 

Cheng et al., 2020). Moreover, considering various characteristics of CNNs—such as high 

effectiveness in large-scale recognition, efficiency in object detection, and semantic 

segmentation areas—the deep architectures are well recognized for their achievement in 

advanced classification accuracy as well as mid- and high-level feature abstraction (X. X. 

Zhu et al., 2017). In other words, the CNN deep structures can learn highly abstract feature 

detectors and map the input features into representations that significantly impact the 

performance of subsequent classifiers (L. Zhang et al., 2016). 

The applications of CNN models can be categorized into different types according 

to the deep networks utilized (X. X. Zhu et al., 2017).  

Initially, the pre-trained networks were often used as feature extractors on an 

image dataset (X. X. Zhu et al., 2017) when CNNs were newly introduced into remote 

sensing scene classification scenarios (Penatti et al., 2015). Penatti et al. (2015) evaluated 

the general performance of ConvNets’ in-depth features by performing image 
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classification with aerial imagery and satellite datasets. Hu et al. (2015) investigated the 

use of features extracted from successful pretrained CNNs in HR remote sensing imagery 

scene classification. Marmanis et al. (2016) proposed a new method by extracting 

representations of the pre-trained ImageNet, then transferring the representations into a 

supervised CNN classifier in order to address the limited dataset problem of the 

traditional CNN model. E. Li et al. (2017) presented a fusion strategy based on integrating 

multilayer features in a pre-trained CNN model used as an in-depth feature extractor for 

scene classification. N. He et al. (2018) proposed a new scene classification method, 

Multilayer Stacked Covariance Pooling (MSCP), which combines multilayer feature maps 

acquired from pre-trained CNN models. 

Afterward, the fine-tuning pretrained CNNS was developed. The principle of this 

type of CNN is to make a pretrained model adaptive to the specific conditions of the user’s 

needs, and the research aims to fine-tune a pretrained model on a target dataset or 

optimize the structures—for example, fine-tuning an existing CNN model on a public 

satellite image dataset to make it more adaptive to satellite images (X. X. Zhu et al., 2017; 

Cheng et al., 2020). Castelluccio et al. (2015) explored the potential of two well-trained 

CNN architectures, CaffeNet and GoogleNet, for the semantic classification of LULC by only 

fine-tuning the target data. 

Nogueira et al. (2017) evaluated existing CNN structures in three different 

scenarios: using CNNs as feature extractors, fine-tuning, and training a new NN. They 

found that fine-tuning was the best-performing strategy, especially when combined with 

linear SVM.  

Y. Liu et al. (2018) developed a multiscale CNN (MCNN) framework for solving the 

scale variation problem of scene classification by developing a new structure with two 

branches of a fixed-scale net (F-net) and a varied-scale net (V-net) for training multiscale 

images with the same network weights. The excellent capability of fine-tuning pre-trained 

CNNs is confirmed by previous litteratures. However, CNNs generally need to be trained 

with massive training data, but the training dataset size is generally limited. Thus, it is 

difficult to fine-tune a CNN model (X. X. Zhu et al., 2017; Cheng et al., 2020). 

Consequently, more recent studies have chosen to use newly trained networks, 

although it is more challenging than previous applications. When the existing CNNs are 
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not suitable for the characteristics of target datasets or the study's aims—or when it is 

impossible to modify the pre-trained models—researchers prefer to build a smaller 

structure and train it with selected satellite image datasets.  

In Luus et al. (2015), a multiscale input strategy for multiview DL is introduced for 

supervised LULC classification problems. F. Zhang, Du, et al. (2016) proposed a Gradient 

Boosting Random Convolutional Network (GBRCN) framework, the first deep ensemble 

framework used for scene classification. Combining a number of deep NNs, GBRCN 

outperformed the traditional single-CNN approach in the evaluation. Volpi & Tuia (2017) 

developed a CNN-based system based on a downsample-then-upsample architecture. The 

system learned how to densely classify each pixel at the original image resolution to 

improve prediction accuracy. G. Chen et al. (2018) introduced a knowledge distillation 

training method for scene classification; their proposed framework focused on the 

effectiveness and efficiency of more minor and shallower network models by matching 

the output of a small and shallow “student” model with a larger and deeper “teacher” 

model. N. He et al. (2020) presented another method for remote sensing scene 

classification: the skip-connected covariance (SCCov) network, which could skip 

connection and covariance pooling so that the multi-resolution CNN feature maps were 

merged, and the second-order information in some feature maps could be intensely 

exploited. The most significant shortcomings of the newly trained CNN models are their 

decreased generalization ability and the overfitting problem (X. X. Zhu et al., 2017). 

As the leading DL algorithm today, CNNs are widely applied in different research 

areas in the remote sensing field, such as vegetation cover (Nijhawan et al., 2017; 

Langford et al., 2019; Ayhan et al., 2020; Collin et al., 2021; Kattenborn et al., 2021), 

agriculture (Kamilaris & Prenafeta-Boldú, 2018; Milioto et al., 2018; N. Zhu et al., 2018; J. 

Lu et al., 2021), urban area mapping (Yoo et al., 2019; C. Zhang et al., 2019b; W. Zhou et 

al., 2020), and noise (e.g., cloud and shadow) detection (Shendryk et al., 2019; J. Yang et 

al., 2019; Y. Chen et al., 2020; J. Guo et al., 2021). Thus, as one of the most studied areas in 

remote sensing, CNNs occupy an essential position in LULC classification (Bhosle & 

Musande, 2019; Carranza-García et al., 2019; S. Zhang et al., 2020; Q.-T. Bui et al., 2021). 

Scott et al. (2017) trained a deep CNN (DCNN) for land cover classification in HR remote 

sensing images by applying two techniques: (1) use of fine-tuning in the feature extraction 
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stage for Transfer Learning (TL), which could bootstrap a DCNN while preserving deep 

visual feature extraction from a different domain of images; and (2) data augmentation 

customized for remote sensing data for expanding training image datasets. With these 

two techniques, DCNN was shown to be more robust for remote sensing imagery as well 

as a vital improvement of classification accuracies by evaluating three DCNNs derived 

from CaffeNet, GoogleNet, and ResNet50 (ranging from 79.1% to 98.5%).  

Mahdianpari et al. (2018) aimed to map the complex land cover of wetlands in 

Canada’s Avalon Peninsula using fully-trained or fine-tuned existing DCNNs—such as 

DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50 and InceptionResNetV2 

on multispectral RapidEye data—evaluating the performance of each one. The results 

indicated that the deep hierarchical frameworks were effective at improving the 

classification accuracy of the complex land cover of wetlands—especially the full-training 

InceptionResNetV2 model using five spectral bands, which achieved the best accuracy 

among all (about 96%). Therefore, the extra multispectral bands and integration of the 

Inception and ResNet architectures may be recommendable to improve complex land 

cover classification. 

Helber et al. (2019) challenged the LULC classification problem by applying 

different patch-based ML methods (SVM, Scale-invariant feature transform (SIFT)) and 

pre-trained DL methods (a two-layer CNN model, GoogleNet, and ResNet-50) on a new HR 

multispectral Sentinel-2 dataset containing ten different classes, 27,000 georeferenced 

samples, and covering 13 spectral bands. The results indicated that DL outperformed both 

ML methods (GoogleNet > ResNet-50 > two-layer CNN). Moreover, a large-scale, high-

quality training dataset enabled every method (particularly the DL methods) to achieve 

better accuracy (around 20% increase with a more extensive training dataset).  

 

4.3. SAR backscattering coefficient processing on Google Earth Engine 

(GEE)  

This section presents GEE, an image-processing platform, following a brief 

introduction of the SAR time series used in the studies. 
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4.3.1. SAR backscattering coefficient (σ°) 

Backscatter can be defined as the RaDAR signal received by the RaDAR antenna 

that has been reflected by the target on Earth’s surface. It is a measure of the reflective 

strength of a RaDAR target on the ground (ESA, n.d.-a). Moreover, the measure of the 

signal reflected can be quantified and normalized as the SAR backscattering coefficient. 

Similar to the spectral signature, each object reacts differently with the energy emitted 

and then reflects a different quantity of signal toward the RaDAR antenna. The 

backscattered intensity of each target depends on various factors, such as types, sizes, 

textures, shapes, frequency, polarization of RaDAR pulse, and incidence angle. Therefore, 

the SAR backscattering coefficient is an essential index for identifying different targets on 

the ground, even different stages of development of the same targets (e.g., different stages 

of development of crops). For example, a flat and smooth target surface yields a low 

backscattering coefficient (represented by darker areas in SAR images) due to the 

specular reflection effect, whereas a rough surface yields a high backscattering coefficient 

(represented by brighter areas in SAR images) due to the diffused reflection effect. As 

shown in Figure 46, calm water appears darker than other areas because most of the 

RaDAR pulses are specularly reflected by the smooth water surface; the city surface is 

generally the brightest area in a SAR image due to the corner reflector effect caused by 

the buildings; the vegetation surface is moderately bright in the image because vegetation 

surfaces tend to be moderately rough. 

 

Figure 47 Backscattered intensity depends on different targets (city, vegetation, and calm water) 
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Generally, the raw SAR image needs to be pre-processed to extract the backscatter 

information, which can be used for further analysis. In order to quantify and compare the 

backscattering behavior, the backscattering coefficient is usually converted to decibels 

(dB) by five pre-processing techniques displayed in the Figure 47; the details of each step 

are listed below (GEE, 2022). 

 

 

Figure 48 SAR satellite imagery preprocessing procedure (Xie and Niculescu, 2022) 

 

 

 Apply orbit file: The first step is to update the orbit metadata, which contains the 

satellite’s precise orbit state vectors (if the precise orbit is available to download). The 

orbit file allows the acquisition of accurate satellite positions and velocity information 

(Filipponi, 2019; GEE, 2022). 

 

 GRD border noise removal: This algorithm aims to remove radiometric artifacts 

caused by the azimuth and range compression on the image edges. The artifacts 

represent low-intensity noise and invalid data (Filipponi, 2019). 

 

 Thermal noise removal: The thermal noise removal operator aims mainly to reduce 

noise effects in the sub-swath and normalize the backscatter signal within the entire 

image. For scenes in multi-swath acquisition mode, it can also reduce discontinuities 

between sub-swaths (Filipponi, 2019; GEE, 2022). 

 

 Radiometric calibration: Calibration is one of the principal pre-processing 

procedures to convert digital pixel values to radiometrically calibrated SAR 

backscatter. In this step, image intensity values are changed into sigma-naught values 

while keeping the nominally horizontal plane (Filipponi, 2019).  
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 Range Doppler terrain correction: Also known as “orthorectification,” this is a 

correction procedure that reduces geometric distortions caused by topography and 

takes into account real terrain information by using a DEM, since most SAR images are 

captured with some distortions related to side-looking geometry (Filipponi, 2019; 

GEE, 2022). 

 

 Conversion to dB: In this final pre-processing procedure, a logarithmic 

transformation is used to convert non-dimensional backscatter coefficients to dB 

(Filipponi, 2019).  

The backscattering coefficient is widely used in diverse disciplines. For example, 

vegetation cover is one of the earliest application areas of the SAR backscattering 

coefficient. Mougin et al. (1999) investigated the correlation between structural 

mangrove forest parameters (e.g., tree height, tree diameter at breast height, tree density, 

and basal area) and total AGB and AIRSAR P-, L- and C-band multitemporal backscattered 

RaDAR signal. More recently, Frison et al. (2018) revealed the potential of dual-

polarization (VV, VH) Sentinel-1 backscattering plot to monitor the phenological behavior 

of temperate forests and the relationship between RaDAR backscattering coefficient and 

environmental variables, such as precipitation and temperature.  

In biomass estimation, Ferrazzoli et al. (1992) evaluated the performance of active 

and passive microwave sensors in vegetation biomass estimation. They reported that 

backscattering coefficients retrieved from both sensors offered good possibilities for 

vegetation biomass retrieving. Pulliainen et al. (1996) used C-band multitemporal ERS-1 

backscattering coefficient to analyze the seasonal dynamics in the boreal forest by 

estimating forest stem volume (biomass).  

In soils characteristics analysis, especially soil moisture is one of the crucial 

variables in hydrological processes (L. Wang & Qu, 2009), Aly et al. (2007) analyzed the 

backscattering behavior of salt-affected soils on RaDARSAT-1 SAR images and eventually 

explored the potential of the backscattering coefficient for salt content monitoring. In 

addition, Rodríguez-Fernández et al. (2015) retrieved soil moisture from Soil Moisture 

and Ocean Salinity (SMOS) data by using L-band SMOS brightness temperatures 
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complemented with C-band Advanced SCATterometer (ASCAT) backscattering coefficient 

and MODIS NDVI. 

In agricultural land mapping, (D. Wang et al., 2010) used dual-polarizations (VV, 

HH), Multitemporal, multi-polarization ENVIronmental SATellite (ENVISAT) Advance- 

SAR (ASAR) backscattering data for mapping seven main types of agricultural lands in the 

Pearl River Delta in China. Lopez-Sanchez et al. (2012) proposed a simple approach for 

retrieving rice field phenology by employing backscattering coefficients and ratios of the 

dual-polarization (HH, VV) TerraSAR-X sensors.  

In ocean and water resource management, Solberg (2012) detected oil-spill 

pollution on the ocean surface using the backscattering coefficient of several SAR sensors 

(e.g., ERS, ENVISAT ASAR, RADARSAT-1 and -2, TerraSAR-X and COSMO SkyMed). Kim et 

al. (2014) measured the water level with L-band SAR backscatter coefficients in the 

freshwater marsh.  

In our study of winter crop phenology monitoring in Northern Finistère, Sentinel-

1 SAR data were generated on the GEE(GEE) platform. 

 

4.3.2. Google Earth Engine platform 

Since the rapid development of multiple free-access remote sensing archives in 

recent years (e.g., Landsat, Sentinel, and NOAA), various tools have also been developed 

for large-scale processing of geospatial data (Gorelick et al., 2017), such as TerraLib 

(Câmara et al., 2000), Hadoop (Whitman et al., 2014), and GeoSpark (J. Yu et al., 2015). 

Yet, the lack of a powerful, easy, free-access, highly popular tool remains an issue for 

satellite image processing, which is still limited by fundamental information technology 

problems, data acquisition and storage, computer configuration (GPUs, CPUs), and 

network (Gorelick et al., 2017).  

Under such circumstances, GEE arrived in 2010 as an open-source, planetary-scale 

cloud-computing platform for a single or a collection of analysis-ready image processing 

based on Google’s massive computational capabilities (Gorelick et al., 2017). GEE is a 

platform that provides international collaboration, data-intensive analysis, substantial 
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computing resources, and high-end visualization (Goodchild et al., 2012; Clinton, 2016). 

Moreover, unlike the majority of coding platforms, the GEE platform is in an interactive 

mode that allows good visualization of data, analysis results preview, overlapping 

different data for comparison or detecting the evolution over time.  

As displayed in the Figure 48, the platform is composed mainly of (1) an 

application programming interface (API) for performing processing, analysis, and 

visualization of the data in JavaScript language; (2) an extensive data catalog (50 

Petabytes) that allows access to a variety of Earth observation data, such as optical and 

SAR satellite imagery (e.g., Sentinel, Landsat, MODIS) with only one or two days of interval 

between image acquisition and when it is added in the GEE data catalog, geospatial 

vectors, terrain, and atmosphere data; and (3) a visualization window with an exportation 

option (Clinton, 2016).  

 

Figure 49 Example of GEE processing interface 

The satellite images in the data catalog are generally preprocessed for access and 

calculation. In addition, various geospatial-processing functions are integrated into the 

platform, which can perform raster and vector data processing, ML algorithms, kernel 

application, projection transformation, dataset combination, bandmath calculation, etc.  
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Overall, GEE has significantly contributed to traditional remote sensing data 

processing by combining an extensive catalog of different types of data, excellent 

calculation capabilities, and comprehensive manipulation. For that reason, many studies 

of crucial natural or social issues use the GEE platform. Examples include forest cover (M. 

C. Hansen et al., 2013; B. Chen et al., 2017; Oliphant et al., 2019), disaster, including 

drought (Sazib et al., 2018; Zhao et al., 2021), flood (Uddin et al., 2019), wildfire (T. Long 

et al., 2019; Sarricolea et al., 2020), food security or agriculture (Jin et al., 2019; Rembold 

et al., 2019), land cover (Ge et al., 2019; X. Wang et al., 2020), water management (C. Wang 

et al., 2018; Y. Wang et al., 2020), atmosphere and climate monitoring (H. Zeng et al., 2019; 

Fuentes et al., 2020), and urban sprawl (Gong et al., 2020; D. Liu et al., 2020).  

For instance, Dong et al. (2016) analyzed the spatial expansion information of 

paddy rice in northeastern Asia, characterized by less cloud coverage, long growing 

seasons, and more side lap observations of Landsat. For this purpose, the classification 

was performed on the GEE platform with around 3,290 scenes of 143 path/rows by using 

the improved phenology completed with pixel-based paddy rice mapping algorithm based 

on VIs (NDVI, EVI, and land surface water index (LSWI) (Chandrasekar et al., 2010)). The 

results indicated that the collaboration of an efficient mapping algorithm, high-quality 

satellite image, and GEE platform with excellent computational capabilities could 

effectively provide highly accurate classification results and model the spatial distribution 

and landscape pattern of paddy rice in northeastern Asia for the first time.  

B. Chen et al. (2017) developed a new method for accurately monitoring mangrove 

ecosystem changes in China due to the rapid deforestation of mangrove forests. The new 

classification method was developed based on the greenness, canopy coverage, tidal 

inundation calculated with Landsat time series, and auxiliary data such as elevation, slope, 

and intersection with sea criterion of mangrove forest. The methodology proposed was 

run on the GEE computing platform. Additionally, the classification was performed on the 

available open-source data catalog of GEE, including 1,941 Landsat scenes of 25 

path/rows and 586 Sentinel-1 images. The authors reported that China's distribution of 

mangrove forests was adequately identified with very high accuracy indices (User 

Accuracy (UA), Producer Accuracy (PA), and OA greater than 95%). 
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GEE is usually limited by the processing algorithms for classification and 

regression problems (Amani et al., 2020). However, Y. Wang et al. (2020) took advantage 

of a large data catalog, the outstanding computing capabilities of GEE, and a powerful DL 

multi-scale CNN (MSCNN) algorithm to perform an "offline training and online prediction" 

(OTOP) technique for accurate and efficient extraction of urban water from Landsat 

images. OTOP recommended that the MSCNN model be trained entirely offline. 

Subsequently, the urban water process extraction was performed on the GEE platform 

with the trained parameters of MSCNN. The classification results outperformed the RF 

classifier, thereby showing the efficiency of combining GEE and DL algorithms and the 

OTOP trick. 

 

4.4. Post-classification methodology 

Post-classification processing is considered the final objective of the project and 

the showcase of the data process, which allows the results to be presented to the general 

public in a comprehensible way. 

In general, post-classification processing is generated in the form of statistical 

analysis and map, which allows for showing classification accuracy, evaluating the 

efficiency and effectiveness of the proposed method, and facilitating the comparative 

analysis of independently produced classifications from different methods (D. T. Bui et al., 

2020, p. 202; DeLancey et al., 2020; G. Xie & Niculescu, 2021), and/or from different dates, 

so as to visualize specific natural or societal issues or evolutions, such as urban expansion 

(Weng, 2001; X. Liu et al., 2020), deforestation (Saatchi et al., 1997; Margono et al., 2012) 

and LULCCs (Abd El-Kawy et al., 2011; Dingle Robertson & King, 2011). 

This section will present two main post-classification processes: accuracy 

assessment and PCC. Accuracy assessment is the application of a series of statistical 

analyses of the classification results to validate the results and compare two or more 

classifiers performed on the same or similar data. Accuracy assessment can also be used 

to evaluate remote sensing data from different sensors. Otherwise, PCC refers to the 

comparative analysis of independently produced classifications from different dates in 
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the form of a map (Serra et al., 2003). Thus, PCC techniques are also known as a “map-to-

map comparison.” 

 

4.4.1. Accuracy assessment  

Accuracy assessment is the quality evaluation system for the measure of 

classification accuracy, determined by the degree of “correctness” of a map or 

classification (Foody, 2002); in other words, accuracy assessment refers to the level of 

agreement between the ground truth and the classification results.  

As one of the key components of remote sensing studies, the accuracy assessment 

refers to the overall measure of the quality of a classified map. The principle objective is 

to not only verify and validate the reliability and accuracy of the output results in order 

to make effective and proper decisions, but also refine the classification and identify the 

errors, especially for interclass confusion. Consequently, the sophisticated statistical 

analysis of error matrices—the most widely used procedure of accuracy assessment—are 

developed with the aims of acquiring unbiased classification results and, therefore, of 

producing reliable thematic maps, especially for LULC mapping (van Genderen & Lock, 

1977). Furthermore, the most critical part of the accuracy assessment is to choose suitable 

validation samples in the forms of polygons or pixels. Sample design can use random, 

stratified random, systematic, double, and cluster sampling (D. Lu & Weng, 2007); 

stratified random techniques have been accepted as the most suitable sampling method 

for LULC studies (van Genderen & Lock, 1977). 

Error matrix (also called “confusion matrix”) is considered to be the core of 

accuracy assessment in addition to being the most widely used and recommended method 

of accuracy assessment (Foody, 2002; D. Lu & Weng, 2007). The matrix describes the 

pattern of the class allocation made relative to the reference data (Foody, 2002) by 

building a table contrasting ground truth and predicted results, one on either side. In 

addition, the table comprises four categories of values: true positive, false positive, false 

negative, and true negative. A non-bias matrix is generated by comparing all the data in 

classification results and the reference data issue of the field survey (Story & Congalton, 

1986).  
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Figure 50 Confusion matrix 

In Figure 49, the central diagonal (true positive and true negative), which indicates 

the portion of correctly classified units, is divided by the total number of classified units 

of each class (category); higher values indicate higher accuracy. However, there is a 

diversity of sources of errors that explain the low value of accuracy, such as the nature of 

the classification problem (e.g., the complexity of the landscape and the number of 

classes), the generation and adequacy of the training samples, and the dimensionality of 

the data and the classification method applied (Raudys & Pikelis, 1980; M. Pal & Mather, 

2003).  

Once the error matrix is generated, other detailed statistical statements of 

accuracy assessment can be easily derived to express classification accuracy (Foody, 2002; 

D. Lu & Weng, 2007); some accuracy indices used in our studies are displayed below 

(Figure 50): 
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Figure 51 Example of several accuracy index calculations (OA, Kappa coefficient, User’s accuracy (also called 
“precision), Producer’s accuracy (also called “recall), and F-Score) 

 Global accuracy indicators: 

 OA, one of the traditional classification accuracy measures, indicates the 

probability that an individual unit (pixel) will be correctly classified by the trained 

classification model. The number of correctly classified pixels is divided by the 

total number of pixels in the images.  

 

 Kappa coefficient, a powerful method for classification results evaluation, refers 

to a measure of the overall statistical agreement of an error matrix by considering 

all elements in the errors table (D. Lu & Weng, 2007). It can accommodate the 

deficiencies of OA, such as some elements being correctly classified only by chance. 

Additionally, Kappa is a better measurement of interclass agreement than OA. 

 

 Local accuracy indices: 

 Producer’s accuracy (PA), also called “recall” or “positive predictive value,” is a 

measure of errors of omission, which refer to a pixel abnormally excluded from the 

class to which it belongs— in other words, when samples have been omitted from 



Part II General methodology 
Chapter 4. Analysis and image processing 

 
 

154 
 

the correct class (Story & Congalton, 1986). PA is usually applied to measure the 

probability that an area of interest can be correctly mapped for the producer. 

 

 User’s accuracy (UA), also called “precision” or “sensibility,” is a measure of 

errors of commission, which refer to pixels abnormally included in a class when 

they should belong to another class. In other words, it indicates the probability that 

an element assigned to a class by the classifier actually represents that class in 

reality and how accurate the maps are for users (Story & Congalton, 1986). 

 

 F-score, generated from the precision and recall values, is able to provide 

harmonic mean of the two values.  

 

 

As a major topic of debates and research in remote sensing for several decades, 

accuracy assessment remains a highly active research area, especially as it pertains to 

uncertainty and confidence analysis developed in recent years. For example, an algorithm 

based on research by P. Olofsson et al. (2014) designed for evaluating the accuracy of a 

change map and area estimation is essential to quantify uncertainty by reporting 

confidence intervals for accuracy and estimated area changes. In accuracy assessment, 

each indicator is represented by an uncertainty rate. Higher uncertainty refers to a greater 

accuracy interval, and lower uncertainty indicates greater accuracy. The objective of the 

confidence analysis is to provide continuous improvements and reduce uncertainties (P. 

Olofsson et al., 2014). 

There is no standard method of accuracy assessment; an increasing number of 

recent studies provide more than one measure of classification accuracy. 

 

4.4.2. Post-classification comparison  

Change detection is the comparative analysis of the individual classification of the 

rectified images from two different dates in order to identify changes that occurred and 

to provide valuable information about area changes and change rate, the spatial 

distribution of changed types, change trajectories between different LULC types, and 
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accuracy assessment of change detection (D. Lu et al., 2004; El-Hattab, 2016). Additionally, 

change detection can be used to estimate and project the potential changed area. In 

change detection, multi-temporal data are involved in the evolution of a phenomenon 

over time. 

Various methods are employed for change detection, such as visual analysis, image 

differencing, principal component analysis, change-vector analysis, and PCC (D. Lu et al., 

2004). Of these, PCC change detection is the most commonly used method due to its 

robustness and superb capacity to detect land cover transition (Castellana et al., 2007). In 

addition, compared to visual analysis, PCC compares two classified maps from two data 

that are processed and classified independently. Thus, this change detection technique 

requires rectifying and classifying each remote sensing image. Moreover, considered the 

second step of post-classification processing, the PCC process strongly relies on accurate 

individual classification results that have undergone the evaluation of the accuracy 

assessment techniques described in the previous section. The classification should be the 

most accurate possible.  

Based on the complete classification of each data, a change map is created that 

contains X² categories (assume that the classification results contain X classes). The 

analysis is performed at the pixel level, providing detailed “from-to” information; each 

change from one category to another is highlighted in the change map. Users can also 

extract the desired changes between two specific categories exclusively. The comparison 

is performed on a “pixel-by-pixel” basis, as demonstrated in Figure 51. 
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Figure 52 Example of change detection technique 

Sources of errors in PCC analysis can be various. For instance, the temporal, spatial, 

radiometric, and spectral characteristics of sensors may considerably affect the change 

detection results. In particular, each error in the input classification map will result in an 

error on the PCC change detection map. Thus, the comparison between images of two 

seasons is usually challenging. It is, therefore, preferable to choose images of the same 

season with similar states, especially for vegetation change detection (D. Lu et al., 2004). 

Differences in pixel size can also affect the comparison results; usually, the finer spatial 

resolution provides more details in classification and change detection. Furthermore, the 

thresholds used to differentiate change from no change are also crucial for comparison 

(Serra et al., 2003).  

Accordingly, avoiding using images from different sensors is essential for an 

accurate PCC analysis, especially images with different spatial resolutions and grid origins 

that might produce extra problems due to geometric corrections and different pixel sizes 

(Serra et al., 2003). However, using multi-source data in applications is often unavoidable 

due to a lack of available data. For example, some sensors may not have existed prior to a 

certain time, or others may have suspended service for change detection over several 

decades (Serra et al., 2003). For instance, G. Xie & Niculescu (2021) revealed LULCCs on 

the Crozon Peninsula, Brittany, France, from 2007 to 2018 by using SPOT-5 and Sentinel-
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2 images; PCC was performed on images from two different sensors, because Sentinel-2 

started collecting data only after 2013.  

PCC change detection is commonly applied in various areas, including LULC 

conversion due to human activities (e.g., forest to artificial land cover) (Abd El-Kawy et al., 

2011; Huiping et al., 2011; Thonfeld et al., 2020); human- or nature-induced change in 

cover condition (e.g., clearcutting, drought) (Virk & King, 2006; F. Wang & Xu, 2010; Fadhil, 

2011); cover transition (e.g., vegetation succession, soil erosion) (W. Q. Guo et al., 2008; 

Phinzi & Ngetar, 2019); and change in cover properties (e.g., biomass accumulation) 

(Coppin et al., 2001; V. Klemas, 2013). 
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Chapter 5. Machine learning methods and 

classification of vegetation in Brest, France  
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Lam, Elise Seveno, "Machine learning methods and classification of vegetation in Brest, 

France," Proc. SPIE 11157, Remote Sensing Technologies and Applications in Urban 

Environments IV, 111570J (2 October 2019); doi: 10.1117/12.2533436  

Event: SPIE Remote Sensing, 2019, Strasbourg, France 

Published date: 2 October, 2019 

5.1. Introduction  

The urban area is the most important land use in the world nowadays. According 

to the studies, 70% of the world's population will reside in urban areas by 2050 due to 

rapidly increasing urbanization worldwide (Q. Chang et al., 2015). With such an 

urbanization rate, urban green space (UGS) has become a vital component of the urban 

environment (Neyns & Canters, 2022). UGS has various definitions; it can be defined as all 

kinds of predominantly unsealed, permeable and soft surfaces such as soil, grass, shrubs, 

trees, and water (James et al., 2009) in different forms, or all-natural, semi-natural, and 

artificial systems within, around and between urban areas of all spatial scales (Q. Chang 

et al., 2015). 

Therefore, UGSs play a critical role in people’s daily lives in different aspects; they 

not only address environmental issues—such as reducing pollution, noise, and climate 

perturbations (e.g., urban heat island effect), maintaining microclimate, preserving 

biodiversity, improving city water and air quality, and carbon sequestration—but also 

provide physical and psychological wellbeing to urban dwellers (Ossola & Hopton, 2018). 

Moreover, UGSs are crucial for urban geography and planning (Shahtahmassebi et al., 

2021). However, UGSs are threatened by the currently rising population and increasing 

urbanization. Thus, adequate management and planning with the detection and 

monitoring of UGS have become crucial for urban development. 
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Consequently, various approaches have been developed and employed for 

collecting information about UGS. First, an extensive field survey examined the largest 

cities. After that, visual interpretation or manual digitizing from maps or aerial 

photographs became the primary source of USG mapping from the 1970s to the 1990s 

(Nowak et al., 1996; Morgan & Gergel, 2013; Shojanoori & Shafri, 2016; Shahtahmassebi 

et al., 2021). However, these two methods are costly, labor-intensive, subjective, and 

difficult to replicate. In addition, they is usually limited to the major cities, and only public 

green areas can be mapped.  

Subsequently, remote sensing was introduced in UGS studies at the beginning of 

the 21st century, quickly becoming the most common and significant technique due to its 

efficiency and effectiveness. Remote sensing techniques have been proven able to provide 

valuable information on complete coverage of UGS in highly heterogeneous and complex 

urban areas in different spatial scales (large or medium scale such as parks or urban 

forests, and small scales such as private gardens and street trees) and for different 

seasons compared to the previous approaches (Pu & Landry, 2012). Furthermore, they 

can effectively generate different characteristics of UGSs, such as spatial distribution and 

species compositions (Shahtahmassebi et al., 2021). For example, Mathieu et al. (2007) 

developed a methodology to produce vegetation community maps in Dunedin, New 

Zealand, by combining orthorectified HR multispectral IKONOS images and a hierarchical 

OBC approach. The authors extracted all vegetated units in the satellite data and then 

classified fifteen vegetation classes by performing MRS and nearest-neighbor 

classification algorithms. Their results demonstrated that the methodology proposed in 

the paper was sufficiently effective to generate accurate and detailed vegetation 

communities maps (with 77% OA).  

 Pu & Landry (2012) focused on mapping seven tree species in the urban forest of 

the city of Tampa, Florida, USA, by employing OBC in IKONOS imagery (4 m of spatial 

resolution) with four spectral bands and WV2 imagery (2 m of spatial resolution) with 

four traditional bands. Both images were segmented with the MRS algorithm, after which 

the different tree species were extracted using two advanced classifiers, Stepwise 

Discriminant Analysis (SDA) and CART. The results showed that trees were successfully 

extracted from both images. Furthermore, WV2 imagery (with both bands) significantly 
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increased the accuracy of identifying most of the tree species compared to IKONOS 

imagery, likely due to the finer spatial resolution.  

Meanwhile, Tigges et al. (2013) discussed the benefits of multitemporal RapidEye 

satellite data (5 m of spatial resolution) in urban vegetation classification. The authors 

investigated the potential of different spectral and temporal band combinations of five 

RapidEye images and an SVM classifier to perform high-precision classification of eight 

frequently occurring tree genera in Berlin, Germany. The results confirmed the 

possibilities of classifying tree genera in a heterogeneous urban structure with a high 

density of trees with Multitemporal and multispectral HR RapidEye images. 

Even though the accuracy and efficiency of UGS mapping were considerably 

increased due to remote sensing techniques, UGSs remain challenging to monitor for 

several reasons: (1) urban environments are commonly characterized by the complex and 

spatially and spectrally heterogeneous landscape; (2) UGSs are generally on a smaller 

scale than forests (from small patches of vegetation to scattered trees), which frequently 

change due to urbanization policies and increasing artificialization; and (3) urban land 

cover classification is highly affected by the problem of shadow resulting from the 

complex dimensional structure of urban areas (Adeline et al., 2013). 

Moreover, the traditional classification methods and medium- or high-spatial-

resolution remote sensing data allow only brief mapping of the spatial distribution of 

UGSs and identifying the main categories of vegetation (trees, shrubs, or grassland). 

Therefore, UGS classification remains a significant challenge that continues to attract 

interest from remote sensing communities and decision-makers.  

In recent years, the already significant number of UGS studies has rapidly 

increased even further. Fine-scale UGS mapping has become possible due to the arrival of 

the new generation of free-access high-quality optical and SAR satellite data with very 

high temporal spectral and spatial resolution, the emergence of available LIDAR and 

hyperspectral data (Voss & Sugumaran, 2008; Alonzo et al., 2014; X. Tong et al., 2014; L. 

Liu et al., 2017), advance classification algorithms, and the increase in available 

computational power (Neyns & Canters, 2022).  
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In particular, VHR imagery (< 1 m of spatial resolution) and advanced ML 

algorithms are widely applied in a variety of thematic areas of applications of remote 

sensing in USGs studies, including change detection (Rafiee et al., 2009; X. Zhou & Wang, 

2011; Qian et al., 2015), biomass and carbon estimation (C. Liu & Li, 2012; Raciti et al., 

2014), and urban vegetation mapping and characterizing (Höfle et al., 2012; T. Liu & Yang, 

2013; Q. Feng et al., 2015), especially urban garden (Baker et al., 2018; Haase et al., 2019) 

and street tree mapping (Puissant et al., 2014; Parmehr et al., 2016). Ardila et al. (2011) 

proposed a method for the detection of tree crowns in complex urban areas by using a 

Markov random field (MRF)-based Super-Resolution Mapping (SRM) approach, which 

took account of the spatial smoothness prior and the conditional probability of 

multispectral and panchromatic bands of VRH QuickBird satellite images (spatial 

resolution ranged from 450–900 nm). The method was found operational and effectively 

improved tree crown detection over other ML methods, such as MLC and SVM.  

Hashim et al. (2019) evaluated the use of VHR remote sensing data (i.e., Pléiades) 

for urban vegetation mapping in Kuala Lumpur, Malaysia. The authors employed NDVI as 

the VI and supervised MLC as a classification algorithm for extracting the UGSs. The 

method proved effective and accurate with a relatively high accuracy indicator (70.74% 

OA).  

Furthermore, the arrival of DL classification methods has significantly improved 

the accuracy of UGSs mapping. Z. Xu et al. (2020) proposed a new DL classification method 

for performing real-time, accurate and refined monitoring of UGS status by using 

phenological feature constraints provided by VHR images (GaoFen-2). The study 

employed a high-resolution deep NN (HRNet) as a classification model and the Focal 

Tversky Loss function to minimize the difference between the predicted value and actual 

value of the model. The results showed that the combination of the DL method, VHR 

images, and loss function significantly improved the accuracy of urban vegetation 

classification (with 93.24% OA).  

In another study by Abbas et al. (2021), the authors performed another DL method, 

MLP, on terrestrial hyperspectral data provided by SPECIM-IQ sensor for identifying and 

characterizing 19 urban tree species in the city of Hong Kong, one of the most urbanized 

areas in the world. The MLP model used in the study contained three hidden layers, and 
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the SoftMax function was applied at the output layer. The results showed that the MLP DL 

model achieved high accuracy (ranging from 85% to 96%) and proved its efficiency in an 

intensely urban environment. 

 

5.2. Study area and materials  

5.2.1. Study area  

 

Figure 53 Localization of the city of Brest 

The study area, Brest (Figure 52), is a coastal city and the most important urban 

area of the department of Finistère (48° 23′ 27″, 4° 29′ 08”), which is located on the west 

coast of the region of Brittany, France. The city of Brest covers a land surface of 49.51 km², 

and the population was 319,947 in 2016.  

Brest is mainly occupied by artificial areas, including various types of construction 

and sealed surfaces located mainly in the city's center; military areas and harbors can be 

found in the south near the ocean. Moreover, a variety of UGSs are present, which are 

enumerated below (Figure 53):  
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Figure 54 Vegetated areas in the city of Brest: (a) urban forest (b) meadow (c) public park in the city center (d) 
croplands (e) street trees (f) private gardens in the residential area 

Although the city of Brest occupies a large urban surface area, vegetation plays a 

significant role in city planning. The vegetated areas in Brest can be categorized as natural 

and semi-natural areas and artificial vegetation. The first category includes principally: 

(1) urban forest (dry and mesophilic or wet), mainly located in the west, east, and center 

near the Penfeld River; (2) thicket, a specific landscape dominated by a very dense stand 

of trees or tall shrubs concentrated in the south, close to the harbors; and (3) meadow 

and lawn, which are evenly distributed in the city, especially in the periphery. The 

artificial vegetated areas include: (1) croplands located in the western and northern Brest; 

(2) street trees and public parks in the city center, intended to provide physical and 
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psychological benefits for urban inhabitants; and (3) private gardens in the residential 

areas. 

 

5.2.2. Data 

In this study, three VHR Pléiades satellite images used are displayed as follows 

(Table 7): 

Table 7 VHR Pléiades satellite images used in the study 

 

Pléiades is a twin optical satellite launched in 2011 (Pléiades 1A) and 2012 

(Pléiades 1B) for Earth monitoring. Two satellites operated on the same orbit can provide 

a 50 cm spatial resolution panchromatic image and a 2 m spatial resolution multispectral 

band (red, blue, green, NIR) image with a 20 km swath width and daily revisit time. 

In our research, three ready-to-use pan-shaped multispectral images were 

downloaded from the DINAMIS platform (https://dinamis.teledetection.fr/home) 

through l’EQUIPEX GEOSUD. Furthermore, different scenes were merged to create a 

whole image covering our entire area of interest. Then the images were clipped by the 

contour of the city of Brest to extract the study area and remove the undesired area. 

Eventually, a new band of NDVI was calculated with the visible red and NIR spectral 

channels and added to the original spectral bands to improve vegetation classification 

accuracy.  

 

 

 

 

 

https://dinamis.teledetection.fr/home
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5.3. Methodology  

 

Figure 55 Scheme of the proposed methodology in the study 

In this research, the OBC approach was performed on the preprocessed VHR 

Pléiades satellite data using the SLIC superpixel segmentation algorithm and an MLP DL 

classification model, detailed in Chapter 4 (“Analysis and image processing”) (Figure 54). 

At first, the SLIC superpixel algorithm was used for segmentation before classification, 

after which training samples were selected manually from the segmentation results to 

train the MLP model, and a trial-and-error method was used to find the optimal 

parameters. Finally, the well-trained MLP model was applied to the entire scene for image 

classification. 

 

5.3.1. SLIC Segmentation 

As described previously, superpixel algorithms have recently become widely used 

in computer vision; they can effectively cluster pixels into regions to reduce the size of the 

image and the complexity of image processing tasks, thereby providing better 

performance and results. SLIC, recently developed, is a fast and memory-efficient 

algorithm of superpixel developed by Achanta et al. (2010) It adapts the traditional k-

means segmentation methods to superpixel generation, adheres well to the boundaries, 
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and has a better performance on segmentation by grouping pixels into N regions based 

on their color similarity and spatial proximity (Achanta et al., 2012). 

The SLIC algorithm was applied to both images using scikit-image, an image-

processing library of python. In this function, three parameters were generated by the 

user: 

 N_segments, which is the approximate number of clusters in the segmented output 

image (value = 1,600,000) 

 Compactness the balance between color proximity and space proximity (value = 1) 

 Sigma, the width of the Gaussian smoothing kernel for pre-processing for each 

dimension of the image (value = 2) 

Training samples of each class were selected manually from the image segmented; 

80% of the samples selected were assigned to training data, and 20% were assigned to 

validation data. Once samples were selected, tables containing the mean value of each 

spectral band of all pixels belonging to the same segments were created for MLP model 

training. 

 

5.3.2. MLP model training and classification 

MLP is one of the most well-known supervised ANN classification methods, which 

refers to a multilayer feedforward NN that includes at least three layers: an input layer to 

receive signals, an output layer to provide the prediction of result, and at least one hidden 

layer constituted by neurons with a non-linear activation function. The number of hidden 

layers and the number of neurons above can be varied according to the user’s need. In 

general, more neurons gave greater sensitivity to the problem, but this also may lead to 

an overfitting problem (Murtagh, 1991). 
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Figure 56 MLP model used for classification in the study 

As displayed in the figure 55, the MLP model used for classification was composed 

of one input layer with five nodes referring to five spectral bands (green, blue, red, NIR, 

and NDVI), three hidden layers with tanh activation function, and one output layer with 

five nodes referring to five output classes (tree, shrub and grass, non-vegetation, water, 

and no data). A softmax activation function was applied, and the model was also compiled 

by RMSprop as an optimizer, categorical_crossentropy as a loss function. The batch size 

and the epoch value were set to 500 and 200, respectively. 

 

5.4. Results and discussion 

5.4.1. Classification accuracy of MLP algorithm  

The processing chain presented in the previous section was used on three VHR satellite 

images acquired in the same scene: the city of Brest. Various accuracy indicators of the 

MLP model are presented in Table 8 and 9. The evaluation of classification accuracy was 

performed only on the image of 2016 due to the similarity of the three images. It is worth 

noting that minor errors may exist between classification results and terrain truth; 
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precise spatial information is not available for some areas in Brest for reasons of military 

security. 

Table 8 OA of vegetation classification 

 

        Table 9 Confusion matrix and global kappa coefficient of vegetation classification 

 

As shown in Table 8, the MLP algorithm generally achieved very high accuracy in 

vegetation classification, especially in low- and non-vegetation categories. Several errors 

occurred in the tree and water categories, although the result was still acceptable.  

According to Table 9, the primary error was the misclassification between different 

vegetation heights. For example, many trees were misclassified as shrubs or grasses. 

Meanwhile, the misclassification between water and non-vegetation may be attributable 

to the similarity of their spectral behaviors. Considering that most of the non-vegetation 

was found in the urban area, artificial surfaces and construction could cause mirror 

reflection as the water surface. In addition, the global kappa was also very high, which 

indicates high agreement between the classification and ground truth. 



Part III LULC changes in Pays de Brest: Case studies 
Chapter 5. Machine learning methods and classification of vegetation in Brest, France 
 
 

170 
 

To sum up, the DL MLP algorithm extracted vegetation in a highly heterogenous 

and complex area with high construction density. VHR remote sensing data was well 

adapted for urban area classification due to the small scale of objects. 

Additionally, three classified maps are demonstrated in Figure 57.  

 

Figure 57 Classification results of vegetation in the city of Brest on 2016, 2017, and 2018 by using MLP deep 
structure 

According to the classification results, the classification results for 2017 found 

more trees than for other years due to the lack of available images in the same period (the 

2017 image was acquired in late August, whereas the 2016 and 2018 images were 

acquired in late May or early June), as well as and meteorological conditions. The 

vegetation may differ between early and late summer, especially because the crops 

generally achieved their maximum height just before harvesting in late August or 

September and are thus easily confusable with high vegetation.  

Some changes between high and low vegetation were also common in the results. 

For example, some high vegetation in 2016 turned to low vegetation in 2018 in the urban 

forest near the Penfeld River in the center, and in southwestern Brest, these changes were 

likely due to pruning, or to misclassification errors. However, most of the vegetation in 
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the city of Brest remained unchanged during these three years. The croplands were 

located mainly in the north and the west of the city, and vegetation in the form of grass 

and trees was evenly distributed in the city as street trees and public gardens. In addition, 

urban forests were located in the northeast, southeast (botanical garden), and in the 

Penfeld River near the city center. 

 

 

Figure 58 Example of a transition from vegetated area to non-vegetated area in Brest between 2016 and 2018 

Besides the transition between high and low vegetation, the changes between 

vegetation and non-vegetation were also well detected. For example, in Figure 58, aside 

from the vegetation types of the site, three classified maps of 2016, 2017, and 2018 

demonstrated a gradual depletion of vegetation in an industrial area in southeastern Brest. 

Therefore, this site was likely under construction, and the vegetation was removed for 

this purpose. The hypotheses were further confirmed by the satellite images of 2016 and 

2018 (Figure 59). 
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Figure 59 Example of transition from vegetation to artificial surface 

Overall, the combination of the DL algorithm and VHR images can effectively detect 

the transition of different LULCs in the urban area, particularly the LULCCs between 

vegetation and non-vegetation, regardless of the types and scales of the changes. 

 

5.4.2. Comparison with RF classification results  

Furthermore, one of the most widely used and efficient ML classifiers, RF, was also 

used in this study to compare the two classification methods (MLP and RF). This method 

applied supervised classification to the same VHR Pléiades image with manually selected 

training samples.  

The accuracy assessment of the RF classification is demonstrated in the table 10, 

and the three classified maps are displayed in the figure 60. 

Table 10 Kappa coefficients and OA indicators of RF classification results from 2016 to 2018 

 

As shown in Table 10, the RF classifier accuracy indicators of all three years are 

generally high; the kappa coefficient ranged from 0.85 to 0.97, and the OA ranged from 

0.90 to .098. The most accurate result was obtained from the 2016 image (0.98 of OA and 

0.97 of kappa). However, the classification results obtained from the 2018 Sentinel-2 

image were less accurate, with 0.85 in kappa and 0.90 in OA. The difference in kappa was 
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more important than the OA difference between the most and the least accurate results. 

Additionally, the OA was globally higher than kappa, which may indicate that the global 

classification accuracy was better than interclass accuracy. 

 

 

Figure 60 Classification results of vegetation in the city of Brest in 2016, 2017, and 2018 using RF machine 
learning classifier 

 

Figure 61 Comparison of MLP and RF classifiers 

The classification results of the RF classification algorithm (Figure 60) showed a 

substantial similarity with those of the MLP classifier, particularly the spatial distribution 

of the vegetation in Brest (Figure 61). Thus, apart from the changes in croplands due to 
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the acquisition date of three images, most LULC in the city of Brest remained unchanged 

for three years, regardless of class, according to the RF method.  

 

Figure 62 Differences between MLP and RF classification results 

Nevertheless, some differences could still be noticed between the classification 

results of the two classifiers. Regardless of the classification method, the boundary 

between vegetation and non-vegetation was clear, but the disagreement between high 

and low vegetation classes was more critical. For instance, according to Figure 62, 

although the two algorithms were used on the same satellite image, RF detected more 

trees or high vegetation. At the same time, MLP found more shrubs and grass or low 

vegetation, even in some croplands. Thus, the RF algorithm resulted in greater confusion 

between high and low vegetation in this case, which led to the misclassification of low 

vegetation.  

Overall, MLP and RF obtained identical and satisfactory results (close to 1) of 

simple vegetation extraction in a complex and heterogonous urban environment by using 

the new generation of VHR remote sensing data. The vegetated area was especially well 

extracted, and the changes between vegetation and artificial surface were also 

successfully detected by both classifiers. However, RF may misclassify some low 

vegetation as high vegetation, which leads to lower accuracy. Furthermore, the evaluation 
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of two classification methods indicated that MLP outperformed RF, given that MLP 

successfully resulted in more accurate results in vegetation classification, although RF is 

recognized as a powerful machine learning classification tool as well. 

 

5.5. Conclusion  

In this study, MLP, a DL method, was applied to Pléiades VHR resolution satellite images 

from three years (2016–2018) in the city of Brest to study the spatial distribution and 

changes of UGSs in Brest, a highly heterogeneous urban area. Moreover, the performance 

of MLP was evaluated and compared to RF.  

In Brest, the UGSs are not only segmented and on a small scale (e.g., street trees); they are 

also highly varied, including urban forests, public parks, private gardens, and croplands. 

It is, therefore, challenging to obtain accurate classifications.  

In response to the challenge, this study proposed an OBC-based DL classification method. 

The processing chain began with SLIC superpixel segmentation to create objects. The 

training dataset was then selected manually based on segmentation results with the aim 

of MLP deep architecture training. Finally, three satellite images were fed into the well-

trained model to generate the classification result. 

According to the accuracy assessment, the classification results of the MLP deep structure 

model were highly accurate (0.99% OA and 0.98 kappa coefficient), and both classes were 

also well classified, despite slight confusion between trees and shrubs and grass. 

Moreover, the changes in vegetation and the transition between vegetation and non-

vegetation were also adequately detected. Therefore, combining the SLIC segmentation 

algorithm, MLP, and VHR remote sensing data was suitable for UGS mapping and change 

detection in the urban area. 

Furthermore, the RF classification method showed highly similar results to those of MLP, 

although they were less accurate and involved more misclassification between high and 

low vegetation.  
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Therefore, vegetation extraction with simple categories (high and low vegetation) is easy 

to perform and achieves high accuracy. Various classes should be considered for further 

studies, such as different tree species and crop types.  
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Chapter 6. Mapping and Monitoring of Land 

use/Land cover Changes in the Crozon Peninsula 

(Brittany, France) from 2007 to 2018 by Machine 

Learning Algorithms (Support Vector Machine, 

Random Forest, and Convolutional Neural Network) 

and by Post-classification Comparison 

Journal article: Xie, G.; Niculescu, S. Mapping and Monitoring of Land Cover/Land Use 

(LULC) Changes in the Crozon Peninsula (Brittany, France) from 2007 to 2018 by Machine 

Learning Algorithms (Support Vector Machine, Random Forest, and Convolutional NN) 

and by Post-classification Comparison (PCC). Remote Sens. 2021, 13, 3899. 

https://doi.org/10.3390/rs13193899 

Review: Remote sensing 

Published date: 29 September 2021 

6.1. Introduction: 

Coastal zones are the shores of seas or oceans. Today, nearly half of the world’s 

population lives in coastal regions where multiple activities are developed (Crowell et al., 

2007). Over the last century, coastal zones throughout the world have undergone major 

changes related to a significant influx of the population. Coveted, densely populated, and 

exploited by human societies, coastal zones are therefore subject to significant pressures 

that generate territorial dynamics and changes in LULC. LULC is always influenced by 

human actions and environmental features and processes, and it mediates the 

interactions of these two factors. This means that land use changes are primarily due to 

human actions, which are associated with economic development, techneology, 

environmental change, and especially, population growth, which usually has parallel rates 

to land use change (Waldhoff et al., 2017; Briassoulis, 2020). However, traditional 

methods require direct observations in the field; usually, they are not only ineffective, 

expensive, time-consuming, and labor intensive but are also limited on the local scale. 

https://doi.org/10.3390/rs13193899
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Hence, remote sensing with analysis techniques is highly recommended, and there has 

been an in-creasing demand for LULC studies since the first launch of Earth observation 

satellites in 1972 with Landsat-1. Since that time, the monitoring and mapping of LULCs 

over large areas and in a consistent manner has been made possible with EO data, and 

detection of these changes by EO data is necessary for the better management of territory 

and resources. Moreover, each new generation of satellite equipment increases the 

resolution of sensors that collect high spatial resolution data for LULC mapping and 

monitoring (Giri et al., 2013). Since high-resolution satellite images are now available, 

land cover change mapping and monitoring at the landscape or local scale have been 

developed at a high rate of speed (Y. Xie et al., 2008; L. Ma et al., 2019; Chughtai et al., 

2021). 

Several national and international organizations have produced regional land 

change maps that represent a location on a single date (e.g., CLC 2000 in Europe), with 

Landsat observations acquired in a target year interval (e.g., ±1–3 years). Some programs 

repeat land cover mapping periodically (e.g., NLCD 2001/2006/2011 in the USA and 

CESBIO in France) to allow the observation of the changes. The local accuracy of these 

global or national land cover maps generated from coarse spatial resolution data is low, 

especially in regions with fragmented land covers (T. Zeng et al., 2019). 

At the same time, for studies at larger scales, satellite data have been used to 

monitor LULC changes worldwide in various fields of research, such as mapping cropland 

conversions (L. Zhu et al., 2019), monitoring urbanization and its impacts (H. Xu et al., 

2000; Dewan & Yamaguchi, 2009; Xiong et al., 2012), monitoring deforestation (Frohn et 

al., 1996; J. Gao & Liu, 2010; Brink et al., 2014; Weng et al., 2018; de Bem et al., 

2020) ,evaluating the environment (Wilson et al., 2003; C. He et al., 2017; J. Li et al., 2020) 

and biodiversity losses, and examining the influence of LULC on climate change 

(Mahmood et al., 2010). Nonetheless, all types of land use might lead to detrimental 

impacts and effects in many fields: for example, the abandonment of agricultural land 

without restoration is linked to a specific set of problems, including landscape 

degradation and an increased risk of erosion (Giri et al., 2013). These irreversible impacts 

of LULC change have significantly increased in recent decades, and so the mapping and 
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monitoring LULC is very important as the first step in the study and management of this 

phenomenon. 

In recent years, given the importance of LULC changes and the increasing 

availability of open-access archived multi-temporal datasets, many methods for analyzing 

and mapping LULC changes have been developed. The diversity of algorithms for studying 

LULC changes was also determined by the diversity of remote sensing sensor types (e.g., 

multispectral, hyperspectral, and SAR). Among the most commonly used satellite images 

in change detection (CD) studies are multispectral images due to the diversity of the types 

of sensors used to collect the data and the high temporal resolution of datasets for this 

type of study. For example, Z. Wang et al. (2018) conducted a study in a coastal area of 

Dongguan City, China, using SPOT-5 images acquired in 2005 and 2010. In this study, a 

scale self-adapting segmentation (SSAS) approach based on the exponential sampling of 

a scale parameter and the location of the local maximum of a weighted local variance was 

proposed to determine the scale selection problem when segmenting images constrained 

by LULC for detecting changes. Tran et al. (2015) conducted a study in coastal areas of the 

Mekong Delta on changes in LULC between 1973 and 2011 from Landsat and SPOT images. 

The supervised maximum likelihood classification algorithm was demonstrated to 

provide the best results from remotely sensed data when each class had a Gaussian 

distribution. Guan et al. (2020) studied a CD and classification algorithm for urban 

expansion processes in Tianjin (a coastal city in China) based on a Landsat time series 

from 1985 to 2018. They applied the c-factor approach with the Ross Thick-LiSparse-R 

model to correct the bi-directional reflectance distribution function (BRDF) effect for each 

Landsat image and calculated a spatial line density feature for improving the CD and the 

classification. Dou & Chen (2017) proposed a study in Shenzhen, a coastal city in China, 

from Landsat images using C4.5-based AdaBoost, and a hierarchical classification method 

was developed to extract specific classes with high accuracy by combining a specific 

number of base-classifier decisions. According to this study, the landscape of Shenzhen 

city has been profoundly changed by prominent urban expansion. 

In addition, in recent decades, remote sensing techniques have progressed, and 

many methods, such as machine learning, have been developed for LULC change studies, 

such as SVMs, RFs, and CNNs. Nonparametric machine learning algorithms such as SVM 



Part III LULC changes in Pays de Brest: Case studies 
Chapter 6. Mapping and Monitoring of LULCC in the Crozon Peninsula from 2007 to 2018 by ML algorithms 
(SVM, RF, and CNN) and by PCC 

 
 

180 
 

and RF are well-known for their optimal classification accuracies in land cover 

classification applications (Shi & Yang, 2015; Zafari et al., 2019; Sheykhmousa et al., 2020). 

These algorithms have significant advantages and similar abilities in classifying 

multitemporal and multisensor data, including high-dimensional datasets and improved 

overall accuracy (M. Pal, 2006; X. Song et al., 2012). The accurate and timely detection of 

changes is the most important aspect of this process. Moreover, CNN, a more recently 

developed but well-represented deep learning method, allows the rapid and effective 

analysis and classification of LULCs and has proven a suitable and reliable method for 

accurate CD in complex scenes. Although it is more recent, many studies have made use 

of this method. M. Wang et al. (2020) proposed a new coarse-to-fine deep learning-based 

land-use CD method. In this study, several models of CNN well-trained with a new scene 

classification dataset were able to provide ac-curate pixel-level range CD results with a 

high detection accuracy and reflect the changes in LULC in detail. In another study of Han 

et al. (2020), a weighted Demptster-Shafer theory fusion method was proposed. This 

method achieved reliable CD results with high accuracy using only two very high-

resolution multitemporal images by generating object-based CD through combining 

multiple pixel-based CDs. 

At the same time, in the Pays de Brest, which the Crozon Peninsula is part of, a 

category of LULC has been studied through shallow machine learning algorithms. 

Niculescu et al. (2018) and Niculescu et al. (2020)applied the algorithms of rotation forest, 

canonical correlation forests and RF with satisfactory results for the classification of the 

different categories of land cover (vegetation) of the peninsula, as well as the summer and 

winter crops from the synergy of optical and RaDAR data from the Sentinel satellite. LULC 

changes in coastal areas have been studied with machine learning algorithms in different 

environments. Muñoz et al. (2021) analyzed the coastal wetland dynamics associated 

with urbanization, the sea level rise and hurricane impacts in the Mobile Bay watershed 

since 1984. They developed a land cover classification model with CNNs and a data fusion 

(DF) framework. The classification model achieved the highest overall accuracy (0.93) 

and f1-scores in the woody (0.90) and emergent wetland classes (0.99) when those 

datasets were fused into the framework. 
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More methodological work on the application of CNNs for CD was conducted by 

Jing et al. (2020). In this study, a CD method was proposed that combines a multiscale 

simple linear iterative clustering-convolutional NN (SLIC-CNN) with stacked 

convolutional auto encoder (SCAE) features to improve the CD capabilities with HR 

satellite images. This method uses the self-learning SCAE architecture as the feature 

extractor to integrate multiscale, spectral, geometric, textural and deep structural 

features to enhance the characteristics of ground objects in images. 

Machine learning methods were combined with OBIA techniques by Jozdani et al. 

(2019) for urban LULC classification. The multilayer perceptron model led to the most 

accurate classification results in this study. However, it is also important to note that 

GB/XGB and SVM produced highly accurate classification results, demonstrating the 

versatility of these ML algorithms. 

In this work, we aimed to study multiannual changes of LULC in the Crozon 

Peninsula, an area that has mainly been marked by conversion between three types of 

LULC: cropland, urban, and vegetation, in recent years, especially from 2007 to 2018. The 

challenge of this research was to deal with multiannual changes of a coastal area with 

different shapes and patterns by combining ML methods with PCC. To improve the CD 

capabilities using high-resolution satellite images, we implemented three remote sensing 

machine learning algorithms: SVM, RF combined with GEOBIA techniques, and CNN with 

SPOT 5 and Sentinel 2 data from 2007 and 2018, all effective and valid data sources. An 

evaluation of these three advanced machine-learning algorithms for image classification 

in terms of the OA, PA, UA, and confidence interval was conducted to more precisely detect 

the type of multiannual change. 

 

6.2. Study area and materials 

6.2.1. Study area 

The study area, the Crozon Peninsula canton south of the Landerneau-Daoulas 

canton, is located on the west coast of France in the Pays de Brest, Department of Finistère 

and the region of Brittany (Figure 63). 
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Figure 63 Location of the study area, including the Crozon Peninsula and two bordering regions, located in Pays 
de Brest, Finistère, Brittany, France, with the RGB band combination for Sentinel 2 (2018) and the location of the ground 

truth field Research. 

It covers a land area of 365.4 km² that extends between latitudes 48° 10′04″ N and 

48°21′28″ N, longitudes 4°02′44″ W and 4°38′37″ W. The Crozon Peninsula is a 

sedimentary site with contrasting topography and contours that separate the Bay of Brest 

and the Bay of Douarnenez. The region is a mosaic of cliffs, dunes, moors, peat bogs, and 

coastal wetlands. The peninsula thus presents phytocenetic, faunistic, and landscape 

interests. The population of the study area is 29, 893; this makes the population density 

approximately 81.6 per km². The topography of the Crozon Peninsula is mostly dominated 

by plains, except for hills in the east and northeast, and the elevation of the area ranges 

between 0 m and 300 m. The land cover is characterized by forest, shrubs, and grasslands, 

which are mostly in the west, urban areas, cropland (including mainly corn and wheat) 

and meadow. 

Traditionally, the majority of local people practice agricultural or related activities 

in the Finistère Department, in which 57% of the department’s surface is devoted to 

agricultural use. However, the French National Defense provides more than half of the 

employment in the Crozon Peninsula; hence, other activity sectors (e.g., agriculture, 

industry, construction and commerce) are proportionally less important. 
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Nevertheless, the land cover was actually in sharp transition in our study area 

between 2008 and 2018, with the peninsula especially marked by an increasing service 

and commerce sectors. Therefore, the study area was chosen as a typical ideal case to 

study land cover changes. 

 

6.2.2. Data 

Operable high-quality cloud-free satellite images in this area are extremely rare 

due to the annual high-intensity rainfall and, hence, heavy cloud cover. Despite these 

limitations, three cloud-free images from two dates in 2007 and 2018 with the same scene 

area were acquired from either the SPOT or Sentinel platforms to study land cover 

changes in the study area during the summer, which is the growing season for crops 

(Table 11). 

          Table 11 Satellite images used in the study 

 

First, a SPOT-5 satellite image was obtained from the early summer of 2007. The 

multispectral SPOT-5 image downloaded from the ESA was obtained by merging the 2.5 

m panchromatic band and the 10 m multispectral band, resulting in the spatial 

information of the image being identical to the information observed with the 

panchromatic sensor (earth.eas.int). 

Second, two level 2A atmospheric effect-corrected Sentinel-2 images of the same 

date in the middle of the summer in 2018 were acquired from Theia (catalog.theia-land.fr); 

a mosaic was then created by combining two images to cover the whole study area, and 

four spectral bands at a 10 m resolution (red, green, blue, and near-infrared) were 

extracted for further use. 
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For the purpose of land cover identification at the sample selection step, we also 

used Google Earth and RPG maps and a French database with agricultural parcel 

identification as the reference data, complemented by observation and survey in the field 

when necessary. 

 

6.3. Methodology  

The methodology of this paper is detailed in three main parts as follows: preprocessing, 

image processing, and postprocessing. Three satellite images of two dates were processed 

in QGIS (SAGA, Grass, OrfeoToolbox7.3.0), eCognition 9.5 and 10.0. A flow chart of the 

proposed global methodology is displayed below (Figure 64). 

 

Figure 64 Global methodology proposed 

6.3.1. Image preprocessing  

After satellite image acquisition, a mosaic of the two images of the same date in 

2018 was created to cover the whole study area. Then, the boundary of the Crozon 

Peninsula and south of Landerneau-Daoulas were used to extract our area of interest by 
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applying subsets to raw images to reduce the image size, processing time and storage 

space. 

Thereafter, three vegetation indices were calculated and utilized in our study: 

●  NDVI, a normalized ratio between the red and the NIR spectral bands. 

●  GNDVI, which considers the green spectral band instead of red. 

●  EVI2 developed as an adaptation of the EVI without the blue band to break through 

the limit of sensor systems.  

After calculating the three vegetation indices, we created an image stack with the 

original spectral bands and all of the indices for image processing. 

 

6.3.2. Image processing  

In this study, supervised object-based classification was performed on two image 

stacks of two different years. Segmentation was applied first, followed by two 

nonparametric machine learning algorithms. SVM and RF were trained and applied in this 

step. 

MRS was performed as the first processing step of object-oriented image analysis. 

In this study, the scale, compactness, and shape parameters used were assigned as follows: 

10, 0.1, and 0.3, respectively. The selection of the parameters was completed on a trial-

and-error basis. 

Afterwards, since Supervised methods were performed in our research, all of the 

samples presented in Table 12 were selected manually with Google Earth, an RPG map, 

and ground truth as the reference data, and the ground truth values were taken during a 

field survey with a GNSS device in August. The samples were then used to train two 

classifiers in the next step. 
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Table 12 Training samples surface area for SVM and RF model training in 2007(2a) and 2018(2b). 

 

Next, SVM and RF were performed separately on the segmented images as an 

object-based classifier. The training and classification of the SVM module are applied 

using ECognition software with a RBF kernel. Furthermore, the module was executed with 

10 as its capacity constant, also called the c-parameter, with the aim of minimizing error 

function and avoiding misclassification problems. Meanwhile, as mentioned in the last 

chapter, RF classification requires two important user-defined parameters to train the 

model: Two parameters are set on a trial-and-error basis: the number of decision trees 

grown in the forest, this parameter was set to 300 and 200 for 2007 and 2018, 

respectively. In addition, the maximum tree depth, which means the length of each tree in 

the forest, this parameter was defined as 20 for both years. 

Thereafter, CNN deep structure was also applied in the study in order to solve 

complex problems and recognize image objects with revolutionary accuracy levels that 

none of the other machine learning approaches have yet achieved. The CNN implemented 

in eCognition is based on the Google TensorFlow library, and the detailed CNN 

methodology is demonstrated as follow (Figure 65): 
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Figure 65 Detailed CNN methodology 

Firstly, a well-trained CNN model requires a large number of samples to achieve 

high accuracy level. All of the training data in this study were thus prepared manually to 

obtain better accuracy. The samples in the form of points were automatically and evenly 

selected in QGIS by random selection for the purpose of avoiding bias. We then 

categorized all of the points manually into five distinct classes and created sample patches 

by including all of the pixels that surround each point for the model training. The 

algorithm then shuffled the labeled sample patches and created a random sample order 

for training.  

Secondly, two models were created separately for 2007 and 2018. Each model had 

two hidden layers, a kernel size for the convolution, a number of feature maps, and a max-

pooling step (Figure 66). 

 

Figure 66 CNN model proposed and used for the classification of images from 2018 in the study 

For the processing of the 2007 images, the batch size, the number of training 

examples utilized in one iteration, was set to 32, the kernel size was assigned to be 3×3 
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with 64 feature maps in the first hidden layer, and the second hidden layer had a kernel 

size and feature map of 4×4 and 64, respectively. For the 2018 images, the batch size was 

set to 10, and both hidden layers were assigned 3×3 and 32 for the kernel size and 

number of feature maps, respectively. Both hidden layers of the two models contained a 

max-pooling stage using a 2×2 filter. Then the two models were trained based on the trial-

and-error method, with a learning rate of 0.001. After obtaining a satisfactory CNN 

accuracy, the two models were validated and used to produce the classification of two 

satellite images, from 2007 and 2018 separately. 

 

6.4. Image post-processing  

6.4.1. Accuracy assessment  

The accuracy assessment statistics of the classifiers (SVM, RF and CNN), based on 

confidence intervals (P. Olofsson et al., 2014), were calculated for each method and each 

class to check the model training and classification quality by comparing the classification 

with the reference values. The accuracy assessment used in this study included three 

indices: OA, PA, and UA —which are among the best-known and most highly promoted 

quantitative accuracy assessment metrics for the evaluation of classification quality or for 

comparisons among different classifications.  

Moreover, the indices of the accuracy assessment were generated with an 

algorithm from Olofsson based on the confidence interval. Therefore, all indicators 

presented in the tables are followed by an uncertainty rate. A higher uncertainty signifies 

that a larger accuracy rate can vary; in contrast, a small uncertainty represents a 

relationship with a certain accuracy. 

 

6.4.2. Post-Classification Comparison (PCC) 

To analyze the land cover changes between 2007 and 2018, a PCC was performed 

with the semi-automatic classification plugin on QGIS. The open-source plugin allows two 

classified images to be taken as the input (a new map and a reference map), then creating 
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an overlap of these images to cross the data at the pixel level and differentiating the land 

cover changes according to the differences between the two maps. As the output, a change 

layer is created, and there is also a table that shows how the pixels move between the 

classes. 

 

6.5. Results and discussion 

6.5.1. Comparison of classifiers 

 

Figure 67 Classification results with SVM, RF and CNN 

 The classification results of the three methods for the two years are presented in 

Figure 67.  The five classes detected in the classification process were cropland; cropland 

with bare soil; water; vegetated area; and non-vegetation, including urban area, sand, and 

rocks. Although some differences might exist, generally, the vegetation, non-vegetation, 

and cropland could be well-identified from different maps, which are globally identical. 

The vegetation is located in the south and east, with some vegetation near the coastlines, 
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similar to the most important urban areas. In contrast, all of the cropland is in the interior 

of the peninsula. 

To make better comparisons possible, each accuracy assessment in this paper is 

split into two tables, which are the training accuracy and validation accuracy, allowing for 

cross-validation to avoid the problem of overfitting or underfitting. The training accuracy 

was computed and used to improve the model performance and classification quality 

during the classification processing based on the training dataset; otherwise, the 

validation accuracy was used with the validation data to evaluate each model’s final 

prediction. 

       Table 13 Training OA (%) 

 

      Table 14 Validation OA (%) 

 

According to Table 13 and 14, all of the accuracy indices range from 70% to 90%, 

and the two tables are very similar. Although the training accuracy is slightly higher and 

more certain (approximately 2–6%), it suggests a good performance and good training of 

all three models, a strong level of agreement, and a high level of reliability. Beyond that, it 

is worthwhile to note that the CNN demonstrated better potential (approximately 1–12% 

higher in accuracy) for the classification of land cover monitoring than RF and SVM in both 

years, and it is the most stable and certain method, given its low uncertainty of 

approximately 1.50 for training accuracy and 3.50 for validation accuracy in comparison 

with the other methods. In general, the 2007 images have better accuracy indicators and 

lower uncertainty rates than the 2018 images, and RF achieved better accuracy and lower 

uncertainty in the 2007 images than in the 2018 (e.g., 80.23 ± 03.87% and 70.51 ± 08.38% 

for 2007 and 2018, respectively, in the validation accuracy assessment), which is the 
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opposite of SVM (e.g., 77.03 ±  04.36% and 78.14 ±  06.40% for 2007 and 2018, 

respectively, in the validation accuracy assessment). The most reasonable explanation is 

that the 2018 images have a rougher resolution than the 2007 images, and so fewer pixels 

are present in each segment, and since the SVM needs fewer samples and pixels to train 

the model, it achieved a better performance with the 2018 images. 

The PA and UA of each class with the three methods in both years are listed in Table 

15 and 16. Table 15 presents the satisfactory training accuracy of both models 

(approximately 70–90%, with a few acceptable exceptions, such as cropland, which has 

PA and UA values of approximately 40–50%), which indicates that the three models used 

in the classification: SVM, RF, and CNN, were generally well-trained. Even though the 

training accuracy and the validation accuracy are constantly approximate, as shown in 

Table 16 the training accuracy is very slightly more accurate and certain than the 

validation accuracy (approximately 1–10% higher). This suggests a slight overfitting 

problem in the models. Nevertheless, the presence of the overfitting problem is not an 

important obstacle in our study because the differences between the training and 

validation accuracies are acceptable (between 1% and 10%). Additionally, the validation 

accuracy always has a higher uncertainty, which indicates that the real accuracy rate may 

vary to a large extent. 
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           Table 15 Training producer’s accuracy and user’s accuracy by class 

 

Table 16 Validation producer’s accuracy and user’s accuracy by class 
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Among the three methods, the CNN remains the most stable and accurate method, 

and all of the values range between 70% and 100%. Among the classes, water areas were 

very well predicted but also very extensive (usually with an accuracy between 50% and 

70% with a large uncertainty and 100%) by means of their distinctive spectral signature. 

Cropland had training accuracy indicators between 50% and 70%, with CNN having the 

best performance in this class (approximately 70–80% in training accuracy and 

approximately 60–70% in validation accuracy). Of the other two methods, RF was mostly 

more accurate than SVM (approximately 5–20% higher). In addition, they performed 

better on the images from 2018 than those from 2007, with a stable uncertainty 

(approximately 10–20%); the validation accuracies were still approximate and slightly 

lower. Crops are easily confused with vegetation, which might explain the low accuracy of 

this classification. Croplands with bare soil are more correctly classified than croplands 

with plants (with a 20–50% higher rate), and all UA are significantly higher than PA, with 

a 50% to 70% difference, which suggests that fewer errors of commissions were made 

during the classification. Except for the CNN, both the UA and PA ranged from 82% to 92%, 

with less uncertainty at approximately 2.50 in the training accuracy and approximately 5 

in the validation accuracy. Even though vegetation has the potential to be confused with 

crops, it was still the best-predicted class besides water, and the accuracy indicators 

achieved approximately 80–95%, except for the PA of RF and SVM in 2018, which were 

approximately 65%. It can be assumed that some errors of omission were made during 

this classification. The non-vegetation class includes all types of urban land use, sand, and 

rock; hence, it is globally well-classified due to its particular spectral signature, especially 

with the 2018 images. The accuracies in general ranged from approximately 70% to 98% 

in the training accuracy and from approximately 63% to 97% in the validation accuracy. 

In this class, the fact that the PA is considerably greater than the UA reveals the error of 

omission, except for the classification of SVM in 2007 and both CNN classifications, which 

suggests an error of commission instead. In all cases, the CNN was always the most stable 

and reliable method. 

Overall, three different algorithms were applied to two high spatial resolution 

satellite images from 2007 and 2018, and all of them achieved a good accuracy level, with 

the OA ranging from 70% to 90% despite the complex landscape and small field size. 
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The RF and SVM models both performed well for the LULC classification; 

nonetheless, the CNN obviously is better suited to performing classification in our study 

area since it generally performs best regardless of the type of dataset and accuracy index. 

Therefore, the CNN has proven to be a feasible, reliable method with remarkable 

performance for precisely mapping LULC and analyzing the changes. However, some 

important considerations regarding its effectiveness are worth discussing. Previous 

applications of CNN models have tended to emphasize the complexity of these models 

compared to RF models and SVMs. In this case, parameter tuning and optimization are 

often performed by cross-validation for CNN algorithms. However, in some cases, CNN 

models can have millions of weights to optimize at each iteration (LeCun et al., 2015). In 

such situations, training these models can be tedious. Manual tuning or rules of thumb for 

cross-validation should be implemented in this case. This manual manipulation could 

have repercussions on the accuracy of the model. A well-known solution is transfer 

learning (J. Ma et al., 2019). In this case, instead of a model being trained from scratch, 

pretrained models are retrained on the user’s classes of interest. Pretrained models allow 

for better accuracy (Hendrycks et al., 2019). In our study, the deep model was very useful 

for generalization. 

Furthermore, according to the accuracy assessment, the lower accuracy occurred 

for 2018, and we deduced that the spatial resolution of the image is a crucial part of 

classification that can explain the differences between the SVM and RF’s overall accuracy 

in the different years. The RF performed better on the 2007 data with a 2 m spatial 

resolution SPOT 5 image; in contrast, SVM achieved a better accuracy in 2018 with a 10 

m spatial resolution Sentinel 2 image. Among all of the classes, except for the water areas, 

which have a very different spectral signature than the other classes, vegetation was the 

best-detected class, most likely because it occurred on the greatest part of the study area; 

therefore, it also had the largest sample dataset, since all of the samples were randomly 

and evenly selected in the images. Non-vegetation areas that are mostly urban land, rocks, 

and sand were relatively simple to discriminate. Cropland with bail soil was better-

classified than planted cropland. Misclassification largely occurred between the 

vegetation and crops due to their spectral signature similarities, especially during the 
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growing season, and they were spatially approximate; some croplands were small and 

intermixed with trees or shrubs.  

The results also indicated that the choice of a suitable classifier was critical, and 

the OBC approach clearly influenced the final classification at the same time. 

 

6.5.2. LULC Changes Detection (2007-2018) 

Beyond the problems of the uncertainty and error values caused by classification, 

multiple LULC changes between two different classes and between two years (2007 and 

2018) were detected, the LULC maps resulting from the PCC is shown in Figure 68.  
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Figure 68 LULC change maps with the classification of SVM (a), RF (b), and CNN (c). 

Figure 68 revealed the status of each pixel, which stayed in the same class, meaning 

no change, or changes to another class, or another LULC. Some changes can be seen among 

the three land cover change maps with different classifications; for example, many 

croplands were transformed into vegetation, and vegetation was changed to cropland 

according to the maps of RF. The SVM maps indicate numerous transformations from 

vegetation to cropland and vegetation to non-vegetation. However, generally, the 

cropland surface has slightly increased in the peninsula, and many vegetation areas have 

turn into cropland, according to the LULC change map. At the same time, many cropland 

areas have become vegetation areas. However, there may be confusion between 

vegetation and crops due to the different acquired dates of the two images. Therefore, 

many of the new vegetation areas are most likely growing crops. The third most important 

land cover change is vegetation to non-vegetation, which mainly took place near urban 

areas on the coast, especially in the south, where tourism is the most developed. Some 

details of the three main land cover change types based on the classification results of the 

CNN, which is the most stable of the three methods, are shown in Figure 69, with 

comparisons between 2007 and 2018. 

Meanwhile, the evolution of the surface of each class between 2007 and 2018 is 

presented in Table 17 with their proportion in the total surface area of the peninsula, the 

surface area of each type of land use change and the proportion of each type in the total 

surface area. 
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Figure 69 Details of the three main land cover change types of the CNN classification with comparisons between 
2007 and 2018. 

Table 17 Land cover change area and proportion of the change type with the three methods of classification. 

 

Beside the confusion between growing crops and vegetation, our previous results 

can be confirmed by Table 17. The table ranges from the most important class with the 

greatest proportion of land cover change to the least changed class, with the two types of 

cropland assembled into one class to facilitate the comparisons. The majority of the land 

in the peninsula retained the same LULC between 2007 and 2018, and at least 65% to 66% 

of the area remained unchanged according to the SVM and RF classifications. However, 
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the CNN indicated that approximately 77% of the surface of the Crozon Peninsula did not 

change between the two years, which is more important. Cropland is clearly increasing: 

12.45% of the vegetated area has been converted into cropland, according to SVM 

classification; however, this transformation is less important according to the RF and CNN 

classifications, which show approximately 8% and 9%. In contrast, much cropland was 

identified as vegetation in 2018, more with the SVM and RF classifications (12–13%) than 

with the CNN (6.55%), which could confuse vegetation and crops due to the different 

acquired dates of the two images. Undoubtedly, non-vegetation, which includes urban 

areas, has certainly gained surface area from vegetated areas over the 11-year period by 

agreement of the three classifications, even though RF presents a lower land cover change 

value (1.41%) than SVM and CNN (5.66% and 3.40%, respectively). For the RF and SVM 

classifications, non-vegetation was developed from cropland as well (2.49% and 4.14% in 

SVM and RF, respectively). A small part of the non-vegetated area was classified as 

cropland in 2018 in all three models (1.26% in SVM, 3.33% in RF, and 0.72% in CNN); 

however, it might have been confused with bare soil and non-vegetated areas such as 

concrete. Finally, the last two classes (non-vegetation to vegetation and all water-related 

areas) have very low proportions, approximately 0.30–1% in land cover change, which is 

likely due to the rising tides and increasing water storage in the mid-summer and to 

planting of small areas, such as in the city. 

To conclude, our classification results showed that it is possible to map land use 

with different algorithms and analyze land use changes between two years. First, 

increasing cropland surface indicates that agricultural activities remained an important 

economic sector in the peninsula, and there were essentially no signs of abandoned 

agricultural land during the study period. Second, non-vegetation areas have sharply 

grown in the 11-year period due to the dramatically increasing urbanization of the 

peninsula, especially some coastal cities that are highly frequented by tourists, since 

tourism is rapidly developed in the peninsula. The very dense population corresponds to 

a high level of artificialization of the territory, which is growing faster than the national 

average, fueled by a construction of housing and nonresidential premises. This human 

concentration also implies the progression of urbanization toward the hinterlands, where 

the construction of housing and the arrival of new residents increased significantly. 
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Artificialization is the main change that has affected the coastal zone of the peninsula, with 

preferential locations around the major urban centers and on certain coastal sectors. 

Despite the regulatory protection established by the Littoral Law, the changes are also 

important in the 100 m band nearest to the sea and then decrease as one moves away 

from it. In 1986, the Littoral Law provided an initial regulatory response to the need to 

control the anarchic development of construction on the coast. One of the most significant 

consequences of development has been the drastic reduction of the vegetation surface. 

Vegetation has been removed for two main reasons: increasing agricultural activities and 

urban land growth. Therefore, economic development can have negative social and 

economic implications on the peninsula; in addition, environmental conservation and 

protection are required. 

 

6.6. Conclusion  

CD methods involve analyzing the state of a specific geographic area to identify 

variations from images taken at different times. With satellite remote sensing, high spatial 

and spectral resolution images are recorded and used to analyze the scales of changes. In 

this study, in order to detect multiannual change classes between the series of 

multitemporal images using a pixel-by-pixel PCC technique, three different well-known 

and frequently used algorithms, including two machine learning algorithms (i.e., SVM and 

RF) and one deep learning algorithm (i.e., CNN), were tested on two high spatial resolution 

satellite images. RF and SVM were applied with an object-based approach, which requires 

a segmentation step to create subpixel-level objects to avoid the error of mixed pixels 

since the study area was mainly covered by small fields. The inclusion of the CNN 

significantly improved the classification performance (5–10% increase in the overall 

accuracy) compared to the SVM and RF classifiers applied in our study. 

Our results showed that the use of remote sensing for complex multiannual small-

scale LULC change studies was completely reliable. The study resulted in two maps that 

showed five different land uses (cropland, cropland with bare soil, water, vegetation and 

non-vegetation) in 2007 and 2018 with high accuracy. In particular, the CNN had an 
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overall accuracy that ranged from 80 to 90%, making it the most suitable algorithm in our 

case, even though RF and SVM also achieved good accuracy levels. 

The results may also lead to the conclusion that economic development is rapidly 

occurring in the peninsula, manifested as urban land and tourism growth, increasing the 

agricultural activities and grossly decreasing the vegetative areas. Hence, environmental 

protection measures are demanded for the future. In this context of change, the coastal 

zones of the peninsula tend to specialize socially and economically, and the maintenance 

of the agricultural areas, as well as the preservation of the natural areas, are both more 

sensitive and more complex. Moreover, it appears that the change in land use must be 

understood in the context of climate change, which is a factor in the aggravation of risks 

(e.g., flooding and, coastal risks), especially in the sectors that are most subjected to 

urbanization pressures. 

Although we observed relatively high classification accuracies, several 

uncertainties and limitations persisted. The first is the misclassification between 

vegetation and planted croplands: the very similar spectral characteristics that they share 

and their geographical localization lead to this confusion. Second, the two classifications 

were based on two images with different spatial resolutions; thus, some errors of the land 

use change analysis could have been induced. Third, useful cloud-free satellite images of 

the growing season were not easy to obtain in our study area; therefore, a series of annual 

mappings with more precision was not performed in the study. Hence, some 

recommendations can be made for further studies, such as applying more vegetation 

indices or using hyperspectral images to differentiate between vegetation and planted 

croplands or exploring the potential of synthetic-aperture RaDAR images as a supplement 

to the traditional optical images on cloudy days. 
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7.1. Introduction 

Crop supply is a global issue, particularly in the context of global climate change, 

rising population, and urbanization. With increasing food demand worldwide, agriculture 

production and food security should be guaranteed by ensuring biodiversity and limiting 

the environmental impacts (Schlund & Erasmi, 2020). This makes reliable information 

about crop spatial distribution and growing patterns crucial for studying regional 

agriculture production and supply, making political decisions, and facilitating crop 

management (X.-P. Song et al., 2017; H. Yin et al., 2018).  

The classification of crop spatial distributions are valuable for agricultural 

monitoring and for the implementation and evaluation of crop management strategies 

(Birrell et al., 1996; Sun et al., 2019). Hence, crop type mapping is in high demand. Field 

research and remote sensing have always been the most important sources for obtaining 

agricultural information (Y. Song & Wang, 2019), and since the first launch of Earth 

observation satellites in 1972, continuous agriculture mapping and monitoring over large 

areas became possible with EO data. Moreover, the new generation of EO data, nowadays, 

has increased the resolution of sensors for agriculture uses, therefore since the last few 

https://doi.org/10.3390/rs14184437
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decades, the science of agriculture mapping and monitoring has developed quickly, with 

diverse types of high spatial and temporal resolution EO data. For example, Sun et al. in 

2019 conducted a study of the crop types that were located at the lower reaches of the 

Yangzi River in China. They performed a classification of crop-type dynamics during the 

growing season by using three advanced machine learning algorithms (SVM, ANN, and RF) 

with a combination of three advanced sensors (Sentinel-1 backscatter, optical Sentinel-2, 

and Landsat-8). Arvor et al. (2011) in 2011provided a methodology for mapping the main 

crops and agricultural practices in the Mato Grosso state in Brazil; this study was 

performed by two successive, supervised classifications with the EVI time series from the 

MODIS sensor to create an agricultural mask and a crop classification of three main crops 

in the state. In another study by Forkuor et al. in 2014, they found that an integration of 

Multitemporal optical RapidEye and dual-polarized SAR TerraSAR-X data can efficiently 

improve the classification accuracy of crops and crop group mapping in West Africa, in 

spite of excessive cloud cover, small sized fields, and a heterogeneous landscape. 

Furthermore, in the Finistère department, G. Xie & Niculescu (2021) evaluated the 

multiannual change detections of different LULC regions, including agricultural land with 

accuracy indices between 70% and 90%, by using HR satellite imagery (SPOT-5 and 

Sentinel-2) and three algorithms that were implemented: RF, SVM, and CNN. 

More importantly, many studies of crop mapping focuses on winter crop mapping. 

Q. Dong et al. in 2020 proposed a method called phenology-time-weighted dynamic time 

warping (PT-DTW) for mapping winter wheat using Sentinel-2 time series data, and this 

new method may exploit phenological features in two periods, with a Normalized 

Difference Phenology Index (NDPI) providing more robust vegetation information and 

reducing the adverse impacts of soil and snow cover during the overwintering period. T. 

Zhou et al. in 2017 studied the feasibility of winter wheat mapping in an urban agricultural 

region with a complex planting structure using three machine learning classification 

methods (SVM, RF, and NN), and the possibility of improving classification accuracy by 

combining SAR and optical data. 

Besides the contributions of the new generation of EO data, the diversity of the 

classification approaches and methods have provided more resources for agriculture 

mapping and monitoring. The classical, direct extraction approach is the traditional and 
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most used classification approach that is used to extract single or multiple crop types 

directly from satellite images (Del Frate et al., 2004; Wardlow & Egbert, 2008; Y. Jiang et 

al., 2020). Moreover, we also propose the hierarchical classification approach for crops 

mapping in this study. Hierarchical classification is well known for its capacity to solve a 

complex classification problem by separating the problem into a set of smaller 

progressive classifications; it produces a series of thematic maps to progressively classify 

the image into detailed classes. Wardlow & Egbert (2008) investigated the applicability of 

time-series MODIS 250 m NDVI data for large-scale crop mapping in the Central Great 

Plains of the USA. The hierarchical classification scheme was applied in this study with 

high classification accuracy, and instead of directly solving a complex irrigated crop 

mapping problem, a four-level hierarchical classification framework was implemented to 

produce a series of crop-related thematic maps that progressively classified cropland 

areas into detailed classes. Ibrahim et al. in 2021 have also employed the hierarchical 

classification scheme to map crop types and cropping systems in Nigeria, using the RF 

classifier and Sentinel-2 imagery. Firstly, they produced a land cover map with five classes 

in order to eliminate other land cover types, then the next classification was performed 

only on cropland, where the specific crop types and cropping systems were mapped. The 

results indicated that the crop types were well classified with high accuracy, despite the 

study area being heterogeneous and smallholder-dominated. 

In recent years, most studies in the agricultural field have explored the 

performance of different classification algorithms. RF is one of the most well-known and 

widely used algorithms in the field for its optimal classification accuracy, effectiveness on 

large data bases, and its capability of estimating the importance of the variables in the 

classification (Ok et al., 2012; Rodriguez-Galiano, Ghimire, et al., 2012; Forkuor et al., 2014; 

Tatsumi et al., 2015; Son et al., 2018). The RF classification algorithm is traditionally run 

as a PBC, which has proven efficient and accurate in agriculture fields by many studies 

(Ok et al., 2012; Hao et al., 2015; Saini & Ghosh, 2018; H. Li et al., 2020). On the other hand, 

the advantage of OBC is well documented and many recent studies have the conclusion 

that OBC usually outperforms PBC for its higher classification accuracy, better potential 

for extracting land cover information in a heterogeneous area with small size field, and 

the capacity to produce a more homogenous class (Weih & Riggan, 2010; Whiteside et al., 
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2011). However, even though OBC is better developed and considered as more accurate 

than PBC, both classification methods are able to achieve a great degree of accuracy. 

Aside from mapping and analyzing the crop spatial distribution, understanding 

agricultural growing patterns is also a key element for crop management. Crop phenology 

monitoring and the identification of the main phenological stages are highly necessary for 

agricultural production predicting, efficient interventions of farmers and decision-makers 

during the phenological phases such as fertilization, pesticide application, and irrigation 

(Nasrallah et al., 2019). In particular, germination is the most critical phase to be 

understood, and it is the starting point of the growing season. Based on the germination 

information, the farmer and decision-makers are able to make a future projection of the 

season, estimate the whole seasonal phenology for crop growth, and predict its 

production (Nasrallah et al., 2019). Furthermore, phenology is highly related to the 

seasonal dynamics of a growth environment, therefore, in the context of global warming, 

the phenology of many plants, especially crops, may have changed (Y. Song & Wang, 2019). 

Crop phenology is usually monitored with optical satellite images using vegetation 

indices. For example, Z. Pan et al. in 2015 analyzed the phenology of winter wheat and 

summer corn in the Guanzhong Plain in the Shanxi Province, China by using NDVI time 

series data and extracted seasonality information from the NDVI time series for 

measuring phenology parameters. The potential of another less-known index, the NDPI, 

is exploited by Gan et al. in 2020 in order to detect winter wheat green-up dates. During 

the evaluation with three other indices (NDVI, EVI, and EVI2), the results indicate that 

NDPI outperforms the other indices with the highest consistency with the ground truth. 

Compared to the optical data, SAR data is less used in agricultural areas. 

Nevertheless, lately, with the emergence of a new generation of high-resolution SAR data, 

in particular since the Copernicus program Sentinel-1 C-band high spatial–temporal 

resolution images became available, SAR data has begun to draw interest, especially for 

its advantage of having its own source of energy, making it nearly independent of weather 

conditions (Forkuor et al., 2014). Thus, SAR backscattering coefficient time series data is 

now more frequently used for crop phenology monitoring. While optical data strongly 

depends on the chlorophyll content in the plants, SAR data can reveal the main changes 

in the canopy structure, identify significant phenological stages, and determine the main 
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growing period with the signal that is received after interacting with the canopy of the 

plants. Therefore, studies of crop phenology monitoring using SAR data have increased 

considerably in recent years. Meroni et al. in 2020 conducted a study of retrieving the 

crop-specific land surface phenology (LSP) of eight major European crops from Sentinel-

1 SAR and Sentinel-2 optical data, where crop phenology was detected on the temporal 

profiles of the ratio of the backscattering coefficient VH/VV from Sentinel-1 and NDVI 

from Sentinel-2. They revealed that the crop phenology that was detected by Sentinel-1 

and 2 could be complementary. Wali et al. in 2020 introduced rice phenology monitoring 

in the Miyazaki prefecture of Japan by using Sentinel-1 dual polarization (VV and VH) time 

series data, and attempted to clarify the relationship between rice growth parameters and 

the backscattering coefficient using the combination of two linear-regression lines. 

Canisius et al. in 2018 exploited SAR polarimetric parameters that were derived from fully 

polarimetric RADARSAT-2 SAR time series data to predict the growth pattern and 

phenological stages of canola and spring wheat in the Nipissing agricultural district of 

Northern Ontario, Canada. Mandal et al. in 2020 proposed a dual-pol RaDAR vegetation 

index (DpRVI) from Sentinel-1 difference data (VV-VH) to characterize the vegetation 

growth of three crop types (canola, soybean, and wheat) from sowing to full canopy 

development, with the accumulation of the Plant Area Index (PAI) and biomass. 

The feasibility and effectiveness of winter crop type mapping and phenology 

monitoring with optical or SAR satellite data has been proven by many studies in 

agricultural field, however, some limitations remain. For example, the potential of a 

vegetation index other than NDVI and EVI has rarely been explored, and the studies have 

never been performed in a coastal area with fragmented and small-scale fields. More 

importantly, almost all the research perform and evaluate a single classification approach 

or method, instead of comparing different approaches and methods for crop type 

mapping. 

In this study, we introduce a methodology to map two winter crop types (winter 

wheat and winter barley) with Sentinel-2 optical data that was acquired during the 

growing season of the winter crops. Two different classification approaches (hierarchical 

classification and classical direct extraction) were performed using RF-supervised 

classification algorithms, and two classification methods (PBC and OBC) were operated 
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and evaluated within the hierarchical classification framework. With the classification 

results of the winter crops, we are able to monitor their phenology with Sentinel-1 C-band 

SAR backscatter time series and precipitation data in order to understand their temporal 

behavior from sowing to harvesting, identify the three main phenological stages 

(germination, heading, and ripening, including harvesting), and study how crop 

phenology responds to weather conditions. 

The main objectives of this study are listed as follows: 

(1) Study the feasibility of mapping winter crops with Sentinel-2 10 m spatial resolution             

data in a fragmented area that is dominated by small-size fields; 

(2) Perform hierarchical classification and classical direct extraction and evaluate the 

performance of both classification approaches; 

(3) Perform PBC and OBC and compare the performance in each level of the hierarchical 

classification structure; 

(4) Study the correlation between crop phenology and Sentinel-1 C-band SAR backscatter 

time series data and identify three phenological stages and the main growth period of the 

winter crops. 

 

7.2. Study area and materials 

7.2.1. Study area 

The study area is located on the west coast of France in the north of the Finistère 

department and the region of Brittany (Figure 70). 
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Figure 70 Location of study area, the north of the Finistère department, Brittany, France, as per the RGB band 
combination of a Sentinel-2 satellite image on 20 April 2019 and the distribution of agricultural land in 2019. 

The study area covers a land surface of 1, 034.41 km², and extends between the 

latitudes of 48°19′39″N and 48°40′41″N, and the longitudes of 4°12′50″W and 4°47′13″W. 

According to IGN, the northern part of Finistère is mostly dominated by plains, and the 

elevation of the area ranges between 0 m and 100 m (Géoportail, n.d.). The study area is 

mostly occupied by cropland, temporal or permanent grasslands, small area of forests and 

shrubs, urban agglomeration in the south, and a wetland area in the north (Rouault, 2019). 

On average, the northern region of Finistère receives 941 mm of total precipitation per 

year, with the annual average temperature being 12.1 °C (7.7 °C and 16.8 °C are the 

monthly average temperatures for the coldest and warmest months, respectively), and 

therefore the warm temperate climate with frequent rainfall provides very favorable 

conditions for agriculture activities. 

With such climate and topography conditions, agriculture is an important 

economic sector in the study area, and a considerable number of locals work in an 

agricultural or related sector in the department. There are 384, 408 ha of useful 

agricultural area in the department, so 57% of the department’s surface is devoted to 

agricultural use (ADEUPa Brest, n.d.). One of main agricultural productions are crops, 

including corn, winter wheat, and winter barley, and vegetables (Chambres d’Agriculture 

de Bretagne, n.d.). 
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Hence, it is important to develop a methodology to map one or several specific crop 

types and monitor their growth stages by using free access, high quality satellite images 

for crop production management. The north of the Finistère department was chosen as 

our first study area because of its favorable natural conditions, highly active agricultural 

activities, and its proximity, which facilitate the field research and interaction with 

farmers. 

 

7.2.2. Data 

The study was executed in the Finistère department in France during 2019, using 

open-access high-quality satellite data from the Sentinel platform. It is worth noting that 

the latest version of the graphic parcel register was published in 2019 by IGN, and this 

information was relevant to our study. 

Due to the annual high-intensity precipitation there is frequent heavy cloud cover 

in the region, therefore, operable optical satellite images are very rare in the study area. 

Nevertheless, one cloud-free level 2A atmospheric effect-corrected Sentinel-2 image from 

20 April 2019 was acquired from the Theia platform (catalog.theia-land.fr) (ESA, n.d.-e) 

(Table 18). Ten spectral bands (Table 19) were extracted for further processing and 

analysis.  

          Table 18 Sentinel-2 image used in the study 
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             Table 19 Sentinel-2 spectral bands used in the study 

 

Moreover, in order to create a cloud-free time series of the study, the phenological 

phrases of winter crops from the SAR data were applied to the phenology monitoring 

process. In this study, interferometric Wide (IW) Swath mode level-1 Ground Range 

Detected (GRD)  Sentinel-1 data with an incidence angle ranging from 30 to 46 were 

acquired to create the time series of the growing period of the winter crops (winter wheat 

and winter barley) in 2019, from 1 October 2018 to 1 September 2019. Both polarizations 

(VV + VH) were used, but only the descending orbit was retained for the processing. In 

total, 109 Sentinel-1 C-band SAR images with descending orbit were acquired for this 

study. 

In addition, RPG was applied as the ground truth data in our study, used for 

creating training data and test data. RPG 2019 is the latest version of the very precise, 

georeferenced agricultural land database that covers the entire France territory (except 

Mayotte) that was published by IGN. The databases show the precise crop types (e.g., 

wheat, corn, vegetables, sunflower) or temporary and permanent grasslands in that are 

in the recorded agricultural lands in each year ( RPG, n.d.). 

 

7.3. Methodology  

The methodology of this paper is detailed in two parts, which relate to the two 

research subjects: mapping winter crop types using Sentinel-2 data, and monitoring crop 
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phenology with Sentinel-1 backscatter time series. The data were processed in QGIS with 

Orfeo Toolbox, eCognition 10.0, and GEE. 

 

7.3.1. Winter crops types mapping methods 

A flow chart of the proposed global methodology is displayed below (Figure 71). 

 

Figure 71 Hierarchical classification methodology used in the study for crop mapping 

Firstly, after the study area selection and satellite image acquisition, the boundary 

of the northern region of Finistère area was applied in order to extract our area of interest 

by sub setting the raw images for the purpose of reducing the image size and shortening 

the processing time. 

Afterwards, six VIs are used with the aim of mapping winter crop types using 

Sentinel-2 data in this study. 

●  NDVI 

●  NDWI  

●  GNDVI  

●  EVI  

●  SAVI  
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●  MSAVI  

After calculating the vegetation indices, an image stack with the ten original 

spectral bands and all of the indices was created for further image processing. 

Secondly, supervised image processing using different approaches was performed 

in order to make comparisons and attempt to reach the most adapted classification in this 

study (Figure 72). 

 

Figure 72 Proposed detail image processing methodology chart 

Compared to the direct extraction of winter crops with pixel-based RF algorithms, 

hierarchical classification methods are effectuated in three progressive levels, each with 

different objectives. The objectives from the first level of the hierarchy to the last one are 

extracting vegetation (including croplands) from raw images, extracting croplands from 

vegetated areas (trees, shrubs, and grassland), and finally, obtaining exclusively winter 

wheat and winter barley from all crop types detected in previous stages, respectively. 

Finally, the results of the two classification approaches were evaluated with accuracy 

indices, in order to distinguish which one had better agreement with the ground truth 

data. 
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In addition, inside the hierarchical classification structure, except for during the 

first step, separating vegetation and non-vegetation exclusively used the pixel-based RF 

algorithm and this reached a very close agreement with ground truth data. Each step has 

been performed using the two methods, pixel-based and object-based RF classification, in 

order to determine the result with better accuracies for further processing and analysis. 

In OBC methods, MRS algorithm was applied as the first step, and several 

combinations of parameters were used, and the optimal ones were found on a trial-and-

error basis. The scale, compactness, and shape parameters were assigned as follows: 15, 

0.5, and 0.3, respectively, for cropland extraction, and 20, 0.5, and 0.1, respectively, for 

winter crops extraction. 

Moreover, the training data and test data in RF classification were selected 

manually using the RPG 2019 map. For the purpose of comparing different methods of 

classification, training data that were selected for PBC and OBC were as similar as possible, 

such as using the same area and very approximate surfaces, in order to improve the global 

comparability of the two methods. The training and classification of the RF module were 

applied using the Orfeo toolbox with two user-defined parameters that were set on a trial-

and-error basis: the number of decision trees grown in the forest and the maximum tree 

depth, which is the length of each tree in the forest. The two parameters that were used 

in this study were defined as 100 and 25, respectively. 

Thirdly, the accuracy assessment was performed with test data after the 

classification in order to evaluate the classification’s degree of agreement with the reality 

and therefore assess the reliability of the classified results. In this study, in order to 

evaluate the classification quality and compare it amongst the different classification 

methods, five well-known and highly promoted accuracy indices were calculated for each 

classification method and each class. Among them, OA and kappa were employed for the 

global accuracy assessment, otherwise, precision, recall, and F-score were computed to 

assess the classification results of each class. 

Moreover, in the hierarchical classification process, test data that were used for 

evaluating the classification of each step were generated as random points from the image 

that were used to perform classification, which is the result of the previous steps. 
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Afterwards, the random points were labelled manually with the Graphic Parcel Register 

map as ground truth. However, with the aim of evaluating the performance of the 

proposed hierarchical classification approach by comparing with traditional direct 

extraction, a completely new test dataset was produced from the original Sentinel-2 image 

that was not classified. 

 

7.3.2. Crops phenology monitoring methods 

This second part of the study was performed, based on the mapped winter crops 

from the previous step. Due to limited climate conditions in the study area, winter crop 

phenology monitoring was performed with Sentinel-1 C-band SAR data using the GEE 

platform. 

In this study, the backscatter coefficient (σ°) in dB of both polarizations (VV and 

VH) and their ratios of a Sentinel-1 image time series during a complete growing period 

of winter crops (from October to September) on a few chosen croplands was 

automatically generated in a line chart on the GEE platform. In order to study the 

scattering behavior of our target croplands, each image was preprocessed, and the 

backscatter coefficient was converted to dB by GEE using the Sentinel-1 Toolbox. A flow 

chart of the Sentinel-1 image time series process in GEE is displayed as follow (Figure 73): 

 

Figure 73 Sentinel-1 image process in the GEE platform 

 

7.4. Results and discussion 

7.4.1. Winter Crop Types Classification Methods Comparison 

At first, the results of PBC and OBC of each step in the hierarchical classification are 

demonstrated and evaluated through accuracy assessment, the more accurate results 

were retained for further processing and comparison with classical direct extractions. 
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For vegetation extraction (including cropland) (Level 1), only PBC was performed 

since it achieved a great accuracy, approximately close to 1. From Figure 74, we see that 

the distribution of vegetation and cropland is coherent in the study area, apart from some 

urban environments, which are marked by intense non-vegetation pixels, in particular 

these areas are in the south and the northeast of the study area. According to Table 20, 

both global and interclass accuracy indices are very close to 1, this indicates a high 

probability of a correct classification of each individual pixel, and a great overall 

agreement level with the ground truth. Besides a good performance and good training of 

the PBC method, the distinction between the vegetated area and non-vegetation is very 

significant, and therefore, it is easy to classify. 

 

Figure 74 Level 1: PBC vegetation (including cropland) extraction results. 

Table 20 Accuracy assessment of PBC vegetation (including cropland) extraction. 

 

Subsequently, based on the vegetated area that was extracted from the previous 

step, we aimed to distinguish and preserve only the croplands from all arboreal 
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vegetation, shrub, and grasslands, including pasture. In level 2, OBC and PBC were both 

performed and evaluated. Figure 75 demonstrates that the results of the two methods are 

almost identical, although more individual pixels were classified as cropland in PBC 

considering that PBC was operated on pixel-level. 

 

Figure 75 Level 2: PBC and OBC croplands extraction results 

Pursuant to Table 21 and Table 22, even though the global accuracy indices of the 

results of OBC are slightly better than PBC with a difference of 0.024 in kappa and 0.004 

in OA, the indices of the two results are still comparable. The tables below show that a 

large proportion of pixels are correctly predicted in general and that the level of 

agreement with the ground truth data is somewhat lower but still acceptable. 

Furthermore, for the interclass accuracy evaluation, cropland generally has the highest 

precision, recall, and F-score, which are all around 0.90. The models were well trained to 

make a good prediction of the cropland class, especially for the OBC model, and most of 

the individual pixels belonging to the cropland class were correctly detected. This can be 

explained by the OBC taking into account the geometry, form, and texture, which are the 

key elements used to distinguish the croplands from other vegetation. The classification 

of the vegetation has slightly lower accuracy of approximately 0.2 in comparison with 

croplands because of the mix of different kinds of vegetation and the uncertain form of 

the vegetated area, though OBC remains more precise compared to PBC. Finally, the 

classes of the other pixels in our study area, which are mainly some isolated pixels left 

from the previous step due to some errors, were better classified with PBC since the non-
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vegetated area has highly different spectral behavior as compared to vegetation. 

Considering the better accuracy assessments of OBC, its classification result was 

preserved to perform the next step of classification. 

        Table 21 Accuracy assessment of OBC croplands extraction 

 

            Table 22 Accuracy assessment of PBC croplands extraction 

 

In level 3, two winter crop types were extracted based on the results of the 

previous step, the classification result of the cropland extraction by using OBC. The results 

of the two classification methods (Figure 76) are very close to identical in this level, 

differences between the two maps can hardly be noticed. 

 

Figure 76 Level 3: PBC and OBC winter crops extraction results 
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With the lack of possibility of visual comparison of the two methods, they were 

evaluated and compared by using accuracy assessments (Table 23 and 24). In regards to 

the global accuracy indices, all classes were accurate using the two methods, which 

signifies  a good performance of both methods with a high accuracy and a strong level of 

agreement for the classification. Beyond that, it is worth noticing that PBC shows a better 

potential with about 0.03 higher in OA and 0.04 in kappa, moreover, PBC basically 

achieves a better accuracy indicator of three classes in comparison with OBC. The results 

illustrate that the difference in spectral behavior was exploited to distinguish winter 

crops from other crops, since all the croplands share similar geometry, form, and texture 

characteristics. Nonetheless, among different crop types presented in our area of study, 

winter wheat has the most distinctive spectral signature, thus it was found to be the class 

with the best accuracy indices in both results, with very strong reliability in terms of 

prediction and a high rate of precisely identifying winter wheat. In contrast, the 

classification of winter barley and other crops are somewhat less accurate with 

approximately 0.1-0.5, and the advantage of PBC is more significant, with higher accuracy 

indicators around 0.04, which might be caused by the confusion of winter barley and 

other crops due to the similarity of their spectral behavior. In addition, the difference 

between these two classes were better detected by PBC with spectral information. 

Table 23 Accuracy assessment of OBC winter crops extraction 

 

Table 24 Accuracy assessment of PBC winter crops extraction 
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In the second step, the final results of the hierarchical classification and classical 

direct extraction are displayed and compared with accuracy assessments as well, the two 

classified maps are presented in Figure 77.  

 

Figure 77 Classification results with hierarchical classification and classical direct extraction 

Generally, winter wheat and winter barley were well detected and extracted from 

the Sentinel-2 image as shown in Figure 76; the results of two classification approaches 

are globally identical, particularly the homogeneous distribution of the winter crops over 

the area of interest. Nevertheless, the classical direct extraction approach identified more 

winter croplands, especially winter barley, and the winter croplands detected are much 

more fragmented; many small pixels were classified as croplands. This could be explained 

by the fact that winter crops are directly extracted from the preprocessed image; in 

addition, there might be some confusion between winter barley, grasslands, and some 

different crops considering the resemblance of their spectral behavior. 

   Table 25 Accuracy assessment of hierarchical classification 
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 Table 26 Accuracy assessment of classical direct extraction 

 

To make a better comparison, the accuracy assessments of the two approaches are 

displayed in Table 25 and 26. According to the tables, both classification results are very 

satisfactory as mostly all of the accuracy indicators range from 0.8 to 1, specifically with 

the hierarchical classification almost all indices are superior to 0.9. This suggests a good 

performance and training of the models and also a strong agreement with ground truth of 

all classification approaches in the study. Still, it is worth noticing that the hierarchical 

classification shows a better potential for specific crop types mapping as compared to 

classical direct extraction (approximately 0.1 higher in kappa and 0.07 in OA). 

Additionally, nearly every class achieves a higher accuracy in hierarchical classification, 

which indicates that the model is solid and able to make a good prediction. Among three 

classes, winter wheat is the most correctly classified class in both classification 

approaches, the indicators range from 0.90 to 0.99 with the F-score highly similar. 

Hierarchical classification reaches a better precision index, that means the model is more 

exact, yet classical direction extraction achieved a finer recall, which means the models 

returned more relevant results, it can correctly and efficiently identify winter wheat. 

Besides, winter barley and the other classes were evaluated and less accurately classified, 

especially with the classical direct extraction approach. According to Table 8, the winter 

barley class obtained a high recall (0.960) and a relatively lower precision (0.683), which 

suggests a high false positive rate, many individuals predicted as winter barley that the 

model returns were found misclassified when compared to the test data. On the contrary, 

the others class received a high precision index (0.955) and a comparatively low recall 

(0.797), the indicators demonstrate that the pixels were correctly detected and labelled 

despite less results returned by the model. The comparably low accuracy of the two 

classes and the imbalance between precision and recall indices might be explained by (1) 

the similarity of the spectral behavior between winter barley and other crops and even 
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grassland in the case of the classical direct extraction approach. (2) Since two winter crops 

are extracted directly from the Sentinel-2 image, the class others included not only non-

vegetated urban areas, but also vegetation and other croplands which occupies a large 

area of our study site. Therefore an imbalance between classes was caused, thus, more 

training datasets of the class others were acquired in consideration of its weak intraclass 

correlation. 

To conclude, both classification approaches achieved a good accuracy level despite 

the complex occupation and small cropland size in the region. In addition, the accuracy 

assessment indicates that the hierarchical classification has proven to be reliable and 

more accurate with outstanding performance in classification of both winter crops classes, 

particularly the winter wheat by turning a complex multi-class classification problem into 

series of smaller classifications. Additionally, PBC and OBC were implemented in two 

steps of the classification process within the hierarchical classification structure 

(croplands extraction from all vegetated area, and winter croplands extraction from all 

croplands). Although numerous studies in the remote sensing field demonstrate that OBC 

usually achieves a better classification with different data and in different landscapes over 

PBC by bringing complementary information other than the spectral signal and turning 

classification units from pixels to image objects (D. Liu & Xia, 2010; Estoque et al., 2015; 

B. Fu et al., 2017). However, the results illustrate that each method has its advantage in 

the classification process in this work. OBC slightly outperformed PBC in cropland 

extraction as the complementary texture, geometry, and shape information are helpful for 

cropland detecting. On the other hand, PBC reaches a higher accuracy in winter crops 

extraction, since all croplands have a similar shape but winter crops can be easily 

distinguished from other crops with direct spectral information. Additionally, the 

statistical difference between the results of PBC and OBC is not particularly significant. 

Therefore, small differences induced by several factors between two methods can be 

noticed, yet both methods are equally useful for our classification. 
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7.4.2. Crops phenology monitoring  

The Sentinel-1 temporal backscattering coefficient profiles of diverse land cover types at 

VV and VH dual-polarizations from the study area during the growing season of the winter 

crops (from 1 October 2018 to 1 September 2019) are shown in Figure 78. The temporal 

profiles of mean σvv and σvh values of urban, vegetation (including other crops), water, 

bare soil, winter wheat, and winter barley land cover are displayed. 

 

Figure 78 Sentinel-1 temporal backscattering coefficient profiles of different land covers (Vegetation, water, 
urban area, bare soil, winter wheat, and winter barley) in the study area at VV and VH polarizations from 1 October 2018 

to 1 September 2019. 

As shown in Figure 78, besides the profiles of the water area, which fluctuate 

significantly due to the weather conditions, the temporal profiles of vegetation, urban, and 

bare soil are much more stable than the profiles of winter crops, which have a significant 

fluctuation according to their different growth stages. Especially in the σvh profile, the 

vegetation, urban, and bare soil profiles are generally close to their mean value regardless 

of the season. Nonetheless, the variation of the backscattering coefficients of the two 

winter crops are clearly evident, for example a peak is seen in early December, followed 

by a minimum value in early summer and a maximum value in midsummer.  Thus, the 

results indicate that it is feasible to distinguish winter crops from other types of land cover, 

particularly vegetation and other crops, and furthermore we are able to identify and study 

the main phenological stages from germination to ripening (harvesting) by using Sentinel-

1 temporal profiles. 

Based on prior knowledge and field research with local farmers, winter wheat and 

winter barley are both cereal crop types that are planted from October to November. 
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Generally, winter barley is sowed earlier than winter wheat in the Finistère department. 

Germination, which is the first growth stage of the crops, takes place three to four weeks 

after sowing, hence early December for winter wheat and mid-November for winter 

barley. The crops remain in their vegetative stage during winter, and stem elongation 

begins in spring and lasts until the plants reach their maximum height, usually in early 

summer. Lastly, ripening, the final growth stage, and harvesting occur in summer (early 

summer for winter barley and mid-summer for winter wheat). 

 

Figure 79 Winter wheat and winter barley Sentinel-1 temporal backscattering coefficient profiles at VV, VH, and 
VH/VV polarizations of the north Finistère region for the 2018-2019 growing season, with the daily precipitation data 

and three main phenological stage 

In Figure 79, both the raw signal and smoothed trend line of temporal 

backscattering coefficient profiles of VV, VH, and the VH/VV ratio for the 2018-2019 

growing season are displayed. Looking at the charts, it is shown that large variations occur 

before the germination due to the interaction between bare soil and vegetation caused by 

stem-ground double scattering (Picard et al., 2003; Y. Song & Wang, 2019), while previous 

researches suggest that the fluctuation in the backscattering profiles are mostly induced 
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by changes in soil water content and roughness (Y. Song & Wang, 2019). Pursuant to 

previous research, germination as the first stage of emergence of the plant can be 

recognized as the first maximum value of the profiles before decreasing (Nasrallah et al., 

2019), therefore the germination stage is observed around 1 December for winter wheat, 

and in early November for winter barley. Moreover, for winter wheat this phase is best 

observed with VV and the VH/VV polarizations as the first peak of the curves; however, 

the peak is better illustrated at VV and VH polarizations for winter barley. Afterwards the 

overwintering stage occurs, and the crops remain in their vegetative stage during winter 

(generally around 1 January); a gentle decreasing and a slight flattening can be observed 

in VV polarization during this stage for both two crops. Furthermore, a fluctuation of the 

VV and VH curves of the two crops around 1 January 2019 is driven by a short pause of 

rainfall, as the signals are highly affected by the soil water content. The stem elongation 

stage starts in spring, where the vertical development of stems and leaves of the plants 

cause soil scattering attenuation, represented as a continuous and steadily decreasing line 

until they reach the heading stage, where the plants achieve their maximum height. After 

a long decreasing phase, σ° reaches the minimum value of the temporal profiles at the 

heading stage around 1 May 2019 for both winter crops, this stage can be better observed 

in σvv and σvh/vv for winter wheat phenology, and in σvh and σvh for winter barley. 

However, the sharp decrease in σvv and σvh at the heading stage, specifically in the 

profiles of winter barley might be the results of the relative lack of rainfall since early 

April. After heading, the inflorescence emergence, anthesis, grain development, and 

dough development stages occur. As seen on the graphs the curves start to increase during 

the flowering and grain development stages. These stages are illustrated by a sharp 

increase in winter barley regardless of the polarization, while by contrast the σvv and 

σvh/vv of winter wheat shows a smooth increase. At last, the ripening, which is the 

maturation stage, occurs and the crops are ready to be harvested. This phase is shown as 

the last peak of the profiles during the growing season, followed by a sharp decrease 

caused by the absence of volume and multiple scattering after the harvesting (Nasrallah 

et al., 2019). As the results show,  harvesting, which took place around 1 August 2019, is 

better demonstrated by σvv and σvh for winter wheat, while the harvesting was in late 

June for winter barley, and is  clearly shown by all polarizations, particularly in VV and 

VH. 
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       Table 27 The best polarization observed for each phenological stage of winter wheat in the study 

 

      Table 28 The best polarization observed for each phenological stage of winter barley in the study 

 

The best polarization for each phenological stage (Germination, Heading, Ripening 

(Harvesting)) are detailed in Table 27 and 28. The phenology monitoring of winter wheat 

highly relies on VV polarization, while the VH/VV ratio is also very helpful in identifying 

the germination and heading stages. Otherwise, VH polarization was used to detect the 

ripening stage and the harvesting event.  

Meanwhile, phenology monitoring of the winter barley depends more on VV and 

VH polarizations, which are able to easily identify the three phenological statuses. In 

addition, VH/VV polarization is also effective for detecting the ripening and the harvesting. 

Overall, this study proved that Sentinel-1 C-band SAR polarized backscatter time 

series has great potential to monitor winter crop phenology in a coastal area marked by 

frequent precipitation, and some important considerations of the behavior of different 

polarizations in regards to different phenological stages are worth discussing.   

Firstly, despite the σ° of both polarizations and the ratio being relatively similar, 

the curves of the VH and VV polarizations are sharper compared to those of the ratio, due 

to the fact that the ratio is less sensitive to varying conditions like moisture and incidence 

angle variations. This can be explained by such effects having certain impacts in both 

polarizations, where the impacts would be reduced in the ratio (Schlund & Erasmi, 2020). 

As seen in Figure 78, the curves of the ratio VH/VV of winter wheat and winter barley are 
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smoother in comparison with the single polarization and less impacted by continuous 

rainfalls or drought due to absence of precipitation.  

Secondly, the timing of phenological stages or growing periods of the crops based 

on the field knowledge are in agreement with the observations of the results. Based on 

prior knowledge, the sowing takes place between October and November, winter barley 

is usually planted earlier than winter wheat, and the germination occurs 3-4 weeks after 

sowing. This period can be confirmed by noting the large variations of the curves in the 

beginning induced by the interaction between bare soil and vegetation caused by stem-

ground double scattering (Y. Song & Wang, 2019), afterwards the germination is 

represented by the first peak of the curves, especially well demonstrated in the 

polarization ratio for winter wheat and in the single polarizations for winter barley. After 

the overwintering period, the stem elongation, which begins in spring, can be recognized 

on the curves as a decreasing period caused by the attenuation of the signal when the 

vegetation cover occurs. Thereafter, the heading stage, where the crops attain their 

maximum height, occurs in early summer. This stage was confirmed with a minimum 

value on the curves around 1 May, which can be well observed in the polarization ratio 

for winter wheat and in single polarization for winter barley. After heading, the volume 

backscattering increased due to the increase of plant biomass ratio (Schlund & Erasmi, 

2020), and the winter barley is harvested in early summer and winter wheat in mid 

summer. This is illustrated by the curves in all polarizations decreasing as expected with 

large variations post-harvesting depending on the in soil conditions.  

This leads to the conclusion that it is feasible to map crop phenology with high 

accuracy by using SAR data, which is highly sensitive to the phenology of agriculture crops. 

In addition, unlike many methods which exclusively use the single polarization or the 

ratio (McNairn & Shang, 2016; Mandal et al., 2020; Son et al., 2021), our study shows that 

the combination of both is able to provide a better observation of agriculture phenology. 

Further studies can investigate the feasibility and performance of combining SAR and 

optical data for crop phenology monitoring.   
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7.5. Conclusion and perspectives 

Three issues surrounding winter crops have been studied and discussed in this 

paper. Firstly, two types of winter crops (winter wheat, winter barley) were mapped by 

using a Sentinel-2 high-resolution image, and two different classification approaches 

were performed. Both the hierarchical classification, which turns a complex classification 

problem into a series of smaller classifications and the classical direct extraction, which 

extracts the winter crops directly from the original satellite image, were carried out. The 

hierarchical classification was composed of three smaller classifications: vegetation 

extraction from the original image, cropland extraction from vegetation, and finally 

winter crop extraction from other crops. Additionally, PBC and OBC were both performed 

in the last two steps and evaluated in order to keep the most accurate classification for 

further processing and analysis. Subsequently, crop phenology monitoring was 

performed based on the results of the previous step by using Sentinel-1 C-band SAR time 

series data, and the three important phenological stages (germination, heading, and 

ripening (harvesting)) and main growing periods were identified as well.  

To respond to the objectives of the study and as the contribution of this paper, our 

results showed that winter crops in a fragmented landscape with heterogeneous land 

cover were successfully detected with high accuracy by using a Sentinel-2 image and the 

classification approaches proposed. In particular, the hierarchical classification 

framework significantly improved the classification accuracy (0.1 and 0.06 increase in the 

kappa and OA, respectively, against classical direct extraction), moreover the 

classification of winter barley is also enhanced by reducing confusion between winter 

barley and grassland with hierarchical classification framework (0.094 increase in F-

score). Within the hierarchical classification, each classification method has its advantage, 

OBC slightly outperformed PBC in cropland extraction, yet PBC achieved higher accuracy 

in winter crops mapping. Although some small differences can be noticed, however there 

is no significant statistical divergence between the two classification methods.   

The results also lead to the conclusion that Sentinel-1 C-band SAR polarized 

backscatter time series has great potential to monitor winter agriculture phenology in a 

coastal area with frequent rainfalls. Three phenological stages and main growing periods 
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could be easily identified from the time series in single polarization or the ratio, and 

furthermore the timing of the stages and growing periods of the crops observed on the 

results  highly conform to the field knowledge.   

Although very satisfactory results were acquired in this study, some limitations 

were revealed during the process of result analyzing. Despite the fact that the hierarchical 

classification approach acquired a better accuracy (0.099 in kappa and 0.066 in OA), this 

classification approach required more complicated processing steps and was more costly 

when one is comparing it to the direct extraction, for a slight enhancement in the results. 

Moreover, the confusion between winter barley and grassland was no negligible. For 

increasing classification accuracy, extra data such as SAR or Sentinel- 2 time series data 

can be applied for crop mapping. Additionally, even though the three main phenological 

statuses were successfully extracted from Sentinel-1 backscatter time series, more field 

research and expert knowledge, moreover, the combination of SAR and optical data could 

be required for identifying some others important phenological stages (e.g., tillering, 

flowering, soft dough and hard dough) and growth periods from the time series. 
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General conclusion  

Synthesis 

To conclude, this work has adequately achieved the initial objective, which is to 

propose robust, specific, and reproductive ML methodologies adapted to coastal areas for 

the cost-effective mapping LULC and the assessment of changes in Pays de Brest using the 

latest European satellite data (Pléiades, SPOT, and Sentinel). Specifically, LULC mapping 

was first accurately performed using diverse ML and DL classification algorithms. Then 

the major LULCC were successfully detected with post-classification methods based on 

the LULC classification results, the socio-economic driving factors of the changes were 

also well identified and analyzed, and eventually, the changes and their impacts were 

modeled for future studies. Therefore, the study contributes to the current LULC studies 

of Pays de Brest, a highly fragmented coastal area with small-scale fields, and provides 

valuable LULC information on Pays de Brest for local government and communities.  

In this work, the latest generation of high spatial, spectral, and temporal resolution 

satellite imagery is shown to be well suited for LULC classification in fragmented coastal 

areas. In addition, the complex LULCC pattern was successfully revealed in various spatial 

and temporal dimensions. The satellite data, therefore, are able to provide helpful 

information to respond to environmental and urban management issues and to solve 

specific conflicts of interest.  

In addition, remote sensing technologies were also shown to be a powerful tool for 

mapping coastal Pays de Brest, particularly with the contribution of the latest generation 

of European satellite systems and advanced classification methods. However, the most 

suitable methodologies depend greatly on other factors, such as the geographical 

characteristic of the study area, the spatial and spectral resolution of the satellite data, 

and—most of all—the specific objective of the study. Generally speaking, both DL 

algorithms (MLP, CNN) achieved the highest accuracy, although ML classifiers (RF, SVM) 

also obtained adequate results. Moreover, the winter crop classification revealed that 

hierarchical classification is more appropriate for the extraction of specific crops or 

vegetation types. However, OBC and PBC have their advantages in crop-type classification. 
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In addition, the SAR time-series backscattering coefficient was shown to have great 

potential to monitor winter crop phenology in coastal areas with frequent rainfalls.  

Urbanization remains the most significant change in coastal Pays de Brest; the 

conversion from vegetated areas to urban areas is particularly significant on the coastland. 

Accordingly, the vegetation cover was significantly decreased. However, most of the 

croplands remained surprisingly unchanged. As in the most coastal areas, the main 

driving factors of LULCC in Pays de Brest are urban expansion, artificialization, and 

coastal tourism development, which are especially important near the coastlines. Overall, 

economic development is rapidly occurring in Pays de Brest, manifested as urban sprawl, 

tourism growth, increasing agricultural activities, and environmental degradation.  

Furthermore, three study cases with specific objectives were performed in 

different test areas within Pays de Brest, in which adequate results were obtained as well: 

1) Vegetation cover in the city of Brest, a highly heterogeneous urban area, was accurately 

extracted by using a combination of OBC methods, VHR satellite data and deep structure 

MLP algorithms. RF algorithms showed similar results; however, misclassification 

between high and low vegetation could be observed. 2) Compared to RF and SVM 

classification methods, DL CNN was found to be the most suitable classifier for LULC 

classification in a highly fragmented coastal area with a small-scale field. Additionally, the 

coastline of Pays de Brest has encroached on economic development since the 2000s. 3) 

The accurate mapping and extraction of specific crop types are feasible with the HR 

Sentinel-2 image, and hierarchical classification was well adapted in this case.  

 

Limitations of this study 

The objectives and adequate results are achieved through the three successfully 

performed study cases. The results of this work can be helpful for the local government, 

communities, and urban planners to formulate policies for sustainable development in 

Pays de Brest. Nevertheless, some uncertainties and limitations persisted: 

1) Due to the meteorological conditions and annual high-intensity precipitations, it is 

very rare to obtain cloud-free optical images of the study area. For example, two 
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different sources and spatial resolution images were used in the study of LULC 

classification due to the lack of processable optical data.  

2) Misclassification of different types of vegetation and planted crops (e.g., confusion 

between grassland and winter barley) is caused by very similar spectral 

characteristics. 

 

3) It is difficult to validate cropland classification results in the past years owing to the 

crop rotation system.  

 

Further research 

Some suggestions can be proposed for completing the unfinished task of the study, 

improving the LULC studies to achieve better results, and further meaningful research on 

LULC in Pays de Brest. 

1) To achieve the final unmet objective of generating LULCC models to develop forward-

looking scenarios with classification results.  

 

2) To use hyperspectral data for LULC classification, especially for better discrimination 

between different types of vegetation and croplands. 

 

3) To explore more potential contributions of SAR images, because the meteorological 

conditions limits the optical sensors, and eventually LiDAR morphometry. 

 

4) To conduct the three study cases throughout the entire territory of Pays de Brest.  

 

5) To study the natural landscapes in Pays de Brest (e.g., wetland and intertidal areas), 

which provide essential resource but are increasingly degraded by human activities.  
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Appendix 1 Questionnaire for farmers 

We are interested in two winter crops (winter wheat (purple), and winter barley (blue)) in 2019. 

 

1. Could you locate your croplands on this map? 

 

2. If positif, does the map faithful to reality? (Did you really have this crop (wheat, maize, barley) in 

your field in 2019? 

 

3. If negatif, what was the crop? 

 

4. Could you please indicate the growing cycle of this crops (e.g. month of sowing, emergence, bolting, 

heading, maturation and approximate harvest date)? 

 

5. Do you recall any natural event that could disrupt the growth cycle in 2019, e.g. very important 

climate change (such as anomalous warming, increased rainfall etc.)? 
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Appendix 2  

《Machine Learning Methods and Classification of Vegetation in Brest, France》  

(Conference proceeding 2019) 

 

 

 

 

 

 

 

 

 



 
 

234 
  



 
 

235 
  



 
 

236 
 

 



 
 

237 
  



 
 

238 
  



 
 

239 
  



 
 

240 
  



 
 

241 
  



 
 

242 
  



 
 

243 
  



 
 

244 
  



 
 

245 
 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3 

《Mapping and monitoring of land cover / land use (LCLU) changes in the Crozon 

Peninsula (Britanny, France) from 2007 to 2018 by Machine Learning algorithms (Support 

Vector Machine, Random Forest, Convolutional NN) and by Post-classification 

comparison (PCC)》 (Journal article 2021)
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Appendix 4 

《Mapping crop types using Sentinel-2 data Machine Learning and monitoring crop 

phenology with Sentinel-1 backscatter time series in Pays de Brest, Brittany, France》  

(Journal article 2022) 
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Abstract : As a coastal area, Pays de Brest have been recognized 

as an essential sources of food production, a center of socio-

economic activities as well as an unique ecosystem and a 

repository of biodiversity. However, the coastal Pays de Brest 

suffers from environmental vulnerability and the impacts of 

human activities, especially the Pays de Brest has experienced 

significant land use and land cover changes (LULCC) since the 

1990s due to rising population and urban expansion. It is 

therefore critical to develop a solid understanding of land use and 

land cover (LULC) and to monitor LULCC that occur over time in 

Pays de Brest. Remote sensing technologies are the most widely 

used tool for LULC mapping and LULCC detection nowadays, 

especially with the development of advanced processing 

algorithms, and the arrival of the latest generation of satellite  

imagery in recent years. With this context, the objective of this 

work is to produce a robust, specific, and reproducible 

methodology that focuses on a comparative approach to 

machine learning (ML) methods adapted to coastal areas for 

the cost-effective monitoring of LULC and the assessment of 

changes impacting Pays de Brest. Moreover, the study was 

carried out through three specific study cases in Pays de Brest: 

1) ML methods and classification of vegetation in Brest, France, 

2) mapping and monitoring of LULCC in the Crozon Peninsula 

(Brittany, France) from 2007 to 2018 by ML algorithms and by 

post-classification comparison, and 3) mapping crop types 

using Sentinel-2 optical satellite data ML algorithms and 

monitoring crop phenology with Sentinel-1 backscatter time 

series in pays de Brest, Brittany, France. 

 

Résumé : En tant que zone côtière, le Pays de Brest a été reconnu 

comme une source essentielle de production alimentaire, un 

centre d'activités socio-économiques ainsi qu'un écosystème 

unique et un réservoir de biodiversité. Cependant, le Pays de Brest 

souffre d'une vulnérabilité environnementale et des impacts des 

activités humaines, en particulier le Pays de Brest a connu 

changements d'occupation des sols (LULCC) importants depuis les 

années 1990 en raison de l'augmentation de la population et de 

l'expansion urbaine. Il est donc essentiel de développer une solide 

compréhension de l’occupation du sol (LULC) et de surveiller les 

LULCC qui se produisent au fil du temps dans le Pays de Brest. Les 

technologies de télédétection sont aujourd'hui l'outil le plus utilisé 

pour la cartographie de LULC et la détection des LULCC, 

notamment grâce au développement d'algorithmes de traitement 

avancés, et à l'arrivée de la dernière génération d'images satellites 

ces dernières années. 

Dans ce contexte, l'objectif de ce travail est de produire une 

méthodologie robuste, spécifique et reproductible qui se 

concentre sur une approche comparative des méthodes de 

machine learning (ML) adaptées aux zones côtières pour le suivi 

rentable des LULC et l'évaluation des changements impactant le 

Pays de Brest. De plus, l'étude a été réalisée à travers trois cas 

d'étude spécifiques au Pays de Brest : 1) classification du 

couvert végétal en utilisant les methodes ML dans la ville de 

Brest, 2) cartographie et suivi des changements d'occupation et 

d'utilisation des sols dans la presqu’ile de Crozon (Bretagne, 

France) de 2007 à 2018 par des algorithmes ML et par 

comparaison post-classification, et 3) cartographie des types de 

cultures avec des données optiques Sentinel-2 et ML méthodes, 

et suivi de la phénologie des cultures avec les séries temporelles 

de rétrodiffusion Sentinel-1 dans le Pays de Brest, Bretagne, 

France. 


