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Chapter 1

General Introduction

The numerical simulation of waves find their applications in many fields, such as me-
chanical engineering, medical imaging, musical instrument modeling, non-destructive
testing, seismology, seismic imaging and more. This thesis falls within the context of
seismic imaging, which consists in collecting underground data in order to obtain a map
of the surface of the earth thanks to numerical simulations based upon them. As data are
reflected waves generated by sources propagating into the domain of interest, it belongs
to the family of seismic reflection techniques. The numerical study of seismic waves
is thus of great importance. They are waves propagating through the earth and can
be classified into body and surfaces waves. Body waves comprise direct, reflected and
refracted waves and propagate through the whole medium, while the surface waves only
travel on the surface. We can distinguish two body waves: the primary P-waves and
the secondary S-waves and two main types of surface waves: Rayleigh waves and Love
waves. P-waves are longitudinal waves, which means that they oscillate parallel to the
direction of propagation. They are a particular type of elastic waves, travel faster than
S-waves and can propagate through any kind of medium. S-waves are transverse waves,
so they oscillate perpendicular to the direction of propagation. On the contrary to pri-
mary waves, they can only propagate in solids. The direction of oscillation of Rayleigh

Figure 1.1: Seismic imaging1

1Source: [1] Simulation de la propagation d’ondes élastiques en domaine fréquentiel par des méthodes
Galerkine discontinues, M. Bonnasse-Gahot, 2015

1



2

Figure 1.2: Classification of seismic waves2

waves is a combination of the latter two. Love waves travel in a transverse horizontal
motion, so they oscillate perpendicular to the direction of propagation. Surface waves
usually travel slower than body waves.

In a seismic acquisition, artificial sources emit waves towards the earth, then re-
ceivers, usually placed on the surface, record the reflected waves as can be seen in Fig.
1.1. The collected information is generally the arrival time and the amplitude of the
reflected wavefields. We can construct a map of the variations of velocity in the medium
by using the results of seismic imaging campaigns, that can be done in the sea or on the
ground. This velocity map is also referred to as the velocity model and is more or less
precise, depending on the number of sources used. To reconstruct the collected data and
obtain a map of the underground along with its material characteristics, several numeri-
cal techniques have been developed, which distinguish themselves by the precision of the
reconstruction. The most widely used seismic imaging methods are the Reverse Time
Migration (RTM) and the Full Waveform Inversion (FWI), which both rely on the nu-
merical resolution of wave equations. The RTM is a migration technique, which consists
of three steps: (a) forward modeling of the wave field in a domain with an appropriate
velocity model in order to obtain the propagated field, (b) extrapolating the obtained
solution back in time by using the seismic data as an initial condition in order to ob-
tain the back-propagated field and (c) superposing the propagated and back-propagated
fields in order to obtain the image of the subsurface. The position of the reflectors is
deduced from the positions where both fields coincide. More information on the RTM in
the time-domain can be found in [2, 3] and in the frequency-domain in [4, 5]. The FWI
is an inversion technique, which provides quantitative information on the propagation
medium as the RTM retrieves qualitative information. It uses the full wavefield in order
to obtain a high-resolution seismic imaging. Its implementation involves an iterative
process to perform the minimization of a misfit function evaluating the difference be-
tween numerical data and observations until convergence to the propagation domain. It
is a computationally intensive method based upon a local minimization procedure (e.g.
least squares, gradient descent, steepest descent) involving the adjoint method. The

2Source: https://iris.edu/

https://iris.edu/
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solution of the forward problem is then at the heart of the algorithm as it describes the
direct and adjoint problems. It is worth noting that as it addresses the solution of an
ill-posed nonlinear inversion problem, FWI is an intensive research subject. The physical
parameters are updated at each iteration until the model converges and it is crucial to
dispose of accurate and affordable numerical methods for solving the forward problem.
An overview of FWI by Virieux and Operto can be found in [6] and by Brittan et al.
in [7]. It has been applied in the frequency-domain by Brossier et al. in [8] and in the
time-domain by Pratt et al. in [9]. Working in the frequency domain has the advan-
tage of easing the inversion of complex-valued parameters. Moreover, the time-harmonic
solution methodology includes direct solver uses which allow multi-right-hand-side im-
plementation. However since the resulting discrete matrix tends to be very large, it is
necessary to consider frugal numerical methods as Hybridizable Discontinuous Galerkin
(HDG) approximations (see [1, 10]) and even, large-scale computations are still unreach-
able which makes time-domain approaches good candidates to consider real applications.
Time-domain approaches have indeed the capability of addressing very large domains as
long as High Performance Computing is performed, and nowadays, the main challenges
in this field are focused on the efficiency and performance of the forward solver, the
management of 3D domains and data and the construction of velocity models.

In this thesis, we are interested in the efficiency and the performance of the forward
solver. In particular, when considering the FWI, the method is sensitive to the accuracy
of the propagated field in the sense that any error in the numerical simulation can
transform itself into an artifact. Hence, this motivates the research of accurate and
fast time-domain methods. The usual framework when solving time-domain problems
consists in separating the problem in space and time. So, we discretize the spatial
domain first to get a semi-discrete problem formulated with Finite Element methods,
then we use an iterative method (such as Runge-Kutta methods) to solve it in time.
This approach has been used in the framework of Discontinuous Galerkin (DG) and
Runge-Kutta methods in [11] and is presented for Finite Elements in [12] and [13]. For
linear problems this approach is proven to be successful, however for non-linear problems,
it presents several disadvantages. For example, when considering a problem presenting
discontinuities in the solution, such methods do not capture the discontinuities accurately
and instead present oscillations near them, on the contrary to spacetime discretizations.
For instance, this phenomenon is shown for the case of the impact of a one-dimensional
homogeneous elastic beam against a rigid wall by Hulbert and Hughes in [14]. Another
advantage of spacetime discretization over semi-discretization with time-stepping lies
in the use of fully unstructured meshes in space and time. When working with semi-
discrete methods, the mesh comprises cells structured in time, because the same time
discretization is used for every time step. In the case of spacetime discretizations, we can
work on unstructured meshes in both time and space. Hence, if there is a need to capture
discontinuities, such as stresses, a defect, or interfaces, there is the possibility to refine
the mesh along those discontinuities, or even adaptively refine the mesh through time
following the location of the discontinuities. Moreover, spacetime methods naturally
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allow local time-stepping when the time step is constrained by the space step, which
is advantageous. For all these reasons, many have explored spacetime finite element
methods, such as [14, 15, 16, 17, 18]. However, the question of spacetime meshing needs
to be addressed and can be complex and expensive in terms of memory. In fact, spacetime
problems have an additional dimension (nD+t) compared to space-only problems (nD).
In particular when considering 3D domains, the computational costs and the memory
consumption will sharply increase.

This work is carried out in the context of the collaborative research program Depth
Imaging Partnership (DIP), which was established between the company Total Energies
and the Inria project-team Makutu between 2010 and 2022. The DIP project aimed at
developing high-order numerical schemes, for seismic imaging and underground struc-
ture reconstruction. Within DIP project, the numerical methods were mostly based
on discontinuous finite element approximation of the wave fields, like in Discontinuous
Galerkin methods, because they can take into account geometrical and physical charac-
teristics of the domain of interest and are conducive to parallel computing [19, 20, 21].
However, DG methods suffer from a high computational cost due to the number of de-
grees of freedom which is doubled at the interfaces, when compared to classical Finite
Element methods for example. Thus, a wide range of research is interested in reducing
the cost of DG methods and, at the same time, maintaining their benefits. Having that
in mind, the HDG methods have been investigated in the context of the project DIP.
They consist in expressing the solution vector in terms of a Lagrange multiplier, which
represents the trace of the numerical solution on the skeleton of the mesh. The number
of degrees of freedom is thus reduced in comparison to DG methods, without losing its
advantages [22].

In the same spirit of reducing cost and improving the precision of the solution, we
consider time-domain Trefftz methods, which were introduced by Trefftz in [23] and have
been investigated in [24] in the context of the project DIP, and for a spacetime acoustic
wave equation in [25, 26, 27] and various other problems in [28, 29, 30]. Trefftz meth-
ods have been widely explored in the frequency-domain for hyperbolic problems in [31],
for plate bending and thick plate problems in [32], for the two-dimensional Helmholtz
problem and three-dimensional Maxwell problem in [33, 34]. They consist in using local
solutions to the considered problem as basis functions and we call them Trefftz functions
(or T-functions). Thus, the numerical solution is expected to be more precise, because
characteristics of the Trefftz functions, such as the oscillatory aspect or the wavenum-
ber, will be injected into the approximation space itself. Moreover, in the case where
the system of equation is self-adjoint, the resulting variational formulation is only posed
on the skeleton of the mesh as the volumic terms vanish. Hence, the number of degrees
of freedom is greatly reduced compared to DG methods. So, the Trefftz method is a
good candidate in the research of a faster while accurate method. However, the nu-
merical scheme we obtain in time-domain is implicit and thus, we have a large matrix
to invert and the computational cost is increased anyway. This problem is due to the
fact that we work in time-domain, and so the Trefftz functions are spacetime solutions.
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Hence, the method used to solve our problem naturally becomes a spacetime method
and the implementation of the method requires applying a spacetime integration. In
[24], E. Shishenina proposed to overcome this drawback by using the Tent-Pitcher al-
gorithm. This algorithm was introduced by Üngör and Sheffer in [35] for spacetime
hyperbolic problems, and then generalized by Erickson in [36]. It consists in meshing
the spacetime domain element-by-element, and then solving the problem inside these el-
ements, which are polygonal-based pyramids or less formally called tents. To be able to
transform our implicit scheme into a locally explicit one with this algorithm, the mesh
needs to follow certain constraints which are referred to as the causal constraint and
the progress constraint. Under these conditions, we are able to obtain a locally explicit
scheme and thus, reduce the computational cost. This algorithm has been explored in
many different applications, such as for the wave equation by Richter in [37], for hyper-
bolic conservation laws by Lowrie et al. in [38], by Yin et al. for elastodynamics analysis
in [39], by Monk and Richter for linear time dependent hyperbolic problems written as
a symmetric system [40], by Miller and Haber for hyperbolic heat conduction in [41],
by Gopalakrishnan et al. for deriving an explicit spacetime Finite Element scheme in
[42], by Howard for deriving an asynchronous spacetime Discontinuous Galerkin solver
in 3D+t in [43], by Moiola and Perugia in [26] and Stocker in [27] for the acoustic wave
equation and by Shishenina for acoustic, elastic and elastoacoustic wave propagation in
[24]. The most recent advances for the Tent-Pitcher algorithm concern the derivation of
cylindrical elements to which the tents of a Tent-Pitching spacetime mesh are mapped
by Gopalakrishnan in [44, 45]. The aim of this work is to be able to separate space
and time and apply classical methods in space combined with high-order time-stepping
methods. Moreover in the Tent-Pitcher algorithm, only the mesh front needs to be stored
instead of the whole spacetime mesh, which frees us from the drawbacks of spacetime
meshing without losing any advantages, such as spacetime mesh refinement. Many have
explored the spacetime mesh refinement in the framework of the Tent-Pitching meshes
([46, 47, 48, 49, 50, 51]), which is a very interesting feature for nonlinear equations but
also for seismic wave equations when different interfaces are present.

This thesis is composed of two main parts. The Part I introduces a Trefftz-DG
solver with Tent-Pitching applied to spacetime acoustic wave equations. We first present
the Trefftz-DG methods and the Tent-Pitcher algorithm and then derive the associated
variational formulation. Next, we describe the implementation in details for structured
meshes and its extension to unstructured meshes. Finally, we adapt it to a parallel
environment. We present numerical tests and results along with comparisons with a
classical Interior Penalty Discontinuous Galerkin method. The Part II addresses the
question of boundary conditions, in particular by introducing Perfectly Matched Layers
in the previously derived Trefftz-DG solver with Tent-Pitching. We analytically compute
solutions to the acoustic wave equation with Perfectly Matched Layers and use it to solve
the problem with the Trefftz-DG and Tent-Pitching method. To do so, we derive several
variational formulations and then present their implementation in details, along with
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numerical tests and results.

Scientific communications

• Spacetime Trefftz-DG formulation for elasto-acoustic wave propagation using Tent-
Pitching meshes, ECCOMAS – WCCM, 2020

• PML applied to spacetime Trefftz-DG numerical formulation for the acoustic wave
equation, ICOSAHOM, 2020

• PML applied to spacetime Trefftz-DG numerical formulation for the acoustic wave
equation, WINE, 2021 (POSTER)

• PML applied to spacetime Trefftz-DG numerical formulation for the elastic wave
equation, Mathias Days by TotalEnergies R&D, 2021

• Spacetime Trefftz-DG formulation for modelling wave propagation in unbounded
domains, ECCOMAS, 2022

• On the construction of shape functions for spacetime Trefftz-DG formulations of
wave problems with Perfectly Matched Layers, WAVES, 2022



Chapter 2

Introduction Générale

La simulation numérique des ondes trouve des applications dans de nombreux domaines,
tels que l’ingénierie mécanique, l’imagerie médicale, la modélisation des instruments de
musique, le contrôle non destructif, la sismologie, l’imagerie sismique et plus encore.
Cette thèse s’inscrit dans le contexte de l’imagerie sismique, qui consiste en la collecte
de données souterraines dans le but de cartographier la surface terrestre grâce à des
méthodes numériques utilisant celles-ci. Puisque ces données sont des ondes générées
par des sources se propageant et se réflechissant dans le domaine d’intérêt, ces méth-
odes s’inscrivent dans la famille des techniques de réflexion sismique. Ainsi, l’étude des
ondes sismiques revêt une importance cruciale. Ces ondes se propagent à travers le
sol et peuvent être des ondes de volume ou de surface. Les ondes de volume peuvent
être directes, réfléchies, ou réfractées et se propagent dans la matière, tandis que les
ondes de surface se propagent uniquement à la surface. Il existe deux types d’ondes
de volume : l’onde primaire P et l’onde secondaire S, ainsi que deux principales caté-
gories d’ondes de surface : les ondes de Rayleigh et les ondes de Love. Les ondes P
sont longitudinales, elles oscillent donc parallèlement à la direction de propagation. Il
s’agit d’ondes élastiques particulières, qui avancent plus rapidement que les ondes S et
peuvent se propager dans tous types de milieux. Les ondes secondaires oscillent per-

Figure 2.1: Acquisition sismique1

1Source: [1] Simulation de la propagation d’ondes élastiques en domaine fréquentiel par des méthodes
Galerkine discontinues, M. Bonnasse-Gahot, 2015
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Figure 2.2: Classification des ondes sismiques2

pendiculairement à la direction de propagation et, contrairement aux ondes primaires,
elles se propagent uniquement dans des matières solides. Le mouvement des ondes de
Rayleigh est une combinaison de ces deux types d’ondes. Les ondes de Love, quant à
elles, suivent un mouvement transverse horizontal, elles oscillent donc perpendiculaire-
ment à la direction de propagation. Les ondes de surface se propagent généralement plus
lentement que les ondes de volume.

Lors de l’acquisition sismique, des sources artificielles émettent des ondes en direction
du noyau interne, puis les ondes réfléchies sont réceptionnées par des capteurs générale-
ment placés à la surface, comme illustré sur la Fig.2.1. Les informations collectées sont
le plus souvent l’amplitude et le temps d’arrivée des ondes réfléchies. Il est alors possible
de construire une carte de vitesse dans le milieu à partir des résultats de la campagne
d’imagerie sismique, qui peut être menée aussi bien dans l’eau que dans le sol. Cette
carte de vitesse, aussi appelée modèle de vitesse, est plus ou moins précise suivant le
nombre de sources utilisées. Pour obtenir une carte du sous-sol et de ses caractéristiques
physiques, plusieurs méthodes numériques ont été développées et se distinguent par la
précision de la reconstruction. Les méthodes d’imagerie sismique les plus utilisées sont
la Reverse Time Migration (RTM) et la Full Waveform Inversion (FWI), qui reposent
toutes les deux sur la résolution numérique de l’équation des ondes. La RTM est une
technique de migration profondeur qui se compose de trois étapes: (a) propagation du
problème direct avec un modèle de vitesse approprié pour obtenir le champ propagé, (b)
rétro-propagation de la solution obtenue en utilisant les données récoltées comme condi-
tions initiales pour obtenir le champ rétro-propagé et (c) obtention de l’image du sous-sol
par superposition des champs propagé et rétro-propagé. La position des récepteurs est
déterminée à l’intersection des deux champs. De plus amples informations sur la RTM
en domaine temporel peuvent être obtenues dans [2, 3], et dans [4, 5] pour le domaine
fréquentiel. La FWI est une technique d’inversion qui fournit des informations quantita-
tives sur le milieu de propagation, au contraire de la RTM dont les informations extraites
sont qualitatives. Cette technique utilise le champ d’ondes complet afin d’obtenir une
image sismique à haute résolution. Sa mise en œuvre se fonde sur un procédé itératif

2Source: https://iris.edu/

https://iris.edu/
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permettant la minimisation d’une fonction coût, qui évalue la différence entre les données
numériques et les observations jusqu’à obtenir convergence vers le domaine de propaga-
tion. Le processus calculatoire de cette méthode est intensif, et repose sur une procédure
de minimisation (e.g. moindres carrés, descente de gradient, steepest descent) qui im-
plique la méthode adjointe. La solution du problème direct est donc au coeur de cet
algorithme, puisqu’elle décrit les problèmes direct et adjoint. Il convient de noter que la
FWI fait l’objet de recherches intensives en raison du caractère mal-posé des problèmes
d’inversion non-linéaires dont elle traite. Les paramètres physiques sont mis à jour à
chaque étape jusqu’à convergence du modèle et il est crucial de disposer de méthodes
numériques précises et à faible coût pour résoudre le problème direct. Nous retrouvons
une présentation de la FWI par Virieux et Operto dans [6], ainsi que par Brittan et al.
dans [7]. Cette méthode a été appliquée en domaine fréquentiel par Brossier et al. dans
[8] et en domaine temporel par Pratt et al. dans [9]. Travailler dans le domaine fréquen-
tiel facilite l’inversion de paramètres à valeurs complexes. De plus, la méthodologie de
calcul de solution en régime harmonique intègre l’utilisation d’un solveur direct qui per-
met une implémentation avec multiples second membres. Cependant la matrice discrète
obtenue étant généralement très grande, il est nécessaire de considérer des méthodes
numériques plus économes comme les approximations Galerkine Discontinues Hybrides
(HDG) (voir [1, 10]) et malgré cela, certains calculs à grande échelle restent inaccessibles,
ce qui rend les approches en régime temporel attrayantes pour étudier des applications
réelles. Les méthodes en domaine temporel permettent en effet de traiter de très grands
domaines en tirant partie du Calcul Haute Performance et, de nos jours, les principaux
défis de ce domaine portent sur l’efficacité et la performance du solveur direct, la gestion
des données et des domaines en 3D ainsi que la construction des modèles de vitesse.

Dans cette thèse, nous nous intéressons à l’efficacité et la performance de la résolu-
tion du problème direct. Ces propriétés sont particulièrement importantes dans le cas
de la FWI, qui est très sensible à la précision du champ propagé, dans la mesure où une
faible erreur dans la simulation numérique peut se transformer en un artefact. Ainsi,
cela motive la recherche de méthodes en domaine temporel plus rapides et plus pré-
cises. L’approche la plus courante pour la résolution de problèmes en domaine temporel
consiste à séparer le problème en espace et en temps. Le domaine spatial est d’abord
discrétisé pour obtenir un problème semi-discret formulé dans le cadre des méthodes de
type Éléments Finis. Ensuite, une méthode itérative explicite (e.g. Runge-Kutta) est
utilisée pour résoudre le problème en temps. Cette construction, utilisant les méthodes
Galerkine Discontinues (DG) et Runge-Kutta, est présentée dans [11], ainsi qu’utilisant
les méthodes Éléments Finis dans [12] et [13]. Cette approche s’est révélée efficace pour
les problèmes linéaires, en revanche elle présente de nombreux désavantages pour les
problèmes non linéaires. Par exemple, lorsque la solution du problème posé présente
des discontinuités, cette approche ne parvient pas à capturer celles-ci et produit des os-
cillations à proximités des discontinuités, contrairement aux méthodes de discrétisation
espace-temps. Ce phénomène est illustré dans le cas de l’impact d’une poutre élastique
homogène en une dimension contre un mur rigide par Hulbert et Hughes dans [14]. Un
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autre avantage de la discrétisation espace-temps face à la semi-discrétisation avec un
pas de temps provient de l’usage d’un maillage totalement non-structuré en espace et en
temps. Les méthodes de semi-discrétisation requièrent un maillage structuré en temps
car la même discrétisation en temps est utilisée à tous les pas de temps. Au contraire,
les méthodes de discrétisation espace-temps permettent l’utilisation d’un maillage non-
structuré à la fois en espace et en temps. Ainsi, il est possible de raffiner le maillage
autour des discontinuités (telles qu’un choc, un défaut ou une interface) et il est égale-
ment possible de raffiner le maillage adaptativement au cours du temps, tout en suivant
l’évolution des discontinuités. De plus, les méthodes espace-temps ont l’avantage de per-
mettre naturellement l’utilisation d’un pas de temps local quand celui-ci est contraint
par le pas en espace. Pour toutes ces raisons, les méthodes éléments finis espace-temps
ont fait l’objet de nombreuses recherches, comme par exemple dans [14, 15, 16, 17, 18].
Néanmoins, la question de la construction de maillages espace-temps se pose en rai-
son de sa complexité et son coût en mémoire. En effet, les problèmes espace-temps ont
une dimension supplémentaire (nD+t) par rapport aux problèmes en espace uniquement
(nD). En particulier dans le cas des domaines 3D, le coût de calcul et la consommation
mémoire augmentent considérablement.

Ce travail a été réalisé dans le contexte du programme de recherche collaboratif Depth
Imaging Partnership (DIP) entre l’entreprise TotalEnergies et l’équipe-projet Makutu
de l’Inria, de 2010 à 2022. Le projet DIP porte sur le développement des schémas
numériques d’ordre élevé pour l’imagerie sismique et la reconstruction de la structure
des sous-sols. Ces méthodes numériques reposent principalement sur des approximations
éléments finis discontinues du champ d’onde, comme dans les méthodes Galerkine Dis-
continu, car elles permettent de prendre en compte la géométrie et les caractéristiques
physiques du domaine étudié et sont propice à la parallélisation [19, 20, 21]. Cependant,
les méthodes DG souffrent d’un coût de calcul élevé en raison du nombre de degrés de
liberté, qui est doublé aux interfaces par rapport aux méthodes éléments finis classiques
par exemple. C’est pourquoi, réduire le coût des méthodes DG tout en conservant leurs
bénéfices est un sujet de recherche actif. C’est dans cette optique qu’ont été explorées les
méthodes HDG au sein du projet DIP. Dans celles-ci, nous exprimons le vecteur solution
comme un multiplicateur de Lagrange, représentant la trace de la solution numérique
sur le squelette du maillage. Le nombre de degrés de liberté est ainsi réduit par rapport
aux méthodes DG, sans toutefois en perdre les avantages [22].

Avec ce même objectif de réduire les coûts et améliorer la précision de la solution,
nous nous intéressons au méthodes de Trefftz en temps, qui ont été proposées par Trefftz
dans [23] et ont été explorées dans [24] dans le contexte du projet DIP, ainsi que pour
l’équation des ondes acoustiques en espace-temps dans [25, 26, 27] et pour de nombreux
autres problèmes dans [28, 29, 30]. Les méthodes de Trefftz ont été largement étudiées
en domaine fréquentiel pour les problèmes hyperboliques dans [31], ainsi que pour les
flexions de plaques et plaques épaisses dans [32], pour le problème de Helmholtz en deux
dimensions et le problème de Maxwell en trois dimensions dans [33, 34]. Leur principe
consiste en l’utilisation de solutions locales du problème étudié comme fonctions de base,
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dénommées fonctions de Trefftz (ou T-fonctions). Ainsi, la solution numérique devrait
être plus précise, car des caractéristiques des fonctions de Trefftz, telles que l’aspect
oscillatoire ou la longueur d’onde, seront injectées dans l’espace d’approximation. Dans
le cas où le système d’équations est auto-adjoint, la formulation variationnelle n’est
posée que sur le squelette du maillage, car les termes volumiques disparaissent. Le
nombre de degrés de liberté est donc fortement réduit par rapport aux méthodes DG.
C’est pourquoi les méthodes de Trefftz semblent être un bon choix pour la recherche de
méthodes plus rapides, sans toutefois perdre en précision. Malheureusement, le schéma
numérique obtenu en domaine temporel est implicite, par conséquent, il est nécessaire
d’inverser une grande matrice et le coût du calcul augmente malgré tout. En effet, comme
nous travaillons en domaine temporel, les fonctions de Trefftz sont des solutions espace-
temps. Ainsi, la méthode utilisée pour résoudre le problème devient naturellement une
méthode espace-temps et la mise en œuvre de la méthode nécessite d’effectuer une in-
tégration espace-temps. Dans [24], E. Shishenina propose de pallier cet inconvénient
par l’utilisation de l’algorithme Tent-Pitcher. Cet algorithme a été introduit par Üngör
et Sheffer dans [35] pour les problèmes espace-temps hyperboliques, puis généralisé par
Erickson dans [36]. L’algorithme consiste à mailler le domaine espace-temps élément
par élément, puis à résoudre le problème dans ces éléments, qui sont des pyramides à
bases polygonale aussi appelées tentes. Pour pouvoir transformer notre schéma implicite
en un schéma localement explicite, le maillage doit respecter des contraintes, appelées
contrainte de causalité et contrainte de progression. Dans ces conditions, nous pouvons
obtenir un schéma localement explicite et ainsi réduire considérablement le temps de cal-
cul. Cet algorithme a été appliqué à différents problèmes, comme l’équation des ondes
par Richter dans [37], pour la loi de conservation hyperbolique par Lowrie et al. dans
[38], par Yin et al. pour l’analyse élastodynamique dans [39], par Monk et Richter pour
les problèmes hyperboliques linéaires en régime temporel sous la forme d’un système
symétrique dans [40], par Miller et Haber pour l’équation de la conduction de la chaleur
hyperbolique dans [41], par Gopalakrishnan et al. pour obtenir un schéma explicite dans
le cadre éléments finis espace-temps dans [42], par Howard et al. pour obtenir un solveur
Garlerkin Discontinu espace-temps asynchrone en 3D+t dans [43], par Moiola et Perugia
dans [26] et Stocker dans [27] pour l’équation des ondes acoustiques et par Shishenina
pour l’équation des ondes acoustiques, élastiques et élasto-acoustiques dans [24]. Une
des avancées parmi les plus récentes pour l’algorithme de Tent-Pitching consiste en la
construction d’éléments cylindriques vers lesquels sont projetées les tentes du maillage
Tent-Pitching espace-temps, par Gopalakrishnan dans [44, 45]. Le but de ce travail
est de pouvoir séparer la dimension spatiale de la dimension temporelle et ainsi utiliser
des méthodes classiques en espace combinées à des méthodes en temps d’ordre élevé.
De plus dans l’algorithme Tent-Pitcher, seul le front du maillage doit être conservé en
mémoire et non l’ensemble du maillage, ce qui efface certains désavantages des mail-
lages espace-temps tout en conservant leurs avantages, comme la possibilité de raffiner
le maillage. Le raffinement du maillage Tent-Pitching espace-temps a été très étudié
[46, 47, 48, 49, 50, 51], ce qui présente un intérêt pour les équations non-linéaires, mais
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également pour les équations d’ondes sismiques comportant des interfaces.

Cette thèse se décompose en deux parties. La Partie I présente un solveur Trefftz-
DG avec Tent-Pitching appliqué à l’équation des ondes acoustiques en espace-temps.
Nous présentons d’abord la méthode de Trefftz-DG et l’algorithme de Tent-Pitcher,
puis nous dérivons la formulation variationnelle associée. Ensuite, nous décrivons en
détail l’implémentation pour des maillages structurés et son extension aux maillages
non-structurés. Enfin, nous l’adaptons à un environnement de calcul parallèle. Nous
présentons des tests numériques et des résultats que nous comparons à ceux obtenus
avec une méthode Interior Penalty Discountinuous Garlerkin. La Partie II traite des
conditions de bord, en particulier en introduisant des Couches Absorbantes Parfaitement
Adaptées (PML) dans le solveur Trefftz-DG avec Tent-Pitching décrit précédemment.
Pour ce faire, nous dérivons plusieurs formulations variationnelles et présentons en détail
leurs implémentations, ainsi que des résultats et tests numériques.
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Chapter 3

Introduction

One way to study complex phenomena is to mathematically model the problem through
partial differential equations and solve the obtained problem. However, for most of
the equations we obtain, we do not know how to solve them analytically. Instead, we
discretize the problem, in order to construct an approximation of the original equations.
This way, we can now numerically solve our problem and obtain approximate solutions.
Then, the question arises of the choice of discretization for the differential equations.

3.1 Finite Difference (FD) Method

Let us consider the Poisson equation with homogeneous Neumann boundary conditions
to illustrate the first choice of discretization, which consists in approximating the deriva-
tives: {

∆u = f , in Ω
u = 0 , in ∂Ω .

(3.1)

where Ω is the domain of interest and u(x, y) ∈ L2(Ω).

To discretize the Laplacian of u here, we consider several Taylor expansions of u as
follows:

u(x0 + h, y0) = u(x0, y0) + h
∂u

∂x
(x0, y0) + h2

2
∂2u

∂x2 (x0, y0) + ...

u(x0 − h, y0) = u(x0, y0)− h
∂u

∂x
(x0, y0) + h2

2
∂2u

∂x2 (x0, y0) + ...

By combining them, we obtain the following expression for the second-order derivative
in x:

∂2u

∂x2 (x0, y0) ≈ u(x0 − h, y0)− 2u(x0, y0) + u(x0 + h, y0)
h2

And in the same manner, we can obtain the second-order derivative in y:

∂2u

∂y2 (x0, y0) ≈ u(x0, y0 − h)− 2u(x0, y0) + u(x0, y0 + h)
h2
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ui,j ui+1,j

ui,j−1

∆x

∆y

Figure 3.1: Grid in 2D

If we consider a two dimensional grid with steps ∆x and ∆y as pictured in Fig. 3.1,
and define the solution at a point (i, j) of the grid as ui,j , we can discretize the problem
(3.1) as follows:

ui−1,j − 2ui,j + ui+1,j

∆x2 + ui,j−1 − 2ui,j + ui,j+1
∆y2 = f .

Discretizing the problem by approximating the derivatives as above is called the
Finite Difference method, which is a very well-known and a common approach. This
method has many advantages, such as its simplicity in both its implementation and
meshing process (we work on a simple Cartesian grid). They have been applied to many
problems and proven to be quite efficient and robust enough. For all these reasons, this
method is very popular among geophysicists, in particular for industrial cases which re-
quire seismic wave simulations. However, as can be seen quite straightforwardly, Finite
Differences are not very well suited for complex topologies, as it is quite complicated to
take into account discontinuities or variable grid size. Moreover, this method suffers from
numerical dispersion when the grid is too coarse compared to the wavelength. It has
been shown that we need ten points per wavelength in order to avoid this phenomenon,
and the study of the accuracy of this method can be found in [52].

3.2 Classical Finite Element Method (FEM)

Now, let us go back to (3.1) and look at another type of discretization, that consists
in approximating the solution in each subdomain of a triangulation of the domain of
interest, as a linear combination of piecewise continuous functions:

u ≈ uh =
∑

i

uiφi

To do so, we write a variational formulation of the studied problem by multiplying it
by a test function v chosen in an appropriate test space V , integrating it over Ω and
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integrating it by parts:

Seek u ∈ V , such that for all v ∈ V , it holds true:

a(u, v) = l(v)

where
a(u, v) = −

∫
Ω
∇u∇v +

∫
∂Ω

∂u

∂nv

l(v) =
∫

Ω
fv ,

(3.2)

where n is the space normal and V = {v ∈ L2(Ω) , v|∂Ω = 0 ,
∂v

∂xi
∈ L2(Ω) ∀i = 1, d}

with d the dimension of the problem.

Remark. System (3.2) is called a variational formulation, or weak form, because the
regularity needed for u is lower in this system than in the original one.

We then introduce a conforming triangulation Th of the domain Ω into non-overlapping
elements K, where the union of all elements span the whole domain. We can then write
the discrete variational formulation as follows:

Seek uh ∈ Vh, such that for all vh ∈ Vh, it holds true:

a(uh, vh) = l(vh)

where Vh(Th) = {uh|K ∈ C0, uh|K ∈ Pk , ∀K ∈ Th} ⊂ V and Pk is the space of poly-
nomials of order less or equal to k. The well-posedness of a variational formulation is
obtained if a(u, v) is continuous, coercive and bilinear and l(v) is continuous and linear,
as required for applying the Lax-Milgram theorem.

Choosing uh as a linear combination of the basis of Vh and choosing vh as the basis
itself leads to rewriting the variational problem as follows:

KU = F

where

Kij = −
∫

Ω
∇φi∇φj

Fij =
∫

Ω
fiφj

The matrix K and vector F consist of the assembly of analog matrices and vectors
KK and F K defined on the elements K of Th. Their size corresponds to the number
of degrees of freedom (DoF), which is the number of nodes at which the solution is
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Figure 3.2: Degrees of freedom for different polynomial order

approximated. In this context, we work with P1 polynomials, but we can easily use
higher-order polynomials which results in higher-order elements, thus more degrees of
freedom (see Fig. 3.2). Instead of computing each KK and F K for every element K,
we will compute the associated elementary quantities defined on a reference element,
thus obtaining Ke and F e. To do so, we define a mapping function T that transforms
local coordinates into reference coordinates as shown in Fig. 3.3. This function allows
us to compute Ke and F e, then map them to local coordinates in order to obtain KK

and F K . All is left now is to determine the basis functions φ needed to compute these
quantities, which have to ensure the continuity at the interfaces leading to:

φi(xj) = δij ,

with the symbol of Kronecker:

δij =
{

1 if i=j
0 otherwise

(0, 0) (1, 0)

(0, 1)

Fe

F

T

Figure 3.3: Transformation from a reference triangle to an arbitrary triangle

The method presented above is called the Finite Element method. It overcomes
some of the disadvantages of the Finite Difference method, because the mesh is not nec-
essarily Cartesian here, and is triangular or quadrilateral. In fact, triangular meshes fit
better into complex topologies and usually one can obtain high-order resolution with this
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method which is not the case with the Finite Volume method for example. However, this
method also suffers from poor dispersion properties, which can be improved (modified
integration rule, isogeometric elements) but has its limits. Moreover, the global matrix is
sparse but is not diagonal in general (even per block), which is an important feature, in
particular when considering time-dependent problems, as we would need to invert that
matrix at each time step. To overcome this problem, one can use additional techniques,
such as mass-lumping but this technique leads in a severe loss of convergence order.
Plus, even though the mesh is better for accommodating complex geometries, Finite
Element methods still impose constraints on the mesh, such as the continuity between
the elements.

Remark. Inverting an arbitrary matrix of size n using a classical algorithm can be done
in ≈ n3 operations, i.e. O(n3), while inverting a block-diagonal matrix of m blocks using

the same algorithm can be done in ≈ m×
(

n

m

)3
operations. These results are obtained

when performing a LU -decomposition on the considered matrix in order to invert it, and
of course, can be greatly improved. But one can see that the costs will always be reduced
when inverting a block-diagonal matrix than an arbitrary one. This is a strong feature
of the method we introduce in the next section.

3.3 Discontinuous Galerkin Method (DG)

Let us now go back to (3.2), where we consider discontinuous basis functions and consider
the problem on each element K and then sum the contributions on all elements, which
results in:

−
∑
K

∫
K
∇u∇v +

∫
Fext

(∇u · n)v +
∫

Fint
J(∇̂u · n)vK =

∑∫
K

fv ,

where we defined two categories of boundaries: F int and Fext, which correspond to the
internal facets shared by elements and the outer boundary respectively and JuK = u++u−

is the jump. Since our basis functions are discontinuous, we do not have to impose
continuity at the interfaces. But, we need to find a way to connect all the elements
together in order to retrieve a unique global solution, which is the role of the term∫

Fint
J(∇̂u · n)vK, where ∇̂u is the numerical flux approximating ∇u on the boundary.

The method presented above is called the Discontinuous Galerkin method. The
foundations of Discontinuous Galerkin methods are attributed to Ritz [53] and Galerkin
[54] and the method as we know it today was developed in the 1970s, in particular with
the resolution of the problem of neutron transport by Reed and Hill on triangular meshes
for first order PDEs [55]. The method was then widely used and spread among scientists
following the application of DG to hyperbolic problems by Cockburn et al.[56]. The
method was made popular by its use in the late 80s for the first time as a semi-discrete
scheme with a Runge-Kutta time integration scheme [11, 57]. It also has been applied to
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second-order PDEs, by rewriting them as a first-order system [58]. Many Discontinuous
Galerkin formulations adapted to the considered problem exist and in particular, one
can choose the numerical fluxes in many different ways, e.g. by adding boundary penalty
terms and hence producing a different formulation. This choice of fluxes can affect the
consistency, stability and conservative aspect of the scheme. A review on DG methods,
the different flux choices and how they affect the scheme can be found in [21], [59] and
[60].
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Figure 3.4: Distribution of Degrees of Freedom

As the name indicates and as explained before, the basis functions in this method are
discontinuous at the interface between two elements. Discontinuous Galerkin method
can be viewed as a discontinuous Finite Element method, or a high-order Finite Volume
method, or simply as a combination of both of these methods. This is a great advan-
tage, since it can adapt to very complex geometries (e.g. heterogeneities). This method
has many advantages, such as the fact that the solutions are piecewise smooth and dis-
continuous at the interfaces, the transmission conditions between elements are enforced
weakly, it is conducive to hp-adaptivity, and of course, the formulation is defined locally.
However, the number of degrees of freedom are doubled at the interfaces, hence leading
to a higher computational cost. Some advantages and drawbacks of different numerical
schemes are presented in Table 3.1.

In the end, none of these methods is perfect and we have to, either sacrifice the
precision of our solution or the computational time. Our aim is to find a method in
time-domain that can be fast and offer a good precision as well. Our candidate to try
and achieve this purpose is the Trefftz-DG method with the Tent-Pitcher algorithm for
the construction of spacetime meshes.

3.4 Trefftz Approach

Trefftz methods are numerical schemes that belong to the Finite Element family. They
were first introduced by Erich Trefftz in 1926 [23], and consist in using local solutions
of the studied problem as basis and test functions. Thus, the idea behind the Trefftz
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FD FV FEM DG

Implementation Very easy
●

Easy
●

Complex
●

Complex
●

Unstructured
meshes

Not
supported ●

Supported
●

Supported under
constraints ●

Very well
supported ●

Stiffness matrix Tridiagonal
or triangular ●

Mesh-
dependent ●

Sparse
●

Block-
diagonal ●

Number of DoF Low
●

Low
●

Low
●

High
●

Conservative Not
necessarily ●

Natural
●

Not necessarily
●

Locally
●

High-order Yes
●

No
●

Yes
●

Yes
●

Adaptive
hp-refinement Yes

●
No

●

Yes under
constraints ●

Yes
●

Explicit
semi-discrete

scheme
Yes

●
Yes

●
No

●
Yes

●

Table 3.1: Comparison of different numerical methods

approach is to use the knowledge we have of the definition of the solutions and then inject
it in our problem. A general definition given by Herrera [61] would be the following one:
Given a region of an Euclidean space of some partitions of that region, a “Trefftz Method”
is any procedure for solving boundary value problems of partial differential equations or
systems of such equations, on such region, using solutions of that differential equation
or its adjoint, defined in its subregions.

Trefftz methods were first applied to structural mechanics problems (e.g. calculations
of stress of beam). Trefftz formulations can be split into two categories: direct and indi-
rect methods. The difference lies in the expression of the global solution and thus, the
choice of trial and test functions. In indirect Trefftz formulations, the solution is approx-
imated by a linear combination of Trefftz functions, i.e. local solutions of the considered
PDE. Whereas in direct Trefftz formulations, we use the weighted residual method and
rewrite the governing equations as boundary integral equations. Here, the test func-
tions (i.e. weighted functions) are required to be solutions to the problem of interest.
Some of the most well-known Trefftz methods are the Trefftz-Discontinuous Galerkin
method (TDG), introduced in a general framework by Gabard in [31] for time-harmonic
hyperbolic problems. Another popular Trefftz method is the Ultra-Weak Variational
Formulation (UWVF), introduced by Cessenat and Desprès in [33, 34]. Trefftz methods
have been used in a wide range of applications, such as mechanics and fluid dynamics:
plate bending and thick plate problems [62], heat conduction problems [32], elasticity
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problems in [63], wave propagation problems and in particular, the first-order spacetime
acoustic wave equation is first introduced in [25]. A larger panel of Trefftz methods is
reviewed in [64] and [65].

Since we have to compute local solutions to each studied problem beforehand to use
as basis, numerous Trefftz functions exist. The basis functions that are the most used
in the litterature are plane waves, generalized harmonic polynomials (i.e. polynomial
solution to the Laplace equation) and fundamental solutions.

Remark. If we have two sets of Trefftz functions (i.e. two kinds of solutions) for a given
problem, we could use any one of them as basis. Moreover, any one of them could be used
with any kind of Trefftz variational formulation of the considered problem. This means
that if we had a Trefftz-DG formulation and a UWVF formulation, any Trefftz basis
could be used for any of the two formulations of the same problem. The only prerequisite
is for the basis functions to be solutions of the considered problem.

Most of the mathematical modeling problems cannot be solved without dividing
our domain of interest in subregions. This division is necessary, because otherwise we
obtain ill-conditioned mass matrices and in the case of Trefftz methods, we also need
a sufficient number of linearly independent basis functions in order to avoid obtaining
an ill-conditioned matrix. Moreover, as explained before, it is not always possible to
find analytical solutions on the entire domain. Thus, it is necessary to partition the
domain and compute numerical solutions, which involves continuity conditions along
the interfaces.
In contrast to classical numerical methods, Trefftz methods draw attention for two main
reasons:

• a lower number of degrees of freedom is needed,

• physical characteristics of the solution are incorporated into the discrete solution
of the problem (oscillatory aspect, wave number, ...).

When using a variational formulation, having local solutions of the considered problem as
basis functions generally leads to the volumic terms to vanish if the considered problem
is self-adjoint, which is the reason for the lower number of degrees of freedom. In that
sense, Trefftz methods resemble Boundary Element methods, which consist in rewriting a
PDE as boundary integral equations and thus, only involve elements on the boundary of
the considered domain. But compared to them, in Trefftz methods, computing singular
integrals (which is often complex) is not necessary.

However, Trefftz methods suffer from ill-conditioning due to the high linear depen-
dence between the basis functions and the fact that we need to know solutions to the
considered problem beforehand. This latter can be overcome by using Quasi-Trefftz
methods, which consist in using approximate solutions as basis functions and are cur-
rently increasing in popularity. This idea was introduced for Trefftz-DG methods applied
to wave problems in the form of Generalized Plane Waves by Imbert-Gérard and Desprès
in [66].
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3.5 Plan of Part I

In this thesis, we consider the Trefftz-DG method for transient wave propagation prob-
lems, in particular first-order acoustic wave equations, which is a subject that has raised
the interest of many, such as [24], [25], [26], [27]. We consider the problem accompanied
by the Tent-Pitcher algorithm for spacetime mesh construction in a parallel environment.
Thus, the plan of the first part of this thesis is as follows:

• Chapter 4 Trefftz-DG Method for Wave equations: in this chapter, we
present the considered acoustic wave equation and show its well-posedness. Then,
we explain how the Trefftz-DG method is derived, along with the presentation of
the considered Trefftz basis functions, which are exact polynomials in our case.
Finally, we will present the drawbacks of this method, which encouraged us to find
an alternative, which is the use of the Tent-Pitcher algorithm in the Trefftz-DG
framework.

• Chapter 5 Tent-Pitcher algorithm: in this chapter, we present the alternative
found to overcome some of the drawbacks of the previously introduced Trefftz-
DG formulation, which is the Tent-Pitcher algorithm. The general algorithm is
given in details, along with some historical background. After which, we present
the algorithms we specifically used in 1D+time and 2D+time, for structured and
unstructured meshes. Then, we present a variational formulation on Tent-Pitched
meshes, with demonstration that the variational formulation is well-posed.

• Chapter 6 Implementation: in this chapter, we explain in details each task we
carried out and how it was done. The different tasks we implemented were: the
Trefftz-DG method with Tent-Pitching for structured meshes, then for unstruc-
tured meshes and both of these cases in a HPC-environment.





Chapter 4

Trefftz-DG Method for Wave
equations

Waves are everywhere around us and there are many types of them. But before describing
them, let us first define a wave:

Waves

A wave is a disturbance that propagates gradually and originates from a vibration.
A wave can be characterized by its speed c, its frequency f , its angular frequency
ω = 2πf , its wavelength λ, its wave number k = 2π/λ.

From this definition, we can highlight three characteristics of a wave:

• the source: it is the initial disturbance that causes the propagation,

• the direction of propagation: it describes how the wave travels and its orientation,

• the medium: it is the environment in which the wave propagates.

We can distinguish two categories of waves based on the medium in which they prop-
agate. Mechanical waves need a medium to travel in, so they cannot propagate in
vacuum. The medium can be various, such as the air, water, gas, a solid and the speed
at which the wave travels will depend on the medium. Examples of mechanical waves
are water waves, sound waves or seismic waves as seen in the General Introduction. On
the contrary, electromagnetic waves do not need a medium to propagate in, thus
can also travel in vacuum. Examples of electromagnetic waves are infrared waves, radio
waves, x-ray waves, light waves, etc.

If we categorize mechanical waves based on their direction of propagation, we ob-
tain three types of waves: longitudinal waves, transverse waves and surface waves. A
longitudinal wave oscillates parallel to the direction of propagation, while a transverse
wave travels perpendicular to the direction of propagation. Surface waves, on the other
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hand, propagate on the surface of the domain and their amplitude decreases as they
travel further from the surface. These three types of waves are illustrated in Fig. 4.1.
In the category of seismic waves, for example, we saw that there are four types of waves:
primary waves, secondary waves, Rayleigh waves and Love waves. The first two are body
waves: the primary P-wave is a longitudinal wave, whereas the secondary S-wave is a
transverse one. Rayleigh and Love waves are surface waves.

Figure 4.1: Longitudinal, transverse and surface waves1

We can also distinguish progressive waves from stationary waves. A wave is progres-
sive when the front continuously advances in a direction and the amplitude decreases as
the front travels further (in 1D, the amplitude does not decrease and stays the same).
Whereas a stationary wave does not advance and stays at a fixed position and its ampli-
tude varies. These two types of waves are illustrated in Fig. 4.2 for the one-dimensional
case. The vibration of the string of a violin when being stroked is a stationary wave.
Acoustic waves and seismic waves are examples of progressive waves.

Figure 4.2: Progressive and stationary waves in 1D

1Source: CK-12 Foundation
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4.1 Acoustic wave equation

Acoustic waves fall in the category of mechanical waves and travel by transfer of energy
with a characteristic velocity, which depends on the medium in which they propagate.

To derive the acoustic wave equations, one needs to use three laws: the equation of
state, the conservation of mass and the conservation of momentum. Since we are working
with the linear acoustic wave equation, we will linearize these laws. Let us consider a
small volume of fluid dV .

x

y

z

P P + ∂P

∂x
dx

dx

Figure 4.3: Pressure applied to small volume of fluid

We consider the sum of pressure forces as illustrated on Fig. 4.3, the acceleration
as the time derivative of the velocity and using Newton’s second law, we obtain the
following:

ρ0
∂v
∂t

= −∇P ,

where P is the pressure, v represents the velocity field and ρ0 is the equilibrium density.
The linear continuity equation is written as follows:

∂s

∂t
+∇ · v = 0 ,

with s = ρ− ρ0
ρ

, where ρ represents the instantaneous density and s is assumed to be
very small. For fluids other than an ideal gas, the state equation can be represented by
a Taylor’s expansion:

P ≈ P0 +
(∂P

∂ρ

)
ρ0

(ρ− ρ0) + 1
2
(∂2P

∂ρ2

)
ρ0

(ρ− ρ0)2 + ...

where P0 is the equilibrium pressure. Since we are considering a small volume and
assuming that the fluctuations are small, only the lowest order term in (ρ− ρ0) needs to
be considered. Hence, we obtain for the pressure p:

p = P − P0 ≈ B
(ρ− ρ0)

ρ0
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where B = ρ0
(∂P

∂ρ

)
ρ0

= ρ0c2, with B, the adiabatic bulk modulus and c, the speed of
sound. Injecting this into the linear continuity equation, we finally obtain:

1
ρ0c2

∂p

∂t
+∇ · v = 0

Thus, leading to the linear first order acoustic wave equation, which can be written:
1

c2ρ

∂p

∂t
+∇ · v = f ,

ρ
∂v
∂t

+∇p = 0 .

(4.1)

To obtain the second order wave equation from these, one needs to derive the second
equation of (4.1) with respect to x and the first equation of (4.1) with respect to t, which
results in:

1
c2ρ

∂2p

∂t2 +∇ · ∂v
∂t

= 0 ,

ρ∇ · ∂v
∂t

+ ∆p = 0 .

(4.2)

Now, injecting inside the first equation of (4.2) the expression we find for ∇ · ∂v
∂t

in
the second equation of (4.2), we finally obtain the second order wave equation as follows:

∂2p

∂t2 − c2∆p = 0 .

In this framework, we will work with the first order acoustic wave equation, with a
second member f , initial conditions p0 and v0 and Neumann boundary condition gN :

1
c2ρ

∂p

∂t
+∇ · v = f in Ω ,

ρ
∂v
∂t

+∇p = 0 in Ω ,

v(·, 0) = v0, p(·, 0) = p0 in D × {0} ,

v · n = gN in ∂D × I .

(4.3)

with

x ∈ Rd, the vector of space coordi-
nates

t ∈ R+, the time coordinate,

p = p(x, t) ∈ L2(Ω), the pressure,

v(x, t) = (vx, vy) ∈ (L2(Ω))2, the ve-
locity,

f = f(x, t) ∈ L2(Ω), the source term,

T , the final time,
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D ⊂ Rd, the spatial domain,

I = [0, T ] ⊂ R+, the time interval,

Ω = D × I, the spacetime domain,

c, the wave speed,

ρ, the density.

4.1.1 Well-posedness

To prove the well-posedness of the Cauchy problem (4.3), we follow the framework of
the book [67] by Kreiss and Lorenz.

First, we need to introduce P (iω), which is obtained by substituting ∂

∂xj
for iωj ,

and is called the symbol of the differential operator P (∂/∂x) and we consider an arbitrary
Cauchy problem under the following form:

∂u

∂t
= P ( ∂

∂x)u , x ∈ Rd , t ∈ R+

u(x, 0) = u0(x) , x ∈ Rd , t = 0
(4.4)

We can now introduce the definition of well-posedness for (4.4) in terms of the symbol
as follows:

Well-posedness

The Cauchy problem (4.4) is well-posed, if ∃α , K constants, such that:

|eP (iw)t| ≤ Keαt ∀t ≥ 0 , ∀ω ∈ Rd ,

where eP (iw)t is an exponential matrix and | · | its module.

Following the concepts of hyperbolicity in [67], we have the following definitions:

Concepts of hyperbolicity

The Cauchy problem (4.4) is called

• weakly hyperbolic if ∀ω ∈ Rd, all eigenvalues of P (iω) are purely imaginary,

• strongly hyperbolic if the problem is well-posed,

• strictly hyperbolic if ∀ω ∈ Rd , ω ̸= 0, all eigenvalues of P (iω) are purely
imaginary and distinct.

Moreover, the following theorem holds and is demonstrated in [67]:

Concepts of hyperbolicity

Theorem 4.1. A strictly hyperbolic problem is strongly hyperbolic.
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Hence, showing that our system is strictly hyperbolic suffices to show that it is well

posed. Let U =

vx

vy

p

. The first order acoustic wave equations can be rewritten as:


1

c2ρ

∂U

∂t
= P (∂/∂x)U in Ω ,

U(x, 0) = U0(x) in D .

x ∈ R2

I = [0, T ]

where P (∂/∂x) =

 0 0 −∂/∂x

0 0 −∂/∂y

−∂/∂x −∂/∂y 0

, thus P (iω) =

 0 0 iωx

0 0 iωy

iωx iωy 0

. To

find the eigenvalues of the symbol, we search for the roots of the characteristic polynomial
by solving |P (iω − λ)| = 0, which results in:

|P (iω − λ)| = −λ3 − λ(ω2
x + ω2

y) = −λ(λ2 + |ω|2) = 0 .

We obtain three purely imaginary and distinct eigenvalues:

λ1 = 0 λ2 = i|ω| λ3 = −i|ω|

According to the concepts of hyperbolicity previously introduced, the first order
acoustic system is strictly hyperbolic, so strongly hyperbolic and thus, well-
posed.

4.2 Trefftz-DG Method

As presented in the previous chapter, there are many types of Trefftz formulations. In
our case, we decided to work with the Discontinuous Galerkin discretization.

As explained in the introduction, we will consider a variational formulation (or weak
form) of (4.3) in order to apply a numerical method and solve the problem in a Finite
Element framework. To obtain the weak formulation, we will proceed in a classical
manner and multiply our equations by wisely chosen test functions, after which we will
integrate them by parts.

First of all, we need to discretize Ω. Let Th be a triangulation of Ω composed of
non-overlapping spacetime elements K, with the following properties:

• Th = ∪K,

• K ∈ D × I,

• ∀K, K is not degenerate.
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In our case, we work with conforming meshes, such as the ones introduced in the previous
chapter in the Finite Element framework, thus K is a polyhedron and ∀K ̸= K ′, K ∩K ′

is either empty, or contains one single node or an entire edge. Let us also introduce the
approximate wavefields ph and vh, where:

lim
h→0
∥p− ph∥V = 0,

lim
h→0
∥v− vh∥V = 0.

V and V are the functional spaces in which the solutions are seek and we will explicit
them in the following subsection. We assume that the physical parameters are constant
per element.

4.3 Functional spaces

To construct suitable functional spaces for variationnally solving (4.3), we consider a
local variational formulation on a spacetime element K. For sake of simplicity, we will
omit h and keep the notations as p and v from now on. We thus begin with the following
expressions:

1
c2ρ

∫
K

∂p

∂t
q +

∫
K
∇ · vq =

∫
K

fq

ρ

∫
K

∂v
∂t
·w +

∫
K
∇p·w = 0

(4.5)

Here, (q, w) ∈ L2(Ω) × (L2(Ω))2 are the test functions and their functional spaces will
be defined later on.

We want our integrals in (4.5) to be finite, i.e., we want:

∂p

∂t
∈ L2(K), ∇ · v ∈ L2(K), ∂v

∂t
∈ (L2(K))d, ∇p ∈ (L2(K))d

Hence, we introduce V and V:

V =
{

p ∈ L2(Ω) | p ∈ H1(K)
}

V =
{

v ∈ (L2(Ω))d | ∇ · v ∈ L2(K) ,
∂v
∂t
∈ (L2(K))d

}
where H1(K) =

{
Φ ∈ L2(K) ,∇Φ ∈ (L2(K))d ,

∂Φ
∂t
∈ L2(K)

}
.

As a consequence, (4.5) is well-defined if we assume p ∈ V , v ∈ V.

Now that we have our functional spaces, we can move on to the next step, which
consists in integrating (4.5) by parts in order to derive its weak formulation.
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4.4 Variational Formulation

Following the above section and summing all equations of (4.5), we obtain:

−
∫

K

1
c2ρ

p
∂q

∂t
+ v · ∇q + ρv · ∂w

∂t
+ p∇ ·w (4.6)

+
∫

∂K

1
c2ρ

pqnt + vq · n + ρv ·wnt + pw · n

=
∫

K
fq

where n corresponds to the space normal and nt corresponds to the time normal. To
complete our DG discretization, we need to properly choose the numerical traces of
p and v, which are their respective values on ∂K and consist in making the elements
communicate. From now on, the traces (also called fluxes) obtained from the integration
by parts of the space derivatives will be denoted p̂ and v̂, and the ones obtained from
the integration by parts of the time derivatives will be denoted p̆ and v̆.
Before defining p̂, v̂, p̆ and v̆, we are going to decompose ∂K into various types of
boundaries and define them on each of these new frontiers.

t

x

Figure 4.4: Spacetime triangulation of Ω in 1D+t

Fe represents the internal element faces,

FD represents the domain boundary faces ∂D × [0, T ],

F0 represents the initial time faces D × {0},

FT represents the final time faces D × {T}.

We also introduce additional notations, similar to the ones in standard DG methods,
needed to define the numerical traces. We define the average {{·}}, the jump along the
space normal J·Kx and the jump along the time normal J·Kt between two elements K+

and K− for a piecewise-continuous scalar p and vector field v:
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{{p}} = 1
2(p+ + p−) ,

JpKx = p+n+ + p−n− ,

JpKt = p+n+
t + p−n−

t ,

{{v}} = 1
2(v+ + v−) ,

JvKx = v+ · n+ + v− · n− ,

JvKt = v+n+
t + v−n−

t .

K+ and K− represent two neighboring elements that share one common face. Thus,
p+ embodies the value of p in K+ and p− embodies the value of p in K−, likewise for
v+ and v−. The normals n+ and n− depict the outgoing space normals of K+ and K−

respectively, as can be seen in Figure 4.5 and the same goes for n+
t and n−

t , the time
normals.

K+
K−

(n−, n−
t )

(n+, n+
t )

Figure 4.5: Interface between two neighboring mesh cells

4.4.1 Numerical Fluxes

As is explained in [56], the choice of these numerical traces is crucial, as it can affect the
stability, consistency and accuracy of the method and even the convergence to the exact
solution in some cases.

As explained in details by Hesthaven in [21], in order to construct a numerical
method, one has to decide on an approximate solution. Two natural questions arise
on how to approximate the solution and in which sense will this approximation satisfy
the initial problem.

As in [21], let us consider the one-dimensional scalar conservation law as follows:

∂u

∂t
+ ∂f

∂x
= g, x ∈ Ω ,

with appropriate initial and boundary conditions on ∂Ω. Here, f(u) is the flux and g(x, t)
a forcing function. We introduce D, a tessellation of Ω, such that Dk = [xk, xk+1]. In
each element, we assume that we can express the solution u as a linear combination
of Lagrange polynomials and form the approximation uh (and the same applies for the
flux f). The idea here, is that we want the approximation uh to be as close as possible

to the solution u, thus, we want the residual Rh = ∂uk
h

∂t
+ ∂fk

h

∂x
− gk

h to vanish in each
cell Dk. We introduce a space of discontinuous test functions Vh and impose that Rh is
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orthogonal to all test functions in Vh, which gives us:∫
DK

(∂uk
h

∂t
+ ∂fk

h

∂x
− gk

h)ϕk = 0 , ∀ϕk ∈ Vh ,

where ϕk are the Lagrange polynomials. However, this problem is posed locally and
there is no way to recover the global solution yet. Let us perform an integration by

parts on
∫

DK

∂fk
h

∂x
ϕk which results in:

∫
DK

(∂uk
h

∂t
− fk

h

∂ϕk

∂x
− gk

h)ϕ = −[fk
h ϕk]xk+1

xk , ∀ϕk ∈ Vh .

The term on the right hand side is simply what connects all elements together, and is
nothing more than what we introduced as the jump. Indeed, element Dk and element
Dk+1 are linked by their endpoint xk+1, and this additional term requires the evaluation
of the flux at xk+1 for both of them. Hence, let us denote the numerical flux as f∗, which
is the only value we need at the interface, in order to make the elements communicate:∫

DK
(∂uk

h

∂t
− fk

h

∂ϕk

∂x
− gk

h)ϕ = −[f∗ϕk]xk+1

xk , ∀ϕk ∈ Vh , (4.7)

We understand here the role of the fluxes we always introduce in DG schemes, they
serve the purpose to retrieve the global solution by connecting the elements together
with appropriate conditions. As described later in [21], it is not the only purpose it
serves. The role of the flux is also to guarantee stability of the formulation. Indeed, if
the chosen approximation is a good one, (4.7) will be small. But if the approximation
is not done well enough, (4.7) will be big and either result in a more dissipative DG
method or in an unstable method, as is very well explained and detailed in [56]. In
order to compensate for these drawbacks, the jump is often penalized in order to ensure
stability, among other properties and the flux is usually written in the following form:
f∗ = {{uh}} + γJfh(uh)K + τ{{uh}}, where γ and τ are penalty terms, varying between 0
and 1.

In this framework, we choose the numerical traces like the classical DG ones, proven
to give good results. Thus, let us set the numerical fluxes as follows:(

v̂ · n
p̂

)
=
(
{{v · n}}+ β1JpKx

{{p}}+ α1JvKx

)
on Fe ,

(
v̆
p̆

)
=
(
{{v}}+ α2JvKt

{{p}}+ β2JpKt

)
on Fe ,

(
v̂ · n

p̂

)
=
(

gN

p + α1(v · nx − gN )

)
on FD ,
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(
v̆
p̆

)
=
(

1/2(v0 + v) + α2(v0 − v)
1/2(p0 + p) + β2(p0 − p)

)
on F0 ,

(
v̆
p̆

)
=
(

v
p

)
on FT .

We can notice the presence of penalty parameters α1, α2, β1 and β2. As mentioned
before, the choice of the fluxes can be crucial and so is the choice of these parameters.
Moreover, it was shown in [24], that the choice of non-zero parameters actually improves
the accuracy and convergence of the scheme. We use the most common parameters used
for classical DG methods, however, other possible choices have been explored by many.
Some of these choices are reviewed in [21, 60]. Let us recall that gN is the Neumann
boundary condition function and v0 and p0 are the initial conditions, i.e., they give the
values of v and p at initial time t = 0. To obtain our variational formulation, we are
going to inject the above defined numerical fluxes inside (4.6) and sum the integrals over
all elements K ∈ Th. Hence, here is our DG variational formulation:

Seek (v, p) ∈ V× V , such that for all (w, q) ∈ V× V , it holds true:

Adg(v, p; w, q) = ldg(w, q)

where

Adg(v, p; w, q) :=−
∑

K∈Th

∫
K

p
( 1

c2ρ

∂q

∂t
+ div w

)
+ v ·

(
ρ

∂w
∂t

+∇q
)

+
∫

Fe

1
c2ρ
{{p}}JqKt + ρ{{v}} · JwKt + {{v}} · JqKx + {{p}}JwKx

+
∫

Fe

β2
c2ρ

JpKtJqKt + ρα2JvKt · JwKt + β1JpKx · JqKx + α1JvKxJwKx

+
∫

FT

1
c2ρ

pq + ρv ·w

+
∫

F0
(0.5− β2) 1

c2ρ
pq + (0.5− α2)ρv ·w

+
∫

FD
pw · nx + α1(v · nx)(w · nx)

ldg(w, q) :=
∑

K∈Th

∫
K

fq

−
∫

F0
(0.5 + β2) 1

c2ρ
p0q + (0.5 + α2)ρv0 ·w

+
∫

FD
α1gN (w · nx)− qgN

Now that we have brought in all the DG-aspects of our method, it remains to introduce
the Trefftz space in which the basis functions will be chosen. As has already been
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explained before, the idea of the Trefftz method is to take solutions as basis functions.
Thus, our global Trefftz space can be defined as follows:

T(Th) =
{

(v, p) ∈ V× V, such that 1
c2ρ

∂p

∂t
+∇ · v = 0 and ρ

∂v
∂t

+∇p = 0 ∀K ∈ Th

}

Taking (q, w) in T(Th) leads to all volumic terms vanishing from (4.4.1). For simplicity,
from now on we will consider a homogeneous acoustic wave equation with homogeneous
Neumann boundary conditions, i.e. f = 0 and gN = 0. So, here is, at last, our
Trefftz-DG variational formulation for the acoustic system:

Trefftz-DG Variational Formulation

Seek (v, p) ∈ T(Th), such that for all (w, q) ∈ T(Th), it holds true:

Atdg(v, p; w, q) = ltdg(w, q)

where

Atdg(v, p; w, q) :=
∫

Fe

1
c2ρ
{{p}}JqKt + ρ{{v}} · JwKt + {{v}} · JqKx + {{p}}JwKx

+
∫

Fe

β2
c2ρ

JpKtJqKt + ρα2JvKt · JwKt + β1JpKx · JqKx + α1JvKxJwKx

+
∫

FT

1
c2ρ

pq + ρv ·w

+
∫

F0
(0.5− β2) 1

c2ρ
pq + (0.5− α2)ρv ·w

+
∫

FD
pw · n + α1(v · nx)(w · nx)

ltdg(w, q) :=−
∫

F0
(0.5 + β2) 1

c2ρ
p0q + (0.5 + α2)ρv0 ·w

+
∫

FD
α1gN (w · nx)− qgN

We can notice here that all volumic terms have disappeared from the variational
formulation, which is now only posed on the boundaries of the domain.

4.4.2 Wellposedness of our problem

To establish uniqueness and existence of a solution of a weak variational form, one uses
the Lax-Milgram theorem, which can be written as follows:
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Lax-Milgram

Theorem 4.2. Let (H, || · ||) be a Hilbert space. Let A be a bilinear form such
that:

• ∃M > 0, ∀u, v, A(u, v) ≤M ||u|| · ||v|| ⇔ A is continuous,

• ∃α > 0, ∀u, A(u, u) ≥ α||u||2 ⇔ A is coercive.

Let l be a linear continuous form.
There exists a unique u ∈ H such that ∀v ∈ H, A(u, v) = l(v).

Hence, to establish the well-posedness of our variational formulation, we need to
show that our bilinear form A(u, v) is continuous and coercive. To do so, let us first
define the following quantities:

|||w, q|||tdg =
∥∥∥α1/2

1 JwKx

∥∥∥2

L2(Fe)
+
∥∥∥β1/2

1 JqKx

∥∥∥2

L2(Fe)

+
∥∥∥α1/2

2 ρ
1/2JwKt

∥∥∥2

L2(Fe)
+
∥∥∥∥β1/2

2 ( 1
c2ρ

)1/2JqKt

∥∥∥∥2

L2(Fe)

+1
2

∥∥∥∥( 1
c2ρ

)1/2q

∥∥∥∥2

L2(FT )
+ 1

2

∥∥∥ρ1/2w
∥∥∥2

L2(FT )

+
∥∥∥∥β1/2

2 ( 1
c2ρ

)1/2q

∥∥∥∥2

L2(F0)
+
∥∥∥α1/2

2 ρ
1/2w

∥∥∥2

L2(F0)

+
∥∥∥α1/2

1 (w · n)
∥∥∥2

L2(FD)

|||w, q|||tdg+ =|||w, q|||2tdg

+
∥∥∥α−1/2

1 {{q}}
∥∥∥2

L2(Fe)
+
∥∥∥β−1/2

1 {{w}}
∥∥∥2

L2(Fe)

+
∥∥∥α−1/2

2 {{w}}
∥∥∥2

L2(Fe)
+
∥∥∥β−1/2

2 {{q}}
∥∥∥2

L2(Fe)

+
∥∥∥∥( 1

2β2
+ 1)1/2( 1

c2ρ
)1/2q

∥∥∥∥2

L2(F0)
+
∥∥∥∥( 1

2α2
+ 1)1/2ρ

1/2w
∥∥∥∥2

L2(F0)

+
∥∥∥α−1/2

1 q
∥∥∥2

L2(FD)

We can show that the semi-norms |||w, q|||tp and |||w, q|||tp+ define norms on the discrete
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space T(Th). We then have the following:

A(w, q; w, q) =
∥∥∥α1/2

1 JwKx

∥∥∥2

L2(F int)
+
∥∥∥β1/2

1 JqKx

∥∥∥2

L2(Fint)
+
∥∥∥α1/2

1 (w · n)
∥∥∥2

L2(Fext)

+
∥∥∥∥β1/2

2 ( 1
c2ρ

)1/2q|nt|
1/2
∥∥∥∥2

L2(F in)
+
∥∥∥α1/2

2 (ρ)1/2wx|nt|
1/2
∥∥∥2

L2(Fin)

+
∫

Fout

1
2nt

[ 1
c2ρ

(qnt)2 + ρ(wxnt) · (wxnt) + 2(qnt)(wx · n)
]
ds

Thus, the following result holds true:

Coercivity

Theorem 4.3. The following holds true ∀(w, q) ∈ T(K):

A(w, q; w, q) ≥ |||w, q|||2tp

Thus, A is a coercive bilinear form.

To prove continuity, we sum the norms of all terms in the bilinear and linear form
and apply the Cauchy-Schwartz inequality, which leads to the following:

Continuity

Theorem 4.4. The following holds true ∀(v, p), (w, q) ∈ T(K):

Atp(v, p; w, q) ≤Ctp
1 |||v, p|||tp|||w, q|||tp ,

ltp(w, q) ≤
[ ∥∥∥∥( 1

2β2
+ 1)1/2( 1

c2ρ
)1/2q

∥∥∥∥2

L2(F in)

+
∥∥∥∥( 1

2α2
+ 1)1/2(ρ)1/2w

∥∥∥∥2

L2(Fin)

]1/2

|||w, q|||tp

Thus, Atp is a continuous bilinear form and ltp is a continuous linear form.

Hence, since all conditions of the Lax-Milgram theorem are met, the variational for-
mulation has a unique solution.

The Trefftz-DG method is dissipative as it has been shown by Moiola and Perugia
in [68]. To do so, energy estimates E are calculated on two faces Σ1(x, fΣ1(x)) and
Σ2(x, fΣ2(x)), with fΣ a Lipschitz-continuous function whose Lipschitz constant L < 1/c

and fΣ1 ≤ fΣ2 . It is then shown that the following inequality between the two energy
estimates holds: E(Σ1) < E(Σ2).

Moreover, the norms we have introduced are mesh-dependent. Moiola and Perugia
also establish error bounds with mesh-independent norms in [68].
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4.5 Polynomial basis functions

We have not yet defined the discrete Trefftz space in which our basis is taken. As ex-
plained before, Trefftz functions need to be solutions to the governing equations, but
other than that, the choice of basis is quite flexible. For time-harmonic problems, com-
monly used Trefftz basis are plane waves and generalized harmonic polynomials. Trefftz
functions for non-stationary problems have been developed by many and for multiple
frameworks, such as the parabolic equation, the wave equation, the beam vibration, etc.
These Trefftz functions are surveyed in [69] by Grysa and Maciejewska. In this frame-
work, we use spacetime polynomials that are solutions to the acoustic wave equation.

There are many ways to find polynomial solutions to the wave equation. One of
them is described by Maçiag in [70], and consists in finding a generating function for
wave polynomials

g = ei(ax+by+dt) ,

which satisfies the second-order wave equation if d2 = a2 + b2. Then, g is expanded into
Taylor series, which results in:

g =
∞∑

n=0

n∑
k=0

n−k∑
l=0

Sn−k−l,k,l(x, y, t)an−k−lbkdl ,

where Sn−k−l,k,l(x, y, t) are spacetime polynomials. Replacing d2 by a2 + b2, we obtain:

g =
∞∑

n=0

n∑
k=0

n−k∑
i=0
i<2

Rn−k−l,k,l(x, y, t)an−k−lbkdl .

Each imaginary and real part of R satisfies the wave equation and thus forms the poly-
nomial basis for the wave equation. Using this idea, Shishenina ([24]) extended this for
the acoustic wave equation, which resulted in a spacetime wave polynomial basis for the
first-order acoustic wave equation.

Another way of deriving spacetime polynomial solutions is shown in [27] and [26]. A
spacetime polynomial R(x, t) =

∑
ak,αxαtk is searched as to satisfy the second-order

wave equation. Hence, the expression is injected into the wave equation and equal power
terms are collected.

In this framework, we use the polynomials obtained using the first method as de-
scribed in [24], and they can be found in Appendix A.

Hence, our global and local discrete Trefftz space can be written as follows:

Tp(Th) =
{

(v, p) ∈ T(Th), (v, p) ∈ Pp(K)d × Pp(K) , ∀K ∈ Th

}
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Tp(K) =
{

(v, p) ∈ T(K), (v, p) ∈ Pp(K)d × Pp(K)
}

where Pp is the set of polynomials presented in Appendix A of degree p and smaller, for
p = 1, 2, 3.

4.6 Drawbacks

When applying the previously presented Trefftz-DG method to solving the acoustic wave
equation, one is faced with some limitations. Indeed, as explained in [24], we end up
with an implicit scheme and a huge sparse matrix to invert. This situation is not ideal
and the computational costs are high. To overcome this, another presented approach is
the computation in time slabs, which results in a block-diagonal matrix, which is more
ideal than the previous sparse matrix and its inverse matrix is approximated. In fact, we
can see in Fig. 4.6 that this approach (denoted TDG2Dai and depicted in orange, where
ai stands for approximate inverse) leads to a better computational time than the first
approach (denoted TDG2Dei and depicted in gray, where ei stands for exact inverse).
But the computational costs arising from this method are still high and a new approach
needs to be found.

Figure 4.6: Time and memory limitations2

In the next chapter, we propose to solve the problem element-by-element, under
some constraints on the mesh. This stems directly from the hyperbolic nature of the
equations and boils down to applying the Tent-Pitcher algorithm to our problem. It has
already been explored in [24] for acoustic, elastic and elasto-acoustic wave equations on
structured meshes and in [26] and [27] for the acoustic wave equation on unstructured
meshes.

2Source: [24] Space-Time Discretization of Elasto-Acoustic Wave Equation in Polynomial Trefftz-DG
Bases, E. Shishenina, 2018



Chapter 5

Tent-Pitcher Algorithm

Using Finite Element approaches to solve time-dependent problems is classical and has
been widely explored and most of them consist in using a semi-discretization method.
This means that first, the space domain is discretized using Finite Elements, from which
we obtain a set of ordinary differential equations in time and then, we discretize the
obtained equations using a time-stepping method. Hence, we separate the problem in
two, discretizing the spatial problem first then discretizing the temporal problem second.
It is also possible to adopt the idea of discretizing the time derivatives first and then the
space operators, leading to the so-called modified equation technique (see for instance
[71] and the references therein).

In the case of Trefftz methods applied to transient problems, if we want to fully
exploit the potential of Trefftz formulations (i.e. the vanishing of volumic terms in the
variational formulation), we need to introduce spacetime solutions to the considered
problem. Thus, we cannot separate the problem in space and time and perform a semi-
discretization in space, followed by a time-stepping method. Indeed, the Trefftz-DG
method is based on the idea of using approximation spaces made of discontinuous func-
tions which are defined element-by-element as local solutions to the considered problem.
If we consider the Helmholtz equation or more generally wave equations in harmonic
regime coupled with simple boundary conditions (Dirichlet, Neumann, first order ab-
sorbing conditions), the associated variational problem is simplified by involving only
integral terms defined on the skeleton of the mesh, i.e., on the edges or faces of the
elements, and even more remarkably without involving any differential operator. This
property is an inheritance of the reciprocity property of the wave equations, a condition
itself inherited from the divergence formula. In the time domain, we can obtain the same
type of formulation and for that, we must absolutely write a variational formulation fully
in space and time. Indeed, we can then exploit the fact that the test functions are so-
lutions to the problem considered in each of the elements and thus reduce ourselves to
a problem posed on the skeleton of the mesh. Moreover, spacetime methods naturally
allow local time-stepping when the time step is constrained by the space step, which is
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advantageous.

The Trefftz-DG method applied to wave equations has been carried out by Shishenina
([24]) followed by Stocker ([27]) and it turns out that a direct solution of the variational
problem faces the difficulty of having an implicit scheme in time. This is a serious
drawback for applying this method to seismic imaging problems which are so memory
intensive that only explicit time schemes can be considered. It is therefore important to
find an integration method that makes the solution calculation explicit. In her thesis,
E. Shishenina proposed to apply a sort of time discretization which amounts to solve
the problem in slices for a given time step so that the scheme is explicit. But methods
proceeding by layers in time suffer from a global time step, which is constrained by the
smallest element in the initial space mesh, making them costly. This leads us to consider
other options, such as the more appealing element-by-element approach. In [24] and [27],
the Tent-Pitcher algorithm is considered and so do we.

The wave equations are hyperbolic equations, which means that their solution prop-
agates at finite speed. In other words, the wave field is defined at a point in spacetime
by the values of the wave field within a domain constrained by the values of the physical
parameters (typically the speed of propagation) and this domain is defined by respecting
the associated causality principle.

This property stems directly from Huygens’ principle, which explains the fact that
light propagates in a straight line. To demonstrate this statement, one needs to analyze
the following setup: a short signal is emitted from a point O(x, y, t0) (a shock) and is
perceived at a random point A(x, y, t2) after some time T , which is determined by the
ratio between the distance OA separating the two points and the wave propagation speed
c. Christian Huygens considered a middle point between O and A and the state of this
new point could entirely be determined thanks to the state of the initial perturbation
point. Then, the state of A could be determined using the new intermediate state. We
summarize this idea in the same way as in [72] as follows:

Huygens’ Principle

Let t0 be the moment when the initial perturbation occurs, t1 an intermediate
moment and t2 the final moment, at which we want to know the produced effect
from the shock.

A. To deduce the state at t2 from the known state at t0, we can first determine
the state at t1 and from it, deduce the one at t2.
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B. If the initial shock is located in the neighborhood of a point O, it will only
impact a neighborhood of a sphere S of center O and radius c(t1 − t0), where c

is the propagation speed.

C. At t2, the initial perturbation can be substituted by a series of perturbations
at t1 and properly distributed on the surface of S.

Not only is Huygen’s principle fascinating in itself and constitutes the foundation
of the wave theory of light, but it also raised many disagreements within the scientific
community which contributed greatly to the field. One can find much more details on
this subject in many works, one of which is by Hadamard[72]. This last one presents the
principle in a very interesting manner, along with historical facts concerning this matter.

We can see that Huygen’s principle perfectly depicts the above mentioned fact that
if the initial data are compactly supported, then the solution will also have a compact
support. This property, typical of hyperbolic equations, has led to the idea of considering
causal spacetime meshes composed of tents (triangles in 1d, pyramids with polygonal
base in 2d) whose construction is dynamic and orchestrated by a time advance that is
not necessarily the same in each tent. This approach is known as the Tent-Pitcher al-
gorithm and is combined with a numerical scheme. In this thesis, and as in most works
using Tent-Pitching, we consider a discontinuous Galerkin method which is conducive
to parallel computation and very efficient for high order approximations. The solution
is computed at each point of the tent and the values of the solution at the edges of the
tent are used as initial conditions to perform the computations in the neighboring tents
that follow in time. This method preserves the parallelization potential of DG methods,
since many tents can be solved independently. It was proposed in 2000 by Üngör and
Sheffer [35]. The height of each tent represents the time step and can be different for
each tent. Local-time stepping is thus possible which contributes to ensure the stability
of explicit integration while providing a lower computational cost.

In this chapter, we introduce the Tent-Pitcher algorithm and construct the variational
formulation for the wave equation that is actually solved later.

5.1 Domains of dependence and influence

In this section, we consider the 1D acoustic wave equation to illustrate its main properties
allowing the implementation of the Tent-Pitcher algorithm, especially the finite wave
propagation speed. We consider the second-order wave equation in one dimension, which
can be written:
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1
c2

∂2p

∂t2 −
∂2p

∂x2 = 0 , x ∈ R , t ∈ R+

p(·, 0) = p0 ,

∂p

∂t
(·, 0) = p1 .

The fields p0 and p1 represent the solution at time t = 0, so they are our initial solutions.
A general solution of this equation is given by the d’Alembert formula:

p(x, t) = 1
2(p0(x− ct) + p0(x + ct)) + 1

2c

x+ct∫
x−ct

p1(s)ds

According to this formula, we can see that if the support of p0 and p1 is in the inter-
val [−R; R], then the support of the solution is in the interval [−R − ct; R + ct], which
depicts the property of finite propagation speed. This formula also indicates that at a
point M = (x, t), the solution is fully determined from the knowledge of the initial data.

To illustrate these notions, let us consider a case as depicted in Fig. 5.1, where p0
and p1 have a compact support, i.e.,

p0, p1 ̸= 0 in [a, b]
p0, p1 = 0 elsewhere.

a bp0, p10 0

•
M

Figure 5.1: The initial condition vanishes outside [a, b]

In this case, we want to determine the solution p at M and so, we start by drawing
the lines along the characteristic varieties of the wave equation. Here, this means that
we draw the lines of slope ± 1/c passing through the point M , as depicted in Fig. 5.2a.

•
M

xbxa

slope=
1
c

slope= −
1
c

a b

(a) Domain of dependence

p0, p10 0

slope= −
1
c

slope=
1
c

p computable0 0

a b

(b) Domain of influence

Figure 5.2: Case 1
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The domain bounded by the dashed red lines is the domain of dependence of
the point M . According to d’Alembert’s formula, if the initial datum is known in the
interval [x− ct, x + ct], then one can compute the solution p at the point (x, t). In this
case, xa = x − ct , xb = x + ct and [xa, xb] = [xa, a] ∪ [a, xb]. By the definition of the
support of p0 and p1, they equal zero in [xa, a], whereas in [a, xb], they are non-zero
functions. Hence, the solution p(x, t) can be fully determined.

Thus, since the initial datum is known everywhere (either equal to zero or to a
non-null function), the solution can be determined at all points by following the same
method. By doing so, we obtain that the solution is non-zero in the interior domain
bounded by the red lines in Fig. 5.2b and zero elsewhere. This domain represents the
domain of influence of [a, b].

Hence, Fig. 5.3 represents the domains of dependence and of influence of a point M

(we refer the reader to [73] for a nice introduction of the domains of dependence and
influence).

Remark. The solution at point M is fully determined by the solution in its domain of
dependence. However, knowing the solution at M is only necessary and not sufficient for
finding the solution in its domain of influence. The domain of influence of M regroups
all the points that will be influenced by the solution at M in the process of finding their
own solution.

x

t

M•

domain of influence

domain of dependence

Figure 5.3: Domains of dependence and influence

Let us now assume that p0 and p1 are only defined in the interval [a, b] and unknown
elsewhere. Following the previous methodology, to find the domain in which the solu-
tion is computable knowing p0 and p1 in the interval [a, b], we will draw the domains
of influence of all points in [a, b] and take their intersection as depicted in Fig. 5.4a.
By doing so, we obtain the domain bounded by the red lines in Fig. 5.4b, which is the
domain of dependence of the point (x, t).

Thus, this depicts perfectly the idea conveyed by d’Alembert formula. If we want to
know the solution p at a point (x, t), we need to know the initial data at the bottom
of the triangle bounded by the lines x − ct, x + ct and t = 0. Taking this the other
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ba p0, p1

(a) Intersection of domains of influence of
points in [a, b]

p0, p1? ?

slope= −
1
c

slope=
1
c

p

computable

? ?

(b) Domain of
dependence

Figure 5.4: Case 2

way around, if p0 and p1 are known in an interval [a, b], we can determine the
solution p(x, t) at every point (x, t) in the domain formed by the lines x − ct,
x + ct and the segment [a, b].

If we have a 1D mesh with several cells, we will proceed in the same manner for all of
them and progress step-by-step using this notion of domain of dependence, provided that
we know the initial solution for all cells, which is the core of Tent-Pitcher algorithm.
Since the mesh’s construction depends on the wave propagation speed c, we call it a
causal mesh. Indeed, a mesh cell at time t cannot be constructed before its neighboring
mesh cells at time t− 1. Hence, to guarantee causality of a Tent-Pitching mesh,
all faces of a tent need to respect the following: c|n| ≥ nt, called the causality
constraint. This constraint is explained in the following.

The mesh cells in a Tent-Pitcher algorithm will be called tents from now on. To
fix notations for the rest of the thesis, let us separate the boundaries of a tent in two
categories:

• the initial faces where the solution is known will be referred to as inflow faces. For
example in Fig. 5.4b, the green cell is an inflow face, since we know the solution
on it and use it to compute the solution in the whole tent,

• the rest of the boundaries will be referred to as outflow faces. In this example,
the lines of slope ±1

c
of the tent are outflow faces, on which we will compute the

solution.

In practice, there exist other kinds of tents with additional types of boundaries. We
will explicit them at a later stage. It is also interesting to notice that the outflow faces
become inflow faces for the next layer of elements.
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5.2 Tent-Pitcher algorithm

The Tent-Pitcher algorithm originates from the previously described ideas and so, was
introduced for spacetime hyperbolic problems by Alper Üngör and Alla Sheffer in [35].
As explained above, the idea of this algorithm is to construct a causal mesh which re-
spects the wave propagation speed.

The idea of element-wise resolution is not new and has already been explored in [38],
but the proposed algorithm is based on an initial spatial quadrilateral mesh, which makes
it harder to fit complex geometries. The algorithms proposed by Üngör et al. [35] deal
with fully triangular unstructured spatial meshes, which are better-suited to complex
topologies. We will explicit the algorithm of Lowrie et al.[38] in section 5.4.1, as it is
the one used by Shishenina [24] that we mostly worked with in order to have a prototype.

Many spacetime meshing algorithms are based on a time-layer strategy (see [74] and
the references therein), but the Tent-Pitcher algorithm in [35] does not rely on layers and
advances the mesh element-by-element. Generally, methods proceeding by layers in time
suffer from a global time step, which is constrained by the smallest element in the initial
space mesh, which is the reason why an element-by-element resolution algorithm such
as the Tent-Pitching one is appealing. Let us explain how it works. The outer facets
of the mesh are referred to as a front and as in [35] an angle function α is introduced,
depicted in Fig. 5.5. For every point M of the mesh, α is determined by the boundaries
of the domain of influence of M . To ensure the causality of the mesh, each point M

has to respect the cone constraint. This means that the dihedral angles of each face of
the mesh with respect to the spatial domain need to be less or equal to α or equally,
c|n| ≤ nt. Indeed, this is equivalent to saying that the slope of each facet of the mesh
has to be less than 1/c, and we have that α = arctan |n|/nt ≤ arctan 1/c.

α

M

cone of influence

x

t

Figure 5.5: Angle function α

The general meshing and resolution algorithm is described in Algorithm 1. It con-
sists of an advancing front algorithm, which uses a Tent-Pitcher algorithm. It is used to
numerically solve a hyperbolic problem.
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First, let us define some terms:

- tentpole: the vertical line that connects a point M to its projection M ′ advanced
in time. M ′ = M + ∆t, where ∆t is the height of the tentpole,

- quality value: a value attributed to each node, based on the quality of a potential
tent on it,

- priority queue: structure for storing the nodes ordered by their quality value.

Algorithm 1: Meshing and resolution algorithm
• construct initial space mesh D at time t = 0;
while t ≤ T do

while domain D is not covered do
• advance front using Tent-Pitcher algorithm;

⋄ select a point to advance in time;
⋄ construct the tent by computing its tentpole height;
⋄ recompute the tents and their quality value;
⋄ add the new tent to the priority queue;

• solve numerical problem in newly created tents;
• update cone constraint;

end
• D ← front

end

Remark. We call the tentpole height "∆t", because when we extrude a point by the
chosen height, we actually advance it in time by that quantity. Thus, the tentpole height
is the time-step ∆t of the method. Notice that the time-steps are determined for each
tent, thus Tent-Pitcher algorithms naturally allow local time-stepping.

Let us explain some parts of this algorithm, particularly the computation of the
tentpole height ∆t and the selection of a pitch point.

The computation of ∆t is a crucial part, since it ensures the causality of the mesh.
Let M be the point we want to advance in time. Let us call star(M) all the points
connected to M and link(M) all the edges whose endpoints are in star(M), as shown
in Fig. 5.6. Each edge e ∈link(M) has a cone plane (plane that respects the cone
constraints of all points in e) that intersects with the tentpole. To find ∆t, we choose
the lowest intersection point between all cone planes and the tentpole.
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M

Figure 5.6: The nodes in purple represent the set star(M) and the edges in cyan
represent the set link(M)

To select a point to advance in time, there are several rules and strategies. First,
we have to ensure causality and then, we can choose a point as to optimize the mesh
quality. To do so, we have various options such as choosing the lowest node, maximizing
the tent volume... They are all presented in [35] and in our case, we use the lowest node
method to choose our point to advance in time; this will be presented in a later section.

In [36], Erickson et al. extended the algorithm of [35] to any simplicial space meshes.
Indeed, in the original Tent-Pitcher algorithm, the mesh can be fully triangular but each
triangle has to be acute, in order to guarantee progress of the mesh until any desired
time. In [36], an additional constraint is imposed to maintain progress of the mesh, and
thus use Tent-Pitching for any kind of simplicial mesh. The new constraint is called the
progress constraint. Consider a triangular face pqr, with p the point we want to pitch,
qr the remaining vertices of the triangle, the time components of each node of the face
t(p) , t(q) , t(r), with t(p) ≤ t(q) ≤ t(r) and the distance wp from point p to its opposite
side [qr]. The idea of the progress constraint is to make sure that the chosen pitch-point p

can always be advanced above the middle vertex q without violating the cone constraint.
Hence, the progress constraint can be described with the following inequality:

t′(p) ≤ t(r) + (1− ε)wp

where ε ∈ [0, 1/2] is a fixed constant and t′(p) is the time at which point p will be ad-
vanced. When choosing a point to pitch, we need to ensure that the progress constraint
is respected for all facets connected to the point in question.

In [44], Gopalakrishnan et al. introduce a new class of methods called Mapped Tent-
Pitching. The goal is to map the tents to a cylindrical element, to be able to separate
space and time and apply classical methods in space combined with high-order time-
stepping methods. The reason to do so is to obtain a fully explicit method, even within
a tent.
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In [75], Abedi et al. studied the case of elastodynamic wave propagation. When
shocks, cracks or fractures are involved, the problem becomes multi-scale. This multi-
scale property induces a need for mesh refinement, to be able to capture small-scale
phenomena. However, static refinement is not optimal, since it will be constrained by the
smallest scale and will result in high computational costs and other issues (dispersion, ...).
In this paper, the Tent-Pitcher algorithm is used to allow non-uniform mesh refinement
in space and time and avoid the above mentioned issues. The authors improved the
Tent-Pitcher algorithm and present an adaptive and parallel version up to 3D+time.
Since we are working in the homogeneous case, we do not have these issues, hence use
the regular algorithm.

5.3 Tent-Pitching in 1D+time

In this section, we would like to explain how we construct the mesh in 1D+time with
the Tent-Pitcher algorithm. We place ourselves in the setting of the resolution of an
acoustic wave equation with a Trefftz-DG method in 1D+t.

We have a 2D graph where the horizontal axis represents space x and the vertical
axis represents time t. We have five space cells; two of them have a wave speed c1 and
the remaining three have a wave speed c2. The grid size is not constant. The color green
means that the solution is known in the corresponding region. Here, we will proceed
in the same manner as in Section 5.1, where we explained the notions of domains of
dependence and influence based on the d’Alembert formula. So, we will use the center
of the cells as pitch points, unlike the works seen previously, where vertices of the space
mesh were pitched. From now on, when a line is depicted in green on a figure, it means
that the solution is known at all points on the line.

t

0 xc1 c1 c2 c2 c2

(a) Construction of the tents

t

0 xc1 c1 c2 c2 c2

(b) Computation of the
solution

Figure 5.7: First layer of the mesh

In Fig. 5.7a, we can see that several lines are already green. Indeed, the solution is
known at t = 0 (initial solution) and also on the domain boundaries (boundary condi-
tions).
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As previously, we construct the red tents, which are obtained by intersecting the
domains of influence of each point in the cells at t = 0. The red lines bounding each tent
have a slope of ± 1

c1
or ± 1

c2
, depending on the velocity in the corresponding space cell.

Thus, we obtain our first layer of tents and, as depicted in Fig. 5.7b, we can compute
the solution in each of them and depict them in green from now on.

t

0 xc1 c1 c2 c2 c2

(a) Construction of classical
tents

t

0 xc1 c1 c2 c2 c2

(b) Construction of boundary
tents

Figure 5.8: Second layer of the mesh

For the second layer, the previous outflow faces are now inflow faces for the new
tents. They are constructed in the same way, by drawing lines of slope ± 1

c1
or ± 1

c2
as

shown in Fig. 5.8a.

On the boundary of the domain, it works in the same way, except that we will only
have one line to draw. The second line is not needed since the boundary itself closes
the tent (see Fig. 5.8b). In this case, we have one inflow face and one boundary face
and in both cases, the solution is known. So, we can proceed as before and compute the
solution inside these tents as well.

t

0 xc1 c1 c2 c2 c2

(a) Interface of the domain

t

0 xc1 c1 c2 c2 c2

(b) Construction of the
heterogeneous cell

Figure 5.9: Heterogeneity

Now, let us see how to deal with the heterogeneous cell. As we can see in Fig. 5.9b,
the second and third cells have very different-sized tents, induced by their respective wave
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speed. It can be seen in Fig. 5.9a that the domain is separated into two subdomains
by a vertical dashed interface and each of them has its own wave propagation speed,
that we consider unvarying in time. In fact, since we work in a Trefftz environment,
we need to consider the fact that we use homogeneous solutions as basis, hence each
part of the domain will have its own set of basis. Hence, if we draw the lines along the
characteristic varieties of the equation for the heterogeneous cell, one line will intersect
with the interface before the other one does (see Fig. 5.9b). So, we obtain two possible
heights for our tent; we need to choose the smallest one in order to respect the causality.
In fact, if we chose the highest height, the tent would violate the cone constraint in its
left part, i.e., c|n| > nt.

t

0 xc1 c1 c2 c2 c2

(a) Construction of the tents

t

0 xc1 c1 c2 c2 c2

(b) Computation of the
solution

Figure 5.10: Second layer of the mesh

Thus, we have constructed our second layer and we can compute the solution inside
all these tents, using the solution computed in the first layer as initial solution, as can
be seen in Fig. 5.10b. We will keep constructing tents until we reach or exceed a time
T .

In the advantages of the Tent-Pitcher algorithm, we mentioned that it is very con-
ducive to parallel computing. Indeed, we can clearly see in Fig. 5.11 that two patches
can be computed independently.

t

0 xc1 c1 c2 c2 c2

Figure 5.11: The grey spacetime patches can be computed independently from each
other
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5.4 Tent-Pitching in 2D+time

Now that we have explained Tent-Pitcher algorithm in 1D+time in our framework, let us
see the process in 2D+time. Actually, the process is very similar and could be considered
as an extension of the one dimensional case, but it is not straightforward to visualize
how the mesh is constructed and what it looks like. That is why we will detail the 2D
case as well.

We will give the details of two different algorithms. In fact, the first version of our
code for the 2D+time problem works with a structured mesh and it is based on the same
algorithm as in [38]. Whereas the second version works with an unstructured mesh and
is similar to [36]. In practice, we are still following the same main steps for both of these
algorithms:

• choose a point to pitch,

• construct the new cell by extruding the said point by ∆t,

• compute the solution,

• interpolate the solution on the outflow faces.

And we repeat this process until all points reach or exceed a chosen time T .

The changes between the structured and the unstructured mesh mainly operate on
the choice of the pitch-point and the expression of ∆t, which is the tent-pole height.
In fact, for structured meshes we will pitch the center of a cell, whereas for unstruc-
tured meshes, we will choose a vertex of the mesh to be pitched. The reason why we
extrude the center of the cell for structured meshes, is because this gives us a way to
completely control the created elements in our mesh and hence, introduce an appropriate
reference element and be sure to keep a structured mesh at each step of its dynamical
construction. This would be more difficult to achieve if we choose a node of the mesh as
a pitch-point. In the unstructured case, we extrude nodes of the mesh, which leads to
bigger tents compared to the tents we would obtain if we extruded the center of the mesh
facets. Moreover and more importantly, since the underlying mesh is unstructured, if
we selected cell centers as pitch points at the beginning, we could not continue follow-
ing this concept for the next layers, since the lowest points in time would lie on edges
and/or nodes of the mesh. Hence, it is better to choose nodes of the mesh since it is a
choice that we can reproduce for every tent and is more adapted to unstructured meshes.

Let us now see the details of the Tent-Pitcher algorithm for both types of meshes.

5.4.1 Structured mesh

In the structured case, the mesh is a grid in space and then we extrude pyramids, tetra-
hedra and octahedra to form our mesh as we go. These are the only types of element we
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will have; we can also consider the octahedron as two pyramids, which reduces to only
having pyramids and tetrahedra. Thus, we can see that our algorithm for structured
meshes is the same as the one by Lowrie et al. in [38]. Let us explain in detail how it is
implemented.

Our initial spatial mesh is a grid as depicted in Fig. 5.12. We are going to refer
to the faces where the solution is known as inflow faces and the faces where we need
to compute the solution as outflow faces, in the same manner as in the 1D+time case.
So here, the space grid cells are inflow faces. In this algorithm, we choose the center of
each cell to be our pitch points, which means that the center of each quadrilateral will
be extruded. By doing so, we obtain pyramids, depicted in dark gray in Fig. 5.13. The
height at which we are going to extrude our points depends on the wave propagation
speed. Actually, the faces of the pyramids need to respect a certain slope: ±1

c
, i.e. each

face has to respect the following: c|n| ≥ nt. This is the cone constraint, which ensures
causality of the mesh. Since we are working with 2D facets, it is more accurate to speak
of angles than slope, as is done by Üngör et al. in [35].

Figure 5.12: Initial 2D space grid Figure 5.13: First layer of pyramids

After constructing the causal pyramid, we can compute the solution inside. To do
so, we only need to know the solution on the inflow face, hence on the corresponding
grid cell.

Remark. Notice that we can treat each pyramid simultaneously, i.e., construct the el-
ement and solve the problem in it at the same time as it is done for another element,
because each of them only depends on its respective initial data. We can see here why
the Tent-Pitcher algorithm is said to be very conducive to parallel computing.

Once we know the solution in the pyramid, we can interpolate it to obtain the solution
on the outflow faces. This will serve as initial solution for the next elements. The next
two steps consist in joining the pyramids’ summits to form two kinds of tetrahedra:
vertical tetrahedra (depicted in green in Fig. 5.17) and horizontal tetrahedra (depicted
in blue in Fig. 5.15). Each tetrahedron will use one face from each two neighbor pyramids
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Figure 5.14: Inflow faces of horizontal
tetrahedra

Figure 5.15: Second layer of horizontal
tetrahedra

Figure 5.16: Inflow faces of vertical
tetrahedra

Figure 5.17: Second layer of vertical
tetrahedra

as base and the solution on those faces will be the new initial solution. In other words,
the pyramids’ outflow faces become the tetrahedra’s inflow faces, which is illustrated
in Figs. 5.14 and 5.16. Two additional faces are constructed to form the tetrahedra.
Since they are made by joining two summits of the previous pyramids, we can see that
they have the same slope, hence respecting the causality. Once we have the solutions
inside the blue and green tetrahedra, we can proceed in the same manner as above
and interpolate them on the outflow faces. Using them as initial solution, we can solve
the problem inside the red octahedron. As before, the outflow faces of the tetrahedra
become inflow faces for the octahedra, as can be seen in Fig. 5.18 and the height of the
octahedron is chosen as to respect the causality constraint.

We proceed in the same way on the whole domain, and at this point, we end up with
several octahedra side by side. Actually, we are in the same setup as the initial pyramid
layer, only shifted by half a cell in both directions. This is the reason why we said that
the octahedra could also be considered as two pyramids; the first one would be upside
down and would give us a flat layer which is the initial grid shifted by half a cell in both
directions. So, we can go through the same steps again and join the octahedra summits
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Figure 5.18: Inflow faces of the
octahedra Figure 5.19: Third layer of octahedra

to form tetrahedra. We also get two kinds of tetrahedra (vertical and horizontal) but
again, they are shifted by a half-cell in both directions. Then, we can form a new layer
of octahedra, which will be placed in the same spatial position as the original pyramids.
We can consider this as one layer that will be repeated exactly through time. Thus, our
structured Tent-Pitching mesh is made by repeating these steps all over again, on the
whole domain, until we reach a desired time T .

Concerning the boundaries of the space-time domain, we will have to slightly modify
these elements by splitting them so they will fit the domain, as depicted in Fig. 5.20.

Figure 5.20: Splitted elements

5.4.2 Unstructured mesh

Working on structured meshes is ideal to gain time and to test a prototype without hav-
ing to worry about mesh-induced bugs. But in real-life problems, unstructured meshes
are best-suited. Indeed, it is easier to fit complex topologies and capture small details
when using unstructured meshes. That is why we developed a Tent-Pitching framework
for unstructured meshes. This work has also been done in [26] and [27] for the first-order
acoustic wave equation. It also has been applied to other types of hyperbolic systems, as
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mentioned above [44, 46]. However, the process is not the same as the previous one and
so, we will now present the second algorithm. In the unstructured case, the initial space
mesh is a triangular mesh. The main change is the choice of the point we will advance
in time. In the previous algorithm, we chose center of cells as pitch points. Here, we
will work more similarly to the algorithms presented in 5.2; we will choose a vertex of
the mesh as the point that will be advanced in time.

Figure 5.21: Initial space mesh at
t = t0

Figure 5.22: Choice of pitch point

In Fig. 5.21, we see the initial space mesh and the difference with the previous case
is very clear. Here we have triangles as explained before. Then, we will choose a point
to advance in time, depicted in red in Fig. 5.22.

Figure 5.23: Inflow faces of the tent Figure 5.24: Outflow faces of the tent

Once the point is chosen, we are going to extrude it. We will create a new set of
facets, that are obtained by connecting the extruded point to all the points connected
to it, i.e., all the points in its star, defined page 55 (see Fig. 5.24). Now that the tent
is constructed, we can compute the solution inside. The purple faces in Fig. 5.23 are
the inflow faces of the tent. The green faces in Fig. 5.24 are the outflow faces. We
proceed in the same manner for the whole space domain. To choose the pitch-point, we
use the lowest node technique. This means that we will choose the point which is at
a minimum in time and visually speaking, it is the lowest (or one of the lowest) point
of the mesh front. When having several points that fill this criterion, we add another
constraint, which states that the sum of the time components of star(node) has to
be minimal as well. In fact, if we do not impose for star(node) to respect this last
constraint, we obtain meshes resembling the one in Fig. 5.27. As we can see, the first
node to be pitched is the point A(xA, yA, tA) depicted in green on the figure, and then the
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Figure 5.25: Construction of tents
until space domain is covered Figure 5.26: Several layers later

purple point B(xB, yB, tB) is selected to be pitched, since it is a lowest node. However,
it violates the constraint on its star. Indeed, one of the points of star(B) is A, i.e.,
A ∈ star(B), hence the sum of the time components of star(B) is not a minimum, and
is actually equal to tA. This results in the solution of the second tent depending on the
solution of the first tent, whereas we could have constructed another independent tent.
Finally, we keep constructing tents and solving the problem until reaching or exceeding
T and obtain a mesh such as the one depicted in Fig. 5.26.

Figure 5.27: Choice of node to pitch with respect to star(node)

Now that we have presented the meshing process, we can derive a new variational
formulation adapted to the Tent-Pitcher algorithm and its elementwise computation.

5.5 Variational Formulation

To express the variational formulation for the Trefftz-DG method enriched with the
Tent-Pitcher algorithm, we will proceed in the same manner as in Chapter Trefftz-DG
Method for Wave equations. We multiply the system (4.3) by appropriate test functions
and then integrate the equations by parts, which results in equations (4.6). Then, we
need to determine the numerical fluxes and to do so, we will define again a set of bound-
aries, adapted to the Tent-Pitching framework, on which the different traces will exist.
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K K K

Figure 5.28: Classification of boundaries in Tent-Pitching

Fout represents the outflow faces,

F in represents the inflow faces,

Fext represents the domain boundary faces,

F int represents the internal boundary faces for heterogeneous domains.

As previously, let us now define the numerical fluxes as follows:(
v

p

)
=
(
{{v}}+ β1JpKx

{{p}}+ α1JvKx

)
on F int,

(
v

p

)
=
(

v

p

)
on Fout,

(
v

p

)
=
(

(0.5− α2)v + (0.5 + α2)v0
(0.5− β2)p + (0.5 + β2)p0

)
on F in,

(
v · nx

p

)
=
(

g

p + α1(v · nx − g)

)
on Fext,

Hence, using these flux definitions and taking our basis and test functions in Trefftz
spaces, we obtain the following Variational Formulation:
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Trefftz-DG Tent-Pitching Variational Formulation

Seek (v, p) ∈ T(Th), such that for all (w, q) ∈ T(Th), it holds true:

Atp(v, p; w, q) = ltp(w, q)

where

Atp(v, p; w, q) :=
∫

Fout
( 1
c2ρ

pq + ρv ·w)nt + vq · n + pw · n ds

+
∫

Fin
(0.5− α)ρv ·w + (0.5− β) 1

c2ρ
pq ds

+0.5
∫

Fin
vq · n + pw · n ds

+
∫

Fext
pw · n + α(v · nx)(w · nx) ds

+
∫

Fint
{{v}} · JqKx + β1JpKx · JqKx + {{p}}JwKx + α1JvKxJwKx ds

ltp(w, q) :=
∫

Fin
− (0.5 + α)

(
ρvin ·w

)
nt − (0.5 + β)

( 1
c2ρ

pinq

)
nt ds

− 0.5
∫

Fin
pinw · n + vinq · n ds

(5.1)

We can see that the variational formulation enriched with Tent-Pitching is different
from the Trefftz-DG formulation. In fact, we could think that the Tent-Pitching formu-
lation would reduce to writing the Trefftz-DG variational formulation for one cell, but
it is not the case. We actually need to adapt the fluxes, since here, the outflow faces
are the equivalent of the previous final-time faces but are not parallel to the space axis,
in the same way as the inflow faces are the equivalent of the previous initial time faces.
Hence, the fluxes need to be adjusted to a Tent-Pitching cell.

5.6 Properties of the scheme

The well-posedness of this Trefftz-DG Tent-Pitching scheme has been established by
Shishenina in [24] and by Moiola and Perugia in [68]. We recall here the main results.

In the same manner as in Chapter Trefftz-DG Method for Wave equations, to es-
tablish uniqueness and existence of a solution of a weak variational form, we use the
previously introduced Lax-Milgram theorem. Hence, to establish the well-posedness of
our variational formulation, we need to show that our bilinear form A(u, v) is continuous
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and coercive. To do so, let us first define the following quantities:

|||w, q|||tp =
[1− θ

2

∥∥∥∥( 1
c2ρ

)1/2q(nt)1/2
∥∥∥∥2

L2(Fout)
+ 1− θ

2

∥∥∥(ρ)1/2w(nt)1/2
∥∥∥2

L2(Fout)

+ θ

2

∥∥∥∥( 1
c2ρ

)1/2q(nt)1/2 + (ρ)1/2w(nt)1/2
∥∥∥∥2

L2(Fout)

+
∥∥∥∥β1/2

2 ( 1
c2ρ

)1/2q|nt|
1/2
∥∥∥∥2

L2(F in)
+
∥∥∥α1/2

2 (ρ)1/2wx|nt|
1/2
∥∥∥2

L2(Fin)

+
∥∥∥α1/2

1 (w · n)
∥∥∥2

L2(Fext)
+
∥∥∥α1/2

1 JwKx

∥∥∥2

L2(Fint)
+
∥∥∥β1/2

1 JqKx

∥∥∥2

L2(F int)

]1/2

|||w, q|||tp+ =
[
|||w, q|||tp

+ 1− θ

2

∥∥∥∥( 1
c2ρ

)1/2q(nt)1/2
∥∥∥∥2

L2(Fout)
+ 1− θ

2

∥∥∥(ρ)1/2w(nt)1/2
∥∥∥2

L2(Fout)

+
∥∥∥∥( 1

2β2
+ 1)1/2( 1

c2ρ
)1/2q

∥∥∥∥2

L2(Fin)
+
∥∥∥∥( 1

2α2
+ 1)1/2(ρ)1/2w

∥∥∥∥2

L2(F in)

+
∥∥∥α−1/2

1 q
∥∥∥2

L2(Fext)
+
∥∥∥β−1/2

1 {{w}}
∥∥∥2

L2(F int)
+
∥∥∥α−1/2

1 {{q}}
∥∥∥2

L2(Fint)

]1/2

The function θ is a piecewise-constant function, such that θ ≡ c|n|
nt

. We can see that
θ ∈ [0, 1). The semi-norms |||w, q|||tp and |||w, q|||tp+ define norms on T(Th). We then
have the following:

Atp(w, q; w, q) =
∥∥∥α1/2

1 JwKx

∥∥∥2

L2(F int)
+
∥∥∥β1/2

1 JqKx

∥∥∥2

L2(F int)
+
∥∥∥α1/2

1 (w · n)
∥∥∥2

L2(Fext)

+
∥∥∥∥β1/2

2 ( 1
c2ρ

)1/2q|nt|
1/2
∥∥∥∥2

L2(Fin)
+
∥∥∥α1/2

2 (ρ)1/2wx|nt|
1/2
∥∥∥2

L2(F in)

+
∫

Fout

1
2nt

[ 1
c2ρ

(qnt)2 + ρ(wxnt) · (wxnt) + 2(qnt)(wx · n)
]
ds

Thus, the following result holds true:

Coercivity

Theorem 5.1. The following holds true ∀(w, q) ∈ T(Th):

Atp(w, q; w, q) ≥ |||w, q|||2tp

Thus, Atp is a coercive bilinear form.

To prove continuity, we sum the norms of all terms in the bilinear and linear form
and apply the Cauchy-Schwartz inequality, which leads to the following:
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Continuity

Theorem 5.2. The following holds true ∀(v, p), (w, q) ∈ T(Th):

Atp(v, p; w, q) ≤Ctp
1 |||v, p|||tp|||w, q|||tp ,

ltp(w, q) ≤
[ ∥∥∥∥( 1

2β2
+ 1)1/2( 1

c2ρ
)1/2q

∥∥∥∥2

L2(F in)

+
∥∥∥∥( 1

2α2
+ 1)1/2(ρ)1/2w

∥∥∥∥2

L2(Fin)

]1/2

|||w, q|||tp

Thus, Atp is a continuous bilinear form and ltp is a continuous linear form.

Hence, since all conditions of the Lax-Milgram theorem are met, the variational
formulation has a unique solution.

5.7 Variational formulation C

In Part II of the thesis, we show that we struggle to obtain good results with the pre-
vious variational formulation, which encouraged us to look for another one. We present
here one of the variational formulations we tried out and that presented correct results,
which has the advantage to only be posed on the inflow boundaries of a tent, leading to
a reduced computational cost. Thus, it is an interesting formulation even in the frame-
work of the current Part I of the thesis.

To derive another variational formulation, let us go back to the variational formula-
tion (5.1), but without taking our test functions in a Trefftz space but in a regular space
V× V , which means that the volumic terms remain, as follows:

Seek (v, p) ∈ T, such that for all (w, q) ∈ V× V , it holds true:

A(v, p; w, q) = l(w, q)

where

A(v, p; w, q) := −
∑

K∈Th

∫
K

p
( 1

c2ρ

∂q

∂t
+ div w

)
+ v ·

(
ρ

∂w
∂t

+∇q
)

+
∫

Fout
( 1
c2ρ

pq + ρv ·w)nt + vq · n + pw · n +
∫

Fext
pw · n + α(v · nx)(w · nx)

+
∫

F in
(0.5− α)ρv ·w + (0.5− β) 1

c2ρ
pq + 0.5

∫
F in

vq · n + pw · n

+
∫

F int
{{v}} · JqKx + β1JpKx · JqKx + {{p}}JwKx + α1JvKxJwKx
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l(w, q) :=
∫

Fin
− (0.5 + α)

(
ρvin ·w

)
nt − (0.5 + β)

( 1
c2ρ

pinq

)
nt

−0.5
∫

Fin
pinw · n + vinq · n

Now, let us integrate the volumic term by parts again, which means that we obtain a
vanishing volumic term and a new boundary integral. Indeed, when integrating by parts
once more, since (v, p) is taken in a Trefftz space, i.e., is solution to the equations of
interest, the volumic integral vanishes. This results in:

A(v, p; w, q) := −
∑

K∈Th

∫
∂K

1
c2ρ

pqnt + vq · n + ρv ·wnt + pw · n

+
∫

Fout
( 1
c2ρ

pq + ρv ·w)nt + vq · n + pw · n

+
∫

Fin
(0.5− α)ρv ·w + (0.5− β) 1

c2ρ
pq

+0.5
∫

Fin
vq · n + pw · n

+
∫

Fext
pw · n + α(v · nx)(w · nx)

+
∫

F int
{{v}} · JqKx + β1JpKx · JqKx + {{p}}JwKx + α1JvKxJwKx

(5.2)

Now, we decompose the obtained boundary integral (depicted in bold in (5.2)) into
several kinds of frontiers: outflow boundaries, inflow boundaries, internal faces and
external boundaries. We inject the expressions of the fluxes for the outflow frontiers
only, which gives the following:

A(v, p; w, q) := −
∫

Fin
(0.5 + α)ρv ·wnt + (0.5 + β) 1

c2ρ
pqnt

−0.5
∫

Fin
vq · n + pw · n

+
∫

Fext
α(v · nx)(w · nx)

+
∫

F int
JvKx{{q}}+ β1JpKx · JqKx + JpKx · {{w}}+ α1JvKxJwKx

We can see that the outflow integrals cancel each other out, and we finally obtain the
following variational formulation, that we denote Variational Formulation C :
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Trefftz-DG Variational Formulation C with Tent-Pitching

Seek (v, p) ∈ T, such that for all (w, q) ∈ V× V , it holds true:

A(v, p; w, q) = l(w, q)

where

A(v, p; w, q) :=
∫

F in
(0.5 + α)ρv ·w + (0.5 + β) 1

c2ρ
pq

+0.5
∫

F in
vq · n + pw · n

+
∫

Fext
α(v · nx)(w · nx)

+
∫

Fint
JvKx{{q}}+ β1JpKx · JqKx + JpKx · {{w}}+ α1JvKxJwKx

l(w, q) :=
∫

F in
(0.5 + α)

(
ρvin ·w

)
nt + (0.5 + β)

( 1
c2ρ

pinq

)
nt

+0.5
∫

F in
pinw · n + vinq · n

Notice that the resulting formulation is only posed on the inflow boundaries and
that only the basis functions are taken in the Trefftz space T. This means that this
variational formulation is valid for any kind of test function in V× V .

Now that we have introduced our different variational formulations, the next chap-
ter will be devoted to explaining their implementation in details and present numerical
results. The implementation consists in several tasks, following the different cases pre-
sented in the present and previous chapters: Trefftz-DG method with Tent-Pitching on
structured meshes, then on unstructured meshes and in a HPC-environment afterwards.
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Implementation

In this chapter, we explain in details how the implementation has been done, in order
for our algorithms to be fully reproducible. We accomplished several tasks and their ul-
timate goal was to improve the Trefftz Discontinuous Galerkin Tent-Pitching 2D+time
solver. This latter has been implemented by Elvira Shishenina ([24]) for the acoustic,
elastic and elastoacoustic wave equations in Matlab/Octave for structured meshes. It
has also been implemented by Paul Stocker [27] for the acoustic wave equation on un-
structured meshes with Thread-Based Parallelism, which is performed on machines with
shared memory. Since this thesis falls within the context of the DIP project (presented
in the General Introduction), the foreseen applications were geophysical applications for
industrial cases. Hence, the considered domains are very large, thus shared memory
parallelism is not adapted and it is better to use distributed memory parallelism.

We were provided with the aforementioned Matlab/Octave code and used it as a
base to carry out our tasks, which we will specify now.

Task 1: Extension to Fortran
As explained, we work on a Matlab/Octave code that contains a Trefftz-DG solver with

Tent-Pitching on structured meshes. Although Matlab/Octave is a good choice for quick
prototyping, the execution is generally slower and less efficient in a parallel environment
compared to Fortran. In fact, Fortran is HPC-friendly and allows us to integrate many
tools (METIS, Lapack, MPI...) more easily. Hence, our first task consists in porting the
code to Fortran, having in mind to illustrate the potential of the method on industrial
cases.

Task 2: Extension to unstructured meshes
The second task consists in extending the solver to unstructured meshes. Working

on a structured mesh has many advantages, such as avoiding mesh-induced errors and
having a faster execution, but it is not adequate for complex/non-square geometries,
as it is the case in geophysics. Hence, we adapt our methods to triangular meshes, in
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particular we need to design the Tent-Pitcher algorithm accordingly. To do so, we will
mostly base ourselves on the algorithm introduced by Erickson et al. [36].

Task 3: Parallelism with MPI for structured case
In seismic applications, like the ones presented in the General Introduction, we often

deal with very large domains and depending on the level of details we want, the com-
putational time can become very large. This explains the need for the third task, which
consists in parallelizing the code using MPI. In order to have a prototype, we parallelized
the solver with structured meshes first.

Task 4: Parallelism with MPI for unstructured case
This task is similar to the previous one. It also consists in parallelizing the solver

using MPI, but on unstructured meshes. In practice, the task is not carried out in the
same way whether working on structured or unstructured meshes and ends up being
easier on structured meshes. Which is why this consists of a task in itself and deserves
an explanation as well.

Tests & Comparison
This last section serves the purpose of testing all these developments. We will test

the accuracy, convergence, scalability of the different codes and then compare them to
an IPDG solver in time domain.
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6.1 Task 1: Extension to Fortran

Figure 6.1: Flowchart

Our first task is to implement the already existing Trefftz-DG Tent-Pitching solver in
Fortran. To do so, we created a new Git repository named 10PWaTTS and constructed
our code following the flowchart 6.1. In order to build the program, we used CMake
to automate the compilation and linking process, which facilitates the use of external
libraries, such as MPI, METIS, Lapack, etc. This makes the compilation process in-
dependent from one’s computer setup, hence allowing to share a code more easily. An
example of CMake file can be found in Appendix C.

Each cell of the flowchart corresponds to a Fortran SUBROUTINE or MODULE, and we
can see the order in which each of them is called. In the following, each task will have
its own flowchart and we will use the flowchart 6.1 as a basis, to have an overview of the
major differences that occur between each version of the solver.

6.1.1 Parameters & weights

This first step comprises the initialization of all necessary parameters such as the:

• domain sizes Lx, Ly and final time Lt,
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• number of cells in each direction, nx, ny and thus, the space steps ∆x, ∆y,

• time step ∆t, which we obtain through the Tent-Pitcher algorithm,

• order of approximation of basis functions, which are polynomials here,

• physical parameters, such as the wave propagation speed c and the density ρ,

• boundary conditions, which can be homogeneous Neumann conditions or first order
absorbing boundary conditions,

• penalty parameters α and β.

As we have explained in the previous chapters, we need to introduce a weak form in
order to solve our problem numerically, which involves integrals. Hence, we need a way
to perform those integration numerically and we will use the Gauss quadrature to do so.
The idea here is to make a judicious choice of integration points and weights, such that
we can approximate I as follows:

I =
∫ b

a
f(x)dx =

n∑
i=1

wif(xi) + E ≈
n∑

i=1
wif(xi).

The points xi and the weights wi are chosen in order to minimize the error E and
thus, maximize the accuracy. These integration points and weights are well-known, so
we simply initialize them to be able to perform our various integrations. They are ob-
tained by mapping the points from a reference triangle to an arbitrary one, thanks to
a mapping function. The quadrature we use is of order 21 and the weights and points
can be found in Appendix B and are obtained following the framework by Zhang in [76] 1.

In our case, we need the integration formula for 2D triangles. Indeed, we solve the
2D+time problem but since we use Trefftz functions, we only need to perform the com-
putations on the boundary faces of our elements, which are triangles. Fig. 6.2 shows
the distribution of integration points on the triangular boundary faces of a tetrahedron.

In order to use the 2D integration formula on a surface defined in spacetime, we need
to use a mapping function T and more details are provided in the equation (6.3).

6.1.2 Elementary matrices

Equation (5.1) can be rewritten as the following system:

M

(
p

v

)
= K

(
pin

vin

)
1Their source code, and in particular the quadrature implementation, can be found in http://lsec.

cc.ac.cn/phg/index_en.htm

http://lsec.cc.ac.cn/phg/index_en.htm
http://lsec.cc.ac.cn/phg/index_en.htm
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Figure 6.2: Gaussian quadrature points on a tetrahedron

Or equivalently as:
MUn = KUn−1 (6.1)

with
Mij =

∫
Fout

( 1
c2ρ

ϕp
j ϕq

i + ρϕv
j · ϕw

i

)
nt +

(
ϕp

j ϕw
i + ϕv

j ϕq
i

)
· n

+ γ

∫
F in

( 1
c2ρ

ϕp
j ϕq

i + ρϕv
j · ϕw

i

)
nt +

(
ϕp

j ϕw
i + ϕv

j ϕq
i

)
· n

= Mout + M in

Kij = (1− γ)
∫

F in

( 1
c2ρ

ϕp
j ϕq

i + ρϕv
j · ϕw

i

)
nt +

(
ϕp

j ϕw
i + ϕv

j ϕq
i

)
· n

(6.2)

M =


M11 . . . M1N

... . . . ...
MN1 . . . MNN

 K =


K11 . . . K1N

... . . . ...
KN1 . . . KNN


where N = dof, is the number of degrees of freedom considered in the problem.

The vector Un is the solution vector at time t = n∆t and Un−1 corresponds to the
solution at the previous time step. The functions ϕ are the basis functions associated
with p, v, q and w and as discussed before, we use polynomial basis functions in this
case. The matrix Mout corresponds to the integral in M posed on Fout, which are the
outflow boundaries as explained in Chapter Tent-Pitcher Algorithm. Whereas M in cor-
responds to the one posed on F in, which are the inflow boundaries.

The mesh we work with is a structured mesh composed of four types of elements:
pyramids, vertical tetrahedra, horizontal tetrahedra and octahedra, which are the same
as the ones presented in Section 5.4.1. They are all the same throughout the mesh,
only their location varies. Hence, we will use these four elements as reference elements
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and compute the elementary matrices for each of them. The reference elements are con-
structed such that x ∈ [−∆x

2 ,
∆x

2 ], y ∈ [−∆y

2 ,
∆y

2 ] and t ∈ [−∆t

2 ,
∆t

2 ] and are depicted
in Fig. 6.3.

(a) Pyramidal
reference element

(b) Horizontal
tetrahedral reference

element

(c) Vertical
tetrahedral reference

element
(d) Octahedral

reference element

Figure 6.3: Reference elements

As discussed before, since we are working with Trefftz polynomials, we only need to
perform the various computations on the skeleton of the mesh. Here, all the elements’
boundaries are triangles, or can be decomposed into two triangles.

So, we will break down the computation of the elementary matrices into two steps:

1. Compute M and K on a triangle defined in 3D using a mapping function T to
transform 2D coordinates to 3D coordinates: we will call them Mf and Kf ,

2. Compute Mf and Kf for every face of each reference elements and then sum each
matrix on each face of a reference element to obtain its corresponding elementary
matrix. We will add the suffix −p, −ht, −vt and −o to the matrices correspond-
ing to the pyramid, horizontal tetrahedron, vertical tetrahedron and octahedron
respectively.

First step: The first step consists in defining a transformation T between a triangle
F and its spatial projection Fe, in order to be able to compute Mf and Kf in function
of M e and Ke respectively. This process is illustrated in Fig. 6.4.

Let T be a bijective linear function, such that:

(x, y, t) = T (ξ, η, 0) (6.3)

where (x, y, t) ∈ F and (ξ, η, 0) ∈ Fe. In other words, T transforms the reference
coordinates (ξ, η, 0) into real coordinates (x, y, t). The basis functions in the reference
element are such that:

ϕe = ϕ ◦ T (ξ, η, 0)
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x

y

t

Figure 6.4: Transformation from a 3D triangle (depicted in blue) to a 2D triangle

where the set {ϕ} represents the set of basis on F . From this, we can deduce that
ϕ = ϕe ◦F−1, and knowing the formula for a change of variable in an integral, we obtain
that: ∫

ϕ dxdydt =
∫

ϕedet(JF )dξdη

where JF is the Jacobian matrix of the transform. Since we are working with triangles,
det(JF ) = 2|F|, where |F| is the area of the triangle. Hence,

Mf = 2|F|M e Kf = 2|F|Ke

where

M e
ij =

∫
Fout

( 1
c2ρ

ϕpe
j ϕqe

i + ρϕve
j · ϕwe

i

)
nt +

(
ϕpe

j ϕwe
i + ϕve

j ϕqe
i

)
· n

+ γ

∫
Fin

( 1
c2ρ

ϕpe
j ϕqe

i + ρϕve
j · ϕwe

i

)
nt +

(
ϕpe

j ϕwe
i + ϕve

j ϕqe
i

)
· n

Ke
ij = (1− γ)

∫
Fin

( 1
c2ρ

ϕpe
j ϕqe

i + ρϕve
j · ϕwe

i

)
nt +

(
ϕpe

j ϕwe
i + ϕve

j ϕqe
i

)
· n

M e =


M e

11 . . . M e
1N

... . . . ...
M e

N1 . . . M e
NN

 Ke =


Ke

11 . . . Ke
1N

... . . . ...
Ke

N1 . . . Ke
NN


and N = dof, is the number of degrees of freedom considered in the problem.

Let us notice that, since the mesh is structured and composed of identical elements
overall the domain, all elements are made of the same set of triangles. Thus the surface
of a given facet will be identical for every pyramids of the mesh, and likewise for the
tetrahedra and octahedra.
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Second step: We can now compute Mf and Kf on each face of the pyramid, tetrahe-
dra and octahedron and sum them on their respective elements to obtain the elementary
matrices.

Figure 6.5: Reference pyramid

For the pyramid, we have four outflow tri-
angles, which are depicted in blue in Fig.
6.5. The square base of the pyramid is cut
into two triangles, depicted in red. Thus,
Mp is obtained by summing (Mf )out on the
four outflow faces and (Mf )in on the two
base triangles. Kp is only defined on the in-
flow faces, as can be seen from expressions
(6.2), hence we sum Kf on the inflow trian-
gles only:

Mp =
2∑

i=1
(Mf

i )in +
4∑

i=1
(Mf

i )out Kp =
2∑

i=1
Kf

i

Figure 6.6: Reference horizontal tetrahedra

For both the horizontal and vertical tetra-
hedra, we have two outflow faces and two
inflow faces, depicted in blue and red respec-
tively on Fig. 6.6. We proceed in the same
manner as for the pyramid in order to obtain
Mht, Kht, Mvt and Kvt:

Mht =
2∑

i=1
(Mf

i )in +
2∑

i=1
(Mf

i )out Kht =
2∑

i=1
Kf

i

Mvt =
2∑

i=1
(Mf

i )in +
2∑

i=1
(Mf

i )out Kvt =
2∑

i=1
Kf

i

Figure 6.7: Reference octahedron

For the octahedron, we have four outflow
faces and four inflow faces, depicted in blue
and red respectively on Fig. 6.7. We pro-
ceed in the same manner as for the previous
elements in order to obtain Mo and Ko:

Mo =
4∑

i=1
(Mf

i )in +
4∑

i=1
(Mf

i )out Ko =
4∑

i=1
Kf

i
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6.1.3 Initial solution and first layer

Now that we have our elementary matrices, we can start solving our actual problem.
First of all, we need to compute the solution on the initial space mesh, which is a grid
in our case. We use a Gaussian function as initial solution, defined as follows:

f(x, y) = exp

(
−2π2 (x− x0)2 + (y − y0)2

r2
0

)
with (x0, y0) the centre of the source and r0 its radius.

In Fig. 6.8, we can see a 2D representation of this function and how the center and
the radius affect its shape.

(a) x0 = y0 = 0.5 and
r0 = 0.1 (b) x0 = y0 = 0.5 and r0 = 1

(c) x0 = 0.25, y0 = 0.7 and
r0 = 0.1

Figure 6.8: Gaussian function

Once we have the initial solution, we can advance our elements in time, i.e., "pitch"
our tents. To do so, we will proceed as Lowrie et al. ([38]) and advance the centre of the
grid cells in time. This leaves us with pyramids across the mesh as depicted in Fig. 6.9.

Figure 6.9: First layer of pyramids

As explained in Chapter Tent-Pitcher Algorithm, the height at which the point will
be advanced depends on the wave propagation speed. Here, the height is given by
∆t = min(∆x, ∆y)

2c
.

Now that we have constructed the pyramids, we can compute the solutions inside
them. Indeed, the aforementioned initial solution acts as the inflow solution Un−1 at the



80 6.1. Task 1: Extension to Fortran

previous time step and we can compute M and K, hence we can compute Un following
(6.1).

Let us notice that, since the mesh is structured and composed of the same elements
everywhere, |F| will be identical for one same F across all pyramids of the mesh, and
likewise for the tetrahedra and octahedra.

Now, we only need to propagate the solution through time. To do so, we proceed in
the exact same manner as in Subsection 5.4.1.

6.1.4 External Boundaries

We explained that we can split some of the elements on the boundaries so that they can
fit the initial spatial domain. When doing this, we will obtain vertical faces on which we
can apply boundary conditions. In case of homogeneous Neumann boundary conditions,
the only change operates on the matrix M of the boundary element, which becomes:

MNeumann =
∫

Fout

( 1
c2ρ

ϕpϕq + ρϕv · ϕw

)
nt + (ϕpϕw + ϕvϕq) · n

+ γ

∫
F in

( 1
c2ρ

ϕpϕq + ρϕv · ϕw

)
nt + (ϕpϕw + ϕvϕq) · n

+
∫

Fext
ϕpϕw · n + γ(ϕv · n)(ϕw · n)

A first order absorbing boundary condition for the acoustic wave equation is written
∂p

∂n
= 1

c

∂p

∂t
, thus, we obtain:

MABC =
∫

Fout

( 1
c2ρ

ϕpϕq + ρϕv · ϕw

)
nt + (ϕpϕw + ϕvϕq) · n

+ γ

∫
F in

( 1
c2ρ

ϕpϕq + ρϕv · ϕw

)
nt + (ϕpϕw + ϕvϕq) · n

+
∫

Fext
(ϕv · n)(ϕw · n) + ϕvϕq · n

6.1.5 Visualization and Results

To visualize our results, we use ParaView2, which is an open-source visualization and
data analysis software, able to run on a HPC cluster as well as on a standalone computer.
It can handle multiple input data files and is conducive to handling the visualization in
a parallel setup. In order to use ParaView, we need to provide it with files in a specific
format, called VTK files. They can be either binary or XML files, which we need to
write from our program each time we want to save or visualize our results. The format
we used is the XML one and below is an example of VTK file we use.

2Ahrens, James, Geveci, Berk, Law, Charles, ParaView: An End-User Tool for Large Data Visual-
ization, Visualization Handbook, Elsevier, 2005, ISBN-13: 978-0123875822
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VTK file example for ParaView

<?xml version="1.0"?>
<VTKFile type="UnstructuredGrid" version="0.1" byte_order="BigEndian">

<UnstructuredGrid>
<Piece NumberOfPoints=" nPoints" NumberOfCells=" nCells">

<Points>
<DataArray type="Float32" NumberOfComponents="3" Name="Point" format="ascii">

List of points x y z
</DataArray>

</Points>

<Cells>
<DataArray type="Int32" Name="connectivity" format="ascii">

List of elements, where each of them is represented by the index of their
vertices e.g. 10 15 9 represents a triangular element whose vertices
are the 10th, 15th and 9th node in the previous list of points

</DataArray>
<DataArray type="Int32" Name="types" format="ascii">

List giving the type of each element from 1 to 16 for linear cells
e.g. 5 for triangles - 7 for polygons - 9 for quads - 10 for tetrahedra

</DataArray>
<DataArray type="Int32" Name="offsets" format="ascii">

List of cumulative number of vertices as we go through the elements
</DataArray>

</Cells>

The solution can be given in each cell or at each node:
<CellData Scalars="name of vector">

<DataArray type="Float64" Name="name of field" format="ascii">
Values of the solution in each cell.

</DataArray>
</CellData>
<PointData Scalars="name of vector">

<DataArray type="Float64" Name="name of field" format="ascii">
Values of the solution at each node.

</DataArray>
</PointData>

</Piece>
</UnstructuredGrid>

</VTKFile>

Results

We solve our problem in a domain of size Lx = Ly = 1, discretized with two meshes
(Figs. 6.10–6.11): one containing nx = ny = 100 cells in each direction and the second
one containing nx = ny = 200 cells in each direction. We visualize the pressure and the
velocity fields at different time steps and let the program run until it reaches t = 1s. We
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use periodic boundary conditions and a Gaussian source function centered at x = 0.5
and y = 0.5. We use P3 polynomial basis functions. The results are presented in Tables
6.1 and 6.2. We observe that the solutions propagate properly and we obtain similar
results to those in [24], which were validated by comparison with analytical solutions.
The accuracy of these solutions will be discussed in more details in section 6.5.

Figure 6.10: Structured mesh with
10 000 elements

Figure 6.11: Structured mesh with
40 000 elements

t = 0.3s t = 0.5s t = 1s

p

vx

vy

Table 6.1: Acoustic pressure and velocity field on 10 000 elements
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t = 0.3s t = 0.5s t = 1s

p

vx

vy

Table 6.2: Acoustic pressure and velocity field on 40 000 elements



84 6.2. Task 2: Extension to Unstructured Meshes

6.2 Task 2: Extension to Unstructured Meshes

Figure 6.12: Flowchart for unstructured meshes

In this section, we aim to explicit the implementation process of extending the Trefftz-DG
Tent-Pitching solver to unstructured meshes. As one can see in the flowchart 6.12, several
bricks of the code are different from the structured case. Indeed, as seen in Chapter Tent-
Pitcher Algorithm, the construction of a Tent-Pitching mesh in the unstructured case
differs greatly from the structured case, hence differing in the implementation as well.
The points we will explicit are the generation of the initial spatial mesh, the choice of a
node to advance in time, the height at which it will be advanced, i.e., the computation
of the local time step ∆tK and the propagation in time, along with the computation of
the matrices.

6.2.1 Mesh

The first point to discuss is the mesh. Indeed, working with an "unstructured mesh"
means here that the spatial initial mesh is unstructured. In the previous case, the initial
mesh was a grid and we constructed it very easily at the beginning of the program. Here,
we use a meshing software called "Triangle" 3 to generate simplicial unstructured mesh.

3Jonathan Richard Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, in “Applied Computational Geometry: Towards Geometric Engineering” (Ming C. Lin and
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Triangle is a mesh generating C program developed by Jonathan Richard Shewchuk.
It can generate exact Delaunay triangulations, constrained Delaunay triangulations, con-
forming Delaunay triangulations, Voronoi diagrams and triangular meshes.

A triangulation is said to be Delaunay when the circumscribed circle of each simplex
does not contain any other mesh node. This property is illustrated in Figs. 6.13a and
6.13b. It has the property of being unique and brings the advantage of avoiding flat
elements, by forcing them to be as equiangular as possible. Also, the mesh we obtain
is independent of the order of the nodes and obtaining such a triangulation is rather
simple for convex domains. Indeed, as we can see in Fig. 6.13, when two triangles do
not fit the Delaunay critera, one can simply flip the common edge and obtain a Delaunay
triangulation.

(a) Not Delaunay (b) Delaunay

Figure 6.13: Delaunay triangulation

In practice, we provide Triangle with a .poly file where we describe the domain that
we would like to mesh, and it looks like the following:

Dinesh Manocha, editors), volume 1148 of Lecture Notes in Computer Science, pages 203-222, Springer-
Verlag, Berlin, May 1996. (From the First ACM Workshop on Applied Computational Geometry.)
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mesh.poly

# Number of vertices - Dimension - Attributes - Boundary markers
4 2 0 0 # A box with four points in 2D, no attributes, no element markers
# List of vertices:
1 0 0
2 0 1
3 1 0
4 1 1

# Number of segments - Boundary markers
4 0
# List of segments:
1 1 2
2 2 4
3 4 3
4 3 1

# Holes
0

Then, all one needs to do is to launch the following command ./triangle -[commands]
mesh.poly, where -[commands] allow many different settings, such as constraining the
angles, the area of the elements, activating boundary markers, etc. In the end, Triangle
provides us with several output files which list all elements, edges and nodes of the
produced mesh, as follows:
mesh.1.ele

# Number of elements - Nodes per element - Boundary markers
1577 3 0 #here, 1577 triangles thus 3 nodes per element and no boundary markers

# List of elements:
1 117 356 114 # element n°1 has three vertices 117, 356 and 114
.
.
.

mesh.1.node

# Number of nodes - Dimension - Attributes - Boundary markers
839 2 0 1 # here, 839 nodes in 2D, no attributes, boundary marker 1

# List of nodes:
1 0.5 0.5 0 # node n°1 has coordinates (0.5,0.5) and no boundary marker

2 0.0 1.0 1 # node n°2 has coordinates (0.0,1.0) and is on the boundary
.
.
.
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mesh.1.edge

# Number of edges - Boundary markers
2415 1 #here, 2415, boundary marker 1

# List of edges:
1 117 356 0 # edge n°1 is delimited by nodes 117 and 356 and is not on the

# boundary
2 133 6 1 # edge n°2 is delimited by nodes 133 and 6 and has boundary
. # marker 1
.
.

The mesh is described through these files, but can also be graphically displayed using
the display program Show Me via command line showme mesh.1.ele as shown in Fig.
6.14.

Figure 6.14: Display program for Meshes Show Me

Using such an external mesh generator also means that we have to parse the obtained
files in order to get the information we need. In practice, the mesh.1.ele file gives us
the array of elements, which are triangles. The mesh.1.node file is parsed to obtain
the array of nodes with their coordinates. The mesh.1.edge file is parsed to obtain the
array of edges. Additional files can be obtained, such as the neighbors of a triangle, but
we do not need them in our case.

In order to carry out the Tent-Pitcher algorithm, we need additional connectivity
matrices, that we construct upstream. They consist in:

• tab_co_nodes[i]: for a given node i, this array gives us the list of nodes connected
to i; thus, this is star[i] (see Fig. 6.15) (see Fig. 6.15),

• tab_co_node_ele[i]: for a given node i, this array gives us the list of facets
connected to i (see Fig. 6.15),
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• tab_node_edge[i]: for a given node i, this array gives us the list of edges en-
veloping i; thus, this is link[i] (see Fig. 6.15).

M

Figure 6.15: star of, link of and facets connected to a point M

6.2.2 Time propagator

The time propagation loop is also changed. Previously, we first computed elementary
matrices, then the solution in the first layer of pyramids and finally repeated the con-
struction of the tents and calculation of solution in the remaining layers until a desired
time is reached. We will no longer treat the whole space domain within multiple layers,
from now on we choose a point to pitch, construct the corresponding tent and com-
pute all necessary matrices inside. Hence, for each tent we proceed in this manner and
advance the front.

Choice of a Tent-Pitching point

While presenting the Tent-Pitcher algorithm in Chapter 5, we mentioned the fact that
we would be choosing the point to pitch by searching for a minimum in time of the mesh
front. First, to explain and justify this choice, let us see which points we can not pitch
and why. In [35], Üngör and Sheffer define illegal base nodes, in order to prevent the
construction of tents violating the causality constraint or having an empty or near-empty
volume, as follows:

Illegal base node

A mesh node M is called an illegal base node to be advanced in time if there exists
a point Q ∈ star(M), where t(Q) < t(M) and t() represents the time component

Actually, it is explained that this definition is over-restrictive and can be relaxed but
in our case, we follow this over-restrictive definition and only pitch points that are not
illegal according to this definition. Now that we know what kind of points we can not
pitch, let us see which points we can pitch and how to choose them. There are several
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ways to choose a node to advance in time, as we have explained in Chapter Tent-Pitcher
Algorithm, which are:

• lowest apex: this choice suggests pitching a tent with the lowest apex,

• optimal face angle: in this case, we want the angle between a face and the space
domain β to be as close as possible to the cone constraint α. The tent which would
be the best according to this criterion is chosen to be pitched,

• maximal tent volume: we choose a tent to pitch based on its volume, which we
want to maximize,

• lowest node: the lowest node of the mesh is always legal and consists of one of the
minimal nodes in time.

As we can see, the reason why there are many ways to decide on which node to choose
is because it affects the mesh quality. In our case, we choose the lowest node, which is
always legal, and disregards the mesh quality.

We impose an additional constraint on pitch point if there are more than one min-
imum in time. If there were two minima in time, we choose the one with the "lowest"
link. In Fig.6.16, we represent such a case. There are two nodes M and N minimal

in time, however,
NN

l∑
i=1

link(N) <

NM
l∑

i=1
link(M). Hence, in this case, we choose N to be

advanced in time. Let us notice that we could also choose one of the points depicted in
orange by comparing their link to link(N).

Figure 6.16: Constraint on the link

Now that we know which point to advance in time, we need to determine at which
height it will be extruded. To do so, we will lean on the causal constraint. In fact, we
want all of the new faces that will be constructed to respect the causality constraint. To
do so, we compute the domain of influence of every facet connected to the pitch point
M , intersect them, and choose the minimal tentpole height. If anything else than the
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minimum is chosen, the causality constraint would be broken. We can see the process
on Fig.6.17 for a 1d tent and then for a 2d tent.

A
B

M

M ′

(a) 1D+t
M

M ′

(b) 2D+t

Figure 6.17: Choice of tentpole height ∆t = M ′
t −Mt, where the domain delimited by

the blue dashed lines is the cone of influence of A and the one delimited by the red
dashed lines is the cone of influence of B

Computation of matrices

Now we will address the question of matrices. Once ∆tK is determined, we construct
the tent by adding new faces connecting M’ to link(M) as shown in Fig. 6.18. Now
that the tent is constructed, we can compute the solution inside.

Let us recall some notations from the previous chapter:

• M e, Ke matrices defined on an elementary triangle

• Mf , Kf matrices defined on a random triangle

For the structured case, Mf and Kf were identical throughout the mesh. However
here, they vary depending on the considered tent. In fact, the area of the triangle f

will differ for every facet, since the mesh is fully unstructured. Using these matrices,
we ultimately want to construct M t and Kt, which represent the matrices on a tent, in
order to solve

M tUn = KtUn−1 , (6.4)

where Un represents the solution vector at current time step and Un−1 represents the
solution vector at previous time step.
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(a) Choice of pitch-point
(b) Construction of outflow

faces

Figure 6.18: Construction of a tent

Taking the scenario in Fig. 6.18 as exam-
ple, if we pitch the point M depicted in red
in Fig. 6.18 and would like to compute the
matrix M t, we have six inflow faces. Thus,
M t is obtained by summing (Mf )out on the
six outflow faces and (Mf )in on the six in-
flow faces. Kt is only defined on the inflow
faces, hence we sum Kf on the inflow facets
only.

M t =
6∑

i=1
(Mf

i )in +
6∑

i=1
(Mf

i )out Kt =
6∑

i=1
Kf

i

To generalize this idea, notice that Ns gives the number of edges connected to a
point, which is equivalent to the number of simplexes connected to a point. Hence:

M t =
Ns(M)∑

i=1
(Mf

i )in + (Mf
i )out Kt =

Ns(M)∑
i=1

Kf
i

Then, for each tent, we need to invert M t in order to obtain Un, which is the solution
of the problem inside the constructed tent. In order to visualize the solution, we need
to interpolate Un on the outflow faces of the tent.

6.2.3 Visualization & Results

We test our code on several meshes, in order to verify that our implementation of the
Tent-Pitcher algorithm on unstructured meshes works properly. We test it on four
meshes: a bicycle seat and a leaf (provided by the website of Triangle4) and two squares.
The two first meshes illustrate how the algorithm naturally adapts to very unstructured
meshes and very different-sized cells. We can see that some tents are very small, while
others are larger. The Tent-Pitcher algorithm handles such cases by naturally performing
a local time-stepping method.

4https://people.sc.fsu.edu/~jburkardt/data/triangle_files/triangle_files.html

https://people.sc.fsu.edu/~jburkardt/data/triangle_files/triangle_files.html
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Figure 6.19: After the construction of
150 tents

Figure 6.20: After the construction of
1050 tents

Figure 6.21: Tent-Pitching mesh of a bicyle seat

The first mesh represents a bicycle seat, as can be seen in Fig. (6.21).

Figure 6.22: After the construction of
150 tents

Figure 6.23: After the construction of
1950 tents

Figure 6.24: Tent-Pitching mesh of a leaf

The second mesh represents a leaf, as can be seen in Fig. (6.24). This one is
particularly interesting, because we can see the structure of the mesh and how small and
large cells cohabit on the boundaries of the spacetime mesh in Fig. (6.23).

Results

We solve our problem in a domain of size Lx = Ly = 1, discretized with two square
meshes (Fig. 6.25–6.26): one containing 159 elements and the second one containing 1577
elements. Since we are validating the sequential code, we work with smaller meshes. We
visualize the pressure and the velocity fields at different time steps and let the program
run until it reaches t = 1s. We test the code with either Neumann boundary conditions



93 6.2. Task 2: Extension to Unstructured Meshes

or absorbing boundary conditions. We use Gaussian initial function centered at x = 0.5
and y = 0.5 and P3 polynomial basis functions. The solutions presented in Tables 6.3–
6.5 propagate properly and seem to converge to the solutions obtained in the structured
case shown previously. The convergence and accuracy of the obtained solutions will be
further discussed in Section 6.6.

Figure 6.25: Coarse unstructured mesh Figure 6.26: Refined unstructured mesh

t = 0.15s t = 0.5s t = 1s

p

vx

vy

Table 6.3: Acoustic pressure and velocity fields on coarse unstructured mesh with
homogeneous Neumann conditions
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t = 0.15s t = 0.5s t = 1s

p

vx

vy

Table 6.4: Acoustic pressure and velocity fields on refined unstructured mesh with
homogeneous Neumann conditions
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t = 0.15s t = 0.5s t = 1s

p

vx

vy

Table 6.5: Acoustic pressure and velocity fields on refined unstructured mesh with
ABCs
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6.3 Task 3: Parallelizing the structured case

6.3.1 High Performance Computing

High Performance Computing allows to both solve larger complex problems and to solve
them faster, by using supercomputers or computer clusters. In some cases, using such
environments to solve problems goes faster than on a regular computer, but in some
others, it simply makes it possible to solve the problem, because a regular computer
may not support it. Some algorithms are more fit to be parallelized than others.

There are three means to parallelize a piece of code, each coming with its own pros
and cons:

• threading (OpenMP),

• distributed memory (MPI),

• GPU computing.

6.3.2 MPI

Message Passing Interface is a standard for HPC allowing to pass messages between
distinct computers or inside a multiprocessor computer. It is a standard of communica-
tion for nodes executing parallel programs on distributed memory systems. It defines a
library of functions that can be used in C, C++ and Fortran.
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When a program using MPI is launched, a communicator is set and it designs a
set of processes that can communicate with each other. Each process is given a rank
starting from zero, in order to be identified when sending or receiving messages. There
are several types of communications, such as:

• Point-to-point communication: describes communications between two pro-
cesses in one communicator. There are two types of them: blocking and non-
blocking. Blocking means that a process will wait until the message is received or
sent before performing the remaining tasks. Thus, if a send is initiated somewhere,
there needs to be a receive. And analogously, non-blocking means that the process
does not wait and moves on to its next task after performing its part of the com-
munication. The functions used in order to carry out blocking communications
are MPI_Send MPI_Recv and MPI_SendRecv and their equivalent for non-blocking
communications are MPI_iSend MPI_iRecv and MPI_iSendRecv,

• Collective communications: This type of communication implies all processes
in one communicator. This means that one process can send information to all
other processes and it can be performed in multiple manners depending on the
information we want to send. One way, is to send the same piece of information to
everyone and it is done through MPI_Bcast. A second way, is to scatter an array
for example to the other processes. It means that a distinct chunk of the array
will be distributed to all processes, this is done through MPI_Scatter. A last type
of collective communication is when one wants to gather distinct information from
every process into one array; this is the reverse of the previous function and is
done through MPI_Gather.

Basic types such as integer or real are included in the MPI standard, but it is also
possible to create a type. Types are necessary during communications, because we need
to specify the type of the sent data. It can be convenient to create a type in order to
carry out a certain communication. For example, if one wants to send a submatrix or a
vector, it is not possible with the standard types and functions but a submatrix or vector
type could be created to carry this out. The only important thing to keep in mind when
creating types is the layout in memory. For example, if we want to send a column of a
matrix A(m, n) to another process, we create a type and we need to specify how many
elements to consider and at which location to start considering them. Thus, we just
need to give the size m of the column and pass the information that we start counting
at A(1, 1). This will result in sending the first column of matrix A, because the elements
are stored column-wise in the memory in Fortran. This is called a contiguous type. But
if we want to send the first row of the same matrix, we need to specify a displacement.
Hence, we pass the information that we send n elements, starting from A(1, 1) every m

elements. This is called a vector type and these notions are illustrated in Figs. 6.27 and
6.28.

Remark. Contiguous types and vector types are inverted in Fortran and C, because the
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1 2 3
4 5 6
7 8 9

(a) Column of a matrix

1 4 7 2 5 8 3 6 9

(b) Memory layout of the column in Fortran

Figure 6.27: Contiguous type

1 2 3
4 5 6
7 8 9

(a) Row of a matrix

1 4 7 2 5 8 3 6 9

(b) Memory layout of the row in Fortran

Figure 6.28: Vector type

memory in Fortran is arranged following columns whereas in C it is arranged following
lines.

Among the many functionalities found in the MPI library, we are interested in five of
them in order to parallelize the structured case, and those are:

• MPI_Dims_create: given the number of nodes in the meshgrid and of dimensions,
creates a division of processors in a Cartesian grid. Hence, the output is a vector
denoted dims which gives us the number of processes in the x- and y-direction,

• MPI_Cart_create: creates a new Cartesian communicator to which topology in-
formation has been attached, which is the output of the previous function,

• MPI_Cart_rank: given Cartesian coordinates, determines process rank in commu-
nicator,

• MPI_Cart_coords: given rank, determines process coordinates in Cartesian topol-
ogy,

• MPI_Cart_shift: returns the ranks of the neighboring processes in the given di-
rection at the displacement d of the actual process. It is simply a wrapper of
MPI_Cart_coords and MPI_Cart_shift.
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Figure 6.29: Structured Tent-Pitching process seen from above

In fact, our initial space mesh is a grid, thus owns a cartesian topology. This is
why we wanted to use MPI_Cart_create to create a cartesian communicator. As seen
before, the first communicator attaches a rank to each process. Thanks to this new
Cartesian communicator, a process will not only be identified by a rank but also with
coordinates, as depicted in Fig.6.29. This allows us to identify the neighboring processes
very easily and in fact, if we denote as (x, y) the Cartesian coordinates of a process,
obtained through MPI_Cart_coords, we have:

• its left neighbor at coordinates (x− 1, y),

• its right neighbor at coordinates (x + 1, y),

• its bottom neighbor at coordinates (x, y − 1),

• its top neighbor at coordinates (x, y + 1).

And each of their rank can be obtained through the function MPI_Cart_rank. Or, one
can use MPI_Cart_shift, which gathers a call to MPI_Cart_coords and MPI_Cart_rank,
and allows to get the neighbors at a specified distance. Moreover, with this Cartesian
topology, it is also very easy to set periodic boundary conditions. The period argument
in MPI_Cart_create is a vector of size of the problem (so, it is a vector of size two here)
which specifies if the grid is periodic (one) or not (zero) in each dimension. Hence, since

we consider periodic media in both directions, period =
(

1
1

)
.

We are parallelizing the code in space and the spatial blocks stay the same throughout
time. This is a very efficient parallelization for large domains, but it would be even more
interesting to combine MPI and thread parallelizing. This way, we would be using the
fact that all the tents can be computed independently, and the ratio between usage of
resources and timing would be at its best.
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6.3.3 Communications

(a) First layer of
pyramids

(b) First layer of
vertical tetrahedra

(blue)

(c) First layer of
horizontal

tetrahedra (green)

(d) First layer of
octahedra (red)

(a) Second layer of
horizontal tetrahedra

(green)
(b) Second layer of vertical

tetrahedra (blue)
(c) Second layer of

octahedra (red)

Figure 6.31: Structured Tent-Pitching process seen from above

In the structured case, we are completely in control as to which information needs to
be sent and to whom, because we know the exact layout of the mesh. Let us consider a
domain separated in four seen from above as in Fig.6.31. The gray points represent the
summit of the pyramids, the horizontal tetrahedra are depicted in green and the vertical
tetrahedra are depicted in blue, while the octahedra are represented by red squares and
their summit in red. We can see on this figure what was explained before; the elements
are shifted by half a cell. Hence, there will be an overlap of some elements between the
processes, which indicates us that each process needs to communicate information to its
neighbors, in order for each of them to carry out their own computations.

Let us consider only one process and its corresponding subdomain as in Fig.6.32. We
can see in Figs. 6.30b and 6.30c that in order to compute the last column of horizontal
tetrahedra, this process needs to know the solution on some pyramids from its right
neighbor. In the same way, to compute the solution on its first row of vertical tetrahedra,
this process needs to know the solution on some pyramids from its top neighbor. As
this lack of information applies to all processes, the left and bottom neighbor need the
solution on certain pyramids from this process as well.
Communication n°1: Hence, every process will send the solution on its last column
of pyramids to its left neighbor and the solution on its first row to its bottom neighbor,



101 6.3. Task 3: Parallelizing the structured case

as can be seen in Fig. 6.32.

Process (x,y+1)

Process (x,y)

Process (x,y) Process (x+1,y)

Figure 6.32: Communications n°1

In the same manner, we see in Fig. 6.30d that to compute the solution in the first row
and last column of octahedra, we need to know the solution on some vertical tetrahedra
from the right neighbor and horizontal tetrahedra from the top neighbor.
Communication n°2: Hence, every process will send the solution on its first column
of vertical tetrahedra to its left neighbor and the solution on its last first of horizontal
tetrahedra to its bottom neighbor as illustrated in Fig. 6.33.

Process (x,y) Process (x+1,y)

Process (x,y+1)

Process (x,y)

Figure 6.33: Communications n°2

As explained when presenting the structured Tent-Pitcher algorithm and as shown
in Figs. 6.31b and 6.31a, we now need to form, again, a layer of horizontal and vertical
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tetrahedra by connecting the octahedra’s summits.
Communication n°3: Hence, every process will send the solution on last column and
first row of octahedra to its top and right neighbor respectively, as illustrated in Fig. 6.34.

Process (x,y) Process (x-1,y) Process (x,y)

Process (x,y-1)

Figure 6.34: Communications n°3

We repeat all three of these communications at each new set of layers using
MPI_SendRecv. Since we are using periodic boundary conditions and that we set our
MPI_Cart in a periodic manner as well, the communications on the boundary processes
will be performed following Fig. 6.29d.

6.3.4 Visualization & Results

We solve our problem in a domain of size Lx = Ly = 1, discretized with a very large
mesh of one million elements. This mesh is depicted in Fig. 6.35. Such tests are too
big to be done on a laptop, hence we run our tests on the PlaFRIM5 platform, which is
an HPC cluster located in Bordeaux and is operated by Inria, Labri, IMB. We visualize
the pressure and the velocity fields at different time steps and let the program run
until it reaches t = 1s. We use periodic boundary conditions and a Gaussian source
function centered at x = 0.5 and y = 0.5 and P3 polynomial basis functions. The results
presented in Table 6.6 propagate properly and are similar to the previously obtained
results with the sequential code. The tests are performed on a machine Zonda, which
has the following specifications:

• 2x 32-core AMD Zen2 EPYC 7452 @ 2.35 GHz,

5Experiments presented in this section were carried out using the PlaFRIM experimental testbed,
supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr).
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• 256 GB (4 GB/core) @ 3200 MT/s,

• 10 Gbit/s Ethernet,

• storage over 10G Ethernet.

(a) Mesh (b) Zoom x2 on mesh (c) Zoom x4 on mesh

Figure 6.35: Structured mesh with one million elements

In the following table, we present the time spent relative to the number of processes
(MPI nodes). The time is obtained using the function CPU_time and is the mean on all
processes. We measure the time starting from the very beginning after the MPI_init to
the very end, before the MPI_finalize once the desired time t = 1s is reached by all
tents in the domain. The time spent on writing ParaView files at every hundred time
steps for the visualization is also included. The performance of the code is illustrated in
Table 6.7 and Figs 6.36 by representing the duration and the speed-up of the code.

(a) CPU time in function of the number of
MPI nodes

(b) Speed-up in function of the number of
MPI nodes

Figure 6.36: Performance of the parallelized Trefftz-DG solver with Tent-Pitching

When increasing the number of MPI nodes n, the CPU time should ideally be equal
to tn = t1

n
, where t1 is the CPU time spent with one process and tn is the CPU time
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t = 0.3s t = 0.5s t = 1s

p

vx

vy

Table 6.6: Acoustic pressure and velocity fields computed with one million elements

processes 1 2 4 8 16 32 64 128
CPU time (s) 12003 6050 3012 1525 770 389 201 102

CPU time (h, m, s) 3h20m 1h41m 50m 25m 13m 6m30s 3m20s 1m42s

Table 6.7: Duration of the simulation in CPU time (in seconds, then in
hours/minutes/seconds)
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spent with n processes. A code scales properly when it is the closest to the ideal y = n

and to represent this, we draw the line y = t1
tn

. This line represents the speedup of our
code and the ideal speedup is represented in red in 6.36b by the line y = n. We can
see that the line representing the Trefftz-DG solver is very close to the ideal line, which
means that it has a good scaling.

6.4 Task 4: Parallelizing the unstructured case

Figure 6.37: Flowchart: Parallelization of unstructured meshes

In this section, we intend to explain the process of parallelizing the Trefftz-DG solver
applied to unstructured meshes. As we have seen in the last section, parallelizing the
structured case was very specific to the Cartesian topology we had. Thus, we have
here an additional brick which deals with the partitioning of the unstructured initial
space mesh, which will be the object of the first subsection. Then, we will address the
question of communications in the second subsection, which will be very different from
the structured case. Finally, we will present some results in the third subsection.
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6.4.1 Mesh Partitioning

The idea here, is to distribute the work evenly between all processes. Hence, we need
to distribute the mesh to the processes, as evenly as possible, and then each process
will perform the computations on its submesh. In this case, the initial space mesh is
unstructured and partitioning it is not as easy as partitioning a simple grid, hence we use
a software to partition the mesh, such as METIS and SCOTCH. We will be using METIS.

METIS6 is a software developed by George Karypis and Kumar Vipin for graph
partitioning. The partition of the mesh relies on Graph Partitioning, which consists in
dividing a graph into k-parts, which satisfy some constraints. METIS can be used as
a command line tool, but there are also C and Fortran interface to the software. Here,
we use the Fortran function METIS_PartMeshNodal from the corresponding interface to
carry out our mesh partitioning. On Fig. 6.38, we can see several mesh partitions we
obtain, for two, four and thirty-two processes. This last partition was performed on a
very large mesh of one million elements, and the detail can be seen on Subfig. 6.38d.

(a) Partition of a
mesh in 2 parts with
the overlap depicted

in purple

(b) Partition of a
mesh in 4 parts with
the overlap depicted

in purple

d

(c) Partition of a
mesh in 32 parts

(d) Zoom on mesh
6.38c

Figure 6.38: Partitioning of the domain using METIS

Once we have partitioned the space domain with METIS, we need to parse the out-
put it gives us and construct all the structures we need and then send them to each
process. METIS provides us with a simple array npart of size of the number of elements
nEle, with the rank of the process to which the element belongs as illustrated below:

6Karypis, George & Kumar, Vipin. (1997). METIS—A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes and Computing Fill-Reducing Ordering of Sparse Matrices.
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npart =



0 element 1 belongs to process 0
1 element 2 belongs to process 1
3 element 3 belongs to process 3
0 element 4 belongs to process 0

.

.

.

2 element nEle belongs to process 2


Using this output, we construct the matrices of elements, of nodes and of edges for

each process and then send them via MPI communications.

We also need to consider the communications between each process. In Figs. 6.38,
we can see some elements depicted in purple. These elements consist of the overlap
between domains. In fact, since we pitch our nodes, we decided to partition the nodes of
the domain and not the elements and this leads in an overlap of facets at the interfaces.
So, a subdomain is composed of

• interior facets and ghost facets (that constitute the overlap),

• interior nodes, boundary nodes and ghost nodes (which are the vertices of the
ghost elements that belong to the neighboring process),

• interior edges, boundary edges and ghost edges.

Thus, we need to communicate to each process how many of these elements it has, along
with a way to distinguish them. We also need to know to which neighboring process the
ghost elements belong to. We construct all appropriate structures for this data and then
use the MPI_Scatterv function to communicate them to the other processes. Since we
are sending chunks of matrices, we need to define several new types here: vector type to
send a specific number of rows to the processes.

6.4.2 Communications

Once the mesh is partitioned and that all individual information is sent to every process,
each of them can start its computations, that we break down as summarized in Algorithm
2 and as follows.

Each process computes the initial solution on its portion of the mesh and then starts
its time propagation, by choosing a point to advance in time in each submesh. If the cho-
sen point is not on the boundary, we perform the computations as usual: we construct
the tent and compute the matrices M t and Kt in order to find Un as introduced in (6.4).
Now, if the pitch-point is on the boundary, there are several communications to perform.
First, we need to notify the neighboring process that we are pitching this node (so, send
its number) so that the neighbor will not try to pitch it at the same moment. Then,
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Algorithm 2: Computation flow in one process
• calculation of initial solution on the initial subdomain of the process;
while t ≤ T do
• choose a point to advance in time;
• compute matrices M t and Kt;
if the chosen point is on the boundary of the subdomain then

⋄ perform communications;
end
• visualize the results;

end

we need to send the ∆tK and Un to the neighbor, so that it can update those values
on the corresponding element faces and node. We need to do that for each boundary
pitch-point, hence producing a lot of little communications. The sending side is clear
but what about the receiving side? As explained, when using MPI communications, if
there is a sending of information, there needs to be a receipt. However, in this scenario,
a process does not know when it might be receiving information. Let us say that process
A is treating an interior node and process B is also treating an interior node. There is
no need to exchange information here. Now, say that process A found a boundary node
as lowest node. A will send information to B, but B does not know what A is doing,
hence does not expect anything to be sent. This is why here, we use MPI_IProbe. It is
an MPI function that allows receiving information dynamically. As the name says, the
process will probe the incoming of a message from A, and if there is a matching send
from A, B will receive it. Otherwise, nothing is done.

There are other ways to deal with the problem we have. One solution mentioned by
Abedi et al. in [47] also carried out in a Tent-Pitching framework, is to dedicate a process
to handling the mesh and mesh-related decisions. Hence, if A wants to send information
concerning a boundary node to B, it will first tell the mesh-handling process which node
is being treated and A will inquire at the beginning of each step to see if any of its
boundary nodes are occupied. Hence, B can now send the information and A knows it
will receive it. This method is more complex to implement and since our priority was
to develop a proof of concept, we focused on the simpler parallel implementation. The
implementation of the method proposed by Abedi et al. [47] is an interesting perspective
to this PhD research project.

6.4.3 Visualization & Results

We solve our problem in a domain of size Lx = Ly = 1, discretized with the same mesh
as in the previous section, which contains 1577 elements. We visualize the pressure field
at different time steps and let the program run until it reaches t = 1s. We use Neumann
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boundary conditions and we use Gaussian initial function centered at x = 0.4 and y = 0.5
and P3 polynomial basis functions. We tested our code with two MPI processes. We
performed the tests on a laptop with the following specifications:

• Intel Core i7-8650U CPU @ 1.90GHz × 8,

• Mesa Intel® UHD Graphics 620 (KBL GT2),

• 15,5 GiB memory,

• 10 Gbit/s Ethernet,

• 1,0 TB storage.

The two MPI nodes have each been given a subdomain. In Fig. 6.39, the difference
between the subdomains has been highlighted by depicting the mesh in one of them
and not in the other. We can see that the acoustic pressure propagates as the solution
obtained with the sequential code and seems to converge to the solution computed on
structured meshes.

(a) Pressure at t = 0.15s (b) Pressure at t = 0.5s (c) Pressure at t = 1s

Figure 6.39: Acoustic pressure obtained with two MPI nodes

Running this simulation on a rather small mesh (only 1577 elements) takes approxi-
mately forty minutes, which is very slow. The solver with structured meshes only takes
a few seconds to run a simulation for an equivalent number of elements. We believe that
the code for unstructured meshes is not optimized enough and could produce better
results with more developments to optimize it. Thus, we do not provide additional time
results on multiple MPI nodes because we would have to fully optimize our code first.
Due to time constraints, this work could not be completed.
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6.5 Comparison between IPDG and Trefftz-DG solvers on
structured meshes

We compare the performance of our Trefftz-DG+Tent-Pitching solver to the performance
of the IPDG solver of Hou10ni7 [77], which is a software developed by project-team
Makutu at Inria. We solve our problem in a domain of size Lx = Ly = 1, discretized
with a very large mesh of one million elements. We run our tests on the PlaFRIM8

platform, as before. We measure the CPU time once we reach the final time t = 1s.
We observe that the Trefftz-DG solver on structured meshes is faster than the IPDG
solver (see Table 6.8). Moreover, the Trefftz-DG solver scales better than the IPDG
solver. In fact, when increasing the number of MPI nodes n, the CPU time should
ideally be equal to tn = t1

n
, where t1 is the CPU time spent with 1 process and tn is

the CPU time spent with n processes. A code scales properly when it is the closest
to this ideal. In Fig. 6.40, this ideal line is represented in red. And we can see that
the Trefftz-DG solver is the closest to this line when compared with the IPDG solver.
Next, we compare the precision of the numerical solutions obtained with both solvers

MPI nodes 1 2 4 8 16 32
Trefftz-DG 12003 6050 3012 1525 770 389

IPDG 64583 32177 16889 8235 4336 2315

Table 6.8: Comparison of CPU time (s) of both solvers

(a) CPU time in function of the number of
MPI nodes

(b) Speed-up in function of the number of
MPI nodes

Figure 6.40: Performance of the parallelized Trefftz-DG solver with Tent-Pitching

through seismograms. We place ourselves in the same test case as previously, except
7https://gitlab.inria.fr/hou10ni/hou10ni_dt
8Experiments presented in this section were carried out using the PlaFRIM experimental testbed,

supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr).

https://gitlab.inria.fr/hou10ni/hou10ni_dt
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that we use a source term instead of an initial condition and compare the obtained
solutions with an analytical solution computed with Gar6more2D[78]. We can see in the
seismograms in Fig. 6.41a that the numerical solutions are very close to the analytical
one and we cannot distinguish them. To further test the accuracy of each method, we
compute the relative L2-error between the numerical and the analytical solutions as we
diminish the mesh cell size (see Figs. 6.41b6.41c) and we observe that the Trefftz-DG
numerical solution converges faster to the analytical solution when compared with the
IPDG numerical solution.

(a) Comparison of seismograms for
exact and numerical pressure on

structured meshes

(b) Relative L2-error between IPDG
solution and analytical solution

(c) Relative L2-error between
Trefftz-DG solution and analytical

solution

Figure 6.41: Tests on the accuracy of the solutions

6.6 Tests on the Trefftz-DG solver on unstructured meshes

As done in the structured case, we compare the performance of the Trefftz-DG solver
on unstructured Tent-Pitching meshes with the IPDG solver. To do so, we started with
comparing the time spent on 1 process for a mesh composed of 1577 elements, and we
obtained that the IPDG solver takes a few seconds to run the simulation for 1 second,
whereas the Trefftz-DG solver takes approximately 40 minutes. This time, our code is
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much slower than the IPDG one and since the difference in time is so big, we do not
present further time results. We have already mentioned that our code on unstructured
mesh deserves a thorough optimization work. In particular, it is important to note that
we do not have a reference matrix and therefore we have to compute the M and K

matrices for each tent at each time step. It is clear that this method induces a very high
computational load.

Next, we compare the precision of the numerical solutions obtained with both solvers
through seismograms. We place ourselves in the same test case as previously, except that
we use a source term instead of an initial condition. We perform simulations for three
meshes: the first one with ≈700 elements, the second one with ≈2000 elements and the
third one with ≈3000 elements. We can see in Fig. 6.42 that as we refine the mesh,
the numerical solution converges to the analytical solution. Although we expect the
same results as for the structured case, we unfortunately could not test the accuracy of
the solver on very refined meshes. Actually, the presented simulations took between 45
minutes and ≈ 4 hours, which does not encourage to consider finer meshes. Anyway,

Figure 6.42: Comparison of seismograms for exact and numerical pressure on
unstructured meshes

these results illustrate the accuracy of the numerical method and define a proof of concept
in favor of optimization to further analyze the performance of the method.
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Perfectly Matched Layers
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Chapter 7

Introduction

The reflections induced by a wave hitting the boundaries of a computational domain are
a recurring issue in numerical simulations for wave equations. In practice, those reflec-
tions are minimized by setting on the boundaries absorbing boundary conditions or by
introducing absorbing layers surrounding the domain under study, also called Perfectly
Matched Layers. A Perfectly Matched Layer (PML) is an artificial absorbing layer that
surrounds the computational domain. It was introduced in 1994 by Bérenger [79] for
electromagnetic waves and in theory, it is proved to absorb without any reflection. The
wave enters the layer and is strongly absorbed in such a way that its amplitude decays
exponentially. Hence, even if the wave reflects at the external boundary of the absorbing
layer, the reflected wave is sufficiently attenuated to have no impact on the simulated
field when it is back-propagated in the domain of interest. Since the pioneering work of
Bérenger, this methods quickly increased in popularity and has been extended to many
applications [80, 81, 82, 83, 84, 85, 86]. Error estimates and convergence analysis have
been derived for the PMLs applied to different types of problem [87, 88, 89, 90, 91]. We
refer to Bérenger’s formulation of the PML as the split-field PML. It was then shown
that the PML can be interpreted as a complex space coordinate stretching [92, 93] and
this remark led to the unsplit PML, also called the Uniaxial PML, which is well-posed
on the contrary to the only weakly well-posed split formulation [94]. The Uniaxial PML
consists in using a layer of diagonally anisotropic absorbing material, does not involve
any modifications on the wave equations and aims at rendering an easier implementa-
tion than the original formulation. The Convolutional Perfectly Matched Layer is an
improved formulation of the classical PML and in particular, it was introduced to handle
the case of grazing incidence, for which the reflection coefficient is not zero and even very
large. It was introduced by Roden and Gedney [95] for Maxwell equations and then by
Komatitsch and Martin in [84] for the seismic wave equation. Many other formulations
of Perfectly Matched Layers exist and are adapted to different kinds of problems, some
of them are reviewed and compared in [96].

In the following of this part of the dissertation, we address the idea of introducing
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PMLs into Trefftz formulations of wave equations by focusing on the acoustic wave equa-
tions and the formulations introduced in Part I. We consider the problem accompanied
by the Tent-Pitcher algorithm for spacetime mesh construction on structured meshes.
The plan of the second part of this thesis is as follows:

• Chapter 8 Perfectly Matched Layers with Trefftz-DG Methods: in this
chapter, we present the considered acoustic wave equation with PML in the y-
direction and analyze the PML, in particular verify the perfectly matched crite-
rion. Then, we explain how the Trefftz-DG method is derived in this case and
introduce multiple variational formulations and their drawbacks and advantages.
The construction of basis functions is a key step in the implementation of the
Trefftz method. Hence we address the question of constructing polynomial basis
functions for the PML formulation of the acoustic wave equation we consider. It
turns out that it is not possible to construct polynomials both in time and space,
which leads us to consider other basis functions in the next chapter.

• Chapter 9 Green’s functions: in this chapter, we analytically compute Green’s
functions for the acoustic wave equation with PML using the Cagniard-De Hoop
method. We derive these solutions for PMLs with absorption in the y-direction and
also in both directions. We present several possible choices for the basis functions
using the computed Green’s functions in order to compare the robustness of the
associated approximations.

• Chapter 10 Implementation: in this chapter, we explain in details how the PML
is implemented and display numerical results. We present several cases: the case
of a PML in y-direction, the case of PMLs in both directions and the coupling
of polynomials in the domain of interest and Green’s functions in the PML. This
feature turns out to be very interesting since Green’s functions require a sensi-
tive tuning related to the use of source-points that are not obvious to locate and
numerate.

7.1 Overview on the implementation of PMLs in a classical
numerical method

To fix the idea on the PML formulation we intend to consider, let us focus on the acoustic
wave equation. As formerly indicated, one widely spread implementation of PML into
wave problems reduces to applying a change of variable to the direction in which one
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wishes to absorb the wave. Let us recall the first order acoustic wave equation:

ρ
∂vx

∂t
+ ∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ ∂p

∂y
= 0 ,

1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y
= 0 .

Following Bérenger [79], we decompose p into px + py and add absorption in the x- and
y-direction in the form of continuous damping functions σy(y) and σx(x):

ρ
∂vx

∂t
+ σxvx + ∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ σyvy + ∂p

∂y
= 0 ,

1
c2ρ

∂px

∂t
+ σxpx + ∂vx

∂x
= 0 ,

1
c2ρ

∂py

∂t
+ σypy + ∂vy

∂y
= 0 ,

p = px + py .

(7.1)

The system of equations (7.1) is called the split-form of the PML acoustic wave equations,
which is the original formulation proposed by Bérenger for Maxwell equations [79]. In
order to get rid of px and py, which are artificial variables with no physical meaning and
increase the size of the system, we derive the equations (7.1) with respect to time and
retrieve the unsplit-form of the PML acoustic wave equations:

ρ( ∂

∂t
+ σx)∂vx

∂t
+ ∂

∂t

∂p

∂x
= 0 ,

ρ( ∂

∂t
+ σy)∂vy

∂t
+ ∂

∂t

∂p

∂y
= 0 ,

1
c2ρ

( ∂

∂t
+ σx)∂px

∂t
+ ∂

∂t

∂vx

∂x
= 0 ,

1
c2ρ

( ∂

∂t
+ σy)∂py

∂t
+ ∂

∂t

∂vy

∂y
= 0 .

(7.2)
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We multiply the first and third equations of (7.2) by ( ∂

∂t
+ σx)−1 and the second and

fourth equations by ( ∂

∂t
+ σy)−1:



ρ
∂vx

∂t
+ (

∂

∂t
+ σx)−1 ∂

∂t

∂

∂t

∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ (

∂

∂t
+ σy)−1 ∂

∂t

∂p

∂y
= 0 ,

1
c2ρ

∂px

∂t
+ (

∂

∂t
+ σx)−1 ∂

∂t

∂vx

∂x
= 0 ,

1
c2ρ

∂py

∂t
+ (

∂

∂t
+ σy)−1 ∂

∂t

∂vy

∂y
= 0 .

(7.3)

Now, summing the third and fourth equation of (7.3) and using the fact that p = px +py,
we obtain: 

ρ
∂vx

∂t
+ ( ∂

∂t
+ σx)−1 ∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ ( ∂

∂t
+ σy)−1 ∂

∂t

∂p

∂y
= 0 ,

1
c2ρ

∂p

∂t
+ ( ∂

∂t
+ σx)−1 ∂vx

∂x
+ ( ∂

∂t
+ σy)−1 ∂

∂t

∂vy

∂y
= 0 .

(7.4)

Thus, we can see that adding PML to the problem reduces to applying the following
variable stretch

∂

∂x
↪→ ( ∂

∂t
+ σx)−1 ∂

∂t

∂

∂x
,

∂

∂y
↪→ ( ∂

∂t
+ σy)−1 ∂

∂t

∂

∂y

Looking at (7.4) and assuming that the initial data at t = 0 are null, we can see
that when σx = σy = 0, we retrieve the acoustic wave equations without PML. Hence,
denoting the PML parallel to the y-axis as ΩPML

x and the PML parallel to the x-axis as
ΩPML

y , the damping functions are usually assumed as follows:

σx > 0 , (x, y) ∈ ΩPML
x ,

σx = 0 , (x, y) ∈ Ω \ ΩPML
x ,

σy > 0 , (x, y) ∈ ΩPML
y ,

σy = 0 , (x, y) ∈ Ω \ ΩPML
y .

This means that we do not derive different systems of equations for the domain and
the PMLs, but we rather use the same equations (7.4) everywhere with varying damping
functions depending on whether we are in the PMLs or not. Many works have been
devoted to the optimization of the damping function, which aim at reducing the reflec-
tions, increasing the absorption and optimizing the PML width. In fact, even though
the layers are perfectly matched in theory, in practice the discretization always induces
reflections, more particularly at the domain-PML interface when the damping function
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becomes very large. Using a Finite Difference method, Collino et al. proposed in [93]
a method to optimize the value of σ in each cell of the grid, but this optimization is
strongly dependent on the numerical schemes and on the physical parameters. A more
general definition of the damping function has been proposed in [85] by choosing σ as
σ(x) := σ0(x − x0)2. This definition has been used by many authors (see for instance
[97]). In [98], Bermúdez et al. have proposed to consider a damping function whose
integral is unbounded. In [99], Modave et al. have compared the different choices using
various numerical methods (finite differences, finite volumes, continuous finite elements
and discontinuous finite elements) and have concluded that the unbounded choice was
the most efficient. Here, we use the most simple choice and consider the case of a damp-
ing coefficient constant in the layer.

In order to illustrate how PMLs work with a standard numerical method, we solve
(7.4) with a staggered Finite Difference Time Domain method and present the results
we obtain in Table 7.1. We consider a domain of size Lx = Ly = 1. We choose the

damping functions as follows: σx(x) = dx

w
σmax

x , σy(y) = dy

w
σmax

y , where w is the width
of the PML, σmax is the maximum absorption and dm is the distance from m to the
inner PML boundary. Thus, the absorption will be very small near the domain-PML
interface and very large towards the boundary of the domain. In Table 7.1, we present
the obtained results. The first row of the table represents the pressure of the acoustic
wave equation solved with the FDTD without considering any PML with homogeneous
Neumann boundary conditions. We can see the reflections at the boundaries. The sec-
ond row of the table presents a domain surrounded with absorbing layers of width 0.2
and a maximal damping of σmax = σmax

x = σmax
y = 50. We can see that the wave is

absorbed as it goes through the layer, however we see here that even though the absorb-
ing layers are perfectly matched in theory, in practice discretization induces reflections
as can be seen in the results. Finally, the third row presents a domain surrounded with
absorbing layers of width 0.1 and a maximal damping of σmax = 100. These results help
us understand how the PML works in practice and we observe that it acts like a sponge
absorbing the wave as it propagates through the layer.

In the following, we focus on introducing PMLs in the Trefftz-DG solver. We will see
that this work raises several new questions at the mathematical level which transforms
the implementation of PMLs into a much more technical task.
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w , σmax

0 , 0

0.2 , 50

0.1 , 100

Table 7.1: Pressure for varying width and σmax



Chapter 8

Perfectly Matched Layers with
Trefftz-DG methods

In this chapter, we formulate the Trefftz approximation of the acoustic system consid-
ered in Chapter Trefftz-DG Method for Wave equations when adding Perfectly Matched
Layers to truncate the computational domain. Here again, the formulation includes the
Tent-Pitcher algorithm. First, we consider one absorbing layer parallel to the x-axis as
shown in Fig. 8.1.

We will first introduce the acoustic wave equation with one PML in the y-direction
and derive the corresponding formulation along with the appropriate functional spaces.
Then, we will present some other variational formulations motivated by the observations
we made when performing numerical experiments. Actually, it turns out that depending
on the variational formulation we choose, the solution is not guaranteed to converge to
the exact solution.

Ω

0.3

0 1

1

Figure 8.1: Considered domain with one PML

We proceed in the same manner is previously, except that we only consider a PML in
the y-direction here. Thus, considering (7.4) with σx = 0, we obtain the acoustic wave

120
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equations with a PML in the y-direction:

ρ
∂vx

∂t
+ ∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ ( ∂

∂t
+ σy)−1 ∂

∂t

∂p

∂y
= 0 ,

1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ( ∂

∂t
+ σy)−1 ∂

∂t

∂vy

∂y
= 0 .

(8.1)

After multiplying the second and third equations by ( ∂

∂t
+ σy) in order to avoid having

differential operators in the denominator, we obtain the acoustic wave equations with
PML in the y-direction, that we will be working with:

ρ
∂vx

∂t
+ ∂p

∂x
= 0 ,

ρ( ∂

∂t
+ σy)∂vy

∂t
+ ∂

∂t

∂p

∂y
= 0 ,

1
c2ρ

( ∂

∂t
+ σy)∂p

∂t
+ ( ∂

∂t
+ σy)∂vx

∂x
+ ∂

∂t

∂vy

∂y
= 0 .

(8.2)

8.1 Perfect transmission

To show that our layers are perfectly matched, we need to verify that there are no
reflections at the interface between the domain and the PML, hence having a perfect
transmission of the solution. This is one of the important characteristics of such absorb-
ing layers.

Bérenger in [79] and Halpern et al. in [91] analyze the PML in other frameworks
and the perfectly matched character is proved based on the calculation of the reflection
coefficient. Here, to verify that our layers are perfectly matched, we will also show that
reflection coefficients are null, but we will carry it out by computing Green’s functions at
the interface between a domain and its PML, instead of plane waves as in [79, 91]. To do
so, let us consider a domain with a PML defined in the bottom half-plane for simplicity
as in Fig. 8.2, although the approach and the result are the same if we consider a
differently positioned PML. We will use the following decomposition of the solution:

p = pi + pr , y > 0
p = pt , y < 0

Hence, we will write the Green’s functions for the incident wave pi, the reflected wave
pr and the transmitted wave pt we would have at the interface, and finally show that
the reflection coefficient is null.
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Ω
Ωpml

y = 0

pi

pr

pt

Figure 8.2: Incident, reflected and transmitted wavefronts

Let us consider the second-order wave equations. We assume that the incident wave
is generated by a point source at a height h. The three waves satify the following three
wave equations and two transmissions conditions at the interface y = 0:

1
c2

∂2pi

∂t2 −
∂2pi

∂x2 −
∂2pi

∂y2 = δ(x)δ(y − h)δ(t) , y > 0 ,

1
c2

∂2pr

∂t2 −
∂2pr

∂x2 −
∂2pr

∂y2 = 0 , y > 0 ,

1
c2

∂2pt

∂t2 −
∂2pt

∂x2 −
(

∂t

∂t + σy

)2
∂2pt

∂y2 = 0 , y < 0 ,

pi + pr = pt , y = 0 ,

∂pi

∂y
+ ∂pr

∂y
= ∂t

∂t + σy

∂pt

∂y
, y = 0 .

(8.3)

Here, the transmitted wave is located in the PML, which explains the change of variable
depicted in the third and fifth equation of (8.3), whereas the incident and reflected waves
are located in the domain of interest.

Then, we perform a Laplace transform on p:

L[p](s) = p̃(x, y, s)

and a partial Fourier transform along x on p̃:

Fx[p̃](k) = p̂(k, y, s)
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which gives us the following system:

− ∂2p̂i

∂y2 + (k2 + s2

c2 )p̂i = δ(y − h) , y > 0 ,

− ∂2p̂r

∂y2 + (k2 + s2

c2 )p̂r = 0 , y > 0 ,

−
(

s

s + σy

)2
∂2p̂t

∂y2 + (k2 + s2

c2 )p̂t = 0 , y < 0 ,

p̂i + p̂r = p̂t , y = 0 ,

∂p̂i

∂y
+ ∂p̂r

∂y
= s

s + σy

∂p̂t

∂y
, y = 0 .

The solutions to these equations can be computed explicitly and are given by:

p̂i(k, y, s) = e−|y−h|(k2+ s2
c2 )

1
2

2
(
k2 + s2

c2

) 1
2

p̂r(k, y, s) = R(k, s)e
−y

(
k2+ s2

c2

) 1
2

p̂t(k, y, s) = T (k, s)e
y(1+ σy

s
)
(

k2+ s2
c2

) 1
2

R and T will be called the reflection and transmission coefficient, respectively. As we are
considering the problem at the interface between the domain of interest and the PML,
we have y − h < 0. Thus, the incident wave solution can be rewritten as follows:

p̂i(k, y, s) = e(y−h)(k2+ s2
c2 )

1
2

2
(
k2 + s2

c2

) 1
2

We now inject these solutions into the transmission conditions, which are the fourth and
fifth equation of (8.3), which results in:

pi + pr = pt ⇐⇒ e−h(k2+ s2
c2 )

1
2

2
(
k2 + s2

c2

) 1
2

+R(k, s) = T (k, s) ,

∂pi

∂y
+ ∂pr

∂y
= ∂t

∂t + σy

∂pt

∂y
⇐⇒ e−h(k2+ s2

c2 )
1
2

2 −R(k, s)
(

k2 + s2

c2

) 1
2

= T (k, s)
(

k2 + s2

c2

) 1
2

(8.4)
Notice that equations (8.4) are evaluated at y = 0, since the interface is located there.
Hence, we obtain:

R = 0 ,

T = e−h(k2+ s2
c2 )

1
2

2
(
k2 + s2

c2

) 1
2

.
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Thus, we showed that there is no reflection between the domain and the PML for the
pressure computed as a solution to the second-order acoustic wave equation with PML.
Regarding the velocity, we have the following equation for the reflected field:

ρ
∂vr

∂t
+∇pr = 0

If we perform a Laplace transform followed by a partial Fourier transform along x to v
and p, we obtain the following: 

ρsv̂x − ikp̂ = 0 ,

ρsv̂y + ∂p̂

∂y
= 0 .

Since we verified thatR = 0, as a consequence we obtain vr = 0 as well. Thus, we showed
that our absorbing layer is indeed perfectly matched, as we retrieve zero reflections at
the interface between the domain and the PML, for all wavefields.

Remark. The absorbing layers are indeed perfectly matched when considering the con-
tinuous equations. However, when we turn to numerical computations, we introduce
approximations of the solutions. This means that there can be reflections, although not
strong ones, since we assume the approximations are close enough to the continuous so-
lutions. Moreover, the remaining reflections can be minimized depending on the choice
of the damping function σy(y).

8.2 Variational formulation without auxiliary variables

The system (8.2) does not involve any additional variables, hence it will be called the
system without auxiliary variables. It is worth noting that it is quite frequent that PML
formulations involve auxiliary variables, which can increase the associated computational
costs. Before determining our PML system’s variational formulation, we need to define
new functional spaces and a Trefftz space.

Functional spaces

By operating in the same way as in Chapter Trefftz-DG Method for Wave equations, we
consider a local variational formulation on a spacetime element K:

1
c2ρ

∫
K

( ∂

∂t
+ σy)∂p

∂t
q +

∫
K

( ∂

∂t
+ σy)∂vx

∂x
q +

∫
K

∂

∂t

∂vy

∂y
q =

∫
K

fq

ρ

∫
K

∂vx

∂t
wx +

∫
K

∂p

∂x
wx = 0

ρ

∫
K

( ∂

∂t
+ σy)∂vy

∂t
wy +

∫
K

∂

∂t

∂p

∂y
wy = 0

(8.5)

Here, (q, w) are test functions and their functional spaces will be defined in the following.
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The minimal requirement to get a well-defined problem is to ensure that each integral
in (8.5) is finite. This leads to searching for solutions such that:

∂p

∂t
∈ L2(K) ,

∂2p

∂t2 ∈ L2(K) ,
∂p

∂x
∈ L2(K) ,

∂2p

∂t∂y
∈ L2(K) ,

∂v
∂t
∈ (L2(K))d ,

∂

∂t
div v ∈ L2(K) ,

∂2vy

∂t2 ∈ L2(K) .

We can observe that compared to the original system, the PML system assumes that the
solution is more regular. Actually, we consider that the time derivative of the solution
satisfies the same regularity properties as the wavefield solutions to the system without
PML. Hence, we introduce V and V:

V =
{

p ∈ L2(Ω) | p ∈ H2(K)
}

V =
{

v ∈ (L2(Ω))d | v ∈ (H2(K))d
}

H2(K) =
{

Φ ∈ L2(K), ∂αΦ ∈ L2(K),∀α ∈ Nd, |α| ≤ 2
}

As a consequence, (8.5) is well-defined if we assume p ∈ V and v ∈ V.

Now that we properly defined the functional spaces, it remains to introduce the
Trefftz space in which the basis functions will be chosen. As has already been explained
before, the idea of the Trefftz method is to take particular solutions as basis functions.
Here, the equations are different than previously, hence the Trefftz space will also differ.
According to the system we want to solve, our Trefftz space can be defined as:

T =
{

(v, p) ∈ V× V, such that (v, p) is solution to (8.2)}

In the following, we present different variational formulations that we have experienced
numerically and provided us with different solutions.

8.2.1 Variational formulation A

To obtain the variational formulation, let us sum all equations of (8.5) and integrate by
parts:∫

K

[
ρ( ∂

∂t
− σy)∂wy

∂t
+ ∂

∂t

∂q

∂y

]
vy −

[
ρ

∂wx

∂t
− ( ∂

∂t
− σy) ∂q

∂x

]
vx

+
[ 1

c2ρ
( ∂

∂t
− σy)∂q

∂t
− ∂wx

∂x
+ ∂

∂t

∂wy

∂y

]
p

+
∫

∂K
−ρvy

∂wy

∂t
nt + ρ( ∂

∂t
+ σy)vywynt + ∂p

∂t
wyny − p

∂wy

∂y
nt

+
∫

∂K
ρvxwxnt + pwxnx

+
∫

∂K

1
c2ρ

( ∂

∂t
+ σy)pqnt −

1
c2ρ

p
∂q

∂t
nt − v · ∇q nt + ( ∂

∂t
+ σy)vxqnx + ∂vy

∂t
qny = 0
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One of the strengths of Trefftz formulations for wave equations is that the volumic terms
vanish, because we take (q, w) in T, i.e., the test functions are local solutions to the
problem of interest and we can apply a sort of reciprocity principle. However, here we
can see that it is not the case, because the PML formulation introduces second-order
time derivatives, which results in modifying the expressions involving the test functions.
In a perfect world, we would have a plus sign before σy and then, according to the
definition of the Trefftz space T, the volumic terms would vanish. We are recovering the
fact that when considering wave equations with attenuation, the reciprocity principle
does not apply. In fact for the PML formulation, in order to keep a formulation only
defined on the skeleton of the mesh, we should consider test functions satisfying the
following problem:

ρ
∂wx

∂t
− ( ∂

∂t
− σy) ∂q

∂x
= 0 ,

ρ
∂wy

∂t
+ ( ∂

∂t
− σy)−1 ∂

∂t

∂q

∂y
= 0 ,

1
c2ρ

∂q

∂t
− ( ∂

∂t
− σy)−1 ∂wx

∂x
+ ( ∂

∂t
− σy)−1 ∂

∂t

∂wy

∂y
= 0 .

In order to simplify these equations as much as possible, we introduce a change of
variable wx = −(∂t−σy)w̃x. By doing so, we obtain a system of equations that is closer
to the initial one: 

ρ
∂w̃x

∂t
+ ∂q

∂x
= 0 ,

ρ
∂wy

∂t
+ ( ∂

∂t
− σy)−1 ∂

∂t

∂q

∂y
= 0 ,

1
c2ρ

∂q

∂t
+ ∂w̃x

∂x
+ ( ∂

∂t
− σy)−1 ∂

∂t

∂wy

∂y
= 0 ,

wx = −(∂t − σy)w̃x .

(8.6)

Following this, let us then define the suitable test function space:

T̃(Th) =
{

(w, q) ∈ V× V, such that (w, q) is solution to (8.6)
}

Hence, the generalized local Trefftz formulation of the PML problem (8.2) reads:
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Generalized Trefftz Variational Formulation

Seek (v, p) ∈ T, such that for all (w, q) ∈ T̃ and for all K, it holds true:∫
∂K
−ρvy

∂wy

∂t
nt + ρ( ∂

∂t
+ σy)vywynt + ∂p

∂t
wyny − p

∂wy

∂y
nt

+
∫

∂K
ρvxwxnt + pwxnx

+
∫

∂K

1
c2ρ

( ∂

∂t
+ σy)pqnt −

1
c2ρ

p
∂q

∂t
nt − v · ∇q nt + ( ∂

∂t
+ σy)vxqnx + ∂vy

∂t
qny

= 0
(8.7)

Notice that the volumic terms have indeed vanished and we are left with boundary
integrals.

Numerical fluxes

Now that we have defined the local Trefftz variational formulation, we move on to the dis-
cretization of the domain Ω. Let Th be a triangulation of Ω composed of non-overlapping
spacetime elements K. To complete our DG discretization, it remains to define the nu-
merical fluxes, which connect the elements together and are chosen as follows:

v = v on Fout ,
v̂

∂v̌
∂t

 =


{{v}}+ β1JpKx{{∂v
∂t

}}
+ β3

r∂p

∂t

z

x

 on F int ,

 v
∂“v
∂t

 =

 (0.5− α2)v + (0.5 + α2)v0

(0.5− α4)∂v
∂t

+ (0.5 + α4)∂v0

∂t

 on F in ,


v̂ · nx

∂v̌
∂t
· nx

 =


gD

∂gD

∂t

 on Fext ,
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p = p on Fout ,
p̂

∂p̌

∂t

 =


{{p}}+ α1JvKx{{∂p

∂t

}}
+ α3

r∂v
∂t

z

x

 on F int ,

 p
∂ “p

∂t

 =

 (0.5− β2)p + (0.5 + β2)p0

(0.5− β4)∂p

∂t
+ (0.5 + β4)∂p0

∂t

 on F in ,


p̂

∂p̌

∂t

 =


p + α1(v · nx − gD)

∂p

∂t
+ α3

(
∂v
∂t
· nx −

∂gD

∂t

)
 on Fext .

where α1, α2, α3 and α4 are penalty coefficients, taken between 0 and 1.

Since we are working with Tent-Pitching meshes, we can see that the fluxes are de-
fined on a Tent-Pitching cell as introduced in Part I. Indeed, a Tent-Pitching cell is
composed of an inflow and outflow boundary, and in some cases can have an external
and/or an internal boundary. In classical DG, the considered boundaries differ from
those in Tent-Pitching and so do the fluxes. We then inject these fluxes into (8.7) and
hence obtain the following Trefftz-DG PML variational formulation on Tent-
Pitched meshes, that we will more simply refer to as "Variational formulation A":

PML Trefftz-DG Variational Formulation with Tent-Pitching

Seek (v, p) ∈ T, such that for all (w, q) ∈ T̃, it holds true:

A(v, p; w, q) = l(w, q)

where

l(w, q) := −
∫

F in
(0.5 + α)

(
− ρvy

in ∂wy

∂t
+ ρ( ∂

∂t
+ σy)vy

inwy − pin ∂wy

∂y
+ ρvx

inwx

)
nt

+(0.5 + β)
( 1

c2ρ
( ∂

∂t
+ σy)pinq − 1

c2ρ
pin ∂q

∂t
− vin · ∇q

)
nt

−1
2

∫
F in

∂pin

∂t
wyny + pinwxnx + (∂vin

∂t
· n)q + σyvx

inqnx .
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A(v, p; w, q) :=
∫

Fout
−ρvy

∂wy

∂t
nt + ρ( ∂

∂t
+ σy)vywynt + ∂p

∂t
wyny − p

∂wy

∂y
nt

+ ρvxwxnt + pwxnx + 1
c2ρ

( ∂

∂t
+ σy)pqnt

− 1
c2ρ

p
∂q

∂t
nt − v · ∇q nt + (∂v

∂t
· n)q + σyvxqnx

+
∫

Fin
(0.5− α)

(
−ρvy

∂wy

∂t
+ ρ( ∂

∂t
+ σy)vywy − p

∂wy

∂y
+ ρvxwx

)
nt

+ (0.5− β)
( 1

c2ρ
( ∂

∂t
+ σy)pq − 1

c2ρ
p

∂q

∂t
− v · ∇q

)
nt

+1
2

∫
Fin

∂p

∂t
wyny + pwxnx + (∂v

∂t
· n)q + σyvxqnx

+
∫

Fext

∂p

∂t
wyny + γ(∂v

∂t
· n)wyny + pwxnx + γ(v · n)wxnx + σyvxqnx

+
∫

F int

{{∂p

∂t

}}
JwyKy + α

r∂v
∂t

z

x
JwyKy +

{{∂v
∂t

}}
JqKx + β

r∂p

∂t

z

x
JqKx

+{{p}}JwxKx + αJvKxJwxKx + σy{{vx}}JqKx + σyβJpKxJqKx

Drawbacks and Advantages

We can already see some drawbacks for this variational formulation, which encouraged
us to look for a different one. Indeed, we need to define a new space T̃ for the test
functions on top of performing a change of variable. This means that we have additional
computations to do since we have two sets of functions to determine: one for the basis
functions and the other for the test functions, as it is done for instance in Petrov-Galerkin
method. Moreover, we can see that the variational formulation has become drastically
more complex with many derivatives that we did not have in the formulation without
PML, which was is and advantageous characteristic of the Trefftz-DG formulation. In
Appendix D, we can see that the expressions of these derivatives are not simple and they
increase calculations and burden the comprehension. Finally, using the formulation A,
we obtained bad results with a solution which would blow up; they will be presented in
the Chapter Implementation. To overcome these drawbacks, we decided to find another
variational formulation with auxiliary variables.
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8.3 Variational formulation with auxiliary variable

To introduce our auxiliary variables (pa, vy
a) ∈ L2(Ω) × L2(Ω), let us go back to (8.1).

We can see that ∂t

∂t + σy
= 1− σy

∂t + σy
. So,



ρ
∂vx

∂t
+ ∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ ∂p

∂y
− σy( ∂

∂t
+ σy)−1 ∂p

∂y
= 0 ,

1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y
− σy( ∂

∂t
+ σy)−1 ∂vy

∂y
= 0 .

Hence, setting pa = σy( ∂

∂t
+ σy)−1 ∂p

∂y
and vy

a = σy( ∂

∂t
+ σy)−1 ∂vy

∂y
we obtain our PML

equations with auxiliary variables:

ρ
∂vx

∂t
+ ∂p

∂x
= 0 ,

ρ
∂vy

∂t
+ ∂p

∂y
− pa = 0 ,

1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y
− vy

a = 0 ,

( ∂

∂t
+ σy)pa = σy

∂p

∂y
,

( ∂

∂t
+ σy)vy

a = σy
∂vy

∂y
.

(8.8)

We can see that in these new equations, our solution dimension has increased by two
and is (p, v, pa, vy

a) from now on.

Functional spaces

As before, we need to define our Trefftz spaces. Let us begin with the local variational
formulation on a spacetime element K:

1
c2ρ

∫
K

∂p

∂t
q +

∫
K

∂vx

∂x
q +

∫
K

∂vy

∂y
q −

∫
K

vy
aq = 0 ,

ρ

∫
K

∂vx

∂t
wx +

∫
K

∂p

∂x
wx = 0 ,

ρ

∫
K

∂vy

∂t
wy +

∫
K

∂p

∂y
wy − pawy = 0 ,∫

K

∂pa

∂t
qa + σy

∫
K

paqa = σy

∫
K

∂p

∂y
qa ,∫

K

∂vy
a

∂t
wy

a + σy

∫
K

vy
awy

a = σy

∫
K

∂vy

∂y
wy

a .

(8.9)
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Here, (q, w, qa, wy
a) are test functions and following the same logic as before, we intro-

duce V and V:

V =
{

p ∈ L2(Ω) | p ∈ H1(K)
}

V =
{

v ∈ (L2(Ω))d | v ∈ (H1(K))d
}

H1(K) =
{

Φ ∈ L2(K), ∂αΦ ∈ L2(K),∀α ∈ Nd, |α| ≤ 1
}

As a consequence, (8.9) is well-defined if we assume p, pa, vy
a ∈ V and v ∈ V.

Now that we have properly defined the functional spaces, it remains to introduce
the Trefftz space in which the basis functions will be chosen for the new variational
formulation. As already explained before, the idea of the Trefftz method is to take
particular solutions as basis functions. According to the system of equations we want to
solve, our Trefftz space is defined as:

T =
{

(v, p, vy
a, pa) ∈ V× V × V × V, such that (v, p, vy

a, pa) is solution to (8.8)
}

8.3.1 Variational formulation B

To obtain the variational formulation, let us sum all equations of (8.9) and integrate by
parts. This results in:∫

K
−
[ 1

c2ρ

∂q

∂t
+ ∂wx

∂x
+ ∂wy

∂y
− σy

∂wy
a

∂y

]
p−

[
∂q

∂y
+ ρ

∂wy

∂t
− σy

∂qa

∂y

]
vy −

[
∂q

∂x
+ ρ

∂wx

∂t

]
vx

−
[

∂qa

∂t
+ q − σyqa

]
vy

a −
[

∂wy
a

∂t
+ wy − σywy

a
]

pa

+
∫

∂K

1
c2ρ

pqnt + vxqnx + vyqny + ρvxwxnt + pwxnx + ρvywynt + pwyny

+ wy
aqant − σyvyqany + pawy

ant − σypwy
any = 0 .

As previously with the first PML formulation, we see that if the test functions are
solutions to the problem of interest, the volumic terms do not vanish as it does in
classical Trefftz formulations. But this can be achieved if we consider test functions
satisfying the following problem:

1
c2ρ

∂q

∂t
+ ∂wx

∂x
+ ∂wy

∂y
− σy

∂wy
a

∂y
= 0 ,

ρ
∂wx

∂t
+ ∂q

∂x
= 0 ,

ρ
∂wy

∂t
+ ∂q

∂y
− σy

∂qa

∂y
= 0 ,

( ∂

∂t
− σy)qa = −q ,

( ∂

∂t
− σy)wy

a = −wy .

(8.10)
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As before, let us then define the suitable test function space:

T̃ =
{

(w, q, wy
a, qa) ∈ V× V × V × V, such that (w, q, wy

a, qa) is solution to (8.10)
}

Hence, the generalized local Trefftz formulation of the PML problem with auxiliary
variables (8.8) reads:

Generalized Trefftz Variational Formulation

Seek (v, p, vy
a, pa) ∈ T, such that for all (w, q, wy

a, qa) ∈ T̃ and for all K, it holds
true: ∫

∂K

1
c2ρ

pqnt + vxqnx + vyqny

+
∫

∂K
ρvxwxnt + pwxnx

+
∫

∂K
ρvywynt + pwyny

+
∫

∂K
wy

aqant − σyvyqany + pawy
ant − σypwy

any = 0 .

(8.11)

Notice that, once again, the volumic terms have indeed vanished and we are left
with boundary integrals. Moreover, if we compare this formulation with the former one,
we can see that there are no more derivatives involved. We end up with a classical
expression as with the acoustic wave equation without PML.

Numerical fluxes

Now that we have defined the Trefftz variational formulation, using the same triangula-
tion and approximate wavefields as before, it remains to define the DG numerical fluxes
for Tent-Pitching meshes, which we choose as follows:

v · n
p

vy
a

pa

 =
(
{{v · n}}+ β1JpKx
{{p}}+ α1JvKx

)
on F int


v
p

vy
a

pa

 =


v
p

vy
a

pa

 on Fout
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
v
p

vy
a

pa

 =


(0.5− α2)vy + (0.5 + α2)vy

0

(0.5− β2)p + (0.5 + β2)p0

(0.5− α2)vy
a + (0.5 + α2)(vy

a)0

(0.5− β2)pa + (0.5 + β2)(pa)0

 on F in


v · n

p

vy
a

pa

 =


g

p + α1(v · nx − g)
vy

a

pa

 on Fext

where α1 and α2 are penalty coefficients, taken between 0 and 1. We then inject these
fluxes into (8.11) and hence obtain the following Trefftz-DG PML variational for-
mulation on Tent-Pitched meshes with auxiliary variables, which we will more
simply refer to as "Variational formulation B":

Trefftz-DG Variational Formulation with Tent-Pitching and PML

Seek (v, p, vy
a, pa) ∈ T, such that for all (w, q, wy

a, qa) ∈ T̃, it holds true:∫
Fout

( 1
c2ρ

pq + ρ(v ·w))nt + (v · n)q + p(w · n)

+(paqa + vy
awy

a)nt − σy(pqa + vywy
a)ny

+
∫

F in
(0.5− α2)((v ·w) + vy

awy
a)nt + (0.5− β2)

( 1
c2ρ

pq + paqa
)

nt

+0.5
∫

F in
(v · n)q + p(w · n)− σy(pqa + vywy

a)ny

+
∫

Fext
p(w · n) + α1(v · n)(w · n)− σy(vywy

a + pqa + α1(v · n)qa)ny

+
∫

Fint
{{v}} · JqKx + β1JpKx · JqKx + {{p}}JwKx + α1JvKxJwKx

−σy

∫
Fint
{{vy}}Jwy

aKy + γ1JpKyJwy
aKy + {{p}}JqaKy + γ2JvyKyJqaKy

= −
∫

F in
(0.5 + α2)((vin ·w) + (vy

a)inwy
a)nt + (0.5 + β2)

( 1
c2ρ

pinq + (pa)inqa
)

nt

−0.5
∫

F in
(vin · n)q + pin(w · n)− σy(pinqa + vy

inwy
a)ny

Advantages and Drawbacks

We took an interest in this formulation because all of the information concerning PMLs
is concentrated in the auxiliary variables. Hence, it is very easy to switch back to the
formulation without PML, allowing us to debug our code more easily by comparing the
results of different bricks of code to the acoustic solver without PML. However, we still
face the problem of needing an additional functional space for the test functions, hence
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computing two sets of functions, once again. After implementing this formulation, we
obtained bad results, as the numerical solution does not converge to the exact solution
when σy = 0 and when considering σy > 0, the numerical solution blows up over time.
These results are explained in more details in Chapter Implementation. We numerically
observed that these bad results could have originated from the difference between the
basis and the test functions, but we could not find a proof of this claim. However, this
idea paved the way for constructing a third formulation avoiding the use of a different
space for the test functions.

8.4 Variational formulation C

In Chapter Trefftz-DG Method for Wave equations, we introduced a variant of the
variational formulation for the Trefftz-DG method with Tent-Pitching for the acoustic
wave equations. We can apply the same reasoning to the PML equations (8.8) and we
obtain the following variational formulation:

Trefftz-DG Variational Formulation C with Tent-Pitching and PML

Seek (v, p, vy
a, pa) ∈ T, such that for all (w, q, wy

a, qa) ∈ V×V ×V ×V , it holds
true:

A(v, p; w, q) = l(w, q)

where∫
F in

(0.5 + α)(ρv ·w + vy
awy

a)nt + (0.5 + β)( 1
c2ρ

pq + paqa)

+0.5
∫

F in
vq · n + pw · n− σy(vywy

a + pqa)ny

+
∫

Fext
p(w · n) + α1(v · n)(w · n)− σyvywy

any − σypqany − σy(v · n)qany

+
∫

Fint
{{v}} · JqKx + β1JpKx · JqKx + {{p}}JwKx + α1JvKxJwKx

−σy

∫
Fint
{{vy}}Jwy

aKy + γ1JpKyJwy
aKy + {{p}}JqaKy + γ2JvyKyJqaKy

=
∫

F in
(0.5− α2)((vin ·w) + (vy

a)inwy
a)nt + (0.5− β2)

( 1
c2ρ

pinq + (pa)inqa
)

nt

+0.5
∫

F in
(vin · n)q + pin(w · n)− σy(pinqa + vy

inwy
a)ny

Advantages and Drawbacks

The advantages of this formulation are as expected; we do not need to introduce an
additional functional space and thus, we do not have more computations. Additionally,
we can even choose any test function in (V×V ), which is very convenient. However, since
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we only have inflow boundaries, we could not compare it with the acoustic solver without
PML, which was only implemented with the classical formulation and not the variant
formulation C. All the improvements brought by this formulation helped us achieve good
results, which will be presented in Chapter Implementation.

8.5 PML in x and y

The aim in this section is to address the problem with two PMLs: one parallel to the
x-axis and the other parallel to the y-axis as depicted in Fig. 8.3. The drawbacks of the
formulations A and B previously presented and their lack of robustness shown in the
numerical experiments with a single horizontal PML in the following chapter encouraged
us to restrict ourselves to the formulation C.

Ω

0 1

1

Figure 8.3: Considered domain with two PMLs

We introduce the acoustic wave equations with PML in x- and y-direction, using the
variable stretch of Bérenger, as follows:

1
c2ρ

( ∂

∂t
+ σy)( ∂

∂t
+ σx)∂p

∂t
+ ( ∂

∂t
+ σy) ∂

∂t

∂vx

∂x
+ ( ∂

∂t
+ σx) ∂

∂t

∂vy

∂y
= 0 ,

ρ( ∂

∂t
+ σx)∂vx

∂t
+ ∂

∂t

∂p

∂x
= 0 ,

ρ( ∂

∂t
+ σy)∂vy

∂t
+ ∂

∂t

∂p

∂y
= 0 .

(8.12)
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From which, we derive the equations with auxiliary variables, which can be written as:

1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y
− vx

a − vy
a = 0 ,

ρ
∂vx

∂t
+ ∂p

∂x
− pa

1 = 0 ,

ρ
∂vy

∂t
+ ∂p

∂y
− pa

2 = 0 ,

(∂t + σx)pa
1 = σx

∂p

∂x
,

(∂t + σy)pa
2 = σy

∂p

∂y
,

(∂t + σx)vx
a = σx

∂vx

∂x
,

(∂t + σy)vy
a = σy

∂vy

∂y
.

(8.13)

Functional spaces

As before, let us consider a local variational formulation on a spacetime element K:∫
K

( 1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y
− vx

a − vy
a)q = 0 ,∫

K
(ρ∂vx

∂t
+ ∂p

∂x
− pa

1)wx = 0 ,∫
K

(ρ∂vy

∂t
+ ∂p

∂y
− pa

2)wy = 0 ,∫
K

((∂t + σx)pa
1)qa

1 =
∫

K
σx

∂p

∂x
qa

1 ,∫
K

((∂t + σy)pa
2)qa

2 =
∫

K
σy

∂p

∂y
qa

2 ,∫
K

((∂t + σx)vx
a)wx

a =
∫

K
σx

∂vx

∂x
wx

a ,∫
K

((∂t + σy)vy
a)wy

a =
∫

K
σy

∂vy

∂y
wy

a .

(8.14)

Here, (q, w, wx
a, wy

a, qa
1 , qa

2) are test functions and their functional spaces will be defined
in the following. Let us define V and V as follows:

V =
{

p ∈ L2(Ω) | p ∈ H1(K)
}

V =
{

v ∈ (L2(Ω))d | v ∈ (H1(K))d
}

H1(K) =
{

Φ ∈ L2(K), ∂αΦ ∈ L2(K),∀α ∈ Nd, |α| ≤ 1
}

Thus, the system (8.13) is well-defined for (p, v, vx
a, vy

a, pa
1, pa

2) ∈ (V ×V×V ×V ×V ×V ).
It remains to define the Trefftz space for our problem, which can be written:

T =
{

(p, v, vx
a, vy

a, pa
1, pa

2) ∈ V ×V× V × V × V × V, such that

(p, v, vx
a, vy

a, pa
1, pa

2) is solution to (8.13)
}
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Now that our functional spaces and Trefftz space are properly defined, let us sum all
equations of (8.14) and integrate by parts, which results in:

−
∫

K

[ 1
c2ρ

∂q

∂t
+ ∂wx

∂x
+ ∂wy

∂y
− σx

∂wx
a

∂x
− σy

∂wy
a

∂y

]
p

+
[

∂q

∂x
+ ρ

∂wx

∂t
− σx

∂qa
1

∂x

]
vx +

[
∂q

∂y
+ ρ

∂wy

∂t
− σy

∂qa
2

∂y

]
vy

+
[

∂wx
a

∂t
+ wx − σxwx

a
]

pa
1 +

[
∂wy

a

∂t
+ wy − σywy

a
]

pa
2

+
[

∂qa
1

∂t
+ q − σxqa

1

]
vx

a +
[

∂qa
2

∂t
+ q − σyqa

2

]
vy

a

+
∫

∂K

1
c2ρ

pqnt + ρ(v ·w)nt + p(w · n) + (v · n)q

+
∫

∂K
pa

1wx
ant − σxpwx

anx + pa
2wy

ant − σypwy
any

+
∫

∂K
vx

aqa
1nt − σxvxqa

1nx + vy
aqa

2nt − σyvyqa
2ny = 0 .

Since we want to use the same reasoning as for the previous variational formulation C,
we will integrate by parts once more, thus obtaining the following formulation:

Trefftz-DG Variational Formulation C with Tent-Pitching and PML in x and y

Seek (p, v, vx
a, vy

a, pa
1, pa

2) ∈ T, such that for all (w, q, wy
a, qa

1) ∈ V × V × V ×
V × V × V , it holds true:

A(v, p; w, q) = l(w, q)

where

A(v, p; w, q) :=
∫

Fin
(0.5 + α)(ρv ·w + vx

awx
a + vy

awy
a)nt

+(0.5 + β)( 1
c2ρ

pq + pa
1qa

1 + pa
2qa

2)

+0.5
∫

Fin
v · nq + pw · n

−σy(vywy
any − pqa

2ny)− σx(vxwx
anx − pqa

1nx)

+
∫

Fext
p(w · n) + α1(v · n)(w · n)

−σy(vywy
any − pqa

2ny)− σx(vxwx
anx − pqa

1nx)

+
∫

Fint
{{v}} · JqKx + β1JpKx · JqKx + {{p}}JwKx + α1JvKxJwKx

−σx

∫
Fint
{{vx}}Jwx

aKx + γ1JpKxJwx
aKx + {{p}}Jqa

1Kx + γ2JvxKxJqa
1Kx

−σy

∫
Fint
{{vy}}Jwy

aKy + γ1JpKyJwy
aKy + {{p}}Jqa

2Ky + γ2JvyKyJqa
2Ky
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l(w, q) :=
∫

Fin
(0.5− α2)((vin ·w) + (vy

a)inwy
a)nt

+(0.5− β2)
( 1

c2ρ
pinq + (pa

1)inqa
1

)
nt

+0.5
∫

Fin
(vin · n)q + pin(w · n)

−σy(pinqa
2 + vy

inwy
a)ny − σx(vx

inwx
a − pinqa

1)nx

8.6 Computation of basis functions

Now that we have presented the various functional spaces, Trefftz spaces and variational
formulation, we need to adress the question of basis functions. Indeed, since we are
working in a Trefftz framework, we need to construct local solutions of the studied
equations. A natural choice of basis functions would have been polynomial solutions, as
the ones we used in the non-PML case. However, to our knowledge, polynomial solutions
to the acoustic PML equations have not been derived yet. In this section, we address
this question and show that the dependency in time cannot be polynomial.

8.6.1 Polynomial Basis Functions for PML

As explained before, in order to carry out our Trefftz-DG method in a PML framework,
we need to construct local solutions, which ideally would be polynomials in our case in
order to extend the framework derived in Part I. However, it turns out that we cannot
derive spacetime polynomial solutions to the acoustic wave equation with PML. In this
section, we will prove this by contradiction.

In order to do so, let us recall the acoustic wave equations with PML in both direc-
tions:



139 8.6. Computation of basis functions

1
c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y
− vx

a − vy
a = 0 , (8.15a)

ρ
∂vx

∂t
+ ∂p

∂x
− pa

1 = 0 ,

ρ
∂vy

∂t
+ ∂p

∂y
− pa

2 = 0 , (8.15b)

(∂t + σx)pa
1 = σx

∂p

∂x
, (8.15c)

(∂t + σy)pa
2 = σy

∂p

∂y
,

(∂t + σx)vx
a = σx

∂vx

∂x
,

(∂t + σy)vy
a = σy

∂vy

∂y
. (8.15d)

Let us assume that p, vx and vy are polynomials of degree d in Pd, thus they can be
written under the following form:

p(x, y, t) =
∑

i+j+l≤d

pi,j,lx
iyjtl

vx(x, y, t) =
∑

i+j+l≤d

vxi,j,lx
iyjtl

vy(x, y, t) =
∑

i+j+l≤d

vyi,j,lx
iyjtl

The equations (8.15c)-(8.15d) can be solved and we obtain:

pa
1(x, y, t) = σxe−σxt

∫ t

0
eσxs ∂p(x, y, s)

∂x
ds

pa
2(x, y, t) = σye−σyt

∫ t

0
eσys ∂p(x, y, s)

∂y
ds

vx
a(x, y, t) = σxe−σxt

∫ t

0
eσxs ∂vx(x, y, s)

∂x
ds

vy
a(x, y, t) = σye−σyt

∫ t

0
eσys ∂vy(x, y, s)

∂y
ds

The derivatives of p can be written as follows:

∂p

∂x
=

∑
i+j+l≤d

ipi,j,lx
i−1yjtl

∂p

∂y
=

∑
i+j+l≤d

jpi,j,lx
iyj−1tl

We can also derive vx and vy analogously. We denote D(d)[u] the dth derivative of u.
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According to (8.15a)-(8.15b), we have:

D(d)[vx
a + vy

a] = D(d)
[ 1

c2ρ

∂p

∂t
+ ∂vx

∂x
+ ∂vy

∂y

]
= 0 ,

D(d)[pa
1] = D(d)

[
ρ

∂vx

∂t
+ ∂p

∂x

]
= 0 ,

D(d)[pa
2] = D(d)

[
ρ

∂vy

∂t
+ ∂p

∂y

]
= 0 .

(8.19)

We can see that since we assume p, vx and vy as polynomials of degree d, taking their
dth derivative is equal to zero. Thus, using (8.19) and replacing the derivatives by their
polynomial expressions, we obtain:

D(d)[vx
a + vy

a] =
d∑

k=0

(
d

k

)
D(d−k)

 ∑
i+j+l≤d

(σxe−σxtivxi,j,lx
i−1yj + σye−σytjvyi,j,lx

iyj−1


×D(k)

[∫ t

0
(eσxs + eσys)slds

]
,

D(d)[pa
1] = σx

d∑
k=0

(
d

k

)
D(d−k)

 ∑
i+j+l≤d

ipi,j,lx
i−1yj

D(k)
[∫ t

0
e−σx(t−s)slds

]
,

D(d)[pa
2] = σy

d∑
k=0

(
d

k

)
D(d−k)

 ∑
i+j+l≤d

jpi,j,lx
iyj−1

D(k)
[∫ t

0
e−σy(t−s)slds

]
.

These expressions are never equal to zero, in particular because the kth derivative of the
exponential function is never zero. Thus, when assuming that the solutions are polyno-
mials, the conditions (8.19) are never fulfilled and we obtain a contradiction. We can
conclude that there are no spacetime polynomial solutions to the acoustic wave equation
with PML.

Even though there are no spacetime polynomial solutions, Green’s functions are
known and have been computed by Diaz in [100] for the second-order wave equation
with PML. So, in order to carry out the PML framework we propose to construct a set
of local basis functions that are composed of Green’s functions. This is the purpose of
the following chapter.





Chapter 9

Green’s Functions

As explained in the previous chapter, to carry out a Trefftz-DG approximation of the
acoustic wave equation with PML we need to construct exact solutions to the acoustic
wave equations with Perfectly Matched Layers. For that purpose, we analytically com-
pute the Green’s functions for the first-order acoustic wave equation and to do so, we
use a tool known as the Cagniard-De Hoop method. The first section will be dedicated
to its presentation and explanation. In the second section, we describe the construction
of the analytical solutions in the non-PML case, for both the pressure and the velocity.
In the third section, we describe the construction of the analytical solutions in a PML
parallel to the x-axis. We finish by considering the general case of a PML surrounding
the computational domain, which leads us to handle the case of the corner where the
absorption is in both directions. We refer the reader to Fig. 9.1 for a description of the
different configurations.

Ω

0 1

1

Domain

(a) Sec. 9.2: Computation of
Green’s functions without

absorption

Ω

0 1

1

PML in y

(b) Sec. 9.3: Computation of
Green’s functions with
absorption in one layer

Ω

0 1

1

PML
in

corner

(c) Sec. 9.4: Computation of
Green’s functions with

absorption in the corner

Figure 9.1: Plan of the chapter
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9.1 Cagniard-De Hoop Method

The Cagniard-De Hoop method is a mathematical technique for computing analytical
solutions for wave problems in layered media. Originally, this tool was meant for seismic
wave problems and has then been extended to other kinds of waves [101, 102, 103]. This
method is first attributed to Cagniard ([104], 1939) and then to De Hoop ([105], 1960)
who improved it and also proposed an extension to three dimensions. This method
exploits the Laplace and Fourier transforms, so let us define them first. The Laplace
transform L of a function u(t) is the following integral:

L[u(t)](s) =
∫ +∞

0
u(t)e−st dt = ũ(s) ,

where s is the complex Laplace variable and reciprocally, the inverse Laplace transform
L−1 of ũ(s) is u(t). Let us also introduce the Fourier transform F of a function u(x) as
follows:

F [u(x)](k) =
∫ +∞

−∞
u(x)eik dx = U(k) ,

where k is the real dual variable of x and reciprocally, the inverse Fourier transform F−1

of U(k) is defined as follows:

F−1[U(k)](x) = 1
2π

∫ +∞

−∞
U(k)e−ik dk = u(x) .

To apply the Cagniard-De Hoop method, we first perform the above introduced
Laplace and Fourier transforms on the considered equations and obtain an explicit ex-
pression for p̂(k, y, s) = Fx[p̃(x, y, s)](k, y, s), where p is the unknown of our problem,
p̃(x, y, s) is its Laplace transform and Fx is the partial Fourier transform along x. We
then apply an inverse Fourier transform to p̂(k, y, s), which results in the following ex-
pression:

p̃(x, y, s) = F−1
k [p̂(k, y, s)](x, y, s) = 1

2π

∫ +∞

−∞
p̂(k, y, s)e−ikxdk

The next step consists in applying the change of variable k = bs/c, where b is a real
variable. This results in an integral in the following form:

p̃(x, y, s) = 1
2π

∫ +∞

−∞
g(x, y, b)e−sf(x,y,b)db.

We can see from the previous expression that the change of variable brings out the
term e−sf(x,y,b) with the Laplace variable s. This integral can thus be identified with an
inverse Laplace transform, if we can find a complex path Γ such that f(x, y, b) = t by
considering b as a complex variable. This is the last step and the heart of the Cagniard-
De Hoop method. If such a path is found, the previous integral can be rewritten as
follows:

p̃(x, y, s) = 1
2π

∫ +∞

0
h(x, y, t)e−stdt
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where h(x, y, t) represents the inverse Laplace transform of p̃, which is also the solution
p(x, y, t) we seek by the injectivity of the Laplace transform. Hence:

p(x, y, t) = L−1[p̃(x, y, s)](t) = h(x, y, t).

In the following, we propose to use the Cagniard-De Hoop method for computing the
Green’s function for the acoustic pressure, as it was formerly done by Diaz in [100]. This
will be an opportunity for us to show how the method actually works.

9.2 Green’s functions without PML

In this section, we compute the Green’s functions of the acoustic wave equation (4.3)
using the previously described Cagniard-De Hoop method. We obtain three Green’s
functions, each associated to the pressure and the velocity fields of the acoustic wave
equation.

9.2.1 Pressure

In order to find the Green’s function for the pressure field, we apply the Cagniard-De
Hoop method to the second order wave equation, which is written as follows:

1
c2

∂2P

∂t2 −
∂2P

∂x2 −
∂2P

∂y2 = δ(x)δ(y)f(t). (9.1)

where δ represents the Dirac distribution and f the source term. A Green’s function is a
fundamental solution of a differential equation with point source term. This mathemati-
cal object was introduced by George Green in 1828 ([106]) for the Poisson’s equation and
various methods for deriving Green’s functions are presented in Duffy’s book ([107]). As
long as our problem is concerned, the corresponding Green’s function is defined as the
solution to (9.2) and the solution to (9.1) is then given by P = p ∗ f , where ∗ denotes
the convolutional product.

1
c2

∂2p

∂t2 −
∂2p

∂x2 −
∂2p

∂y2 = δ(x)δ(y)δ(t). (9.2)

We now introduce the Laplace transform of p denoted by p̃ and, remarking that the
Laplace transform of the Dirac distribution is 1, we obtain the following equation for p̃:

s2

c2 p̃− ∂2p̃

∂x2 −
∂2p̃

∂y2 = δ(x)δ(y).

where s is the Laplace variable. In general, s is a complex number whose real part
defines the abscissa of convergence of the Laplace transform. It can also be a positive real
which is actually the case here. The next step consists in applying a Fourier transform
to p̃(x, y, s) and since the Fourier transform of the Dirac distribution is 1, the previous
equation becomes:

F [p̃(x, y, s)](k, ω, s) = 1
(ω2 + k2 + s2

c2 )
(9.3)
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where k and ω denote the dual variables of x and y respectively. The system (9.3) can be
explicitly solved. Knowing that the Fourier transform of e−a|u| along u is Fu[e−a|u|](ω) =

2a

a2 + ω2 with a > 0, we deduce that

p̂(k, y, s) = e−|y|(k2+ s2
c2 )

1
2

2(k2 + s2

c2 )
1
2

. (9.4)

The next step of the Cagniard-De Hoop method consists in performing a partial inverse
Fourier transform along k on p̂(k, y, s), which gives the following:

p̃(x, y, s) = 1
4π

∫ +∞

−∞

e
−|y|

(
k2+ s2

c2

) 1
2

−ikx(
k2 + s2

c2

) 1
2

dk.

Now, we apply the change of variable k = bs/c where b is a real variable, which results
in:

p̃(x, y, s) = 1
4π

∫ +∞

−∞

e
−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
(1 + b2)

1
2

db. (9.5)

As explained previously, the motivation behind the change of variable k = bs/c is to
obtain an integral in the form g(x, y, b)e−sf(x,y,b), which is the case here and we denote
it Ξ(b). The last step of the method consists in considering b as a complex variable
and in finding a complex path Γ such that f(x, y, b) = t, in order to identify a Laplace
transform. Then, we need to introduce the square root of a complex variable as the
function g(z) = z

1/2 where z ∈ C is defined as follows:

g(z)2 = z and Re(g(z)) > 0 .

This step of the Cagniard-De Hoop method means that we look for a path Γ defined as
follows:

Γ ⊂ Γ̃ = {b ∈ C, (1 + b2)
1
2 |y|+ ibx = ct ∀t ∈ R+}. (9.6)

Thus, to find our path, we need to solve (1 + b2)
1
2 |y| + ibx = ct. In order to do so, we

switch to polar coordinates x = r cos θ , y = r sin θ and (9.6) becomes:

(1 + b2)r2 sin2 θ = (ct− ibr cos θ)2

⇐⇒ b2 + 2i
ct

r
cos θb + sin2 θ − c2t2

r2 = 0

So, b is the solution to a second-order equation whose discriminant is ∆ = sin2 θ
(c2t2

r2 −

1
)
. Thus, solving this equation gives us multiple solutions, hence several complex paths
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such that Γ̃ = Γ+ ∪ Γ− ∪Υ+ ∪Υ−:

Γ± = {b = γ±(t)} r

c
≤ t

if cos θ > 0 Υ+ = {b = ν+(t)} r cos θ

c
≤ t ≤ r

c

Υ− = {b = ν−(t)} 0 ≤ t ≤ r

c

if cos θ < 0 Υ+ = {b = ν+(t)} 0 ≤ t ≤ r

c

Υ− = {b = ν−(t)} r| cos θ|
c

≤ t ≤ r

c

where

γ± = −i
ct

r
cosθ ± |sinθ|

√
c2t2

r2 − 1

ν± = −i

ct

r
cos θ ± | sin θ|

√
1− c2t2

r2


These different computations are detailed and very well explained in [100]. We illustrate
the complex paths we obtain in Fig. 9.2.

Γ− Γ+Υ+

Υ−
i|sinθ|

−icosθ

i

−i

Re(b)

Im(b)

(a) Paths for cosθ > 0

Γ− Γ+
Υ−

Υ+

−i|sinθ|

−icosθ

i

−i

Re(b)

Im(b)

(b) Paths for cosθ < 0

Figure 9.2: Representation of complex paths

Since x > 0, we have that cos θ > 0. Thus we consider the path Γ in the lower
half-plane. We do not need the paths Υ, but they are necessary for heterogeneous media
and other types of waves. In [100] for example, Υ is used in order to derive Green’s
functions for head waves in the case of a bilayered homogeneous acoustic wave equation.

Now, we need to rewrite the integral (9.5) as an integral on Γ. Let D be the real axis
and Ω the region delimited by Γ and D. Let us consider the closed contour Γd∪Dd∪Cd,
where

Dd = {b ∈ D, |b| < d} Γd = {b ∈ Γ, |b| < d} Cd = {b ∈ Ω, |b| = d}



146 9.2. Green’s functions without PML

Cd contains two arcs of radius d connecting Γd and Dd in order to form a closed contour,
as depicted in Fig. 9.3. Since Ξ(b) is analytical (i.e. infinitely differentiable) and does
not have any poles, we obtain that:∫

Dd

Ξ(b)db +
∫

Γd

Ξ(b)db +
∫

Cd

Ξ(b)db = 0

Since we consider a path which is an arc, the complex numbers in this path can be

Figure 9.3: Integration contour

decomposed in an exponential form such as b = ReiΘ where |b| = R. We have that
Re(|y|(1 + b2)1/2 + ibx) ≥ 0. Thus we have the following:

lim
|b|→ +∞

b Ξ(b) = lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

eiΘ

( 1
R2 + e2iΘ)

1
2

e
−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]
= 0

Hence, the following Jordan’s lemma applies to Ξ(b):

Jordan’s Lemma

Let S = {z = reiθ , r > 0 , 0 ≤ θ1 ≤ θ ≤ θ2 < π} and f : S → C be a holomorphic
function. If

lim
|z|→+∞

z∈S

zf(z) = 0

then
lim

r→+∞

∫
γ(r,θ1,θ2)

f(z)eizdz = 0

with γ(r, θ1, θ2) = {reiθ, θ1 ≤ θ ≤ θ2} representing the arc of radius r and of angle
θ.

Thus, we can deduce that
∫

Cd

Ξ(b)db = 0, which leads us to rewriting (9.5) as the
following:

p̃(x, y, s) = − 1
4π

∫
Γ

e
−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
(1 + b2)

1
2

db



147 9.2. Green’s functions without PML

Now, we replace b by its values γ± and obtain the following quantities:
(1 + γ±2)

1
2

y

c
+ iγ± x

c
= t

dγ±

(1 + γ±2)
1
2

= ± dt√
t2 − r2

c2

Noticing that Γ+ varies from +∞ to r/c and that Γ− varies from r/c to +∞, we obtain
the following result:

p̃(x, y, s) = 1
2π

∫ +∞

r/c

e−st√
t2 − r2

c2

dt

We finally obtain an integral that can be identified to a Laplace transform. Hence, by
injectivity of the Laplace transform, we obtain the Green’s function for the pressure field
of the acoustic wave equation:

p(x, y, t) = 0, t <
r

c

p(x, y, t) = 1

2π
√

t2 − r2

c2

, t >
r

c

with r =
√

x2 + y2.

We will now proceed in the same manner to obtain the Green’s functions associated
to the velocity fields of the acoustic wave equations, which we denote vx(x, y, t) and
vy(x, y, t).

9.2.2 Velocity in the x-direction

If we perform a Laplace and Fourier transform to the equation linking the pressure and
the x-velocity field in (4.3), we obtain the following:

v̂x = ik

ρs
p̂ .

Thus, injecting the expression of p̂ from (9.4) into it, we obtain:

v̂x(k, y, s) = ik

ρs

e−|y|(k2+ s2
c2 )

1
2

2(k2 + s2

c2 )
1
2

As done previously, we take the inverse Fourier transform of this quantity, which results
in:

ṽx(x, y, s) = 1
4π

∫ +∞

−∞

ik

ρs

e
−|y|

(
k2+ s2

c2

) 1
2

−ikx(
k2 + s2

c2

) 1
2

dk
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We can now perform the change of variable k = bs/c:

ṽx(x, y, s) = 1
4πρc

∫ +∞

−∞
ib

e
−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
(1 + b2)

1
2

db (9.7)

Here, let us denote Ξ(b) = ib

(1 + b2)
1
2

e
−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
and use the same contour as

before Dd ∪ Γd ∪ Cd. In order to apply Jordan’s lemma and evaluate our integral on
Γ, we need to have that lim

|b|→+∞
b Ξ(b) = 0. As previously, we write b in its exponential

form, thus obtaining the following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

iRe2iΘ

( 1
R2 + e2iΘ)

1
2

e
−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]
= 0

So, we can rewrite (9.7) as:

ṽx(x, y, s) = − 1
4πρc

∫
Γ

ib
e

−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
(1 + b2)

1
2

db

Since we use the same contour as previously, the following quantities remain unchanged:

b = γ± = −i
ct

r
cosθ ± c

r
|sinθ|

√
t2 − r2

c2 ,

(1 + γ±2)
1
2

y

c
+ iγ± x

c
= t,

dγ±

(1 + γ±2)
1
2

= ± dt√
t2 − r2

c2

.

Remarking once again that Γ+ varies from +∞ to r/c and that Γ− varies from r/c to +∞,
we obtain the following:

ṽx(x, y, s) = 1
4πρc

∫ +∞

r/c
(γ+ + γ−)ie−st dt√

t2 − r2

c2

= 1
2πρ

∫ +∞

r/c

t

r
cosθe−st dt√

t2 − r2

c2

Again, by injectivity of the Laplace transform, we obtain the Green’s function for the
x-velocity field of the acoustic wave equation:

vx(x, y, t) = 0, t <
r

c
,

vx(x, y, t) = tx

2πρr2
√

t2 − r2

c2

, t >
r

c
,

with r =
√

x2 + y2.
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9.2.3 Velocity in the y-direction

If we perform a Laplace and Fourier transform to the equation linking the pressure to
the y-velocity field in (4.3), we obtain the following:

v̂y = − 1
ρs

∂p̂

∂y
.

Thus, injecting the expression of p̂ from (9.4) into it, we obtain:

v̂y(k, y, s) = e−|y|(k2+ s2
c2 )

1
2

2ρs
.

As done previously, we take the inverse Fourier transform of this quantity, which results
in:

ṽy(x, y, s) = 1
4πρ

∫ +∞

−∞

1
s

e
−|y|

(
k2+ s2

c2

) 1
2

−ikx
dk.

We can now perform the change of variable k = bs/c:

ṽy(x, y, s) = 1
4πρc

∫ +∞

−∞
e

−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
db. (9.8)

Here, let us denote Ξ(b) = e
−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
and use the same contour as before Dd ∪

Γd ∪ Cd. In order to apply Jordan’s lemma and evaluate our integral on Γ, we need
to have that lim

|b|→+∞
b Ξ(b) = 0. As previously, we write b in its exponential form, thus

obtaining the following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

ReiΘe
−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]
= 0.

So, we can rewrite (9.8) as:

ṽy(x, y, s) = − 1
4πρc

∫
Γ

e
−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
db

Using the same contour as before, hence the same values of γ±, we can derive the
following expressions:

b = γ± = −i
ct

r
cosθ ± c

r
|sinθ|

√
t2 − r2

c2 ,
y

c
+ iγ± x

c
= t,

dγ±

dt
= −i

c

r
cosθ ± c

r
|sinθ| t√

t2 − r2

c2

.

Remarking once again that Γ+ varies from +∞ to r/c and that Γ− varies from r/c to +∞,
we obtain the following:

ṽy(x, y, s) = − 1
4πρc

∫ +∞

r/c

(
dγ−

dt
− dγ+

dt

)
e−stdt = 1

2πρ

∫ +∞

r/c

t

r
|sinθ|e−st dt√

t2 − r2

c2

.
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Again, by injectivity of the Laplace transform, we obtain the Green’s function for the
y-velocity field of the acoustic wave equation:

vy(x, y, t) = 0, t <
r

c
,

vy(x, y, t) = ty

2πρr2
√

t2 − r2

c2

, t >
r

c
,

with r =
√

x2 + y2.

From now on, we denote p, vx et vy by Gp, Gvx and Gvy respectively.

9.3 Green’s functions in the PML in y-direction

In this section, we compute the Green’s functions in a Perfectly Matched Layer parallel
to the x-axis. Hence, the equations for which we seek Green’s functions are different from
(9.1). We will proceed in the same manner as previously and apply the Cagniard-De
Hoop method to the second-order wave equation with PML in the y-direction, which
can be written as:

1
c2

∂2P

∂t2 −
∂2P

∂x2 − ( ∂

∂t
+ σy)−2 ∂2

∂t2
∂2P

∂y2 = δ(x)δ(y)f(t) (9.9)

where σy is the absorbing coefficient in the PML, which is constant. We will, as before,
compute the Green’s functions with absorption in the y-direction for the pressure and
the velocity fields.

9.3.1 Pressure

The Green’s function associated to the pressure field is defined as the solution to (9.10)
and the solution to (9.9) is then given by P = p ∗ f , where ∗ denotes the convolutional
product. Thus, the problem can be rewritten as follows:

1
c2

∂2p

∂t2 −
∂2p

∂x2 − ( ∂

∂t
+ σy)−2 ∂2

∂t2
∂2p

∂y2 = δ(x)δ(y)δ(t). (9.10)

We then introduce the Laplace transform of p and, remarking that the Laplace transform
of a Dirac distribution is 1, we obtain that:

s2

c2 p̃− ∂2p̃

∂x2 −
s2

(s + σy)2
∂2p̃

∂y2 = δ(x)δ(y). (9.11)

The next step consists in applying a Fourier transform to p̃ and, also remarking that the
Fourier transform of a Dirac distribution is 1, the previous equation becomes:

− s

s + σy

∂

∂y
( s

s + σy

∂p̂

∂y
) + (k2 + s2

c2 )p̂ = δ(y). (9.12)
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Here, the procedure differs lightly from the previous section. We perform the following
change of variable Y = y(1 + σy

s
) in (9.12), which results in the following system:

− ∂2p̂

∂Y 2 + (k2 + s2

c2 )p̂ = δ(Y ). (9.13)

Thus, the system (9.13) can be explicitly solved in the same manner as (9.3), which
results in:

p̂(k, Y, s) = e−|Y |(k2+ s2
c2 )

1
2

2(k2 + s2

c2 )
1
2

.

Now, by going back to the variable y, we finally obtain the Fourier transform p̂ of the
pressure field:

p̂(k, y, s) = e
−
(

k2+ s2
c2

) 1
2 |y(1+ σy

s
)|

2
(
k2 + s2

c2

) 1
2

. (9.14)

The next step of the Cagniard-De Hoop method consists in performing an inverse Fourier
transform along x on p̂, which gives the following:

p̃ = 1
4π

∫ +∞

−∞

e
−
(

k2+ s2
c2

) 1
2

y(1+ σy
s

)−ikx(
k2 + s2

c2

) 1
2

dk.

Now, we apply the change of variable k = bs/c, which results in:

p̃ = 1
4π

∫ +∞

−∞

e− yσy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

db. (9.15)

As explained previously, the motivation behind this change of variable is to obtain an
integral in the form g(x, y, b)e−sf(x,y,b), which is the case here and we denote

Ξ(b) = e− yσy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

.

The last step of the method consists in finding a complex path Γ such that f(x, y, b) = t,
in order to identify a Laplace transform. Here, this means that we look for a path
Γ which is the same one as in the standard case (9.6). Let us verify that Ξ(b) meets
the requirement of Jordan’s lemma in order to rewrite (9.15) on Γ. We use the same
contour as before Dd ∪Γd ∪Cd. In order to apply Jordan’s lemma, we need to have that

lim
|b|→+∞

b Ξ(b) = 0. As previously, we write b in its exponential form, thus obtaining that:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

eiΘ

( 1
R2 + e2iΘ)

1
2

e− yσy
c

(1+R2e2iΘ)
1
2 e

−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]
= 0.
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So, we can rewrite (9.15) as:

p̃ = − 1
4π

∫
Γ

e− yσy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

db.

Since we found the same contour as previously, we also obtain the same values of γ±

and so we can derive the following expressions:

b = γ± = −i
ct

r
cosθ ± c

r
|sinθ|

√
t2 − r2

c2 ,

(1 + γ±2)
1
2

y

c
+ iγ± x

c
= t,

dγ±

(1 + γ±2)
1
2

= ± dt√
t2 − r2

c2

,

(1 + γ±2)
1
2

c
= t

r
|sinθ| ∓ i

r
cosθ

√
t2 − r2

c2 .

Remarking as before that Γ+ varies from +∞ to r/c and that Γ− varies from r/c to +∞,
we obtain the following:

p̃ = 1
2π

∫ +∞

r/c
e−A(x,y,t)cos[B(x, y, t)] e−st√

t2 − r2

c2

dt.

Then, by injectivity of the Laplace transform, we obtain the Green’s function for the
pressure field of the acoustic wave equation with absorption in the y-direction:

p = 0, t <
r

c
,

p = e−A(x,y,t)cos[B(x, y, t)]Gp , t >
r

c
,

with 

A(x, y, t) = yσy
t

r
|sinθ| = σy

ty2

r2 ,

B(x, y, t) = y

r
cosθ

√
t2 − r2

c2 = σy
xy

r2

√
t2 − r2

c2 ,

r =
√

x2 + y2 .

We remark that when setting σy = 0, we retrieve the Green’s function for the acoustic
pressure without PML.

9.3.2 Velocity in the x-direction

If we perform a Laplace and Fourier transform to the equation linking the pressure and
the x-velocity field in (8.2), we obtain the following:

û = ik

ρs
p̂ .
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Thus, injecting the expression of p̂ from (9.14) into it, we obtain:

û = ik

ρs

e
−
(

k2+ s2
c2

) 1
2

|y|(1+ σy
s

)

2
(
k2 + s2

c2

) 1
2

The next step of the method consists in taking the inverse Fourier transform of this
quantity, which results in:

ũ = 1
4π

∫ +∞

−∞

ik

ρs

e
−
(

k2+ s2
c2

) 1
2

|y|(1+ σy
s

)−ikx(
k2 + s2

c2

) 1
2

dk.

We can now perform the change of variable k = bs/c:

ũ = 1
4π

∫ +∞

−∞
ib

e− |y|σy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
(1 + b2)

1
2

db. (9.16)

Here, let us denote Ξ(b) = ib

(1 + b2)
1
2

e− |y|σy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
and use the same

contour as before Dd ∪ Γd ∪ Cd. In order to apply Jordan’s lemma and evaluate our
integral on Γ, we need to have that lim

|b|→+∞
b Ξ(b) = 0. As previously, we write b in its

exponential form, thus obtaining the following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

iRe2iΘ

( 1
R2 + e2iΘ)

1
2

e− yσy
c

(1+R2e2iΘ)
1
2 e

−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]
= 0.

So, we can rewrite (9.16) as:

ũ = − 1
4πρc

∫
Γ
ib

e− |y|σy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
(1 + b2)

1
2

db.

We have the same contour Γ as before, so we can derive the following expressions:

b = γ± = −i
ct

r
cosθ ± c

r
|sinθ|

√
t2 − r2

c2 ,

(1 + γ±2)
1
2

y

c
+ iγ± x

c
= t,

dγ±

(1 + γ±2)
1
2

= ± dt√
t2 − r2

c2

,

(1 + γ±2)
1
2

c
= t

r
|sinθ| ∓ i

r
cosθ

√
t2 − r2

c2 .
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Remarking as before that Γ+ varies from +∞ to r/c and that Γ− varies from r/c to +∞,
we obtain the following:

ũ = 1
2πρ

∫ +∞

r/c

1
r

(
tcosθcos[B(x, y, t)]− |sinθ|

√
t2 − r2

c2 sin[B(x, y, t)]
)

e−A(x,y,t)e−st√
t2 − r2

c2

dt.

Then, by injectivity of the Laplace transform, we obtain the Green’s function for the
x-velocity field of the acoustic wave equation with absorption in the y-direction:

u = 0, t <
r

c
,

u = 1
ρr2

(
txcos[B(x, y, t)]− y

√
t2 − r2

c2 sin[B(x, y, t)]
)

e−A(x,y,t)Gp , t >
r

c
,

with 

A(x, y, t) = yσy
t

r
|sinθ| = σy

t

r2 y ,

B(x, y, t) = yσy

r
cosθ

√
t2 − r2

c2 = σy
xy

r2

√
t2 − r2

c2 ,

r =
√

x2 + y2 .

9.3.3 Velocity in the y-direction

If we perform a Laplace and Fourier transform to the equation linking the pressure and
the y-velocity field in (8.2), we obtain the following:

ṽ = − 1
ρ(s + σ)

∂p̃

∂y
.

Thus, injecting the expression of p̂ from (9.14) into it, we obtain:

v̂ = e
−
(

k2+ s2
c2

) 1
2

y(1+ σy
s

)

2ρs
.

The next step of the method consists in taking the inverse Fourier transform of this
quantity, which results in:

ṽ = 1
4πρ

∫ +∞

−∞

e
−
(

k2+ s2
c2

) 1
2

y(1+ σy
s

)−ikx

s
dk.

We can now perform the change of variable k = bs/c:

ṽ = 1
4πρ

∫ +∞

−∞
e− yσy

c
(1+b2)

1
2 e

−s

[
(1+b2)

1
2 y

c
+ib x

c

]
db. (9.17)
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Here, let us denote Ξ(b) = e− |y|σy
c

(1+b2)
1
2 e

−s

[
(1+b2)

1
2 |y|

c
+ib x

c

]
and use the same contour

as before Dd ∪ Γd ∪ Cd. In order to apply Jordan’s lemma and evaluate our integral on
Γ, we need to have that lim

|b|→+∞
b Ξ(b) = 0. As previously, we write b in its exponential

form, thus obtaining the following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

ReiΘe− yσy
c

(1+R2e2iΘ)
1
2 e

−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]
= 0.

So, we can rewrite (9.17) as:

ṽ = − 1
4πρc

∫
Γ
e− yσy

c
(1+b2)

1
2 e

−s

[
(1+b2)

1
2 y

c
+ib x

c

]
db.

We have the same contour Γ as before, so we can derive the following expressions:

b = γ± = −i
ct

r
cosθ ± c

r
|sinθ|

√
t2 − r2

c2 ,

(1 + γ±2)
1
2

y

c
+ iγ± x

c
= t,

dγ±

dt
= −i

c

r
cosθ ± c

r
|sinθ| t√

t2 − r2

c2

,

(1 + γ±2)
1
2

c
= t

r
|sinθ| ∓ i

r
cosθ

√
t2 − r2

c2 .

Remarking as before that Γ+ varies from +∞ to r/c and that Γ− varies from r/c to +∞,
we obtain the following:

ṽy = − 1
2πρ

∫ +∞

r/c

1
r

(
− cosθsin[B(x, y, t)]− |sinθ| t

r
√

t2 − r2

c2

cos[B(x, y, t)]
)

e−A(x,y,t)e−stdt.

Then, by injectivity of the Laplace transform, we obtain the Green’s function for the
y-velocity field of the acoustic wave equation with absorption in the y-direction:

vy = 0, t <
r

c

vy = 1
ρr2

(
tycos[B(x, y, t)] + x

√
t2 − r2

c2 sin[B(x, y, t)]
)

e−A(x,y,t)Gp , t >
r

c

with 
A(x, y, t) = yσy

t

r
|sinθ| = yσy

t

r2 |y|

B(x, y, t) = yσy

r
cosθ

√
t2 − r2

c2 = yσy

r2 x

√
t2 − r2

c2

From now one, we denote p, vx et vy by Gpmly
p , Gpmly

vx
and Gpmly

vy
respectively.
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9.4 Green’s functions in the PML in x- and y-direction

In this section, we compute the Green’s functions for the second-order wave equation
with PML in the x- and y-direction using the Cagniard-De Hoop method. which can be
written as:

1
c2

∂2P

∂t2 − ( ∂

∂t
+ σx)−2 ∂2

∂t2
∂2P

∂x2 − ( ∂

∂t
+ σy)−2 ∂2

∂t2
∂2P

∂y2 = δ(x)δ(y)f(t). (9.18)

where σx is the absorbing coefficient in the x-direction and σy is the absorbing coefficient
in the y-direction, which are both constants. We will, as before, compute the Green’s
functions with absorption in both directions for the pressure and the velocity fields.

9.4.1 Pressure

The Green’s function associated to the pressure field is defined as the solution to (9.19)
and the solution to (9.18) is then given by P = p ∗ f , where ∗ denotes the convolutional
product. Thus, the problem can be rewritten as follows:

1
c2

∂2p

∂t2 − ( ∂

∂t
+ σx)−2 ∂2

∂t2
∂2p

∂x2 − ( ∂

∂t
+ σy)−2 ∂2

∂t2
∂2p

∂y2 = δ(x)δ(y)δ(t) (9.19)

We then introduce the Laplace transform of p and, remarking that the Laplace transform
of a Dirac distribution is 1, we obtain the following:

s2

c2 p̃− s2

(s + σx)
∂

∂x
( s2

(s + σy)
∂p̃

∂x
)− s2

(s + σy)2
∂2p̃

∂y2 = δ(x)δ(y).

We use the same idea as before, and perform the following change of variable X =
x(1 + σx

s
), which results in:

s2

c2 p̃− ∂2p̃

∂X2 −
s2

(s + σy)2
∂2p̃

∂y2 = δ(X)δ(y).

We obtain an equation similar to (9.11), so we carry on the Cagniard-De Hoop method
as we did in the previous section. The next step consists in applying a Fourier transform
along X to p̃ and, also remarking that the Fourier transform of a Dirac distribution is
1, the previous equation becomes:

− s

s + σy

∂

∂y
( s

s + σy

∂p̂

∂y
) + (k2 + s2

c2 )p̂ = δ(y). (9.20)

Again, we perform the following change of variable Y = y(1 + σy

s
) in (9.20), which leads

to the following:

− ∂2p̂

∂Y 2 + (k2 + s2

c2 )p̂ = δ(Y ).

Thus, system (9.20) can be explicitly solved and we obtain:

p̂(k, Y, s) = e−|Y |(k2+ s2
c2 )

1
2

2(k2 + s2

c2 )
1
2

.
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Then, by going back to the variable y, we obtain the Fourier transform along x of the
pressure field denoted p̂:

p̂(k, y, s) = e
−
(

k2+ s2
c2

) 1
2 |y(1+ σy

s
)|

2
(
k2 + s2

c2

) 1
2

. (9.21)

The next step of the Cagniard-De Hoop method consists in performing an inverse Fourier
transform along X on p̂, which gives the following:

p̃ = 1
4π

∫ +∞

−∞

e
−
(

k2+ s2
c2

) 1
2

y(1+ σy
s

)−ikX(
k2 + s2

c2

) 1
2

dk.

Going back to the variable x, we obtain the following:

p̃ = 1
4π

∫ +∞

−∞

e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))−ik(x+ xσx

s
)(

k2 + s2

c2

) 1
2

dk.

Now, we apply the change of variable k = bs/c, which results in:

G̃pml
p = 1

4π

∫ +∞

−∞

e− yσy
c

(1+b2)
1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

db. (9.22)

As explained previously, the motivation behind this change of variable is to obtain an
integral in the form g(x, y, b)e−sf(x,y,b), which is the case here and we denote:

Ξ(b) = e− yσy
c

(1+b2)
1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

.

The last step of the method consists in considering b as a complex variable and in finding
a complex path Γ such that f(x, y, b) = t, in order to identify a Laplace transform. We
obtain the same path Γ as in the previous computations. Let us verify that Ξ(b) meets
the requirement of Jordan’s lemma in order to rewrite (9.22) on Γ. We use the same
contour as before Dd ∪Γd ∪Cd. In order to apply Jordan’s lemma, we need to have that

lim
|b|→+∞

b Ξ(b) = 0. As previously, we write b in its exponential form, thus obtaining the

following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

eiΘ

( 1
R2 + e2iΘ)

1
2

e− yσy
c

(1+R2e2iΘ)
1
2 −iReiΘ xσx

c e
−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]

= 0 .
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So, we can rewrite (9.22) as:

G̃pml
p = − 1

4π

∫
Γ

e− yσy
c

(1+b2)
1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

db.

Using the same contour Γ as before and remarking, once again, that Γ+ varies from +∞
to r/c and that Γ− varies from r/c to +∞, we obtain the following:

p̃ = 1
2π

∫ +∞

r/c
e−A(x,y,t)cos[B(x, y, t)] e−st√

t2 − r2

c2

dt.

Then, by injectivity of the Laplace transform, we obtain the Green’s function for the
pressure field of the acoustic wave equation with absorption in the x- and y-direction:

p = 0, t <
r

c
,

p = e−A(x,y,t)cos[B(x, y, t)]Gp , t >
r

c
,

with

A(x, y, t) = t

r
(yσy|sinθ|+ xσxcosθ) =

(
σyy2 + σxx2

) t

r2 ,

B(x, y, t) = 1
r

√
t2 − r2

c2 (yσycosθ − xσx|sinθ|) = (σy − σx) xy

r2

√
t2 − r2

c2 ,

r =
√

x2 + y2

We remark here that when setting σx = 0, we retrieve the Green’s function for the
acoustic pressure with a single PML in the y-direction, and when setting both σx = σy =
0, we retrieve the Green’s function for the acoustic pressure without PML.

9.4.2 Velocity in the x-direction

If we perform a Laplace transform to the equation linking the pressure and the x-velocity
field in (8.12), we obtain the following:

ρsṽx + s

s + σx

∂p̃

∂x
= 0 .

As done previously, we apply the change of variable X = x(1 + σx

s
) to the obtained

Laplace transform:
ρsṽx + ∂p̃

∂X
= 0 .

Now, we can move on to the next step of the Cagniard-De Hoop method and apply a
Fourier transform along X to the previous equation:

v̂x = ik

ρs
p̂ .
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Thus, injecting the expression of p̂ from (9.21) into it, we obtain:

v̂x = ik

ρs

e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))

2
(
k2 + s2

c2

) 1
2

.

The next step of the method consists in taking the inverse Fourier transform of this
quantity, which results in:

ṽx = 1
4π

∫ +∞

−∞

ik

ρs

e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))−ikX(

k2 + s2

c2

) 1
2

dk.

Now, going back to the variable x, we obtain the following:

ṽx = 1
4π

∫ +∞

−∞

ik

ρs

e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))−ik(x+ xσx

s
)(

k2 + s2

c2

) 1
2

dk.

We can now perform the change of variable k = bs/c:

ṽx = 1
4π

∫ +∞

−∞
ib

e− yσy
c

(1+b2)
1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

db. (9.23)

Here, let us denote

Ξ(b) = ib
e− yσy

c
(1+b2)

1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

and use the same contour as before Dd ∪Γd ∪Cd. In order to apply Jordan’s lemma and
evaluate our integral on Γ, we need to have that lim

|b|→+∞
b Ξ(b) = 0. As previously, we

write b in its exponential form, thus obtaining the following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

iRe2iΘ

( 1
R2 + e2iΘ)

1
2

e− yσy
c

(1+R2e2iΘ)
1
2 −iReiΘ xσx

c e
−sR

[
(1+e2iΘ)

1
2 |y|

c
+ieiΘ x

c

]

= 0 .

So, we can rewrite (9.23) as:

ṽx = − 1
4πρc

∫
Γ
ib

e− yσy
c

(1+b2)
1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
(1 + b2)

1
2

db.

We have the same contour Γ as before, and noticing that Γ+ varies from +∞ to r/c and
that Γ− varies from r/c to +∞, we obtain the following:
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ṽx = 1
2πρ

∫ +∞

r/c

1
r

(
tcosθcos[B(x, y, t)] + |sinθ|

√
t2 − r2

c2 sin[B(x, y, t)]
)

e−A(x,y,t)e−st√
t2 − r2

c2

dt.

Then, by injectivity of the Laplace transform, we obtain the Green’s function for the
x-velocity field of the acoustic wave equation with absorption in the x- and y-direction:

vx = 0, t <
r

c
,

vx = 1
ρr2

(
txcos[B(x, y, t)] + y

√
t2 − r2

c2 sin[B(x, y, t)]
)

e−A(x,y,t)Gp , t >
r

c
,

with

A(x, y, t) = t

r
(yσy|sinθ|+ xσxcosθ) =

(
σyy2 + σxx2

) t

r2 ,

B(x, y, t) = 1
r

√
t2 − r2

c2 (xσx|sinθ| − yσycosθ) = (σx − σy) xy

r2

√
t2 − r2

c2 ,

r =
√

x2 + y2 .

9.4.3 Velocity in the y-direction

If we perform a Laplace and a Fourier transform to the equation linking the pressure
and the y-velocity field in (8.12), we obtain the following:

ṽy = − 1
ρ(s + σ)

∂p̃

∂y
.

Thus, injecting the expression of p̂ from (9.21) into it, we obtain:

v̂y = e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))

2ρs
.

The next step of the method consists in taking the inverse Fourier transform along X of
this quantity, which results in:

ṽy = 1
4πρ

∫ +∞

−∞

e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))−ikX

s
dk.

Now, going back to the variable x, we obtain:

ṽy = 1
4πρ

∫ +∞

−∞

e
−
(

k2+ s2
c2

) 1
2 (y(1+ σy

s
))−ik(x+ xσx

s
)

s
dk.
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We can now perform the change of variable k = bs/c:

ṽy = − 1
4πρc

∫
Γ
e− yσy

c
(1+b2)

1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
db.

As explained previously, the motivation behind this change of variable is to obtain an
integral in the form g(x, y, b)e−sf(x,y,b), in order to identify a Laplace transform, which
is the case here and we denote

Ξ(b) = e− yσy
c

(1+b2)
1
2 −ib xσx

c e
−s

[
(1+b2)

1
2 y

c
+ib x

c

]
.

The last step of the method consists in finding a complex path Γ such that f(x, y, b) = t,
in order to identify a Laplace transform. We obtain the same path Γ as in the previous
computations. Let us verify that Ξ(b) meets the requirement of Jordan’s lemma in order
to rewrite (9.22) on Γ. We use the same contour as before Dd ∪ Γd ∪ Cd. In order to
apply Jordan’s lemma, we need to have that lim

|b|→+∞
b Ξ(b) = 0. As previously, we write

b in its exponential form, thus obtaining the following:

lim
R→ +∞

ReiΘ Ξ(ReiΘ) = lim
R→ +∞

ReiΘe− yσy
c

(1+R2e2iΘ)
1
2 −iReiΘ xσx

c e
−sR

[
( 1

R2 +e2iΘ)
1
2 |y|

c
+ieiΘ x

c

]
= 0.

We have the same contour Γ as before, and noticing that Γ+ varies from +∞ to r/c and
that Γ− varies from r/c to +∞, we obtain the following:

ṽy = 1
2πρ

∫ +∞

r/c

1
r

(
cosθsin[B(x, y, t)] + |sinθ| t

r
√

t2 − r2

c2

cos[B(x, y, t)]
)

e−A(x,y,t)e−stdt.

vy = 0, t <
r

c
,

vy = 1
ρr2

(
tycos[B(x, y, t)] + x

√
t2 − r2

c2 sin[B(x, y, t)]
)

e−A(x,y,t)Gp , t >
r

c
,

with

A(x, y, t) = t

r
(yσy|sinθ|+ xσxcosθ) =

(
σyy2 + σxx2

) t

r2 ,

B(x, y, t) = 1
r

√
t2 − r2

c2 (yσycosθ − xσx|sinθ|) = (σy − σx) xy

r2

√
t2 − r2

c2 ,

r =
√

x2 + y2 .

From now one, we denote p, vx et vy by Gpmlxy
p , Gpmlxy

vx
and Gpmlxy

vy
respectively.
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9.5 Other basis functions

When working with Trefftz methods, we use local solutions as basis functions. Since a
linear combination of solutions to a problem results in another solution to the problem,
we can combine the Trefftz functions to obtain other kinds of basis functions.

In fact in our framework, if we take

p = ( ∂

∂t
+ σx)( ∂

∂t
+ σy)Gpmlxy

p ,

we obtain another solution to the acoustic wave equation, where Gpmlxy
p is the Green’s

function associated to the pressure of the acoustic wave equation with PML in x and y
computed previously. If we inject this into the first and second equations of (8.12), we
obtain: 

vx = −1
ρ

( ∂

∂t
+ σy)∂G

pmlxy
p

∂x
,

vy = −1
ρ

( ∂

∂t
+ σx)∂G

pmlxy
p

∂y
.

Thus, we can express all of our solutions as functions of Gpmlxy
p and do not need to

compute the Green’s functions for vx and vy.

In the case of auxiliary variables, this technique also comes in handy. Let us also
define

vx = ( ∂

∂t
+ σx)( ∂

∂t
+ σy)Gpmlxy

vx
,

vy = ( ∂

∂t
+ σx)( ∂

∂t
+ σy)Gpmlxy

vy
,

If we inject p, vx and vy into the last four equations of (8.13), we obtain the following:

pa
1 = σx( ∂

∂t
+ σy)∂G

pmlxy
p

∂x
,

pa
2 = σy( ∂

∂t
+ σx)∂G

pmlxy
p

∂y
,

vx
a = σx( ∂

∂t
+ σy)∂G

pmlxy
vx

∂x
,

vy
a = σy( ∂

∂t
+ σx)

∂G
pmlxy
vy

∂y
.

Thus, we can easily compute the auxiliary basis functions in terms of Gpmlxy
p , Gpmlxy

vx

and Gpmlxy
vy

.



Chapter 10

Implementation

Figure 10.1: Flowchart for the PML case, where the differences from the non-PML case
are the bricks depicted in blue

In Part I of the thesis, we presented the implementation process of the Trefftz-DG method
with Tent-Pitching, without PML. In this chapter, we aim to detail the implementation
of Perfectly Matched Layers into the structured Trefftz-DG Tent-Pitching solver. The
overall implementation process stays the same and the changes operate in the details of
each brick. The flowchart 10.1 summarizes the steps of the implementation, but let us
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recall it in a few words with the changes that need to be taken into account.

1. Initializing the parameters: this function is mostly unchanged, except for the num-
ber of degrees of freedom. Since we are not using polynomials but Green’s func-
tions, the number of degrees of freedom will be adapted to the Green’s functions.
The choices of degrees of freedom and their position will be described in section
10.1.

2. Computing the Gaussian weights: this function does not change and is independent
from the choice of basis functions. The 2D Gaussian points and weights we use
can be found in Appendix B.

3. Computing the elementary matrices: this is where the main changes happen. The
elementary matrices are calculated using the basis functions, hence they will be
completely different when choosing a different basis. Thus, each time we change
the basis (polynomials, Green’s functions without absorption, with absorption in
one direction or both), we obtain a new set of elementary matrices. We describe
each new set of matrices we obtain and how we obtain them in each section.

4. Computing the initial solution: basis functions intervene in the calculation of the
initial solution. So, this function is also modified.

5. Constructing the first layer of pyramids: this is unchanged. Once we have the
elementary matrices, we do not need basis functions, so the construction of the
first layer of pyramids along with the computation of the solution in them is done
as previously.

6. Propagating the solution through time: when working in a homogeneous domain,
this brick is unchanged. Only elementary matrices are needed in this function,
which are pre-computed so nothing changes. However, when considering a bilay-
ered domain, an interface appears and we need to handle it when propagating the
solution. So, the time propagation is modified in the second and third phase, when
dealing with one or multiple PMLs.

7. Visualization: this function changes here, because we need to reconstruct the global
solution in order to visualize it, so, we need the basis functions.

This chapter is articulated based on three different phases of our work, which are:

• Phase I: the first phase consists in substituting the polynomials for Green’s func-
tions without PML, which we analytically computed in the previous chapter. We
then add absorption in the whole domain by replacing the Green’s function with
their absorbing analogs,

• Phase II: The second phase addresses the addition of a PML, thus the coupling
between the domain of interest with standard Green’s functions and the PML with
absorbing Green’s functions.
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• Phase III: In the third phase, we describe the extension to multiple PMLs surround-
ing the computational domain. Then, we consider the coupling between a domain
approximated with polynomials and PMLs with absorbing Green’s functions.

10.1 Phase I: Implementation of Green’s functions in en-
tire domain

For the first part of phase I, we start by simply substituting the basis and test functions
with Green’s functions without absorption, thus σx = σy = 0. Then, we will consider
the Green’s functions with absorption σy > 0.

Ω

0 1

1

Polynomial

Ω

0 1

1

Green

Figure 10.2: In the first phase, we substitute the polynomials for Green’s functions

10.1.1 Trefftz-DG method with Green’s functions on Tent-Pitching
meshes

Let us recall the expression of the elementary matrices and where they come from.
Solving the first order acoustic wave equation with the Trefftz-DG method and Tent-
Pitching meshes is equivalent to solving the following system:

M

(
p

v

)
= K

(
pin

vin

)

Or equivalently:
MUn = KUn−1
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with
Mij =

∫
Fout

( 1
c2ρ

ϕp
j ϕq

i + ρϕv
j · ϕw

i

)
nt +

(
ϕp

j ϕw
i + ϕv

j ϕq
i

)
· n

+γ

∫
F in

( 1
c2ρ

ϕp
j ϕq

i + ρϕv
j · ϕw

i

)
nt +

(
ϕp

j ϕw
i + ϕv

j ϕq
i

)
· n

+
∫

Fext
ϕpϕw · n + γ(ϕv · n)(ϕw · n)

=Mout + M in + M ext

Kij =(1− γ)
∫

F in

( 1
c2ρ

ϕp
j ϕq

i + ρϕv
j · ϕw

i

)
nt +

(
ϕp

j ϕw
i + ϕv

j ϕq
i

)
· n

M =


M11 . . . M1N

... . . . ...
MN1 . . . MNN

 K =


K11 . . . K1N

... . . . ...
KN1 . . . KNN


where N = DoF, is the number of degrees of freedom considered in the problem. The

vector Un is the solution vector at time t = n∆t and Un−1 corresponds to the solution
at the previous time step. The matrix Mout corresponds to the integral in M posed on
Fout, which are the outflow boundaries as explained in Chapter Tent-Pitcher Algorithm.
Whereas M in corresponds to the one posed on F in, which are the inflow boundaries.
What changes in comparison to Part I is the basis {ϕ}, which were polynomials and
are Green’s functions here. The solution is approximated as a linear combination of
Green’s function evaluated at different sources (x0, t0). In this case, the number of
sources represents the degrees of freedom.

There are no specific rules to follow when choosing the source points for the Green’s
functions, however we noticed that the solution is extremely sensitive to them. In Fig.
10.3, one of our choices is illustrated. In practice, we will proceed as in Part I and com-
pute the matrices M and K on reference elements (pyramids, tetrahedra and octahedra)
and then use a mapping function in order to obtain the matrices for each real element
of the mesh.

As explained in Chapter Perfectly Matched Layers with Trefftz-DG methods, we
tried out three variational formulations. The matrices for the different formulations are
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(a) 4 source points (b) 8 source points (c) 16 source points (d) 32 source points

(e) 4 source points
seen from above

(f) 8 source points
seen from above

(g) 16 source points
seen from above

(h) 32 source points
seen from above

Figure 10.3: Placement of source points for Green’s functions

written as follows:
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We observe that when σy = 0, formulations B and C are equivalent to the Trefftz-DG
formulation without PML. Whereas the formulation A is very different even in this case.

Let us now present the results we obtained with each formulation in Table 10.1, where
"V.F." stands for "Variational Formulation". We consider a domain of size Lx = Ly = 1,
discretized with nx = ny = 100 cells in each direction. We let the code run until it
reaches the final time Lt = 1s and visualize the pressure at t = 0s, t = 0.1s and t = 1s.
We use Neumann boundary conditions and a gaussian source function. As explained
before, we need to choose the number of source points and how to place them. We take
4 source points and place them as depicted in Fig. 10.3e. We can see in Table 10.1 that
the first formulation gives poor results, whereas the second and third ones seems to give
better results.

As we explained previously, we are not sure why the first formulation does not
work properly. It could be because of an implementational error or a problem with
the formulation itself. Since for σy = 0 this formulation is very different from the one
without PML (5.1), it was difficult to find a way to compare them in order to debug
the code efficiently. This led us to consider the formulation B with auxiliary variables
(8.8), because when taking σy = 0, we retrieve the same formulation as (5.1). Thus, we
were able to compare both implementations and debug the code efficiently. Note that,
unlike the original formulation which does not have any derivatives, formulation B, as
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formulation A, contains partial derivatives, which is a clear disadvantage in terms of
computational cost and complexity. The third variational formulation shares this trait
with the formulation without PMLs, which makes it interesting. In fact, since it is only
posed on the inflow boundaries and that we have more flexibility in the choice of the
tests functions, we do not need any derivatives.

V.F. t = 0s t = 0.3s t = 1s

A

B

C

Table 10.1: Pressure through time for formulations A, B and C

We can see that the results from the second and the third formulation are similar
yet quite different. In order to see which solution is the most accurate, we compare the
solution from the formulation B and C to the polynomial solution obtained in Part I of
the thesis. The relative errors between the different solutions and the polynomial one
are presented in Table 10.2 and we can see that the error is approximately the same for
both solutions when 4 sources points are taken and is ≈ 10−1(10%), which is quite high.
So, we took more source points to see if the Green’s functions solutions converge to the
polynomial one. We test the formulations with 4, 8, 16 and 32 source points placed as
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shown in Fig. 10.3. We compare a cross-section of the solutions at t = 1s and y = 0.5.
We actually see in Fig. 10.5 that the solution from formulation C converges as the
number of sources is increased, in fact the error with 32 sources is ≈ 10−3 (0.1%), which
is correct (see Table 10.2). On the contrary, we see in Fig. 10.4 that the solution from
formulation B blows up as soon as we modify the number of sources or their position
(in fact, the solution with 32 sources equals NaN). Thus, the third formulation produces
more accurate results than the second one.

Polynomials B C (4 sources) C (32 sources)

Error

Table 10.2: Error between the polynomial solution and the numerical solutions
obtained with formulations B and C, at time t = 1s

10.1.2 Absorption in the domain

The next part of Phase I consists in adding absorption everywhere in the domain in one
direction. The purpose of this test is to verify the validity of the Green’s functions with
absorption, computed in the previous chapter. Since the first variational formulation A
does not give proper results in the non-absorbing case, we expect it to be the same with
PML. Hence, we only carry out the tests for the variational formulations B and C. The
results we obtain are presented in Table 10.3. We consider a domain of size Lx = Ly = 1,
discretized with nx = ny = 100 cells in each direction. We visualize the pressure at time
t = 0s, t = 0.1s and t = 1s. We use Neumann boundary conditions and a Gaussian
source function. For the second variational formulation, we use 4 source points since it is
the only case for which we obtain the most accurate results and for the third variational
formulation, we use 8 source points, because the solution blows up when using more
sources with absorption. We actually remarked that depending on the position of the
sources, we could take more than 8 sources, but the choice is very sensitive and hard to
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(a) Cross-section of the solution obtained with
4 source points

(b) Cross-section of the solution obtained with
8 source points

(c) Cross-section of the solution obtained with
16 source points

Figure 10.4: Comparison between the cross-section of the numerical solution with
Green’s functions in the formulation B and the polynomial solution, for a varying

number of sources
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V.F. σy t = 0.1s t = 0.3s

B 0.5

1

C 5

10

Table 10.3: Pressure for varying σy with σy ̸= 0 in Ω for formulations B and C
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Figure 10.5: Comparison between the cross-section of the numerical solution with
Green’s functions in the formulation C and the analytical solution, for a varying

number of sources

make. We can see that the solution blows up with the second variational formulation,
while the third one gives us proper results, and we can see the solution being damped
along the y-direction. For all these reasons, we will use the formulation C from now on.

10.2 Phase II

In Phase II, we couple the domain with a single PML parallel to the x-axis. This actually
reduces to changing the value of the damping coefficient to zero (in the computational
domain) or a non-null value (in the PML), as depicted in Fig. 10.6. As explained

Ω

0 1

1

Green

Ω

0 1

1

Green

σy = 0

PML
σy ̸= 0

Figure 10.6: In the second phase, we add a PML in the y direction

at the beginning of this chapter, when adding a PML, we need to handle the interface
between the two subdomains, because some elements will be shared by the computational
domain and the PML as can be seen in Fig. 10.7. To deal with such elements, we will
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separate them with a vertical plane as depicted in Fig. 10.9 and construct the associated
elementary matrix M , which will contain an additional integral posed on the created
internal face, written as follows:

CTij =
∫

Fint
JvKx · {{q}}+ β1JpKx · JqKx + JpKx{{w}}+ α1JvKxJwKx

−σy

∫
Fint

JvyKy{{wy
a}}+ γ1JpKyJwy

aKy + JpKy{{qa}}+ γ2JvyKyJqaKy

where J·K and {{·}} represent the jump and the mean value respectively.

Figure 10.7: Example of elements positioned on the interface between the domain and
the PML

x

y

t

(a) Vertical tetrahedra
x

y

t

(b) Horizontal tetrahedra

x

y

t

(c) Octahedron

Figure 10.8: Example of elements positioned on the interface between the domain and
the PML

In fact, the matrix M will actually be of size 2N × 2N , because we separate the
element in two (see Fig. 10.8) and compute a matrix per sub-element and then fill them
into a bigger matrix in its diagonal blocks, along with coupling terms corresponding to
the integral on the internal face in the anti-diagonal blocks, as depicted in Fig. 10.9.
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σy ̸= 0

σy = 0

CT

CT t

MC
∣∣∣
σy ̸=0

MC
∣∣∣
σy=0

x

y

t

Figure 10.9: Octahedron at the interface of the domain and a PML (rotated by 90° for
clarity)

M =


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
In this case, we need to compute the elementary matrices for each element (pyra-

mids, horizontal and vertical tetrahedra, octahedra) in the computational domain (i.e.
MC

∣∣∣
σy=0

and KC
∣∣∣
σy=0

), inside the PML (i.e. MC
∣∣∣
σy ̸=0

and KC
∣∣∣
σy ̸=0

) and compute the
coupling matrices for the elements at the interface. Thus, we have to compute three
additional coupling elementary matrices for split tetrahedra (horizontal and vertical)
and octahedra. As we can see in Fig. 10.7, the pyramids do not lay on the interface
between the domain and the PML, so we do not need to compute coupling matrices for
them. Apart from the elementary matrices, there are no major changes. In the time
propagator, we only need to handle the interface between the domain and the PML
separately by using the coupling matrix computed above. Otherwise, the rest of the
implementation remains the same.

Remark. This need for coupling matrices is not inherent to the PML process, but rather
to layered structured domains. In fact, it is because we have two subdomains that we need
a coupling matrix. Thus, if we were to study an acoustic-acoustic bi-layered domain, we
would have the same needs.
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Let us consider a domain of size Lx = Ly = 1, discretized with nx = ny = 100 cells
in each direction. We visualize the pressure at time t = 0.4s, t = 0.5s and t = 0.6s.
We use a first order absorbing boundary condition (defined in Part I) at the external
boundary of the PML and a Gaussian source function. We consider a PML of width
w = 0.2 and several values of the damping coefficient σy = 2, 5, 10. The first results
are presented in Table 10.4. In this test, we use different values of σy and see how the
solution is damped when it enters the PML. As expected, we can see that for a larger
σy, the absorption is stronger. However, since we are using a constant absorption, if σy

is too large when the solution enters the PML, reflections can appear and we observe
this phenomena with σy = 10. If we want to diminish the reflections and keep a constant
absorbing coefficient, we can refine the mesh. This is the second test we performed and
the results are presented in Table 10.5. We are placed in the same conditions as the
previous test, and we present the pressure for different mesh sizes h = ∆x = ∆y. We
can see that as we refine the mesh, the reflections diminish.

In fact, refining the mesh does not only reduce reflections, it also makes it possible
to use a larger σy. This is the third test and the obtained results are presented in Table
10.6. In this table, we can see that for σy and a mesh of size h = 10−1, we have poor
results and the solution explodes at the interface. When we refine the mesh, the solu-
tion no longer explodes and we obtain proper results with a mesh of size h = 5.10−3 and
refining even more leads to softening the reflections.

We perform an additional test in order to see the influence of the PML width w on
the absorption and the results are presented in Tables 10.7 and 10.8. In the first table,
we consider the results in a domain of size Lx = Ly = 1, discretized with nx = ny = 100
cells in each direction. We visualize the pressure at time t = 0.4s, t = 0.5s and t = 0.6s.
We use a first order absorbing boundary conditions and a Gaussian source function. We
consider a damping coefficient σy = 10 and several values for the PML width w = 0.3,
w = 0.2, w = 0.1 and w = 0.05. In the second table, we consider a damping coefficient
σy = 20 and two PML width w = 0.1 and w = 0.05. For w = 0.1, we discretize the
domain with nx = ny = 200 cells in each direction and for w = 0.05 we discretize it with
nx = ny = 400 cells in each direction, in order to have less reflections. As expected, when
the layer is large enough, we can choose smaller σy because it will have the time to be
fully damped as it goes through the layer. But when the layer is thin, we have to choose
a bigger σy in order to absorb the solution quickly. In practice, it is better to have a thin
absorbing layer because we want to limit computations as much as possible and thus,
reduce the computational time. However, as explained before, this would mean using a
large σy, which involves reflections (which we do not want and are the reasons why we
are looking for absorbing conditions) or involves refining the mesh to avoid reflections, so
the computational time is also increased. A better option would be the use of a varying
σy as the one presented in the Introduction, but this implies having to recompute the
elementary matrices at each space position, thus also increases the computational time.



177 10.2. Phase II

σy t = 0.4s t = 0.5s t = 0.6s

2

5

10

Table 10.4: Pressure with a PML of variable damping coefficient σy
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h t = 0.4s t = 0.5s t = 0.6s

10−2

5.10−3

2, 5.10−3

Table 10.5: Pressure for varying mesh cell size with a PML and σy = 10
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h t = 0.4s t = 0.5s t = 0.6s

10−2

5.10−3

2,5.10−3

Table 10.6: Pressure for varying mesh cell size with a PML and σy = 20
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w t = 0.4s t = 0.5s t = 0.6s

0.3

0.2

0.1

0.05

Table 10.7: Pressure with a PML of variable width and σy = 10
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w t = 0.4s t = 0.5s t = 0.6s

0.1

0.05

Table 10.8: Pressure with a PML of variable width and σy = 20

10.3 Phase III

In Phase III, we surround the domain with PMLs. This reduces to changing the value
of the damping coefficients σx and σy depending on the sub-domain we consider, as
depicted in Fig. 10.10 and of course, use the Green’s functions with absorption in the x-
and y-direction as basis functions. The first part of this section focuses on the problem
with Green’s functions in the domain and the PMLs, while the second part will be about
the coupling of polynomials in the domain under study with Green’s functions in the
PMLs.

10.3.1 PML in x and y direction

In the same manner as in the previous section, the main changes operate in the ele-
mentary matrices. We now have sixteen sets of elementary matrices to compute, as
illustrated in Fig. 10.11:

• the matrices in the computational domain MC , KC
∣∣∣
σx=0 ,σy=0

,

• the matrices in the PML in the x-direction MC , KC
∣∣∣
σx ̸=0 ,σy=0

(represented by

green layers in Fig. 10.11),

• the matrices in the PML in the y-direction MC , KC
∣∣∣
σx=0 ,σy ̸=0

(represented by

yellow layers in Fig. 10.11),
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Ω

0 1

1

Green

Ω

0 1

1

σx = 0
σy = 0

σx ̸= 0
σy = 0

σx ̸= 0
σy = 0

σx = 0
σy ̸= 0

σx = 0
σy ̸= 0

σx ̸= 0
σy ̸= 0

σx ̸= 0
σy ̸= 0

σx ̸= 0
σy ̸= 0

σx ̸= 0
σy ̸= 0

Figure 10.10: In the first part of the third phase, we surround the domain with
absorbing layers

• the matrices in the PML in the x- and y-direction MC , KC
∣∣∣
σx ̸=0 ,σy ̸=0

(represented

by red layers in Fig. 10.11),

• the coupling matrices between the domain and the bottom y-layer (represented by
a blue line in Fig. 10.11),

• the coupling matrices between the domain and the top y-layer (represented by a
cyan line in Fig. 10.11),

• the coupling matrices between the domain and the left x-layer (represented by a
red line in Fig. 10.11),

• the coupling matrices between the domain and the right x-layer (represented by a
magenta line in Fig. 10.11),

• the coupling matrices between the bottom y-layer and the bottom-right corner
(represented by brown lines in Fig. 10.11),

• the coupling matrices between the bottom y-layer and the bottom-left corner (rep-
resented by purple lines in Fig. 10.11),

• the coupling matrices between the left x-layer and the bottom-left corner (repre-
sented by green lines in Fig. 10.11),

• the coupling matrices between the left x-layer and the top-left corner (represented
by orange lines in Fig. 10.11),

• the coupling matrices at the junctions of all layers, which are all different (repre-
sented by shades of gray circles in Fig. 10.11),
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Figure 10.11: Classification of the matrices depending on the considered layer

The different reference elements (pyramids, tetrahedra, octahedra) will be split in the
same way as it was in the previous section, and associated elementary matrices will be
computed. The process differs in the case of the coupling matrices at the junctions of
all layers. Actually, only the octahedron is located at the junction of all layers and since
there are four layers, it will be split in four, instead of two as in the previous section.
Thus, we obtain a coupling matrix of size 4N×4N , which can be written as the following:

(
CT 2

)t

CT 2

CT 3

(
CT 3

)t

CT 1

(
CT 4

)t

CT 4

(
CT 1

)t

Figure 10.12: Octahedra at the junction of all layers
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M =



MC
11

∣∣∣σx=0
σy=0

. . . MC
1N

∣∣∣σx=0
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CT 1
11 . . . CT 1

1N

... . . . ...
... . . . ...

MC
N1

∣∣∣σx=0
σy=0

. . . MC
NN

∣∣∣σx=0
σy=0

CT 1
N1 . . . CT 1

NN

CT 1
11 . . . CT 1

N1 MC
11

∣∣∣σx ̸=0
σy=0

. . . MC
1N

∣∣∣σx ̸=0
σy=0

... . . . ...
... . . . ...

CT 1
1N . . . CT 1

NN MC
N1

∣∣∣σx ̸=0
σy=0

. . . MC
NN

∣∣∣σx ̸=0
σy=0

CT 2
1N . . . CT 2

1N
... . . . ... 0

CT 2
1N . . . CT 2

1N

CT 3
1N . . . CT 3

1N

0
... . . . ...

CT 3
1N . . . CT 3

1N

CT 2
11 . . . CT 2

1N
... . . . ... 0

CT 2
N1 . . . CT 2

NN

CT 3
N1 . . . CT 3

NN

0
CT 3

N1 . . . CT 3
NN

MC
11

∣∣∣σx=0
σy ̸=0

. . . MC
1N

∣∣∣σx=0
σy ̸=0

CT 4
11 . . . CT 4

1N

... . . . ...
... . . . ...

MC
N1

∣∣∣σx=0
σy ̸=0

. . . MC
NN

∣∣∣σx=0
σy ̸=0

CT 4
N1 . . . CT 4

NN

CT 4
11 . . . CT 4

N1 MC
11

∣∣∣σx ̸=0
σy ̸=0

. . . MC
1N

∣∣∣σx ̸=0
σy ̸=0

... . . . ...
... . . . ...

CT 4
1N . . . CT 4

NN MC
N1

∣∣∣σx ̸=0
σy ̸=0

. . . MC
NN

∣∣∣σx ̸=0
σy ̸=0


In the above matrices, the matrices CT i correspond to the integral posed on the interface
between each layer, as can be seen in Fig. 10.12.

Let us consider a domain of size Lx = Ly = 1. We visualize the pressure at time
t = 0.35s, t = 0.4s, t = 0.45s, t = 0.6s and, the final time, t = 1s. We use a first order
absorbing boundary condition at the extremities of the PMLs and a Gaussian source
function. We use 8 source points to evaluate our basis functions. We consider a PML
of width w = 0.2 and two values of the damping coefficient σy = 5, 10. For σy = 5, , we
discretize the domain with nx = ny = 100 cells in each direction and for σy = 10, we
discretize it with nx = ny = 400 cells in each direction in order to have less reflections as
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(a) 8 sources
(b) 8 sources seen from

above

Figure 10.13: Another choice of placement for the sources of the Green’s functions

in the previous test cases. The first results are presented in Table 10.9. We can see that
the solution is absorbed as it enters the PMLs. We can see that the results we obtain
are not robust and are very sensitive to the position of the source points. In this test,
we work with 8 sources positioned as depicted in Fig. 10.13, because the solution would
blow up with the source points used in the previous section and even with more source
points. We are on the way to conclude that if Green’s functions are very well-suited to
define a Trefftz-DG formulation of the time-dependent wave equation, they seem to lead
to an unstable numerical method. To understand this problem of lack of robustness,
we decided to go back to a case without PML, just to compare the approximation with
polynomials to the one with Green’s functions.

10.3.2 Comparison between Green’s functions and polynomials

In order to compare the robustness of the approximations with polynomials and Green’s
functions, we use a specific initial function, for which we know the analytical solution.
The initial condition is written as follows:

fp(x, y, t) = −sin(2πx)
c

, fvx(x, y, t) = sin(2πx) , fvy (x, y, t) = 0

and the analytical solution is p(x, y, t) = −sin(2π(x + ct)). Let us consider a domain of
size Lx = Ly = 1, discretized with nx = ny = 100 cells in each direction. We take P3

polynomials and Green’s functions with 32 sources, and compare the results obtained
with each of them. In Table 10.10, we present the results we obtain for the two kinds
of approximation settings and the relative error between the analytical solution and the
numerical solutions at t = 1.00041s. To the naked eye, both numerical solutions seem to
be quite close to the analytical one. We can see that the relative error with the Green’s
functions is ≈ 10−3(≈ 0.1%), which is correct. However, the error with the polynomials
is ≈ 10−9(≈ 10−7%), which is much better. In order to see this more closely, we display
a cross-section of the solution at y = 0.5 in Fig. 10.14. We remark that, indeed, the
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t(s) σ = 5 σ = 10

0.35

0.4

0.45

0.6

1

Table 10.9: Pressure in a domain surrounded with Perfectly Matched Layers
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Analytical solution Polynomials Green’s functions

Error

Table 10.10: Relative error between the numerical solutions and the analytical solution

Figure 10.14: Comparison of a cross-section between the numerical solutions and the
analytical solution
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solution with Green’s functions does not have the same amplitude as the analytical
solution. Whereas the polynomial solution and the exact solution are indistinguishable.
In order to further these tests, we plot the L2 relative error in function of the cell size
in Fig. 10.15. We can see that the approximation with polynomials is very efficient and
the solution it produces converges to the analytical solution as the cell size decreases.
However, the error of the solution with Green’s functions starts decreasing until a plateau
is reached, after what the L2 error increases. We can clearly see that the polynomial
solution is more accurate than the solution with Green’s functions, and converges to the
analytical solution as the mesh is refined. As we explained before, this could be due to
our choice of source points. Throughout the various tests we performed, we noticed how
sensitive the solution is to them. Yet, we do not know how to choose them in order to
obtain better results. This is the reason why we would prefer representing our solution
in the computational domain using polynomials and use Green’s functions in the PMLs.
The solution in the absorbing layers does not matter to us, so it is not a problem if the
quality of the solution drops once in the PML (under the assumption that the quality
of the solution in the absorbing layers does not affect the quality of the solution in the
computational domain, which is not certain and will be discussed in the Conclusion).
Hence, the next part consists in coupling the polynomials and the Green’s functions.

Figure 10.15: Convergence of the numerical solutions

10.3.3 Coupling polynomials and Green’s functions

In order to couple the two types of basis functions, we recompute the elementary matri-
ces in the computational domain using the polynomial basis. We also have to recompute
the matrices that couple the computation domain with PMLs, and recalculate the con-
tributions from the domain of interest with polynomials.

Let us consider a domain of size Lx = Ly = 1, discretized with nx = ny = 100
cells in each direction for an absorption of σ = 5 and discretized with nx = ny = 200
cells in each direction for an absorption of σ = 10. We visualize the pressure at time
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Ω

0 1

1

Green

Ω

0 1

1

Polynomial

Figure 10.16: In the second part of the third phase, we couple the use of polynomials
and Green’s functions

t = 0.3s, t = 0.4s, t = 0.5s, t = 0.6s and, the final time, t = 1s. We use a first order
absorbing boundary condition at the extremities of the PMLs of width w = 0.2 and a
Gaussian source function. We use 8 source points to evaluate the Green’s functions and
P0 polynomials in the domain of interest. The results are presented in Table 10.11. We
can see that the solution is absorbed as it enters the PMLs, however, there are very
strong reflections even with σy = 5. We present the results for P0 polynomials because
the reflections at the coupling interface are much stronger when increasing the number
of polynomials degrees of freedom (DoFp). We probably need more Green’s sources
compared to DoFp, in order to have less reflections, but when increasing the number of
source points, the solution explodes depending on the position of these sources.
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t(s) σ = 5 σ = 10

0.3

0.4

0.5

0.6

1

Table 10.11: Pressure represented with coupled polynomials and Green’s functions in a
domain surrounded with Perfectly Matched Layers
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10.3.4 Other basis functions

In Chapter 9 Section 9.5, we introduce alternate basis functions obtained with the
Green’s function for the acoustic pressure. By using the same principle, we define new
functions as follows: 

p = ( ∂

∂t
+ σx)2( ∂

∂t
+ σy)2Gpmlxy

p ,

vx = −1
ρ

( ∂

∂t
+ σx)( ∂

∂t
+ σy)2 ∂G

pmlxy
p

∂x
,

vy = −1
ρ

( ∂

∂t
+ σx)2( ∂

∂t
+ σy)∂G

pmlxy
p

∂y
.

whereas the original basis is simply p = Gpmlxy
p , vx = Gpmlxy

vx
, vy = Gpmlxy

vy
. We noticed

that the results seem more robust with the alternate basis and also have less reflections.
In Table 10.12 we present the acoustic pressure simulated with P3 polynomials in the
domain of interest and the original Green’s functions with 8 source points in the PMLs
compared with the alternate basis with 24 source points in the PMLs. We observe that
the original basis produces more reflections even when the mesh is more refined. Since
for the alternate basis we use more source points, we also test the original basis with
more source points in order to see if this improves the results, but the solution actually
blows up, as can be seen in Fig. 10.17.

t(s) original basis
h = 5e− 3

original basis
h = 2.5e− 3

alternate basis
h = 5e− 3

0.3

0.4
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0.45

0.6

1

Table 10.12: Comparison of basis for PML

Figure 10.17: Original basis with 16 sources



Conclusion

In this thesis, we presented a Trefftz-DG solver with Tent-Pitching and its implementa-
tion in a parallel environment for structured and unstructured meshes. We next address
the question of solving PML wave equations with this kind of approach.

The Trefftz-DG solver with Tent-Pitching for space-time acoustic wave equation has
already been explored and implemented in [24] for structured meshes, in [26] for unstruc-
tured meshes and in [27] in a thread-based parallel environment on unstructured meshes.
In this thesis, our purpose was to investigate the potential of this type of solver for geo-
physical applications. Our starting point was a prototype developed by E. Shishenina
[24]. We began with extending her code from structured meshes to unstructured meshes
and into a distributed memory parallel environment. Regarding the solver using struc-
tured meshes, the results we obtain are very encouraging since the solver has a good
scaling when increasing the number of parallel process it is run on and a better scal-
ing when compared to the IPDG solver from the software Hou10ni. Thus, one of the
goals, which was to have a faster numerical method, seems to be in our reach with the
Trefftz method with Tent-Pitching as candidate. Another aspect we were interested in
was to go faster without neglecting the precision of the solution, which is unfortunately
often the case. For this point, we remarked that the Trefftz-DG solver also seems more
efficient than the IPDG solver. Thus, this allows us to conclude that the Trefftz-DG
with Tent-Pitching solver is an encouraging candidate in the search of a faster and more
precise numerical method. However, in the case of unstructured meshes we noticed that
the performance of our current implementation still requires some optimization. Indeed,
since we have to compute a set of matrices and perform an inversion for each constructed
tent, the time increases sharply and the IPDG method is much faster in this case. We
believe that there is room for improvement, whether in terms of solution methodology or
parallelization. In fact, one of the reasons why the unstructured code is slow compared
to other methods, is because we need to recompute the matrices at each step. If we
had a reference matrix (as is usually done in finite element methods), it would go faster.
However the challenging question remains of how to construct a reference element with
Trefftz basis functions. Moreover, there is one other important aspect of Tent-Pitching
which we do not take advantage of: all tents on a same time level could be computed
independently. Thus, implementing the solver in a MPI+Open-MP framework would
go faster and the Tent-Pitcher algorithm should facilitate such an implementation. In
fact, we have implemented an Open-MP version quite easily and coupling it with MPI is
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common. Another thing to observe and that has been explored and tackled in [75] is that
it is quite common that a process has to wait for another to finish and in Tent-Pitching,
it is is due to the fact that we need to respect causality, so if one process goes too fast
it cannot move on if the neighboring process has not constructed enough tents. So, it
would be interesting to look into task optimizing in order to overcome this problem and
optimize the code even more. Mesh-wise, there has been a lot of work on adaptive Tent-
Pitching meshes [46, 47, 48, 49, 50, 51] and it would be an interesting point to explore,
since it could be very useful in the context of geophysics.

On the other hand, to our knowledge PMLs have not been implemented in this
framework yet and the aim was to test it out and see if it works. We observed that
it is complex to obtain solutions in the spacetime PML case and the construction of
a working variational formulation is not obvious. In fact, we elaborated several kinds
of variational formulations followed by different sets of basis functions. Some of the
resulting combinations led to poor results and for the time being, we don’t have any
clear analysis of what’s going on. One originality of our approach has been to consider
Green’s functions. They provide a natural framework for the Trefftz-DG formulation of
our PML wave equation. However, the Green’s functions are hard to control, because
they are very sensitive to the position and number of sources required for carrying the
approximation and considering a continuous damping function seems complex. So, the
prospects of this work would be to investigate the question of source points, and find ways
to optimize their number and position. To do so, it would be very interesting to see how
exactly the choice of these points affects the solution to be able to control it. One of the
difficulty is related to the fact that the Green’s functions become (at least numerically)
linearly dependent when they are too close. This results in the ill-conditioning of the
local matrices. The question of reducing the ill-conditioning issue has been addressed
for elliptic problems solved with the fundamental solution method (FSM) [108]. FSM
approach shares some implementation ideas with ours even if it involves continuous basis
functions and focuses on the solution of boundary integral equation. Closer to our work,
we can cite the Ultra-Weak Variational Formulation of wave problems which uses plane-
waves as basis functions. The same ill-conditioned issue occurs, still because the plane
waves tend to become linearly dependent. In [109], a method has been proposed to
reduce the ill-conditioning. It consists in using a singular value decomposition of the
local matrix and to remove or to increase the singular values that are below a given
threshold. We would like to consider the idea of extending the methodology in [109] to
spacetime problems. However, we can conclude that Green’s functions are not adapted
to an industrial context. Since we struggle with the optimal choice of source points,
their precision and convergence to the analytical solution is quite poor when compared
to polynomials (see 10.3.2). This is the reason why we preferred to couple the use of
polynomials in the domain of interest with Green’s functions in the PMLs only. In order
to conclude if this is the best option, we should measure the precision of the solution with
PML and see if the use of Green’s functions does not affect the overall convergence to the
solution, which is a possibility and unwanted. Another idea can be to change our stance
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and explore other kinds of solutions than Green’s functions. In section 8.6.1, we saw that
it is not possible to obtain full polynomials as solutions for this problem. However, we
think that a polynomial multiplied by an exponential function of the damping function
could be an alternate solution. In fact, we tried out solutions in this form and the
results are encouraging. However, they are not solutions to our PML equation, but
rather solutions to other dissipative wave equations. So, this needs to be looked into in
more details. In a technical point of view, we only implemented the PML for structured
meshes in sequential, so an additional prospect is to extend the work to unstructured
meshes and in a parallel environment.





Appendix A

Basis functions

We present below the polynomial functions we used as basis in our Trefftz methods. Tr-
efftz methods use local solutions of the considered problem as basis functions, thus, the
polynomials we use are exact solutions to the acoustic wave equation. We give the P0,
P1, P2 and P3 polynomials, which gives us 3, 9, 18 and 30 degrees of freedom respectively.

p=0, Number of DoF=3
ϕp

1 = −c ϕvx
1 = 0 ϕvy

1 = 0
ϕp

2 = 0 ϕvx
2 = 1 ϕvy

2 = 0
ϕp

3 = 0 ϕvx
3 = 0 ϕvy

3 = 1
p=1, Number of DoF=9

ϕp
4 = x ϕvx

4 = −t ϕvy
4 = 0

ϕp
5 = −c2t ϕvx

5 = x ϕvy
5 = 0

ϕp
6 = 0 ϕvx

6 = 0 ϕvy
6 = x

ϕp
7 = y ϕvx

7 = 0 ϕvy
7 = −t

ϕp
8 = 0 ϕvx

8 = y ϕvy
8 = 0

ϕp
9 = −c2t ϕvx

9 = 0 ϕvy
9 = y

p=2, Number of DoF=18
ϕp

10 = x2 + c2t ϕvx
10 = −2xt ϕvy

10 = 0
ϕp

11 = y2 + c2t ϕvx
11 = 0 ϕvy

11 = −2yt

ϕp
12 = xy ϕvx

12 = −yt ϕvy
12 = −xt

ϕp
13 = yt ϕvx

13 = −xy/c2 ϕvy
13 = −t2/2

ϕp
14 = xt ϕvx

14 = −t2/2 ϕvy
14 = −xy/c2

ϕp
15 = 0 ϕvx

15 = x2 ϕvy
15 = −2xy

ϕp
16 = 0 ϕvx

16 = y2 ϕvy
16 = 0

ϕp
17 = 0 ϕvx

17 = 0 ϕvy
17 = x2

ϕp
18 = 0 ϕvx

18 = −2xy ϕvy
18 = y2
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p=3, Number of DoF=30
ϕp

19 = x3 + 3c2xt2 ϕvx
19 = −c2t3 − 3x2t ϕvy

19 = 0
ϕp

20 = y3 + 3c2yt2 ϕvx
20 = 0 ϕvy

20 = −c2t3 − 3y2t

ϕp
21 = x2y + c2yt2 ϕvx

21 = −2xyt ϕvy
21 = −c2t3/3− x2t

ϕp
22 = c2t3/3 + x2t ϕvx

22 = −xt2 ϕvy
22 = −x2y/c2

ϕp
23 = y2x + c2xt2 ϕvx

23 = −c2t3/3− y2t ϕvy
23 = −2xyt

ϕp
24 = c2t3/3 + y2t ϕvx

24 = 0 ϕvy
24 = −y3/3c2 − xt2/2

ϕp
25 = xyt ϕvx

25 = −y2t/2 ϕvy
25 = −xy2/2c2 − xt2/2

ϕp
26 = 0 ϕvx

26 = x3 ϕvy
26 = −3x2y

ϕp
27 = 0 ϕvx

27 = y3 ϕvy
27 = 0

ϕp
28 = 0 ϕvx

28 = x2y ϕvy
28 = −xy2

ϕp
29 = 0 ϕvx

29 = xy2 ϕvy
29 = −y3/3

ϕp
30 = 0 ϕvx

30 = 0 ϕvy
30 = x3



Appendix B

Gaussian quadrature points and
weights

The quadrature formula we used is of order 21 and contains the following 91 points of
coordinates (x, y) and associated weights.

Coordinates Weightsx y
0.333333333333333 0.333333333333333 0.0137811284764382
0.200935277065085 0.598129445869829 0.0110301077067443
0.200935277065085 0.200935277065085 0.0110301077067443
0.598129445869829 0.200935277065085 0.0110301077067443
0.437659165961927 0.124681668076146 0.0117300079693357
0.437659165961927 0.437659165961927 0.0117300079693357
0.124681668076146 0.437659165961927 0.0117300079693357
0.00343395649059618 0.993132087018808 0.000163444797523595
0.00343395649059618 0.00343395649059618 0.000163444797523595
0.993132087018808 0.00343395649059618 0.000163444797523595
0.0466434847753068 0.906713030449386 0.00163265973146998
0.0466434847753068 0.0466434847753068 0.00163265973146998
0.906713030449386 0.0466434847753068 0.00163265973146998
0.386422251763071 0.227155496473857 0.0058782314577064
0.386422251763071 0.386422251763071 0.0058782314577064
0.227155496473857 0.386422251763071 0.0058782314577064
0.0954354711085309 0.809129057782938 0.00589038420995576
0.0954354711085309 0.0954354711085309 0.00589038420995576
0.809129057782938 0.0954354711085309 0.00589038420995576
0.00876756877638032 0.0357186278731634 0.00113440540940057
0.955513803350456 0.00876756877638032 0.00113440540940057

Continued on next page
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Coordinates Weightsx y
0.0357186278731634 0.955513803350456 0.00113440540940057
0.0357186278731634 0.00876756877638032 0.00113440540940057
0.955513803350456 0.0357186278731634 0.00113440540940057
0.00876756877638032 0.955513803350456 0.00113440540940057
0.0052179616554856 0.108143224915646 0.00129800548221816
0.886638813428868 0.0052179616554856 0.00129800548221816
0.108143224915646 0.886638813428868 0.00129800548221816
0.108143224915646 0.0052179616554856 0.00129800548221816
0.886638813428868 0.108143224915646 0.00129800548221816
0.0052179616554856 0.886638813428868 0.00129800548221816
0.00827270451968939 0.207464449599876 0.00231726489293593
0.784262845880434 0.00827270451968939 0.00231726489293593
0.207464449599876 0.784262845880434 0.00231726489293593
0.207464449599876 0.00827270451968939 0.00231726489293593
0.784262845880434 0.207464449599876 0.00231726489293593
0.00827270451968939 0.784262845880434 0.00231726489293593
0.031391336229483 0.0856847087203169 0.00239716802727443
0.8829239550502 0.031391336229483 0.00239716802727443
0.0856847087203169 0.8829239550502 0.00239716802727443
0.0856847087203169 0.031391336229483 0.00239716802727443
0.8829239550502 0.0856847087203169 0.00239716802727443
0.031391336229483 0.8829239550502 0.00239716802727443
0.00951403254463395 0.321494003014289 0.00285623941836181
0.668991964441077 0.00951403254463395 0.00285623941836181
0.321494003014289 0.668991964441077 0.00285623941836181
0.321494003014289 0.00951403254463395 0.00285623941836181
0.668991964441077 0.321494003014289 0.00285623941836181
0.00951403254463395 0.668991964441077 0.00285623941836181
0.0099856601710977 0.437942218793341 0.00293291380216106
0.552072121035561 0.0099856601710977 0.00293291380216106
0.437942218793341 0.552072121035561 0.00293291380216106
0.437942218793341 0.0099856601710977 0.00293291380216106
0.552072121035561 0.437942218793341 0.00293291380216106
0.0099856601710977 0.552072121035561 0.00293291380216106
0.0404905813398536 0.161916453063578 0.00470688152954579
0.797592965596569 0.0404905813398536 0.00470688152954579
0.161916453063578 0.797592965596569 0.00470688152954579
0.161916453063578 0.0404905813398536 0.00470688152954579
0.797592965596569 0.161916453063578 0.00470688152954579

Continued on next page
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Coordinates Weightsx y
0.0404905813398536 0.797592965596569 0.00470688152954579
0.0479805174782336 0.274504767401995 0.00670747189832821
0.677514715119771 0.0479805174782336 0.00670747189832821
0.274504767401995 0.677514715119771 0.00670747189832821
0.274504767401995 0.0479805174782336 0.00670747189832821
0.677514715119771 0.274504767401995 0.00670747189832821
0.0479805174782336 0.677514715119771 0.00670747189832821
0.0516665863359014 0.405335998075007 0.00785845904604162
0.542997415589092 0.0516665863359014 0.00785845904604162
0.405335998075007 0.542997415589092 0.00785845904604162
0.405335998075007 0.0516665863359014 0.00785845904604162
0.542997415589092 0.405335998075007 0.00785845904604162
0.0516665863359014 0.542997415589092 0.00785845904604162
0.106802413773596 0.187737680656435 0.00843184150721845
0.705459905569969 0.106802413773596 0.00843184150721845
0.187737680656435 0.705459905569969 0.00843184150721845
0.187737680656435 0.106802413773596 0.00843184150721845
0.705459905569969 0.187737680656435 0.00843184150721845
0.106802413773596 0.705459905569969 0.00843184150721845
0.119502592167436 0.305696834766055 0.01069501354266
0.574800573066508 0.119502592167436 0.01069501354266
0.305696834766055 0.574800573066508 0.01069501354266
0.305696834766055 0.119502592167436 0.01069501354266
0.574800573066508 0.305696834766055 0.01069501354266
0.119502592167436 0.574800573066508 0.01069501354266
0.216076724624494 0.312144466870891 0.0115383960947463
0.471778808504615 0.216076724624494 0.0115383960947463
0.312144466870891 0.471778808504615 0.0115383960947463
0.312144466870891 0.216076724624494 0.0115383960947463
0.471778808504615 0.312144466870891 0.0115383960947463
0.216076724624494 0.471778808504615 0.0115383960947463





Appendix C

CMake configuration file example

cmake_minimum_required(VERSION 2.8)

# set the project name
project (name)
enable_language (Fortran)

# flags for compilation in ../cmake/unstr_flags.cmake
SET(CMAKE_USER_MAKE_RULES_OVERRIDE
"${CMAKE_SOURCE_DIR}/cmake/unstr_flags.cmake")

# compiler
set(CMAKE_Fortran_COMPILER CompilerName)

# MPI
find_package(MPI REQUIRED)

# libs
set(LIB ~/path )

# add all needed directories
add_subdirectory(NameDirectory)

# add dependecies : directory A depends on directory B
add_dependencies(DirectoryA DirectoryB)

# add the executable
set (EXECUTABLES NameExec)
add_executable(NameExec main.f90)
target_link_libraries (main directories -llibs ${LIBS})
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Appendix D

Green’s functions derivatives

Ix(x, y, t) = tx

ρ(x2 + y2)
∂Ix(x, y, t)

∂t
= x

ρ(x2 + y2)
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∂t∂t
= 0
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∂x∂t
= (y2 − x2)

ρ(x2 + y2)2

∂2Ix

∂y∂t
= −2xy

ρ(x2 + y2)2

∂Ix(x, y, t)
∂x

= (y2 − x2) t

ρ(x2 + y2)2

∂2Ix

∂t∂x
= (y2 − x2)

ρ(x2 + y2)2

∂2Ix

∂x∂x
= (x2 − 3y2) 2tx

ρ(x2 + y2)3

∂2Ix

∂y∂x
= (3x2 − y2) 2ty

ρ(x2 + y2)3

∂Ix(x, y, t)
∂y

= − 2txy

ρ(x2 + y2)2

∂2Ix

∂t∂y
= ∂2I

∂y∂t

∂2Ix

∂x∂y
= ∂2I

∂y∂x

∂2Ix

∂y∂y
= (3y2 − x2) 2tx

ρ(x2 + y2)3

Iy(x, y, t) = ty

ρ(x2 + y2)
∂Iy(x, y, t)

∂t
= y

ρ(x2 + y2)
∂2Iy

∂t∂t
= 0

∂2Iy

∂x∂t
= −2xy

ρ(x2 + y2)2

∂2Iy

∂y∂t
= (x2 − y2)

ρ(x2 + y2)2

∂Iy(x, y, t)
∂x

= − 2txy

ρ(x2 + y2)2

∂2Iy

∂t∂x
= ∂2Ix

∂y∂t

∂2Iy

∂x∂x
= ∂2I

∂y∂x

∂2Iy

∂y∂x
= (3y2 − x2) 2tx

ρ(x2 + y2)3

∂Iy(x, y, t)
∂y

= (x2 − y2) t

ρ(x2 + y2)2

∂2Iy

∂t∂y
= ∂2Iy

∂y∂t

∂2Iy
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∂y∂x
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= (y2 − 3x2) 2ty

ρ(x2 + y2)3
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Jy(x, y, t) = y

ρ(x2 + y2)
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Abstract
In this thesis, we explore the optimization of Trefftz-Discontinuous Galerkin methods with the Tent-Pitcher algo-
rithm and the elaboration of boundary conditions adapted to them. We consider these methods in the framework
of the first-order acoustic wave equation in time-domain. The idea of Trefftz methods is to use local solutions of
the considered Partial Differential Equations as basis functions. Such a formulation has the advantage of being
posed on the skeleton of the mesh only and characteristics of the analytical solutions are injected into the discrete
solution through the basis functions, which leads us to expect the obtained numerical solution to be more precise.
However, the resulting scheme is implicit in time-domain, which leads to an increased computational cost. This
is the reason why we investigate Tent-Pitcher algorithms. The Tent-Pitcher algorithm is a space-time meshing
algorithm introduced for hyperbolic problems, that consists in constructing a causal mesh which allows to solve
the problem element-by-element. This work is divided into two main parts. In the first part, we present an already
existing Trefftz-Discontinuous Galerkin solver on structured Tent-Pitching meshes for the acoustic wave equation
and extend it to unstructured triangular meshes. The efficiency of the method is validated by comparing the
obtained numerical solutions to analytical solutions. Having in mind the optimization of the method in terms
of computational time, we implement the different methods in a High Performance Computing environment. We
test their performance and present comparisons with the solutions from another numerical method. In the second
part, we present an absorbing type of boundary conditions which is the Perfectly Matched Layer. We derive a
formulation for the Trefftz-Discontinuous Galerkin methods with Perfectly Matched Layers for the acoustic wave
equation, which involves the computation of analytical solutions for this new system of equations because the
principle of the Trefftz methods relies on the use of local solutions as basis functions. This is done by computing
the Green’s functions for the time-domain acoustic wave equation using the Cagniard-De Hoop method. Finally,
we implement these boundary conditions into the Trefftz-Discontinuous Galerkin solver with Tent-Pitching on
structured meshes and present the obtained results.

Keywords: acoustic waves, spacetime, Tent-Pitcher, Trefftz, perfectly matched layers (PML), MPI

Résumé
Dans cette thèse, nous étudions l’optimisation des méthodes Trefftz-Galerkine Discontinues avec l’algorithme Tent-
Pitcher, ainsi que l’élaboration de conditions de bords adaptées. Nous considérons ces méthodes dans le cadre
d’une équation des ondes acoustiques de premier-ordre en domaine temporel. L’idée des méthodes de Trefftz est
d’utiliser des solutions locales de l’Équation aux Dérivées Partielles considérée comme fonctions de base. Une telle
formulation présente l’avantage de n’être posée que sur le squelette du maillage. De plus, certaines caractéristiques
des solutions analytiques sont directement injectées dans la solution discrète au travers des fonctions de base, ce
qui nous incite à penser que la solution numérique obtenue sera plus précise. Cependant, le schéma qui résulte de
cette méthode est implicite en espace-temps, ce qui entraîne un coût de calcul élevé. C’est pourquoi nous nous
intéressons à l’algorithme Tent-Pitcher, qui est un algorithme de construction de maillages espace-temps introduit
pour les problèmes hyperboliques et consiste en la construction d’un maillage causal permettant de résoudre le
problème élément par élément. Le présent travail se découpe en deux parties. Dans la première partie, nous
présentons un solveur Trefftz-DG avec Tent-Pitching déjà existant appliqué à l’équation des ondes acoustiques en
espace-temps et son extension à des maillages triangulaires non-structurés. L’efficacité de la méthode est validée
par comparaison des solutions numériques avec des solution analytiques. Dans l’optique d’optimiser la méthode
en termes de temps de calcul, nous implémentons les différentes méthodes dans un environnement de Calcul Haute
Performance. La performance des codes est testée et les solutions numériques sont comparées avec des solutions
obtenues par une méthode différente. Dans la seconde partie, nous présentons des conditions aux bords de type
absorbant que sont les Couches Absorbantes Parfaitement Adaptées pour l’équation des ondes acoustiques, ce
qui implique la construction de solutions analytiques pour ce nouveau système d’équations, car le principe des
méthodes de Trefftz repose sur l’utilisation de solutions locales comme fonctions de base. Pour ce faire, nous
élaborons des fonctions de Green pour les équations d’ondes acoustiques en domaine temporel grâce à la méthode
Cagniard-De Hoop. Enfin, nous implémentons ces conditions de bords dans le solveur Trefftz-Galerkine Discontinu
avec Tent-Pitching sur des maillages structurés et présentons les résultats obtenus.

Mots-clés : ondes acoustiques, espace-temps, Tent-Pitcher, Trefftz, couches absorbantes parfaitement adap-
tées, MPI
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