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Résumé

On étudie l’écoulement turbulent d’un fluide sur une canopée, que l’on modélise comme un milieu
poreux déformable. Ce milieu poreux est en fait composé d’un tapis de fibres susceptibles de se courber
sous la charge hydrodynamique du fluide, et ainsi de créer un couplage fluide-structure à l’échelle d’une
hauteur de fibre (honami). L’objectif de la thèse est de développer un modèle macroscopique de cette
interaction fluide-structure, afin d’en réaliser des simulations numériques. Une approche numérique
de simulation aux grandes échelles est donc mise en place pour capturer les grandes structures de
l’écoulement et leur couplage avec les déformations du milieu poreux. Pour cela nous dérivons les
équations régissant la grande échelle, au point de vue du fluide ainsi que de la phase solide. À cause
du caractère non-local de la phase solide, une approche hybride est proposée. La phase fluide est
décrite d’un point de vue Eulerien, tandis que la description de la dynamique de la phase solide
nécessite une représentation Lagrangienne. L’interface entre le fluide et le milieu poreux est traitée
de manière continue. Cette approche de l’interface fluide/poreux est justifiée par un développement
théorique sous forme de bilan de masse et de quantité de mouvement à l’interface. Ce modèle hybride
est implémenté dans un solveur écrit en C++, à partir d’un solveur fluide disponible dans la librairie
CFD Open∇FOAM R©. Un préalable nécessaire à la réalisation d’un tel modèle macroscopique est la
connaissance des phénomènes de la petite échelle en vue de les modéliser. Deux axes sont explorés
concernant cet aspect. Le premier consiste à étudier les effets de l’inertie sur la perte de charge en milieu
poreux. Un paramètre géométrique est proposé pour caractériser la sensibilité d’une microstructure
poreuse à l’inertie de l’écoulement du fluide dans ses pores. L’efficacité de ce paramètre géométrique
est validée sur une diversité de microstructures et le caractère général du paramètre est démontré. Une
loi asymptotique est ensuite proposée pour modéliser les effets de l’inertie sur la perte de charge, et
comprendre comment celle-ci évolue en fonction de la nature de la microstructure du milieu poreux.
Le deuxième axe d’étude de la petite échelle consiste à étudier l’effet de l’interaction fluide-structure
à l’échelle du pore sur la perte de charge au niveau macroscopique. Comme les cas présentent de
grands déplacements de la phase solide, une approche par frontières immergées est proposée. Ainsi
deux méthodes numériques sont employées pour appliquer la condition de non-glissement à l’interface
fluid/solide: l’une par interface diffuse, l’autre par reconstitution de l’interface. Cela permet une
validation croisée des résultats et d’atteindre des temps de calcul acceptables tout en mâıtrisant la
précision des résultats numériques. Cette étude permet de montrer que l’interaction fluide-structure
à l’échelle du pore a un effet considérable sur la perte de charge effective au niveau macroscopique.
Des questions fondamentales sont ensuite abordées, telles que la taille d’un élément représentatif ou la
forme des équations de transport dans un milieu poreux souple.
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Abstract

We study the turbulent flow of a fluid over a canopy, that we model as a deformable porous medium.
This porous medium is more precisely a carpet of fibres that bend under the hydrodynamic load,
hence initiating a fluid-structure coupling at the scale of a fibre’s height (honami). The objective of
the thesis is to develop a macroscopic model of this fluid-structure interaction in order to perform
numerical simulations of this process. The volume averaging method is implemented to describe
the large scales of the flow and their interaction with the deformable porous medium. An hybrid
approach is followed due to the non-local nature of the solid phase; While the large scales of the flow
are described within an Eulerian frame by applying the method of volume averaging, a Lagrangian
approach is proposed to describe the ensemble of fibres. The interface between the free-flow and
the porous medium is handle with a One-Domain-Approach, which we justify with the theoretical
development of a mass- and momentum- balance at the fluid/porous interface. This hybrid model
is then implemented in a parallel code written in C++, based on a fluid- solver available from the
Open∇FOAM R© CFD toolbox. Some preliminary results show the ability of this approach to simulate
a honami within a reasonable computational cost. Prior to implementing a macroscopic model, insight
into the small-scale is required. Two specific aspects of the small-scale are therefore studied in details;
The first development deals with the inertial deviation from Darcy’s law. A geometrical parameter is
proposed to describe the effect of inertia on Darcy’s law, depending on the shape of the microstructure
of the porous medium. This topological parameter is shown to efficiently characterize inertia effects
on a diversity of tested microstructures. An asymptotic filtration law is then derived from the closure
problem arising from the volume averaging method, proposing a new framework to understand the
relationship between the effect of inertia on the macroscopic fluid-solid force and the topology of the
microstructure of the porous medium. A second research axis is then investigated. As we deal with
a deformable porous medium, we study the effect of the pore-scale fluid-structure interaction on the
filtration law as the flow within the pores is unsteady, inducing time-dependent fluid- stresses on
the solid- phase. For that purpose, we implement pore-scale numerical simulations of unsteady flows
within deformable pores, focusing for this preliminary study on a model porous medium. Owing to the
large displacements of the solid phase, an immersed boundary approach is implemented. Two different
numerical methods are compared to apply the no-slip condition at the fluid-solid interface: a diffuse
interface approach and a sharp interface approach. The objective is to find the proper method to afford
acceptable computational time and a good reliability of the results. The comparison allows a cross-
validation of the numerical results, as the two methods compare well for our cases. This numerical
campaign shows that the pore-scale deformation has a significant impact on the pressure drop at the
macroscopic scale. Some fundamental issues are then discussed, such as the size of a representative
computational domain or the form of macroscopic equations to describe the momentum transport
within a soft deformable porous medium.
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Nomenclature

•β item related to the fluid phase (β- phase)

Cλ inertial sensitivity of the microstructure, [1]

ǫβ porosity, [1]

ℓ length scale used in ReC , [L]

ℓβ pore length scale, [L]

F‖, F⊥ parallel and orthogonal Forchheimer terms, [1]

Fλ Forchheimer number, [1]

γβ β- phase indicator, [1]

gβ macroscopic pressure gradient,
[
ML−2T−2

]

Kλ scalar permeability,
[
L2
]

λ direction of the intrinsic average velocity, [1]

Aβσ domain of the fluid-solid interface

V domain of the REV

Vβ domain of the β- phase

µβ dynamic viscosity of the fluid,
[
ML−1T−1

]

νβ kinematic viscosity of the fluid,
[
L2T−1

]

pβ pressure- field,
[
ML−2T−2

]

ψ generic field

R real space

ReC , Rek critical- and permeability based- Reynolds number, [1]

ρβ density of the fluid,
[
ML−3

]

ℓ0 dimension of the REV, [L]

vβ flow velocity- field,
[
LT−1

]

f extension of Darcy’s law,
[
L−2

]

KD Darcy permeability,
[
L2
]

r general position vector, [L]

sβ constant source term,
[
LT−2

]

yβ = r − x position vector relative to the centroid of the REV, [L]
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〈vβ〉β
, 〈pβ〉β

intrinsic averages

ṽβ , p̃β spatial deviations

v∗, p∗ dimensionless spatial deviations, [1]

b non-linear part of Ergun’s equation,
[
L−1T

]

Lv macroscopic length scale, [L]

ReD, Reg diameter based- and pressure gradient based- Reynolds number, [1]

V measure of the REV,
[
L3
]

v magnitude of the intrinsic average velocity,
[
LT−1

]

Vβ measure of the β- phase inside the REV,
[
L3
]
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Chapter 1

Introduction to elastic canopy flows

Turbulent fluid flows over rigid impermeable walls covered with elastic filamentous fibres is a challenging

process to understand, model and simulate. Many such fluid- poro-elastic systems (referred to as canopy

flows, Fig. 1.1a) can be observed in nature, and there have been a lot of efforts to understand how

canopy flows function and the influence they have on the transport of nutrients, gas and pollutants

in ecosystems. This has led to great breakthroughs in physical understanding, but the numerical

simulation of canopy flows remains a tough issue [1, 2, 3, 4].

1.1 System of interest

A canopy flow can be either an immersed vegetation on a river bed, a wheat field under windy conditions

or a carpet of cilia transporting mucus within the respiratory tract. The physics involved can be much

different depending on the type of canopy that we focus on. For example whilst buoyancy dominates

in vegetated river beds [5], it can be neglected in the study of the roughness layer over a forest [6].

Most of the knowledge that we have on canopy flows was motivated by the need to understand canopy

flows in nature [7, 8, 9]. Canopy flows are at the heart of a lot of transport processes in nature.

For example, [10] shows that the relationships between the vegetation covering a river bed, the water

flow and the sediment transport is crucial. Typically a river bed covered by a canopy is less likely

to erode, as the presence of the canopy helps keep the sediments at the bottom of the river, instead

of being advected downstream. In [11], it is shown by experiments that gas transfer at the air/water

surface of an immersed canopy is enhanced by the mixing generated by the movement of emergent

stems due to the plant waving. Canopies in rivers also play a role in the transport of nutrient and

are directly involved in the feeding of living organism, as well as in the improvement of water quality.

The enhancement of vertical mixing due to the canopy allows for the removal of nutrients from the

15



16 CHAPTER 1. INTRODUCTION TO ELASTIC CANOPY FLOWS

(a) (b)

Figure 1.1: Fig. 1.1a, perspective view of a passive canopy. A passive canopy is in fact a passive
poro-elastic layer, made of an ensemble of fibres fixed onto a solid, impermeable wall (delimited by the
dashed line). Each fibre is identical to another, and the canopy is homogeneous. Fig. 1.1b, following
the biomimetic statement that a hairy surface provides better aerodynamic performances, this picture
illustrates what planes might look like in the future. The picture was taken from a series of digital
illustrations by INK.

free-flow, so that they remain trapped in the submerged vegetation [12]. The turbulent structures

developing over a passive canopy may also cause serious damages to this canopy. For example [13]

shows by experiments how a wind gust can damage a forest, and [14] is a study motivated by the

need to understand how a wheat field can be damaged by a storm. Eventually, the understanding of

canopy flows allows to design flow-control devices or arrange the trees in a forest in such a way that

the potential damages due to strong winds are reduced.

1.1.1 Key parameters of a passive canopy flow

Canopies have numerous characteristic features. They can be either active or passive, dense or sparse,

stiff or soft, etc. For example, active canopies can be found in lungs, where hairs interact with the

mucus to move it forward [15]. In this case the fibres have an active role, as they provide their own

mechanical power. This kind of active system might be of interest for flow control devices we can

conceive. However canopies made of active fibres are a particular kind of fluid- poro-elastic systems

and are beyond the scope of our context. The physics involved are specific. Here we consider only

passive fibres, such that the fibres’ motion is only due to the fluid-structure coupling. Animal furs,

wheat fields, vegetated river beds and forests are a few examples of such passive processes (Fig. 1.1a).

This processes have in common that the fibre motion is driven by the hydrodynamic loads, and in

turn the fibre opposes a restoring force due to its elastic properties. Each hair can then act as an

individual on the flow by restituting its elastic energy. The solid impermeable surface is passive as

well, which means that it is rigid and impermeable, and there are no suction nor blowing devices. To

be explicit, this means that from a numerical simulation point of view, the solid impermeable wall is
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Figure 1.2: Geometrical parameters that define our model system (height and diameter of the fibres,
space between fibres). We focus on the simplest canopy, that consists in a homogeneous arrangement
of identical fibres attached to a planar rigid surface.

Figure 1.3: Different scales of turbulence that develop in a canopy flow are illustrated in this picture.
The smallest scale mostly generates viscous dissipation and occurs at the stem scale. The largest scale
consists in canopy scale vortices on top of the canopy. We see that the mean velocity profile, as well
as the large coherent structure developing, depends on the frontal area per bed area of the canopy
(see Eq. 1.1.2), i.e. the canopy sparsity influences the nature of the large scale coherent flow structure
developing on top of it (image taken from [9]).
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(a) (b)

Figure 1.4: Two different canopy flows that fit in our simple definition of a passive canopy. Fig. 1.4a,
the fibres look rather stiff compared to the hydrodynamic load they encounter. Fig. 1.4b, the fibres
look rather soft but the hydrodynamic load is small too, and buoyancy forces seem to dominate in this
case. This shows that additional dimensionless numbers are required in order to have a better idea of
the system we deal with.

modeled via a homogeneous Dirichlet condition for the velocity. A surface made of a combination of

blowing devices and covered with an active canopy with heterogeneities is an interesting process to

study and might afford ground-breaking applications. First of all, each separate phenomenon should

be understood well, and here we focus on passive canopies.

The passive canopy term is still vague and can refer to very different processes (e.g. Fig. 1.4). Here

we define more precisely the type of system that we are interested in and identify the set of parameters

that characterizes it. First of all, we should state that each fibre is solidly anchored at its root to

the impermeable rigid wall (Fig. 1.1a). This way, the rigid wall and the deformable fibres constitute

the solid phase (σ− phase), and the region under the tip of the fibres lies entirely in the fluid (β−

phase), such that any part of space above the impermeable rigid wall is an ensemble of fluid- and solid-

regions. A minimal definition of the fibres geometry requires only a few parameters (Fig. 1.2). Let

∆S be the space between two neighbouring fibres, h and D be, respectively, the height and diameter

of the fibres. For simplicity, fibres are taken identical and of constant cross section. For a complete

description of the geometry, we should determine the way fibres are arranged on the impermeable

rigid wall. This introduces notions of disorder and sparsity. In addition to the geometry of the σ−

phase, the process has several degrees of freedom concerning physical properties such as the density

and rigidity of the material composing the σ− phase, the fluid physical properties and the velocity

distribution, that condition the flow regime at the stem scale and the Reynolds number at the scale

of the canopy. Finally, we focus on canopy flows dominated by hydrodynamic load and fibres stiffness

(buoyancy effects and fibre-fibre interactions are neglected). This gives us a complete view of the
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process of interest here.

From the point of view of the large scale flow physics, we distinguish between limit cases of canopy

flows by mean of dimensionless numbers that compare the physics involved. As previously stated,

observation of natural canopy flows already provides a useful background. As shown in [9], much

information can be deduced on the large scale flow physics knowing only a few parameters (see Fig. 1.3).

Obviously the Reynolds number is relevant, which we define as

Re =
Uh

νβ
, (1.1.1)

where U is a characteristic velocity of the flow, and νβ is the fluid kinematic viscosity. Re should

be large enough so that the Kelvin-Helmholtz (KH) instability is triggered (we will focus on the KH

instability more deeply in the next section). As observed by experiments [9], the frontal area per bed

area is a crucial parameter too. This geometrical parameter is defined as

ah =
Dh

∆S2
. (1.1.2)

This parameter, associated with the Reynolds number Re, conditions the shape of the velocity profile

and the characteristics of the coherent structures that develop in a canopy flow (Fig. 1.3). Let CD the

drag coefficient of a fibre. A third important parameter is the Cauchy number, defined as

CY =
1
2ρβCDDh

3U2

EI
, (1.1.3)

where ρβ is the fluid density, E is the Young modulus of the solid- phase, I is the area moment of

inertia of the fibres and h is the height of the fibres. CY compares the intensity of the hydrodynamic to

the restoring force of the fibre. CY allows for an a priori estimate of the response of the solid phase to

the flow and allows to assess whether fibres will bend, or if they should be considered as rigid bodies, as

their stiffness is very large (CY ≪ 1, e.g. an arrangement of skyscrapers). These three parameters Re,

ah and CY allow for instance to respect similarities in the set-up of a numerical simulation, with the

objective to reproduce an experiment or field- conditions. Regarding an application, we can already

determine which class of canopy is suitable for the objective we have in mind. Let us say we are willing

to use the large-scale fluid-solid coupling occurring over a canopy flow to provide energy to a boundary
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(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 1.5: The mean flow profile over a canopy can be unstable. A perturbation of the flow generates
a large scale complicated structure following three stages of development. Fig. 1.5a The KH instability
starts developing. Fig. 1.5b Canopy scale regular parallel rollers travel on top of the canopy. Fig. 1.5c
The parallel vortices degenerate into a sophisticated pattern, displaying a complex, 3D shape as a
secondary instability develops and takes over (image reproduced from [8]). This illustration underlines
the relevance of simulating the large-scale in a numerical study of canopy flows.

layer. We should set Re, ah and CY for example to

Re ≃ 10+4, (to trigger the KH instability),

CY ≃ 1, (to take advantage of the honami phenomenon),

ah ≃ 10−1, (so that the mixing layer reaches the wall).

(1.1.4)

This helps design the canopy on purpose. Until now we have mentioned that there was a KH instability

developing on top of the canopy in a canopy flow, as well as a honami phenomenon, and we have

suggested that there was an interest in the improvement of the vertical momentum transfer. We have

not given many details yet on this large-scale fluid-structure coupling (honami), and neither have we

on the flow structure arising from this instability. The following section aims at providing more details

on the honami phenomenon and the applications that could arise from the numerical simulations of

the large-scales of a honami.

1.1.2 Physics of a honami

1.1.2.1 Honami

A honami (or monami for aquatic vegetation), refers to the canopy-scale fluid-structure interaction

that develops when a turbulent flow occurs over a deformable canopy. This canopy-scale fluid-structure

interaction develops under specific conditions and can be seen by the eye on, e.g. , wheat fields under

windy conditions [16]. The arising of these coherent structures is rather simple to picture. The profile

of mean flow velocity over a canopy has an inflection point, due to the blocking effect of the canopy

under the free-flow region. This specific feature is keen on developing a canopy-scale, coherent flow

structure on top of the canopy, that consists in canopy-scale vortices [17, 18], see Fig. 1.3 and 1.5.
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This flow instability is related to the shape of the mean flow (Kelvin-Helmholtz (KH) instability, [19]),

and eventually evolves toward complicated turbulent structures that display 3D features. Such flow

structures were described as similar to structures that develop in a mixing layer (e.g. [8]) observed at

the boundary between two fluids at two different velocities. The development of these flow-structures

can be described in three main stages (Fig. 1.5). The first stage is due to the the KH instability. As

the mean flow is unstable by nature (inflection point), a single perturbation triggers this instability

(Fig. 1.5a) and generates canopy-scale vortices on top of the canopy [9]. At the beginning, these

vortices are very small, but they keep growing until their dimension reaches the height of the canopy.

This is the second stage of the mixing-layer analogy (Fig. 1.5b). These rollers (each of them are of

similar size) travel along the top of the canopy with a regular spacing. The region between two rollers

is highly strained and generates high viscous dissipation areas. This rather simple pattern then evolves

into a more complicated structure sketched on Fig. 1.5c. 3D features and secondary vortices develop

in the streamwise direction. This gives an idea of the canopy-scale flow structure occurring over a

canopy. Note that at this point, the physics involved is only fluid mechanics.

A honami arises from the coupling of these canopy-scale coherent vortices with the deformation of

the canopy, i.e. when the fluid dynamics described above couples with the elastic deformation of the

fibres that compose the canopy. Indeed if the canopy is flexible, these vortices may interact with the

fibres in an unsteady way, so that the elastic properties of the fibres take part in the sweep and ejection

events [9] characteristic of the flow over a canopy. This is a fluid-structure interaction, between the

flow and the ensemble of elastic fibres. This canopy-scale fluid-structure interaction develops over the

canopy under specific conditions [9, 20, 21]. At low values of Re, the Kelvin-Helmholtz instability

does not develop, there is no flow unsteadiness, and no flow-canopy interaction is observed (except

that the canopy bends under the hydrodynamic load, but it is a steady equilibrium. This phenomenon

called reconfiguration was studied in [22, 23]). At higher Reynolds number, the Kelvin-Helmholtz

instability arises, and canopy scale vortices are likely to be triggered [19]. The resulting canopy-scale

coherent flow structures couple with the deformable canopy only if the natural frequency of the fibres

corresponds to the time-scale of the rollers. Locally, the elastic fibres bend under the hydrodynamic

load and momentarily store elastic energy (sweep event). This elastic energy is then released in a

restoring motion of the fibres, which in turn act on the flow as a moving obstacle and accelerate some

fluid out to the free-flow (ejection event). The resulting fluid-structure coupling is called a honami,

and displays an ensemble motion of the fibres. Typically, the length-scale of a vortex L is much larger

than ∆S the space between fibres, so that roughly, the canopy deforms as bundles of ∼ L
∆S fibres.
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1.1.2.2 Motivations of this study

By studying canopy flows, we initially have in mind mimetic approaches to the development of innova-

tive skins. The starting point of this approach is a simple observation. Contrary to most of man-made

aerodynamic surfaces, natural surfaces are rarely smooth and rigid, and are often covered with het-

erogeneities, whether they are elastic or rigid. The study of canopy flows could lead to discover a

feasible way of performing passive flow control (e.g. with a poro-elastic coating), in order to obtain

improved aerodynamic performances. The idea behind this is to use the fluid-elastic coupling between

the flow and the poro-elastic layer, so as to manipulate the flow surrounding the surface, in order to

achieve goals that cannot be achieved with a simple rigid impermeable wall. A poro-elastic coating

could overcome several issues. For example in [24], the presence of elastic filamentous structures at

the trailing edge of a cylinder is shown to allow a damping of the wake dynamics, that reduces the

amount of energy dissipated in the wake region. Also, postponement of the onset of transition to

turbulence could be obtained through taking advantage of the stabilizing effect of a compliant porous

surface ([25, 26]), with the advantage that a laminar flow is less dissipative than a turbulent flow, which

implies potential drag reduction. On the opposite, the objective of a canopy could be to destabilize

the flow in order to improve the vertical momentum transfer and overcome flow separation.

A separated flow (Fig. 1.6a) induces an increase in energy losses by viscous dissipation, an excessive

pressure drag applied to the body in motion in the surrounding fluid, and may result in catastrophic

deterioration of lift (stall phenomenon) in the case of a lifting device, such as a wing or a compressor

blade. For an aircraft, the stall velocity characterizes the velocity under which the plane can not fly,

which constitutes the major limitation in reducing the landing distance. Physically, flow separation

occurs when a boundary layer is submitted to an adverse pressure gradient. At a certain point, the

fluid lacks momentum and can not overcome the adverse pressure gradient, causing the fluid to locally

flow back (this is called a backflow) compared to the direction of the mean flow. The fluid viscosity

plays two opposite roles in the flow separation phenomenon. On the one hand, the viscosity of the flow

causes energy losses near the wall. By viscous dissipation, the flow loses momentum, hence favouring

backflow under adverse pressure gradient. On the other hand, molecular diffusion (i.e. momentum

diffusion by viscosity) helps transfer energy from the high-momentum free flow region to the near wall

flow, which helps avoid flow separation. Indeed as stated in [27], ”the kernel problem in separation

postponement is to add momentum to the very near-wall region of the flow by transferring momentum

from flow regions farther from the wall, which are still momentum rich”. In the same way, turbulent

boundary layers are known to better resist adverse pressure gradient than laminar boundary layers, as

the turbulent mixing is known to enhance the vertical momentum transfer from the high momentum

free-flow to the near-wall flow.
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The permeability of a porous wall has been observed to play an important role in vertical momentum

transfer, compared to a simple impermeable wall. Breugem in [28] implements an immersed boundary

method to perform direct numerical simulations of the Navier-Stokes equations over a porous wall.

This work based on a simple model porous medium allows for a direct access to the velocity field,

and suggests an increase in vertical momentum transfer due to the wall permeability. Indeed this

numerical simulation of a turbulent flow over a porous medium shows an increase in the total shear

stress compared to an impermeable wall. By looking at the flow in details, Breugem concludes that this

improved transfer is caused by a strong increase in the Reynolds-stresses, which in turn is caused by the

weakening of the wall-blocking effect compared to an impermeable wall. This allows the turbulent flow

to penetrate the permeable wall (v′ < 0), thereby transporting fluid with relatively high streamwise

momentum (u′ > 0) into the permeable wall. By virtue of mass conservation, fluid with relatively low

streamwise momentum (u′ < 0) is transported from the permeable wall into the channel (v′ > 0)”.

The resulting effect is a net increase of momentum transfer from top to bottom, i.e. from the free-flow

to the near-wall flow. Moreover in [29] it is suggested through experiments that ”the efficiency of

momentum transfer within the mixing layer remains considerably larger than that in unobstructed

flow because of the coherent structures that develop.” The author suggests that ”the coherent waving

of a canopy strongly enhances vertical transport therein”, hence the deformation of the canopy may

play an important role in the momentum transfer process [30, 6, 9]. This suggests that in the future,

planes might be ”hairy” (Fig. 1.1b), allowing to manipulate the flow surrounding the canopy by tuning

the fur (density, stiffness) on purpose. However we would like to point out that destabilizing the flow

is not an insurance of net vertical momentum transfer improvement.

Flow destabilization to a turbulent regime, in addition to the presence of a porous medium, increases

viscous dissipation, and the gain in vertical transfer due to the presence of the canopy must be greater

than the associated additional energy losses. In particular [6], the canopy should not be too deep

and/or dense, otherwise ”turbulence cannot mix high-momentum fluid from above the canopy down to

the ground” (see also Fig. 1.3). Clearly, there is an optimization problem here. Moreover, the hope for

aerodynamic applications follows a biomimetic pattern, based on the observation that aerodynamic

surfaces in nature are often not smooth nor rigid. However this assumes that the non-smooth and

non-rigid characteristics of these coatings are made for the purpose of achieving better aerodynamic

performances. Whilst this was shown for example for the shark skin, that led to the development of

super-fast shark-skin-inspired swimsuits, the furs on animals are a priori not designed for aerodynamic

purposes. Leopard seals for example are amazing hunters, and we can think that they are extremely

capable swimmers, but their fur is also subject to severe constraints, such as bearing extremely low

water temperature and undergoing camouflage. As another example, duck feathers [31] are covered
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(a) rigid impermeable wall (b) hairy wall

Figure 1.6: Expected effect of an innovative coating on a near-wall flow detaching. Under adverse
pressure gradient, flow separation is keen on occurring in a boundary layer that lacks momentum.
Flow separation is in general to be avoided, and this could be achieved by a poro-elastic coating
(canopy). The mixing structures that develop on top of the canopy contribute to enhance the vertical
mixing, thereby improving the vertical momentum transfer and delaying flow separation.

with a multi-scale microstructure that is responsible for their super-hydrophobic behaviour, helping

the duck to keep its body dry. The aerodynamic purpose appears to be secondary in these cases.

Clearly, the question of obtaining aerodynamic improvements by covering a surface with hairs remains

open. Canopies in ecosystems are subject to multiple constraints, including their own vital needs, and

their purpose is not dedicated to momentum transport. We are willing to understand how a canopy

can maximize the vertical mixing and improve the vertical momentum transfer. As canopies in nature

are subject to multiple constraints other than improving the vertical momentum transfer, they are not

optimized for our aerodynamic purpose.

Experiments and field-observation give some evidences that suggest that elastic canopies (as defined

in details in Section 1.1) somehow influence the vertical transport in the flow they are immersed in.

Numerical tools that we develop here appear relevant to move forward on the issue of understanding

canopy flows. The numerical approach is a reasonable way of proposing a model, implementing it and

comparing it with experiment or field-data. Also, such a numerical tool is interesting during a design

process. When it comes to finding out how a canopy can be optimized in terms of sparsity or stiffness

of the fibres, so as to maximize the vertical momentum transfer for instance, it is interesting to have

a rough idea of the physical properties of the fibres before starting to build an expensive experiment.

For a process as complex as a canopy flow, the numerical tool is complementary to experiments.

1.2 The multiple-scale aspect

Canopy flows are multi-scale (Fig. 1.3). Inside the canopy, the number of heterogeneities is typically

very large. Hence simulating the complete system at a microscopic level (i.e. each hair dynamics,
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and the smallest flow structure) can be achieved only at a huge computational cost. To reduce this

computational cost we develop a macroscopic model to simulate canopy flows. This is made possible

because the microscopic features are redundant. Hence we are not interested in describing these

microscopic features in full detail each time they appear. We only need to model them once, and

incorporate these models in a macroscopic model.

1.2.1 The relevant scale

The broad range of scales that characterize a canopy flow is roughly made of

• the stem-scale for the smallest scales, and

• the canopy-scale for the largest scales.

We only want to catch the macroscopic (i.e. large-scale) fluid-structure coupling of the canopy with

the flow, i.e. the previously described honami phenomenon. In other words, the information of interest

in canopy flows is most of the time contained in the canopy-scale features. For the fluid phase, this

amounts to consider a volume-average velocity 〈vβ〉β
(see Section 2.1 for a detailed definition), and

then to build a model for it, referred to as macroscopic model. However we emphasize the fact that

both the solid- and the fluid- phase are concerned with this variety of scales. For example while the

canopy scale vortices constitute the large scale flow, the vortex shedding at the stem scale generates

small scale flow features. As well, whilst the deformation of the whole fibre creates a large scale

solid deformation, the beating of stems due to vortex shedding can be considered as a small scale

feature of the solid phase. Let τmacro, L be the time- and length- scale characteristic of the large scale,

respectively. The momentum transport and mass conservation equations for the macroscale L read

ρβ
∂ 〈vβ〉β

∂t
+ ∇ ·

(

ρβ 〈vβ〉β 〈vβ〉β
)

= − ∇ 〈pβ〉β
+ νβ∇ ·

[

∇ 〈vβ〉β
+T ∇ 〈vβ〉β

]

+ Dβσ
︸︷︷︸

fluid-solid force

−∇ ·
(

ρβ 〈ṽβ ṽβ〉β
)

︸ ︷︷ ︸

subgrid scale stresses

,

∇ · 〈vβ〉β
= 0.

(1.2.1)

Eqs. 1.2.1 are the Volume Averaged Navier-Stokes equations (VANS), that will be used to model the

large scale of the fluid- phase in the macroscopic model we develop for canopy flows. A solid theoretical

basis, with assumptions clearly emphasized, is essential to the development of a numerical tool that

the user can trust and understand easily. The full details of the development of the VANS are given

in Section 2, where the interaction among different scales is discussed in details. This development

is conducted so that the 〈vβ〉β − field is free of small length-scales. However, it still contains small

time-scales.



26 CHAPTER 1. INTRODUCTION TO ELASTIC CANOPY FLOWS

0 20 40 60 80 100 1200

10

20

30

40

50

60

70

39.04%
69.46%
90.69%
104.15%
122.91%
141.05%

Transition to unsteady

Transition to chaotic

〈uβ〉β

t∗

Figure 1.7: Evolution over time of the volume-averaged velocity 〈vβ〉β
component in the time-average

direction of 〈vβ〉β
in the unit cell, starting from zero initial conditions. Each curve corresponds to

a constant-uniform source term in the Navier-Stokes equations. The resulting average velocity is in
arbitrary units. We observe different flow regimes, depending on the Reynolds number characteristic
for the flow. The study of these different regimes is interesting from a physical point of view, but the
details of these regimes is not relevant to the description of the large-scales, and we are willing to filter
these small-scale features out.

1.2.2 Time filtering

The fact that the 〈vβ〉β − field still contains small time-scales can be figured out by observing the value

of the mean velocity 〈vβ〉β
over time (Fig. 1.7). These results are obtained with Open∇FOAM R©, by

simulating the 2D incompressible Navier-Stokes equations in a model porous medium with a constant-

uniform forcing term. The geometry is made of an arrangement of cylinders and is periodic to mimic

an infinitely large porous medium. Periodic conditions are imposed to vβ and pβ at the boundary of

the computational domain. The constant-uniform forcing term mimics a constant pressure gradient,

and its magnitude was varied so as to obtain different flow rates. Different regimes are displayed [32].

Under a certain Reynolds number, the permanent regime is steady (lower blue curve). Then as the

Reynolds number increases, the microscopic streamline patterns begin to destabilize. The microscopic

fields start to vary in time, and this reflects on the volume-averaged velocity 〈vβ〉β
. An increase in

pressure drop (decrease in flow rate at constant forcing term) is induced as the flow regime changes from

steady to unsteady (green curve). As the forcing term further increases, the mass flow rate increases

and the Reynolds number reaches a certain value above which the time-periodic feature is lost and
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Re ≪ 1 Re ≫ 1

Unsteady chaoticUnsteady periodicSteady

Figure 1.8: Schematic summary of the statistically steady regimes occurring at the pore scale, depend-
ing on the pore-scale Reynolds number. In the present simulations, the fluid flows under a constant
pressure gradient, and one could wonder what would happen if a different condition were imposed.
For example, we could impose a constant flow rate instead of a constant pressure gradient to study
the pore-scale. The reason why we choose to impose a constant pressure gradient instead is related to
the convenience of the computational setups, and has no clear physical justification.
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Figure 1.9: Unsteady flow in a periodic elementary cell of an array of cylinders of porosity 0.8. The
time-averaged diameter-based Reynolds number ReD is around 110. t∗ is the time adimensionalized
with the cylinder diameter and the mean velocity, basically corresponds to the number of passages
of a flow particle through the domain. This clearly shows, on a simple case, that small time-scales
remain in the volume-averaged velocity. Strictly speaking, the development of a macroscopic model
for unsteady flows in porous media requires a double-average (both space and time).

the evolution over time of the volume-averaged velocity becomes chaotic (red curve and above). The

three different statistically steady regimes (the regimes that establish after a certain amount of time,

see Section. 5.1.2 for a more complete definition) at the scale of the representative cell are summarized

on Fig. 1.8. The question of evaluating a priori the transition Reynolds number for a given porous

medium is a tough one [33] and is not addressed here.

Details of the periodic regime are given on Fig. 1.9. ReD is the time-averaged, diameter-based

Reynolds number. Re∗ is defined as

Re∗ =

D〈uβ〉β

νβ
−ReD

ReD
, (1.2.2)

and Cd is the instantaneous drag coefficient. Let τµ be the characteristic time scale that we observe.

It is clear that this small time scale τµ is not simulated in our macroscopic model

τµ ≪ τmacro, (1.2.3)

and we should filter Eq. 1.2.1 in time. We define the time-filtered quantity x of any function of time
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x as

x = x ∗mτ , (1.2.4)

where mτ is the kernel of the time filter. mτ is such that filtered quantities are free of microscopic

time variations of characteristic scale τµ. We can introduce the time-deviation x′ as

x = x+ x′. (1.2.5)

The time-filtering of Eq. 1.2.1 yields

∂〈vβ〉β

∂t
+ 〈vβ〉β · ∇〈vβ〉β

= − 1

ρβ
∇〈pβ〉β

+ ∇ · µβ

ρβ

[

∇〈vβ〉β
+T ∇〈vβ〉β

]

+
1

ρβ
Dβσ
︸︷︷︸

fluid-solid force

−∇ ·




 〈ṽβ ṽβ〉β

︸ ︷︷ ︸

subgrid scale stresses

+ 〈vβ〉β ′〈vβ〉β ′

︸ ︷︷ ︸

Reynolds stresses




 ,

∇ · 〈vβ〉β
= 0.

(1.2.6)

Due to the non-linear advective term, an additional term, that we call here the Reynolds stresses,

appears in the time filtered VANS. Fig. 1.7 shows that for a rigid medium the values of 〈vβ〉β ′
remain

small against the values of 〈vβ〉β
. In the context of deformable porous media however, we will see that

there might be a fluid-structure coupling between neighbouring fibres and the flow at the pore-scale,

that lead to rather large values of 〈vβ〉β ′
. Proposing a proper closure for the Reynolds shear stresses is

a rather difficult task, as it depends on the flow conditions the parametrization is really not obvious.

In practice we shall assume that Reynolds shear stresses are rather negligible against the fluid-solid

force.

The stem-scale flow structures are involved in the macroscopic momentum transport mainly via

energy dissipation (this is hidden in the fluid-solid force), and the subgrid-scale stresses. A direct

approach is implemented in [34] to determine the nature of stem-scale turbulence in a homogeneous

porous medium. When the flow is macroscopically homogeneous, it is suggested in [34] that stem-scale

turbulent structures are localized, i.e. restricted to the pore scale. This is an important information,

as when we try to evaluate the filtration law through a porous medium, we need to know how large

the domain should be in order to capture fairly well the dissipative structures. When the flow is

macroscopically heterogeneous, stem-scale turbulence plays a role in the transport of momentum via the

subgrid-scale stresses. At the fluid-porous medium interface for example, the large values in gradient

of average velocity 〈vβ〉β
induce large transfers due to these subgrid-scale stresses. An attempt to

clarify their impact is proposed in this thesis.

The determination of τµ is not straightforward. As can be seen on Fig. 1.10 that illustrates the
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〈uβ〉β

t∗

Figure 1.10: Flow through REVs of different sizes (4×4, 8×8) shows the sensitivity of the pressure drop
to the size of the REV and to initial conditions. The ”ZIC” acronym stands for Zero Initial Conditions,
the ”NZIC” acronym stands for Non Zero Initial Conditions, which corresponds to simulations started
from a destabilized initial state. This indicates with which type of initial conditions the numerical
simulations were started. Reg characterizes the source term set in the Navier-Stokes equations. The
resulting average velocity is in arbitrary units.

results obtained from the numerical simulation of the Navier-Stokes equations, the frequencies involved

in- , and the nature of-, the statistically steady regime for the rigid case depends on the size of the

physical domain (made of several unit cells of size Lu) considered for the simulation (which we call

REV for ”Representative Elementary Volume”), and on initial conditions for the vβ- and pβ- fields.

This can lead to some errors, and one should be aware about the fact that the statistically steady

regime is not uniquely defined by the value of the constant pressure gradient g characterized by Reg

Reg =
L

√
Lg

νβ
, (1.2.7)

in this experiment. In addition to τµ the small time scale remaining in statistically steady regimes,

there is a second time scale that appears on Fig 1.7, related to transient regimes. Let us call τp this

time-scale, that characterizes the amount of time before the flow relaxes to the permanent regime in

the elementary cell. τp is mostly due to the fluid inertia, i.e. the time it takes for the fluid to accelerate

to a different regime. In our model we implicitly assume that

τp ≪ τmacro. (1.2.8)

If this assumption is not satisfied, these transient regimes may have an impact on the fluid-solid cou-
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pling occurring in a honami. We could think of incorporating τp as a phase lag in a more sophisticated

model [35], in order to take its impact into account in the coupling between the flow and the canopy.

1.3 Toward a porous medium approach

We are willing to develop a numerical model of the large scales in canopy flows. Prior to modeling a

complex physical system, experiments and observations are essential as

• observation is at the starting point of any scientific approach, and

• validation of numerical simulations requires field data, and

• numerical simulations are subject to severe limitations.

The size of the mesh and the computational time often drastically limit the capability of simulations,

even if a macroscopic model is used. Because of this, the study of a physical process can not be strictly

numerical, and experiments are useful to reduce the space of parameters to explore previous to running

a numerical campaign.

1.3.1 From field observation to the modeling of canopy flows

Real case observations of canopy flows are complementary to numerical simulations. Studies to predict

near-surface wind field over canopies are available in the literature [36, 7, 6, 37, 38]. Although valuable,

obtaining a detailed measurement of plant displacements and flow structures occurring in canopy flows

is a challenge. The method of measurements should be non-intrusive [36], both from a flow point

of view, and from a structure point of view. Indeed a sensor standing in a canopy is an undesired

obstacle, and a light fibre can not wear a too heavy sensor as it would modify its natural frequency.

Therefore implementation of distant measurements techniques, such as ground-based cameras or aerial

LiDAR scanning is often required. Moreover the area to measure is often wide (from several hundreds

of meters to a few kilometres). In [37, 38] such measurement techniques are reported to be able to

provide a fine recording of the frontal area per bed area within the canopy. These field data allow to

reproduce by numerical simulations the flow structures occurring over forested area. These turbulent

structures are reported to be sensitive to heterogeneities occurring in complex arrangements of plant

of trees.

Field observations have led to the development of the mixing layer analogy [7], as well as linear

stability analysis to explain the origins of the honami phenomenon [1, 29, 39]. Numerical simulations

are a powerful tool in addition to analytical tools and experiments. Indeed a numerical approach to

canopy flows allows to numerically implement a model and to challenge it. This helps understand the
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underlying physics, by making simplifying assumptions, building a model and testing it to reproduce a

real case. Due to the aforementioned difficulties, field data of a simple validation case are rather rare

and there is a lack of validation cases for numerical simulations. Nevertheless once the numerical model

is validated, it can be used to perform a parametric study in an optimization process. For example,

heuristic models were proposed in [1, 2] and compared to field-observations. The authors were capable

to reproduce the main features of the field data. Attempts to numerically simulate canopy flows in

a more direct way have been made, with a much finer description of the canopies’ mechanics [3, 4].

Our approach lies in-between these two approaches. The solid- phase mechanics is described but the

description remains rough so as to reduce the number of degrees of freedom and keep the simulations

tractable.

Many difficult points remain un-resolved in the numerical modeling of canopy flows. For example

the need for scale separation between the microscopic- and the macroscopic- level is an important

issue in the development of macroscopic equations, as it leads to neglecting some terms. The fluid-

solid interface lacks a clear understanding. This region between the free flow and the porous domain

is hard to apprehend, as the scale separation is not relevant, and a specific approach is required.

The mathematical development of macroscopic transport equations (up-scaling) in general requires

care and a detailed derivation to understand each step of the development, depending on the case

study that we deal with. In addition, turbulent flows through porous media remains a challenging

problem. For example, the interaction between the small-scale solid deformation with the small-scale

turbulence affects the level of viscous dissipation. This issue requires direct numerical simulations and

experiments to be more deeply understood. Without taking the solid deformation into account, there

are only a few data available to evaluate the fluid-solid force acting on the flow in the porous medium

depending on the flow orientation, porosity and Reynolds number. This way the coupling between the

flow and the deformable porous medium can be more improved. Coupling the flow with the medium

deformation requires transport equations for the solid, and volume averaging the solid phase does not

always leads to Eulerian equations (non-local aspect). Fortunately the volume averaging technique

provides a framework to tackle the aforementioned issues.

1.3.2 Outline of the thesis

The method of volume averaging [40] allows to develop transport equations for macroscopic equations,

and to highlight every hurdle that arises. It is based on a clear separation of scales into large and

small scales, and the connection and interaction between the two appear explicitly. In practice, the

development of the macroscopic numerical model has led us to develop distinct codes, namely

• a microscopic code, designed to simulate in detail the flow at the small-scale, and provide data
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to model the effect of small scales on large scales in the macroscopic model, and

• a structure code, dedicated to the mechanics of the σ− phase, and

• a macroscopic code, that simulates the large scales of the process and incorporates every feature

of the finished macroscopic model.

Each code needs to be competitive in its own domain, i.e. the efficiency in terms of CPU time spent

on a simulation should not be neglected. This has a huge impact on the research project it is related

to, and it is crucial to find compromise between the time spent parallelizing and the time spent to run

the numerical simulations. The variety of codes and complexity of finding a compromise, as well as

the required level of programming skills to obtain a manageable code, illustrates how rich a numerical

approach to canopy flows is.

The outline of this thesis is as follows. In Section 2, we derive step-by-step the macroscopic

equations (VANS) of the flow that will be implemented in the code. We do so by taking the volume-

average of the canopy, under a few assumptions adapted to our case. We recall these assumptions

here.

• At the scale of the averaging volume (AV), the porous microstructure is disordered in the two

directions orthogonal to the fibres, and invariant in the direction of the fibres (see Fig. 2.2 in

Section 2).

• Away from its boundaries, the porous medium can be treated as homogeneous. A specific treat-

ment is then proposed for regions that sustains heterogeneities, such as the free-flow/porous

medium interface.

• The porosity ǫβ (defined by Eq. 2.1.11) of the porous medium is high [2], i.e. 1 − ǫβ ≪ 1.

• At the scale of the AV, the bundle of fibres is an ensemble of N rigid bodies. Basically the AV

is small enough so that it does not see the curvature of the fibre.

• Finally, the macroscopic solid length- scale Lσ is much larger than the macroscopic fluid scale L

(see Section 2.2.2.2).

The validity and the reason of these assumptions appear clearly in the development, which leads to a

macroscopic transport equation for the fluid (Eq. 1.2.1). The interaction between the small-scale and

the large-scale is then highlighted. A discussion on subgrid-scale stresses (SGS) is provided. An order of

magnitude evaluation is proposed and shows that the subgrid-scale stresses should be negligible against

the fluid-solid force and the macroscopic momentum advection term in the homogeneous porous region.

In the homogeneous free-flow region the situation is different and the effect of the SGS on the large
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free-flow
〈vβ〉 , 〈pβ〉

vσ, θ

rigid impermeable wall

Figure 1.11: Schematic view of the hybrid model. The fluid phase is described in a Eulerian frame
with the 〈vβ〉- and 〈pβ〉- fields, whereas we adopt a Lagrangian description for the solid phase, where
only a few fibres’ mechanics are computed, which then spread into the whole porous medium to have
a complete description of the solid kinematics.

scale should be modeled. An approach to model the free-flow/porous medium interface is proposed

(Fig. 2.4) to clarify the numerous issues that arise in this particular region (e.g. , [41]). A theoretical

justification of the use of a continuous term to model the free-flow/porous medium interface is given,

with again constitutive assumptions clearly stated.

In Section 3, we deal with the mechanics of the σ− phase. The σ− phase is composed of a large

number of fibres, that are not rigid and might be subject to large elastic deformations and displacements

under the hydrodynamic load. Our model describes the interaction of this fibrous porous medium with

the surrounding fluid flow. The level of description is at a length-scale Lσ much larger than the space

INTERFACE

homogeneous porous- region

〈vβ〉β

homogeneous fluid- region VANS (no solid- phase)

VANS (+deformable solid- phase)

jump conditions? continuous term?

Figure 1.12: Schematic view of the hybrid model. The velocity profile is not realistic. The system
is essentially made of two homogeneous regions. Here we emphasize the issue at the fluid/porous
interface. The interface region in-between the two homogeneous regions needs a special treatment.
This interface is at the core of mass- and momentum- transfers between the free-flow and the porous
medium.
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between two fibres. We are more interested in describing in details the fluid- than the solid- phase. This

basic description of the solid-phase that we propose should fairly describe the interaction with the flow.

Indeed according to existing observations of canopy flows, the large-scale phenomenon is of the size of

the canopy. The non-local nature of the solid phase leads us to consider a hybrid model (Fig. 1.11).

This consists in mapping the canopy with Nf fibres and to resolve these Nf fibres only, in order to

reduce the number of degrees of freedom of the canopy. We propose an unsteady solver, that integrates

the inclination of the beam over time under an arbitrary, unsteady loading (i.e. the hydrodynamic

load). The mechanics of the Nf fibres only is resolved, and we extend the obtained kinematics to

the whole medium by linear interpolation. This method allows the user to increase arbitrarily the

level of description of the σ− phase, in order to assess the dependence of results on Nf the number

of fibres that we resolve. The structure solver is integrated in a fluid solver of Open∇FOAM R©. A

reconstruction of the porosity field, depending on the position and inclination of the fibres, allows for

the coupling between the solid- phase and the fluid- flow. The issue of parallelization is discussed.

Open∇FOAM R© appears to be a good solution for distributing the tasks related to the simulation of

canopy flows, along with the pStream library. The implementation of the hybrid model is tested

with an illustrative case that involves an unsteady flow interacting with an arrangement of deformable

elastic fibres. An experiment is then numerically reproduced in order to have a quantitative comparison

between our numerical approach and a real case experiment. The hybrid model seems a promising tool

for the purpose of studying the vertical transport in canopy flows, and the effect of different parameters

of the canopy flow.

The two last parts deal with the study of the microscopic scale. The objective is to get insight into

the micro-scale, in order to model its impact on the macroscale (the resolved scale).

Section 4 addresses the relation between the macroscopic pressure gradient and the flow rate

through the porous medium. In this section, we basically study the first deviation from Darcy’s

law, when inertia effects become sizeable. We try to define a Reynolds number, ReC , such that the

inertial deviation occurs when ReC ∼ 1 for any microstructure. The difficulty in doing so is to reduce

the multiple length scales characterizing the geometry of the porous structure to a single length scale,

ℓ. We analyse the problem using the method of volume averaging and identify a length scale in the

form ℓ = Cλ

√
Kλ/ǫβ, with Cλ a parameter that indicates the sensitivity of the microstructure to inertia.

Cλ is computed from a creeping flow simulation in the porous medium and ReC can be used to predict

the transition to a non-Darcian regime more accurately than by using Reynolds numbers based on

alternative length scales. The theory is validated numerically with data from flow simulations for a

variety of microstructures, ranging from simple 2D geometries to more realistic samples of sandrock.

A good agreement is found. A framework is proposed to study the deviation in terms of direction
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and magnitude. Theoretical results about the characteristic of the deviation from Darcy’s law are

obtained, and some results that were obtained with a different method are recovered.

The final section, Section 5, proposes to explore the unsteady flow regime in a deformable-elastic

porous medium. We use an Immersed Boundary Method (IBM) with a simplified treatment of solid-

solid collisions and a diffuse fluid-solid interface to simulate unsteady flow regimes in a model porous

medium. We show on this model porous medium that the deformation of elastic pores has a significant

impact on the fluid-solid force in Eq. 1.2.1 (or the macroscopic pressure gradient as this is equivalent).

Details on the code development are given, leading to the questioning of the choice of immersed

boundary method, and we conduct a comparison of the diffuse interface method against a sharp

interface method. The main difference between the two method relies in the way mass conservation is

ensured for the fluid- phase for a flow with moving boundaries. Results show that the two methods

give the equivalent same results, and the small differences are interpreted and related to the boundary

condition at the solid surface. The conclusion of this section is that the effect of pore-scale displacement

of the solid phase has a considerable effect on viscous losses through the porous medium and should

be accounted for in the modeling of canopy flows. A detailed discussion shows that different physical

phenomena are involved, and we observe a large variety of regimes related to the pore-scale fluid-

structure interaction. More effort should be spent to develop a proper code to study this aspect of the

microscopic scale. Indeed the results are only preliminaries and show a large impact of the pore-scale

deformation on the fluid-solid force. This issue should be studied more deeply, which involves larger

simulations, more cases, and at relatively high Reynolds number. This requires an efficient parallelized

code, and a large part of this work was about programming physical solvers.
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Part II

The macroscopic model
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Chapter 2

Macroscopic equations for the fluid

phase

As illustrated in Section 1.1.1, canopy flows are multiscale processes characterized by a broad range

of scales, yielding a large number of degrees of freedom. In order to render numerical simulations of

such processes feasible, one requires an up-scaling process that models the small-scales and resolves

the large-scales (the macroscopic scale). In this work, we use the volume averaging method to derive

a set of equations that describe our multiscale process from a macroscopic point of view. The volume

averaging method is a well known approach to the development of a macroscopic model. We refer

the interested reader to [40, 42, 43] for fundamental theoretical developments in the context of porous

media.

2.1 Toward a local macroscopic model

We introduce the theoretical basis upon which the macroscopic model that we propose for canopy

flows is based. We apply the volume averaging technique to canopy flows, after highlighting a set of

assumptions that ensure the macroscopic model is valid.

2.1.1 Principle of up-scaling

First of all, we make the distinction between

• the actual volume averaged fields (which we call the volume-average fields), directly computed

by volume averaging the microscopic fields, and

• the macroscopic fields obtained by resolving the macroscopic model, here the Volume Averaged

39
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Navier-Stokes Equations (VANS).

The volume-average- and macroscopic- fields are both large-scale fields. The principle of up-scaling is

to build a macroscopic model that produces macroscopic fields that match the volume-average fields.

In a Eulerian frame, mass conservation and momentum transport for a continuum read

∂(ρv)

∂t
+ ∇ · (ρvv) = ∇ · τ + s,

∂ρ

∂t
+ ∇ · (ρv) = 0,

(2.1.1)

with ρ the mass density, v the velocity vector, τ the stress tensor and s an external source term. Inside

the fluid phase (β- phase, see Fig 2.1), these momentum- and mass- conservation laws translate into

the Navier-Stokes equations, which can be written as

∂vβ

∂t
+ ∇ · (vβvβ) =

1

ρβ
∇ · τβ + sβ ,

∇ · vβ = 0,

(2.1.2)

as the flow is incompressible, and we have

τβ = −Ipβ + µβ

[
∇vβ +T (∇vβ)

]
, (2.1.3)

as the fluid is assumed to be Newtonian. sβ represents a uniform source term in the Navier-Stokes

equations (e.g. , a gravity force). We impose no-slip conditions and continuity of the normal stress on

the fluid-solid interface Aβσ, which translates into

vβ = vσ,

nβσ · τβ = nβσ · τσ at Aβσ.

(2.1.4)

vσ and τσ are the solutions of the boundary value problem driving the dynamics of the solid phase,

assumed known here for the sake of simplicity.

2.1.2 Volume averaging

Let ψβ be a field inside the β- phase. The method of volume averaging starts with the definition of an

averaging volume. Let us define the averaging volume (AV) as the sphere V whose centroid is located

at x (can be anywhere in R3) and of radius r0. For the purpose of up-scaling, r0 should be large enough

to eliminate pore scale variations (characterized by the lβ- length scale), but small enough to preserve

the macroscopic length scale (L, corresponding to the ∇ 〈pβ〉β
- and 〈vβ〉β

- fields). Indeed the interest

of the macroscopic model is to describe phenomena of characteristic length-scale L. This length-scale
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σ- phase

β- phase

Aβσ

2r0

x

yβ

Figure 2.1: Averaging volume (AV) operating on a porous medium. Here x is the center of the AV. yβ

is the position of any point within the β- phase relative to x. Aβσ refers to the fluid-solid interface.
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(a) 3D view, only one fibre represented (b) side view, invariant geometry(c) top view, disordered geometry

Figure 2.2

condition is summarized as

lβ ≪ r0 ≪ L. (2.1.5)

Condition 2.1.5 is the length scale separation assumption (LSA), an essential condition in every up-

scaling processes.

A general form of the volume average of ψβ is

〈ψβ〉 |x =

∫

R3

γβ(y)ψβ(y)m (y − x) dV (y), (2.1.6)

with γβ the phase indicator and m the kernel of the volume averaging operator. As pinpointed in

[44, 45], the kernel m should be chosen so that

∇
〈
yβ

〉
≪ 1, (2.1.7)

where the definition of yβ is illustrated in Fig 2.1. The choice of kernel m depends on the case that

we wish to volume average.

In order to choose a proper kernel m and to allow further developments, we make a few assumptions

on the porous medium that we presently volume average.

Assumption 1 At the scale of the averaging volume (AV), our porous microstructure is disordered in

the two directions orthogonal to the fibres, and invariant in the direction of the fibres (Fig. 2.2).

Assumption 2 The porous medium can be treated as homogeneous, i.e.

1

ǫβ
∇ǫβ 〈ψβ〉β ≪ ∇ 〈ψβ〉β

. (2.1.8)
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As we shall see later, these assumptions play a significant role in the development of the macroscopic

equations. In particular, the rectangular function is a good choice for the kernel m in Eq. 2.1.6, and

this leads us to define the superficial average of ψβ as

〈ψβ〉 |x =
1

V

∫

Vβ

ψβ dV. (2.1.9)

The corresponding intrinsic average is

〈ψβ〉β |x =
1

Vβ

∫

Vβ

ψβ dV, (2.1.10)

and the corresponding porosity (or void fraction) is

ǫβ =
Vβ

V
. (2.1.11)

In this development, we shall assume that

Assumption 3 The porosity of the porous medium is high, i.e. 1 − ǫβ ≪ 1.

We have the simple relation between the intrinsic- and superficial- averages

〈ψβ〉 = ǫβ 〈ψβ〉β
. (2.1.12)

The reason why the rectangular function is a good choice for the kernel m in Eq. 2.1.6 is that it makes

sure that condition 2.1.7 is satisfied. Another interesting feature would be that

〈
yβ

〉
= 0. (2.1.13)

Indeed with a Taylor expansion we can show that

〈

〈ψβ〉β
〉

|x =
〈

〈ψβ〉β |x + yβ ·
(

∇ 〈ψβ〉β
)

|x
〉

|x +O
(r0

L

)2

,

= ǫβ 〈ψβ〉β |x +
〈
yβ

〉
|x ·
(

∇ 〈ψβ〉β
)

|x +O
(r0

L

)2

,

= 〈ψβ〉 |x +
〈
yβ

〉
|x ·
(

∇ 〈ψβ〉β
)

|x +O
(r0

L

)2

,

(2.1.14)

so that if condition 2.1.13 is verified, then Eq. 2.1.14 is second order in
r0

L
. As will be seen in

Section 2.2.3, the order of Eq. 2.1.14 drives the convergence rate of the macroscopic model to the

volume-average field as
r0

L
→ 0. This plays a significant role in reducing area where the macroscopic

fields does not match the volume-average fields. This is of particular interest at the free-flow/porous
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medium interface, and this clearly appears in Section 2.4.

2.1.3 Useful relations

We introduce the connection between the space- and time- derivative of the volume average of ψβ and

the volume average of the space- and time- derivative of ψβ . The proofs of these connections can be

found in [40]. For simplicity, we assume that the AV is of constant size, although it could be interesting

to have a variable size AV that adapts to the space- heterogeneities of the process.

Theorem 1 Spatial averaging theorem.

〈∇ψβ〉 = ∇ 〈ψβ〉 +
1

V

∫

Aβσ

nβσψβ dA. (2.1.15)

We obtain from Theorem 1 that

1

Vβ

∫

Aβσ

nβσ dA = − 1

ǫβ
∇ǫβ . (2.1.16)

In particular Assumption 1 yields

Corollary 1

1

Vβ

∫

Aβσ

nβσ 〈ψβ〉β
dA = − 1

ǫβ
∇ǫβ 〈ψβ〉β

+O
(r0

L

)2

, (2.1.17)

(see [44] for a detailed explanation). A direct consequence is that in homogeneous porous regions, we

have

Corollary 2

1

Vβ

∫

Aβσ

nβσ 〈ψβ〉β
dA ≪ ∇ 〈ψβ〉β

. (2.1.18)

Theorem 2 General transport theorem (see proof in [40]).

∂

∂t

∫

Vβ

ψβ dV =

∫

Vβ

∂ψβ

∂t
dV +

∫

Aβσ

ψβ (nβσ · w) dA, (2.1.19)

where w stands for the local velocity of the Aβσ surface.

For the purpose of obtaining macroscopic equations that will be used in the hybrid model, we

volume average Eqs. 2.1.2 step by step and discuss different issues that arise during the development.
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2.2 Macroscopic conservation equations

We derive large-scale transport equations by volume averaging the pore-scale equations for the fluid

(β- phase).

2.2.1 Mass conservation

We recall the continuity equation for the β- phase

∇ · vβ = 0. (2.2.1)

Theorem 1 provides

〈∇ · vβ〉 = ∇ · 〈vβ〉 +
1

V

∫

Aβσ

nβσ · vβ dA. (2.2.2)

Applying Theorem 2 to the phase indicator γβ gives

∂

∂t

∫

Vβ(t)

γβ dV =

∫

Vβ(t)

∂γβ

∂t
dV +

∫

Aβσ(t)

γβnβσ · w dA, (2.2.3)

hence

∂ǫβ
∂t

=
1

V

∫

Aβσ

nβσ · w dA. (2.2.4)

As w is the velocity of the surface Aβσ, boundary condition 2.1.4 implies that the surface integrals in

Eq. 2.2.2 and 2.2.4 are the same, and

〈∇ · vβ〉 = ∇ · 〈vβ〉 +
∂ǫβ
∂t

. (2.2.5)

Therefore the superficial average of the continuity equation reads

∇ · 〈vβ〉 +
∂ǫβ
∂t

= 0. (2.2.6)

It can equivalently be written

∇ · 〈vβ〉β
= − 1

ǫβ
∇ǫβ · 〈vβ〉β − 1

ǫβ

∂ǫβ
∂t

, (2.2.7)

by referring to identity 2.1.12. As shown in [15], this equation can be used in a projection step to

ensure mass conservation in a porous system where porosity variations have a significant impact on

the flow. In the development of our hybrid model however, we consider that 1 − ǫβ ≪ 1. Moreover the

transport process is dominated by the drag force applied by the porous medium to the fluid. Hence
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the intrinsic average of the velocity is assumed divergence-free

∇ · 〈vβ〉β
= 0, (2.2.8)

i.e. porosity variations in space and time have only a low impact on the flow by comparison to the

fluid-solid force.

2.2.2 Macroscopic momentum transport

Let LHS and RHS be respectively the left and right hand sides of the momentum transport part of

Eq. 2.1.2

LHS =
∂vβ

∂t
+ ∇ · (vβvβ), (2.2.9)

RHS = − 1

ρβ
∇pβ +

µβ

ρβ
∇ ·
[
∇vβ +T (∇vβ)

]
+ sβ . (2.2.10)

2.2.2.1 Partial average of the momentum transport equations

Using Theorem 1

〈∇ · (vβvβ)〉 = ∇ · 〈vβvβ〉 +
1

V

∫

Aβσ

nβσ · (vβvβ) dA. (2.2.11)

Using Theorem 2
〈
∂vβ

∂t

〉

=
∂ 〈vβ〉
∂t

− 1

V

∫

Aβσ(t)

(nβσ · w)vβ dA. (2.2.12)

Due to the boundary condition on Aβσ surface integrals in Eqs. 2.2.11 and 2.2.12 cancel each other

and the superficial average of LHS is

〈LHS〉 =
∂ 〈vβ〉
∂t

+ ∇ · 〈vβvβ〉 . (2.2.13)

Theorem 1 yields

− 1

ρβ
〈∇pβ〉 = − 1

ρβ
∇ 〈pβ〉 − 1

ρβV

∫

Aβσ

nβσpβ dA, (2.2.14)

and

〈∇ · µβ∇vβ〉 = ∇ · 〈µβ∇vβ〉 +
1

V

∫

Aβσ

nβσ · µβ∇vβ dA. (2.2.15)

This yields the superficial average of the Navier-Stokes equations

∂ 〈vβ〉
∂t

+ ∇ · 〈vβvβ〉 = − 1

ρβ
∇ 〈pβ〉 +

1

ρβ
∇ ·
〈
µβ

[
∇vβ +T (∇vβ)

]〉
+ ǫβsβ

+
1

ρβ
ǫβDβσ,

∇ · 〈vβ〉 = − ∂ǫβ
∂t

,

(2.2.16)



2.2. MACROSCOPIC CONSERVATION EQUATIONS 47

where the fluid-solid force Dβσ

Dβσ = +
1

Vβ

∫

Aβσ

nβσ ·
(
−Ipβ + µβ

[
∇vβ +T (∇vβ)

])
dA, (2.2.17)

is the volume force applied to the fluid by the solid.

At this stage, the macroscopic equations are free of length-scale assumptions, and porosity gradients

do not intervene in it. This features are important to derive a macroscopic approach to the free-

flow/porous medium interface, as explained in Section 2.4.3.

2.2.2.2 Intrinsic average of the momentum transport equations

As we wish to manipulate intrinsic averages in the hybrid model, we use identity 2.1.12 to obtain an

expression in terms of intrinsic average quantities 〈vβ〉β
and 〈pβ〉β

ρβ 〈RHS〉β
= −

(
1

ǫβ
∇ǫβ + ∇

)

〈pβ〉β

+

(
1

ǫβ
∇ǫβ + ∇

)

·
〈
µβ

[
∇vβ +T (∇vβ)

]〉β
+ sβ

+ Dβσ.

(2.2.18)

The pressure part is already in a macroscopic form. Only the viscous term needs to be further developed

in order to obtain a macroscopic form. As we consider µβ = cste, we have

∇ ·
〈
µβ

[
∇vβ +T (∇vβ)

]〉β
= ∇ ·

(

µβ

〈
∇vβ +T (∇vβ)

〉β
)

= µβ∇ ·
〈
∇vβ +T (∇vβ)

〉β
.

(2.2.19)

This step is not as obvious as it seems, since we could imagine modeling directly the average of the

viscous stresses, i.e. keep the
〈
µβ

[
∇vβ +T (∇vβ)

]〉β
term as such. In [46] for example, Soulaine

proposed to use a space varying viscosity to model turbulence effects in a porous medium. Here, we

choose to continue the development further because this allows to obtain macroscopic equations that

resemble very much the Navier-Stokes equations. Using Theorem 1 and identity 2.1.12 we can rewrite

the viscous term as

〈∇vβ〉β
=

(
1

ǫβ
∇ǫβ + ∇

)

〈vβ〉β
+

1

Vβ

∫

Aβσ

nβσvβ dA, (2.2.20)

and use the no-slip condition at Aβσ to obtain

〈∇vβ〉β
=

(
1

ǫβ
∇ǫβ + ∇

)

〈vβ〉β
+

1

Vβ

∫

Aβσ

nβσvσ dA. (2.2.21)
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We apply the Green-Ostrogradski theorem and obtain

∫

Aβσ

nβσvσ dA = −
∫

Vσ

∇vσ dV +

∫

Aσe

nσevσ dA. (2.2.22)

We further assume that the length-scale characteristic for the solid- phase deformation is much larger

than the size of the AV, i.e. Lσ ≫ r0.

Assumption 4 At the scale of the AV, the bundle of fibres is an ensemble of N rigid bodies (Lσ ≫ r0).

Let xGi and vGi be the position and velocity of the center of mass of the ith rigid body. Due to

Assumption 4 we have an expression for the solid velocity vσ within this rigid body as

vσ|xGi+yσ
= (vGi + Ωi ∧ yσ) , (2.2.23)

where Ωi is the rotation vector- of the ith body. Note that

∇ (vGi + Ωi ∧ yσ) =









0 +ωi
z −ωi

y

−ωi
z 0 +ωi

x

+ωi
y −ωi

x 0









, where Ωi =









ωi
x

ωi
y

ωi
z









, (2.2.24)

i.e.

∫

Vσ

∇vσ dV is an antisymmetric tensor. By definition of an antisymmetric tensor, this integral

term vanishes in the expression for 〈∇vβ〉β
+T 〈∇vβ〉β

. In addition, we can rewrite

1

V

∫

Aσe

nσevσ dA = ∇ (ǫσ 〈vσ〉σ
) . (2.2.25)

To handle this term in this development, we assume that

Assumption 5 The macroscopic solid scale Lσ is much larger than the macroscopic fluid scale L, i.e.

∇ (ǫσ 〈vσ〉σ
) ≪ ∇ 〈vβ〉 . (2.2.26)

The validity of the later assumptions is not obvious and should be verified in practice. However it makes

sense if we understand that in a generic canopy flow, the solid- phase gently waves in a coordinated

way. Hence the fluid- phase is subject to strong shear layers in comparison to the solid phase. This

allows to state that the macroscopic viscous term strictly reads

〈∇vβ〉β
+T 〈∇vβ〉β

=

(
1

ǫβ
∇ǫβ + ∇

)

〈vβ〉β
+T

[(
1

ǫβ
∇ǫβ + ∇

)

〈vβ〉β

]

+O

(
L

Lσ

)

. (2.2.27)
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2.2.3 Spatial deviations

In order to separate the effects of the small and large scales, we decompose the ψβ-field as

ψβ = ψ̃β + 〈ψβ〉β
, (2.2.28)

where ψ̃β is the traditional spatial deviation that we find for example in [47].

Applying decomposition 2.2.28 to the volume force Dβσ yields

Dβσ = +
1

Vβ

∫

Aβσ

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA

+
1

Vβ

∫

Aβσ

nβσ ·
(

−I 〈pβ〉β
+ µβ

[

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
)])

dA,

(2.2.29)

and we use Corollary 1 to get

Dβσ =
1

Vβ

∫

Aβσ

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA

− 1

ǫβ
∇ǫβ ·

(

−I 〈pβ〉β
+ µβ

[

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
)])

+O
(r0

L

)2

.

(2.2.30)

We develop the inertial term as

〈vβvβ〉 =
〈

〈vβ〉β 〈vβ〉β
〉

+
〈

〈vβ〉β
ṽβ

〉

+
〈

ṽβ 〈vβ〉β
〉

+ 〈ṽβ ṽβ〉 . (2.2.31)

Due to condition 2.1.13, the convective term reduces to

∇ · 〈vβvβ〉 = ∇ ·
(

ǫβ 〈vβ〉β 〈vβ〉β
)

+ ∇ · 〈ṽβ ṽβ〉 +O
(r0

L

)2

. (2.2.32)

Let us rewrite the first term on the right hand side of Eq. 2.2.32

∇ ·
(

ǫβ 〈vβ〉β 〈vβ〉β
)

= ∇ ·
(

〈vβ〉 〈vβ〉β
)

= 〈vβ〉β
(∇ · 〈vβ〉) + 〈vβ〉 ·

(

∇ 〈vβ〉β
)

.

(2.2.33)

Now we develop the first term on the left hand side of Eq. 2.2.16

∂ 〈vβ〉
∂t

=
∂

∂t

(

ǫβ 〈vβ〉β
)

=
∂ǫβ
∂t

〈vβ〉β
+ ǫβ

∂ 〈vβ〉β

∂t
.

(2.2.34)
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With the help of Eq. 2.2.6, the sum of Eq. 2.2.33 and 2.2.34 gives

∂ 〈vβ〉
∂t

+ ∇ ·
(

ǫβ 〈vβ〉β 〈vβ〉β
)

= ǫβ
∂ 〈vβ〉β

∂t
+ 〈vβ〉 ·

(

∇ 〈vβ〉β
)

. (2.2.35)

With Eq. 2.2.32, we obtain that

〈LHS〉β
=
∂ 〈vβ〉β

∂t
+ 〈vβ〉β · ∇ 〈vβ〉β

+
1

ǫβ
∇ · 〈ṽβ ṽβ〉 +O

(r0

L

)2

. (2.2.36)

Note that the order of the remaining term depends on the order of Eq. 2.1.14. This shows that choosing

the right kernel m directly drives the order at which the macroscopic fields converge to the volume-

average fields as
r0

L
→ 0. The better the order of the macroscopic equations, the faster the macroscopic

fields match the volume-average fields as
r0

L
→ 0, and this is helpful near the free-flow/porous medium

interface (as pinpointed in Section 2.4).

We now consider three main regions

• the homogeneous porous medium,

• the free-flow,

• the interface between the two.

2.3 Homogeneous regions

In the homogeneous porous region, Corollary 2 induces that

∂ 〈vβ〉β

∂t
+ 〈vβ〉β · ∇ 〈vβ〉β

= − 1

ρβ
∇ 〈pβ〉β

+ ∇ ·
(
µβ

ρβ

[

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
)]

− 〈ṽβ ṽβ〉β

)

+
1

ρβ

1

Vβ

∫

Aβσ

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA+ sβ ,

∇ · 〈vβ〉β
= 0.

(2.3.1)

2.3.1 Fluid-solid force in the homogeneous porous medium

2.3.1.1 Representative Elementary Volume

We use a Representative Elementary Volume (REV) to evaluate the fluid-solid force. Here we empha-

size the fact that the role of the REV in general is to evaluate macroscopic effective properties of the

porous medium.

• The REV can be either a sample of the real porous medium, or a model porous medium that

mimics the real porous medium.
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• The REV does not have to be as large as the AV. Indeed the AV is constrained by the LSA

assumption, whereas the REV is not.

• The REV should be able to give information on the effective properties of the porous medium at

the macroscopic scale. For this reason in practice the REV is often chosen cubic, while the AV

is spherical for the ease of theoretical developments.

Hence we distinguish between the REV and the AV. They are two different volumes with different

objectives.

2.3.1.2 Effect of the fibres confinement

It would be great if the fluid-solid force could be obtained from the sum of hydrodynamic forces applied

to each fibre as if it were isolated. To evaluate this approach, we consider an array of spheres in Stokes

regime. The Kozeny-Carman permeability was determined by assuming Poiseuille flow in a bundle of

capillaries and introducing a correction coefficient to fit experimental data

KKC = 180
µβ

D2

(1 − ǫβ)
2

ǫ3β
, (2.3.2)

where D is the particle diameter. The Kozeny-Carman permeability is widely used and can be con-

sidered as a reference permeability.

The Stokes drag of an isolated sphere of mass mS is often written as

fStokes = γms 〈vβ〉β
, (2.3.3)

where γ is a constant that depends on the fluid viscosity and the sphere diameter

γ = 3πµβD. (2.3.4)

Let us assume that the fluid-solid force Dβσ in our array of spheres is due to the contribution of the

Stokes drag of the Nx spheres inside the REV, as if they were isolated. This would yield

1

ρβ
Dβσ = γ

msNx

ρβVβ
〈vβ〉β

. (2.3.5)

We rewrite

msNx

ρβVβ
=
ρσǫσ
ρβǫβ

, (2.3.6)
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where ǫσ is the solid volume-fraction (by definition ǫβ + ǫσ = 1). We obtain a permeability KS

KS = µβ
18

D2

1 − ǫβ
ǫ2β

6= KKC , (2.3.7)

by using the expression of the Stokes drag on an isolated sphere. The difference between this perme-

ability and the Kozeny-Carman permeability shows that the spheres in our array of spheres can not

be considered isolated. This is the effect of confinement. The same applies for a bundle of fibres, and

we must develop a strategy to obtain the fluid-solid force depending on the spacing between fibres.

2.3.1.3 Deviation problem

We must develop a system of equations to determine the fluid-solid force. To do so, we subtract

Eq. 2.3.1 from Eq. 2.1.2 and obtain

∂ṽβ

∂t
+ vβ · ∇ṽβ = − 1

ρβ
∇p̃β +

µβ

ρβ
∇2ṽβ

− 1

ρβ

1

Vβ

∫

Aβσ

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA

∇ · ṽβ = 0,

ṽβ = − 〈vβ〉β
at Aβσ,

(2.3.8)

under the following assumptions

(

ṽβ · ∇ 〈vβ〉β
, ∇ · 〈ṽβ ṽβ〉β

)

≪ vβ · ∇ṽβ , (2.3.9)

which is a consequence of the LSA assumption.

In Section 4, a number of studies of System 2.3.8 are reported, and we propose an investigation

of this system in the steady inertial regime. To cover the range of Reynolds numbers and porosities

encountered in the hybrid model, we combine data from direct numerical simulations, experiments

and heuristic expressions in limit regimes to provide a metamodel of Dβσ. This is developed in

Section 3.3.2.3.

2.3.2 The effect of subgrid-scale stresses at the macrosocpic level

2.3.2.1 Homogeneous porous region

We focus on the term

∇ · 〈ṽβ ṽβ〉β
, (2.3.10)
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in Eq. 2.3.1. The 〈ṽβ ṽβ〉β
term is called the subgrid-scale stresses (SGS) in the Large Eddy Simulation

(LES) community. We adopt the SGS term here. Written as such, the SGS are a bit difficult to

understand. For an easier interpretation, we can rewrite

∇ · 〈ṽβ ṽβ〉β
=

1

Vβ

∫

Aβe

(nβe · ṽβ) ṽβ dA, (2.3.11)

which shows that the divergence of SGS is in fact the net flux of momentum advected inside the AV by

the ṽβ- field, which represents the unresolved flow field. The grid size is determined by the dimension

r0 of the AV in the porous medium, and by dx the computational mesh cell size in the free-flow. Here

we try to give an estimate of the flux of momentum through the AV due to the SGS in turbulent

regime, inspired by the discussion in [28]. Of course this development deserves further justification

and some assumptions might be sometimes questionable. We parametrize the time-average flux of

momentum due to the SGS as

∇ · 〈ṽβ ṽβ〉β ∼ 1

Vβ
q̃∆AV(ṽ), (2.3.12)

where ∆AV(ṽ) characterizes the variation of ṽβ over the AV, and q̃ is the flow rate due to ṽβ through

the AV in the direction orthogonal to the macroscopic flow. With this parametrization, we state that

there are two necessary conditions for the flux of momentum due to the SGS to be non-zero [48]. The

first condition is that an intermittent flow rate in the direction orthogonal to the mean flow occur, i.e.

we lie in the turbulent regime. The second condition is that the macroscopic flow field is sheared. A

sheared macroscopic flow field in turbulent regime may be obtained either by forcing the flow near a

wall or an interface, or from macroscopic eddies (coherent structures) in a homogeneous region. We

can estimate the flux of momentum due to the SGS through the AV in a homogeneous region. We

recall the boundary condition

ṽβ = − 〈vβ〉β
at Aβσ, (2.3.13)

and this suggests that

∆AV(ṽ) ∼ r0∇v, (2.3.14)

where v is the magnitude of 〈vβ〉β
. To estimate q̃, we need to pinpoint the mechanism that generates

a net small-scale flow rate in the direction transverse to the macroscopic flow. For that kind of issue,

direct numerical simulations in porous media is essential. Direct numerical simulations were conducted

in [34, 49] to investigate the nature of turbulence in model porous media made of tube arrays. It suggest

that the largest eddies in a homogeneous porous medium are constrained by lβ the characteristic pore

space, and that the cylinder diameter is the main length-scale of turbulence in a homogeneous tube

array.
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Assumption 6 The net time-average flow rate q̃ through the AV in turbulent regime is due the largest

eddies, that are produced in the wake of each cylinders.

The Strouhal number

St =
fwD

v
, (2.3.15)

compares the main wake frequency fw to the advection time. For a circular cylinder, St lies around

0.2 on a wide range of Reynolds number (until ReD < 10+5, [50]). One could wonder if the value of St

is the same in an array of fibres. This was not deeply investigated here, so we simply assume that the

value of the Strouhal number in our bundle of fibres lies around 0.2, hence that q̃ can be estimated as

q̃ ∼ 0.2Aβev. (2.3.16)

This yields

∇ · 〈ṽβ ṽβ〉β ∼ Aβe

Vβ
r0

︸ ︷︷ ︸

∼1 if 1−ǫβ≪1

0.2v

v

v2

L
. (2.3.17)

Finally we have that

∇ · 〈ṽβ ṽβ〉β ∼ 0.2
v2

L
. (2.3.18)

In quadratic regime, we approximate the fluid-solid force as

1

ρβ
Dβσ ∼ νβ

l2β
vRel, (2.3.19)

where

Rel =
lβv

νβ
. (2.3.20)

We therefore compare

∇ · 〈ṽβ ṽβ〉β

1

ρβ
Dβσ

∼ 0.2
lβ
L
, (2.3.21)

i.e. in the homogeneous porous region where the LSA assumption is valid, the net flux of momentum

through the AV due to the subgrid-scale stresses (SGS) is small compared to the fluid-solid force.

2.3.2.2 Free flow region

In a free flow there is no solid phase (Aβσ = ∅) and we recover the equations used in large-eddy

simulations (LES) equations. The only remaining unclosed terms are the subgrid-scale stresses (SGS),

corresponding to a space filter of cutting length dx (implicit filtering, [51]). In [28], Breugem studies

the influence of wall permeability in turbulent channel flow. He neglects the influence of the SGS in
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the VANS in the free flow region, and the results compare well with direct numerical simulations, but

this is obtained at a large computational cost (due to a fine mesh). To understand this, a development

to estimate the SGS can be conducted. In the free flow region, the net flow rate q̃ is due to the largest

eddies of size dx the size of the cell, and of orbital velocity ṽ. Studies of canopies in nature [6, 9]

emphasize the large scale coherent structures appearing in a canopy flow. This suggests that in the

turbulent regime, the free-flow over a canopy consists of eddies of different sizes, namely

• macroscopic eddies, coherent structures of size L that extract energy from the free flow, and

• pore-scale eddies, of size lβ typically produced in the fibres’ wakes, and

• dissipation eddies, of size δ the Kolmogorov scale, related to the viscous dissipation.

As proposed by Richardson in [52], in steady state the kinetic energy of the flow is transferred from

the largest eddies to the smallest one where it is dissipated. This energy cascade can be illustrated by

L → dx → δ. (2.3.22)

We can rewrite Eq. 2.3.17 in the free-flow region as

∇ · 〈ṽβ ṽβ〉β ∼ ṽ

v

v2

L
. (2.3.23)

To estimate the ratio
ṽ

v
in the free flow, we assume that the eddies know how big they are, and at which

rate energy is supplied to them. Moreover as we are in steady state, the rate of energy supplied to any

eddy is the same, and balances the rate of energy dissipated by the smallest eddies (no accumulation

of energy). Let Rk be the energy dissipated by the fluid viscosity, per unit mass and time. The orbital

velocity of eddies of size L scales as

v ∼ (RkL)
1/3
, (2.3.24)

and the orbital velocity of eddies of size dx scales as

ṽ ∼ (Rkdx)
1/3
. (2.3.25)

This allows to estimate the ratio

ṽ

v
∼
(
dx

L

)1/3

. (2.3.26)

This yields

∇ · 〈ṽβ ṽβ〉β ∼
(
dx

L

)1/3
v2

L
, (2.3.27)
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i.e.

∇ · 〈ṽβ ṽβ〉β ∼
(
dx

L

)1/3

〈vβ〉β · ∇ 〈vβ〉β
, (2.3.28)

in the free flow region. Hence in the homogeneous free-flow region it is difficult to neglect the effect of

the SGS in the VANS. We could resolve the Navier-Stokes equations with a fine enough mesh to make

sure that the SGS are negligible but this would require too many mesh points. In order to keep the

mesh size tractable, we can make use of a model [51] for the SGS in the free-flow region. Subgrid-scale

modeling aims at representing the effects of unresolved small-scale fluid motions (small eddies and

vortices) in the equations governing the large-scale motions that are resolved in a macroscopic model.

The formulation of a physically realistic subgrid-scale model requires insight on the physics of the

interaction among different scales in turbulent flow. It is still an open research question. However

some models exist that at the very least afford to incorporate a physically meaningful impact of the

subgrid-scale flow on the large scale flow. For instance intuitively turbulence enhances the mixing rate

in a shear flow, and this translates into an increased momentum transfer, often modeled as an increased

effective viscosity for the large-scale flow. Such models are available in Open∇FOAM R©, such as the

Smagorinsky-Lilly model [53].

For now the discussion deals with homogeneous regions, which allows for simplifying assumptions

such as the scale-separation assumption. As is discussed in next section, the situation near a wall or

an interface requires more care, because

• volume-averaged velocity gradients become large, and

• the length scale separation assumption collapses, and

• porosity gradients are not well-defined, and

• the nature of the SGS lies in-between the homogeneous free-flow view and the homogeneous

porous medium view.

A particular approach is needed in order to clearly understand the handling of the interface.

2.4 Free-flow/porous medium interface

The free-flow/porous medium interface is a key region where the flow above the porous medium

exchanges with the flow inside the porous medium. For example [54] proposes a study of heat exchange

at the interface between a porous medium and a free-flow. This study shows the development of large

scale vortices at the interface, which enhance the heat transfer, and have an impact deep inside the

porous medium in terms of temperature fluctuations. In our case we are rather concerned with the
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exchange of mass and momentum but the issue is the same, we need to model how the free-flow

exchanges with the flow inside the porous region through the interface. Hence to obtain a good

description of the porous medium/free-flow coupling, we should describe this region with great care

and have a clear understanding of the assumptions made to develop our macroscopic model at the

interface region.

2.4.1 Issues at the interface

From a microscopic point of view at the boundary of a porous medium [55], the fluid in the free flow is

expected to see both pores and solid parts. The fluid velocity in the pores and the solid- phase velocity

at the interface matches with the fluid velocity in the free flow (no-slip condition). Moreover we have

continuity of the stress tensor over the pore- and solid- sections. In the homogeneous porous medium

(ω-region, see Fig.2.3), we resolve transport equations (VANS) that are valid under Assumption 2, as

well as the LSA assumption. At the boundary between the ω-region and the free-flow (η-region, see

Fig.2.3), two main events occur.

• Large gradients in volume averaged quantities occur. The LSA assumption collapses, the re-

maining term in Eq. 2.2.36 becomes large, and the system of Eqs. 2.3.8 can not be written as

such.

• The porous medium geometry encounters significant changes. Therefore, Conditions 2.1.7 and 2.1.13

can not be satisfied as in the homogeneous porous medium.

As the consistency of the VANS falls down at the interface, the macroscopic fields certainly do not

match the volume-average fields in the interface region. Our objective however is that the macroscopic

fields recover the volume-average fields at least in homogeneous regions. In other words, we must

constrain the macroscopic fields inside the interface region (or within an ad-hoc transition region),

so that it matches the volume-average fields in homogeneous regions. To achieve this, we start with

a short discussion of existing solutions. Then, we propose a mass and momentum balance at the

interface, which leads us to think that the interface can be treated by an adequate space varying

source term in the VANS.

2.4.2 Short review of existing solutions

Different approaches are available to connect the free flow and the porous medium at a fluid/porous

interface. The one-domain approach (ODA) considers the whole domain as a continuum with effective

transport coefficients [56]. In this approach, the transition from the free flow to the porous medium

is considered as a transition of properties such as permeability and porosity. This change in effective
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properties can be determined through the resolution of a closure problem. An advantage of the ODA is

that it avoids an explicit formulation of matching conditions at the fluid/porous medium inter-region,

as well as the imposition of a particular boundary condition at the fluid/porous interface. However

the ODA amounts to considering a mesoscopic model (a model for the volume-average fields in the

interface region), whose validity at the interface is not clear. Typically, such models often involve

porosity gradients, that are not well-defined at the interface, as they directly depend on the size of the

AV.

A second type of approach is called the two-domain approach (TDA), that model the porous

medium and the fluid separately and connect them via boundary conditions, such that the effective

behaviour (i.e. the macroscopic fields match the volume-average fields) in homogeneous regions is

recovered. This results in particular matching- (or jump-) boundary conditions. The jump conditions

are expressed in terms of effective coefficients, which depend on the microscopic nature of the inter-

region, as well as the flow regime under study. In [57] for example, Beavers and Joseph impose a slip

velocity which grows proportionally to the transverse gradient of longitudinal velocity in the η-region

(Navier condition). In this study, experiments with different porous media are conducted to measure

the Navier length, which is found to vary by a factor of 40 according to the porous medium. Hence

the effective coefficient strongly depends on the structural characteristics of the porous medium, and

a better parametrization should be found to determine the jump condition.

A more systematic approach is proposed in [58] to determine the jump condition. Here, a volume

averaging approach is implemented to identify boundary conditions as corrections to the ω- and η-

macroscopic fields, introducing a jump in stress at the interface expressed by

ǫ−1
β

∂

∂y
〈u〉β

ω − ∂

∂y
〈u〉β

η =
χ

K1/2
〈u〉β

ω , (2.4.1)

where u is the tangential component of the velocity. Let us call v the normal component. Eq. 2.4.1

introduces a dimensionless parameter χ whose value is determined by fitting the data of Beavers and

Joseph in [57]. This approach appears to give a more accurate and physically meaningful scaling than

the previous one since the fitting parameter χ is less dependent on the tested porous media. Much

research effort has been spent thereafter to find a way to compute the fitting parameter afterwards

([59, 60, 61, 62, 63]), including the writing of a closure problem at the interface in order to compute

the effective coefficient of the jump condition.

We could say that the TDA is based on the ODA. Indeed, a TDA often uses an ODA to compute

or derive the matching conditions. Therefore in both the ODA and the TDA, the main issue is the

use of a mesoscopic model at the interface, with the issue that porosity gradients are not intrinsic as
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Sinterf

Vinterf

Af

interface-η boundary

ω-interface boundary

ninterf

ninterf ω-region

η-region

nf

x,z

y

Figure 2.3: Details at the interface. The ω-region and η-region refer to the homogeneous porous- and
free-flow region, respectively. Vinterf is the region of space or control volume delimited by Sinterf, within
which the macroscopic fields do not match the volume-average ones. Af is a fictitious surface that
lies within Vinterf. Vinterf and Af are useful for the purpose of deriving the large-scale balance at the
fluid/porous interface.

they depend on the size of the AV, and Assumption 2 and LSA that collapse at the interface. In the

following we aim to bring some theoretical clarification to this issue.

2.4.3 Balance at the interface

We follow the idea of a mass and momentum balance at the interface, at a scale larger than the AV.

This approach is similar to the development presented in [41], with some conceptual differences that we

find interesting to discuss, and that is why we provide a complete development of our ODA interface

condition. For example it remains that the size and position of the interface region is to be determined,

but we demonstrate what length-scale conditions should be satisfied for that purpose.

2.4.3.1 Theoretical development

To overcome the previously mentioned issues related to the use of a mesoscopic model at the interface,

we express the balance of mass and momentum at the interface, relying on partially averaged transport

equations that are unconditionally valid. Such equations (Eqs. 2.2.16) were derived in Section 2.2.2.1

without any length-scale assumptions. Let Vinterf be a control volume on the interface, of dimensions

(lx, ly, lz) such that ly ≫ lx, lz, and delimited by the surface Sinterf. We introduce Fβσ defined as

Fβσ = ǫβDβσ = +
1

V

∫

Aβσ

nβσ ·
(
−Ipβ + µβ

[
∇vβ +T (∇vβ)

])
dA. (2.4.2)
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In order to obtain the momentum balance over the interface, we take the volume integral of Eq. 2.2.16

over Vinterf. For the sake of simplicity, we set sβ = 0. This yields

∫

Vinterf

Fβσ dV =

∫

Vinterf

(

ρβ

(
∂ 〈vβ〉
∂t

+ ∇ · 〈vβvβ〉
)

− ∇ ·
〈
−Ipβ + µβ

[
∇vβ +T (∇vβ)

]〉
)

dV, (2.4.3)

which we can re-organize as

∫

Vinterf

Fβσ dV =

∫

Vinterf




ρβ

∂ 〈vβ〉
∂t

+ ∇ ·




ρβ 〈vβvβ〉 −

〈
µβ

[
∇vβ +T (∇vβ)

]〉

︸ ︷︷ ︸

T

+I 〈pβ〉









 dV. (2.4.4)

We will then apply the Green-Ostrogradski theorem, which states that

∫

Vinterf

∇ · T dV =

∫

Sinterf

ninterf · T dA, (2.4.5)

where ninterf is the normal unit vector pointing outside Vinterf (Fig. 2.3).

Similarly to Assumption 1, we assume that the porous medium is disordered in the directions

tangential to the interface. This allows to simplify the problem by assuming that the T-field and

∇ 〈pβ〉-field are invariant in the x and z directions, the two directions tangential to the interface. This

is similar to a boundary layer assumption, i.e. we assume that normal gradients are much larger than

tangential gradients. This leads to

∫

Vinterf

∇ · (T + I 〈pβ〉) dV =

∫

ly

∇ · (T + I 〈pβ〉) dylxlz

=nf ·
(

(Tη − Tω) + I
(

〈pβ〉η − 〈pβ〉ω

))

lxlz

+

∫

ly

(I − nf nf ) · ∇ 〈pβ〉 dylxlz,

(2.4.6)

where nf is the normal unit vector pointing outside the homogeneous porous region (see Fig. 2.3), and

we use the fact that ly ≫ lx, lz. Moreover we recall that for any C2 field ψ on R3

∂2ψ

∂y∂x
=

∂2ψ

∂x∂y
, and

∂2ψ

∂y∂z
=

∂2ψ

∂z∂y
, (2.4.7)

(Clairaut’s theorem). Hence the tangential pressure gradient (I − nf nf ) · ∇ 〈pβ〉 is constant in the y

direction. As a consequence

∫

ly

(I − nf nf ) · ∇ 〈pβ〉 dy = ly (I − nf nf ) · ∇ 〈pβ〉 . (2.4.8)

By construction, Vinterf is such that its top and bottom regions lie in homogeneous regions (see Fig. 2.3).
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As shown in Section 2.3, in both homogeneous regions we have

T(η or ω) = ρβ 〈vβ〉 〈vβ〉β − ǫβµβ

(

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
))

+ ǫβρβ 〈ṽβ ṽβ〉β
. (2.4.9)

We obtain one equation for the tangential direction and another one for the normal direction:

∫

ly

(I − nf nf ) · Fβσ dy =

∫

ly

ǫβρβ (I − nf nf ) · ∂ 〈vβ〉β

∂t
dy

+ nf ·
[

ρβ

(

〈vβ〉β 〈vβ〉β
)

η
− ǫβ

(

ρβ 〈vβ〉β 〈vβ〉β
)

ω

]

︸ ︷︷ ︸

advective jump

+ nf ·
[

ρβ

((

〈ṽβ ṽβ〉β
)

η
− ǫβ

(

〈ṽβ ṽβ〉β
)

ω

)]

︸ ︷︷ ︸

SGS jump

− nf ·
[

µβ

(

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
))

η
− ǫβµβ

(

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
))

ω

]

︸ ︷︷ ︸

tangential stress jump

+ (I − nf nf ) · ∇ 〈pβ〉 ly,
∫

ly

nf · Fβσ dy =

∫

ly

ǫβρβnf · ∂ 〈vβ〉β

∂t
dy + nf

(

〈pβ〉η − 〈pβ〉ω

)

︸ ︷︷ ︸

normal stress jump

.

(2.4.10)

Doing the same development with Eq. 2.2.6 yields

nf · 〈vβ〉η − nf · 〈vβ〉ω +

∫

interf

∂ǫβ
∂t

dy = 0. (2.4.11)

We consider that the interface is a thin layer, that only transfers mass, and either destroys or transfers

momentum. In other words, the interface region does not accumulate mass or momentum. Hence we

assume steadiness in the following. We decompose the macroscopic velocity into a tangential- and a

normal- component

〈vβ〉β
= 〈u〉β

+ 〈v〉β
nf , (2.4.12)
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and this yields

(I − nf nf ) ·
[∫

interf

Fβσ dy − ∇ 〈pβ〉 ly
]

= ρβ 〈v〉η

(

〈u〉β
η − 〈u〉β

ω

)

︸ ︷︷ ︸

advective jump

+ ρβ

(

〈ũβ ṽβ〉β
η − ǫβ 〈ũβ ṽβ〉β

ω

)

︸ ︷︷ ︸

SGS jump

+ µβ

(

ǫβ
∂

∂y
〈u〉β

ω − ∂

∂y
〈u〉β

η

)

︸ ︷︷ ︸

tangential stress jump

,

nf ·
∫

interf

Fβσ dy = 〈pβ〉η − 〈pβ〉ω
︸ ︷︷ ︸

normal stress jump

,

〈v〉η = 〈v〉ω .

(2.4.13)

This gives an interpretation of the stress-jump expressed in Eq. 2.4.1, which was developed for low

Reynolds numbers and a rigid porous medium. In particular we identify

ǫβµβ

ly

χ

K1/2
〈u〉β

ω = (I − nf nf ) ·
[

1

ly

∫

interf

Fβσ dy − ∇ 〈pβ〉
]

. (2.4.14)

This is interesting because our approach provides a way to recover this well-known jump condition.

Regarding the general case expressed by Eqs. 2.4.13, strictly speaking we should choose a volume

Vinterf at the interface, and resolve a closure problem on it. This closure problem would in fact be a

direct numerical simulation, that would yield the term

∫

interf

Fβσ dy, as well as the SGS jump term

in Eq. 2.4.13, depending on the flow conditions (Reynolds number, shear rate) and the shape of the

porous medium at the interface. Boundary conditions for this closure problem would be macroscopic

boundary conditions on the two surfaces that lie in the ω- and η- regions, in addition to periodic

boundary conditions in the two tangential directions. The obtained

∫

interf

Fβσ dy- and SGS jump-

terms would then provide a jump condition to impose to the macroscopic fields 〈vβ〉β
and 〈pβ〉β

at the fluid/porous interface (TDA). This approach is the most satisfying from a physical point of

view, but requires a heavy computational effort. Many flow conditions need to be tested depending

on the case under study. Instead, we propose an asymptotic approach that allows to handle the

fluid/porous interface with a continuous source term (ODA). A simple closure is then proposed to

allow the numerical implementation, highlighting the source of errors and where research efforts should

be spent to improve the condition at the fluid/porous interface.

2.4.3.2 Asymptotic interface condition

Let ζ be any macroscopic field. We impose continuity of the ζ-field at the η−ω interface, and suppose

that the ζ-field matches the corresponding volume-average field in the homogeneous regions. We still
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consider a volume Vinterf. Let y = yi be the center of Vinterf. Let ζ+ and ζ− be the values of ζ on

top and bottom of Vinterf, respectively. We evaluate ζ+ and ζ− by Taylor expansions from y = yi the

center of Vinterf. We set the origin y = 0 at the bottom of Vinterf, and define α such as yi = αly. We

obtain

ζ− = ζi −
(
∂

∂y
ζ

)

i

αly +O

(
ly
lζ

)2

,

ζ+ = ζi +

(
∂

∂y
ζ

)

i

(1 − α)ly +O

(
ly
lζ

)2

,

(2.4.15)

where the •i subscript refers to the value of the ζ- field at y = yi, and lζ characterizes the variation of

the macroscopic ζ-field in the direction normal to the interface. Clearly we need

ly ≪ lζ , (2.4.16)

for Eq. 2.4.15 to be acceptable. Here we emphasize the fact that the ζ-field is a macroscopic field,

not a volume-average field. As a macroscopic field, the ζ-field is well-defined at the interface, and is

subject to much lower gradients than a volume-average field at the interface. The fact that the ζ-field

is a macroscopic field makes assumption 2.4.16 acceptable, in addition to the fact that ly should be

chosen as small as possible. Also, ly should be large enough so that ζ+ and ζ− match the volume-

average field. This implies that ζ+ and ζ− must lie in homogeneous regions, and this requires them

to be far enough from the interface region. The severity of the ”far enough” condition depends on the

rate of convergence of the macroscopic model to the volume-average fields. This is where the order

of Eq. 2.2.36 plays a significant role. As we move away from the interface, the
r0

L
term goes to zero,

making the macroscopic fields converge to the volume-average ones. Hence the larger the order of the

remaining term, the smaller the acceptable ly, so that Eq. 2.4.15 is acceptable.

If the expansions of the macroscopic fields match the volume-average fields in the homogeneous
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regions, the different terms in Eq. 2.4.13 take the form

ρβ 〈v〉i

(

〈u〉β
i +

(
∂

∂y
〈u〉β

)

i

(1 − α)ly − (〈u〉β
i −

(
∂

∂y
〈u〉β

)

i

αly)

)

︸ ︷︷ ︸

advective jump

,

ρβ

(

〈ũβ ṽβ〉β
i +

(
∂

∂y
〈ũβ ṽβ〉β

)

i

(1 − α)ly − (〈ũβ ṽβ〉β
i −

(
∂

∂y
〈ũβ ṽβ〉β

)

i

αly)

)

︸ ︷︷ ︸

SGS jump

,

−µβ

(
∂

∂y
〈u〉β

i +

(
∂2

∂y2
〈u〉β

)

i

(1 − α)ly + ǫβ(
∂

∂y
〈u〉β

i −
(
∂2

∂y2
〈u〉β

)

i

αly)

)

︸ ︷︷ ︸

tangential stress jump

,

(〈pβ〉i +

(
∂

∂y
〈pβ〉

)

i

(1 − α)ly) − (〈pβ〉i −
(
∂

∂y
〈pβ〉

)

i

αly)

︸ ︷︷ ︸

normal stress jump

.

(2.4.17)

Let yi be a point inside the interface region. Considering a volume Vinterf centered on yi, in the context

1 − ǫβ ≪ 1 we obtain

(I − nf nf ) ·
[

1

ly

∫

interf

Fβσ dy − ∇ 〈pβ〉
]

yi

= ρβ 〈v〉β
i

(
∂

∂y
〈u〉β

)

yi

− µβ

(
∂2

∂y2
〈u〉β

)

yi

+ ρβ

(
∂

∂y
〈ũβ ṽβ〉β

)

yi

,

nf ·
[

1

ly

∫

interf

Fβσ dy − ∇ 〈pβ〉
]

yi

= 0,

(
∂

∂y
〈v〉
)

yi

= 0.

(2.4.18)

Eq. 2.4.18 is valid for any yi within the interface. This shows that the interface between the free-

flow and the porous medium can be handled via continuity of macroscopic quantities, provided a space

variable source term f interf in the macroscopic equations (One-Domain-Approach). This space variable

source term is explicitly given by

(f interf)yi
=

1

ly

∫

interf

Fβσ dy. (2.4.19)

f interf results from a double-averaging operation. Indeed Fβσ is obtained by surface-integration of the

fluid-stress over Aβσ within the regular AV (see Eq. 2.2.17), and is then space-averaged at a larger scale

over Vinterf in the direction normal to the fluid/porous interface to obtain f interf. We recall that Vinterf

should be chosen large enough so that its top- and bottom- part lie in a homogeneous region (whether it

is the free-flow or the porous medium), and small enough so that evaluation 2.4.15 remains reasonable.

These two conditions should be used in practice to determine Vinterf on a real case, although it is not

an obvious task and remains an ongoing research topic.
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Note that we could think that the

(
∂

∂y
〈ũβ ṽβ〉β

)

yi

term in Eq. 2.4.18 is not closed, as it involves the

microscopic flow field at the fluid/porous interface. Actually the

(
∂

∂y
〈ũβ ṽβ〉β

)

yi

term is closed. In-

deed, we should remind that in our macroscopic model, this term was closed with a subgrid-scale (SGS)

model, that depends on the macroscopic velocity fields. Therefore in Eq. 2.4.18, the

(
∂

∂y
〈ũβ ṽβ〉β

)

yi

term should be seen as closed by a SGS model (e.g. the Smagorinsky-Lilly model).

2.4.3.3 Closure

We now propose a rough way to evaluate f interf, that will be eventually implemented in the macroscopic

code (see Chapter 3). Let ǫoβ be the porosity of the porous medium just under the interface. We

approximate Fβσ within the porous medium part of Vinterf by

Fβσ = ǫoβ × Dβσ(〈vβ〉β
yi
, ǫoβ), (2.4.20)

where Dβσ corresponds to the fluid-solid force that would be computed in the homogeneous region at

corresponding porosity ǫβ and macroscopic velocity 〈vβ〉β
. With this approximation of Fβσ within the

porous medium part of Vinterf, f interf at y = yi becomes

(f interf)yi
= ǫoβDβσ(〈vβ〉β

yi
, ǫoβ) × (1 − (ǫinterf)yi

), (2.4.21)

where ǫinterf is the volume fraction of free-fluid inside Vinterf, which is composed of a free-fluid region

and a porous medium region. Note that ǫinterf increases toward unity as yi increases. Indeed, as yi

increases, owing to Condition 2.4.16 the bottom side of Vinterf must move toward the free-flow region

as well. Hence as yi increases, the volume fraction of porous medium within Vinterf goes to zero.

This procedure to evaluate f interf is used as a closure for the One-Domain-Approach in the hybrid

model presented in Chapter 3. In practice, we approximate

ǫoβ × Dβσ(〈vβ〉β
yi
, ǫoβ) × (1 − (ǫinterf)yi

) = (ǫβ)yi
Dβσ(〈vβ〉β

yi
, (ǫβ)yi

), (2.4.22)

where (ǫβ)yi
is the porosity obtained by reconstructing the solid-phase-indicator γσ, as detailed in

Chapter 3.

Obviously, the computation of f interf proposed here is rough and could be much improved, by direct

computation through experiments (which seems very tough), or more simply (but still with a huge

computational effort) with numerical simulations of the flow at a free-flow/porous medium interface.

Also it is not clear whether the closure used in the free flow for the SGS remains valid at the interface.

In particular, we know that the presence of the porous medium develops large scale coherent structures,
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but it is likely that it influences the small scale as well, and hence that it impacts the SGS, as shown

by direct numerical simulation in [28]. Our theoretical development shows that the development of

an SGS model at the fluid/porous is an important research project, as it is directly involved in the

condition to impose to the macroscopic fields at the fluid/porous interface.



Chapter 3

Hybrid model

3.1 Momentum transport in the solid phase

As done in [64], volume averaging a poro-elastic system yields local macroscopic equations when we

can write transport equations in a Eulerian framework (i.e. Eqs. 2.1.2) for both the solid- phase

(σ- phase) and the fluid- phase (β- phase). In practice, a Eulerian approach for the σ- phase is not

always possible. Here, the σ phase is an ensemble of flexible fibres, fixed to an impermeable rigid

wall. These fibres are very weakly coupled among each other, compared to their interaction with the

flow. Hence, the mechanics of the σ- phase is non-local in nature, and this prevents the development of

local macroscopic equations for the σ- phase. Therefore we need a non-local strategy, and we develop a

hybrid model, where the equations for the fluid- phase are local (i.e. are expressed in a Eulerian frame)

and the equations for the solid phase are non-local (i.e. are expressed in a Lagrangian framework).

3.1.1 Macroscopic equations for the solid phase

3.1.1.1 Upscaling the solid phase mechanics

We refer the reader to Fig. 3.1 to illustrate the parametrization of the fibre. Let D be the diameter of

the fibre, h its height. Let s be the curvilinear coordinate along the axis of the fibre. We consider by

convention that forces and moments expressed at s = s∗ correspond to the action of the upper part

on the lower part of the fibre, i.e. s > s∗ → s < s∗. Let t be the unit vector tangential to the axis and

pointing to the upper part of the fibre. Let θ be the angle made by t with the vertical. We define c as

∂t

∂s
=

∣
∣
∣
∣

∂θ

∂s

∣
∣
∣
∣
c. (3.1.1)

67



68 CHAPTER 3. HYBRID MODEL

x

y

t∗

c∗
b∗

s = 0

s = s∗

s = h

x

y

θ

αt

t∗

〈vβ〉β

Figure 3.1: Details of a fibre fixed to the impermeable rigid wall.

c is a unit vector orthogonal to t. We define b as the unit vector such that (t, c,b) is a right-handed

coordinate system.

Assumption 7 The fibres sustain 2D deformations in the (x, y) plane.

We model the bending moment applied by the upper part to the lower part at point s by

mb = EI
∂θ

∂s
b. (3.1.2)

This model relies on assuming linear elasticity at the stem scale D. E is Young modulus, I is the

second moment of area of the fibre, a purely geometrical parameter. For a fibre with a circular cross

section of diameter D we have

I = π
D4

64
. (3.1.3)

The dissipation moment applied by the upper part to the lower part at point s is modeled as

md = γ
∂Ω

∂s
b, (3.1.4)

where Ω is the local time derivative of θ, and γ is the dissipative constant. Note that
γ

EI
is a time

scale that characterizes the relaxation of the fibre, i.e. it characterizes how rapidly the oscillations of
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the fibre decay in time. This time scale can be set relative to the natural frequency of the fibre, i.e.

γ

EI
∼ h2

√
ml

EI
, (3.1.5)

where ml is the mass per unit length of the fibre. γ could also be used to incorporate the effect of fibre-

fibre interactions. Intuitively, fibre-fibre contacts result in an additional dissipation by solid friction

during the bending of a bundle of fibres. However this notion of dissipation is vague and should be

quantified precisely depending on the case under study. Here we simply use it as a tuning parameter

to help convergence of our simulation.

Eqs. 3.1.2 and 3.1.4 are equivalent to a first up-scaling step, because instead of considering the fibre

as a continuum with momentum transport and mass conservation equations, we assume a simplified

behaviour at the stem scale in order to describe the behaviour of the fibre at a larger scale, say length

scale h. The second step of the upscaling process for the σ phase consists in making assumptions on

the kinematics of the fibres, and this is further described in Section 3.1.1.2.

Let v be the shearing force along the fibre. Let (t,n1,n2) be an arbitrary right-handed coordinate

system. We discretize our fibre in nh elements of length δs. The force balance on a small element of

fibre of length δs gives

v =

(

− ∂

∂s

(

EI
∂θ

∂s

)

+ Iρσ
∂Ω

∂t
− γ

∂2Ω

∂s2

)

︸ ︷︷ ︸

v

c, (3.1.6)

i.e. the shearing force needs to be collinear to c for a 2D deformation of the fibre. In our application

this is not strictly the case (the hydrodynamic loading is 3D), but the 2D assumption is a reasonable

first step. Further developments for 3D cases are discussed in Section 3.2.3, with the issue of code

performance in terms of computational time when dealing with a large number of fibres to resolve.

Let δfβ be the hydrodynamic force applied to an element δs of the fibre. The force balance on the

upper part of the fibre (s > s∗) gives

c∗ ·
∫ h

s∗

aσ dm = −v∗ + c∗ ·
∫ h

s∗

δfβ , (3.1.7)

where aσ is the local acceleration of the solid phase. Connecting with equation (3.1.6)

[

− ∂

∂s

(

EI
∂θ

∂s

)]

s=s∗

+

[

Iρσ
∂2θ

∂t2

]

s=s∗

−
[

γ
∂2Ω

∂s2

]

s=s∗

= c∗ ·
∫ h

s∗

δfβ − c∗ ·
∫ h

s∗

aσ dm. (3.1.8)

In the context of our application, we assume

c∗ ·
∫ h

s∗

aσ dm ≪ c∗ ·
∫ h

s∗

δfβ or

[

− ∂

∂s

(

EI
∂θ

∂s

)]

s=s∗

, (3.1.9)
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DM

DM

Figure 3.2: Meshing of the canopy. Master fibres are in red, slave fibres are in green, and some of the
fibres left are represented in black. Note that the sketched arrangement of fibres is not representative of
the actual arrangement of the fibres that constitutes the canopy. This means for example that although
the actual arrangement of the fibres in the canopy is disordered, the meshing used to represent the
canopy can be ordered (or regular).

i.e. the fibre is light, and the flexural rigidity and hydrodynamic loads dominate its dynamics.

Finally, for a light fibre we obtain

[

− ∂

∂s

(

EI
∂θ

∂s

)]

s=s∗

+

[

Iρσ
∂2θ

∂t2

]

s=s∗

−
[

γ
∂2Ω

∂s2

]

s=s∗

= c∗ ·
∫ h

s∗

δfβ . (3.1.10)

The latter equation is then numerically resolved (see Section 3.2.1) to give results for the behaviour

of a fibre under 2D, pure bending subject to arbitrary hydrodynamic loads. Boundary conditions are

imposed at both ends of the fibre. At s = h

∂2θ

∂s2
|s=h = 0, (3.1.11)

because the shearing force v at the free end of the fibre vanishes, hence due to Eq. 3.1.6 the bending

moment must vanish too. This translates into a homogeneous Neumann boundary condition

θ|h = θ|h−δs. (3.1.12)

At s = 0

θ|s=0 = 0, (3.1.13)

i.e. the fibre is solidly anchored to the impermeable rigid wall.
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(a) (b)

Figure 3.3: A bundle of fibres in different situations. Fig. 3.3a, forbidden case of a bundle of fibre
splitting in two halfs. Fig. 3.3b, regular case of a bundle of fibres that illustrates the induced porosity
variation (the porosity is lower on top of the bent bundle).

3.1.1.2 Masters, slaves and others

A further step in reducing the number of degrees of freedom (DOF) is to reduce the number of fibres’

mechanics that we resolve. To do so, we make assumptions on the fibres’ kinematics. Fibres are divided

into NM master fibres, NS slave fibres, and the fibres left. The dynamics of the master fibres only

is resolved. The kinematics (inclination and velocity) of the slave fibres is then interpolated between

the master fibres’ kinematics. The kinematics of the other fibres are then taken to be the same as the

nearest master or slave fibre.

Let DM be the spacing between master fibres (Fig. 3.2). Roughly, we simulate bundles of fibres

of size DM . This constrains the porous medium deformation and affects the coupling with the flow.

For example, the situation illustrated in Fig. 3.3 is forbidden, i.e. a bundle of fibres can not split into

two clusters under the hydrodynamic forcing. Hence the smaller DM , the better the description of the

dynamics of the canopy. Let Lσ be the macroscopic solid scale; typically we should ensure that

DM ≪ Lσ. (3.1.14)

Thanks to experiments (e.g. [9, 65]), Lσ can be guessed to be of order of the height of the fibres, which

gives an idea of how fine the meshing of the canopy should be to reasonably capture the large scale

fluid-structure interaction.
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3.2 Algorithm of the Hybrid model

3.2.1 Solid mechanics solver

A solver is implemented to compute the porosity- and solid velocity- fields at runtime from Eq. 3.1.10

and under aforementioned kinematics assumptions. The fibres are considered homogeneous, i.e. the

fibres’ properties are independent of the curvilinear coordinate s.

The objective of the structural solver is to obtain the geometry of the fibre θn+1(s) at time tn+1,

based on the geometry history θk(s), k ∈ [0, · · · , n− 1]. The fibre is divided into nh elements of size δs.

In order to speed-up the computation, the first step is to determine δtmax, the largest acceptable solid

time step. δtmax depends on the loading conditions and on the characteristics of the fibre. To make

the resolution process feasible, we must determine a systematic way to evaluate δtmax at runtime. For

a fluid- solver, this task is relatively easy, because the advection and the viscous diffusion times can be

used to evaluate δtmax. Here, the system is subject to an arbitrary external forcing (the hydrodynamic

load), and the solid-time step must be adapted consequently. To do so we impose a condition on the

difference in curvature of the fibre after one iteration, as further explained here. We proceed by trial

and error in order to determine δtmax. We advance Eq. 3.1.10 explicitly in time, starting with a guess

time step δtguess. This gives a guess solution (denoted by the •g subscript) defined as

Iρσ
Ωg − Ωn

δtguess
=

[

c∗ ·
∫ h

s∗

δfβ + EI
δ2θ

δs2
+ γ

δ2Ω

δs2

]

n

,

θg − θn

δtguess
= Ωg.

(3.2.1)

The •n subscript denotes variables at time tn. Here it is very important that the right hand side

be explicit (i.e. we use the data from the previous time step), otherwise the search for δtmax blows

up. Time derivatives are first order explicit, and second order space derivatives are evaluated with a

central difference scheme. The local increment in curvature is proportional to

∆(δθ(s)) = (θg(s+ 1) − θg(s)) − (θn(s+ 1) − θn(s)). (3.2.2)

In practice, δtmax is the largest δtguess such that

∆(δθ(s)) <
D

δs
, (3.2.3)

i.e. the increment in curvature after one iteration is controlled with a geometrical criterion.
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Now that we have δtmax, we follow an implicit step

Iρσ
Ωk+1 − Ωn

δtmax
=

[

c∗ ·
∫ h

s∗

δfβ

]

k

+

(

EI
δ2θ

δs2
+ γ

δ2Ω

δs2

)

k

,

θk+1 − θn

δtmax
= Ωk+1.

(3.2.4)

Convergence of these sub-iterations is obtained when |θk+1 − θk| is small enough, i.e. the stopping

criterion for these sub-iterations is

|θk+1 − θk| < errimplicit. (3.2.5)

After convergence we have

Iρσ
Ωn+1 − Ωn

δtmax
=

[

c∗ ·
∫ h

s∗

δfβ

]

n+1

+

(

EI
δ2θ

δs2
+ γ

δ2Ω

δs2

)

n+1

,

θn+1 − θn

δtmax
= Ωn+1,

(3.2.6)

i.e. , the structural solver is implicit. This process allows to advance Eq. 3.1.10 in time starting from

any initial state, to find the kinematics of the fibre at any time, under an arbitrary loading.

3.2.2 Integration into icoFoam

In order to resolve Eq. 2.3.1, the structure solver is integrated in the flow solver icoFoam from the

open source CFD software Open∇FOAM R© [66]. icoFoam solves the incompressible Navier-Stokes

equations using the PISO algorithm [67], and we simply add the source term due to the presence

of the porous medium, that depends on the local macroscopic velocity 〈vβ〉β
and the porosity ǫβ .

Implicitly, this amounts to use the asymptotic interface condition developed in Section 2.4.3.2 along

with the simple closure proposed in Section 2.4.3.3. This One-Domain-Approach (ODA) allows to

handle the deformable fluid/porous interface.

The fluid- and solid- equations are resolved sequentially. The fluid- state is first obtained at time

tn+1, based on the geometry at time tn. Then, the solid phase is advanced in time with the fluid- state

at time tn+1. Here we could implement an iterative process to make the algorithm implicit, i.e. ensure

the fluid- state at time tn+1 is obtained with the geometry at time tn+1. For the sake of simplicity

we keep it explicit but note that this could have an impact on the honami (see Section 1.1.1). As the

dynamics of the fluid- and solid- phases are different, the time stepping must be different. Typically

the time step of the fluid- phase is constrained with a CFL condition. The time step δtmax for the solid

phase is either larger (in which case we simply use the fluid- time step as solid time step), or smaller
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δs

δs

lx

lx

∆x

∆y

Figure 3.4: Averaging of an element δs of bundle of fibre of width lx. The averaging volume (AV) is
delimited by a dashed line. The centroid of the AV is symbolized with the red cross, and the green
cross represents the centroid of the bundle.

(in this case we need several time iterations for the solid- phase to catch-up with the fluid- phase).

The coupling term in Eq. 2.3.1 between the fluid- and solid- phases depends on the porosity ǫβ

and the solid velocity 〈vσ〉σ
. After the position of the master fibres is found, velocity and inclination

of slave fibres are interpolated using the values of the neighbouring master fibres. The 〈vσ〉σ
-field is

distributed on the fluid- mesh with a nearest neighbour algorithm. The computation of the porosity

is not as straightforward. We recall that the porosity is defined as

ǫβ = 1 − ǫσ, (3.2.7)

where ǫσ is the solid fraction, computed by integrating the solid- phase indicator γσ as

ǫσ =
1

V

∫

V

γσ dV. (3.2.8)

Once the geometry is known, the solid fraction ǫσ is distributed on the fluid- mesh along each slave or

master fibre. To avoid the need for a discretization at the stem scale, we do not actually average the

σ- phase indicator but only mimic the ǫσ field obtained by this averaging operation (Eq. 3.2.8) along

each element δs of bundles of fibres centered on either a slave- or a master- fibre. We illustrate this

process with the help of Fig. 3.4. ǫσ takes its maximum value max(ǫσ) when it is located on the axis

of a slave- or master- fibre, and decreases with the distance to the web as

ǫσ =







max(ǫσ)(1 − ∆x
lx

)(1 − ∆y
δs ) , ∆x < lx and ∆y < δs

0 , ∆x > lx or ∆y > δs

(3.2.9)
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When the bundle of fibres is unbent (θ = 0), max(ǫσ) is simply ǫ0σ the solid fraction of the undeformed

canopy. As pictured on Fig. 3.3, the bending of the bundle of fibres induces a porosity variation. We

take this into account by making max(ǫσ) depend on θ as

max(ǫσ) = ǫ0σ + (ǫpacked
σ − ǫ0)

1 − cos(θ)

1 − lm/l0
x

. (3.2.10)

lm is the smallest value of lx when the fibres are packed, and l0x is the value of lx when the fibres are

unbent (θ = 0). ǫpacked
σ is the solid fraction obtained when the fibres are packed. ǫσ can not be greater

than ǫpacked
σ , i.e.

ǫσ < ǫpacked
σ . (3.2.11)

When two bundles overlap, the resulting solid faction is simply the sum of the solid fraction of the

two overlapped bundles. The obtained ǫσ-field is then smoothed by applying the filter operator from

Eq. 3.2.8. This smoothing operation is relatively expensive in terms of computational time. Indeed if

the porous medium is deformable, at each time step, for each mesh point, we need to sum the value

of ǫσ-field corresponding to each cell that lie inside the AV centered at this mesh point. Fortunately

this operation can be distributed and the simulation can be run on several Central Processing Units

(CPU). This allows to reduce the time spent simulating a case, as is discussed in the following section.

3.2.3 Toward larger, 3D cases

Real canopy flows are 3D [4] and the coherent structures that develop are sensitive to boundary

conditions. Hence there is a great interest in a parallel code to make large scale 3D simulations

tractable. The fluid- solver icoFoam is inherently parallel through a domain decomposition method

(DDM), hence the effort to parallelize the code concerns only the solid phase.

As the computation of the structure of the master fibres is expensive, it is interesting that each CPU

(or processor) resolves at most one master fibre. The result is then scattered to every CPUs with the

following typical code structure. This uses the Pstream library that manages parallel communications

in Open∇FOAM R©.

for (each master fibre){

for (each element of the master fibre){

if (this master fibre is assigned to this CPU){

resolve this master fibre

find its solid velocity "us" and inclination "theta"

}

else{
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us = 0;

theta = 0;

}

Foam::sumReduce(us, count, Foam::Pstream::msgType(), Foam::UPstream::worldComm);

Foam::sumReduce(theta, count, Foam::Pstream::msgType(), Foam::UPstream::worldComm);

}

}

Then, each CPU has the kinematics of the whole deformable canopy, and is able to compute the

porosity field in its own domain.

An issue with the DDM is that as the fluid- domain is decomposed among CPUs, a processor may

have to resolve a fibre that lies outside its piece of the domain. The fluid- velocity must therefore be

transmitted to the CPU that resolves the fibre. In order to keep this simple, the fluid- velocity along

each fibre is scattered to every CPU. The typical code to do this is the following.

for (each master fibre){

for (each element of the master fibre){

if (the element is inside the domain of this CPU)

find the nearest fluid- cell

set "uf" the fluid- velocity at the location of the element

}

else{

set "uf" the fluid- velocity at the location of the element to 0

}

}

for (each master fibre){

for (each element of the master fibre){

Foam::sumReduce(uf, count, Foam::Pstream::msgType(), Foam::UPstream::worldComm);

}

}

Surprisingly there is no library available in Open∇FOAM R© to compute space correlations. Here

we only need to compute a space correlation to smooth the porosity field. Due to the DDM, computing

a space correlation requires boundary cells from neighbouring CPUs. This issue is overcome simply

by the use of ghost cells, which store data from boundary cells of each neighbouring processor.

Further numerical development are needed to make the structure solver 3D. This would require
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to take two more angles into account (torsion and an additional bending). However, assuming 2D

deformation for the fibres seems a good preliminary step, even if the domain is 3D, because the fibres

are mainly forced in the direction of the mean flow.

3.3 Hydrodynamic load

3.3.1 Elementary load

We need to find the expression for the force applied by the flow to the fibres. Due to the boundary

condition 2.1.4, the force applied by the flow to an element of fibre is

δfβ = −
∫

δs

nβσ · τβ dA. (3.3.1)

This can be decomposed as

δfβ = −
∫

δs

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA

−
∫

δs

nβσ ·
(

−I 〈pβ〉β
+ µβ

[

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
)])

dA.

(3.3.2)

It is interesting to see that there are two contributions to the hydrodynamic load on an element of

fibre. The first contribution is due to the spatial deviations. It can be estimated after the modeling of

Dβσ (Section 3.3.2.2 and 4), by assuming that the N fibres inside the REV all sustain the same equal

load, i.e.

∫

δs

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA ≃ 1

N
DβσǫβVREV

δs

lREV
+ 0

(
δs

L

)

, (3.3.3)

(lREV is the dimension of the REV). The second term is due to the macroscopic fields. An order of

magnitude can be given as

∫

δs

nβσ ·
(

µβ

[

∇ 〈vβ〉β
+T

(

∇ 〈vβ〉β
)])

dA = 0

(
δs

L

)

, (3.3.4)

as this viscous term is proportional to the variation of the velocity gradient over δs, and the velocity

gradient actually varies over L. Hence the viscous term is of order of the remaining term in Eq. 3.3.3

and can be neglected. The pressure term can be developed as

∫

δs

nβσ ·
(

−I 〈pβ〉β
)

dA = −
∫

δs

nβσyσ · ∇ 〈pβ〉β |x dA+ 0

(
δs

L

)

∼ 1

N
(1 − ǫβ)VREV

δs

lREV
∇ 〈pβ〉β

.

(3.3.5)
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This contribution is similar to a buoyancy force. It can be neglected in the expression for δfβ if

(1 − ǫβ)∇ 〈pβ〉β ≪ ǫβDβσ. (3.3.6)

Typically, this is not acceptable in underwater canopy flows where buoyancy is the major restoring

force [5]. However this is acceptable if the porous medium has a large enough porosity, such that Dβσ

dominates, as is the case here. To conclude, we approximate the force on the fibres by

δfβ =≃ 1

N
DβσǫβVREV

δs

lREV
. (3.3.7)

3.3.2 DNS on a REV

3.3.2.1 The periodicity assumption

As discussed in Section 2.3.1.1, System 2.3.8 is resolved over an REV in order to evaluate Dβσ. As we

consider that the porous medium is homogeneous, the geometry of the REV is periodic.

Assumption 8 Periodic conditions are imposed on vβ and pβ over the REV to evaluate Dβσ.

Let us understand the consequence of Assumption 8. As introduced in Section 2.2.3, the velocity field

vβ is decomposed as

vβ = ṽβ + 〈vβ〉β
, (3.3.8)

in an attempt to separate scales. However due to boundary condition 2.1.4

ṽβ = − 〈vβ〉β
at Aβσ, (3.3.9)

and the ṽβ field still contains a macroscopic scale component. We overcome this via the parametrization

ṽβ = M · 〈vβ〉β
. (3.3.10)

Note that M is introduced here only for the purpose of separating the scales in ṽβ . We do not intend

to compute M, and the derivation of a closure problem in the inertial regime is more widely discussed

in Section 4. Such an M- field verifies

M = −I at Aβσ, (3.3.11)
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hence if the geometry of the REV is periodic, the source of M is periodic over the REV and it is

legitimate that M verifies periodic conditions over the REV. We have that

vβ = (M + I) · 〈vβ〉β
, (3.3.12)

hence Assumption 8 is acceptable only if variations of the macroscopic field 〈vβ〉β
over the REV can

be neglected. To understand the implication on the evaluation of Dβσ, we recall Eq. 2.2.29

Dβσ =
1

Vβ

∫

Aβσ

nβσ ·
(
−Ip̃β + µβ

[
∇ṽβ +T (∇ṽβ)

])
dA. (3.3.13)

To decouple the scales we parametrize

Dβσ =
µβ

Vβ

∫

Aβσ

nβσ ·
(
−Im +

[
∇M +T (∇M)

])
· 〈vβ〉β

dA, (3.3.14)

and develop with a Taylor expansion to obtain

Dβσ =
µβ

Vβ

∫

Aβσ

nβσ ·
(
−Im +

[
∇M +T (∇M)

])
·
(

〈vβ〉β |x + yβ · ∇ 〈vβ〉β |x +O
(r0

L

)2
)

dA

=
µβ

Vβ

∫

Aβσ

nβσ ·
(
−Im +

[
∇M +T (∇M)

])
dA · 〈vβ〉β |x

+
µβ

Vβ

∫

Aβσ

nβσ ·
(
−Im +

[
∇M +T (∇M)

])
· yβ dA · ∇ 〈vβ〉β |x +O

(r0

L

)2

.

(3.3.15)

This allows to express explicitly the term that we neglect when we make Assumption 8. Interestingly

this term vanishes if the REV verifies certain geometric conditions. Indeed the term

nβσ ·
(
−Im +

[
∇M +T (∇M)

])
· yβ (3.3.16)

corresponds to the fluid- force applied to the solid at location yβ , when 〈vβ〉β
is parallel to yβ . For

instance, if the REV has a point of symmetry, the integration of term 3.3.16 on surface Aβσ gives zero.

3.3.2.2 The metamodel

In [68], Luminari evaluates Dβσ under Assumption 8 by solving System 2.3.8 on a periodic REV. The

REV used is the square unit cell of a staggered array of cylinders (Fig. 3.5), so that

Lu = D

√
π

2

1
√

1 − ǫβ
, (3.3.17)
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Lu

Lu D

Figure 3.5: Top view of the 3D Representative Elementary Volume (REV) used in [68] to evaluate
Dβσ the fluid-solid force within the porous medium.

where Lu is the side size of the square unit cell. The Reynolds number used to characterize the flow

regime in this metamodel is Rem, defined with D the diameter of the fibre as reference length and v

the magnitude of 〈vβ〉β
. Let k be the permeability of the fibrous material. In the frame of the fibre, it

is found that a diagonal permeability tensor is suitable to describe the fluid-solid force on the REV. In

other words, the fluid-solid force in the tangential- and normal- direction of the fibre is proportional

to the fluid- velocity in the tangential- and normal- direction, respectively. The strategy adopted in

[68] is to build a metamodel for the permeability based on a number of DNS points. The output of

the metamodel summarizes as

ǫβ , Rem, αt → h∗
t , h

∗
n, (3.3.18)

where (see Fig 3.1)

• t and n refer to the component of 〈vβ〉β
in the direction tangential and normal to the fibre

respectively,

• αt is the angle made by 〈vβ〉β
and t,

• h∗ is such that

Lu
2k−1

t = h∗
t ,

Lu
2k−1

n = h∗
n.

(3.3.19)

The metamodel is finely discretized for the αt dimension. However, ǫβ is restricted to the range

[0.4, 0.8], and Rem to the range [0, 100].
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Figure 3.6: Fig. 3.6a, principle of the continuous expansion. KC refers to the Kozeny-Carman ex-
pansion, Q refers to the quadratic expansion. Fig. 3.6b, the two asymptotic regimes of the pressure
gradient.

3.3.2.3 Continuous extension

In order to use efficiently the data collected in [68], we must deal also with the case when ǫβ or/and

Rem are out of the range of the metamodel. To do so, we assume that there are roughly two regimes

(Fig. 3.6b) for the pressure gradient depending on the Reynolds number based on the fibre diameter

ReD, mainly

Lu
∇ 〈pβ〉β

ρβv2
∼ 1/ReD, ReD < Ret,

Lu
∇ 〈pβ〉β

ρβv2
∼ 1, ReD > Ret,

(3.3.20)

with two different values of the transition Reynolds number Ret for the tangential and normal di-

rections. This model is inspired from experiments and direct numerical simulations [69, 70]. Note

that the model is completely determined by the value of h∗ at Rem = 0 (which we call H∗), and the

constant value of Lu
∇ 〈pβ〉β

ρβv2
in the quadratic regime (Q). This constant is determined from the Ergun

expression and we ensure that it recovers the asymptotic behaviour when ǫβ goes to 1. When ǫβ goes

to 1 the effect of confinement vanishes, and the force exerted on each fibre should be the force exerted

on an isolated cylinder, i.e.

Lu
∇ 〈pβ〉β

ρβv2
∼

ǫβ→1
Cd

√

(1 − ǫβ)
π/2

. (3.3.21)
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where Cd is the drag coefficient for an isolated cylinder. For lower porosities, the Ergun expression

gives

Lu
∇ 〈pβ〉β

ρβv2
= C

√

(1 − ǫβ)

ǫβ
, (3.3.22)

where C is a non-dimensional constant to be determined. By matching Eqs. 3.3.21 and 3.3.22 we

obtain

C =
Cd
√

π/2
. (3.3.23)

Taking Cd = 1.1 for the value of the drag coefficient for an isolated cylinder in the turbulent regime,

we thus have

C ≃ 0.88. (3.3.24)

By stating that the linear and quadratic regimes match at Ret

νβρβh
∗ǫβv = 0.88

ρβv
2

Lu

√

(1 − ǫβ)

ǫβ
, (3.3.25)

we can express the transition Reynolds number as

Ret =
ǫ2βh

∗

0.88
√

π/2
. (3.3.26)

Let ǫβ ,ReD be an input of the metamodel. There are different cases to consider depending on the

values of ReD and ǫβ (see Fig. 3.6a).

A ǫβ < 0.4 or ǫβ > 0.8 We define ǫ0 as either 0.4 or 0.8 (we take the nearest value to ǫβ).

A.1 ReD < 100 The metamodel yields h∗
0 corresponding to ǫ0 at the desired Reynolds number

Rem = ReD, and the output is extrapolated assuming the Kozeny-Carman dependence (KC)

h∗ ∼ (1 − ǫβ)2

ǫ3β
(3.3.27)

to obtain h∗ at the desired porosity ǫβ . The case ǫβ > 0.8 could be improved by matching the regime of

an isolated cylinder in Stokes flow. At the very least the Kozeny-Carman approximation is consistent

because

h∗ →
ǫβ→1

0, (3.3.28)

as expected, i.e. the pressure gradient vanishes as the solid phase vanishes.
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Lx

Ly

h

x

y

Figure 3.7: Illustrative case for the hybrid model. The double slash symbolizes periodic conditions
imposed to the fluid- and the solid- phase. The darker region represents the space occupied by the
porous medium at rest.

A.2 ReD > 100 We must use Eq. 3.3.20. We determine H∗
0 corresponding to h∗ at (ǫβ =

ǫ0, Rem = 0). We extrapolate with Kozeny-Carman to obtain H∗ at the desired porosity ǫβ . Then, we

evaluate in which regime we lie for each direction (linear or quadratic for the tangential and normal

directions). Let ReT and ReN be the Reynolds numbers in the tangential and normal directions of the

fibre, respectively. We determine the transition Reynolds numbers Ret(N) and Ret(T ) from Eq. 3.3.26

and compare them to ReN and ReT , respectively. For each direction, if the regime is linear, then we

already have the desired result since h∗ = H∗. Otherwise, if the regime is quadratic, we extrapolate

with

h∗ = H∗ReD

Ret
, (3.3.29)

to obtain h∗ at the desired Reynolds number.

B 0.4 < ǫβ < 0.8

B.1 ReD < 100 We simply use the metamodel, as we are inside its domain of validity.

B.2 ReD > 100 We must use the model depicted in Eq. 3.3.20, so we repeat step A.2, with no

need to extrapolate with Kozeny-Carman.

3.4 Application of the hybrid model

3.4.1 Illustrative case

We present here a case that illustrates the capability of the hybrid model to simulate the unsteady

interaction between the flow and a carpet of flexible fibres. The case under study is sketched on
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t∗ = 0

(a)

t∗ = 5.4

(b)

t∗ = 10.2

(c)

Figure 3.8: Instability developing on top of the rigid porous medium as the flow accelerates. The color
field represents the vβ-field. The arrows represent the direction of 〈vβ〉β

.
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t∗ = 0

(a)

t∗ = 2.2

(b)

t∗ = 4.3

(c)

Figure 3.9: Instability developing on top of the deformable porous medium as the flow accelerates.
The color field represents the ǫβ-field. The arrows represent the direction of 〈vβ〉β

.
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Fig. 3.7. Periodic conditions are imposed on each end of the domain (right and left), for both the

fluid- and the solid- phase. A free-slip condition is imposed on top of the domain for the fluid- phase,

i.e.

vβ = 0,
∂pβ

∂y
= 0,

∂uβ

∂y
= 0, on top of the domain. (3.4.1)

The fluid is moved forward with a constant source term, represented by sβ = sβx in Eq. 2.1.2, that

mimics a constant pressure gradient or gravity force. Such a flow over a canopy is known to develop

a Kelvin-Helmholtz - like instability due to the inflection point in the mean velocity profile [4, 29, 19],

and this is an interesting feature here as we wish to display an unsteady interaction between the flow

and the elastic porous medium (canopy).

The fluid- domain is 2D and we take Ly the height of the domain as reference length scale. We

define the non-dimensional time as

t∗ = t

√
Lysβ

Ly
. (3.4.2)

The width of the domain is taken to be Lx = 2Ly. The dimensions of the fibres are h = 0.3Ly (height)

and D = 0.01Ly (diameter). The arrangement of the fibres is such that the porosity of the undeformed

porous medium is 0.95. The Reynolds number Reg, defined as

Reg =
Ly

√
Lysβ

νβ
, (3.4.3)

is set to 103. We use a Geometric Agglomerated Algebraic Multigrid solver (GAMG) for the pressure

equation and a Preconditioned Bi-Conjugate Gradient solver (PBiCG) for the velocity solver. Pre-

conditioning is made with Diagonal-based Incomplete LU factorization (DILU). For both the pressure

and velocity solvers, the absolute tolerance is set to 10−15 and the relative tolerance is set to 10−8. We

have made these choices as they give a good convergence rate and we refer to [71] for further details on

linear solvers available in Open∇FOAM R©. The fluid- mesh is uniform and is composed of 200 × 100

square cells. Parallel computations are carried out on a cluster of Intel R© Ivybridge (2.8Ghz) cores.

4 CPUs are used for the computation and it takes approximately 33 minutes to simulate 100 units

of time of a fluid- particle through the domain when the porous medium can deform, i.e. when the

structural solver is activated (this implies additional operations to solve the fibres, hence an additional

CPU time). The computation of the porous structure is observed to multiply the computational time

by 4, and this shows the interest of distributing the fibres’ resolution on 4 CPUs, in order to reduce the

amount of time required to obtain the simulation. No subgrid-scale model is used for this illustrative

case.

We first run the case with a rigid porous medium. The Reynolds number based on the maximum
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magnitude of uβ in the domain is observed to be around 104. As shown on Fig. 3.8, the KH- instability

grows over the rigid porous medium, and ends up developing coherent structures of size equivalent to

the height of the fibres. We therefore know that this case is unsteady by nature and is capable of

displaying an unsteady coupling between the flow and the deformable porous medium.

We then release the porous medium. The deformation of the porous medium is described with 4

master fibres and 4 slave fibres for each master fibre. Each master fibre is discretized with 12 elements.

The dissipative constant γ is set to a very low value of
γ

EI
= 10−3h2

√
ml

EI
. The fibres’ density is

set to ρσ = 102ρβ (we have to be careful here, since the model for the fibre was developed for light

fibres). We now need to set the bending rigidity EI. This is done by setting the the Cauchy number

CY ([5, 22, 3]). The Cauchy number evaluates the ratio of the fluid-solid force to the fibre restoring

(or elastic) force. This can be expressed as

CY =
ρβLysβDH

3

2EI
, (3.4.4)

by taking
√
Lysβ as reference velocity and assuming a quadratic form for the fluid-solid force applied

to the fibre. We need

CY > 1, (3.4.5)

to obtain a deformation of the porous medium under the unsteady hydrodynamic load. In our case we

have set the bending rigidity EI of the fibres such that the Cauchy number CY ≃ 13.5. The stopping

criterion errimplicit of Eq. 3.2.6 is set to 10−6.

The case presented here shows a transient regime, corresponding to the development of a KH-

like instability on top of the canopy. As this unsteadiness was previously obtained for a rigid porous

medium, it is a pure flow- instability (i.e. this instability is not due to the deformation of the canopy).

Fig. 3.9 shows the development of a canopy-scale vortex, similar to the one obtained over the rigid

medium. The porous medium strongly deforms under the hydrodynamic load, as expected regarding

the value of the Cauchy number (CY ≃ 13.5). The hybrid model is able to capture this deformation

of the porous medium, as well as the effect of the displacement of the solid- phase on the flow. The

hybrid model allows for the computation of the porosity ǫβ , and variations of about 40% of the ǫβ-

field are displayed. Qualitatively, this test case shows that it is relatively easy with the hybrid model

implemented in Open∇FOAM R© to set-up a case where a KH- instability develops, and where a large-

scale fluid-structure interaction is observed. However this case is only illustrative, and it would be

interesting to compare our hybrid model quantitatively to a real experiment.
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3.4.2 Future quantitative comparisons

We have proposed a solution to effectively implement a macroscopic model of a canopy flow. Most of

the technical features are provided in order to reproduce this hybrid model, and we have seen that it

allows to simulate the coupling between the flow and the canopy in a canopy flow. The next step is to

obtain quantitative comparisons with experiments in order to demonstrate the relevance of this hybrid

model.

For example, some experiments in [65] are conducted to study the honami phenomenon. An

artificial canopy is immersed in a water channel, that can be inclined in order to obtain the desired

flow velocity. The reference flow velocity Um is taken as the space- and time- average velocity parallel

to the channel bed. The artificial canopy is made of a uniform arrangement of identical plastic sheets,

of height h and width b. The bending rigidity EI of the plastic material is reported as well. The

density of the canopy is modified by arranging the plastic sheets in a more or less sparse way. Several

canopy flow conditions are tested. The canopy density and the Reynolds number, as well as the relative

depth are varied, and the interaction between the flow and the elastic canopy is observed by direct

measurement of the flow field and displacement of the plastic sheets constituting the artificial canopy.

The development of coherent flow structures, coupling with the canopy deformation on top of the

canopy, are reported to exist only under certain condition (i.e. for certain sets of parameters). The

parameters characterizing the experiment are indicated, allowing to numerically reproduce the real

experiment. Based on the hybrid model we developed, we try to set-up a numerical simulation that

reproduces the experiment defined by

• the Reynolds number Re =
LyUm

νβ
= 4.2 × 104 based on Um the volume- and time- averaged

velocity.

• the stiffness of the fibres (Young modulus). This is done via the Cauchy number, that compares

the hydrodynamic load to the stiffness of the canopy. (CY =
ρβU

2
mbh

3

2EI
= 0.75).

• the total surface exposed per canopy unit of volume. In the hybrid model we set a porosity. We

simply set the porosity to 0.95, which ensured that the total surface exposed per canopy unit of

volume is the same as in the experiment.

• the relative submergence depth
Ly

h
= 3.

The fact that
Ly

h
= 3 is interesting because it corresponds to a reasonable size of the computational

domain and this limits the CPU cost. The knowledge of these key parameters allows to compute the

corresponding porosity and Cauchy number in order to set a numerical simulation with the hybrid

model that we developed in this section that preserves the similarity numbers. The top of the domain
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is a free surface (air/water interface), which we model with the boundary condition we set in the

previous numerical experiment (symmetry condition).

Unfortunately, we were not able to properly reproduce this experiment here, and the difficulty in

reproducing the experiment lies in different issues.

• A first time demanding issue is the finding of the proper source term sβ in the Navier-Stokes

equations that yields the goal- Reynolds number on a rigid canopy. We proceed by trial and error

in order to find the proper sβ so that the Reynolds number Re reaches the value of the experiment

≃ 4.2 × 104. This is time consuming, as we need to wait for each try that the statistically steady

regime is reached. This task is mesh dependent as we use coarse meshes to gain computational

time. With Lx = 2Ly and for a 200×100 mesh, we found that Reg = 8.83×102 yields a Reynolds

number Re around 3.9 × 104 for a rigid canopy.

• The Reynolds number defined with the local velocity and the height of the domain is of order

of 105 on top of the computational domain. Due to the CFL condition, this high value of the

local Reynolds number constrains the simulation to use small time steps, increasing the number

of iterations required to simulate the canopy flow.

• Once we have reached the objective Reynolds number with a rigid canopy, we release it and

ask the CPU to resolve the solid phase. Although an effort was made on parallelization, the

solving of the solid phase is still CPU demanding and considerably increases the computational

time. This point in particular is purely technical and requires more code development regarding

parallelization, and optimization of the algorithm that resolves the solid phase.

The hybrid approach proposed here is a promising way toward the numerical simulation of a canopy

flow. Yet, it was not possible to conduct a satisfying comparison with experiments that would validate

the hybrid model. This is mainly due to a lack of time. Provided further developments, the attempt

we have made here should be a good basis toward the macroscopic simulation of the fluid-structure

coupling in a canopy flow.
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Part III

Modeling of the small-scale
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Chapter 4

Inertial sensitivity of porous

microstructures

Fluid flows through porous media are subject to different regimes, ranging from linear creeping flows to

unsteady, chaotic turbulence. These different flow regimes at the pore-scale have repercussions at larger

scales, with the macroscale drag force experienced by a fluid moving through the medium becoming

a non-linear function of the average velocity beyond the creeping flow regime. Accurate prediction

of the transition between different flow regimes is an important challenge with repercussions onto

many engineering applications. Here, we are interested in the first deviation from Darcy’s law, when

inertia effects become sizeable. Our goal is to define a Reynolds number, ReC , so that the inertial

deviation occurs when ReC ∼ 1 for any microstructure. The difficulty in doing so is to reduce the

multiple length scales characterizing the geometry of the porous structure to a single length scale, ℓ.

We analyze the problem using the method of volume averaging and identify a length scale in the form

ℓ = Cλ

√
Kλ/ǫβ, with Cλ a parameter that indicates the sensitivity of the microstructure to inertia. The

main advantage of this definition is that an explicit formula for Cλ is given; Cλ is computed from a

creeping flow simulation in the porous medium and ReC can be used to predict the transition to a non-

Darcian regime more accurately than by using Reynolds numbers based on alternative length scales.

The theory is validated numerically with data from flow simulations for a variety of microstructures.

4.1 Introduction

A fluid flowing through a porous medium experiences three main transition phenomena with increasing

flow rate [72, 73, 74, 75, 76, 77, 78, 79, 80]. The first one is a transition from the creeping flow regime

to the non-Darcian, inertial steady regime. Then, the flow evolves to successive unsteady regimes. The

93
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last transition occurs when turbulence appears, characterized by unsteady, chaotic flow features in the

porous medium. This latter regime presents several open modeling issues [81, 82, 83, 84, 85, 86, 34, 87].

Since the filtration law in porous media strongly depends on the flow regime, it is of importance to

characterize these transitions. This has applications to natural and as well as industrial systems,

including modeling the transport of chemical species [88, 89, 90, 91, 92] and heat [93, 94, 95, 96, 97,

98, 99] in, e.g. , packed-bed column reactors, soil percolation, microscopic heat exchangers, and the

fluid-structure coupling in flexible canopies [29, 12, 14, 24, 22].

Under a macroscopic pressure gradient gβ
1, a fluid initially at rest in a porous medium accelerates2

until the internal viscous dissipation of the flow balances the rate of work of gβ . In the steady regime,

the flow reaches a state characterized by a spatially averaged velocity 〈vβ〉β
. This velocity can be

written as

〈vβ〉β
= vλ, (4.1.1)

with λ the unit vector defining the mean flow direction and v the amplitude of 〈vβ〉β
. To a given

gβ corresponds a unique 〈vβ〉β
, and viceversa. We write this as a filtration law, gβ = gβ (λ, v). A

priori the nature of gβ (λ, v) depends on the topology of the porous medium, the flow regime and the

physical properties of the fluid [100, 101, 102, 103, 104, 105, 106].

In Appendix A.1, we show that for a fluid under constant volume force sβ , the macroscopic pressure

gradient can be related to the gradient of the intrinsic average pressure ∇ 〈pβ〉β
as

gβ = ∇ 〈pβ〉β − ρβsβ , (4.1.2)

where ǫβ is the porosity of the medium. In the creeping flow regime, gβ (λ, v) is Darcy’s law [107],

which amounts to write

∇ 〈pβ〉β − ρβsβ = −ǫβµβK−1
D · λv, (4.1.3)

where µβ is the dynamic viscosity of the fluid. The ”·” symbol in Eq. 5.1.1 refers to the usual inner

product. KD (a second order tensor) is the permeability of the porous medium. We can further define

a scalar characterizing the permeability for a flow in the λ direction as

K−1
λ = ||K−1

D · λ||. (4.1.4)

Beyond the creeping flow regime, non-linear effects at the pore scale modify the flow pattern, and

the filtration law becomes non-Darcian [108, 109, 110, 111, 112, 113, 114, 115, 116]. We can extend

1See Section A.1 and Eq. A.1.10 for a detailled derivation of gβ with respect to the microscopic fields.
2This initial transient regime is generally neglected in macroscopic models.
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Darcy’s law as

∇ 〈pβ〉β − ρβsβ = −ǫβµβ

(
K−1

D · λ + f
)
v. (4.1.5)

A simple way of characterizing the range of validity of Darcy’s law is by considering the Forchheimer

number [117, 118, 119, 120, 121]

Fλ =
||f||
K−1

λ

, (4.1.6)

which is the ratio of the non-linear to the linear part of the filtration law. Darcy’s law remains valid

as long as Fλ ≪ 1 and the inertial transition occurs when Fλ ∼ 1.

To capture the inertial transition a priori, a Reynolds number ReC is of practical interest. Let νβ

be the kinematic viscosity of the fluid (µβ = νβρβ). In general, ReC is expressed as a ratio of the

advection time to the viscous diffusion time, in terms of v, νβ , and a length scale ℓ as

ReC =
ℓv

νβ
. (4.1.7)

The choice of the characteristic length scale to define such a Reynolds number is widely discussed

in the literature [119, 116, 79, 122, 123, 124, 125, 126, 121]. For a given porous medium, ℓ should

be easy to identify, and such that ReC past a well defined threshold indicates the inertial transition.

A simple choice for ℓ is a characteristic pore size ℓβ [94, 125, 126, 127, 128, 129]. However such a

microscopic length scale may not be well defined for porous media that exhibit non-trivial or complex

microstructures, such as, e.g. , sandstones.

If we have an explicit filtration law, we can use the Forchheimer number as a Reynolds number

[118, 119, 120]. For example, the classical filtration law (Ergun’s equation, [103]) takes into account

inertia effect on the filtration law via a quadratic form. For a one-dimensional filtration process, this

quadratic filtration law is a scalar relation given by

gβ (λ, v) = ǫβµβK
−1
λ (1 + bv) v. (4.1.8)

Inertia effects are small as long as the quadratic part is small against the linear part. Taking the ratio

of the quadratic part to the linear part (i.e.
bv

1
), and identifying it with ReC , i.e.

bv

1
=
ℓv

νβ
, (4.1.9)

we obtain ℓ as

ℓ = bνβ . (4.1.10)
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This means that if we use this expression for the characteristic length scale ℓ in Eq. 4.1.7, ReC compares

directly the relative influence of the linear and inertial contributions in the macroscopic filtration law.

Unfortunately in practice, either experiments or direct numerical simulations (DNS) are needed to

determine the parameter b. Moreover, Eq. 4.1.8 assumes a quadratic form, which is questionable when

going from the linear to the non-linear regime [109, 110, 112, 113, 128, 130, 131]. In Section 4.3.2.1

we propose an expression for the Forchheimer number.

Yet another possibility is the use of a permeability-based Reynolds number [122, 132, 133, 134, 69,

121] defined as

Rek = v

√
Kλ/ǫβ

νβ
. (4.1.11)

One of the main advantages of this definition is that ℓ =
√

Kλ/ǫβ is not a pure geometrical length

scale. ℓ defined as such is associated with Stokes flow in the specific structure of interest, and charac-

terizes the overall viscous dissipation in the porous medium. Therefore ℓ =
√

Kλ/ǫβ should be much

better than a geometrical pore length-scale at characterising viscous effects for the purpose of com-

paring them to inertial effects, which is the point of a Reynolds number. Unfortunately, even Rek

is inaccurate in predicting the inertial deviation, as will be shown later on for a variety of porous

structures (Section 4.3.2.2). An obvious example of this is the case of cylindrical pores, for which the

non-Darcian, steady regime simply does not exist [113]. This is due to the fact that in cylindrical

pores, the streamlines (i.e. lines that are parallel to the vβ− field) are locally orthogonal to velocity

gradients ∇vβ . Under such circumstances, in the momentum part of the Navier-Stokes equations

vβ · ∇vβ
︸ ︷︷ ︸

advective term

= − 1

ρβ
∇pβ + νβ∇2vβ + sβ , (4.1.12)

the advective term vanishes identically, cancelling inertia effects. In this case the Navier-Stokes equa-

tions reduce to the linear Stokes equations, until the first transition to a non-Darcian, unsteady tur-

bulent regime, which is due to a flow instability that starts several orders of magnitude beyond the

stage Rek = 1 (e.g. , [135]).

In this paper, we use the framework of volume averaging to derive a filtration law for weakly inertial

flows in periodic porous media. We carefully define the volume averaging operator and apply it to the

Navier-Stokes equations in the porous medium. We make a separation of scales assumption to derive

the volume-averaged equations, which are closed by a model of the average hydrodynamic force. This

requires the modeling of small scale fields and leads to a closure problem (CP) over a representative

elementary volume (REV).

We further use the CP to derive the expression for the Reynolds number, ReC . We proceed by

evaluating the order of magnitude of the advective term in the CP, and this allows us to correctRek with
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a new parameter Cλ, thus yielding ReC . Cλ characterizes the likeliness of the flow in the microstructure

to deviate from Darcy’s law and is thus the inertial sensitivity of the microstructure. The filtration

law is evaluated from direct numerical simulations (DNS) on a variety of porous structures and it is

shown that ReC is much better suited than Rek to predict the non-Darcian transition, and resolves

the pathological case of cylindrical pores. We finally use this new scaling to derive a generalized-

Forchheimer law in a highly anisotropic porous medium.

4.2 Non-linear effects

In this section, we propose a framework to study the effect of inertia on the filtration law of a porous

medium.

4.2.1 Pore scale flow model

We consider a rigid periodic porous medium, saturated with a Newtonian fluid. We call β the fluid-

phase and σ the solid- phase within the domain, cf. Fig. 2.1. We focus on steady and incompressible

flows as a response to a constant source term sβ . Hence the fluid- phase is driven by the steady

Navier-Stokes equations, i.e.

∇ · (vβvβ) = − 1

ρβ
∇pβ + νβ∇2vβ + sβ , (4.2.1a)

∇ · vβ = 0, (4.2.1b)

vβ = 0 at Aβσ, (4.2.1c)

with ρβ the density of the fluid. No-slip conditions are imposed on the fluid-solid interface Aβσ.

Upscaling the Navier-Stokes equations through volume averaging has already received much atten-

tion in the literature (see, e.g. , [116, 136, 137]). Our development is slightly different in terms of

the representation of the spatial deviations (the linear mapping in the cited literature is inconsistent

with modeling microscopic inertial effects) and the construction of the anisotropic inertial correction

to Darcy’s law. The complete derivation provided in Appendix A leads to Eq. A.2.10 that we recall

here

ℓ2

µβ
gβ (λ, δ) = −h∗v. (4.2.2)

Depending on v, the equation above yields the macroscopic pressure drop gβ for a steady inertial flow

in the λ direction. The issue now is to determine h∗ from Eqs. A.2.9.

We intend to study the effect of inertia on this filtration law. To characterize the evolution of h∗

due to a flow in the λ direction, we build a frame of reference with λ and two orthogonal unit vectors
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(n1,n2), such that

n1 × n2 = λ, (4.2.3)

where × denotes the usual vector product. In this frame, we decompose f (see Eq. 4.1.5), the correction

to Darcy’s law, into a drag component, F‖ and an orthogonal component, F⊥, with ω the angle between

the orthogonal term of f and n1. These quantities may be expressed as

F‖ =
λ · f

K−1
λ

, (4.2.4a)

F⊥ = || (I − λλ) · f

K−1
λ

||, (4.2.4b)

ω =

(

(I − λλ) · gβ

ǫβµβK
−1
λ v

,n1

)

. (4.2.4c)

The triplet (F‖, F⊥, ω) completely determines f according to the relation

f = K−1
λ

(
F‖λ + F⊥ (cos (ω) n1 + sin (ω) n2)

)
. (4.2.5)

The advantage of the decomposition expressed by Eq. 4.2.4 will become clear in the following.

4.2.2 Asymptotic analysis

In this section, we want to check that the form of our closure problem is compatible with results

from the literature [109, 110, 130]. The end result of our analysis here is an asymptotic generalized-

Forchheimer law (AGF); the developments starts with the identification of a parameter δ given by

δ =
ℓ

νβ
v, (4.2.6)

and with the search of an asymptotic form of Eq. 4.2.2 when δ ≪ 1. According to Eq. A.2.9, we assume

that the v∗ and p∗ fields can be approximated as

v∗ = v∗
0 + δv∗

1 + δ2v∗
2 +O

(
δ3
)
, (4.2.7a)

p∗ = p∗
0 + δp∗

1 + δ2p∗
2 +O

(
δ3
)
. (4.2.7b)

This yields

f =
N∑

i≥0

f(i)δi, with f(i) = K−1
D · 〈v∗

i0〉β
, (4.2.8)
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where v∗
i0 are solutions of Stokes problems (see Appendix B). This yields the asymptotic form of

Eq. 4.2.2

gβ = −ǫβµβK−1
D ·



λ −
N∑

i≥1

〈v∗
i0〉β

δi



 v, (4.2.9)

which is our asymptotic generalized-Forchheimer law. In Section 4.3, the AGF expressed in Eq. 4.2.9

is compared with data from DNS for different microstructures.

Numerical and experimental evidences [112, 113, 128, 131] indicate that f(1) vanishes, leading to a

first cubic correction to Darcy’s law. This regime is referred to as the cubic regime, or weak inertia

regime, and was studied by two-scale asymptotics [109, 110, 130], with theoretical results for periodic

porous media. In particular, Firdaouss et al. [110], have shown that f(1) must be zero for periodic

porous media which verify the reversibility assumption

gβ (−λ, v) = −gβ (λ, v) +O
(
δ2
)
. (4.2.10)

For example, a square array of cylinders verifies exactly the reversibility assumption, due to symmetry

properties. It has further been shown [109, 130] that F
(1)
‖ = 0 in periodic porous media, while the

orthogonal term F
(1)
⊥ is a priori non-zero. This yields a partial cubic regime in the general case, or the

cubic regime in the specific case of porous media for which F⊥ vanishes due to characteristics of the

microstucture. Such media are defined as isotropic, but it is likely that a zero F⊥ requires a disordered

microstructure, or a symmetry condition. Indeed ordered porous media may be isotropic with respect

to the permeability (KD = KλI), while the F⊥ term is non-zero (e.g. [138]).

In [109, 110, 130], asymptotic expansions are performed on both the Reynolds number ReC , and

the ratio of microscopic and macroscopic scales

ǫl =
ℓβ

Lv
, (4.2.11)

where, for technical reasons intrinsic to the asymptotic method, the value of ReC is related to the

value of ǫl. Although there are cases for which this relation is justified, there is no physical reasons

for this relation in the general case, as ǫl and ReC are a priori independent parameters. In particular,

the assumption ǫl ≪ 1 does not require ReC to be small. Even for turbulent flows where ReC ≫ 1,

the length scales separation assumption holds (ǫl ≪ 1) in homogeneous porous media [34]. Moreover

a creeping flow may encounter strong shear, yielding ReC ≪ 1 while ǫl ∼ 1.

Our approach recovers all these theoretical results from the literature. We show that F
(1)
‖ = 0 (see

Appendix C) for any periodic porous medium. For media that satisfy the reversibility assumption,

F
(1)
⊥ = 0 is required for our AGF to be consistent. In the framework of volume averaging, we have
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derived the closure problem before carrying out the perturbation analysis in ReC , keeping ǫl and ReC

independent. The form of our closure problem is further validated by DNS in Section 4.3.2.1.

4.2.3 Inertial sensitivity parameter

We use the closure problem (Eq. A.2.9) to develop a dimensionless number that characterizes the

Darcy/non-Darcy transition. To do so, we use Eqs. 4.1.5 and 4.2.2 and rewrite the first equation in

System A.2.9 as

ℓv

νβ
v∗ · ∇∗v∗

︸ ︷︷ ︸

(I)

= −∇∗p∗ + ∇∗2
v∗ + ǫβℓ

2
(
K−1

D · λ + f
)

︸ ︷︷ ︸

(II)

. (4.2.12)

In the creeping flow regime, term (I) in Eq. 4.2.12 is negligible and term (II) is the only source term.

As the flow rate increases, f becomes important via the increasing importance of term (I). We thus

consider the ratio of the orders of magnitude of terms (I) and (II). As term (II) is of order ǫβℓ
2K−1

λ

at the Darcy/non-Darcy transition, we have

(I)

(II)
≃ ℓv

νβ

ζ (v∗ · ∇∗v∗)

ǫβℓ2K−1
λ

, (4.2.13)

where the symbol ζ defines a norm for the field v∗ · ∇∗v∗. ζ is essential in the evaluation of the order

of magnitude of term (I). Any choice for ζ is acceptable, depending on the goal of the study. A choice

of ζ is proposed in Section 4.3, where our goal is to find the proper Reynolds number to assess the

validity of Darcy’s law for a variety of porous media.

We now wish to eliminate ℓ from Eq. 4.2.12, and start from the consideration that, at steady state,

the total rate of work of the pressure gradient balances the total internal viscous dissipation over the

REV
∫

Vβ

vβ ·
(
−gβ

)
dV =

∫

Vβ

µβ∇vβ :T (∇vβ) dV. (4.2.14)

We integrate a second time over Vβ and recall Eq. A.1.6 to obtain

− 〈vβ〉β · gβ = µβ

〈
∇vβ :T (∇vβ)

〉β
. (4.2.15)

Rewriting the left-hand-side with definition 4.1.5 yields

〈
∇vβ :T (∇vβ)

〉β
= λ · ǫβ

(
K−1

D · λ + f
)

≃ λ · ǫβK−1
D · λ, (4.2.16)
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at the Darcy/non-Darcy transition. Using the change of variables of Eq. A.2.2 we can write

ℓ2
λ · ǫβK−1

D · λ =
〈
∇∗v∗ :T (∇∗v∗)

〉β
. (4.2.17)

This gives an expression for ℓ, as

ℓ =

√

〈∇∗v∗ :T (∇∗v∗)〉β

λ · ǫβK−1
D · λ

, (4.2.18)

which we use in Eq. 4.2.13

(I)

(II)
≃ v

νβ

√

Kλ

ǫβ

ζ (v∗ · ∇∗v∗)
√

〈∇∗v∗ :T (∇∗v∗)〉β

√

λ · K−1
D · λ

K−1
λ

. (4.2.19)

We approximate v∗ by v∗
0, a zero order approximation in terms of δ (see Eq. 4.2.7), and obtain

(I)

(II)
≃ v

νβ

√

Kλ

ǫβ

ζ (v∗
0 · ∇∗v∗

0)
√

〈∇∗v∗
0 :T (∇∗v∗

0)〉β

√

λ · K−1
D · λ

K−1
λ

. (4.2.20)

We now define ReC as

ReC =
v

νβ

√

Kλ

ǫβ
Cλ, (4.2.21)

with the inertial sensitivity, Cλ, defined as

Cλ =
ζ (v∗

0 · ∇∗v∗
0)

√

〈∇∗v∗
0 :T (∇∗v∗

0)〉β

√

λ · K−1
D · λ

K−1
λ

, (4.2.22)

such that by construction

ReC ≃ (I)

(II)
. (4.2.23)

The length scale ℓ therefore corresponds to

ℓ =

√

Kλ

ǫβ
Cλ. (4.2.24)

The distribution pattern of the advective term v∗
0 · ∇∗v∗

0 is closely related to the microstructure and

the flow direction, as shown on Fig. 4.4, Section 4.3.2.2. The effect of inertia on Darcy’s law is driven

by the shape of the microstructure, and the topological parameter Cλ measures the ability of inertia

to affect Darcy’s law. The inertial sensitivity Cλ is specific to both the porous medium and the flow

direction λ. We can distinguish among different cases:

• Cλ ≃ 1:
√

Kλ/ǫβ is the proper length scale to measure the effects of inertia.



102 CHAPTER 4. INERTIAL SENSITIVITY OF POROUS MICROSTRUCTURES

DRA SRA CD1 2DROCK

DSA SSA CD2 3DROCK

Figure 4.1: Normalized fields of velocity magnitude for Stokes flows through the considered porous
media. Small (large) values correspond to blue (red) area. We refer to Table 4.1 for the meaning of
the acronyms that we use to refer to each porous medium.

• Cλ ≪ 1: Rek = 1 does not capture the inertial transition, as illustrated by the limit case of

cylindrical pores. In this case, Cλ identically vanishes as streamlines are orthogonal to velocity

gradients. Therefore Darcy’s law is correct for any Rek in the laminar regime and breaks down

only when transition to unsteady flow occurs [113].

• Cλ ≫ 1: This situation is opposite to the previous one. Effects of inertia impact the macroscale

Darcy’s law early, while Rek ≪ 1 still holds. There is no obvious examples of geometry for

this case, but it is more likely that tortuous geometries generate large values of Cλ (see later

Table 4.1).

This classification resolves the issue encountered with certain porous media for which Rek ≪ 1 is not

the correct order of magnitude to assess the validity of Darcy’s law. The relevance of ReC is further

assessed in Section 4.3.2.2 by the interpretation of numerical experiments over a variety of porous

structures.

4.3 Numerical results

We test the AGF and validate the relevance of ReC in describing the inertial transition on model and

realistic porous media with various microstructures (Fig. 4.1). We consider

• two-dimensional arrangements of cylinders,

• two-dimensional convergent-divergent unit cells of equal throat size,
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Table 4.1: Computed values of Cλ and F
(2)
‖ for each porous media. The acronym and full name of

each porous medium is indicated as well.

short-cut Cλ F
(2)
‖ medium

3DROCK 176 1.07 × 10+03 three-dimensional rock
2DROCK 5.77 3.92 × 10−01 two-dimensional rock
DSA 0.62 2.84 × 10−02 disks in staggered arrangement
DRA 0.49 8.46 × 10−03 disks in regular arrangement
SSA 0.77 3.77 × 10−02 squares in staggered arrangement
SRA 0.36 4.43 × 10−03 squares in regular arrangement
CD1 0.19 1.08 × 10−03 convergent-divergent 1
CD2 0.10 3.00 × 10−04 convergent-divergent 2

106 107 108

10−1

100

number of cells

v
e
r
r

uniform refinement
local refinement

Figure 4.2: Mesh convergence for the 3DROCK geometry. The local refinement strategy accelerates
the convergence to mesh independence compared to the uniform refinement strategy.

• two- and three-dimensional geometries exhibiting complex, realistic geometrical features, ob-

tained by x-ray tomography imaging of a sandstone.

The acronyms of all studied geometries are provided in Table 4.1.

4.3.1 Method

Flow simulations are carried out with the C++ toolbox Open∇FOAM R©, which allows for the devel-

opment of numerical solvers, and comes up with pre- and post- processing utilities for computational

fluid dynamics (CFD). Open∇FOAM R© is released as free and open-source software, and this allows

the user to customize the source code in order to implement her/his own problem. This aspect of

Open∇FOAM R© is crucial, because in order to compute the coefficients of the asymptotic form of F‖,
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10−3 10−2 10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

Rek

F
‖

DRA
SRA
DSA
SSA
CD1
CD2

2DROCK
3DROCK

Figure 4.3: Drag Forchheimer term F‖ as function of Rek. Data from DNS (symbols) and AGF (solid
lines).

we need to solve Stokes problems obtained in Appendix B with specific source terms. We use a clas-

sical finite-volume discretization method. For each cell of the mesh, an integral form of the equations

to solve is obtained by integrating the momentum- and mass- conservation law over the volume of

the cell. The Gauss theorem is then applied to write the volume integrals as surface integrals, which

involve field- and gradient- evaluation on cell faces. The evaluation of different quantities on cell faces

are performed by linear interpolation between cell centres, or by use of a finite difference scheme for

the gradients.

For periodic geometries, imposition of periodic boundary conditions is trivial. For the 3DROCK

case, while periodic conditions are imposed on the inlet and outlet faces by adding a thin layer of

fluid, symmetry conditions are imposed on other faces. One should notice that this is equivalent to

symmetrizing the geometry and imposing periodic conditions. Symmetry conditions are also imposed

on each side of the 2DROCK case. As the order of the discretization method is relatively low, and

because we need a relatively high accuracy in our simulations, the number of mesh points to achieve

mesh independence can be very large. We must adopt the proper method according to the geometry

of interest. Since we are interested in the value of the macroscopic parameter F‖, we only use a macro-

scopic convergence criterion to assess mesh independence. For a given value of the pressure gradient,

we compute the relative error on v between two refinement levels to evaluate the accuracy of the simu-

lation. For 2D geometries, we use a simple uniform mesh and uniformly refine until mesh independence

is achieved. Hence the fine mesh is a uniform structured hexahedral mesh for these geometries. For
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the 3DROCK case however, this simple approach would involve a too large computational cost.

Mesh independence with a uniform structured hexahedral mesh for the 3DROCK geometry is

achieved with 5.73 · 108 cells. This number of cells is comparable to the number of cells used in other

numerical study of the inertial deviation from Darcy’s law in sandstones, see e.g. [121]. This requires

approximately 104cores hours to converge on the supercomputer EOS-CALMIP. This large cost in

CPU time is due to the fact that the 3DROCK geometry is a 3D, tortuous geometry that contains

many more pore throats and sizes than the other simple geometries studied here. Typically, the ratio of

the largest pore size to the smallest pore throat is around 10 for the 3DROCK. To reduce the number

of mesh points, local refinements are performed for the 3DROCK geometry. We first compute an

expensive reference solution with a uniform structured hexahedral mesh. Then, a coarser mesh, that

gives low-accuracy results, is locally refined only in regions where the value of the viscous dissipation

is above a certain threshold (i.e. regions of high velocity gradients ∇vβ). For each level of refinement,

the threshold of viscous dissipation above which cells are refined is adjusted to find a compromise

between the number of cells and the accuracy of the simulation. This process allows to approximate

fairly well the reference solution (within the desired accuracy criterion) with only 1.8 · 107 mesh cells

(Fig. 4.2). As a result, the local refinement process reduces the required amount of CPU time by an

order of magnitude, making simulations on the 3DROCK medium tractable.

4.3.2 Inertial effects

For each geometry, Kλ is first computed by carrying out Stokes flow simulations. We then solve for

the Navier-Stokes equations (Eq. 4.2.1) and compute F‖ from Eq. 4.2.4. The drag Forchheimer term

F‖ is plotted in Fig. 4.3 as a function of the Reynolds numbers Rek for the porous media represented

in Fig. 4.1.

4.3.2.1 Asymptotic form

To validate the developments of Section 4.2.2 and the form of the CP that is the base of our theory, we

compute coefficients of the asymptotic form of F‖ for the considered porous media. For that purpose,

the derivation of the system of equations to resolve for each order i is presented in full details in

Appendix B. These developments yield

S∗
i = −∇∗p∗

i + ∇∗2
v∗

i + ǫβh∗
i , (4.3.1a)

∇∗ · v∗
i = 0, (4.3.1b)

v∗
i = 0 at Aβσ, (4.3.1c)
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The same numerical method as the one described above is adapted to resolve Eqs. B.0.1, with proper

source terms S∗
i . These source terms are given explicitely in Appendix B. As explained in Appendix B,

the numerical resolution of Eqs. B.0.1 provides F
(i)
‖ at any order i. The numerical results for F

(i)
‖ are

shown in Table 4.1. For each geometry, F
(1)
‖ is zero (up to the order of accuracy of the simulation)

and F
(2)
‖ accurately matches the DNS (see Fig. 4.3, solid lines), therefore validating our form of CP.

Furthermore, the scaling F‖ ∼ Re2
C of the weak inertia regime is universal across the samples tested. A

possible expression of the Forchheimer number to capture the limit of Darcy’s law is (here, F⊥ ≪ F‖)

Fλ = F
(2)
‖ Re2

k, (4.3.2)

with the inertial deviation from Darcy’s law occuring at Fλ = 0.1. As shown by experiments [100, 103,

139], a quadratic dependence of the pressure drop on the flow rate eventually occurs, but this regime

is beyond the velocity range studied here and cannot be captured by our asymptotic development.

4.3.2.2 Validation of ReC

Fig. 4.3 shows the different behaviours of F‖ for the various media considered; notably, the 3DROCK

geometry has a very early deviation from Darcy’s law. This results is in agreement with the results

obtained in [121]. In this article, the authors evaluate the deviation from Darcy’s law on a few sample

of sandstones. They find that the value of the Reynolds numbers at the deviation from Darcy’s law

varies of several orders of magnitude, depending on the type of sandstone. Such differences cannot be

captured only by a pore throat size or even by a permeability-based Reynolds numbers. This is because

Reynolds numbers based only on porosity, permeability and pore size cannot differentiate geometries

depending on their ability to develop advection dominated areas as the Reynolds number increases.

This can be better accounted for by ReC thanks to the inertial sensitivity Cλ. To illustrate this, we

evaluate Cλ for porous media represented in Fig. 4.1, from Eq. 4.2.21 and 4.2.22, recalling that Cλ

depends on the advective term v∗
0 · ∇∗v∗

0 (cf. Eq. 4.2.22).

In Fig. 4.4, we can visualize the normalized fields of ||v∗
0 · ∇∗v∗

0|| in the selected ordered porous

media. The pattern is very different from a geometry to another. Cλ, via ζ, uses this signature to

characterize the topology of a porous medium in terms of the distribution of the advective term within

it. To do so, we propose to define ζ as a generalized mean of order n

ζ (v∗
0 · ∇∗v∗

0) =
(

〈||v∗
0 · ∇∗v∗

0||n〉β
)1/n

. (4.3.3)

We have tested a few values of n in Eq. 4.3.3. Results are plotted on Fig. 4.7. For n = 1, whilst the

curves collapse well for simple geometries, there is still a gap between 2D- and 3DROCK geometries
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DRA SRA CD1

DSA SSA CD2

Figure 4.4: Normalized fields of ||v∗
0 · ∇∗v∗

0|| in model porous media. Small (large) values correspond
to blue (red) area.

and the other cases. We assume that this is due to the weight given to high values of ||v∗
0 · ∇∗v∗

0||

in the computation of Cλ in Eq. 4.2.22. To verify this assumption, we increase the value of n, thus

augmenting the weight of high values of ||v∗
0 ·∇∗v∗

0|| in the computation of Cλ. While the good collapse

for simple geometries is conserved, the curves of 2D- and 3DROCK geometries tend to collapse with

the others on Fig. 4.7. This suggests that the effect of inertia is more localized in 2D- and 3DROCK

geometries than in ordered ones. The best collapse of the curves is found for n = 4 and values of Cλ

in Table 4.1 refer to this n. Connecting with Fig. 4.3, we observe that for each geometry, the earlier

the rise in F‖, the larger the value of Cλ; this shows that the form of ζ allows Cλ to be a consistent

indicator to predict the strength of the effects of inertia on Darcy’s law. From a quantitative point

of view, ReC is a much better indicator than Rek, as the data scatter on the bottom plot of Fig. 4.7

is much reduced compared to Fig. 4.3. This is further emphasized below in the case of anisotropic

porous media.

4.3.3 Filtration law for a model anisotropic structure

While in the linear regime the tensorial writing of Darcy’s law (Eq. 5.1.1) provides a filtration law for

any flow direction, a difficult issue with inertial flows is the derivation of the filtration law in anisotropic
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10−3 10−2 10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

ReC , n = 1

F
‖

Figure 4.5: Parallel component of the inertial correction for different definitions of ReC (here, n = 1).
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Figure 4.6: Parallel component of the inertial correction for different definitions of ReC (here, n = 2).



4.3. NUMERICAL RESULTS 109

10−3 10−2 10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

ReC , n = 4

F
‖

DRA
SRA
DSA
SSA
CD1
CD2

2DROCK
3DROCK

Figure 4.7: Parallel component of the inertial correction for different definitions of ReC (here, n = 4).
The inertial transition starts at ReC ∼ 1 for all model porous media when n = 4.
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Figure 4.8: Cλ as a function of α for a regular array of cylinders. α = 0 corresponds to a flow
orthogonal to the cylinders axis, (α = π/2, Cλ = 0) corresponds to a flow parallel to the cylinders axis.
Values of Cλ are computed from Eq. 4.2.22 with n = 4.
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Figure 4.9: F‖ and F⊥ as function of Rek and ReC for a regular array of cylinders. ReC is computed
from Eq. 4.2.21. Values of Cλ are provided on Fig. 4.8.
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porous media, since the characteristics of the filtration law must be determined for each direction. An

expensive solution consists in building a dataset by numerical simulations or experiments, for each

Reynolds number and direction of the flow [140]. Here, we propose a solution for a restricted range

of Reynolds number, but at a much more affordable cost than the DNS, as it requires only a few flow

simulations to give a filtration law for any direction.

We consider an orthotropic porous medium made of a regular arrangement of cylinders (Fig. 4.8)

of porosity ǫβ = 0.8036. Let φ be the angle between the pressure gradient and the cylinders’ axis. For

three values of φ, the evolution of F‖ as a function of Rek and ReC is displayed in Fig. 4.9. For a given

φ, the flow direction varies with ReC . Hence, Cλ(φ) is computed for the flow direction corresponding

to F‖ = 0.1

Cλ(φ) = Cλ

(
λ
(
φ, F‖ = 0.1

))
. (4.3.4)

Fig. 4.9 shows that with this definition, the curves of F‖ and F⊥ tend to collapse. We now explain

how this can be used to derive a filtration law for this range of ReC .

As v∗
0 arises from a Stokes equation, the v∗

0 field corresponding to a given flow direction λ can be

obtained as

v∗
0 = M∗

0 · λ, (4.3.5)

where M∗
0 is solution of (see Appendix B)

0 = −∇∗m∗
0 + ∇∗2

M∗
0 + ǫβℓ

2K−1
D , (4.3.6a)

∇∗ · M∗
0 = 0, (4.3.6b)

M∗
0 = 0 at Aβσ. (4.3.6c)

Let φ be the angle between the pressure gradient and the cylinders’ axis. This allows to determine

Cλ for any flow direction λ (Fig. 4.8) with only three flow simulations in three independent directions

of space, in order to build M∗
0. Then, instead of building an expensive dataset, we can compute the

profile of
(
F‖, F⊥

)
for one value of the flow direction λ

0, to generalize to any values of λ. Indeed, the

collapse of the curves in Fig. 4.9 translates into

(
F‖, F⊥

)
(λ, v) =

(
F‖, F⊥

) (
λ = λ

0, ReC (λ, v)
)
, (4.3.7)

which provides a profile for F‖ (φ, v) and F⊥ (φ, v) with a limited number of simulations. This feature

is of importance in applications for which a large number of simulations is prohibited due to the large

amount of computational time required.
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4.4 Conclusion

The volume averaging method is used to investigate the onset of inertial effects for flows in porous

media. The introduction of the new Reynolds number, ReC , captures well the Darcy/non-Darcy

transition. This number contains a parameter, Cλ, which characterizes the sensitivity to inertia of a

microstructure for a given flow direction, and is defined as

ReC =
v
√

Kλ/ǫβ

νβ
Cλ. (4.4.1)

We show that this definition of ReC is appropriate to measure the effect of microscopic inertia on

the filtration law. Further, we find that a possible application of this new scaling is the derivation

of a correction to Darcy’s law for weakly inertial flows in highly anisotropic porous media, where the

tensorial Darcy’s law collapses.

Finally, our study focuses on the evolution of F‖, while the examination of the orthogonal compo-

nent F⊥ and of the angle ω (Eq. 4.2.4) is left for future work. Anisotropic, ordered, three-dimensional

microstructures are expected to generate varying features of F⊥ and ω with increasing ReC ; such

features are the object of current research efforts.



Chapter 5

Unsteady flow through elastic

porous media

As introduced in Section 1.1.1, turbulent flows over a poro-elastic layer are characterized by a broad

range of scales. Toward the development of a macroscopic model, modeling the small-scale flow phe-

nomena inside the porous layer is a required step. This is due to the fact that we do not want to

compute the small-scale flow features, but they still affect the behaviour of the large scale flow. The

”small-scale phenomena” term refers here to both solid- and fluid- phase phenomena (vortex shedding

and stem scale displacement, the two are related by the no-slip boundary condition at the fluid-solid

interface). We expect that these small-scale phenomena have an effect on the large-scale flow only, i.e.

that the large-scale solid phase is unaffected by the small-scale. In other words while the small-scale

flow features are involved in the large-scale flow transport, the small- and large- scales for the solid-

phase are not coupled.

5.1 Model elastic porous media

In the porous medium theory, the effect of the small-scale on the large scale can sometimes be modeled

by means of effective parameters. These effective parameters should be determined with a good

accuracy as they drive the quality of the macroscopic model. A straightforward, well-known example

of effective parameter is the Darcy permeability KD

gβ = −ǫβµβK−1
D · 〈vβ〉β

. (5.1.1)

113
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Eq. 5.1.1 is a filtration law, i.e. it relates the volume average velocity 〈vβ〉β
to the pressure gradient gβ

for a Stokes flow in a porous medium. The Darcy permeability encapsulates the macroscopic viscous

dissipation generated by the multiple, complicated small-scale flow structures occurring within the

pores. It is well-known however that this filtration law (Darcy’s law, Eq. 5.1.1) takes advantage of the

fact that the Stokes equation is linear, and is valid only in the range of small inertia effects. When non-

linear effects occur, such as inertia or fluid-structure interaction at the pore-scale, the determination of

the filtration law requires direct measurements, either through experiments or numerical simulations.

In this section, we perform a numerical study of the effect of pore scale fluid-structure interaction on the

filtration law. This interaction can be observed when a fluid flows at moderate Reynolds number within

an elastic porous medium. Above a certain Reynolds number, the fluid flow within a periodic array of

cylinders becomes unsteady [33]. This arises from a flow instability generated by the non-linear term in

the Navier-Stokes equations. This flow unsteadiness generates an unsteady hydrodynamic force at the

pore-scale that deforms the elastic pores. In turn, these unsteady deformations modify the geometry

of the porous medium and impact the flow and viscous dissipation. In other words, the fluid-structure

coupling that occurs at the stem scale has an effect on the permeability (or filtration law, Eq.5.1.1) of

the porous medium. The knowledge of the filtration law is crucial to the modeling of the large scale

in many processes.

Heat exchangers design is a typical application of the study of unsteady flow confined in an elastic

matrix. In turbulent regime, the flow across an array of cylinders is strongly unsteady and intermittent

and causes the cylinders to vibrate. This phenomenon is called the fluid-elastic instability. This fluid-

elastic interaction may generate large displacements and cause deterioration of the heat exchanger if

not taken into account in the design of heat exchanger. Due to the significant industrial implications,

there have been many efforts in getting insight on this topic in order to provide design constraints so

that this instability is damped [141, 142] and deterioration is avoided. Although these studies provide a

useful background, our context is a little different with regard to a few aspects. Roughly speaking, our

tubes are much softer, and our range of Reynolds number is typically between 102 and 103. It is much

smaller than the Reynolds numbers considered in industrial applications, where often the Reynolds

number is beyond 104. So currently, there is a lack of data corresponding to our case. Moreover, in

heat exchangers, the stiffness and damping of tubes is set according to the operating microscopic flow

conditions. In our study it is the opposite, as the poro-elastic medium is designed to manipulate the

large scale turbulence over the porous medium, for example so as to maximize the vertical mixing due

to coherent structures [29]. Hence the stiffness of the fibres is set with a macroscopic criterion. At the

microscopic level the stiffness perceived by our system depends on this macroscopically set stiffness,

i.e. the stiffness is an input for the microscopic level. We need to know the effect of elasticity of the
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(a) (b)

Figure 5.1: Periodic cell with elastically mounted cylinders corresponds to a cross section (plane
delimited with a dashed line) of the bundle of fibres. The cylinders are attached to their rest position
by linear springs symbolized by dotted lines.

porous matrix on the filtration law, to be able to describe the macroscopic flow with accuracy. To get

insight on this complex scientific issue, we start with a simple case.

The simple model we consider is an array of parallel cylinders of porosity 0.8, i.e. the unit cells

are twice as large as the diameter of the cylinders. The cylinders are free to move, except that they

are attached by a linear spring to a rigid regular matrix. The case is two-dimensional (2D), i.e. the

flow is 2D and the displacements of the cylinders take place in the plane orthogonal to the fibres.

This simple 2D model might seem irrelevant to our 3D bundle of tubes. Actually the 3D case (see

Fig. 5.1) resembles a lot the 2D case when the fluid flows at moderate Reynolds number in the direction

orthogonal to the fibres, with periodic conditions. Moreover if the fibres’ displacement is not too large,

we can consider that any cross section of the fibre remains in the same plane. This point is further

discussed in the following, where we show that this 2D study should be limited to a high enough

stiffness.

As explained in Section 3.3.2.2, a periodic flow is acceptable to evaluate the filtration law in a

porous medium. Hence the domain has periodic boundary conditions for both the fluid pressure and

velocity (pβ , vβ) and the solid velocity and phase indicator (vσ, γσ). The objectives here are

• to develop a numerical method that provides data on the filtration law depending on the char-

acteristics (stiffness, density) of the porous medium when the flow is unsteady, and

• to question the limits of the model in terms of geometry, REV size, the 2D assumption and

numerical method.
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5.1.1 Mechanics

Each cylinder is subjected to the restoring force of its linear spring, and the hydrodynamic force applied

by the fluid. The force balance on a cylinder reads

m
d2x

dt2
= k (X0 − x) + fh, (5.1.2)

where x is the position of the center of the cylinder and fh is the hydrodynamic force applied to the

cylinder. X0 is the position of the cylinder when the elastic matrix is at rest, symbolized by the grid

on Fig. 5.1b. k is the spring stiffness. fh reads

fh =

∫

Scylinder

nS ·
(
−Ipβ + µβ

[
∇vβ +T (∇vβ)

])
dS. (5.1.3)

In the fluid phase, we have the Navier-Stokes equations

∂vβ

∂t
+ ∇ · (vβvβ) = − 1

ρβ
∇pβ +

µβ

ρβ
∇2vβ + sβ , (5.1.4)

∇ · vβ = 0. (5.1.5)

Using the following dimensionless variables

x′ =
x

D

v′
β =

vβ

U

t′ = U
t

D

Re =
ρβUD

µβ
,

(5.1.6)

one may introduce the dimensionless form of the Navier-Stokes equations

∂v′
β

∂t′
+ v′

β · ∇′v′
β = −∇′p′

β + g′ +
1

Re
∇′2v′

β ,

p′
β =

pβ

ρβU2
,

g′ = sβ
L

U2
,

(5.1.7)
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and the dimensionless cylinder equation reads

(
U/L

ω0

)2
d2x′

dt′2
= (x′

0 − x′) + f ′
h

ρβSsolidL

m

(
U/L

ω0

)2

,

ω0 =

√

k

m
,

f ′
h =

fh

ρβSsolidU2
=

1

Ssolid

∫

Ssolid

nS ·
(

−Ip′
β +

1

Re

[
∇′v′

β +T
(
∇′v′

β

)]
)

dS.

(5.1.8)

Hence, three dimensionless numbers appear

f∗
s =

ω0

U/L
,

m∗ =
m

ρβSsolidL
,

Re =
ρβLU

µβ
.

(5.1.9)

We choose

• Ssolid so that m∗ =
ρσ

ρβ
, and

• L = D the diameter of the cylinder.

This leads to

m∗ d
2x′

dt′2
= f∗

s
2m∗ (x′

0 − x′) + f ′
h, (5.1.10)

for the solid equation. Note that there are several possible choices of Reynolds number. Two of them

are

• U = || 〈vβ〉β ||, which gives ReD, and

• U =
L
√

L||sβ ||
ν

, which gives Reg.

We will discuss the advantages and disadvantages of Reg versus ReD in the following.

5.1.2 Interpretation of numerical results

This study aims at observing the effect of the f∗
s and m∗ parameters on the pressure drop through

a periodic elastic model porous medium. Our medium is such that in time-invariant regimes, each

unit-cell is translation-invariant. Hence the elasticity of our model porous medium has no effect in

time-invariant regimes. Therefore we focus on unsteady regimes. We should use the Reynolds number

ReD to make sure the flow is unsteady. We use the correlation proposed in [33] to determine the onset

of unsteadiness for an in-line array of cylinders of porosity 0.8. This correlation gives the limit of

unsteadiness at ReD = Reu ≃ 71. In order to avoid phenomena related to this transition to unsteady
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regime, we set sβ so that ReD is far above Reu in rigid mode, i.e. ReD > 100 when the geometry

is rigid. We do not study transient regimes, and wait until a statistically steady regime is achieved.

To give a definition of a statistically steady regime, let us define the time average fA of an arbitrary

function of time f as

fA(t) =

∫ ∞

0

f(u)h(u− t) du, (5.1.11)

where h(t) is the rectangular function centered in 0. We can say that we are in the statistically steady

regime with regard to (I, h), when fA is independent of t ∈ I. In our case we solve Eq. 5.1.4 with

sβ = gex set as a constant parameter during the simulation. The quantity we observe to determine

whether we are in statistically steady regime is the component of 〈vβ〉β
in the ex direction

vx = 〈vβ〉β · ex. (5.1.12)

The advantage of setting sβ to a constant value is that it fixes the mean hydrodynamic force

applied to the solid- phase in the statistically steady regime. To show this we integrate the Navier-

Stokes equations over the periodic domain and obtain

∂
∫

Vcell
vβ dV

∂t
+ ∇ ·

∫

Vcell

vβvβ dV = − 1

ρβ
∇
∫

Vcell

pβ dV +
1

ρβ
∇ ·
∫

Vcell

µβ

[
∇vβ +T (∇vβ)

]
dV

+
1

ρβ

∫

Aβσ

nβσ ·
(
−Ipβ + µβ

[
∇vβ +T (∇vβ)

])
dA

︸ ︷︷ ︸

Tβσ

+ǫβVcellsβ .

(5.1.13)

Tβσ is the total force applied to the fluid by the solid. Let ψβ a field with periodic conditions over the

unit cell. We have

∇
∫

Vcell

ψβ dV =
1

V

∫

Aβe

nβeψβ dA

︸ ︷︷ ︸

vanishes due to periodic BCs

. (5.1.14)

Then we assume that the statistically steady regime is set over a time frame Tp. Averaging over this

time frame leads to

| 1

Tp

∫

Tp

∂ψβ

∂t
dt| < amplitude(ψβ)

Tp
→

Tp→∞
0, (5.1.15)

hence, if Tp is large enough, then the time averaged force applied to the solid by the fluid is set by the

source term in the Navier-Stokes equations. We introduce the mean effective surface Seff as a scalling

of the drag, i.e.

(Tβσ · ex)A =
1

2
Seffρβ

(

〈vβ〉β · ex

)

A
︸ ︷︷ ︸

v

2

, (5.1.16)
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i.e. for a given value of Reg, we interpret the displacement of cylinders that depends on the stiffness

as a variation in mean effective surface Seff. Let Sr the mean effective surface of the rigid case, and Sd

the mean effective surface of a deformable case. For a given value of Reg, a deformable case compares

to the rigid case as

S∗ =
Sd

Sr
=

(
vr

vd

)2

. (5.1.17)

S∗ is interesting because it provides a meaningful way of evaluating the effect of elasticity on the flow

rate. It allows to interpret the beating of cylinders as a rigid medium with an increased (or decreased,

we will see) solid surface exposed to the flow.

5.2 Numerical methods

5.2.1 Immersed boundary method of Jadim

The cylinders can sustain large displacements, with possible solid-solid contacts involved. To solve

our problem, we use a numerical code called Jadim. This code implements an Immersed Boundary

Method described in detail in [143]. Immersed Boundary Methods (IBM, [144]) allow to overcome

mesh issues, as a flow with complex and moving boundaries can be simulated using a simple fixed,

regular cartesian mesh. The IBM method in Jadim resolves

∂v

∂t
+ ∇ · (vv) = − 1

ρβ
∇p+

µβ

ρβ
∇2v + sβ + fσ,

∇ · v = 0,

(5.2.1)

in the fluid- and the solid- phase. The v- and p- fields are continuous on the whole domain. The forcing

term fσ is such that

v =







vβ the solution of the Navier-Stokes equations in the fluid- phase

vσ the rigid body velocity in the solid- phase

(5.2.2)

The hydrodynamic force applied to a solid particle is then computed through

fh = −ρβ

∫

Vp

fσ dV. (5.2.3)

In this method the pressure field is resolved in the fluid phase as well as in the solid phase, and the

pressure field is advanced by solving a Poisson equation so that mass-conservation is ensured on the

whole domain. Hopefully the resulting p- field corresponds to the pβ- field in the β− phase, and

fh computed from fσ gives good results at the Reynolds number we consider. Although there are
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some validation cases in [143], these points are discussed in the following, especially in Section 5.2.2

where Jadim is challenged with a mixed- cut-cell- direct-forcing method on a case with moving solid

boundaries.

As we limit the study to cases where solid-solid contacts are rather rare, we propose to handle

collisions in a simple way. We implement elastic, instantaneous, normal solid-solid shocks, so that

when two particles collide, each particle conserves its rotational energy, and the overall kinetic energy

is conserved. Consider two cylinders i and j close to each other, i.e. such that

D + δc > dij , (5.2.4)

where dij is the distance between the centers of cylinder i and j and δc is the contact thickness. We

define vij the closure rate of the two particles as

vij =
(xi − xj)

dij
· (vi − vj) , (5.2.5)

where vi (vj) is the velocity of the center of cylinder i (cylinder j). Solid-solid collision must be handled

only if vij < 0. In this case, the two cylinders exchange their closure rate component, i.e.

v+
i = vi +

(xi − xj)

dij
vij ,

v+
j = vj − (xi − xj)

dij
vij .

(5.2.6)

v+
i (v+

j ) is the velocity of cylinder i (cylinder j) after the collision. In the case of multiple shocks, a

cylinder might end up penetrating another one if multiple cylinders are close to each other. To avoid

this, at each time step collisions are detected and treated until there are no more converging cylinders

close to each other. This amounts to the principle of Newton’s pendulum, i.e. the momentum transfer

between cylinders is instantaneous and conservative, as it is between hard spheres.

5.2.2 Mixed cut-cell direct forcing method (MCCDF)

An issue of the immersed boundary method in Jadim is that the mass conservation is handled by a

pseudo Poisson equation. This means that the pressure correction does not have boundary conditions

on the impermeable solid boundary. This allows leaks at the solid boundary during the correction step

and we can wonder what the consequences are on the results. In the inertial regime where pressure

drag is important, the impact on the pressure field and the fluid-structure coupling is concerning. To

challenge the method implemented in Jadim, we build an IBM code with a different approach to

mass-conservation. We then compare the two methods on a 2D unsteady flows (ReD ∼ 110) through
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(a)

p1 p2

ps

(b)

reshaped cell

solid

(c)

Figure 5.2: 5.2a arrangement of the staggered grid used in the MCCDF code. 5.2b details extrap-
olation stencil to impose boundary conditions on the solid boundary. Ghost points are in red, with
fluid neighbours in green. Regular fluid points are in black. The extrapolation stencil is made of two
fluid points p1 and p2, and ps the projection of the ghost point to the immersed boundary, where the
no-slip condition applies. 5.2c the cut-cell approach implemented to ensure mass conservation in the
MCCDF method. The back dots refer to the pressure points, that are also the cell centres. The
reshaped cell is delimited with the dashed line.

an array of impermeable cylinders that encounter displacements.

The MCCDF method solves Eq. 5.2.1 in the fluid phase only (vβ and pβ are not computed in

the solid region). Moving solid boundaries are handled with a direct forcing method. The domain

is periodic and a cartesian, staggered grid (Fig. 5.2a) is used. A predictor-corrector approach (PISO

algorithm, [67]) is used to advance the pressure in time via the continuity equation, so that at each

time step tn+1 we have

vn+1
β = vn

β − dt

(
3

2
∇ · (vn

βvn
β) − 1

2
∇ · (vn−1

β vn−1
β )

)

+ dt

(

− 1

ρβ
∇pn+1

β +
µβ

ρβ

1

2

(

∇2vn+1
β + ∇2vn

β

))

,

(5.2.7)

∇ · vn+1
β = 0. (5.2.8)

In the fluid region, we first obtain a predicted velocity v∗
β at each fluid-point as

v∗
β = vn

β − dt

(
3

2
∇ · (vn

βvn
β) − 1

2
∇ · (vn−1

β vn−1
β )

)

+ dt

(

− 1

ρβ
∇pn

β +
µβ

ρβ

1

2

(
∇2v∗

β + ∇2vn
β

)
)

.

(5.2.9)

This involves the evaluation of space derivatives, and requires a specific treatment of the immersed

solid boundary to impose no-slip condition for the fluid velocity vβ . The no slip condition is imposed

via ghost-points.

A mesh point has three possible states, either fluid, solid, or ghost. A ghost point is a solid point
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that has at least one fluid cell. As the solid boundary moves, we must update the state of each point on

the mesh. At the beginning of the simulation, each mesh point is set a state, depending on its position

with respect to the solid boundary. This task is expensive as it requires to loop over the entire mesh.

To avoid this cost at each time iteration, we only keep track of mesh points that have at least one

neighbour on the other side of the interface. These points are called the potential ghost points (PGP).

The PGP list is updated at each time iteration on the basis of the PGP list at the previous time step.

Only the states of the points of the PGP list and their neighbours are updated, instead of the states

of the points of the whole mesh. This saves precious CPU time. This task, as well as the computation

of hydrodynamic forces, are distributed among processors via the message passing interface (MPI). To

do so we use the Mpi4py library [145], the Python binding to MPI.

We use a linear extrapolation procedure [146, 147]

v∗
βghost

= α0 + αxxghost + αyyghost, (5.2.10)

to determine v∗
βghost

the value of v∗
β at a ghost point. (xghost, yghost) are the coordinates of the ghost

point. The computation of α0, αx and αy involves (Fig. 5.2b) two neighbour fluid points p1 and p2,

and ps the projection of the ghost point onto the solid boundary. The predicted velocity at a ghost

cell takes the semi-implicit form

v∗
βghost

= α1v∗
β1

+ α2v∗
β2

+ αsvn
σ, (5.2.11)

where vn
σ is the solid velocity at point ps determined at time tn, hence v∗

β is implicit but the solid

velocity is explicit (implicit treatment of the solid velocity could be achieved via sub-iterations between

the solid and the fluid mechanics). Eq. 5.2.11 imposes the no slip condition at the solid boundary with

a second order formal accuracy in space [148]. The predicted velocity v∗
β needs to be corrected to

satisfy equation (5.1.5). We follow the PISO algorithm and state that v∗
β be corrected by

vn+1
β = v∗

β − dt

ρβ
∇ψ, (5.2.12)

where ψ is still to be determined. Taking the divergence of Eq. 5.2.12 and imposing Eq. 5.2.8 yields a

Poisson equation for ψ

∆ψ =
ρβ

dt
∇ · v∗

β . (5.2.13)
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We solve for ψ using an equivalent finite volume formulation, i.e. Eq. 5.2.13 is rewritten as

∫

Scell

∇ψ · ndS =
ρβ

dt

∫

Scell

v∗
β · ndS, (5.2.14)

where Scell delimits the fluid cell, and n is the outward normal. Whilst this mass balance is trivial

on a regular mesh, it is not as obvious if the solid interface is not aligned with the cartesian mesh.

The mass conservation requires attention around the solid surface. Indeed if not taken into account

during the correction step, cut cells (i.e. fluid cells that are cut by the solid interface) lead to some

errors between the mass conservation and the imposition of the no-slip condition ([149, 150]) at the

solid boundary. To avoid this, fluid cut cells are reshaped by removing their solid part, and solid cut

cells are merged with their nearest fluid cell, after their solid part has been removed (see Fig. 5.2c).

Then, the mass balance on a reshaped fluid cell reads

∫

Scell

vrel · ndS = −dVcell

dt
, (5.2.15)

where Vcell is the volume of the cut cell. Vcell is time dependent because the solid boundary moves.

vrel is the local fluid velocity relative to the moving face of the cell that is cut by the solid boundary.

vrel explicitly reads

vrel = vβ − vface. (5.2.16)

Moreover the time derivative of Vcell reads

dVcell

dt
=

∫

Scell

vface · ndS, (5.2.17)

therefore Eq. 5.2.15 is equivalent to
∫

Scell

vβ · ndS = 0, (5.2.18)

which is the same equations as for a rigid cell. So Eq. 5.2.14 is valid for a deforming cell too. The

evaluation of fluxes ∇ψ ·ndS and v∗
β ·ndS is straightforward on an undeformed cell of the staggered grid

(Fig. 5.2a). On a reshaped cell however (Fig. 5.2c), this requires to interpolate the ∇ψ- and v∗
β- fields

at the face center. We use a simple 1D first order scheme to interpolate the flux at a random point.

The procedure is illustrated in Fig. 5.3. Depending on the position of the face center, we determine

a pair of points that constitutes our interpolation stencil as indicated in Tab. 5.1. This procedure to

evaluate a flux at an arbitrary position is very simple and could be improved. This was not explored

here. At least, we have a procedure that clarifies mass conservation at the solid boundary.

We need a boundary condition for ψ at the solid surface. Let nIB be the unit vector normal to the
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position of the face center zone 1 zone 2 zone 3 zone 4
flux interpolation stencil (pa, pb) (pb, pc) (pd, pe) (pe, pf )

Table 5.1: Table of correspondence between the zone where the face center lies and the stencil used in
the interpolation of the flux.

pa pb pc

pd pe pf

zone 4

zone 2zone 1

zone 3

Figure 5.3: Illustration of the interpolation procedure implemented to evaluate a flux at a position
that is not on the mesh, as is the case for a reshaped cell. We take the example of the interpolation
of the vertical component of a flux. The triangle refer to the mesh points of the vertical velocity on
the staggered mesh. The black dot represent the center of the reshaped cell. We interpolate the flux
on a face of this reshaped cell. Depending on the position of this face center, a different pair of mesh
points is used (see Tab. 5.1).

immersed boundary pointing to the fluid region. From Eq. 5.2.12 we have

(

vn+1
β − v∗

β

)

· nIB = − dt

ρβ
∇ψ · nIB. (5.2.19)

We recall that the predicted velocity v∗
β at the solid wall already satisfies the no-slip condition, via the

linear extrapolation introduced by Eq. 5.2.10. Therefore

v∗
β · nIB = vS · nIB; (5.2.20)

Since we want to impose

vn+1
β · nIB = vS · nIB, (5.2.21)

we need

∇ψ · nIB = 0. (5.2.22)

Hence we solve Eq. 5.2.13 with a homogeneous Neuman condition for ψ at the solid boundary. We add

periodic conditions for ψ at the fluid domain boundaries. This results in a periodic velocity correction

and is adapted when a periodic condition is required on the velocity field. The linear system to be solved

in order to obtain ψ is singular because ψ is determined up to a constant. We overcome this by using

an iterative method available from PETSc (bi-conjugate stabilized gradient method preconditioned
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with block Jacobi and incomplete LU factorization on each sub-process) which comes with scalability

and can handle singular systems. PETSc is an efficient library written in C. As our code is written

in Python, we use a Python binding to PETSc (Petsc4py [151]) which allows parallel solving of linear

systems.

We still need to compute pn+1
β the pressure- field at time tn+1. Subtracting Eq. 5.2.9 to Eq. 5.2.7

leads to

vn+1
β − v∗

β = − dt

ρβ
∇
(

pn+1
β − pn

β

)

+
µβ

ρβ

dt

2

(

∇2vn+1
β − ∇2v∗

β

)

. (5.2.23)

Injecting Eq. 5.2.12 yields

∇ψ = ∇
(

pn+1
β − pn

β

)

+
µβ

dt

1

2

(
∇2 (∇ψ)

)
, (5.2.24)

wich indicates that the pressure field should be updated as

pn+1
β = pn

β + ψ − 1

2
dt
µβ

ρβ
∇2ψ. (5.2.25)

This ensures that Eq. 5.2.23 is satisfied.

We use the stencil depicted in Eq. 5.2.11 in two additional situations. First, vn+1
β obtained from

Eq. 5.2.12 is divergence free and verifies the no-penetration condition at the solid boundary, but does

not verify the no slip condition. We need to update the value of the ghost points by extrapolating the

vn+1
β - field, and do this by means of Eq. 5.2.11. Second, when the solid boundary moves, some solid

points that were not resolved may become ghost points. These points have no velocity nor pressure

value, and are needed to evaluate space derivatives near the solid boundary for the explicit part of

Eq. 5.2.9. To overcome this we extrapolate the fluid- fields pβ and vβ to these new ghost points, by

means of Eq. 5.2.11. This extrapolation scheme may generate large coefficients α1 and α2. This can

be easily understood in one dimension, as the extrapolation procedure takes the form

v∗
βghost

= v∗
βs

+
xg − xs

xf − xs
︸ ︷︷ ︸

αg

(

v∗
βf

− v∗
βs

)

. (5.2.26)

Clearly as the fluid point used in the extrapolation gets closer to the solid boundary, xf tends to xs

while xg − xs remains constant, and the αg coefficient grows indefinitely. A large αg coefficient makes

the computation unstable as it amplifies the error due to successive time iterations. This is relevant

for a deformable case as well as for a rigid case. To avoid divergence we constrain the choice of p1 and
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p2 the two fluid points of the extrapolation stencil with

distance(pi, ps) > distance(pghost, ps). (5.2.27)

The Neuman condition applied to ψ does not generate such an instability. Indeed in one dimension a

Neuman condition translates into

ψghost = ψf + (xg − xf ) nIB · ∇ψ. (5.2.28)

Hence no particular condition is imposed on the extrapolation stencil for the Neuman condition. We

simply take the closest pressure points.

To save computational time we implement a variable time step, that is set via a target CFL

condition. The variations in time step at runtime may generate amplification of numerical errors. To

avoid this, we limit the growth rate of the time step from one iteration to another. A predicted CFL

number CFLpred is obtained with an explicit step. Then, the time step dtn+1 is set as

dtn+1 =







dtn
CF Lpred

CF Lmax
, CFLpred > CFLmax

1.1dtn , CFLpred < 0.8CFLmax

dtn , otherwise.

(5.2.29)

The fluid and solid equations are solved sequentially. At each time step, Eq. 5.1.2 is advanced in time

with

ẋn+1 = ẋn + dt

(
k

m
(X0 − xn) +

fh
n + fh

n+1

2

)

, (5.2.30)

and a Crank-Nicolson scheme is used to obtain the new position

xn+1 = xn + dt

(
ẋn+1 + ẋn

)

2
. (5.2.31)

5.3 Validation of the numerical approach

5.3.1 Mesh convergence

The cylinders’ motion is due to flow unsteadiness. In turn, the motion of the solid boundary acts on the

flow via the no-slip condition, and this yields the fluid-solid coupling. As the flow unsteadiness is at the

basis of this coupling, it appears crucial here to have an accurate description of the flow unsteadiness

if we wish to evaluate the effect of the fluid-solid coupling on the pressure drop. Hence before running
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value of D
dx 25 50 100

first harmonic magnitude 65, 75% 16, 95% 5, 56%
first harmonic frequency 6, 05% 2, 29% 0, 75%
time average 4, 43% 0, 64% 0, 18%

Table 5.2: Relative error on the fundamental frequency magnitude with the finest mesh ( D
dx = 200) as

reference.

simulations, we wish to determine how fine the mesh should be in order to fairly capture the unsteady

characteristics of the flow. We simulate the flow with Jadim for Reg = 56 through a 2 × 2 square

rigid array of cylinders (two columns, two rows). We impose periodic periodic flow conditions at the

boundaries of the domain. We increase the number of cells so that the ratio
D

dx
ranges from 12 to 200.

We lock the maximum value of the CFL number to 1. For each space discretization, we plot on Fig. 5.4

the time averaged Reynolds number, and the power spectrum of the Reynolds number in statistically

steady regime. The non-dimensional time t∗ is obtained with the advective time at ReD = 110 as

reference time, i.e.

t∗ = t× 110
νβ

D2
. (5.3.1)

ω∗ is the non-dimensional frequency obtained with the same characteristic time.

The results show that data are mesh sensitive. The coarsest mesh does not even capture any

unsteadiness of the flow, hence a large error on the description of the viscous dissipation, that lead to

over-estimating the flow rate. For finer meshes, a periodic signal is obtained for ReD. On Tab. 5.2,

we compare the results to the case with the finest mesh. One can see that the time- frequencies of the

flow are rather independent of the space discretization. In terms of magnitude however the situation

is quite different. On the one hand, the magnitude of the first harmonic (largest time-scale) tend to

decrease with the mesh refinement. The smaller time-scales on the other hand tend to increase their

magnitude as the mesh gets finer. This is in accordance with the idea that the mesh refinement allows

to improve the description of the small-scale flow structures. We see that the time average of the

Reynolds number is well captured with 50 cells per diameter. However we make an error of ∼ 17% on

the magnitude of the first harmonic. We should keep in mind that the description of time-scales is only

moderately accurate with 50 cells per diameter, and this affects the microscopic fluid-solid coupling.

However as we have a limited amount of time, we simulate the flow with 50 cells per diameter in the

following. This choice is a compromise between accuracy and CPU time per simulation. Here we see

that code parallelization and scalability is crucial, as it conditions the accuracy of the simulations.
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Figure 5.4: Flow data obtained with Jadim for Reg = 56 through a 2×2 square rigid array of cylinders
(two columns, two rows). The simulation uses a uniform cartesian mesh. 5.4a, values of the Reynolds
number ReD based on the time-average velocity according to the number of mesh cells per diameter.
5.4b, normalized power spectrum of the instantaneous Reynolds number ReD obtained with different
numbers of cells per cylinder diameter.

5.3.2 Comparisons

5.3.2.1 Solid-solid contacts

The simple approach to solid-solid contacts is validated in the case of two cylinders interacting in

a confined shear-flow. The comparison case is taken from [152], where the solid-solid interaction is

carefully handled by including an artificial short-distance lubrication force between cylinders. Fig. 5.5b

depicts the test case that we validate our approach with. It is made of two cylinders (number 1 and

number 2) in a channel. Whilst cylinder 1 is free to move and rotate, cylinder 2 is fixed. The parameters

of this numerical experiment are the same as in [152]. The difference lies in the numerical method.

We use a uniform mesh, and the size of a mesh cell dx is such that D = 30dx, and our thickness

contact δc is set to zero (δc = 0). Cylinder 1 is released at different position with a zero initial velocity

and the flow has zero initial conditions too. The obtained trajectories are compared to data from [152]

on Fig 5.5a and show good agreement.

The limit when cylinder 1 goes up cylinder 2 is well captured, and qualitatively the trajectories

are the same. There is a little discrepancy on the long term when the trajectory of cylinder 1 reverses

(three lower starting positions). This might be due to the difference in numerical method, especially

the treatment of the solid-solid interaction. Whereas [152] introduces a short distance interaction,

our cylinders interact only when they come in contact. This may induce a difference in rotation

speed, hence a difference in trajectories. A finer comparison is required to deal with this more deeply.

This comparison is satisfying and shows that our very simple approach to solid-solid contact allows a
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Figure 5.5: Comparison of the simple solid-solid interaction implemented in Jadim with Fig. 10 taken
from from [152]. The agreement is rather good when the two particles comes into contact (three upper
starting positions). We observe a discrepancy for the three lower starting positions. This shows the
effect of modeling the lubrication phenomena (as done in [152]) on the trajectories of the cylinders.

Code ReD gap Cx gap
icoFoam 1, 1065 × 102 / 3, 15 /
Jadim 1, 1062 × 102 0, 26% 3, 14 0, 02%

Table 5.3: Results of the validation of Jadim against OpenFOAM (OF) on the rigid case. The
diameter is discretized with 50 cells. Cx refers to the mean drag coefficient of a cylinder. ”gap” refers
to the difference between the results obtained with the two numerical methods.

rather realistic behaviour. However, simulations should be restricted to cases where solid-solid contacts

remain rare.

5.3.2.2 Rigid case

Validation cases of the IBM method of Jadim can be found in [143]. Here we verify that it is

able to evaluate the flow rate and hydrodynamic forces on a simple rigid case, at ReD ≃ 110. We

compare the IBM method of Jadim against the icoFoam solver from Open∇FOAM R©, that solves the

incompressible Navier-Stokes equations with a finite-volume formulation, and based on a conforming

mesh. The validation case is a 2 × 2 square array of cylinders. We set Reg = 56. Periodic conditions

are imposed to pressure and velocity on the fluid domain. The case is 2D and the geometry is rigid

(vσ = 0). The mesh is regular cartesian and such that D = 50dx. The instantaneous non-dimensional

flow-rate Re∗, drag Cd and lift Cl are plotted on Fig. 5.6 and show a very good agreement of time-

dependant signals. Tab. 5.3 compares the time averages and shows that the relative error is less than

0.5%. The agreement between Jadim and icoFoam is satisfying on this rigid case and suggests that

Jadim can handle 2D flow within an array of cylinders at ReD ≃ 110.
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Figure 5.6: Unsteady flow in a periodic elementary cell of an array of cylinders of porosity 0.8. The
diameter-based-Reynolds number ReD is around 110. t∗ is the time adimensionalized with the advec-
tion time. The flow-rate Re∗ is subtracted its time average and scaled with its amplitude.

5.3.2.3 Elastic case

We then compare the Jadim code against the MCCDF code on deformable cases. We characterize

a deformable case by two parameters f∗ and m∗. The f∗ parameter is defined as

f∗ =

√
k/m

Reg × νβ/D2

56

110
. (5.3.2)

We focus on rather stiff, 2 × 2 cases (f∗ = 2, f∗ = 4 and m∗ = 1). We compare the instantaneous

trajectories of cylinders, and time-average of flow-rate and hydrodynamic coefficients (see Tab. 5.4).

Hydrodynamic coefficients are defined as

Cx =
fx

1
2ρβLug

,

Cy =
fy

1
2ρβLug

,

(5.3.3)

where Lu is the size of a unit cell. The agreement is rather good in terms of trajectories (Fig. 5.7) and

flow rate. These are the most important features in this study, as we wish to evaluate the impact of

solid displacement on the flow rate. From this point of view and along with the comparison against

Open∇FOAM R©, the IBM method of Jadim seems a good candidate to start to explore the f∗,m∗

space parameters with ReD around 110.

However we can perform a finer comparison of the two IBM codes. Trajectories of the cylinders

are plotted on Fig. 5.7. We observe that the domain occupied by the cylinders obtained with the

MCCDF method is smaller than the one obtained with the Jadim method. This is verified as we

look more precisely to the standard deviation of the position of cylinders (Tab. 5.4). The standard

deviation is always smaller with the MCCDF method than with the Jadim method. This gap in
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(a) f∗ = 2 (b) f∗ = 4

Figure 5.7: Trajectories of the cylinders for (Reg = 56, m∗ = 1, f∗ ∈ [1, 4]) obtained with Jadim and
the MCCDF method. The trajectories obtained with the two different numerical methods compare
well.

standard deviation can be explained as we have

nIB · Dvβ

Dt
= − 1

ρβ
nIB · ∇pβ , (5.3.4)

at the solid boundary. This condition is loosely ensured by Jadim, and more carefully applied by the

MCCDF code. Hence as the cylinder accelerates, the flow opposes a greater pressure drag with the

MCCDF method and constrains the trajectory of the cylinder inside a smaller domain, compared

to the Jadim method. This added mass effect should affect the flow rate, as the resulting exposed

solid surface is larger with the Jadim method. Practically, this is where mass conservation plays

a role. Tab. 5.4 reports the ReD obtained with the two methods at Reg = 56 and show that the

MCCDF method predicts a slightly greater flow rate than Jadim. This is not significant but we

expect that the greater the Reynolds number, the greater this effect. The development of a sharp

interface IBM method to Jadim (e.g. the MCCDF method) seem relevant to exploring higher values

of the Reynolds number.

At the time of this study, Jadim affords much better performances than the MCCDF method

in terms of CPU time. Taking into account the limited amount of CPU time (as well as physical

time) available for this project, we chose to perform the numerical campaign with the IBM method of

Jadim, within the range of validity of this method. However we emphasize the fact that the MCCDF

method is worth developing in an efficient and maintainable language (e.g. C++). Currently it is only

a prototype code written in Python language. Moreover the parallelization is only partial and a true

distribution approach (e.g. following a domain decomposition method) should be implemented to

obtain decent scalability performances.
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Code x SD y SD ReD (Cx)A

√(
C2

y

)

A

f∗ = 2 Jadim 9, 20 × 10−2 1, 60 × 10−1 7, 20 × 101 3, 13 2, 43
f∗ = 2 MCCDF 8, 47 × 10−2 1, 56 × 10−1 7, 28 × 101 3, 05 2, 44
f∗ = 2 difference 8, 26% 2, 20% 1, 09% 2, 68% 0, 32%
f∗ = 4 Jadim 1, 81 × 10−2 7, 36 × 10−2 9, 06 × 101 3, 14 4, 27
f∗ = 4 MCCDF 1, 80 × 10−2 7, 23 × 10−2 9, 09 × 101 3, 03 4, 20
f∗ = 4 difference 0, 41% 1, 86% 0, 39% 3, 48% 1, 62%

Table 5.4: Statistics of the displacement of the cylinders. SD refers to the standard deviation of the
position of the cylinders. This characterizes how large is the displacement of the cylinder around its
time average position. We can appreciate the difference between the two numerical methods and this
may be due to the way the no-penetration condition is imposed at the fluid/solid interface.

5.4 Forced flow through an elastic REV

We vary the (f∗, m∗) parameters of an array composed of 2 rows and 2 columns of cylinders (2 × 2

case). During the numerical simulation, the CFL number is maintained to 1. The regular uniform

mesh is such that a cylinder diameter is discretized with 50 cells.

5.4.1 Coarse exploration for m∗ ∈ [1, 2, 4], Reg ∈ [56, 112], f∗ ∈ [1; 8]

A Stiff cases We explore the stiff cases space, namely cases for which f∗ ∈ [1, 2, 4, 8] and m∗ ∈

[1, 2, 4] and Reg ∈ [56, 112]. Fig. 5.8b shows S∗ obtained with Jadim for these set of parameters

(f∗,m∗, Reg). When cylinders are free to move attached to their rest position (deformable mode), the

effective exposed solid surface increases systematically compared to the rigid case (S∗ > 1 for every

deformable media). The stiffer the springs (f∗ ≥ 2), the smaller S∗, which means that the system

tends to the rigid case (S∗ = 1). This is consistent with the idea that a stiff spring constrains the

displacement of the cylinders and it is logical that a stiff medium behaves similarly to a rigid medium.

A more complicated trend is the evolution of S∗ with the reduced mass m∗. For Reg = 112, we see

that systematically, the larger m∗, the smaller S∗. The heavier the solid, the harder it is to move and

the more it behaves like the rigid medium. However this trend is not so clear for the lower Reynolds

number (Reg = 56). The effect of m∗ seem stronger as the flow inertia increases.

B Lock-in One last but not least interesting trend is the maximum value of S∗ observed on

Fig. 5.8b. Strikingly, this maximum value of S∗ can be up to 4 times larger than within the rigid

medium. This shows that taking into account the elasticity of the medium, and the resulting pore-

scale fluid-structure interaction, is relevant to the evaluation of the filtration law in an elastic porous

medium, if not crucial. For example the large scale coherent structure observed in canopy flows is

sensitive to the solid exposed surface S∗ [9, 65]. This maximum value of S∗ is reached whatever the

value of the Reynolds number or of the reduced mass m∗, around f∗ = 2. This shows that the fluid-
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Figure 5.8: Fig. 5.8a, trajectories for f∗ ≤ 1 at Reg = 56, m∗ = 1. The standard deviation of the
position of the cylinder decreases as the stiffness increases. Fig. 5.8b, effective surfaces S∗ for a 2 × 2
cell, Reg = 56 and Reg = 112. This plot is roughly detailed due to the large number of cases involved.
However this plot allows to observe the same trend for each case, i.e. there is a region where S∗ reaches
a maximum.

and solid- time scale have to be comparable in order for the fluid-solid coupling to be strong, and f∗ is

the relevant parameter to evaluate this. This phenomenon is similar to the lock-in phenomenon that

was observed in the case of single cylinder under vortex induced vibration in a cross flow (e.g. [153]).

It is known that when the natural frequency of the mass-spring system is near the flow frequency in

rigid mode (i.e. f∗ ∼ 1), the elastically mounted cylinder encounters large amplitude oscillations at

this natural structural frequency. This effect vanishes when the structural frequency is too different

(either larger or smaller) from the flow frequency in rigid mode.

5.4.2 Detailed profile of S∗ for m∗ = 1, Reg = 56, f∗ ∈ [1; 8]

C Soft cases On Fig. 5.8a, we observe the trajectories of three soft cases, i.e. cases with the value

of the reduced frequency set to f∗ ≤ 1. At these values of f∗, we see that the softness of the spring

allows large displacements. A cylinder can travel up to two unit cells away from its rest position. For

these stiffnesses, the relevance of the 2D assumption to model our slice of canopy seems to collapse.

These soft cases require the third dimension in order to be relevant for our elastic array of tubes.

Moreover as the cylinders encounter large displacements, solid-solid contact occur more often. Even

if we have proposed in section 5.2.1 a solution to avoid cylinders overlapping, as two cylinders come

into contact it is likely that the time-scales involved in the lubrication process that takes place are not

well-captured by our simple approach. This issue requires either a finer mesh (at a certain point the

cell size is of order of the viscous layer between two cylinders), or the addition of a particular force to
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account properly for the lubrication time-scales [154]. With our simple method currently implemented

in Jadim, we should avoid the simulation of cases where cylinders come often into contact and interact

a lot with one another. For these reasons, we choose to limit the numerical experiments to rather stiff

cases, i.e. such that f∗ ≥ 1.

D f∗ ≥ 1,m∗ = 1, Reg = 56 We plot the results obtained for S∗ on Fig. 5.9, corresponding to

f∗ ≥ 1,m∗ = 1, Reg = 56. This profile of S∗ is rather well detailed, accounting for the fact that it

takes at least 200 CPU hours for each simulation to reach a statistically steady state. The profile of

S∗ displays different remarkable features. In particular, two distinct maxima are observed (zones B

and D, Fig. 5.9). To better understand this behaviour, we can pay attention to the way the cylinders

couple between each other depending on the f∗ parameter (the stiffness). The vertical positions Y ∗

(adimensionalized with the size of a unit cell Lu) of the cylinders during time (adimensionalized with

the advective time
L2

u

ν

1

Reg
) are plotted on Fig. 5.10 and Fig. 5.11 and Fig. 5.12. These plots show

that the maxima observed on the profile of S∗ are due to the fact that the column-to-column cylinders

vibrate π rad out-of-phase. The fact that the large values of S∗ can be related to the vibration mode

of the cylinders means that the viscous dissipation in the pore-flow is the largest when the cylinders

vibrate π rad out-of-phase column-to-column. However the nature of the coupling depends on the zone

of interest. Indeed the maximum corresponding to zone B (Fig. 5.10) is due to the π rad out-of-phase

vibration of column-to-column cylinders, but the amplitude of the signal (i.e. the vertical position of

the cylinders) is not constant in time, and the signal is not periodic; the maximum corresponding to

zone D (Fig. 5.11) corresponds to a π rad out-of-phase vibration of the column-to-column cylinders

as well, but this time we clearly observe two superimposed frequencies (a small and a large one), and

the signal is periodic. The type of row-to-row coupling alos depends on the zone of interest. Indeed

while the row-to-row coupling is in phase for zone B, it is π rad out-of-phase for zone D. From these

observations we can conclude that the maxima in S∗ are related to the nature of coupling between

column-to-column cylinders. In between these maxima, the fluid/solid system lies in-between two

vibration modes and goes from one vibration mode to the other in an erratic way. Hence the in-

phase vibration deteriorates and the effective surface S∗ decreases. For large values of f∗ (zone F,

Fig. 5.12), the porous medium becomes very stiff and tends to behave like a rigid porous medium. As

a consequence S∗ tends to 1 when f∗ becomes large.

The fact that the type of fibre-to-fibre coupling impacts the effective exposed solid surface S∗ is a

microscale phenomena. Due to the scale separation assumption, it impacts the large scale behaviour

of the fibres only via the modeling of the hydrodynamic force applied to the fibre. In particular, the

interpolation process between slave- and master- fibres proposed in Section 3 is used to determine
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Figure 5.9: Detailed profile of S∗ for m∗ = 1, Reg = 56. This plot reveals a complicated behaviour
with two maxima, that can be related to the coupling of the cylinders between each other.

the large scale behaviour of the fibres, which is obtained after filtering the small-scale, fibre-to-fibre

coupling. Therefore the interpolation process between slave- and master- fibres at the large-scale is

consistent with the fact that at the small-scale (or stem-scale), a fluid-structure fibre-to-fibre coupling

occures in many different ways that are not represented in the macroscopic model.

5.4.3 Size of the REV

One last issue studied here is the size of a representative elementary volume (REV). In other words

we are willing to determine how many unit-cell (of dimension Lu) the computational domain should

contain, so that the small scale fluid-elastic interaction occurring in the real porous medium are

representative of the small-scale phenomenon that would occur in an infinitely large domain. Results

for a few stiffnesses and REV sizes are reported in Tab. 5.13 and plotted on Fig. 5.13. This shows that

the size of the REV impacts the predicted pressure drop. As one can see on Fig.5.13, the size of the

REV is crucial in elastic mode, in particular for stiff cases. This is due to the appearance of additional

modes as the size of the REV grows, leading to a varying surface exposed to the flow. To explain that,

we introduce the space phase shift measurement as

∆yyij =

√

1

Tp

∫

Tp

(
y′

ij − y′
i0

)2
dt. (5.4.1)

This measures the shift in position along the y direction of cylinder of row i and column j compared

to the cylinder of column 0 on the same row, i.e. the cylinder of column 0 that shares the same Y0
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Figure 5.10: Vertical position of the cylinders during time for different stiffnesses of the porous medium
at Reg = 56. The zone indicated in caption of each picture gives the corresponding zone of the profile of
S∗ given on Fig. 5.9. We observe that the maxima in S∗ occure when the column-to-column cylinders
vibrate π rad out-of-phase (zone B). Note that the row-to-row vibration is in-phase. The color of the
curve corresponds to a column of cylinders.
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Figure 5.11: Vertical position of the cylinders during time for different stiffnesses of the porous medium
at Reg = 56. The zone indicated in caption of each picture gives the corresponding zone of the profile
of S∗ given on Fig. 5.9. We observe that the maxima in S∗ occure when the column-to-column
cylinders vibrate π rad out-of-phase (zone D). Note that this time, the row-to-row vibration is π rad
out-of-phase. The color of the curve corresponds to a column of cylinders.
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Figure 5.12: Vertical position of the cylinders during time for different stiffnesses of the porous medium
at Reg = 56. The zone indicated in caption of each picture gives the corresponding zone of the profile
of S∗ given on Fig. 5.9. The color of the curve correspond to a column of cylinders.



5.5. CONCLUSION 139

coordinate for its rest position. We plot the map of this space phase shift on Fig. 5.14 and 5.15. We

observe that indeed the size of the REV introduces different vibration modes, and this is correlated to

the error on the predicted value of S∗. For case f∗ = 2,m∗ = 1 on a 4 × 4 REV, it is interesting to

see that ReD ≃ 62 is lower than the critical value Reu for unsteady flow in the rigid porous medium.

Here ReD is not relevant to characterize our cases. Indeed, we can obtain ReD ≃ 62 with or without

deformation of the medium, depending on Reg, and the Reynolds number ReD in rigid case wil be the

same in elastic case if the flow is steady. Hence, we rather use Reg to characterize our cases. ReD is

only interesting in terms of physical interpretation, but does not characterize properly our cases.

Another striking result on Fig.5.13 is that the effect of the size of the REV disappears when f∗ ≤ 1.

This can be understood as in these soft cases, the cylinders encounter large displacements and are not

coupled to their neighbouring column only, but with cylinders from the wider neighbourhood. Thereby

the growth in size of the REV does not introduce new vibration modes nor new features, because the

cylinder-cylinder interactions are roughly already captured by the smallest REV. It is likely however

that for these soft cases, an effect of the size of the REV might appear with macroscopically sheared

flow. Indeed we expect that such flows generate large scale effects involving both the elasticity of

the medium and the flow inertia. There is the question of the impact on macroscopic transport in

terms of momentum diffusion and advective transfer by the subgrid-scale flow. In particular based on

our data, we can assume that the fluid-elastic pore-scale interaction enhances the flow mixing at the

pore-scale. Therefore there should be more effort spent on macroscopically sheared flow within elastic

porous medium, with a specific look at the subgrid-scale stresses.

5.5 Conclusion

This section studies the effect of the fluid-structure interaction on the pressure drop through a periodic

box of elastically mounted cylinders. The approach proposes two IBM methods to solve this problem.

It appears from this study that the choice of numerical method is indeed important, in particular with

large flow inertia effects. However for the Reynolds number considered, the IBM method implemented

in Jadim [143] is sufficient to explore the trends. A preliminary set of data is obtained for a few

values of reduced mass and frequency of the model porous medium. This shows that the impact of

elasticity of the solid structure may increase the effective surface exposed to the flow in a significant

way (2 to 4 times the exposed surface of the rigid matrix, depending on the Reynolds number and

structure parameters). The impact of the size of the computational domain is also evaluated, and a

strong influence is found especially when cylinders tend to couple with their neighbours (stiff cases,

f∗ ≥ 2). In the future, regimes of stronger inertia should be studied, with larger domains and/or finer
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S∗

f∗

REV f025m1 f05m1 f1m1 f2m1 f4m1
2 × 2 76.74 74.97 75.23 71.99 90.61
4 × 4 73.97 73.71 75.47 61.88 79.53
8 × 8 74.33 74.14 75.13 64.76 80.91

Figure 5.13: ReD (table) and S∗ for Reg = 56 for three REV sizes and different stiffnesses of the elastic
medium. The type of coupling between the cylinders depends on the size of the REV for stiff cases,
and this impacts the flow rate through the elastic porous medium. This effect is observed mainly for
stiff cases (f∗ > 1). The convergence in REV size is much quicker for soft cases.

(a) 2 × 2 (b) 4 × 4 (c) 8 × 8

Figure 5.14: Map of ∆yy for f∗ = 2,m∗ = 1. The color-scale is the same for each REV size. The
clearer the color, the larger the value of ∆yy.
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(a) 2 × 2 (b) 4 × 4 (c) 8 × 8

Figure 5.15: Map of ∆yy for f∗ = 4,m∗ = 1. The color-scale is the same for each REV size. The
clearer the color, the larger the value of ∆yy. As in Fig. 5.14, the size of the REV introduces new
vibration modes for the cylinders composing the elastic porous medium.

meshes, and different flow conditions (e.g. macroscopic shear). The set of data we started to build for

the pressure drop through elastic porous media should be completed. A future work should aim at

studying non-periodic, unsteady flows in this model porous medium. This would allow to get insight

on the impact of elasticity of the solid matrix on the subgrid-scale stresses, under macroscopic shear

conditions. The development of an efficient, scalable code, that properly implements the no-penetration

condition at the solid boundary, is essential to the study of pore-scale fluid-structure interaction at

higher Reynolds number.



142 CHAPTER 5. UNSTEADY FLOW THROUGH ELASTIC POROUS MEDIA



Part IV

Conclusion

143





Chapter 6

Conclusion and future work

In this chapter, we draw a general conclusion, and propose some research perspectives.

6.1 General conclusion

In addition to improving our fundamental understanding of momentum- and mass- transport in

honami, the study of canopy flows has plenty other applications like for the modeling of transport

of sediments and nutrients in eco-systems, or the development of innovative coatings to manipulate

the turbulence on aerodynamic surfaces. For the specific purpose of passive flow control, it would be

interesting to estimate the advantages of a hairy coating in terms of net vertical momentum transfer

in a turbulent flow. Indeed the issue of vertical momentum transfer is crucial in the context of flow

separation postponement at the rear edge of a bluff body. To understand how such a poro-elastic

coating can be used to manipulate the flow, we propose a physical modeling and a numerical method

that simulates the multi-scale fluid-structure interaction developing over a canopy flow.

Canopy flows are characterised by a wide diversity of scales, making it very difficult if not impossi-

ble to simulate due to the large number of degrees of freedom involved. Based on previous observations

of canopy flows in nature (e.g. wind over forests or over plant fields), the canopy-scale is identified to

be the relevant scale to simulate, as it plays a dominant role in the vertical momentum- and mass-

transport process within canopy flows. In this study, we propose a physical modeling of the large-scale

features of canopy flows (honami), based on a scale separation of the fluid-structure coupling. We

focus on the simplest canopy flow, where the hydrodynamic forces and plant elasticity dominate the

interaction between the flow and the fibres that constitute the elastic canopy (typically the wind blow-

ing over a wheat field). We take advantage of the volume averaging method to write the macroscopic

conservation equations under assumptions that are clearly highlighted and discussed in details. In the
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context of modeling canopy flows, it appears that the development of a macroscopic model should be

adapted to the case under study, i.e. there is not such thing as a single model for every types of canopy

flow. However the framework of volume averaging allows to separate the different scales and to discuss

specific issues that arise. Hence this work can be used in order to

• develop a model adapted to any canopy of interest such as vegetated bed rivers or wheat fields.

• improve different issues, such as the handling of the free-flow/porous medium interface, as well

as the effect of the subgrid-scale stresses (SGS) on the large scale.

Among the diversity of scales that are involved in such passive elastic canopy flows, we aim to

simulate only the canopy-scale features. Hence, we adopt a porous medium- approach and filter-out

the un-desired small scales. To do so, we apply the volume averaging method. It is a flexible method

that allows to explicitly and practically filter the small scales of a system. The volume averaging

method appears to be a good choice here, although our approach can be improved with a little work

on many aspects that were simplified in this study. This leads us to a macroscopic model, that

describes only the large-scales of the fluid. Along with a specific approach for the solid-phase, we

obtain a macroscopic model (hybrid model) for the fluid-elastic interaction between the flow and the

canopy. In this model, although the smaller scales are filtered-out in time and space, they still affect the

canopy-scale phenomena via the subgid-scale stresses and the fluid-solid force applied to the canopy.

A modeling effort is therefore required in order to close the macroscopic model.

The effect of inertia on the fluid-solid force in porous media are examined in details, focusing on

the deviation from Darcy’s law. An asymptotic filtration law is derived based on the equations for the

fluid obtained from the volume averaging method. This asymptotic law allows to recover theoretical

results from the literature, that were obtained by the homogenization method. The framework we

propose allows to study the characteristics of the inertial deviation from Darcy’s law in terms of

magnitude and direction and to help clarify the role of the microstructure. A geometrical parameter,

the inertial sensitivity, is introduced to quantify the sensitivity to inertia of the microstructure of

any porous medium. This leads to the derivation of a new Reynolds number ReC , that better takes

into account inertia effects depending on the microstructure of the porous medium. The asymptotic

filtration law, as well as the new Reynolds number ReC , are tested on a number of ordered and

disordered example microstructures, against local direct numerical simulations of the flow within these

microstructures. The simulations are CPU demanding and are performed with the efficient, scalable

library Open∇FOAM R©, on the supercomputing facility CalMiP. The inertial sensitivity parameter is

shown to be essential in the comparison of advection- against diffusion- effects for a flow in a porous

medium. This provides insight on the role of the geometry and the length-scales involved in the inertial
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deviation from Darcy’s law. This deviation is mainly due to the ability of the flow within the porous

medium to develop advection-dominated area, depending on the shape of the microstructure.

The modeling of the small scales is further improved in the context of the macroscopic modeling

of unsteady flow in deformable elastic porous medium. A step toward a better physical understanding

of this topic is carried-on here, with the study of the pore-scale fluid-structure interaction (FSI)

at moderate Reynolds number occurring in the simplest elastic porous medium, i.e. a 2D array of

elastically mounted cylinders. This requires an efficient, parallelized code to explore the large panel

of geometries, flow regimes, and rigidity of the micro-structure. Two immersed boundary codes are

developed and tested. The first method (immersed boundary method (IBM) proposed in Jadim)

implements a diffuse fluid/solid boundary approach. The second method (mixed cut-cell direct forcing,

MCCDF) implements a sharp fluid/solid boundary approach. The main difference between the two

methods lies in the implementation of the no-slip condition for incompressible flow at the fluid/solid

boundary. We focus on a simple model porous medium (array of cylinders) and show that the two

methods compare well at the flow regimes (Re ∼ 100) and rigidity considered. We expect however that

the numerical results difference between the two methods becomes greater as the Reynolds number

and acceleration of the solid phase increase in magnitude. Based on this cross-validation, the IBM of

Jadim is used to show that the FSI at the pore scale translates into a dramatic increase in terms of

equivalent solid surface exposed to the flow, compared to the same rigid porous medium under the

same pressure gradient. This directly impacts the filtration law and should be taken into account in

the modeling of pore-scale unsteady flow in elastic porous media. The results are shown to be sensitive

to the size of the considered flow domain, in particular for stiff cases. This campaign shows that the

effect on S∗ is sensitive to the ratio between the flow time scale and the structure time scale, f∗. We

observe that depending on the value of f∗, the cylinders display different coupling patterns between

each other, leading S∗ to reach at least two maxima. This shows that the elasticity plays a complex

role in the determination of the pressure drop for unsteady flow in elastic porous media.

In the development of the macroscopic code, a rather simple, Lagrangian modeling of the solid

phase dynamics is proposed. A structure solver that resolves the dynamics of the porous medium

is integrated into a fluid solver of Open∇FOAM R©. The coupling between the fluid- and the solid-

solver is made sequentially, which means that the fluid- state is resolved first with the last solid- state,

then the solid- phase ”catches up” with the fluid- phase, then the fluid- state is resolved with the last

solid- state, etc. To save CPU-time, only a few fibres’ dynamics are resolved, and the porosity- and

inclination- fields are re-constructed based on linear interpolation of the kinematics between resolved

fibres. The coupling between the fluid and the solid phase is handled via the modeling of the fluid-

solid force, that is provided by a metamodel for a given porosity, Reynolds number and inclination
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of the fibres. The interface between the free-flow and the porous medium is handled by a space

varying source term in the transport equations, as proposed in the development of the macroscopic

model for the fluid-phase by the volume averaging method. The subgrid-scale stresses (SGS) are taken

into account by a SGS model in the free-flow region, but are neglected in the homogeneous porous

region. This method appears to be relevant as a first approach because we manage to recover the

fluid-structure coupling usually observed in canopy flows (honami) on an illustrative case. However

our model, as well as the numerical method, should be further improved in order to be able to conduct

deeper comparisons with experiments. This macroscopic code summarizes the work of this thesis,

and seems a promising way for simulating canopy flows and see the effect of tuning parameters such

as the porosity, the canopy stiffness and dimensions and damping, and the flow characteristics. The

framework of Open∇FOAM R© is adapted to the simulation of a canopy flow, as it is available and open

and it comes up with a message passing interface library that allows for a distribution of the tasks

related to the solid deformation among several CPUs. This parallelization feature has appeared to be

essential to the simulation of large canopy flows.

6.2 Future work

The development of a macroscopic code is a promising step toward the study of a poro-elastic layer

(canopy) under turbulent flow and the resulting large scale fluid-elastic interaction. In the context of

turbulent flow control, the numerical simulation of canopy flow could afford precise data measurement

at the core of the canopy, as well as valuable parameter studies and design space exploration that

could lead to the design of a canopy for a specific set of objectives. However we have seen that there

is still a lot of aspects to be developed in this context. Although we proposed some possible solutions,

multiple issues remain widely open toward the macroscopic modeling of momentum transport within

canopies and the numerical simulation of canopy flows.

In this study, we have written a model adapted to a particular case of canopy. We have made several

assumptions on the stiffness, weight and sparsity of the fibres, as well as on the type of macroscopic

fluid-solid interaction. Each assumption has been clearly highlighted and this allows the reader to

use this work to further develop his own model, adapted to any canopy of interest, whether it is a

vegetated river bed or a wheat field under strong wind. Depending on the canopy flow of interest,

different assumptions are to be made in order to account for the relevant physical phenomena. For

example, buoyancy forces require a particular implementation in the macroscopic model (in this work

they are neglected). Another strong assumption of this work is the ”high porosity” assumption, which

implies that porosity gradients play a negligible role in the homogeneous porous region.
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The database for the fluid-solid force is still incomplete. A wide range of parameters still requires

the use of heuristic models. For example the quadratic form of the fluid-solid force is required for

high Reynolds number, because direct numerical simulations of the flow a these Reynolds number is

too expensive, and there are no reliable experimental data that give the fluid-solid force according

to the direction of the mean flow in an array of tubes. Moreover, the determination of the fluid-

solid force according to the porosity is still very rough, and we have made use of the Kozeny-Carman

correlation in order to extend the metamodel to any porosity. In additions, the effect of elasticity of the

porous medium makes it even more complex, potentially involving many 3D, sophisticated fluid-elastic

physical phenomena that are still to be discovered.

The question of building macroscopic transport equations for turbulent flows within soft deformable

porous media is an exiting challenge. The modeling of the subgrid-scale stresses (SGS) is to be further

studied. It was shown that the SGS should be neglected in the homogeneous porous region, but they

play an important role in the free-flow region. Here we have used a classical SGS model, but it is not

obvious whether this model is acceptable near the top of the canopy. At the fluid/porous interface,

strong velocity gradients occur and the fluid interacts with a deformable elastic solid phase. This

impacts the vertical mixing and the influence of the fluid-structure coupling on the SGS is a wide open

research field. Concerning the study of the small scale, there are still huge challenges remaining. For

turbulent flows at the fluid/porous interface of an elastic medium, we have proposed a macroscopic

modeling via a continuous source term in the momentum transport equations. This needs to be further

investigated and validated on a real case by, e.g. , comparison to volume averaged- direct numerical

simulations.

One last but not least point is the code development aspect. The coupling between the fluid- and

the structure- solver is currently weak. This means that the fluid and the structure are not resolved

at the same time but sequentially. This could introduce some numerical artefacts in the prediction

of the fluid-structure coupling in canopy flows. This question needs to be investigated thoroughly.

More generally, the issue of the choice of numerical method and/or algorithms is challenging. There

is the need for efficient, scalable codes, for the study of the microscopic level, as well as for the

implementation of the macroscopic model. For example, a decomposition domain (or any other suitable

parallelization approach) should be implemented at both the microscopic and the macroscopic levels.

An immersed boundary approach adapted to rigid bodies moving at high Reynolds numbers (sharp

fluid/solid interface, e.g. the MCCDF method) is at the core of future perspectives in the study of

pore-scale FSI at moderate Reynolds numbers, as well as the study of the interface between a turbulent

flow and an elastic porous medium. Along with the writing of the macroscopic model, the development

of maintainable, high quality parallelized code is at the core of the numerical modeling of canopy flows.
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We believe that the preliminary work we have given here in the development of the macroscopic code

is a good start, although much can be done in order to improve it in terms of parallelization strategy,

implementation of the fluid-solid coupling and resolution of the solid-phase dynamics.
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Appendix A

Derivation of the filtration law

(periodic porous medium)

In this section, we give some technical details of the derivation of the filtration law by the volume

averaging method.

A.1 Upscaling via volume averaging

We volume-average Eq. 4.2.1 in order to obtain a representation at the macroscopic scale. To do so,

we first recall a few fundamental steps. Let ψ be a generic field, and γβ be the β- phase indicator. We

define the averaging volume V (x) of characteristic length ℓ0, whose centroid is located in x (which can

be in any of the two phases, see Fig. 2.1). The intrinsic average of ψ at point x is defined in a general

way as

〈ψ〉β |x =

∫

R3

m (r − x) γβ (r)ψ (r) dV (r) , (A.1.1)

where r = x + yβ . This definition of the intrinsic average 〈ψ〉β |x allows to choose m so that the

resulting intrinsic average is suitable to the porous medium that we volume average [44, 45]. m is a

kernel normalized so that
∫

R3

m (r) γβ (r) dV (r) = 1. (A.1.2)

In the following we drop the |x subscript when there is no ambiguity regarding the point where the

average is evaluated.

The volume averaging method uses a perturbation decomposition of the fields. Each field ψ is
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Figure A.1: One dimensional cellular filter, following the concept of double average introduced in [44].
ℓi is the dimension of the REV in the ith direction. Notice that the support of the cellular filter is
twice as large as the dimension of the REV.

decomposed as the sum of an average field, 〈ψ〉β
, and a spatial deviation, ψ̃, so that

ψ = 〈ψ〉β
+ ψ̃, (A.1.3)

with the underlying idea that

||∇ 〈ψ〉β || ≪ ||∇ψ̃||. (A.1.4)

The triangular cellular filter drawn in Fig. A.1 is a good choice for m (concept of double average

introduced in [44]). In 3D, m(x) takes the form

m(x) =
∏

i=1,3

mi(xi). (A.1.5)

Let Vβ (x) be the domain filled with the fluid- phase inside the averaging volume V (x) and let Vβ be

the measure of Vβ (x). It is useful to note that the cellular filter is such that

∫

Rn

m (r − x)ψ (r) dV (r) =
1

Vβ

∫

Vβ(x)

(

1

Vβ

∫

Vβ(y)

ψ (r) dV (r)

)

dV (y) . (A.1.6)
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In particular the average of a periodic field is such as

∫

Rn

m (r − x)ψ (r) dV (r) =
1

Vβ

∫

Vβ(x)

ψ (r) dV (r) . (A.1.7)

Since our porous medium is homogeneous and periodic, the kernel m defined by Eq. A.1.5 en-

sures differentiable average pressure and velocity fields, and volume averaging Eq. 4.2.1 yields a local

macroscopic equation. The order upon which the macroscopic equation can be stated depends on the

regularity of m. Here m is only C0, hence average quantities are only C1 and Taylor expansions of

average quantities are truncated with a second order error [44, 45]. We obtain

∇ 〈pβ〉β − ρβsβ =

∫

Rn

m (r − x) δβσ (r) nβσ · (−Ip̃β + µβ∇ṽβ) dV (r) +O

(
ℓ0

Lv

)2

, (A.1.8)

under the assumption that

ℓ0 ≪ Lv, (A.1.9)

where Lv is a characteristic macroscopic length.

We can now give a precise definition of the macroscopic pressure drop gβ as

gβ = ∇ 〈pβ〉β − ρβsβ . (A.1.10)

In Eq. A.1.8, we neglected macroscopic advection and diffusion terms, provided separation of

microscopic and macroscopic length scales of the velocity field [136]

||∇ 〈vβ〉β || ≪ ||∇ṽβ ||. (A.1.11)

This assumption is reasonable in homogeneous porous media, far from macroscopic boundaries. Thus,

for example, the region under study should not lie in a strong shear layer, nor near a wall or a crack.

A.2 The closure problem for spatial deviations

Eq. A.1.8 is a form of the volume averaged Navier-Stokes equations which needs additional equations

(i.e. a closure) for the surface integral term to be evaluated. To derive these equations, we first need to

decompose Eq. 4.2.1 applying Eq. A.1.3 to vβ and pβ . By virtue of Eq. A.1.11, we neglect gradients of

macroscopic velocities against those of the microscopic velocities in the momentum transport equation
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and obtain

(

〈vβ〉β
+ ṽβ

)

· ∇ṽβ = − 1

ρβ
∇p̃β + νβ∇2ṽβ − gβ

ρβ
, (A.2.1a)

∇ · ṽβ = 0, (A.2.1b)

ṽβ = − 〈vβ〉β
on Aβσ. (A.2.1c)

At this stage, it is common to introduce a tensorial relation between space deviations and the

intrinsic average of the velocity 〈vβ〉β
[136]. This mapping is adapted to the linear, creeping flow

regime, as it expresses the fact that the microscopic flow field is a linear combination of the flow in

three independent directions of space. Clearly this is not adapted here due to the non-linear term in

Eq. A.2.1. We therefore drop the linear closure relationship of Whitaker [136] and keep working with

the deviation fields. We introduce the modified dimensionless perturbations v∗ and p∗ defined as

v∗ =
ṽβ

v
+ λ, p∗ = ℓ

p̃β

µβv
, (A.2.2)

with ℓ as yet undefined. Under such circumstances

∇ṽβ = v

(

∇v∗ +
∇v
v

v∗ − ∇ 〈vβ〉β

v

)

, ∇p̃β = v
µβ

ℓ

(

∇p∗ + p∗ ∇v
v

)

. (A.2.3)

We inject Eq. A.2.2 and A.2.3 into Eq. A.2.1. Under the assumption given by Eq. A.1.11 we obtain

ℓ

νβ
v|x+yβ

(v∗ · ∇∗v∗) = −∇∗p∗ + ∇∗2
v∗ + ǫβh∗, (A.2.4)

where

h∗ = − ℓ

ǫβVβ

∫

Aβσ

nβσ · (−Ip∗ + ∇∗v∗) dA, (A.2.5a)

∇∗ = ℓ∇. (A.2.5b)

The weighting function m does not appear in the surface integral, due to the spatially periodic model

that we introduce later for the closure variables v∗ and p∗ [155]. Compared to the linear case, a non-

local term remains in Eq. A.2.4. As we intend to solve for v∗ and p∗ on a REV of characteristic size

ℓ0, we linearize

v|x+yβ
= v

[

1 +
yβ

ℓ
· ∇∗v

v
+O

(
ℓ0

Lv

)2
]

. (A.2.6)
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We also have that

〈vβ〉β
= 〈v∗v〉β

(A.2.7a)

= v

[

〈v∗〉β
+
〈

v∗
yβ

ℓ

〉β

· ∇∗v

v
+O

(
ℓ0

Lv

)2
]

, (A.2.7b)

hence

〈v∗〉β
= λ −

〈

v∗
yβ

ℓ

〉β

· ∇∗v

v
+O

(
ℓ0

Lv

)2

. (A.2.8)

We define the REV as the unit cell of our periodic porous medium. This is consistent with the flow

regimes considered. In many systems there may be transport processes with characteristic length scales

much larger than the unit cell of the microstructure, as argued in, e.g. , [34, 33, 156]. In such cases,

one cannot reduce the REV to the unit cell of the porous medium and would need to determine an

actual REV size for the flow process to be represented adequately.

We add periodic conditions at the boundaries of the REV since source terms of the problem are

periodic themselves. By virtue of Eq. A.1.9,
∇∗v

v
terms are negligible. We therefore determine the

closure variables v∗, p∗ through the approximate system

ℓv

νβ
(v∗ · ∇∗v∗) = −∇∗p∗ + ∇∗2

v∗ + ǫβh∗, (A.2.9a)

∇∗ · v∗ = 0, (A.2.9b)

v∗ = 0 at Aβσ, (A.2.9c)

〈v∗〉β
= λ. (A.2.9d)

Here, it should be clear that the surface integral in Eq. A.1.8 is well approximated by h∗v issued

from Eq. A.2.9, only if lengthscale assumptions stated by Eq. A.1.9 and Eq. A.1.11 are acceptable.

The filtration law is then given from Eq. A.1.8 by

ℓ2

µβ
gβ (λ, δ) = −h∗v. (A.2.10)

Depending on v, the equation above gives the macroscopic pressure drop for a steady inertial flow in

the λ direction.
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Appendix B

The Asymptotic

Generalized-Forchheimer equation

We inject the expansion Eq. 4.2.7 into Eqs. A.2.9 to derive the asymptotic generalized-Forchheimer

equation (AGF). Order i ≥ 0 corresponds to

S∗
i = −∇∗p∗

i + ∇∗2
v∗

i + ǫβh∗
i , (B.0.1a)

∇∗ · v∗
i = 0, (B.0.1b)

v∗
i = 0 at Aβσ, (B.0.1c)

with

S∗
0 = 0, (B.0.2a)

S∗
1 = v∗

0 · ∇∗v∗
0, (B.0.2b)

S∗
i =

∑

k+p=i−1

(
v∗

k · ∇∗v∗
p + v∗

p · ∇∗v∗
k

)
,∀i > 2, (B.0.2c)

and

h∗
i = − ℓ

ǫβVβ

∫

Aβσ

nβσ · (−Ip∗
i + ∇∗v∗

i ) dA. (B.0.3)

To solve System B.0.1 we proceed with this change of variables

v∗
i = v∗

i0 + B∗
0 · h∗

i , (B.0.4a)

p∗
i = p∗

i0 + b∗
0 · h∗

i , (B.0.4b)
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with

0 = −∇∗b∗
0 + ∇∗2

B∗
0 + ǫβI, (B.0.5a)

∇∗ · B∗
0 = 0, (B.0.5b)

B∗
0 = 0 at Aβσ, (B.0.5c)

and

S∗
i = −∇∗p∗

i0 + ∇∗2
v∗

i0, (B.0.6a)

∇ · v∗
i0 = 0, (B.0.6b)

v∗
i0 = 0 at Aβσ. (B.0.6c)

From Eq. A.2.8 we have 〈v∗〉β
= λ. Hence, the coefficients of expansion in Eq. 4.2.7 verify

〈v∗
0〉β

= λ, (B.0.7a)

〈v∗
i 〉β

= 0,∀i ≥ 1. (B.0.7b)

Taking the average of order 0 in Eq. B.0.4, we obtain

λ = 〈v∗
00〉β

+ 〈B∗
0〉β · h∗

0. (B.0.8)

Clearly, v∗
00 and p∗

00 are both zero, and Eq. 4.2.2 at order 0 reads

gβ = −µβ

ℓ2

(

〈B∗
0〉β
)−1

· λv = −µβ

ℓ2

(

〈B∗
0〉β
)−1

· 〈vβ〉β
, (B.0.9)

which is the well known [107, 40] Darcy’s law (Eq. 5.1.1). The Darcy permeability tensor, KD, can be

identified as

KD = ǫβℓ
2 〈B∗

0〉β
. (B.0.10)

Darcy’s law is a zero order approximation with regard to our perturbation analysis in δ. As the flow

rate increases, inertia effects at the pore scale become increasingly important. The system goes beyond

the creeping flow regime and deviates from Darcy’s law.

The average of Eq. B.0.4 gives

〈v∗
i 〉β

= 〈v∗
i0〉β

+ 〈B∗
0〉β · h∗

i ,∀i ≥ 1. (B.0.11)
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Recalling Eq. B.0.7 and B.0.10 we obtain

h∗
i = −ǫβℓ2K−1

D · 〈v∗
i0〉β

,∀i ≥ 1. (B.0.12)

Hence, Eq. 4.2.2 at order N ≥ 1 is (AGF)

gβ = −ǫβµβK−1
D ·



λ −
N∑

i≥1

〈v∗
i0〉β

δi



 v. (B.0.13)
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Appendix C

The cubic regime

Eq. B.0.13 at order one gives (KD is symmetric 1)

1

µβ
gβ = −ǫβv




 K

−1

D
· λ

︸ ︷︷ ︸

Darcy term

− 〈v∗
10〉β · K−1

D δ
︸ ︷︷ ︸

first order correction

+O
(
δ2
)




 . (C.0.1)

We note that v∗
0 , v∗

10 , B∗
0 verify a no-slip condition on Aβσ and periodic boundary conditions over

the REV. b∗
0 verifies periodic boundary conditions over the REV. We start by contracting Eq. B.0.5

with v∗
10

0 = −v∗
10 · ∇∗b∗

0 + v∗
10 · ∇∗2

B∗
0 + ǫβv∗

10. (C.0.2)

As v∗
10 is divergence-free, we can rewrite the first term as a divergence

v∗
10 · ∇∗b∗

0 = ∇∗ · (v∗
10b∗

0) . (C.0.3)

Also

v∗
10 ·
(

∇∗2
B∗

0

)

= v∗
10j∂

∗
i

(

∂∗
i B∗

0jm

)

(C.0.4a)

= ∂∗
i

(

v∗
10j∂

∗
i B∗

0jm

)

− ∂∗
i v∗

10j∂
∗
i B∗

0jm, (C.0.4b)

hence, taking the average of Eq. C.0.2, applying Gauss theorem and using boundary conditions for v∗
0

and v∗
10 we obtain

ǫβ 〈v∗
10〉β

=
〈

T (∇∗v∗
10) : ∇∗B∗

0

〉β
. (C.0.5)

1One can show using Eq. B.0.5 that KD is symmetric (see proof in [40]).

163



164 APPENDIX C. THE CUBIC REGIME

We contract the order 1 of Eq. B.0.6 with B∗
0

(v∗
0 · ∇∗v∗

0) · B∗
0 = − (∇∗p∗

10) · B∗
0 +

(

∇∗2
v∗

10

)

· B∗
0, (C.0.6)

rewrite

(∇∗p∗
10) · B∗

0 = ∇∗ · (B∗
0p

∗
10) , (C.0.7a)

(

∇∗2
v∗

10

)

· B∗
0 = ∇∗ · (∇∗v∗

10 · B∗
0) −T (∇∗v∗

10) : ∇∗B∗
0, (C.0.7b)

and take the average of Eq. C.0.6. Applying Gauss theorem and recalling the boundary conditions for

v∗
0 and v∗

10 we have

〈v∗
0 · ∇∗v∗

0 · B∗
0〉β

= −
〈

T (∇∗v∗
10) : ∇∗B∗

0

〉β
. (C.0.8)

With Eq. C.0.5 we obtain

ǫβ 〈v∗
10〉β

= − 〈v∗
0 · ∇∗v∗

0 · B∗
0〉β

. (C.0.9)

Let vd such as

vd = ℓ2B∗
0 · K−1

D · d, (C.0.10)

with d a unit vector along a generic direction. The component along d of the first order correction to

Darcy’s law reads

ǫβℓ
2f(1) · d = ǫβℓ

2 〈v∗
10〉β · K−1

D · d = − 〈v∗
0 · ∇∗v∗

0 · vd〉β
. (C.0.11)

Let us rewrite the 〈v∗
0 · ∇∗v∗

0 · vd〉β
term using

v∗
0 · ∇∗v∗

0 · vd = v∗
0 · ∇∗ (v∗

0 · vd) − v∗
0 · ∇∗vd · v∗

0 (C.0.12a)

= ∇∗ · (v∗
0v∗

0 · vd) − v∗
0 · ∇∗vd · v∗

0, (C.0.12b)

so that

ǫβℓ
2f(1) · d = − 〈v∗

0 · ∇∗v∗
0 · vd〉β

= 〈v∗
0 · ∇∗vd · v∗

0〉β
. (C.0.13)

This is a general equation that gives information on the component in the d direction of the first

correction to Darcy’s law.

C.1 Drag component F‖

The direction d = λ corresponds to

ǫβvd = v∗
0. (C.1.1)



C.2. ORTHOGONAL COMPONENT F⊥ 165

With Eq. C.0.13 we clearly have that

ǫβvd = v∗
0 implies 〈v∗

0 · ∇∗v∗
0 · vd〉β

= 0, (C.1.2)

which is equivalent to F
(1)
‖ = 0 due to Eq. C.0.11, so that in a periodic porous medium

1

µβ
λ · gβ (λ, v) = −ǫβv

[
λ · K−1

D · λ +O
(
δ2
)]
, (C.1.3)

i.e. the first drag inertial correction to Darcy’s law of our AGF is cubic in terms of the average velocity.

C.2 Orthogonal component F⊥

Let λ
⊥ be a unit vector orthogonal to the flow direction λ. Unfortunately, Eq. C.0.13 does not help

to prove that F
(1)
⊥ = 0. We can however show that F

(1)
⊥ must be zero under specific assumptions on

the microstructure of the porous medium.

Eq. C.0.13 gives the information that ℓ2f(1) · d is quadratic in λ, hence

f(1)(+λ) = f(1)(−λ) (C.2.1)

If we consider a porous medium that verifies the reversibility assumption (Eq. 4.2.10), as in [110], we

have at order 1

−ǫβv
[

K
−1

D
· (−λ) + f(1)(−λ)δ +O

(
δ2
)]

︸ ︷︷ ︸

gβ(−λ,v)

= −
(

−ǫβv
[

K
−1

D
· (+λ) + f(1)(+λ)δ +O

(
δ2
)])

︸ ︷︷ ︸

−gβ(+λ,v)

, (C.2.2)

so that if our AGF equation is correct, we must have

f(1) (−λ) = −f(1) (+λ) , (C.2.3)

which implies that f(1) = 0, or equivalently

F
(1)
‖ = F

(1)
⊥ = 0. (C.2.4)

We have already shown that our asymptotic development yields F
(1)
‖ = 0 for any periodic porous

media. Hence the new information in Eq. C.2.4 is that F
(1)
⊥ must be zero for our AGF expression to

be valid in porous media where the reversibility assumption is verified. Interestingly, Eq. C.0.13 does

not allow to conclude (to our knowledge) that F
(1)
⊥ = 0 when d = λ

⊥ a direction orthogonal to the
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flow direction λ, and yet, this has to be the case under the reversibility assumption.
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