
HAL Id: tel-04217442
https://theses.hal.science/tel-04217442v1

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-preserving distributed queries compatible with
opportunistic networks

Ludovic Javet

To cite this version:
Ludovic Javet. Privacy-preserving distributed queries compatible with opportunistic networks. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Université Paris-Saclay, 2023. English. �NNT :
2023UPASG038�. �tel-04217442�

https://theses.hal.science/tel-04217442v1
https://hal.archives-ouvertes.fr

Privacy-preserving distributed queries

compatible with opportunistic networks

Requêtes distribuées respectueuses de la vie privée compatibles avec des

réseaux opportunistes

Thèse de doctorat de l'université Paris-Saclay

École doctorale n°580 : Sciences et Technologies de l’Information et de la

Communication (STIC)

Spécialité de doctorat : Informatique

Graduate School : Informatique et Sciences du Numérique

Référent : Université de Versailles-Saint-Quentin-en-Yvelines

Thèse préparée dans l’unité de recherche Données et Algorithmes pour une ville

intelligente et durable (Université Paris-Saclay, UVSQ, Inria), sous la direction de

Luc BOUGANIM, Directeur de recherche, le co-encadrement de Nicolas ANCIAUX,

Directeur de recherche, et le co-encadrement de Philippe PUCHERAL, Professeur.

Thèse soutenue à Versailles, le 19 juillet 2023, par

 Ludovic JAVET

Composition du Jury
Membres du jury avec voix délibérative

Nathalie MITTON

Directrice de recherche, Inria
 Présidente

Philippe LAMARRE

Professeur, INSA Lyon
 Rapporteur & Examinateur

Pierre SENS

Professeur, Sorbonne Université
 Rapporteur & Examinateur

Zoubida KEDAD

Professeure, UVSQ, Université Paris-Saclay
 Examinatrice

Claudia RONCANCIO

Professeure, Grenoble INP Ensimag
 Examinatrice

N
N

T
 :
 2

0
2
3
U

P
A

S
G

0
3
8

T
H

E
S

E
 D

E
 D

O
C

T
O

R
A

T

Titre : Requêtes distribuées respectueuses de la vie privée compatibles avec des réseaux opportunistes

Mots clés : Gestion de données décentralisée, Calculs par la foule, Protection de la vie privée, Réseaux opportunistes

Résumé : Dans la société actuelle, où l'IoT et les

plateformes numériques transforment notre vie

quotidienne, les données personnelles sont générées

à profusion et leur utilisation échappe souvent à

notre contrôle. Des législations récentes comme le

RGPD en Europe proposent des solutions concrètes

pour réguler ces nouvelles pratiques et protéger

notre vie privée. Parallèlement, sur le plan technique,

de nouvelles architectures émergent pour répondre

à ce besoin urgent de se réapproprier nos propres

données personnelles. C'est le cas des systèmes de

gestion des données personnelles (PDMS) qui offrent

un moyen décentralisé de stocker et de gérer les

données personnelles, permettant aux individus

d’avoir un meilleur contrôle sur leur vie numérique.

Cette thèse explore l'utilisation distribuée de ces

PDMS dans un contexte de réseau opportuniste, où

les messages sont transférés d'un appareil à l'autre

sans nécessiter d'infrastructure. L'objectif est de

permettre la mise en œuvre de traitements

complexes croisant les données de milliers

d'individus, tout en garantissant la sécurité et la

tolérance aux pannes des exécutions.

L'approche proposée utilise les environnements

d'exécution de confiance pour définir un nouveau

paradigme informatique, intitulé Edgelet

computing, qui satisfait à la fois les propriétés de

validité, de résilience et de confidentialité. Les

contributions comprennent (1) des mécanismes de

sécurité pour protéger les exécutions contre les

attaques malveillantes visant à piller les données

personnelles, (2) des stratégies de résilience pour

tolérer les défaillances et les pertes de messages

induites par l'environnement décentralisé, (3) des

validations approfondies et des démonstrations

pratiques des méthodes proposées.

Title: Privacy-preserving distributed queries compatible with opportunistic networks

Keywords: Decentralized data management, Crowd computing, Privacy protection, Opportunistic networks

Abstract: In today's society, where IoT and digital

platforms are transforming our daily lives, personal

data is generated in profusion and its usage is often

beyond our control. Recent legislations like the GDPR

in Europe propose concrete solutions to regulate

these new practices and protect our privacy.

Meanwhile, on the technical side, new architectures

are emerging to respond to this urgent need to

reclaim our own personal data. This is the case of

Personal Data Management Systems (PDMS) which

offer a decentralized way to store and manage

personal data, empowering individuals with greater

control over their digital lives.

This thesis explores the distributed use of these

PDMS in an Opportunistic Network context, where

messages are transferred from one device to another

without the need for any infrastructure. The

objective is to enable the implementation of

complex processing crossing data from thousands

of individuals, while guaranteeing the security and

fault tolerance of the executions.

The proposed approach leverages the Trusted

Execution Environments to define a new computing

paradigm, entitled Edgelet computing, that

satisfies both validity, resiliency and privacy

properties. Contributions include: (1) security

mechanisms to protect executions from malicious

attacks seeking to plunder personal data, (2)

resiliency strategies to tolerate failures and

message losses induced by the fully decentralized

environment, (3) extensive validations and practical

demonstrations of the proposed methods.

5

Research for this thesis has been conducted within the PETRUS team, which

is a collaboration between the DAVID laboratory from the University of

Versailles-Saint-Quentin-en-Yvelines and the Inria Saclay Centre.

REMERCIEMENTS

J’adresse ma sincère gratitude envers toutes celles et ceux qui m’ont apporté

leur aide et leur soutien tout au long de ces années de doctorat. Votre

présence a eu un impact déterminant sur ma réussite, et je suis extrêmement

reconnaissant d'avoir eu le privilège de vous compter à mes côtés pour cette

étape significative de ma vie professionnelle.

En tête de mes remerciements, je tiens à exprimer ma profonde

reconnaissance envers mes trois encadrants, Luc, Nicolas et Philippe. Votre

expertise et votre exceptionnelle bienveillance ont insufflé une belle

dynamique à tous nos échanges, et je suis très heureux de pouvoir poursuivre

l’aventure avec vous encore quelques années. Un grand merci pour votre

disponibilité et votre écoute lors des périodes difficiles, en particulier

pendant les confinements de la crise Covid, où le manque de contact social

et d’activité sportive pesaient grandement sur mon moral.

Ma reconnaissance s'étend ensuite aux membres de l’équipe PETRUS en

commençant par les anciens doctorants, Dimitris, Julien Loudet, et Riad pour

leur accueil des plus chaleureux et leur transmission du « spirit of the team ».

Je remercie ensuite Julien Mirval et Robin, mes compagnons de route

pendant ce doctorat, avec qui j'ai tissé des liens d'amitié précieux et dont les

moments de convivialité que nous avons partagés au bureau ou ailleurs

resteront parmi les plus beaux souvenirs de ma thèse. J’adresse également

ma sincère gratitude à tous les autres membres de l’équipe : Ali, Floris,

Guillaume, Iulian, Katia, Laurent, et Mariem qui m’ont accompagné et

soutenu pendant toutes ces années avec une attitude toujours bienveillante.

Enfin, je tiens à remercier chaleureusement Léo, un stagiaire exceptionnel qui

m’a beaucoup aidé pour le développement de la plateforme de

démonstration et avec qui j’ai eu la chance de faire un petit tour à travers le

monde pour présenter nos travaux.

Je remercie également les membres du laboratoire DAVID, en particulier les

doctorantes et doctorants : Baudouin, Hafsa, Jingwei, Lili, Perla, Rahma,

Saeed, Saloua, Souheir, et Zoé que j’ai eu le plaisir de rencontré (ou de mieux

connaître) et avec qui j’ai partagé d’agréables moments que ce soit sur le

campus de Versailles ou lors de conférences.

Finalement, je tiens à exprimer ma profonde reconnaissance envers mes amis

et ma famille, dont le soutien inébranlable et les encouragements constants

ont été des piliers essentiels tout au long de mon parcours. À mes amis, je

8

souhaite exprimer ma gratitude pour leur présence dans les moments où

j'avais besoin de m'évader et de trouver de nouvelles inspirations. À mes

parents, frère, sœur, grands-parents, oncles, tantes, cousins et cousines, je

suis infiniment reconnaissant pour leur engagement à mes côtés, leur soutien

a constitué une base fondamentale de mon accomplissement. Enfin, je tiens

à adresser un remerciement spécial à ma compagne, Eva, qui partage ma vie

et a été d’une aide indéfectible, m'insufflant confiance et détermination à

chaque étape de cette aventure.

Enfin, à toutes celles et ceux que je n’ai pas mentionnés mais qui ont

contribué au bon déroulement de cette thèse, je vous adresse mes

remerciements les plus sincères.

RESUME

La croissance exponentielle d'Internet et son influence sur la société ont

conduit à une création de données en quantités sans précédent. En 2018,

l'ICD [1] a estimé la sphère de données mondiales annuelle à 33 ZB (1021

octets), avec des prévisions de croissance à 175 ZB d'ici 2025. La périphérie

d'Internet s’étend à un rythme beaucoup plus rapide que son cœur, et cette

croissance ne devrait pas s'arrêter là, avec une estimation à près de 29,3

milliards d'appareils connectés pour 2023 [2]. L’omniprésence de l'Internet

des objets dans notre vie quotidienne contribue à accélérer notre société vers

l'ère du numérique, où les données forment le "nouveau pétrole" [3].

Bien que cette création de données ait apporté de grands avantages aux

entreprises et aux gouvernements, elle a également soulevé de graves

préoccupations en matière de sécurité et de confidentialité des données

personnelles. En effet, de par nos interactions avec nos appareils

informatiques (smartphones, tablettes, ordinateurs) et notre utilisation de

services numériques (boutiques en ligne, réseaux sociaux), une quantité

massive de données personnelles est collectée à notre insu. Ces données

concernant des milliards d'individus sont souvent centralisées sur d'énormes

serveurs (par exemple, Google, Amazon, Facebook), facilitant leur accès, leur

traitement et leur partage. Cette centralisation des données dans un seul

système d'information en fait alors un véritable "pot de miel" pour les pirates

informatiques. Les cyberattaques qu'ils mènent visent à capturer le plus

d'informations personnelles possible (noms, adresses, e-mails, mots de

passe, dates de naissance, etc.) afin de les revendre à d'autres criminels, par

exemple pour des campagnes de phishing. Ces violations de données sont

devenues très courantes et touchent de nombreux secteurs d'activité [4].

Malheureusement, les cyberattaques ne sont pas le seul inconvénient de la

centralisation massive des données personnelles. En 2013, Edward Snowden

a révélé que le gouvernement américain, par le biais de la National Security

Agency, organisait une surveillance massive de sa population avec la

complicité des détenteurs de données [5]. De plus, le profilage basé sur les

données personnelles (niveau de revenu, orientation politique, habitudes

d'achat) pousse le vice encore plus loin, avec la possibilité de manipuler

massivement la population. Par exemple, les publicités affichées sur les

réseaux sociaux comme Facebook bénéficient d'un mécanisme de micro-

ciblage pour adapter le contenu de la publicité au public ciblé. Les élections

américaines de 2016 et brésiliennes de 2018 ont été fortement influencées

par ces mécanismes de publicités ciblées sur Facebook [7].

10

Pour répondre à toutes ces dérives d'usage et renforcer la sécurité des

données personnelles, l'Union Européenne a adopté un cadre législatif, le

RGPD [8], entré en vigueur en 2018. Cette réglementation s'applique à toutes

les organisations, publiques ou privées, qui traitent des données personnelles

appartenant à des résidents européens. Elle réglemente la collecte, le

traitement et l'utilisation des données, ainsi que leur période de

conservation. Au niveau individuel, cette loi accorde le droit à la portabilité

des données, un mécanisme qui permet à quiconque de demander une copie

de ses données personnelles détenues par une entreprise ou une

administration. Ce mécanisme de portabilité, suivant d'autres initiatives telles

que Blue Button aux États-Unis [9] ou MesInfos en France [10], constitue un

élément essentiel pour la réappropriation de nos propres données.

Cependant, la portabilité des données seule ne suffit pas à retrouver un

contrôle sécurisé et respectueux de la vie privée si les solutions techniques

pour héberger ces données sont à nouveau hypercentralisées.

Ainsi, dans ce contexte de sensibilisation croissante à la confidentialité, la

nécessité de reprendre le contrôle de ses données personnelles a conduit au

développement de nombreux systèmes informatiques plus respectueux de la

vie privée. À titre d’exemple, nous pouvons mentionner l'application de

messagerie instantanée Signal [12], la boîte mail StartMail [13] ou encore la

solution de stockage Tresorit [14]. Cette tendance a également suscité

l'intérêt de la communauté scientifique, avec notamment la proposition de

solutions de gestion de données personnelles décentralisées (PDMS) [15].

Conçus comme des assistants matériels ou logiciels centrés sur l'utilisateur,

les PDMS permettent aux individus de gérer leur vie numérique avec des

fonctionnalités allant de la collecte automatique de données à des tâches de

traitement et de partage plus complexes, le tout dans un environnement

sécurisé et facile à utiliser. Des solutions industrielles sont déjà disponibles,

comme Cozy Cloud [16], qui implémente un PDMS pouvant être hébergé soit

sur le cloud, soit directement sur un appareil personnel.

Afin de ne pas régresser par rapport aux systèmes centralisés, l'architecture

décentralisée du PDMS doit permettre l'exécution de calculs croisant les

données de plusieurs individus. À l’instar des travaux récents proposant des

solutions techniques pour exécuter des requêtes distribuées sur les

PDMS [17]–[19], cette thèse étudie les solutions permettant de distribuer des

traitements de façon respectueuse de la vie privée et tolérante aux pannes.

Cependant, contrairement à ces précédents travaux, nous nous intéressons

spécifiquement au cas où les PDMS sont déployés sur des appareils

personnels (par exemple, smartphones, PC ou objets intelligents) avec des

communications non conventionnelles, c'est-à-dire avec des messages

11

envoyés d'un appareil à un autre via des canaux à courte portée (par exemple,

Wi-Fi ou Bluetooth), formant ainsi un réseau opportuniste (OppNet) [20].

Notre objectif est triple : nous voulons construire une solution qui (1) soit à

la fois générique et évolutif, permettant des calculs complexes sur les

données de milliers d'individus, (2) soit sécurisée et respecte la vie privée des

personnes impliquées, et (3) soit tolérante aux pannes malgré un

environnement entièrement décentralisé, propice aux défaillances et aux

pertes de messages.

Exemple de motivation. Le contexte inhabituel de cette thèse est

particulièrement inspiré par le cas d'utilisation du projet DomYcile [21]. Notre

équipe travaille en partenariat avec le département des Yvelines et la société

HIPPOCAD (filiale du groupe La Poste) [22] pour proposer une solution de

gestion de données pour les personnes âgées recevant de l’aide à domicile.

Actuellement, près de 8 000 patients sont équipés d'une boîte informatique

sécurisée où leurs dossiers médicaux et sociaux sont stockés. Ces boîtes ne

sont pas connectées à Internet pour des raisons de coût, de sécurité et

d'acceptabilité, et ne sont accessibles qu'au domicile du patient par les

professionnels de santé. La plateforme DomYcile, mise en place par le

département des Yvelines, est ouverte par conception, de sorte que des tiers

(par exemple, des associations de patients, des organismes statistiques, des

professionnels de santé) puissent proposer de nouveaux services d'intérêt

pour les patients (par exemple, interroger des cohortes éphémères de

patients consentants et leur fournir des conseils de santé).

DomYcile n'est évidemment pas le seul scénario d'application de cette thèse.

En effet, contribuer avec ses données à des fins utiles pour la population est

connu en Europe sous le nom d'altruisme des données. Nous envisageons

que ce type d'interrogation de cohortes éphémères puisse se généraliser à

d'autres situations telles que les sondages opportunistes. Voici une

description de ces deux concepts :

Altruisme des données : Introduite dans le « Data Governance Act » de

l'UE [23], cette proposition encourage les individus à donner leur

consentement pour traiter leurs données personnelles à des fins telles que la

recherche scientifique ou l'amélioration des services publics. La protection de

la vie privée est primordiale dans ce contexte, car c'est un élément clé pour

que les individus participent avec leurs données sensibles.

Sondage opportuniste : Lors d'événements accueillant un large public (par

exemple, conférences, concerts, musées, matches), les participants

pourraient contribuer avec leurs données (par exemple, centres d'intérêt,

12

nationalité, âge) à un traitement global pour améliorer leur expérience

utilisateur en temps réel (c'est-à-dire adapter les services aux caractéristiques

du public). La proximité des individus et de leurs appareils personnels rend

l'utilisation des infrastructures de communication traditionnelles inutile, voire

inappropriée, et ouvre la voie à de l'informatique opportuniste [24].

Contributions. Pour atteindre les trois objectifs énumérés précédemment et

correspondre aux réalités de terrain de nos cas d'utilisation, cette thèse

apporte les contributions suivantes :

1. La définition du paradigme de calcul Edgelet, une nouvelle

architecture pour mettre en œuvre des traitements complexes sur des

appareils personnels dans un environnement hautement distribué,

sujet aux pannes et dépourvu d'infrastructure.

2. La proposition de mécanismes de sécurité robustes pour contrer les

tentatives d'attaques malveillantes et protéger les données des

individus impliqués dans les requêtes distribuées.

3. La présentation et l'analyse de trois stratégies de résilience différentes

produisant des résultats valides et tolérant aux pannes et aux pertes

de messages induites par l'environnement entièrement décentralisé.

4. La mise en œuvre de validations approfondies et de démonstrations

pratiques des méthodes proposées.

Cette thèse est organisée en huit chapitres, commençant par l'introduction,

dans lequel nous détaillons le contexte général, les motivations et les

contributions.

Le chapitre 2 présente l'état de l'art et les connaissances préalables

nécessaires pour comprendre le sujet, qui croise plusieurs domaines de

recherche. Nous commençons par lister les différentes solutions de PDMS

avant de détailler le contexte des réseaux opportunistes. Ensuite, nous

étudions les architectures de calcul décentralisées pour comprendre les

problèmes liés à la vie privée et à la tolérance aux pannes. Enfin, nous passons

en revue les techniques de préservation de la vie privée pour les adapter à

nos scénarios d'application.

Au chapitre 3, nous définissons le paradigme de calcul Edgelet, en

commençant par ses caractéristiques et en déclinant le modèle de

responsabilité associé. Nous poursuivons avec la formalisation du modèle de

13

requête et l'analyse d'une conception préliminaire naïve. Nous concluons le

chapitre en posant le problème scientifique et en définissant les propriétés à

satisfaire pour atteindre nos objectifs.

Le chapitre 4 aborde les problèmes de sécurité et de confidentialité liés aux

requêtes distribuées. Nous détaillons une série de mécanismes pour protéger

l'intégrité des requêtes et la confidentialité des données, couvrant ainsi

l'ensemble du cycle de vie de la requête, c'est-à-dire de la déclaration et

diffusion à la production des résultats finaux.

Le chapitre 5 est consacré à l'étude des stratégies d'exécution et leurs

impacts sur la confidentialité et la validité. Nous constatons que, selon le type

de traitement considéré, toutes les stratégies ne se valent pas et que des

compromis peuvent être nécessaires.

Le chapitre 6 fournit une analyse quantitative des méthodes proposées avec

une validation expérimentale des algorithmes sélectionnés.

Le chapitre 7 présente deux démonstrations du paradigme de calcul Edgelet,

montrant l'intérêt pratique de notre approche.

Enfin, le chapitre 8 conclut cette thèse en résumant les principales

contributions et en indiquant certaines orientations pour les travaux futurs.

15

CONTENTS

1 Introduction .. 19

2 Background Knowledge and Related Works .. 25

2.1 Personal Data Management Systems.. 25

2.1.1 Standard Personal Clouds.. 26

2.1.2 No-Knowledge Personal Clouds ... 27

2.1.3 Privacy-Friendly Personal Clouds .. 28

2.1.4 Home PDMS…… ... 28

2.1.5 Portable PDMS with Tamper-Resistant Hardware .. 29

2.1.6 Conclusion….. .. 30

2.2 Opportunistic Networks ... 30

2.2.1 Characteristics Overview .. 31

2.2.2 Main Applications ... 32

2.2.3 Conclusion….. .. 33

2.3 Decentralized Computing Architectures .. 34

2.3.1 Wireless Sensor Networks ... 34

2.3.2 Crowd Processing ... 35

2.3.3 Edge Computing ... 36

2.3.4 Peer-to-Peer Systems .. 37

2.3.5 Federated Learning .. 38

2.3.6 Conclusion….. .. 38

2.4 Privacy Preservation Techniques ... 39

2.4.1 Homomorphic Encryption ... 39

2.4.2 Secure Multi-Party Computation .. 40

2.4.3 Local Differential Privacy .. 41

2.4.4 Trusted Execution Environments ... 41

2.4.5 Conclusion….. .. 43

3 Edgelet Computing Paradigm ... 45

3.1 Edgelet Architecture .. 45

3.2 Responsibility Model ... 47

3.3 Edgelet Query Model .. 49

3.4 Straw Man Execution Analysis .. 51

3.5 Problem Statement .. 52

4 Crowd Liability Enforcement ... 55

4.1 Dedicated Threat Model .. 55

4.2 Purpose Honesty ... 56

4.3 Computation Honesty ... 57

4.3.1 Global and local integrity of the processing... 57

4.3.2 Resistance to massive attacks .. 58

16

4.4 Conclusion ... 61

5 Execution Strategies .. 63

5.1 Backup-Based Execution Strategy .. 63

5.1.1 Enforcing Resiliency ... 64

5.1.2 Impact on Validity and Confidentiality ... 67

5.2 Overcollection-Based Execution Strategy .. 69

5.2.1 Enforcing Resiliency ... 69

5.2.2 Impact on Validity and Confidentiality ... 70

5.2.3 Relaxing Validity .. 71

5.3 Hybrid-Based Execution Strategy ... 74

5.3.1 Enforcing Resiliency ... 74

5.3.2 Impact on Validity and Confidentiality ... 75

5.4 Qualitative Evaluations.. 75

6 Validation .. 79

6.1 Comparison of Execution Strategies.. 79

6.1.1 Overall Analysis .. 79

6.1.2 Personal Data Exposure .. 82

6.1.3 Network Overload .. 84

6.2 Adjustment of the Query Deadline .. 87

6.3 Quality of Iterative Computations .. 89

6.4 Conclusion ... 91

7 Implementation and Practical Use Cases ... 93

7.1 Medical Use Case in OppNets.. 93

7.1.1 Implemented Platform .. 93

7.1.2 Realized Scenario .. 95

7.1.3 Obtained Results ... 96

7.2 Weakly Connected Personal Devices... 96

7.2.1 Implemented Platform .. 97

7.2.2 Realized Scenario .. 97

7.2.3 Obtained Results ... 99

8 Conclusion... 101

8.1 Summary of the Contributions .. 101

8.2 Perspectives .. 102

Bibliography ... 105

17

LIST OF FIGURES

Figure 2.1: Examples of Trusted Execution Environments 42

Figure 3.1: Straw Man Query Execution Plan .. 51

Figure 4.1: Edgelet query in the DomYcile project ... 57

Figure 4.2: Horizontal and Vertical Partitioning .. 61

Figure 5.1: Resiliency based on the Backup strategy .. 64

Figure 5.2: Calculation example for the deadline calibration 67

Figure 5.3: Solutions to guarantee the Validity property..................................... 69

Figure 5.4: Resiliency based on the Overcollection strategy 70

Figure 5.5: Overcollection with the Iterative Brute-Force method 72

Figure 5.6: Resiliency based on the Hybrid strategy.. 74

Figure 6.1: Additional Nodes per number of partitions 80

Figure 6.2: Additional Nodes per number of Computers (pf =0.1) 81

Figure 6.3: Additional Nodes per number of Computers (pf=0.2) 82

Figure 6.4: Additional Exposure per number of Computers (pf=0.1) 83

Figure 6.5: Additional Exposure per number of Computers (pf=0.2) 84

Figure 6.6: Additional Messages per number of Computers.............................. 85

Figure 6.7: Additional Messages per number of Computers (Hyb optim) 86

Figure 6.8: Mall simulation with the ONE .. 87

Figure 6.9: Query deadlines (for Overcollection) .. 88

Figure 6.10: Heartbeat execution quality (Apriori and K-means) 89

Figure 6.11: Heartbeat execution quality (SGD) .. 90

Figure 7.1: Hardware of DomYcile secure boxes ... 93

Figure 7.2: Architecture of the demonstration platform 94

Figure 7.3: Configuration of a distributed QEP .. 95

Figure 7.4: Data visualization for a distributed QEP... 98

LIST OF TABLES

Table 3.1: Crowd Liability Model (CLM) .. 49

Table 5.1: A taxonomy of execution strategies .. 76

Table 6.1: Formulas for the Additional Nodes ... 80

Table 6.2: Formulas for the Additional Exposure .. 82

Table 6.3: Formulas for the Additional Messages ... 85

19

1 INTRODUCTION

The exponential growth of the internet and its influence on modern society

has led to the creation of data in unprecedented quantities. In 2018, the

International Data Corporation [1] estimated the annual global datasphere at

33 Zettabytes (1021 bytes), with forecasts of growth to 175 ZB by 2025. The

internet's edge expanding at a much higher rate than its core, this staggering

growth is not likely to stop, with an estimate of nearly 29.3 billion connected

devices by 2023 [2]. This pervasiveness of the Internet of Things (IoT) in our

daily lives contributes to the acceleration of our society towards the digital

age, for which data is the "new oil" [3].

While this data creation has brought great benefits to businesses and

governments, it has also raised serious security and privacy concerns when it

comes to personal data. Indeed, through the interactions with our devices

(e.g., smartphones, tablets, computers, connected watches) and the use of

digital services (e.g., web searches, online stores, social networks), a mass

amount of personal data is collected without our awareness. These data

concerning billions of individuals are often centralized on huge servers

(e.g., Google, Amazon, Facebook) facilitating their access, processing, and

sharing. This data centralization in a single information system makes it a real

"honeypot" for hackers. The cyber-attacks they carry out aim at capturing as

much personal information as possible (names, addresses, emails, passwords,

birth dates, etc.) in order to resell it to other criminals, for example for

phishing campaigns. These data breaches have become very common and

affect many different business sectors [4].

Unfortunately, cyber-attacks are not the only downside of the massive

centralization of personal data. In 2013, Edward Snowden revealed that the

U.S. government, through the National Security Agency, was organizing

massive surveillance of its population with the complicity of data holders [5].

Moreover, profiling based on personal data (e.g. income level, political

orientation, shopping habits) pushes the vice even further, with the possibility

to massively manipulate the population. For example, advertisements

displayed on social networks like Facebook benefit from a micro-targeting

mechanism to tailor the content of the advertisement to the targeted

audience, a mechanism that has also been shown to be capable of disclosing

much more information [6]. The 2016 United States and 2018 Brazilian

elections were typically heavily influenced by targeted political

advertisements on Facebook [7].

20

To respond to all these usage drifts and strengthen security around personal

data, the European Union has adopted a legislative framework, the GDPR [8],

which entered into force in 2018. This regulation applies to all organizations,

public or private, that process personal data belonging to European

residents. It regulates the collection, processing, and use of data, as well as

their retention period. At the individual level, this law gives the right to data

portability, a mechanism that allows anyone to request a copy of their

personal data held by any company or administration. The latter, following

other initiatives such as Blue Button in the United States [9] or MesInfos in

France [10], is an essential building block for the re-appropriation of our own

data. However, the data portability alone is not enough to regain a secure

and privacy-preserving control if the technical solutions to host this data are

once again hyper-centralized (e.g. Google Drive [11]).

Thus, in this context of growing privacy awareness, the urgent need to regain

control of one's personal data has led to the development of many privacy-

friendly systems. Examples include the instant messaging application

Signal [12], the mailbox StartMail [13], and the storage solution Tresorit [14].

This trend has also aroused the interest of the scientific community, including

the proposal of a decentralized architecture, the Personal Data Management

System (PDMS) [15]. Designed as user-centric hardware or software

assistants, PDMSs empower individuals to manage their digital lives with

features ranging from automatic data collection to more complex processing

and sharing tasks, all in a secure and easy-to-use environment. Industrial

solutions are already available, such as Cozy Cloud [16], which implements a

PDMS that can be hosted either on the cloud or directly on a personal device.

In order not to regress compared to centralized systems, the decentralized

architecture of the PDMS must allow the execution of computations crossing

the data from multiple individuals. Following recent works proposing

technical solutions for executing distributed queries on PDMSs [17]–[19], this

thesis focuses on how to distribute processing in a privacy-preserving and

fault-tolerant manner. However, unlike these previous works, we are

specifically interested in the case where PDMSs are deployed on personal

devices (e.g., smartphones, PCs, or smart objects) with unconventional

communications, i.e., where messages are sent from one device to another

using short-range channels (e.g., Wi-Fi or Bluetooth), thus forming an

Opportunistic Network (OppNet) [20]. Our objective is threefold: we want to

build a framework that (1) is both generic and scalable, allowing complex

computations on the data of thousands of individuals, (2) is secure and

respects the privacy of the people involved, and (3) is fault-tolerant despite

a fully decentralized environment, prone to failures and message loss.

21

Motivating example. The unusual context of this thesis is particularly

inspired by the use case of the DomYcile project [21]. Our team is working in

partnership with the French Yvelines district and the company HIPPOCAD (a

subsidiary of the La Poste group) [22] to propose a data management

solution for elderly people receiving home assistance. Currently, nearly 8,000

patients are each being equipped with a secure home box where their

medical and social records are stored. These boxes are not connected to the

Internet for subscription cost, security, and acceptability reasons and are only

accessible at the patient's home by healthcare workers. The DomYcile

platform, set up by the Yvelines district, is open by design, so that third

parties (e.g., patient associations, statistical agencies, medical workers) can

push new services of interest for the patients (e.g., querying ephemeral

cohorts of consenting patients and delivering them healthcare advice).

DomYcile is obviously not the only application scenario of this thesis. In fact,

contributing one's data to useful purposes for the population is known in

Europe as Data Altruism. We envision that this type of ephemeral cohort

querying may generalize to other situations such as Opportunistic Polling.

Here is a description of these two concepts:

Data altruism: Introduced in the EU Data Governance Act [23], this proposal

fosters data subjects to give consent to process their personal data for

purposes such as scientific research or public services improvement (e.g., a

health survey organized by Santé Publique France). Privacy protection is

paramount in this context, as it is a key element for people to participate with

their sensitive data.

Opportunistic polling: During events that welcome a large audience (e.g.,

conferences, concerts, museums, matches), the participants could contribute

with their data (e.g., centers of interest, nationality, age) to a global

processing to improve their user experience in real-time (i.e., adapting the

services to the characteristics of the audience). The proximity of individuals

and their personal devices makes the use of traditional communication

infrastructures unnecessary, if not inappropriate, and paves the way for

Opportunistic Computing [24].

Contributions. To achieve the three objectives listed earlier and to match the

field realities of our use cases, this thesis makes the following contributions:

1. The definition of the Edgelet computing paradigm, a new framework

for implementing complex processing on personal devices in a highly

distributed, failure-prone, and infrastructure-less environment.

22

2. The proposal of robust security mechanisms to counter malicious

attack attempts and protect the data of individuals involved in

distributed queries.

3. The presentation and analysis of three different resiliency strategies

that produce valid results while tolerating the failures and message

losses induced by the fully decentralized environment.

4. The implementation of extensive validations and practical

demonstrations of the proposed methods.

This thesis is organized into eight chapters, beginning with the introduction,

the current chapter, in which we detail the general context, motivations, and

contributions.

Chapter 2 presents the state-of-the-art and background knowledge needed

to understand this topic, which crosses several research areas. We will start

by reviewing the different PDMS solutions before examining the context of

Opportunistic Networks. Next, we will study decentralized computing

architectures to understand issues related to privacy and fault tolerance.

Finally, we will review current privacy preservation techniques to adapt them

to our application scenarios.

In Chapter 3, we will define the Edgelet computing paradigm, starting with

its definition and declining the associated responsibility model. We will

continue with the formalization of the targeted query model and the analysis

of a first straw man design. We will conclude the chapter by defining the

problem statement and the distributed system properties to be satisfied.

Chapter 4 addresses security and privacy issues for distributed queries. We

detail a series of mechanisms to protect the integrity of queries and the

confidentiality of targeted data, addressing the entire query lifecycle, i.e.,

from declaration and dissemination to the production of final results.

Chapter 5 is devoted to the study of execution strategies and their impact on

privacy and validity. We will see that, depending on the type of processing

considered, not all strategies are equal and that trade-offs may be necessary.

Chapter 6 provides a quantitative analysis of the proposed methods with

experimental validation of the selected algorithms.

23

Chapter 7 presents two demonstrations of the Edgelet computing paradigm,

showing the practical interest of our approach.

Finally, Chapter 8 concludes this thesis by summarizing the main

contributions and giving some directions for future work.

This thesis is based on the three international publications presented

respectively at CCGrid 2022 [25], PerCom 2023 [26] and EDBT 2023 [27].

25

2 BACKGROUND KNOWLEDGE AND RELATED WORKS

2.1 Personal Data Management Systems.. 25

2.1.1 Standard Personal Clouds.. 26

2.1.2 No-Knowledge Personal Clouds ... 27

2.1.3 Privacy-Friendly Personal Clouds .. 28

2.1.4 Home PDMS.. ... 28

2.1.5 Portable PDMS with Tamper-Resistant Hardware .. 29

2.1.6 Conclusion….. .. 30

2.2 Opportunistic Networks ... 30

2.2.1 Characteristics Overview .. 31

2.2.2 Main Applications ... 32

2.2.3 Conclusion….. .. 33

2.3 Decentralized Computing Architectures .. 34

2.3.1 Wireless Sensor Networks ... 34

2.3.2 Crowd Processing ... 35

2.3.3 Edge Computing ... 36

2.3.4 Peer-to-Peer Systems .. 37

2.3.5 Federated Learning .. 38

2.3.6 Conclusion….. .. 38

2.4 Privacy Preservation Techniques ... 39

2.4.1 Homomorphic Encryption ... 39

2.4.2 Secure Multi-Party Computation .. 40

2.4.3 Local Differential Privacy .. 41

2.4.4 Trusted Execution Environments ... 41

2.4.5 Conclusion….. .. 43

In this chapter, we will explore the intersection of four different areas of

research: Personal Data Management Systems, Opportunistic Networks,

Decentralized Computing Architectures, and Privacy Preservation

Techniques. Our goal is to understand these technologies and contexts in

order to subsequently integrate them into resilient, valid and privacy-

preserving distributed computing solutions.

2.1 PERSONAL DATA MANAGEMENT SYSTEMS

Personal data is one of the most valuable commodities of the digital age.

However, the excessive collection, massive centralization, opaque

management and sharing of this data by companies has raised many

concerns about privacy and security. As a result, there is a growing demand

26

for user-centric solutions that allow individuals to regain control of their

personal data. Personal Data Management Systems (PDMS), Personal Clouds,

Personal Data Stores, and Personal Information Management Systems are

some of the names given to these solutions. They allow individuals to

securely store and manage all types of digital content, whether it is official

documents, personal photos, videos or IoT-generated data. By enabling

individuals to manage their personal data responsibly, these solutions have

the potential to revolutionize the way we interact with digital content and

protect our privacy.

In this section, we will provide an overview of the different types of personal

clouds, their key features, and the privacy they offer. The goal is to

understand the limitations of each solution, starting from the most common

ones like Google Drive [11] to the most privacy-friendly ones like PlugDB [28].

2.1.1 Standard Personal Clouds

Standard Personal Clouds refer to cloud storage solutions offered by various

providers, such as Google Drive [11], Dropbox [29], and OneDrive [30]. These

services allow users to upload their data on the provider’s infrastructure and

access it easily afterwards via personal devices such as computers and

smartphones. In recent years, personal cloud storage has become a popular

choice for individuals who wish to store and access their data from anywhere

and from any device.

One of the main advantages of Standard Personal Clouds is their ease of use.

These services typically offer simple and user-friendly interfaces for

uploading and managing individual files. They also offer a wide range of

features, such as file syncing, versioning, and collaboration. File syncing

allows users to automatically synchronize their files across multiple devices,

ensuring that the latest version of the file is always available. Versioning

allows users to access previous versions of a file, making it easier to track

changes and restore previous versions if necessary. Collaboration features

allow multiple users to work on the same document simultaneously,

improving productivity and coordination [11], [30].

These benefits aside, Standard Personal Clouds have important limitations,

particularly with respect to privacy and data management. Indeed, when it

comes to sensitive individual data, these online storage approaches are not

the most suitable as the entire security model relies on the IT architecture

implemented by the provider. Even if the data is protected by cryptographic

mechanisms, the encryption keys remain in the possession of the provider,

27

which does not prevent him from decrypting and using the data for purposes

other than those intended by the person to whom it belongs. These

secondary usages constitute what is known as data monetization (through

targeted advertising, for example) and are the business model of these "free"

storage providers. On the technical side, Standard Personal Clouds suffer

from data management limitations as file storage is far from being the only

feature required for a full PDMS. The fact that users have to manually upload

their data makes the task complex and time-consuming whereas an

automatic data collection mechanism would allow them to efficiently extract

their digital life from the source of their choice (bank, insurance, IoT sensors,

etc.). Users should also be able to perform processing on their own data and

thus benefit from the computing capacities of the servers on which they are

hosted. Unfortunately, this essential feature is not possible in this personal

cloud category.

2.1.2 No-Knowledge Personal Clouds

No-Knowledge Personal Clouds, also known as zero-knowledge or end-to-

end encrypted personal clouds, offer an enhanced level of privacy and

security. The key difference between No-Knowledge Personal Clouds and

Standard Personal Clouds is that in the former, the user retains full control

over their data, including encryption keys, and the cloud service provider has

no access to the user's data. This means that even if the provider is hacked

by a virus or malicious administrator, the user's data remains secure and

private.

There are several No-Knowledge Personal Cloud solutions available on the

market today. For example, Tresorit [14] provides a cloud storage service that

uses end-to-end encryption to protect users' files, making it impossible for

anyone, including Tresorit employees, to access the data without the user's

permission. Similarly, SpiderOak [31] and Sync.com [32] offer comparable

solutions, each ensuring that only the user can access their data. As

mentioned before, the key advantage of these solutions is that they provide

a high level of security for sensitive data. Users can store confidential

information, such as financial records or health data, without fear of it falling

into the wrong hands. In addition, No-Knowledge Personal Clouds can allow

users to share and collaborate on files securely [32], without worrying about

data leaks or unauthorized access.

However, No-Knowledge Personal Clouds have the same limitation as

Standard Personal Clouds regarding data management. Indeed, there is still

no automatic data collection mechanism and no possibility to run complex

28

processing from the server. Concerning the ability to perform processing, this

"end-to-end encrypted" architecture is in itself a hindrance to the

development of the feature (unless using homomorphic encryption, see

Section 2.4.1). Consequently, whenever users want to perform cross-

computations on their data, they have to repatriate it to their own personal

devices, which makes them directly responsible for their security/privacy.

2.1.3 Privacy-Friendly Personal Clouds

Privacy-Friendly Personal Clouds are gaining popularity as individuals are

becoming more aware of the privacy risks associated with centralized data

storage. These solutions provide a secure and private space for personal data

on an online cloud that is controlled and managed by a provider, with the

major difference of offering multiple features for data management. For

example, data collection modules enable users to automatically import

documents and other data from online services directly into their personal

space, facilitating the data collection process. Cross-data computations and

advanced data sharing are other crucial features that allow users to analyze

and share data with third parties in respect of their explicit consent. Examples

of Privacy-Friendly Personal Cloud include Cozy Cloud [16], Digi.me [33] and

Solid [34] which provide more or less the same services.

Unfortunately, the main weakness of Privacy-Friendly Personal Clouds is the

strong security assumptions on which they are based. The provider's

employees, especially the administrators, are assumed to be fully honest, and

all parts of the code, from the underlying storage mechanism to all the

applications and services running on top of it, must be trusted. Since the data

is centralized on the provider's infrastructure, a successful attack due to

negligence or corruption of one of the employees could result in the leakage

of a large amount of data from several people.

2.1.4 Home PDMS

We define Home Personal Data Management Systems as all hardware and

software designed to store and manage personal data directly in users'

homes. These devices can range from simple external hard drives to more

complex devices that combine storage, processing power, and networking

capabilities. Unlike online cloud storage solutions, where data is stored on

servers controlled by third-party companies, Home PDMSs keep data under

the control of users. There are several different types of solutions available,

some are software-based that can be installed on existing hardware, while

others are specific devices designed for personal data management. As

29

software-based solutions, we can mention OpenPDS [35], DataBox [36],

Personium [37], as well as self-hosted instances of Cozy Cloud [16] and

NextCloud [38]. On the side of the dedicated devices, there are several

solutions on the market with for example Amber X [39], Helixee [40] and Meet

Lima [41] that can store hundreds of gigabytes of data while synchronizing

with other personal devices. In short, these solutions provide the same

features as previously described, such as data collection, cross-computing

and data sharing while being under the physical control of the users.

The major advantage of these solutions lies in the complete decentralization

of the architecture. Indeed, from an attacker's perspective, it is highly

preferable to attack a centralized system where millions (or even billions for

Google Drive) of individuals are involved rather than trying to plunder the

data of a single individual stored on a Home PDMS. Nevertheless, users still

have to trust the software or hardware providers for all the features included

in their solutions, and this without having any formal guarantees about their

security. And to go one step further, it must be considered that these devices

may be subject to flaws due to their usage or their environment, such as the

presence of malware, viruses or unsecured end-to-end connections. In

summary, we can see that although these Home PDMSs bring great

perspectives in terms of decentralized data management, there are still some

challenges to overcome before being able to "blindly" store all our personal

data.

2.1.5 Portable PDMS with Tamper-Resistant Hardware

We have seen that PDMS solutions relying on cloud-based architectures or

dedicated devices have limitations in terms of privacy and security. To

address these issues, some research projects, such as the Personal Data

Server [42] and Trusted Cells [43], propose to extend the Home PDMS with

tamper-resistant hardware to achieve a secure portable device. These

solutions leverage the security properties of secure chips (smart-cards, secure

micro-controllers or trusted platform modules) in order to host a minimal

Trusted Computing Base (TCB) protecting the personal data. Concretely, they

embed a DBMS engine, such as PlugDB [28], into a chip to provide tamper-

resistant storage and computing resources. The data is stored encrypted on

a hard disk or a memory card whose reading is regulated by the access

control mechanisms of the DBMS. These solutions are applicable in many

contexts such as health data [44]–[46] and text documents [47] (see also

tutorials [48], [49]).

This approach has been proven effective for simple queries and secure cross-

30

computations. Indeed, SQL queries are supported thanks to the integration

of a query evaluation and an access control engine on the PDMS running

inside the secure chip [47], [50]. In the context of a network of Portable PDMS,

a first way to achieve secure distributed computing is to leverage an

untrusted cloud infrastructure to transfer encrypted data among nodes [51],

[52]. However, the use of a central server has again some vulnerabilities, since

it is possible for it to deviate from the original code and leak information. A

second way is to use the trust placed in the portable PDMS hardware to build

a safe and reliable aggregation chain [17], [53]. Based on a peer-to-peer

network, this decentralized architecture can also be used to perform highly

distributed queries on PDMS [19].

2.1.6 Conclusion

Among all the PDMS classes presented in this section, Portable PDMS with

tamper-resistant hardware appears to be the most robust, combining both

computational capacity, security, and privacy. Nevertheless, it should be

noted that the latter solution is still limited in terms of extensibility and

resiliency, making it not very adaptable to other use cases. Based on the

refined PDMS architecture [15] and Trusted Execution Environment (see

Section 2.4.4), very recent works [54], [55] have proposed to address the

extensibility issue by demonstrating that a minimal TCB can be coupled with

user-defined functions to extend usages while strongly limiting the risk of

data leakage. Regarding resiliency, however, previous works do not make

significant contributions to the fault tolerance of distributed executions on

multiple PDMSs, either from hardware failures or message loss. One of the

major objectives of this thesis is to bring an answer to this last question, by

studying the extreme case of communications in Opportunistic Networks.

2.2 OPPORTUNISTIC NETWORKS

The concept of Opportunistic Networks (OppNets) is a natural evolution of

several years of research on multihop ad-hoc communication systems [56].

Back in the 1990s, mobile ad hoc networks (MANETs) were introduced to

provide connectivity among (mobile) devices when no pre-existing

infrastructure is available. However, an underlying feature of MANETs

protocols assumed that there is an end-to-end path between senders and

receivers, which has proven to be inappropriate in real life when the mobility

and availability of devices vary steadily over time. A couple of years later, the

Delay-Tolerant Network (DTN) architecture [57] was proposed to address

scenarios where devices are mostly disconnected and communicate only

occasionally (scheduled or not). The first works on OppNets [20] appeared in

31

the same period and were based on similar principles, which explains why

some researchers consider them as an instance of DTNs [58]. In this section,

we first review the characteristics as well as the use cases of Opportunistic

Networks, and then discuss the main challenges and limitations associated

with these particular communication systems.

2.2.1 Characteristics Overview

When reliable infrastructures (such as cellular networks) are not available or

appropriate, OppNets provide suitable communication mechanisms for

mobile user devices lacking end-to-end paths between them [59]. To this

end, they rely on short-range wireless communication capabilities (e.g. Wi-Fi

or Bluetooth) as well as on the "store-carry-and-forward" principle [58]. As

explained by Conti and Giordano [56], it is the mobility of people that creates

the possibility of connecting parts of the network that were not originally

connected. Thus, mobility is no longer seen as a constraint, but rather as an

opportunity. When it comes to personal devices, OppNets are considered as

people-centric approaches, where each individual contributes to the

transmission of messages by physically carrying the buffered data to the next

intermediary.

Over the years, researchers have proposed different routing strategies to

improve the performance of OppNets in terms of latency, energy

consumption, and storage. These strategies can be classified into three

categories, namely replication, forwarding, and hybrid, as fully detailed in [60]

and [59]. For purposes of illustration and understanding, here is a brief

overview of three popular routing protocols:

Epidemic routing (replication) [61]. As the name implies, this protocol

spreads messages across the network like an epidemic: as soon as two nodes

are in transmission range, they exchange any messages that the other does

not have. Each message is then replicated from node to node at each

opportunistic device contact until it reaches its destination. As a result, this

strategy maximizes the message delivery rate and minimizes message latency

at the cost of significant network congestion and overhead.

First Contact (forwarding) [62]. Unlike the epidemic strategy that replicates

messages endlessly, the First Contact protocol proposes to transfer messages

to the first device that appears. More precisely, when a node carries a

message, it waits to meet another node to forward the message and removes

it from its own buffer. This inexpensive message propagation is therefore

risky, resulting in high latency and poor delivery rates in some cases.

32

PRoPHET (hybrid) [63]. The Probabilistic Routing Protocol using History of

Encounters and Transitivity attempts to find a balance between replication

and forwarding: only the nodes most likely to transmit messages to their

destination are selected with a limit on the number of replicas. To this end,

nodes maintain a history of encounters to establish a vector of delivery

predictability values that will be updated incrementally as devices make

contact. In addition, the adjustable number of replicas allows for a trade-off

between delivery success rate and resource consumption.

2.2.2 Main Applications

We have just seen that the first advantage of OppNets is to propose

communication methods based exclusively on edge devices (i.e., without

using any pre-established infrastructure), which opens the way to many

application fields. The taxonomy presented below, derived from [64],

presents six different and non-exhaustive contexts/applications.

1. Communication in Challenged Areas 2. Cellular Network Offloading

• Monitoring and tracking [65]:

environmental sensors, terrestrial

or marine animals.

• Sparse network and inaccessible

areas [66]: inhabited regions,

underwater, mines or space.

• Disaster areas and war zones:

unavailability of the infrastructure.

• Large crowds saturating the

operators: sports events, festivals,

and demonstrations.

• The physical proximity of

individuals and their devices allows

the local dissemination of

information using in situ resources,

thus alleviating cellular traffic [67].

3. Censorship Circumvention 4. Proximity-Based Applications

• Totalitarian governments or

institutions can control the Internet

and censor information.

• By nature, OppNets provides a

means of communication that

bypasses all types of restrictions,

relying solely on people's devices

and their mobility [68].

• Group monitoring [69]: tourists

staying connected to each other

while visiting a museum or a city.

• Mobile Social Networks [70]: co-

location of nodes at a specific time

and area allows for the deployment

of tailored applications (e.g.,

recommendations, media sharing).

5. Opportunistic Mobile Sensing 6. Opportunistic Mobile Computing

• Most of our devices are equipped

with various sensors which can also

communicate with those in the

environment when in transmission

range [71].

• After data dissemination, a natural

application of OppNets is the

sharing of processing among edge

devices, providing more complex

and tailored services to users [24].

33

• The collection of these data enables

the study of the interactions

between humans and the

environment.

• The use of local personal devices

allows to optimize the resource

consumption in a trustable and

secure way.

2.2.3 Conclusion

Almost twenty years after the first works on OppNets [20], this concept is not

yet very popular, which is mainly due to a lack of major applications. In fact,

as evidenced by the survey of Trifunovic et al. [64], the “Quest for a Killer

App” [72] remains a current challenge. Crushed by the explosive growth of

connected infrastructure, ad hoc and opportunistic communication systems

are struggling to find their way into the market, and to date, only a few

applications have emerged (e.g., Uepaa! [73], FireChat [68]). Even the original

use case of OppNets, to provide communication systems for challenged

areas, is no longer relevant today with the emergence of new connectivity

accesses such as SpaceX’s StarLink [74]. Conversely, application scenarios

based on proximity or data offloading are still of great interest and their lack

of widespread adoption is explained here by technical constraints. Indeed,

current short-range communication technologies, such as Wi-Fi and

Bluetooth, are still not adapted to dynamic contact opportunity detection

[64], [75]: the idle state of devices waiting for a connection is extremely

energy consuming and recent technological improvements such as Wi-Fi

Direct or Bluetooth Low Energy are inadequate because they require manual

pairing. All these situations of inapplicability of OppNets constitute a vicious

circle, as few deployments mean few feedbacks on the technology and

therefore make investors reluctant. However, this has not prevented

researchers from improving their protocols over the years by testing them

directly on small ad-hoc test beds or among the few existing simulators [76]

(e.g., ONE [77], ns-3 [78]).

Among all the use cases presented above, one of the most promising

applications for OppNets is the Opportunistic Computing paradigm [24].

Pooling the resources of personal devices is a key element of the Internet of

People vision [79], enabling the implementation of "people-centric sensing

and computing" applications. This unusual context, where computing

capabilities lie at the extreme edge of the network, directly in the hands of

individuals, still raises many challenges. Indeed, how to design a distributed

architecture capable of managing data flows and processing with fair use of

energy resources of personal devices? How to avoid selfish behavior and

malicious attacks? How to ensure system resilience in an asynchronous

34

communication context, where no assumption can be made on the message

delivery time? In particular, this last question raises a fundamental issue for

distributed systems: the impossibility of consensus with failures and

asynchronous communications [80]. Recent works [81], [82] present results

that seem to circumvent this impossibility, but again, performance validation

beyond simulation and very small test beds is required.

2.3 DECENTRALIZED COMPUTING ARCHITECTURES

Having reviewed the different PDMS solutions and understood the context

of Opportunistic Networks, we will now provide an overview of decentralized

computing architectures existing in the state of the art. Our goal is to identify

application domains and discuss issues related to privacy and fault tolerance.

We will focus on five main paradigms namely Wireless Sensor Networks,

Crowd Processing, Edge Computing, Peer-to-Peer Systems, and Federated

Learning. Then, we will see that although these paradigms have different

names and sometimes come from distinct communities, the concepts and

their applications are often quite similar and face common challenges.

2.3.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are a type of network composed of small,

low-power wireless devices equipped with sensors for data collection. WSNs

were originally developed for environmental monitoring and tracking needs

[83], but with the rise of the Internet of Things (IoT) [84], they have become

equally relevant for many other applications, such as healthcare, home and

industrial automation [85]. The devices communicate with each other

wirelessly and the data collected by the sensors is usually transmitted to

monitoring stations for analysis. The processing performed on these devices

is then streaming queries [86], [87], the majority of which is performed at the

end of the chain in a centralized manner.

Privacy concerns. For the original use cases that consider sensors for the

environment or for animal tracking, there are few if any privacy issues.

However, in an IoT context, these sensors are increasingly invading our daily

life [2] and therefore the process of collecting and processing data can

quickly become very intrusive. In this context, González-Manzano et al. [88]

proposes PAgIoT, a privacy-preserving protocol that leverages the

capabilities of IoT devices to perform aggregation algorithms in a

decentralized manner. We observe that this decentralization of processing

reduces the risk of exposure of personal data, which is an essential element

of privacy preservation.

35

Fault tolerance concerns. Since the sensors are often deployed in harsh

environments, they are vulnerable to damage, failure, and interference.

Moreover, when the devices are mobile, as is the case with Vehicular Sensor

Networks [89], the ephemeral nature of communications makes it difficult to

organize distributed processing as many messages may be lost or delivered

too late. In response, O'Keeffe et al. [86] proposes a redundancy system

called Replicated Dataflow Graph and suggests a "routing constraint"

mechanism to coordinate data sources and replicas. But as the authors

explain, this does not totally prevent the occurrence of routing

inconsistencies, although infrequent in practice. This work is not the only

effort in this area (see surveys [90], [91]), and there are still challenges to be

addressed to ensure both resilient and valid decentralized processing.

2.3.2 Crowd Processing

Crowd Processing refers to a family of computing paradigms that involve the

active participation of large groups of people collaborating together to

perform a task or solve a problem. The three main concepts, namely Crowd

Computing, Crowdsourcing, and Crowd Sensing, are all based on the idea

that individuals are increasingly connected and can participate in the

enrichment of the digital sphere, from the sharing of captured data to the

realization of individual micro-tasks. Crowd Computing is a concept defined

in several ways in the literature [92]–[94], usually referring to the participation

of a large number of users in a distributed computing system to achieve a

specific goal, such as data analysis or machine learning. For instance, Murray

and al. [92] define it as the combination of mobile devices and OppNets,

which is precisely what we consider in this thesis. Crowdsourcing [95] is a

more specialized form of Crowd Computing, in which tasks are outsourced

to individuals, who are typically paid for their work. Crowd Sensing [96]

involves the collection of data from sensors embedded in personal devices,

such as smartphones or wearables. All these approaches are usually driven

by centralized servers on which part of the processing is done.

Privacy concerns. Crowd Processing is inherently privacy threatening since

personal data can be collected and shared with third parties. The issue is well

understood by the community which has proposed numerous privacy

preservation mechanisms [97]–[99]. Brahem et al. [100] propose a new

approach that takes into account the users’ own tolerance to the use of the

data provided, so that the Crowd Processing system guarantees users the

expected level of privacy. Indeed, a consent-based multi-task allocation

strategy is essential to allow the reuse of crowdsourced data contributions

between tasks while strictly respecting users' consent.

36

Fault tolerance concerns. Fault tolerance is also a challenge in Crowd

Processing, particularly in systems that rely on significant user participation.

If a non-negligible proportion of users drop out or fail to participate, then

system performance may be compromised. To address this situation,

resiliency techniques can be used, such as task replication [101] or incentives

for user participation [102]. An important issue in this context is the number

of participants contributing to the processing and the management of the

collected data, which may be received in multiple replicas and therefore need

to be deduplicated [103].

2.3.3 Edge Computing

The Edge paradigm (also known as Fog Computing [104]) has emerged with

the goal of offloading services and computation close to data sources to

make the cloud more responsive, scalable, and privacy-friendly [105]. One of

the key benefits of this paradigm is therefore its ability to reduce latency, as

data processing can occur in real-time, directly at the edge of the network.

This is particularly important for many applications in the IoT context [106],

such as autonomous vehicles [107] and telemedicine [108]. Another benefit

of Edge Computing is the reduction in the amount of data that needs to be

transmitted to a centralized cloud infrastructure, which can result in lower

costs, network performance, and privacy preservation. This technology

operates mainly in connected infrastructures with processing that can be

performed in Cloudlets [104], [109]. These are small-scale data centers (also

called Micro Data Centers) deployed at the edge of the network providing

computational and storage resources as close to the devices as possible.

Privacy concerns. Although Edge Computing is, by design, more privacy-

friendly than a purely centralized approach, many privacy challenges remain,

such as data leakage or malicious manipulation of devices [110]. For instance,

Zhao et al. [111] propose a composable service system that offers the ability

to run machine learning algorithms directly on connected devices or in

combination with cloud resources, then allowing to adjust the level of data

exposure and reduce the risk of data leakage.

Fault tolerance concerns. Because devices are more prone to network

outages and service interruptions than centralized cloud infrastructures,

implementing a fault-tolerant system can quickly become an issue [112]. This

is even more true in the context of Mobile Edge Computing [113], where

more processing is performed on the devices rather than on the previously

mentioned Cloudlets. To address this issue, Grover and al. [114] designed a

reliable IoT-Edge architecture that replicates sensed data (if the IoT devices

37

fail) and a redirection mechanism (if the server is not available). Note that this

replication may raise other privacy concerns, as multiple copies of the same

data are exposed, increasing the risk of leakage in case of compromise.

2.3.4 Peer-to-Peer Systems

Peer-to-Peer (P2P) systems are based on the principle that all devices have

equal capabilities, and they can both request and provide resources to the

network. This results in a highly decentralized system, as each device can

communicate directly with the others, without the need for central servers

[115]. Since the early 2000s, P2P networks have been widely used for file

sharing, content distribution, and communication applications (e.g., Napster,

Gnutella, MSN Messenger). They have also been leveraged in distributed

computing contexts to collectively perform tasks or solve problems (e.g.,

BOINC [116], the Berkeley volunteer platform for sharing computing

resources, including the World Community Grid project [117]). These tasks

are usually split into smaller tasks and distributed across devices. The outputs

are then combined to form the final result. This approach can be used for a

variety of applications, such as scientific computing, data analysis, and

machine learning [18].

Privacy concerns. Complete decentralization of the computing architecture

alone is not enough to preserve individual privacy. Indeed, the fact that nodes

communicate directly with each other makes it possible to access and analyze

each other's data, which can represent a significant risk of exposure of

sensitive data. In response, [118] suggests a P2P model for location-based

mobile applications using the well-known k-anonymity mechanism. More

recently, Mirval et al. [18] propose a secure aggregation protocol based on a

secret sharing scheme providing fundamental building blocks for the

execution of statistical and machine learning algorithms.

Fault tolerance concerns. Resiliency is also a major concern in P2P systems,

as nodes can join and leave the network at any time [119]. This can lead to

instability since the loss of nodes affects network performance and thus the

execution of processing. To address this, P2P systems use techniques such as

replication [120] and self-healing [121] to ensure that the network remains

operational. For example, in a data replication scheme, data is replicated

across multiple nodes, so that if one node fails, the data can still be accessed

from another node. Again, we see that replication is essential to ensure

resiliency, but can be detrimental to privacy.

38

2.3.5 Federated Learning

Federated learning is a decentralized machine learning architecture that

allows multiple servers/devices to collaboratively train a model without

exchanging their raw data [122]. This approach has gained popularity in

recent years due to the increasing need for privacy preservation and data

decentralization. The concept of federated learning covers two broad

categories of applications: on the one hand, "cross-silo" where a few

organizations with large amounts of data want to collaborate to build a

machine learning model while avoiding sharing their data (e.g.,

pharmaceuticals discovery [123]), and on the other hand, “cross-device”

where a large number of user devices participate in the model refinement

(e.g., mobile keyboard prediction [124]).

Privacy concerns. Federated learning is, by construction, more privacy-

friendly than the standard approach of massive data accumulation in

centralized architectures. However, as we have just seen with P2P systems,

decentralization alone does not protect against all privacy attacks [122]. For

instance, an attacker may try to infer training data based on the parameters

of the received models [125]. To counter these attacks, Cyffers et al. [126]

propose "Muffliato", an implementation of local differential privacy to reduce

privacy leakage in a fully decentralized federated learning context (no central

server). Unfortunately, the confidentiality advantages of this solution come

at the cost of degraded data quality and therefore a loss of accuracy in the

resulting models.

Fault tolerance concerns. In the cross-device context (closest to our work),

it must be considered that devices may be disconnected or unavailable

during the learning process. Indeed, as explained in [127], the diversity of

hardware and network connections makes the federated network

heterogeneous both in terms of computational and communication

capabilities. It is therefore common that out of a large number of devices,

only a small proportion are simultaneously active. To cope with this, Smith et

al. [128] propose the MOCHA algorithm for federated multi-task learning and

showed convergence of the method even in the presence of nodes dropping

out at each iteration of the learning process.

2.3.6 Conclusion

This section covers a wide range of decentralized computing architectures by

first examining their scope of application and then focusing on privacy and

fault tolerance concerns. We have seen that, with the exception of P2P

39

systems, these decentralized architectures still partially rely on central servers,

whether for processing or coordination. It is therefore mandatory to maintain

these servers in order to guarantee reliable and secure services. We have also

seen that although decentralized architectures are by construction more

privacy-friendly than fully centralized approaches, they are not sufficient to

protect against all confidentiality attacks. Finally, we found that implementing

the fault tolerance mechanisms required for any field application is

sometimes detrimental to privacy, especially in the case of data replication

which increases the risk of data leakage. All these factors will have to be

considered when designing our own decentralized computing architecture.

2.4 PRIVACY PRESERVATION TECHNIQUES

In this last section, we will review the various techniques available in the

literature to perform (distributed) computations on personal data while

preserving privacy. We will study four main approaches ranging from

cryptographic mechanisms to hardware components: Homomorphic

Encryption, Secure Multi-Party Computation, Local Differential Privacy and

Trusted Execution Environments. Our objective is to understand the general

functioning of these approaches as well as their respective advantages and

disadvantages in order to later define our own privacy protection strategy.

2.4.1 Homomorphic Encryption

Homomorphic encryption is a cryptographic technique that allows

computations to be performed directly on encrypted data. This means that

sensitive data can remain encrypted while still being processed, thus

preserving data confidentiality. The concept of homomorphic encryption was

first introduced by Rivest, Adleman, and Dertouzos under the name of Privacy

Homomorphisms [129]. There are three categories of homomorphic

encryption schemes:

- Partially homomorphic encryption schemes only support one

operation, such as multiplication or addition, on ciphertexts. For

example, the RSA cryptosystem [130] is partially homomorphic for

multiplication.

- Somewhat homomorphic encryption schemes support both

addition and multiplication on ciphertexts, but for a limited number

of times. For instance, some encryption schemes allow unlimited

additions and one multiplication.

40

- Fully homomorphic encryption schemes, on the other hand, enable

an unlimited number of operations both addition and multiplication.

The first fully homomorphic proposal was made by Gentry [131] in

2009.

Unfortunately, the limitations on the operations of partially and somewhat

homomorphic encryption schemes make them unsuitable for generic

computations. For fully homomorphic encryption schemes, the main concern

is performance and scalability. Although much work tends to mitigate this, it

still takes several tens of seconds to encrypt one 16 bytes block [132].

2.4.2 Secure Multi-Party Computation

Secure Multi-Party Computations (SMC) are algorithmic processes that allow

individuals to perform a joint computation on their data without revealing

anything other than the final result. They were formally introduced in 1982

by Yao [133], who posed the question of how two millionaires could

determine who is richer without disclosing their own wealth to each other.

We distinguish two main paradigms for SMC problems. The ideal model

assumes that there is at least one trusted third-party among the participants,

while the real model makes no such assumption [134]. In this thesis, where

the application context is fully decentralized, we do not assume the existence

of a trusted third-party and therefore discard all solutions based on the ideal

model. Among the SMC methods of the real model, we can mention:

Garbled circuit [135]. The idea is to construct a boolean circuit composed of

many logical gates that represents a desired computation, and then "garble"

it in such a way that the parties can evaluate it without learning anything

about each other's inputs. This garbled circuit is distributed to the parties,

who use it to compute the function and obtain the result of the global

computation.

Secret sharing [136]. This approach consists of dividing a secret into multiple

shares (based on Shamir’s secret sharing [137]) in such a way that no single

party can view the original data without the cooperation of the other parties.

The parties then use their respective shares to compute a function without

revealing any information about their individual inputs.

There are also other approaches to SMCs, such as methods based on

homomorphic cryptography [138], or gossip protocols [139]. Overall, SMCs

provide a powerful framework for enabling secure computations in various

real-world scenarios where data privacy is critical. However, as with

41

homomorphic encryption, they suffer from performance issues when scaling

up with a large number of participants. For example, SMC adaptations for

distributed databases, such as SMCQL [140], are usually limited in terms of

the number of participants and operations supported (in SMCQL, only two

parties are supported).

2.4.3 Local Differential Privacy

Local Differential Privacy (LDP) [141] is a widely-used technique in distributed

computation that provides a high level of privacy protection for individuals

participating in a global dataset with their sensitive data. The approach is an

adaptation of the general differential privacy model proposed by Dwork

in [142]. Unlike other anonymization techniques, such as k-Anonymity [143],

l-Diversity [144], t-Closeness [145], which apply to the dataset itself, LDP

applies to the data collection process. The privacy protection is introduced

through the use of randomized algorithms that ensure that no individual's

data can be inferred from the inputs of a differentially private dataset.

To explain the LDP intuition, let us take an example. Suppose we want to

obtain statistics on the number of participants in a demonstration by asking

the question: "Did you participate in the demonstration?". Participants are

then asked to flip a coin without revealing the outcome. If the result is heads,

the participant answers honestly, but if it is tails, he or she flips another coin

and answers "yes" if it is heads and "no" if it is tails. This technique protects

the privacy of the participants since it is impossible for an attacker to know

whether their answer is honest or not.

Although the LDP provides robust and scalable mechanisms for privacy

protection, it introduces by construction a trade-off between privacy

protection and the utility of the data and therefore the accuracy of the results.

Furthermore, it has been shown that the estimated error is linear with respect

to the number of attributes [146], making LDP unsuitable for high-

dimensional datasets.

2.4.4 Trusted Execution Environments

Trusted Execution Environments (TEEs) are tamper-resistant processing

environment providing secure storage and computing capabilities [147].

They ensure three main security properties: isolation of the executed code,

confidentiality of the manipulated data, and remote attestation, which is a

mechanism to prove the identity of the code running within a TEE. Over the

past decade, we have seen a wide deployment of TEEs in devices widely used

42

by the public, such as personal computers and smartphones, making them

prime candidates for Personal Data Management Systems [15].

Figure 2.1: Examples of Trusted Execution Environments

ARM TrustZone. TrustZone [148] is a hardware-based security solution used

in ARM processors that creates two separate "worlds": a secure and a normal

one. These two parts are isolated from each other by partitioning the memory

into secure and non-secure sections, and using special registers that can only

be accessed when the processor is running in the secure state. Applications

can then use the secure world to implement a TEE service, which performs a

specific function, or a TEE kernel, which orchestrates several TEE instances by

managing their memory, handling their communications, or providing them

with APIs. Examples of TrustZone applications notably include

TrustShadow [149] and Android Keystore [150]. More recently, Wan et

al. [151] proposed a Rust-based TrustZone application SDK, called RusTEE, to

help developers compile trusted applications with the enforced memory-

safety features.

Intel SGX. Intel Software Guard Extensions (SGX) [152], [153] is a TEE

technology introduced in 2013, which allows the creation of isolated software

containers, called enclaves, that are protected from the operating system and

the hypervisor. SGX provides data confidentiality and integrity protection by

encrypting part of the memory and using specific parts of the processor. As

already mentioned earlier, recent works [54], [55] have even demonstrated

the practical application of a PDMS coupled to an SGX processor allowing to

perform any kind of user-defined functions.

Trusted Platform Module. One of the precursors of TEEs is the Trusted

Platform Module (TPM) [154], which is a hardware-based security module

that provides a secure root of trust for computing systems. The TPM ensures

43

a high level of integrity by storing keys, passwords and certificates in a

tamper-resistant environment on which cryptographic operations are

performed. As explained in [147], the main limitation of TPM is that it does

not provide an isolated execution environment for third-party, which reduces

its functionality to a limited number of operations. Nevertheless, it is possible

to combine the TPM with a CPU [155] or an MCU [53] (as illustrated in Figure

2.1.b) together with a minimal Trusted Computing Base to perform more

complex processing.

Although TEEs are designed to be resistant to tampering and attacks, they

are not completely immune. Indeed, these systems are regularly subject to

new side-channel attacks [156]–[158], some of which are capable of breaking

all security properties [158]. Thanks to their revelation by the scientific

community, these attacks are addressed on a case-by-case basis via updates

by TEE providers. Nevertheless, it is reasonable to consider the possibility of

such attacks and to assume that a compromised TEE could behave in "sealed

glass proof" mode [159], i.e., the confidentiality property is broken, but the

isolation and attestation properties remain valid. Despite this, side-channel

attacks are still complex to perform and usually require physical access to the

TEE, making them less likely to occur on a large scale. It's important to note

that honest TEEs cannot detect those that have been corrupted by side-

channel attacks, as their behavior could still appear correct. This should

therefore be taken into account when designing protocols based on TEEs.

2.4.5 Conclusion

As seen in this section, there are numerous techniques for combining data

computation and privacy, each with its own advantages and disadvantages.

In our case, the established objectives require a solution capable of

(1) performing any kind of processing without compromising the quality of

the results obtained and (2) scaling up with a large number of participants.

According to our analysis, only TEEs seem to meet these constraints. The

architecture must then include by construction the limitations of this

technology, i.e., the possible side-channel attacks capable of disclosing all

the personal data processed by the compromised TEE device.

45

3 EDGELET COMPUTING PARADIGM

3.1 Edgelet Architecture .. 45

3.2 Responsibility Model ... 47

3.3 Edgelet Query Model .. 49

3.4 Straw Man Execution Analysis .. 51

3.5 Problem Statement .. 52

The scenarios described in the introduction combine several characteristics.

On the one hand, they require the execution of complex processing tasks on

sensitive personal data. These tasks range from regular database aggregation

queries to machine learning computations. On the other hand, they are

executed in a highly distributed environment, prone to many failures, with

communications between devices performed in an opportunistic manner.

To tackle the privacy protection, data management, and distributed system

issues related to this environment, we define in this chapter the "Edgelet

computing" paradigm. First, we describe the considered underlying

architecture, its components, and related assumptions. Second, we propose

a new model of responsibility adapted to this architecture, which specifies

the role and obligations of each actor. Third, we discuss the data and query

models targeted in this work and propose a straw man query execution plan

which supports it. We then study the impact of the Edgelet computing

context on this execution, which helps us to define three required properties

to ensure the liveness, safety, and security of the query execution. The

objective of this chapter is therefore to present the Edgelet Computing

paradigm and to state the technical problem addressed.

3.1 EDGELET ARCHITECTURE

The idea of using the computational resources of personal computers or

devices is obviously not new (cf. P2P architectures [115], e.g., BOINC [116]).

More recently, [92] proposed to use resources from mobile personal devices,

coupled with opportunistic communications to distribute opportunistically

some large computations on a set of mobile devices. In this thesis, we push

this idea a step further by seeking to share both the personal mobile device

resources and the personal data of the device owner, as outlined in the

scenarios presented in Chapter 1. To the best of our knowledge, this has

never been proposed before probably because of the risks related to the

protection of these personal data.

46

A game changer is the generalization of Trusted Execution Environments

(TEEs) [147] at the extreme edge of the network: Intel SGX [153] is becoming

ubiquitous on PC and tablets, ARM's TrustZone [148] on smartphones (Figure

2.1.a) and even Trusted Platform Module on smart objects (Figure 2.1.b). TEEs

protect code and data from untrusted execution environments and from the

devices’ owners. More precisely, a TEE enforces (1) data confidentiality: data

manipulated within a TEE node cannot be observed from the outside; and (2)

code integrity: an attacker cannot influence the behavior of a program

executing within a TEE. In this thesis, we assume that each personal device

(edgelet) is equipped with a TEE guaranteeing to its owner the two previous

properties as long as the device is not physically compromised. Indeed, as

seen in Section 2.4.4, side-channel attacks compromising data confidentiality

cannot be totally ignored, placing the device in "Sealed-Glass Proof" mode.

Regarding inter-device communications, the proposed architecture is built

on Opportunistic Networks (OppNets). Indeed, the communication

infrastructure considered in our scenarios is sidestepping any classical WAN

infrastructure (e.g., Internet) for cost or energy constraints, lack of

connectivity, security, or even freedom of expression concerns. The

communications between edgelet nodes are short-range (e.g., Wi-Fi,

Bluetooth) and asynchronous, i.e., there is no bound on the message

transmission delay from a given edgelet node ei to another edgelet node ej.

Connections among devices then form a non-connected time-varying graph

as in traditional OppNets [81]. Note that various routing protocols from

simple to more elaborated (and optimized) ones could be considered.

However, the main focus of this study is not efficiency (e.g., resource

consumption or query execution time), but rather feasibility. Hence, we

consider for simplicity an epidemic diffusion of the messages, assuming that

messages are transferred from device to device following a store-carry-

forward communication protocol [61]. Other more optimized protocols, e.g.,

exploiting moving patterns of users [63], are considered as future work.

As mentioned earlier, we want to explore, in this thesis, the possibility to rely

exclusively on secure personal devices to perform the required computations,

i.e., without relying on any external infrastructure like central servers. Similar

to P2P and cross-device federated learning architectures (see Sections 2.3.4

and 2.3.5), we want processing to be distributed across edge devices, without

requiring the deployment or maintenance of centralized servers. Therefore,

the execution of computations in the Edgelet architecture is achieved in a

fully decentralized manner.

To summarize, the convergence between TEEs and OppNets, which we call

47

Edgelet computing, leverages secure personal devices to enable complex

processing. Its architecture is characterized by the following three elements:

• Secure edgelet: Each personal device, called edgelet, is equipped

with a TEE, which provides secure storage and processing capabilities.

• Opportunistic communications: Edgelets communicate with each

other through Opportunistic Networks whose messages are

transmitted at short range with no time limit for their delivery.

• Fully decentralized execution: The processing of personal data is

fully decentralized on edgelets and does not rely on central servers.

This new combination of secure hardware devices and the organization of a

fully decentralized computations raises new issues in terms of work and

responsibility distribution which are discussed in the next section.

3.2 RESPONSIBILITY MODEL

Responsibility models are usually introduced to help define the respective

responsibilities of all actors involved in a given computing infrastructure.

Such models guide judges, practitioners, and researchers when confronted

with legal questions related to the protection of data and code. For instance,

the Shared Responsibility Model (SRM) [160] states the responsibilities of

cloud service providers and customers for securing all aspects of a cloud

environment. To illustrate this, in an Infrastructure as a Service context, the

customer is responsible for the data, application, and Operation System (OS)

parts and the cloud provider for the rest of the infrastructure (virtualization,

servers, storage, network), while in a Software as a Service (SaaS) context, the

latter endorses also the responsibility of the application and OS.

The SRM is generic enough to apply to a large variety of application domains.

Assuming personal data is managed in a SaaS context, the customer is the

actor playing the data controller role1 in the GDPR sense (e.g., a company, an

administration, an NGO), and the cloud provider plays the role of data

processor2. Yet, the individual herself is no longer in the loop after having

given her consent to the data controller to process her data.

Conversely, in crowd computing applications managing personal data, the

1 According to Article 4 of the EU GDPR, a data controller is the entity (person,

organization, etc.) that determines why and how personal data is processed.
2 A data processor is the entity performing the processing on the controller's behalf.

48

individual is at the heart of the infrastructure. However, we are not aware of

any similar shared responsibility model adapted to crowd computing.

Unsurprisingly, no one would agree to endorse the data processor or data

controller responsibility in a fully decentralized computing context where

each device is under the control of a distinct individual. The consequence is

that crowd computing can handle use cases where the shared data is not

really sensitive (e.g., sensor data like temperature or noise captured by a

smartphone) but cannot tackle use cases involving sensitive personal data

(e.g., medical data) that require tangible security guarantees. In this section,

we define such a shared responsibility model, adapted to the Edgelet

computing context, that we call Crowd Liability Model (CLM).

Crowd liability conveys the idea that the data controller is the crowd (i.e., the

result of the processing is expected to benefit, directly or indirectly, to each

crowd member who agree together to the why and the how of this

processing) and that there are as many potential data processors as they are

crowd members. The corollary of this idea is that each crowd member is

expected to do her best to honestly play the fragment of the data controller

and data processor roles assigned to her, but the participation in the

processing of some dishonest crowd members or of corrupted devices

owned by honest crowd members cannot be precluded.

To translate this idea into a responsibility model, we split the data controller

into two roles, (1) the Recipient which is the node selected to issue the

processing and fairly disseminate3 the result to the crowd, and (2) the

Regulator (an external trusted entity or a set of crowd members) which

assesses the honesty of the processing purpose and approves it on behalf of

the crowd. Considering that crowd members usually do not have the

technical skills to endorse the data processor role, we limit their responsibility

to the delivery of accurate data as input for the processing and to the usage

of a genuine TEE-enabled device to contribute to the processing (i.e., the

crowd member is not liable for potential corruption of her own device but

she becomes liable if she tampers with her TEE). Then, we introduce a

Trusted Assistant role, which is played on behalf of the Edgelet node owners,

and encompasses all technical principles embedded in each edgelet device

to help the crowd members endorse the fragment of the data processor roles

assigned to her. Basically, the Trusted Assistant is expected to guarantee the

so-called Computation honesty, namely: (1) each decentralized execution

3 The dissemination of the result being scenario-dependent, our study stops at the

delivery of the final result to the Recipient.

49

strictly conforms to the QEP approved by the Regulator and (2) each honest

crowd member confidently participates to the processing despite potential

corruption of her own device and (3) each dishonest crowd member is

defeated in her attempt to perform a massive attack.

Table 3.1 below transcribes the CLM with the distribution of responsibilities

according to tasks and roles.

Crowd

Member
Recipient Regulator

Trusted

Assistant

Data integrity X

Edgelet integrity X

Result dissemination X

Purpose honesty X

Computation honesty X

Table 3.1: Crowd Liability Model (CLM)

3.3 EDGELET QUERY MODEL

We consider distributed computations involving personal data hosted in

(potentially large) sets of edgelet nodes from smartphones and tablets to

more specific smart objects (see Chapter 7), like PDS [42], PDMS [54] or

Databoxes [36]. Moreover, contrary to participatory sensing or sensor

networks which focus on stream queries over elementary data, we consider

rich data (e.g., healthcare folders, spending habits) and advanced processing

(e.g., database statistics, data mining, machine learning). We assume that

edgelets data can be queried as a shared database with a uniform schema.

More precisely, each device may host a set of database schemas, typically

one per application domain. The database schemas may be defined by a

government agency (e.g., Ministry of Health), a private consortium (e.g., a

group of banks and insurances) or an NGO. Consequently, for a given query

expressed on a given database schema, the universe of edgelets data E can

be seen as a horizontal partitioning of the corresponding global database.

The computations under consideration (called Query hereafter) must cope

with the uncertainty inherent to the Edgelet setting, making the traditional

database closed-world assumption [161] irrelevant. Thus, considering an

open-world query model for edgelets leads us to introduce the notion of

snapshot-compliant query.

50

Snapshot-compliant query: Given E the universe of edgelets data and Q a

query targeting a dataset D E, the representativeness of the snapshot D for

Q is defined by a set P of predicates over elements of E (e.g., age > 65) and

by a cardinality (e.g., D = 2000). We denote by Q(E) the set of all

representative snapshots of E enforcing P and D. The Query Q is snapshot

compliant if the result of Q considering any snapshot of Q(E) is equivalent

for the Recipient.

In other words, a snapshot-compliant query, evaluated on any representative

snapshot (enforcing P and D), will give a satisfactory result for the Recipient.

We consider that a query is expressed by a Query Execution Plan (QEP), which

is a directed graph where vertices materialize the operators to be computed

and edges represent the dataflow among them, with messages sent through

the OppNet. The simplest form of a QEP is a tree with Data Contributors (DCs)

at the leaves, that is the edgelets of crowd members who gave their consent

to contribute to the query with their data4. Other operators of the QEP are

Data Processors5 (DPs), i.e., edgelets that contribute to the processing of the

contributed data to produce the final result for the Recipient (R), the root of

the QEP. Thus, the DPs either consume the outputs of a set of DCs or the

outputs of other DPs.

Let us introduce the foundation for the query model by considering a straw

man execution. To satisfy a snapshot-compliant query, we only need to

define two types of data processors:

• The Snapshot Builder (SB) whose role is to build a representative

dataset from the data transmitted by the DCs.

• The Computer (C) whose role is to perform the computation required

by the query on the representative snapshot built by SB.

Then, the straw man QEP proceeds in three steps as illustrated in Figure 3.1.

1. Each Data Contributor DCi sends its data to the Snapshot Builder.

2. SB builds a snapshot 𝐷 = ⋃ 𝐷𝐶𝑖
𝑛
1 compliant with the set of predicates

P and the cardinality D and send it to the Computer.

4 The consent management is an important question in the Edgelet context,

addressed in Chapter 4.
5 Data Processor refers here to an operator in a QEP, not to the Data Processor role

as defined in the GDPR terminology.

51

3. C performs the computation on D and sends the final result to the

Recipient (R).

Figure 3.1: Straw Man Query Execution Plan

Note that, since we consider OppNets, we do not consider pipeline

communication between edgelets because (1) it will generate too many

messages, overloading the OppNet and (2) it will be very difficult to manage

since there is no bound on transmission delays. Thus, we consider that a DP

works in a blocking mode, i.e., it waits for all its input before processing it

and producing the output. Similarly, a DC produces all its output in a single

message. Consequently, any message is sent atomically through the OppNet,

i.e., the payload is either totally received by the recipient or not at all.

3.4 STRAW MAN EXECUTION ANALYSIS

Obviously, this straw man execution does not answer any of the challenges

posed by the considered context, namely data confidentiality, resistance to

failures, and, as a consequence, execution validity.

Data confidentiality. As described in Section 3.1, the query execution is fully

decentralized on edgelets that, even if secured by TEEs, can still be attacked

(see Section 2.4.4). However, we do not wish to reduce the utility of the data

by using local differential privacy. We cannot either use Secure Multiparty

Computation techniques that would not scale due to opportunistic

communications. An execution following strictly the straw man execution

plan would therefore be disastrous in terms of exposed data since the

potential effect of an attack on SB or on C would be to disclose all

manipulated data. We will then have to circumscribe this risk by

decomposing operators (e.g., using horizontal and/or vertical partitioning)

52

into sub-operators assigned to different edgelets. An operator should be

decomposed if the generated sub-operators require fewer data to process,

in order to minimize the impact of leakage in case of attacks.

Resistance to failures. Edgelets are personal devices and are therefore

susceptible to failure and/or voluntary shutdown. In addition, these devices

communicate via OppNets that do not guarantee bounds on communication

delays. It will then be necessary to proactively introduce mechanisms to

withstand these failures or communication problems. A resilient execution

should therefore include backup or replication operators. The objective here

will be to guarantee that the execution has a significant chance of success.

Execution Validity. The two previous points will lead to a much more

complex QEP (with several SBs, several Cs as well as with backup edgelets

and/or replicated operators) which could then result in an invalid

computation if inconsistencies occur at some point. It will therefore be

necessary to ensure that the execution is valid, either by adding

synchronization mechanisms before the computation, or verification

mechanisms after the computation.

The problem is quite complex because we will have to deal with these three

dimensions at the same time, knowing that each one potentially influences

the other two. For example, to resolve failures, we will need to add DPs, which

will reduce security since data will be exposed on multiple edgelets. Similarly,

to reduce the risk of data exposure, a DP needs to be split into multiple sub-

DPs, which then increases the overall failure risk!

3.5 PROBLEM STATEMENT

To summarize the above analysis, we have to face three difficulties: First, the

liability shift to the crowd must be carried out in a context where a few

attacked devices can jeopardize the security of the whole system with no way

to detect them. Second, reliable failure detectors cannot exist in OppNets

due to the unpredictability of message delays, making it difficult to predict

the time to build a snapshot from random contributors and to execute a

query. The system liveness must then be guaranteed based on fault

presumptions only and on the probability of success for queries associated

to a deadline (i.e., a maximum time allowed for executions). Finally, the

snapshot consistency must be preserved all along the query processing

despite presumed faults and message loss between Data Processors in order

to guarantee the system safety, i.e., a consistent result. We introduce below

three properties that must be met together to tackle this problem.

53

Confidentiality (security property). Each edgelet must integrate

mechanisms enforcing the CLM’s Computation honesty on behalf of the

edgelet owner, namely: (1) each decentralized execution strictly conforms to

the QEP approved by the Regulator and (2) each honest crowd member

confidently participates to the processing despite potential corruption of her

own device and (3) each dishonest crowd member is defeated in her attempt

to perform a massive attack.

Resiliency (liveness property). Given a probability of fault presumption pf

for any edgelet, a query deadline, and an expected probability of success ps,

a query Q must complete before the deadline with a probability greater than

ps, otherwise Q is aborted.

Validity (safety property). The Edgelet query execution result must be

identical to a centralized query execution over at least one snapshot of Q(E).

Formally, DiQ(E), DjQ(E)/ QE(Di) = QC(Dj), with QE (resp. QC) denoting

the Edgelet (resp. centralized) execution of a query Q.

These properties are particularly challenging to tackle together given their

mutual impact: Confidentiality is addressed in Chapter 4 while Resiliency is

addressed in Chapter 5, studying its impact on Validity and Confidentiality.

55

4 CROWD LIABILITY ENFORCEMENT

4.1 Dedicated Threat Model .. 55

4.2 Purpose Honesty ... 56

4.3 Computation Honesty ... 57

4.3.1 Global and local integrity of the processing... 57

4.3.2 Resistance to massive attacks .. 58

4.4 Conclusion ... 61

The Edgelet computing paradigm introduced in Chapter 3 leverages the

convergence between TEEs and OppNets to perform secure computations

on personal data in a more flexible and scalable way than with local

differential privacy, secure multi-party computation protocols, or

homomorphic encryption. However, it comes with a rather specific

Responsibility model called Crowd Liability Model (CLM). This chapter is

devoted to the mechanisms and algorithms required to enforce this CLM.

The two cornerstones of the CLM are Purpose honesty, which deals with the

approval by the crowd of the why and the how of the processing, and

Computation honesty, which ensures the confidentiality of the processing

during its decentralized execution. These two principles are respectively

addressed in sub-sections 4.2 and 4.3. However, since the CLM defines new

roles and responsibilities and relies on specific security assumptions, a

dedicated threat model must be defined first.

4.1 DEDICATED THREAT MODEL

A dedicated threat model is required to capture (1) the shift of responsibility

from a usual central entity (i.e., the data controller in the GDPR) to the crowd

and (2) the TEE trustworthiness. We define this model as follows.

Ingenuous Recipient.

- Role: initiates the processing of a Query Execution Plan and receives the

final results. Does not take part in the execution.

- Played by: depending on the use case, one or more crowd members,

medical workers, statistical agencies, etc.

- Trust: We do not want to impose the Recipient to be equipped with a

TEE-enabled device to avoid reducing the targeted use-cases, explaining

why we exclude it from the actual processing of the QEP. However, we do

not question the good faith of the Recipient. Thus, even if it receives the

56

results of the processing in clear text, we do not consider inference

attacks from its side (i.e., crossing the results of multiple queries).

Wolf in sheepfold Participants.

- Role: contributes with data (Data Contributor) and/or processing power

(Data Processor) in a Query Execution Plan.

- Played by: any participant equipped with a TEE-enabled device.

- Trust: as said in Chapter 3, side-channel attacks on a TEE-enabled device

cannot be totally precluded despite their complexity (requires tampering

with the device). A compromised TEE behaves in a “sealed glass proof”

mode [159], where code integrity is preserved but data confidentiality is

lost. We assume a large majority of honest participants (the lambs) and a

few “sealed glass-proof” ones (the wolves).

Regulator.

- Role: reviews and approves the processing to be performed. This role is

not devoted to the query execution itself.

- Played by: either an external entity (e.g., a privacy regulatory agency like

the CNIL in France) or a representative group of crowd members engaged

in a collective validation process.

- Trust: full.

4.2 PURPOSE HONESTY

In this section, we focus on the initialization of queries and how the Recipient

can prove its honesty. To this end, we propose to build on the manifest-based

framework [17], [53], so that the recipient can declare the why and how of

processing. Here is its implementation in our context:

First, the Recipient specifies a manifest describing the query to be performed.

This manifest consists of four elements: (1) the general purpose of the

processing expressed in natural language, (2) the Query Execution Plan, (3)

the set of representativeness predicates P of the targeted dataset D as well

as its cardinality |D| and (4) the source code of the operators to be executed

on each edgelet node. Next, the Recipient submits the manifest to the

Regulator which verifies its compliance with the expected privacy practices.

Finally, the manifest is signed by the Regulator and returned to the Recipient.

This certified manifest will be used for the edgelet assignment protocol

presented in the next section, after which the query manifest will be ready for

dissemination in the Opportunistic Network.

Let us now see how the threat model and the manifest-based framework

57

translate into the motivating example given in the introduction, the DomYcile

project [21]. In this example, illustrated in Figure 4.1, we consider that a group

of medical doctors (Recipient) wants to query a cohort of consenting elderly

patients to obtain statistical results in the spirit of [162] (Share EU

project [163]). Assuming that each patient is equipped with a secure box (see

Figure 2.1.b), the query deployment proceeds as follows.

Figure 4.1: Edgelet query in the DomYcile project

First, the Recipient specifies the manifest containing the four elements

mentioned above, including the general purpose: "Cohort of 2000 patients,

having age ≥ 65, computes statistics on Age, Education, BMI, Tobacco,

Chronic diseases, Frailty criteria". Second, the Recipient sends the manifest to

the Regulator, e.g., the CNIL (French regulatory agency), which sends back a

signed version if approved. Third, QEP operators are randomly assigned to

some edgelets by the Recipient (see Section 4.3.2) making the query manifest

ready for dissemination. The broadcast is performed by healthcare workers

who implement an OppNet. The messages are transmitted from their

smartphones to the boxes via Bluetooth using the store-carry-forward

strategy. Patients willing to contribute their data to the query will then act as

Data Contributors. Edgelets assigned by the Recipient will themselves act as

Data Processors. The challenge is finally to protect the confidentiality of the

computations despite potential attacks on the edgelets (wolfs), which is the

topic of the next subsections.

4.3 COMPUTATION HONESTY

4.3.1 Global and local integrity of the processing

Now that the certified manifest is disseminated to all edgelets in the network,

we want to ensure the first two points of the CLM’s Computation honesty: (1)

58

each decentralized execution must strictly conform to the QEP approved by

the Regulator and (2) each honest crowd member must be able to confidently

participate to the processing despite potential corruption of her own device.

In other words, the question is how to verify that the execution is done in the

same order as specified by the certified QEP and how to ensure that the

processing performed on the data does not deviate from the original code?

To achieve this, we leverage the code integrity property provided by the TEE

to build a Trusted Assistant, a logical entity taking responsibility for the

Computation honesty on behalf of the edgelet owners. Concretely, the

Trusted Assistant runs on each edgelet node a piece of code, called Core

hereafter, which is part of the TEE Trusted Computing Base, that is a code

base guaranteed genuine at boot time. Using remote attestations [17], [164]

(cryptographic proof of the authenticity of the TEE), the Core enforces point

(1) of CLM’s Computation honesty by guaranteeing that the predecessors of

Data Processors are legitimate and produce valid intermediate results. In

addition, the Core attests the genuineness of the QEP operator’s code

assigned to the participating edgelets by verifying the signature of the

Regulator on the certified manifest. Note that even if the edgelets’ operating

system is corrupted by malware or viruses, the isolation property of the TEE

ensures that the executed code cannot be altered. Hence, point (2) of CLM’s

Computation honesty is also enforced.

These two integrity guarantees provided by the Trusted Assistant via the TEEs

reinforce the crowd's confidence in the Edgelet computing architecture. As a

result, each individual can freely consent to contribute her sensitive data with

the reassurance that the decentralized execution will follow precisely the

precepts indicated by the certified manifest. As we will see below, the next

challenge is to protect executions from dishonest crowd members.

4.3.2 Resistance to massive attacks

Point (3) of CLM’s Computation honesty states that each dishonest crowd

member is defeated in her attempt to perform a massive attack. As

mentioned before, we do not exclude the possibility of side-channel attacks

on edgelets compromising the confidentiality of the manipulated data. Our

objective is then to empower the Trusted Assistant with mechanisms that

minimize the risks of massive data leakages in this particular case.

The Recipient is in charge of initiating the query, that is, assigning the QEP

operators to the participating edgelets, and then launching the processing.

However, the threat model does not make any assumptions about the

59

integrity of the Recipient(s). Even if we do not question his good faith, his

information system may have been corrupted by some attacker. Thus, the

task of assigning operators to edgelets must be protected to prevent a critical

operator from being assigned to a corrupt accomplice edgelet, e.g., the

operator manipulating the data of a targeted contributor or the operator

manipulating a maximum amount of sensitive data. We therefore propose a

random assignment protocol auditable by the Trusted Assistant.

Random assignment. We assume that the set of all crowd members’ edgelet

is known by the Recipient (e.g., they register to join a community) and that

their ID form a hash ring (as in a Chord DHT). We also assume that each

crowd member tacitly consents to contribute to a query execution, which is

far less engaging than consenting to contribute their personal data to the

query. Under these assumptions, the assignment protocol is the following.

1. The Recipient computes a hash of the manifest (signed by the

Regulator and publicly known) as a seed for the random process and

assigns the first operator to the edgelet having the ID immediately

greater than this hash1. The first hash is rehashed to assign the second

operator and so forth until all operators have been assigned.

2. The Trusted Assistant, which implements Core on all edgelets, verifies

this chain of hash in order to detect any fraudulent assignment for

the operator intended for them. Assuming that each edgelet knows

at least the ID of its predecessor in the ring, it is sufficient to check

that the hash is strictly larger.

How does this assignment work when successive hashes lead to collisions?

Note that this problem is frequent when few edgelets nodes are present in

the ring, and becomes highly unlikely otherwise. However, assigning multiple

roles to a single node is undesirable for both resiliency and privacy reasons,

hence the need for a countermeasure. When a collision occurs, we propose

that the Recipient assigns the direct successor of this node in the ring, the

latter having a lower probability (squared) of also being in collision. The

Trusted Assistant can still detect a fraudulent assignment, but this time each

edgelet must know the IDs of its two predecessors. The proposed method is

therefore adjustable to any dimension of the network, it will just be necessary

to increase the number of known predecessors.

1 This assignment is blind; since it does not take into account the fact that edgelets

may be down or unavailable. As we will see in Chapter 5, QEPs must provide resiliency

mechanisms to anticipate these possible failures.

60

Next, let us try to restrict the leakage to dishonest crowd members, those for

which the edgelet is physically attacked. Trivially, if no Data Processor is

compromised, the TEE confidentiality property guarantees that no sensitive

data can leak by construction. However, the distributed executions we are

considering require intermediate results to be transmitted between the Data

Processors (e.g., the representative snapshot D sent by the Snapshot Builder

to the Computer). The messages sent in the OppNet then need to be

encrypted to counter any malicious interception (e.g., by the untrusted

smartphone of a healthcare worker).

Messages encryption. We assume that the QEP transmitted by the recipient

contains the certificates of the assigned data processors, consisting of the IDs

of the nodes in the DHT and their public encryption keys. Since the QEP is

constructed statically, each node can easily encrypt its output based on its

successors in the execution tree. Thus, when an edgelet ei needs to send a

message m to ej, it generates a symmetric key ks to encrypt its message and

use ej’s public encryption key pkj to encrypt ks. The packet sent in the OppNet

is then: {enc(m,ks), enc(ks, pkj)}. Following this procedure, all messages in

transit in the network are encrypted, making them unreadable to anyone

other than their recipients. Therefore, since no cryptographic material is ever

shared among edgelets and the TEE integrity property still holds even in

sealed-glass proof mode, the potential leakage is reduced to the data

processed by a compromised edgelet. Note also that any change in the

operators ordering would make the messages indecipherable and the

execution would fail, reinforcing point (1) of the CLM’s Computation honesty.

Finally, we need to restrict the amount of data manipulated by each edgelet,

so that in the event of a physical attack on assigned edgelets, leakage is

limited to a small proportion of the data required for a query.

Horizontal and vertical partitioning. We observe that computations of

interest are often distributive (e.g., MapReduce, Spark), enabling the

decomposition of processing into sub-operators. Thus, we propose to

distribute the operators of the Data Processors (Snapshot Builder and

Computer) among different edgelet nodes. This decomposition can help

minimizing the amount of data exposed at each edgelet by horizontally

partitioning the dataset. This can also preclude the concomitant exposure, in

the same edgelet, of data items that become sensitive when combined (e.g.,

a quasi-identifier) by vertically partitioning the dataset. Note that such

distributive executions can also help minimizing the workload (e.g., when

energy consumption matters) by exploiting the inherent Edgelet computing

parallelism. Figure 4.2 presents both types of partitioning, horizontal and

61

vertical, on the query example of Figure 4.1. Each Data Contributor performs

a hash function of its ID to select the Snapshot Builder to send its data to, so

that each partition processes only a fragment of the dataset (here, a tenth)

with different Computers depending on the statistics to be computed (each

one only sees the attributes strictly necessary for its computation). Note that

a Computing Combiner operator must be added in the QEP to combine the

outputs of all sub-operators.

Figure 4.2: Horizontal and Vertical Partitioning

Although these partitioning strategies are decided by the Recipient in the

design of the QEP, it is the responsibility of the Regulator to approve them.

Depending on the application context, the privacy criteria selected may be

different (e.g., medical records, spending habits) and involve a more or less

distribution of the data. Note that since each individual is free to consent to

contribute her data, it is in the Recipient's interest to design a privacy-friendly

QEP in order to encourage people to participate.

4.4 CONCLUSION

The Edgelet computing paradigm involves the implementation of a unique

and unusual responsibility model, the Crowd Liability Model (CLM). In this

chapter, we have seen that the CLM must first be translated into a threat

model in order to consider potential attacks on TEES and thus guarantee the

Purpose and Computation honesty.

For Purpose honesty, we proposed a protocol based on the manifest-based

framework [17] that establishes trust between the crowd members and the

Recipient(s) through the Regulator’s action. With this framework, any entity,

public or private, can launch a query targeting the data of thousands of crowd

members while certifying its intentions.

file:///C:/Users/ludoj/Documents/Seafile/LUDOVIC/Thesis%20Manuscript/2-maj_validation/Trustworthy%23Trustworthy_Distributed_Computations_on_

62

For Computation honesty, we leverage the properties of the TEEs to empower

the Trusted Assistant (the logical entity) with several mechanisms to ensure

the security of executions. We show that processing integrity is preserved

throughout the decentralized execution and that despite confidentiality

attacks on edgelets, leakage is limited to only the data handled by the

corrupted devices, and in adjustable proportions thanks to horizontal and

vertical partitioning.

63

5 EXECUTION STRATEGIES

5.1 Backup-Based Execution Strategy .. 63

5.1.1 Enforcing Resiliency ... 64

5.1.2 Impact on Validity and Confidentiality ... 67

5.2 Overcollection-Based Execution Strategy .. 69

5.2.1 Enforcing Resiliency ... 69

5.2.2 Impact on Validity and Confidentiality ... 70

5.2.3 Relaxing Validity .. 71

5.3 Hybrid-Based Execution Strategy ... 74

5.3.1 Enforcing Resiliency ... 74

5.3.2 Impact on Validity and Confidentiality ... 75

5.4 Qualitative Evaluations.. 75

The execution plans presented until this chapter are relevant from a logical

point of view but are not resilient to failures. Indeed, the slightest failure or

unavailability among the assigned edgelets results in the complete failure of

the query. Our objective in this chapter is then to propose execution

strategies that make Edgelet processing resistant to failures and to message

losses in the Opportunistic Networks context.

In the following subsections, we present three alternative implementation

strategies for enforcing the Resiliency property and discuss their impact on

Validity and Confidentiality. First, we consider an extension of traditional

resilience solutions based on backups (Section 5.1). Second, we present an

alternative approach, in which, instead of replicating input data contributions,

we tolerate an open (over-)set of data contributors typical of the edgelet

context and take advantage of this "overcollection" of data to ensure

Resiliency (Section 5.2). Third, we present a "hybrid" approach in which the

backup and overcollection modes can coexist for better efficiency

(Section 5.3). Finally, we conclude the section by comparing the different

strategies in terms of their respective scope (Section 5.4).

5.1 BACKUP-BASED EXECUTION STRATEGY

In this section, we take a conservative approach to Resiliency, recovering from

failures in a general way, independent of query plans and study its impact on

the enforcement of the Validity and Confidentiality properties.

64

5.1.1 Enforcing Resiliency

No reliable failure detector exists in our context and every Data Processor

(SB, C and CC in Figure 5.1) is a potential Single Point of Failure (SPF). In the

Backup-based approach, we simply try to recover from failures, whatever the

Data Processor presumed faulty, the benefit of which being to make the

handling of Resiliency independent of the form of the QEP. We use timeouts

to presume faults and secure the execution of all SPFs by means of backups,

as usual [165].

Figure 5.1: Resiliency based on the Backup strategy

We distinguish Passive and Active Backups. A Passive Backup replicates the

input data of its corresponding SPF, called primary, and is activated and

processes this data only in case the primary is presumed faulty. Thus, the data

transferred to a Passive Backup is not exposed since it remains encrypted

until the backup node is actually required. Conversely, an Active Backup

executes in parallel with its primary. Despite a reduced latency, Active

Backups incur a higher resource consumption and higher data exposure.

Consequently, all SPFs are passively replicated (see Figure 5.1), except the

Computing Combiner which must be actively replicated; otherwise, the

Recipient would be forced to take part in the processing, at least to activate

the Computing Combiner Backup(s), which would damage the Ingenuous

Recipient assumption (see Section 4.1).

Figure 5.1 presents the Backup strategy for the QEP of the motivating

example with horizontal and vertical partitioning. For this execution plan to

be fault tolerant, each SPF in each partition must survive (i.e., Snapshot

Builder and Computers), either by means of a primary node or one of its

65

backups (note that in the figure, only one backup per SPF is shown). The

number b of backups per primary node in each partition is then determined

by the inequality (1 − 𝑝𝑓
(1+𝑏))

|𝑆𝑃𝐹|×𝑛
≥ 𝑝𝑠, with pf the probability of fault

presumption, ps the expected probability of success, and |SPF| the number of

SPFs in each of the n horizontal partitions of the QEP (n=10 in Figure 5.1). As

we will also see in the other strategies, the Computing Combiner is

considered separately from the other Data Processors due to its particular

role as a proxy for the Recipient. Following the same principle, the number

of backups bcc for the Computing Combiner results in the inequality

(1 − 𝑝𝑓
(1+𝑏𝑐𝑐)) ≥ 𝑝𝑠.

We assume that a start date Ts is set in the query manifest from which all

Data Contributor edgelets start responding to the query. This date is then

known by the Data Processor edgelets assigned for the query. Given the

maximum delay for a sent message to arrive at its destination node (with a

very high probability, close to 1), the maximum execution time of the query

to successfully terminate can be estimated, which is referred to as the query

deadline calibration. To this end, intermediate timeouts must be set at each

Data Processor node so that the backups of their predecessor node(s) can be

appropriately activated at runtime. For example, in Figure 5.1, the Computing

Combiner and its active backups must allow sufficient time for all predecessor

Computers to recursively activate the Snapshot Builder backups. The

intermediate timeouts can be obtained using a simple recursive calculation

based on the following principles, illustrated with an example (see Figure 5.2).

• For each data processor, a timeout is associated with each of its

predecessor nodes, whether primary or backup. When this timeout

expired, a fault of the corresponding predecessor node is presumed

and an activation message is sent to the appropriate backup node

(the first backup of a primary if the primary is presumed faulty, the

second backup if the first backup is presumed faulty, etc.). After the

activation message has been sent, only the first message received

from either the presumed faulty primary or any of its activated

backup, will be considered and processed.

• Primary and active backups nodes follow a push message pattern for

all their successors (whether primary or backup nodes), meaning that

messages are sent to successor nodes on their own initiative.

Conversely, passive backups nodes follow a pull message pattern, i.e.,

messages are sent after a successor node's activation message is

received.

66

Level 0: Snapshot Builder and its backups. Since the Data Contributors are

never recalled, there is no timeout defined at the Snapshot Builders level and

their backups.

Level 1: Computer and its backups. The Computer nodes (primary and

backups) should receive their input data from the Snapshot Builder primary

node after a maximum time delay of 2. Indeed, the Snapshot Builders and

their backups are supposed to receive the messages from the Data

Contributors after a delay . Assuming that the data processing time of a

node is negligible compared to the message latency, an additional maximum

delay of is needed for the Snapshot Builder to transmit its result to the

Computers. A first intermediate timeout at the Computer is hence fixed at

1=2, at which the first backup of the Snapshot Builder will be activated.

Recursively, as we expect the result of this first backup to be received after a

maximum additional 2 delay, we can define the second intermediate

timeout (activating the second backup) at 2=1+2, and so on for the next

backups.

We can generalize this to obtain the timeout b for any passive backup node

in the tree. Indeed, this timeout is determined by adding 2 (activation and

response delays) to the Maximum Execution Time of a given Backup

node (METB). At tree level l+1, METB is equal to the sum of:

• The consecutive1 activation time of all direct predecessor backup

nodes and their corresponding response time: 𝑏 × 2 × , with b the

number of backups nodes.

• The recursive runtime of these backup nodes if they are not yet

provisioned. This value depends directly on the number of levels l in

the sub-QEP (i.e., the tree height): 𝑏 × 𝑀𝐸𝑇𝐵(𝑙)

Thus, 𝑀𝐸𝑇𝐵(𝑙 + 1) = 𝑏 × (2 × + 𝑀𝐸𝑇𝐵(𝑙))

Similarly, the Maximum Execution Time of a Primary node (METP)2 at tree

level l+1 is equal to the sum of:

• The emission time of its direct predecessor primary node and its

recursive runtime: + 𝑀𝐸𝑇𝑃(𝑙)

1 To protect privacy (i.e., by minimizing the number of data exposed), we choose to

activate the backup nodes only when necessary, one after the other.
2 METP also applies to active backups since they run in parallel with the primary node.

67

• The successive activation time of the direct predecessor backup

nodes and their corresponding response time: 𝑏 × 2 ×

• The recursive runtime of these backup nodes if they are not yet

provisioned: 𝑏 × 𝑀𝐸𝑇𝐵(𝑙)

Thus, 𝑀𝐸𝑇𝑃(𝑙 + 1) = + 𝑀𝐸𝑇𝑃(𝑙) + 𝑏 × (2 × + 𝑀𝐸𝑇𝐵(𝑙))

Figure 5.2: Calculation example for the deadline calibration

Figure 5.2 shows an example of the query deadline calibration with the QEP

of Figure 5.1, setting b=2 for the passive backups of the Snapshot Builders

and Computers and bcc=1 for the active backups of the Computing Combiner.

We can see that at level 0, the SB has a MEPT equal to , which corresponds

to the emission time of the DCs' contributions, while the SB's backups have

a METB equal to 0. Indeed, the execution time of the backups is only counted

from their activation time, since the data replication is done in parallel with

the primary node and the emission time is therefore already integrated. From

this figure we can see that the calculation of the deadline is strongly

influenced by the height of the tree and the number of backups. Note that

the horizontal and vertical partitioning have no impact on the deadline

calibration as long as they do not change the height of the QEP and the

number of backups per partition.

5.1.2 Impact on Validity and Confidentiality

Satisfying the Validity property requires that the dataflow between the

operators is consistent wrt. at least one of the Q(E) snapshots. However, with

failure or message loss, a Snapshot Builder and its backups may build

different snapshots, each belonging to Q(E). Therefore, three situations must

68

be distinguished to guarantee that the query result is equivalent to the one

obtained with a centralized execution over at least one snapshot built by the

Snapshot Builder or one of its backups. This particular snapshot is hereafter

called the reference snapshot.

1. Without any partitioning, a single Snapshot Builder feeds a single

Computer. Hence, a reference snapshot can be identified whatever

the execution. It is either the snapshot built by the Snapshot Builder

primary if there is no fault presumption, or the snapshot built by one

of the activated backups otherwise.

2. Similarly, with horizontal partitioning, the reference snapshot is

simply the union of each partition’s snapshot (backup or primary).

3. With vertical partitioning however, the Snapshot Builder feeds several

Computers, some of them potentially considering the primary

snapshot and some others the backup ones in case of fault

presumption. This leads to an inconsistency, i.e., a result built over a

snapshot that does not belong to any snapshot of Q(E).

Figure 5.1 illustrates this third situation, where each Computer evaluates a

different statistic but must consider a same snapshot belonging to Q(E). To

solve this problem, several solutions can be envisioned but all of them incur

a significant overhead. We sketch below two of them that address this issue

in a different way:

- Consensus: Synchronize the snapshot between the primary Snapshot

Builder and its backups thanks to a consensus protocol (Figure 5.3.a). [81]

proposes an effective consensus protocol for OppNets that matches the

Edgelet context, at the price of a distributed consensus. This consensus

stage requires that the Snapshots Builders backups be active in order to

agree on a representative reference snapshot. Indeed, if the collected

data had to remain encrypted, it would become difficult, if not impossible,

to verify the representativeness predicates.

- QEP restructuring: Rearrange the QEP so that the parallel branches are

serialized, one after the other (Figure 5.3.b), thus avoiding inconsistencies

due to multiple successors, but at the price of losing QEP parallelism and

exploding the recursive runtimes. This solution implies extending the

deadline, otherwise the intermediate timeouts would be too short and

almost all the backups would be triggered, which would harm the privacy

of the contributors since their data would be exposed several times.

69

Figure 5.3: Solutions to guarantee the Validity property

Regarding the Confidentiality property, we notice that the risk of exposure of

individual data is not the same whether the backups are passive or active.

Indeed, as we explained previously, Passive Backups only decrypt data if they

are activated, unlike Active Backups which decrypt them anyway. This

protection is possible because, even if the edgelet is compromised, the

integrity property of the code is still ensured (see Section 4.3) and guarantees

that data can be decrypted only at the reception of an activation message

from a successor node. Moreover, we consider that the activation messages

are signed with the private key of the successor nodes, making them

impossible to forge. Hence, besides horizontal and vertical partitioning,

Passive Backups provide an additional layer of protection against

confidentiality attacks on edgelets. Their use on all QEP operators is however

not always possible, especially with the Computing Combiner which must be

actively replicated, and with the Snapshot Builders when the QEP integrates

vertical partitioning and a consensus protocol, as explained above.

5.2 OVERCOLLECTION-BASED EXECUTION STRATEGY

This section introduces a very different way to handle the problem of

Resiliency, which integrates the OppNet context by design. Contrary to the

backup-based strategy, messages delays or loss are no longer considered as

faults that must be recovered but rather as a legitimate behavior.

5.2.1 Enforcing Resiliency

As an alternative to securing every SPF in a QEP thanks to backups, we

suggest over-collecting the dataset of interest so that the QEP may survive

the loss of parts of it. To explain the intuition, let us consider a query over a

sample dataset (e.g., 2000 individuals with age>65) where Data Processors

(i.e., Snapshot Builder and Computers) execute distributive operators. Instead

70

of executing the operators on single edgelets, we distribute (using hashing)

its execution over n+m edgelets where each one processes a partition of the

original dataset, with n the minimum number of partitions to be collected

and m the overcollection parameter (see Figure 5.4).

Figure 5.4: Resiliency based on the Overcollection strategy

The Overcollection ratio must be adapted to the presumed fault probability

pf of the OppNet to reach the expected success rate ps for a query. Given that

the probability of success of one partition is 𝑝𝑝 = (1 − 𝑝𝑓)|𝑆𝑃𝐹|, with |SPF| the

number of SPFs in each partition, the number m of additional partitions is

determined by the inequality ∑ (𝑛+𝑚
𝑖

) × 𝑝𝑝
𝑖 × (1 − 𝑝𝑝)(𝑛+𝑚−𝑖) ≥ 𝑝𝑠

𝑛+𝑚
𝑖=𝑛 , i.e., at

least n of the n+m partitions must succeed. Concerning the Computing

Combiner, we assign Active Backups exactly like those of the Backup strategy.

5.2.2 Impact on Validity and Confidentiality

If all QEPs can satisfy the Validity property when executed in a backup mode

(in some cases by adding a consensus among backups), this is no longer true

when executed in an Overcollection mode. Indeed, (1) the complete QEP

must be reorganized to handle a partitioned dataset3 and (2) a reference

snapshot DQ(E) must remain identifiable despite arbitrary loss of subparts

of this dataset during the processing. To tackle point (1), a brute-force

solution is to reorganize the QEP in a set of sub-QEPs, each performing an

independent processing over a partition of the collected dataset with the

Computing Combiner assembling the final result (see Figure 5.4). This

solution applies only if the commutativity rules between operators allow to

push all distributive operators down to the sub-QEPs and to push all non-

3 In fact, the strategy remains applicable for a single partition but that would be

equivalent to duplicating the QEP.

71

distributive operators up to the Computing Combiner. A QEP satisfying this

condition is said reshapable. Under this assumption, point (2) can be easily

tackled. The reference snapshot D is simply the union of all partitions that

contributed to the QEP computation up to the Computing Combiner.

Assuming that each of the n+m partitions locally satisfies the set of

representativeness predicates P and have a cardinality |D|/n, the Validity

property is trivially preserved as long as less than m partitions are lost.

This shift in the Resiliency strategy has also implications in the way individual

data is exposed. On the one hand, the fact that there are no backups ensures

by design that individual data is only exposed once, as only the primary

nodes will be able to decrypt the data and, in case of compromise, the data

leakage is restricted to the compromised edgelets (see Section 4.3). On the

other hand, the Overcollection mechanism implies that more Data

Contributors must be involved in the query to ensure the success of the

execution. Therefore, the disadvantage of the individual exposure in the

Backup strategy is replaced by a higher collective exposure.

5.2.3 Relaxing Validity

Most data intensive queries of interest in our context are distributive by

nature (as confirmed by various MapReduce or Spark implementations).

However, some of the corresponding QEPs cannot be reshaped following the

Brute-Force approach and then cannot combine Overcollection and Validity.

This is notably the case of general interest machine learning algorithms,

because they are iterative or need to exchange partial results computed over

different data partitions. In these cases, a reference snapshot DQ(E) can no

longer be identified in case of messages loss (e.g., two iterations may

consider a different snapshot state). On the other hand, strict Validity is not

a prerequisite for these algorithms which usually produce an approximate

result. We thus suggest another basic preliminary method to handle these

cases, called Iterative Brute-Force and sketched in Figure 5.5.

To execute an algorithm A with Iterative Brute-Force, each edgelet

implementing a sub-QEP Computer iterates on (1) a local convergence phase

where it computes A on its local partition and improves its local knowledge,

initialized by a parameter of the sub-QEP, and broadcasts this knowledge to

all others sub-QEPs, and (2) a synchronization phase where it receives the

knowledge of the other sub-QEPs it has heard of and integrates them in its

own knowledge. Right before the query deadline, the knowledge is sent to

the Computing Combiner which combines all received knowledges and

sends the final result to the Recipient.

72

Figure 5.5: Overcollection with the Iterative Brute-Force method

The main question is when to stop the processing. Fixing a number of

iterations a priori (with a minimal number of received messages) has little

sense in the OppNet context where message delays, then edgelet

progression, are unpredictable. Expecting a local convergence is also

hazardous due to the instability of the synchronization phase among sub-

QEPs. For instance, two edgelets with fast communications could converge

locally quickly (without having even received any message from others) and

decide to end prematurely their computation. Thus, we enforce the

progression of the algorithm on all edgelets thanks to a Heartbeat, that is

each iteration is cadenced by a clock, whatever the local state of the

processing (i.e., a Computer moves to the next iteration even if few or no

messages were received). Finally, local result is delivered when the deadline

is imminent.

Iterative Brute-Force

Computer Edgelet (local_partition, initial_knowledge)

knowledge initial_knowledge

Heartbeat until (query_deadline – 1 round)

 Local conv: knowledge A(local_partition)

 and broadcast knowledge to all

 Synchro: knowledge received knowledge of others

Send final knowledge to Computing Combiner

Computing Combiner

combine all received knowledge and send to Recipient

We illustrate this method on three classical algorithms, namely Apriori, K-

means and Stochastic Gradient Descent (SGD), and show its effectiveness in

terms of proximity of results wrt. centralized executions in Chapter 6. While

the first two algorithms are quite specific in the tasks to be performed, the

73

SGD algorithm is used to solve many well-known machine learning models

in the literature [166]. Its relevance in the Edgelet context thus reinforces the

applicative potential of the approach.

Apriori [167]: mine frequent itemsets to learn association rules.

- knowledge: frequent itemsets and their support (initially empty).

- Local convergence: A first computes the local support of all frequent

itemsets in its partition then iteratively computes the local support of

itemsets that are frequent in other sub-QEPs it has heard of.

- Synchronization: adds frequent itemsets of others in knowledge.

- Computing Combiner: sums the local supports of the common

itemsets found in all received knowledge.

K-means [168]: form k clusters minimizing the intra-cluster variance.

- knowledge: current centroids (initially, k initial centroids)

- Local convergence: until local convergence or heartbeat, A assigns

each element of its own partition to the cluster having the nearest

centroid and recomputes the centroids of the new clusters, updating

its knowledge.

- Synchronization: computes, on a cluster basis, the barycenter of all

centroids received from other sub-QEPs, and integrates the result in

knowledge.

- Computing Combiner: computes, the barycenter of all centroids

received.

SGD [169]: adjust the weights of a model to minimize its objective function.

- knowledge: vector of weights w (initially random).

- Local convergence: until local convergence or heartbeat, A computes

the gradients associated with the w vector for a small sample of its

data (mini-batch) in order to iteratively update the model.

- Synchronization: computes the average of the all w vectors received

from other sub-QEPs it has heard of, and integrates the result in

knowledge.

- Computing Combiner: computes the average of the all w vectors

received.

74

5.3 HYBRID-BASED EXECUTION STRATEGY

As the name suggests, the Hybrid strategy proposes a new method that

combines the previous mechanisms, namely Backup and Overcollection, with

the advantage of being able to adapt and benefit from each method

depending on the situation.

5.3.1 Enforcing Resiliency

We have seen that the Backup strategy causes inconsistency problems when

the QEP includes vertical partitioning. To avoid these problems, the idea of

the Hybrid method is to assign backups only to Computers and use the

Overcollection principle to compensate for the probability of fault

presumption of the Snapshot Builders (see Figure 5.6). In fact, integrating

backups within partitions is a smarter resiliency solution than continuously

adding overcollection partitions, especially when the degree of vertical

partitioning is high (since each SPF must survive for the partition to succeed).

In this configuration, the probability of success of one partition is determined

by the equation 𝑝𝑝 = (1 − 𝑝𝑓) × (1 − 𝑝𝑓
(1+𝑏)

)(|𝑆𝑃𝐹|−1), with pf the probability

of fault presumption, |SPF| the number of SPFs in the partition (i.e., Snapshot

Builder and Computers) and b the number of backups per Computer. As with

the Overcollection strategy, the success for the n+m partitions is constrained

by the inequality ∑ (𝑛+𝑚
𝑖

)𝑝𝑝
𝑖(1 − 𝑝𝑝)(𝑛+𝑚−𝑖) ≥ 𝑝𝑠

𝑛+𝑚
𝑖=𝑛 , with ps the expected

probability of success. Once again, we use Active Backups to make the

Computing Combiner fault tolerant.

Figure 5.6: Resiliency based on the Hybrid strategy

75

Note that both parameters b and m can be adjusted to achieve the success

rate ps, thus we can design different optimization strategies depending on

whether it is better to have more backups or more overcollected partitions.

For example, we can choose them to minimize the number of nodes involved

in the QEP or to minimize the number of messages sent over the network.

5.3.2 Impact on Validity and Confidentiality

Similar to the “pure” Overcollection strategy, the Hybrid execution plans use

only one Snapshot Builder per partition. This mechanism ensures by

construction that the snapshot is unique for each partition. Thus, even if the

QEP incorporates vertical partitioning, the Computers are guaranteed to be

consistent because they process exactly the same snapshot. However, the

Validity is not so trivially guaranteed when the queries are iterative and the

Computers of multiple partitions have to exchange information before

producing their final result. Indeed, as explained in the previous section, the

strict Validity property would require that all Computers in all partitions

exchange the same information (data, aggregates or hints) at each iteration

to form a consistent view. But if we follow the same approach as before, i.e.,

relaxing the property to tolerate partial and non-uniform exchanges between

Computers, we then lose the interest of having added backups to the

Computers since each Computer will only need to receive information from

a subset of the others, and therefore there is no necessity to activate the

backups. This particular issue will be further detailed in the next section.

Avoiding data inconsistency problems is not the only advantage of the

Hybrid solution. While Active Backups on Snapshot Builders may be

necessary to ensure data consistency in the Backup strategy (consensus

solution), this is no longer the case in Hybrid since each partition has only

one non-backuped Snapshot Builder. This limits the exposure of individual

data involved in the representativeness predicates to a single node instead

of 1 + 𝑏 for the Backup strategy. Moreover, the mix between backup and

overcollection mechanisms allows for a trade-off between individual and

collective exposure. Although it is difficult to say which exposure is best, as it

depends on the context, we will see in Section 6.1 that this exposure is often

an order of magnitude lower than Backup alone or Overcollection alone.

5.4 QUALITATIVE EVALUATIONS

This section compares qualitatively the three execution strategies. Our goal

is to guide a potential Recipient towards the right execution model when

designing a computation dedicated to the Edgelet computing paradigm. This

76

choice depends on the type of computation to be performed, the way to

define a representative snapshot for this computation and the expected

query deadline. We can draw some design rules from the statements

summarized in Table 5.1.

Resiliency
Type of

computation

Snapshot

definition
Validity Confidentiality Success Rate

Backup

based

resiliency

Horizontally

partitionable

P

partitionable

By

construction

Activated backup

exposed

Requires

large query

deadline

Vertically

partitionable
Any P Consensus

Others Any P
By

construction

Iterative Unrealistic

Over

collection

based

resiliency

QEP

reshapable

P

partitionable

By

construction
Over

collected data

exposed

Supports

very small

query

deadline
Iterative

reshapable

P

partitionable

Ground

validity

P not partitionable Invalid

Hybrid

based

resiliency

QEP

reshapable

P

partitionable

By

construction

Activated backup

and over collected

data exposed

Supports

small query

deadline

Iterative or P not partitionable Inappropriate

Table 5.1: A taxonomy of execution strategies

In this table, Horizontally/Vertically partitionable refers to the property of the

computation to be distributed among several Data Processors, as explained

in Section 4.3. Both forms of partitioning greatly make sense when conceiving

a computation dedicated to the Edgelet computing paradigm, either to

minimize the amount of data exposed at each Data Processor or to avoid the

exposure in the same Data Processor of information sensitive when

combined or even to minimize the Data Processor workload when energy

consumption matters. While vertical partitioning does not impose additional

constraint on the processing, horizontal partitioning requires that the set of

representativeness predicates P be itself partitionable, i.e., that it can be

applied to each partition independently (e.g., age > 65 is partitionable while

median(age) < 10 is not).

QEP reshapable refers to the capacity to reorganize distributive and non-

distributive operators in the QEP to be computed. This is a prerequisite to

77

exploit the Overcollection-based strategy for this QEP. Ground validity means

that the Validity property defined in Section 3.5 cannot be enforced; hence,

it is up to the Recipient to assess empirically the accuracy of the final result,

as we did in Section 6.3 for Apriori, K-means and SGD. Finally, the

Confidentiality column expresses the additional amount of data exposed by

each strategy compared to an ideal strategy without resiliency (i.e., without

backups nor overcollection).

Based on this table, we can draw the following conclusions. First, if the QEP

implementing the computation cannot be reshaped or if P is not

partitionable, the Backup strategy is the only solution since applying

overcollection would be equivalent to completely duplicating the query.

Second, if the computation is iterative, the Overcollection strategy turns to

be the only solution as well. Indeed, using backups, a consensus (or an

equivalent mechanism) would be required at each iteration to ascertain that

all participants consider in fine the same reference snapshot. Otherwise, only

a Ground validity can be expected, but Overcollection outperforms Backup

and Hybrid in this case (no additional protocols related to interactions with

backups). Third, if the QEP is reshapable and P is partitionable, the right

choice between Backup, Overcollection and Hybrid is driven by the expected

success rate and by privacy considerations. Using Backup or Hybrid

strategies, the query deadline must be calibrated to accommodate the

number of backups defined at each QEP level (i.e., activate them one after

the other in case of fault presumption), a factor which disappears with

Overcollection alone for which the query deadline depends only on the

average network latency and the number of levels in the QEP. This explains

the query deadline requirements, which range from large for the Backup

strategy to very small for the Overcollection strategy.

Regarding privacy, the three methods do not expose data in the same way.

Indeed, as explained in the previous sections, TEEs guarantee that data at rest

is not exposed in backups until they are activated. Hence, the same personal

data is potentially exposed in as many backups as required by the satisfaction

of the Resiliency property and this number increases with the presumed fault

rate of the OppNet. With Overcollection alone, in contrast, the same data is

never exposed twice. However, data from a larger population of individuals

must be involved in the computation due to overcollection. The Hybrid

strategy combines both types of exposure, with the advantage of being able

to adjust the proportion of each one by calibrating the number of backups

and the number of overcollected partitions. This choice made by the

Recipient as to how to expose personal data may influence the approval of

the Regulator as well as the consent of the participants.

78

The taxonomy of solutions presented in Table 5.1 is still preliminary and more

subtle design rules can be envisioned. In particular, the Ground validity

should be more deeply investigated with the goal to identify finer classes of

algorithms for which better validity guarantees can be expected. For instance,

the Apriori implementation sketched in Section 5.2.3 exhibits the salient

feature that Validity can be assessed a posteriori by the Computing

Combiner. Indeed, (1) the reference dataset is the union of the partitions it

received from the Data Processor it has heard of, and (2) a frequent itemset

is necessarily frequent in at least one of these partitions. The Computing

Combiner must simply check that enough information has been received to

compute the support of all these candidate frequent itemsets. We expect also

be able to guarantee the convergence for some algorithms when specific

conditions are met but let these issues for future work.

79

6 VALIDATION

6.1 Comparison of Execution Strategies.. 79

6.1.1 Overall Analysis .. 79

6.1.2 Personal Data Exposure .. 82

6.1.3 Network Overload .. 84

6.2 Adjustment of the Query Deadline .. 87

6.3 Quality of Iterative Computations .. 89

6.4 Conclusion ... 91

This chapter presents our quantitative evaluations of the execution strategies

presented earlier. Our objective is to validate the relevance of the Edgelet

approach, calibrate the system parameters and verify its effectiveness.

We first compare the three execution strategies, namely Backup (Bak),

Overcollection (Ovr) and Hybrid (Hyb), providing insights to properly

configure the resiliency parameters. Then, we implement a non-iterative

Edgelet execution with the aim of calibrating the query deadline and

achieving the targeted success rate. Finally, we test the iterative methods

Apriori, K-means and Stochastic Gradient Descent to evaluate the quality of

their results against a centralized execution.

6.1 COMPARISON OF EXECUTION STRATEGIES

In this first section, we want to study the respective behavior of the execution

strategies presented in Chapter 5. To enable a fair comparison between the

three resiliency mechanisms, we assume that the query deadline is correctly

calibrated so that each message sent in the OppNet has enough time to

reach its destination (see Section 6.2 for deadline adjustment). Consequently,

the probability of fault presumption pf is reduced to the probability of device

failure. Our goal is to observe the consequences of the resiliency methods,

particularly in terms of personal data exposure and network overload.

6.1.1 Overall Analysis

To begin with, we examine the general impact of execution strategies on the

Query Execution Plans (QEPs). We want to observe the transformations

induced by the resiliency mechanisms (Bak, Ovr and Hyb), and to do so, we

count the number of additional nodes introduced in the QEPs. Since these

are redundant nodes, their presence in large numbers will be seen as a

disadvantage, as they lead to additional data exposure and network overload.

80

 Passive Nodes Active Nodes

Bak
if (|C|=1): |𝑆𝑃𝐹| × 𝑏 × 𝑛

else: |𝐶| × 𝑏 × 𝑛

if (|C|=1): 0

else: 𝑏 × 𝑛

Ovr 0 |𝑆𝑃𝐹| × 𝑚

Hyb |𝐶| × 𝑏 × (𝑛 + 𝑚) |𝑆𝑃𝐹| × 𝑚

Table 6.1: Formulas for the Additional Nodes

Table 6.1 shows the formulas used to determine the number of additional

nodes for each strategy. We distinguish two types of nodes: those that are

active, working in parallel with the primary nodes (active backups and nodes

in overcollected partitions); and those that are passive, waiting to be

activated (passive backups). Concerning the notations, we note |SPF| the

number of Single Point of Failure in each partition, i.e., 1 Snapshot Builder

and |C| Computers. For Bak, the number of backups b is calibrated using the

formula of Section 5.1.1. Note that when |C|>1, we consider that the Snapshot

Builders' backups must be active to establish a consensus on the dataset (see

Section 5.1.2). For Ovr, the number of additional partitions m is adjusted

using the formula of Section 5.2.1. And for Hyb, the pair (b, m) is chosen using

the formula of Section 5.3.1 in order to optimize the sum of the number of

additional nodes (passive and active).

Figure 6.1: Additional Nodes per number of partitions

Figure 6.1 presents the number of additional nodes for each strategy

depending on the number of partitions (horizontal partitioning). We first

study a basic setup with a single Computer in each partition (|C|=1) and a

device failure probability of 10% (pf=0.1) for a success probability of 80%

(ps=0.8). We observe that increasing the number of partitions greatly favors

81

strategies exploiting the overcollection principle (Ovr and Hyb). Moreover,

Hyb perfectly mimics Ovr by increasing the number of additional partitions

m while maintaining the number of backups b equal to zero. Note that even

if the additional nodes are only passive for the Bak strategy, we saw in

Chapter 5 that they necessarily induce extra overhead. Indeed, they generate

a lot of communication for data replication, hence the objective to minimize

their number.

Figure 6.2: Additional Nodes per number of Computers (pf =0.1)

Now that we have varied the horizontal partitioning, let us focus on the

vertical partitioning, taking the same configuration as in previous chapters,

i.e. n=10. Figure 6.2 shows that when the number of Computers per partition

is low (|C|<6), Ovr and Hyb are identical and outperform Bak. From |C|≥6, we

observe that Hyb begins to distinguish itself by finding a compromise

between b and m that enables it to perform strictly better that the other two

strategies. From |C|≥8, we see an inversion between the Bak and Ovr plots,

with the number of additional nodes shifting in favor of Bak. As shown in

Figure 6.3, this inversion occurs earlier as the probability of failure increase.

The explosion in the number of additional nodes for Ovr is explained by the

fact that, for the strategy to succeed, at least n partitions with all SPFs must

"survive" failures, whereas for Bak, only one primary or backup Data

Processor per SPF (Snapshot Builder and Computers) is needed in each

partition to guarantee successful executions.

82

Figure 6.3: Additional Nodes per number of Computers (pf=0.2)

Based on these results, we can draw the following conclusions: (1) horizontal

partitioning greatly favors strategies based on overcollection (Ovr and Hyb),

(2) vertical partitioning is detrimental to the Ovr strategy, especially when the

probability of failure increases, and (3) the Hyb strategy is able to outperform

Bak and Ovr by leveraging the strengths of both strategies.

6.1.2 Personal Data Exposure

Let us now consider the influence of these resiliency mechanisms on the

exposure of personal data, both individually (i.e., how often the same data is

exposed) and collectively (i.e., how many additional contributing individuals

are included in the QEP).

 Individual Exposure Collective Exposure

Bak
if (|C|=1): min=0, max=2 × 𝑏

else: min=b, max=2 × 𝑏
0

Ovr 0 𝑚/𝑛

Hyb min=0, max=b 𝑚/𝑛

Table 6.2: Formulas for the Additional Exposure

Table 6.2 gives the formulas used to calculate the additional exposure.

Individual exposure indicates the number of times the same personal data is

exposed. The minimum is determined by the number of active backups in the

QEP, while the maximum is determined by the number of passive backups.

Note that we count two additional exposures for Snapshots Builders and

Computers backups, but that the number of Computers |C| is not taken into

83

account, as they process data of different individuals (otherwise, increasing

vertical partitioning would undermine privacy). Regarding collective

exposure, we consider the proportion of additional individuals involved in the

QEP, which is given by the m/n ratio. Note also that, although these two

measures aim to quantify additional exposure, they don't have the same

meaning which makes them very difficult to compare. Individual exposure

reveals the risk incurred by each individual, while collective exposure

indicates the total number of individuals at risk. Depending on the

application scenario and the type of queries, it will be the responsibility of

the Recipient and the Regulator to find the right compromise.

Figure 6.4: Additional Exposure per number of Computers (pf=0.1)

Figure 6.4 shows on the same graph both types of exposure as a function of

the number of Computers |C|. Although |C| is not directly considered when

calculating personal data exposure, we saw in the last section that it strongly

influences the number of backups b and the number of additional partitions

m, which therefore impacts it indirectly. Let us take a look at what happens

at |C|=2. For Bak, we observe that the minimal additional individual exposure

is at 200%, indicating that the data is exposed to 2 active backups

(corresponding to Snapshot Builders), and that the maximal additional

individual exposure is at 400%, meaning that the data may also be exposed

to 2 passive backups (those belonging to Computers). For Ovr and Hyb, we

see an additional exposure at 50%, meaning that on the n=10 initial

partitions, it is necessary to add m=5 other partitions to reach the target

success rate of 80%.

84

Figure 6.5: Additional Exposure per number of Computers (pf=0.2)

Similar to the analysis in the previous section, we see that, as the number of

Computers |C| increases, the Ovr strategy deteriorates. For example, when

|C|=7 and pf=0.2, we obtain an overcollection rate of over 600% (see Figure

6.5). For Hyb, we observe a mixture of the two exposures. Indeed, above a

certain threshold, the Hybrid method simultaneously integrates passive

backups and additional partitions, with the (b,m) pair again chosen to reduce

the number of nodes in the QEP. In fact, optimizing these parameters

according to personal data exposure is rather complicated and application

dependent, as the two measures (individual and collective) are not

comparable. Nevertheless, we can see that this strategy seems to be a good

compromise when the other two are no longer acceptable (e.g., |C|=8 on

Figure 6.4: one additional backup and 30% additional collective exposure).

6.1.3 Network Overload

To complete this analysis, we propose an evaluation of network overload by

counting the number of additional messages generated by each execution

strategy. Although our objective is not to optimize network communications

(see Chapter 3), we nevertheless wish to study the impact of strategies on the

congestion they may generate. To this end, we are interested in measuring

the number of messages containing data sent over the network, ignoring any

other type of message (e.g. backup activation messages). As message size

depends on the use case and the type of query, we assume a single size for

all messages sent (whether data contribution or intermediate result).

85

 Mandatory Messages Potential Messages

Bak
if (|C|=1): (|𝐷| + 𝑛) × 𝑏

else: [|𝐷| + (2 + 𝑏) × |𝐶| × 𝑛] × 𝑏

if (|C|=1): (1 + 𝑏 + |𝐶𝐶|) × 𝑏 × 𝑛

else: |𝐶| × 𝑏 × |𝐶𝐶| × 𝑛

Ovr [|𝐷|/𝑛 + |𝐶| × (1 + |𝐶𝐶|)] × 𝑚 0

Hyb
[|𝐷|/𝑛 + |𝐶| × (1 + |𝐶𝐶|)] × 𝑚 +

|𝐶| × 𝑏 × (𝑛 + 𝑚)
|𝐶| × 𝑏 × |𝐶𝐶| × (𝑛 + 𝑚)

Table 6.3: Formulas for the Additional Messages

Table 6.3 provides formulas for counting the number of additional messages

generated by the three resiliency strategies (Bak, Ovr, Hyb). We observe two

categories of messages: mandatory messages, which are necessarily sent

when the QEP is executed, and potential messages, which are sent when

passive backups are activated. Regarding notations, we note |D| the

cardinality of the dataset required for the query and |CC| the number of

Computing Combiners with its specific backups (|CC|=1+bcc). Note that the

number of messages sent by Data Contributors can be much higher than the

target |D|. Indeed, snapshot construction requires an unpredictable number

of contributions in order to satisfy the set of representativeness predicates P.

As this unpredictable quantity of messages is context-dependent, we do not

include it in our measurements.

Figure 6.6: Additional Messages per number of Computers

Figure 6.6 shows the number of additional messages according to the

number of Computers. We have calibrated a horizontal partitioning of n=10,

a failure probability of 10% and a success rate of 80%. For these parameters,

the QEP needs only one Computing Combiner, i.e. no active backups

associated (bcc=0). The cardinality of the target dataset is set to |D|=1000. As

86

might be expected, the vast majority of additional messages are related to

the contribution phase. Bak is therefore disadvantaged, as every message

sent by Data Contributors is replicated on the Snapshot Builder's backups. As

for Ovr and Hyb, the strategies are again identical as long as |C|<6. This

observation, already made in Figure 6.2, is explained by the fact that Hyb is

still optimized to minimize the additional nodes in the QEP.

Let us now look at Figure 6.7 to see how Hyb behaves when the pair (b,m) is

calibrated to optimize the number of additional messages (mandatory and

potential). We can see that Hyb is systematically better than the other

strategies, and that the gap widens as |C| increases. In fact, like Ovr, the

Hybrid strategy is naturally adapted to minimize the number of messages

sent during the contribution phase, since Snapshot Builders have no backups.

The advantage of Hyb over Ovr is that it is able to compensate for the

probability of partition failure by adding backups to the Computers. This

feature proves to be a real asset, since reducing the number of additional

partitions leads to a drastic reduction in the number of additional messages

sent. Note that this optimization is not without cost, as it inevitably entails

modifications in the exposure of personal data. For instance, with pf=0.1 and

|C|=3, Hyb will count 1 backup per Computer for a 20% overcollection instead

of 0 backup for a 70% overcollection (see Figure 6.4).

Figure 6.7: Additional Messages per number of Computers (Hyb optim)

87

6.2 ADJUSTMENT OF THE QUERY DEADLINE

In this second section, we focus on how to calibrate the query deadline such

that messages sent in the OppNet have sufficient time to reach their

destination. Without loss of generality, we will focus on implementing a non-

iterative processing executed with the Ovr strategy. Indeed, adding backups

(for Bak and Hyb) only shifts the deadline according to the procedure

described in Section 5.1.1. Moreover, we have just seen in the previous

section that the Ovr strategy is better in most configurations (with Hyb

matching it by imitation). So, to study the query deadline, we built an Edgelet

computing software on top of the Opportunistic Network Environment (ONE)

simulator [77] providing detailed traces of OppNets communications (see

Figure 6.8). We model two representative use cases with messages

exchanged using an epidemic routing strategy [61], namely Mall and DomY.

Figure 6.8: Mall simulation with the ONE

Mall: Edgelet computing within a Mall of 0.16 km2, where 5,000 edgelets

(customer smartphones following a RandomWayPoint movement) are

opportunistically executing a query exchanging messages using Bluetooth

when meeting. The mean OppNet latency obtained with ONE is �̅� = 1,936 s

for a standard deviation σ = 933 s, resulting in a relative standard deviation

of Rσ =
𝜎

�̅�
 = 0.48

DomY: the DomYcile project [21], with 8,000 personal home boxes (edgelets),

800 healthcare workers (with constrained routes in ONE) within the Yvelines

district (2,284 km2). We obtained a mean latency �̅� = 27,113 s with a relative

standard deviation Rσ = 2.43, (i.e., σ = 65,794 s).

Using the latencies computed by ONE, we execute a non-iterative QEP

following the Ovr strategy, considering vertical partitioning on 3 Computers

with a device failure probability of 10%. We used 3 values of m/n, ranging

88

from 0.5 to 1.5. To enable comparisons between Mall and DomY, we used on

x-axis the query deadline divided by �̅�, called ⍺ hereafter, and measure the

query success ratio (y-axis on Figure 6.9). To minimize random variations, we

averaged the results of 300 executions. Note that we are only interested in

the impact of message transmission along the QEP and not in studying the

quality of its processing, the latter being easily assured as long as fewer than

m partitions are lost (see Section 5.2.2). Therefore, we consider an execution

successful when at least n partitions transmit their response to the Recipient

before the query deadline.

Figure 6.9: Query deadlines (for Overcollection)

From these plots, we make 3 observations: (1) in the Mall context (small Rσ),

all executions complete successfully with m/n ≥ 1 and ⍺ = 4 (vertical

increase); while the DomY context requires much larger deadlines due to its

larger Rσ which impacts the fault presumption; (2) having an underestimated

m/n value is risky: it reduces the ratio of successful queries and requires a

significantly higher query deadline in contexts with large Rσ (e.g., DomY);

(3) having a larger m/n value is rather useless for small Rσ contexts (e.g.,

Mall), indeed, a small Rσ means that latencies are close to the mean, thus a

well calibrated m/n is sufficient to absorb few late messages.

In conclusion, the m/n ratio should not be underestimated and the query

deadline should be fixed larger than �̅�×|hops| where |hops| is the number of

hops in the query plan (in this case, 4: Data Contributor ➛ Snapshot Builder ➛

Computer ➛ Computing Combiner ➛ Recipient). Both m/n and the deadline

should be overestimated when the OppNet latencies have a large Rσ. Thus,

the query deadline should be fixed (for a 4 hops query) around 2 days for

DomY and 2-3 hours for Mall, values that are quite reasonable given our

application context.

89

6.3 QUALITY OF ITERATIVE COMPUTATIONS

In this third section, we examine the Edgelet iterative execution of the

algorithms presented in Section 5.2.3. Our approach is empirical: we aim to

assess the relevance of the Iterative Brute-Force method by verifying the

quality of the results obtained compared with a centralized execution.

Figure 6.10: Heartbeat execution quality (Apriori and K-means)

We first simulate the iterative algorithms Apriori and K-means, considering

synthetic and real data sets used to evaluate their quality (e.g., [170] for

Apriori). These Edgelet executions consider the QEP of Figure 5.5 with a

horizontal partitioning of n=10 for m=10 additional partitions. We

systematically measure the quality of Edgelet executions against centralized

fault-free executions (y-axis on Figure 6.10). More precisely, for Apriori, we

compare the association rules generated after frequent item mining in

Edgelet executions to those obtained in centralized ones, and use the

precision/recall metrics to assess the comparison. Similarly, for K-means, we

compute the Percentage Change Inertia (PCI), i.e., the percentage change

between the Edgelet inertia (intra-cluster variance) and the centralized one.

The x-axis indicates the number of heartbeats during the query. To evaluate

iterative methods in extreme conditions, we reduced artificially the heartbeat

duration such that the observed proportion of late messages (i.e., messages

arrived after the Heartbeat) is 80%, 90% and 95% (see Figure 6.10).

We observe that even with no iteration, Apriori reaches 65% recall and K-

means reaches 30% degradation of its inertia. Both converge quite quickly

towards a recall of 100% or a PCI < 0% (4 or 5 heartbeats for 80 or 90% late

messages, 7 or 8 with 95% late messages). Note that with Apriori, precision

90

is always 100% (not shown). Indeed, as we verify that the Computing

Combiners always receive n or more sub-QEPs results, we can thus remove

potential false positive. With K-means, we observe that as the number of

heartbeats increases, the PCI can become negative. The reason for this is that

an Edgelet calculation with many heartbeats can be better than a centralized

calculation, thanks to the fact that it considers up to m additional partitions.

We then simulated the iterative Edgelet execution of Stochastic Gradient

Descent (SGD) on a classification problem (Adult Income [171]) and a

regression problem (California Housing [172]). As for Apriori and K-means,

we consider the QEP of Figure 5.5 with a horizontal partitioning of n=10 for

m=10 additional partitions. For classification, the underlying learning model

used is a support vector machine, while for regression it is a linear model. For

both, we use a constant learning rate and divide the number of maximum

local iterations by a factor of 50 compared to centralized executions in order

to reduce the amount of work on each edgelet. We then compare the

accuracy of the model obtained on test data (mean accuracy for classification

and coefficient of determination R2 for regression).

Figure 6.11: Heartbeat execution quality (SGD)

Figure 6.11.a and Figure 6.11.b show results of heartbeat executions on the

two problems (classification and regression). The y-axis indicates the

Percentage Change Accuracy (PCA), i.e. the percentage change between the

model accuracy obtained with an Edgelet execution and that obtained with

a centralized execution. At first glance, we can see that models built in

Edgelet gradually converge towards the quality of centralized models. Even

if the initial PCA is variable (-6% for classification and -40% for regression),

since it depends on the learning rate and the maximum number of local

iterations chosen, it does not prevent the models from progressing. Then, we

91

notice that the proportion of late messages is not a determining factor for

convergence speed. In fact, the SGD algorithm's ability to work on small

samples (mini-batches) at each iteration makes it a prime candidate for

distributed and decentralized execution [169]. As a result, when the data is

correctly distributed over the Computers, they compute a local model that

naturally converges towards the best parameters.

6.4 CONCLUSION

Several lessons can be drawn from the quantitative evaluations carried out in

this chapter:

Firstly, based on several metrics (additional nodes, exposure, network

overload), we are able to compare very precisely our three execution

strategies: Bak, Ovr and Hyb. We have observed that the more the execution

plans are distributed (horizontal partitioning), the better the strategies based

on overcollection (Ovr, Hyb) perform compared to the Bak strategy. Indeed,

the overcollection mechanism enables very fine-tuning of resiliency to

achieve the target success rate, rather than systematically adding backups to

all QEP nodes. We also found that when the number of Computers per

partition (vertical partitioning) is not high, the Ovr and Hyb strategies are

strictly identical (Hyb imitating Ovr). Above a certain threshold, the Hyb

strategy becomes more efficient, especially in terms of network overload.

Secondly, the implementation of OppNet use cases in the ONE simulator [77]

has enabled us to better understand how to calibrate the query deadline. On

the one hand, we found that it necessarily had to be adjusted according to

the average latency of messages and the number of hops in the QEP, as a

deadline chosen too short would inevitably lead to a very low success rate.

On the other hand, we have seen that adding more partitions for Ovr (which

also applies to Hyb) speeds up requests towards the desired success rate. In

fact, for the same OppNet configuration, the higher the number of partitions,

the greater the probability that some will be faster than others. Note that

even if excessive overcollection can shorten the deadline, it comes at the

price of greater collective exposure and network overload.

Thirdly, heartbeat executions show quite good results on Apriori, K-means

and SGD despite an (artificially) high ratio of late messages. Indeed, we have

found that, as iterations progress, these three algorithms converge towards

the same accuracy as centralized executions. The results thus obtained

indicate that machine learning algorithms can be performed in the Edgelet

context while enforcing Confidentiality, Resiliency and Validity.

93

7 IMPLEMENTATION AND PRACTICAL USE CASES

7.1 Medical Use Case in OppNets.. 93

7.1.1 Implemented Platform .. 93

7.1.2 Realized Scenario .. 95

7.1.3 Obtained Results ... 96

7.2 Weakly Connected Personal Devices... 96

7.2.1 Implemented Platform .. 97

7.2.2 Realized Scenario .. 97

7.2.3 Obtained Results ... 99

In this chapter, we will show the implementation of the Edgelet computing

paradigm through two demonstrations. The first one applies to the real use

case DomYcile with messages sent in OppNets while the second one

proposes to extend the usages with heterogeneous devices communicating

in weakly connected settings. Although these applications share similarities,

we will see that the objectives achieved are quite different, ranging from

practical implementation to adaptation to other contexts.

7.1 MEDICAL USE CASE IN OPPNETS

This demonstration is a concrete application of the Edgelet computing

paradigm to the DomYcile use case [21]. Our goal is to evaluate the relevance

of the approach through complex distributed processing on sensitive data

whose computations are performed on low-capacity and opportunistically

connected personal devices. In this section, we will first give an overview of

the implemented platform, then present the realized execution scenario and

finally conclude on the obtained results.

7.1.1 Implemented Platform

Figure 7.1: Hardware of DomYcile secure boxes

94

Hardware platform. It includes a set of personal secure boxes, as deployed

and delivered to each patient in the DomYcile project. As illustrated in Figure

7.1, medical and social workers interact with patient folders hosted in the

boxes through a smartphone application, thus completing their data over

time. These secure boxes incorporate two STM32F417 microcontrollers

(MCUs). The first MCU is dedicated to communications with the outside while

the second manages the recorded data. To be even more precise, the second

MCU is connected to a μ-SD card hosting the patient’s raw data, and to a

tamper-proof TPM (Trusted Platform Module). This TPM secures the

cryptographic keys and guarantees, during the secure boot, that the

embedded code has not been tampered with. Hence, these secure boxes act

as TEE-enabled devices and play the role of edgelets.

Software platform. As shown in Figure 7.2, the demo software platform

consists of the following components: (1) a Graphical User Interface (GUI)

implemented in Dash Python [173] that allows interactive configuration and

visualization of Edgelet queries; (2) an Edgelet manager that orchestrates

executions and communications between edgelets; (3) an OppNet modeler

that models the massive distribution of edgelets over the city of Versailles1,

chief town of the Yvelines district. The OppNet modeler itself relies on the

ONE simulator [77] and uses the generated message traces for the Edgelet

manager to coordinate the executions in a similar way. Note that the Edgelet

manager and OppNet modeler are only necessary for the demonstration and

are not part of the platform deployed in the field.

Figure 7.2: Architecture of the demonstration platform

1 Concretely, we exported the map of the city of Versailles from OpenStreetMap and

simulated the actual behaviors of the patients and health-workers in the DomYcile

use case.

https://www.openstreetmap.org/relation/30295

95

7.1.2 Realized Scenario

The demonstration allows to select a query among two representative ones

of the DomYcile project:

• A Grouping Sets query [174] which allows multiple Group-By clauses

to be evaluated within a single SQL query (to cross multiple statistics

over a same cohort of patients).

• A K-means [168] followed by a Group By on the resulting clusters (to

identify which characteristics most influence the dependency level of

an elderly person).

Then, the platform suggests to improve the privacy of the QEP in order to

reduce data exposure in case of TEEs compromise. To do so, following its

intuition, the user is invited to adjust the horizontal and vertical partitioning

parameters presented in Chapter 4. Regarding fault tolerance, the user can

configure the probability of failure for each device as well as the timeout for

messages in the OppNet, both of which affect the presumption of failure.

This configuration adjustment allows the user to observe automatic changes

in the QEP to maintain resiliency, providing insight into the impacts of the

overcollection strategy (see Figure 7.3).

Figure 7.3: Configuration of a distributed QEP

96

Finally, the demonstration platform will proceed to the real-time execution

of the resulting QEP on the boxes available for the demonstration (concrete

edgelets), the rest of the operators being associated to a configurable

number of simulated edgelets to attest scalability. The interactive GUI then

provides a step-by-step visualization of the query execution, including input

and output data for each operator as well as device failures and message

losses.

7.1.3 Obtained Results

First, this demonstration illustrates a potential usage of the Edgelet

computing paradigm through a real medical use case currently deployed in

the field. It demonstrates that large-scale general-purpose computations can

be performed over a set of opportunistic-connected devices while providing

high security guarantees. Edgelet computing leverages the TEE security to

perform computations on clear-text data (once decrypted locally), thus

combining computation generality and scalability.

Second, the demonstration shows critical parts of the Edgelet computing

internals related to (1) privacy preservation, thanks to the support of

horizontal and vertical partitioning, and (2) resiliency, thanks to the

Overcollection strategy, well adapted to sampling queries. Hence, we firmly

believe that Edgelet computing opens up important opportunities in terms

of personal data management.

7.2 WEAKLY CONNECTED PERSONAL DEVICES

Opportunistic Networks are an extreme case of uncertain communications in

terms of latency and then fault presumption. However, uncertainty is inherent

in any decentralized computation over a crowd of personal devices, because

devices can be disconnected at will, be temporarily out of reach, or simply

fail. In this second demonstration, we aim at enlarging the use cases targeted

by Edgelet computing, considering that the solutions presented in this thesis

apply whenever decentralized computations need to be performed among

personal devices connected through "uncertain" communications.

The goal of this demonstration is twofold. First, it will exemplify the versatility

of the approach by demonstrating the Edgelet computing mechanisms

running on different weakly connected TEE-enabled devices (from PC with

SGX up to smart objects with TPM). Second, it will present the internals of

Edgelet computing and let the users play with important parameters related

to resiliency and data privacy and observe the outcome by themselves.

97

7.2.1 Implemented Platform

The first objective of this demonstration is to present the computational

mechanisms of the Edgelet framework using TEE-enabled devices ranging

from high-end device (PC) to low-end device (home box). Therefore, we

deploy the following hardware:

PC (Intel SGX). A laptop with an Intel Core i5-9400H 2.5GHz 4 Cores with

SGX 1-FLC runs Ubuntu Linux 18.04 with SGX DCAP 1.14. The code is written

on top of Open Enclave [175], an SDK for developing enclave applications in

C/C++. Open Enclave provides support for Intel SGX as well as preview

support for ARM TrustZone, thus aiming to generalize the development of

enclave applications across TEEs.

Home boxes (TPM). As already presented in Section 7.1.1, these secure

boxes incorporate notably a STM32F417 microcontroller dedicated to the

management of personal data. This microcontroller is connected to a μ-SD

card hosting the owner’s raw data and to a tamper-proof Trusted Platform

Module (TPM). This TPM secures the cryptographic keys and guarantees,

during the secure boot, that the embedded code has not been tampered

with.

The second objective is to present the internal aspects of the solution, we

thus developed the following software:

• A graphical interface to interactively configure and visualize Edgelet

queries.

• An Edgelet manager to orchestrate executions and communications

between simulated and real edgelets (PC and home boxes).

• A web client accessible to users' smartphones via a QR code allowing

them to monitor the processed data and interact in real-time with the

execution.

7.2.2 Realized Scenario

In this demonstration, we will take the motivating example presented earlier.

Let us assume that Santé Publique France (Recipient) wants to perform a set

of queries on population health data to improve the quality of its services.

Some individuals are equipped with a PC, others with a home box, but all are

interconnected by uncertain communications. The scenario consists of two

interactive parts related to the configuration and execution of Edgelet

98

computations. In the first part, the users will understand the impact of privacy

and resiliency parameters on the QEPs. In the second part, they will follow

the execution in real time and visualize the results obtained.

Part 1: QEP Configuration. The users are first invited to select one of two

queries: either a Grouping Sets query [174] to cross multiple statistics over

the same data sample, or a K-means [168] followed by a Group By to identify

which characteristics most influence the dependency level of an elderly

person. Then, following their intuition, the users can try to improve the

privacy of the QEP of the selected query to reduce data exposure in case of

TEEs compromise. To do so, they can adjust the horizontal and vertical

partitioning parameters, by specifying the maximum number of raw data per

edgelet and selecting the attribute pairs to be separated. Finally, the users

can vary the failure probability value of the scenario and observe automatic

changes in the execution plan to keep it resilient.

Figure 7.4: Data visualization for a distributed QEP

Part 2: Execution of an Edgelet computation. After the users have

configured the query as desired, we proceed to its real-time execution on the

heterogeneous personal devices available for the demonstration (PC or home

boxes), the rest of the operators being associated to a configurable number

of simulated edgelets to attest scalability. First, we launch the collection

phase where the Snapshot Builders receive contributions from thousands of

simulated Data Contributors and build representative snapshots. Next, the

Edgelet platform redistributes the data and launches the computation phase

99

with the corresponding Computers. At each step, the user can interact with

the execution using their own smartphone to analyze the input and output

data. At the end, the aggregated data is transmitted to the Computing

Combiners for the combination phase and the query is completed. In case of

failures or disconnections, the users are able to directly identify the

concerned edgelets on the QEP and understand the impacts on the execution

(see Figure 7.4). For example, we can intentionally power off some concrete

devices to generate a failure at will. In order to verify the results, the users

can take the same dataset used with the distributed edgelets and run the

processing centrally on the platform.

7.2.3 Obtained Results

The demonstration shows the internals of the Edgelet computing framework

applied to the fully decentralized context and illustrates its usage through

execution scenarios on multiple personal devices. It helps to answer the

following questions:

Does Edgelet computing concretely make sense? The practical

implementation on high-end and low-end personal devices demonstrates

both its applicability and versatility. It shows that large-scale general-purpose

computations can be performed over devices while providing high-security

guarantees. This opens up important opportunities in terms of personal data

management.

Can any form of computation be handled? Edgelet computing leverages

the TEE security to perform computations on clear-text data (once decrypted

locally). It can then combine computation generality – demonstrated by our

demonstration queries – and scalability – demonstrated by the number of

simulated edgelets –, contrary to homomorphic encryption, secure

multiparty computation, or local differential privacy solutions (see Section 2.4

of the related works).

Is privacy protected whatever the attack? While highly difficult to

implement, side-channel attacks on a TEE could compromise the

confidentiality of the data manipulated on that TEE. Edgelet computing

counter-measures are horizontal and vertical partitioning. Through the demo

GUI, the users are able to visualize the distribution of data among the

edgelets and measure the respective benefit of both types of partitioning.

They also understand that only the results of the computations, i.e., the

aggregated data, are transmitted (encrypted) to the successor operators.

100

Can a query always proceed despite the failures? Providing fault tolerance

in a distributed context where messages are sent among weakly connected

personal devices is a real challenge, either because they are down or because

they are temporarily unavailable (e.g., individual's smartphone offline). The

demonstration shows that the Overcollection strategy can answer this: the

users can vary the failure context (e.g., disconnection probability) and see the

impact on the overcollection degree as well as the effects on the results

accuracy.

101

8 CONCLUSION

In the rapidly expanding landscape of digital technologies and data creation,

it has become evident that the centralized models proposed by the web

giants are reaching their limits. The need for privacy-preserving solutions is

more crucial than ever, as privacy breaches and massive data collection

continue to raise serious concerns. While data protection laws (e.g., GDPR)

and the development of Personal Data Management Systems (PDMS) aim to

empower individuals to regain control over their digital lives, it is difficult to

establish a fully decentralized model that supports both personal and

collective data usage. In this thesis, we explore the distributed use of these

PDMS in an Opportunistic Network context, where messages are transferred

from one device to another without the need for any infrastructure. The

proposed approach enables the implementation of complex processing

involving the data of thousands of individuals, while guaranteeing the

security and fault tolerance of the executions.

8.1 SUMMARY OF THE CONTRIBUTIONS

As described in Chapter 3, the challenge of this research work is to combine

the computational resources of personal devices (e.g., smartphones, personal

computers, smart objects, etc.) to perform fully decentralized privacy-

preserving queries within Opportunistic Networks. Our contributions are the

following:

1. We define the Edgelet computing paradigm, leveraging the

convergence between Trusted Execution Environments and

Opportunistic Networks, as a new framework for performing complex

processing on personal devices in a highly distributed, failure-prone,

and infrastructure-less environment. We propose a shared

responsibility model adapted to this framework, called Crowd Liability

Model (CLM), to capture the liability shift from the data controller (in

the GDPR sense) to the crowd. We then present the Query Execution

Plans considered in this work and analyse the difficulties associated

with their practical implementation. Based on this analysis, we

formalize the problem to be solved with the definition of three

properties of distributed systems, namely Confidentiality (security),

Resiliency (liveness) and Validity (safety).

102

2. We propose a threat model dedicated to the CLM capturing the

malicious attacks seeking to compromise the query executions. On

this basis, we first design a protocol that establishes trust between

the crowd members and the Recipient(s) of the queries. Second, we

leverage the properties of TEEs to provide security mechanisms that

preserve both the integrity of the decentralized executions and the

confidentiality of the manipulated data.

3. In order to make the executions tolerant to devices failures and

message losses, we propose three resiliency strategies: Backup,

Overcollection and Hybrid. As these strategies have different impacts

on the validity of results and confidentiality of the data, we provide a

qualitative analysis of all of them including a taxonomy of query

scenarios for which they are more or less suitable. The findings of this

analysis serve as guidelines for determining the most appropriate

execution model when designing a computation under the Edgelet

computing paradigm.

4. We finally present quantitative evaluations of the proposed methods

and strategies in order to validate them and study their limits.

Furthermore, we propose two practical implementations of the

Edgelet architecture that demonstrate both the genericity and

security of the framework in real-world scenarios. While the first

demonstration focuses on the medical use case of the DomYcile

project, the second opens up new possibilities in terms of usage.

Indeed, we show that the Edgelet paradigm can be applied to any

environment composed of weakly connected personal devices, even

heterogeneous ones.

8.2 PERSPECTIVES

To the best of our knowledge, this work is the first attempt to combine

Personal Data Management Systems and Opportunistic Networks to propose

fully decentralized privacy-preserving computations. Based on our proposed

architecture, Edgelet computing, several research challenges remain to be

investigated, including the following:

Optimization of resource consumption. A first challenge is to explore the

multiple optimization tradeoffs that exist between data confidentiality, query

success rate and (local and global) resource consumption. As we explain in

Chapter 3, we chose an epidemic diffusion of message in the Opportunistic

103

Network. This simplistic routing protocol has the benefit of maximizing the

message delivery rate and minimizing message latency, but at the cost of

significant network congestion and overhead. A significant improvement

would be to incorporate individuals' social patterns into routing (e.g., BUBBLE

Rap [176]) and facilitate query processing by assigning operators to the most

connected devices (e.g., doctors, teachers). Such optimizations would lead to

revisit the solutions enforcing the CLM’s Computation honesty, in particular

the random assignment protocol to allow a (limited and controlled) degree

of bias in favor of socially well-connected crowd members.

Management of long-lasting snapshots. A second challenge is to integrate

long-lasting snapshots (i.e., persistent datasets) to support processes

routinely used in data analysis. Such processes start with an initial set of

exploration queries to capture data frequency distributions before running

precise database queries, data mining or machine learning algorithms. Long-

lasting snapshots could resort to specific indexing schemes to re-access sets

of participating edgelets or materialized snapshot partitions kept (encrypted)

on sets of edgelets. Obviously persistent data management would have

various impacts on the properties of Confidentiality, Resiliency, and Validity.

How to prevent data at rest from being the target of malicious attacks? How

to preserve the consistency of successive queries in a fully decentralized

environment?

Improvement of the validity of iterative algorithms. A third challenge is

to study classes of iterative algorithms compatible with Edgelet computing

for which it is possible to prove the strict validity of the results. For example,

as mentioned in Chapter 5, we observe that the Apriori algorithm executed

in Edgelet can produce exactly the same results as a centralized execution.

To go further and deepen our first experimental evaluations, it would be

essential to theoretically prove the convergence of the algorithms. The

research work of Lian et al. [169] on the convergence of the Asynchronous

Decentralized Parallel Stochastic Gradient Descent particularly illustrates the

interest of this type of proof. Thus, in the same direction, a theoretical and

systemic analysis of iterative processing in Edgelet would be an important

asset for the deployment of new applications in this context.

Deployment of an operational platform. A fourth challenge is to deploy

the Edgelet computing framework in real world. As detailed in Chapter 7, we

have demonstrated that our research work is applicable to the DomYcile

project, with the potential to bring real added value in terms of usage. The

next step would be to valorize this work with an effective implementation of

the Edgelet mechanisms within the deployed boxes. We will then have to deal

104

with the difficulties associated with the realities of the field, including the

heterogeneity of the boxes' hardware. Indeed, the version currently deployed

has no Internet connection while the new version will be equipped with a 4G

chip. The environment will therefore be halfway between our two

demonstrations, composed of both OppNet communicating devices and

weakly connected ones.

105

BIBLIOGRAPHY

[1] D. Reinsel, J. Gantz, J. Rydning, and others, “The digitization of the world

from edge to core,” IDC white paper, vol. 13, 2018.

[2] “Cisco Annual Internet Report (2018–2023) White Paper,” Mar. 2020.

https://tinyurl.com/cisco-internet-report

[3] D. D. Hirsch, “The glass house effect: Big Data, the new oil, and the power

of analogy,” Me. L. Rev., vol. 66, p. 373, 2013.

[4] “Firefox Monitor.” https://monitor.firefox.com

[5] L. Poitras, “Citizenfour,” Lectures, publications reçues, 2015.

[6] G. Venkatadri et al., “Privacy Risks with Facebook’s PII-Based Targeting:

Auditing a Data Broker’s Advertising Interface,” in 2018 IEEE Symposium

on Security and Privacy (SP), San Francisco, CA: IEEE, May 2018, pp. 89–

107.

[7] M. Silva, L. S. de Oliveira, A. Andreou, P. O. V. de Melo, O. Goga, and F.

Benevenuto, “Facebook Ads Monitor: An Independent Auditing System

for Political Ads on Facebook.” arXiv, Jan. 31, 2020.

[8] “Regulation EU 2016/679 of the European Parliament and of the Council.”

http://data.europa.eu/eli/reg/2016/679

[9] “Blue Button,” Wikipedia. https://en.wikipedia.org/wiki/Blue_Button

[10] “MesInfos.” https://fing.org/toutes-les-actions/mesinfos.html

[11] “Google Drive.” https://drive.google.com

[12] “Signal Messenger: Speak Freely.” https://signal.org

[13] “StartMail - Private email you can trust.” https://www.startmail.com

[14] “Tresorit.” https://tresorit.com

[15] N. Anciaux et al., “Personal Data Management Systems: The security and

functionality standpoint,” Information Systems, vol. 80, pp. 13–35, 2019.

[16] “Cozy Cloud.” https://cozy.io

[17] R. Ladjel, N. Anciaux, P. Pucheral, and G. Scerri, “Trustworthy Distributed

Computations on Personal Data Using Trusted Execution Environments,”

in 2019 18th IEEE International Conference On Trust, Security And Privacy

In Computing And Communications/13th IEEE International Conference

On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua,

New Zealand: IEEE, Aug. 2019, pp. 381–388.

https://tinyurl.com/cisco-internet-report
https://monitor.firefox.com/
http://data.europa.eu/eli/reg/2016/679
https://en.wikipedia.org/wiki/Blue_Button
https://fing.org/toutes-les-actions/mesinfos.html
https://drive.google.com/
https://signal.org/
https://www.startmail.com/
https://tresorit.com/
https://cozy.io/

106

[18] J. Mirval, L. Bouganim, and I. S. Popa, “Practical Fully-Decentralized

Secure Aggregation for Personal Data Management Systems,” in SSDBM

2021: 33rd International Conference on Scientific and Statistical Database

Management, Tampa, FL, USA, July 6-7, 2021, ACM, 2021, pp. 259–264.

[19] L. Bouganim, J. Loudet, and I. Sandu Popa, “Highly distributed and

privacy-preserving queries on personal data management systems,” The

VLDB Journal, pp. 1–31, 2022.

[20] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: data

forwarding in disconnected mobile ad hoc networks,” IEEE Commun.

Mag., vol. 44, no. 11, pp. 134–141, Nov. 2006.

[21] “DomYcile Project: https://tinyurl.com/domycile, Salon E-Tonomy:

https://tinyurl.com/e-tonomy,” 2020.

[22] “HIPPOCAD.” https://www.hippocad.com

[23] “Proposal for a Proposal for a Regulation of the European Parliament and

of the Council on European data governance (Data Governance Act),”

2020. https://tinyurl.com/data-governance-act

[24] M. Conti, S. Giordano, M. May, and A. Passarella, “From opportunistic

networks to opportunistic computing,” IEEE Commun. Mag., vol. 48, no.

9, pp. 126–139, Sep. 2010.

[25] L. Javet, N. Anciaux, L. Bouganim, and P. Pucheral, “Edgelet Computing:

Pushing Query Processing and Liability at the Extreme Edge of the

Network,” in 22nd IEEE International Symposium on Cluster, Cloud and

Internet Computing, CCGrid 2022, Taormina, Italy, May 16-19, 2022, IEEE,

2022, pp. 160–169.

[26] L. Javet, N. Anciaux, L. Bouganim, L. Lamoureux, and P. Pucheral, “Secure

Computations in Opportunistic Networks: An Edgelet Demonstration

with a Medical Use-Case,” in PerCom 2023-21st IEEE International

Conference on Pervasive Computing and Communications, 2023.

[27] L. Javet, N. Anciaux, L. Bouganim, L. Lamoureux, and P. Pucheral, “Pushing

Edge Computing one Step Further: Resilient and Privacy-Preserving

Processing on Personal Devices,” in Proceedings 26th International

Conference on Extending Database Technology, EDBT 2023, Ioannina,

Greece, March 28-31, 2023, OpenProceedings.org, 2023, pp. 835–838.

[28] “PlugDB.” https://project.inria.fr/plugdb/en/

[29] “Dropbox.” https://www.dropbox.com

[30] “OneDrive.” https://onedrive.com

https://tinyurl.com/domycile
https://tinyurl.com/e-tonomy
https://www.hippocad.com/
https://tinyurl.com/data-governance-act
https://project.inria.fr/plugdb/en/
https://www.dropbox.com/
https://onedrive.com/

107

[31] “SpiderOak.” https://spideroak.com

[32] “Sync.com.” https://www.sync.com

[33] “Digi.me.” https://digi.me

[34] “Solid.” https://solidproject.org

[35] Y.-A. de Montjoye, E. Shmueli, S. S. Wang, and A. S. Pentland, “openPDS:

Protecting the Privacy of Metadata through SafeAnswers,” PLoS ONE, vol.

9, no. 7, p. e98790, Jul. 2014.

[36] A. Chaudhry et al., “Personal data: thinking inside the box,” in Proceedings

of The Fifth Decennial Aarhus Conference on Critical Alternatives, 2015,

Aarhus, Denmark, August 17-21, 2015, Aarhus University Press / ACM,

2015, pp. 29–32.

[37] “Personium.” https://personium.io

[38] “Nextcloud.” https://nextcloud.com

[39] “Amber X.” https://www.myamberlife.com

[40] “Helixee.” https://www.helixee.me/home/

[41] “Meet Lima.” https://meetlima.com

[42] T. Allard et al., “Secure personal data servers: a vision paper,” Proc. VLDB

Endow., vol. 3, no. 1–2, pp. 25–35, Sep. 2010.

[43] N. Anciaux, P. Bonnet, L. Bouganim, B. Nguyen, I. S. Popa, and P. Pucheral,

“Trusted Cells: A Sea Change for Personal Data Services,” in Sixth Biennial

Conference on Innovative Data Systems Research, CIDR 2013, Asilomar,

CA, USA, January 6-9, 2013, Online Proceedings, 2013.

[44] N. Anciaux, M. Benzine, L. Bouganim, K. Jacquemin, P. Pucheral, and S.

Yin, “Restoring the Patient Control over Her Medical History,” in 2008 21st

IEEE International Symposium on Computer-Based Medical Systems, Jun.

2008, pp. 132–137.

[45] N. Anciaux et al., “A Tamper-Resistant and Portable Healthcare Folder,”

International Journal of Telemedicine and Applications, vol. 2008, pp. 1–9,

2008.

[46] N. Anciaux et al., “Managing Personal Health Records in an Infrastructure-

Weak Environment,” in e-Infrastructure and e-Services, Cham: Springer

International Publishing, 2016, pp. 178–191.

[47] S. Lallali, N. Anciaux, I. Sandu Popa, and P. Pucheral, “Supporting secure

keyword search in the personal cloud,” Information Systems, vol. 72, pp.

1–26, Dec. 2017.

https://spideroak.com/
https://www.sync.com/
https://digi.me/
https://solidproject.org/
https://personium.io/
https://nextcloud.com/
https://www.myamberlife.com/
https://www.helixee.me/home/
https://meetlima.com/

108

[48] N. Anciaux, B. Nguyen, and I. S. Popa, “Personal Data Management with

Secure Hardware: How to Keep Your Data at Hand,” in 2013 IEEE 14th

International Conference on Mobile Data Management, Milan, Italy: IEEE,

Jun. 2013, pp. 1–2.

[49] N. Anciaux, B. Nguyen, and I. S. Popa, “Tutorial: Managing Personal Data

with Strong Privacy Guarantees,” in Proceedings of the 17th International

Conference on Extending Database Technology, EDBT 2014, Athens,

Greece, March 24-28, 2014, OpenProceedings.org, 2014, pp. 672–673.

[50] N. Anciaux, L. Bouganim, P. Pucheral, Y. Guo, L. Le Folgoc, and S. Yin,

“MILo-DB: a personal, secure and portable database machine,” Distrib

Parallel Databases, vol. 32, no. 1, pp. 37–63, Mar. 2014.

[51] D. H. T. That, I. S. Popa, K. Zeitouni, and C. Borcea, “PAMPAS: Privacy-

Aware Mobile Participatory Sensing Using Secure Probes,” in Proceedings

of the 28th International Conference on Scientific and Statistical Database

Management, Budapest Hungary: ACM, Jul. 2016, pp. 1–12.

[52] Q.-C. To, B. Nguyen, and P. Pucheral, “Private and Scalable Execution of

SQL Aggregates on a Secure Decentralized Architecture,” ACM Trans.

Database Syst., vol. 41, no. 3, pp. 1–43, Aug. 2016.

[53] R. Ladjel, N. Anciaux, P. Pucheral, and G. Scerri, “A Manifest-Based

Framework for Organizing the Management of Personal Data at the Edge

of the Network,” in Information Systems Development: Information

Systems Beyond 2020, ISD 2019 Proceedings, Toulon, France, 2019.

[54] R. Carpentier, F. Thiant, I. S. Popa, N. Anciaux, and L. Bouganim, “An

Extensive and Secure Personal Data Management System Using SGX,” in

Proceedings of the 25th International Conference on Extending Database

Technology, EDBT 2022, Edinburgh, UK, 2022, p. 2:570-2:573.

[55] R. Carpentier, I. Sandu Popa, and N. Anciaux, “Data Leakage Mitigation of

User-Defined Functions on Secure Personal Data Management Systems,”

in 34th International Conference on Scientific and Statistical Database

Management, Copenhagen Denmark: ACM, Jul. 2022, pp. 1–12.

[56] M. Conti and S. Giordano, “Mobile ad hoc networking: milestones,

challenges, and new research directions,” IEEE Commun. Mag., vol. 52, no.

1, pp. 85–96, Jan. 2014.

[57] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Internets,”

in Proceedings of the 2003 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, in

SIGCOMM ’03. New York, NY, USA: Association for Computing

Machinery, 2003, pp. 27–34.

109

[58] C. Boldrini, K. Lee, M. Önen, J. Ott, and E. Pagani, “Opportunistic

networks,” Computer Communications, vol. 48, pp. 1–4, Jul. 2014.

[59] M. Alajeely, R. Doss, and A. Ahmad, “Routing Protocols in Opportunistic

Networks – A Survey,” IETE Technical Review, vol. 35, no. 4, pp. 369–387,

Jul. 2018.

[60] Y. Cao and Z. Sun, “Routing in Delay/Disruption Tolerant Networks: A

Taxonomy, Survey and Challenges,” IEEE Commun. Surv. Tutorials, vol. 15,

no. 2, pp. 654–677, 2013.

[61] A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected Ad

Hoc Networks,” 2000.

[62] S. Jain, K. R. Fall, and R. K. Patra, “Routing in a delay tolerant network,” in

Proceedings of the ACM SIGCOMM 2004 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication,

August 30 - September 3, 2004, Portland, Oregon, USA, ACM, 2004, pp.

145–158.

[63] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic Routing in

Intermittently Connected Networks,” SIGMOBILE Mob. Comput. Commun.

Rev., vol. 7, no. 3, pp. 19–20, Jul. 2003.

[64] S. Trifunovic, S. T. Kouyoumdjieva, B. Distl, L. Pajevic, G. Karlsson, and B.

Plattner, “A Decade of Research in Opportunistic Networks: Challenges,

Relevance, and Future Directions,” IEEE Commun. Mag., vol. 55, no. 1, pp.

168–173, 2017.

[65] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein,

“Energy-efficient computing for wildlife tracking: design tradeoffs and

early experiences with ZebraNet,” in Proceedings of the 10th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-X), San Jose, California, USA, October 5-9,

2002, ACM Press, 2002, pp. 96–107.

[66] V. G. Menon and P. M. J. Prathap, “Comparative analysis of opportunistic

routing protocols for underwater acoustic sensor networks,” in 2016

International Conference on Emerging Technological Trends (ICETT),

Kollam, India: IEEE, Oct. 2016, pp. 1–5.

[67] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and A. Srinivasan,

“Mobile Data Offloading through Opportunistic Communications and

Social Participation,” IEEE Trans. on Mobile Comput., vol. 11, no. 5, pp.

821–834, May 2012.

[68] “Opengarden’s firechat app.” https://fr.wikipedia.org/wiki/FireChat

https://fr.wikipedia.org/wiki/FireChat

110

[69] M. Saloni, C. Julien, A. L. Murphy, and G. P. Picco, “Lasso: A device-to-

device group monitoring service for smart cities,” in 2017 International

Smart Cities Conference (ISC2), Wuxi, China: IEEE, Sep. 2017, pp. 1–6.

[70] N. Vastardis and Kun Yang, “Mobile Social Networks: Architectures, Social

Properties, and Key Research Challenges,” IEEE Commun. Surv. Tutorials,

vol. 15, no. 3, pp. 1355–1371, 2013.

[71] H. Li, K. Ota, M. Dong, and M. Guo, “Mobile Crowdsensing in Software

Defined Opportunistic Networks,” IEEE Communications Magazine, vol.

55, no. 6, pp. 140–145, Jun. 2017.

[72] A. Lindgren and P. Hui, “The Quest for a Killer App for Opportunistic and

Delay Tolerant Networks: (Invited Paper),” in Proceedings of the 4th ACM

Workshop on Challenged Networks, in CHANTS ’09. New York, NY, USA:

Association for Computing Machinery, 2009, pp. 59–66.

[73] “Uepaa! - alpine safety app.” https://safety.uepaa.ch

[74] “Starlink.” https://www.starlink.com

[75] F. Guidec, Y. Maheo, P. Launay, L. Touseau, and C. Nous, “Bringing

Opportunistic Networking to Smartphones: a Pragmatic Approach,” in

2021 IEEE 45th Annual Computers, Software, and Applications Conference

(COMPSAC), Madrid, Spain: IEEE, Jul. 2021, pp. 574–579.

[76] J. Dede et al., “Simulating Opportunistic Networks: Survey and Future

Directions,” IEEE Commun. Surv. Tutorials, vol. 20, no. 2, pp. 1547–1573,

2017.

[77] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN

Protocol Evaluation,” in SIMUTools ’09: Proceedings of the 2nd

International Conference on Simulation Tools and Techniques, New York,

NY, USA: ICST, 2009.

[78] “ns-3.” https://www.nsnam.org

[79] M. Conti, A. Passarella, and S. K. Das, “The Internet of People (IoP): A new

wave in pervasive mobile computing,” Pervasive Mob. Comput., vol. 41,

pp. 1–27, 2017.

[80] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of Distributed

Consensus with One Faulty Process,” J. ACM, vol. 32, no. 2, pp. 374–382,

1985.

[81] A. Benchi, P. Launay, and F. Guidec, “Solving Consensus in Opportunistic

Networks,” in Proceedings of the 2015 International Conference on

Distributed Computing and Networking, ICDCN 2015, Goa, India, January

4-7, 2015, ACM, 2015, pp. 1–10.

https://safety.uepaa.ch/
https://www.starlink.com/
https://www.nsnam.org/

111

[82] R. Dragan, R.-I. Ciobanu, and C. Dobre, “Leader Election in Opportunistic

Networks,” in 2017 16th International Symposium on Parallel and

Distributed Computing (ISPDC), Innsbruck: IEEE, Jul. 2017, pp. 157–164.

[83] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”

Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[84] I. C. L. Ng and S. Y. L. Wakenshaw, “The Internet-of-Things: Review and

research directions,” International Journal of Research in Marketing, vol.

34, no. 1, pp. 3–21, 2017.

[85] “Industrial Automation.” https://tinyurl.com/industrial-automation

[86] D. O’Keeffe, T. Salonidis, and P. R. Pietzuch, “Frontier: Resilient Edge

Processing for the Internet of Things,” Proc. VLDB Endow., vol. 11, no. 10,

pp. 1178–1191, 2018.

[87] S. Zeuch et al., “The NebulaStream Platform for Data and Application

Management in the Internet of Things,” in 10th Conference on Innovative

Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, 2020.

[88] L. González-Manzano, J. M. de Fuentes, S. Pastrana, P. Peris-Lopez, and L.

Hernández-Encinas, “PAgIoT – Privacy-preserving Aggregation protocol

for Internet of Things,” Journal of Network and Computer Applications,

vol. 71, pp. 59–71, Aug. 2016.

[89] K. Nellore and G. Hancke, “A Survey on Urban Traffic Management

System Using Wireless Sensor Networks,” Sensors, vol. 16, no. 2, p. 157,

Jan. 2016.

[90] H. Alwan and A. Agarwal, “A Survey on Fault Tolerant Routing Techniques

in Wireless Sensor Networks,” in 2009 Third International Conference on

Sensor Technologies and Applications, Athens, Greece, 2009, pp. 366–371.

[91] C. Berger, P. Eichhammer, H. P. Reiser, J. Domaschka, F. J. Hauck, and G.

Habiger, “A Survey on Resilience in the IoT: Taxonomy, Classification, and

Discussion of Resilience Mechanisms,” ACM Comput. Surv., vol. 54, no. 7,

pp. 1–39, Sep. 2022.

[92] D. G. Murray, E. Yoneki, J. Crowcroft, and S. Hand, “The case for crowd

computing,” in Proceedings of the second ACM SIGCOMM workshop on

Networking, systems, and applications on mobile handhelds, New Delhi

India: ACM, Aug. 2010, pp. 39–44.

[93] K. Parshotam, “Crowd computing: a literature review and definition,” in

Proceedings of the South African Institute for Computer Scientists and

Information Technologists Conference, in SAICSIT ’13. New York, NY, USA:

Association for Computing Machinery, Oct. 2013, pp. 121–130.

https://tinyurl.com/industrial-automation

112

[94] B. Guo et al., “Mobile Crowd Sensing and Computing: The Review of an

Emerging Human-Powered Sensing Paradigm,” ACM Comput. Surv., vol.

48, no. 1, pp. 1–31, Sep. 2015.

[95] E. Estellés-Arolas and F. González-Ladrón-de-Guevara, “Towards an

integrated crowdsourcing definition,” Journal of Information Science, vol.

38, no. 2, pp. 189–200, 2012.

[96] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and

future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.

32–39, 2011.

[97] D. Christin, “Privacy in mobile participatory sensing: Current trends and

future challenges,” Journal of Systems and Software, vol. 116, pp. 57–68,

Jun. 2016.

[98] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. Sunderam, “Participant

Privacy in Mobile Crowd Sensing Task Management: A Survey of

Methods and Challenges,” SIGMOD Rec., vol. 44, no. 4, pp. 23–34, May

2016.

[99] Z. Wang et al., “Personalized Privacy-Preserving Task Allocation for

Mobile Crowdsensing,” IEEE Trans. on Mobile Comput., vol. 18, no. 6, pp.

1330–1341, Jun. 2019.

[100] M. Brahem, G. Scerri, N. Anciaux, and V. Issarny, “Consent-driven Data

Reuse in Multi-tasking Crowdsensing Systems: A Privacy-by-Design

Solution,” Pervasive and Mobile Computing, vol. 83, p. 101614, Jul. 2022.

[101] L. Ponciano and F. Brasileiro, “Agreement-based credibility assessment

and task replication in human computation systems,” Future Generation

Computer Systems, vol. 87, pp. 159–170, Oct. 2018.

[102] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:

incentive mechanism design for mobile phone sensing,” in Proceedings

of the 18th annual international conference on Mobile computing and

networking, Istanbul Turkey: ACM, Aug. 2012, pp. 173–184.

[103] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. S. Shen, “Providing Task Allocation and

Secure Deduplication for Mobile Crowdsensing via Fog Computing,” IEEE

Trans. Dependable and Secure Comput., vol. 17, no. 3, pp. 581–594, 2020.

[104] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the Decentralised Cloud:

Survey on Approaches and Challenges for Mobile, Ad hoc, and Edge

Computing,” ACM Comput. Surv., vol. 51, no. 6, p. 111:1-111:36, 2019.

[105] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and

Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

113

[106] M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Nemirovsky,

“Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and

more Fog Computing,” in 2014 IEEE 19th International Workshop on

Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD), Athens, Greece: IEEE, Dec. 2014, pp. 325–329.

[107] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge Computing for

Autonomous Driving: Opportunities and Challenges,” Proc. IEEE, vol. 107,

no. 8, pp. 1697–1716, Aug. 2019.

[108] A. S. Albahri et al., “IoT-based telemedicine for disease prevention and

health promotion: State-of-the-Art,” Journal of Network and Computer

Applications, vol. 173, p. 102873, Jan. 2021.

[109] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for VM-

Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput., vol. 8, no.

4, pp. 14–23, 2009.

[110] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data Security and

Privacy-Preserving in Edge Computing Paradigm: Survey and Open

Issues,” IEEE Access, vol. 6, pp. 18209–18237, 2018.

[111] J. Zhao, R. Mortier, J. Crowcroft, and L. Wang, “Privacy-Preserving

Machine Learning Based Data Analytics on Edge Devices,” in Proceedings

of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans

LA USA: ACM, Dec. 2018, pp. 341–346.

[112] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The Extended

Cloud: Review and Analysis of Mobile Edge Computing and Fog From a

Security and Resilience Perspective,” IEEE J. Select. Areas Commun., vol.

35, no. 11, pp. 2586–2595, Nov. 2017.

[113] R. Roman, J. Lopez, and M. Mambo, “Mobile Edge Computing, Fog et al.:

A Survey and Analysis of Security Threats and Challenges,” Future

Generation Computer Systems, vol. 78, pp. 680–698, Jan. 2018.

[114] J. Grover and R. M. Garimella, “Reliable and Fault-Tolerant IoT-Edge

Architecture,” in 2018 IEEE SENSORS, New Delhi: IEEE, Oct. 2018, pp. 1–4.

[115] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer

content distribution technologies,” ACM Comput. Surv., vol. 36, no. 4, pp.

335–371, Dec. 2004.

[116] “BOINC.” https://boinc.berkeley.edu

[117] “World Community Grid.” https://www.worldcommunitygrid.org

https://boinc.berkeley.edu/
https://www.worldcommunitygrid.org/

114

[118] M. Ghaffari, N. Ghadiri, M. H. Manshaei, and M. S. Lahijani, “P4QS: A Peer-

to-Peer Privacy Preserving Query Service for Location-Based Mobile

Applications,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 9458–9469,

Oct. 2017.

[119] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer

networks,” in Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, Rio de Janeriro Brazil: ACM, 2006, pp. 189–202.

[120] E. Spaho, A. Barolli, F. Xhafa, and L. Barolli, “P2P Data Replication:

Techniques and Applications,” in Modeling and Processing for Next-

Generation Big-Data Technologies, Cham: Springer International

Publishing, 2015, pp. 145–166.

[121] M. Kaddoura, N. Bahr, and E. Gambucci, “SH-P2P: Self-Healing Peer-to-

Peer Network with Optimal Multicast Routing,” in 2022 IEEE International

Conference on Electro Information Technology (eIT), Mankato, MN, USA:

IEEE, May 2022, pp. 027–031.

[122] P. Kairouz et al., “Advances and Open Problems in Federated Learning,”

Found. Trends Mach. Learn., vol. 14, no. 1–2, pp. 1–210, 2021.

[123] “Machine Learning Ledger Orchestration for Drug Discovery,” CORDIS |

European Commission, 2019. https://cordis.europa.eu/project/id/831472

[124] A. Hard et al., “Federated Learning for Mobile Keyboard Prediction.” arXiv,

Feb. 28, 2019.

[125] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy Analysis

of Deep Learning: Passive and Active White-box Inference Attacks against

Centralized and Federated Learning,” in 2019 IEEE Symposium on Security

and Privacy (SP), May 2019, pp. 739–753.

[126] E. Cyffers, M. Even, A. Bellet, and L. Massoulié, “Muffliato: Peer-to-Peer

Privacy Amplification for Decentralized Optimization and Averaging.”

arXiv, Oct. 19, 2022.

[127] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated

learning,” Knowledge-Based Systems, vol. 216, p. 106775, Mar. 2021.

[128] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated Multi-

Task Learning,” in Advances in Neural Information Processing Systems 30:

Annual Conference on Neural Information Processing Systems 2017,

December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 4424–4434.

[129] R. L. Rivest, L. Adleman, M. L. Dertouzos, and others, “On data banks and

privacy homomorphisms,” Foundations of secure computation, vol. 4, no.

11, pp. 169–180, 1978.

https://cordis.europa.eu/project/id/831472

115

[130] R. L. Rivest, A. Shamir, and L. M. Adleman, “A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems,” Commun. ACM, vol.

21, no. 2, pp. 120–126, 1978.

[131] C. Gentry, “A fully homomorphic encryption scheme,” PhD Thesis,

Stanford University, USA, 2009.

[132] P. Martins, L. Sousa, and A. Mariano, “A Survey on Fully Homomorphic

Encryption: An Engineering Perspective,” ACM Comput. Surv., vol. 50, no.

6, pp. 1–33, Nov. 2018.

[133] A. C. Yao, “Protocols for secure computations,” in 23rd annual symposium

on foundations of computer science (sfcs 1982), IEEE, 1982, pp. 160–164.

[134] E. Saleh, A. Alsa’deh, A. Kayed, and C. Meinel, “Processing Over Encrypted

Data: Between Theory and Practice,” SIGMOD Rec., vol. 45, no. 3, pp. 5–

16, Dec. 2016.

[135] A. C.-C. Yao, “How to Generate and Exchange Secrets (Extended

Abstract),” in 27th Annual Symposium on Foundations of Computer

Science, Toronto, Canada, 27-29 October 1986, IEEE Computer Society,

1986, pp. 162–167.

[136] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theorems

for Non-Cryptographic Fault-Tolerant Distributed Computation

(Extended Abstract),” in Proceedings of the 20th Annual ACM Symposium

on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, J. Simon,

Ed., ACM, 1988, pp. 1–10.

[137] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11, pp.

612–613, 1979.

[138] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty Computation

from Somewhat Homomorphic Encryption,” in Advances in Cryptology –

CRYPTO 2012, R. Safavi-Naini and R. Canetti, Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 643–662.

[139] T. Allard, G. Hébrail, F. Masseglia, and E. Pacitti, “Chiaroscuro:

Transparency and Privacy for Massive Personal Time-Series Clustering,”

in Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, Melbourne Victoria Australia: ACM, May 2015, pp.

779–794.

[140] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers, “SMCQL:

Secure Query Processing for Private Data Networks,” Proc. VLDB Endow.,

vol. 10, no. 6, pp. 673–684, 2017.

116

[141] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. D.

Smith, “What Can We Learn Privately?,” SIAM J. Comput., vol. 40, no. 3,

pp. 793–826, 2011.

[142] C. Dwork, “Differential Privacy,” in Automata, Languages and

Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,

July 10-14, 2006, Proceedings, Part II, M. Bugliesi, B. Preneel, V. Sassone,

and I. Wegener, Eds., in Lecture Notes in Computer Science, vol. 4052.

Springer, 2006, pp. 1–12.

[143] P. Samarati and L. Sweeney, “Protecting Privacy when Disclosing

Information: k-Anonymity and Its Enforcement through Generalization

and Suppression,” 1998.

[144] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam, “L-

diversity: privacy beyond k-anonymity,” in 22nd International Conference

on Data Engineering (ICDE’06), Atlanta, GA, USA: IEEE, 2006, pp. 24–24.

[145] N. Li, T. Li, and S. Venkatasubramanian, “t-Closeness: Privacy Beyond k-

Anonymity and l-Diversity,” in Proceedings of the 23rd International

Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,

Turkey, April 15-20, 2007, R. Chirkova, A. Dogac, M. T. Özsu, and T. K.

Sellis, Eds., IEEE Computer Society, 2007, pp. 106–115.

[146] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin, “Collecting

and Analyzing Data from Smart Device Users with Local Differential

Privacy.” arXiv, Jun. 16, 2016.

[147] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution

Environment: What It is, and What It is Not,” in 2015 IEEE

Trustcom/BigDataSE/ISPA, IEEE, Aug. 2015, pp. 57–64.

[148] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive

Survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, Feb. 2019.

[149] L. Guan et al., “TrustShadow: Secure Execution of Unmodified

Applications with ARM TrustZone,” in Proceedings of the 15th Annual

International Conference on Mobile Systems, Applications, and Services,

Niagara Falls New York USA: ACM, Jun. 2017, pp. 488–501.

[150] “Android Keystore.” https://tinyurl.com/android-keystore

[151] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “RusTEE: Developing

Memory-Safe ARM TrustZone Applications,” in Annual Computer Security

Applications Conference, Austin USA: ACM, Dec. 2020, pp. 442–453.

https://tinyurl.com/android-keystore

117

[152] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for

CPU based attestation and sealing,” in Proceedings of the 2nd

international workshop on hardware and architectural support for security

and privacy, ACM New York, NY, USA, 2013.

[153] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol. ePrint

Arch., p. 86, 2016.

[154] “Trusted Platform Module.”

https://trustedcomputinggroup.org/resource/tpm-library-specification/

[155] H. Raj et al., “fTPM: A Software-Only Implementation of a TPM Chip,” in

25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,

August 10-12, 2016, USENIX Association, 2016, pp. 841–856.

[156] W. Wang et al., “Leaky Cauldron on the Dark Land: Understanding

Memory Side-Channel Hazards in SGX,” in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017, B. M.

Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds., ACM, 2017, pp. 2421–

2434.

[157] J. V. Bulck et al., “Foreshadow: Extracting the Keys to the Intel SGX

Kingdom with Transient Out-of-Order Execution,” in 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August

15-17, 2018, W. Enck and A. P. Felt, Eds., USENIX Association, 2018, pp.

991–1008.

[158] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How SGX Fails

in Practice,” 2020.

[159] F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi, “Sealed-Glass

Proofs: Using Transparent Enclaves to Prove and Sell Knowledge,” in

EuroS&P, IEEE, 2017, pp. 19–34.

[160] “Shared Responsibility Model - Amazon Web Services (AWS).”

https://aws.amazon.com/compliance/shared-responsibility-model/

[161] “Closed-world assumption,” Wikipedia.

https://en.wikipedia.org/wiki/Closed-world_assumption

[162] M. Herr, N. Sirven, H. Grondin, S. Pichetti, and C. Sermet, “Frailty,

polypharmacy, and potentially inappropriate medications in old people:

findings in a representative sample of the French population,” Eur J Clin

Pharmacol, vol. 73, no. 9, pp. 1165–1172, 2017.

[163] “The Survey of Health, Ageing and Retirement in Europe (SHARE).”

http://www.share-project.org/

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://en.wikipedia.org/wiki/Closed-world_assumption
http://www.share-project.org/

118

[164] J. Ménétrey, C. Göttel, M. Pasin, P. Felber, and V. Schiavoni, “An

Exploratory Study of Attestation Mechanisms for Trusted Execution

Environments.” arXiv, Apr. 15, 2022.

[165] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,

“Understanding replication in databases and distributed systems,” in

Proceedings 20th IEEE International Conference on Distributed Computing

Systems, Taipei, Taiwan: IEEE Comput. Soc, 2000, pp. 464–474.

[166] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient

Descent,” in 19th International Conference on Computational Statistics,

COMPSTAT 2010, Paris, France, August 22-27, 2010 - Keynote, Invited and

Contributed Papers, Y. Lechevallier and G. Saporta, Eds., Physica-Verlag,

2010, pp. 177–186.

[167] A. Savasere, E. Omiecinski, and S. B. Navathe, “An Efficient Algorithm for

Mining Association Rules in Large Databases,” in VLDB’95, Proceedings of

21th International Conference on Very Large Data Bases, September 11-

15, 1995, Zurich, Switzerland, U. Dayal, P. M. D. Gray, and S. Nishio, Eds.,

Morgan Kaufmann, 1995, pp. 432–444.

[168] I. S. Dhillon and D. S. Modha, “A Data-Clustering Algorithm on Distributed

Memory Multiprocessors,” in Large-Scale Parallel Data Mining, Workshop

on Large-Scale Parallel KDD Systems, SIGKDD, August 15, 1999, San

Diego, CA, USA, revised papers, M. J. Zaki and C.-T. Ho, Eds., in Lecture

Notes in Computer Science, vol. 1759. Springer, 1999, pp. 245–260.

[169] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous Decentralized

Parallel Stochastic Gradient Descent,” in Proceedings of the 35th

International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, J. G. Dy and A.

Krause, Eds., in Proceedings of Machine Learning Research, vol. 80. PMLR,

2018, pp. 3049–3058.

[170] T. Brijs, “Retail market basket data set,” in Workshop on Frequent Itemset

Mining Implementations (FIMI’03), 2003.

[171] “OpenML - Adult Income.” http://www.openml.org/d/1590

[172] “Scikit-learn - California Housing.”

https://tinyurl.com/california-housing-dataset

[173] “Dash Python.” https://dash.plotly.com

[174] “Group By Grouping Sets, Snowflake Documentation,” 2023.

https://tinyurl.com/grouping-sets

[175] “Open Enclave SDK,” 2023. https://openenclave.io/sdk/

http://www.openml.org/d/1590
https://tinyurl.com/california-housing-dataset
https://dash.plotly.com/
https://tinyurl.com/grouping-sets
https://openenclave.io/sdk/

119

[176] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: Social-Based Forwarding

in Delay-Tolerant Networks,” IEEE Trans. Mob. Comput., vol. 10, no. 11, pp.

1576–1589, 2011.

