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Mots clés : Gestion de données décentralisée, Calculs par la foule, Protection de la vie privée, Réseaux opportunistes 

Résumé : Dans la société actuelle, où l'IoT et les 

plateformes numériques transforment notre vie 

quotidienne, les données personnelles sont générées 

à profusion et leur utilisation échappe souvent à 

notre contrôle. Des législations récentes comme le 

RGPD en Europe proposent des solutions concrètes 

pour réguler ces nouvelles pratiques et protéger 

notre vie privée. Parallèlement, sur le plan technique, 

de nouvelles architectures émergent pour répondre 

à ce besoin urgent de se réapproprier nos propres 

données personnelles. C'est le cas des systèmes de 

gestion des données personnelles (PDMS) qui offrent 

un moyen décentralisé de stocker et de gérer les 

données personnelles, permettant aux individus 

d’avoir un meilleur contrôle sur leur vie numérique. 

Cette thèse explore l'utilisation distribuée de ces 

PDMS dans un contexte de réseau opportuniste, où 

les messages sont transférés d'un appareil à l'autre 

sans nécessiter d'infrastructure. L'objectif est de 

permettre la mise en œuvre de traitements 

complexes croisant les données de milliers 

d'individus, tout en garantissant la sécurité et la 

tolérance aux pannes des exécutions. 

L'approche proposée utilise les environnements 

d'exécution de confiance pour définir un nouveau 

paradigme informatique, intitulé Edgelet 

computing, qui satisfait à la fois les propriétés de 

validité, de résilience et de confidentialité. Les 

contributions comprennent (1) des mécanismes de 

sécurité pour protéger les exécutions contre les 

attaques malveillantes visant à piller les données 

personnelles, (2) des stratégies de résilience pour 

tolérer les défaillances et les pertes de messages 

induites par l'environnement décentralisé, (3) des 

validations approfondies et des démonstrations 

pratiques des méthodes proposées. 

 

 

Title: Privacy-preserving distributed queries compatible with opportunistic networks 

Keywords: Decentralized data management, Crowd computing, Privacy protection, Opportunistic networks 

Abstract: In today's society, where IoT and digital 

platforms are transforming our daily lives, personal 

data is generated in profusion and its usage is often 

beyond our control. Recent legislations like the GDPR 

in Europe propose concrete solutions to regulate 

these new practices and protect our privacy. 

Meanwhile, on the technical side, new architectures 

are emerging to respond to this urgent need to 

reclaim our own personal data. This is the case of 

Personal Data Management Systems (PDMS) which 

offer a decentralized way to store and manage 

personal data, empowering individuals with greater 

control over their digital lives. 

This thesis explores the distributed use of these 

PDMS in an Opportunistic Network context, where 

messages are transferred from one device to another  

without the need for any infrastructure. The 

objective is to enable the implementation of 

complex processing crossing data from thousands 

of individuals, while guaranteeing the security and 

fault tolerance of the executions. 

The proposed approach leverages the Trusted 

Execution Environments to define a new computing 

paradigm, entitled Edgelet computing, that 

satisfies both validity, resiliency and privacy 

properties. Contributions include: (1) security 

mechanisms to protect executions from malicious 

attacks seeking to plunder personal data, (2) 

resiliency strategies to tolerate failures and 

message losses induced by the fully decentralized 

environment, (3) extensive validations and practical 

demonstrations of the proposed methods. 
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RESUME 

La croissance exponentielle d'Internet et son influence sur la société ont 

conduit à une création de données en quantités sans précédent. En 2018, 

l'ICD [1] a estimé la sphère de données mondiales annuelle à 33 ZB (1021 

octets), avec des prévisions de croissance à 175 ZB d'ici 2025. La périphérie 

d'Internet s’étend à un rythme beaucoup plus rapide que son cœur, et cette 

croissance ne devrait pas s'arrêter là, avec une estimation à près de 29,3 

milliards d'appareils connectés pour 2023 [2]. L’omniprésence de l'Internet 

des objets dans notre vie quotidienne contribue à accélérer notre société vers 

l'ère du numérique, où les données forment le "nouveau pétrole" [3]. 

Bien que cette création de données ait apporté de grands avantages aux 

entreprises et aux gouvernements, elle a également soulevé de graves 

préoccupations en matière de sécurité et de confidentialité des données 

personnelles. En effet, de par nos interactions avec nos appareils 

informatiques (smartphones, tablettes, ordinateurs) et notre utilisation de 

services numériques (boutiques en ligne, réseaux sociaux), une quantité 

massive de données personnelles est collectée à notre insu. Ces données 

concernant des milliards d'individus sont souvent centralisées sur d'énormes 

serveurs (par exemple, Google, Amazon, Facebook), facilitant leur accès, leur 

traitement et leur partage. Cette centralisation des données dans un seul 

système d'information en fait alors un véritable "pot de miel" pour les pirates 

informatiques. Les cyberattaques qu'ils mènent visent à capturer le plus 

d'informations personnelles possible (noms, adresses, e-mails, mots de 

passe, dates de naissance, etc.) afin de les revendre à d'autres criminels, par 

exemple pour des campagnes de phishing. Ces violations de données sont 

devenues très courantes et touchent de nombreux secteurs d'activité [4]. 

Malheureusement, les cyberattaques ne sont pas le seul inconvénient de la 

centralisation massive des données personnelles. En 2013, Edward Snowden 

a révélé que le gouvernement américain, par le biais de la National Security 

Agency, organisait une surveillance massive de sa population avec la 

complicité des détenteurs de données [5]. De plus, le profilage basé sur les 

données personnelles (niveau de revenu, orientation politique, habitudes 

d'achat) pousse le vice encore plus loin, avec la possibilité de manipuler 

massivement la population. Par exemple, les publicités affichées sur les 

réseaux sociaux comme Facebook bénéficient d'un mécanisme de micro-

ciblage pour adapter le contenu de la publicité au public ciblé. Les élections 

américaines de 2016 et brésiliennes de 2018 ont été fortement influencées 

par ces mécanismes de publicités ciblées sur Facebook [7]. 
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Pour répondre à toutes ces dérives d'usage et renforcer la sécurité des 

données personnelles, l'Union Européenne a adopté un cadre législatif, le 

RGPD [8], entré en vigueur en 2018. Cette réglementation s'applique à toutes 

les organisations, publiques ou privées, qui traitent des données personnelles 

appartenant à des résidents européens. Elle réglemente la collecte, le 

traitement et l'utilisation des données, ainsi que leur période de 

conservation. Au niveau individuel, cette loi accorde le droit à la portabilité 

des données, un mécanisme qui permet à quiconque de demander une copie 

de ses données personnelles détenues par une entreprise ou une 

administration. Ce mécanisme de portabilité, suivant d'autres initiatives telles 

que Blue Button aux États-Unis [9] ou MesInfos en France [10], constitue un 

élément essentiel pour la réappropriation de nos propres données. 

Cependant, la portabilité des données seule ne suffit pas à retrouver un 

contrôle sécurisé et respectueux de la vie privée si les solutions techniques 

pour héberger ces données sont à nouveau hypercentralisées. 

Ainsi, dans ce contexte de sensibilisation croissante à la confidentialité, la 

nécessité de reprendre le contrôle de ses données personnelles a conduit au 

développement de nombreux systèmes informatiques plus respectueux de la 

vie privée. À titre d’exemple, nous pouvons mentionner l'application de 

messagerie instantanée Signal [12], la boîte mail StartMail [13] ou encore la 

solution de stockage Tresorit [14]. Cette tendance a également suscité 

l'intérêt de la communauté scientifique, avec notamment la proposition de 

solutions de gestion de données personnelles décentralisées (PDMS) [15]. 

Conçus comme des assistants matériels ou logiciels centrés sur l'utilisateur, 

les PDMS permettent aux individus de gérer leur vie numérique avec des 

fonctionnalités allant de la collecte automatique de données à des tâches de 

traitement et de partage plus complexes, le tout dans un environnement 

sécurisé et facile à utiliser. Des solutions industrielles sont déjà disponibles, 

comme Cozy Cloud [16], qui implémente un PDMS pouvant être hébergé soit 

sur le cloud, soit directement sur un appareil personnel. 

Afin de ne pas régresser par rapport aux systèmes centralisés, l'architecture 

décentralisée du PDMS doit permettre l'exécution de calculs croisant les 

données de plusieurs individus. À l’instar des travaux récents proposant des 

solutions techniques pour exécuter des requêtes distribuées sur les 

PDMS [17]–[19], cette thèse étudie les solutions permettant de distribuer des 

traitements de façon respectueuse de la vie privée et tolérante aux pannes. 

Cependant, contrairement à ces précédents travaux, nous nous intéressons 

spécifiquement au cas où les PDMS sont déployés sur des appareils 

personnels (par exemple, smartphones, PC ou objets intelligents) avec des 

communications non conventionnelles, c'est-à-dire avec des messages 
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envoyés d'un appareil à un autre via des canaux à courte portée (par exemple, 

Wi-Fi ou Bluetooth), formant ainsi un réseau opportuniste (OppNet) [20]. 

Notre objectif est triple : nous voulons construire une solution qui (1) soit à 

la fois générique et évolutif, permettant des calculs complexes sur les 

données de milliers d'individus, (2) soit sécurisée et respecte la vie privée des 

personnes impliquées, et (3) soit tolérante aux pannes malgré un 

environnement entièrement décentralisé, propice aux défaillances et aux 

pertes de messages. 

Exemple de motivation. Le contexte inhabituel de cette thèse est 

particulièrement inspiré par le cas d'utilisation du projet DomYcile [21]. Notre 

équipe travaille en partenariat avec le département des Yvelines et la société 

HIPPOCAD (filiale du groupe La Poste) [22] pour proposer une solution de 

gestion de données pour les personnes âgées recevant de l’aide à domicile. 

Actuellement, près de 8 000 patients sont équipés d'une boîte informatique 

sécurisée où leurs dossiers médicaux et sociaux sont stockés. Ces boîtes ne 

sont pas connectées à Internet pour des raisons de coût, de sécurité et 

d'acceptabilité, et ne sont accessibles qu'au domicile du patient par les 

professionnels de santé. La plateforme DomYcile, mise en place par le 

département des Yvelines, est ouverte par conception, de sorte que des tiers 

(par exemple, des associations de patients, des organismes statistiques, des 

professionnels de santé) puissent proposer de nouveaux services d'intérêt 

pour les patients (par exemple, interroger des cohortes éphémères de 

patients consentants et leur fournir des conseils de santé). 

DomYcile n'est évidemment pas le seul scénario d'application de cette thèse. 

En effet, contribuer avec ses données à des fins utiles pour la population est 

connu en Europe sous le nom d'altruisme des données. Nous envisageons 

que ce type d'interrogation de cohortes éphémères puisse se généraliser à 

d'autres situations telles que les sondages opportunistes. Voici une 

description de ces deux concepts : 

Altruisme des données : Introduite dans le « Data Governance Act » de 

l'UE [23], cette proposition encourage les individus à donner leur 

consentement pour traiter leurs données personnelles à des fins telles que la 

recherche scientifique ou l'amélioration des services publics. La protection de 

la vie privée est primordiale dans ce contexte, car c'est un élément clé pour 

que les individus participent avec leurs données sensibles. 

Sondage opportuniste : Lors d'événements accueillant un large public (par 

exemple, conférences, concerts, musées, matches), les participants 

pourraient contribuer avec leurs données (par exemple, centres d'intérêt, 
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nationalité, âge) à un traitement global pour améliorer leur expérience 

utilisateur en temps réel (c'est-à-dire adapter les services aux caractéristiques 

du public). La proximité des individus et de leurs appareils personnels rend 

l'utilisation des infrastructures de communication traditionnelles inutile, voire 

inappropriée, et ouvre la voie à de l'informatique opportuniste [24]. 

Contributions. Pour atteindre les trois objectifs énumérés précédemment et 

correspondre aux réalités de terrain de nos cas d'utilisation, cette thèse 

apporte les contributions suivantes : 

1. La définition du paradigme de calcul Edgelet, une nouvelle 

architecture pour mettre en œuvre des traitements complexes sur des 

appareils personnels dans un environnement hautement distribué, 

sujet aux pannes et dépourvu d'infrastructure. 

 

2. La proposition de mécanismes de sécurité robustes pour contrer les 

tentatives d'attaques malveillantes et protéger les données des 

individus impliqués dans les requêtes distribuées. 

 

3. La présentation et l'analyse de trois stratégies de résilience différentes 

produisant des résultats valides et tolérant aux pannes et aux pertes 

de messages induites par l'environnement entièrement décentralisé. 

 

4. La mise en œuvre de validations approfondies et de démonstrations 

pratiques des méthodes proposées. 

Cette thèse est organisée en huit chapitres, commençant par l'introduction, 

dans lequel nous détaillons le contexte général, les motivations et les 

contributions.  

Le chapitre 2 présente l'état de l'art et les connaissances préalables 

nécessaires pour comprendre le sujet, qui croise plusieurs domaines de 

recherche. Nous commençons par lister les différentes solutions de PDMS 

avant de détailler le contexte des réseaux opportunistes. Ensuite, nous 

étudions les architectures de calcul décentralisées pour comprendre les 

problèmes liés à la vie privée et à la tolérance aux pannes. Enfin, nous passons 

en revue les techniques de préservation de la vie privée pour les adapter à 

nos scénarios d'application. 

Au chapitre 3, nous définissons le paradigme de calcul Edgelet, en 

commençant par ses caractéristiques et en déclinant le modèle de 

responsabilité associé. Nous poursuivons avec la formalisation du modèle de 
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requête et l'analyse d'une conception préliminaire naïve. Nous concluons le 

chapitre en posant le problème scientifique et en définissant les propriétés à 

satisfaire pour atteindre nos objectifs. 

Le chapitre 4 aborde les problèmes de sécurité et de confidentialité liés aux 

requêtes distribuées. Nous détaillons une série de mécanismes pour protéger 

l'intégrité des requêtes et la confidentialité des données, couvrant ainsi 

l'ensemble du cycle de vie de la requête, c'est-à-dire de la déclaration et 

diffusion à la production des résultats finaux. 

Le chapitre 5 est consacré à l'étude des stratégies d'exécution et leurs 

impacts sur la confidentialité et la validité. Nous constatons que, selon le type 

de traitement considéré, toutes les stratégies ne se valent pas et que des 

compromis peuvent être nécessaires. 

Le chapitre 6 fournit une analyse quantitative des méthodes proposées avec 

une validation expérimentale des algorithmes sélectionnés. 

Le chapitre 7 présente deux démonstrations du paradigme de calcul Edgelet, 

montrant l'intérêt pratique de notre approche. 

Enfin, le chapitre 8 conclut cette thèse en résumant les principales 

contributions et en indiquant certaines orientations pour les travaux futurs. 
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1 INTRODUCTION 

The exponential growth of the internet and its influence on modern society 

has led to the creation of data in unprecedented quantities. In 2018, the 

International Data Corporation [1] estimated the annual global datasphere at 

33 Zettabytes (1021 bytes), with forecasts of growth to 175 ZB by 2025. The 

internet's edge expanding at a much higher rate than its core, this staggering 

growth is not likely to stop, with an estimate of nearly 29.3 billion connected 

devices by 2023 [2]. This pervasiveness of the Internet of Things (IoT) in our 

daily lives contributes to the acceleration of our society towards the digital 

age, for which data is the "new oil" [3]. 

While this data creation has brought great benefits to businesses and 

governments, it has also raised serious security and privacy concerns when it 

comes to personal data. Indeed, through the interactions with our devices 

(e.g., smartphones, tablets, computers, connected watches) and the use of 

digital services (e.g., web searches, online stores, social networks), a mass 

amount of personal data is collected without our awareness. These data 

concerning billions of individuals are often centralized on huge servers 

(e.g., Google, Amazon, Facebook) facilitating their access, processing, and 

sharing. This data centralization in a single information system makes it a real 

"honeypot" for hackers. The cyber-attacks they carry out aim at capturing as 

much personal information as possible (names, addresses, emails, passwords, 

birth dates, etc.) in order to resell it to other criminals, for example for 

phishing campaigns. These data breaches have become very common and 

affect many different business sectors [4]. 

Unfortunately, cyber-attacks are not the only downside of the massive 

centralization of personal data. In 2013, Edward Snowden revealed that the 

U.S. government, through the National Security Agency, was organizing 

massive surveillance of its population with the complicity of data holders [5]. 

Moreover, profiling based on personal data (e.g. income level, political 

orientation, shopping habits) pushes the vice even further, with the possibility 

to massively manipulate the population. For example, advertisements 

displayed on social networks like Facebook benefit from a micro-targeting 

mechanism to tailor the content of the advertisement to the targeted 

audience, a mechanism that has also been shown to be capable of disclosing 

much more information [6]. The 2016 United States and 2018 Brazilian 

elections were typically heavily influenced by targeted political 

advertisements on Facebook [7]. 
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To respond to all these usage drifts and strengthen security around personal 

data, the European Union has adopted a legislative framework, the GDPR [8], 

which entered into force in 2018. This regulation applies to all organizations, 

public or private, that process personal data belonging to European 

residents. It regulates the collection, processing, and use of data, as well as 

their retention period. At the individual level, this law gives the right to data 

portability, a mechanism that allows anyone to request a copy of their 

personal data held by any company or administration. The latter, following 

other initiatives such as Blue Button in the United States [9] or MesInfos in 

France [10], is an essential building block for the re-appropriation of our own 

data. However, the data portability alone is not enough to regain a secure 

and privacy-preserving control if the technical solutions to host this data are 

once again hyper-centralized (e.g. Google Drive [11]). 

Thus, in this context of growing privacy awareness, the urgent need to regain 

control of one's personal data has led to the development of many privacy-

friendly systems. Examples include the instant messaging application 

Signal [12], the mailbox StartMail [13], and the storage solution Tresorit [14]. 

This trend has also aroused the interest of the scientific community, including 

the proposal of a decentralized architecture, the Personal Data Management 

System (PDMS) [15]. Designed as user-centric hardware or software 

assistants, PDMSs empower individuals to manage their digital lives with 

features ranging from automatic data collection to more complex processing 

and sharing tasks, all in a secure and easy-to-use environment. Industrial 

solutions are already available, such as Cozy Cloud [16], which implements a 

PDMS that can be hosted either on the cloud or directly on a personal device. 

In order not to regress compared to centralized systems, the decentralized 

architecture of the PDMS must allow the execution of computations crossing 

the data from multiple individuals. Following recent works proposing 

technical solutions for executing distributed queries on PDMSs [17]–[19], this 

thesis focuses on how to distribute processing in a privacy-preserving and 

fault-tolerant manner. However, unlike these previous works, we are 

specifically interested in the case where PDMSs are deployed on personal 

devices (e.g., smartphones, PCs, or smart objects) with unconventional 

communications, i.e., where messages are sent from one device to another 

using short-range channels (e.g., Wi-Fi or Bluetooth), thus forming an 

Opportunistic Network (OppNet) [20]. Our objective is threefold: we want to 

build a framework that (1) is both generic and scalable, allowing complex 

computations on the data of thousands of individuals, (2) is secure and 

respects the privacy of the people involved, and (3) is fault-tolerant despite 

a fully decentralized environment, prone to failures and message loss. 
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Motivating example. The unusual context of this thesis is particularly 

inspired by the use case of the DomYcile project [21]. Our team is working in 

partnership with the French Yvelines district and the company HIPPOCAD (a 

subsidiary of the La Poste group) [22] to propose a data management 

solution for elderly people receiving home assistance. Currently, nearly 8,000 

patients are each being equipped with a secure home box where their 

medical and social records are stored. These boxes are not connected to the 

Internet for subscription cost, security, and acceptability reasons and are only 

accessible at the patient's home by healthcare workers. The DomYcile 

platform, set up by the Yvelines district, is open by design, so that third 

parties (e.g., patient associations, statistical agencies, medical workers) can 

push new services of interest for the patients (e.g., querying ephemeral 

cohorts of consenting patients and delivering them healthcare advice). 

DomYcile is obviously not the only application scenario of this thesis. In fact, 

contributing one's data to useful purposes for the population is known in 

Europe as Data Altruism. We envision that this type of ephemeral cohort 

querying may generalize to other situations such as Opportunistic Polling. 

Here is a description of these two concepts: 

Data altruism: Introduced in the EU Data Governance Act [23], this proposal 

fosters data subjects to give consent to process their personal data for 

purposes such as scientific research or public services improvement (e.g., a 

health survey organized by Santé Publique France). Privacy protection is 

paramount in this context, as it is a key element for people to participate with 

their sensitive data. 

 

Opportunistic polling: During events that welcome a large audience (e.g., 

conferences, concerts, museums, matches), the participants could contribute 

with their data (e.g., centers of interest, nationality, age) to a global 

processing to improve their user experience in real-time (i.e., adapting the 

services to the characteristics of the audience). The proximity of individuals 

and their personal devices makes the use of traditional communication 

infrastructures unnecessary, if not inappropriate, and paves the way for 

Opportunistic Computing [24]. 

Contributions. To achieve the three objectives listed earlier and to match the 

field realities of our use cases, this thesis makes the following contributions: 

1. The definition of the Edgelet computing paradigm, a new framework 

for implementing complex processing on personal devices in a highly 

distributed, failure-prone, and infrastructure-less environment. 
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2. The proposal of robust security mechanisms to counter malicious 

attack attempts and protect the data of individuals involved in 

distributed queries. 

 

3. The presentation and analysis of three different resiliency strategies 

that produce valid results while tolerating the failures and message 

losses induced by the fully decentralized environment. 

 

4. The implementation of extensive validations and practical 

demonstrations of the proposed methods. 

This thesis is organized into eight chapters, beginning with the introduction, 

the current chapter, in which we detail the general context, motivations, and 

contributions. 

Chapter 2 presents the state-of-the-art and background knowledge needed 

to understand this topic, which crosses several research areas. We will start 

by reviewing the different PDMS solutions before examining the context of 

Opportunistic Networks. Next, we will study decentralized computing 

architectures to understand issues related to privacy and fault tolerance. 

Finally, we will review current privacy preservation techniques to adapt them 

to our application scenarios. 

In Chapter 3, we will define the Edgelet computing paradigm, starting with 

its definition and declining the associated responsibility model. We will 

continue with the formalization of the targeted query model and the analysis 

of a first straw man design. We will conclude the chapter by defining the 

problem statement and the distributed system properties to be satisfied. 

Chapter 4 addresses security and privacy issues for distributed queries. We 

detail a series of mechanisms to protect the integrity of queries and the 

confidentiality of targeted data, addressing the entire query lifecycle, i.e., 

from declaration and dissemination to the production of final results. 

Chapter 5 is devoted to the study of execution strategies and their impact on 

privacy and validity. We will see that, depending on the type of processing 

considered, not all strategies are equal and that trade-offs may be necessary. 

Chapter 6 provides a quantitative analysis of the proposed methods with 

experimental validation of the selected algorithms. 
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Chapter 7 presents two demonstrations of the Edgelet computing paradigm, 

showing the practical interest of our approach. 

Finally, Chapter 8 concludes this thesis by summarizing the main 

contributions and giving some directions for future work. 

This thesis is based on the three international publications presented 

respectively at CCGrid 2022 [25], PerCom 2023 [26] and EDBT 2023 [27]. 
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In this chapter, we will explore the intersection of four different areas of 

research: Personal Data Management Systems, Opportunistic Networks, 

Decentralized Computing Architectures, and Privacy Preservation 

Techniques. Our goal is to understand these technologies and contexts in 

order to subsequently integrate them into resilient, valid and privacy-

preserving distributed computing solutions. 

2.1 PERSONAL DATA MANAGEMENT SYSTEMS 

Personal data is one of the most valuable commodities of the digital age. 

However, the excessive collection, massive centralization, opaque 

management and sharing of this data by companies has raised many 

concerns about privacy and security. As a result, there is a growing demand 
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for user-centric solutions that allow individuals to regain control of their 

personal data. Personal Data Management Systems (PDMS), Personal Clouds, 

Personal Data Stores, and Personal Information Management Systems are 

some of the names given to these solutions. They allow individuals to 

securely store and manage all types of digital content, whether it is official 

documents, personal photos, videos or IoT-generated data. By enabling 

individuals to manage their personal data responsibly, these solutions have 

the potential to revolutionize the way we interact with digital content and 

protect our privacy. 

In this section, we will provide an overview of the different types of personal 

clouds, their key features, and the privacy they offer. The goal is to 

understand the limitations of each solution, starting from the most common 

ones like Google Drive [11] to the most privacy-friendly ones like PlugDB [28]. 

2.1.1 Standard Personal Clouds 

Standard Personal Clouds refer to cloud storage solutions offered by various 

providers, such as Google Drive [11], Dropbox [29], and OneDrive [30]. These 

services allow users to upload their data on the provider’s infrastructure and 

access it easily afterwards via personal devices such as computers and 

smartphones. In recent years, personal cloud storage has become a popular 

choice for individuals who wish to store and access their data from anywhere 

and from any device. 

One of the main advantages of Standard Personal Clouds is their ease of use. 

These services typically offer simple and user-friendly interfaces for 

uploading and managing individual files. They also offer a wide range of 

features, such as file syncing, versioning, and collaboration. File syncing 

allows users to automatically synchronize their files across multiple devices, 

ensuring that the latest version of the file is always available. Versioning 

allows users to access previous versions of a file, making it easier to track 

changes and restore previous versions if necessary. Collaboration features 

allow multiple users to work on the same document simultaneously, 

improving productivity and coordination [11], [30]. 

These benefits aside, Standard Personal Clouds have important limitations, 

particularly with respect to privacy and data management. Indeed, when it 

comes to sensitive individual data, these online storage approaches are not 

the most suitable as the entire security model relies on the IT architecture 

implemented by the provider. Even if the data is protected by cryptographic 

mechanisms, the encryption keys remain in the possession of the provider, 
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which does not prevent him from decrypting and using the data for purposes 

other than those intended by the person to whom it belongs. These 

secondary usages constitute what is known as data monetization (through 

targeted advertising, for example) and are the business model of these "free" 

storage providers. On the technical side, Standard Personal Clouds suffer 

from data management limitations as file storage is far from being the only 

feature required for a full PDMS. The fact that users have to manually upload 

their data makes the task complex and time-consuming whereas an 

automatic data collection mechanism would allow them to efficiently extract 

their digital life from the source of their choice (bank, insurance, IoT sensors, 

etc.). Users should also be able to perform processing on their own data and 

thus benefit from the computing capacities of the servers on which they are 

hosted. Unfortunately, this essential feature is not possible in this personal 

cloud category. 

2.1.2 No-Knowledge Personal Clouds 

No-Knowledge Personal Clouds, also known as zero-knowledge or end-to-

end encrypted personal clouds, offer an enhanced level of privacy and 

security. The key difference between No-Knowledge Personal Clouds and 

Standard Personal Clouds is that in the former, the user retains full control 

over their data, including encryption keys, and the cloud service provider has 

no access to the user's data. This means that even if the provider is hacked 

by a virus or malicious administrator, the user's data remains secure and 

private. 

There are several No-Knowledge Personal Cloud solutions available on the 

market today. For example, Tresorit [14] provides a cloud storage service that 

uses end-to-end encryption to protect users' files, making it impossible for 

anyone, including Tresorit employees, to access the data without the user's 

permission. Similarly, SpiderOak [31] and Sync.com [32] offer comparable 

solutions, each ensuring that only the user can access their data. As 

mentioned before, the key advantage of these solutions is that they provide 

a high level of security for sensitive data. Users can store confidential 

information, such as financial records or health data, without fear of it falling 

into the wrong hands. In addition, No-Knowledge Personal Clouds can allow 

users to share and collaborate on files securely [32], without worrying about 

data leaks or unauthorized access. 

However, No-Knowledge Personal Clouds have the same limitation as 

Standard Personal Clouds regarding data management. Indeed, there is still 

no automatic data collection mechanism and no possibility to run complex 
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processing from the server. Concerning the ability to perform processing, this 

"end-to-end encrypted" architecture is in itself a hindrance to the 

development of the feature (unless using homomorphic encryption, see 

Section 2.4.1). Consequently, whenever users want to perform cross-

computations on their data, they have to repatriate it to their own personal 

devices, which makes them directly responsible for their security/privacy. 

2.1.3 Privacy-Friendly Personal Clouds 

Privacy-Friendly Personal Clouds are gaining popularity as individuals are 

becoming more aware of the privacy risks associated with centralized data 

storage. These solutions provide a secure and private space for personal data 

on an online cloud that is controlled and managed by a provider, with the 

major difference of offering multiple features for data management. For 

example, data collection modules enable users to automatically import 

documents and other data from online services directly into their personal 

space, facilitating the data collection process. Cross-data computations and 

advanced data sharing are other crucial features that allow users to analyze 

and share data with third parties in respect of their explicit consent. Examples 

of Privacy-Friendly Personal Cloud include Cozy Cloud [16], Digi.me [33] and 

Solid [34] which provide more or less the same services. 

Unfortunately, the main weakness of Privacy-Friendly Personal Clouds is the 

strong security assumptions on which they are based. The provider's 

employees, especially the administrators, are assumed to be fully honest, and 

all parts of the code, from the underlying storage mechanism to all the 

applications and services running on top of it, must be trusted. Since the data 

is centralized on the provider's infrastructure, a successful attack due to 

negligence or corruption of one of the employees could result in the leakage 

of a large amount of data from several people. 

2.1.4 Home PDMS  

We define Home Personal Data Management Systems as all hardware and 

software designed to store and manage personal data directly in users' 

homes. These devices can range from simple external hard drives to more 

complex devices that combine storage, processing power, and networking 

capabilities. Unlike online cloud storage solutions, where data is stored on 

servers controlled by third-party companies, Home PDMSs keep data under 

the control of users. There are several different types of solutions available, 

some are software-based that can be installed on existing hardware, while 

others are specific devices designed for personal data management. As 
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software-based solutions, we can mention OpenPDS [35], DataBox [36], 

Personium [37], as well as self-hosted instances of Cozy Cloud [16] and 

NextCloud [38]. On the side of the dedicated devices, there are several 

solutions on the market with for example Amber X [39], Helixee [40] and Meet 

Lima [41] that can store hundreds of gigabytes of data while synchronizing 

with other personal devices. In short, these solutions provide the same 

features as previously described, such as data collection, cross-computing 

and data sharing while being under the physical control of the users. 

The major advantage of these solutions lies in the complete decentralization 

of the architecture. Indeed, from an attacker's perspective, it is highly 

preferable to attack a centralized system where millions (or even billions for 

Google Drive) of individuals are involved rather than trying to plunder the 

data of a single individual stored on a Home PDMS. Nevertheless, users still 

have to trust the software or hardware providers for all the features included 

in their solutions, and this without having any formal guarantees about their 

security. And to go one step further, it must be considered that these devices 

may be subject to flaws due to their usage or their environment, such as the 

presence of malware, viruses or unsecured end-to-end connections. In 

summary, we can see that although these Home PDMSs bring great 

perspectives in terms of decentralized data management, there are still some 

challenges to overcome before being able to "blindly" store all our personal 

data. 

2.1.5 Portable PDMS with Tamper-Resistant Hardware 

We have seen that PDMS solutions relying on cloud-based architectures or 

dedicated devices have limitations in terms of privacy and security. To 

address these issues, some research projects, such as the Personal Data 

Server [42] and Trusted Cells [43], propose to extend the Home PDMS with 

tamper-resistant hardware to achieve a secure portable device. These 

solutions leverage the security properties of secure chips (smart-cards, secure 

micro-controllers or trusted platform modules) in order to host a minimal 

Trusted Computing Base (TCB) protecting the personal data. Concretely, they 

embed a DBMS engine, such as PlugDB [28], into a chip to provide tamper-

resistant storage and computing resources. The data is stored encrypted on 

a hard disk or a memory card whose reading is regulated by the access 

control mechanisms of the DBMS. These solutions are applicable in many 

contexts such as health data [44]–[46] and text documents [47] (see also 

tutorials [48], [49]). 

This approach has been proven effective for simple queries and secure cross-
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computations. Indeed, SQL queries are supported thanks to the integration 

of a query evaluation and an access control engine on the PDMS running 

inside the secure chip [47], [50]. In the context of a network of Portable PDMS, 

a first way to achieve secure distributed computing is to leverage an 

untrusted cloud infrastructure to transfer encrypted data among nodes [51], 

[52]. However, the use of a central server has again some vulnerabilities, since 

it is possible for it to deviate from the original code and leak information. A 

second way is to use the trust placed in the portable PDMS hardware to build 

a safe and reliable aggregation chain [17], [53]. Based on a peer-to-peer 

network, this decentralized architecture can also be used to perform highly 

distributed queries on PDMS [19]. 

2.1.6 Conclusion 

Among all the PDMS classes presented in this section, Portable PDMS with 

tamper-resistant hardware appears to be the most robust, combining both 

computational capacity, security, and privacy. Nevertheless, it should be 

noted that the latter solution is still limited in terms of extensibility and 

resiliency, making it not very adaptable to other use cases. Based on the 

refined PDMS architecture [15] and Trusted Execution Environment (see 

Section 2.4.4), very recent works [54], [55] have proposed to address the 

extensibility issue by demonstrating that a minimal TCB can be coupled with 

user-defined functions to extend usages while strongly limiting the risk of 

data leakage. Regarding resiliency, however, previous works do not make 

significant contributions to the fault tolerance of distributed executions on 

multiple PDMSs, either from hardware failures or message loss. One of the 

major objectives of this thesis is to bring an answer to this last question, by 

studying the extreme case of communications in Opportunistic Networks. 

2.2 OPPORTUNISTIC NETWORKS 

The concept of Opportunistic Networks (OppNets) is a natural evolution of 

several years of research on multihop ad-hoc communication systems [56]. 

Back in the 1990s, mobile ad hoc networks (MANETs) were introduced to 

provide connectivity among (mobile) devices when no pre-existing 

infrastructure is available. However, an underlying feature of MANETs 

protocols assumed that there is an end-to-end path between senders and 

receivers, which has proven to be inappropriate in real life when the mobility 

and availability of devices vary steadily over time. A couple of years later, the 

Delay-Tolerant Network (DTN) architecture [57] was proposed to address 

scenarios where devices are mostly disconnected and communicate only 

occasionally (scheduled or not). The first works on OppNets [20] appeared in 
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the same period and were based on similar principles, which explains why 

some researchers consider them as an instance of DTNs [58]. In this section, 

we first review the characteristics as well as the use cases of Opportunistic 

Networks, and then discuss the main challenges and limitations associated 

with these particular communication systems. 

2.2.1 Characteristics Overview 

When reliable infrastructures (such as cellular networks) are not available or 

appropriate, OppNets provide suitable communication mechanisms for 

mobile user devices lacking end-to-end paths between them [59]. To this 

end, they rely on short-range wireless communication capabilities (e.g. Wi-Fi 

or Bluetooth) as well as on the "store-carry-and-forward" principle [58]. As 

explained by Conti and Giordano [56], it is the mobility of people that creates 

the possibility of connecting parts of the network that were not originally 

connected. Thus, mobility is no longer seen as a constraint, but rather as an 

opportunity. When it comes to personal devices, OppNets are considered as 

people-centric approaches, where each individual contributes to the 

transmission of messages by physically carrying the buffered data to the next 

intermediary. 

Over the years, researchers have proposed different routing strategies to 

improve the performance of OppNets in terms of latency, energy 

consumption, and storage. These strategies can be classified into three 

categories, namely replication, forwarding, and hybrid, as fully detailed in [60] 

and [59]. For purposes of illustration and understanding, here is a brief 

overview of three popular routing protocols: 

Epidemic routing (replication) [61]. As the name implies, this protocol 

spreads messages across the network like an epidemic: as soon as two nodes 

are in transmission range, they exchange any messages that the other does 

not have. Each message is then replicated from node to node at each 

opportunistic device contact until it reaches its destination. As a result, this 

strategy maximizes the message delivery rate and minimizes message latency 

at the cost of significant network congestion and overhead. 

First Contact (forwarding) [62]. Unlike the epidemic strategy that replicates 

messages endlessly, the First Contact protocol proposes to transfer messages 

to the first device that appears. More precisely, when a node carries a 

message, it waits to meet another node to forward the message and removes 

it from its own buffer. This inexpensive message propagation is therefore 

risky, resulting in high latency and poor delivery rates in some cases. 
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PRoPHET (hybrid) [63]. The Probabilistic Routing Protocol using History of 

Encounters and Transitivity attempts to find a balance between replication 

and forwarding: only the nodes most likely to transmit messages to their 

destination are selected with a limit on the number of replicas. To this end, 

nodes maintain a history of encounters to establish a vector of delivery 

predictability values that will be updated incrementally as devices make 

contact. In addition, the adjustable number of replicas allows for a trade-off 

between delivery success rate and resource consumption. 

2.2.2 Main Applications 

We have just seen that the first advantage of OppNets is to propose 

communication methods based exclusively on edge devices (i.e., without 

using any pre-established infrastructure), which opens the way to many 

application fields. The taxonomy presented below, derived from [64], 

presents six different and non-exhaustive contexts/applications. 

1. Communication in Challenged Areas 2. Cellular Network Offloading 

• Monitoring and tracking [65]: 

environmental sensors, terrestrial 

or marine animals. 

• Sparse network and inaccessible 

areas [66]: inhabited regions, 

underwater, mines or space. 

• Disaster areas and war zones: 

unavailability of the infrastructure. 

• Large crowds saturating the 

operators: sports events, festivals, 

and demonstrations. 

• The physical proximity of 

individuals and their devices allows 

the local dissemination of 

information using in situ resources, 

thus alleviating cellular traffic [67]. 

3. Censorship Circumvention 4. Proximity-Based Applications 

• Totalitarian governments or 

institutions can control the Internet 

and censor information. 

• By nature, OppNets provides a 

means of communication that 

bypasses all types of restrictions, 

relying solely on people's devices 

and their mobility [68]. 

• Group monitoring [69]: tourists 

staying connected to each other 

while visiting a museum or a city. 

• Mobile Social Networks [70]: co-

location of nodes at a specific time 

and area allows for the deployment 

of tailored applications (e.g., 

recommendations, media sharing). 

5. Opportunistic Mobile Sensing 6. Opportunistic Mobile Computing 

• Most of our devices are equipped 

with various sensors which can also 

communicate with those in the 

environment when in transmission 

range [71]. 

• After data dissemination, a natural 

application of OppNets is the 

sharing of processing among edge 

devices, providing more complex 

and tailored services to users [24]. 
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• The collection of these data enables 

the study of the interactions 

between humans and the 

environment. 

• The use of local personal devices 

allows to optimize the resource 

consumption in a trustable and 

secure way. 

 

2.2.3 Conclusion 

Almost twenty years after the first works on OppNets [20], this concept is not 

yet very popular, which is mainly due to a lack of major applications. In fact, 

as evidenced by the survey of Trifunovic et al. [64], the “Quest for a Killer 

App” [72] remains a current challenge. Crushed by the explosive growth of 

connected infrastructure, ad hoc and opportunistic communication systems 

are struggling to find their way into the market, and to date, only a few 

applications have emerged (e.g., Uepaa! [73], FireChat [68]). Even the original 

use case of OppNets, to provide communication systems for challenged 

areas, is no longer relevant today with the emergence of new connectivity 

accesses such as SpaceX’s StarLink [74]. Conversely, application scenarios 

based on proximity or data offloading are still of great interest and their lack 

of widespread adoption is explained here by technical constraints. Indeed, 

current short-range communication technologies, such as Wi-Fi and 

Bluetooth, are still not adapted to dynamic contact opportunity detection 

[64], [75]: the idle state of devices waiting for a connection is extremely 

energy consuming and recent technological improvements such as Wi-Fi 

Direct or Bluetooth Low Energy are inadequate because they require manual 

pairing. All these situations of inapplicability of OppNets constitute a vicious 

circle, as few deployments mean few feedbacks on the technology and 

therefore make investors reluctant. However, this has not prevented 

researchers from improving their protocols over the years by testing them 

directly on small ad-hoc test beds or among the few existing simulators [76] 

(e.g., ONE [77], ns-3 [78]). 

Among all the use cases presented above, one of the most promising 

applications for OppNets is the Opportunistic Computing paradigm [24]. 

Pooling the resources of personal devices is a key element of the Internet of 

People vision [79], enabling the implementation of "people-centric sensing 

and computing" applications. This unusual context, where computing 

capabilities lie at the extreme edge of the network, directly in the hands of 

individuals, still raises many challenges. Indeed, how to design a distributed 

architecture capable of managing data flows and processing with fair use of 

energy resources of personal devices? How to avoid selfish behavior and 

malicious attacks? How to ensure system resilience in an asynchronous 
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communication context, where no assumption can be made on the message 

delivery time? In particular, this last question raises a fundamental issue for 

distributed systems: the impossibility of consensus with failures and 

asynchronous communications [80]. Recent works [81], [82] present results 

that seem to circumvent this impossibility, but again, performance validation 

beyond simulation and very small test beds is required. 

2.3 DECENTRALIZED COMPUTING ARCHITECTURES 

Having reviewed the different PDMS solutions and understood the context 

of Opportunistic Networks, we will now provide an overview of decentralized 

computing architectures existing in the state of the art. Our goal is to identify 

application domains and discuss issues related to privacy and fault tolerance. 

We will focus on five main paradigms namely Wireless Sensor Networks, 

Crowd Processing, Edge Computing, Peer-to-Peer Systems, and Federated 

Learning. Then, we will see that although these paradigms have different 

names and sometimes come from distinct communities, the concepts and 

their applications are often quite similar and face common challenges. 

2.3.1 Wireless Sensor Networks 

Wireless Sensor Networks (WSNs) are a type of network composed of small, 

low-power wireless devices equipped with sensors for data collection. WSNs 

were originally developed for environmental monitoring and tracking needs 

[83], but with the rise of the Internet of Things (IoT) [84], they have become 

equally relevant for many other applications, such as healthcare, home and 

industrial automation [85]. The devices communicate with each other 

wirelessly and the data collected by the sensors is usually transmitted to 

monitoring stations for analysis. The processing performed on these devices 

is then streaming queries [86], [87], the majority of which is performed at the 

end of the chain in a centralized manner. 

Privacy concerns. For the original use cases that consider sensors for the 

environment or for animal tracking, there are few if any privacy issues. 

However, in an IoT context, these sensors are increasingly invading our daily 

life [2] and therefore the process of collecting and processing data can 

quickly become very intrusive. In this context, González-Manzano et al. [88] 

proposes PAgIoT, a privacy-preserving protocol that leverages the 

capabilities of IoT devices to perform aggregation algorithms in a 

decentralized manner. We observe that this decentralization of processing 

reduces the risk of exposure of personal data, which is an essential element 

of privacy preservation. 



 

35 

Fault tolerance concerns. Since the sensors are often deployed in harsh 

environments, they are vulnerable to damage, failure, and interference. 

Moreover, when the devices are mobile, as is the case with Vehicular Sensor 

Networks [89], the ephemeral nature of communications makes it difficult to 

organize distributed processing as many messages may be lost or delivered 

too late. In response, O'Keeffe et al. [86] proposes a redundancy system 

called Replicated Dataflow Graph and suggests a "routing constraint" 

mechanism to coordinate data sources and replicas. But as the authors 

explain, this does not totally prevent the occurrence of routing 

inconsistencies, although infrequent in practice. This work is not the only 

effort in this area (see surveys [90], [91]), and there are still challenges to be 

addressed to ensure both resilient and valid decentralized processing. 

2.3.2 Crowd Processing 

Crowd Processing refers to a family of computing paradigms that involve the 

active participation of large groups of people collaborating together to 

perform a task or solve a problem. The three main concepts, namely Crowd 

Computing, Crowdsourcing, and Crowd Sensing, are all based on the idea 

that individuals are increasingly connected and can participate in the 

enrichment of the digital sphere, from the sharing of captured data to the 

realization of individual micro-tasks. Crowd Computing is a concept defined 

in several ways in the literature [92]–[94], usually referring to the participation 

of a large number of users in a distributed computing system to achieve a 

specific goal, such as data analysis or machine learning. For instance, Murray 

and al. [92] define it as the combination of mobile devices and OppNets, 

which is precisely what we consider in this thesis. Crowdsourcing [95] is a 

more specialized form of Crowd Computing, in which tasks are outsourced 

to individuals, who are typically paid for their work. Crowd Sensing [96] 

involves the collection of data from sensors embedded in personal devices, 

such as smartphones or wearables. All these approaches are usually driven 

by centralized servers on which part of the processing is done. 

Privacy concerns. Crowd Processing is inherently privacy threatening since 

personal data can be collected and shared with third parties. The issue is well 

understood by the community which has proposed numerous privacy 

preservation mechanisms [97]–[99]. Brahem et al. [100] propose a new 

approach that takes into account the users’ own tolerance to the use of the 

data provided, so that the Crowd Processing system guarantees users the 

expected level of privacy. Indeed, a consent-based multi-task allocation 

strategy is essential to allow the reuse of crowdsourced data contributions 

between tasks while strictly respecting users' consent. 
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Fault tolerance concerns. Fault tolerance is also a challenge in Crowd 

Processing, particularly in systems that rely on significant user participation. 

If a non-negligible proportion of users drop out or fail to participate, then 

system performance may be compromised. To address this situation, 

resiliency techniques can be used, such as task replication [101] or incentives 

for user participation [102]. An important issue in this context is the number 

of participants contributing to the processing and the management of the 

collected data, which may be received in multiple replicas and therefore need 

to be deduplicated [103]. 

2.3.3 Edge Computing 

The Edge paradigm (also known as Fog Computing [104]) has emerged with 

the goal of offloading services and computation close to data sources to 

make the cloud more responsive, scalable, and privacy-friendly [105]. One of 

the key benefits of this paradigm is therefore its ability to reduce latency, as 

data processing can occur in real-time, directly at the edge of the network. 

This is particularly important for many applications in the IoT context [106], 

such as autonomous vehicles [107] and telemedicine [108]. Another benefit 

of Edge Computing is the reduction in the amount of data that needs to be 

transmitted to a centralized cloud infrastructure, which can result in lower 

costs, network performance, and privacy preservation. This technology 

operates mainly in connected infrastructures with processing that can be 

performed in Cloudlets [104], [109]. These are small-scale data centers (also 

called Micro Data Centers) deployed at the edge of the network providing 

computational and storage resources as close to the devices as possible. 

Privacy concerns. Although Edge Computing is, by design, more privacy-

friendly than a purely centralized approach, many privacy challenges remain, 

such as data leakage or malicious manipulation of devices [110]. For instance, 

Zhao et al. [111] propose a composable service system that offers the ability 

to run machine learning algorithms directly on connected devices or in 

combination with cloud resources, then allowing to adjust the level of data 

exposure and reduce the risk of data leakage. 

Fault tolerance concerns. Because devices are more prone to network 

outages and service interruptions than centralized cloud infrastructures, 

implementing a fault-tolerant system can quickly become an issue [112]. This 

is even more true in the context of Mobile Edge Computing [113], where 

more processing is performed on the devices rather than on the previously 

mentioned Cloudlets. To address this issue, Grover and al. [114] designed a 

reliable IoT-Edge architecture that replicates sensed data (if the IoT devices 
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fail) and a redirection mechanism (if the server is not available). Note that this 

replication may raise other privacy concerns, as multiple copies of the same 

data are exposed, increasing the risk of leakage in case of compromise. 

2.3.4 Peer-to-Peer Systems 

Peer-to-Peer (P2P) systems are based on the principle that all devices have 

equal capabilities, and they can both request and provide resources to the 

network. This results in a highly decentralized system, as each device can 

communicate directly with the others, without the need for central servers 

[115]. Since the early 2000s, P2P networks have been widely used for file 

sharing, content distribution, and communication applications (e.g., Napster, 

Gnutella, MSN Messenger). They have also been leveraged in distributed 

computing contexts to collectively perform tasks or solve problems (e.g., 

BOINC [116], the Berkeley volunteer platform for sharing computing 

resources, including the World Community Grid project [117]). These tasks 

are usually split into smaller tasks and distributed across devices. The outputs 

are then combined to form the final result. This approach can be used for a 

variety of applications, such as scientific computing, data analysis, and 

machine learning [18]. 

Privacy concerns. Complete decentralization of the computing architecture 

alone is not enough to preserve individual privacy. Indeed, the fact that nodes 

communicate directly with each other makes it possible to access and analyze 

each other's data, which can represent a significant risk of exposure of 

sensitive data. In response, [118] suggests a P2P model for location-based 

mobile applications using the well-known k-anonymity mechanism. More 

recently, Mirval et al. [18] propose a secure aggregation protocol based on a 

secret sharing scheme providing fundamental building blocks for the 

execution of statistical and machine learning algorithms. 

Fault tolerance concerns. Resiliency is also a major concern in P2P systems, 

as nodes can join and leave the network at any time [119]. This can lead to 

instability since the loss of nodes affects network performance and thus the 

execution of processing. To address this, P2P systems use techniques such as 

replication [120] and self-healing [121] to ensure that the network remains 

operational. For example, in a data replication scheme, data is replicated 

across multiple nodes, so that if one node fails, the data can still be accessed 

from another node. Again, we see that replication is essential to ensure 

resiliency, but can be detrimental to privacy. 
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2.3.5 Federated Learning 

Federated learning is a decentralized machine learning architecture that 

allows multiple servers/devices to collaboratively train a model without 

exchanging their raw data [122]. This approach has gained popularity in 

recent years due to the increasing need for privacy preservation and data 

decentralization. The concept of federated learning covers two broad 

categories of applications: on the one hand, "cross-silo" where a few 

organizations with large amounts of data want to collaborate to build a 

machine learning model while avoiding sharing their data (e.g., 

pharmaceuticals discovery [123]), and on the other hand, “cross-device” 

where a large number of user devices participate in the model refinement 

(e.g., mobile keyboard prediction [124]). 

Privacy concerns. Federated learning is, by construction, more privacy-

friendly than the standard approach of massive data accumulation in 

centralized architectures. However, as we have just seen with P2P systems, 

decentralization alone does not protect against all privacy attacks [122]. For 

instance, an attacker may try to infer training data based on the parameters 

of the received models [125]. To counter these attacks, Cyffers et al. [126] 

propose "Muffliato", an implementation of local differential privacy to reduce 

privacy leakage in a fully decentralized federated learning context (no central 

server). Unfortunately, the confidentiality advantages of this solution come 

at the cost of degraded data quality and therefore a loss of accuracy in the 

resulting models. 

Fault tolerance concerns. In the cross-device context (closest to our work), 

it must be considered that devices may be disconnected or unavailable 

during the learning process. Indeed, as explained in [127], the diversity of 

hardware and network connections makes the federated network 

heterogeneous both in terms of computational and communication 

capabilities. It is therefore common that out of a large number of devices, 

only a small proportion are simultaneously active. To cope with this, Smith et 

al. [128] propose the MOCHA algorithm for federated multi-task learning and 

showed convergence of the method even in the presence of nodes dropping 

out at each iteration of the learning process. 

2.3.6 Conclusion 

This section covers a wide range of decentralized computing architectures by 

first examining their scope of application and then focusing on privacy and 

fault tolerance concerns. We have seen that, with the exception of P2P 
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systems, these decentralized architectures still partially rely on central servers, 

whether for processing or coordination. It is therefore mandatory to maintain 

these servers in order to guarantee reliable and secure services. We have also 

seen that although decentralized architectures are by construction more 

privacy-friendly than fully centralized approaches, they are not sufficient to 

protect against all confidentiality attacks. Finally, we found that implementing 

the fault tolerance mechanisms required for any field application is 

sometimes detrimental to privacy, especially in the case of data replication 

which increases the risk of data leakage. All these factors will have to be 

considered when designing our own decentralized computing architecture. 

2.4 PRIVACY PRESERVATION TECHNIQUES 

In this last section, we will review the various techniques available in the 

literature to perform (distributed) computations on personal data while 

preserving privacy. We will study four main approaches ranging from 

cryptographic mechanisms to hardware components: Homomorphic 

Encryption, Secure Multi-Party Computation, Local Differential Privacy and 

Trusted Execution Environments. Our objective is to understand the general 

functioning of these approaches as well as their respective advantages and 

disadvantages in order to later define our own privacy protection strategy. 

2.4.1 Homomorphic Encryption 

Homomorphic encryption is a cryptographic technique that allows 

computations to be performed directly on encrypted data. This means that 

sensitive data can remain encrypted while still being processed, thus 

preserving data confidentiality. The concept of homomorphic encryption was 

first introduced by Rivest, Adleman, and Dertouzos under the name of Privacy 

Homomorphisms [129]. There are three categories of homomorphic 

encryption schemes: 

- Partially homomorphic encryption schemes only support one 

operation, such as multiplication or addition, on ciphertexts. For 

example, the RSA cryptosystem [130] is partially homomorphic for 

multiplication. 

 

- Somewhat homomorphic encryption schemes support both 

addition and multiplication on ciphertexts, but for a limited number 

of times. For instance, some encryption schemes allow unlimited 

additions and one multiplication. 
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- Fully homomorphic encryption schemes, on the other hand, enable 

an unlimited number of operations both addition and multiplication. 

The first fully homomorphic proposal was made by Gentry [131] in 

2009. 

Unfortunately, the limitations on the operations of partially and somewhat 

homomorphic encryption schemes make them unsuitable for generic 

computations. For fully homomorphic encryption schemes, the main concern 

is performance and scalability. Although much work tends to mitigate this, it 

still takes several tens of seconds to encrypt one 16 bytes block [132]. 

2.4.2 Secure Multi-Party Computation 

Secure Multi-Party Computations (SMC) are algorithmic processes that allow 

individuals to perform a joint computation on their data without revealing 

anything other than the final result. They were formally introduced in 1982 

by Yao [133], who posed the question of how two millionaires could 

determine who is richer without disclosing their own wealth to each other. 

We distinguish two main paradigms for SMC problems. The ideal model 

assumes that there is at least one trusted third-party among the participants, 

while the real model makes no such assumption [134]. In this thesis, where 

the application context is fully decentralized, we do not assume the existence 

of a trusted third-party and therefore discard all solutions based on the ideal 

model. Among the SMC methods of the real model, we can mention: 

Garbled circuit [135]. The idea is to construct a boolean circuit composed of 

many logical gates that represents a desired computation, and then "garble" 

it in such a way that the parties can evaluate it without learning anything 

about each other's inputs. This garbled circuit is distributed to the parties, 

who use it to compute the function and obtain the result of the global 

computation. 

Secret sharing [136]. This approach consists of dividing a secret into multiple 

shares (based on Shamir’s secret sharing [137]) in such a way that no single 

party can view the original data without the cooperation of the other parties. 

The parties then use their respective shares to compute a function without 

revealing any information about their individual inputs. 

There are also other approaches to SMCs, such as methods based on 

homomorphic cryptography [138], or gossip protocols [139]. Overall, SMCs 

provide a powerful framework for enabling secure computations in various 

real-world scenarios where data privacy is critical. However, as with 
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homomorphic encryption, they suffer from performance issues when scaling 

up with a large number of participants. For example, SMC adaptations for 

distributed databases, such as SMCQL [140], are usually limited in terms of 

the number of participants and operations supported (in SMCQL, only two 

parties are supported). 

2.4.3 Local Differential Privacy 

Local Differential Privacy (LDP) [141] is a widely-used technique in distributed 

computation that provides a high level of privacy protection for individuals 

participating in a global dataset with their sensitive data. The approach is an 

adaptation of the general differential privacy model proposed by Dwork 

in [142]. Unlike other anonymization techniques, such as k-Anonymity [143], 

l-Diversity [144], t-Closeness [145], which apply to the dataset itself, LDP 

applies to the data collection process. The privacy protection is introduced 

through the use of randomized algorithms that ensure that no individual's 

data can be inferred from the inputs of a differentially private dataset. 

To explain the LDP intuition, let us take an example. Suppose we want to 

obtain statistics on the number of participants in a demonstration by asking 

the question: "Did you participate in the demonstration?". Participants are 

then asked to flip a coin without revealing the outcome. If the result is heads, 

the participant answers honestly, but if it is tails, he or she flips another coin 

and answers "yes" if it is heads and "no" if it is tails. This technique protects 

the privacy of the participants since it is impossible for an attacker to know 

whether their answer is honest or not. 

Although the LDP provides robust and scalable mechanisms for privacy 

protection, it introduces by construction a trade-off between privacy 

protection and the utility of the data and therefore the accuracy of the results. 

Furthermore, it has been shown that the estimated error is linear with respect 

to the number of attributes [146], making LDP unsuitable for high-

dimensional datasets. 

2.4.4 Trusted Execution Environments 

Trusted Execution Environments (TEEs) are tamper-resistant processing 

environment providing secure storage and computing capabilities [147]. 

They ensure three main security properties: isolation of the executed code, 

confidentiality of the manipulated data, and remote attestation, which is a 

mechanism to prove the identity of the code running within a TEE. Over the 

past decade, we have seen a wide deployment of TEEs in devices widely used 
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by the public, such as personal computers and smartphones, making them 

prime candidates for Personal Data Management Systems [15]. 

 

Figure 2.1: Examples of Trusted Execution Environments 

ARM TrustZone. TrustZone [148] is a hardware-based security solution used 

in ARM processors that creates two separate "worlds": a secure and a normal 

one. These two parts are isolated from each other by partitioning the memory 

into secure and non-secure sections, and using special registers that can only 

be accessed when the processor is running in the secure state. Applications 

can then use the secure world to implement a TEE service, which performs a 

specific function, or a TEE kernel, which orchestrates several TEE instances by 

managing their memory, handling their communications, or providing them 

with APIs. Examples of TrustZone applications notably include 

TrustShadow [149] and Android Keystore [150]. More recently, Wan et 

al. [151] proposed a Rust-based TrustZone application SDK, called RusTEE, to 

help developers compile trusted applications with the enforced memory-

safety features. 

Intel SGX. Intel Software Guard Extensions (SGX) [152], [153] is a TEE 

technology introduced in 2013, which allows the creation of isolated software 

containers, called enclaves, that are protected from the operating system and 

the hypervisor. SGX provides data confidentiality and integrity protection by 

encrypting part of the memory and using specific parts of the processor. As 

already mentioned earlier, recent works [54], [55] have even demonstrated 

the practical application of a PDMS coupled to an SGX processor allowing to 

perform any kind of user-defined functions. 

Trusted Platform Module. One of the precursors of TEEs is the Trusted 

Platform Module (TPM) [154], which is a hardware-based security module 

that provides a secure root of trust for computing systems. The TPM ensures 
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a high level of integrity by storing keys, passwords and certificates in a 

tamper-resistant environment on which cryptographic operations are 

performed. As explained in [147], the main limitation of TPM is that it does 

not provide an isolated execution environment for third-party, which reduces 

its functionality to a limited number of operations. Nevertheless, it is possible 

to combine the TPM with a CPU [155] or an MCU [53] (as illustrated in Figure 

2.1.b) together with a minimal Trusted Computing Base to perform more 

complex processing. 

Although TEEs are designed to be resistant to tampering and attacks, they 

are not completely immune. Indeed, these systems are regularly subject to 

new side-channel attacks [156]–[158], some of which are capable of breaking 

all security properties [158]. Thanks to their revelation by the scientific 

community, these attacks are addressed on a case-by-case basis via updates 

by TEE providers. Nevertheless, it is reasonable to consider the possibility of 

such attacks and to assume that a compromised TEE could behave in "sealed 

glass proof" mode [159], i.e., the confidentiality property is broken, but the 

isolation and attestation properties remain valid. Despite this, side-channel 

attacks are still complex to perform and usually require physical access to the 

TEE, making them less likely to occur on a large scale. It's important to note 

that honest TEEs cannot detect those that have been corrupted by side-

channel attacks, as their behavior could still appear correct. This should 

therefore be taken into account when designing protocols based on TEEs. 

2.4.5 Conclusion 

As seen in this section, there are numerous techniques for combining data 

computation and privacy, each with its own advantages and disadvantages. 

In our case, the established objectives require a solution capable of 

(1) performing any kind of processing without compromising the quality of 

the results obtained and (2) scaling up with a large number of participants. 

According to our analysis, only TEEs seem to meet these constraints. The 

architecture must then include by construction the limitations of this 

technology, i.e., the possible side-channel attacks capable of disclosing all 

the personal data processed by the compromised TEE device. 
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The scenarios described in the introduction combine several characteristics. 

On the one hand, they require the execution of complex processing tasks on 

sensitive personal data. These tasks range from regular database aggregation 

queries to machine learning computations. On the other hand, they are 

executed in a highly distributed environment, prone to many failures, with 

communications between devices performed in an opportunistic manner. 

To tackle the privacy protection, data management, and distributed system 

issues related to this environment, we define in this chapter the "Edgelet 

computing" paradigm. First, we describe the considered underlying 

architecture, its components, and related assumptions. Second, we propose 

a new model of responsibility adapted to this architecture, which specifies 

the role and obligations of each actor. Third, we discuss the data and query 

models targeted in this work and propose a straw man query execution plan 

which supports it. We then study the impact of the Edgelet computing 

context on this execution, which helps us to define three required properties 

to ensure the liveness, safety, and security of the query execution. The 

objective of this chapter is therefore to present the Edgelet Computing 

paradigm and to state the technical problem addressed. 

3.1 EDGELET ARCHITECTURE  

The idea of using the computational resources of personal computers or 

devices is obviously not new (cf. P2P architectures [115], e.g., BOINC [116]). 

More recently, [92] proposed to use resources from mobile personal devices, 

coupled with opportunistic communications to distribute opportunistically 

some large computations on a set of mobile devices. In this thesis, we push 

this idea a step further by seeking to share both the personal mobile device 

resources and the personal data of the device owner, as outlined in the 

scenarios presented in Chapter 1. To the best of our knowledge, this has 

never been proposed before probably because of the risks related to the 

protection of these personal data. 
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A game changer is the generalization of Trusted Execution Environments 

(TEEs) [147] at the extreme edge of the network: Intel SGX [153] is becoming 

ubiquitous on PC and tablets, ARM's TrustZone [148] on smartphones (Figure 

2.1.a) and even Trusted Platform Module on smart objects (Figure 2.1.b). TEEs 

protect code and data from untrusted execution environments and from the 

devices’ owners. More precisely, a TEE enforces (1) data confidentiality: data 

manipulated within a TEE node cannot be observed from the outside; and (2) 

code integrity: an attacker cannot influence the behavior of a program 

executing within a TEE. In this thesis, we assume that each personal device 

(edgelet) is equipped with a TEE guaranteeing to its owner the two previous 

properties as long as the device is not physically compromised. Indeed, as 

seen in Section 2.4.4, side-channel attacks compromising data confidentiality 

cannot be totally ignored, placing the device in "Sealed-Glass Proof" mode. 

Regarding inter-device communications, the proposed architecture is built 

on Opportunistic Networks (OppNets). Indeed, the communication 

infrastructure considered in our scenarios is sidestepping any classical WAN 

infrastructure (e.g., Internet) for cost or energy constraints, lack of 

connectivity, security, or even freedom of expression concerns. The 

communications between edgelet nodes are short-range (e.g., Wi-Fi, 

Bluetooth) and asynchronous, i.e., there is no bound on the message 

transmission delay from a given edgelet node ei to another edgelet node ej. 

Connections among devices then form a non-connected time-varying graph 

as in traditional OppNets [81]. Note that various routing protocols from 

simple to more elaborated (and optimized) ones could be considered. 

However, the main focus of this study is not efficiency (e.g., resource 

consumption or query execution time), but rather feasibility. Hence, we 

consider for simplicity an epidemic diffusion of the messages, assuming that 

messages are transferred from device to device following a store-carry-

forward communication protocol [61]. Other more optimized protocols, e.g., 

exploiting moving patterns of users [63], are considered as future work. 

As mentioned earlier, we want to explore, in this thesis, the possibility to rely 

exclusively on secure personal devices to perform the required computations, 

i.e., without relying on any external infrastructure like central servers. Similar 

to P2P and cross-device federated learning architectures (see Sections 2.3.4 

and 2.3.5), we want processing to be distributed across edge devices, without 

requiring the deployment or maintenance of centralized servers. Therefore, 

the execution of computations in the Edgelet architecture is achieved in a 

fully decentralized manner. 

To summarize, the convergence between TEEs and OppNets, which we call 
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Edgelet computing, leverages secure personal devices to enable complex 

processing. Its architecture is characterized by the following three elements: 

• Secure edgelet: Each personal device, called edgelet, is equipped 

with a TEE, which provides secure storage and processing capabilities. 

 

• Opportunistic communications: Edgelets communicate with each 

other through Opportunistic Networks whose messages are 

transmitted at short range with no time limit for their delivery. 

 

• Fully decentralized execution: The processing of personal data is 

fully decentralized on edgelets and does not rely on central servers. 

This new combination of secure hardware devices and the organization of a 

fully decentralized computations raises new issues in terms of work and 

responsibility distribution which are discussed in the next section. 

3.2 RESPONSIBILITY MODEL 

Responsibility models are usually introduced to help define the respective 

responsibilities of all actors involved in a given computing infrastructure. 

Such models guide judges, practitioners, and researchers when confronted 

with legal questions related to the protection of data and code. For instance, 

the Shared Responsibility Model (SRM) [160] states the responsibilities of 

cloud service providers and customers for securing all aspects of a cloud 

environment. To illustrate this, in an Infrastructure as a Service context, the 

customer is responsible for the data, application, and Operation System (OS) 

parts and the cloud provider for the rest of the infrastructure (virtualization, 

servers, storage, network), while in a Software as a Service (SaaS) context, the 

latter endorses also the responsibility of the application and OS. 

The SRM is generic enough to apply to a large variety of application domains. 

Assuming personal data is managed in a SaaS context, the customer is the 

actor playing the data controller role1 in the GDPR sense (e.g., a company, an 

administration, an NGO), and the cloud provider plays the role of data 

processor2. Yet, the individual herself is no longer in the loop after having 

given her consent to the data controller to process her data. 

Conversely, in crowd computing applications managing personal data, the 

                                                
1 According to Article 4 of the EU GDPR, a data controller is the entity (person, 

organization, etc.) that determines why and how personal data is processed. 
2 A data processor is the entity performing the processing on the controller's behalf. 
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individual is at the heart of the infrastructure. However, we are not aware of 

any similar shared responsibility model adapted to crowd computing. 

Unsurprisingly, no one would agree to endorse the data processor or data 

controller responsibility in a fully decentralized computing context where 

each device is under the control of a distinct individual. The consequence is 

that crowd computing can handle use cases where the shared data is not 

really sensitive (e.g., sensor data like temperature or noise captured by a 

smartphone) but cannot tackle use cases involving sensitive personal data 

(e.g., medical data) that require tangible security guarantees. In this section, 

we define such a shared responsibility model, adapted to the Edgelet 

computing context, that we call Crowd Liability Model (CLM). 

Crowd liability conveys the idea that the data controller is the crowd (i.e., the 

result of the processing is expected to benefit, directly or indirectly, to each 

crowd member who agree together to the why and the how of this 

processing) and that there are as many potential data processors as they are 

crowd members. The corollary of this idea is that each crowd member is 

expected to do her best to honestly play the fragment of the data controller 

and data processor roles assigned to her, but the participation in the 

processing of some dishonest crowd members or of corrupted devices 

owned by honest crowd members cannot be precluded. 

To translate this idea into a responsibility model, we split the data controller 

into two roles, (1) the Recipient which is the node selected to issue the 

processing and fairly disseminate3 the result to the crowd, and (2) the 

Regulator (an external trusted entity or a set of crowd members) which 

assesses the honesty of the processing purpose and approves it on behalf of 

the crowd. Considering that crowd members usually do not have the 

technical skills to endorse the data processor role, we limit their responsibility 

to the delivery of accurate data as input for the processing and to the usage 

of a genuine TEE-enabled device to contribute to the processing (i.e., the 

crowd member is not liable for potential corruption of her own device but 

she becomes liable if she tampers with her TEE). Then, we introduce a 

Trusted Assistant role, which is played on behalf of the Edgelet node owners, 

and encompasses all technical principles embedded in each edgelet device 

to help the crowd members endorse the fragment of the data processor roles 

assigned to her. Basically, the Trusted Assistant is expected to guarantee the 

so-called Computation honesty, namely: (1) each decentralized execution 

                                                
3 The dissemination of the result being scenario-dependent, our study stops at the 

delivery of the final result to the Recipient. 
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strictly conforms to the QEP approved by the Regulator and (2) each honest 

crowd member confidently participates to the processing despite potential 

corruption of her own device and (3) each dishonest crowd member is 

defeated in her attempt to perform a massive attack. 

Table 3.1 below transcribes the CLM with the distribution of responsibilities 

according to tasks and roles. 

 
Crowd 

Member 
Recipient Regulator 

Trusted 

Assistant 

Data integrity X    

Edgelet integrity X    

Result dissemination  X   

Purpose honesty   X  

Computation honesty    X 

Table 3.1: Crowd Liability Model (CLM) 

3.3 EDGELET QUERY MODEL 

We consider distributed computations involving personal data hosted in 

(potentially large) sets of edgelet nodes from smartphones and tablets to 

more specific smart objects (see Chapter 7), like PDS [42], PDMS [54] or 

Databoxes [36]. Moreover, contrary to participatory sensing or sensor 

networks which focus on stream queries over elementary data, we consider 

rich data (e.g., healthcare folders, spending habits) and advanced processing 

(e.g., database statistics, data mining, machine learning). We assume that 

edgelets data can be queried as a shared database with a uniform schema. 

More precisely, each device may host a set of database schemas, typically 

one per application domain. The database schemas may be defined by a 

government agency (e.g., Ministry of Health), a private consortium (e.g., a 

group of banks and insurances) or an NGO. Consequently, for a given query 

expressed on a given database schema, the universe of edgelets data E can 

be seen as a horizontal partitioning of the corresponding global database. 

The computations under consideration (called Query hereafter) must cope 

with the uncertainty inherent to the Edgelet setting, making the traditional 

database closed-world assumption [161] irrelevant. Thus, considering an 

open-world query model for edgelets leads us to introduce the notion of 

snapshot-compliant query. 
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Snapshot-compliant query: Given E the universe of edgelets data and Q a 

query targeting a dataset D  E, the representativeness of the snapshot D for 

Q is defined by a set P of predicates over elements of E (e.g., age > 65) and 

by a cardinality (e.g., D = 2000). We denote by Q(E) the set of all 

representative snapshots of E enforcing P and D. The Query Q is snapshot 

compliant if the result of Q considering any snapshot of Q(E) is equivalent 

for the Recipient. 

In other words, a snapshot-compliant query, evaluated on any representative 

snapshot (enforcing P and D), will give a satisfactory result for the Recipient. 

We consider that a query is expressed by a Query Execution Plan (QEP), which 

is a directed graph where vertices materialize the operators to be computed 

and edges represent the dataflow among them, with messages sent through 

the OppNet. The simplest form of a QEP is a tree with Data Contributors (DCs) 

at the leaves, that is the edgelets of crowd members who gave their consent 

to contribute to the query with their data4. Other operators of the QEP are 

Data Processors5 (DPs), i.e., edgelets that contribute to the processing of the 

contributed data to produce the final result for the Recipient (R), the root of 

the QEP. Thus, the DPs either consume the outputs of a set of DCs or the 

outputs of other DPs. 

Let us introduce the foundation for the query model by considering a straw 

man execution. To satisfy a snapshot-compliant query, we only need to 

define two types of data processors: 

• The Snapshot Builder (SB) whose role is to build a representative 

dataset from the data transmitted by the DCs. 

 

• The Computer (C) whose role is to perform the computation required 

by the query on the representative snapshot built by SB. 

Then, the straw man QEP proceeds in three steps as illustrated in Figure 3.1. 

1. Each Data Contributor DCi sends its data to the Snapshot Builder. 

 

2. SB builds a snapshot 𝐷 = ⋃ 𝐷𝐶𝑖
𝑛
1  compliant with the set of predicates 

P and the cardinality D and send it to the Computer. 

                                                
4 The consent management is an important question in the Edgelet context, 

addressed in Chapter 4. 
5 Data Processor refers here to an operator in a QEP, not to the Data Processor role 

as defined in the GDPR terminology.  
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3. C performs the computation on D and sends the final result to the 

Recipient (R). 

 

Figure 3.1: Straw Man Query Execution Plan 

Note that, since we consider OppNets, we do not consider pipeline 

communication between edgelets because (1) it will generate too many 

messages, overloading the OppNet and (2) it will be very difficult to manage 

since there is no bound on transmission delays. Thus, we consider that a DP 

works in a blocking mode, i.e., it waits for all its input before processing it 

and producing the output. Similarly, a DC produces all its output in a single 

message. Consequently, any message is sent atomically through the OppNet, 

i.e., the payload is either totally received by the recipient or not at all. 

3.4 STRAW MAN EXECUTION ANALYSIS 

Obviously, this straw man execution does not answer any of the challenges 

posed by the considered context, namely data confidentiality, resistance to 

failures, and, as a consequence, execution validity. 

Data confidentiality. As described in Section 3.1, the query execution is fully 

decentralized on edgelets that, even if secured by TEEs, can still be attacked 

(see Section 2.4.4). However, we do not wish to reduce the utility of the data 

by using local differential privacy. We cannot either use Secure Multiparty 

Computation techniques that would not scale due to opportunistic 

communications. An execution following strictly the straw man execution 

plan would therefore be disastrous in terms of exposed data since the 

potential effect of an attack on SB or on C would be to disclose all 

manipulated data. We will then have to circumscribe this risk by 

decomposing operators (e.g., using horizontal and/or vertical partitioning) 
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into sub-operators assigned to different edgelets. An operator should be 

decomposed if the generated sub-operators require fewer data to process, 

in order to minimize the impact of leakage in case of attacks. 

Resistance to failures. Edgelets are personal devices and are therefore 

susceptible to failure and/or voluntary shutdown. In addition, these devices 

communicate via OppNets that do not guarantee bounds on communication 

delays. It will then be necessary to proactively introduce mechanisms to 

withstand these failures or communication problems. A resilient execution 

should therefore include backup or replication operators. The objective here 

will be to guarantee that the execution has a significant chance of success. 

Execution Validity. The two previous points will lead to a much more 

complex QEP (with several SBs, several Cs as well as with backup edgelets 

and/or replicated operators) which could then result in an invalid 

computation if inconsistencies occur at some point. It will therefore be 

necessary to ensure that the execution is valid, either by adding 

synchronization mechanisms before the computation, or verification 

mechanisms after the computation. 

The problem is quite complex because we will have to deal with these three 

dimensions at the same time, knowing that each one potentially influences 

the other two. For example, to resolve failures, we will need to add DPs, which 

will reduce security since data will be exposed on multiple edgelets. Similarly, 

to reduce the risk of data exposure, a DP needs to be split into multiple sub-

DPs, which then increases the overall failure risk! 

3.5 PROBLEM STATEMENT 

To summarize the above analysis, we have to face three difficulties: First, the 

liability shift to the crowd must be carried out in a context where a few 

attacked devices can jeopardize the security of the whole system with no way 

to detect them. Second, reliable failure detectors cannot exist in OppNets 

due to the unpredictability of message delays, making it difficult to predict 

the time to build a snapshot from random contributors and to execute a 

query. The system liveness must then be guaranteed based on fault 

presumptions only and on the probability of success for queries associated 

to a deadline (i.e., a maximum time allowed for executions). Finally, the 

snapshot consistency must be preserved all along the query processing 

despite presumed faults and message loss between Data Processors in order 

to guarantee the system safety, i.e., a consistent result. We introduce below 

three properties that must be met together to tackle this problem. 
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Confidentiality (security property). Each edgelet must integrate 

mechanisms enforcing the CLM’s Computation honesty on behalf of the 

edgelet owner, namely: (1) each decentralized execution strictly conforms to 

the QEP approved by the Regulator and (2) each honest crowd member 

confidently participates to the processing despite potential corruption of her 

own device and (3) each dishonest crowd member is defeated in her attempt 

to perform a massive attack. 

Resiliency (liveness property). Given a probability of fault presumption pf 

for any edgelet, a query deadline, and an expected probability of success ps, 

a query Q must complete before the deadline with a probability greater than 

ps, otherwise Q is aborted. 

Validity (safety property). The Edgelet query execution result must be 

identical to a centralized query execution over at least one snapshot of Q(E). 

Formally, DiQ(E), DjQ(E)/ QE(Di) = QC(Dj), with QE (resp. QC) denoting 

the Edgelet (resp. centralized) execution of a query Q. 

These properties are particularly challenging to tackle together given their 

mutual impact: Confidentiality is addressed in Chapter 4 while Resiliency is 

addressed in Chapter 5, studying its impact on Validity and Confidentiality. 
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The Edgelet computing paradigm introduced in Chapter 3 leverages the 

convergence between TEEs and OppNets to perform secure computations 

on personal data in a more flexible and scalable way than with local 

differential privacy, secure multi-party computation protocols, or 

homomorphic encryption. However, it comes with a rather specific 

Responsibility model called Crowd Liability Model (CLM). This chapter is 

devoted to the mechanisms and algorithms required to enforce this CLM. 

The two cornerstones of the CLM are Purpose honesty, which deals with the 

approval by the crowd of the why and the how of the processing, and 

Computation honesty, which ensures the confidentiality of the processing 

during its decentralized execution. These two principles are respectively 

addressed in sub-sections 4.2 and 4.3. However, since the CLM defines new 

roles and responsibilities and relies on specific security assumptions, a 

dedicated threat model must be defined first. 

4.1 DEDICATED THREAT MODEL 

A dedicated threat model is required to capture (1) the shift of responsibility 

from a usual central entity (i.e., the data controller in the GDPR) to the crowd 

and (2) the TEE trustworthiness. We define this model as follows. 

Ingenuous Recipient.  

- Role: initiates the processing of a Query Execution Plan and receives the 

final results. Does not take part in the execution. 

- Played by: depending on the use case, one or more crowd members, 

medical workers, statistical agencies, etc. 

- Trust: We do not want to impose the Recipient to be equipped with a 

TEE-enabled device to avoid reducing the targeted use-cases, explaining 

why we exclude it from the actual processing of the QEP. However, we do 

not question the good faith of the Recipient. Thus, even if it receives the 



 

56 

results of the processing in clear text, we do not consider inference 

attacks from its side (i.e., crossing the results of multiple queries). 

Wolf in sheepfold Participants. 

- Role: contributes with data (Data Contributor) and/or processing power 

(Data Processor) in a Query Execution Plan. 

- Played by: any participant equipped with a TEE-enabled device. 

- Trust: as said in Chapter 3, side-channel attacks on a TEE-enabled device 

cannot be totally precluded despite their complexity (requires tampering 

with the device). A compromised TEE behaves in a “sealed glass proof” 

mode [159], where code integrity is preserved but data confidentiality is 

lost. We assume a large majority of honest participants (the lambs) and a 

few “sealed glass-proof” ones (the wolves). 

Regulator.  

- Role: reviews and approves the processing to be performed. This role is 

not devoted to the query execution itself. 

- Played by: either an external entity (e.g., a privacy regulatory agency like 

the CNIL in France) or a representative group of crowd members engaged 

in a collective validation process. 

- Trust: full. 

4.2 PURPOSE HONESTY 

In this section, we focus on the initialization of queries and how the Recipient 

can prove its honesty. To this end, we propose to build on the manifest-based 

framework [17], [53], so that the recipient can declare the why and how of 

processing. Here is its implementation in our context: 

First, the Recipient specifies a manifest describing the query to be performed. 

This manifest consists of four elements: (1) the general purpose of the 

processing expressed in natural language, (2) the Query Execution Plan, (3) 

the set of representativeness predicates P of the targeted dataset D as well 

as its cardinality |D| and (4) the source code of the operators to be executed 

on each edgelet node. Next, the Recipient submits the manifest to the 

Regulator which verifies its compliance with the expected privacy practices. 

Finally, the manifest is signed by the Regulator and returned to the Recipient. 

This certified manifest will be used for the edgelet assignment protocol 

presented in the next section, after which the query manifest will be ready for 

dissemination in the Opportunistic Network. 

Let us now see how the threat model and the manifest-based framework 
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translate into the motivating example given in the introduction, the DomYcile 

project [21]. In this example, illustrated in Figure 4.1, we consider that a group 

of medical doctors (Recipient) wants to query a cohort of consenting elderly 

patients to obtain statistical results in the spirit of [162] (Share EU 

project [163]). Assuming that each patient is equipped with a secure box (see 

Figure 2.1.b), the query deployment proceeds as follows. 

 

Figure 4.1: Edgelet query in the DomYcile project 

First, the Recipient specifies the manifest containing the four elements 

mentioned above, including the general purpose: "Cohort of 2000 patients, 

having age ≥ 65, computes statistics on Age, Education, BMI, Tobacco, 

Chronic diseases, Frailty criteria". Second, the Recipient sends the manifest to 

the Regulator, e.g., the CNIL (French regulatory agency), which sends back a 

signed version if approved. Third, QEP operators are randomly assigned to 

some edgelets by the Recipient (see Section 4.3.2) making the query manifest 

ready for dissemination. The broadcast is performed by healthcare workers 

who implement an OppNet. The messages are transmitted from their 

smartphones to the boxes via Bluetooth using the store-carry-forward 

strategy. Patients willing to contribute their data to the query will then act as 

Data Contributors. Edgelets assigned by the Recipient will themselves act as 

Data Processors. The challenge is finally to protect the confidentiality of the 

computations despite potential attacks on the edgelets (wolfs), which is the 

topic of the next subsections. 

4.3 COMPUTATION HONESTY 

4.3.1 Global and local integrity of the processing 

Now that the certified manifest is disseminated to all edgelets in the network, 

we want to ensure the first two points of the CLM’s Computation honesty: (1) 
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each decentralized execution must strictly conform to the QEP approved by 

the Regulator and (2) each honest crowd member must be able to confidently 

participate to the processing despite potential corruption of her own device. 

In other words, the question is how to verify that the execution is done in the 

same order as specified by the certified QEP and how to ensure that the 

processing performed on the data does not deviate from the original code? 

To achieve this, we leverage the code integrity property provided by the TEE 

to build a Trusted Assistant, a logical entity taking responsibility for the 

Computation honesty on behalf of the edgelet owners. Concretely, the 

Trusted Assistant runs on each edgelet node a piece of code, called Core 

hereafter, which is part of the TEE Trusted Computing Base, that is a code 

base guaranteed genuine at boot time. Using remote attestations [17], [164] 

(cryptographic proof of the authenticity of the TEE), the Core enforces point 

(1) of CLM’s Computation honesty by guaranteeing that the predecessors of 

Data Processors are legitimate and produce valid intermediate results. In 

addition, the Core attests the genuineness of the QEP operator’s code 

assigned to the participating edgelets by verifying the signature of the 

Regulator on the certified manifest. Note that even if the edgelets’ operating 

system is corrupted by malware or viruses, the isolation property of the TEE 

ensures that the executed code cannot be altered. Hence, point (2) of CLM’s 

Computation honesty is also enforced. 

These two integrity guarantees provided by the Trusted Assistant via the TEEs 

reinforce the crowd's confidence in the Edgelet computing architecture. As a 

result, each individual can freely consent to contribute her sensitive data with 

the reassurance that the decentralized execution will follow precisely the 

precepts indicated by the certified manifest. As we will see below, the next 

challenge is to protect executions from dishonest crowd members. 

4.3.2 Resistance to massive attacks 

Point (3) of CLM’s Computation honesty states that each dishonest crowd 

member is defeated in her attempt to perform a massive attack. As 

mentioned before, we do not exclude the possibility of side-channel attacks 

on edgelets compromising the confidentiality of the manipulated data. Our 

objective is then to empower the Trusted Assistant with mechanisms that 

minimize the risks of massive data leakages in this particular case. 

The Recipient is in charge of initiating the query, that is, assigning the QEP 

operators to the participating edgelets, and then launching the processing. 

However, the threat model does not make any assumptions about the 
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integrity of the Recipient(s). Even if we do not question his good faith, his 

information system may have been corrupted by some attacker. Thus, the 

task of assigning operators to edgelets must be protected to prevent a critical 

operator from being assigned to a corrupt accomplice edgelet, e.g., the 

operator manipulating the data of a targeted contributor or the operator 

manipulating a maximum amount of sensitive data. We therefore propose a 

random assignment protocol auditable by the Trusted Assistant.  

Random assignment. We assume that the set of all crowd members’ edgelet 

is known by the Recipient (e.g., they register to join a community) and that 

their ID form a hash ring (as in a Chord DHT). We also assume that each 

crowd member tacitly consents to contribute to a query execution, which is 

far less engaging than consenting to contribute their personal data to the 

query. Under these assumptions, the assignment protocol is the following.  

1. The Recipient computes a hash of the manifest (signed by the 

Regulator and publicly known) as a seed for the random process and 

assigns the first operator to the edgelet having the ID immediately 

greater than this hash1. The first hash is rehashed to assign the second 

operator and so forth until all operators have been assigned. 

2. The Trusted Assistant, which implements Core on all edgelets, verifies 

this chain of hash in order to detect any fraudulent assignment for 

the operator intended for them. Assuming that each edgelet knows 

at least the ID of its predecessor in the ring, it is sufficient to check 

that the hash is strictly larger. 

How does this assignment work when successive hashes lead to collisions? 

Note that this problem is frequent when few edgelets nodes are present in 

the ring, and becomes highly unlikely otherwise. However, assigning multiple 

roles to a single node is undesirable for both resiliency and privacy reasons, 

hence the need for a countermeasure. When a collision occurs, we propose 

that the Recipient assigns the direct successor of this node in the ring, the 

latter having a lower probability (squared) of also being in collision. The 

Trusted Assistant can still detect a fraudulent assignment, but this time each 

edgelet must know the IDs of its two predecessors. The proposed method is 

therefore adjustable to any dimension of the network, it will just be necessary 

to increase the number of known predecessors. 

                                                
1 This assignment is blind; since it does not take into account the fact that edgelets 

may be down or unavailable. As we will see in Chapter 5, QEPs must provide resiliency 

mechanisms to anticipate these possible failures. 
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Next, let us try to restrict the leakage to dishonest crowd members, those for 

which the edgelet is physically attacked. Trivially, if no Data Processor is 

compromised, the TEE confidentiality property guarantees that no sensitive 

data can leak by construction. However, the distributed executions we are 

considering require intermediate results to be transmitted between the Data 

Processors (e.g., the representative snapshot D sent by the Snapshot Builder 

to the Computer). The messages sent in the OppNet then need to be 

encrypted to counter any malicious interception (e.g., by the untrusted 

smartphone of a healthcare worker). 

Messages encryption. We assume that the QEP transmitted by the recipient 

contains the certificates of the assigned data processors, consisting of the IDs 

of the nodes in the DHT and their public encryption keys. Since the QEP is 

constructed statically, each node can easily encrypt its output based on its 

successors in the execution tree. Thus, when an edgelet ei needs to send a 

message m to ej, it generates a symmetric key ks to encrypt its message and 

use ej’s public encryption key pkj to encrypt ks. The packet sent in the OppNet 

is then: {enc(m,ks), enc(ks, pkj)}. Following this procedure, all messages in 

transit in the network are encrypted, making them unreadable to anyone 

other than their recipients. Therefore, since no cryptographic material is ever 

shared among edgelets and the TEE integrity property still holds even in 

sealed-glass proof mode, the potential leakage is reduced to the data 

processed by a compromised edgelet. Note also that any change in the 

operators ordering would make the messages indecipherable and the 

execution would fail, reinforcing point (1) of the CLM’s Computation honesty. 

Finally, we need to restrict the amount of data manipulated by each edgelet, 

so that in the event of a physical attack on assigned edgelets, leakage is 

limited to a small proportion of the data required for a query. 

Horizontal and vertical partitioning. We observe that computations of 

interest are often distributive (e.g., MapReduce, Spark), enabling the 

decomposition of processing into sub-operators. Thus, we propose to 

distribute the operators of the Data Processors (Snapshot Builder and 

Computer) among different edgelet nodes. This decomposition can help 

minimizing the amount of data exposed at each edgelet by horizontally 

partitioning the dataset. This can also preclude the concomitant exposure, in 

the same edgelet, of data items that become sensitive when combined (e.g., 

a quasi-identifier) by vertically partitioning the dataset. Note that such 

distributive executions can also help minimizing the workload (e.g., when 

energy consumption matters) by exploiting the inherent Edgelet computing 

parallelism. Figure 4.2 presents both types of partitioning, horizontal and 
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vertical, on the query example of Figure 4.1. Each Data Contributor performs 

a hash function of its ID to select the Snapshot Builder to send its data to, so 

that each partition processes only a fragment of the dataset (here, a tenth) 

with different Computers depending on the statistics to be computed (each 

one only sees the attributes strictly necessary for its computation). Note that 

a Computing Combiner operator must be added in the QEP to combine the 

outputs of all sub-operators. 

 

Figure 4.2: Horizontal and Vertical Partitioning 

Although these partitioning strategies are decided by the Recipient in the 

design of the QEP, it is the responsibility of the Regulator to approve them. 

Depending on the application context, the privacy criteria selected may be 

different (e.g., medical records, spending habits) and involve a more or less 

distribution of the data. Note that since each individual is free to consent to 

contribute her data, it is in the Recipient's interest to design a privacy-friendly 

QEP in order to encourage people to participate. 

4.4 CONCLUSION 

The Edgelet computing paradigm involves the implementation of a unique 

and unusual responsibility model, the Crowd Liability Model (CLM). In this 

chapter, we have seen that the CLM must first be translated into a threat 

model in order to consider potential attacks on TEES and thus guarantee the 

Purpose and Computation honesty. 

For Purpose honesty, we proposed a protocol based on the manifest-based 

framework [17] that establishes trust between the crowd members and the 

Recipient(s) through the Regulator’s action. With this framework, any entity, 

public or private, can launch a query targeting the data of thousands of crowd 

members while certifying its intentions. 

file:///C:/Users/ludoj/Documents/Seafile/LUDOVIC/Thesis%20Manuscript/2-maj_validation/Trustworthy%23Trustworthy_Distributed_Computations_on_
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For Computation honesty, we leverage the properties of the TEEs to empower 

the Trusted Assistant (the logical entity) with several mechanisms to ensure 

the security of executions. We show that processing integrity is preserved 

throughout the decentralized execution and that despite confidentiality 

attacks on edgelets, leakage is limited to only the data handled by the 

corrupted devices, and in adjustable proportions thanks to horizontal and 

vertical partitioning. 
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The execution plans presented until this chapter are relevant from a logical 

point of view but are not resilient to failures. Indeed, the slightest failure or 

unavailability among the assigned edgelets results in the complete failure of 

the query. Our objective in this chapter is then to propose execution 

strategies that make Edgelet processing resistant to failures and to message 

losses in the Opportunistic Networks context. 

In the following subsections, we present three alternative implementation 

strategies for enforcing the Resiliency property and discuss their impact on 

Validity and Confidentiality. First, we consider an extension of traditional 

resilience solutions based on backups (Section 5.1). Second, we present an 

alternative approach, in which, instead of replicating input data contributions, 

we tolerate an open (over-)set of data contributors typical of the edgelet 

context and take advantage of this "overcollection" of data to ensure 

Resiliency (Section 5.2). Third, we present a "hybrid" approach in which the 

backup and overcollection modes can coexist for better efficiency 

(Section 5.3). Finally, we conclude the section by comparing the different 

strategies in terms of their respective scope (Section 5.4). 

5.1 BACKUP-BASED EXECUTION STRATEGY 

In this section, we take a conservative approach to Resiliency, recovering from 

failures in a general way, independent of query plans and study its impact on 

the enforcement of the Validity and Confidentiality properties. 
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5.1.1 Enforcing Resiliency 

No reliable failure detector exists in our context and every Data Processor 

(SB, C and CC in Figure 5.1) is a potential Single Point of Failure (SPF). In the 

Backup-based approach, we simply try to recover from failures, whatever the 

Data Processor presumed faulty, the benefit of which being to make the 

handling of Resiliency independent of the form of the QEP. We use timeouts 

to presume faults and secure the execution of all SPFs by means of backups, 

as usual [165]. 

 

Figure 5.1: Resiliency based on the Backup strategy 

We distinguish Passive and Active Backups. A Passive Backup replicates the 

input data of its corresponding SPF, called primary, and is activated and 

processes this data only in case the primary is presumed faulty. Thus, the data 

transferred to a Passive Backup is not exposed since it remains encrypted 

until the backup node is actually required. Conversely, an Active Backup 

executes in parallel with its primary. Despite a reduced latency, Active 

Backups incur a higher resource consumption and higher data exposure. 

Consequently, all SPFs are passively replicated (see Figure 5.1), except the 

Computing Combiner which must be actively replicated; otherwise, the 

Recipient would be forced to take part in the processing, at least to activate 

the Computing Combiner Backup(s), which would damage the Ingenuous 

Recipient assumption (see Section 4.1). 

Figure 5.1 presents the Backup strategy for the QEP of the motivating 

example with horizontal and vertical partitioning. For this execution plan to 

be fault tolerant, each SPF in each partition must survive (i.e., Snapshot 

Builder and Computers), either by means of a primary node or one of its 
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backups (note that in the figure, only one backup per SPF is shown). The 

number b of backups per primary node in each partition is then determined 

by the inequality (1 − 𝑝𝑓
(1+𝑏))

|𝑆𝑃𝐹|×𝑛
≥ 𝑝𝑠, with pf the probability of fault 

presumption, ps the expected probability of success, and |SPF| the number of 

SPFs in each of the n horizontal partitions of the QEP (n=10 in Figure 5.1). As 

we will also see in the other strategies, the Computing Combiner is 

considered separately from the other Data Processors due to its particular 

role as a proxy for the Recipient. Following the same principle, the number 

of backups bcc for the Computing Combiner results in the inequality 

(1 − 𝑝𝑓
(1+𝑏𝑐𝑐)) ≥ 𝑝𝑠. 

We assume that a start date Ts is set in the query manifest from which all 

Data Contributor edgelets start responding to the query. This date is then 

known by the Data Processor edgelets assigned for the query. Given the 

maximum delay  for a sent message to arrive at its destination node (with a 

very high probability, close to 1), the maximum execution time of the query 

to successfully terminate can be estimated, which is referred to as the query 

deadline calibration. To this end, intermediate timeouts must be set at each 

Data Processor node so that the backups of their predecessor node(s) can be 

appropriately activated at runtime. For example, in Figure 5.1, the Computing 

Combiner and its active backups must allow sufficient time for all predecessor 

Computers to recursively activate the Snapshot Builder backups. The 

intermediate timeouts can be obtained using a simple recursive calculation 

based on the following principles, illustrated with an example (see Figure 5.2). 

• For each data processor, a timeout  is associated with each of its 

predecessor nodes, whether primary or backup. When this timeout  

expired, a fault of the corresponding predecessor node is presumed 

and an activation message is sent to the appropriate backup node 

(the first backup of a primary if the primary is presumed faulty, the 

second backup if the first backup is presumed faulty, etc.). After the 

activation message has been sent, only the first message received 

from either the presumed faulty primary or any of its activated 

backup, will be considered and processed. 

 

• Primary and active backups nodes follow a push message pattern for 

all their successors (whether primary or backup nodes), meaning that 

messages are sent to successor nodes on their own initiative. 

Conversely, passive backups nodes follow a pull message pattern, i.e., 

messages are sent after a successor node's activation message is 

received. 
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Level 0: Snapshot Builder and its backups. Since the Data Contributors are 

never recalled, there is no timeout defined at the Snapshot Builders level and 

their backups. 

Level 1: Computer and its backups. The Computer nodes (primary and 

backups) should receive their input data from the Snapshot Builder primary 

node after a maximum time delay of 2. Indeed, the Snapshot Builders and 

their backups are supposed to receive the messages from the Data 

Contributors after a delay . Assuming that the data processing time of a 

node is negligible compared to the message latency, an additional maximum 

delay of  is needed for the Snapshot Builder to transmit its result to the 

Computers. A first intermediate timeout at the Computer is hence fixed at 

1=2, at which the first backup of the Snapshot Builder will be activated. 

Recursively, as we expect the result of this first backup to be received after a 

maximum additional 2 delay, we can define the second intermediate 

timeout (activating the second backup) at 2=1+2, and so on for the next 

backups. 

We can generalize this to obtain the timeout b for any passive backup node 

in the tree. Indeed, this timeout is determined by adding 2 (activation and 

response delays) to the Maximum Execution Time of a given Backup 

node (METB). At tree level l+1, METB is equal to the sum of: 

• The consecutive1 activation time of all direct predecessor backup 

nodes and their corresponding response time: 𝑏 × 2 × , with b the 

number of backups nodes. 

 

• The recursive runtime of these backup nodes if they are not yet 

provisioned. This value depends directly on the number of levels l in 

the sub-QEP (i.e., the tree height): 𝑏 × 𝑀𝐸𝑇𝐵(𝑙) 

Thus, 𝑀𝐸𝑇𝐵(𝑙 + 1) = 𝑏 × (2 ×  + 𝑀𝐸𝑇𝐵(𝑙)) 

Similarly, the Maximum Execution Time of a Primary node (METP)2 at tree 

level l+1 is equal to the sum of: 

• The emission time of its direct predecessor primary node and its 

recursive runtime:  + 𝑀𝐸𝑇𝑃(𝑙) 

                                                
1 To protect privacy (i.e., by minimizing the number of data exposed), we choose to 

activate the backup nodes only when necessary, one after the other. 
2 METP also applies to active backups since they run in parallel with the primary node. 
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• The successive activation time of the direct predecessor backup 

nodes and their corresponding response time: 𝑏 × 2 ×  

 

• The recursive runtime of these backup nodes if they are not yet 

provisioned: 𝑏 × 𝑀𝐸𝑇𝐵(𝑙) 

Thus, 𝑀𝐸𝑇𝑃(𝑙 + 1) =  + 𝑀𝐸𝑇𝑃(𝑙) +  𝑏 × (2 ×  + 𝑀𝐸𝑇𝐵(𝑙)) 

 

Figure 5.2: Calculation example for the deadline calibration 

Figure 5.2 shows an example of the query deadline calibration with the QEP 

of Figure 5.1, setting b=2 for the passive backups of the Snapshot Builders 

and Computers and bcc=1 for the active backups of the Computing Combiner. 

We can see that at level 0, the SB has a MEPT equal to , which corresponds 

to the emission time of the DCs' contributions, while the SB's backups have 

a METB equal to 0. Indeed, the execution time of the backups is only counted 

from their activation time, since the data replication is done in parallel with 

the primary node and the emission time is therefore already integrated. From 

this figure we can see that the calculation of the deadline is strongly 

influenced by the height of the tree and the number of backups. Note that 

the horizontal and vertical partitioning have no impact on the deadline 

calibration as long as they do not change the height of the QEP and the 

number of backups per partition. 

5.1.2 Impact on Validity and Confidentiality 

Satisfying the Validity property requires that the dataflow between the 

operators is consistent wrt. at least one of the Q(E) snapshots. However, with 

failure or message loss, a Snapshot Builder and its backups may build 

different snapshots, each belonging to Q(E). Therefore, three situations must 
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be distinguished to guarantee that the query result is equivalent to the one 

obtained with a centralized execution over at least one snapshot built by the 

Snapshot Builder or one of its backups. This particular snapshot is hereafter 

called the reference snapshot. 

1. Without any partitioning, a single Snapshot Builder feeds a single 

Computer. Hence, a reference snapshot can be identified whatever 

the execution. It is either the snapshot built by the Snapshot Builder 

primary if there is no fault presumption, or the snapshot built by one 

of the activated backups otherwise. 

 

2. Similarly, with horizontal partitioning, the reference snapshot is 

simply the union of each partition’s snapshot (backup or primary). 

 

3. With vertical partitioning however, the Snapshot Builder feeds several 

Computers, some of them potentially considering the primary 

snapshot and some others the backup ones in case of fault 

presumption. This leads to an inconsistency, i.e., a result built over a 

snapshot that does not belong to any snapshot of Q(E). 

Figure 5.1 illustrates this third situation, where each Computer evaluates a 

different statistic but must consider a same snapshot belonging to Q(E). To 

solve this problem, several solutions can be envisioned but all of them incur 

a significant overhead. We sketch below two of them that address this issue 

in a different way: 

- Consensus: Synchronize the snapshot between the primary Snapshot 

Builder and its backups thanks to a consensus protocol (Figure 5.3.a). [81] 

proposes an effective consensus protocol for OppNets that matches the 

Edgelet context, at the price of a distributed consensus. This consensus 

stage requires that the Snapshots Builders backups be active in order to 

agree on a representative reference snapshot. Indeed, if the collected 

data had to remain encrypted, it would become difficult, if not impossible, 

to verify the representativeness predicates. 

 

- QEP restructuring: Rearrange the QEP so that the parallel branches are 

serialized, one after the other (Figure 5.3.b), thus avoiding inconsistencies 

due to multiple successors, but at the price of losing QEP parallelism and 

exploding the recursive runtimes. This solution implies extending the 

deadline, otherwise the intermediate timeouts would be too short and 

almost all the backups would be triggered, which would harm the privacy 

of the contributors since their data would be exposed several times. 
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Figure 5.3: Solutions to guarantee the Validity property 

Regarding the Confidentiality property, we notice that the risk of exposure of 

individual data is not the same whether the backups are passive or active. 

Indeed, as we explained previously, Passive Backups only decrypt data if they 

are activated, unlike Active Backups which decrypt them anyway. This 

protection is possible because, even if the edgelet is compromised, the 

integrity property of the code is still ensured (see Section 4.3) and guarantees 

that data can be decrypted only at the reception of an activation message 

from a successor node. Moreover, we consider that the activation messages 

are signed with the private key of the successor nodes, making them 

impossible to forge. Hence, besides horizontal and vertical partitioning, 

Passive Backups provide an additional layer of protection against 

confidentiality attacks on edgelets. Their use on all QEP operators is however 

not always possible, especially with the Computing Combiner which must be 

actively replicated, and with the Snapshot Builders when the QEP integrates 

vertical partitioning and a consensus protocol, as explained above. 

5.2 OVERCOLLECTION-BASED EXECUTION STRATEGY 

This section introduces a very different way to handle the problem of 

Resiliency, which integrates the OppNet context by design. Contrary to the 

backup-based strategy, messages delays or loss are no longer considered as 

faults that must be recovered but rather as a legitimate behavior. 

5.2.1 Enforcing Resiliency 

As an alternative to securing every SPF in a QEP thanks to backups, we 

suggest over-collecting the dataset of interest so that the QEP may survive 

the loss of parts of it. To explain the intuition, let us consider a query over a 

sample dataset (e.g., 2000 individuals with age>65) where Data Processors 

(i.e., Snapshot Builder and Computers) execute distributive operators. Instead 
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of executing the operators on single edgelets, we distribute (using hashing) 

its execution over n+m edgelets where each one processes a partition of the 

original dataset, with n the minimum number of partitions to be collected 

and m the overcollection parameter (see Figure 5.4). 

 

Figure 5.4: Resiliency based on the Overcollection strategy 

The Overcollection ratio must be adapted to the presumed fault probability 

pf of the OppNet to reach the expected success rate ps for a query. Given that 

the probability of success of one partition is 𝑝𝑝 = (1 − 𝑝𝑓)|𝑆𝑃𝐹|, with |SPF| the 

number of SPFs in each partition, the number m of additional partitions is 

determined by the inequality ∑ (𝑛+𝑚
𝑖

) × 𝑝𝑝
𝑖 × (1 − 𝑝𝑝)(𝑛+𝑚−𝑖) ≥ 𝑝𝑠

𝑛+𝑚
𝑖=𝑛 , i.e., at 

least n of the n+m partitions must succeed. Concerning the Computing 

Combiner, we assign Active Backups exactly like those of the Backup strategy. 

5.2.2 Impact on Validity and Confidentiality 

If all QEPs can satisfy the Validity property when executed in a backup mode 

(in some cases by adding a consensus among backups), this is no longer true 

when executed in an Overcollection mode. Indeed, (1) the complete QEP 

must be reorganized to handle a partitioned dataset3 and (2) a reference 

snapshot DQ(E) must remain identifiable despite arbitrary loss of subparts 

of this dataset during the processing. To tackle point (1), a brute-force 

solution is to reorganize the QEP in a set of sub-QEPs, each performing an 

independent processing over a partition of the collected dataset with the 

Computing Combiner assembling the final result (see Figure 5.4). This 

solution applies only if the commutativity rules between operators allow to 

push all distributive operators down to the sub-QEPs and to push all non-

                                                
3 In fact, the strategy remains applicable for a single partition but that would be 

equivalent to duplicating the QEP. 



 

71 

distributive operators up to the Computing Combiner. A QEP satisfying this 

condition is said reshapable. Under this assumption, point (2) can be easily 

tackled. The reference snapshot D is simply the union of all partitions that 

contributed to the QEP computation up to the Computing Combiner. 

Assuming that each of the n+m partitions locally satisfies the set of 

representativeness predicates P and have a cardinality |D|/n, the Validity 

property is trivially preserved as long as less than m partitions are lost. 

This shift in the Resiliency strategy has also implications in the way individual 

data is exposed. On the one hand, the fact that there are no backups ensures 

by design that individual data is only exposed once, as only the primary 

nodes will be able to decrypt the data and, in case of compromise, the data 

leakage is restricted to the compromised edgelets (see Section 4.3). On the 

other hand, the Overcollection mechanism implies that more Data 

Contributors must be involved in the query to ensure the success of the 

execution. Therefore, the disadvantage of the individual exposure in the 

Backup strategy is replaced by a higher collective exposure. 

5.2.3 Relaxing Validity 

Most data intensive queries of interest in our context are distributive by 

nature (as confirmed by various MapReduce or Spark implementations). 

However, some of the corresponding QEPs cannot be reshaped following the 

Brute-Force approach and then cannot combine Overcollection and Validity. 

This is notably the case of general interest machine learning algorithms, 

because they are iterative or need to exchange partial results computed over 

different data partitions. In these cases, a reference snapshot DQ(E) can no 

longer be identified in case of messages loss (e.g., two iterations may 

consider a different snapshot state). On the other hand, strict Validity is not 

a prerequisite for these algorithms which usually produce an approximate 

result. We thus suggest another basic preliminary method to handle these 

cases, called Iterative Brute-Force and sketched in Figure 5.5. 

To execute an algorithm A with Iterative Brute-Force, each edgelet 

implementing a sub-QEP Computer iterates on (1) a local convergence phase 

where it computes A on its local partition and improves its local knowledge, 

initialized by a parameter of the sub-QEP, and broadcasts this knowledge to 

all others sub-QEPs, and (2) a synchronization phase where it receives the 

knowledge of the other sub-QEPs it has heard of and integrates them in its 

own knowledge. Right before the query deadline, the knowledge is sent to 

the Computing Combiner which combines all received knowledges and 

sends the final result to the Recipient. 
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Figure 5.5: Overcollection with the Iterative Brute-Force method 

The main question is when to stop the processing. Fixing a number of 

iterations a priori (with a minimal number of received messages) has little 

sense in the OppNet context where message delays, then edgelet 

progression, are unpredictable. Expecting a local convergence is also 

hazardous due to the instability of the synchronization phase among sub-

QEPs. For instance, two edgelets with fast communications could converge 

locally quickly (without having even received any message from others) and 

decide to end prematurely their computation. Thus, we enforce the 

progression of the algorithm on all edgelets thanks to a Heartbeat, that is 

each iteration is cadenced by a clock, whatever the local state of the 

processing (i.e., a Computer moves to the next iteration even if few or no 

messages were received). Finally, local result is delivered when the deadline 

is imminent. 
 

Iterative Brute-Force 

Computer Edgelet (local_partition, initial_knowledge) 

knowledge  initial_knowledge 

Heartbeat until (query_deadline – 1 round) 

 Local conv: knowledge  A(local_partition) 

             and broadcast knowledge to all 

 Synchro: knowledge  received knowledge of others 

Send final knowledge to Computing Combiner 

Computing Combiner 

combine all received knowledge and send to Recipient 
 

 

We illustrate this method on three classical algorithms, namely Apriori, K-

means and Stochastic Gradient Descent (SGD), and show its effectiveness in 

terms of proximity of results wrt. centralized executions in Chapter 6. While 

the first two algorithms are quite specific in the tasks to be performed, the 
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SGD algorithm is used to solve many well-known machine learning models 

in the literature [166]. Its relevance in the Edgelet context thus reinforces the 

applicative potential of the approach. 

Apriori [167]: mine frequent itemsets to learn association rules. 

- knowledge: frequent itemsets and their support (initially empty). 

- Local convergence: A first computes the local support of all frequent 

itemsets in its partition then iteratively computes the local support of 

itemsets that are frequent in other sub-QEPs it has heard of.  

- Synchronization: adds frequent itemsets of others in knowledge.  

- Computing Combiner: sums the local supports of the common 

itemsets found in all received knowledge. 

K-means [168]: form k clusters minimizing the intra-cluster variance. 

- knowledge: current centroids (initially, k initial centroids) 

- Local convergence: until local convergence or heartbeat, A assigns 

each element of its own partition to the cluster having the nearest 

centroid and recomputes the centroids of the new clusters, updating 

its knowledge. 

- Synchronization: computes, on a cluster basis, the barycenter of all 

centroids received from other sub-QEPs, and integrates the result in 

knowledge. 

- Computing Combiner: computes, the barycenter of all centroids 

received. 

SGD [169]: adjust the weights of a model to minimize its objective function. 

- knowledge: vector of weights w (initially random). 

- Local convergence: until local convergence or heartbeat, A computes 

the gradients associated with the w vector for a small sample of its 

data (mini-batch) in order to iteratively update the model. 

- Synchronization: computes the average of the all w vectors received 

from other sub-QEPs it has heard of, and integrates the result in 

knowledge. 

- Computing Combiner: computes the average of the all w vectors 

received. 
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5.3 HYBRID-BASED EXECUTION STRATEGY 

As the name suggests, the Hybrid strategy proposes a new method that 

combines the previous mechanisms, namely Backup and Overcollection, with 

the advantage of being able to adapt and benefit from each method 

depending on the situation. 

5.3.1 Enforcing Resiliency 

We have seen that the Backup strategy causes inconsistency problems when 

the QEP includes vertical partitioning. To avoid these problems, the idea of 

the Hybrid method is to assign backups only to Computers and use the 

Overcollection principle to compensate for the probability of fault 

presumption of the Snapshot Builders (see Figure 5.6). In fact, integrating 

backups within partitions is a smarter resiliency solution than continuously 

adding overcollection partitions, especially when the degree of vertical 

partitioning is high (since each SPF must survive for the partition to succeed). 

In this configuration, the probability of success of one partition is determined 

by the equation 𝑝𝑝 = (1 − 𝑝𝑓) × (1 − 𝑝𝑓
(1+𝑏)

)(|𝑆𝑃𝐹|−1), with pf the probability 

of fault presumption, |SPF| the number of SPFs in the partition (i.e., Snapshot 

Builder and Computers) and b the number of backups per Computer. As with 

the Overcollection strategy, the success for the n+m partitions is constrained 

by the inequality ∑ (𝑛+𝑚
𝑖

)𝑝𝑝
𝑖(1 − 𝑝𝑝)(𝑛+𝑚−𝑖) ≥ 𝑝𝑠

𝑛+𝑚
𝑖=𝑛 , with ps the expected 

probability of success. Once again, we use Active Backups to make the 

Computing Combiner fault tolerant. 

 

Figure 5.6: Resiliency based on the Hybrid strategy 
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Note that both parameters b and m can be adjusted to achieve the success 

rate ps, thus we can design different optimization strategies depending on 

whether it is better to have more backups or more overcollected partitions. 

For example, we can choose them to minimize the number of nodes involved 

in the QEP or to minimize the number of messages sent over the network. 

5.3.2 Impact on Validity and Confidentiality 

Similar to the “pure” Overcollection strategy, the Hybrid execution plans use 

only one Snapshot Builder per partition. This mechanism ensures by 

construction that the snapshot is unique for each partition. Thus, even if the 

QEP incorporates vertical partitioning, the Computers are guaranteed to be 

consistent because they process exactly the same snapshot. However, the 

Validity is not so trivially guaranteed when the queries are iterative and the 

Computers of multiple partitions have to exchange information before 

producing their final result. Indeed, as explained in the previous section, the 

strict Validity property would require that all Computers in all partitions 

exchange the same information (data, aggregates or hints) at each iteration 

to form a consistent view. But if we follow the same approach as before, i.e., 

relaxing the property to tolerate partial and non-uniform exchanges between 

Computers, we then lose the interest of having added backups to the 

Computers since each Computer will only need to receive information from 

a subset of the others, and therefore there is no necessity to activate the 

backups. This particular issue will be further detailed in the next section. 

Avoiding data inconsistency problems is not the only advantage of the 

Hybrid solution. While Active Backups on Snapshot Builders may be 

necessary to ensure data consistency in the Backup strategy (consensus 

solution), this is no longer the case in Hybrid since each partition has only 

one non-backuped Snapshot Builder. This limits the exposure of individual 

data involved in the representativeness predicates to a single node instead 

of 1 + 𝑏 for the Backup strategy. Moreover, the mix between backup and 

overcollection mechanisms allows for a trade-off between individual and 

collective exposure. Although it is difficult to say which exposure is best, as it 

depends on the context, we will see in Section 6.1 that this exposure is often 

an order of magnitude lower than Backup alone or Overcollection alone. 

5.4 QUALITATIVE EVALUATIONS 

This section compares qualitatively the three execution strategies. Our goal 

is to guide a potential Recipient towards the right execution model when 

designing a computation dedicated to the Edgelet computing paradigm. This 
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choice depends on the type of computation to be performed, the way to 

define a representative snapshot for this computation and the expected 

query deadline. We can draw some design rules from the statements 

summarized in Table 5.1. 

Resiliency 
Type of 

computation 

Snapshot 

definition 
Validity Confidentiality Success Rate 

Backup 

based 

resiliency 

Horizontally 

partitionable 

P 

partitionable 

By 

construction 

Activated backup 

exposed 

Requires 

large query 

deadline 

Vertically 

partitionable 
Any P Consensus 

Others Any P 
By 

construction 

Iterative Unrealistic 

Over 

collection 

based 

resiliency 

QEP 

reshapable 

P 

partitionable 

By 

construction 
Over 

collected data 

exposed 

Supports 

very small 

query 

deadline 
Iterative 

reshapable 

P 

partitionable 

Ground 

validity 

P not partitionable Invalid 

Hybrid 

based 

resiliency 

QEP 

reshapable 

P 

partitionable 

By 

construction 

Activated backup 

and over collected 

data exposed 

Supports 

small query 

deadline 

Iterative or P not partitionable Inappropriate 

Table 5.1: A taxonomy of execution strategies 

In this table, Horizontally/Vertically partitionable refers to the property of the 

computation to be distributed among several Data Processors, as explained 

in Section 4.3. Both forms of partitioning greatly make sense when conceiving 

a computation dedicated to the Edgelet computing paradigm, either to 

minimize the amount of data exposed at each Data Processor or to avoid the 

exposure in the same Data Processor of information sensitive when 

combined or even to minimize the Data Processor workload when energy 

consumption matters. While vertical partitioning does not impose additional 

constraint on the processing, horizontal partitioning requires that the set of 

representativeness predicates P be itself partitionable, i.e., that it can be 

applied to each partition independently (e.g., age > 65 is partitionable while 

median(age) < 10 is not). 

QEP reshapable refers to the capacity to reorganize distributive and non-

distributive operators in the QEP to be computed. This is a prerequisite to 
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exploit the Overcollection-based strategy for this QEP. Ground validity means 

that the Validity property defined in Section 3.5 cannot be enforced; hence, 

it is up to the Recipient to assess empirically the accuracy of the final result, 

as we did in Section 6.3 for Apriori, K-means and SGD. Finally, the 

Confidentiality column expresses the additional amount of data exposed by 

each strategy compared to an ideal strategy without resiliency (i.e., without 

backups nor overcollection). 

Based on this table, we can draw the following conclusions. First, if the QEP 

implementing the computation cannot be reshaped or if P is not 

partitionable, the Backup strategy is the only solution since applying 

overcollection would be equivalent to completely duplicating the query. 

Second, if the computation is iterative, the Overcollection strategy turns to 

be the only solution as well. Indeed, using backups, a consensus (or an 

equivalent mechanism) would be required at each iteration to ascertain that 

all participants consider in fine the same reference snapshot. Otherwise, only 

a Ground validity can be expected, but Overcollection outperforms Backup 

and Hybrid in this case (no additional protocols related to interactions with 

backups). Third, if the QEP is reshapable and P is partitionable, the right 

choice between Backup, Overcollection and Hybrid is driven by the expected 

success rate and by privacy considerations. Using Backup or Hybrid 

strategies, the query deadline must be calibrated to accommodate the 

number of backups defined at each QEP level (i.e., activate them one after 

the other in case of fault presumption), a factor which disappears with 

Overcollection alone for which the query deadline depends only on the 

average network latency and the number of levels in the QEP. This explains 

the query deadline requirements, which range from large for the Backup 

strategy to very small for the Overcollection strategy. 

Regarding privacy, the three methods do not expose data in the same way. 

Indeed, as explained in the previous sections, TEEs guarantee that data at rest 

is not exposed in backups until they are activated. Hence, the same personal 

data is potentially exposed in as many backups as required by the satisfaction 

of the Resiliency property and this number increases with the presumed fault 

rate of the OppNet. With Overcollection alone, in contrast, the same data is 

never exposed twice. However, data from a larger population of individuals 

must be involved in the computation due to overcollection. The Hybrid 

strategy combines both types of exposure, with the advantage of being able 

to adjust the proportion of each one by calibrating the number of backups 

and the number of overcollected partitions. This choice made by the 

Recipient as to how to expose personal data may influence the approval of 

the Regulator as well as the consent of the participants. 
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The taxonomy of solutions presented in Table 5.1 is still preliminary and more 

subtle design rules can be envisioned. In particular, the Ground validity 

should be more deeply investigated with the goal to identify finer classes of 

algorithms for which better validity guarantees can be expected. For instance, 

the Apriori implementation sketched in Section 5.2.3 exhibits the salient 

feature that Validity can be assessed a posteriori by the Computing 

Combiner. Indeed, (1) the reference dataset is the union of the partitions it 

received from the Data Processor it has heard of, and (2) a frequent itemset 

is necessarily frequent in at least one of these partitions. The Computing 

Combiner must simply check that enough information has been received to 

compute the support of all these candidate frequent itemsets. We expect also 

be able to guarantee the convergence for some algorithms when specific 

conditions are met but let these issues for future work. 
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This chapter presents our quantitative evaluations of the execution strategies 

presented earlier. Our objective is to validate the relevance of the Edgelet 

approach, calibrate the system parameters and verify its effectiveness. 

We first compare the three execution strategies, namely Backup (Bak), 

Overcollection (Ovr) and Hybrid (Hyb), providing insights to properly 

configure the resiliency parameters. Then, we implement a non-iterative 

Edgelet execution with the aim of calibrating the query deadline and 

achieving the targeted success rate. Finally, we test the iterative methods 

Apriori, K-means and Stochastic Gradient Descent to evaluate the quality of 

their results against a centralized execution. 

6.1 COMPARISON OF EXECUTION STRATEGIES 

In this first section, we want to study the respective behavior of the execution 

strategies presented in Chapter 5. To enable a fair comparison between the 

three resiliency mechanisms, we assume that the query deadline is correctly 

calibrated so that each message sent in the OppNet has enough time to 

reach its destination (see Section 6.2 for deadline adjustment). Consequently, 

the probability of fault presumption pf is reduced to the probability of device 

failure. Our goal is to observe the consequences of the resiliency methods, 

particularly in terms of personal data exposure and network overload. 

6.1.1 Overall Analysis 

To begin with, we examine the general impact of execution strategies on the 

Query Execution Plans (QEPs). We want to observe the transformations 

induced by the resiliency mechanisms (Bak, Ovr and Hyb), and to do so, we 

count the number of additional nodes introduced in the QEPs. Since these 

are redundant nodes, their presence in large numbers will be seen as a 

disadvantage, as they lead to additional data exposure and network overload. 
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 Passive Nodes Active Nodes 

Bak 
if (|C|=1): |𝑆𝑃𝐹| × 𝑏 × 𝑛 

else: |𝐶| × 𝑏 × 𝑛 

if (|C|=1): 0 

else: 𝑏 × 𝑛 

Ovr 0 |𝑆𝑃𝐹| × 𝑚 

Hyb |𝐶| × 𝑏 × (𝑛 + 𝑚) |𝑆𝑃𝐹| × 𝑚 

Table 6.1: Formulas for the Additional Nodes 

Table 6.1 shows the formulas used to determine the number of additional 

nodes for each strategy. We distinguish two types of nodes: those that are 

active, working in parallel with the primary nodes (active backups and nodes 

in overcollected partitions); and those that are passive, waiting to be 

activated (passive backups). Concerning the notations, we note |SPF| the 

number of Single Point of Failure in each partition, i.e., 1 Snapshot Builder 

and |C| Computers. For Bak, the number of backups b is calibrated using the 

formula of Section 5.1.1. Note that when |C|>1, we consider that the Snapshot 

Builders' backups must be active to establish a consensus on the dataset (see 

Section 5.1.2). For Ovr, the number of additional partitions m is adjusted 

using the formula of Section 5.2.1. And for Hyb, the pair (b, m) is chosen using 

the formula of Section 5.3.1 in order to optimize the sum of the number of 

additional nodes (passive and active). 

 

Figure 6.1: Additional Nodes per number of partitions 

Figure 6.1 presents the number of additional nodes for each strategy 

depending on the number of partitions (horizontal partitioning). We first 

study a basic setup with a single Computer in each partition (|C|=1) and a 

device failure probability of 10% (pf=0.1) for a success probability of 80% 

(ps=0.8). We observe that increasing the number of partitions greatly favors 
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strategies exploiting the overcollection principle (Ovr and Hyb). Moreover, 

Hyb perfectly mimics Ovr by increasing the number of additional partitions 

m while maintaining the number of backups b equal to zero. Note that even 

if the additional nodes are only passive for the Bak strategy, we saw in 

Chapter 5 that they necessarily induce extra overhead. Indeed, they generate 

a lot of communication for data replication, hence the objective to minimize 

their number. 

 

Figure 6.2: Additional Nodes per number of Computers (pf =0.1) 

Now that we have varied the horizontal partitioning, let us focus on the 

vertical partitioning, taking the same configuration as in previous chapters, 

i.e. n=10. Figure 6.2 shows that when the number of Computers per partition 

is low (|C|<6), Ovr and Hyb are identical and outperform Bak. From |C|≥6, we 

observe that Hyb begins to distinguish itself by finding a compromise 

between b and m that enables it to perform strictly better that the other two 

strategies. From |C|≥8, we see an inversion between the Bak and Ovr plots, 

with the number of additional nodes shifting in favor of Bak. As shown in 

Figure 6.3, this inversion occurs earlier as the probability of failure increase. 

The explosion in the number of additional nodes for Ovr is explained by the 

fact that, for the strategy to succeed, at least n partitions with all SPFs must 

"survive" failures, whereas for Bak, only one primary or backup Data 

Processor per SPF (Snapshot Builder and Computers) is needed in each 

partition to guarantee successful executions. 
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Figure 6.3: Additional Nodes per number of Computers (pf=0.2) 

Based on these results, we can draw the following conclusions: (1) horizontal 

partitioning greatly favors strategies based on overcollection (Ovr and Hyb), 

(2) vertical partitioning is detrimental to the Ovr strategy, especially when the 

probability of failure increases, and (3) the Hyb strategy is able to outperform 

Bak and Ovr by leveraging the strengths of both strategies. 

6.1.2 Personal Data Exposure 

Let us now consider the influence of these resiliency mechanisms on the 

exposure of personal data, both individually (i.e., how often the same data is 

exposed) and collectively (i.e., how many additional contributing individuals 

are included in the QEP). 

 Individual Exposure Collective Exposure 

Bak 
if (|C|=1): min=0, max=2 × 𝑏 

else: min=b, max=2 × 𝑏 
0 

Ovr 0 𝑚/𝑛 

Hyb min=0, max=b 𝑚/𝑛 

Table 6.2: Formulas for the Additional Exposure 

Table 6.2 gives the formulas used to calculate the additional exposure. 

Individual exposure indicates the number of times the same personal data is 

exposed. The minimum is determined by the number of active backups in the 

QEP, while the maximum is determined by the number of passive backups. 

Note that we count two additional exposures for Snapshots Builders and 

Computers backups, but that the number of Computers |C| is not taken into 
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account, as they process data of different individuals (otherwise, increasing 

vertical partitioning would undermine privacy). Regarding collective 

exposure, we consider the proportion of additional individuals involved in the 

QEP, which is given by the m/n ratio. Note also that, although these two 

measures aim to quantify additional exposure, they don't have the same 

meaning which makes them very difficult to compare. Individual exposure 

reveals the risk incurred by each individual, while collective exposure 

indicates the total number of individuals at risk. Depending on the 

application scenario and the type of queries, it will be the responsibility of 

the Recipient and the Regulator to find the right compromise. 

 

Figure 6.4: Additional Exposure per number of Computers (pf=0.1) 

Figure 6.4 shows on the same graph both types of exposure as a function of 

the number of Computers |C|. Although |C| is not directly considered when 

calculating personal data exposure, we saw in the last section that it strongly 

influences the number of backups b and the number of additional partitions 

m, which therefore impacts it indirectly. Let us take a look at what happens 

at |C|=2. For Bak, we observe that the minimal additional individual exposure 

is at 200%, indicating that the data is exposed to 2 active backups 

(corresponding to Snapshot Builders), and that the maximal additional 

individual exposure is at 400%, meaning that the data may also be exposed 

to 2 passive backups (those belonging to Computers). For Ovr and Hyb, we 

see an additional exposure at 50%, meaning that on the n=10 initial 

partitions, it is necessary to add m=5 other partitions to reach the target 

success rate of 80%. 
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Figure 6.5: Additional Exposure per number of Computers (pf=0.2) 

Similar to the analysis in the previous section, we see that, as the number of 

Computers |C| increases, the Ovr strategy deteriorates. For example, when 

|C|=7 and pf=0.2, we obtain an overcollection rate of over 600% (see Figure 

6.5). For Hyb, we observe a mixture of the two exposures. Indeed, above a 

certain threshold, the Hybrid method simultaneously integrates passive 

backups and additional partitions, with the (b,m) pair again chosen to reduce 

the number of nodes in the QEP. In fact, optimizing these parameters 

according to personal data exposure is rather complicated and application 

dependent, as the two measures (individual and collective) are not 

comparable. Nevertheless, we can see that this strategy seems to be a good 

compromise when the other two are no longer acceptable (e.g., |C|=8 on 

Figure 6.4: one additional backup and 30% additional collective exposure). 

6.1.3 Network Overload 

To complete this analysis, we propose an evaluation of network overload by 

counting the number of additional messages generated by each execution 

strategy. Although our objective is not to optimize network communications 

(see Chapter 3), we nevertheless wish to study the impact of strategies on the 

congestion they may generate. To this end, we are interested in measuring 

the number of messages containing data sent over the network, ignoring any 

other type of message (e.g. backup activation messages). As message size 

depends on the use case and the type of query, we assume a single size for 

all messages sent (whether data contribution or intermediate result). 
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 Mandatory Messages Potential Messages 

Bak 
if (|C|=1): (|𝐷| + 𝑛) × 𝑏 

else: [|𝐷| + (2 + 𝑏) × |𝐶| × 𝑛] × 𝑏 

if (|C|=1): (1 + 𝑏 + |𝐶𝐶|) × 𝑏 × 𝑛 

else: |𝐶| × 𝑏 × |𝐶𝐶| × 𝑛 

Ovr [|𝐷|/𝑛 + |𝐶| × (1 + |𝐶𝐶|)] × 𝑚 0 

Hyb 
[|𝐷|/𝑛 + |𝐶| × (1 + |𝐶𝐶|)] × 𝑚 + 

|𝐶| × 𝑏 × (𝑛 + 𝑚) 
|𝐶| × 𝑏 × |𝐶𝐶| × (𝑛 + 𝑚) 

Table 6.3: Formulas for the Additional Messages 

Table 6.3 provides formulas for counting the number of additional messages 

generated by the three resiliency strategies (Bak, Ovr, Hyb). We observe two 

categories of messages: mandatory messages, which are necessarily sent 

when the QEP is executed, and potential messages, which are sent when 

passive backups are activated. Regarding notations, we note |D| the 

cardinality of the dataset required for the query and |CC| the number of 

Computing Combiners with its specific backups (|CC|=1+bcc). Note that the 

number of messages sent by Data Contributors can be much higher than the 

target |D|. Indeed, snapshot construction requires an unpredictable number 

of contributions in order to satisfy the set of representativeness predicates P. 

As this unpredictable quantity of messages is context-dependent, we do not 

include it in our measurements. 

 

Figure 6.6: Additional Messages per number of Computers 

Figure 6.6 shows the number of additional messages according to the 

number of Computers. We have calibrated a horizontal partitioning of n=10, 

a failure probability of 10% and a success rate of 80%. For these parameters, 

the QEP needs only one Computing Combiner, i.e. no active backups 

associated (bcc=0). The cardinality of the target dataset is set to |D|=1000. As 
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might be expected, the vast majority of additional messages are related to 

the contribution phase. Bak is therefore disadvantaged, as every message 

sent by Data Contributors is replicated on the Snapshot Builder's backups. As 

for Ovr and Hyb, the strategies are again identical as long as |C|<6. This 

observation, already made in Figure 6.2, is explained by the fact that Hyb is 

still optimized to minimize the additional nodes in the QEP. 

Let us now look at Figure 6.7 to see how Hyb behaves when the pair (b,m) is 

calibrated to optimize the number of additional messages (mandatory and 

potential). We can see that Hyb is systematically better than the other 

strategies, and that the gap widens as |C| increases. In fact, like Ovr, the 

Hybrid strategy is naturally adapted to minimize the number of messages 

sent during the contribution phase, since Snapshot Builders have no backups. 

The advantage of Hyb over Ovr is that it is able to compensate for the 

probability of partition failure by adding backups to the Computers. This 

feature proves to be a real asset, since reducing the number of additional 

partitions leads to a drastic reduction in the number of additional messages 

sent. Note that this optimization is not without cost, as it inevitably entails 

modifications in the exposure of personal data. For instance, with pf=0.1 and 

|C|=3, Hyb will count 1 backup per Computer for a 20% overcollection instead 

of 0 backup for a 70% overcollection (see Figure 6.4). 

 

Figure 6.7: Additional Messages per number of Computers (Hyb optim) 
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6.2 ADJUSTMENT OF THE QUERY DEADLINE 

In this second section, we focus on how to calibrate the query deadline such 

that messages sent in the OppNet have sufficient time to reach their 

destination. Without loss of generality, we will focus on implementing a non-

iterative processing executed with the Ovr strategy. Indeed, adding backups 

(for Bak and Hyb) only shifts the deadline according to the procedure 

described in Section 5.1.1. Moreover, we have just seen in the previous 

section that the Ovr strategy is better in most configurations (with Hyb 

matching it by imitation). So, to study the query deadline, we built an Edgelet 

computing software on top of the Opportunistic Network Environment (ONE) 

simulator [77] providing detailed traces of OppNets communications (see 

Figure 6.8). We model two representative use cases with messages 

exchanged using an epidemic routing strategy [61], namely Mall and DomY. 

 

Figure 6.8: Mall simulation with the ONE 

Mall: Edgelet computing within a Mall of 0.16 km2, where 5,000 edgelets 

(customer smartphones following a RandomWayPoint movement) are 

opportunistically executing a query exchanging messages using Bluetooth 

when meeting. The mean OppNet latency obtained with ONE is �̅� = 1,936 s 

for a standard deviation σ = 933 s, resulting in a relative standard deviation 

of Rσ = 
𝜎

�̅�
 = 0.48 

DomY: the DomYcile project [21], with 8,000 personal home boxes (edgelets), 

800 healthcare workers (with constrained routes in ONE) within the Yvelines 

district (2,284 km2). We obtained a mean latency �̅� = 27,113 s with a relative 

standard deviation Rσ = 2.43, (i.e., σ = 65,794 s). 

Using the latencies computed by ONE, we execute a non-iterative QEP 

following the Ovr strategy, considering vertical partitioning on 3 Computers 

with a device failure probability of 10%. We used 3 values of m/n, ranging 
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from 0.5 to 1.5. To enable comparisons between Mall and DomY, we used on 

x-axis the query deadline divided by �̅�, called ⍺ hereafter, and measure the 

query success ratio (y-axis on Figure 6.9). To minimize random variations, we 

averaged the results of 300 executions. Note that we are only interested in 

the impact of message transmission along the QEP and not in studying the 

quality of its processing, the latter being easily assured as long as fewer than 

m partitions are lost (see Section 5.2.2). Therefore, we consider an execution 

successful when at least n partitions transmit their response to the Recipient 

before the query deadline. 

 

Figure 6.9: Query deadlines (for Overcollection) 

From these plots, we make 3 observations: (1) in the Mall context (small Rσ), 

all executions complete successfully with m/n ≥ 1 and ⍺ = 4 (vertical 

increase); while the DomY context requires much larger deadlines due to its 

larger Rσ which impacts the fault presumption; (2) having an underestimated 

m/n value is risky: it reduces the ratio of successful queries and requires a 

significantly higher query deadline in contexts with large Rσ (e.g., DomY); 

(3) having a larger m/n value is rather useless for small Rσ contexts (e.g., 

Mall), indeed, a small Rσ means that latencies are close to the mean, thus a 

well calibrated m/n is sufficient to absorb few late messages. 

In conclusion, the m/n ratio should not be underestimated and the query 

deadline should be fixed larger than �̅�×|hops| where |hops| is the number of 

hops in the query plan (in this case, 4: Data Contributor ➛ Snapshot Builder ➛ 

Computer ➛ Computing Combiner ➛ Recipient). Both m/n and the deadline 

should be overestimated when the OppNet latencies have a large Rσ. Thus, 

the query deadline should be fixed (for a 4 hops query) around 2 days for 

DomY and 2-3 hours for Mall, values that are quite reasonable given our 

application context. 
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6.3 QUALITY OF ITERATIVE COMPUTATIONS 

In this third section, we examine the Edgelet iterative execution of the 

algorithms presented in Section 5.2.3. Our approach is empirical: we aim to 

assess the relevance of the Iterative Brute-Force method by verifying the 

quality of the results obtained compared with a centralized execution. 

 

Figure 6.10: Heartbeat execution quality (Apriori and K-means) 

We first simulate the iterative algorithms Apriori and K-means, considering 

synthetic and real data sets used to evaluate their quality (e.g., [170] for 

Apriori). These Edgelet executions consider the QEP of Figure 5.5 with a 

horizontal partitioning of n=10 for m=10 additional partitions. We 

systematically measure the quality of Edgelet executions against centralized 

fault-free executions (y-axis on Figure 6.10). More precisely, for Apriori, we 

compare the association rules generated after frequent item mining in 

Edgelet executions to those obtained in centralized ones, and use the 

precision/recall metrics to assess the comparison. Similarly, for K-means, we 

compute the Percentage Change Inertia (PCI), i.e., the percentage change 

between the Edgelet inertia (intra-cluster variance) and the centralized one. 

The x-axis indicates the number of heartbeats during the query. To evaluate 

iterative methods in extreme conditions, we reduced artificially the heartbeat 

duration such that the observed proportion of late messages (i.e., messages 

arrived after the Heartbeat) is 80%, 90% and 95% (see Figure 6.10). 

We observe that even with no iteration, Apriori reaches 65% recall and K-

means reaches 30% degradation of its inertia. Both converge quite quickly 

towards a recall of 100% or a PCI < 0% (4 or 5 heartbeats for 80 or 90% late 

messages, 7 or 8 with 95% late messages). Note that with Apriori, precision 
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is always 100% (not shown). Indeed, as we verify that the Computing 

Combiners always receive n or more sub-QEPs results, we can thus remove 

potential false positive. With K-means, we observe that as the number of 

heartbeats increases, the PCI can become negative. The reason for this is that 

an Edgelet calculation with many heartbeats can be better than a centralized 

calculation, thanks to the fact that it considers up to m additional partitions. 

We then simulated the iterative Edgelet execution of Stochastic Gradient 

Descent (SGD) on a classification problem (Adult Income [171]) and a 

regression problem (California Housing [172]). As for Apriori and K-means, 

we consider the QEP of Figure 5.5 with a horizontal partitioning of n=10 for 

m=10 additional partitions. For classification, the underlying learning model 

used is a support vector machine, while for regression it is a linear model. For 

both, we use a constant learning rate and divide the number of maximum 

local iterations by a factor of 50 compared to centralized executions in order 

to reduce the amount of work on each edgelet. We then compare the 

accuracy of the model obtained on test data (mean accuracy for classification 

and coefficient of determination R2 for regression). 

 

Figure 6.11: Heartbeat execution quality (SGD) 

Figure 6.11.a and Figure 6.11.b show results of heartbeat executions on the 

two problems (classification and regression). The y-axis indicates the 

Percentage Change Accuracy (PCA), i.e. the percentage change between the 

model accuracy obtained with an Edgelet execution and that obtained with 

a centralized execution. At first glance, we can see that models built in 

Edgelet gradually converge towards the quality of centralized models. Even 

if the initial PCA is variable (-6% for classification and -40% for regression), 

since it depends on the learning rate and the maximum number of local 

iterations chosen, it does not prevent the models from progressing. Then, we 
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notice that the proportion of late messages is not a determining factor for 

convergence speed. In fact, the SGD algorithm's ability to work on small 

samples (mini-batches) at each iteration makes it a prime candidate for 

distributed and decentralized execution [169]. As a result, when the data is 

correctly distributed over the Computers, they compute a local model that 

naturally converges towards the best parameters. 

6.4 CONCLUSION 

Several lessons can be drawn from the quantitative evaluations carried out in 

this chapter: 

Firstly, based on several metrics (additional nodes, exposure, network 

overload), we are able to compare very precisely our three execution 

strategies: Bak, Ovr and Hyb. We have observed that the more the execution 

plans are distributed (horizontal partitioning), the better the strategies based 

on overcollection (Ovr, Hyb) perform compared to the Bak strategy. Indeed, 

the overcollection mechanism enables very fine-tuning of resiliency to 

achieve the target success rate, rather than systematically adding backups to 

all QEP nodes. We also found that when the number of Computers per 

partition (vertical partitioning) is not high, the Ovr and Hyb strategies are 

strictly identical (Hyb imitating Ovr). Above a certain threshold, the Hyb 

strategy becomes more efficient, especially in terms of network overload. 

Secondly, the implementation of OppNet use cases in the ONE simulator [77] 

has enabled us to better understand how to calibrate the query deadline. On 

the one hand, we found that it necessarily had to be adjusted according to 

the average latency of messages and the number of hops in the QEP, as a 

deadline chosen too short would inevitably lead to a very low success rate. 

On the other hand, we have seen that adding more partitions for Ovr (which 

also applies to Hyb) speeds up requests towards the desired success rate. In 

fact, for the same OppNet configuration, the higher the number of partitions, 

the greater the probability that some will be faster than others. Note that 

even if excessive overcollection can shorten the deadline, it comes at the 

price of greater collective exposure and network overload. 

Thirdly, heartbeat executions show quite good results on Apriori, K-means 

and SGD despite an (artificially) high ratio of late messages. Indeed, we have 

found that, as iterations progress, these three algorithms converge towards 

the same accuracy as centralized executions. The results thus obtained 

indicate that machine learning algorithms can be performed in the Edgelet 

context while enforcing Confidentiality, Resiliency and Validity. 
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In this chapter, we will show the implementation of the Edgelet computing 

paradigm through two demonstrations. The first one applies to the real use 

case DomYcile with messages sent in OppNets while the second one 

proposes to extend the usages with heterogeneous devices communicating 

in weakly connected settings. Although these applications share similarities, 

we will see that the objectives achieved are quite different, ranging from 

practical implementation to adaptation to other contexts. 

7.1 MEDICAL USE CASE IN OPPNETS 

This demonstration is a concrete application of the Edgelet computing 

paradigm to the DomYcile use case [21]. Our goal is to evaluate the relevance 

of the approach through complex distributed processing on sensitive data 

whose computations are performed on low-capacity and opportunistically 

connected personal devices. In this section, we will first give an overview of 

the implemented platform, then present the realized execution scenario and 

finally conclude on the obtained results. 

7.1.1 Implemented Platform 

 

Figure 7.1: Hardware of DomYcile secure boxes 
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Hardware platform. It includes a set of personal secure boxes, as deployed 

and delivered to each patient in the DomYcile project. As illustrated in Figure 

7.1, medical and social workers interact with patient folders hosted in the 

boxes through a smartphone application, thus completing their data over 

time. These secure boxes incorporate two STM32F417 microcontrollers 

(MCUs). The first MCU is dedicated to communications with the outside while 

the second manages the recorded data. To be even more precise, the second 

MCU is connected to a μ-SD card hosting the patient’s raw data, and to a 

tamper-proof TPM (Trusted Platform Module). This TPM secures the 

cryptographic keys and guarantees, during the secure boot, that the 

embedded code has not been tampered with. Hence, these secure boxes act 

as TEE-enabled devices and play the role of edgelets. 

Software platform. As shown in Figure 7.2, the demo software platform 

consists of the following components: (1) a Graphical User Interface (GUI) 

implemented in Dash Python [173] that allows interactive configuration and 

visualization of Edgelet queries; (2) an Edgelet manager that orchestrates 

executions and communications between edgelets; (3) an OppNet modeler 

that models the massive distribution of edgelets over the city of Versailles1, 

chief town of the Yvelines district. The OppNet modeler itself relies on the 

ONE simulator [77] and uses the generated message traces for the Edgelet 

manager to coordinate the executions in a similar way. Note that the Edgelet 

manager and OppNet modeler are only necessary for the demonstration and 

are not part of the platform deployed in the field. 

 

Figure 7.2: Architecture of the demonstration platform 

                                                
1 Concretely, we exported the map of the city of Versailles from OpenStreetMap and 

simulated the actual behaviors of the patients and health-workers in the DomYcile 

use case. 

https://www.openstreetmap.org/relation/30295


 

95 

7.1.2 Realized Scenario 

The demonstration allows to select a query among two representative ones 

of the DomYcile project: 

• A Grouping Sets query [174] which allows multiple Group-By clauses 

to be evaluated within a single SQL query (to cross multiple statistics 

over a same cohort of patients). 

 

• A K-means [168] followed by a Group By on the resulting clusters (to 

identify which characteristics most influence the dependency level of 

an elderly person). 

Then, the platform suggests to improve the privacy of the QEP in order to 

reduce data exposure in case of TEEs compromise. To do so, following its 

intuition, the user is invited to adjust the horizontal and vertical partitioning 

parameters presented in Chapter 4. Regarding fault tolerance, the user can 

configure the probability of failure for each device as well as the timeout for 

messages in the OppNet, both of which affect the presumption of failure. 

This configuration adjustment allows the user to observe automatic changes 

in the QEP to maintain resiliency, providing insight into the impacts of the 

overcollection strategy (see Figure 7.3). 

 

Figure 7.3: Configuration of a distributed QEP 
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Finally, the demonstration platform will proceed to the real-time execution 

of the resulting QEP on the boxes available for the demonstration (concrete 

edgelets), the rest of the operators being associated to a configurable 

number of simulated edgelets to attest scalability. The interactive GUI then 

provides a step-by-step visualization of the query execution, including input 

and output data for each operator as well as device failures and message 

losses. 

7.1.3 Obtained Results 

First, this demonstration illustrates a potential usage of the Edgelet 

computing paradigm through a real medical use case currently deployed in 

the field. It demonstrates that large-scale general-purpose computations can 

be performed over a set of opportunistic-connected devices while providing 

high security guarantees. Edgelet computing leverages the TEE security to 

perform computations on clear-text data (once decrypted locally), thus 

combining computation generality and scalability. 

Second, the demonstration shows critical parts of the Edgelet computing 

internals related to (1) privacy preservation, thanks to the support of 

horizontal and vertical partitioning, and (2) resiliency, thanks to the 

Overcollection strategy, well adapted to sampling queries. Hence, we firmly 

believe that Edgelet computing opens up important opportunities in terms 

of personal data management. 

7.2 WEAKLY CONNECTED PERSONAL DEVICES 

Opportunistic Networks are an extreme case of uncertain communications in 

terms of latency and then fault presumption. However, uncertainty is inherent 

in any decentralized computation over a crowd of personal devices, because 

devices can be disconnected at will, be temporarily out of reach, or simply 

fail. In this second demonstration, we aim at enlarging the use cases targeted 

by Edgelet computing, considering that the solutions presented in this thesis 

apply whenever decentralized computations need to be performed among 

personal devices connected through "uncertain" communications. 

The goal of this demonstration is twofold. First, it will exemplify the versatility 

of the approach by demonstrating the Edgelet computing mechanisms 

running on different weakly connected TEE-enabled devices (from PC with 

SGX up to smart objects with TPM). Second, it will present the internals of 

Edgelet computing and let the users play with important parameters related 

to resiliency and data privacy and observe the outcome by themselves. 
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7.2.1 Implemented Platform 

The first objective of this demonstration is to present the computational 

mechanisms of the Edgelet framework using TEE-enabled devices ranging 

from high-end device (PC) to low-end device (home box). Therefore, we 

deploy the following hardware: 

PC (Intel SGX). A laptop with an Intel Core i5-9400H 2.5GHz 4 Cores with 

SGX 1-FLC runs Ubuntu Linux 18.04 with SGX DCAP 1.14. The code is written 

on top of Open Enclave [175], an SDK for developing enclave applications in 

C/C++. Open Enclave provides support for Intel SGX as well as preview 

support for ARM TrustZone, thus aiming to generalize the development of 

enclave applications across TEEs. 

Home boxes (TPM). As already presented in Section 7.1.1, these secure 

boxes incorporate notably a STM32F417 microcontroller dedicated to the 

management of personal data. This microcontroller is connected to a μ-SD 

card hosting the owner’s raw data and to a tamper-proof Trusted Platform 

Module (TPM). This TPM secures the cryptographic keys and guarantees, 

during the secure boot, that the embedded code has not been tampered 

with. 

The second objective is to present the internal aspects of the solution, we 

thus developed the following software: 

• A graphical interface to interactively configure and visualize Edgelet 

queries. 

 

• An Edgelet manager to orchestrate executions and communications 

between simulated and real edgelets (PC and home boxes). 

 

• A web client accessible to users' smartphones via a QR code allowing 

them to monitor the processed data and interact in real-time with the 

execution. 

7.2.2 Realized Scenario 

In this demonstration, we will take the motivating example presented earlier. 

Let us assume that Santé Publique France (Recipient) wants to perform a set 

of queries on population health data to improve the quality of its services. 

Some individuals are equipped with a PC, others with a home box, but all are 

interconnected by uncertain communications. The scenario consists of two 

interactive parts related to the configuration and execution of Edgelet 
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computations. In the first part, the users will understand the impact of privacy 

and resiliency parameters on the QEPs. In the second part, they will follow 

the execution in real time and visualize the results obtained. 

Part 1: QEP Configuration. The users are first invited to select one of two 

queries: either a Grouping Sets query [174] to cross multiple statistics over 

the same data sample, or a K-means [168] followed by a Group By to identify 

which characteristics most influence the dependency level of an elderly 

person. Then, following their intuition, the users can try to improve the 

privacy of the QEP of the selected query to reduce data exposure in case of 

TEEs compromise. To do so, they can adjust the horizontal and vertical 

partitioning parameters, by specifying the maximum number of raw data per 

edgelet and selecting the attribute pairs to be separated. Finally, the users 

can vary the failure probability value of the scenario and observe automatic 

changes in the execution plan to keep it resilient. 

 

Figure 7.4: Data visualization for a distributed QEP 

Part 2: Execution of an Edgelet computation. After the users have 

configured the query as desired, we proceed to its real-time execution on the 

heterogeneous personal devices available for the demonstration (PC or home 

boxes), the rest of the operators being associated to a configurable number 

of simulated edgelets to attest scalability. First, we launch the collection 

phase where the Snapshot Builders receive contributions from thousands of 

simulated Data Contributors and build representative snapshots. Next, the 

Edgelet platform redistributes the data and launches the computation phase 
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with the corresponding Computers. At each step, the user can interact with 

the execution using their own smartphone to analyze the input and output 

data. At the end, the aggregated data is transmitted to the Computing 

Combiners for the combination phase and the query is completed. In case of 

failures or disconnections, the users are able to directly identify the 

concerned edgelets on the QEP and understand the impacts on the execution 

(see Figure 7.4). For example, we can intentionally power off some concrete 

devices to generate a failure at will. In order to verify the results, the users 

can take the same dataset used with the distributed edgelets and run the 

processing centrally on the platform. 

7.2.3 Obtained Results 

The demonstration shows the internals of the Edgelet computing framework 

applied to the fully decentralized context and illustrates its usage through 

execution scenarios on multiple personal devices. It helps to answer the 

following questions: 

Does Edgelet computing concretely make sense? The practical 

implementation on high-end and low-end personal devices demonstrates 

both its applicability and versatility. It shows that large-scale general-purpose 

computations can be performed over devices while providing high-security 

guarantees. This opens up important opportunities in terms of personal data 

management. 

Can any form of computation be handled? Edgelet computing leverages 

the TEE security to perform computations on clear-text data (once decrypted 

locally). It can then combine computation generality – demonstrated by our 

demonstration queries – and scalability – demonstrated by the number of 

simulated edgelets –, contrary to homomorphic encryption, secure 

multiparty computation, or local differential privacy solutions (see Section 2.4 

of the related works). 

Is privacy protected whatever the attack? While highly difficult to 

implement, side-channel attacks on a TEE could compromise the 

confidentiality of the data manipulated on that TEE. Edgelet computing 

counter-measures are horizontal and vertical partitioning. Through the demo 

GUI, the users are able to visualize the distribution of data among the 

edgelets and measure the respective benefit of both types of partitioning. 

They also understand that only the results of the computations, i.e., the 

aggregated data, are transmitted (encrypted) to the successor operators. 
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Can a query always proceed despite the failures? Providing fault tolerance 

in a distributed context where messages are sent among weakly connected 

personal devices is a real challenge, either because they are down or because 

they are temporarily unavailable (e.g., individual's smartphone offline). The 

demonstration shows that the Overcollection strategy can answer this: the 

users can vary the failure context (e.g., disconnection probability) and see the 

impact on the overcollection degree as well as the effects on the results 

accuracy. 
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8 CONCLUSION 

In the rapidly expanding landscape of digital technologies and data creation, 

it has become evident that the centralized models proposed by the web 

giants are reaching their limits. The need for privacy-preserving solutions is 

more crucial than ever, as privacy breaches and massive data collection 

continue to raise serious concerns. While data protection laws (e.g., GDPR) 

and the development of Personal Data Management Systems (PDMS) aim to 

empower individuals to regain control over their digital lives, it is difficult to 

establish a fully decentralized model that supports both personal and 

collective data usage. In this thesis, we explore the distributed use of these 

PDMS in an Opportunistic Network context, where messages are transferred 

from one device to another without the need for any infrastructure. The 

proposed approach enables the implementation of complex processing 

involving the data of thousands of individuals, while guaranteeing the 

security and fault tolerance of the executions. 

8.1 SUMMARY OF THE CONTRIBUTIONS 

As described in Chapter 3, the challenge of this research work is to combine 

the computational resources of personal devices (e.g., smartphones, personal 

computers, smart objects, etc.) to perform fully decentralized privacy-

preserving queries within Opportunistic Networks. Our contributions are the 

following: 

1. We define the Edgelet computing paradigm, leveraging the 

convergence between Trusted Execution Environments and 

Opportunistic Networks, as a new framework for performing complex 

processing on personal devices in a highly distributed, failure-prone, 

and infrastructure-less environment. We propose a shared 

responsibility model adapted to this framework, called Crowd Liability 

Model (CLM), to capture the liability shift from the data controller (in 

the GDPR sense) to the crowd. We then present the Query Execution 

Plans considered in this work and analyse the difficulties associated 

with their practical implementation. Based on this analysis, we 

formalize the problem to be solved with the definition of three 

properties of distributed systems, namely Confidentiality (security), 

Resiliency (liveness) and Validity (safety). 
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2. We propose a threat model dedicated to the CLM capturing the 

malicious attacks seeking to compromise the query executions. On 

this basis, we first design a protocol that establishes trust between 

the crowd members and the Recipient(s) of the queries. Second, we 

leverage the properties of TEEs to provide security mechanisms that 

preserve both the integrity of the decentralized executions and the 

confidentiality of the manipulated data. 

 

3. In order to make the executions tolerant to devices failures and 

message losses, we propose three resiliency strategies: Backup, 

Overcollection and Hybrid. As these strategies have different impacts 

on the validity of results and confidentiality of the data, we provide a 

qualitative analysis of all of them including a taxonomy of query 

scenarios for which they are more or less suitable. The findings of this 

analysis serve as guidelines for determining the most appropriate 

execution model when designing a computation under the Edgelet 

computing paradigm. 

 

4. We finally present quantitative evaluations of the proposed methods 

and strategies in order to validate them and study their limits. 

Furthermore, we propose two practical implementations of the 

Edgelet architecture that demonstrate both the genericity and 

security of the framework in real-world scenarios. While the first 

demonstration focuses on the medical use case of the DomYcile 

project, the second opens up new possibilities in terms of usage. 

Indeed, we show that the Edgelet paradigm can be applied to any 

environment composed of weakly connected personal devices, even 

heterogeneous ones. 

8.2 PERSPECTIVES 

To the best of our knowledge, this work is the first attempt to combine 

Personal Data Management Systems and Opportunistic Networks to propose 

fully decentralized privacy-preserving computations. Based on our proposed 

architecture, Edgelet computing, several research challenges remain to be 

investigated, including the following: 

Optimization of resource consumption. A first challenge is to explore the 

multiple optimization tradeoffs that exist between data confidentiality, query 

success rate and (local and global) resource consumption. As we explain in 

Chapter 3, we chose an epidemic diffusion of message in the Opportunistic 
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Network. This simplistic routing protocol has the benefit of maximizing the 

message delivery rate and minimizing message latency, but at the cost of 

significant network congestion and overhead. A significant improvement 

would be to incorporate individuals' social patterns into routing (e.g., BUBBLE 

Rap [176]) and facilitate query processing by assigning operators to the most 

connected devices (e.g., doctors, teachers). Such optimizations would lead to 

revisit the solutions enforcing the CLM’s Computation honesty, in particular 

the random assignment protocol to allow a (limited and controlled) degree 

of bias in favor of socially well-connected crowd members. 

Management of long-lasting snapshots. A second challenge is to integrate 

long-lasting snapshots (i.e., persistent datasets) to support processes 

routinely used in data analysis. Such processes start with an initial set of 

exploration queries to capture data frequency distributions before running 

precise database queries, data mining or machine learning algorithms. Long-

lasting snapshots could resort to specific indexing schemes to re-access sets 

of participating edgelets or materialized snapshot partitions kept (encrypted) 

on sets of edgelets. Obviously persistent data management would have 

various impacts on the properties of Confidentiality, Resiliency, and Validity. 

How to prevent data at rest from being the target of malicious attacks? How 

to preserve the consistency of successive queries in a fully decentralized 

environment? 

Improvement of the validity of iterative algorithms. A third challenge is 

to study classes of iterative algorithms compatible with Edgelet computing 

for which it is possible to prove the strict validity of the results. For example, 

as mentioned in Chapter 5, we observe that the Apriori algorithm executed 

in Edgelet can produce exactly the same results as a centralized execution. 

To go further and deepen our first experimental evaluations, it would be 

essential to theoretically prove the convergence of the algorithms. The 

research work of Lian et al. [169] on the convergence of the Asynchronous 

Decentralized Parallel Stochastic Gradient Descent particularly illustrates the 

interest of this type of proof. Thus, in the same direction, a theoretical and 

systemic analysis of iterative processing in Edgelet would be an important 

asset for the deployment of new applications in this context. 

Deployment of an operational platform. A fourth challenge is to deploy 

the Edgelet computing framework in real world. As detailed in Chapter 7, we 

have demonstrated that our research work is applicable to the DomYcile 

project, with the potential to bring real added value in terms of usage. The 

next step would be to valorize this work with an effective implementation of 

the Edgelet mechanisms within the deployed boxes. We will then have to deal 
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with the difficulties associated with the realities of the field, including the 

heterogeneity of the boxes' hardware. Indeed, the version currently deployed 

has no Internet connection while the new version will be equipped with a 4G 

chip. The environment will therefore be halfway between our two 

demonstrations, composed of both OppNet communicating devices and 

weakly connected ones. 
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