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Abstract
Understanding the properties of dense matter is one of the most outstanding challenges in nu-

clear (astro)physics. The purpose of this thesis is to contribute to this understanding in the

framework of the study of neutron stars. Neutron stars are ideal realizations of dense matter.

They contain dilute matter and inhomogeneous clusters in their crusts whereas the inner cores

of neutron stars explore matter at the largest densities in the universe, about 5 − 8ρsat where

ρsat ≈ 2.6 × 1014g cm−3. The study of such neutron star matter is presented in this thesis in

three parts.

In part I, we study the behaviour of dense matter by employing a meta-modeling approach.

This allows us to tightly constrain the nuclear symmetry energy, a key quantity in nuclear and

astrophysics. We confront the standard quadratic isospin expansion of the equation of state with

explicit asymmetric nuclear-matter calculations based on a set of commonly used Hamiltonians

including two- and three-nucleon forces derived from chiral effective-field theory. We study,

in particular, the importance of nonquadratic contributions to the symmetry energy. Our re-

sults suggest that the nonquadratic contribution to the symmetry energy can be systematically

determined from the various Hamiltonians employed, and we obtain 0.74+0.11
−0.08 MeV at nuclear

saturation density. Furthermore, we perform a detailed analysis of the implications of these

calculations for the crust of neutron stars. In order to do so, a compressible liquid drop model

is employed to model the finite-sized clusters in the neutron star crust. Our analysis allows us

to investigate the model dependence of the crust properties, and in particular the effects of the

behaviour of neutron matter at low density.

In Part II of the thesis, we emphasize the need to develop relativistic models of nuclear matter

which allow for a link between the fundamental properties of QCD, such as chiral symmetry

breaking and confinement, and the natural nucleonic degrees of freedom. In this regard, we

present and explore a model in which chiral symmetry is incorporated within the Walecka type

Relativistic Mean Field (RMF) model as well as the effect of confinement through the nucleon

response. The parameters of this model are controlled by properties such as the chiral potential,

the Lattice-QCD predictions, the quark structure, and two saturation properties (density and

energy). As a next step, the predictions of this chiral+confinement model are compared to two

other models: another chiral model - but without confinement effect - and the original RMF

model. For these three models, we additionally take care of parameter uncertainties and prop-

agate them to our predictions for dense matter properties employing Bayesian statistics. We

show that the combination of chiral potential with nucleon response represents a microscopi-

cally motivated and economical way to treat in-medium corrections and accurately reproduces

the other two models which are directly fitted to the empirical properties of nuclear matter. Fi-

nally, we find that, while these models are calibrated to the same properties at saturation density,

they differ in their predictions as the density increases.

Part III of this thesis is devoted to the study of phase transitions that could lead to the existence

of exotic degrees of freedom in the inner cores of neutron stars. We begin with a focus on first-

order phase transitions, which often softens the EoS and consequently reduces the maximum

mass as well as the radii of NSs. We challenge this conventional expectation by constructing

explicit examples of EoSs undergoing a first-order phase transition, but which are much stiffer

than their purely hadronic counterparts. We also provide comparisons with the recently pro-



posed quarkyonic EoS which suggests a strong repulsion in the core of NSs, and we show that

their stiffness can be realistically masqueraded by first-order phase transitions to exotic mat-

ter. Furthermore, we enunciate the fact that phase transitions could be indicated by non-trivial

structures in the density behavior of the speed of sound such as jumps and sharp peaks. We thus

employ a physics-agnostic approach to model the speed of sound in neutron stars and study to

which extent the existence of non-trivial structures can be inferred from existing astrophysi-

cal observations of neutron stars. We conclude that astrophysical information to date does not

necessarily require a phase transition to quark matter. Finally, the implications of perturbative

QCD calculations for the equation of state of neutron star matter are discussed.
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Résumé
La compréhension des propriétés de la matière dense est l’un des challenges les plus importants

de la physique nucléaire et de l’astrophysique des étoiles compactes. L’objectif de cette thèse est

de contribuer à cette compréhension dans le cadre de l’étude des étoiles à neutrons. Les étoiles à

neutrons sont des réalisations idéales de la matière dense. Elles contiennent de la matière diluée

dans leur croûte alors que les cœurs des étoiles à neutrons contiennent de la matière aux densités

les plus élevées de l’univers. L’étude de cette matière des étoiles à neutrons est présentée dans

cette thèse en trois parties.

Dans la partie I, nous étudions le comportement de la matière dense en utilisant une approche

de méta-modélisation de la matière nucléonique. Ceci nous permet de fixer des contraintes

strictes sur l’énergie de symétrie nucléaire, une quantité clé en (astro)physique nucléaire. Nous

comparons l’expansion quadratique en isospin de l’équation d’état avec des calculs explicites

de matière nucléaire asymétrique basés sur un ensemble d’hamiltoniens couramment utilisés, y

compris les forces à deux et trois nucléons dérivées de la théorie du champ effectif chirale («chi-

ral effective-field theory»). Nous étudions, en particulier, l’importance des contributions non

quadratiques à l’énergie de symétrie. Nos résultats suggèrent que la contribution non quadra-

tique à l’énergie de symétrie peut être systématiquement déterminée à partir des divers hamil-

toniens employés, et nous obtenons 0.74+0.11
−0.08 MeV à la densité de saturation nucléaire. En outre,

nous effectuons une analyse détaillée des implications de ces calculs pour la croûte des étoiles

à neutrons. Pour cela, le modèle de la goutte liquide compressible est employé pour modéliser

les agrégats dans l’écorce des étoiles à neutrons. Notre analyse nous permet d’étudier la dépen-

dance au modèle des propriétés de l’écorce, et en particulier les effets du comportement de la

matière neutronique à basse densité.

Dans la partie II de la thèse, nous soulignons la nécessité de développer des modèles relativistes

de la matière nucléaire qui permettent un lien entre les propriétés fondamentales de la QCD,

telles que la brisure de symétrie chirale et le confinement, et les degrés de liberté nucléoniques

naturels. À cet égard, nous présentons et explorons un modèle dans lequel la symétrie chirale

est incorporée dans le modèle de champ moyen relativiste («Relativistic Mean Field», RMF) de

type Walecka, ainsi que l’effet du confinement par la réponse du nucléon. Les paramètres de ce

modèle sont déterminés par des propriétés telles que le potentiel chiral, les prédictions de QCD

sur réseau, la structure des quarks et deux propriétés de saturation (densité et énergie). Dans un

deuxième temps, les prédictions de ce modèle chiral+confinement sont comparées à deux autres

modèles : un autre modèle chiral - mais sans effet de confinement - et le modèle RMF original.

Pour ces trois modèles, nous prenons en compte les incertitudes sur les paramètres et les propa-

geons à nos prédictions pour les propriétés de la matière dense en utilisant l’analyse bayésienne.

Nous montrons que la combinaison du potentiel chiral avec la réponse du nucléon représente

une manière économique et justifiée au niveau microscopique de traiter les corrections du mi-

lieu de l’équation scalaire du mouvement, reproduisant avec précision les deux autres modèles

qui sont directement adaptés aux propriétés empiriques de la matière nucléaire. Enfin, nous

constatons que, si ces modèles sont calibrés sur les mêmes propriétés à la densité de saturation,

ils diffèrent dans leurs prédictions lorsque la densité augmente.

La partie III de cette thèse est consacrée à l’étude des transitions de phase qui pourraient con-

duire à l’existence de degrés de liberté exotiques dans les cœurs des étoiles à neutrons. Nous
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commençons par nous concentrer sur les transitions de phase de premier ordre, qui souvent

adoucissent l’EoS et par conséquent réduisent la masse maximale ainsi que les rayons des NSs.

Nous remettons en question cette hypothèse conventionnelle en construisant des exemples ex-

plicites d’EoSs subissant une transition de phase de premier ordre, mais qui sont beaucoup plus

rigides que leurs homologues purement hadroniques. Nous établissons également des compara-

isons avec l’EoS quarkyonique récemment proposée, qui suggère une forte répulsion au cœur

des NSs, et nous montrons que leur rigidité peut aussi être déguisé de manière réaliste par des

transitions de phase du premier ordre vers de la matière exotique. De plus, nous montrons que

les transitions de phase pourraient être mise en évidence par des structures non triviales dans le

comportement en densité de la vitesse du son, comme des sauts ou des bosses. Nous employons

donc une approche agnostique de la physique pour modéliser la vitesse du son dans les étoiles

à neutrons et nous étudions dans quelle mesure l’existence de structures non triviales peut être

déduite des observations astrophysiques existantes des étoiles à neutrons. Nous concluons que

les informations astrophysiques obtenues à ce jour ne démontrent pas nécessairement qu’il ex-

iste une transition de phase vers la matière de quarks. Enfin, nous discutons des implications

des calculs de QCD perturbative pour l’équation d’état de la matière des étoiles à neutrons.
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Chapter 1

Introduction to Dense Matter Physics

Understanding the nature of matter when subjected to extreme conditions of temperature and

density is one of the biggest outstanding problems in physics. Our present understanding of the

phases of matter that appear at such thermodynamic conditions is summarized in Fig. 1.1. This

figure is called the phase diagram of Quantum chromodynamics (QCD) [1] since the properties

of matter at such densities and temperatures are directly linked with the physics of the strong

interaction as described by QCD [2, 3, 4]. Much progress in the understanding of the phase

diagram at finite temperature (and low density) has been made in recent years due to both

experiment and theory [5, 6, 7]. For instance, heavy ion collisions performed at laboratories

like the Relativistic Heavy Ion Collider (RHIC) [8] and the Facility for Antiproton and Ion

Research (FAIR) [9] allow for the exploration of this region of the phase diagram, as shown in

Fig. 1.1. The purpose of this thesis is, however, primarily to study low-temperature matter at

finite densities where our understanding is still quite limited.

In Fig. 1.1, the horizontal density axis is normalized such that the typical densities explored

in the bulk of atomic nuclei is indicated by ρsat. For reasons that we will discuss later, this

density is referred to as the saturation density of nuclear matter. The properties of matter, com-

posed of neutrons and protons in roughly equal numbers, around this density ρsat can mostly be

inferred from the characteristics of heavy nuclei [10, 11] and is therefore relatively well under-

stood despite the fact that the connection to QCD is still difficult, see discussion in Sec. 1.3. On

the other hand, matter at much larger densities ρ � ρsat is still poorly understood and a proper

understanding of such dense matter remains one of the most important unanswered questions

in nuclear and hadronic physics. While, in principle, these dense matter properties are deter-

mined by QCD, it has been very difficult to extract the QCD predictions for dense matter due

to its non-perturbative nature [12]. Ab-initio numerical lattice calculations, while having been

extremely successful at finite temperature, fail at finite density due to the ubiquitous sign prob-

lem [5, 6]. Furthermore, the lack of terrestrial experiments that probe high density matter make

this problem a very challenging one.

The only empirical evidence we have about cold matter at higher baryon densities comes

from the study of Neutron Stars (NS) [13]. NSs are astrophysical objects of extremes and an

introduction to these fascinating objects is given in Sec. 1.1. Here we only remark that it is well

understood that NSs contain matter up to 5ρsat to 8ρsat. The study of the composition of NSs

is therefore directly linked with the study of QCD at the highest densities encountered in the

universe. This makes NSs an ideal laboratory for the study of dense matter. Furthermore, in

recent years, enormous progress has been made in the experimental observations of NSs, see
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Figure 1.1: The schematic phase diagram of QCD showing the phases of matter at different

temperatures and densities, as well as the experiments and astrophysical sites that probe them.

The first order transition line between the hadronic and quark phases is shown in yellow and the

endpoint of this line i.e. the critical point [14] is shown as an orange dot.

Sec. 1.2. This makes the study of NSs extremely timely and exciting. The purpose of this thesis

is to contribute to this effort, namely the study of the nature of matter present in NSs.

The rest of this chapter is organized as follows. In Sec 1.1 we discuss the physics of NSs and

establish the astrophysical context of this work. In Sec. 1.2 the recent experimental observations

that have ushered in the so-called multi-messenger era is discussed. In Sec. 1.3 we discuss the

connection between the dense matter constrained by astrophysical NS observations and the

constraints one obtains at lower densities via terrestrial nuclear experiments. We will conclude

in Sec. 1.4 where a summary of the rest of the thesis is given.

1.1 The physics of neutron stars
NSs contain matter at the largest densities in the universe [13]. They therefore act as astrophys-

ical sites where a fascinating interplay of nuclear physics, particle physics, hadronic physics,

astrophysics, relativistic gravitational physics and magnetohydrodynamics occurs. NSs may

exhibit conditions and phenomena not observed elsewhere. For instance, exotic phases such as

hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity might

occur in NSs only. Furthermore, during dynamic stages of their lives, NSs exhibit opaqueness to

neutrinos and also explore matter at finite temperature. The surface magnetic fields might be in

excess of 1013 Gauss and some NSs rotate several hundreds of times per second, inducing gen-

eral relativistic effects such as frame-dragging. In this section, we will give a brief introduction

to some of these phenomena. Let us first begin with the birth of NSs.

1.1.1 The birth of NSs
NSs are sometimes dubbed as ‘Cosmic Zombies’ because they are the dead remnants of mas-

sive ‘normal’ stars. All normal stars, with our sun being the most prominent example, have
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thermonuclear lives during which a series of light elements undergo nuclear fusion. The energy

released in the fusion processes balances the star’s gravitational attraction, establishing equilib-

rium. A star’s first thermonuclear stage is the fusion of hydrogen into helium in its hot core.

With the exhaustion of hydrogen at the core, the star then proceeds to shell hydrogen burning,

and then to core helium burning. The ashes of the latter are predominantly carbon and oxygen.

What happens next is strongly dependent of the mass of the star [15].

Most stars, including our Sun, will die leaving behind carbon/oxygen white dwarfs with

radii close to the Earth’s radius and masses near 0.5 – 1.0 M�. These white dwarfs are born

slowly over hundreds to thousands of years through the ejection of the dying star’s heavy outer

mantle. There is no explosion. Note that the formation of helium white dwarfs is possible if

the progenitor’s mass is insufficient to support helium burning and, in the same spirit, heavier

stars might lead to the formation of neon or magnesium white dwarfs. These white dwarfs

support themselves against gravity by electron degeneracy pressure. Due to the Pauli exclusion

principle, at the densities achieved by massive white dwarfs, their electrons are relativistic.

Unlike a non-relativistic gas, a relativistic gas is more easily compressed by the force of gravity.

The electron degeneracy pressure is therefore only sufficient to stabilize white dwarfs up to

a certain maximum mass, the so-called Chandrasekhar mass [16]. The Chandrasekhar limit

depends on the composition of the star and is typically around 1.4 M�.

On the other hand, stars with masses around 8 to 20 M� have an entirely different evolu-

tion [17, 18]. There is no quiet mantle ejection and the thermonuclear cycle continues during

which heavier elements like neon, oxygen, and silicon are created. Finally, these products ignite

to produce iron and its isotopes near the peak of the nuclear binding energy curve. At this stage,

the core of these stars is essentially an iron or oxygen-neon-magnesium white dwarf, with the

mass of the core continuously increasing due to the above mentioned fusion processes. At a

certain stage, the core white dwarf exceeds the Chandrasekhar limit and the core collapses. In

less than one second the core of the star, which has a radius that is roughly equal to the radius of

our planet, implodes to a radius of about 10 km, achieving densities in excess of nuclear matter

densities and velocities one-fourth the speed of light. One of the most remarkable aspects is

that neutrinos become dynamically trapped during a timescale of the order of the star’s collapse

time. Also, the gravitational binding energy released in the collapse of the progenitor star’s

white dwarf-like core to a neutron star is about 3 × 1053 ergs [19, 20], which is about 10% of its

total mass.

The density in the core rises rapidly as the collapse progresses. When the density reaches

typical nuclear matter densities, core collapse halts abruptly due to the large value of the nuclear

incompressibility. This triggers a bounce which results in a shock wave that propagates to

about 100 to 200 km before it stalls. Neutrinos from the core, assisted perhaps by rotation,

convection, magnetic fields and hydrodynamical instabilities such as the Standing Accretion

Shock Instability (SASI) [21, 22], eventually resuscitate the shock and help it to overcome the

imploding mantle in order to launch a type II supernova explosion. The violent explosion throws

several heavy elements such as oxygen, carbon, magnesium and silicon into the interstellar

medium. The luminosity display of this event can be comparable to that of its parent galaxy for

months [23, 24].

The remnant that is left behind is called a proto-neutron star. These objects are rich in

leptons and are initially hot. Further, proto-neutron stars absorb a large part of the angular

momentum and the magnetic field of the initial star and thus can have strong magnetic fields
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Figure 1.2: The main stages of the birth and evolution of a NS taken from Ref. [13].

and high rotation frequencies, and can be detected by their emitted radio signals. This angular

momentum is gradually lost due to electromagnetic emissions whereas the proto-neutron star

cools via neutrino emission. Ultimately a cold, slowly-rotating neutron star is finally formed.

The main stages of the evolution described in this section is showed in Fig. 1.2.

1.1.2 Global structure of NSs: The mass-radius relation
General Relativity (GR) connects certain properties of dense matter with the relation between

the radius and the mass of neutron stars. Rotation, magnetic fields, and finite temperature make

only small corrections to the mass-radius (M-R) relation. The M-R relation is determined by

the equations of hydrostatic equilibrium. For a spherical object in GR, they were first derived

by Tolman [25] and later by Oppenheimer and Volkov [26], giving their names to the so-called

TOV (Tolman-Oppenheimer-Volkov) equations

dm(r)

dr
= 4πr2ε(r), (1.1)

dp(r)

dr
= −ε(r)c2

(
1 +

p(r)

ε(r)c2

)
dΦ(r)

dr
,

dΦ(r)

dr
=

Gm(r)

c2r2

(
1 +

4πp(r)r3

m(r)c2

)(
1− 2Gm(r)

rc2

)−1

,

where G is the gravitational constant, r is the radial distance to the center, c the speed of light,

p(r) the total pressure, m(r) the enclosed mass, ε(r) is the total mass-energy density and Φ(r)
the gravitational field. Note that in order to solve this system of coupled equations, the relation-

ship between p and ε has to be known. This link p(ε) is called the Equation of State (EoS). For
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Figure 1.3: Examples of several EoSs (left panel) and their associated mass-radius relations

(right panel). The curves of different colors correspond to different EoS models whereas the

different line-styles are obtained by varying the parameters of a given model. Figure taken from

Ref. [27].

NSs, the EoS needs to be known across several orders of magnitude in densities. While at den-

sities around saturation density the EoS is known fairly well, the uncertainties in the EoS grows

rapidly as the density increases. This originates from the fact that the degrees of freedom that

constitute dense matter and their corresponding interactions are poorly understood. Therefore,

we see that a solid understanding of the EoS is an extremely challenging but exciting task.

Regarding the numerical solution of Eqs. (1.1), one integrates numerically from the center

of the star r = 0 to the boundary r = R, with R being the radius of the NS. The boundary is

defined to be the value of the radial coordinate such that the pressure vanishes, i.e. P (r = R) =
0. Furthermore, a certain value for the central density ρc has to be chosen for this numerical

integration. The obtained solution then gives the gravitational mass M = m(R) and radius R for

the chosen value of ρc. This procedure can then be iterated for different values of ρc, allowing

for the construction of a sequence of NSs, each with a specific mass and radius. This sequence

lies on a curve in the mass-radius plane and is called the M-R relation.

Fig. 1.3 shows examples of several EoSs (left panel) with their associated mass-radius re-

lations (right panel) obtained by solving the TOV equations (1.1). We see that different EoSs

give different M-R relations and therefore a simultaneous measurement of mass and radius of

a NS could help to discriminate among possible EoSs. In the next section, we will see several

experimental advances in this regard. Also, note that for every EoS, the associated M-R curve

terminates at a certain maximum value of the NS mass. Beyond this mass, stable NSs cannot

exist as matter would collapse to form a black hole. This upper limit on the NS mass is called

the TOV limit and is denoted as MTOV. The existence of MTOV is a consequence of GR and

is a characteristic feature of Eqs. (1.1) due to the pole at r = 2Gm(r)/c2. However, its exact

value depends on the EoS, indicating that constraints on MTOV would immediately translate

into constraints on the underlying EoS.
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Figure 1.4: The major regions and composition inside a NS. The top bar illustrates expected

geometric transitions from homogenous matter at high densities in the core to nuclei at low

densities in the crust. Figure taken from Ref. [13].

1.1.3 NS composition
As shown in Fig. 1.4, a NS has five major regions, the inner and the outer cores, the inner

crust and the outer crust (the envelope), and the atmosphere [13, 15, 28]. The atmosphere is

very thin, up to a few centimeters and contains a negligible amount of mass. It is primarily

composed of hydrogen and helium. The outer crust extends from the bottom of the atmosphere

up to some hundreds of meters. This layer of the crust is constituted by a degenerate electron

gas as well as a lattice of neutron rich nuclei with atomic number Z ≈ 30. In this region the

pressure primarily originates from the electron degeneracy pressure. The electron Fermi energy

increases with the density which causes the nuclei to become more neutron rich. At some point,

the neutron chemical potential is zero and the neutrons start dripping out off the nuclei, creating

a dilute neutron gas. The point at which this occurs is where the outer crust transitions to the

inner crust [29].

The inner crust is about one kilometer thick. It consists of neutron rich nuclei, an electron

gas and also a neutron gas. As the density increases, more matter exists in the gaseous state

than inside nuclear clusters. Also, close to the transition point between the crust and the core,

the nuclei are expected to be drastically deformed. As shown in Fig. 1.4, it is expected that

the nuclei undergo a series of continuous deformations from spherical nuclei to 2-D cylindrical

nuclei to 1-D slabs of nuclei. This is called the nuclear pasta phase [13].

At roughly half saturation density, nuclei disintegrate completely and matter exists in a

completely homogeneous liquid state [28]. This region is called the core and it accounts for

99% of the mass of the NS. Its radius is about 10-15 kms. Based on the composition of the

homogeneous matter, the core can be divided into the outer core and the inner core. In the outer

core, matter exists in a uniform state of neutrons, protons, electrons and muons which appear
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around saturation density. The conditions of beta equilibrium, baryon number conservation and

charge neutrality determine the different particle fractions. The electrons and muons can be

approximated as quantum ideal gases, whereas the interaction between the nucleons has to be

taken into account for a realistic description of the outer core.

After about twice saturation density, we have the ultimate layer of the NS, the inner core.

Densities in this region can extend up to 5 to 8 times nuclear saturation density. The composition

of the inner core remains largely unknown and therefore serves as an exciting platform for

active research. It is possible that the inner core, like the outer core, consists of only neutrons

and protons (along with leptons) but with their interactions being significantly different at these

larger densities. On the other hand, it is expected that other ‘exotic’ degrees of freedom such as

hyperons appear in the inner core [30]. Other possibilities include the presence of pion and/or

kaon condensates [31, 32]. Another tantalizing possibility is the appearance of deconfined quark

matter composed of almost massless u and d quarks and even s quarks [33]. The transition

from ‘normal’ nuclear matter to these exotic phases might occur via a strong first-order phase

transition or a smooth crossover. A lot of research remains to be done in order to answer these

extremely interesting questions about the nature of the inner core of NSs.

1.2 Era of multi-messenger NS astronomy
The study of NSs and the dense QCD matter that they contain has undergone a major revolution

in recent years. This is due to recent advances in technology and experimental methods that have

allowed for unprecedented and remarkable observations of NSs. These observations include

detections of X-rays, radio waves and gravitational waves (GW). For this reason, the present

age is called the era of multi-messenger NS astronomy. In this section, we will elaborate on

three of these major experimental breakthroughs.

1.2.1 Gravitational waves
The first Binary Neutron Star (BNS) system was discovered by Hulse and Taylor almost four

decades ago and is called PSR B1913+16 [34]. Detailed observations of this BNS system found

that its orbital angular momentum was decreasing continuously due to the emission of gravita-

tional waves, providing the first indirect evidence of their existence [35]. Since the Hulse-Taylor

discovery, radio pulsar surveys have found several more BNS systems in our galaxy [36] and

detailed modeling based on these observations indicated that a direct detection of GWs from a

BNS merger was close at hand [37]. Finally, On 17 August 2017, the LIGO and Virgo obser-

vatories made the first direct detection of GWs from the coalescence of a BNS system [38, 39].

The GW signal was produced during the final minutes of the inspiral phase before the two NSs

finally merged together. Unlike the five previous GW detections, which were of merging black

holes not expected to produce a detectable electromagnetic signal, the aftermath of this merger

was also seen by 70 observatories on 7 continents and in space, across the electromagnetic

spectrum, marking a significant breakthrough for multi-messenger astronomy [40].

This GW event, called GW170817 allowed for stringent constraints on the EoS of dense

matter. Such constraints are possible because the GW emitted from two merging NSs is different

from that emitted from a system of two black holes. The most prominent effect of the NS

matter during the observed binary inspiral comes from the tidal deformation that each star’s
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gravitational field induces on its companion. We will therefore briefly summarize the theory of

tidal deformations of NSs.

Tidal deformability

When a neutron star is placed in a perturbing tidal gravitational field its shape is distorted,

expressed through an induced quadrupole moment [41, 42, 43]. Compact binaries that are

detectable with gravitational waves provide a natural stage for this interaction: the neutron star

binary component is subject to the gravitational field generated by its companion compact star.

The induced quadrupole moment of the neutron star will, in turn, affect the characteristics of

the GW as compared to GWs emitted from binary black holes.

The tidal deformability of a neutron star is a single parameter λ that quantifies how easily the

star is deformed when subject to an external tidal field. In general, a larger tidal deformability

signals a larger, less compact star that is easily deformable. On the other hand, a star with

a smaller tidal deformability parameter is smaller, more compact, and it is more difficult to

deform. Traditionally one can expresses the tidal deformability as

λ =
2

3
k2R5 (1.2)

where R is the radius and k2 is the dimensionless love number that depends on the EoS. The

parameter λ depends on the EoS due to the dependence of both R and k2 on the EoS. A related

quantity that is commonly also used is the dimensionless tidal deformability defined as

Λ =
λ

M5 (1.3)

where M is the mass of the star. Tidal effects are expected to impact both the amplitude and

the phase of the emitted signal, however the latter is typically better measured for GWs. The

GW signal can be expressed as a post-Newtonian expansion which is a series expansion in the

velocity of the inspiralling NSs u. This velocity is small compared to the speed of light during

the early stages of the inspiral. A term proportional to u2N relative to the leading order term is

referred to as an NPN contribution. In this framework, the tidal contribution scales as ≈ u10,

i.e. it is 5PN correction compared to the leading Newtonian term. This shows why tidal effects

are negligible when the stars’ separation is large, but become more important as the binary

approaches the later stages of its coalescence where velocities increase [41].

While the tidal deformability can be measured from GW signals, one needs to be capable

of computing the tidal deformability from an underlying EoS so that constraints on the EoS can

be obtained from GW signals. It turns out that with a given EoS, the love number k2 can be

calculated from the so-called pulsation equation at the surface of NSs [42, 43],

k2 =
8C5

5
(1− 2C)2 (2− yR + 2C(yR − 1))

×
(
2C(6− 3yR + 3C(5yR − 8))

+4C3
(
13− 11yR + C(3yR − 2) + 2C2(1 + yR)

)
+3(1− 2C)2 (2− yR + 2C(yR − 1)) ln(1− 2C)

)−1

, (1.4)
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where C is the compactness of the NS, yR is the value of the y function at radius R, yR = y(r =
R), and y(r) is the solution of the following differential equation,

r
dy

dr
+ y2 + yF (r) + r2Q(r) = 0 , (1.5)

with the boundary condition y(0) = 2 and the functions F (r) and Q(r) defined as,

F (r) =
1− 4πr2G[ε(r)− p(r)]/c4

1− 2M(r)G/(rc2)
, (1.6)

r2Q(r) =
4πr2G

c4

(
5ε(r) + 9p(r) +

∂ε(r)

∂p(r)
[ε(r) + p(r)]

)
× (1− 2M(r)G/(rc2)

)−1 − 6
(
1− 2M(r)G/(rc2)

)−1

−4G2

r2c8
(
M(r)c2 + 4πr3p(r)

)2 (
1− 2M(r)G/(rc2)

)−2
.

(1.7)

EoS constraints from GW170817

As mentioned earlier, the first GW from a BNS system was detected on 17 August, 2017 and is

called GW170817. The detection of the signal corresponding to the final stages of the inspiral

phase allowed for the determination of Λ1 and Λ2, where these two parameters are the dimen-

sionless tidal deformabilities, see Eq. (1.3), of each component of the binary. The marginalized

posterior for the tidal deformabilities are shown in the left panel of Fig. 1.5 obtained from

Ref. [39]. In this figure the shaded green region represents the probability density obtained

using certain EoS-insensitive relations that relate Λ1 and Λ2
1. More details regarding the other

features of this plot can be found in Ref. [39].

Tidal deformabilities of NSs are closely related to their radii and therefore a constraint on

the tidal deformability can be converted into a constraint on the radius. In order to do this

Ref. [39] used a piecewise polytropic model for the EoS whose parameters can be varied in a

physics-agnostic manner. Tidal deformabilities and radii were computed consistently for each

EoS sample using Eqs. (1.1) and (1.4). This allows for the representation of the GW constraint

on the mass-radius plane as shown in the right panel of Fig. 1.5. We see that at the 90%

confidence level, the radius is constrained to be ≈ 12± 1.5 km.

In this section, we have summarized briefly how constraints on the EoS can be obtained

from the inspiral phase of the GW signal. As an example, we discussed the analysis performed

by Ref. [39] on the first ever BNS GW event GW170817. See Refs. [44, 45, 46] for other exam-

ples of constraints on the EoS obtained from GW170817 as calculated by several independent

groups.

Post-merger remnant of GW170817

Another fascinating aspect of GW170817, and BNS mergers in general, is the physics of the

remnant that is created due to the merger. It is widely accepted that the GW170817 binary-

merger remnant underwent gravitational collapse to a black hole marked by the observation of

1In fact, the EoS-insensitive relation relates Λa and Λs, where Λs ≡ Λ1+Λ2

2 and Λa ≡ Λ2−Λ1

2 [39]
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Figure 1.5: The left panel shows the marginalized posterior for the tidal deformabilities Λ1 and

Λ2 of the two binary components of GW170817. The right panel depicts the posteriors for the

mass and radius of each binary component using a parametrized EoS approach. Figure taken

from Ref. [39] where more details can be found.

a gamma ray burst [44]. This assumption can be used to obtain constraints on the maximum

mass that non-rotating NSs can have, MTOV. Recall from Sec. 1.1.2 that while the existence

of the maximum mass for non-rotating NSs MTOV is a consequence of GR, the exact value of

MTOV depends on the EoS since different EoSs predict different values for MTOV. Therefore a

constraint on MTOV serves as a strong constraint on the EoS.

It should first be noted that neutron stars with masses exceeding the maximum mass of non-

rotating configurations, MTOV, can exist if such masses are supported by rotation effects. There

also exists an upper limit on the maximum mass that can be supported by uniform rotation and,

following Ref. [47], we shall call this Mmax. Neutron stars with masses between MTOV and

Mmax are referred to as supramassive NSs, while the ones with mass higher than Mmax are called

hypermassive NSs. The latter configurations can only be supported by differential rotation.

Regarding the GW170817 event, there are indications that the collapse to a black hole likely

took place in a time frame of order 1-2 s. Based on this, the authors of Ref. [47] argued that

the GW170817 post-merger remnant collapsed to a black hole when its mass was close to

Mmax. Then, using EoS-insensitive relations between MTOV and Mmax, where the latter can

be inferred from the measurement of the total mass in the GW170817 event, the authors of

Ref. [47] obtained MTOV < 2.16+0.17
−0.15 M�. A similar analysis of Ref. [48] found that MTOV �

2.3 M�.

It is thus clear from this section that GWs provide a extremely interesting constraints on

the EoS. New observations will set sharper boundaries in the probability distributions over tidal

deformabilities and radii and also tighten estimates for the maximum mass MTOV.
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Figure 1.6: A sample pulse-profile observed by the NICER telescope for PSR J0030+0451.

Figure taken from Ref. [51] where more details can be found.

1.2.2 NICER observations
NASA’s Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope installed on

the International Space Station in 2017 [49, 50, 51, 52]. Its primary use is to estimate masses and

radii of NSs using pulse-profile modeling of rotation-powered pulsars. Pulse-profile modeling

is a technique that probes GR effects on thermal X-ray emission from localized hot regions

on the stellar surface [53]. The X-ray that is emitted from the hot regions undergo GR effects

due to the curvature of spacetime around the NS. These effects include the usual bending of

light, gravitational redshift and frame-dragging. As the star rotates, the X-ray beam is observed

by the NICER telescope as a periodic signal called a pulse-profile (X-ray counts per rotational

phase bin). A sample pulse-profile observed by the NICER telescope is shown in Fig. 1.6. A

significant amount of modeling is required to correlate the observation of the pulse-profile to

the global properties of the pulsar such as its mass and radius. Among these, the relativistic

ray-tracing of the X-ray through the spacetime around the rotating pulsar is well understood.

However, since the NICER telescope cannot resolve the spatial structure of the star, a model for

the surface comoving temperature field along with a model for the atmosphere is required. The

model dependencies arising from these two aspects are the primary sources of uncertainty in the

measurement of the star’s mass and radius. Finally, by coupling such surface emission models

to statistical sampling software, the NICER collaboration uses Bayesian inference to calculate

posterior probability distributions for parameters such as the mass and equatorial radius directly

from the pulse-profile data.

The first NS that the NICER telescope observed was PSR J0030+0451. From the above

mentioned pulse-profile modelling techniques, Ref. [51] estimated the mass and radius of this

pulsar. The obtained results were sensitive to the modeling of the surface temperature field and

the assumption of a fully ionized hydrogen atmosphere. Regarding the temperature field, the

pulse-profile data seemed to indicate that there were two distinct hot regions which were non-
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antipodal and non-identical. Ref. [51] considered various shapes for the hot regions including

circles, rings and crescents, with each hot region associated with a single temperature. For the

family of models considered, the configuration favoured by the data seemed to be the one in

which the hot regions consist of a small hot spot with angular extent of only a few degrees, and

a more extended hot crescent, both in the same rotational hemisphere. For this configuration,

the inferred mass and equatorial radius are M = 1.34+0.15
−0.16 M� and R = 12.71+1.14

−1.19 km. The

compactness M/R = 0.156+0.008
−0.010 is much more tightly constrained. See also Ref. [49] which

performed an independent analysis of the same data set using different modeling choices 2 and

methodology. More details on the modeling of the observed profile of PSR J0030+0451 can be

found in Ref. [54].

Later in 2021, the NICER collaboration announced results based on their observation of

PSR J0740+6620. Unlike the previous PSR J0030+0451 measurement, the mass of this pulsar

was already known thanks to radio observations, see Sec. 1.2.3. Furthermore, the mass of this

pulsar is around 2 M�, making this the heaviest known NS. Therefore the NICER results for

this pulsar were received with much enthusiasm. The same data set was analysed independently

by both Ref. [52] and Ref. [50]. The authors of Ref. [52] obtained R = 12.39+1.30
−0.98 km whereas

Ref. [50] obtained R = 13.7+2.6
−1.5 km. There are many differences in the modelling choices made

by the two groups. In particular, the prior on the radius assumed by Ref. [50] is much larger,

which explains the larger uncertainties in their results.

The results for the two pulsars PSR J0030+0451 and PSR J0740+6620 are shown in Fig. 1.7.

The green contours are obtained using the analyses of the Amsterdam collaboration [51, 52] and

the brown contours from the Illinois group [49, 50]. Note that constraints from GW170817,

as discussed in the previous section, are also shown here. This figure clearly illustrates the

influence the multi-messenger era has already had on our knowledge of the global properties of

NSs and consequently our understanding of the EoS of dense matter.

1.2.3 Mass measurements of heavy pulsars
While joint mass-radius measurements are very helpful, accurate mass measurements of certain

pulsars have also allowed us to gain valuable insight into the EoS of dense matter. Very accurate

measurements of NS masses are possible thanks to pulsar timing of radio signals. Fig. 1.8 dis-

plays the masses of several NSs present in binary systems measured using radio timing methods.

The associated uncertainties are shown as well.

Among these mass measurements, in recent years, NSs with masses around 2 M� have

been reported. In 2019, Ref. [56] observed a pulsar PSR J0740+6620 and reported its mass to

be M = 2.14+0.10
−0.09 M�. This mass measurement has been refined more recently by Ref. [57]

which gives an updated mass M = 2.08+0.07
−0.07 M�. They used a technique called relativistic

Shapiro delay, which is observable when a pulsar passes behind its stellar companion during its

orbital motion. This creates a small delay in the pulse arrival time induced by the curvature of

spacetime in the vicinity of the companion star. For a pulsar–white dwarf binary, the full delay

is of the order of 10 micro seconds. This pulsar is now recognized as the heaviest NS that has

ever been observed.

Earlier, in 2010, Ref. [58] reported the discovery of a 2 M� pulsar, J1614-2230 (though

2In particular, Ref. [49] concluded that the best modeling choices for the surface temperature field were models

with either two oval hotspots or three oval hotspots
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Figure 1.7: Figure from Ref. [55] displaying constraints from NICER [49, 50, 51, 52] as well

as from GW170817 [39].

the originally reported mass was 1.97 ± 0.04 M�, continued timing has led to a more precise

mass measurement of 1.928± 0.017 M� by Ref. [59]), also using the shapiro delay method. In

2013, Ref. [60] used optical techniques in combination with timing of the orbital period to yield

a mass measurement of 2.01 ± 0.04 M� for the pulsar J0348+0432. Finally, the existence of

extremely massive (> 2.4 M�) neutron stars has been suggested through optical spectroscopic

and photometric observations by Ref. [61]. However these measurements, in contrast with radio

timing methods, come with larger uncertainties.

As discussed earlier in Sec. 1.1.2, the determination of MTOV would place a significant

constraint on the EoS. Observations of such heavy pulsars imply that MTOV > 2 M�. This

immediately rules out several EoSs that are not repulsive enough to support such massive NSs.

1.3 Dense matter from terrestrial experiments
As mentioned earlier, only NSs can provide us with information regarding matter at several

times nuclear densities. On the other hand, the behaviour of matter close to nuclear densities is

interesting in its own right. Further, properties of matter at these lower densities can be shown

to be correlated with global properties of NSs [63]. Information regarding matter at nuclear

densities can be obtained based on the study of heavy finite nuclei.

The connection between the properties of finite nuclei and the physics of NSs is facilitated

by the concept of nuclear matter. We will discuss nuclear matter in full detail in chapter 2.

For the moment, we remark that nuclear matter is an idealized homogeneous infinite system of

neutrons and protons. In this medium, the ratio of the number density of protons to the number

density of neutrons can take arbitrary values. However, two interesting cases appear naturally:

(i) nuclear matter with an equal number of neutrons and protons, the so-called Symmetric Nu-
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Figure 1.8: Observed neutron-star masses from Ref. [62].
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Figure 1.9: Constraints on the correlation between Esym and Lsym from different experiments

and theoretical considerations. The left panel is taken from Ref. [65] where more details can

be found. The right panel is taken from Ref. [66]. The two panels are the same except that the

right panel additionally shows the latest PREX-II results [66].

clear Matter (SNM) and (ii) matter with only neutrons, or Pure Neutron Matter (PNM). As we

will see in chapter 2, the binding energy per nucleon in PNM is larger than in SNM, i.e. it costs

energy to convert a proton into a neutron. This required energy in nuclear matter is called the

nuclear symmetry energy. Knowledge of the symmetry energy allows us to connect the physics

of the matter explored in the bulk of atomic nuclei to the properties of neutron rich matter exist-

ing in NSs. In this section, we will give a brief review of how terrestrial experiments can help

constrain the symmetry energy, postponing its precise definition till chapter 2.

The symmetry energy esym(n), with n being the number density, can be expanded in a Taylor

expansion about the so-called nuclear saturation density nsat
3,

esym(n) = Esym + Lsymx+ . . . , (1.8)

where x = (n − nsat)/3nsat. Here Esym is the symmetry energy at saturation density and Lsym

is its slope at this point. Therefore several terrestrial experiments that attempt to constrain the

symmetry energy and its density dependence aim to measure the values of the parameters Esym

and Lsym. Different experimental constraints on Esym and Lsym are shown in Fig. 1.9. We will

now discuss some of these experiments.

3This density nsat ≈ 0.16 fm−3 [64] is defined as the density at which the pressure in SNM is zero. More

details are given in chapter 2.
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Nuclear Binding energies

In 1935, Bethe and Weizsäcker proposed a very successful formula for the nuclear binding

energies [67, 68]. In their formalism, the binding energy B(N,Z) is obtained as a function of

proton number Z and neutron number N with mass number A = N + Z,

B(N,Z) = avolA− asurfA
2/3 − ac

Z2

A1/3
− asym(A)

(N − Z)2

A
, (1.9)

where the different terms correspond to the volume, surface, Coulomb and symmetry energies.

A fit of this equation to known atomic masses across the nuclear chart can, in principle, yield the

symmetry energy. However, since the symmetry energy contribution to the total binding energy

can be small relative to those from the other terms, the unambiguous determination of Esym and

Lsym has proven difficult. To overcome this issue several refinements to the Bethe-Weizacker

mass formula such as the Finite Range Droplet Model [69] have been proposed. These include

additional microscopic features such as shell effects as well as macroscopic features such as

axially asymmetric nuclear ground states . Finally, when nuclear masses where reproduced to

within 0.1%, the parameters Esym and Lsym were constrained with an accuracy of about 1.5%
and 20% respectively [11], see Fig. 1.9.

Isobaric Analog State energies

Fits of nuclear binding energies to mass models must address ambiguities stemming from the

similarities in the influences of the different terms in Eq. (1.9) over the range of experimen-

tally measured masses. These ambiguities in the determination of the symmetry energy can

be removed by taking advantage of the charge independence of nuclear interactions, i.e. to

a very good approximation, strong interactions between nucleons do not depend on whether

the nucleons are protons or neutrons. For example, the nucleus 12C(Z = N = 6) has the same

wavefunction and nuclear contribution to the binding energy as the nucleus 12B(Z = 5, N = 7).

The 12C nucleus is called the “isobaric analog” of 12B. It follows from Eq. (1.9) that the energy

differences between two such isobaric analogs are given solely by the symmetry energy, apart

from a trivial Coulomb contribution that can be fixed by fitting to the whole mass table.

Therefore, by fitting to the excitation energies of isobaric analog states, Ref. [70] obtained

constraints on Esym and the Lsym parameter. Fig. 1.9 shows these constraints, labelled IAS+ΔR,

after a refinement including the diffusivity of the neutron skin was taken into account in the

calculation [71].

Neutron skin thickness measurements

In light and intermediate mass nuclei with N approximately equal to Z, the neutrons and protons

have similar density distributions. With increasing neutron number, the radius of the neutron

density distribution becomes larger than that of the protons, reflecting the influence of the sym-

metry energy. The difference δR of the neutron and proton root mean square radii is called the

neutron skin, i.e.

δR = 〈r2〉1/2n − 〈r2〉1/2p . (1.10)

Proton radii have been determined accurately for many nuclei using electron scattering ex-

periments [72]. This accuracy is due to the accuracy of perturbative treatments of the electro-
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magnetic process. The neutron density distribution is more difficult to measure. Recently, the

neutron radius in 208Pb has been measured by the PREX experiment in Jefferson Laboratory.

This experiment extracts the neutron radius in 208Pb via parity violating electron scattering.

Since parity violating scattering is mediated only by the weak interaction, this experiment mea-

sures the weak charge distribution in the 208Pb nucleus. Furthermore, the weak charge inside

the nucleus arises dominantly from the neutrons since the contribution from the protons is sup-

pressed by the Weinberg angle [73]. Thus a measurement of the parity violating amplitude

allows for an accurate determination of the neutron skin thickness.

Due to technical problems in the initial run of the experiment, uncertainties obtained by the

PREX collaboration were quite significant with the measured δR = 0.33+0.16
−0.18 fm [74]. However,

in 2021 the updated PREX measurement, PREX-II delivered on the promise to determine the

neutron radius of 208Pb with a precision of nearly 1%. They reported a value of δR = 0.283±
0.071 fm [75]. Subsequently Ref. [66] analysed the implications of this measurement on the

value of the Esym and Lsym parameters. They found that Esym = 38.1 ± 4.7 MeV and Lsym =
106 ± 37 MeV. The discrepancy between this result as compared to other measurements is

made clear in the right panel of Fig. 1.9. The astonishingly large value for Lsym has stirred

much debate in the community recently [76].

1.4 Summary and the structure of the thesis
In this chapter, the basic purpose of this thesis i.e. the study of the nature of dense matter

was introduced. We discussed that NSs serve as unique laboratories which allow us to study

dense and cold matter. Furthermore, we stressed that recent incredible measurements of NSs

have ushered in the era of multi-messenger NS astronomy, making this period an ideal time to

explore the physics of NSs. Finally, we clarified how experimental data probing matter in the

bulk of atomic nuclei can be helpful in understanding the neutron rich matter present in NSs.

The rest of this thesis is organized as follows. In chapters 2 and 3, we will analyse the nu-

clear symmetry energy in detail. While, the symmetry energy was introduced briefly in Sec. 1.3,

we will define and study this quantity in a much more rigorous manner. For this analysis, we

will use a certain microscopic ab-initio calculation that is referred to as chiral Effective Field

Theory (EFT). In chapter 4, we will build upon the analyses of chapters 2 and 3 in order to

apply the results of chiral EFT in the study of the crust of NSs. In this process, we will also

enunciate on the concept of an unified EoS that is applicable to both the crust and the core of

NSs. Chapters 2 to 4 constitute part I of this thesis.

Partly motivated by the fact that the sound speed in NSs is expected to be a significant

fraction of the speed of light, part II of this thesis will be focused on the development of rela-

tivistic models for nuclear matter. In particular, we will focus on relativistic models in which

the connection to the underlying properties of QCD, such as chiral symmetry and confinement,

are well established. We will confront such models against other models that do not have such

a clear connection to QCD. In contrast to chiral EFT, these relativistic models will be more

phenomenological in nature, i.e. at least some of the model parameters will be fit to empirical

saturation properties. However, the work developed in this part of the thesis will serve as a

useful tool in future analyses that attempt to study dense matter in a Lorentz-covariant approach

while keeping the connection to fundamental QCD properties.

In part III of this thesis, we will work on the question of phase transitions in NSs. It is
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certainly possible that at some densities explored in NSs, exotic degrees of freedom other than

nucleons appear. It will be the purpose of this part of the thesis to study different kinds of

transitions in dense matter. In particular, we will focus on first order phase transitions to exotic

matter as well as a crossover transition to quarkyonic matter. We will then attempt to deter-

mine if astrophysical observations require the presence of these kinds of phase transitions in

a physics-agnostic manner. Finally, the implications of perturbative QCD calculations for the

equation of state of neutron star matter are also discussed at the end of this part.

Most of the results presented in this thesis have been published in the following articles.

• R. Somasundaram, C. Drischler, I. Tews, and J. Margueron, Constraints on the nuclear
symmetry energy from asymmetric-matter calculations with chiral NN and 3N interac-
tions.
Published in: Phys.Rev.C 103 (2021) 4, 045803.

• G. Grams, J. Margueron, R. Somasundaram, and S. Reddy, Confronting a set of Skyrme
and Chiral EFT predictions for the crust of neutron stars.
Published in: Eur.Phys.J.A 58 (2022) 3, 56.

• G. Grams, R. Somasundaram, J. Margueron, and S. Reddy, Properties of the neutron star
crust: Quantifying and correlating uncertainties with improved nuclear physics.
Published in: Phys.Rev.C 105 (2022) 3, 035806.

• G. Grams, J. Margueron, R. Somasundaram, and S. Reddy, Properties of Neutron Star
Crust with Improved Nuclear Physics: Impact of Chiral EFT Interactions and Experi-
mental Nuclear Masses.
Published in: Few-Body Syst 62, 116 (2021).

• R. Somasundaram, J. Margueron, G. Chanfray, and H. Hansen, Confrontation of Different
Relativistic Descriptions of Nuclear Matter.
Published in: Eur.Phys.J.A 58 (2022) 5, 84.

• R. Somasundaram and J. Margueron, Impact of massive neutron star radii on the nature
of phase transitions in dense matter.
Published in: EPL 138 (2022) 1, 14002.

• R. Somasundaram, I. Tews, and J. Margueron, Investigating Signatures of Phase Transi-
tions in Neutron-Star Cores.
e-Print: 2112.08157 [nucl-th].

• R. Somasundaram, I. Tews, and J. Margueron, Perturbative QCD and the Neutron Star
Equation of State.
e-Print: 2204.14039 [nucl-th].
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Part I

Analysis and Implications of Chiral EFT
Calculations
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Chapter 2

Nuclear-Matter Equation of State and the
Symmetry Energy

2.1 Introduction
Since the discovery of Neutron Stars (NSs) in 1967, the accurate prediction of the properties

of nuclear matter has become of great importance and a lot of effort, both from theory and

experiment, has been devoted to this aim. Further, the Equation of State (EoS) of nuclear matter

connects neutron-rich matter inside NSs with the bulk properties of atomic nuclei [77, 78],

making it extremely valuable for nuclear physics, see recent reviews [79, 80, 81] and references

therein.

As mentioned in Sec. 1.3, nuclear matter is characterized by the total baryon number density

n = nn + np and the isospin asymmetry δ = (nn − np)/n, where nn (np) denotes the neutron

(proton) number density. The EoS of nuclear matter is primarily a description of the energy

per particle in this infinite medium as a function of density and isospin asymmetry, i.e. e(n, δ).
In particular, the isospin dependence of the EoS is very important as it can be shown to, for

example, govern the proton fraction in beta-equilibrium, determine the pressure in the core of

NSs, and hence, the NS mass-radius relation [82, 83, 84], and cooling via the direct URCA

process [85]. This isospin dependence of the EoS is represented by a quantity called the nuclear

symmetry energy. Due to its importance for many physical systems, the symmetry energy was

identified as a key quantity for nuclear (astro)physics in the 2015 DOE/NSF Nuclear Science

Advisory Committee Long Range Plan for Nuclear Science [86], and is actively investigated by

combining information from nuclear theory, astrophysics, and experiments.

Because NS observations still come with sizable uncertainties, the symmetry energy and

its density dependence cannot be inferred from NS properties alone [85]. Hence, various con-

straints on the symmetry energy have be been inferred from experimental data, e.g., determi-

nations of neutron skins in lead (PREX) and calcium (CREX) [74, 87], collective modes such

as giant dipole resonances [88], and heavy-ion collisions [11, 63], see Sec. 1.3 for a discussion

of some of these experiments. The determination of the symmetry energy is on the road-map

for several future experiments conducted at rare-isotope beam facilities such as FRIB at MSU,

SPIRAL2 at GANIL, and FAIR at GSI.

An extraction of the symmetry energy from nuclear theory as well as from nuclear ex-

periments and astrophysical programs requires that the measured quantities in these different
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approaches, as well as their relations, are well defined. Different approximations for the sym-

metry energy are commonly used. It is, therefore, important to clarify whether the symmetry

energy measured in laboratory experiments is the same quantity as the one inferred from NS

properties. The energy per particle of nuclear matter at zero temperature can be represented as

an isospin-asymmetry expansion from symmetric nuclear matter (SNM, δ = 0) to pure neutron

matter (PNM, δ = 1),

e(n, δ) ≈ e(n, δ = 0) + δ2 esym,2(n) + δ4 esym,4(n) +O(δ6) . (2.1)

Here esym,2(n) and esym,4(n) are the quadratic and quartic contributions to the symmetry

energy, respectively. Given the expansion (2.1), the quadratic contribution to the symmetry

energy is defined by the second derivative

esym,2(n) =
1

2

∂2e(n, δ)

∂δ2

∣∣∣∣
δ=0

, (2.2)

similar to the empirical Bethe-Weizsäcker mass formula for finite nuclei. Hence, esym,2(n) is

often referred to as the symmetry energy, and used in nuclear experiments. In practice, however,

the more commonly used definition of the symmetry energy is given by the difference between

the energy per particle in PNM and SNM,

esym(n) = ePNM(n)− eSNM(n) . (2.3)

While definition (2.3) requires the EoS only in the limits of PNM and SNM, Eq. (2.2)

necessitates explicit calculations of isospin-asymmetric nuclear matter (ANM). Both esym,2(n)
and esym(n) are equal if the isospin dependence of the energy per particle is purely quadratic,

i.e., non-quadratic terms in the expansion (2.1) vanish. However, there is no a priori argument

why this should be the case. In fact, non-quadratic terms have been found to be relevant for,

e.g., accurate studies of nuclear matter in beta-equilibrium at supra-saturation density [89, 90,

91, 92] and the crust-core transition density in NSs [91, 93].

In chapters 2 and 3, we will confront the expansion (2.1) with the explicit ANM calculations

based on chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions reported in Ref. [94]

and quantify the impact of non-quadratic contributions to the symmetry energy. We also inves-

tigate to which extent uncertainties in the microscopic approach affect the extraction of non-

quadratic contributions to the symmetry energy. In more details, Sec. 2.2 gives an overview of

previous studies of non-quadratic contributions to the symmetry energy. In Sec. 2.3, we present

our computational setup where we explain the details of the microscopic models that we have

chosen to analyse and, in Sec. 2.3.2, we compare it with other calculations. The complete

analysis of the EoS will be presented in chapter 3.
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2.2 Previous studies of non-quadratic contributions
As stated above, there is no a priori reason for the isospin-asymmetry expansion to be purely

quadratic. In general, even the free Fermi gas (FFG) energy per particle, given by

eFFG(n) =
tsat

SNM

2

(
n

nsat

)2/3 [
(1 + δ)5/3 + (1− δ)5/3

]
, (2.4)

with tsat
SNM = 3

5mN

(
3π2

2
nsat

)2/3
≈ 22.1MeV, leads to non-quadratic contributions to the expan-

sion (2.1). Here, nsat is the empirical saturation density.

The quartic term,

eFFG
sym,4(n) � 0.45MeV ×

(
n

nsat

)2/3

, (2.5)

represents a ≈ 3.5% correction to the FFG symmetry energy at nsat. Nuclear interactions also

contribute to non-quadratic terms; for example, the phenomenological Skyrme interaction [95]

gives the following quartic contribution to the symmetry energy:

eSkyrme
sym,4 (n) � eFFG

sym,4(n) +
k5

F

972π2
[3t1(1 + x1) + t2(1− x2)] , (2.6)

where kF is the Fermi momentum. The Skyrme parameters (t1, t2) represent the correction

to the bare nucleon mass generated by in-medium effects. Since the Skyrme in-medium mass

is generally ≈ 30 − 40% lower than the bare mass [95], these terms increase the eFFG
sym,4 by

≈ 30 − 40% to ≈ (0.7 − 0.8)MeV. In a recent work, Cai and Li [92] found esym,4(nsat) =
(7.2 ± 2.5) MeV, which indicates a rather significant difference between esym and esym,2. They

employed an empirically constrained isospin-dependent single-nucleon momentum distribution

and the EoS of PNM near the unitary limit. Subsequently, Bulgac et al. found that esym,4(n =
0.1 fm−3) = 2.635 MeV is necessary in order to reproduce properties of both finite nuclei and

the PNM EoS as calculated in Ref. [96]. In contrast, previous works, e.g., based on Brueckner-

Hartree-Fock (BHF) approaches and hard-core interactions [97, 98, 99, 100] obtained only

small non-quadratic contributions to the symmetry energy.

In a recent study of nuclear matter in many-body perturbation theory (MBPT) with con-

tributions from 1π-exchange, 2π-exchange, and three-body terms involving virtual Δ(1232)-
isobars, Kaiser [101] could not confirm such large values for esym,4. Instead, Kaiser found

esym,4 � 1.5 MeV at nsat, which is still about three times larger than the FFG contribution.

Moreover, Kaiser found contributions to the energy per particle whose fourth derivative with

respect to δ are singular at δ = 0. This was further substantiated by analytic MBPT calculations

based on an S-wave contact interaction, which gave rise to a singular term ∝ δ4 log |δ|—a term

that only contributes to the ANM EoS when δ 	= 0 and δ 	= 1, and which will be referred to as

the leading-order logarithmic term in the following.

Subsequently, Wellenhofer et al. performed a more detailed analysis of such divergences by

examining the δ dependence of the nuclear EoS as a function of density and temperature [102].

They found that the asymmetry expansion is hierarchically ordered, i.e., the lower-order coef-

ficients are dominant at high temperature and low density, but the expansion diverges at δ = 0
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with alternating sign in the zero-temperature limit. Around saturation density, their results in-

dicate that the convergence of the series expansion is restored for T � 3 MeV. Moreover,

they have argued that the logarithmic term at leading order considerably improves the isospin-

asymmetry expansion at zero temperature and suggested to include this term in future fits of the

EoS.

While mathematically well-defined, it is not clear whether the aforementioned divergence

of the series expansion in δ substantially impacts the practical usability of the expansion (2.1),

because corrections remain small at nuclear densities. Our knowledge of the symmetry energy,

and, more fundamentally, of the nuclear interaction itself, is limited by experimental precision

and by the theoretical understanding of strongly interacting systems. As a consequence, while

the series expansion in the isospin asymmetry can be determined with high accuracy when the

nuclear interaction and the many-body treatment are fixed (with numerical limitations as dis-

cussed in Ref. [102]), current theoretical uncertainties reduce our ability to accurately determine

high-order contributions in general. In this part of the thesis, we analyze the impact of these

uncertainties on the determination of the symmetry energy.

2.3 Computation of the Equation of State
We will use the explicit ANM calculations of Ref. [94] at zero temperature to study the impor-

tance of non-quadratic contributions to the symmetry energy. The authors of Ref. [94] computed

the EoS for ANM using a set of chiral NN and 3N interactions. We will therefore begin with a

brief overview of Chiral Effective Field Theory (χEFT).

2.3.1 Overview of Chiral Effective Field Theory
Chiral symmetry is one of the most prominent low-energy features of the gauge theory of col-

ored quarks and gluons (QCD) established in the 1970’s. The SU(Nf = 2) chiral symmetry of

QCD means that, in the limit of zero quark masses (called the chiral limit), light (u,d) quarks 1

with opposite parity are indistinguishable from each other. At energies relevant for nuclear

physics, chiral symmetry is spontaneously broken due to the condensation of quark-antiquark

pairs, mixing left handed and right handed quarks in the QCD vacuum: QCD prefers quark-

antiquark pairs with negative parity to the quark-quark pairs with positive parity [103]. Further-

more, according to Goldstone’s theorem, spontaneous symmetry breaking leads to Goldstone

bosons, which are massless excitations of the vacuum. These Goldstone bosons of sponta-

neously broken chiral symmetry are associted with the pions.

In addition to the spontaneous chiral symmetry breaking one expects a small but explicit

symmetry breaking originating from finite quark masses. For small masses indeed, as it is the

case in the physical world, chiral symmetry is explicitly broken. In reality the "Goldstone"

bosons are therefore quasi-Goldstone bosons with small masses. This explains why the quasi-

Goldstone boson, identified as the pion, has a small mass � 140 MeV compared to the other

mesons. The Gellmann-Oakes-Renner relation, f 2
πm

2
π = −2mq 〈q̄q〉vac, relates the pion mass

mπ to mq, the small but finite mass of the light u and d quarks.

1For the description of hyper-nuclei, this concept of chiral symmetry can be extended to the s quark within

SU(Nf = 3). In the present study, we however limit ourself to the SU(2) case.
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These chiral properties can be implemented in chiral perturbation theory. In this chiral EFT

framework initiated by Weinberg [104], the most general Lagrangian is expressed in terms of

the pionic degrees of freedom, dictated by symmetries, e.g. chiral symmetry. Nucleons can be

introduced as heavy sources coupled to pions, see Ref. [105] for a recent review, while heavy

mesons and nucleon resonances are integrated out and replaced by corresponding counter-terms

in the Lagrangian, since their masses happen to be much higher than the designed resolution

scale of the model. This effective approach is however unable to fix the parameters of the

Lagrangian, which are fitted to vacuum data. Within these limitations, the resulting EFT is

expected to be equivalent to QCD at low energy.

2.3.2 Nuclear Matter calculations from Chiral Lagrangians
As mentioned earlier, we use the explicit ANM calculations of Ref. [94] at zero temperature

to study the importance of non-quadratic contributions to the symmetry energy. The authors of

Ref. [94] used chiral NN and 3N interactions to compute the EoS in the framework of Many

Body Perturbation Theory (MBPT). Specifically, we analyze their results obtained with the

improved (angle averaging) approximation for normal ordering 3N forces and in a Hartree-

Fock single-particle spectrum. The calculations in Ref. [94] are based on the set of six chiral

NN and 3N interactions summarized in Table 2.1. These interactions are also commonly used

in nuclear-structure calculations [106, 108, 109, 110, 111, 112, 113, 114, 115, 107]. They

combine the N3LO NN potential EM 500MeV [116] evolved to lower momentum scales λ
using the similarity renormalization group (SRG) with bare N2LO 3N forces regularized by a

nonlocal regulator with momentum cutoff Λ3N. Hebeler et al. then fit the two 3N low-energy

couplings cD and cE for the different combinations of λ and Λ3N shown in Table 2.1 to the triton

binding energy as well as the charge radius of 4He [117]. Assuming N2LO 3N forces provide a

sufficiently complete operator basis, and the long-range low-energy couplings c1, c3, and c4 are

SRG-invariant, this approach captures dominant contributions from induced three–body forces

due to the SRG transformation. Note that the ci’s appear both in the NN and 3N interactions

at N2LO. As discussed in Ref. [94], the spread in the energy per particle obtained from these

nuclear interactions can serve as a simple uncertainty estimate—though with limited statistical

meaning.

The energy per particle in PNM obtained in Ref. [94] is depicted in panel (a) of Fig. 2.1

by blue dots whereas panel (b) represents the ratio of the energy per particle over the FFG

energy. In this work, we perform least-squares fits of nonlinear functions to this data. Each

fit parameter is guided by a (Bayesian) prior, which distinguishes our parametric fits2 from a

standard χ2 minimization. The parametric fits result in the posterior distributions shown as dark

(light) red bands corresponding to 68% (95%) confidence intervals in Fig. 2.1.

In Fig. 2.1, we also provide comparisons with the variational calculation of Ref. [119]

(APR), Fock-space formulated Quantum Monte Carlo (QMC) calculations of Ref. [96] (Wla-

zlowski et al. 2014), and continuum QMC calculations using auxiliary field diffusion Monte

Carlo of Ref. [120] (Tews et al. 2016). These calculations were not only conducted using dif-

ferent many-body approaches, but also different nuclear interactions: the APR result uses the

Argonne v18 (AV18) NN potential [122] and the Urbana IX (UIX) 3N force [123], Ref. [96]

employs the nonlocal momentum-space chiral N3LO NN interactions of Ref. [124] combined

2These fits were performed using the LSQFIT Python package [121]
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Table 2.1: Nonlocal N3LO NN and N2LO 3N interactions used in the MBPT calculations of

Ref. [94]. The interactions are based on the N3LO NN potential EM 500MeV [116] evolved to

the SRG resolution scale λ. The low-energy couplings cD and cE were subsequently fit to the

triton binding energy and the charge radius of 4He in Ref. [117] for different combinations of λ
and the 3N cutoff Λ3N. The 3N two-pion exchange is governed by the πN low-energy couplings

c1, c3, and c4, which were taken from the NN potential, except for H7 which uses the values

obtained from the NN partial-wave analysis (PWA) of Ref. [118]. Hamiltonian H6 has been

excluded as discussed in Section IV B of Ref. [94].

label λ [ fm−1] Λ3N [ fm−1] 3N c1,3,4 cD cE
H1 1.8 2.0 NN potential +1.264 −0.120
H2 2.0 2.0 NN potential +1.271 −0.131
H3 2.0 2.5 NN potential −0.292 −0.592
H4 2.2 2.0 NN potential +1.214 −0.137
H5 2.8 2.0 NN potential +1.278 −0.078
H7 2.0 2.0 PWA [118] −3.007 −0.686

Figure 2.1: Comparison of the MBPT predictions for the (a) energy per particle in PNM [94]

(blue points) with the APR EoS [119] (green squares), QMC calculations of Wlazlowski et al.
(2014) [96] (cyan triangles), and Tews et al. (2016) [120] (black dots) using different chiral EFT

Hamiltonians with NN and 3N forces. The latter points include simple estimates for the EFT

truncation error of the chiral expansion. We also show our fit posterior at 68% (95%) confidence

level as dark (light) red bands. (b) The same comparison but with a different scaling.
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with N2LO 3N forces as specified in Ref. [125], and Ref. [120] uses local coordinate-space chi-

ral interactions constructed in Refs. [126, 127, 128]. The first two calculations do not provide

theoretical uncertainties, while the latter estimates the standard EFT uncertainty [129]. Note

that, in general, order-by-order calculations are required for estimating EFT truncation errors.

Such calculations are not possible with the chiral Hamiltonians given in Table 2.1.

When comparing the approaches using chiral EFT interactions, the QMC calculations of

Ref. [120] agree with the MBPT approach employed in this work within uncertainties above

n ≈ 0.08 fm−3, while QMC finds slightly higher energies at lower densities. In contrast, the

QMC calculations of Ref. [96] find a higher PNM energy per particle at all densities, by about

≈ 1 MeV. We also compare the ratio ePNM/e
FFG
PNM as a function of neutron Fermi momentum kF

for the various calculations in the bottom panel of Fig. 2.1. In the figure, we can identify the

density region where the ratio exhibits a plateau, indicating a similar scaling of ePNM and eFFG

with kF. For the MBPT calculation, we find the ratio at the plateau to be ≈ 0.42(1) in PNM at

momenta kF ≈ 1.3(2) fm−1, which describes densities at ≈ nsat/2.

The comparison of the different results in Fig. 2.1 provides a qualitative illustration of the

uncertainties originating from the nuclear interactions as well as from the different many-body

approaches. While the MBPT results of Ref. [94] provide a simple uncertainty estimate, they

do not quantify EFT truncation errors, which can be significant at n � n0. Future order-

by-order calculations of ANM will enable statistically robust EFT uncertainty estimates using

the Bayesian framework recently developed by the BUQEYE collaboration [65, 130]. In the

present analysis, however, such systematic ANM calculations are not available. Therefore, we

follow the approach in Ref. [94], and consider the spread of the EoSs due to the Hamiltonians

in Table 2.1 as an uncertainty estimate.

2.4 Summary
In this chapter, we have discussed the importance of the nuclear-matter EoS and the symmetry

energy. We introduced the isospin expansion of the energy per particle (2.1) which allowed us

to clarify the difference between the quadratic symmetry energy (2.2) and the total symmetry

energy (2.3). The importance and the need to distinguish these two quantities were enunciated

and we then reviewed the literature on non-quadratic contributions to the symmetry energyin

Sec. 2.2. The following chapter 3 will be focused on a detailed computation of both esym and

esym,2 as well as an analysis of the EoS in the limits of SNM and PNM. The reference micro-

scopic calculations used to perform this analysis are those of Ref. [94] which used chiral NN and

3N interactions to compute the EoS in the framework of many-body perturbation theory. There-

fore, in this chapter, we also briefly reviewed the basic principles of chiral EFT (in Sec. 2.3.1)

and discussed the details of the chiral Hamiltonians used in our work. Additionally we com-

pared our results for the EoS in PNM with some other state-of-the-art ab-initio calculations in

Sec. 2.3.2.
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Chapter 3

Meta-Model Analysis of the Equation of
State from Chiral EFT

After the introduction of the nuclear-matter Equation of State discussed in the previous chapter,

we will now focus on a detailed Bayesian analysis of the EoS using the meta-model [64, 131].

Let us first review the isospin expansion of the energy per particle introduced in Chapter 2.

This will allow us to generalize this expansion which, in turn, will be useful for the up-coming

analysis.

3.1 Energy expansion in the isospin asymmetry parameter δ

A general expression for the expansion (2.1) of energy observables in nuclear matter was sug-

gested in Ref. [102], from which we consider all contributions up to δ4, including the logarith-

mic term, and rewrite it as

y(n, δ) ≈ ySNM(n) + ysym,2(n)δ
2 + ysym,4(n)δ

4 + ysym,log(n)δ
4 log |δ| , (3.1)

see Eq. (27) of Ref. [102] for more details. In the following, we will treat this expression

as a parametrization of the EoS’s δ dependence, in which the coefficients are determined by

parametric fits, rather than a formal expansion in δ. The term ysym,log,4δ
4 log |δ| originates from

the second-order contribution in the many-body expansion, as explained in Ref [102].

The corresponding contribution to the symmetry energy ysym is defined as

ysym(n) = yPNM(n)− ySNM(n) . (3.2)

The non-quadratic contribution to the symmetry energy is defined as

ysym,nq(n) = ysym(n)− ysym,2(n) . (3.3)

Note, that since the logarithmic term vanishes in SNM and PNM, it also does not contribute

to the non-quadratic term (3.3).

The quantity y in Eq. (3.1) can be the energy per particle e, as originally suggested by

Kaiser [101], or any other energy contribution. For instance, it can be the potential energy
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y = epot or the effective potential energy y = epot∗ defined as

epot(n, δ) = e(n, δ)− t(n, δ) , (3.4)

epot∗(n, δ) = e(n, δ)− t∗(n, δ) , (3.5)

where t and t∗ are the kinetic and effective kinetic energies (see Eq. (3.12) below) respectively.

In the following, we use these notations for analyzing the δ-dependence of the total, potential,

and effective potential energies.

The rest of this chapter is organized as follows. In Sec. 3.2, the derivation of the Landau

effective mass from the single-particle energy is presented. We then discuss the EoS in the

limits of PNM and SNM in Sec. 3.3, followed by the symmetry energy in Sec. 3.4. Finally, we

conclude in Sec. 3.5. The Python codes used to perform the analysis and generate the figures

are publicly available on GitHub [132].

3.2 Landau mass contribution to the symmetry energy
Non-trivial contributions to the symmetry energy can arise due to the effective mass, see for in-

stance Eq. (2.6). Therefore we characterize these effects here before commencing our analysis

of the energy per particle. The calculations performed here will allow us to introduce the ef-

fective kinetic energy t∗ which is necessary to compute the quantity y = epot∗(n, δ) introduced

in Sec. 3.1. We start with the single-particle energy ετ (k) in a Hartree-Fock spectrum (as in

Ref. [94]),

ετ (k, n, δ) ≈ k2

2mτ

+ Σ(1)(k, n, δ) . (3.6)

The first term in Eq. (3.6) is the single-particle kinetic energy, while the second term Σ(1)

denotes the spin-isospin-averaged first-order self-energy. We refer the reader to, e.g., Refs. [133,

94] for more details.

First, we consider the single particle energies calculated from Eq. (3.6). Figure 3.1 shows

the single-particle energy εn(k) in SNM and PNM evaluated at nemp
sat . The left (right) panel

depicts the NN-only (NN+3N) results, and the vertical lines mark the position of the neutron

Fermi momentum in SNM (kF,SNM = 1.33 fm−3) and PNM (kF,PNM = 1.68 fm−3) associated

with the nuclear saturation density, nemp
sat . The different curves show the results for the six

Hamiltonians H1 to H7 specified in Table 2.1. The spread is larger in SNM (about 15 MeV)

compared to PNM (about 5 MeV) because the 3N short- and intermediate-range contributions

governed by cD and cE do not contribute to the PNM EoS for nonlocal regulator functions. As

expected, SNM is more attractive than PNM, as a result of the attractive contributions from the

T = 0 channels, which are absent in PNM.

The momentum dependence of the nuclear interactions can be absorbed by modifying the

nucleon mass, which gives rise to the so-called in-medium effective mass and the Landau mass.

Specifically, Eq. (3.6) can be approximated as,

ετ (k, n, δ) ≈ k2

2m∗
τ (k, n, δ)

+ Σ(1)(k = 0, n, δ), (3.7)
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Figure 3.1: The neutron single-particle energies εn(k) as a function of the momentum k cal-

culated at nemp
sat , and extracted from the MBPT calculations of Ref. [94]. The different colors

correspond to the six Hamiltonians as labeled in the legend. We show the single particle ener-

gies obtained from (a) only NN forces and (b) when including 3N contributions. In each panel,

we present results for both SNM and PNM.

Figure 3.2: Same as Fig. 3.1 but for the neutron effective mass as function of the momentum k.

where the in-medium effective mass is defined as [134],

m∗
τ (k, n, δ)

mτ

=
k

mτ

(
dετ (k, n, δ)

dk

)−1

. (3.8)

Finally, the Landau mass is defined as the effective mass (3.8) evaluated at k=kF.

The effective masses in SNM and PNM are shown in Fig. 3.2 as functions of the momen-

tum k at a fixed density nemp
sat . The effective masses are lower in SNM compared to PNM,

in agreement with BHF calculations [97, 135, 136]. We find that the inclusion of 3N forces

leads to several interesting effects on the effective mass: (a) 3N forces generate a stronger

momentum dependence compared with NN-only calculations, and (b) 3N forces have a larger

impact on PNM than on SNM. Furthermore, the dispersion among the different Hamiltonians

is slightly larger when 3N forces are included. From Fig. 3.2, we find for the Landau mass

m∗
n/m(δ=0) = 0.64(2) in SNM and m∗

n/m(δ=1) = 0.88(4) in PNM when 3N forces are
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Figure 3.3: (a) Landau effective mass and (b) its inverse in SNM and PNM as a function of

the density. The black-dashed lines represent the upper and lower limits when only NN forces

are considered, while the grey-shaded regions show the results with 3N forces included. The

different colors correspond to the six Hamiltonians as labeled in the legend.

included. The difference between the Landau mass in PNM and SNM at saturation density,

defined as

Dm∗
n,sat = m∗

n(nsat, δ = 1)−m∗
n(nsat, δ = 0) , (3.9)

is about Dm∗
n,sat = 0.24(5) at nsat.

In Fig. 3.3, we show the Landau mass (left) and its inverse (right) considering NN-only

forces (dashed lines) and NN and 3N forces (gray bands) in SNM and PNM as a function of the

density, n. The difference of the Landau masses in PNM and SNM, Dm∗
n(n), increases with

density, and is found to be about 0.24 at saturation density, see also Fig. 3.2. While it is usually

found that the Landau mass decreases with density [97, 135, 136], we find that in PNM the

Landau mass first decreases at lower density, but increases again for n > 0.1 fm−3 (except for

Hamiltonian H3, which has a higher momentum cutoff applied to the 3N forces). This effect is

due to the inclusion of 3N interactions in the Hamiltonian.

Because many energy density functional (EDF) approaches approximate the inverse of the

Landau mass by a linear function in density [95], we show the inverse Landau mass in the right

panel of Figure 3.3. In contrast to the EDFs approaches, we find that the density dependence

of the inverse Landau mass is not linear, and that 3N forces enhance the nonlinear behavior. To

describe the inverse of the Landau mass as function of the density n and asymmetry parameter

δ. We consider the following functional form:

(
m∗

τ

m
(n, δ)

)−1

= 1 +

(
κsat

nsat

+ τ3δ
κsym

nsat

)
n+

(
κsat,2

n2
sat

+ τ3δ
κsym,2

n2
sat

)
n2 , (3.10)

where τ3 = 1(−1) for neutrons (protons). Note that we have neglected terms of higher order

in δ in Eq. (3.10). The parameters κsat, κsat,2, κsym, and κsym,2 are obtained from fitting the

expression (3.10) (in SNM and PNM) to the results computed using Eq. (3.8). The details of

our parametric fits are discussed in Appendix A. The relevant fit parameters, pα, are

pα = {κsat/nsat, κsat,2/n
2
sat, κPNM/nsat, κPNM,2/n

2
sat} . (3.11)
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Table 3.1: Fit parameters of the inverse Landau mass considering linear and quadratic den-

sity expansions. The fits are compared to three Skyrme-type interactions: NRAPR [77],

LNS5 [137], and SAMI [138].

κsat/nsat κsat,2/n
2
sat κPNM/nsat κPNM,2/n

2
sat

[fm3] [fm6] [fm3] [fm6]

linear 3.33(18) − 0.89(19) −

quadratic 6.25(35) −16.9(16) 2.63(14) −11.1(19)

NRAPR [77] 2.75 − 1.40 −

LNS5 [137] 4.12 − 2.19 −

SAMI [138] 3.03 − 2.87 −

These fit parameters are determined from the predicted Landau effective masses for each of

the six Hamiltonians. The results of the fits for the inverse of the Landau mass are given in

Table 3.1, where we have considered both, a linear and a quadratic fit function. The prior distri-

bution for each of the fit parameters is given by a normal distribution with mean 0 and standard

deviation 100, providing an uninformative prior. The fits are compared to three Skyrme-type

interactions: NRAPR [77], LNS5 [137], and SAMI [138] that satisfy the following conditions:

0.6 � m∗/m(SNM) � 0.7, Δm∗/m > 0 and 40MeV < Lsym < 60MeV.

In Fig. 3.4, we compare the posterior distribution functions for the Landau mass in SNM

(top panel) and PNM (bottom panel), and the input data. The predictions from the six Hamil-

tonians are plotted as solid lines, and, at each density, we calculate the centroid and 1σ interval

given the six Hamiltonians (black points with error bars). The ±1σ (±2σ) contours of the pos-

terior, corresponding to the 68% (95%) confidence region, are depicted in red (light red) for the

quadratic fit and dark blue (light blue) for the linear fit. We have fit the models to the data in

the range n = 0.15− 0.17 fm−3 for the linear fit (3 data points) and from n = 0.07− 0.20 fm−3

for the quadratic fit (14 data points). These values are chosen to allow for the ranges to be

as large as possible while, at the same time, ensuring that the fits reproduce the data around

saturation density. While the quadratic fit performs well even outside the fit interval, down to

n ≈ 0.05 fm−3 in SNM and PNM, the linear fit does not because of the strong curvature of

the Landau mass. The differences between the linear and quadratic fits are further analyzed in

Sec. 3.4.

The fact that the Landau mass induces non-trivial contributions to the symmetry energy can

be seen by explicitly including it in the effective kinetic energy

t∗(n, δ) =
tsat

SNM

2

(
n

nsat

)2/3 [ m

m∗
n(δ)

(1 + δ)5/3 +
m

m∗
p(δ)

(1− δ)5/3
]
. (3.12)

We have used this expression for t∗ (3.12) in order to present our generalized framework to

36



Figure 3.4: Results of the Bayesian parametric fits of the Landau mass in (a) SNM and (b)

PNM. The 68% (95%) confidence levels for the posterior distribution functions are shown as

dark-shaded (light-shaded) bands. The black lines represent the individual Hamiltonians, and

the black points show the average over the six Hamiltonians with ±1σ uncertainty bands.

analyze the EoS in the Sec. 3.1.

Finally, we study the splitting of the neutron and proton Landau masses in ANM, defined as

Δm∗
sat(δ) = m∗

n(nsat, δ)−m∗
p(nsat, δ) . (3.13)

In PNM (δ = 1), this splitting can be expressed in terms of the difference Dm∗
sat, see

Eq. (3.9), as

Δm∗
sat

m
(PNM) ≈ Dm∗

n,sat

m
+O

((
κsym + κsym,2

1 + κsat + κsat,2

)2
)

. (3.14)

From our fits estimated in Sec. 3.2, we can estimate that the neglected terms account for

about 5% of the splitting (more precisely, 7% for the linear fit of the effective mass, and 3%

for the quadratic fit), which is small considering the present uncertainty of this quantity. The

splitting of the Landau mass is, thus, approximately given by the difference of the Landau mass

between PNM and SNM. The splitting of the Landau mass obtained here is compatible with the

one obtained in the literature for BHF [97, 139, 140] and Dirac-BHF [135, 136] approaches.

3.3 Meta-Model for Symmetric and Neutron matter
To describe the MBPT data for the energy per particle in SNM and PNM, we use in this work

a functional form described by a Meta-Model (MM) for nuclear matter similar to the one sug-

gested in Ref. [64], but generalized to a potential energy with non-quadratic δ dependence. The

MM is adjusted to MBPT data sampled on a given grid in the asymmetry parameter δ [94].

This is in contrast to Ref. [102], who used a finite difference method [141] on an adjustable

grid to determine all derivatives with respect to δ of interest. The MM, instead, provides a flex-

ible polynomial-type approach to nuclear matter, which allows us to accurately determine the

higher-order coefficients in the δ expansion, even for the fixed grid considered here.
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For SNM and PNM, the energy per particle in the MM reads

eMM
α (n) = t∗α(n) + epot∗

α (n) , (3.15)

where α stands for either SNM or PNM. The kinetic energy is determined by Eq. (3.12) with

the Landau mass, see Sec. 3.2. The potential energies are expanded about nsat in terms of the

parameter

x ≡ n− nsat

3nsat

as follows

epot∗
SNM(n) =

N∑
j=0

1

j!
vSNM,jx

j + vlow−n
SNM xN+1e

−bsat
n

n
emp
sat ,

epot∗
PNM(n) =

N∑
j=0

1

j!
vPNM,jx

j + vlow−n
PNM xN+1e

−bPNM
n

n
emp
sat ,

where the second term on the right-hand side is a low-density correction. This correction rep-

resents the low-density contribution of all higher-order terms neglected in the summation, and

scales like xN+1 at leading order, where N is the upper limit of the power in the density ex-

pansion. In the original nucleonic MM of Ref. [64], the low-density EoS correction was simply

parameterized by a fixed coefficient b = bsat = bPNM ≈ 6.93. In the improved MM considered

here, we introduce two parameters (bsat and bPNM) controlling the density dependence of the

low-density corrections in PNM and SNM separately. It was suggested in Ref. [64] that using

an expansion up to N = 4 allows for the reproduction of the pressure and sound speed of about

50 known energy density functional (EDF) up to about 4nsat. In principle, it is not necessary

to consider such a high N in the present analysis. The inclusion of high-order contributions,

however, affects the determination of the low-order ones, as discussed in Ref. [142], even if the

data does not constrain the high-order terms themselves.

Imposing that the energies per particle vanish at n = 0 fm−3, we obtain the following rela-

tions

epot∗
α (n) =

N∑
j=0

1

j!
vα,j x

j uα,j(x) , (3.16)

where

uα,j(x) = 1− (−3x)N+1−je−bαn/n
emp
sat , (3.17)

and α indicates either SNM or PNM, and the corresponding bsat or bPNM. As an aside, we note

that the energy per particle in SNM receives contributions from cluster formation, such as alpha

clustering, at very low densities [143]. Such effects are not included in this work, however an

analysis of the EoS of clusterized matter relevant to the crust of NSs is presented in chapter 4.

In the MM, the coefficients vα,1 to vα,N are related to the nuclear empirical parameters

(NEPs), such as Esat, Ksat, Esym, Lsym, etc. The NEPs for SNM are defined by the density
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expansion

eSNM(n) = Esat +
1

2
Ksatx

2 +
1

6
Qsatx

3 +
1

24
Zsatx

4 + . . . , (3.18)

whereas the NEPs for PNM are defined by

ePNM(n) = EPNM + LPNMx+
1

2
KPNMx

2 +
1

6
QPNMx

3 +
1

24
ZPNMx

4 + . . . . (3.19)

We use the following relations between the MM parameters and the NEPs for the isoscalar

parameters controlling the SNM EoS:

vSNM,0 = Esat − tSNM(1 + κsat + κsat,2) , (3.20)

vSNM,1 = −tSNM(2 + 5κsat + 8κsat,2) ,

vSNM,2 = Ksat − 2tSNM(−1 + 5κsat + 20κsat,2) ,

vSNM,3 = Qsat − 2tSNM(4− 5κsat + 40κsat,2) ,

vSNM,4 = Zsat − 8tSNM(−7 + 5κsat − 10κsat,2) ,

while the isovector parameters describing the PNM EoS are

vPNM,0 = EPNM − 2
2
3 tSNM(1 + κPNM + κPNM,2) , (3.21)

vPNM,1 = LPNM − 2
2
3 tSNM(2 + 5κPNM + 8κPNM,2) ,

vPNM,2 = KPNM − 2
5
3 tSNM(−1 + 5κPNM + 20κPNM,2) ,

vPNM,3 = QPNM − 2
5
3 tSNM(4− 5κPNM + 40κPNM,2) ,

vPNM,4 = ZPNM − 2
11
3 tSNM(−7 + 5κPNM − 10κPNM,2) .

These relations represent another difference to the original nucleonic MM of Ref. [64],

where the isovector coefficients were determined assuming a quadratic isospin-asymmetry de-

pendence of the symmetry energy. The isovector contribution of the present MM is built on

the global symmetry energy (2.3), which allows for possible non-quadratic contributions to the

symmetry energy. These contributions will be estimated from the difference between the global

symmetry energy and its quadratic contribution, as detailed in Sec. 3.4.

In our MM there are five NEPs in SNM, including nsat, and five additional NEPs in PNM.

Considering the two parameters controlling the low-density EoS, bsat and bPNM, there is a total

of 12 parameters that need to be determined. Note, that these parameters carry uncertainties

that reflect the current lack of knowledge of the nuclear EoS. In our Bayesian fits, we use the

priors for the NEPs from the analysis presented in Refs. [64, 131] and summarized in Table 3.2.

Here, we additionally vary the parameters bsat and bPNM to reproduce the low-density behavior

of the energy per particle in SNM and PNM.

We show the fitted parameters in Table 3.2. Note, that both the posterior and prior of each

parametric fit is a normal distribution with mean value and standard deviation (printed in paren-

thesis). The posteriors we obtain for the NEPs may depend on the exact representation of the

data points, i.e., if the data is equidistant in n or kF. To gauge the sensitivity to this choice, we

investigate in the following three possible data representations. Figure 3.5 shows the results for

these so-called scalings.

Since we require a good representation of low-density nuclear matter in order to fix bsat and
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Table 3.2: Priors and posteriors of the NEPs from analyses of SNM and PNM. We report

results for the different scalings described in the text. Values within parentheses represent the

error bars at the ±1σ level. NEPs for the following three Skyrme-type interactions are given:

NRAPR [77], LNS5 [137] and SAMI [138].

Scaling nsat Esat Ksat Qsat Zsat bsat

(fm−3) (MeV) (MeV) (MeV) (MeV)

prior 0.160(10) −15.50(100) 230(20) −300(400) 1300(500) 0(50)

1 0.166(8) −15.48(58) 211(14) −573(133) 1055(474) 17(5)

2 0.163(8) −15.07(57) 227(18) −172(243) 1287(499) 9(5)

3 0.163(8) −15.07(57) 227(18) −172(243) 1287(499) 9(5)

3* 0.161(7) −15.17(57) 226(18) −306(186) 1324(497) 17†

NRAPR [77] 0.161 −15.85 226 −363 1611

LNS5 [137] 0.160 −15.57 240 −316 1255

SAMI [138] 0.159 −15.93 245 −339 1330

Scaling nsat EPNM LPNM KPNM QPNM ZPNM bPNM

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

prior − 16.00(300) 50(10) 100(100) 0(400) −500(500) 0(50)

1 0.166(8)†† 16.61(93) 48(5) 40(37) −320(224) −388(494) 42(4)

2 0.163(8)†† 16.30(93) 47(5) 75(40) 34(285) −504(497) 15(9)

3 0.163(8)†† 16.30(93) 47(5) 75(40) 34(285) −504(497) 15(9)

3* 0.161(7)†† 16.16(89) 46(5) 57(34) −110(206) −450(492) 42†

NRAPR [77] 0.161 18.33 65 108 −52 −236

LNS5 [137] 0.160 15.29 57 130 −34 −416

SAMI [138] 0.159 13.32 47 127 35 −873

† Fixed parameter. †† Quoted values are the nsat priors considered in PNM and obtained from

SNM posteriors.
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Figure 3.5: Comparison of the Bayesian inference results for the MM of this work (red bands)

with the MBPT data (blue points) for SNM (panels (a),(b),(c)) and PNM (panels (d),(e),(f)) and

the three different scalings described in the main text. The bands are given at the 65% (dark-

shaded) and 95% confidence level (light-shaded), whereas the data points are shown with the

±1σ uncertainty estimate.

bPNM, we adopt for scaling 1 the representation of e/eFFG as a function of the Fermi momentum

kF. Scaling 1 provides the best representation for analyzing the low-density properties of the

energy per particle because an equidistant grid in kF leads to a very dense data set at low

densities. Note that the original MBPT data [94] is provided on an equidistant grid in kF. The

scaling of the y-axis normalizes the energies to the same order of magnitude at all kF. For

scaling 2, we choose the representation of e/eFFG on an equidistant grid in density. We use

cubic splines to interpolate the energies per particle from the original Fermi momentum grid

to a equally spaced density grid. By switching from the equidistant grid in momentum to one

in density, scaling 2 reduces the weight for the low-density data points and, therefore, is more

appropriate to fit the NEPs, which are determined around saturation density. Finally, scaling 3

represents the energy per particle on an equidistant grid in density, as it is more often presented

in the literature. Hence, the only difference to scaling 2 is the normalization of the energy.

The results for each of the three scalings are shown in Fig. 3.5 for SNM and PNM, while the

posteriors for the NEPs are given in Table 3.2. Note, that the NEP nsat is only meaningful in

SNM, while its uncertainty influences the determination of the NEPs in PNM. In our approach,

we therefore vary nsat in PNM within the posterior uncertainty obtained from the fit in SNM. In

this way, the NEPs in PNM naturally include the uncertainty in nsat.

In the case of Scaling 1, when simultaneously varying the 12 MM parameters, we find

bSNM = 17(5) and bPNM = 42(4) as well as the values for the 10 NEPs given in Table 3.2. The

density dependence of the low-density correction is, thus, very different in SNM and PNM, in

contrast to the original MM of Ref. [64]. We find some differences between the NEPs obtained

from scaling 1 and scalings 2 and 3. These differences are usually small compared to the
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Figure 3.6: Results for the (a) symmetry energy, esym(n), (b) its potential contribution epot
sym, and

(c) the effective potential epot∗
sym using (3.22) - (3.23). The meaning of the individual bands and

points is the same as in Fig. 3.5. In the right panel, the light- and dark-shaded red bands and

the data (blue points) correspond to calculations where the Landau mass is represented by a

linear polynomial. The black squares (without error bars) and the black dashed lines (enclosing

a band) represent calculations where the Landau mass is represented by a quadratic fit.

uncertainties, except for Qsat in SNM, as well as QPNM in PNM. We note that the fits from

scalings 2 and 3 are identical and, hence, the scaling of the energy with respect to eFFG has a

negligible effect.

Finally, we fix the values for bsat and bPNM from scaling 1, and re-fit all remaining NEPs

considering scaling 3. The results are referred to as scaling 3∗. Fixing bSNM and bPNM has the

largest impact on Qsat and QPNM, as expected, but differences between scaling 3 and 3∗ are small

compared to the overall uncertainties. Hence, we conclude that the parameters bSNM and bPNM

do not have a significant impact on the determination of the NEPs, and can be fixed from the fit

to low-density matter (scaling 1). We stress that for the higher-order NEPs Zsat and ZPNM our

analysis simply returns the prior, which implies that they are not constrained by our data. This

is because the density range of the MBPT data is limited to densities n � 0.21 fm−3. However,

they contribute to the uncertainty of the other NEPs [142].

For the NEPs describing nuclear saturation we obtain from scaling 3, nsat = 0.161(7) fm−3,

Esat = −15.17(57) MeV, and Ksat = 226(18) MeV. The results are consistent with the original

analysis in Ref. [94], which obtained nsat = 0.143− 0.190 fm−3, Esat = −(15.1− 18.3) MeV,

and Ksat = 223 − 254 MeV using a Hartree-Fock spectrum. However, our uncertainties are

generally smaller because we explicitly guide the fits in Fig. 3.5 by empirical (or “expert”)

knowledge [64] through prior distributions of the fit parameters. In PNM, where empirical

constraints are lacking, the fits are therefore closer to the MBPT data.

3.4 Symmetry energy
Using the results obtained in Secs. 3.2 and 3.3, we now determine the properties of the symmetry

energy and the relative contributions of the quadratic and non-quadratic terms.
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3.4.1 Global symmetry energy esym

The global symmetry energy esym is determined from our fits in PNM and SNM, see Eq. (2.3)

and Sec. 3.3, and the contributions of the potential energies epot
sym, and epot∗

sym are obtained from

esym following,

epot
sym(n) = esym(n)− tPNM(n) + tSNM(n) , (3.22)

epot∗
sym (n) = esym(n)− t∗PNM(n) + t∗SNM(n) . (3.23)

We use the fits of the Landau mass discussed in Sec. 3.2 to determine t∗, including its uncer-

tainties, as explained in the following.

We present these quantities in Fig. 3.6 as functions of the density n. For esym, the data points

are obtained from the PNM and SNM data, and their uncertainties are defined by the arithmetic

average of the PNM and SNM error bars. For the model, we employ the symmetry energy

determined from the MM, which is defined as

eMM
sym (n) = eMM

PNM(n)− eMM
SNM(n) . (3.24)

The results shown in Fig. 3.6 are obtained from the best fits to SNM and PNM (scaling 3∗
in Table 3.2), where the width of the bands is defined as the arithmetic average of the widths

in SNM and PNM. The model results, therefore, depend on the choice of prior in SNM and

PNM, in particular, on the prior knowledge of the saturation density and energy considered

in SNM, see the discussion of Fig. 3.5. For this reason, the MM uncertainty for the symme-

try energy is slightly smaller than the uncertainty of the data in Fig. 3.6. At nuclear satura-

tion density, nsat = 0.161(7) fm−3, the data suggest esym = 30.70(140) MeV, while the MM

leads to esym = 31.33(106) MeV. Our values for the symmetry energy are in good agreement

with the fiducial value of 31.6 ± 2.7 MeV in Ref. [144], with the recent Bayesian analysis in

Refs. [65, 130] that fully quantifies correlated EFT truncation errors with chiral NN and 3N

interactions up to N3LO, 30.9(11) MeV at the canonical saturation density, with the value of

30(3) MeV in Ref. [145] (E�), and the range 29 − 35 MeV obtained in Ref. [146]. Similarly,

we predict Lsym = 46.2(49) MeV, while Lsym = 58.9(160) MeV was found in Ref. [144],

Lsym = 58.4(48) MeV in Refs. [65, 130] at the canonical saturation density, and the range

Lsym ∈ [43, 67] MeV in Ref. [146]. The determination of Lsym, however, is sensitive to the

densities at which the value is extracted as well as to the interactions employed.

The data for epot
sym and epot∗

sym are obtained from esym using Eqs. (3.22) and (3.23). In the case

of epot∗
sym , the effective mass is fixed to be the best fit using either the linear or the quadratic

density expansion (depicted by dashed lines in the right panel), and the uncertainty of epot∗
sym is

defined as the arithmetic average of the uncertainties of esym, t∗PNM and t∗SNM. Therefore, the

uncertainty of epot∗
sym also includes the uncertainties in the Landau mass parameters κsat and κPNM.

We observe that there is a large impact of the Landau mass on epot∗
sym , compared to epotsym with

the bare mass. At nsat, we obtain epotsym = 18.1(7) MeV and epot∗
sym = 25.7(14) MeV. Hence, the

Landau mass increases the potential part of the symmetry energy by about 30−40% as discussed

in the introduction. These numbers are compatible with the expectations for the complementary

contribution from the kinetic energy. We find tPNM(n
emp
sat ) − tSNM(n

emp
sat ) = 13.0 MeV and

t∗PNM(n
emp
sat )− t∗SNM(n

emp
sat ) = 5.4(13) MeV.

For epot∗
sym , we expect a difference when using either a Landau mass that is linear or quadratic
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Figure 3.7: Comparison of the extracted esym,2, epot
sym,2, and epot∗

sym,2 using Eqs. (3.25), (3.27),

and (3.28) (panels (a), (b) and (c)) and via an expansion around PNM, i.e., using Eq. (3.33)

(panels (d), (e) and (f)). Panels (g), (h) and (i) show the difference between the δ and η expan-

sions.

in density, see Fig. 3.4. In Fig. 3.6 we show two results for epot∗
sym . The blue data points and the

dark-shaded (light-shaded) red bands correspond to the results at 68% (95%) confidence level

when using a Landau mass linear in density. The black squares and the black-dashed lines,

encompassing the corresponding 68% confidence interval, represent calculations with a Landau

mass quadratic in density. Interestingly, the values for epot∗
sym obtained from these two functions

for the Landau mass differ only by about 1.8%, which is quite small. We, therefore, use only

the linear fit for the Landau mass in the following.

3.4.2 Quadratic contribution to the symmetry energy
The quadratic contribution to the symmetry energy, esym,2, is defined in Eq. (2.2) as the local

curvature in the isospin-asymmetry parameter δ in SNM. In the following, we extract esym,2

using this expansion around SNM, but also suggest obtaining esym,2 from an expansion around

PNM. We demonstrate that both definitions provide comparable results.

Expansion around SNM

The quadratic contribution to the symmetry energy is defined by Eq. (2.2) relative to the SNM

EoS. To determine this contribution directly from the MBPT data, we employ Eq. (2.1) up to

the fourth order in δ, and fit the coefficients esym,2 and esym,4 using a standard least-squares

minimization. The fits are performed in the range, δ = 0.0 − 0.5. We have checked that the

results are insensitive (within variations of about 0.1 MeV) to the upper limit of this range—as

long as it is chosen to be δ � 0.5.
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For the model, we express esym,2(n) as a function of the density using the MM contribution

to the quadratic symmetry energy,

eMM
sym,2(x) =

5

9
tSNM(x) +

N∑
j=0

xj

j!

[
vsym2,juj(x, δ = 0)− vSNM,j

(
uj(x, δ = 0)− 1

)
(1 + 3x)bsym

]
,

(3.25)

where the parameters vsym2,i are determined using a Bayesian parametric fit, as before for other

quantities. They are related to the quadratic symmetry energy NEPs as follows:

vsym2,0 = Esym2 − 5

9
tsat

SNM[1 + κsat + 3κsym + κsat,2 + 3κsym,2] , (3.26)

vsym2,1 = Lsym2 − 5

9
tsat

SNM[2 + 5(κsat + 3κsym) + 8(κsat,2 + 3κsym,2)] ,

vsym2,2 = Ksym2 − 10

9
tsat

SNM[−1 + 5(κsat + 3κsym) + 20(κsat,2 + 3κsym,2)] ,

vsym2,3 = Qsym2 − 10

9
tsat

SNM[4− 5(κsat + 3κsym) + 40(κsat,2 + 3κsym,2)] ,

vsym2,4 = Zsym2 − 40

9
tsat

SNM[−7 + 5(κsat + 3κsym)− 10(κsat,2 + 3κsym,2)] .

These relations generalize the ones in Ref. [64] for a quadratic density-dependent Landau mass.

The parameter bsym ≡ bPNM − bSNM is fixed by the 3∗ fit.

The contributions to the symmetry energy due to the potential energy are determined from

the following expressions,

epot
sym,2(n) = esym,2(n)− 5

9
tSNM(n) , (3.27)

epot∗
sym,2(n) = esym,2(n)− 5

9
tSNM(n)

[
1 + (κsat + 3κsym)(

n

nsat

)
+ (κsat,2 + 3κsym,2)

(
n

nsat

)2]
. (3.28)

Our results for esym,2, epot
sym,2, and epot∗

sym,2 are shown in the first row of Fig. 3.7. At nemp
sat , we find

esym,2(n
emp
sat ) = 30.0(4) MeV, epot

sym,2(n
emp
sat ) = 17.7(4) MeV and epot∗

sym,2(n
emp
sat ) = 26.4(1.7) MeV

(with the linear density-dependent model for the Landau mass). The large value of epot∗
sym,2(n

emp
sat ),

almost 90% of esym,2(n
emp
sat ), originates from the isospin dependence of the Landau mass, en-

coded by κsym.

From the fit model (3.25), we obtain an estimate for the NEPs that govern the quadratic

contribution to the symmetry energy at the inferred value of nsat. The values are given in the

first row of Table 3.3. Our result for Esym,2 is about 1 MeV below the total symmetry energy,

Esym—the difference is due to non-quadratic contributions.

Expansion around PNM

An alternative approach is to determine the contribution esym,2 from an expansion around PNM.

Since the MBPT approach used here is able to explore asymmetric matter with arbitrary δ, we
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Table 3.3: Posteriors of empirical parameters obtained from the analysis of the δ and η expan-

sions for esym,2. Values inside parentheses represent error bars at the ±1σ level. Results for the

following three Skyrme-type interactions are given: NRAPR [77], LNS5 [137] and SAMI [138].

Expansion nsat Esym,2 Lsym,2 Ksym,2 Qsym,2 Zsym,2 bsym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

Prior - 31.50(350) 50(10) −130(110) −300(600) −1800(800)

δ (SNM) 0.161(7)† 30.16(83) 47(3) −146(43) 90(334) −1865(793) 25††

η (PNM) 0.161(7)† 30.02(82) 46(3) −149(46) 93(352) −1875(793) 25††

NRAPR [77] 0.161 32.78 60 −123 312 −1836

LNS5 [137] 0.160 29.15 51 −119 286 −1672

SAMI [138] 0.159 28.16 44 −120 372 −2180

† Priors taken from the SNM posteriors in Table 3.2. †† Fixed value.

can test the accuracy of this alternative expansion.

To this end, we introduce the parameter

η = 1− δ = 2np/n , (3.29)

which is twice the proton fraction. Equation (2.1) can now be re-expressed in terms of the this

parameter,

e(η) = ePNM − 2(esym,2 + 2esym,4)η + (esym,2 + 6esym,4)η
2

−4esym,4η
3 + esym,4η

4 +O(η5) . (3.30)

From Eq. (3.30), it follows then

ePNM
sym,2(n) = −3

4

∂e

∂η

∣∣∣∣
η=0

− 1

4

∂2e

∂η2

∣∣∣∣
η=0

. (3.31)

We determine ePNM
sym,2 and ePNM

sym,4 from fitting the function

e(n, η) = ePNM(n) + a1(n)η + a2(n)η
2 +O(η3) . (3.32)

with

ePNM
sym,2(n) = −1

4
[3a1(n) + 2a2(n)] , (3.33)

ePNM
sym,4(n) = +

1

8
[a1(n) + 2a2(n)] , (3.34)
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Figure 3.8: Non-quadratic terms (a) esym,nq, (b) epotsym,nq and (c) epot∗sym,nq calculated via an expan-

sion around SNM (blue) and PNM (red). For panel (c), the Landau mass is described by a linear

fit. The coloured lines depict results for the six individual Hamiltonians.

at each density to the computed energies per particle at η = 0.0, 0.1, 0.2, and 0.3. Again, we

also perform a Bayesian fit using Eq. (3.25). The two quantities are shown in the second row

of Fig. 3.7, together with the potential terms epot,PNM
sym,2 and epot∗,PNM

sym,2 . The NEPs obtained from

Eq. (3.25) are given in the second row of Table 3.3. Note, that the differences between the

NEPs extracted around SNM [using Eq. (2.2)] and around PNM [using Eq. (3.31)] are much

smaller than the uncertainties of these NEPs, which demonstrates that the two approaches are

consistent with one another. This is further illustrated in the third row of Fig. 3.7, where the

difference between eSNM
sym,2 and ePNM

sym,2 is shown to be consistent with zero and a small width of

about 1.5 MeV at nsat. Note that the width here is calculated as the arithmetic average of the

widths of eSNM
sym,2 and ePNM

sym,2.

Determining the quadratic contribution to the symmetry energy from an expansion around

PNM might be beneficial because PNM can usually be computed with much higher accuracy

since the uncertainties in the 3N interactions are reduced. Furthermore, such an extraction is

useful for microscopic approaches in which a small proton impurity can be treated more easily

than SNM, e.g., the auxiliary-field diffusion Monte Carlo approach [145].

3.4.3 Non-quadratic contribution to the symmetry energy esym,nq and esym,4

We now evaluate the contribution of the non-quadratic terms, defined by Eq. (3.3), using the

expansions around SNM and PNM, respectively. For the global symmetry energy, we use our

model (3.24), while for describing the quadratic contribution we use the fit (3.25). Figure 3.8

shows our results for the expansion around SNM (blue) and the expansion around PNM (red).

Both expansions agree, and the differences are smaller than the uncertainties by a factor of

2 − 3. We also show results for the six Hamiltonians. Their spread is much smaller than the

uncertainties of the data or the model. This is because the latter are computed as arithmetic

averages of the error bars of the global symmetry energy and the quadratic contribution. Such

an average neglects the correlations between the two, leading to an overestimation of the error-

bars. At nemp
sat , we obtain from our model esym,nq = 1.3(10) MeV, epotsym,nq = 0.6(10) MeV,

epot∗sym,nq = −0.5(22) MeV. For the individual Hamiltonians, we obtain esym,nq = 0.74+0.11
−0.08 MeV,

epotsym,nq = 0.04+0.11
−0.08 MeV, epot∗sym,nq = −1.02+0.11

−0.08 MeV, where the error bars are due to the different

Hamiltonians.

We find that these non-quadratic contributions represent a correction of about 3 − 5% to
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the symmetry energy. They originate mainly from the kinetic energy, since epotsym,nq remains

close to zero across all densities. Our model estimates for the non-quadratic contributions

to the symmetry energy and the NEPs are summarized in Table 3.4. We also compare the

present NEPs to the three selected Skyrme interactions, showing a good agreement between the

microscopic results and the EDF approaches.

We calculate the quartic contribution to the symmetry energy esym,4 using Eq. (3.34), and

show the resulting NEPs in Table 3.4. We find that the quartic term to the symmetry energy ac-

counts for about 60−70% of the total non-quadratic contribution, while the remaining 30−40%

originate from higher-order contributions. The convergence of these additional contributions is

discussed in Ref. [102]. We stress that this does not include any logarithmic contribution be-

cause such a contribution would vanish in PNM.

A recent analysis based on a general EDF approach—which was optimized to the properties

of finite nuclei—concluded that quartic terms ∝ δ4 have little impact on nuclei [147]. The result

was interpreted as a consequence of the fact that the asymmetry δ in finite nuclei is small: for

Z > 8 it varies between −0.33 and +0.38 in the latest Atomic Mass Data Center mass table

AME2016 [148]. A quartic term was, however, found to be important to correctly reproduce

the PNM energy per particle. In order to reproduce the PNM energy per particle predicted in

Ref. [96], Ref. [147] found a quartic term of esym,4 = 2.635MeVat n = 0.1 fm−3. This term

was the only non-quadratic contribution considered in Ref. [147], and is consistent within our

upper 68% confidence interval for the non-quadratic contribution to the symmetry energy. The

higher value for esym,4 obtained in Ref. [147] might be related to the larger value in the PNM

energy per particle obtained in Ref. [96], as shown in Fig. 2.1. This affects the symmetry energy

because the contribution esym,4 is needed to correctly reproduce the PNM EoS. Both, the PNM

energy per particle in Ref. [96] and esym,4 obtained in Ref. [147] are ≈ 1 MeV higher than the

values we obtain in the this work.

3.4.4 Logarithmic contribution to the symmetry energy esym,log

The leading-order logarithmic contribution to the symmetry energy, see Eq. (3.1), was suggested

to be of the form δ4 log |δ| [101, 102]. It, therefore, vanishes in both SNM and PNM, and data

at finite isospin asymmetry are required to determine its magnitude. Such a logarithmic term

would appear by a characteristic arch-like structure in the δ-dependent residuals between the

data and a model without the logarithmic term. Figure 3.9 shows these residuals as a function

of δ at three different densities. For asymmetric matter, we use

ymodel(n, δ) = ySNM(n) + ysym,2(n)δ
2 + ysym,nq(n)δ

4 , (3.35)

where eSNM, esym,2 and esym,nq are given by Eqs. (3.15), (3.25), and (3.3). Note that in the

model (3.35), the fourth-order δ term also includes possible higher-order contributions (like,

for instance, a δ6 term) contained in the term ysym,nq. The different panels in Fig. 3.9 show the

residuals at three densities, n = 0.06, 0.12, and 0.16 fm−3 (from the top to the bottom panel),

and for the three choices for the variable y: e, epot, and epot* (from left to right) as a function of

the isospin asymmetry δ. The squares (shaded bands) represent the mean (68% confidence level)

of the residuals. The presence of logarithmic terms would appear as a systematic deviation of

the these residuals from zero in asymmetric matter. However, this is not what we observe at

the three considered densities and for all energy observables. Instead, we find the residuals to
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Table 3.4: Posteriors of non-quadratic and quartic NEPs obtained from the analysis of esym,nq

using the δ and η expansions, and esym,4 obtained from the η expansion only. For the extraction

of esym,nq via the η expansion, the values inside the square brackets are obtained from a fit to

the data in order to provide a direct comparison to the corresponding analysis of esym,4. Values

in parenthesis represent the ±1σ uncertainties. The NEPs for the following three Skyrme-type

interactions are given: NRAPR [77], LNS5 [137], and SAMI [138].

Non-quadratic Esym,nq Lsym,nq Ksym,nq Qsym,nq Zsym,nq

contribution (MeV) (MeV) (MeV) (MeV) (MeV)

SNM 1.2(15) 0(6) −24(58) 106(426) 91(1057)

PNM 1.3(15) 1(6) −20(60) 103(441) 101(1058)[
0.84(7)

] [
0.7(8)

] [− 9(13)
] [

32(151)
] [

167(958)
]

NRAPR [77] 1.40 5 6 −1 −12

LNS5 [137] 1.70 6 9 −4 1

SAMI [138] 1.08 3 2 2 −24

Quartic Esym,4 Lsym,4 Ksym,4 Qsym,4 Zsym,4

contribution (MeV) (MeV) (MeV) (MeV) (MeV)

PNM 1.00(8) 0.6(6) −7(12) 69(145) 33(956)

NRAPR [77] 0.95 3 4 −1 −6

LNS5 [137] 1.17 5 6 −4 3

SAMI [138] 0.70 2 2 1 −15
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Figure 3.9: Residuals R of the model, see Eq. (3.35), with respect to the data as a function of the

asymmetry parameter δ for different values of the density: n = 0.06 fm−3 (panels (a),(b),(c)),

n = 0.12 fm−3 (panels (d),(e),(f)), and n = 0.16 fm−3 (panels (g),(h),(i)). The results are shown

for the two different calculations of ysym,2 and ysym,nq—the expansions around PNM (red) and

SNM (blue). The different columns correspond to e, epot, and epot,∗. The coloured lines depict

the residuals of the fit for each Hamiltonian. In the last column, the black-dashed lines represent

the upper and lower limits of the uncertainty in the residuals, respectively, by disregarding the

uncertainties in the effective masses.

be compatible with zero and almost flat as a function of the isospin asymmetry. This is also

the case for the results for each Hamiltonian, which we show as coloured lines. The results for

the individual Hamiltonians vanish on average, but the uncertainty bands remain quite sizable,

about ±1 − 2 MeV around saturation density. Therefore, our findings suggest that there is no

statistically significant indication for a net logarithmic contribution to the symmetry energy for

the chiral NN and 3N Hamiltonians used in this work.

Our conclusion about the strength of the logarithmic term is not in contradiction with the

findings presented in Refs. [101, 102]. The logarithmic term in Ref. [102] was found to improve

the description of the isospin dependence of the energy per particle by at most ≈ 0.1 MeV,

shown for one Hamiltonian1 in Fig. 9 of Ref. [102]. Such contributions of the order of ≈
0.1 MeV are small compared to the overall theoretical uncertainties in this work, which we

estimate by analyzing the six Hamiltonians in Table 2.1.

3.5 Summary and Conclusions
In this chapter, we have analyzed the properties of asymmetric nuclear matter based on MBPT

calculations [94] for six commonly used chiral EFT Hamiltonians with NN and 3N interactions.

1This is the n3lo450 interaction constructed in Refs. [116, 149, 125], which is not considered in this work.
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The global symmetry energy, i.e., the difference between EoS in the limits of PNM and SNM,

as well as its quadratic and quartic contributions have been determined with theoretical uncer-

tainty estimates. We have calculated the quadratic contribution to the symmetry energy from

the usual expansion around SNM, and have also employed a non-standard approach using an

expansion for small proton fractions around PNM. The two approaches are in excellent agree-

ment. Furthermore, we have investigated the strength of the non-quadraticities as well as their

model dependence. The non-quadratic contribution to the symmetry energy was found to be

0.74+0.11
−0.08 MeV (and −1.02+0.11

−0.08 MeV for the effective potential part). We have then investigated

the leading-order logarithmic term to the symmetry energy, and obtained residuals between our

best fit (including quadratic and quartic contributions) and the data to be compatible with zero.

In particular, we found that all residuals where flat in the isospin asymmetry δ, indicating no

systematic deviation from zero as expected for a logarithmic contribution. However, we also

saw that present uncertainties, indicated by the dispersion of the six Hamiltonians of about

1− 2 MeV, are too large to precisely determine its strength. For a more recent and complemen-

tary approach, see Ref. [150], where the authors have extracted high-order terms using precise

modified finite difference methods.

To gauge the full theoretical uncertainties of the non-quadratic contributions to the sym-

metry energy, future analyses need to explore a wider range of nuclear interactions and addi-

tional asymmetric-matter calculations using different many-body approaches and regularization

schemes. In particular, this requires the development of improved chiral NN and 3N interactions

up to N3LO [151, 152, 153], which will enable order-by-order analyses of the neutron-rich mat-

ter EoS with statistically meaningful uncertainty estimates derived from chiral EFT [65, 130].

Finally, at densities beyond those explored in this chapter, heavier baryonic degrees of free-

dom, such as hyperons, could become relevant. The development and improvement of models

that include such degrees of freedom is a crucial task for future work, e.g., along the lines of

Refs. [154, 155]; see also Refs. [156, 157] for recent reviews. The work presented in this chap-

ter provides a framework for future investigations of the isospin-dependence of nuclear matter.

In the next chapter, we will analyse in detail the implications of the calculations of Ref. [94] for

the crust of NSs.
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Chapter 4

Implications for the Crust of Neutron
Stars

In this chapter, we will analyse the implications of Chiral EFT calculations on the properties

of NSs, paying specific attention to the crust. First, in Sec. 4.1, we will build upon the work

presented in chapters 2 and 3 to compute the crust-core transition using the spinodal instability

criteria. This preparatory calculation will allow us to quantify the impact of non-quadratic sym-

metry energy terms on the crust-core transition. Although instructive, much of the rich physics

of the crust, originating from inhomogenous nuclear clusters are neglected in the spinodal ap-

proach. Therefore, a new meta-model analysis is developed in this chapter that allows for the

construction of an unified EoS that is applicable to the crust as well as the core in a consistent

manner. We thus now move from the study of the nuclear matter EoS presented in chapters 2

and 3 to the neutron star matter EoS. These concepts are introduced and enunciated in Sec. 4.2.

Details of the calibration of the meta-model in uniform matter are given in Sec. 4.3 and the

modelling of finite size terms describing nuclear clusters are given in Sec. 4.4. These tools are

used to analyse the crust of NSs in detail in Sec. 4.5. Global NS properties such as masses and

radii are presented as well in Sec. 4.6. Our conclusions are presented in Sec. 4.7.

4.1 Crust-Core transition in the thermodynamic limit
In this section, we study the impact of the non-quadratic contribution to the symmetry energy

on the crust-core transition in neutron stars, for which the symmetry energy plays an important

role [158, 159, 160]. This transition occurs at the core-crust transition density ncc with an

isospin asymmetry δcc that is determined by the beta-equilibrium. The parameters ncc and δcc
are obtained from uniform matter by determining the density at which matter becomes unstable

with respect to density fluctuations (spinodal instability) [158]. We choose to work only with

uniform matter since it allows for a simplified but instructive estimate of the role of the non-

quadratic contribution to the symmetry energy. We leave a more complete analysis including

the finite-size terms for later parts of this chapter.

In multi-component matter, e.g., matter that consists of neutrons and protons, this spinodal

density is determined from the curvature (Hessian) matrix C, defined as the second derivative

of the energy density with respect to the component densities [158]. From the eigenvalues

of C, one can determine the stability of matter: if all eigenvalues are positive, i.e. if C is
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Figure 4.1: Predictions for beta equilibrium in low-density uniform matter obtained by solving

Eq. (4.2), and for the spinodal density by solving Eq. (4.1). The intersection denotes the crust-

core transition, as indicated by a dot in the inset. The quadratic approximation (red band) is

compared to the case where quartic contributions are included (blue band).

positive semi-definite, the matter exhibits a local stability against density fluctuations of all

components in any combination, while a change of sign for any eigenvalue triggers an instability

with respect to density fluctuations indicated by its associated eigenvector. The change of sign

of the eigenvalues can be extracted from the determinant of C, which reads in nuclear matter,

det C(n, δ) = ∂μn

∂nn

∂μp

∂np

− ∂μn

∂np

∂μp

∂nn

, (4.1)

where μn and μp are the neutron and proton chemical potentials. For simplicity, we have ne-

glected the finite-size contribution from the Coulomb interaction as well as the gradient density

terms induced by the finite range of nuclear interactions. It is expected that these terms reduce

the spinodal density by only ≈ 0.01 fm−3 [158, 160].

In sub-saturation asymmetric matter, the equilibrium state is the state that satisfies the chem-

ical potential equilibrium μn = μp + μe, at fixed baryon number n = nn + np and charge

neutrality ne = np. At zero temperature, and considering relativistic electrons, this system of

equations reduces to a single non-linear equation,√
m2

e +

(
3π2

2
(1− δβ)n

)2/3

= 2
∂e(n, δβ)

∂δ
, (4.2)

whose solution, δβ(n), is obtained by using a combination of the bisection and the secant meth-

ods implemented in the Python package of Ref. [161]. Then, we define the crust-core transition

as the solution (ncc, δcc) to both, the instability onset criterion, det C = 0, and the beta equi-

librium condition, e.g., Eq. (4.2). Equivalently, ncc is defined as the spinodal density in beta

equilibrium, where δcc = δβ(ncc). Figure 4.1 shows the intersection between these two determi-

nations. We investigate the purely quadratic approximation for the symmetry energy, with the

NEPs given in Table 3.3, and with the quartic terms from Table 3.4 included. For all cases, the

reference MM in SNM is determined by the best fit given in Table 3.2 for the scaling 3∗.
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Table 4.1: Crust-core transition density and isospin asymmetry, ncc and δcc, respectively, for

the purely quadratic case (δ2 only) and for the case including the quartic contribution (δ2 + δ4),
see Eq. (3.35).

Model ncc (fm−3) δcc

δ2 only 0.083(5) 0.944(5)

δ2 + δ4 0.087(4) 0.935(6)

When we include quartic contributions, the spinodal density in neutron-rich matter is in-

creased compared to the case where only the quadratic term is considered. This is because the

quartic term increases the symmetry energy. For the same reason, the isospin asymmetry is

decreased when non-quadraticities are included. Our results are summarized in Table 4.1, and

depicted in Fig. 4.1 by the blue and red points. They are in agreement with the predictions

of, e.g., Refs. [159, 160] with Lsym,2 ≈ 45 MeV. From the comparison of our results with and

without the quartic term, we find that the mean value of the transition density changes by ≈ 5%
while for δcc the change is only ≈ 1%. Note that the 68% confidence intervals of the two results

overlap, indicating that the uncertainties in the nuclear interaction are of the same order as the

effects of the quartic term on the crust-core transition. For this reason, we will ignore non-

quadratic contributions to the effective potential energy epot∗ in the rest of the chapter, focusing

instead on the importance of the microscopic nuclear interaction and the finite-size effects of

the nuclear clusters in the NS crust.

4.2 Unified EoS modelling for neutron stars
The unified description of the EoS of neutron stars from the crust to the core represents a

challenge for modern nuclear and particle physics, as well as for astrophysics [13, 162], see

also Ref. [163] for a review. A typical density at the transition between the crust and the core is

about half saturation energy-density (ρsat ≈ 2.6 1014 g cm−3) while in the core, it reaches up to

several times this energy-density. These densities determine NS global equilibrium properties,

such as their masses, radii, moment of inertia or tidal deformabilities [28]. Recent observations

of NS radii by NICER [49, 52], and tidal deformabilities by the LIGO-Virgo collaboration [38]

have also reached the accuracy to sharply constrain the dense matter EoS. These developments

motivate the construction of models that can provide a unified description of the EoS of the

crust and the core. This is because, while the crust represents a small fraction of the NS, 10% in

terms of radius and less than 1% of the mass, it was estimated that the method used to connect

the crust and the core could influence the theoretical prediction of the NS radius by 3-5%, or

in other words, by a few hundred meters [164]. See also Ref. [165] for a recent study on the

impact of non-consistent treatment of the crust and core EoSs on macroscopic NS properties.

Presently, the experimental uncertainties in the measurement of NS radii are still larger – about

1-2 km – than this theoretical one. However, anticipating future observational improvements, it

is preferable to resolve this source of uncertainty by employing unified models from the crust

to the core of NSs, as it has already been suggested by several teams [166, 167, 164].
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Regarding homogeneous matter, we will again rely on the meta-model calibrated to chiral

EFT calculations, as in chapters 2 and 3. Additionally, we will also use Skyrme forces for

our analysis and compare these results with those obtained from Chiral EFT interactions. The

reason for doing so is as follows. In Sec. 2.3, we saw that several conceptual milestones have

been reached in the prediction of neutron star matter from microscopic ab initio approaches

which are based on realistic nuclear Hamiltonians constrained by nucleon scattering data. In

particular, as discussed in Sec. 2.3.1, Hamiltonians derived using chiral effective field theory

(χEFT) incorporate the symmetries of QCD and provides a systematic expansion of the oper-

ators in powers of the nucleon momenta. χEFT has two distinct features: (1) it consistently

include three and higher-body interactions along with the two-body interactions that are well

constrained by experiments, (2) it provides a robust method to estimate errors associated with

the truncation of the momentum expansion when the nucleon p is small compared to the break-

down scale ΛχEFT of the χEFT. At sufficiently low densities, neutron matter is well under-

stood because three-body interactions are small, and the two-body neutron-neutron interaction

is strongly constrained by the neutron-neutron scattering phase shifts [168, 169]. However, with

increasing density and correspondingly larger nucleon momenta, higher-dimension operators

including three-body forces begin to play an increasingly important role. For both these reasons

the associated uncertainty which can be estimated grows systematically and quite rapidly. The

densities up to which χEFT remains useful is still a matter of debate, current expectations are

that it breaks down between saturation density (nsat) and twice nsat [170, 171, 172]. Therefore

it is necessary to contrast χEFT calculations with phenomenological interactions such as the

Skyrme force. The Skyrme interactions, being well calibrated to the properties of finite nuclei,

are expected to perform significantly better at and around nuclear matter saturation densities.

We expect the predictions of Skyrme forces to be complementary to the χEFT Hamiltonians

and we will demonstrate this explicitly in Sec. 4.3.

Unlike the core, NS crusts are composed of finite nuclei, usually referred to as nuclear clus-

ters since their properties are modified by the dense matter environment and differ from those

of isolated nuclei probed in terrestrial laboratories, see for instance Ref. [28]. The outer crust

is dominated by the presence of an electron gas filling the whole volume in beta-equilibrium

with neutrons and protons bound inside nuclear clusters. The nuclear symmetry energy controls

the energy difference between neutrons and protons, and thus the isospin asymmetry inside the

nuclear clusters. Also, electric charge neutrality is ensured by the presence of electrons, and its

rapid increase with density favors the appearance of increasingly neutron-rich nuclear clusters

[173]. Nuclear clusters in the inner crust are significantly more neutron-rich and coexist with a

neutron fluid which is very likely to be in a superfluid state at low temperature.

These nuclear clusters in the NS crust result from the equilibrium between attractive volume

interaction, and repulsive surface and Coulomb interactions, at leading order. Despite recent

progress in the description of finite nuclei based on chiral nuclear interaction, it is still compu-

tationally not feasible to directly calculate the properties of nuclear clusters in NS crust. Several

well-motivated approximations could however be employed to predict and understand the prop-

erties of this complex system. Among them, the liquid-drop model (LDM) is a macroscopic

approach that allows us to combine together the nuclear matter predictions with finite-size (FS)

terms generated from a leptodermous expansion (explained below) of the total energy. On the

other hand, the compressible liquid-drop model (CLDM) includes variations of the cluster den-

sity from one nucleus to another, through the density dependence of the bulk contribution to
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the total energy. The LDM and CLDM describe the collective degrees of freedom. They are

different from the microscopic approach, like the shell model or the energy-density functional

approach, which centers around the single-particle degrees of freedom. Since the microscopic

approach is the most general one, it contains the macroscopic one as an average.

In the leptodermous expansion of the total energy [174], the different contributions are

sorted by decreasing powers of A1/3. The order A belongs to the domain of nuclear matter

studies, and can be directly related to the meta-model approach for nuclear matter. The orders

A2/3 and A1/3 characterizes the finite-size contributions, and finally, orders A0 and below be-

long to the single-particle contributions, e.g. shell effects or pairing contribution, described by

microscopic theories. In this work the CLDM, with the bulk contributions determined by the

meta-model and the FS terms generated by the leptodermous expansion, will be employed to

describe the nuclear clusters in the crust of NSs. Details of this modeling is given in Sec. 4.4

and implications for the crust are discussed in Sec. 4.5.

4.3 Homogeneous matter
We will now discuss uniform matter properties for the set of models considered in this analysis.

Our description of uniform matter is based on the meta-model (MM) [64], as in chapters 2 and 3,

which is calibrated on existing models, such as the Skyrme model or the χEFT Hamiltonian.

First let us discuss the calibration of the meta-model to the χEFT Hamiltonians. As in

chapters chapters 2 and 3, we analyse Hamiltonians H1-H5 and H7 of Ref. [176]. Additionally

we include two recent χEFT predictions from Ref. [177]: DHSL59 and DHSL69. The meta-

model is fit to these 8 interactions in a manner that is very similar to what was presented in

chapter 3 but with one important difference. While, in chapter 3, an average of the interactions

was computed and a Bayesian estimate was performed based on this average, in this chapter

we make distinct fits to each individual Hamiltonian. This allows us to probe uncertainties in

the chiral interactions by monitoring the behaviour of each Hamiltonian. Furthermore, in this

approach, one can discard or favour particular models based on confrontation with experimental

data. We first compute the Landau effective mass, defined in Sec. 3.2, by fitting Eq. (3.10) to

each chiral Hamiltonian. Our results are summarized in the last two columns of the upper

half of Table 4.3. Here, m∗
sat refers to the nucleon (either proton or neutron) effective mass in

Symmetric Matter (SM) at saturation density and Δm∗
sat is defined in Eq. (3.13). Note that we

have not estimated the effective mass of the DHSL59 and DHSL69 interactions due to the fact

that the single particle energies of these Hamiltonains are not publicly available. Finally, we

consider here only the linear effective mass, i.e. the quadratic term in Eq. (3.10) is neglected.

We then fit the meta-model to the energy per particle of each chiral Hamiltonian in the limits

of Symmetric matter and Neutron matter (SM and NM). Table 4.2 shows the residual χ2 values

for the fit, where the χ2 loss function is defined as

χ2 =
1

2

∑
i

(
edata,i − eMM,i

σi

)2

, (4.3)

where σi was taken to be a 10% uncertainty on the data, due to imperfect modeling [178]. The

variable e refers to the energy per particle and the subscript MM refers to the meta-model.

The fit was performed by minimizing the χ2 with data in the range 0.4 < kFn < 1.6, where
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Figure 4.2: Energy per particle in uniform matter (left), for NM (top) and for SM (bottom),

normalized by the Free Fermi Gas energy eFFG (right). Plots are drawn as function of the

densities, nn in NM and nB in SM, as well as function of the Fermi energy, kFn in NM and

kFB in SM. Note that in SM nn = nB/2 and kFn = kFB. We plot the 8 χEFT Hamiltonians

(dashed lines), a gray band for H1-H4, and 7 Skyrme interactions (solid lines), see the legend

and the text for more details.

kFn is the neutron Fermi momentum, by using the standard Levenberg-Marquardt algorithm

implemented in Python’s scipy package. In Table 4.2, for Hamiltonians H1-H5 and H7, the

number of data points N is 11 (11) for SM (NM) when 0.4 < kFn < 1.0 and 22 (24) for SM

(NM) when 0.4 < kFn < 1.6. For the other two Hamiltonians, N is 17 (9) in SM (NM) when

0.4 < kFn < 1.6 and 2 (-) for SM (NM) when 0.4 < kFn < 1.0. The NEPs obtained in this

manner are shown in the upper half of Table 4.3. Note that the third and forth order parameters

(Q and Z) are not fir to the chiral interactions, but rather by the requirement that the EoS must

be able to support a 2M� NS. We see that the lower order NEPs are consistent with the results

presented in Table 3.2.

As for the Skyrme interactions, the reproductions of the predictions for uniform matter is

presented in Ref. [64] Note that in the present work, the Skyrme MM adjustment is slightly

different from the one shown in Ref. [64] where it was analytically fixed to reproduce Skyrme’s

predictions at 4ρsat. We replaced this – somehow arbitrary – prescription by a fit over the den-
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Figure 4.3: Symmetry energy w.r.t to baryon density (left) and normalized by the FFG sym-

metry energy w.r.t Fermi momentum (right). Inset on left plot shows esym at high densities.

Continuous (dashed) lines shows the meta-model fitted to Skyrme (χEFT) models. Dark pur-

ple and magenta dots show predictions from Brussels-Montreal microscopic models BSk22 and

BSk25 [175].

sities, from ρsat up to 10ρsat. This new prescription avoids using MM in a region where it was

not required to reproduce Skyrme’s predictions. In the following, we investigate the follow-

ing Skyrme models: BSK14[179], BSK16[180], F0[181], LNS5[182], RATP[183], SGII[184],

SLy5[185]. The nuclear empirical parameters (NEPs) predicted by these Skyrme models are

given in the lower half of Table 4.3. We see that these interactions have wide predictions in

NM, reflecting their different predictions for the parameter Lsym, see Table 4.3.

The predictions in SM and NM are shown in Fig. 4.2, see caption for details. A gray

band captures the uncertainties originating from χEFT Hamiltonians H1-H4, which reproduce

experimental nuclear masses at best, see the discussion in Sec. 4.4.2. In NM the gray χEFT
band is much narrower than the dispersion among the Skyrme models, see top panels of Fig. 4.2.

The reason is related to the fact that χEFT is well-suited to describe low-density NM, which is

very well constrained by the nucleon-nucleon phase shifts. Skyrme interactions are calibrated

using the properties of finite nuclei, which reflect more directly the properties of SM, as it can

be seen from Fig. 4.2 (bottom panels), where the χEFT band is now larger than the dispersion

among the Skyrme models. At first sight, the predictions from χEFT and Skyrme models are

complementary: the former describes NM better, while the latter is better for SM.

The low-density energy per particle is shown in the right panels of Fig. 4.2, as function of the

Fermi momentum, kFn = (3π2nn)
1/3 (NM) and kFB = (3π2nB/2)

1/3 (SM). The Free Fermi

Gas (FFG) energy ENM
FFG = 3�2k2

F/(10m), where m is the nucleon mass, kF = kFn in NM and

kF = kFB in SM, scales the energies shown in the left panels of Fig. 4.2. In this representation,

it is clear that the predictions from Skyrme models appear to be almost unconstrained in NM,

as already suggested in Ref. [186], while the ones based on χEFT are very consistent among

each other. The authors of Ref. [187] compared in detail the χEFT predictions and the SLy4

Skyrme model, which is almost identical to the SLy5 presented here. By investigating other

Skyrme models, which perform rather well for the ground state of finite nuclei, we now explore

more widely the Skyrme’s uncertainties in the predictions for the properties of low-density NM.
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Figure 4.4: Uniform matter energy in β-equilibrium.

These properties are interesting since low-density NM is close to the unitary gas limit [188, 189,

190], which is universal limit that is applicable from nuclear systems to cold atom gas [191].

The symmetry energy, as defined in Eq. (3.24), is shown in Fig. 4.3. Despite the dispersion

of χEFT predictions in SM, these models predict symmetry energy in a narrower band com-

pared to the Skyrme’s one, since Skyrme models are penalized by their poor reproduction of

NM. Similarly to Fig. 4.2, we show in Fig. 4.3 (right panel) the symmetry energy normalized

by the FFG prediction as function of the nucleon Fermi momentum. It is interesting to remark

the very large deviation from one Skyrme model to the other on the vertical axis, which reflects

the influence of the interaction to the symmetry energy (potential and effective mass contribu-

tions), see discussion in Ref. [192] for instance. At low density, for instance kFB = 0.4 fm−1

(nB ≈ 0.004 fm−3), the potential term contributes to double the symmetry energy. The potential

term in χEFT models increases the normalized symmetry energy up to kFB = 0.6-0.7 fm−1

(nB ≈ 0.015 fm−3), reaching 2.5-2.7, and then it decreases slowly as the Fermi momentum

kFB increases. This low-density behavior is however not characteristic of all Skyrme models:

Some Skyrme interactions predict the symmetry energy to be lower than the χEFT predictions

(BSK14, LNS5, SGII) while some others predict it to be larger than the χEFT predictions (F0,

SLy5). In Fig. 4.3 we also show symmetry energy predictions from BSk22 and BSk25 Skyrme

interactions [175]. These two models represent the two extreme cases investigated in Ref. [175]:

BSk22 is ASYsoft (BSk25 is ASYstiff) below saturation density, as shown in Fig. 4.3. The sym-

metry energy from BSk22 is similar to the χEFT band, while BSk25 predicts a large value for

the symmetry energy below saturation density. In Ref. [175], these two models are used in

Hartree-Fock-Bologiubov modeling of the NS crust, as we will discuss in Sec. 4.5.

At high density, as shown in the left panel of Fig. 4.3, several Skyrme models also predict a

bending down of the symmetry energy (BSK14, BSK16, RATP, SGII, LNS5) that the χEFT do

not predict. The inset in Fig. 4.3 shows that the bending down of the symmetry energy around

saturation density of these Skyrme models leads to a crossing of the zero axis at high density.

This is a well known feature of phenomenological nuclear interactions such as Skyrme, see for

instance Ref. [70] and references therein.

To conclude this section, we show in Fig. 4.4 the energy per particle at β-equilibrium in
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χ2/N 0.4 < kFn < 1.6 0.4 < kFn < 1.0

Model SM NM SM NM

H1 0.48 0.02 0.52 0.02

H2 0.48 0.02 0.51 0.02

H3 0.30 0.01 0.41 0.01

H4 0.50 0.03 0.51 0.02

H5 0.51 0.03 0.49 0.04

H7 0.14 0.05 0.23 0.07

DHSL59 0.76 0.01 1.6 –

DHSL69 1.67 0.09 3.51 –

Table 4.2: Reduced χ2/N in SM and NM reflecting the residuals between the data and the MM,

for 0.4 < kFn < 1.6 on the left (used by the fit), and 0.4 < kFn < 1.0 fm−1 on the right (not

used by the fit). All quoted values are dimensionless, see Eq. (4.3).

uniform matter. The condition to fulfill beta-equilibrium (without neutrinos and without muons)

is the following: μn − μp = μe. In cold catalyzed neutron stars, neutrinos do not contribute

to the chemical equilibrium. Muons can however appear when μμ ≥ mμc
2 and they contribute

to β-equilibrium through the thermodynamical relation: μe = μμ. Charge neutrality is also

imposed: ne + nμ = np. These three conditions complemented by the baryon conservation

number nB = nn + np leads to the unique determination of the composition of npeμ matter.

Below saturation density, the dispersion among the Skyrme predictions observed in Fig. 4.4 is

very large, much larger than the predictions from χEFT. In the following, we will investigate

the impact of this large dispersion among the Skyrme predictions on the crust properties in

non-uniform matter. This will be performed in the Sec. 4.5 based on the CLDM approach.

Above saturation density and as the density increases, the χEFT band for the symmetry

energy gets larger and larger. While some Skyrme models are close but out of the band, e.g.,

SLy5 (above) and RATP (bellow), the χEFT band represents a fair estimation of the current

uncertainties up to twice saturation density.

4.4 Treatment of finite nuclear systems
The Compressible Liquid Drop Model (CLDM) employed here describes isolated finite nuclei

as well as nuclear clusters in the crust of NSs. This approach will also be able to satisfy the pre-

scription where finite systems and infinite nuclear matter are treated consistently. In Sec. 4.4.1,

we discuss the details of the CLDM in the context of nuclear clusters present in the crust of NSs,

since the limiting case of isolated nuclei is easy to recover. In Sec. 4.4.2, we fit the parameters

of the CLDM to experimental nuclear data by considering isolated finite nuclei such as the ones
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found on earth. Detailed implications for the EoS of the crust of NSs will be given in Sec. 4.5.

4.4.1 The Compressible Liquid Drop Model
In the crust of NSs, we consider the following composition: the nuclear clusters are composed of

neutrons and protons, which are described by the mass number Acl and the isospin asymmetry

Icl. The neutron and proton particle numbers in the nuclear clusters are obtained as Ncl =
Acl(1+ Icl)/2 and Zcl = Acl(1− Icl)/2. In addition, clusters are embedded in a gas of electrons

and neutrons, described by their uniformly distributed densities ne and nng. We have implicitly

assumed the r-representation [193] for the Wigner-Seitz cell. In this representation, the particles

in the cluster volume Vcl are in equilibrium with the ones in the outside volume VWS−Vcl, where

VWS is the Wigner-Seitz volume. There are therefore five variables in total (four particles and

one volume), but one is free to choose any combination of these variables. In the present study,

we consider the following ones: Acl, Icl, ncl, ne and nng, where ncl = Acl/Vcl as in Ref. [194].

The total cluster energy in the NS crust is expressed as the sum of the independent contri-

butions from the clusters Ecl, the electrons Ee and the neutron gas Eng,

Etot(Acl, Icl, ncl, ne, nng) = Ecl(Acl, Icl, ncl) + Ee(ne) + Eng(nng) . (4.4)

The cluster contribution in the CLDM is expressed as a bulk energy contribution, determined

from homogeneous matter, and a finite-size contribution, including Coulomb, surface, curvature

terms at leading orders. The cluster binding energy contributing to Eq. (4.4) is given by,

Ecl(Acl, Icl, ncl, ne) = Ebulk(Icl, ncl) + EFS(Acl, Icl, ncl, ne) , (4.5)

with ncl being the cluster density. In the CLDM, the clusters are considered with a uniform

density, and the neutron and proton radii, Rn and Rp, are identically equal to the cluster radius

Rcl (there is no neutron skin in the present model). There is no smooth decrease of the den-

sity profile near the cluster radius, at variance with the droplet model [195] or Thomas-Fermi

approaches [196, 197]. Further, in the NS crust the total density nB = (Acl + Ng)/VWS is im-

posed, Ng being the number of neutrons in the gas phase. This contributes to fix one constraint

among the five independent variables. This constraint is treated with the Lagrange multiplier

technique, as suggested in Ref. [198].

In the present CLDM, the global asymmetry of the cluster Icl = (Ncl − Zcl)/Acl coincides

with the cluster bulk asymmetry δcl = (ncl,n − ncl,p)/nB, ncl,n and ncl,p being the uniform

neutron and proton densities in the cluster, since the neutron or proton skin are not considered

here. Note however that neutron skins have been considered in Ref. [29] by introducing a fit

parameter ζ relating Icl and δcl, as δcl = ζIcl. If ζ is unity, there is no skin, while if ζ < 1,

then all nuclei with Ncl > Zcl will have a neutron skin (Rn > Rp). In reality, the parameter

ζ is function of Acl and Zcl, see Ref. [199], as well as of the nuclear interaction, as illustrated

by the correlation between the neutron skin in 208Pb and the slope of the symmetry energy

Lsym [200, 201]. It is thus a strong approximation to impose the relation δcl = ζIcl with ζ
constant that we prefer not to consider here. The skin contribution modifies the Coulomb term

by using the proton radius instead of the cluster radius, which modified the Coulomb energy by

a factor proportional to the difference between the bulk asymmetry δcl and the global asymmetry

Icl. This term increases with the nuclear size and asymmetry and can be important for nuclear
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clusters present close to the crust-core transition. However, this modification is small compared

to the leading order terms considered here and we follow the procedure of recent works [194,

202] and neglect the presence of neutron skin in the present study. In a future development, a

consistent derivation in the spirit of Ref. [199] for instance will be considered.

The CLDM we consider is comparable to the pioneering BBP model [203] and is well suited

to analyze the origin of the uncertainties in the predictions of the NS crust. More microscopic

models for the crust have indeed been developed, see for instance Ref. [204] and recent efforts

in Refs. [205]. While being less accurate than microscopic models in reproducing finite nu-

clei, the present CLDM allows us a better understanding of the various features influencing the

properties of the NS crust, which are difficult to analyze in a microscopic model. There are

however missing features, such as shell and pairing effects, but these feature are sub-dominant

in the leptodermous expansion: they represent a refinement in the description of experimental

binding energies which is of the order of a few MeV in total energy, compared to the leading

order contributions which are of the order of hundreds of MeV.

Let us now summarize the various contributions present in the CLDM.

The cluster bulk contribution

The cluster bulk contribution to the energy per particle is the leading order term in the leptoder-

mous expansion (order Acl, the mass term). It is related to the homogeneous matter calculation,

represented here by the meta-model energy density εMM(nn, np) = nBeMM(nn, np), given by

ebulk(Icl, ncl) =
1

nB

(
εMM(ncl,n, ncl,p)− ncl,nmnc

2 − ncl,pmpc
2
)
, (4.6)

where the neutron and proton masses mn and mp are fixed to their bare mass, mnc
2 = 939.565346

MeV and mpc
2 = 938.272013 MeV, and ncl,n and ncl,p are the uniform neutron and proton den-

sities in the cluster.

The finite-size contributions

The finite-size terms incorporates the nuclear contributions to the cluster energy at all orders in

the leptodermous expansion. In the present study, we limit ourself to the leading order terms:

the Coulomb term is in Z2
cl/A

1/3
cl ≈ A

5/3
cl (dominant term at large A which prevents super-heavy

nuclei to exist), the surface is in A
2/3
cl , and the curvature term is in A

1/3
cl . They are expressed as

EFS(Acl, Icl, ncl) = ECoul(Acl, Icl, ncl) + Esurf(Acl, Icl, ncl) + Ecurv(Acl, Icl, ncl). (4.7)

The Coulomb term

The Coulomb term for a spherical and uniform distribution of protons is given by the direct and

exchange contributions,

ECoul = CCoul (ECoul,Dir + ECoul,Ex) , (4.8)
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with

ECoul,Dir =
3

5

Z2
cle

2

Rp

fCoul(u) (4.9)

= ac

(
1− Icl

2

)2

fCoul(u)A
5/3 (4.10)

ECoul,Ex = −3

4

(
3

2π

)2/3
Z

4/3
cl e2

Rp

hCoul(u) (4.11)

= −5ac
4

(
3

2π

)2/3(
1− Icl

2

)4/3

hCoul(u)A , (4.12)

where e2 ≈ �c/137 and the functions fCoul and hCoul are defined as: fCoul(u) = 1−(3/2)u1/3+
(1/2)u and hCoul(u) = 1 + u1/3, with u the volume fraction of the cluster, defined as,

u =
Vcl

VWS

=
ne

ncl,p

=
2ne

(1− Icl)ncl

, (4.13)

where ncl,p = ncl(1 − Icl)/2 is defined as the proton density in the cluster. In the function

fCoul, the first term corresponds to the proton-proton repulsive interaction, the second term is

the "lattice contribution" including the electron-proton and electron-electron interaction, under

the hypothesis of a globally neutral Wigner-Seitz cell. Then the third term in fCoul stands for

the finite-size correction which becomes important when the cluster volume is comparable with

the Wigner-Seitz volume. This term is important near the crust-core transition and pushes the

transition to nuclear matter towards higher densities. The first term is the only one remaining in

the case of isolated nuclei, corresponding to the limit u = 0. Since there is no proton-electron

contributions to the exchange Coulomb energy, the first (second) term in hCoul corresponds to

the proton-proton (electron-electron) contribution.

The coefficient CCoul in Eq. (4.8) is a variational parameter which is fine tuned over the

nuclear mass table. It describes – in an effective way – the effect the diffusive nuclear surface

on the Coulomb energy, which is neglected in the sharp drop off density profile that we consider

here. Since the diffusive surface is expected to be a small correction, the fit value is expected to

remain close to 1, CCoul ≈ 1.

Note that the direct Coulomb term scales like A
5/3
cl and therefore dominates the CLDM

energy at large Acl. Since the Coulomb term is repulsive, this induces a limitation in the max-

imum Acl for finite nuclei. However, for most of nuclei in the nuclear chart, the Coulomb

interaction remains small compared to the nuclear one. For this reason, the bulk term in Acl and

the Coulomb direct contribution in A
5/3
cl are considered at the same order in the leptodermous

expansion. It is also interesting to note that the exchange Coulomb term contributes to two order

lower compared to the direct term in the A
1/3
cl leptodermous expansion. It is thus expected to

effectively contribute at one order below the curvature contribution.

Neglecting the difference between the neutron and proton radii – no skin approximation –,

we have Rp = Rcl = rcl(ncl)A
1/3
cl with r3cl(ncl) = 3/(4πncl), and the Coulomb factor reads,

ac(ncl) =
3

5

(
4π

3
ncl

)1/3

e2 . (4.14)

64



Note that the Coulomb factor ac defined from Eq. (4.14) depends on the cluster density. The

Coulomb parameter, ac, is however often taken as a constant, see for instance Ref. [194], either

as a free parameter to be fitted or as function of the constant nsat. The different assumptions

for ac give differences on the description of isolated nuclei. Note that if ac is taken to be

constant (often taken to be of the order ∼ 0.7 MeV), neither the Coulomb nor the surface

energy contributes to nuclear pressure, the pressure derives from the bulk term only. In NS

crust however, the Coulomb term contributes to the pressure due to its dependence in the volume

fraction u. In this work, we will keep the dependence of this parameter on ncl, i.e. ac = ac(ncl).

The surface energy

The surface energy is proportional to the surface tension σsurf(Icl) and scales as A
2/3
cl . It reads

Esurf(Acl, Icl, ncl) = 4πR2
clσsurf(Icl) (4.15)

= 4πr2clσsurf(Icl)A
2/3
cl , (4.16)

with σsurf(Icl) as expressed, as suggested in [206], as

σsurf(Icl) = σsurf,sat
2psurf+1 + bsurf

Y −psurf
p + bsurf + (1− Yp)−psurf

, (4.17)

where Yp = Zcl/Acl = (1 − Icl)/2 is the cluster proton fraction and σsurf,sat is a parameter

that determines the surface tension in symmetric nuclei. The parameter psurf entering into the

expression of the surface tension (4.17) plays an important role at large isospin asymmetries.

In this work this parameter is fixed to be psurf = 3, as usually done in the literature [206], but

a small variation around 3 plays an important role at large asymmetries occurring around the

core-crust transition densities in NSs [202].

For small asymmetries,

σsurf(Icl) ≈ σsurf,sat − σsurf,symI
2
cl (4.18)

with

σsurf,sym = σsurf,sat
2psurfpsurf(psurf + 1)

2psurf+1 + bsurf
. (4.19)

One can thus relate the parameter bsurf to the surface symmetry energy σsurf,sym. We have

bsurf = 2psurf
[
psurf(psurf + 1)

σsurf,sat

σsurf,sym

− 2

]
. (4.20)

In the following, we prefer to use the parameter σsurf,sym instead of bsurf , since it directly re-

flects the isospin dependence of the surface tension for small isospin asymmetries, as shown in

Eq. (4.18). For this reason the domain of variation of σsurf,sym is better constrained than the one

for the parameter bsurf , which eases the determination of the prior for this parameter. Tab. 4.4

suggests a standard value for this parameter obtained by averaging over the usual values used

in the literature. See for instance Ref. [202] for a sample of such values associated to various

Skyrme interactions.
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The curvature energy

The curvature energy is controlled by the curvature tension σcurv(I), and follows [207],

Ecurv(Acl, ncl, Icl) = 8πrclσcurv(Icl)A
1/3
cl , (4.21)

with

σcurv(Icl) = ασcurv,sat
σsurf(Icl)

σsurf,sat

[
βcurv − 1− Icl

2

]
. (4.22)

The parameter α is fixed to be α = 5.5 since we allow the variation of the parameter σcurv,sat in

the fit to the binding energy over the nuclear chart, see Sec. 4.4.2. The standard values for the

curvature parameters σcurv,sat and βcurv are also given in Tab. 4.4.

The authors of Ref. [208] explored the role of the various finite size terms on the properties

of NS crusts. This was done by using four different prescriptions, called FS1 to FS4, with each

prescription including a certain set of finite size terms and approximations. In this work, we will

follow only the FS4 prescription and refer the reader to Ref. [208] for a detailed comparison

between the other sets of approximations.

4.4.2 Fit to nuclear masses
We now incorporate experimental nuclear data into the CLDM as follows. We have 5 parameters

that need to be fit to data: CCoul, σsurf,sat, σsurf,sym, σcurv,sat and βcurv. Note that the parameter

psurf is fixed to be 3.0 in this work. We now define four other parameters Ci defined as,

σsurf,sat = Csurf,satσstd
surf,sat , (4.23)

σsurf,sym = Csurf,symσstd
surf,sym , (4.24)

σcurv,sat = Ccurv,satσstd
curv,sat , (4.25)

βcurv = Cββstd
curv . (4.26)

where the superscript std refers to the standard value of the parameters as given in Tab. 4.4.

Thus, ultimately, the five parameters to be fit to the data are CCoul, Csurf,sat, Csurf,sym, Ccurv,sat
and Cβ The values for these variational parameters are expected to be close to 1, as we show in

Table 4.5.

The loss function χE , required for the fit, is defined as,

χE =

[
1

N

N∑
i=1

(Ẽi
exp − Ei

nuc)
2

]1/2
, (4.27)

where N = 3375 is the number of considered nuclei from the experimental nuclear chart and

Ei
nuc the energy from the CLDM model for the nucleus i. The energy of an isolated nucleus is

simply defined from the CLDM as,

Enuc(Acl, Icl, ncl) = Ebulk(Acl, Icl, ncl) + EFS(Acl, Icl, ncl, ne = 0) . (4.28)

Note that there are only three independent variables in this case, contrary to the 5 variables

required to describe the nuclear clusters in the NS crust. There are no electron and neutron
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gases surrounding the nuclear cluster. In addition, note that the Wigner-Seitz volume VWS is

undefined (it is indeed infinite for isolated nuclei) but the cluster volume Vcl is. For each nucleus

defined by its mass Acl and its charge Zcl localizing it over the nuclear chart, the mechanical

equilibrium is imposed: Pnuc = n2
cl∂Enuc/∂ncl = 0. This variational condition fixes the nuclear

cluster density ncl(Acl, Zcl) at equilibrium: each nucleus has a different density, and overall

they explore the density dependence of the CLDM around saturation density, at variance with

the liquid-drop model where the model coefficients are kept constant.

In Eq. 4.27, The quantity Ẽi
exp = Ei

exp−ΔEi
exp, where Ei

exp is the experimental mass of the

nucleus i and ΔEi
exp is a correction that we have introduced in order the reduce the effect of the

odd-even mass staggering in the data. This correction is given by the relation

ΔEi
exp =

[
Δsat +Δsym

(
Ni − Zi

Ai

)2
]
A

−1/3
i δ(N,Z) . (4.29)

where δ(N,Z) = 1 if N and Z are odd, 0 if either N or Z is odd, and −1 if both N and Z are

even [209]. The parameters Δsat and Δsym are varied together with the CLDM parameters Ci in

the fit to the experimental masses.

By comparing χE and χE/A (defined as function of E/A instead of E), the impact of the

loss function has been shown to be non-negligible in general, but smaller than other uncertain-

ties [208] such as for instance the one coming from varying the model for the bulk. We will thus

employ only χE for the fit, without considering the uncertainties originating from a different

measure of the goodness of the model to reproduce experimental nuclear masses.

The results of the fit to finite nuclei are shown in Table 4.5. The coefficients Ci are in general

of the order of 1, as expected. The odd-even mass staggering parameters Δsat and Δsym are also

shown. The isoscalar parameter Δsat is similar to the value suggested in Ref. [210] (7.2 MeV).

The isovector parameter Δsym however is much smaller than the one suggested in Ref. [210]

(-44 MeV), where the fit is done by considering only A > 40 nuclei. We indeed found that

this quantity is very sensitive to the nuclei which we fit it. When we select only A > 40 nuclei

Δsym change from -7.35 (-11.26) to ≈-16.83 (-16.60) MeV for BSK14 (SLy5). The value of

Δsym therefore varies from one region of the nuclear chat to another. It is difficult to determine

a constant value over the nuclear chart, but its influence is small since nuclei do not explore

large isospin asymmetries (N < 2Z for heavy nuclei).

With a loss function χE � 3 MeV, the χEFT models H1 to H4 are the more accurate ones to

reproduce the experimental masses. They are comparable with the Skyrme models considered

here. Note that our conclusion remains valid even when we do not correct for the odd-even mass

staggering in the nuclear data, see number inside the parentheses in the χE column in Table 4.5.

The nuclear masses however disfavor the χEFT models: H5, H7, DHSL59 and DHSL69. In the

following, Hamiltonians H1-H4 will be considered as our best models and will be marked with

a gray band, since they are the best at reproducing the nuclear masses.
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Figure 4.5: Binding energy for the Iron group using the CLDM with SLy5, LNS5 and H2. A

black square marks the lowest energy for each model.

The last two columns of Table 4.5 show the minimal energy per particle obtained for each

model. This quantity is sometimes used to define the offset of the energy per particle in the

crust. Experimentally, the nucleus 56Fe minimizes the energy, but it is a bit model dependent

due to the approximation scheme. The search for the minimal energy per particle configuration

is illustrated in Fig. 4.5 for a few models (LNS5, SLy5 and H2) and for iron group isotopic

chains (Fe, Co, Ni, Zn). For all the Skyrme models, the lowest energy configuration is 68Ni.

This is also the lowest energy configuration for H1, H3, H4, while H2 prefers 70Ni and the other

χEFT models prefer 56−60Fe nuclei.

Table 4.4: Standard parameters the surface and curvature terms employed in the CLDM ap-

proach considered in this work. Note the associated value bsurf = 29.9 for σsurf,sym.

σstd
surf,sat σstd

surf,sym pstdsurf σstd
curv,sat βstd

curv

MeV fm−2 MeV fm−2 MeV fm−1

1.1 2.3 3.0 0.1 0.7

4.5 The crust of neutron stars
In this section we will use the tools developed in Secs. 4.3 and 4.4 to study the crust of NSs.

We first derive the equilibrium equations and then present and discuss our results for the NS

equation of state.

68



T
ab

le
4

.5
:

O
p

ti
m

iz
at

io
n

o
f

th
e

p
ar

am
et

er
s
C i

o
v
er

th
e

n
u

cl
ea

r
ch

ar
t,

fo
r
A

≥
12

an
d
Z

≥
6,

an
d

co
n

si
d

er
in

g
th

e
ex

p
er

im
en

ta
l

en
er

g
ie

s

fr
o

m
th

e
2

0
1

6
A

to
m

ic
M

as
s

E
v
al

u
at

io
n

(A
M

E
)

[1
4

8
]

fo
r

th
e

in
te

ra
ct

io
n

s
co

n
si

d
er

ed
in

th
is

w
o

rk
(S

k
y

rm
e

an
d
χ
E
F
T

).
O

d
d

-e
v
en

m
as

s

st
ag

g
er

in
g

p
ar

am
et

er
s
Δ

sa
t

an
d
Δ

sy
m

,
χ
E

fo
r

th
e

o
p

ti
m

iz
at

io
n

w
it

h
(w

it
h

o
u

t)
o

d
d

-e
v
en

m
as

s
st

ag
g

er
in

g
.

In
th

e
tw

o
la

st
co

lu
m

n
s,

th
e

m
in

im
al

en
er

g
y
E

cl
/A

fo
r

ea
ch

m
o

d
el

is
g

iv
en

to
g

et
h

er
w

it
h

it
s

p
o

si
ti

o
n

in
th

e
n

u
cl

ea
r

ch
ar

t
(A

,Z
) m

in
.

E
x

p
er

im
en

ta
l

b
in

d
in

g
en

er
g

y
ar

e

E
/A

(5
6
F

e)
=

-8
.7

9
M

eV
an

d
E
/A

(6
8
Z

n
)

=
-8

.7
6

M
eV

.

M
o

d
el

C C
o
u
l

C su
rf
,s
a
t

C su
rf
,s
y
m

C cu
rv
,s
a
t

C β
Δ

sa
t

Δ
sy
m

χ
E

m
in
(E

n
u
c
/A

)
(A

,Z
) m

in

(M
eV

)
(M

eV
)

(M
eV

)
(M

eV
)

B
S

K
1

4
M
M

0
.9

6
5

1
.0

0
2

0
.8

9
0

0
.7

7
0

1
.1

0
0

5
.7

5
-7

.3
5

2
.6

1
(2

.7
4

)
-8

.7
2

(6
8

,3
0

)

B
S

K
1

6
M
M

0
.9

7
3

1
.0

7
6

0
.8

7
6

0
.7

7
7

0
.8

1
7

5
.6

8
-4

.8
8

2
.6

6
(2

.7
9

)
-8

.7
0

(6
8

,3
0

)

L
N

S
5
M
M

0
.9

4
9

0
.9

1
6

0
.6

6
8

0
.5

3
1

1
.6

4
6

5
.6

9
-4

.8
4

2
.6

6
(2

.7
9

)
-8

.7
5

(6
8

,3
0

)

R
A

T
P
M
M

0
.9

7
0

1
.0

9
5

0
.6

7
6

0
.5

8
3

0
.6

9
4

5
.5

4
0

.2
2

2
.8

1
(2

.9
3

)
-8

.7
0

(6
8

,3
0

)

S
G

II
M
M

0
.9

5
2

0
.9

4
2

0
.4

0
6

0
.2

6
2

1
.9

8
1

5
.4

2
4

.9
7

2
.9

5
(3

.0
7

)
-8

.7
5

(6
8

,3
0

)

F
0
M
M

0
.9

6
6

1
.0

6
4

1
.2

6
4

1
.1

4
4

0
.9

2
2

5
.8

2
-1

0
.4

7
2

.6
0

(2
.7

3
)

-8
.6

5
(6

8
,3

0
)

S
L

y
5
M
M

0
.9

6
7

1
.0

3
9

1
.2

5
7

1
.1

1
6

0
.9

8
0

5
.8

5
-1

1
.2

6
2

.5
9

(2
.7

2
)

-8
.6

7
(6

8
,3

0
)

H
1
M
M

0
.9

6
6

1
.5

8
2

1
.3

0
7

0
.9

4
2

-0
.2

5
5

5
.5

3
0

.2
2

3
.0

7
(3

.1
8

)
-8

.1
7

(6
8

,3
0

)

H
2
M
M

0
.9

2
7

1
.0

3
7

1
.1

2
3

1
.0

5
3

1
.1

4
1

5
.7

9
-9

.4
6

2
.5

8
(2

.7
1

)
-8

.3
7

(7
0

,3
0

)

H
3
M
M

0
.9

1
3

0
.8

4
7

1
.0

9
5

1
.1

2
7

1
.5

6
0

5
.9

4
-1

4
.8

3
2

.6
5

(2
.7

7
)

-8
.6

1
(6

8
,3

0
)

H
4
M
M

0
.9

0
3

0
.7

1
6

0
.9

6
7

1
.1

4
4

1
.8

3
3

5
.9

9
-1

6
.8

5
2

.7
7

(2
.8

9
)

-8
.8

4
(6

8
,3

0
)

H
5
M
M

0
.8

6
8

0
.3

2
5

0
.6

4
6

1
.2

1
5

2
.6

1
6

6
.3

2
-2

9
.2

6
3

.7
8

(3
.8

6
)

-9
.8

3
(5

8
,2

6
)

H
7
M
M

0
.8

5
8

0
.1

1
0

0
.3

3
9

1
.0

8
6

3
.2

3
5

6
.6

1
-4

3
.6

9
5

.3
2

(4
.9

5
)

-1
0

.2
3

(5
6

,2
6

)

D
H

S
L
5
9
,M

M
0

.8
5

3
0

.3
7

0
1

.0
3

8
1

.6
8

6
2

.0
8

9
6

.4
1

-3
3

.4
0

4
.3

4
(4

.4
1

)
-9

.6
6

(5
8

,2
6

)

D
H

S
L
6
9
,M

M
0

.8
7

1
0

.5
6

7
1

.5
7

1
1

.9
7

1
1

.6
4

9
6

.2
8

-2
8

.5
1

4
.0

2
(4

.1
0

)
-9

.1
0

(6
0

,2
6

)

69



4.5.1 Equilibrium Equations
The CLDM cluster energy is minimized under the constraint of the baryon density nB defined

as,

nB =
Acl +Ng

VWS

= nclu+ nng(1− u) , (4.30)

= nng +
2ne

1− Icl

(
1− nng

ncl

)
. (4.31)

In Eq. (4.31), the density nB is expressed in terms of four of the five independent variables: Acl,

Icl, ncl, ne and nng. We use the Lagrange multipliers technique, as suggested in Ref. [198], to

minimize the μ canonical energy density εμ,can in the Wigner-Seitz cell,

εμ,can = εtot − μBnB . (4.32)

The total energy reads,

εtot(Acl, Icl, ncl, ne, ng) = uεcl + (1− u)εg + ne(mpc
2 −mnc

2) + nBmnc
2 + ρe , (4.33)

where u = Vcl/VWS is the volume occupied by a nucleus in a Wigner-Seitz cell, ρe is the

electron energy density (with rest mass), εg = εMM(nng = ng, np = 0) is the neutron gas energy

density and εcl = εMM(nn,cl, np,cl) + εFS(Acl, Icl, ne, ncl) is the cluster energy density, with the

finite-size contributions given by Eq. (4.7) and discussed in the previous section.

In fact εμ,can coincides with the pressure, εμ,can = −Ptot. So minimizing εμ,can is equivalent

to maximizing the total pressure Ptot. Moreover, minimizing the total energy Etot ≡ εtotVWS

at fixed baryon density nB is equivalent to minimizing the total Gibbs energy Gtot at fixed total

pressure, as discussed in Ref. [211].

We define the following thermodynamical quantities (q = n, p),

Pcl ≡ n2
cl

∂Ecl/Acl

∂ncl

∣∣∣
Acl,Icl

, (4.34)

Pg ≡ −εg + ngμg , (4.35)

μcl,q ≡ μnuc,q +
Pg

nB

, (4.36)

μe ≡ ∂Ee

∂Ne

∣∣∣
Ncl,Zcl

+
2ne

(1− Icl)Acl

∂ECoul

∂ne

, (4.37)

with

μnuc,n ≡ ∂Enuc

∂Ncl

∣∣∣
Zcl,Ne

, μnuc,p ≡ ∂Enuc

∂Zcl

∣∣∣
Ncl,Ne

. (4.38)

From Eq. (4.34), we deduce,

Pcl = Pbulk + PCoul + Psurf + Pcurv , (4.39)

with obvious definitions for these partial contributions.

We impose the stationary condition of the canonical potential (4.32) with respect to the

five independent variables, considering μB as a constant parameter, and obtain the following
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equilibrium relations [212],

2ECoul = Esurf + 2Ecurv , (4.40)

Pcl = Pg , (4.41)

μcl,n = μg , (4.42)

μcl,n = μcl,p + μe +Δmc2 , (4.43)

μB = μg

+
2ne

nclAcl(1− Icl)− 2ne

∂Esurf

∂ng

∣∣∣
Acl,Icl,ncl

, (4.44)

where Δm = mp −mn. These equilibrium relations have a physical interpretation: Eq. (4.40)

is an extension of the virial theorem [203] including the curvature energy, Eq. (4.41) reflects

the mechanical equilibrium, Eq. (4.42) describes the chemical equilibrium between the cluster

and the gas in the r-representation, and finally Eq. (4.43) assures the β-equilibrium. The last

Eq. (4.44) describes the baryon chemical potential which fixes the baryon density.

Equations (4.40)-(4.44) are solved by using the robust Newton-Raphson method. Note that

since the surface energy (4.16) is independent of the gas density nng, Eq. (4.44) reduces to

μB = μg.

4.5.2 Results for the crust
The energy, pressure, sound speed and volume fraction, u = Vcl/VWS where Vcl is the cluster

volume and VWS the Wigner-Seitz cell volume, at β-equilibrium are shown in Fig. 4.6 for a

range of densities spanning over the outer (partially) and inner crust. These quantities are sensi-

tive to the properties of low-density NM, as shown in Fig. 4.2. The models LNS5 and SGII (F0

and SLy5), which predict binding energies in low-density NM lower (higher) than the χEFT
band, also predict that the binding energy at β-equilibrium is lower (higher) in the density range

going from 3 10−3 to 10−1 fm−3. The same remarks are applicable for the pressure, the sound

speed and the volume fraction at β-equilibrium. Vertical dark gray bands in Fig. 4.6 shows

the prediction for the outer-inner crust transition for the models that better reproduce nuclear

masses, i.e., all Skyrme models and H1-H4, while light gray band shows the prediction includ-

ing all models used in this work. Note the importance of reproducing experimental nuclear

masses to better constraint the location of the neutron drip.

It can also be remarked that in the outer crust the χEFT Hamiltonians are more spread

than the Skyrme models. Since the Skyrme models reproduce better the experimental nuclear

binding, they lead to tighter predictions in the outer crust. Note that the gray band localizing the

predictions from H1-H4 χEFT Hamiltonians are in full agreement with the Skyrme ones. One

can thus conclude that the experimental nuclear masses are important constraints to accurately

predict the EoS in NS outer crust. In the inner crust however, since a large amount of neutrons

drip off the clusters to form a neutron fluid, some properties such as the binding energy, the

pressure, the sound speed and the volume fraction are largely impacted by the properties of

uniform NM.

The transition from non-homogeneous matter (crust) to homogeneous matter (core) is ob-

tained by computing the energy per particle for the two phases and comparing their values as

the density increases. The state with the lower energy is the favored one. In the bottom-right
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Figure 4.6: Energy per particle, pressure, sound speed and volume fraction at beta equilibrium

in the NS crust. Dark gray band shows the prediction for the outer-inner crust transition for the

models that better reproduce nuclear masses (all Skyrme and H1-H4). Light gray band shows

the uncertainty including all models.

panel of Fig. 4.6 the end of the volume fraction curves indicate this transition. The spread of

the ends of the curves shows the uncertainty in the crust-core transition given by the 15 models

investigated in this work. In Tab. 4.6 we add the numerical values for the outer-inner crust tran-

sition together with the crust-core transition for the different models. Regarding the crust-core

transition density, we see that models H1-H7 are consistent with the results of Table 4.1 within

uncertainties. This indicates that the spinodal approach of Sec. 4.1 is a very useful tool to cal-

culate the crust-core transition despite the fact that nuclear clusters are not taken into account.

The neutron, proton, electron and muon particle fractions are shown in Fig. 4.7. For densi-

ties lower than 10−3 fm−3 all models agree well together, except H7, which slightly overesti-

mates Ye. At higher densities however, a dispersion among the model predictions appears. Here

also the low-density energy per particle in NM plays an important role: a reduction of the en-

ergy per particle in NM would facilitate the production of neutrons from electrons and protons

via the β-process, and thus would reduce the electron fraction Ye. This is exactly what happens:

the stiffest models, e.g. F0 and SLy5, predict the largest particle fractions in the density range

10−3 − 10−1 fm−3, while the softest ones, e.g. LNS5 and SGII, predict the lowest electron

fractions.

Muons appear at around 0.1-0.2 fm−3, and this onset density is rather model independent (at
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Figure 4.7: Particle fractions. Top: leptons, Ye left axis (Yμ right axis) in continuous (dotted)

lines. Bottom: baryons, Xn left axis (Xp right axis) in continuous (dotted) lines.

least for the densities explored in this figure). The muon fraction increases with density for all

models. At a few times saturation density, some models such as BSK14, BSK16, RATP, SGII

and LNS5 predict however a bending down of the electron and muon density. This behavior

results from the symmetry energy, see Fig. 4.3, which bends down to zero for these models as

the density exceeds saturation density. As the symmetry energy reduces, it is more and more

easy to produce neutrons and then the lepton fraction goes down to zero.

The neutron chemical potential is shown in Fig. 4.8. In the outer crust νn < 0, since all

neutrons are bound to nuclei. The neutron drip is defined as the density at which the first

neutron drips out of nuclei or equivalently by the condition that the neutron chemical potential

νn > 0. Fig. 4.8 only shows this positive case. The small dispersion of the curves in the lower

left side of Fig. 4.8 reflects the uncertainties in the position the outer-inner crust transition.

As we already commented in the discussion of Fig. 4.6, the position of the inner-outer crust

transition is better defined with Skyrme models than with χEFT ones. This indicates that the

inner-outer crust transition is mainly determined by the experimental nuclear masses. As the

density increases above the drip point, the neutron fluid contribution becomes more important.

As a consequence a convergence of the χEFT models is observed, while the uncertainties on

the Skyrme models predictions are getting larger and larger. As seen in the previous figures, we

note that F0 and SLy5 (LNS5 and SGII) predicts higher (lower) values than the other models,

while RATP, BSK14 and BSK16 predicts νn compatible with the χEFT models.

The cluster composition in the inner and outer crust is shown in Fig. 4.9. Our best predic-
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Figure 4.8: Neutron chemical potentials in the inner crust with respect to the baryon density.

tions from the χEFT models H1-H4 are bounded by the gray band. The Asy-Stiff models such

as H5, H7, DHSL59 and DHSL69 predict lower Zcl than the gray band, and the Asy-Soft models

such as RATP, LNS5, SGII, BSK16 predict larger Zcl than the gray band. Other models are

compatible with the gray band. Note however than close to the core-crust transition density, the

behavior of Acl and Zcl can be quite different from one model to another. This is reflecting the

important role played by the isospin asymmetry parameter psurf , which is fixed to be psurf = 3
in our present study. The role of psurf on the core-crust transition density has been discussed in

Refs. [194, 208]. It is indeed a parameter which is difficult to determine, since finite nuclei do

not explore isospin asymmetries large enough to be impacted by the value of psurf . This param-

eter could be determined from a slab configuration calculation exploring large asymmetries. In

the present study, we however prefer to fix psurf for simplicity, but a more accurate estimation

of the core-crust transition density shall include a proper adjustment of the parameter psurf .
We also compare our results with other predictions in Fig. 4.9, such as the Bruxelles-

Montreal Hartree-Fock Bogoliubov calculation (BSk22 and BSk25) [175], the Negele-Vautherin

Hartree-Fock calculation [204], the Douchin-Haensel CLDM calculation [213, 166], and finally

the original BBP model [214]. The oldest calculations, BBP, Negele-Vautherin and Douchin-

Haensel, do not always overlap with our gray band, since they were performed before the recent

χEFT achievement. The BSk22 model overlaps pretty well with our gray band, reflecting the

good agreement already noticed for the symmetry energy. The model BSk25, which is stiffer

than the χEFT H1-H4 models predicts larger Zcl than us. Note also that while shell effects are

absent from our calculation, our best predictions (gray band) is compatible with models which

have them, e.g. BSk22 or Negele-Vautherin. This shows that while shell effects are important

to get accurate Zcl, the actual value for Zcl is still largely influenced by the contribution from

the bulk term in the CLDM, in particular by the symmetry energy at low-density. The leptoder-

mous expansion, which has been shown to provide a good ordering of the contribution of the

different terms in the mass formula in NS crust, suggests that shell effects are comparable with

curvature terms. In other words, shell effects are certainly important for accurate predictions of

the crust properties, but they are not the main ingredient to understand the origin of the main
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Figure 4.9: Cluster composition, Acl (top) and Zcl (bottom), for the eight χEFT Hamiltonians

and the seven Skyrme models. The silver band shows our best results including H1-H4.

uncertainties in these properties. The main source of uncertainties are originating from the bulk

term, and in more detail by the low-density NM properties.

Several approximations have been made in this work, such as considering a fixed value for

psurf , using a specific prescription for the finite-size terms (FS4), neglecting neutron skin and

shell effects, etc. We end this section by performing a simple comparison that is indicative of the

importance of the effects neglected in this work. In Fig. 4.10, we show Zcl and Ncl as function

of nB obtained using the CLDM, the fourth order Extended Thomas Fermi (ETF) method and

ETF plus the Strutinsky Integral correction (ETFSI). All three models employ the same BSk24

Skyrme interaction. The ETF method takes into account non-uniform density distributions

which can be different for neutrons and protons (i.e. the neutron skin), and the ETFSI includes

the proton shell effects within the Strutinsky approach. Note that, while the CLDM is expressed

in the so-called r-representation [193] in which the neutron fluid does not penetrate inside

the volume occupied by the cluster, the ETF and ETFSI are expressed in the e-representation

where the neutron fluid overlaps the nuclear clusters. These two representations of the density

distribution of the particles in the system are however approximate ways to describe the real

quantum nature of the system based on wave functions [193]. We therefore relate the neutron

numbers in the two representations as: N cl
e−rep = N cl

r−rep − nngVcl. The cluster neutron numbers

in the r- and e- representations are shown in the middle and right panels of Fig. 4.10. The blue
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Table 4.6: Neutron drip density, crust-core transition density and central density of the max-

imum causal mass. For some Skyrme models, F0, LNS5 and SLY5, the maximum mass is

obtained without breaking causality.

Model ndrip ncc ncausal

(×10−4 fm−3) (×10−2 fm−3) (fm−3)

H1MM 2.60 9.60 0.68

H2MM 2.94 8.67 0.65

H3MM 2.44 8.45 0.65

H4MM 2.52 9.06 0.65

H5MM 2.85 8.70 0.64

H7MM 3.22 8.31 0.57

DHSL59
MM 2.60 7.21 0.62

DHSL69
MM 2.37 7.32 0.64

BSK14MM 2.52 7.62 1.21

BSK16MM 2.52 8.46 1.20

F0MM 2.52 8.33 -

LNS5MM 2.60 7.04 -

RATPMM 2.52 8.60 1.34

SGIIMM 2.60 6.53 1.35

SLY5MM 2.44 7.63 -

band contains CLDM predictions where the parameter psurf is varied, and the different dashed

lines show the impact of the FS description, see Ref. [208], ordered within the leptodermous

expansion. The dotted dark purple line shows the ETF results. It is interesting to remark that

by fixing psurf ≈ 3.1 there is a very good overlap between the CLDM and the ETF predictions

for Zcl. The same feature exists for Ncl, but for psurf ≈ 3.3. This small discrepancy may

originate from the neutron skin, which is not included in the CLDM. The impact of the neutron

skin is however small compared to the FS terms of higher rank in the leptodermous expansion.

The shell effects shown in Fig. 4.10 can be seen as the difference between ETF and ETFSI

predictions for Zcl and Ncl. The proton shell effects stabilises Zcl to proton shell or sub-shell

closure in almost all the inner crust (Zcl = 40 for BSk24). It is only in the densest region of

the inner crust, the so-called pasta phase, that Zcl departs from 40. Since shell or sub-shell

closure occurs at fixed proton numbers, expected to be 20, 28, 40, 50 and 82 from nuclear
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Figure 4.10: Crust composition Zcl, Ncl as function of the baryon density. The number of

neutrons is calculated in the r-representation (N r−rep
cl middle panel) and in the e-representation

(N e−rep
cl right panel). We explore the impact of the leptodermous expansion by showing the

results for FS1-FS4 in the CLDM, the impact of psurf by varying psurf from 2.9 to 3.5 in the

CLDM, and finally, we compare CLDM with EFT and EFTSI predictions. The blue band

correspond to the CLDM uncertainty in the parameter psurf .

phenomenology, the impact of the shell effect could be larger on Zcl and Ncl than the effect

of FS terms or of the neutron skin. For BSk24, since CLDM and ETF predict values for Zcl

slightly above 40 (of the order of 42-44), the stabilization from the proton shell effects in ETFSI

decreases Zcl down to 40. As a consequence, Ncl is also reduced to approximately conserve the

isospin asymmetry.

4.6 Global NS properties
The mass-radius relations for all the considered models are given in Fig. 4.11. Most of the

Skyrme models considered here are softer than the χEFT ones and explore densities up to

about 9nsat in the densest case. The central density is 5-6nsat for χEFT models, which are

stiffer. The M-R relations require extrapolations out of χEFT density domain which terminates

at ≈ 2nsat. We remind that we have fixed the values of the parameters Q and Z in such a way

that these models reach 2M�. Some of the Skyrme models are so soft that they even miss to

reproduce the observed lower limit of MTOV, e.g. F0, SGII, BSK14, BSK16 and RATP. These

models predict however MTOV ≥ 1.7 M�, allowing them to predict the properties of canonical

mass NS. We decided to keep these EoS in our analyses since the density at which these models

fail are above the expected break-down of the nucleonic models, about 3-4nsat. The crosses on

the figure show the central density in units of nsat, note that the central density at the maximum

(causal) mass for the Skyrme models is of the order 7-8nsat. In the present tables, we limit our-

self to pure nucleonic models, but it is possible to add a phase transition on top of these models.

We have however not explored high-density phase transition yet, since we have concentrated our

study in the properties of the crust. The Skyrme models explored here are all quite soft at high

density. It is then interesting to study the consequence of such a soft EoS on the astrophysical

predictions.
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Figure 4.11: Neutron star M-R diagram, for the eight χEFT Hamiltonians and seven the

Skyrme models. The squares indicate the density at which causality is violated. The light

crosses mark the central density in units of nsat: the numbers given in the diagram indicate the

value of the central density in units of nsat.

4.7 Conclusion
In this chapter, as a first estimate, we used the spinodal-instability criteria to calculate the influ-

ence of non-quadratic contributions to the symmetry energy on the crust-core transition point.

We showed that the effects were of the order of a few percent. Furthermore, we showed that

the spinodal instability criteria gives a crust-core transition point that is consistent with more

sophisticated treatments of the crust developed in the subsequent parts of this chapter.

The bulk of this chapter was then devoted to the development of a unified description of

the EoS of NSs, such that infinite nuclear matter present in the core and finite nuclear clusters

present in the crust are treated consistently. We have employed the CLDM to model the finite

size terms describing the nuclear clusters which allowed us to perform a detailed analysis of

the crust. We used fifteen models for the nuclear interaction, including seven Skyrme and

eight χEFT Hamiltonians. Our approach is adequate for the understanding of the origin of

the model dependence in the prediction for the NS crust properties. The crust properties were

analyzed in terms of bulk and FS contributions, where the bulk term explore the uncertainties

in the uniform matter prediction, e.g. the low-density NM, and the FS terms are chosen to best

reproduce experimental nuclear masses. The two main sources of uncertainties for the NS crust

properties are then well identified. These two important factors which govern, at first order,

our predictions are: i) the ability of the models to reproduce the nuclear experimental masses

over the nuclear table, and ii) the low-density energy per particle in NM. For the models which

satisfy i), the low-density energy per particle in NM is equivalent to the low-density properties

of the symmetry energy. We have then observed that some quantities are more sensitive to the

factor i), e.g. cluster composition Acl and Zcl, while others are more impacted by the factor ii),

e.g. energy per particle, pressure, sound speed, volume fraction, electron fraction Ye, neutron

chemical potential, mentioning only the observables that we have analyzed.

For all the fifteen unified EoS presented here, we have generated tables in the CompOSE
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format. While a few of these models do not reach the lowest value of MTOV set by radio-

observations, we believe that the central densities explored for these soft EoS are so large that

the table we provide here could be used to explicitly introduce a phase transition construction.

Many nucleonic models presented here reach however the observed lowest value for MTOV.

Contributions left out of the CLDM such as the neutron skin and shell effects were studied

by comparing the CLDM with the ETF and ETFSI approaches. We concluded that these effects,

in particular the proton shell contribution could have an important impact on the composition

of the nuclear clusters. Therefore extensions of the CLDM incorporating these effects would be

beneficial. Investigations along these lines are in progress.
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Part II

Relativistic Descriptions of Nuclear Matter
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Chapter 5

A relativistic chiral model of nuclear
matter with nucleon structure constraints

As stated in the chapter 1, the purpose of this thesis is to contribute to our understanding of

dense nuclear matter. In part I, we employed Chiral Effective Field Theory in a non-relativistic

framework to tackle this problem. This effective approach is well suited to address low-energy

systems but as the energy, or equivalently the density, increases it faces a natural break-down,

indicating that relativistic effects might have to be taken into account. In cold neutron matter,

the break-down is expected to occur between nsat and 2nsat, see for instance Ref. [171] and

references therein. Therefore, exploration of matter at densities beyond this breakdown scale

requires extrapolations such as the one proposed in Ref. [215]. In part II, we adopt a different

viewpoint and investigate relativistic modeling of nuclear matter. We focus on a relativistic

framework because recent radio observations [58, 60, 56, 59] as well as X-ray observations

from NICER [50, 52] of NSs with masses around two solar masses have indicated that the

sound speed in the cores of NSs is expected to be larger than 10% of the velocity of light [171,

216]. Therefore the study of the densest phases in the cores of NSs requires the development of

a relativistic description of nuclear matter.

Furthermore, for densities well above the saturation density, the question of possible phase

transitions and the relevant degrees of freedom are important. We will discuss phase transitions

in great detail in part III. Here, in part II, we restrict ourself to matter made of nucleons only.

Usually nucleons are considered to be point-like degrees of freedom that exist in nuclei where

energies up to some tens of MeV per nucleon are involved [217]. However, with the advent of

QCD, it has been established that nucleons are not fundamental, but they are instead composed

of colored quarks which interact through the exchange of colored gluons at a resolution scale

of a few hundred MeV per nucleon [12]. Bridging the fundamental theory of QCD with the

natural nucleonic degrees of freedom has thus became an important question in the recent de-

velopments of nuclear physics. Our exploration of relativistic nuclear matter thus emphasizes

this connection. In order to do so, in this chapter, we will perform our investigation along the

lines originally proposed in Refs. [218, 219] where spontaneous chiral symmetry breaking and

confinement effects (i.e. QCD features at the quark level) are incorporated in the modeling of

nuclear matter. In the next chapter 6, this model is compared to other effective approaches such

as the Walecka-type model [220, 221] and the ones inspired from Refs. [222, 223, 224, 225].

The rest of this chapter is organized as follows. In Sec. 5.1 we present a review of relativistic

theories with an emphasis on QCD aspects such as chiral symmetry and confinement. This
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will allow us to establish a historical background for this work. In Sec. 5.2, these notions are

captured using the model developed in Refs. [218, 219]. In this section, we also present the

ground state energy of nuclear matter derived from the relativistic Lagrangian in the Hartree

approximation, thereby establishing our computational setup. The predictions of this model for

the EoS are discussed in Sec. 5.3. We end this chapter with a brief summary in Sec. 5.4

5.1 Our understanding of the nuclear force
In order to understand the significance of the work presented in this part of the thesis, a brief re-

minder of the development of our understanding of low-energy nuclear interactions is necessary.

In 1935, the Yukawa meson-exchange model [226] was the first theory for the nuclear force,

where pions mediate the NN (nn, np, and pp) interaction. This meson-exchange approach, while

now known as not being the fundamental theory, has however shaped the global understanding

of nuclear physics in terms of nucleons and mesons, producing the first good qualitative results,

by fixing the coupling constant and associating a particle exchange to the strong interaction.

This first quantum field model for the strong interaction was however not successful enough to

accurately reproduce the properties of atomic nuclei, e.g. the ground-state energy, because of

its simplicity compared to more evolved and recent models (e.g. one-boson-exchange poten-

tials or OBEP discussed hereafter) and of the unknown pion dynamics, which we now know is

constrained by the chiral symmetry. In the early 1960’s, the discovery of heavy mesons helped

in the modeling of better one-boson-exchange potentials (OBEP) containing the exchange of

well identified vector mesons namely the omega (ω) and rho (ρ) mesons. There were however

still some problems, e.g., the scalar sigma boson-exchange (now named f0(600)) for which the

experimental evidence was polemic as well as its link to the broad 2π scalar resonance. Never-

theless, high-precision potentials based on the meson-exchange picture and including a scalar

meson were constructed and successful, see for instance Ref. [227].

The first attempt to go beyond a non relativistic treatment of nuclear matter was the rela-

tivistic mean field (RMF) approach initiated by Walecka and collaborators [220, 221], which

is based on meson exchange between nucleons whose wave functions are solution of the in-

medium Dirac equation. In this framework nucleons move in an attractive (scalar field) and in a

repulsive (vector field) backgrounds. This provides both the Walecka saturation mechanism and

the correct magnitude of the spin-orbit potential. The parameters describing the meson-nucleon

couplings are adjusted to the saturation properties of nuclear matter and/or nuclear ground state

properties through the nuclear chart (binding energies, charge radii, etc). Hence there is no ex-

plicit or direct connection with the underlying QCD theory but instead this approach describes

the nuclear properties in terms of a meson exchange potential renormalized around nuclear

saturation density. The link with the bare nucleon-nucleon interaction could nevertheless be

performed through the Dirac-Brueckner-Hartree-Fock (DBHF) approach [228, 229] which pro-

duces a mean-field potential which can guide the parametrization of the in-medium RMF theory

with density-dependent coupling constants [230, 231]. Some recent RMF models accurately

reproducing the properties of nuclei have included this link to DBHF in-medium modified po-

tentials [232, 233]. However, the question of the very nature of these background mesonic fields

has still to be elucidated or, said differently, it is highly desirable to clarify their relationship

with the low-energy realization of chiral symmetry.
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5.1.1 Chiral symmetry and color confinement
Chiral symmetry together with color confinement are the most prominent low-energy features

of the gauge theory of colored quarks and gluons (QCD) established in the 1970’s. In the low

energy/large distance domain only light u and d quarks with masses of a few MeV are relevant.

In this domain the QCD Lagrangian has essentially no dimensional parameter (when neglecting

the quark masses). This scale invariance is however broken by quantum fluctuations [12], lead-

ing to the formation of the characteristic QCD scale ΛQCD. Much below ΛQCD ≈ 200 MeV, the

coupling constant of the theory becomes very large, a feature that occurs together with color

confinement, and consequently renders QCD a non-perturbative theory in the energy range of

nuclear physics, often referred to as low-energy. Lattice-QCD is one tool to tackle this problem

by bridging the gap between unobserved quarks and gluons degrees of freedom and baryonic

or mesonic degrees of freedom [234], however this method is presently feasible only at zero

baryon density.

The concept of chiral symmetry was already briefly discussed in Sec. 2.3.1. However, for

the sake of completeness, we shall recall some of the key notions again and discuss them in more

detail. The SU(Nf = 2) chiral symmetry of QCD originating from the light quark masses means

that in the limit of zero mass (called the chiral limit) non-interacting quarks with opposite parity

are indistinguishable and do not couple to each other. For the description of hyper-nuclei, this

concept of chiral symmetry can be extended to the s quark within SU(Nf = 3). In the present

study, we however limit ourself to the SU(2) case. At low-energy, i.e. below a few ΛQCD, chiral

symmetry is spontaneously broken due to the condensation of quark-antiquark pairs, mixing left

handed and right handed quarks in the QCD vacuum: QCD prefers quark-antiquark pairs with

negative parity to the quark-quark pairs with positive parity [103]. The chiral fields associated

with the fluctuations of the resulting quark condensate 〈q̄q〉 are usually parametrized in a SU(2)
matrix M as:

M = σ + i�τ · �φ ≡ S U (5.1)

where �τ are the SU(2) isospin Pauli matrices, S = s + fπ and U = ei 	τ ·	π/fπ . The scalar

field σ (S) and pseudoscalar fields �φ (�π) written in cartesian (polar) coordinates appear as the

dynamical degrees of freedom. In particular the sigma field is not vanishing in vacuum since

〈σ〉vac = 〈S〉vac = fπ ∝ √〈q̄q〉
vac

, where the last relation is due to the Gellmann-Oakes-

Renner relation [234], given hereafter. Note that, at finite density, the values taken by these

dynamical degrees of freedom may deviate from their vacuum expectations.

In the chiral limit the potential energy, also called the chiral potential, exhibits a typical

mexican hat shape in terms of the scalar and pseudoscalar fields. The bottom is a circle with

radius fπ (the chiral circle defined from σ2+ �φ2 = f 2
π ) in a four dimensional space (an analogy

can be made with the O(4) ferromagnet below the Curie temperature). The low-energy constant

fπ is identified with the pion decay constant. As a result, one moves without cost of energy

along the chiral circle and the pseudoscalar modes are massless in the chiral limit. These modes,

called Goldstone bosons, are realized in terms of a few pseudoscalar mesons, e.g. the pions for

SU(2) or the kaons for the SU(3) extension.

In addition to the spontaneous chiral symmetry breaking, one expects a small but explicit

symmetry breaking. For small masses indeed, as it is the case in the physical world, chiral

symmetry is explicitly broken and u and d quarks interact weakly. In reality the Goldstone
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bosons are quasi-Goldstone bosons with small masses. This explains why the quasi-Goldstone

boson, identified as the pion, has a small mass � 140 MeV compared to the other mesons. The

Gellmann-Oakes-Renner relation, f 2
πm

2
π = −2mq 〈q̄q〉vac, relates the pion mass mπ to mq, the

small but finite mass of the light u and d quarks.

A simple realisation of the chiral symmetry breaking mechanism can be studied in the

Nambu-Jona-Lasinio (NJL) model, see original Refs. [235, 236] and Ref. [237] for a review. In

its simpler version, the complex QCD interaction is replaced by a contact 4-quark chirally in-

variant interaction, where the gluon degrees of freedom as frozen. In addition, quarks acquire a

dynamical mass due to the spontaneous breaking of the chiral symmetry. This mass is called the

constituent quark mass since it is approximately one third of the nucleon mass (� 330 MeV).

There is another mass, the scalar mass associated to the radial meson mode S, which is related

to the curvature of the chiral potential. Since this mass is associated to two constituent quarks,

it typically scales as twice the constituent quark mass in the NJL model. For this reason, in the

following, we will take for the mass of the sigma typical values about 600 to 800 MeV.

These chiral properties can also be implemented in chiral perturbation theory. In the chiral

Effective Field Theory (EFT) initiated by Weinberg [104], the radial mode S is frozen to its

vacuum expectation value, fπ, and only low-energy displacements along the chiral circle are

allowed. In this approach, the most general Lagrangian is expressed in terms of the matrix U ,

e.g., pionic degrees of freedom, dictated by symmetries, e.g. chiral symmetry. Recall that it

was this framework that was used as our computational setup in part I.

Finally, let us remark that as the density of the medium increases, chiral symmetry is ex-

pected to be progressively restored. This is a general expectation: as the energy scale increases

– in that case due to the increasing density – the symmetry of the QCD Lagrangian is recov-

ered. It is typically demonstrated for an effective model of QCD such as the NJL model, see

Ref. [237] for a review.

5.1.2 The nuclear physics sigma meson
To bridge the gap between relativistic theories of the Walecka type and approaches based on

chiral symmetry, one has to map the nuclear physics sigma meson of the Walecka model at

the origin of the nuclear binding (let us call it σW from now on) with a chiral quantity. For

instance, one may be tempted to identify σW with σ, the chiral partner of the pion. It is however

forbidden by chiral constraints. This point has been first addressed by Birse [238]: it would

lead to the presence of terms of order mπ in the NN interaction which is not allowed.

It was instead proposed and justified to identify σW with the chiral invariant s (= S − fπ)

field associated with the radial fluctuation of the chiral condensate S about the "chiral radius"

fπ: formally it imposes σW ≡ s [218]. Equivalently the chiral invariant sigma field and the

pion field appearing in the chiral field operator M = S U ≡ (s+ fπ)U ≡ (σW + fπ)U are

promoted to the rank of effective degrees of freedom. This was originally formulated in the

framework of the linear sigma model [218] but an explicit construction using a bosonization

technique of the chiral effective potential can be done within the NJL model [239], where the

linear sigma model potential is recovered through a second order expansion in S2 − f 2
π of the

constituent quark Dirac sea energy. This proposal, which gives a plausible answer to the long

standing problem of the chiral status of Walecka theories, has also the merit of respecting all

the desired chiral constraints. In particuler the correspondance s ≡ σW generates a coupling of

the scalar field to the derivatives of the pion field. Hence the radial mode decouples from low-
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energy pions (as the pion is a quasi-Goldstone boson) whose dynamics is governed by chiral

perturbation theory. A detailed discussion of this sometimes subtle topic is given in [218, 240].

From now on, we thus believe that the correct connection to the physical world is to identify

σW ≡ s.

The very origin of this nuclear physics sigma meson is nevertheless still a controversial sub-

ject since there is no sharp scalar resonance observed in the expected mass range ≈ 600 MeV.

Let us discuss this controversy in some detail, by repeating arguments already presented in Ref.

[239]. As soon as we start from a model which gives a correct description of chiral symmetry

breaking in the QCD vacuum such as the NJL model, the emergence of a scalar field linked to

the quark condensate is predicted. This emergence is by construction a low momentum concept

which does not imply the existence of a sharp scalar meson if the effect of confinement is taken

into account. Indeed it has been demonstrated by Celenza et al [241, 242] that the inclusion of

a confining interaction on top of the NJL model pushes the qq̄ scalar state, located originally at

twice the constituent quark mass, well above one GeV. The broad resonance, usually refereed

as the f0(600), observed at around 600 MeV, is a ππ resonance which has no direct relation

with the background scalar field introduced above. Coming back to this nuclear physics σW , its

associated “scalar mass”, which is around twice the constituent quark mass, is a low momentum

parameter related to the inverse of the vacuum scalar susceptibility. As reminded in the previous

sub-section, it is typically of the order of 600 to 800 MeV.

5.1.3 Nucleon response at finite density
There is a well identified problem concerning the nuclear saturation with usual chiral effective

theories [243, 244, 245, 246]: Independently of the particular chiral model, the solution at

finite density is moved away from the vacuum solution, located at the minimum of the chiral

potential, into a region of smaller curvature. This single effect (equivalent to the lowering of

the sigma mass) destabilizes the ground state solution, creating problems for the applicability

of such effective theories in the nuclear context. The effect can be associated with a s3 tadpole

diagram generating an attractive three-body force and destroying saturation, even if an effective

repulsive three-body force is present in the Walecka mechanism, because it is not strong enough.

In certain relativistic chiral approaches, this problem is cured by introducing a nucleon re-

sponse to the scalar field, κNS , which is the central ingredient of the quark-meson coupling

model (QMC), introduced in the seminal work of P. Guichon [247] and successfully applied to

finite nuclei with an explicit connection to the Skyrme force [248]. The QMC model has since

been applied to compute the EoS of NSs [249] and it has also been quite successful in repro-

ducing the major features of the EMC 1 effect [250] which was one of the first methods to probe

the internal structure of the nucleon, see Ref. [251] for a review of some of the recent develop-

ments regarding the QMC model. The physical motivation to introduce this nucleonic response

is the observation that nucleons experience huge fields at finite density, e.g. the scalar field is of

the order of a few hundred of MeV at saturation density. Nucleons, being in reality composite

objects, will react against the nuclear environment (i.e., the background nuclear scalar fields)

through a (self-consistent) modification of the quarks wave functions. This effect may generate

a three body force which brings the desired repulsion if confinement dominates spontaneous

chiral symmetry breaking, as discussed in Ref. [239] within particular models. In practice this

1The name originates from the European Muon Collaboration.
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effect generates a non linear coupling of the nucleon to the scalar field, inducing a decrease of

the effective scalar coupling constant with increasing density. This is the key ingredient of the

saturation mechanism. The attractive chiral s3 tadpole diagram responsible for the instability

of the ground state at finite density is counterbalanced by the nucleon response. An estimate of

the nucleon response parameter κNS can be extracted from lattice-QCD, providing an explicit

connection between nuclear saturation mechanism and QCD itself. One may also notice that a

similar mechanism occurs if confinement is simulated by an infrared cut-off in the NJL model

as discussed in Ref. [245].

Note that the nucleon response largely contributes as well to the curvature coefficient at

saturation – the incompressibility modulus Ksat. In a set of successive works [219, 252, 253,

254, 239, 255] this approach has been applied to the equation of state of nuclear matter and

neutron stars as well as to the study of chiral properties of nuclear matter at different levels of

approximation in the treatment of the many-body problem (RMF, Relativistic Hartree Fock or

RHF, pion loop correlation energy). Note also that, the quark substructure plays also a crucial

role for the spin-orbit potential as discussed in a recent paper [256].

In practice the introduction of the nucleon response is done by parametrizing the scalar field

s dependence of the nucleon mass with the exception of Ref. [239] where explicit confinement

models have been used to generate it. The parameter κNS can advantageously be replaced by

the dimensionless parameter C = f 2
πκNS/2MN � 1.25 as we will discuss later.

5.2 Computational Setup
We will now present our computational setup that will serve as the basis for the calculations

presented in this chapter as well as in the next chapter 6. We begin by noting that, in relativistic

approaches to nuclear matter, the Lagrangian can generically be written as the sum of a kinetic

fermionic term,

Lψ = ψ̄ (iγμ −MN) ∂μψ ,

where the field ψ represents the nucleon spinor, and the meson-nucleon interaction terms,

Lm = Ls + Lω + Lρ + Lδ + Lπ , (5.2)

where Lm collects all mesonic contributions considered in a given model. Using notation of

Ref. [253] these can be enumerated as,
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Ls =
(
MN −MN(s)

)
ψ̄ψ − V (s) +

1

2
∂μs∂μs ,

Lω = −gωωμψ̄γ
μψ +

1

2
m2

ωω
μωμ − 1

4
F μνFμν ,

Lρ = −gρρaμψ̄γ
μτaψ + gρ

κρ

2MN

∂νρaμψ̄σ
μντaψ

+
1

2
m2

ρρaμρ
μ
a −

1

4
Gμν

a Gaμν , (5.3)

Lδ = −gδδaψ̄τaψ − 1

2
mδδaδa +

1

2
∂μδa∂μδa ,

Lπ =
gA
2fπ

∂μϕπaψ̄γ
μγ5τaψ − 1

2
m2

πϕπaϕπa

+
1

2
∂μϕπa∂μϕπa ,

where the symbols have their usual meaning. In Eq. (5.3), two quantities are of particular

interest to us, the scalar potential V (s) and the s-field dependent nucleon mass MN(s). Indeed,

these are the two quantities that allow us to incorporate the notions of chiral symmetry breaking

and nucleon polarization that were discussed in Sec. 5.1.

Chiral symmetry is enunciated via the chiral effective potential, which is a Mexican hat

potential for the scalar field,

V (s) =
m2

σ −m2
π

8f 2
π

(
σ2 + φ2 − v2

)2 − fπm
2
πσ , (5.4)

with

v2 = f 2
π

m2
σ − 3m2

π

m2
σ −m2

π

. (5.5)

The chiral effective potential (5.4) corresponds to the original linear sigma model using the

"cartesian" coordinates, namely the "chiral partners" σ and φ.

Employing the polar coordinates and keeping only the leading order mass term for the pion,

the chiral potential can also be expressed as

V (s) =
m2

π

2

(
S2 − f 2

π

)
+

m2
σ −m2

π

8f 2
π

(
S2 − f 2

π

)2
+
1

2
m2

ππ
2 + ... (5.6)

In Eq. (5.6) the higher order terms generate pion-pion interactions which we can neglect as

they disappear in the chiral limit.

We finally get the following expression that will be used for this model:

V (s) =
m2

σ

2
s2 +

m2
σ −m2

π

2fπ

(
s3 +

s4

4fπ

)
, (5.7)

where we only keep the radial fluctuation field s (the field to be identified with the sigma meson
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σW of Walecka theories) since at the Hartree mean field level, the pion exchange does not

contribute. As explained in Sec 5.1, such a potential does not allow for SM to saturate because

of the attractive contribution of the s3 term in Eq. (5.7), i.e., the tadpole diagram mentioned

earlier. This problem can be circumvented by introducing the nucleon response to the scalar

field at finite density, driven by the susceptibility κNS , see discussion in Sec. 5.1.3:

MN(s) = MN + gss+
1

2
κNS

(
s2 +

s3

3fπ

)
. (5.8)

In Eq. (5.8), the quadratic term leads to a non-zero nucleon susceptibility, and we have added

a cubic term as well. The cubic term coupling constant is fixed such that the susceptibility

κNS = d2MN(s)/ds
2 vanishes at full chiral restoration [219]. In the following, it will be

convenient to introduce the dimensionless quantity

C =
f 2
π

2MN

κNS . (5.9)

In this work we will restrict our attention to only symmetric matter. The energy density at

the Hartree level can be computed from the Lagrangian of Eq. (5.3) in the usual way [219]. It

is expressed as

ε =

∫
4d3k

(2π)3

(√
k2 +M2

N(s) + gω ω0

)
Θ(kF − k)

+V (s) − 1

2
m2

ω ω
2
0, (5.10)

where the scalar and vector fields are obtained from the equations of motion :

m2
ω ω0 = gω ρ (5.11)

V ′(s) = −g∗SρS with g∗S =
∂MN(s)

∂s
. (5.12)

Note that in Eqs. (5.11) and (5.12), two densities are introduced, the vector density ρ ≡
〈ψ̄γ0ψ〉 = 〈ψ†ψ〉 and the scalar density ρS ≡ 〈ψ̄ψ〉. The former is related to the Fermi momen-

tum through

ρ =

∫
4d3k

(2π)3
Θ(kF − k) =

1

3

2 k3
F

π2
, (5.13)

whereas the scalar density is defined as

ρS =

∫
4d3k

(2π)3
MN(s)√

k2 +M2
N(s)

Θ(kF − k). (5.14)

5.3 Results for the EoS
Our formalism can now be used to compute the EoS in symmetric matter. First, let us enumerate

the free parameters (meson couplings and masses) in the model. Note that Eq. (5.3) contains

three isovector coupling constants, gρ, gδ and gA. Since this chapter is dedicated to symmetric
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Figure 5.1: In the top panel, we show results for the energy per particle E/A (blue curve)

and the chemical potential μ (orange curve) as function of the density. The middle and bottom

panels depict the pressure and the sound speed respectively. All results are in symmetric nuclear

matter.
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matter, these parameters play no role (at the Hartree level) and are included in Eq. (5.3) only for

the sake of completeness. Furthermore, the masses of all the mesons, except the σ, are taken

from hadron phenomenology. It should however be noted that, in the Hartree approximation,

only the ratio of the coupling constant to the mass (for all mesons) determines our results and

not the masses themselves. This leaves us with four parameters, gs, gω, mσ and C. For these

parameters, we shall use the values considered in Ref. [219] in order to reproduce the results of

this reference. This sets gω = 6.8, mσ = 750 MeV, C = 1 and gs = MN/fπ ≈ 10.

In the top panel on Fig. 5.1, we show the energy per particle E/A (blue curve) and the

chemical potential μ (orange curve) as function of the density in symmetric matter. The former

is obtained from Eq. (5.10) as E/A = ε/ρ−MN . The chemical potential μ can be obtained from

the energy density as μ = ∂ε/∂ρ. Interestingly, we see that at saturation density the chemical

potential (without the rest mass contribution) is equal to the binding energy per particle. This is

a simple consequence of Euler’s identity ε+ p = μρ, where p is the pressure, since the pressure

vanishes at saturation density.

The middle panel of Fig. 5.1 depicts the pressure in symmetric nuclear matter. The pressure

p is obtained from the energy per particle as p = ρ2 ∂(E/A)
∂ρ

. As expected, the pressure is negative

below saturation density and positive above it. Finally, the bottom panel of Fig. 5.1 shows the

speed of sound as function of the number density in symmetric matter. The speed of sound c2s
can be obtained as c2s = c2∂p/∂ε, where c is the speed of light. We find that the sound speed

c2s ≈ 0.025c2 at saturation density, as observed in typical energy density functionals. Note that

the sound speed crosses 0 at around 0.1 fm−3. In symmetric matter, this crossing coincides with

the onset of the spinodal instability, see discussion in Sec. 4.1. We therefore see that the spinodal

onset density calcualted in this chapter is consistent with the Chiral EFT results discussed in

Sec. 4.1.

5.4 Summary
In this chapter, we discussed the origins of our understanding of the nuclear force and enun-

ciated on the importance of two fundamental aspects of QCD: spontaneous chiral symmetry

breaking and confinement. We clarified that it is highly desirable to make a link between the

low-energy realizations of these QCD aspects and the natural nucleonic degrees of freedom. In

order to do so, we performed a detailed review of the model developed in Refs. [218, 219]. In

this model, chiral symmetry is incorporated by taking the scalar potential to be the one given

by the linear sigma model. Furthermore, the polarisation of the nucleon is taken into account

by parametrizing the scalar field dependence of the nucleon mass. Using this model, we repro-

duced results for the EoS in symmetric nuclear matter and showed that the model predictions

are qualitatively consistent with the empirical properties of symmetric nuclear matter.

In the next chapter, we will systematically confront this model with other relativistic models

that differ by the treatment of chiral and confinement properties. Furthermore, we will employ

Bayesian statistics to quantify the uncertainties in the model parameters and predictions. This

will be an improvement over the calculations presented in this chapter where only fixed values

for the model parameters were considered.
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Chapter 6

Comparison of the Equation of State from
different relativistic models

In the previous chapter, we explored the the properties of a relativistic model of nuclear matter

originally proposed in Refs. [218, 219] in which chiral symmetry is incorporated via the linear

sigma model and the in-medium polarization of the nucleon is taken into account. In this chap-

ter, we compare this model with two other relativistic theories which differ by the treatment

of chiral and confinement properties. As in the previous chapter, for simplicity, we consider

the so-called Hartree approximation, also called the classical field case, and the properties of

these models are explored in symmetric matter (SM), even though the question of the predic-

tion of the symmetry energy is also addressed at the end of our study. The models are calibrated

to reproduce the same properties in SM at saturation density and the uncertainty in the fitted

quantities are propagated towards our prediction for nuclear matter properties using Bayesian

statistics. The differences between the models are shown, and these differences while small at

low density, appear to be significantly larger as the density increases.

The motivation for making such a link with other models is to better understand the role

played by chiral symmetry and confinement in nuclear physics. Since the model presented

in the previous chapter 5 incorporates both of these features, we shall refer to it as RMF-CC

(Relativistic Mean Field with Chiral symmetry and Confinement). On the other hand, several

chiral relativistic theories have indeed been formulated but without reference to the nucleon

response [243, 257, 222, 223]. We shall refer to this class of models as RMF-C. Recently, such

a RMF-C model has been used to study the possible mixed phase at the chiral transition in

SM [224] and neutron stars [225]. In this approach the chiral potential deviates from the pure

linear sigma model potential by terms of first and third order in S2 − f 2
π (our chiral invariant S

field is named χ in the latter paper) with additional parameters. This is a legitimate attitude since

any microscopic underlying model, including the above mentioned NJL model, will certainly

generate such higher order many-body terms at low-energy.

One interesting question is whether this higher order terms may simulate the effect of the

nucleon response. One main motivation of the present work is to make a comparison of the two

classes of approaches by expanding the chiral effective potentials in powers of the scalar field s.

Since a term in sn corresponds to a (n− 1)-body force, one may thus expect that the expansion

in the scalar field s is perturbative (i.e. Taylor in nature), at least at low density: the 2-body

force is expected to be larger than the 3-body one, itself larger than the 4-body force, and so

on. Models violating this ordering will thus be referred as anomalous ones in the following.
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Table 6.1: Nuclear Empirical Parameters (NEPs) (Esat and nsat) as given from Ref. [259] and

Lattice parameters (a2 and a4) extracted from Ref. [260], used in the fits. For the NEPs the mean

and standard deviations correspond to a Gaussian distribution, while for the Lattice parameters

the standard deviation refers to the width of a uniform distribution.

Parameter Mean Standard deviation

Esat (MeV) −15.8 0.3

nsat ( fm−3) 0.155 0.005

a2 (GeV−1) 1.533 0.136

a4 (GeV−3) −0.509 0.054

Anticipating our results, we found that this RMF-C model lead to anomalous chiral potentials.

Finally, in addition to RMF-CC and RMF-C models, we shall also consider the original

Walecka model which makes no reference to the underlying properties of QCD. This model

will hencefeorth be referred to as RMF. Note that however, the scalar potential V (s) in RMF

is possibly non-linear and has been introduced in a pragmatic way to better reproduce the in-

compressibility modulus and the effective mass. In summary, we have three different classes of

models: RMF-CC, RMF-C and RMF. Moving forward, the purpose of the this chapter will be

to perform a systematic comparison between these three models.

The organisation of this chapter is very similar to that of Ref. [258] on which this chapter

is based. The three models, RMF-CC, RMF-C and RMF, are described in mathematical details

in Secs. 6.1, 6.2 and 6.3. Although the RMF-CC model was already discussed in the previ-

ous chapter, the main equations are repeated again here for the sake of completeness. In these

sections we also discuss the link between the parameters and the fitted data as well as their

uncertainties. It is woth repeating that the parameter adjustment is done in such a way that all

models are consistent at saturation density and extrapolation to high density is performed with

Bayesian statistics. The predictions at high density therefore incorporate uncertainties from the

model parameters. In Sec. 6.4 we begin the comparison of the relativistic models. In Sec. 6.4.1

we show that the predictions of the models do not agree at high density by studying the energy

per particle and the self-energies. Secs. 6.4.2 and 6.4.3 focus on the interpretation of the scalar

potential of the different models. Sec. 6.5 is devoted to a discussion of the Landau parameter

F0. Finally, in Sec. 6.6 we discuss the predictions for the symmetry energy, and describe lim-

itations of the Hartree approximation and possible ways to cure those limitations. Finally we

conclude our study by underlying the importance of consistently incorporating QCD ingredi-

ents such as confinement and chiral symmetry, since it provides a microscopically motivated

and an economical way to incorporate in-medium corrections into dense matter.

6.1 Relativistic Mean Field including Chiral potential and
Confinement effects (RMF-CC)

We first discuss the relativistic model that incorporates both chiral symmetry as well as the

nucleon substructure, RMF-CC. Since this model was described in detail in the previous chapter,
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Figure 6.1: Probability Distribution Function (PDF) for the parameters of the RMF-CC model,

adjusted to reproduce the NEPs Esat and nsat as well as the Lattice parameters a2 and a4, see

Table 6.1 for more details.

we only summarize the main features here.

Recall from chapter 5 that the chiral effective potential of the linear sigma model can be

expressed as:

V (s) =
m2

σ

2
s2 +

m2
σ −m2

π

2fπ

(
s3 +

s4

4fπ

)
, (6.1)

whereas the nucleon response to the scalar field at finite density is driven by the susceptibility

κNS:

MN(s) = MN + gss+
1

2
κNS

(
s2 +

s3

3fπ

)
. (6.2)

Finally, recall that it is convenient to introduce the dimensionless quantity

C =
f 2
π

2MN

κNS . (6.3)

As discussed in the previous chapter 5 there are 4 parameters in the model: gs, gω, mσ

and C. However, in this chapter, we improve our framework by making a connection with

Lattice QCD by following the approach of Refs. [252, 253]. The structure of the nucleon, in

particular its mass can be obtained from L-QCD, see for instance Ref. [261]. In this reference

precise calculations were limited to quark masses much larger than the physical one. Therefore,

extrapolation of L-QCD results to the physical value of the quark mass is required, but such

extrapolations run into diffcutly due to the fact that MN is a non-analytic function of mq (or

equivalently m2
π). Such non-analytic behaviour arises due to contributions from pion loops.
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Figure 6.2: Prediction of the Dirac effective mass and the incompressibility modulus obtained

from the RMF-CC model. The PDFs of C and gs are also shown.

Following the strategy of Refs. [260, 262], we express the nucleon mass as

MN(m
2
π) = a0 + a2m

2
π + a4m

4
π + · · ·+ Σπ, (6.4)

where we have isolated two contributions: one analytic in m2
π (the terms before the dots) and

another, containing a non-analytic piece, denoted by Σπ which is identified with the pion self

energy contribution to the nucleon mass. Note that in reality Eq. (6.4) is an expansion in the

quark mass mq, but we have replaced the quark mass with the pion mass (squared) using the

GOR relation m2
π ∝ mq [253]. The derivative of Eq. (6.4) with respect to the pion mass gives

the so-called sigma commutator σN , i.e.

σN ≡ m2
π

dMN

d(m2
π)

= a2m
2
π + 2a4m

4
π + · · ·+m2

π

dΣπ

d(m2
π)
. (6.5)

The sigma commutator σN is an important quantity because on the one hand – on the theory

side – it is related to symmetry properties and their explicit breaking and, on the other hand,

it can be extracted from experimental results. It can also be calculated via L-QCD [239]. The

authors of Refs. [260, 262] showed that it is possible to estimate the non-analytic pion self

energy contribution Σπ and its derivative in an essentially model independent way using chiral

perturbation theory, with the pion loops suitably regularized. Then, the parameters a2 and a4 are

fit to L-QCD results [261] and one obtains a range of values for a2 and a4, given in Table 6.1,

due to the ambiguity in the regulator of the pion loops, for which four different functional forms

are used: sharp-cutoff, monopole, dipole and Gaussian [262].
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Furthermore, the parameters a2 and a4, which are related to the analytic, non-pionic piece

of σN , can be used to determine the parameters of the RMF-CC model: gs, mσ and C (see

Refs. [252, 253]) using the relations

a2 =
gsfπ
m2

σ

, (6.6)

and

a4 = −fπgs
2m4

σ

(
3− 2C

MN

fπgs

)
. (6.7)

Notice that in the expression of a4 the factor MN/fπgs was absent in [252, 253] since the

nucleon mass was fixed to be MN = fπgs.
Ultimately, in this approach, we have four fit parameters a2, a4, mσ and gω. These are fixed

by the analysis of the Lattice results and by two saturation properties, nsat and Esat (Table 6.1).

Considering the uncertainties in these parameters, one can also predict the Probability Distribu-

tion Functions (PDF) for the parameters: gσ ≡ gs and C from Eqs. (6.6) and (6.7), as well as

Ksat and the Dirac mass M∗
D. Note that in SM, at the Hartree approximation, the Dirac mass

is the same as the s-field dependent nucleon mass, i.e. M∗
D = MN(s). The uncertainties in the

quantities to fit (given in Table 6.1) are explored within a Bayesian method using Markov-Chain

Monte-Carlo (MCMC) approach. In this way full exploration of the uncertainties in the Nuclear

Empirical Parameters (NEPs) and the Lattice parameters are translated into uncertainty in the

model parameters. The PDFs obtained from the MCMC sampling over our fit parameters a2,

a4, gω and mσ are shown in Fig. 6.1. The distributions over a2 and a4 are almost flat (as imposed

in the prior), and the confrontation against the NEPs changes very little. The distributions over

gω and mσ are much more peaked. The PDFs of gω is peaked around 6.5. The PDF of mσ is

peaked around 820 MeV which is consistent with the commonly assumed value of 800 MeV

(see discussion in chapter 5).

Based on the parameter distributions shown in Fig. 6.1, we can now analyze the impact

of the uncertainties in these parameters on several interesting properties of dense matter, e.g.

the Dirac mass at saturation M∗
D and the incompressibility modulus Ksat. For completeness, we

also show the distribution over the parameters C and gσ. These results are shown in Fig. 6.2. The

Dirac mass is peaked around ≈ 0.85±0.02MN . The predictions for Ksat, with a PDF peaked at

≈ 265 MeV, are slightly larger than the expected empirical value around 230− 250 MeV [259].

We expect however that quantum corrections, e.g. Fock term or pion cloud [254], could change

these quantities and shift them towards lower values. The PDF of C is consistent with the value

used in Ref. [253] and gs is consistent with the canonical value of MN/fπ ≈ 9.98.

6.2 Relativistic Mean Field with Chiral Symmetry only (RMF-
C)

We now consider an approach where chiral symmetry is incorporated within a chiral potential

V (s), but without the effect of confinement in terms of nucleon polarisation. This so-called

RMF-C model is inspired from Refs. [222, 223, 224, 225].

Since the non-trivial scalar response of the nucleon is neglected in this model, the s-field
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Figure 6.3: Results from the fit of the RMF-C model to the NEPs of Table 6.1 and the RMF-CC

model’s prediction of M∗
D and Ksat shown in Fig. 6.2.

dependent nucleon mass is simply given by

MN(s) = MN + gss , (6.8)

as in the linear sigma model [263].

As mentioned in Sec. 5.1, the chiral potential is expressed in a very general way as

V (s) =
4∑

n=1

bn
n!

(S2 − f 2
π)

n

2n
− fπm

2
πσ. (6.9)

Notice that contrary to Eq. (5.6), this chiral potential contains terms of order n = 3, 4 in the

S2 − f 2
π expansion.

An important specific point is that, as in the linear sigma model, the scalar coupling param-

eter is fixed, gs = MN/fπ. This leaves us with 4 unknown parameters gω, b2, b3 and b4 that we

fit in a consistent way compared to RMF-CC. To do so, we consider the two NEPs in Table 6.1,

Esat and nsat as in the RMF-CC model and, additionally we use the predictions of the RMF-CC

model for the Dirac effective mass and the incompressibility modulus shown in Fig. 6.2.

The result of sampling this distribution in the parameter space spanned by gω, b2, b3 and

b4 is shown in Fig. 6.3. First let us comment on the marginalized 1-dimensional PDF over gω.

The distribution is peaked around ≈ 6.25. This is a rather low value given that the value of gω
found in Ref. [225] is 9.47. This discrepancy is due to the fact that we have fitted gω to a Dirac

effective mass M∗
D that is ≈ 0.85MN (see Fig. 6.2), whereas the value of M∗

D used in Ref. [225]

is 0.75MN . We have verified that if M∗
D = 0.75MN is used in our approach, we are able to
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Figure 6.4: Results from the fit of the RMF model to the NEPs of Table 6.1 and the RMF-CC

model’s prediction of M∗
D and Ksat shown in Fig. 6.2.

reproduce the gω found in Ref. [225]. Regarding the other parameters b2, b3 and b4, the PDFs

are also peaked at values different from the ones found in Ref. [225]. This is due to the fact the

NEPs used in this work are different from that used in Ref. [225], most notably Ksat but also

Esat and nsat, therefore a precise agreement of our results should not be expected. Indeed for

this work what is important is that the three models are parametrized consistently at saturation

density. In this way, the differences in the predictions at high density could only be related to

the ingredients of the models.

Finally, let us note that the result of gω presented here is consistent with what one obtains

in the RMF-CC model, see Fig. 6.1. We also remark that the PDFs are broad and thus the

parameters cannot be very well constrained by empirical knowledge of SM saturation. We will

comment more on the values of these parameters later when comparing the scalar potentials of

different models.

6.3 Relativistic Mean Field Theory (RMF)
We now turn to a model in which both the chiral potential and the response of the nucleon is

ignored. As in the original Walecka model, the scalar potential is limited to the mass term:

V (σW ) =
1

2
m2

σσ
2
W , (6.10)
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and for the σW -field dependent mass one has:

MN(σW ) = MN + gσσW , (6.11)

where gσ is the scalar coupling constant.

While the saturation mechanism arises from the equilibrium between the scalar and the

vector fields and allows a good reproduction of the saturation density and binding energy –

at the cost of large coupling constants – other properties of the model, e.g. the compression

modulus, the effective nucleon mass and the symmetry energy, are in poor agreement with the

empirical values. Boguta and Bodmer [264] have thus suggested an extension of the original

Walecka model, whose main purpose is to bring the compression modulus and nucleon effective

mass at saturation under control, by introducing self-interactions of the scalar field by modifying

the potential (6.10) as,

V (σW ) =
1

2
m2

σσ
2
W +

1

3
c2MNσ

3
W +

1

4
c3σ

4
W . (6.12)

Such self-interacting scalar field potentials have been largely employed in what is commonly

referred as the Relativistic Mean-Field (RMF), e.g. NL3 [265]. See also the book by Glenden-

ning [15]. Note that other extensions based on density dependent coupling constant will not be

considered in the present study. It is interesting to remark that the Euler-Lagrange equation for

the scalar field is modified by the self-interaction terms, but the nucleon effective mass remains

described by Eq. (6.11), as in the original Walecka model. This also makes the RMF model

qualitatively similar to the RMF-C one, as we will illustrate it in the next section.

We have 4 parameters to fit, gσ, gω, c2 and c3. As with the case of the RMF-C model, we

use the two NEPs of Table 6.1 and the PDFs of M∗
D and Ksat shown in Fig. 6.2. The results

of sampling this distribution is shown in Fig. 6.4. We see that the PDF of gσ is peaked around

10, which is consistent with what is shown in Fig. 6.2 for the RMF-CC model. Note that we fix

mσ = 800MeV compatible with the peak predicted by the RMF-CC model. Fixing the value

of mσ in RMF is not constraining if gσ is varied: only the ratio gσ/mσ matters. We remind that

in the RMF-CC model however this degeneracy is broken by Eqs. (6.6) and (6.7). Additionally,

the fixing of mσ at a constant value can be seen as analogous to the RMF-C model where the

parameter gs is frozen instead of mσ. For gω we again obtain a value ≈ 6.25 which is again due

to the fact that we fit to a large value of M∗
D ≈ 0.85MN . This value of gω is very close to those

obtained previously for the RMF-CC and RMF-C models. Finally, we note that the PDF of the

c2 parameter has a peak around 10 but with an uncertainty of about 10, making it compatible

with 0. The PDF of c3 prefers very large values. We will comment extensively on our results

for c2 and c3 later when we compare the scalar potentials of the different models.

Having obtained the values of gs(gσ) and gω for the three models, we can study how the

three models can be separated when the correlation between gω and gs is analysed. In Fig. 6.5,

this correlation is plotted for the three models in different colors, where the contours represent

the 95% confidence level. For the RMF-C model, only a vertical line is shown since gs is

fixed in this case. We see that for the three models, the centroid of gω are very close (≈ 6.25).

However, the models can be separated along the horizontal coordinate (gs). The RMF-CC

model prefers larger values of gs, whereas the RMF-C and RMF models prefer the lower value

close to MN/fπ.
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Figure 6.5: The correlation between gs and gω for the three models. The 95 % confidence levels

are shown. The dots represent the centroids of the distributions.

Figure 6.6: (left) The energy per particle in SM for the three models considered in this work.

The contours show the 95% confidence level. The density dependence of the scalar self energy

(center panel) and the time component of the vector self energy (right panel) are also shown.

6.4 Confrontation of the models
In the previous section, the three models have been fit to reproduce the same properties at

saturation in SM. These properties are the saturation density and energy for all models, and the

models RMF-C and RMF are adjusted to reproduce the same Dirac mass and incompressibility

modulus as RMF-CC, which, for this model are deduced from fundamental L-QCD properties.

The models are therefore treated on an equal footing by ensuring that they agree on the empirical

parameters and their uncertainties: nsat, Esat, Ksat and M∗
D(n = nsat).

In this section we will show that although the predictions of these three models agree at satu-

ration density, they differ quantitatively at larger densities since they represent different density

functionals. Moreover, a detailed analysis of the scalar field properties leads us to believe that

RMF-CC represents a more justified microscopic approach to in-medium corrections on top of

the chiral potential defined in the vacuum.

6.4.1 The energy per particle, the self-energies and the effective masses
We first start with an analysis of the energy per particle in SM. In Fig. 6.6, the results are shown

in the left panel. The three models correspond to the three colors. The upper and lower limits
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Figure 6.7: The density dependence of the Dirac and Landau masses are shown.

represent the 95% CL, allowing a visualization of the uncertainties in the model predictions as

a function of density. Recall that these uncertainties originate from our imperfect knowledge

of nuclear matter saturation properties and fundamental predictions of L-QCD. We see that

the three models agree well at densities n ≈ nsat, since they are constrained to do so. The

agreement also appears to be quite good at n < nsat. However, at n > 2nsat, RMF-CC model

predicts the larger values for the energy per particle, while RMF-C model produces the smaller

ones and RMF model lies in the intermediate range. Note however, that all model predictions

are compatible with each other within the considered 95% confidence levels. Given that gω is

similar for all three models, the reason for differences at high densities is most probably related

to the scalar interaction, i.e. the scalar potential and/or the scalar coupling to the nucleons. In

the next section, we will investigate the former in detail.

In the center and right panels of Fig. 6.6, the scalar and the vector (time component) self

energies, Σs and Σ0 are shown. At the mean-field level in SM, we have

Σs = MN(s)−MN (6.13)

Σ0 = g2ω/m
2
ωρ . (6.14)

We see again that the three models agree at low densities. At larger densities RMF-CC predicts

a slightly larger value for Σs, however there is still significant overlap among the predictions.

For Σ0, the models still agree at large densities. This is expected since gω is the only parameter

that controls the density dependence of Σ0, and all three models have similar values of gω. Since

correlations beyond the mean field lead to a more complicated density dependence of Σ0 [266,

267], it would be interesting to re-analyse this quantity by including Fock contributions in the

future.

Finally, in Fig. 6.7, the Dirac and Landau masses (M∗
D and M∗

L) are shown. The Landau

mass has been computed by deriving the Schrödinger equivalent single-particle potential fol-

lowing Refs. [266, 267]. At the Hartree approximation, it reads

M∗
L = MN − Σ0. (6.15)

On the other hand, the Dirac mass is the same as the s-field dependent nucleon mass, i.e.

M∗
D = MN(s). All the comments made regarding Σs and Σ0 are applicable to the Dirac and

Landau masses respectively, since the relationship between the self energies and the effective
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Table 6.2: Coefficients of the scalar potentials expressed as in Eq. (6.12) for the three models

considered here. The quoted uncertainties represent the 95% CL.

Model c2 c3

RMF-CC 11.3+2.2
−1.7 37.5+7.3

−5.6

RMF-C 47.2+37.4
−23.5 5880+3870

−2470

RMF 8.9+17.2
−12.6 2010+940

−820

NL3[265] -29.89 -2.19

masses is quite straightforward in the mean-field level.

In summary, the 3 models presented here, while being calibrated on the same quantities

at saturation, lead to slightly different predictions above saturation density: RMF-CC is more

repulsive than RMF-C on the average, while RMF lies in between them. In the following, we

investigate more closely the properties of the microscopic quantities at the base of the models:

the scalar potential and the self-consistent equation for the scalar field.

6.4.2 Analysis of the scalar potential V (s)

The scalar potentials V (s) have different expressions in the models considered in our analysis.

For an easy comparison, we recast the chiral potential V (s) for RMF-CC and RMF-C into the

form of the scalar potential in RMF, see Eq. (6.12). In doing so, the chiral potential (5.7) in

RMF-CC leads to the following coupling constants,

cRMF-CC
2 =

3

2fπMN

(m2
σ −m2

π) (6.16)

cRMF-CC
3 =

1

2f 2
π

(m2
σ −m2

π) =
MN

3fπ
cRMF-CC
2 , (6.17)

and for RMF-C the chiral potential (6.9) gives

cRMF-C
2 =

1

MN

(
3

2
b2fπ +

1

2
b3f

3
π

)
(6.18)

cRMF-C
3 =

1

2
b2 + b3f

2
π +

1

6
b4f

4
π . (6.19)

The sign of the parameters c2 and c3 are important for the interpretation of the scalar po-

tential in terms of a Mexican hat potential. It indeed implies that a positive c2 generates an

attractive term (since s is negative) and a positive c3 a repulsive term. The magnitude of these

parameters is also important in order to interpret the different terms of the potential as an ex-

pansion in terms of many-body interactions, since a term in sn corresponds to an (n− 1)−body

force. Since these many-body forces are expected to be hierarchically ordered (at least at low

densities), truncations at different orders of the scalar potential are expected to evolve smoothly.

When this is not the case, we will interpret it as an anomaly of the scalar potential.

In Tab. 6.2 we compare the parameters c2 and c3 determined for the three models. For all
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Figure 6.8: Analysis of the potential of the scalar field. Considering the potential as an expan-

sion in s, the number in the legend refers to the order at which this expansion is truncated. The

parameters of the scalar potential are taken to be the mean values reported in Table 6.2. In the

right panel, for the NL3 parametrization (dashed lines) the orange dashed line is hidden behind

the green one.

the models considered in this work, except NL3, the centroids of both c2 and c3 are positive, as

expected. The parameters c2 and c3 of the RMF model are found to be different from the original

NL3 model of Ref. [265], where c2 and c3 are both negative. Since the parameters c2 and c3
are obtained from a fit to the NEPs, their values are determined from the values considered for

these NEPs. The values for Esat, nsat, M
∗
D(n = nsat) = MN(s) and Ksat are indeed different

for NL3 and the RMF case. Recall from Secs. 6.2 and 6.3 that this is because we constrain

the three models RMF-CC, RMF-C and RMF to reproduce the same properties at saturation. If

one were to break this constraint and allow RMF-C and RMF to explore different values for the

NEPs, most notably the Dirac effective mass, some of the following results would have to be

modified accordingly.

Large values of c3 found for RMF and RMF-C indicate that V (s), when considered as an

expansion in s, might present an anomaly in the order hierarchy. In order to make it more clear,

we show in Fig. 6.8 the chiral potential truncated at various orders in s, starting from order 2.

In RMF-CC, the distinction between order 3 and order 4 curves appears only at large s, and

this 4th order correction is relatively small. In the case of RMF-C however, we see that every

addition of a higher order correction drastically changes the behaviour of the scalar potential.

Indeed, a truncation at order 3 or 5 would result in an overall change of sign of V (s) at s ≈ 0.5.

Therefore in the case of RMF-C, the correct reproduction of nuclear NEPs in SM is due to a

fine tuning between the parameters b2, b3 and b4, rendering difficult the interpretation of V (s)
in terms of many-body forces. We thus qualify the chiral potential in RMF-C as presenting an

anomaly. We have a similar behaviour for RMF. The 4th order correction to the order 3 curve

is very large, which is imposed by the saturation properties of RMF-CC. The scalar potential

of RMF is thus also possibly anomalous. This conclusion is of course limited to the explored

parameters region considered in our study - and related to the predictions of RMF-CC model -

but different parameter sets could lead to a convergent expansion, as illustrated for instance by

NL3 (RMF model), see the right panel of Fig. 6.8. Note that in this case the 4th order correction

(dashed green line) is so small that it lies on top of and thus hides the 3rd order term.
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Figure 6.9: Analysis of the equation of motion of the scalar field. The different rows correspond

to different densities. Dashed lines correspond to the equation of motion written for RMF-CC

with the effective potential, see Eq. 6.21.

In conclusion, we observe that if the three models RMF-CC, RMF-C and RMF are con-

strained to reproduce the same properties at saturation, the s expansion of the scalar potential

V (s) may manifest an anomalous behaviour for RMF-C and RMF, at variance with RMF-CC.

In the following section, we show that the origin of this anomaly for RMF-C and RMF can be

related to the absence of the scalar nucleon response in their Lagrangian.

6.4.3 Analysis of the equation of motion of the scalar field
We now analyze in details the equation of motion (EoM) for the scalar field where the scalar

potential plays naturally a crucial role. We will show that the anomaly of the scalar potential

observed in the previous subsection for RMF-C and RMF models impacts the solution of the

EoM.

The EoM for the scalar field s is, see Sec. 5.2,

V ′(s) = −g∗SρS with g∗S =
∂MN(s)

∂s
, (6.20)

where ρS is the scalar density. Note that for RMF-C and RMF models, g∗s = gs since MN(s) is

simply linear in the field s.

In Fig. 6.9, we represent the graphical solution of the EoM by drawing the two sides of the

equation: V ′(s) is plotted as the solid blue lines and −g∗SρS as the solid orange lines for the
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Figure 6.10: The Landau parameter evaluated at different densities. In the top panel, the inset

shows a zoom of the region where the PDFs are nonzero.

three models (by columns) and at different densities (by rows). The parameters of the scalar

potential are taken to be the mean values reported in Table 6.2, and similarly we consider the

centroid of the PDFs for gs which are 11.10, 9.98 and 10.08 for RMF-CC, RMF-C and RMF

respectively. In case of several solutions, the physical one is the smallest one and it is identified

as a black star. We see that as the density increases, the solution for the s-field (abscissa of the

black star) of the scalar EoM increases. It is interesting to note that for all three models, at a

given density, the value of this solution is quite similar. This is due to the fact that the quantity

gss defines the in-medium Dirac mass (except for RMF-CC where the nucleon response is also

included) which remains almost identical for the three models, see Fig. 6.7 and gs does not

differs by more than about 10% between the different models, see Fig. 6.5. As a consequence

the values of the field s are very close between the three models considered here.

The absolute value of the y-coordinate of the solution (∝ V ′(s)) is however always smaller

for RMF-CC compared to the RMF-C and RMF models. Since V (s) is the vacuum chiral

potential in the case of RMF-CC, the vertical position of the intersection point informs us about

the derivatives of this potential for various values of the field s. In other words, for RMF-CC

density scans the chiral potential function of s and the in-medium effects are entirely captured

by the nucleon response given by g∗s .

The situation is however different for RMF-C and RMF models. These models share two

important features: i) they do not incorporate explicitly the nucleon response as in RMF-CC,

and ii) the scalar potential is determined from the fit to saturation properties. If the fit imposes

a modification of the scalar potential making it different from the vacuum one, it is interpreted

as an in-medium correction to the scalar potential. It is interesting to remark that the result

of the fit, which is made differently for RMF-C and RMF, is to impose larger absolute values

for V ′(s) as function of s compared to the vacuum values represented by RMF-CC model. As

a consequence, the intersection points in RMF-C and RMF happen at larger absolute values

compared to RMF-CC. The vertical intersection point therefore informs us either on the role of

the nucleon response in the EoM (6.20) (for RMF-CC), or on the in-medium modification of

the scalar potential (for RMF-C and RMF).

At first sight, the models fitted to saturation and disregarding nucleon response (RMF-C

and RMF) suggest large in-medium modification of the scalar potential, while the models con-

sidering the vacuum chiral potential complemented with nucleon response (RMF-CC) do not

require any in-medium modification of the chiral potential. One may however wonder to which

extend these two opposite conclusions do not reflect a similar reality suggesting that the nucleon

polarization may modify in an effective way the vacuum scalar potential. It may even be the

dominant in-medium correction to the scalar EoM.
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In order to address this question, we rewrite the EoM for RMF-CC to absorb the effects of

the nucleon response in an effective scalar potential Ṽ ′(s) = V ′(s) + g∗SρS − gS ρ̃S , as

Ṽ ′(s) = −gS ρ̃S . (6.21)

This leaves the standard scalar coupling gS on the RHS of Eq. (6.21) (as in the other models).

Note that this re-arrangement has been done by ensuring that it is still the same self-consistent

equation of motion that is being solved for the RMF-CC. Finally, ρ̃S denotes that the dependence

of the scalar density on s via the nucleon mass MN(s) is obtained by using a linear relation for

MN(s) (as in RMF-C and RMF) and not the non-linear one used in RMF-CC. In this way,

Eq. (6.21) is formally equivalent to the EoM (6.20) solved for RMF-C and RMF models.

In Fig. 6.9, the left column (for RMF-CC) displays dashed blue and dashed orange lines

corresponding to the graphical solution of Eq. (6.21) in terms of the effective potential Ṽ ′(s).
With such a construction, we see that the dashed blue line intersects the dashed orange line for

lager absolute values of Ṽ ′(s), similar to RMF-C and RMF. This clearly demonstrates that the

smaller absolute values of V ′(s) obtained for RMF-CC is a consequence of the inclusion of the

scalar response of the nucleon. In other words, the nucleon polarisation captures most of the

in-medium correction to the vacuum scalar potential.

While Fig. 6.9 clearly demonstrates that the nucleon polarisation is the dominant in-medium

correction to the scalar EoM, a similar conclusion may have been obtained in the previous

section based on the values for c2 given in Tab. 6.5. In the RMF-CC model, the (positive)

c2 parameter controls the magnitude of the above mentioned attractive tadpole diagram which

destroys saturation. For hierarchically ordered scalar potentials, it has been shown that after an

appropriate shift of the scalar field, σW = s + (κNS/2gs)s
2, where the term ∝ κNS represents

the nucleon response, the Dirac mass of the nucleon becomes MN(s) = MN + gsσW and the

nucleon polarizability modifies the cubic term of the scalar potential as c2 (1− 2C) � −2 c2 if

C � 1.5 [268] . One sees that this is qualitatively compatible with the values of c2 for RMF-CC

and NL3 quoted in Tab. 6.2. One can thus remark that the negative value of c2 in the original

NL3 model Ref. [265] simulates in an effective way the nucleon response. Note also that this

discussion is not applicable to the RMF model since its scalar potential displays an anomalous

behaviour. However it is interesting to note that while having a positive centroid for c2, negative

values for c2 are also allowed in the PDF for the RMF model.

In conclusion, we have shown that the in-medium modification of the scalar potential which

is captured in RMF-C and RMF models by the fit to saturation properties can also be simulated

in RMF-CC by a single in-medium term in the Lagrangian: the nucleon response generated by

the coupling of the constituent quarks to the large scalar field at finite density. The nucleon

response effect, being characterized by a single coupling constant (κNS or C) in the RMF-

CC Lagrangian represents therefore a very economical way to capture in-medium correction

to the scalar EoM, on top of being well motivated from a microscopic viewpoint. In RMF-CC

the chiral potential at finite density is identical to the vacuum one and one could interpret the

solution of the scalar EoM as a scan of V ′(s) at different values of s. This latter point suggests

that the solution of the EoM at finite density may be a way to probe the properties of the chiral

potential in vacuum.
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6.5 Collective states in dense matter
In the previous section, we have illustrated the equivalence between actual in-medium modifi-

cation of the scalar potential guided by the fit to saturation properties (as in RMF-C and RMF)

and in-medium effect of the nucleon polarization (as in RMF-CC). We have also suggested

that the nucleon polarization is an economical way to treat in-medium correction to the scalar

EoM. One may however wonder if the effect of the nucleon polarization could influence other in

medium properties. It is therefore natural to come to the exploration of the excitation spectrum

of dense matter.

We limit ourself to the scalar-isoscalar excitation channel, which is determined by the scalar-

isoscalar Landau parameter F0 at low excitation energy (and zero momentum transferred). Fol-

lowing Ref. [219], we have computed the fully relativistic Landau parameter F0 for the three

models. The outline of the derivation is as follows.

Derivation of the Landau parameter F0 in relativistic theory

We begin by computing the first derivative of the energy density (5.10) with respect to the

number density. We obtain
∂ε

∂ρ
= EF +

g2ω
m2

ω

ρ ≡ μ. (6.22)

The second derivative is:

∂2ε

∂ρ2
=

[
kF
EF

+
MN(s)

EF

g∗S
∂s

∂kF

]
∂kF
∂ρ

+
g2ω
m2

ω

. (6.23)

The derivative of s with respect to the Fermi momentum is obtained by taking the derivative of

the equation of motion (Eq. 5.12):

V ′′(s)
∂s

∂kF
= −κ̃NS

∂s

∂kF
ρS + g∗SρS with κ̃NS =

∂g∗S
∂s

. (6.24)

We introduce an effective sigma meson mass, such as m∗2
σ = m2

σ + κ̃NS ρS , to obtain:

∂s

∂kF
= − 1

m∗2
σ

∂ρS
∂kF

(6.25)

and the derivative of the scalar density has the form:

∂ρS
∂kF

=
∂

∂kF

[∫
4d3k

(2π)3
MN(s)√

k2 +M2
N(s)

Θ(kF − k)

]

=
∂ρ

∂kF

MN(s)

EF

+ I3(kF ) g
∗
S

∂s

∂kF

with I3 =

∫
4d3k

(2π)3
k2

(k2 +M2
N(s))

3/2
Θ(kF − k). (6.26)
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Combining Eqs. (6.25) and (6.26), we obtain:

∂ρS
∂ρ

=
∂ρS
∂kF

∂kF
∂ρ

= − g∗2S
m∗2

σ

MN(s)

EF

[
1 +

g∗2S
m∗2

σ

I3(kF )

]−1

. (6.27)

Using the previous results, the compressibility modulus can be written in the following form:

Ksat = 9ρ
∂2ε

∂ρ2
=

3 k2
F

EF

(1 + F0) , (6.28)

which depends on the relativistic generalization of the Landau parameter F0:

F0 = N0R

(
g2ω
m2

ω

− g∗2S
m∗2

σ

(
MN(s)

EF

)2 [
1 +

g∗2S
m∗2

σ

I3(kF )

]−1 )
. (6.29)

This result derived in a different manner has been quoted in [219] but omitting the (small)

correction arising from the I3 integral. Notice that, as demonstrated in Ref. [269], g∗2S I3(kF )
corresponds to the nuclear response associated with NN̄ excitation. Also notice that our result

coincides with the one derived by T. Matsui [270] but in the absence of medium modification

(i.e., in the absence of the nucleon susceptibility term) of the scalar mass and coupling constant.

Numerical results for F0

Fig. 6.10 shows the Landau parameter F0, for the three models evaluated at three different

densities, nsat, 2nsat and 4nsat. We see that at saturation density, the results agree for the three

models, as it could be expected because the three models are calibrated such that they reproduce

the same incompressibility modulus (Ksat), see Eq. (6.28). However, at larger densities, the

RMF-CC models predict larger values of F0, followed by RMF and then RMF-C. At 4nsat the

values for F0 suggested by RMF-CC are almost twice the ones predicted by RMF-C.

This distinction in the predictions of F0 by the three models at large densities may have

important phenomenological consequences for dense matter in neutron stars. As an example,

since it modifies the nuclear response functions, it may have implications for neutrino scatter-

ing and other phenomena in the core of neutron stars. Furthermore, our result suggests that

the differences that we observe among the three models in this chapter would become even

more enhanced at finite temperature. It would thus be interesting to, in the future, preform this

comparison at finite temperature and also to apply these models in the simulation of binary NS

mergers and heavy ion collisions.

6.6 The symmetry Energy
In this paper, we have restricted our many-body treatment to the Hartree approximation (classi-

cal fields) and to SM. In the future, we will also include the contribution of the Fock terms and

we will explore asymmetric matter. At the Hartree level, the symmetry energy is however only

determined by the ρ vector iso-vector meson. The small contribution from the δ scalar-isovector
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Figure 6.11: (TOP) The Symmetry Energy predicted by the three models assuming the quark

model relation between gρ and gω. The empirical value is shaded in red. (BOTTOM) The

coupling constant predicted by the quark model is shown as solid lines and the value required

to obtain the empirical value is shown as dashed lines.

meson is disregarded here, and one obtains

Esym =
k2
F

6
√

k2
F +M2

N(s)
+

g2ρ
2m2

ρ

ρ (6.30)

where gρ and mρ are the coupling constant and the mass of the ρ meson. If the quark model is

assumed, then gρ = gω/3. In this case, the predictions for the symmetry energy at saturation

density Esym is shown for the three models in the upper panel of Fig. 6.11. The empirical value

is shown as a red band. We see that there is a difference of about 12− 15 MeV (about half the

expected value for Esym) between the predicted value and the empirical one. In the lower panel,

in solid lines the value of gρ assuming the quark model (as in the upper panel) is confronted

to the dashed lines showing the value of gρ required to reproduce the empirical value for Esym.

There is a factor 2 difference between the solid and the dashed curves.

We interpret the discrepancy between the quark model prediction and the empirical value

for Esym as originating from the corrections beyond the Hartree approximation. In a future

work, we will illustrate this point by adding to the present modeling the contribution of the

Fock term, without modification of the fitting procedure. Preliminary results give us confidence

in our interpretation.

6.7 Conclusions
In this chapter we have analysed the important role of chiral symmetry breaking and scalar

nucleon response in the study of nuclear matter. We have done this, for the first time, by sys-

tematically comparing a model that takes these features into account (RMF-CC) versus models

that neglect some or all of these aspects (RMF-C and RMF).

The systematic analysis was performed by ensuring a democratic treatment of the three

models: we constrained the three models to agree with each other in the vicinity of saturation

density of SM. In particular, the fit of the RMF-CC parameters to SM properties was performed

in a novel way by simultaneously varying Lattice QCD parameters during the Bayesian fit,
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establishing a direct link with the underlying QCD theory. The fit of all three models to SM

properties was performed in a consistent Bayesian manner which allows us to properly explore

the uncertainties in our empirical knowledge of nuclear matter saturation.

In RMF-CC the modification of the effective potential at high density is driven by a micro-

scopic mechanism, while in RMC-C and RMF approaches the scalar potential already encom-

passes finite density properties at saturation, that are simply extrapolated. In addition, we have

shown that if the nucleon response is neglected, the scalar potential become anomalous since

the hierarchy in the orders of s is not respected as it is expected in a many-body framework.

Moreover the ground state and excited states in the scalar-isoscalar channel are predicted to be

noticeably different as the density increases (2 to 4nsat).

The RMF-CC approach represents a step in the modeling of matter properties beyond sat-

uration density since the model parameters are mainly given by fundamental properties, e.g.,

L-QCD predictions or quark model constraints, and only saturation density nsat and energy Esat

have actually been used in the model calibration. All other empirical parameters are predicted,

e.g., Ksat or Esym. We have shown for instance that the Hartree approximation of the mean field

is not sufficient to reproduce the empirical values for Esym. In our RMF-CC approach Esym

can thus be used to evaluate the contribution of the correlations beyond the Hartree approxima-

tion, as well as of the missing interaction terms, e.g., the pion contribution. This could have

important phenomenological consequences in the description of very dense matter.

Finally, phase transitions are expected to occur in the very dense matter found in the core

of massive neutron stars. These phase transitions could lead to the appearance of other (non-

nucleonic) hadronic degrees of freedom such as pion and kaon condensates as well as hyperons.

Other phenomena such as chiral symmetry restoration and transition to deconfined quark matter

might also take place. These exciting possibilities are explored in part III.
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Part III

Exotic degrees of freedom in dense matter
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Chapter 7

First Order Phase Transitions and
Quarkyonic Matter

Previously, in parts I and II, we explored the properties of dense matter under the assumption

that it is composed of only nucleonic degrees of freedom. Based on the empirical properties of

finite, heavy nuclei, this purely-nucleonic hypothesis can be confirmed up-to about nuclear mat-

ter saturation density. However, in the inner cores of NSs where the density can be much larger

than saturation density, it is certainly possible that non-nucleonic degrees of freedom play a role.

For the sake of generality, we will henceforth refer to matter consisting of any non-nucleonic

particle as Exotic Matter (EM). Such EM can consist of pion and/or kaon condensates [271, 32]

as well as hyperons [154, 155]. Other examples of EM include deconfined quark matter (QM)

and/or matter in which chiral symmetry is restored [272]. Recent multimessenger observations

of NSs, i.e., radio [58, 60, 56, 59], X-ray [50, 49, 51, 52], gravitational-wave (GW) observa-

tions [38, 39] have renewed theoretical efforts to address the question of the existence of EM,

in particular QM, in the inner cores of NSs.

The existence of QM in the cores of NSs has a long history starting from the early works

by Seidov [273], Bodmer [274] and Witten [275]. In particular, Ref. [275] explored the strange

quark matter hypothesis stating that the absolute ground-state of matter may be composed of

u,d,s quarks instead of the observed u,d matter that builds nucleons. Since then, typical ques-

tions such as the nature of the transition, its location in the space of thermodynamic variables

and implications for the resulting EoS have attracted a lot of attention [276, 277, 278, 279, 280,

281, 282, 283, 284]. Theoretical modeling of QM has been investigated from the simple MIT

bag model to more advanced field-theory based NJL models, see Ref. [285] for a review of the

latter. Besides these "microscopic approaches", more agnostic types of modeling in which the

phase transition is described in terms of physical quantities, instead of coupling constants, have

also been proposed [278, 286].

The transition from nucleonic matter to EM occurs via a phase transition. Different kinds

of phase transitions are possible in dense matter [15, 28]. The phase transition could be an

abrupt First-Order Phase transition (FOPT) which creates a discontinuity in the sound speed

as a function of the density. Second Order Phase transitions as well as hyperonization are also

possible. Furthermore, the transition could be fully analytic, as observed at finite temperature

and zero chemical potential [5]. An example of such a crossover is the transition to Quarkyonic

matter (QycM) [287], which has been shown to be quite attractive to NS phenomenology [288].

In Secs. 7.1 and 7.2 we will discuss the features of some of these kinds of phase transitions in
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detail.

The rest of the chapter is organized as follows. In Sec. 7.1, we will discuss our formalism

for the construction of FOPTs. In Sec. 7.2, the theory of Quarkyonic matter as presented in

Refs. [288] and [289] will be reviewed. The main purpose of this work is to explore the con-

sequences of FOPTs on the radii of NSs, with special attention to the radii of very massive

(M ≥ 2M�) NSs. We also confront these calculations to the predictions of the Quarkyonic

model. Sec. 7.3 will be devoted to our results where we present calculations of NS masses and

radii obtained from models exhibiting FOPTs and a transition to QycM. The behaviour of the

sound speed of these models is analysed in Sec. 7.4. The analysis presented in Sec. 7.4 will

serve as our main motivation for the developments of chapter 8. We present our conclusions in

Sec. 7.5.

7.1 First Order Phase Transitions
In this work, we assume that the FOPT to EM in the inner cores of NSs is described by the

Maxwell construction. Following the approach of Refs. [278, 286], the EoS is

p(n) =

⎧⎪⎨
⎪⎩
pHad(n) if n < nFO

pFO if nFO < n < nFO + δnFO

pFO + c2FO
(
ρ(n)− ρFO

)
if n > nFO + δnFO

(7.1)

where p(n) is the pressure as a function of the baryon number density, with pHad(n) denoting

the purely hadronic case that is valid below the transition density nFO (the subscript refers to

First-Order). Also, pFO is the constant pressure in the mixed phase which exists in the density

interval δnFO, with pFO = pHad(nFO). The variable ρ(n) is the energy density and ρFO is the

energy density at n = nFO + δnFO. Finally, cFO is the sound speed in the EM phase, which is

assumed to be a constant, at least for the explored densities immediately after the FOPT. The

qualitative features of this construction is illustrated in Fig. 7.1. Note that in this approach there

is no assumption about the nature of the EM, which is not necessarily deconfined QM, and thus

this approach is quite agnostic regarding the composition of the exotic phase.

Below the FOPT point, we require a model for the hadronic EoS. The hadronic EoS can,

in principle, include more than just nucleons, e.g. nucleon resonances, hyperons, meson con-

densates. For simplicity, we consider in the following only nucleonic EoSs below the phase

transition. For this purely nucleonic EoS the energy density ρNuc(p) is calculated based on the

meta-model (MM) [64, 131, 192] that has been used extensively in part I of this thesis. Recall

that this is a density functional approach, similar to the Skyrme approach [185], that allows one

to incorporate nuclear physics knowledge directly encoded in terms of the Nuclear Empirical

Parameters (NEPs), see Eqs. 3.18 and 3.19 for their definition. By varying the empirical pa-

rameters within their uncertainties, the MM is able to reproduce the EoSs predicted by a large

number of existing nucleonic models [64, 131], such as the Skyrme SLy4 interaction [185] that

is shown in Fig. 7.5 for instance. Note however that it is not the purpose of the this chapter

to explore nuclear physics uncertainties from the MM. As we detail hereafter, the nucleonic

EoS will be fixed such that we will focus on the effects of different approaches to describe the

transition to EM.

Let us now discuss some of the features of Eq. (7.1) qualitatively. As can be seen in Fig. 7.1,
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Figure 7.1: The pressure as function of the baryon number density for an EoS undergoing a

FOPT as described by Eq. (7.1).

the pressure remains constant as a function of n, during the gap δnFO. This leads to the so called

softening of the EoS. Although one might think that such soft EoSs may not support NSs with

M ≥ 2M� (a condition which is required by radio observations of heavy pulsars, see Refs. [59,

61, 56] for the most recent of them), studies have shown that FOPTs can lead to maximum

masses MTOV ∼ 2.5M� [286]. Additionally, large radii (∼ 14 km) for massive NSs have been

constructed in previous works, see for instance Refs. [290, 279]. In particular, the authors of

Ref. [290] have constrained the properties of FOPTs by imposing upper and lower bounds on

MTOV along with bounds on the radii of massive NSs. In Ref. [279], the authors obtain radii

as large as 15.8 km for maximally massive stars. However this value decreases significantly

if the condition of thermodynamic stability is imposed, i.e. the condition that the exotic phase

should have a lower free energy per baryon than the nucleonic phase. This stability suggests

that the nucleonic free energy represents a viable solution for the ground-state of matter at all

densities, even for the largest ones found after the phase transition. Such a condition might be

over constraining since it may reject solutions which can be physical after the phase transition.

Since the break-down density of the nucleonic solution is not well known, we fix it to be located

just after the phase transition, for n > nFO + δnFO.

Finally, we remark that at variance with Eq. (7.1), the FOPT might proceed via a Gibbs

construction [291]. In the Gibbs construction, the pressure is not required to be constant in the

mixed phase [28] implying that an extended mixed phase can exist inside NSs. This is con-

trary to the Maxwell construction in which there is only a sharp interface between the hadronic

and exotic phases, since there exists a one-to-one correspondence between the pressure and

the radial coordinate inside the NS. Furthermore, the mixed phase in the Gibbs construction

might contain inhomogeneous bubbles (or pasta) of one phase immersed inside the homoge-

nous medium composed of the other phase [15, 28]. The shapes and sizes of these bubbles

depend of their surface tension, which is practically unknown. While the Gibbs construction

is the more general one, it can be shown that if the surface tension exceeds a certain critical

value [292, 293, 286], the FOPT reduces to one that is described by the Maxwell construction,

i.e. the transition proceeds via a sharp interface between the two phases. Since the uncertainties

in the surface tension, in the case of QM, allow for this scenario, in this study we will work only
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with the Maxwell construction, i.e Eq. (7.1).

7.2 Quarkyonic Matter
After the original conjecture of QycM by McLerran and Pisarski [287], a model for QycM

has been developed to produce an EoS relevant to NSs [288]. By considering the case of pure

neutron matter rather than beta-equilibrated matter, McLerran and Reddy have shown that the

resulting EoS is stiff by nature and thereby attractive to NS phenomenology. Following their

study, extensions have been proposed to incorporate beta-equilibrium by Refs. [294, 289], and

here we follow the proposal of Ref. [289].

The basic picture of QycM is that the ground state of dense matter is composed of free

quarks, having a constituent quark mass, that occupy states deep inside the Fermi sea. Baryons

are generated by the strong confining force close to the Fermi level and therefore occupy a

shell lying on top of the quark states. This momentum shell has a width that is taken to be

ΔQyc ≈ ΛQyc, where ΛQyc is the typical QCD momentum scale. The low energy excitations

around the Fermi level therefore involve only quasi-particles of nucleonic type. As in Ref. [288],

the thickness of the shell inside which the nucleons reside is taken to be

ΔQyc =
Λ3

Qyc

k2
FN

+ κQyc
ΛQyc

N2
c

, (7.2)

where kFN
is the nucleon Fermi momentum. There are two parameters: the Qyc scale ΛQyc ≈

250− 300 MeV, which is similar to the QCD scale, and the coefficient κQyc ≈ 0.3.

The relationship between isoscalar quark Fermi momentum kFQ
and the nucleon Fermi

momentum is given by

kFQ
=

kFN
−ΔQyc

Nc

Θ(kFN
−ΔQyc). (7.3)

We can therefore remark that the isoscalar nucleon Fermi momentum kFN
drives the be-

haviour of the nucleon gap (7.2) as well as the isoscalar quark Fermi momentum (7.3). It

follows that the nucleon and quark densities are given by

nN =
2

3π2

[
k3
FN

− (kFN
−ΔQyc)

3Θ(kFN
−ΔQyc)

]
, (7.4)

and

nQ =
2

3π2
k3
FQ

Θ(kFQ
) . (7.5)

The total baryon density is given by

nB = nN + nQ. (7.6)

In asymmetric matter, one additionally has to deal with the 4 particle densities: nn, np, nu

and nd which are the densities of neutrons, protons, up-quarks and down-quarks respectively.

Their relationship with the isoscalar nucleon and quark densities are straightforward and given
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by

nN = nn + np (7.7)

nQ = (nd + nu)/Nc . (7.8)

In order to obtain the densities nn, np, nu and nd, the authours of Ref. [289] proposed

the imposition that the two phases conserve isospin/flavor asymmetry. Since n : (udd) and

p : (uud), this gives

δN = NcδQ, (7.9)

where δN = (nn − np)/nN and δQ = (nd − nu)/(nd + nu).
Therefore, knowing δN and kFN

, one can determine all the particle densities:

nn =
1 + δN

2
nN (7.10)

np =
1− δN

2
nN (7.11)

nd =
1 + δQ

2
NcnQ (7.12)

nu =
1− δQ

2
NcnQ. (7.13)

Furthermore, the neutron and proton densities can be related to the corresponding Fermi

momenta as

nn =
1

3π2

(
k3
Fn

− k3
Fmin
n

)
, np =

1

3π2

(
k3
Fp

− k3
Fmin
p

)
, (7.14)

where

k3
Fn

= (1 + δN)k
3
FN

, k3
Fp

= (1− δN)k
3
FN

, (7.15)

and the lower bounds of the nucleon shells are given as

k3
Fmin
n

= (1 + δN)
(
NckFQ

)3
(7.16)

k3
Fmin
p

= (1− δN)
(
NckFQ

)3
. (7.17)

Finally, the energy density contributions from the nucleons and the quarks are given by

ρN = 2
∑
i=n,p

∫ kFi

kmin
Fi

d3k

(2π)3

√
k2 +M2

N + VN(kFn , kFp),

ρQ = 2
∑
q=u,d

Nc

∫ kFq

0

d3k

(2π)3

√
k2 +M2

Q. (7.18)

As in Sec. 7.1, the nucleonic residual interaction VN is taken from the MM approach . Note

that, under the assumption that chiral symmetry remains broken, we take MQ = MN/Nc even

in the quarkyonic matter. Having thus established the EoS of quarkyonic matter for arbitrary
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Figure 7.2: The baryon chemical potential μB, energy per particle EB/A, pressure PB and

sound speed (vs,B/c)
2 in symmetric (δN = 0), asymmetric (δN = 0.5), and neutron matter

(δN = 1.0) for ΛQyc = 250 MeV and κQyc = 0.3. Figure taken from Ref. [289].

isospin asymmetries, the condition of beta-equilibrium can now be imposed easily [289].

Results for the EoS of the QycM is shown in Figs. 7.2 and 7.3. In Fig. 7.2, we show

the baryon chemical potential μB, energy per particle EB/A, pressure PB and sound speed

(vs,B/c)
2 in symmetric (δN = 0), asymmetric (δN = 0.5), and neutron matter (δN = 1.0) for

ΛQyc = 250 MeV and κQyc = 0.3. Similar thermodynamical quantities are shown in Fig. 7.3

but at β-equilibrium. These results were obtained from QycMs constructed on top of the SLy4

model [185]. This purely nucleonic SLy4 model is also shown in Figs. 7.2 and 7.3 as violet lines

for comparison. We see that, by suggesting a crossover between the nucleonic and the quark

phases, the QycM implies a rapid increase in pressure upon the onset of quarks. This induces

an hardening of the EoS in a density interval associated to the cross-over transition between

hadronic and quarkyonic matter. At higher density, the sound speed decreases again, producing

the expected softening of the EoS, but at densities that may not be explored in nature. The

qualitative features of QycM thus seem to be opposite to those of a FOPT. Note that, in addition

to the QycM, other models exhibiting crossover transitions have been explored in the literature

[295, 296]. In this work however, we will restrict our attention to QycM since it qualitatively

captures the stiffness of the EoS generic to crossover transitions.

7.3 Prediction of NS Masses and Radii
The purpose of this chapter is to challenge the a priori difference between FOPT and QycM by

testing to which extent FOPTs can also predict hard dense matter EoSs. In Fig. 7.4 we show
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Figure 7.3: The neutron chemical potential μn, total energy per particle Etot/A, total pressure

Ptot and total sound speed (vs,tot/c)
2 at β-equilibrium. Figure taken from Ref. [289].

various examples of EoSs with a FOPT as described by Eq. (7.1). These are shown as the black

lines with different line-styles. We consider the purely nucleonic SLy4 EoS [185] shown as

the red dashed line. Interestingly, the SLy4 EoS is quite soft and it predicts radii lower than

the recent NICER radius estimate [50, 52] of PSR J0740+6620 shown in magenta (68% CL).

In order to increase the repulsion and create a stiffer nucleonic EoS, the value of Ksym, see

Eq. (3.19), was increased from −120 MeV to 125 MeV and the result is shown as the solid red

line which is consistent with the NICER result. In the following this EoS is used as a reference

one, so for simplicity it is labelled "Nucleonic". Additionally, we show two extreme instances

of quarkyonic EoSs as solid and dashed blue lines (with ΛQyc = 250 and 332 MeV) and fill up

the region described by intermediate values for ΛQyc. The value of ΛQyc = 332 MeV implies

that the onset of quarks occurs at a density of 0.33 fm−3, whereas for ΛQyc = 250 MeV, the

quarks appear at 0.14 fm−3. Thus, while the former corresponds to what one may consider

as a typical value of the quarkyonic transition density, the latter serves only as an example of

an extreme case where the quarks start appearing around the saturation density. We also show

existing astrophysical data on NS masses and radii. The yellow contour depicts constraints

from the GW170817 event obtained from Ref. [39], the green one is obtained from the NICER

observation reported in Ref. [49] and the magenta contour is obtained by combining the PSR

J0740+6620 NICER observations of Refs. [50] and [52]. All measurements are reported at the

68% CL. In this chapter some astrophysical data are shown only for illustrative purposes and

we leave for a later study the complete Bayesian analysis, exploring the nucleonic uncertainties

in addition to the ones from EM.

In Fig. 7.4, various values of the FOPT parameters are considered. Recall that nFO is the

baryon number density at the transition point, δnFO is the transition gap and c2FO is the square of
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Figure 7.4: The mass-radius curves for various FOPT EoSs in the soft case, shown in black with

the different line-styles referring to different values of the parameters governing the FOPT. The

dashed red line displays the purely nucleonic SLy4 EoS and the solid one is a more repulsive

nucleonic EoS which matches with the NICER’s constraints (see text). The blue lines depict

area explored by the Quarkyonic EoSs. We also show constraints from GW170817 (yellow con-

tour), NICER’s PSR J0030+0451 observation (green contour) and NICER’s PSR J0740+6620

measurement (magenta contour).

the sound speed in the exotic matter present in NSs after the phase transition. Here, we consider

values for these parameters in the ranges: nFO = (1.5 − 2.5)nsat, δnFO = (0.5 − 1.5)nsat,

and c2FO = 1/3 − 1. Note that some of these EoSs can support more massive NSs than the

most massive one that can be supported by the purely nucleonic EoS. It was indeed already

noticed in Ref. [289] that the Qyc model can change a nucleonic EoS failing to get the observed

2M� into an EoS passing over this limit. However, the generic feature of all these first-order

EoSs is that they predict smaller radii compared to the nucleonic and quarkyonic EoSs. Thus

the FOPT considered here clearly illustrate the prevalent picture mentioned earlier, i.e. FOPT

soften the EoS and lead to smaller radii [278, 286, 279]. Also note that all FOPT curves (except

the solid one in the top right panel) predict smaller radii than the recent NICER estimate shown

in magenta, and would therefore be simply rejected by the new NICER observation.
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Figure 7.5: Same as Fig. 7.4 for FOPT EoSs in the stiff case.

In Fig. 7.4, the parameters controlling the transition point where chosen to coincide with

typical values expected for a transition to QM, i.e. the transition does not occur at very low

densities (nFO � 2.0nsat) and the sound speed is close to the expected conformal limit in QM,

c2cl = 1/3. This is what leads to the consensus that FOPTs lead to soft EoSs. However, we

argue that another set of values, with nFO � 2.0nsat, c
2
FO � 0.6 and δnFO ≈ 0.3nsat, cannot

be ignored just because they result in the appearance of quarks (or any other exotic matter)

at relatively low densities. The first reasoning is that these sets of parameter values results in

EoSs that could not be excluded by experimental or observational constraints. Further, a recent

study [297] estimating the posterior distribution over these parameters via a Bayesian analysis

of astrophysical data has shown that the most probable values are nFO ≈ 1.6nsat and c2FO ≈
0.95. This shows that parameters resulting in an early phase transition to EM with large sound

speeds should not be overlooked and, additionally, they may even be favoured by astrophysical

observations. See also Ref. [298] which came to a similar conclusion in the context of the

analysis of locations for the special point of hybrid stars in the mass-radius diagram.

With such a motivation, in Fig. 7.5 we construct examples of EoSs with a FOPT that are

relatively stiff. We have considered low values for the transition point nFO ≤ 1.8nsat, small

density gaps δnFO = 0.2− 0.4nsat and again, a large prior for the EM sound speed c2FO = 1/3,
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2/3, 1. As before, we contrast these EoSs against the nucleonic EoS (in solid red) and two Qyc
EoSs (in blue) with ΛQyc = 250 and 332 MeV. Several of the EoSs with FOPTs lie inside the

blue band encapsulating various possible quarkyonic EoSs. For instance, in the middle panel

(c2FO = 2/3 and nFO = 1.5nsat), the first-order EoSs with δnFO = 0.2nsat and δnFO = 0.3nsat

give radii that are comfortably larger than those corresponding to the quarkyonic EoS (with

ΛQyc = 332 MeV) and the nucleonic EoS for M � 1.5M�. The EoS with δnFO = 0.4nsat

predicts larger radii only in the range M � 1.75M�. Similar comments can be made for

the EoSs with a FOPT shown in the other panels with the lone exception being the EoS with

c2FO = 1/3 (bottom panel) that predicts lower radii for all NSs. This demonstrates that EoSs

with FOPTs can give radii comparable to and larger than those resulting from quarkyonic and

nucleonic EoSs at the condition that the sound speed in the EM exceeds the conformal limit in

EM. We also observe that all EoSs with a FOPT (except the one with c2FO = 1/3) are compatible

with the considered astrophysical observations, most notably the NICER radius observation of

the most massive NS known (magenta contour).

Let us also note that all the first-order EoSs shown in Fig. 7.5 do lead to smaller radii at very

low NS masses (≈ 1M�). This is below the observed mass lower limit, 1.17M� [299], which is

shown in the figure as the upper limit of the grey area. A way to differentiate between the FOPT

(for the parameters explored in Fig. 7.5) and Qyc matter would be to observe, if they exist, very

low mass NSs (≈ 1M�). Indeed, the importance of such low mass NSs has been pointed out in

Ref. [300] in the context of chiral effective field theory. Another quantitative difference between

FOPT and Qyc matter is observed for the predicted radii associated to a canonical mass NS. At

around 1.5M�, no FOPT could predict radii as large as the ones allowed by the Qyc model with

typical ΛQyc ≈ 250 MeV. The main takeaway message illustrated by this figure is that EoSs

with a FOPT can predict radii that are comparable to or larger than those corresponding to the

nucleonic EoS as well as almost all the possible quarkyonic EoSs, in the range of observed NS

masses.

In addition to the radii, Figs. 7.4 and 7.5 can be analyzed in terms of the maximum masses

MTOV explored by FOPTs and Qyc models. It is known that FOPT can lead to large maxi-

mum masses, e.g. MTOV ≈ 2.5M� with c2FO = 1 [286]. We show that under special choice

of parameters, FOPT can even reach MTOV ≈ 3M�, see the bottom panel of Fig. 7.5. The

detection of GWs from binary NS mergers have been used to infer new constraints on MTOV.

Indeed, as mentioned in Sec. 1.2.1, an analysis of the GW170817 event by Ref. [47] found

MTOV � 2.16+0.17
−0.15M�, and Ref. [48] found that MTOV � 2.3M�. Using these values, several

Qyc and FOPT models shown in Figs. 7.4 and 7.5 could be ruled out. However, more refined

GW observations and numerical simulations may be required before FOPT and Qyc models

could be definitively selected according to their prediction for MTOV.

A Statistical analysis

Until now, we have show examples of EoSs with typical values for the FOPT parameters.

In order to understand the role played by the three parameters (nFO, δnFO, c
2
FO) in the global

properties of NS such as the radius of a 1.6M� NS, we now perform a more extensive anal-

ysis based on a set of 5000 EoS, where the FOPT parameters are varied in a systematical

way. We consider a sampling of uniformly distributed parameters in the following ranges,

c2FO = [0.15, 1.00], δnFO = [0.05, 1.50]nsat, nFO = [1.5, 2.5]nsat, and we reject all samples for

which MTOV < 1.6M�. For all the remaining first-order EoS samples, the quantity R1.6 − Rnuc
1.6
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Figure 7.6: Plots depicting the correlation of R1.6−Rnuc
1.6 versus the three transition parameters:

c2FO, δnFO, nFO. R1.6 refers to the radius at 1.6M� resulting from a FOPT. Rnuc
1.6 is the same

quantity but for the purely nucleonic case. The contour colors correspond to different selection

rules, as indicated in the figure legend. The different vertical lines correspond to extremum

values of the FOPT parameters such that the condition R1.6 > Rnuc
1.6 is satisfied. See text for

more details.

is plotted as a function of the three transition parameters in Fig. 7.6. Here R1.6 refers to the

radius of a 1.6M� NS resulting from a FOPT whereas Rnuc
1.6 is the same quantity but for the

purely nucleonic case. The results are show as contours for TOV masses given in the legend.

Notice that, by analyzing the difference R1.6 − Rnuc
1.6 , we reduce the influence of the considered

nucleonic EoS on which the FOPT is built. There is however a remaining effect of the nucleonic

EoS which slightly impact the numbers given below.

In the top left panel of Fig. 7.6, we plot R1.6−Rnuc
1.6 against c2FO. The vertical lines correspond

to the minimum values of c2FO such that the condition R1.6 > Rnuc
1.6 is satisfied, for different

constraints on MTOV (differently colored contours). For instance, if MTOV > 2.1M� as it is

likely, then R1.6 > Rnuc
1.6 is satisfied only if c2FO � 0.37. Therefore we can now confirm our

earlier observation that c2FO > c2cl allows FOPT EoS to predict larger radii than the one based on

nucleonic EoS. We also observe that the quantity R1.6−Rnuc
1.6 increases with the increase in c2FO.
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Figure 7.7: The sound-speed density profile for the various EoSs show in the middle panels of

Figs. 7.4 and 7.5. The blue lines depict Quarkyonic EoSs. The black and green lines correspond

to FOPTs for different values of nFO, δnFO and c2FO. The squares indicate the central density

associated to a 2.1M� NS for each EoS.

It shows that larger sound speeds support larger TOV masses. For instance, if MTOV > 2.3M�,

then R1.6 > Rnuc
1.6 is satisfied only if c2FO � 0.45.

In the top right panel of Fig. 7.6, we plot R1.6 − Rnuc
1.6 against δnFO. The vertical lines

correspond to the maximum values of δnFO allowed to satisfy R1.6 > Rnuc
1.6 . Note for instance

that R1.6 > Rnuc
1.6 (stiffer first-order EoS) is possible only if δnFO � 0.23nsat if 2.1M� <

MTOV < 2.3M�. Unlike the top panel, EoS samples with MTOV > 2.3M� can be obtained at

all values of δnFO. Restricting MTOV to be inside small intervals but > 1.9M� induces a tight

correlation between R1.6 − Rnuc
1.6 and δnFO. The correlation is even tighter for δnFO > nsat if

MTOV > 2.3M�, and for δnFO < 0.6nsat if 1.9M� < MTOV < 2.3M�.

Finally, in the bottom panel of Fig. 7.6, we see that R1.6 > Rnuc
1.6 is possible at the condition

that nFO � 2.3nsat if 2.1M� < MTOV < 2.3M�, and at nFO � 2.4nsat if MTOV > 2.3M�. Note

that these values for nFO are above 2nsat (not so low). Larger values for R1.6, i.e. increasingly

repulsive EoS, are obtained for the lower values for nFO, predicting as well larger TOV masses.

7.4 Behaviour of the sound-speed
Since FOPT and QycM can predict very similar mass-radius relations, one could ask if the sound

speed predicted by these two different models share similar features as well. In Fig. 7.7, the

speed of sound is shown for the various EoSs considered in the middle panel of Figs. 7.4 and 7.5.

The blue curves correspond to the Qyc EoSs for the two extreme cases where ΛQyc = 250 and

332 MeV, whereas the black and green ones depict the EoSs with FOPTs. The squares indicate

the central density of the 2.1M� NS (the squares for the green EoSs are not shown). We see the

familiar bumps in the sound speed profiles shown in blue, that characterize the quarkyonic EoS.

The sound-speed density profiles associated to the FOPT models are qualitatively different from

the QycM. Their density dependence is simpler since they first drop to zero for densities inside

the transition domain, and after the phase transition they get to a constant value. However, the
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mass-radius curves generated by the FOPTs in black and the QycM in blue are quite similar,

while the FOPTs in green predict different mass-radius curves (with a reduction of the radius

after the phase transition). In conclusion, Fig. 7.5 illustrates that the bump in the Qyc EoS can

be replaced with a simple, trivial structure such as a horizontal line corresponding to sound

speeds around c2FO ≈ 2/3, as shown here for the FOPT in black, albeit it implies a fine tuning

of the parameters. If the value of δnFO is not too large, such a replacement does not affect the

mass-radius curve in a significant manner, leading to the possibility that first-order EoSs can

mimic quarkyonic ones with a good accuracy. This remark moderates the findings of Ref. [27],

where the authors argued that massive NSs and stiff EoSs are likely the result of non-trivial

sound speed structures.

7.5 Conclusions
The purpose of this chapter is to challenge the a priori difference between FOPT and QycM,

and to show that FOPT solutions could realistically masquerade QycM and predict hard dense

matter EoSs. We construct explicit examples of EoSs undergoing a FOPT that are significantly

stiffer than their purely hadronic counterparts, where by stiff we typically refer to the radii of

NSs. Stiffer EoSs also predict larger TOV mass. Additionally, we show that the stiffness of such

EoSs can be such that their mass-radius relations can realistically mimic the ones corresponding

to the QycM. This can be seen as an extension of the results of Ref. [301] where it was shown

that the mass-radius relations of first-order EoSs are quite similar to those predicted for NSs

made of purely nucleonic matter. We have also confirmed that large TOV masses are possible

with such FOPT EoSs. These EoSs arise from a certain set of values for the FOPT parameters,

and we have performed a detailed analysis of the correlation between the stiffness of the EoS

and the FOPT parameters. We have argued that such FOPT parameter sets are not ruled out by

present astrophysical data and may even be favoured by them, as shown in Ref. [297]. These

results have clear and important implications for phenomenology-based studies of the hadron-

quark phase transitions in NSs and for the confrontation of EoS to the latest results from the

NICER observation [50, 52]. An interesting extension of this work would be to confront sys-

tematically the various EoSs presented in this chapter to the wealth of available astrophysical

data (radio, x-rays, and GW). Work along these lines is presently in progress.

Furthermore, we have analysed the behaviour of the sound speed of the models exhibit-

ing transitions to EM. We showed that, while the sound speeds of the FOPT models have a

different density dependence as compared to the QcyM model, the mass-radius curve remains

unaffected by this difference. However, it is interesting to note that all the models undergoing

phase transitions we have analysed in this chapter exhibit a non-monotonous behaviour of the

sound speed as function of the density, see Fig. 7.7. It is therefore extremely interesting to ask

if such non-monotonous (or non-trivial) structures can be inferred from astrophysical data in a

physics-agnostic manner. This will the topic of chapter 8.
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Chapter 8

Signatures of Phase Transitions from
Astrophysical Data

In the previous chapter 7, the question of phase transitions was studied using two specific mod-

els: the Quarkyonic model (QycM) and the First-Order Phase Transition (FOPT). We observed

that a change in the degrees of freedom to exotic forms of matter, such as quark matter likely

manifests itself in terms of non-trivial structures in the sound-speed profile, see also Refs [27,

55]. In particular, an abrupt FOPT creates a discontinuous drop in the sound speed as a function

of density [302, 303]. Particularly in a Maxwell construction for a FOPT, the speed of sound

vanishes because the pressure is required to be constant in the mixed phase. Other forms of

phase transitions, such as hyperonization or generic Second-Order Phase Transitions (SOPTs)

such as kaon condensation, can also lead to a sudden reduction in pressure and therefore to a

decrease in the speed of sound. In stark contrast to such softening phase transitions, a transition

to quarkyonic matter could stiffen the EoS, leading to a sharp peak in the sound speed [288,

294, 289]. Similar stiffening of the EoS has also been observed in models that incorporate

quark Pauli blocking, i.e. the exchange energy obtained by the antisymmetrization of the wave

functions of the quarks that constitute multi-nucleon systems [304].

Recently, studies investigated non-trivial structures in the EoS above saturation density such

as bumps in the sound speed [27, 55] or a kink in the EoS [272]. The authors of Ref. [272],

using a general extension scheme in the speed of sound constrained by chiral effective field

theory (EFT) calculations at low densities, perturbative QCD (pQCD) calculations at large den-

sities, astrophysical observations of pulsars with masses around 2M�, and the GW observation

GW170817, observed a change in the adiabatic index γ of the envelope of all EoS models. By

comparing this to expectations for hadronic and quark matter and by comparing central densities

in heavy NSs for selected hadronic EoS models1 and EoSs constructed within their extension

scheme, they concluded to have found evidence for a phase transition to quark matter in the

heaviest NSs, appearing at an onset energy density of approximately 700 MeV fm−3. On the

other hand, the authors of Ref. [27] explicitly considered non-trivial structures in the speed of

sound such as kinks, dips and peaks. This allowed the authors to construct massive NSs con-

sistent with the mass of the secondary component of GW190814. They concluded that such

non-trivial structures are likely present at densities probed in very massive NSs (≈ 2.5M�).

In this chapter, we re-investigate if non-trivial structures in the speed of sound can be in-

1We note that some of the hadronic EoS models studied in Ref. [272] are non-relativistic.
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Figure 8.1: Mass-radius curves for all EoSs that we employ in our work (gray). The samples are

divided into three panels corresponding to three EoS groups (see text). Note that for each group

only 1000 samples (chosen randomly) out of the total 10000 EoSs are shown. We also show the

observational constraints enforced in this work. EoSs that pass all observational constraints at

the 90% confidence level are shown in green. See text for more details.

ferred from present astrophysical data. At variance with the previous chapter 7 where specific

models where used for the phase transition, we use a fully physics-agnostic approach. For this,

we employ general schemes for the EoS that are able to describe a wide range of density be-

haviors of the sound speed. We use a systematic approach to model the EoS in the speed of

sound vs. density plane, employing a piece-wise linear model for the speed of sound which is

a modified version of the scheme of Ref. [46] and similar to Ref. [272] but with more model

parameters. We then group different EoS realizations according to the slope in the speed of

sound, the appearance of non-trivial structures, or explicit FOPT, and analyze the effect of as-

trophysical NS observations. We compare our results with those presented in the literature and

comment on the evidence for phase transitions linked to astrophysical data.

The rest of the chapter is organized as follows. Our computational framework is presented in

Sec. 8.1 where we describe how we model the EoS in physics-agnostic manner. In Sec. 8.2, we

analyse our results for the pressure of dense matter as function of the energy density. Sec. 8.3

is devoted to our results for the existence of phase transitions in dense matter inferred from the

possible presence of non-trivial structures in the speed of sound and the adiabatic index. We

present our conclusions in Sec. 8.4.

8.1 Equation of State Model
We use an extension scheme for the EoS in the speed of sound, cs. At low densities, up to nuclear

saturation density nsat, we fix our EoS to be given by the SLy4 energy-density functional [305],

a phenomenological force that is well calibrated to nuclear matter as well as finite nuclei prop-

erties, and commonly used in astrophysical applications. Beyond nsat, for each EoS we create a

non-uniform grid in density between nsat and 12nsat by randomizing an initial uniform grid with

a spacing of nsat: at each grid point, a density shift drawn from a uniform distribution between

−0.4nsat and 0.4nsat is added and defines the set {ni}i=1,11. We then sample random values for

c2s(ni) between 0 and c2 with c being the speed of light (we set c = 1 in the following). Finally,

we connect all points c2s,i(ni) using linear segments.

We sort the resulting EoSs into three groups according to the maximal slope in the speed of
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Figure 8.2: EoSs of this work that satisfy observational constraints. We show envelopes for

EoSs without FOPT (red) and EoSs with FOPT with different onset density ranges (green and

blue), see details in the text. The shaded bands correspond to stable NS configurations, whereas

the solid lines show the EoSs extended beyond the maximally massive NS configurations. The

black contour depicts the results of Ref. [272], and the gray contour represents the perturbative

QCD constraint.

sound c′max = max{dc2s/dn}: defining the slope at nsat to be c′sat = dc2s/dn(nsat) = 0.55 fm3,

group 1 contains EoSs whose maximal slope is less than three times the slope at nsat, c
′
max ≤

3c′sat, group 2 contains all EoSs with 3c′sat < c′max ≤ 6c′sat, and group 3 contains all EoSs with

6c′sat < c′max ≤ 9c′sat. These groups are thus mutually exclusive. The upper limit in group

3 allows us to disregard EoSs for which the sound speed strongly oscillates with density, a

case which is not observed in any EoS models besides those which incorporate a FOPT. We

explicitly construct FOPTs later in the manuscript and analyze their impact on our results. We

have generated 10,000 EoSs in each group.

By inverting the expression c2s = dp/dε = (ndμ)/(μdn), we obtain the chemical potential

μ in the interval ni ≤ n ≤ ni+1, the pressure and the energy density,

log

(
μ(n)

μi

)
=

∫ n

ni

c2s(n
′)

n′ dn′ , (8.1)

p(n) = p(ni) +

∫ n

ni

c2s(n
′)μ(n′)dn′ , (8.2)

ε(n) = ε(ni) +

∫ n

ni

μ(n′)dn′ . (8.3)

More details regarding the computation of these integrals are given in Appendix B. Finally,

we solve the TOV equations for each EoS to determine NS radii (R) and dimensionless tidal

deformabilities (Λ) as functions of masses (M ), see for instance Ref. [46] for more details.

In Fig. 8.1, we show the resulting mass-radius families together with the astrophysical

observations that we consider in this work: the NICER observations of millisecond pulsars

J0030+0451 [49, 51] and J0740+6620 [50, 52], the gravitational-wave observation GW170817 [38,

306], and upper and lower limits on the maximum NS mass, MTOV. For NICER’s obser-

vation of J0740+6620, we have averaged over the analyses of Ref. [50] and Ref. [52]. For
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Figure 8.3: The squared sound speed (top) and adiabatic index (bottom) versus the energy

density. We show the model-averaged bands for EoS that fulfill the astrophysical constraints

(mean values with solid lines, band width representing the standard deviation). The different

panels correspond to different locations of the maximum of the sound speed (see text).

GW170817, we transformed the estimation of the tidal deformability, considering Λ̃ = 222+420
−138

at 90% confidence level (CL) from Ref. [306], into a single constraint on the radius for the mass

m = 1.38M�. This constraint gives an upper value of the radius obtained by running over

all our EoSs compatible with GW170817 and by fixing the mass ratio q = m1/m2 = 1. This

upper radius is 12.9 km and it is indicated by a blue dot in the figure. For MTOV, we impose the

constraint 2M� <MTOV < 2.6M�. The lower bound of 2M� is chosen to account for heavy

pulsar radio observations [58, 60, 56, 59]. The upper bound of 2.6M� is consistent with the

mass of the secondary object in the GW190814 event, which is likely a black hole [307, 308].

The EoSs that satisfy all constraints at the 90% CL are shown in green in Fig. 8.1.

8.2 Results for the EoS
The range of radii explored by our EoSs constrained by the astrophysical data previously re-

viewed is about 11-13 km. The upper radius limit is set by GW170817 (see Fig. 8.1) while the

lower radius limit is a result of both the NICER and maximum-mass constraints. The envelopes

of EoSs that survive all imposed astrophysical constraints are shown in Fig. 8.2. The filled con-

tours encompass EoSs on the stable NS branch while the dashed contours encompass the EoSs

on the unstable branch as well, i.e. for densities going above the maximum-mass NS, MTOV.

Fig. 8.2 illustrates that when we represent EoSs for densities above MTOV we find a kink sim-

ilar to the one from Annala et al. [272] at εkink � 700 MeV fm−3. More precisely, we observe
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Figure 8.4: We compare the speed-of-sound bands for the various groups without including a

FOPT (left panel, similar to left panel of Fig. 8.3) and when a FOPT is explicitly included.

We show results for two ranges of the onset density of the FOPT. The dashed vertical lines

encapsulate the region inside which a peak in the sound-speed occurs.

that EoSs can be arbitrarily soft above εkink since this regime is not probed in stable NSs (with

M≤MTOV). At even larger densities, our EoS envelopes broaden compared to Ref. [272], this

time allowing stiff EoSs, but these differences have no impact for stable NSs. Note that unlike

Ref. [272], we do not incorporate constraints from pQCD since the objective of this work is to

study the influence of astrophysical data alone. In a future work, we will address the theoretical

constraints from pQCD.

We also show results for EoSs with an explicit FOPT, built upon each original EoS. It is

implemented in terms of three parameters: the transition energy density εt, the width of the

transition Δε and a constant sound speed after the transition c2s,t [278, 286, 279]. The choice

of imposing a constant sound speed allows us to control the stiffness of the EoS with a single

parameter. By using a single value for the sound speed, it is easier to distinguish between

soft and stiff quark matter. However, we note that exploring density dependent sound speeds

after the FOPT could increase the variety of EoSs that satisfy the observational data. We aim

to explore this systematically in a future analysis. For each EoS, random values are drawn

from the uniform ranges εt = [400, 800]MeV fm−3, Δε = [0.2, 0.6]εt and c2s,t = [1/3, 1], and

the EoSs are compared with astrophysical constraints as before. The lower bound on c2s,t is not

strictly necessary but it allows us to provide a uniform prior over a reasonable range in which we

expect to find EoSs that satisfy astrophysical constraints. We show later in this chapter that this

lower bound does not bias our results since all accepted EoSs (with FOPT) populate regions

of sound speed with values above 1/3. Finally, we separate the EoSs into two subgroups:

εt = [400, 600]MeV fm−3 (FOPT-1) and εt = [600, 800]MeV fm−3 (FOPT-2). For the group

with larger onset density, we again observe a kink of the EoS, while the other EoS group shows

a smooth behavior.

The softening of the EoSs without FOPT observed in Fig. 8.2 at εkink is somewhat similar

to the softening of the FOPT EoSs with εt = [600, 800]MeV fm−3. It is, therefore, tempting

to conclude that this softening is a signal of a phase transition to exotic matter. The adiabatic

index γ ≡ d log p
d log ε

= (ε/p) c2s was computed in Ref. [272] and a value of γ = 1.75 was chosen

to distinguish between hadronic and quark-matter models. In the following, we will study the

behaviour of the adiabatic index γ and the sound speed c2s for all EoSs shown in Fig. 8.2.
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8.3 Results for the existence of phase transitions
In Fig. 8.3, we show sound speed distributions as function of energy density, for all EoSs ful-

filling the observational constraints previously described. The model-averaged bands are termi-

nated when the NSs enter the unstable branch. The precise value for which this happens, while

slightly different for different models, has been fixed for the graphical representation shown in

the figures. We separate each group into subgroups according to the density where the speed of

sound reaches its maximum, ncmax: panel (a) shows all the EoSs for which ncmax is between 0.2-

0.5 fm−3, in panel (b) ncmax lies between 0.5-0.8 fm−3, and panel (c) shows those for which ncmax

is beyond 0.8 fm−3. As one can see, while some groups contain EoSs with clear peaks, astro-

physical observations do not require the EoS to have significant structures the speed of sound, in

particular a decrease to c2s ≈ 1/3, see Fig. 8.3(c). The more pronounced peaks in Fig. 8.3(a) are

reminiscent of the quarkyonic model [288] and the quark Pauli blocking effect [304], whereas

the broader peaks in Fig. 8.3(b) can potentially be interpreted as a weaker change of phases.

We have found that the peaks in Fig. 8.3 disappear if we change the maximum mass con-

straint from 2M� <MTOV < 2.6M� to MTOV > 2.6M�. Therefore, the upper limit on MTOV

is crucial for the appearance of a peak as it requires the EoS to soften at sufficiently high den-

sities. These findings are consistent with those presented in Ref. [55] which concluded that

existing astrophysical data does not necessarily enforce a bump in the c2s. For the behavior be-

low the peak, both the stiffness required by the 2M� observations and the NICER observations

and the softness required by GW170817 play an important role. This explains the agreement of

the individual groups at low densities but their deviations at higher densities.

We show the adiabatic index γ in the bottom panels of Fig. 8.3. We find that basically

all γ bands drop below γ = 1.75 at higher densities, corroborating the findings of Ref. [272].

However, we stress that this is only a necessary but not a sufficient condition for the appear-

ance of quark matter. Indeed, a straightforward comparison of the top and bottom panels in

Fig. 8.3 shows that while γ asymptotically approaches 1 in all cases, the sound speeds exhibit

no preferred asymptotic value that can be identified as the conformal quark matter limit. Also,

contrary to the findings of Ref. [272], we did not find that EoSs with γ > 2 in the maximally

massive configuration have a significant softening at lower densities.

We finally analyze the impact of explicitly including a FOPT on the sound speed profiles.

The results are shown in Fig. 8.4, where we compare (panel (a)) EoSs without FOPT but pre-

dicting a significant peak (as shown in Fig. 8.3a) with EoSs undergoing a FOPT. The EoSs with

FOPTs are separated into two groups, as FOPT-1 (panel (b)) and FOPT-2 (panel (c)). When

including a FOPT, we always observe the formation of a clear peak in the speed of sound pro-

file, located at an energy density inside the region indicated by the dashed brown lines, similar

to what we observe in Fig. 8.4(a). This suggests that if a FOPT occurs in dense matter, it

is preceeded by a sharp increase in the sound speed beyond the conformal limit, reaching its

maximum at approximately 400-500MeV fm−3. However, we stress once again that present

astrophysical data does not necessarily imply that the EoS undergoes a FOPT.

8.4 Conclusions
We have used a framework based on the speed-of-sound extension to address the question of

phase transitions in dense matter in a systematic way. We have classified EoSs agreeing with
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present astrophysical data based on the behaviour of their sound speed profiles. We were able

to identify EoSs with a bump in the sound-speed profiles, resembling quarkyonic matter for

instance, while for others we have explicitly included a FOPT. However, our analysis also re-

vealed the presence of (sub)groups of EoSs that have neither a clear structure nor an asymptotic

tendency to the conformal limit. This leads us to conclude that present astrophysical data does

not favour exotic matter over the standard hadronic matter or a crossover feature. Nevertheless,

our analysis also shows that, in the near future, new astrophysical data has the clear potential

to be decisive, one way or the other, regarding the long-standing question of phase transitions

in dense matter. With more data or a few accurate observations, we could anticipate two kind

of scenarios: (i) If super-stiff EoSs survive from these new observations, then they will point

towards a behavior like the one shown in Fig. 8.3(a), (ii) while if moderately-stiff EoSs survive,

they will prefer the behavior represented in Fig. 8.3(c). We therefore expect that the future

detections will prefer one of the scenarios suggested in Fig. 8.3. In addition, an information

about phase transition could be extracted from BNS mergers if the post-merger GW signal is

observed, as expected in the future. Such future detections will provide information that will

also select among the behaviors illustrated in Fig. 8.4(a)-(c).

We believe that the tools developed in this work – by classifying the type of sound-speed

density dependence in terms of simple properties – paves the way for further research in this

direction. Finally it might be interesting to systematically investigate whether pQCD calcula-

tions have an impact on the findings of this work. This will be the subject explored in the next

chapter.
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Chapter 9

Perturbative QCD and the Neutron Star
Equation of State

The overarching theme of this thesis is a consistent description of the Equation of State (EoS)

of dense matter from low densities, where nuclear effective field theories (EFTs) are valid, n �
2nsat, [171], up to the highest densities explored in the universe, n ≈ 8nsat. As explored in detail

in part I, at densities n � 2nsat, advances in Chiral Effective Field Theory (χEFT) [309, 310]

allow for an ab-initio description of nuclear matter consistent with the symmetries of the QCD

Lagrangian. Furthermore, properties of matter at these densities can be studied in experiments

with heavy atomic nuclei [11, 66, 311, 312, 313], allowing for the calibration of high-precision

nuclear Energy Density Functionals (EDF) [305, 185, 64, 131, 95] that accurately reproduce

such properties.

At larger densities, the situation changes drastically, as we saw in part II. In this regime,

effective nuclear potentials based on χEFT are no longer expected to be applicable due to the

breakdown of the EFT [171, 172]. Furthermore, the extrapolation of EDFs well beyond the

density regime where they were fit comes with systematic uncertainties that cannot be quanti-

fied [258]. Therefore, at these densities, our understanding of dense neutron-rich matter comes

mostly from the observation of neutron stars (NS) [314, 45, 44, 315, 316]. As discussed in

chapter 1, recent multimessenger observations of NSs, i.e., radio [58, 60, 56, 59], X-ray [50,

51, 52, 49] and gravitational-wave (GW) observations [38, 39], have provided valuable new

insights into the EoS of dense matter. Nevertheless, many open questions remain that might be

elucidated by upcoming measurements [317].

To the picture of dense matter that emerges due to a combination of low-density theoretical

constraints and observational data on NSs, an additional piece of information can be added.

At asymptotically large densities, n ≡ npQCD ≈ 40nsat, the fundamental theory of quarks and

gluons, QCD, becomes perturbative, allowing for an ab-inito calculation of the EoS of weakly

interacting quark matter via a perturbative treatment of the QCD Lagrangian [318, 319]. Such

perturbative QCD (pQCD) calculations have previously been incorporated in studies of mat-

ter at NS densities [320, 45, 272]. For example, Ref. [272] claimed to have found evidence

for the presence of quark matter in NS cores by employing a general extension scheme in the

speed of sound constrained by χEFT at low densities, perturbative QCD (pQCD) calculations

at large densities, astrophysical observations of pulsars with masses around 2M�, and the GW

observation GW170817. While intriguing, pQCD calculations are valid above npQCD ≈ 40nsat,

whereas the inner cores of NSs are not expected to explore densities larger than nTOV
c ≈ 8 nsat.
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Given the order of magnitude that separates these two density regimes, the importance of pQCD

calculations in analyses of NS matter might be smaller than expected. Furthermore, the particu-

larities of the interpolation between these vastly disconnected density regimes might introduce

systematic uncertainties that overemphasize the impact of pQCD.

Komoltsev and Kurkela have recently suggested a new method to link both density regimes,

allowing them to "integrate backwards", i.e., to propagate the pQCD constraints to lower den-

sities in a completely general, analytical, and model-agnostic manner using only the thermody-

namic potential and the conditions of causality and mechanical stability [321]. They concluded

that, independently of NS observations, pQCD calculations exclude about 65% of the area in

the pressure-energy density plane at n = 5nsat. Given these findings, the question remains

whether pQCD constraints affect the neutron-star EoS at a level comparable to constraints from

astrophysical observations.

In this chapter, we quantify to which extent pQCD constraints add to our knowledge of the

NS EoS and compare with information extracted from astrophysical constraints, to identify the

unique impact of pQCD calculations. The rest of the chapter is organized as follows. In Sec. 9.1,

we present our EoS model and discuss the imposition of astrophysical and pQCD constraints.

We present our results for the EoS in Sec. 9.2. Implications for the masses and radii of NSs are

discussed in this section as well. In Sec. 9.3, we discuss the potential implications of a future

radius measurement of a 2 M� NS that is more constraining than the NICER observation of

PSR J0740+6620 [50, 52]. We provide a comparison of the results presented in this chapter

with the recent work of Ref. [322] in Sec. 9.4 and we present our conclusions in Sec. 9.5.

9.1 Computational Setup
To reliably analyze the impact of the pQCD at asymptotically high densities and compare it to

astrophysical and experimental constraints at lower densities, we rely here on the computational

setup presented in Ref. [317]. This formalism is general enough to (i) capture our knowledge of

the low-density EoS where nuclear physics constraints exist, (ii) fully explore the present un-

certainties in observational NS data, and (iii) allow for the implementation of pQCD constraints

minimizing the effects of uncontrolled interpolations over vastly separated density regions. For

simplicity, the EoS up to nsat is given by the Douchin-Haensel SLY model [213] based on the

Skyrme SLy4 EDF [305] that is well calibrated to the properties of nuclear matter and finite

nuclei and commonly used in astrophysical applications. Beyond nsat, we describe the EoS

using an extension in the speed of sound plane, the details of which are provided in chapter 8.

For each EoS, we then calculate the NS mass-radius-tidal deformability relations and analyze

astrophysical observations of NSs.

Regarding the astrophysical data, we consider:

• The tidal deformability Λ̃ = 222+420
−138 at 90% confidence level (CL) for GW170817 [306],

which is consistent with other analyses [38, 39].

• The independent analyses of X-ray observations of pulsars J0740+6620 and J0030+0451

by the NICER telescope [50, 51, 52, 49] (by averaging over different results for the same

source).

• Radio observations of heavy NSs imposing MTOV � 2M� [56, 58, 60].
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Figure 9.1: The baryon number density as function of the chemical potential. The red bound-

aries depict integrated constraints from pQCD with the red band showing the uncertainty (see

text). The top (bottom) panel is constructed using the pQCD EoS down to μpQCD = 2.6 GeV

(μpQCD = 2.4 GeV). We show all EoS in our set (gray), the EoS constrained by pQCD, at

X = 2, only (blue), by astrophysical constraints only (orange), and by both astrophysical and

pQCD constraints, at X = 2, (green). All EoSs are terminated at the TOV limit.

Note that, unlike in chapter 8, we do not include any upper limit on MTOV so as to not mask any

effects of the pQCD constraints. The number density n as function of the chemical potential μ
is shown for each EoS satisfying these observations in Fig. 9.1.

In order to implement pQCD constraints, we follow the approach of Ref. [321] by first

imposing that nmin(μ) < n(μ) < nmax(μ) for μ ≤ μTOV
c , where μTOV

c is the central chemical

potential at the TOV limit and

nmax(μ) =

{
μ3nL−μμL(μLnL+2Δp)

(μ2+μ2
H)μL

μL ≤ μ < μc

nHμ/μH μc ≤ μ ≤ μH

(9.1)

and

nmin(μ) =

{
nLμ/μL μL ≤ μ ≤ μc

μ3nH−μμH(μHnH−2Δp)

(μ2−μ2
L)μH

μc < μ ≤ μH

(9.2)

where μL is the chemical potential of the low-density Skyrme EoS at nL = nsat and nH , μH

are the corresponding pQCD values evaluated at μH = μpQCD. Also, Δp = pH − pL and μc
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is given by the intercept of the causal line and the integral constraint, see Ref. [321]. Note

that the actual location of the TOV point, i.e. (μTOV
c , nTOV

c ) changes from one EoS to another,

as shown in Fig. 9.1. Beyond nTOV
c the NS branch is unstable and not observable: nTOV

c is

therefore the natural density above which the connection to pQCD can be performed. However,

we discuss the impact of changing the matching density to 10nsat in Sec. 9.4. The contours

defined by Eqs. (9.1)-(9.2) are shown in Fig. 9.1 in red. Note that the region encapsulated by

the red contours represent a necessary but not sufficient condition to fulfill the pQCD constraint,

since every EoS has to satisfy the additional criteria pmin(μ, n) < p(μ, n) < pmax(μ, n) where

pmin(μ, n) = pL +
μ2 − μ2

L

2μ
nmin(μ) (9.3)

and

pmax(μ, n) =

{
pL +

μ2−μ2
L

2μ
n n < nc(μ)

pH − μ2
H−μ2

2μ
n n > nc(μ)

(9.4)

where nc(μ) = nmax(μL)μ/μL. Note that the blue and green curves stop before the X = 2
contour, illustrating the impact of satisfying the sufficient conditions, Eqs. (9.1)-(9.4). In the

top panel of Fig 9.1, we have considered μpQCD = 2.6 GeV as suggested in Ref. [319], and we

explore the sensitivity of the results to this choice in the bottom panel for μpQCD = 2.4 GeV. At

fixed μpQCD, the uncertainties in the pQCD EoS can be estimated by varying the renormalization

scale parameter X as in Ref. [321]. In Fig. 9.1, we show results for X = [1, 2, 4].

9.2 Results for the EoS and global NS properties
Several EoSs in our set are consistent with astrophysical NS observations but inconsistent with

pQCD constraints for X = 2 and X = 4, see Fig. 9.1. These EoSs are too stiff below nTOV
c ,

leading to a fast rise of the chemical potential with the number density. The chemical poten-

tial then becomes too large to be connected to the pQCD limit. This violation of the pQCD

constraint is even more pronounced for μpQCD = 2.4 GeV, leading to an interesting interplay

between the pQCD constraining power and astrophysical observations. Current astrophysical

observations of NSs are consistent with stiffer EoSs at high densities to account for the exis-

tence of 2M� NSs [56] and their possibly large radii suggested by NICER [50, 52]. Hence,

these data require a rapid increase of the pressure as function of the energy density ε, which in

turn, implies large values for the speed of sound c2s = ∂p/∂ε. Because the speed of sound can

also be expressed as c2s = (n∂μ)/(μ∂n), this implies that the chemical potential rises rapidly

with the number density. In Fig. 9.1, we see that for some EoSs, chemical potentials as large as

μ ≈ 2.2 GeV can be reached in the center of maximally massive NSs, which is comparable to

μpQCD. If the number density for this configuration is too low, the asymptotic pQCD limit can-

not be reached in a thermodynamically consistent manner and, therefore, such EoSs are ruled

out. This clarifies how pQCD impacts dense matter at NS densities even though pQCD itself

is valid only at much larger densities: while NSs never explore densities close to npQCD, they

might explore chemical potentials close to μpQCD. This is an interesting finding of our study.

While several EoSs in our set violate the pQCD constraint for X = 2 or X = 4, this is not

the case anymore when allowing X = 1. In this case, all EoSs lie within the uncertainty band

for the pQCD constraint, depicted by the red bands. Therefore, improvements for the precision

134



Figure 9.2: The PDFs for the central pressure (left), the central energy density (middle) and cen-

tral chemical potential (right) in maximally massive NSs. The shaded orange PDF is obtained

by imposing astrophysical constraints only, whereas the green and magenta PDFs impose pQCD

constraints on top of the astrophysical constraints. Different linestyles correspond to different

choices for the pQCD renormalization scale X .

of the pQCD calculations would have a great potential in increasing the pQCD constraining

power.

As shown in Fig. 9.1, imposing constraints from pQCD can impact the EoS posterior. We

have quantified in more details the effects of enforcing pQCD constraints on the EoS in Fig. 9.2

by examining the Probability Density Functions (PDF) for the central pressure, the central en-

ergy density, and the central chemical potential in maximally massive NSs. Note that the pQCD

constraints are imposed “on top of” the astrophysical constraints. We see that the dashed lines

corresponding to X = 1, with μpQCD = 2.6 GeV, coincide with the astro-only PDF, showing that

pQCD has no impact in this case. For pTOV
c , pQCD constraints with X = 2 and X = 4 reduce

the maximal pressure explored in NSs, with the effect being more pronounced for larger values

of X and lower values of μpQCD. Interestingly the case X = 1 with μpQCD = 2.4 GeV clearly

impacts the PDF for pTOV
c and μTOV

c by excluding certain soft EoS. The pQCD constraints play

no role for εTOV
c .

In the left panel of Fig. 9.3, we show envelopes for the pressure as function of the energy

density around all the EoSs allowed in a certain set. The bands are terminated at the TOV

limit. For the cases X = 2 and X = 4, we find that incorporating pQCD constraints reduces

the allowed region in the p − ε plane by lowering the maximum allowed pressures. Again, the

pQCD constraints do not reduce the number of EoSs if X = 1 and μpQCD = 2.6 GeV. Note the

impact of pQCD if X = 1 and μpQCD = 2.4 GeV as previously discussed.

Now, we analyze if pQCD impacts the global structure of NSs such as their masses and

radii. In the middle and right panels of Fig. 9.3, we show the PDFs over the maximal NS mass

MTOV and the radius of the corresponding NS, RTOV. For MTOV, the effects of pQCD are

most significant when the case X = 1 and μpQCD = 2.4 GeV is considered. For X = 2 and

X = 4, we find that pQCD constraints slightly shift the distributions for MTOV to lower values

when added on top of astrophysical constraints but the corresponding PDF over RTOV show

no significant change. These results indicate that present pQCD calculations do not impact the

masses and radii of observable NSs, but they are on the brink of becoming constraining.
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Figure 9.3: Left panel: pressure as a function of the energy density where the upper and lower

edges of the contours represent the envelop over all the EoSs allowed in the corresponding set.

PDFs over the maximum NS mass (middle panel) and its corresponding radius (right panel) are

also shown.

9.3 A more constraining future measurement
Thus far, we have addressed the interplay of astrophysical observations, requiring a stiffening

of the EoS, and pQCD calculations, requiring a softening of the EoS. Now, we investigate how

an improved future measurement of the radius R2.0 of a two solar mass NS would influence

our findings. In the left panel of Fig. 9.4, we show constraints on the sound speed including

observational NS data to date. Additionally imposing constraints from pQCD slightly lowers the

average sound speed when larger values of X are considered, but we find a significant overlap

of EoS ranges with or without pQCD constraint. In the right panel of Fig. 9.4, we now impose

the additional constraint R2.0 > 13 km, which is a possible future scenario given the NICER

measurement of PSR J0740+6620 [50, 52]. We find that in this case, adding pQCD constraints

on top of astrophysical data shows a more significant impact, leading to the formation of a

pronounced peak in the sound speed for X = 2 and X = 4: At low energy densities, the sound

speed rises rapidly due to the imposed constraint R2.0 > 13 km; at ε � 500MeV fm−3, the speed

of sound plateaus if only astrophysical data are considered, while it decreases significantly if

pQCD (at larger X values) is added. Such non-monotonous behaviour of the sound speed is

expected to be indicative of the appearance of exotic, non-nucleonic degrees of freedom [317,

27, 323], such as quarkyonic matter as suggested in Ref. [288].

9.4 Comparison with analysis of Gorda et al.
The impact of pQCD calculations on the inference of the NS EoS has been studied recently

in Ref. [322] in a Bayesian framework. The authors of Ref. [322] employ a Gaussian Process

(GP) regression which is conditioned with an EoS computed in χEFT up to 1.1nsat. Using this

GP, the EoS is extrapolated up to 10nsat and this resulting EoS is used to analyse astrophysical

observations of NSs. Finally, pQCD constraints are imposed similar to the work presented in

this chapter, i.e. the methodology of Ref. [321] is used. However, in Ref. [322] the endpoint of

the EoS at which the pQCD integrals are connected is fixed to be 10nsat for all EoSs, whereas in

this work the endpoint is taken to be nTOV
c which is different for each EoS. Finally, the authors

take pQCD uncertainties into account by integrating over X in the range 1 to 4.
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Figure 9.4: The speed of sound as function of the energy density. The upper and lower edges

represent a 2σ uncertainty where σ is the sample standard deviation of our EoS ensemble. Left:

Constraints on the speed of sound for NS observational data to date for a variation of the pQCD

renormalization scale X . Right: Constraints on the speed of sound for NS observational data

when additionally imposing R2.0 > 13 km (Astro∗). Note that the X = 1 magenta dashed lines

are not visible since they overlap with the X = 1 green case.

Using this setup, the authors of Ref. [322] claim that pQCD offers strong constraints in

addition to the astrophysical observations. Furthermore, they state that the pQCD input reduces

the pressure and speed of sound at high densities, and it predicts that binary collisions of equal-

mass neutron stars will produce a black hole with greater than 95% credence for masses M

≥ 1.38M�. These results are slightly in contradiction with this work given that we have found

that pQCD does not rule out any EoS when imposed on top of astrophysical data, if the case

X = 1 is considered. In this section, we investigate the differences between our approaches

that could explain the tension between our results. The main differences between our methods

are:

• We match to the pQCD constraint at nTOV
c while Ref. [322] matches at 10nsat,

• Ref. [322] uses Gaussian Processes (GPs) to generate EoS models while we use a speed-

of-sound model,

• and Ref. [322] uses a probabilistic approach while we study envelopes.

Regarding point 3, when studying the impact of pQCD on the nuclear EoS it is most con-

servative to study envelopes as they account for all possible EoS behavior. Probabilistic treat-

ments, on the other, could smear out the existence of phase transitions because these are more

fine-tuned EoS models. Regarding the second point, while different EoS parametrizations might

impact results in a probabilistic framework (see, e.g., Ref. [324]), EoS envelopes are less sen-

sitive to this choice and the speed-of-sound parametrization can equally well capture extreme

behavior compared to GPs. Furthermore, previous EoS inferences using similar astrophysical

and EoS constraints agree well, independent of using GPs or a speed-of-sound parametriza-

tions [325, 326]. Hence, we do not expect this choice to influence our results drastically.

We, therefore, expect that the difference between our results and those of Ref. [322] arise

primarily due to point 1. To investigate this, we repeated our study using a matching density

of 10nsat; see Figs. 9.5 and 9.6. In Fig. 9.5, the result obtained using a matching density
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Figure 9.5: The baryon number density as function of the chemical potential, similar to the top

panel of Fig. 9.1. Additionally, we show results for a matching density of 10nsat in purple. As

before, each EoS is plotted up to the TOV limit.

Figure 9.6: Pressure as a function of the energy density similar to the left panel of Fig. 9.3 but

for a matching density of 10nsat. As before, the upper and lower edges of the contours represent

the envelop over all the EoS allowed in the corresponding set.

of 10nsat is compared with that obtained using nTOV
c , whereas in Fig. 9.6, we show results

only for the 10nsat case. The EoSs that are very stiff inside NSs have a larger probability of

remaining somewhat stiff beyond nTOV
c than for the EoS to undergo a phase transition, leading

to a likely violation of the pQCD limit if the matching is performed at larger densities. We find

that changing this matching density to 10nsat leads to an exclusion of stiff EoS, in complete

agreement with the findings of Ref. [322].

Because the density where pQCD integrals are connected plays an important role for making

claims about the constraining power of pQCD, constraints from pQCD are very sensitive to

model assumptions. This emphasizes our findings that pQCD is currently not constraining but

might be so in future, when uncertainties are reduced such that simple model choices do not

matter as much.
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9.5 Conclusion
We have systematically studied the effects of incorporating pQCD calculations when analyzing

the EoS of NSs. Using a model-independent approach to the EoS, we concluded that pQCD

does not significantly constrain the EoS, if it is imposed on top of current observational con-

straints on NSs taking their uncertainties into account. However, the calculations are at the

brink of being constraining for NSs: improved pQCD constraints or new astrophysical data

preferring stiff EoSs will reveal the potential of pQCD for EoS selection. We found an interest-

ing interplay of astrophysical observation and pQCD calculations: While certain astrophysical

observations of NSs are consistent with stiff EoSs, supporting large NS masses and radii, such

EoSs are disfavored upon imposing pQCD constraints.

These findings have important implications for the study of dense matter. In particular, while

an analysis of future astrophysical data alone might be inconclusive with respect to the existence

of exotic matter in neutron-star cores, the combined analysis of astrophysical and pQCD data

might help answering this question. Therefore, future work on improving pQCD constraints is

crucial for the studies of dense neutron-star matter.
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Chapter 10

Summary and outlook

In this thesis, we systematically studied the nature of dense matter explored in neutron stars

using a variety of theoretical and experimental tools. In this final chapter, we will briefly sum-

marize the major results obtained in this thesis. We will also present an outlook for future

research along the lines of this thesis.

Part I of this thesis was devoted to low-density matter, n � 2nsat. In chapter 3, we analyzed

the properties of asymmetric nuclear matter based on six commonly used chiral EFT Hamil-

tonians with NN and 3N interactions. The global symmetry energy as well as its quadratic

and quartic contributions have been determined with theoretical uncertainty estimates. The

non-quadratic contribution to the symmetry energy was found to be 0.74+0.11
−0.08 MeV. Later, in

chapter 4, we presented a unified description of the EoS of NSs. We employed the compress-

ible liquid drop model to account for the finite size terms describing the nuclear clusters present

in the NS crust. We used fifteen models for the nuclear interaction, including seven Skyrme

and eight χEFT Hamiltonians. We found that there are two important factors which govern our

predictions: i) the ability of the models to reproduce the nuclear experimental masses over the

nuclear table, and ii) the low-density energy per particle in neutron matter. The work presented

in part I can be improved by future analyses that explore a wider range of nuclear interactions

and additional asymmetric-matter calculations using different many-body approaches and reg-

ularization schemes. This requires the development of improved chiral NN and 3N interactions

up to N3LO, which will enable order-by-order analyses of the neutron-rich matter EoS.

In part II, we discussed different relativisitic approaches to dense nuclear matter. In par-

ticular, we have analysed the important role of chiral symmetry breaking and scalar nucleon

response in the study of dense nuclear matter. We have done this, for the first time, by sys-

tematically comparing a model that takes these features into account (RMF-CC) versus models

that neglect some or all of these aspects (RMF-C and RMF). The RMF-CC approach represents

a step in the modeling of matter properties beyond saturation density since the model param-

eters are mainly given by fundamental properties, e.g., L-QCD predictions or quark model

constraints, and only saturation density nsat and energy Esat have actually been used in the

model calibration. Future work in this direction would involve the incorporation of correlations

beyond the Hartree approximation such as the Fock terms as well as the pion loop correlation

energy. Indeed, we have shown for instance that the Hartree approximation is not sufficient to

reproduce the empirical values for Esym. The inclusion of these correlation could therefore have

important phenomenological consequences for the description of extreme matter.

Finally, part III was devoted to phase transitions in dense matter. Different kinds of phase
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transitions such as first-order phase transitions and a crossover to quarkyonic matter were intro-

duced. Their features and predictions for NS masses and radii were enunciated and confronted

against existing astrophysical observations. In chapter 8, we systematically investigated the

possibility of inferring the existence of phase transitions from astrophysical data in a physics-

agnostic manner. We concluded that the present data does not necessarily require the presence

of a phase transition, but new astrophysical data has the potential to be decisive. Finally, in

chapter 9, we systematically studied the effects of incorporating perturbative QCD calculations

when analyzing the EoS of NSs. We concluded that pQCD does not significantly constrain the

EoS, if it is imposed on top of current observational constraints on NSs and its uncertainties

are accounted for. However, the calculations are at the brink of being constraining for NSs:

improving the pQCD constraints or having new astrophysical data preferring large radii will

reveal the potential of pQCD for EoS selection. With additional data expected from NICER and

the LVC, future work along these lines promises to be extremely interesting.
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Appendix A

Bayesian Fits using the meta-model

The details of the fitting procedure used in chapter 3 as well as other related technical details

are given here. We also briefly describe the GitHub repository where the data and Python code

used in this chapter 3 are hosted under the MIT license.

A.1 Details of the Fitting Procedure
In this chapter 3, we treat the calculations of Drischler et al. [94] as input data. Ref. [94]

evaluated the energy per particle E/A(n, δ) at 11 isospin asymmetries (δ = 0.0, 0.1, . . . , 1.0)

using MBPT up to second order. For each proton fraction, the energy per particle is sampled

on an equidistant grid in the neutron Fermi momentum (not the density), and available up to

kF = 2 fm−1 leading to 385 points in total for each Hamiltonian. On the other hand, the single-

particle energies were sampled on an equidistant grid in density from 0.01− 0.21 fm−3 in SNM

and PNM.

To obtain the parameter values, we perform a Bayesian analysis using the nonlinear least-

square fitting package LSQFIT developed in Python [121]. LSQFIT uses SCIPY’s least-squares

minimization routine to optimize our model with respect to data yi. The index i runs over all

data sampling points (e.g., the density grid). The propagation of the Gaussian uncertainties from

the model parameters, pα, to the functions of those parameters, f({pα}), requires calculating

derivatives of those functions with respect to the parameters, which is achieved by automatic

differentiation. In this work, the spread of the six Hamiltonians is interpreted as a fair represen-

tation of the width σ of a normal distribution that reflects theoretical uncertainties.

The fitting procedure requires the minimization of the objective function, hereafter noted

the χ2 function, which, in general, receives contributions from both the input data (χ2
data) and

the prior information on the model parameters (χ2
prior). We can write these two contributions as

χ2
data =

∑
ij

Δy(p)i cov−1
ij Δy(p)j , (A.1)

χ2
prior =

∑
α

(pα − μα)
2

σ2
α

, (A.2)
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with the total χ2 being the sum of the two terms,

χ2 = χ2
data + χ2

prior . (A.3)

In Eq. (A.1), Δy(p)i = f({pα})i − E(yi), where the expectation value E(yi) is defined as

E(yi) =
1

6

6∑
μ=1

(yi)μ , (A.4)

the summation index μ runs over the six nuclear Hamiltonians, and covij is the co-variance

matrix between the data points yi and yj , which is given by

covij ≡ cov(yi, yj) = E(yiyj)− E(yi)E(yj) . (A.5)

The correlation matrix corrij is then defined by its matrix elements,

corrij =
covij√

covii covjj

. (A.6)

If the data are independent from each other, the co-variance and correlation matrices are

diagonal and χ2
data is associated with a normal distribution, as it is for χ2

prior. Here, the data

are not independent because of correlations in density: the knowledge of the predictions of the

Hamiltonians at a few density points can be used to determine other points by interpolation

or—to some extent—by extrapolation. We, thus, expect a non-diagonal co-variance matrix.

While the Hamiltonians are by construction strongly correlated, we do not account for their

correlations in the co-variance matrix. It only includes the correlations between the different

data points, see Eq. (A.5).

In Eq. (A.2), μα is the prior mean value of the parameter pα, and σα is its standard deviation.

Note that, in this work, we only consider uncorrelated Gaussian prior distributions for our fit

parameters.

The best-fit values of the parameters p̄α are those that minimize the total χ2. The inverse co-

variance matrix corresponding to the posterior distribution of the best-fit parameters is defined

as,

(cov−1
p )αβ =

∂χ2

∂pα∂pβ
(p̄) . (A.7)

This expression is used by lsqfit to define the uncertainties in the fit parameters pα.

A.2 Correlations in the data sample
The data analysis performed in this work involves parametric fits to data that are highly cor-

related across densities (or equivalently, Fermi momenta). It was found that this correlation

had to be taken into account in order to achieve compatibility between the obtained posterior

distributions and the data. In this appendix, we provide an estimate of this correlation.

As mentioned in the previous section, the correlation in the input data is captured by the co-

varaince matrix (A.5). The strong positive correlation in the data points across densities results

in large off-diagonal elements with respect to the diagonal ones. We analyse the strength of
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these off-diagonal elements as follow. We first diagonalize the correlation matrix (A.6) and ob-

tain the eigenvalues and associated eigenvectors. In the case of maximum correlation all but one

eigenvalue are 0. In our case, we found that the largest eigenvalue contributes to about 96% of

the trace of the correlation matrix. Then, the eigenvector corresponding to this dominant eigen-

value captures the correlation (or mixing) between the data, which needs to be quantified. Let

λ be this eigenvector with components (λ1, . . . , λND
), where ND is the number of data points.

In the case of maximum correlation, the quantities |λ1|, . . . , |λND
| have zero dispersion about

their average value, and in the case of minimum correlation, this dispersion takes a maximum

value. We thus define the dispersion about the mean as

d2 =
1

ND

ND∑
i=1

(|λi| − λ̄)2 , (A.8)

where λ̄ is the average value of the |λi|. In the case of a maximum correlation d2 = 0, whereas

in the case of minimum correlation d2 = 1
ND

[1− 1
ND

].
We then define the level of correlation as

lcorr ≡ 1−ND d2 , (A.9)

where lcorr = 1 in the case of maximum correlation and, for zero correlation lcorr = 1/ND,

which approaches 0 in the limit of infinitely many data points. This parameter is similar to the

correlation coefficient, ρ which one introduces in the case of identical off-diagonal elements in

the covariance matrix.

The values of lcorr for the various fits presented in chapter 3 are as follows. In the fits to

the effective masses presented in Fig. 2, for the linear fit, lcorr is 0.96 in SNM and 0.92 in

PNM; for the quadratic fit, 0.54 in SNM and 0.54 in PNM. For the fits shown in Fig. 3, lcorr
is 0.91, 0.53, 0.46 in the scalings 1, 2 and 3, respectively, in SNM. Similarly in PNM, it is

0.92, 0.38, 0.39. Finally, for the fits presented Fig. 5, lcorr = 0.50 for the analysis with the ex-

pansion around SNM and lcorr = 0.58 for the expansion around PNM. In all cases, we see that

there is a significant correlation in the data. This is, as mentioned before, an important ingredi-

ent of our analysis, and is required for agreement between the obtained posterior distributions

and the data.

A.3 Goodness of the fit and Q–Q plots
In this section we quantify the goodness of the fits using the Q–Q plot method. We consider

the two illustrative fits in Fig. A.1: the fit of the Landau mass in SNM using a quadratic density

functional (top panel in Fig. 2) and the energy per particle in PNM as a function of density

(lower right panel in Fig. 3).

For the analysis of the Landau mass, we found χ2/dof ≈ 1.1, and for the energy per particle,

we find that χ2/dof ≈ 1.4. These numbers are already indications for a successful fit.

We further investigate the goodness of the fit by examining the normalized residuals of

the fit, which are defined as the differences between the data and the best fit model. These

differences are expressed in the basis formed by the eigenvectors of the correlation matrix (A.6).

Then, each component of the eigenvectors are divided by the square root of the corresponding
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Figure A.1: Q–Q plot for the analysis of the Landau mass in SNM (top row) and energy per

particle in PNM (bottom row). The reported R score, see Eq. (A.10), is a measure of how well

the blue points lie on the dashed red line.

eigenvalue. The assumption of this analysis for a good fit is that the normalized residuals

should be uncorrelated and randomly distributed around the mean value following a normal

distribution.

Q–Q plots are a way for testing that the residuals follow a normal distribution. They are

obtained as follow. First, the residuals are ordered from the smallest to the largest on the y-

axis, then they are plotted against an ordered list of samples drawn from a normal distribution

(centered at zero, with a width of one). If the residuals are perfectly normal distributed, then the

result aligns on a straight line with slope 1. This alignment can be captured by the coefficient

of determination, R defined as

R = 1−
∑n

i=1(ri − r̂i)
2∑n

i=1(ri − r̄)2
(A.10)

where n is the number of residuals, ri are the residuals, r̂i are the values expected for those

residuals and r̄ = 1
n

∑n
i=1 ri. The best possible R score is 1 and it can be negative for arbitrarily

worse fits.
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The top panel of Fig. A.1 shows the Q–Q plot for our analysis of the Landau mass in SNM.

The ideal straight line with unit slope is shown as the dashed-red line, while the ordered resid-

uals are shown as blue circles. The blue solid line is a fit to the blue points. The R score, see

Eq. (A.10), is 0.89, which leads us to the conclusion that the ordered fit residuals are consistent

with a normal distribution with a mean one, so close to χ2/dof = 1. We also give similar results

for the analysis of the energy per particle in PNM in the bottom panel of Fig. A.1. Here, the

coefficient of determination is 0.83, indicating a good fit.

A.4 Description of the GitHub repository
The repository [132] contains the Python codes used to perform the analysis as well as generate

all the figures presented in chapter 3. This repository is publicly available on GitHub [132] and

distributed under the MIT license.

The model parameters are obtained from a Bayesian analysis using the nonlinear least-

square fitting lsqfit package developed in Python [121], which uses the SCIPY least-squares

minimization routine to optimize our model with respect to data.

A.4.1 List of Folders
There are two main directories at the root of the repository: data and results.

• data: contains the predictions (that we treat as data) from each of the six Hamiltonians

considered in this work. They are given as ASCII files.

– data/Effective_mass: consists of the single particle energies for the six Hamiltonians

in symmetric and neutron matter.

– data/EOS_Drischler: contains the data files for the energy per particle for different

values of iso-spin asymmetry.

• results: contains the figures as pdf files. The following sub-folders contain the various

figures presented in Ref. [192] as follows,

– results/3_scales: Figs. 1 and 3.

– results/crust_core: Fig. 8.

– results/effective_mass: Figs. 2, 9, 10 and 11.

– results/esym_esym2: Figs. 4 and 5.

– results/non_quadraticities: Figs. 6 and 7.

– results/goodness: plots presented in the Supplemental Material.

A.4.2 List of Python codes
The Python codes are located in the main folder. They depend on the following Python libraries:

scipy, numpy, matplotlib, gvar, lsqfit [121], sklearn.metrics.
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• EM.py: performs the analysis of the single particle energies and produces the plots stored

in the folder results/effective_mass.

• SM_NM.py: performs the analysis of the energy per particle in symmetric and neutron

matter and produces the plots stored in the folder results/3_scales.

• symmetry_energy.py: calculates the global symmetry energy and creates the correspond-

ing plot stored in the folder results/esym_esym2.

• quadratic_symmetry_energy.py: calculates the quadratic symmetry energy and creates

the corresponding plot stored in the folder results/esym_esym2.

• non_quadraticities.py calculates the non-quadratic contributions to the symmetry energy

as well as the final fit residuals and creates the plots stored in the folder results/non_quadraticities.

• crust_core.py calculates the crust-core transition and produces the plot in the folder re-

sults/crust_core.

A.4.3 Launch the Python script
The scripts are written in Python 3, and can be launched from a terminal as:

python3 ScriptName.py

where “ScriptName.py” is one of the scripts listed in Sec. A.4.2.
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Appendix B

Speed of sound extension scheme

In this appendix, we provide the details of the extension scheme in the speed of sound that was

used in chapters 8 and 9. We detail the construction of the EoS i.e. the sound speed, baryon

chemical potential, energy density and pressure as functions of the number density.

Consider a discretized grid in the number density with elements ni. Let ci be the square of

the sound speed at the density n = ni. Note that, in this appendix, we shall use the symbol c for

the speed of sound instead of cs for the sake of clarity of the following equations. It should not

be confused with the speed of light which is set to 1. Our task is to interpolate linearly between

two consequent grid points i and i+ 1 ≡ j. For ni < n < nj , the constant slope of the squared

sound speed is

sij =
c2j − c2i
nj − ni

. (B.1)

The analytic expression c2(n) for the density dependent sound speed is then

c2(n) = sij(n− ni) + c2i . (B.2)

The next step is to obtain an analytical expression for the chemical potential in the range

ni < n < nj . For this, we use the relation

dμ

dn
= c2

μ

n
. (B.3)

Injecting Eq. (B.2) in Eq. (B.3), we obtain

dμ

μ
=
(
sij(n− ni) + c2i

)dn
n
. (B.4)

Integrating from ni to n < nj ,

log

(
μ(n)

μi

)
= sij

∫ n

ni

n′ − ni

n′ dn′ + c2i

∫ n

ni

dn′

n′ (B.5)

= sij

(
n− ni − ni log

(
n

ni

))
+ c2i log

(
n

ni

)
,
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where μi ≡ μ(ni). Therefore,

μ(n) = μi exp

{
sij

(
n− ni − ni log

(
n

ni

))
+ c2i log

(
n

ni

)}
. (B.6)

Finally, we require the energy density ε and pressure p as functions of the number density.

The energy density is given by the integral

ε(n) = εi +

∫ n

ni

μ(n′)dn′, (B.7)

where εi ≡ ε(ni). The pressure is

p(n) = pi +

∫ n

ni

c2(n′)μ(n′)dn′, (B.8)

with pi ≡ p(ni).
The integrals in Eqs. (B.7) and (B.8) have to be computed numerically. The results presented

in this appendix can be checked using Euler’s relation

p(n) + ε(n)

μ(n)
= n. (B.9)
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