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The era of precision cosmology

“All we ever see of stars are their old photographs.”

Dr. Manhattan, Watchmen
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2 1. THE ERA OF PRECISION COSMOLOGY

Cosmology is the study of the evolution and the properties of the universe as a
whole. This scientific discipline addresses questions which are as old as humanity
itself (i.e. "has the universe as we know existed forever?" "what’s the ultimate fate
of the cosmos?"). However, it was not until the beginning of the 20th century that
it became a predictive science, when the theory of General Relativity (GR) was
established as a solid theoretical framework to describe the universe. Since then,
the field of cosmology has been constantly evolving, thanks to the rapid increase
in the amount and precision of observations. In the last couple of decades, the
so-called Λ Cold Dark Matter (ΛCDM ) model of cosmology has emerged as a
successful paradigm to explain several independent probes with an astonishing
degree of accuracy. This model assumes that the universe is well described by a flat
Friedman-Lemaître-Robertson-Walker metric, and is primarily composed of around
5% ordinary matter, 26 % cold dark matter, and 69 % dark energy in the form of a
cosmological constant Λ. Unfortunately, the nature of its main constituents, dark
matter and dark energy, still remains a mystery. In addition, the increase in precision
in cosmological data has recently led to the appearance of several experimental
discrepancies between probes of the early and late universe. In particular, there
is a 5σ tension in the determination of the current expansion rate of the universe
(the Hubble constant), and a 2 − 3σ tension in the determination of the clustering
strength in the universe (described through the S8 parameter). For these reasons, in
recent years there has been a growing interest in exploring different extensions of the
ΛCDM model, which could shed some light on the very mysterious dark components,
and possibly offer an explanation for the aforementioned discrepancies. On the other
hand, the discovery of neutrino oscillations provides firm evidence of the existence of
tiny but non zero neutrino masses, a phenomenon that cannot be explained within
the Standard Model of particle physics. Cosmology is currently the most powerful
probe of neutrino masses, and it can offer very valuable clues about its properties.

In this thesis we will investigate in detail the cosmological implications of several
extensions of the ΛCDM paradigm. In the first part we will study two models, early
dark energy (EDE) and decaying dark matter (DDM), which are directly targeted at ex-
plaining the Hubble and S8 tensions, respectively. In the second part, we will analyze
another exotic scenario motivated by the neutrino mass puzzle, decaying neutrinos,
whose formalism is very similar to that of the DDM. We will argue how the very precise
measurements of the cosmic microwave background (CMB) anisotropies always play
a central role in setting new and robust constraints for each of these models. To make
this work as much self-contained as possible, in this introductory chapter we outline
the most relevant mathematical tools and observables in cosmology. We start with a
short historical introduction in Sect. 1.1 and a sketch of the history of the universe in
Sect. 1.2. Then we move on to recapitulate the formalism that is required in order to
understand cosmological observables such as the CMB anisotropy and matter power
spectra. We will start with the description of the smooth background in Sect. 1.3, and
say a few words about inflation in Sect. 1.4. Later we proceed to study the departures
from equilibrium by introducing the Boltzmann treatment in Sect. 1.5. We continue
with a presentation of the theory of linear perturbations in Sect. 1.6. We end with
Sect. 1.7, where we discuss the most important challenges to the ΛCDM model: the
nature of the dark sector and the cosmological tensions.
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1.1 Historical introduction

In this section we describe the historical context of the principal milestones that
made cosmology be the very rich field that we know today. These milestones are the
metric expansion of the cosmos, the cosmic microwave background, and the discover-
ies of dark matter and dark energy. Here the purpose is just to give a global picture of
the recent history of cosmology, for more details we refer the reader to HELGE (2013).

1.1.1 Evidences of an expanding universe

In 1915, Albert Einstein publishes his theory of General Relativity (GR), which
provides the most precise description of gravity until the present date. In 1917,
Einstein studied the cosmological implications of his theory and proposed his own
model of the universe (EINSTEIN 1917), which he described as being static and closed.
Einstein noticed that, in order to keep the mean matter density ρm constant in time,
he was forced to introduce a new constant in his field equations (today known as the
cosmological constant Λ) and had to adjust it to a very concrete value, Λ = 4πGρm/c2,
where G is Newton’s gravitational constant and c is the speed of light. It is important
to note that, at that time, the general consensus in the scientific community was that
the universe was static and eternal.

On the other side, some indications about the cosmic expansion had already
started to appear. In particular, the American astronomer Vesto Slipher reported
in 1915 the first observations of shifts in the spectral lines of 15 galaxies 1 (SLIPHER

1915). Out of the 15 nebulae that Slipher observed, 11 were actually receding from
us, since they were redshifted to longer wavelengths. This phenomenon is typically
quantified through the redshift factor z, defined as

z ≡ λobs − λemit
λemit

. (1.1)

However, the majority of scientists at the epoch didn’t agree on the physical origin
of these redshifts. In 1927, the Belgian physicist Georges Lemaître proposed an
explanation. Using GR as a main tool, he theorized the idea of an expanding
universe, and used this fact to explain the extra-galactic redshifts observed by
Slipher (LEMAÎTRE 1927). In reality, the metric expansion had already been found in
1922 by the Russian mathematician Alexander Friedmann, as one of the possible
cosmological solutions of Einstein’s field equations (FRIEDMANN 1922). However,
Friedmann regarded this merely as a mathematical curiosity, and didn’t try to make
a connection with observations, as Lemaître did. It is known that Einstein read
Lemaître’s article, but refused roundly the idea of an expanding universe, even saying
to him “Your calculations are correct, but your physic is abominable”.

A big discovery was provided in 1929 by the American astronomer Edwin Hubble.
At the Mount Wilson Observatory (which at the time had the most powerful telescope
in the world), Hubble measured the redshifts (and thus, the recessional velocities
v ' cz), as well as the distances of 24 galaxies (HUBBLE 1929). By placing the veloc-
ities and distances on a diagram, he obtained what is shown in Fig. 1.1. What this
plot suggested is that there exists a linear positive correlation between those quantities,

1The existence of other galaxies beyond the Milky Way had not yet been established in 1914, so they
were actually known by the name of extra-galactic nebulae.
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Figure 1.1 – Velocity-Distance relation for the different extra-galactic nebulae observed by
Hubble in 1929. The units on the X- and Y- axis are parsecs and km/s, respectively. Taken
from HUBBLE (1929)

i.e. the further away the galaxies are, the faster they recede from us. This can be
mathematically formulated in the following way

v = H0d, (1.2)

where the factor of proportionality H0 is known as the Hubble’s constant. This
constant is typically expressed in units of km/s/Mpc, since velocities and distances
to distant objects are commonly measured in units of km/s and Megaparsecs,
respectively. The first measurements by Hubble yielded a value of around
H0 ' 500 km/s/Mpc, which is significantly higher than the values accepted at
present (H0 ' 65 − 75 km/s/Mpc, see Sect. 1.7.2), due to errors in the distance
calibrations. The work of Hubble provided the first solid evidence of the expanding
universe, although it is important to note that Hubble himself never associated
his empirical law with the cosmic expansion. In 1930, the British astrophysicist
Arthur Eddington reexamined the static universe model proposed by Einstein
and proved that it was unstable, i.e. any tiny perturbation would lead to either
an exponential contraction or expansion (EDDINGTON 1930). After that, Einstein
definitely abandoned his idea of an static universe and a cosmological constant,
which he regarded as “the biggest blunder of his life.”

1.1.2 From the Big Bang theory to the first hints of dark matter

The following decades after Hubble’s big discovery were very fruitful in cosmology.
In the 30s, scientists realized that the observed abundances of light elements such
as hydrogen or helium could not have a stellar origin. In 1931, Lemaître suggested
the existence of a very hot phase at the beginning of the universe, that he called the
primaeval atom. During the 40s, the Russian physicist George Gamow expanded on
the idea of Lemaître, and realized that densities and temperatures in the primordial
universe were high enough to allow nucleosynthesis. The first computation of the
relic abundances of light elements was carried out in 1948 by Alpher, Bethe and
Gamow ALPHER et al. (1948). In the same year, Alpher and Hermann improved
upon this calculation to account for the universe’s expansion, and showed that at
initial times the universe was dominated by radiation, rather than matter. They also
predicted the existence of a blackbody radiation as a remnant of this hot early phase,



1.1. Historical introduction 5

which today should have a temperature of a few K.

In those days the theory of the expanding universe still had many detractors. This
is especially the case for the British astronomer Fred Hoyle, who coined the name Big
Bang on BBC radio in 1949 to denigrate the model of the evolving universe, which had
the serious issue of having a singularity at the origin. Another problem of this model
was the age paradox. The age of the universe can in general be written as t0 = F/H0,
where F is a dimensionless numerical factor depending on the cosmological model.
In 1932, Albert Einstein and Willem de Sitter had proposed a model of an evolving
flat universe, full of non-relativistic matter and with no cosmological constant, for
which F = 2/3 (EINSTEIN et al. 1932). With the estimations of H0 made during the
50s, this formula was giving an age of the universe shorter than the age of the Earth. The
reality is that, even with the most recent estimates of H0, this model leads to an age
t0 ' 9.3 Gyrs, still shorter than the age of the oldest stars that have been observed
(as we will discuss later, this problem is automatically solved when considering dark
energy).

In 1965, the American physicists Arno Penzias and Robert Wilson discovered
by accident a persistent radio noise coming from all directions, which could not
be easily explained with terrestrial or known astronomical sources. It was soon
realized that they had just detected the cosmic microwave background (CMB), a relic
radiation coming from the primordial universe, for which they were awarded the
Nobel prize in 1978. This discovery gave strong support to the Big Bang cosmological
model. The spectrum of this radiation has been measured thanks to the FIRAS
interferometer (onboard the COBE satellite) in 1996, revealing an almost perfect
blackbody spectrum, with a mean temperature of T0 = 2.7255 ± 0.0006 K and tiny
anisotropic deviations at the level of 10−5 (the latter measured by the COBE DMR
instrument). For this breakthrough, the American physicists George F. Smoot and
John C. Mather were awarded the Nobel prize in 2006. The anisotropies in the CMB
radiation carry a wealth of information about the early universe, since they constitute
the primordial seeds for the formation of galaxies. After COBE, these anisotropies
have been subsequently measured with increasing angular resolution by the WMAP
satellite in 2003 (SPERGEL et al. 2003) and the Planck satellite in 2013 (ADE et al. 2014).

As the 20th century advanced, many observations started to suggest that around
85 % of the total matter in the universe was in the form of a mysterious component
called dark matter, whose effects have only been probed through gravity. The first con-
vincing hint of dark matter came in 1933 by the Swiss physicist Fritz Zwicky. He
observed a mismatch between the velocity dispersion measured in the Coma Clus-
ter, and the one that was theoretically predicted from the luminous matter using the
virial theorem (ZWICKY 1933). This led him to suggest the existence of large amounts
of invisible matter in the Coma Cluster, that he called dunkle Materie (dark matter).
However, Zwicky’s proposal was not taken seriously by the scientific community until
1970, year in which the American astronomers Vera Rubin and Kent Ford carried out
a pioneering work on galactic rotation curves (RUBIN et al. 1970). They observed that
the velocities in spiral galaxies at large distances were significantly larger than the
ones predicted from Newtonian gravity, considering only the luminous components
(i.e. the stars and the neutral hydrogen gas). It was later understood that this ex-
cess velocity could be due to the presence of large spherical halos of dark matter, in
which galaxies were immersed. Over the following years, many other probes have es-
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Figure 1.2 – Image of the galaxy cluster Abell 1689, taken with the Hubble Space Telescope.
The galaxies and dark matter in the cluster act as a lens that warps the light of the background
galaxies, leading to a plethora of arcs around the lens, as predicted by GR. This allows to
reconstruct the mass distribution of dark matter, which is represented in purple. Taken from
https://esahubble.org/images/heic1014a/

tablished the presence of dark matter on both galactic and cosmological scales, such
as gravitational lensing (see Fig. 1.2), the CMB anisotropy spectra, or the distribu-
tion of large scale structure (for a review of the history of dark matter, see BERTONE

et al. 2018). All these observations tell us that dark matter should be mostly cold (i.e.
non-relativistic), collisionless, stable, and posses no (or very weak) non-gravitational
interactions with the Standard Model (SM) particles 2. However, its precise nature
remains unknown until today.

1.1.3 The universe is accelerating

The last milestone in cosmology was set in 1998. That year, two independent
groups (the Supernova Cosmology Project led by Saul Perlmutter, and the Supernova
Search Team led by Adam Riess and Brian Schmidt) carried out the measurements of
redshifts and distances to supernovae of type Ia (SNIa) (RIESS et al. 1998; PERLMUTTER

et al. 1999). These objects have several advantages: they are believed to be good
standard candles for measuring distances in the universe, their brightness is very
intense and they are ubiquitous in the cosmos. This allowed the two teams to
extend the Hubble diagram to much larger distances, where the distance-redshift
relation becomes dependent on the cosmological model. Their analysis showed
that the current cosmic expansion was accelerating, and that SNIa data favored a
universe where vacuum energy (parameterized through the cosmological constant
Λ) dominated over matter 3 (see Fig. 1.3). This was reflected in the fact that SNIa
appeared to be dimmer (due to the longer light-travel time) than what would have

2Current observations also allow to test small deviations from these hypotheses. Just to give an
example, in Chapter 3 we put bounds on the lifetime of dark matter for a decay scenario happening
entirely in the dark sector.

3It might appear contradictory that the cosmological constant that Einstein introduced to get a static
universe has now been used to account for an accelerated expansion. However, one should bear in mind
that Einstein had assumed a closed universe, and in addition he had cherry-picked the value of Λ to
counteract the dynamics encoded in his theory.

https://esahubble.org/images/heic1014a/
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Figure 1.3 – Hubble diagram for SNIa, showing the distance modulus (defined in Eq. (1.36))
vs. redshift. Data points are taken from Tabs. 5 and 10 in RIESS et al. (1998). The SNIa data
at high-z clearly select a universe dominated by a cosmological constant, ΩΛ > Ωm. The small
red region in the lower left marks the maximum span of Hubble’s original diagram from 1929.

been expected in a decelerating universe full of matter. For this revolutionary finding,
later corroborated by CMB and LSS data, Perlmutter, Riess and Schmidt received the
Nobel prize in 2011.

The cosmic acceleration can more generally be interpreted as a result of a dynam-
ical substance with a negative pressure which dominates the energy content of the
universe. Any component with these characteristics is typically referred to as dark
energy. Another advantage of dark energy is that it allowed to solve the age paradox
(KRAUSS et al. 2003). For an universe composed by around 31 % matter and 69 %
dark energy in the form of a cosmological constant (as is now suggested by many
different observations apart from SNIa), the age of the universe is predicted to be
t0 ' 13.8 Gyrs (see end of Sect. 1.3.2 for a derivation), which is consistent with the
ages of all astronomical objects detected so far.

1.2 Timeline of the cosmos

Thanks to all the progress that was achieved in cosmology during the 20th century
and in the recent decades, we have nowadays a clear picture of all the key events in
the history of the universe, ranging from the complex interactions in the primordial
soup to the formation of large scale structures at later times. In this section we give
a brief summary of the key events in the history of the universe, with the aim of
framing the relevant epochs for all the models and observables considered in this
work. These events are listed in Tab. (1.1).

If the cosmic expansion is extrapolated back in time, one quickly realizes that at
earlier times the universe must have been denser and also hotter. At some critical
point, all the physical quantities (such as densities or temperatures) become infinite,
signaling a breakdown of our theory. This is the so-called Big Bang (BB) singularity,
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Event Pictorial description t z TCMB

Inflation ? ? ?

EW transition 20 ps 1015 100 GeV

QCD transition 20 µs 1012 150 MeV

Neutrino
decoupling 1 s 6× 109 1 MeV

electron-positron
annihilation 6 s 2× 109 500 keV

Nucleosynthesis 3 min 4× 108 100 keV

Recombination 380 kyr 1100 0.27 eV

Dark ages
380 kyr −
400 Myr 30 − 1100

7 meV −
0.27 eV

Reionization
400 Myr −

1 Gyr 6 − 30
1.7 meV −

7 meV

Table 1.1 – List of key events in the history of the universe.

which is conventionally defined as the origin of cosmic time.We remark that this is a
fictitious instant, which in principle cannot be described without a complete theory
of quantum gravity.

It is now commonly accepted that, at very early times, there was a phase of rapid
accelerated expansion named inflation, which could have been sourced by a scalar
field called the inflaton. After inflation ended, there was a period of reheating, during
which the inflaton decayed into all the known SM elementary particles. This led
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to the formation of a hot dense plasma where all particles were kept in thermal
equilibrium due to the constant interactions between them. The densities of all these
particles inherited the inhomogeneities that were created during inflation, when the
quantum fluctuations in the inflaton were stretched to cosmic distances. Roughly
20 ps after the BB, when the temperature of the plasma decreased below the scale
of electroweak (EW) symmetry breaking, T . 100 GeV, the Higgs got trapped at the
bottom of its potential, making all SM particles to acquire a mass. Later, when the
temperature decreased below 150 MeV (approximately 20 µs after the BB), the strong
force between free quarks and gluons became significant, so that they could assemble
to form the first hadrons. Only 1 s after the BB, the weak interactions between the
neutrinos and the rest of particles became inefficient, and they decoupled from the
thermal bath. Afterwards, at 6 s, electrons and positrons annihilated through the
process e+ + e− → γ + γ, leaving just a residual amount of non-relativistic electrons 4.
Then, a few minutes after the BB, the first nuclei of light elements, such as helium or
lithium, were formed during a period called Big Bang Nucleosynthesis (BBN). Eventually,
the energy density of non-relativistic matter started to dominate over the radiation
one, point at which the inhomogeneities in the DM started to grow at a significant
rate. When the universe was 380 kyr old, the bath temperature had decreased enough
to allow the formation of the first hydrogen atoms at the recombination era, according to
the process e−+p+ → H+γ. This led to a sharp reduction in the free electron fraction,
and the decoupling of photons from matter. The universe became transparent and
photons started free-streaming through the universe. These photons constitute the
CMB radiation that we observe today.

After recombination, the dark ages started, a period during which the only light in
the universe came from the CMB photons and the 21 cm signal of neutral hydrogen.
The first DM halos are believed to have formed during this era, due to the gravita-
tional collapse of the large DM density fluctuations. The dark ages extended over a
few hundred million years, until the first stars and galaxies were born and started
emitting radiation that gradually reionized the hydrogen atoms in the intergalactic
medium (IGM). The details of this epoch of reionization (EoR) are very poorly understood,
but thanks to the measurements of Lyman-α absorption lines in quasar spectra, to-
day we know the universe was nearly totally reionized around z ' 6 (i.e. ' 1 Gyr after
the BB). Approximately 5 Gyr ago, dark energy began to dominate the energy budget
of the universe, producing an accelerated expansion and impeding the formation of
large scale structures to develop further.

1.3 The smooth universe

In this section we recapitulate the main tools required to describe the homoge-
neous and isotropic universe, starting with a discussion of the Friedmann equations
and then moving to give several definitions of distances in cosmology. We use the
(− + ++) metric convention, and work in units where c = kB = 1. As usual, latin
indices indicate spatial components, e.g. i = 1, 2, 3, while greek indices are reserved
for spacetime components, e.g. µ = 0, 1, 2, 3. Einstein summation convention is as-
sumed for greek indices. For this section and two subsequent ones we mainly follow

4This residual amount of electrons corresponds to an initial excess of matter over anti-matter, whose
origin is still not understood. Models of baryogenesis try to predict the matter-antimatter asymmetry,
and rely on physics beyond the SM.
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Figure 1.4 – The CMB map of the temperature anisotropies, as seen by AGHANIM et al. 2020b
– hereafter refereed to as Planck18. Colors label variations at the level of 10−5 around a mean
temperature of T0 = 2.725 K

DODELSON (2003), BURGESS (2016), LESGOURGUES et al. (2018), and BAUMANN (2021).
For producing some of the plots shown in these sections, we use the public Boltz-
mann solver CLASS 5 (BLAS et al. 2011) .

1.3.1 Geometry of the expanding universe

Modern cosmology is built upon the idea that the universe is homogeneous
and isotropic on sufficiently large scales (bigger than 100 Mpc). This simple but
transcendental assumption is what we normally call the cosmological principle. There is
plenty of observational data that confirm this hypothesis, such as the temperature
map of the CMB (that we show in Fig. 1.4), exhibiting anisotropies only at the level of
10−5.

Homogeneity and isotropy, meaning ‘no preferred point in space’ and ‘no preferred
direction’, impose a unique spacetime geometry of the universe. This geometry is
described by the so-called Friedmann-Lemaître-Robertson-Walker (FLRW) metric gµν, that
we can read from the line element:

ds2 = gµνdx
µdxν = −dt2 + a(t)2

(
dr2

1− kr2 + r2
(
dθ2 + sin2(θ)dϕ2

))
. (1.3)

In the previous expression, we have introduced the cosmic time t, which is the time
measured by observers who move with the cosmic expansion, and the comoving
coordinates r, θ and φ, which label the points in constant-time slices. The metric
contains a single function of time, the scale factor a(t), and a constant, the curvature
parameter k. The scale factor relates physical distances dphys with comoving distances
dcom (that is, distances that do not change with the cosmic expansion), dphys = a(t)dcom.
The parameter k determines the three possibilities for the constant curvature of
spatial slices: k = 0 (euclidean), k = +1 (spherical) and k = −1 (hyperbolic).

We note that in Eq. (1.3) the scale factor a(t) has the dimension of a length, while
r is dimensionless. Sometimes it is more convenient to make the scale factor dimen-

5http://class-code.net/.

http://class-code.net/
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sionless and set it to unity today, a0 ≡ a(t0) = 1. This can be achieved by making
use of the following rescaling symmetry:

a → a/a0, r → ra0, k → k/a2
0. (1.4)

In this case, r now carries dimensions of length, and the curvature k is not
normalized in general, |k| 6= 1. For convenience, we will often switch from cosmic time
to conformal time τ , defined by the relation dτ = dt/a(t) 6.

One of the ways to infer the cosmic expansion is by using the light we receive
from distant objects. However, one must take into account that photons loose energy
(or, equivalently, their wavelengths are stretched) due to the expansion. In order to
understand this, we need to discuss first about the motion of particles. In a given
spacetime, when no other forces apart from gravity are present, particles move along
geodesics, which correspond to the shortest paths xµ(σ) in a curved geometry (here σ is
an affine parameter that increases monotonically along the path of the particle) . They
satisfy the geodesic equation, which can be written in terms of their 4-momentum
vector Pµ ≡ dxµ

dσ = (P 0, P i) as 7

dPµ

dσ
+ ΓµαβP

αP β = 0, (1.5)

where Γµαβ are the Christoffel symbols:

Γµαβ = 1
2g

µλ (∂αgβλ + ∂βgαλ − ∂λgαβ) . (1.6)

The only non-zero components of the FLRW metric in a spatially flat universe
k = 0 are:

Γj0i = ȧ

a
δji , Γ0

ij = ȧ

a
gij . (1.7)

Using the µ = 0 component of the geodesic equation in the FLRW geometry, one can
show an important result: the amplitude p of the physical three-momentum, defined
by p ≡

√∑
ij gijP

iP j, is inversely proportional to the scale factor

p ∝ 1
a
, (1.8)

where p = E and p =
√
E2 −m2 for massless and massive particles, respectively.

Since the wavelength of photons is inversely proportional to their momentum λ = h/p,
then according to Eq. (1.8) the wavelength scales as a(t). Photons emitted at time
t with wavelength will arrive at t0 > t with wavelength λ0 = a0

a(t)λ. This confirms
that the wavelength of light is increased, λ0 > λ, due to the expansion of spacetime,
a0 > a(t). In terms of the redshift parameter introduced in Eq. (1.1), this fact im-
plies the following relation

1 + z = a0
a(t) . (1.9)

6We will use a dot . for derivatives with respect to cosmic time t, and a prime
′

for derivatives with
respect to conformal time τ .

7This definition is consistent with the 4-momentum that is typically introduced for particles with
non-zero mass m, Pµ ≡ m dxµ

dσ′ , since one can always make a parameter redefinition σ = σ′/m.
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1.3.2 Cosmo-dynamics

All the discussion until now was purely kinematic, but in order to get the dy-
namical evolution of a(t), we need to resort to Einstein field equations of GR. At the
heart of this theory lie the field equations, which indicate how the matter and energy
content (encoded in the stress-energy tensor Tµν ) curve space-time (encoded in the
Einstein tensor Gµν )

Gµν ≡ Rµν −
1
2gµνR = 8πGTµν − Λgµν . (1.10)

Here G is Newton constant and Λ is the cosmological constant originally introduced
by Einstein in 1917 (see Sect. 1.1). The quantities Rµν and R denote respectively
the Ricci tensor and Ricci scalar, and they are constructed from the first and sec-
ond derivatives of the metric

Rµν =
∂Γσµν
∂xσ

−
∂Γσµσ
∂xν

+ ΓσρσΓρµν − ΓσρνΓρµσ, R = Rµνg
µν . (1.11)

The symmetries of the FLRW metric enforce Tµν to take the form of the stress-energy
tensor corresponding to a perfect fluid

Tµν = (ρ+ P )UµUν + Pδµν , (1.12)

where Uµ is the four-velocity of the fluid, which takes the simple form Uµ = δµ0 if the
fluid is at rest in the comoving frame. The fluid can be completely characterised by
two functions, the mean density ρ and mean pressure P , which are the sum over
the density and pressure of each single fluid species ρ =

∑
I ρI and P =

∑
I PI . Any

extra degrees of freedom, such as energy fluxes, momentum densities or anisotropic
stresses, should be discarded as they would break the hypothesis of isotropy and
homogeneity. Interestingly, the cosmological constant (typically assumed to be
positive) can be absorbed as a contribution to the stress-energy tensor, TΛ

µν = −ρΛ gµν,
with ρΛ ≡ Λ/8πG. By comparing with Eq. (1.12), we see that this corresponds to a
fluid with constant density and a negative pressure given by PΛ = −ρΛ.

Because of the Bianchi identities, ∇µGµν = 0, the stress-energy tensor is con-
served under the covariant derivative

∇µTµν ≡
∂Tµν

∂xµ
+ ΓνµρT ρµ + ΓµµρT ρν = 0. (1.13)

The previous equation is valid for the sum of all species present in the cosmic fluid,
and also for each species separately if those are non-interacting. In the FLRW spacetime,
the 0 component of Eq. (1.13) leads to the following continuity equation

ρ̇+ 3H(ρ+ P ) = 0, (1.14)

where H ≡ ȧ
a is the so-called Hubble parameter (in a similar fashion, the conformal Hub-

ble parameter is defined as H ≡ a′

a = aH). The term with H accounts for the expansion
of the universe, and adds friction to the conservation equations. Because of the cos-
mological principle, only two Einstein equations are independent (00 and ij trace com-
ponents), and they lead to the Friedmann equations for the evolution of the scale factor

H2 = 8πG
3 ρ− k

a2 , (1.15)

ä

a
= −4πG

3 (ρ+ 3P ). (1.16)
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Figure 1.5 – Evolution of the fractional energy densities of photons, baryons, three neutrino
species (one massless and two massive, 0.06 and 0.01 eV) and a cosmological constant Λ.

By combining the time derivative of Eq. (1.15) with Eq. (1.16), one can arrive again at
Eq. (1.14). This shows that the continuity equation is not adding any new information
with respect to the Friedmann eqs., which is to be expected since the stress-energy
conservation is a direct consequence of the Bianchi identities. However, Eq. (1.14) is
useful to directly solve for the mean densities, once an equation of state is specified.
In many cases of interest, fluids can be simply described with a parameter that relate
pressure and density in a linear way, wi = Pi/ρi. In the case of a constant wi, the
solution of Eq. (1.14) for each non-interacting fluid species reads

ρi(a) = ρi(a0)
(
a

a0

)−3(1+wi)
. (1.17)

It is useful to classify the different species that populate the universe according
to their Equation of State (EoS) parameter wi :

• Non-relativistic matter or dust. This refers to any component for which the pres-
sure is much smaller than the density, wm ' 0. Baryons 8 and cold dark matter
fall into this category. As we will show in Sect. 1.5, for a non-relativistic fluid
the EoS is indeed of order wm ∼ 〈p2〉/m2 � 1, where 〈p2〉 denotes an average mo-
mentum squared. In this case, Eq. (1.17) gives ρm ∝ a−3. This dilution of energy
density is simply reflecting the fact that the number of particles is conserved in
a growing volume V ∝ a3.

• Relativistic matter or radiation. This corresponds to any substance for which
pressure makes a significant contribution, of about one third of the density,
wr ' 1/3. This is the case of CMB photons or massless neutrinos. According to
Eq. (1.17), this yields ρr ∝ a−4, because the dilution is now including the effect
of an increasing wavelength E ∝ λ−1 ∝ a−1.

8After hydrogen recombination, the only non-relativistic SM particles with a non-negligible cosmic
abundance are neutral hydrogen, neutral helium, and some residual amount of free electrons and
protons. They form a single fluid, whose energy density is dominated by the baryons. For this reason,
cosmologists often refer to the electron-baryon fluid simply as baryons.
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• Dark energy. This alludes to some kind of exotic substance responsible for the
recent accelerated expansion of the universe. From Eq. (1.16), we see that any
dominating species satisfying w < −1/3 can lead to cosmic acceleration, ä > 0.
The cosmological constant is the simplest model, corresponding to wΛ = −1.

• Massive neutrinos. As we will discuss in more detail in Sect. 1.5.3, massive
neutrinos have a more complicated evolution, that cannot be captured by a con-
stant EoS. In particular, they transition from being relativistic to non-relativistic,
meaning that their EoS evolves from wν = 1/3 in the early universe to wν = 0 at
late times. The transition time is fixed by the value of their mass. However, once
the detailed evolution of wν(a) is known, it is always possible to split their energy
density into a relativistic contribution, ρν,r = 3wνρν, and a non-relativistic one,
ρν,m = (1− 3wν)ρν.

Considering that we know the scalings in a of each of the components in the total
energy density ρ = ρm+ρr+ρΛ, we can express Eq. (1.15) in the more convenient form

H2(z) = H2
0E

2(z) = H2
0

[
Ωm (1 + z)3 + Ωr (1 + z)4 + Ωk (1 + z)2 + ΩΛ

]
. (1.18)

We have defined for each fluid component i the dimensionless density parameters

Ωi ≡
ρi,0
ρc
, (1.19)

where ρc is the so called critical density today ρc ≡ 3H2
0/8πG. It is sometimes more

convenient to express the physical energy densities as ωi ≡ Ωih
2, where h denotes the

Hubble constant in units of 100 km/s/Mpc. The curvature density parameter has a dif-
ferent definition, Ωk ≡ −k/(a0H0)2, and it describes a flat (Ωk = 0), spherical (Ωk < 0) or
hyperbolic (Ωk > 0) geometry depending on whether the total energy density today ρ(a0)
is respectively equal, larger or smaller than the critical density ρc. In Fig. 1.5 we show
the time-dependent fractional densities Ωi(z) = 8πGρi(z)/3H2(z) for various species in
the cosmic inventory. According to the best-fit ΛCDM cosmology from Planck18

Ωr ' 9.1× 10−5, Ωb ' 0.05, Ωcdm ' 0.26, ΩΛ ' 0.69, |Ωk| < 0.003. (1.20)

In Sect. 1.6.5 we will describe in detail how these parameters are determined from
the CMB temperature anisotropy spectra. Given these values of Ωi, one could now
integrate directly Eq. (1.18) to obtain the evolution of the scale factor a(t). However,
the very different scalings of matter (a−3), radiation (a−4) and dark energy (a0) mean
that for most of its history, the universe has been dominated by a single component
(first radiation, then matter, then dark energy). We can thus consider only one single
component i in Eq. (1.18) and integrate to get a(t) in each era. Restricting to a spatially
flat universe, we can write down the solutions for the scale factor and the Hubble
parameter in each era, expressed in terms of both cosmic and conformal time.

• Radiation era:

a ∝ t1/2 ∝ τ, H = 1
2t , H = 1

τ
. (1.21)

• Matter era:
a ∝ t2/3 ∝ τ2, H = 2

3t , H = 2
τ
. (1.22)
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• Λ era:
a ∝ eHt ∝ (C − τ)−1, H = const., H ∝ 1

C − τ
, (1.23)

where C is an integration constant determined by the initial conditions of the
Λ era. These solutions assume that in each era we are far from the transition
times, which are given by

RM equality : ρr(aeq) = ρm(aeq) =⇒ aeq = Ωr
Ωm

=⇒ zeq ' 3400, (1.24)

MΛ equality : ρm(aΛ) = ρΛ(aΛ) =⇒ aΛ =
(Ωm

ΩΛ

)1/3
=⇒ zΛ ' 0.3. (1.25)

where we used the values from Eq. (1.20) 9. Close to the transition redshifts given in
Eq. (1.24) and Eq. (1.25), one should take into account the effects of the two com-
ponents. For a universe full of matter and radiation , one can get an analytical
expression for a in terms of conformal time τ , but not in terms of cosmic time t.
Nevertheless, it is possible to get the inverse relation t(a):

t(a) =
4a2

eq
3H0
√

Ωr

1−
(

1− a

2aeq

)(
1 + a

aeq

)1/2
 . (1.26)

For a � aeq (a � aeq), one recovers the solutions for the radiation (matter) eras given
in Eq. (1.21) and Eq. (1.22). In the case of matter and Λ, one can derive an ana-
lytical expression for a(t):

a(t) =
(Ωm

ΩΛ

)1/3
sinh2/3

(3
2
√

ΩΛH0t

)
. (1.27)

For H0t� 1 (H0t� 1) we arrive at the solutions for matter (Λ) eras shown in Eq. (1.22)
and Eq. (1.23).

Let us end this section by giving the expression of a very relevant quantity in
cosmology, the age of the universe t0. This can be obtained thanks to the useful
relation dt = da/ȧ = da/(aH(a)) = −dz/((1 + z)H(z)). Therefore, we get

t0 =
∫ ∞

0

dz

(1 + z)H(z) '
2

3H0
√

ΩΛ
ln

(
1 +
√

ΩΛ√
Ωm

)
, (1.28)

where in the last step we assumed a universe full of dust and Λ (the contribution
from radiation is negligible since this was dominating during only a tiny fraction of
the total age). Using ΩΛ ' 0.69, Ωm ' 0.31, H0 ' 67.6 km/s/Mpc, and bearing in mind
the conversion 1km/s/Mpc = 1.02× 10−3 Gyr−1, we get t0 ' 13.8 Gyr, which is the value
we quoted at the end of Sect. 1.1.

1.3.3 Distances in cosmology

As a consequence of the cosmological expansion, the notion of distance is not
uniquely defined for very distant objects, and different operational procedures will
yield in general different results. In this section we will introduce the concepts of

9The acceleration of the universe actually started a bit before dark energy domination. Indeed, from
Eq. (1.16) we see that ä = 0 implies zacc = (2ΩΛ/Ωm)1/3 − 1 ' 0.6.
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particle horizon, Hubble radius, luminosity distance and angular diameter distance.

Horizons

Let us start by rewriting the FLRW metric of Eq. (1.3) in terms of conformal time
and a new radial coordinate dχ = dr/

√
1− kr2, such that

ds2 = a(τ)2
(
−dτ2 + dχ2 + r2

m(χ)
(
dθ2 + sin2(θ)dϕ2

))
, (1.29)

with the function rm(χ) given by

rm(χ) =


sinh(χ) k = −1,
χ k = 0,
sin(χ) k = +1.

(1.30)

Now, photons travel along null geodesics (ds2 = 0) and, because of the isotropy of the
FLRW metric, one can always assume that they follow a radial path (dθ2 = dϕ2 = 0).
Then, according to Eq. (1.29), the comoving distance χ travelled by a photon emitted
at a given time tem and observed at a time tobs is given by

χ = τobs − τem =
∫ tobs

tem

dt

a(t) = 1
a0

∫ zem

zobs

dz′

H(z′) . (1.31)

For a photon emitted at a very early time ti (i.e. zem → ∞) and observed at a later
time t (i.e. zobs = z), the previous expression describes what is known as particle horizon
χp(z). This corresponds to the maximum comoving distance from which an observer
can receive information at a certain time t, and it is equal to the elapsed conformal
time between ti and t (in units of c = 1). In other words, two observers separated by a
distance λ > χp(t) could have never been in causal contact. If a light signal is received
today on Earth (zobs = 0), then the distance given by a0χp(a0) can be interpreted as
the radius of the observable universe (although we will see that in practice the oldest
light we have been able to observe comes from the surface of last scattering, located at
zem ' 1100). For the parameter values given in Eq. (1.20), the radius of the observable
universe is approximately equal to a0χp(a0) ' 1.41× 104 Mpc ' 45 Glyr, which is about
three times larger than the naive ∼ 13.8 Glyr that one would estimate by neglecting
the cosmic expansion.

A related quantity is the so called Hubble radius,

RH ≡
1
aH

= dχp
dlna, (1.32)

which corresponds to the comoving distance that light can travel in the course of a
Hubble time, tH = H−1. That is, two observers separated by a distance λ > RH(t) can’t
be in causal contact at a given time t. For a dominant fluid component satisfying
1 + 3w > 0 (such as radiation or dust), the particle horizon and the Hubble radius are
of the same order, and grow with time, χp(t) ∼ RH(t) ∼ a(t)

1
2 (1+3w). This is the reason

why one typically refers to both the particle horizon and the Hubble radius simply as
the horizon. However, for a dominant component satisfying 1 + 3w < 0, χp(t)� RH(t),
and the Hubble radius actually decreases with time, a case which is very relevant for
inflation (see Sect. 1.4) as well as dark energy.
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Luminosity distance

Even if the concepts of Hubble radius and particle horizon are extremely important
in cosmology (as we shall see later), these distances are not directly observable. One
way to make a link with observations is to consider a pointlike source, of which we
know the absolute luminosity L (units of emitted energy per second), i.e. a standard
candle. Then, the observed flux F (units of emitted energy per second per receiving
area) can be used to infer the luminosity distance of the source. In a static Euclidean
space, the flux is given by

F = L

4πr2 , (1.33)

where r represents the distance between the source and the observer. In an expanding
universe, the previous formula needs to be modified in three different ways:

1. Emitted photons are spread over a sphere of area 4π(a0rm(χ))2, where rm(χ) is
given by Eq. (1.30) and χ denotes now the comoving distance between the source
(that emitted light at zem = z) and us (zobs = 0).

2. The rate of arrival of photons is lower than the one at the moment of emission
by a factor (1/∆tobs)/(1/∆tem) = a/a0 = (1 + z)−1.

3. The energy of photons has decreased by the same factor ∆E(tem)/∆E(tobs) =
(1 + z)−1 since the time of emission.

Taking these aspects into account, the observed flux can be written as

F = 1
(1 + z)2

L

4πa2
0r

2
m(χ)

≡ L

4πd2
L

. (1.34)

In the previous expression, the luminosity distance dL has been introduced in order
to keep the same relation between F and L as the one given by Eq. (1.33). Hence,
we can write dL as

dL(z) = (1 + z)a0rm(χ) = (1 + z)
H0
√

Ωk
sinh

(√
Ωk

∫ z

0

dz′

E(z′)

)
, (1.35)

where in the last equality we have used the definition of Ωk in order to eliminate a0
10. A well-known example of standard candles are Supernovae Ia. As opposed to
Supernovae II or Ib (which arise from the core-collapse of very massive stars), Super-
novae Ia are thought to be nuclear explosions in binary systems, which occur when
a white dwarf accretes mass from its companion star above the Chandrasekhar limit
of ∼ 1.4M�. An interesting characteristic of SNIa is that they all exhibit qualitatively
similar light curves, i.e. they first brighten to a peak and then fade away after a period
of few weeks. One is typically interested in the apparent magnitude at this peak. The
apparent magnitude mx in some spectral band x is simply a logarithmic measurement
of the flux, mx ≡ −2.5log10(Fx/Fx,0), where Fx,0 is the flux of some reference object.
In a similar way, one can define the absolute magnitude Mx as the apparent magnitude
an observer would perceive at a distance of 10 pc to the object. By subtracting these
quantities we can get rid of Fx,0,

µ = mx −Mx = −2.5 log10

( F(dL)
F(10 pc)

)
. (1.36)

10Notice that Eq. (1.35) includes in a compact way also the flat and spherical geometries, as can be
seen by using the mathematical identities limx→0 sin(ax)/x = a and sinh(ix) = i sin(x), respectively.
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Figure 1.6 – Geometries corresponding to the notions of luminosity distance to SNIa (left)
and angular diameter distance to the BAO feature in the galaxy distribution (right).

The quantity µ is commonly referred as distance modulus, since it can be directly linked
to the dL of SNIa if their peak luminosity is a constant in space and time 11

µ = −2.5 log10

(
(10 pc)2

d2
L

)
= 5 log10d̃L + 25, (1.37)

where d̃L is the luminosity distance measured in units of Mpc. By comparing
observations of mx,i vs. zi in a SNIa sample against the predicted values of dL(zi),
we can infer the underlying cosmology. Regarding the absolute magnitude, two
strategies exist: 1) fit Mx to the data together with the rest of cosmological parameters
(in which case it becomes totally degenerate with H0), or 2) get a direct measurement
of Mx using a cosmic distance ladder method (see Sect. 2.2). As discussed at the end
of Sect. 1.1, it is thanks to the observations of SNIa light curves up to z ∼ 1 that dark
energy was discovered in 1998.

Angular diameter distance

Another way of measuring distances is to consider an extended object of known
physical transverse size L, i.e. a standard ruler. If this object emitted light at zem = z
and is at a comoving distance χ from us, then according to Eq. (1.29) its trans-
verse size is given by

L = a(tem)rm(χ)θ, (1.38)

where θ is the angular scale subtended by this object on the sky. The angular diameter
distance dA is defined in analogy with the formula in static Euclidean space, L/dA ≡
2 tan(θ/2) ' θ, where in the last equality we assumed θ � 1 (which is true for all
cosmological objects). Combining this with Eq. (1.38), we get

dA = a(tem)rm(χ) = a0
1 + z

rm(χ). (1.39)

11In practice, SNIa are not truly standard candles, since their peak luminosity vary from one SNIa to
another. However, the peak luminosity is tightly correlated with other parameters, such as the width
x1 or color c of the light curve, meaning they are standardisable. Hence, it is possible to correct the
absolute magnitude M ′ = M + αx1 + βc (where α, β are some empirical parameters to be fitted to data)
such that M ′ is common to all SNIa (MANDEL et al. 2017).



1.3. The smooth universe 19

The angular diameter distance measures the distance between us and the object at
the moment of the emission (see Fig. 1.6). A widely used standard ruler is the so
called comoving sound horizon at recombination, rs(z̃), where z̃ is of the order of 103.
As we will discuss in Sect. 1.6.4, the sound horizon corresponds to the maximum
distance acoustic waves could propagate in the primordial plasma up to a certain
redshift z̃. Depending on the observable, this redshift can correspond to the moment
of photon decoupling, zdec ' 1090, or the time at which baryons were released from
photons (typically called the baryon drag epoch), which takes place slightly after pho-
ton decoupling, zdrag ' 1060 < zdec. The sound horizon is mainly determined by the
relative abundances of photons, baryons and dark matter, and it is of the order of
100 Mpc. This scale is imprinted in the map of CMB anisotropies as well as in the
large scale distribution of galaxies, and can be seen as a characteristic angle that
we can express in general as

θX = rX
DA

, (1.40)

where DA = a−1dA denotes the comoving angular diameter distance to the redshift
at which observations are made, zobs. In the case of the CMB measurements, one
observes the photons (rs = rs(zdec)) at the surface of last scattering, zobs = zdec, and
the angle in Eq. (1.40) defines the position of the peaks in the angular correlation
function of photon temperature fluctuations. In the case of LSS data, one observes
the baryonic matter (rd = rs(zdrag)) at the redshifts accessible by galaxy surveys,
0 . zobs . 3, and the angle in Eq. (1.40) results from a feature in the galaxy
correlation function perpendicular to the line of sight. The LSS determinations of
this angular scale are commonly referred as Baryon Acoustic Oscillations (BAO), and
when complemented with a knowledge on rs(zdrag), they probe the distance-redshift
relation at small z 12. Hence, BAO data provide an alternative to SNIa to constrain
the late-time expansion history, and allow to break parameter degeneracies when
combined with other probes. In particular, the combination of CMB anisotropy
with BAO or SNIa data indicate that our universe is flat to a high degree of accu-
racy. For these reasons and for simplicity, we will assume Ωk = 0 in the rest of the text.

Let us end this part by noting that the angular diameter and luminosity distances
are not independent. Indeed, by comparing Eq. (1.39) with Eq. (1.35), we observe that

dL = (1 + z)2dA, (1.41)

which is also known as the Etherington distance duality relation. At very small red-
shifts, z . 0.1, all distances essentially reduce to the Hubble law

dL ' dA ' a0χ '
z

H0
' v

H0
, (1.42)

where we used the fact that the recessional velocity is approximately given by v ' z
for nearby objects. Notice that the Hubble law also breaks down at even shorter
distances, for which the peculiar velocities vpec ≡ aχ̇ become comparable to the Hubble
flow. Thus, in full generality one writes v = ḋ = d(aχ)/dt = Hd + vpec.

12BAO observations also measure a feature in the galaxy correlation parallel to the line of sight, in
which case they constrain the combination ∆z = rs(zdrag)H(zobs), see Fig. 1.6.
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1.4 A few words on inflation

Cosmic inflation is a paradigm which was proposed in the ’80s while investigating
the problem of why no magnetic monopoles are seen today. It was quickly realized
that inflation would resolve many other long-standing problems in Standard FLRW
Cosmology (GUTH 1981):

• The horizon problem. Spacetime regions that could not have been in causal contact
appear to have the same properties. This is reflected in the fact that spots in the
CMB with non-overlapping past light-cones have an almost identical tempera-
ture. We can estimate the size of these spots by computing the angle subtended
by the particle horizon at the moment of photon decoupling,

θH = adecχp(adec)
dA(adec)

=
∫∞
zdec

dz/H(z)∫ zdec
0 dz/H(z) = (1 + zdec)−1/2

1− (1 + zdec)−1/2 ' 0.03 ' 1.7◦, (1.43)

where we assumed matter domination at all times in order to simplify the cal-
culations. This corresponds to 4π/0.032 ∼ 104 patches in the CMB sky which are
causally disconnected. How can we explain the homogeneity of regions that have
not had sufficient time to communicate?

• The curvature problem. Using the Friedmann equation Eq. (1.18), it is easy to see
that the evolution of the time-dependent curvature density parameter is approx-
imately given by |Ωk(a)| ≡ |k|(aH(a))−2 ∼ |k|a1+3w, where w is the EoS of the domi-
nating energy component in the universe. During the radiation and matter eras,
1 + 3w > 0, implying that the curvature parameter increases with time. Hence, in
order to explain why we observe the present curvature parameter |Ωk(a0)| to be
very close to zero, we would need an “incredibly” small value of curvature in the
early universe, which appears very unnatural.

• Initial conditions. Standard cosmology is able to tell how perturbations have
evolved during the history of the universe, until they grew enough to collapse
and form the rich structure that we see. However, it does not provide a physical
origin for these perturbations.

Inflation solves these problems by considering that, at very early times, the
comoving Hubble radius was actually decreasing with time, rather than increasing.
In this way, two points that appear not to be causally connected at the moment of
decoupling (meaning they were separated by a comoving distance λ > (adecH(adec))−1),
were actually in causal contact early on, i.e. λ < (ainiH(aini))−1. Put differently, the
decreasing Hubble sphere can lead to a physical size particle horizon at the moment
of decoupling, adecχp(adec) which can now encompass all the scales observed in the
CMB. The condition of a decreasing Hubble radius, ṘH < 0, is equivalent to consider
a period of early rapid accelerated expansion, ä > 0, which in turn is equivalent
to consider a dominant energy source satisfying 1 + 3w < 0. To be more precise,
inflation solves the horizon problem by requiring a growth of spacetime between
the beginning and the end of inflation of at least aend/aini ∼ e60. The curvature
problem is also solved, since the curvature parameter |Ωk(a)| now rapidly decreases
with time, and becomes very tiny by the end of inflation. In this way, the curva-
ture parameter needs not to be fine-tuned to an incredibly small value at initial times.
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Figure 1.7 – Evolution of the comoving Hubble radius during and after inflation. Taken from
BAUMANN 2021.

Many inflation models consider a scalar field, the inflaton φ(t, xi), as the mech-
anism responsible for driving the accelerated expansion. The stress-energy of a
scalar field is given by

Tµν = ∂µφ∂νφ− δµν

(
gαβ

2 ∂αφ∂βφ+ V (φ)
)
, (1.44)

where V (φ) is the scalar field potential. Assuming a FLRW background, the homo-
geneous part of the scalar field satisfies ∂iφ = 0, and the stress energy tensor in the
previous equation has the same form as the one of a perfect fluid (see Eq. (1.12)).
Hence, we can identify the energy density and pressure as

ρφ = 1
2 φ̇

2 + V (φ), Pφ = 1
2 φ̇

2 − V (φ). (1.45)

Applying the continuity equation of Eq. (1.14) to ρφ and Pφ, we find the Klein-Gordon
equation that dictates the dynamical evolution of the scalar field,

φ̈+ 3Hφ̇+ dV

dφ
= 0, where H2 = 8πG

3 ρφ. (1.46)

By looking at Eq. (1.45), we see that the condition for cosmic acceleration, 1+3wφ < 0,
can be satisfied as long as the potential dominates over the kinetic energy. In addi-
tion, this period of cosmic acceleration should last enough time to solve the horizon
problem. This amounts to saying that the scalar field should be initially at a high part
of the potential and then roll slowly towards its minimum. In order to quantify these
effects, it is useful to introduce the so called slow-roll parameters,

ε ≡ − Ḣ

H2 , η ≡ ε̇

Hε
. (1.47)

Successful inflation happens when ε � 1 and |η| � 1, i.e. a quasi-de Sitter expansion
(H ' const.) is maintained during a sufficiently long time. Assuming 1

2 φ̇
2 � V and
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φ̈� Hφ̇, we can write the slow-roll parameters in terms of the scalar field potential as

ε '
M2

pl
2

(
V,φ
V

)2
, η ' 2M2

pl

((
V,φ
V

)2
− V,φφ

V

)
, (1.48)

where Mpl = 1/
√

8πG ' 2.4 × 1018 GeV is the reduced Planck mass. Inflation ends
when ε = 1. Then, if V (φ) is of the form V (φ) ∝ φn (with n & 2) close to its minimum,
the inflaton starts to oscillate rapidly, and releases all its energy to the Standard
Model particles through decay processes. This is the reheating era that preceded the
standard hot Big-Bang epoch, which we will describe in the following section.

The global picture that emerges is the following: at the beginning of inflation, all
comoving scales λ that we observe today on the CMB were sub-horizon, i.e. they were
inside the Hubble radius. In terms of the corresponding Fourier mode, k = 2π/λ,
this condition can be expressed as k � H. As H−1 decreased during inflation, these
scales exited the Hubble radius and became super-horizon (k � H). In this process,
the microscopic quantum fluctuations of the inflaton got stretched to cosmic sizes
and became classical. After inflation ended and H−1 started to grow, the scales k−1

gradually re-entered the Hubble radius. This is depicted in Fig. 1.7. The small fluctu-
ations of the inflaton provide the initial conditions for the evolution of perturbations
of the different components in the universe.

1.5 In and out of equilibrium

Until now, we have taken a macroscopic view of the energy content of the uni-
verse. That is, we have always expressed the stress-energy tensor in terms of thermo-
dynamic quantities, as the density and the pressure (related by the EoS parameter).
However, in many cases of interest, it is possible to switch to a microscopic point of
view, where all thermodynamic quantities can be derived from a distribution function
of the particles in phase space, f(xµ, Pµ). This function gives the number of particles
at a given time t and at a certain point in the phase-space (xi, P 0, P i) (in practice P 0

is not an independent variable because of the mass-shell condition, gµνPµP ν = −m2).
In terms of the phase-space distribution (PSD), one can define the particle current
density and the stress energy tensor as

nµ(xi, t) = g

∫
d3 ~P

(2π)3 (−det(g))−1/2P
µ

P 0 f(xi, P i, t), (1.49)

Tµν(xi, t) = g

∫
d3 ~P

(2π)3 (−det(g))−1/2P
µPν
P 0 f(xi, P i, t), (1.50)

where g represents the internal degrees of freedom of the particle, and the integra-
tion is over covariant 3-momenta Pi. Since we are assuming a FLRW background,
we can make some simplifications. First, we notice that det(g) = −a6 and Pi =∑
j gijP

j =
∑
j a

2δijP
j, so that d3 ~P (−det(g))−1/2 = d3p, which means that the inte-

gration is now over physical 3-momenta pi ≡ aP i. By construction, this vector has

a norm
√∑

i(pi)2 =
√∑

ij a
2δijP iP j =

√∑
ij gijP

iP j = p, so the integral measure in

spherical coordinates reads d3~p = dΩ p2dp. Second, homogeneity and isotropy imply
that f(xi, P i, t) = f(p, t). Hence, by virtue of the integrals

∫
dΩP i = 0 and

∫
dΩP iPj = 0

(for i 6= j), we see that the components ni, T 0
i and T ij (for i 6= j) necessarily van-

ish. The remaining non-zero components correspond to the particle number density,
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the energy density and the pressure

n(t) = n0 = g

2π2

∫
dp p2f(p, t), (1.51)

ρ(t) = −T 0
0 = g

2π2

∫
dp p2Ef(p, t), (1.52)

P (t) ≡ 1
3
∑
i

T ii = g

2π2

∫
dp p2 p

2

3Ef(p, t). (1.53)

We can alternatively express them in terms of the comoving momentum modulus
q = ap and comoving energy E = aE:

n(t) = 4π
a3

∫
dq q2f(q, t), (1.54)

ρ(t) = 4π
a4

∫
dq q2Ef(q, t), (1.55)

P (t) = 4π
a4

∫
dq q2 q

2

3E f(q, t), (1.56)

where we have absorbed a factor g/(2π)3 inside f(q, t). From the previous equations
we see that, regardless of the shape of the PSD function, relativistic particles (E = p)
satisfy P/ρ = 1/3, while for non-relativistic particles (E ' m) we have ρ ' mn and
P/ρ ∼ 〈p2〉/m2 � 1.

1.5.1 The Boltzmann formalism

What about the shape of the PSD function? The almost perfect blackbody spec-
trum of the CMB gives a firm proof that the early universe was well characterized by
local thermodynamic equilibrium. Indeed, the enormous temperatures after reheating fa-
vored the collisions between particles, making them exchange energy and momentum
very efficiently. In this case, particles were distributed in the phase space according
to the Bose-Einstein or Fermi-Dirac distributions. As the universe cooled, interac-
tions became less frequent and particles progressively exited from equilibrium. The
key to quantify this effect is to compare the interaction rate, Γ, to the expansion
rate of the universe, H. For two-to-two interactions of the form 1 + 2 ↔ 3 + 4, the
interaction rate for the species 1 is given by

Γ1 = n2 〈σv〉 , (1.57)

where 〈σv〉 denotes the thermally averaged cross-section (a formal definition will be given
below). Equilibrium is maintained if Γ1 � H. When Γ1 � H, particles decouple from
the thermal bath and start free-streaming through the universe. In order to accurately
describe the departures from equilibrium, we need to use the Boltzmann formalism.
For a species 1 interacting with i = 2, ..., N species, the Boltzmann equation reads

L[f1] ≡ df1(xµ(σ), Pµ(σ))
dσ

= C[f1; f2, ..., fN ], (1.58)

where L[f ] is the so-called Liouville operator, and C[f1; fi] is the collision integral,
whose expression depends on the particular type of interactions considered. Let us
focus first on the l.h.s. of Eq. (1.58). In the absence of interactions, the collisionless
Boltzmann equation, L[f1] = 0, can be expressed in the following way

L[f1] = ∂f1
∂xµ

dxµ

dσ
+ ∂f1
∂Pµ

dPµ

dσ
= ∂f1
∂xµ

Pµ − ∂f1
∂Pµ

ΓµαβP
αP β = 0, (1.59)
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simply reflecting the fact that f1 is conserved as we follow a geodesic in phase space.
In the FLRW background, we have f1 = f1(t, p), and we can use the expression for
the Christoffels in Eq. (1.7), to arrive at

L[f1] = E

(
∂f1
∂t
−Hpdf1

dp

)
= 0. (1.60)

We will sometimes find convenient to switch to the modulus of the comoving momen-
tum, q ≡ ap, which doesn’t evolve with time. In terms of this new variable,

∂f1(t, q)
∂t

= ∂f1
∂t

+ ∂f1
∂q

dq

dp
ṗ = ∂f1

∂t
−Hp∂f1

∂p
= 0, (1.61)

which means that any PSD which depends exclusively on comoving momentum,
f = f(q), is automatically a solution of the collisionless Boltzmann equation. We
can easily express Eq. (1.60) in terms of the number density n1 by integrating over
(g/2π2)

∫
dp1p

2
1. Doing integration by parts on the second term and assuming that

f1 → 0 for p → ∞, then we get

ṅ1 + 3Hn1 = 0, (1.62)

meaning that, in the absence of interactions, the number of particles is conserved on
a comoving volume, n1 ∝ a−3.

Let us now move to the r.h.s. of of Eq. (1.58). For two-to-two interactions, the
collision integral is written as

C[f1; f2, f3, f4] =
∫

d3~p2
(2π)32E2

d3~p3
(2π)32E3

d3~p4
(2π)32E4

δ4(P1 + P2 − P3 − P4)(2π)4

×
[
|M34,12|2f3f4(1± f1)(1± f2)− |M12,34|2f1f2(1± f3)(1± f4)

]
. (1.63)

We have introduced the Lorentz-invariant amplitudes M34,12 and M12,34 for the
processes 3 + 4 → 1 + 2 and 1 + 2 → 3 + 4 (which include the sum over all internal
degrees of freedom). These amplitudes are equal in modulus for interactions with
a time reversal symmetry, which is often the case. The Dirac delta is inserted just
to guarantee the energy-momentum conservation. From Eq. (1.63), we see that the
collision integral is simply giving the difference between the rate of production of
species 1 (proportional to f3f4) and the rate of destruction of species 1 (proportional
to f1f2). Finally, the factors (1 ± fi) account for the stimulated emission for bosons
(+) and Pauli blocking effects for fermions (−). Similar equations as Eq. (1.63) can be
written for species 2, 3 and 4. In the most general case, one should therefore solve a
complicated system of coupled integro-differential equations.

In a static universe, equilibrium distributions can be obtained by demanding that
the collision term vanishes, which is sometimes called the detailed balance condition. We
remark that this doesn’t imply at all that collisions aren’t happening. Rather, it is
reflecting the idea that forward and backward collision rates should be equal in equi-
librium. Using the unitarity of Mij,kl and taking C = 0 in Eq. (1.63) yields

∏
a=1,2

1± fa
fa

=
∏
b=3,4

1± fb
fb

. (1.64)
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By taking the logarithm of Eq. (1.64), we see that the quantity S ≡
∑
a ln[(1 ± fa)/fa]

remains unchanged during collisions. This can be achieved if S is a linear combina-
tion of conserved quantities in the collisions, such as 4-momentum Pµa or any other
conserved charge Qa (like baryon number or electric charge). Thus, we can write

ln
(1± fa

fa

)
= βEa + ξQa, (1.65)

where we took P ia = 0 since we assume a fluid whose center of mass is not mov-
ing. The coefficients β and ξ characterize the different equilibrium states, so in or-
der to make a connection with thermodynamic quantities we can set β = 1/T and
ξQa = µa/T , where T is the temperature and µa the chemical potential associated with
the conserved charge Qa. Solving for fa yields the Fermi-Dirac and Bose-Einstein
equilibrium distributions,

fa = 1
e(Ea−µa)/T ∓ 1

, (1.66)

where the sign − stands for bosons and the sign + for fermions. Notice that the
distribution of Eq. (1.66) satisfies C = 0 for all kind of two-to-two interactions as long
as all particles share the same temperature T (kinetic equilibrium condition) and the
chemical potentials fulfill the chemical equilibrium condition,

µ1 + µ2 = µ3 + µ4. (1.67)

Since particles and antiparticles carry opposite charges, their chemical potentials
must be opposite in sign, µa = −µā. Furthermore, photons carry no additive charges
(i.e. they are equal to their antiparticles), so they can’t have a chemical potential,
µγ = 0. For a non-degenerate fluid satisfying Ea − µa � T (which is relevant for
many applications in cosmology), the distribution in Eq. (1.66) reduces to the clas-
sical Maxwell-Boltzmann distribution

fa ' e−(Ea−µa)/T . (1.68)

Now, to see if the PSD in Eq. (1.66) is also an equilibrium solution in an expanding
universe, we should check if they are also in the kernel of the Liouville operator,
L[fa] = 0. Inserting Eq. (1.66) in Eq. (1.60) and allowing the independent variables
T and µa to vary with time, yields the conditions

µ̇a
µa

= Ṫ

T
= − p

2

E2
a

H. (1.69)

Specializing to the case of massless particles, Ea = p, we find that the temperature
and chemical potential evolve as µa ∝ T ∝ a−1. For the case of massive particles, there
is no general solution to Eq. (1.69). The reason for this is that, strictly speaking, there
are no equilibrium solutions for massive particles in a FLRW geometry. However, one
can show that the PSD function of massive particles remains always very close to
the equilibrium form of Eq. (1.66) as long as interactions are very efficient, Γ1/H � 1
(BERNSTEIN 1988).

An important conclusion that can be extracted from the previous considerations
is that any species that decouples while being relativistic (i.e. a hot relic), will ap-
proximately retain an equilibrium distribution with a decreasing temperature also at
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later times. To see this, let’s consider that a hot species decouples instantaneously
at some temperature TD (that is, we neglect the fact that the decoupling process ac-
tually takes some time). Before decoupling, the collision term is zero since forward
and backward rates exactly compensate, meaning that the PSD of the species will be
either a Bose-Einstein or Fermi-Dirac until TD:

f(q) = 1
e(q−aDµD)/aDTD ∓ 1

. (1.70)

After decoupling, the collision term is still zero because the species don’t interact
anymore with the rest of particles, and it will keep its equilibrium form with a
decreasing temperature and chemical potential. Indeed, the distribution on Eq. (1.70)
depends only on comoving momentum q provided that aT = aDTD = const. and
aµ = aDµD = const., so it is automatically a solution of the collisionless Boltzmann
equation by virtue of Eq. (1.61). This is the reason why CMB photons exhibit an
almost perfect black body spectrum, even if they decoupled at zD ∼ 103. Another
example of hot relics are neutrinos, which decoupled from the plasma much earlier,
at zD ∼ 109. Even if neutrinos have nonzero masses of the order mν . O(0.1) eV,
they decoupled at a temperature of the order TD ∼ 1 MeV � mν, so they were clearly
relativistic at that epoch. However, we will see that the fact the decoupling process
wasn’t exactly instantaneous induces some small distortions in their Fermi-Dirac
distribution.

1.5.2 Relativistic degrees of freedom and entropy conservation

Let us now compute the different thermodynamic quantities for particles in
equilibrium. Inserting the Fermi-Dirac or Bose-Einstein distribution in Eq. (1.51),
Eq. (1.52) and Eq. (1.53), we get

neq = g

2π2

∫
dp p2

exp[(
√

p2 + m2 − µ)/T]∓ 1
, (1.71)

ρeq = g

2π2

∫
dp p2√p2 +m2

exp[(
√

p2 + m2 − µ)/T]∓ 1
, (1.72)

Peq = g

2π2

∫
dp p4

3
√
p2 +m2(exp[(

√
p2 + m2 − µ)/T]∓ 1)

. (1.73)

In general, the previous integrals have to be computed numerically. However, it is
possible to get analytical expressions in some limiting cases. Let us start considering
the relativistic limit, T � m. In this regime, the chemical potentials of all particles are
typically so small that we can safely neglect them 13. Hence, we get

neq = ζ(3)
π2 gT 3

{
1 bosons
3
4 fermions

(1.75)

13The chemical potential of electrons and protons can’t be exactly zero, since a non-zero value of µ is
required to account for the particle-antiparticle asymmetry that we observe. As an example, consider
temperatures mp � T � me, such that the universe is full of non-relativistic protons p+ as well as
relativistic electrons e− and positrons e+. One can then compute the ratio r ≡ (ne− − ne+ )/nγ using the
relativistic limit of Eq. (1.71) for fermions and µe− = −µe+ 6= 0. This yields

r = ge
gγ

π2

6ζ(3)

(
µe−

T
+ 1
π2

µ3
e−

T 3

)
. (1.74)

This ratio stays constant after the e± annihilation stage, and can be related to the baryon-to-photon ratio
η ≡ nb/nγ ' np/nγ = r, where the last equality follows from the neutrality of the universe. Observations
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ρeq = 3Peq = π3

30gT
4
{

1 bosons
7
8 fermions

(1.76)

In the non-relativistic limit T � m, and for chemical potentials µa � m, we can use
the Maxwell Boltzmann distribution of Eq. (1.68), to obtain

neq = g

(
mT

2π

)3/2
e(−m+µ)/T , (1.77)

ρeq ' m neq, Peq = neqT � ρeq. (1.78)

From Eq. (1.77) we see that, for null chemical potentials, the number density of non-
relativistic components is exponentially suppressed as the temperature decreases.
This is a result of particle-antiparticle annihilations, which aren’t prevented from
any conservation law (since µ = 0) and can’t be balanced by particle-antiparticle pair
production (which are inefficient for T . m) 14.

Thanks to Eq. (1.76), we can easily compute the total energy density as-
sociated to radiation

ρr =
∑
i

ρi = π2

30g?(T )T 4, (1.79)

where g?(T ) is the effective number of relativistic degrees of freedom at a temperature T .
Since we are summing over relativistic species with a negligible chemical potential,
we can write g?(T ) as

g?(T ) =
∑

i,boson
gi

(
Ti
T

)4
+ 7

8
∑

i,fermion
gi

(
Ti
T

)4
, (1.80)

where we have allowed the possibility that particles might have different temperatures
from photons, Ti 6= T . When the temperature drops below the mass mi of a certain
species, its contribution is removed from Eq. (1.80), consequently decreasing g?(T ).

Let us consider now a very important quantity to describe the early universe, the
entropy density, s = S/V , where V ∝ a3. Here S is the total entropy, which stays con-
stant in equilibrium. From the thermodynamic identity s = ∂P

∂T |µ, and using Eq. (1.66),
one can show that the entropy density is given by

s = ρ+ P − µn
T

. (1.81)

For relativistic particles, since ρ ∝ P ∝ µn ∝ T 4, the entropy density s scales as
a−3, so that S is conserved. In a similar way as we did for the energy density, we

of CMB and BBN indicate that η ' 5.5× 10−10 (ωb/0.02). Comparing this with the previous formula for r,
we obtain µe−/T ∼ 10−9, which confirms that the contribution of µe− to the number and energy density
is actually very small.

14The fact that annihilations can’t be balanced by pair production doesn’t contradict the idea that
forward and backward rates are equal in chemical equilibrium. Indeed, when the number density is ex-
ponentially supressed, the pair production cross-section is reduced accordingly, such that annihilation
and pair production rates remain equal.
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Figure 1.8 – Temperature evolution of the effective number of relativistic degrees of freedom
g?(T ), assuming the particle content of the Standard Model. The dotted line indicates the
effective number of degrees of freedom in entropy, g?,S(T ). Taken from BAUMANN 2021.

can compute the total entropy associated to radiation. For relativistic particles with
vanishing chemical potentials,

sr =
∑
i

4
3
ρi
Ti

= 2π2

45 g?,S(T )T 3, (1.82)

where g?,S(T ) is the effective number of degrees of freedom in entropy,

g?,S(T ) =
∑

i,boson
gi

(
Ti
T

)3
+ 7

8
∑

i,fermion
gi

(
Ti
T

)3
. (1.83)

We note that g?,S(T ) = g?(T ) as long as all relativistic particles share the same tem-
perature of the photon bath, Ti = T . As we will see, this is the case until the e±

annihilation stage. In Fig. 1.8 we show the evolution of g?(T ) as well of g?,S(T ), as-
suming the particle content of the Standard Model. Applying entropy conservation
Sr = const. to Eq. (1.82), we can readily obtain the evolution of the photon tem-
perature in equilibrium,

a3g?,S(T )T 3 = const., =⇒ T ∝ g−1/3
?,S a−1. (1.84)

We see that, away from mass thresholds, the temperature evolves as T ∝ a−1. When
a particle becomes non-relativistic, the factor g−1/3

?,S makes T to decrease more slowly,
which is simply reflecting the fact that annihilations are transferring entropy to the
other species in the thermal bath.

1.5.3 Neutrino decoupling and evolution

An interesting application of entropy conservation is the calculation of neutrino
temperature. At temperatures T > 1 MeV, neutrinos were in equilibrium with the
rest of the plasma through processes like νe + ν̄e ↔ e− + e+ and e− + νe ↔ e− + νe.
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The cross-section for theses process are of the order 〈σv〉 ∼ G2
FT

2 (where GF ' 1.17 ×
10−5 GeV−2 is Fermi’s constant) meaning that Γν ∼ G2

FT
5. The decoupling temperature

can thus be estimated by comparing this interaction rate with the expansion rate,
which by virtue of Eq. (1.79) is given by

H =
(

ρr
3M2

pl

)1/2

' π

3

(
g?
10

)1/2 T 2

Mpl
. (1.85)

Setting Γν = H and using the useful conversion 1 eV = 11605 K yields a decoupling
temperature of around TD ∼ 1 MeV. As we already discussed, after decoupling the
neutrinos inherit a Fermi-Dirac distribution with a temperature Tν ∝ a−1. This means
that their entropy is also separately conserved, so we can just consider the entropy of
the only relativistic species that were present in the plasma for T < 1 MeV: electrons,
positrons and photons. When electrons and positrons annihilate at T = me ∼ 0.5 MeV,
they inject entropy that reheats the photons. The relation between the temperature
of photons before and after e± annihilation can be derived using entropy conserva-
tion of the e±γ fluid:

Tbefore
Tafter

=
(
g?,after
g?,before

)1/3

. (1.86)

The number of relativistic degrees of freedom before and after e± annihilation is
g?,before = 2 + 7

8(2 + 2) = 11/2 and g?,after = 2, respectively. Thus, the photon tem-
perature increases by a factor Tbefore/Tafter = (4/11)1/3. Neutrinos don’t feel this raise of
temperature, since they already decoupled from the plasma by the time electrons and
positrons were annihilating, meaning that Tν = Tbefore. We conclude that the relation
between neutrino and photon temperature at Tγ = Tafter < me is the following

Tν
Tγ

=
( 4

11

)1/3
' 0.71. (1.87)

After e± annihilation, photons and neutrinos constituted the sole relativistic
species in the universe. In this context, we can use Eq. (1.87) to write the
total density in radiation as

ρr = ργ

(
1 +Neff

7
8

( 4
11

)4/3
)
, (1.88)

where Neff is the effective number of neutrino species. This parameter would be equal to
the number of neutrino flavors, Neff = 3, only if the assumptions we have made
until now were valid; namely, if neutrinos decoupled instantaneously and they were
described by Fermi-Dirac distributions with null chemical potentials. In practice, a
Neff 6= 3 is used to capture deviations from these hypothesis. For instance, neutrinos
with different momenta decoupled at slightly different times, and some of the energy
released in e± annihilations did leak to the more energetic neutrinos. The full
calculation of neutrino decoupling yields a value of Neff ' 3.044 (J. J. BENNETT et al.
2020). It is customary to also use Neff to parameterize the presence of any possible
massless invisible species (dark radiation) in the early universe, which would be con-
strained by BBN and CMB data. To be more precise, the energy density of this dark
radiation, ρdr, is re-absorbed as change in the effective number of neutrinos, given
by ∆Neff ≡ Neff−3.044 = ρdr/ρ1ν, where ρ1ν is the density of a single relativistic neutrino.
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At late times, the mass of neutrinos becomes important compared to their energy,
so Eq. (1.88) is not valid anymore. Neutrinos become non-relativistic when the average
momentum per neutrino species i,

〈p〉 =
∫
dp p3(exp(p/Tν) + 1)−1∫
dp p2(exp(p/Tν) + 1)−1 = 7π4

180ζ(3)Tν ' 3.15 Tν , (1.89)

drops below its mass mν,i (SHOJI et al. 2010). Solving 3.15 Tν,0(1 + znr) = mν,i leads to

1 + znr,i ' 1890
(
mν,i

1 eV

)
. (1.90)

As we will discuss in Sect. 4.2, oscillation experiments tell us that at least two neu-
trinos need to have mass, whose minimum values correspond to m2,min ' 0.01 eV and
m3,min ' 0.05 eV in the case of normal mass ordering, and to m2,min ∼ m1,min ' 0.05 eV
in the case of an inverted mass ordering. Combining this information with Eq. (1.90),
we see that at least two neutrinos are necessarily non-relativistic today. In addition,
current CMB data places a stringent upper limit on the sum of neutrino masses of∑
imi . 0.12 eV (AGHANIM et al. 2020b), which by virtue of Eq. (1.90) implies that

neutrinos became non-relativistic after decoupling, znr,i < zdec. The present contri-
bution of neutrinos to the total energy density can easily be computed by summing
over all neutrinos that are non-relativistic today

Ων =
∑
imini,0
ρc

'
3
11nγ

∑
imi

ρc
'

∑
imi

94.1h2 eV . (1.91)

This means that neutrinos can only constitute at present a very small fraction of the
total energy budget of the universe.

1.5.4 WIMP freeze-out

We have now two alternative ways to compute the evolution of thermodynamic
quantities in equilibrium. On the one hand, we can use the integrated collisionless
Boltzmann equation, which yields n ∝ a−3, as we saw in Eq. (1.62). On the other hand,
we know that the temperature of the bath evolves as T ∝ a−1 (away from mass thresh-
olds), so plugging this in the relativistic equilibrium functions shown in Eq. (1.75),
we recover n ∝ a−3. However, if we plug T ∝ a−1 in the non-relativistic equilibrium
function of Eq. (1.77) with µ = 0, then we don’t recover n ∝ a−3. This means that some-
thing must have happened to non-relativistic particles that prevented the exponential
suppression exp(−m/T ) to develop further. There are two possibilities:

• Massive particles in chemical equilibrium have a non-zero chemical potential µ
associated with a charge conserved by all interactions in the thermal bath. This
is the case of baryons (protons and neutrons) as well as electrons. The chemical
potential adjusts itself as a function of temperature, µ(T ), to ensure that the
abundance of baryon matches the value that we observe, nb = ηnγ ∼ 5.5×10−10nγ.
Stated otherwise, if there’s an initial excess of baryons over antibaryons, and all
interactions conserve a non-zero baryonic charge, B = nB−nB̄

s 6= 0, then particles
acquire a positive chemical potential (such that µ/T grows as T decreases) that
cancels the effect of the exponential factor. Conversely, antiparticles are rapidly
depleted because their chemical potential is negative, −µ/T .
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• Massive species with no particle-antiparticle asymmetry (µ = 0) might exit from
chemical equilibrium after they become non-relativistic, when their interaction
rate becomes smaller than the Hubble rate. In other words, when the expan-
sion timescale starts to dominate over the interaction timescale, particles and
antiparticles cannot find each other to annihilate, so their comoving number
density a3n freezes out at a certain value . This is the case of weakly interacting
massive particle (WIMP) scenario for CDM, that we proceed to discuss now.

In order to describe the departure from equilibrium for the WIMP dark matter, we
are going to derive a simplified version of the Boltzmann equation in Eq. (1.58) for
two-to-two interactions of the form 1 + 2 ↔ 3 + 4. The assumptions we will make are
sufficiently general so that the resulting equations can be applied to many situations
of interest. First, we will assume that the particles are in kinetic equilibrium with
other particles in the plasma thanks to fast scattering processes. Second, we will
consider that particles are either non-relativistic, or relativistic with negligible or van-
ishing chemical potential (as in the case of photons), which means that all the effects
due to quantum statistics can be neglected. The distribution functions can then be
written in general as fi = e(−Ei+µi)/T � 1. Taking M12,34 = M34,12 = M, the integrand
of the collision operator in Eq. (1.63) simplifies to

f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4) → e−(E1+E2)/T
(
e(µ3+µ4)/T − e(µ1+µ2)/T

)
, (1.92)

where we used energy conservation E1 +E2 = E3 +E4. In this context, the Boltzmann
equation describes how the chemical potentials evolve from a chemical equilibrium
configuration where µ1 + µ2 = µ3 + µ4 to more general values that will fix the num-
ber densities of particles after they have decoupled from each other. Nevertheless,
we can choose to evolve the number densities instead of the chemical potentials,
since they keep a simple relation,

ni = eµi/Tn
(0)
i , where n

(0)
i ≡

gi
2π2

∫
dp p2 e−Ei/T . (1.93)

We introduced the variable n
(0)
i to simplify notation, but we remark that it is not

necessarily equal to the equilibrium distribution, since it is lacking the factor with
µi. Integrating the Boltzmann equation Eq. (1.58) over (g/2π2)

∫
dp1p

2
1, we arrive at the

following differential equation for the number density of species 1,

a−3d(n1a
3)

dt
= n

(0)
1 n

(0)
2 〈σv〉

(
n3n4

n
(0)
3 n

(0)
4
− n1n2

n
(0)
1 n

(0)
2

)
, (1.94)

where 〈σv〉 is the thermally averaged cross section

〈σv〉 ≡ 1
n

(0)
1 n

(0)
2

∫
dΠ1dΠ2dΠ3dΠ4 δ

4(P1 + P2 − P3 − P4)(2π)4e−(E1+E2)/T |M|2, (1.95)

with dΠi ≡ d3~pi
(2π)32Ei . Eq. (1.94) can be intepreted straightforwardly. The l.h.s. of the

equation is of the order n1H, while the r.h.s. is of the order n1n2〈σv〉. Therefore, if
the interaction rate Γ1 = n2〈σv〉 is much bigger than the Hubble rate H, the term in
parenthesis in Eq. (1.94) needs to vanish,

n1n2
n3n4

∣∣∣∣
eq

= n
(0)
1 n

(0)
2

n
(0)
3 n

(0)
4
. (1.96)
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Figure 1.9 – Schematic view of dark matter freeze-out. A comoving density is plotted against
mχ/T . The red region corresponds to a time when annihilations and pair productions compen-
sate. The yellow region, a time when pair productions become inefficient. The purple region,
a time when annihilations stop due to the cosmic expansion. Adapted from D. HOOPER (2008)

This is an alternative way of expressing chemical equilibrium, and it is often referred
to as the Saha equation. When Γ1 drops below H, the r.h.s. of Eq. (1.94) goes to zero,
and the comoving number density n1a

3 approaches a constant value.

Let us now apply Eq. (1.94) to the case of WIMP dark matter. The standard sce-
nario considers that the dark matter particle χ and its antiparticle χ̄ are initially
in chemical equilibrium with light SM fermions f and antifermions f̄ through an-
nihilation processes

χ+ χ̄ ←→ f + f̄. (1.97)

We assume there’s no particle-antiparticle asymmetry for the dark matter particles
(i.e. µχ = 0 initially), so that nχ = nχ̄ and n

(0)
χ = n

(0)
χ̄ . In addition, we assume that

the fermions are in chemical and kinetic equilibrium with the rest of the plasma (i.e.
µf = −µf̄ is always satisfied), meaning that nfnf̄ = n

(0)
f n

(0)
f̄

. Then, the Boltzmann
equation for nχ reads

a−3d(nχa3)
dt

= −〈σv〉
(
n2
χ − (n(0)

χ )2
)

(1.98)

It is convenient to express the previous equation in terms of a comoving density Nχ ≡
nχ/T

3 and the time variable x ≡ mχ/T ,

dNχ

dx
= − λ

x2

(
N2
χ − (N (0)

χ )2
)
, where λ ≡

m3
χ〈σv〉

H(mχ) . (1.99)

We will take λ as a constant, since many theories predict the so-called s-wave anni-
hilation channels, where 〈σv〉 is independent of temperature. In general, Eq. (1.99)
needs to be solved numerically. In Fig. 1.9 we show the qualitative aspect of the
solution. We see that the Boltzmann equation correctly predicts the transition from
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the exponentially suppressed N
(0)
χ to the relic constant value of N∞χ ≡ Nχ(xf → ∞) 15.

This happens soon after the freeze-out temperature xf defined by nχ(xf )〈σv〉 = H(xf ),
which one can show is of the order xf ∼ 10. Assuming that Nχ(x > xf )� N

(0)
χ and that

N∞χ � Nχ(xf ), we can analytically solve Eq. (1.99) to estimate the value of the N∞χ ,

N∞χ '
xf
λ
. (1.100)

The relic density is inversely proportional to the cross section 〈σv〉, which makes
sense intuitively, since the larger the interaction rate is, the longer the particles stay
in the exponentially suppressed regime. Using this result, it is possible to compute
the present CDM abundance, and one notices that in order to reproduce the observed
value Ωcdmh

2 ∼ 0.1, a cross-section of roughly 〈σv〉 ' 2.6×10−9 GeV−2 ' 3×10−26 cm3s−1

is required (see DODELSON (2003) for details). This is precisely the value we expect
from a new particle in the 100 GeV mass range that interacts via the weak force. The
fact that such a simple production mechanism leads to the right DM abundance,
and the required energy scale corresponds to the one that can be currently probed at
colliders, is what is known as the WIMP miracle.

As we already said, the Boltzmann equation in the form of Eq. (1.94) has many
interesting applications beyond WIMP freeze-out, such as BBN or hydrogen recombi-
nation, that we are going to introduce in the following subsections.

1.5.5 Big-Bang Nucleosynthesis

We briefly discuss here the formation of the light elements during the first few
minutes in the history of the universe. This is one of the pillars of the standard
Big-Bang model, and the earliest cosmological probe to which we have access.
In general, BBN has to be described through a complicated system of coupled
Boltzmann equations, in order to track all nuclear abundances (WAGONER et al.
1967; M. S. SMITH et al. 1993). However, with very simple tools it is possible to get
an analytical estimate of the He4 fraction, which is the most abundant nucleus that
is formed during this epoch. That’s the goal of this subsection.

The starting point to describe BBN is to consider temperatures slightly above
T ∼ 1 MeV, when the primordial soup was full of relativistic electrons, positrons
and neutrinos, as well as small traces of non-relativistic baryons (including free pro-
tons and neutrons). Firstly, we determine the relative abundances of protons and
neutrons. At those temperatures, protons and neutrons were coupled by weak in-
teractions of the type

p+ + ν̄e ←→ n+ e+, (1.101)

p+ + e− ←→ n+ νe. (1.102)

We can compute the neutron to proton ratio nn/np using the non-relativistic profile in
Eq. (1.77). Notice that protons and neutrons share the same baryon number (B = +1)
so the associated chemical potential is also equal, µn = µp = µB. Therefore,

nn
np

∣∣∣∣
eq

= n
(0)
n

n
(0)
p

=
(
mn

mp

)3/2

e−∆m/T ' e−∆m/T , (1.103)

15In terms of chemical potentials, the PSD of the dark matter has evolved from fχ = e−Eχ/T initially to
fχ = eµ

∞
χ /T e−Eχ/T after chemical decoupling, where µ∞χ (T ) satisfies eµ

∞
χ /T = n∞χ /n

(0)
χ .
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where ∆m ≡ mn −mp ' 1.3 MeV. It is useful to express the previous result in terms
of the free neutron fraction, Xn ≡ nn/nb, where the baryon abundance at that time
was roughly nb ' nn + np. Then,

Xeq
n = e−∆m/T

1 + e−∆m/T . (1.104)

Initially T � ∆m, so there are as many neutrons as protons (Xn = 1/2). Later, when
T � ∆m, the neutron abundance becomes exponentially smaller. However, we saw al-
ready in Sect. 1.5.3 that weak interactions switch off at around TD ∼ 1 MeV, although
a more accurate computation gives a value of TD ' 0.8 MeV. We can take the equi-
librium neutron fraction at this temperature TD as a proxy for the neutron fraction
at freeze-out, X∞n ∼ Xeq

n (TD) (the precise calculation of X∞n would require solving the
Boltzmann equation). In reality, the neutron fraction keeps evolving even after freeze-
out, because neutrons decay to protons through the weak decay n → p+ + e− + ν̄e.
The neutron lifetime (τn ' 890 s) is comparable with the age of the universe at that
time, so this should be taken into account. Putting all together, the neutron frac-
tion for T < TD reads

Xn(t) ' Xeq
n (TD)e−t/τn . (1.105)

At this point, He4 still cannot form since reactions involving three or more incoming
particles are very rare. The first nucleus that can form is deuterium through

n+ p+ ←→ D + γ. (1.106)

Once deuterium is produced, two-particle reactions allow He4 and other heavier nuclei
to be sequentially built from lighter ones,

p+ +D ←→ He3 + γ, (1.107)

He3 +D ←→ He4 + p+. (1.108)

Let us focus on deuterium production. We can apply the Saha condition in Eq. (1.96)
to the process in Eq. (1.106), and use that photons satisfy nγ = n

(0)
γ , to get the fol-

lowing ratio at chemical equilibrium

nD
npnn

∣∣∣∣
eq

= n
(0)
D

n
(0)
p n

(0)
n

= 3
4

(
4π
mpT

)
eBD/T , (1.109)

where BD ≡ mn + mp −mD = 2.22 MeV is the deuterium binding energy, and we used
mD ' 2mn in the prefactor, as well as gD = 3, gp = gn = 2. To get an order of magnitude,
we can approximate the neutron abundance as n(0)

n ∼ nb = ηnγ (since Xn was not much
smaller than 1 at the time) and apply Eq. (1.75) to compute nγ. This yields

n
(0)
D

n
(0)
p

' η
(
T

mp

)3/2

eBD/T . (1.110)

Because of the smallness of η, temperature needs to decrease well bellow BD in order
for deuterium to form in significant amounts. Thus, heavier elements cannot be
formed until deuterium is produced, even if they have larger binding energies. This is
the so called deuterium bottleneck. The temperature of formation of these elements can
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hence be estimated as the temperature TBBN at which the ratio in Eq. (1.110) is equal
to 1. Setting n

(0)
D /n

(0)
p = 1 in Eq. (1.110) gives 16

TBBN ' 0.06 MeV −→ tBBN ' 340 s. (1.111)

After tBBN, He4 is produced almost immediately, given that its binding energy (BHe =
7.1 MeV per nucleon) is much larger than the one of deuterium. We can thus assume
that effectively all remaining neutrons at t ∼ tBBN are incorporated into He4 . Since
each He4 nucleus contains 2 neutrons, ntot

He = 1
2nn(tBBN) 17, or equivalently,

fHe ≡
ntot

He
ntot

H
'

1
2nn(tBBN)

np
=

1
2Xn(tBBN)

1−Xn(tBBN) ∼
1
16 , (1.112)

where we used Eq. (1.105) to compute Xn(tBBN). Traditionally, this result is expressed
as the mass fraction of He4 , which is formally defined as

Yp ≡
ρtot

He
ρb

. (1.113)

We can take ρb ' ρtot
He + ρtot

H (notice that the abundances of the rest of nuclei produced
during BBN, like D, He3 or Li7 , are too small to have any cosmological impact). In
addition, ρtot

H ' mHn
tot
H and ρtot

He ' mHen
tot
He , where mHe ' 4mH . Hence,

Yp '
4fHe

1 + 4fHe
∼ 0.2. (1.114)

The result of the full Boltzmann calculation yields Yp ' 0.24, which is not too far
from the very rough estimate of Eq. (1.114). This prediction is in excellent agreement
with current observations, as can be seen in Fig. 1.10. This constitutes one of the
major triumphs of the standard cosmological model. Notice that Fig. 1.10 shows
the predicted element abundances in terms of the baryon-to-photon ratio η (or
equivalently, Ωb), which in the standard case constitutes the only free parameter
of BBN. More generally, BBN physics are also very sensible to the extra number
neutrino species ∆Neff and many other deviations from the standard cosmological
model, such as exotic electromagnetic energy injection or variations of fundamental
constants. It is thus a very powerful probe to constrain new physics (POSPELOV et al.
2010).

As we will discuss in the following subsection, the value of Yp has a non-negligible
impact on recombination and thus on the shape of the CMB spectra. Additionally,
the value of Ωb that is inferred from CMB analysis affects the prediction of Yp. There-
fore, in order to determine the value of Yp self-consistently, the CLASS code reads a
table produced with the BBN code PArthENoPE (PISANTI et al. 2008), that gives Yp
as a function of Ωb and Neff .

16To convert BBN temperature to BBN time, it suffices to integrate Eq. (1.85),

T

1 MeV ' 1.5g−1/4
?

(1 s
t

)1/2
,

and apply g? = 3.38 (see Fig. 1.8).
17We use the superscript “tot” to indicate the total H and He4 in the universe, which initially are only

in ionized forms (ntot
H = np and ntot

He = n++
He ), but will be gradually converted into neutral atoms during

the recombination era, that we discuss in the following section.
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Figure 1.10 – Predicted primordial abundances of He4 , D, He3 and Li7 as a function of η or Ωb.
The colored bands indicate theoretical 95 % CL uncertainty. Yellow boxes indicate observed
element abundances. The narrow vertical band indicates the CMB measurement on Ωb from
ADE et al. 2016a – hereafter refereed to as Planck15. Taken from TANABASHI et al. (2018)

1.5.6 Hydrogen recombination

We focus here on the recombination18 between electrons and protons to form
neutral hydrogen. As we will see later, a precise knowledge of the recombination
history is essential to understand the shape of the CMB anisotropy spectra.

Saha equilibrium

At temperatures above 1 eV, the universe consisted in a plasma of free electrons,
free protons and light nuclei such as helium. Photons were strongly coupled to elec-
trons through Compton scattering e− + γ ←→ e− + γ, whereas electrons and protons
were coupled via Coulomb scattering e− + p+ ←→ e− + p+. There was very little hy-
drogen at that epoch: temperature needs to drop well below the binding energy of
hydrogen H until recombination can happen. To see why, let’s consider the following
process in chemical equilibrium

e− + p+ ←→ H(1s) + γ. (1.115)

We labelled the ground state 1s for hydrogen, since we will discuss excited states later.

It is possible to get an estimate of the time of recombination thanks to the Saha
condition Eq. (1.96). We take into account that protons, electrons and hydrogen have

18The term recombination is misleading: this is the first time electrons and nuclei combined.
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a non-relativistic profile, given that mH ,mp,me � Tb (here Tb is the temperature of the
baryon fluid, which is equal to the photon temperature if photons and baryons are
in kinetic equilibrium, Tb = T ). We can write

nH,1s
nenp

∣∣∣∣
eq

=
n

(0)
H,1s

n
(0)
e n

(0)
p

= gH,1s
gegp

(
mH

memp

2π
T

)3/2

e(mp+me−mH)/T . (1.116)

In the prefactor of Eq. (1.116) we can approximate mH ' mp, but in the exponential
the difference between mp+me and mH is crucial: it is the binding energy of hydrogen,
ε0 = mp + me −mH = 13.6 eV. The number of internal degrees of freedom are gH,1s = 4
and gp = ge = 2. At this stage, it is useful to introduce the free electron fraction,

Xe ≡
ne
ntot
H

= ne
np + nH,1s

, (1.117)

i.e., it is the ratio of free electrons to total hydrogen, both in ionized and neutral
form. As a consequence of the neutrality of the universe, we have ne ' np (we are
neglecting some small amount of ionized helium in the r.h.s. of this equation). Using
the definition of the He4 mass fraction (c.f. Eq. (1.113)), we can write the total hydrogen
density in terms of baryon density as ntot

H = nb − 4ntot
He = nb(1 − 4mHn

tot
He/(mHnb)) '

nb(1− Yp). Bearing all of this in mind, we can recast Eq. (1.116) in terms of Xe,

X2
e

1−Xe

∣∣∣∣
eq

= 1
η(1− Yp)

(
me

T

)3/2 √
π

25/2ζ(3)
e−ε0/T , (1.118)

where we used nb = ηnγ, and applied Eq. (1.75) to compute nγ. We see that, when
T ∼ ε0, the r.h.s. of Eq. (1.118) is of order 109(me/T )3/2 ∼ 1015. Thus, the denominator
at the l.h.s. needs to be very close to zero, i.e. almost all hydrogen is still ionized, Xe '
1. This is because the number of photons compared to baryons is so high, that even
for T < ε0 the high-energy tail of the photon distribution still contains many ionizing
photons with E > ε0. In fact, we can use Eq. (1.118) to estimate the temperature Trec at
which Xe = 0.1 (this could serves as a definition of recombination temperature), to get

Trec ' 0.3 eV ' 3600 K. (1.119)

Using Trec = T0(1 + zrec), this leads to a recombination redshift of around zrec ∼ 103.

One could now compute the time at which photons decoupled from the plasma,
or in other words, the time of last scattering. For this, it would suffice to compare
the photon scattering rate Γγ ∼ σTnbXe (where σT ' 2 × 10−3 MeV−2 is the Thomson
cross-section) with the Hubble rate, H = H0

√
Ωm(T/T0)3/2. This procedure yields a

value of the order zdec ∼ 103, indicating that photon decoupling took place around
recombination. In Sect. 1.6.5, we will give a more precise definition of zdec as the
maximum of the visibility function.

Even if the Saha equation gives a correct estimate of the time of recombination,
it fails at predicting the residual amount of free electrons at later times. To track
accurately the evolution of Xe, we need to apply the Boltzmann equation. Using
Eq. (1.94) for the electron density n1 = ne gives

a−3d(nea3)
dt

= −〈σv〉

n2
e −

n
(0)
e n

(0)
p

n
(0)
H,1s

nH,1s

 , (1.120)
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It is more convenient to rewrite Eq. (1.120) in terms of the free electron fraction Xe.
Using Eq. (1.116) and Eq. (1.117), we obtain

dXe

dt
= (1−Xe)β − αntot

H X2
e , (1.121)

where β and α denote the photoionization and recombination rates,

β ≡ α
(
meTb

2π

)3/2
e−ε0/Tb , α ≡ 〈σv〉 (1.122)

However, Eq. (1.121) is still an incomplete description of the recombination pro-
cess, as we shall see. The first compelling model of recombination was developed
by ZELDOVICH et al. (1968) and PEEBLES (1968), that we briefly discuss in the following.

The effective three-level model

This recombination model assumes that hydrogen can be in three different states

1. Hydrogen in the ground state 1s, (nH,1s).

2. Hydrogen in the excited states, mostly 2p or 2s (nH,2l).

3. Ionized hydrogen (np ' ne).

This is schematically depicted in the left panel of Fig. 1.11. If the different
atomic levels of hydrogen are in kinetic equilibrium between each other, they
obey a simple relation

nH,n′l′

nH,n

∣∣∣∣
eq

= (2l′ + 1)
n2 e−(E′n−En)/T , (1.123)

where nH,n =
∑n−1
l=0 nH,nl and En = −ε0/n

2 are the corresponding energies of
each atomic level.

The first important thing to note is that recombination to the ground state (n = 1) is
very inefficient, since the emitted photon has enough energy to reionize another neu-
tral hydrogen atom, leaving Xe unaffected. Indeed, the cross section for absorption of
photons just above 13.6 eV is σpi ' 6× 10−18 cm2 (C. HIRATA 2006), while the total den-
sity of hydrogen is around ntot

H = (1 − Yp)ηnγ ∼ 200[(1 + z)/1000]3 cm−3 (we temporarily
restore I.S. units). The typical time before a photon is reabsorbed is thus of order

treabs ∼
1

ntot
H x1sσpic

∼ 104

x1s

( 1000
1 + z

)3
s, (1.124)

where x1s ≡ nH,1s/n
tot
H . We see that around recombination, and as long as x1s >

10−9, this reabsorption time is much smaller than the typical expansion time, tH =
1/H = Ω−1/2

m H−1
0 (1 + z)−3/2 ∼ 1013 s. Hence, efficient recombination only happens when

electrons initially get captured into an excited state n ≥ 2. In this case, the population
of the n = 2 states are suppressed with respect to n = 1 states by a factor e−3ε0/4T ∼
10−17 (according to Eq. (1.123)), so there is no reabsorption problem. Therefore, the α
factor in Eq. (1.121) has to be replaced by the so called case B recombination rate,

αB =
∞∑
n=2

n−1∑
l=0
〈σ[p+e→H(nl)+γ]v〉. (1.125)
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Figure 1.11 – Left panel: Schematic view of the three-level model of recombination. Taken
from https://cosmo.nyu.edu/yacine/teaching/cmb_fudan/lecture_2_yah.pdf. Right
panel: Evolution of the free electron fraction, computed using either the Saha equation in
Eq. (1.118) or the RECFAST code. We note that RECFAST also takes into account the two
Helium recombinations. We have assumed Yp = 0.24 and Ωb = 0.049.

This process is then followed by a fast radiative cascade to n = 2. The resulting excited
hydrogen atom could subsequently reach the ground state in a much slower decay,
through one of the following processes:

H(2s)←→ H(1s) + γ + γ, (1.126)

H(2p)←→ H(1s) + γLyα. (1.127)

The two-photon decay process has a rate Λ2γ ' 8.2 s−1, and neither of the emitted
photons has enough energy to excite another hydrogen atom. On the contrary, the
emitted Lyman-α photons are usually re-absorbed by other hydrogen atoms, since
the optical depth for these photons during recombination is very large. This effectively
delays recombination. However, expansion eventually redshifts the Lyman-α photons
off the resonance, so that they can no longer be re-absorbed by other atoms . This

is characterized by the quantity Λα ≡
Hω3

Lyα
π2ntot

H (1−Xe) (where ~ωLyα = 3ε0/4 is the Lyman-α
energy), which gives the net 2p→ 1s transition rate accounting for re-absorptions. To
properly include all those effects, the r.h.s. of Eq. (1.121) gets an additional factor
(see C. HIRATA (2006) for a proof),

C = Λα + Λ2γ
Λα + Λ2γ + 4βB

, (1.128)

where βB = αB
(
meTb

2π

)3/2
e−ε0/4Tb is the photoionization rate from n = 2. We see that

C gives the probability for an electron in the excited n = 2 state to reach the ground
state before being ionized. The equation describing the evolution of Xe then reads

dXe

dz
= − C

(1 + z)H

[
(1−Xe)αB

(
meTb

2π

)3/2
e−ε0/Tb − αBntot

H X2
e

]
. (1.129)

Given that the recombination rate per free electron CαBn
tot
H Xe is always much smaller

than H, this model predicts that recombination happens much slower than in Saha

https://cosmo.nyu.edu/yacine/teaching/cmb_fudan/lecture_2_yah.pdf
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equilibrium. In addition, it gives a non-zero freeze-out electron fraction of X∞e ∼ 10−4.

Evolution of the baryon temperature

So as to complete the description of recombination, we need to track not only the
free electron ratio Xe, but also the baryon temperature Tb, which enters in several
places in Eq. (1.129). The assumption Tb = T is valid in the early universe, but it
ceases to be true at later times. The evolution of matter temperature receives two
main contributions (C. HIRATA 2006)

dTb
dz

= 2Tb
1 + z︸ ︷︷ ︸

adiabatic

+ 1
(1 + z)H

8σTarT 4

3mec

Xe

1 + fHe +Xe
(Tb − T )︸ ︷︷ ︸

Compton scattering

= 1
1 + z

[2Tb + γ(Tb − T )] . (1.130)

Here we introduced the dimensionless parameter

γ ≡ Xe

1 + fHe +Xe

8σTarT 4

3Hme
, (1.131)

where ar = 4σB/c = π2k4
B/(15~3c3) is the radiation constant. The first term in

Eq. (1.130) simply describes the effect of the cosmic expansion, while the second
one describes the Compton scattering between CMB photons and the gas. Initially
γ � 1, so the second term dominates and Compton interactions couple baryons to
radiation, so that Tb = T ∝ a−1. Later on, the γ factor decreases until becoming very
suppressed (at a redshift of around z ∼ 150), time after which baryons start to cool
down adiabatically, Tb ∝ a−2. The gas temperature will eventually increase again
in the reionization era, due to the ionizing radiation emitted by the first stars and
galaxies.

Modern recombination codes

It was realized by the end of the 90s that the upcoming high-precision CMB data
from the Planck satellite was going to require to compute the recombination history
with a ∼ 0.1% precision. Thus, many improvements have been added to the three-
level model in the last years, such as:

• Following not only n = 2, but a virtually infinite number of excited levels.

• Computing accurately the radiative transfer in the Lyman-α line.

• Including Helium recombination.

These corrections have been implemented approximately in the code RECFAST
(SEAGER et al. 1999), which adds some fudge factors to Eq. (1.129) to match a
complicated multilevel calculation, and exactly in the more sophisticated codes
HYREC (ALI-HAIMOUD et al. 2011) and COSMOREC (CHLUBA et al. 2011). The three
recombination codes are currently implemented in CLASS . In the right panel of
Fig. 1.11, we show the evolution of the free electron fraction using both the Saha
equilibrium condition in Eq. (1.118) and the more advanced calculation with RECFAST
.

As a side note, RECFAST also includes the first and second Helium recombinations,
He++ → He+ and He+ → He, whose binding energies are respectively given by εHe++ =
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4ε0 = 54.4 eV and εHe+ = 24.6 eV. Since these energies are higher than the H bind-
ing energy ε0, He recombines first. The first He recombination (happening between
5000 ≤ z ≤ 8000) can be safely described by Saha equilibrium, while the second He
recombination requires a more careful treatment. Therefore, RECFAST actually solves
for three variables (coupled between each other): the proton fraction Xp ≡ np/ntot

H , the
singly-ionized He fraction XHe+ ≡ nHe+/ntot

He (where ntot
He = nHe + nHe+ + nHe++ ), and the

baryon temperature Tb. From the neutrality condition ne = np + nHe+ + 2nHe++, we see
that the free electron fraction is given by

Xe = Xp + fHe(XHe+ + 2XHe++), (1.132)

where fHe ' Yp/(4(1 − Yp)) (c.f. Eq. (1.114)). Eq. (1.132) tells us that, even when
hydrogen still hasn’t recombined (Xp = 1), we can still have Xe > 1 due to He
recombinations not being completed yet (XHe+ 6= 0 and XHe++ 6= 0). This explains the
small bumps that can be seen in Xe at high z in the right panel of Fig. 1.11.

Reionization

A few hundred million years after recombination, the first stars and galaxies were
born. Around these objects, bubbles of ionized plasma formed due to the emitted
ultraviolet radiation. Over time, these bubbles grew and eventually overlapped,
leaving the IGM fully ionized again (except for some small traces of neutral hydrogen).

As opposed to what happens with recombination, the details of this epoch of
reionization are very poorly understood, both at the theoretical and observational
level. The best probe that we have nowadays comes from the the optical spectra of
very distant quasars, such as the one we show in Fig. 1.12. The Lyman-α absorption
lines in these spectra are a very good indicator of the presence of neutral hydrogen.
If a quasar from the epoch of reionization shines photons with λ < λLyα = 121.57 nm,
then these photons get stretched due to the cosmic expansion, until reaching
λ = λLyα and being absorbed by the neutral hydrogen in the surrounding medium.
This leads to the so-called Gunn-Peterson (GP) trough, which was predicted in 1965
(GUNN et al. 1965). The GP trough has been observed only in the spectra of quasars
located at z & 6 (BECKER et al. 2015), indicating that the universe had to be completely
reionized below this redshift. Notice that photons reaching λ = λLyα after the end of
reionization can still be absorbed, due to encounters with individual clouds of neutral
hydrogen along their path. This produces a jagged region in the quasar spectra that
is known as the Lyman-α forest.

Observations of the CMB can also probe the EoR. The increase in Xe(z) at low
redshifts enhances the scattering rate between photons and electrons, which leads to
peculiar patterns in the temperature and polarization spectra (as we will discuss in
Sect. 1.6.5). The CMB spectra are primarily sensitive to the column density of elec-
trons along the line of sight, and therefore to the optical depth at reionisation, defined by

τreio ≡
∫ zreio,start

0
Xe(z)ntot

H (z)σT
dt

dz
dz, (1.133)

where zreio,start is the redshift at the beginning of reionization. For reionization histories
centered around z ∼ 6 − 7 (as expected from GP measurements), the predicted τreio is
rather small, in agreement with the values recently reported by Planck18. Because of
the large theoretical uncertainties associated with the EoR and the fact that the CMB
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Figure 1.12 – Optical spectra of quasar ULAS J1319+0959 at z = 6.13, accompanied by a
pictorial description of the reionization process. The image has been adapted from Figure 1
in BECKER et al. (2015).

is not very sensitive to the details of reionization, Boltzmann codes usually adopt
parametrizations, that interpolate a low Xe at high-z to a Xe ∼ 1 at low-z. The most
common parametrization and the one used in CLASS by default is

Xe(z) = 1 + fHe
2

[
1 + tanh

(
y(zreio)− y(z)

∆y

)]
, (1.134)

where y = (1+z)3/2 and ∆y = 3
2(1+zreio)1/2∆z, with ∆z = 0.5. With this parametrisation,

there is a one-to-one relation between the mid-point redshift of reionisation zreio and
τreio. For other parametrisations or approaches to model reionization sources, we refer
to POULIN (2017). There is a current effort in planning and building instruments to
observe the 21-cm hyperfine line of neutral hydrogen, such as HERA (ABDURASHIDOVA

et al. 2022) or SKA (BARRY et al. 2021) radio interferometers. These observations
promise to open a new window onto the dark ages and the beginning of reionization.

1.6 The linearly perturbed universe

Until now, we have been considering the universe as perfectly isotropic and
homogeneous. However, to understand the pattern of temperature and polarization
fluctuations of the CMB, or how the primordial fluctuations eventually formed all
the large-scale structures, we need to introduce anisotropies and inhomogeneities.
We can treat them in linear perturbation theory as long as these perturbations remain
small. This provides an excellent description of the CMB physics, which are mostly
determined by processes in the early universe, when over-densities were of the order
O(10−5). For small scales at small redshift, non-linear effects become important, and
perturbation theory needs to be replaced by more complicated descriptions, such as
N-body simulations.
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The basic idea of cosmological perturbation theory is to decompose all rel-
evant quantities into spatial averages (from now on, denoted by an overline)
plus a linear perturbation,

gµν(τ, ~x) = ḡµν(τ) + δgµν(τ, ~x), Tµν(τ, ~x) = T̄µν(τ) + δTµν(τ, ~x). (1.135)

Here ḡµν(τ) is the FLRW metric, which for a flat spacetime in cartesian co-
ordinates reads

ds2 = ḡµνdx
µdxν = a(τ)2

(
−dτ2 + δijdx

idxj
)
, (1.136)

while T̄µν(τ) is the stress energy tensor of a perfect fluid that we introduced in
Eq. (1.12). We will often switch from real to Fourier space when expressing equa-
tions for the perturbations. This is very advantageous, because it will allow to reduce
a partial differential equation to several (decoupled) ordinary differential equations,
one per mode ~k. Put another way, in linear theory each mode evolves independently.
We will adopt the common practice (not suitable to mathematicians) of calling the
variables in real space in the same way as in Fourier space. For instance, the Fourier
transform of the density contrast δ(τ, ~x) ≡ ρ(τ, ~x)/ρ̄(τ) − 1 will read

δ(τ, ~x) =
∫

d3~k

(2π)3 δ(τ,~k)ei~k·~x −→ δ(τ,~k) =
∫
d3~x δ(τ, ~x)e−i~k·~x. (1.137)

It is customary to express the perturbed metric components in the following way

δg00 = −2a2(τ)A, δg0i = a2(τ)Bi, δgij = a2(τ)Hij , (1.138)

where A, Bi and Hij are generic functions of space and time. On the other hand,
perturbing the stress-energy tensor in Eq. (1.12) gives

δTµν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν) + δPδµν + Sµν . (1.139)

The perturbed stress-energy tensor can now receive a contribution from the
anisotropic stress tensor Sµν (whose non-zero elements are the off-diagonal compo-
nents of δT ij). This can be relevant for some fluids such as neutrinos, as we shall
see later. In addition, perturbations can induce non-vanishing energy flux T 0

j, as
well as momentum density T i0. So as to give an expression for each of the δTµν
components in Eq. (1.139), we first need to know the expression for the four velocity
Uµ = Ūµ + δUµ. As we show in App. A.1, it can be written as

Uµ = 1
a

[1−A, vi], (1.140)

where vj is the coordinate velocity. With this, the covariant four-velocity is easily
obtained from Uµ = gµνU

ν,

Uµ = a[−(1 +A), vi +Bi]. (1.141)

Inserting Eq. (1.140) and Eq. (1.141) in Eq. (1.139), we arrive at

δT 0
0 = −δρ, δT i0 = −(ρ̄+ P̄ )vi, δT 0

j = (ρ̄+ P̄ )(vj +Bj), δT ij = δPδij + Sij . (1.142)

Scalar-vector-tensor decomposition
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Both tensors gµν and Tµν are symmetric, so in the most general case each one con-
tains 10 degrees of freedom (d.o.f). It was shown in BARDEEN (1980) that these d.o.f.
can be decomposed in scalar, vector and tensors (SVT). Here the notion of scalar, vec-
tor or tensor is referred to their transformation properties under the group of spatial
rotations SO(3), which is a symmetry of the FLRW metric. This SVT decomposition is
extremely useful, because Einstein equations for scalars, vectors and tensors don’t mix at linear
order. This powerful result is known as the decomposition theorem, and a proof can be
found in KNOBEL (2012). For Bi the decomposition is simply

Bi = ∂iB + B̂i, (1.143)

with ∂iB̂i = 0 (divergenceless quantities are denoted with hats). For the tensor Hij

the decomposition reads (STEWART 1990):

Hij = 2Cδij + 2
(
∂i∂j −

δij
3 ∇

2
)
E

+
(
∂iÊj + ∂jÊi

)
with ∂iÊi = 0

+ 2Êij with ∂iÊij = 0 and Êii = 0. (1.144)

Thus we have split the 10 d.o.f. of the metric into:

• 4 scalar d.o.f. corresponding to A,B,C,E.

• 4 vector d.o.f. corresponding to the independent components of B̂i and Êi

• 2 tensor d.o.f. corresponding to the independent components of Êij

In the presence of matter sources, scalars represent the response of the metric to
irrotational velocity fields (that is, with vanishing vorticity). Vectors represent the
response of the metric to vorticity, and they are usually irrelevant in cosmology,
since they decay with the cosmic expansion. Tensor perturbations are the only
ones that can propagate in vacuum, and their d.o.f. describe the two polarizations
of gravitational waves. In this work we will exclusively concentrate on scalars (the
only modes with a newtonian analog among the three) and their associated matter
perturbations, although we’ll say a few words about tensors in Sect. 1.6.5.

It is also possible to perform a SVT decomposition for the stress-energy tensor.
For the coordinate velocity vi we may write,

vi = ∂iv + v̂i, (1.145)

while for the anisotropic tensor Sij,

Sij =
(
∂i∂j −

δij
3 ∇

2
)
S + 1

2
(
∂iŜj + ∂jŜi

)
+ Ŝij . (1.146)

In practice, we will be only interested in v and S, since we just focus on the scalar
sector. It is traditional to trade the scalar components of the stress-energy tensor
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(δρ, v, δP, S) for the more common variables (δ, θ,Π, σ), which are defined by:

ρ̄δ ≡ −δT 0
0, (1.147)

(ρ̄+ P̄ )θ ≡
∑
i

∂iδT
0
i, (1.148)

ρ̄Π ≡ 1
3
∑
i

T ii, (1.149)

(ρ̄+ P̄ )∇2σ ≡ −
∑
i,j

(
∂i∂j −

δij
3 ∇

2
)
δT ij . (1.150)

Comparing previous equations with Eq. (1.142), Eq. (1.145) and Eq. (1.146), we
find the relations 19

δ = δρ/ρ̄, Π = δP/ρ̄, θ =
∑
i

∂ivi = ∇2v, (ρ̄+ P̄ )∇2σ = −2
3∇

2∇2S. (1.151)

The total stress-energy tensor is simply obtained by summing over the stress-energy
tensor of each species. To give an example, the total perturbed density is δρtot =∑
I ρ̄IδI , from which we infer that δtot =

∑
I ρ̄IδI/ρ̄tot.

1.6.1 The gauge problem

In the FLRW universe, there is only one possible slicing of constant-time hyper-
surfaces compatible with the assumption of homogeneity. On the contrary, in the
perturbed FLRW universe, there are infinite possibilities of time slicings compatible
with perturbation theory (i.e. such that on each constant-time hypersurface, all
quantities remain close to the average value). For example, the density perturbation
is defined by δρ(τ, ~x) ≡ ρ(τ, ~x) − ρ̄(t). While ρ(τ, ~x) is an unambiguously defined
quantity, ρ̄(t) depends on the particular time slicing passing through (τ, ~x) over which
we have decided to perform the average. Hence, δρ(τ, ~x) also depends on this choice,
as illustrated in Fig. 1.13.

A gauge is simply a choice of time slicing, with a specific choice of spatial coor-
dinates on these constant-time slices. Gauge transformations are thus induced by
coordinate transformations,

xµ −→ x̃µ = xµ + ξµ(τ, ~x), (1.152)

where ξ0 ≡ T and ξi ≡ Li = ∂iL + L̂i. These coordinate transformations map the
points of once slicing to those of another slicing. We remark that not all coordinate
transformations give rise to valid gauge transformations. The parameters T and
Li need to be small so that perturbed quantities remain at linear order after the
transformation.

To see how metric elements transform under this gauge transformation, it suffices
to use the transformation law for tensors,

gµν(x) = ∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃). (1.153)

19We take B = 0 since we can always use the gauge freedom to do so, as we will see promptly.
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Figure 1.13 – The gauge ambiguity. Darker (brighter) regions have larger (smaller) density,
diluting with the cosmic expansion. Left panel: A homogeneous universe, with the only valid
time slicing shown in red. Right panel: A universe with perturbations. In this case there
are many possible time slicings, two of them are shown in blue and yellow. In both slicings,
density remains homogeneous on average

Substituting Eq. (1.152) and Eq. (1.138) in Eq. (1.153), we arrive at the follow-
ing transformation rules

A −→ Ã = A− T ′ −HT, (1.154)

Bi −→ B̃i = Bi + ∂iT − L′i, (1.155)

Hij −→ H̃ij = Hij − (∂iLj + ∂jLi)− 2HTδij . (1.156)

We give a proof of Eq. (1.155) in App. A.2 as an example. It will be convenient to
express Eq. (1.154), Eq. (1.155) and Eq. (1.156) in terms of the SVT decomposition:

A −→ A− T ′ −HT, (1.157)

B −→ B + T − L′, B̂i −→ B̂i − L̂′i, (1.158)

C −→ C −HT − 1
3∇

2L, (1.159)

E −→ E − L, Êi −→ Êi − L̂i, Êij −→ Êij . (1.160)

In a similar vein, one can obtain the gauge transformation rules for the stress-
energy tensor using,

Tµν(x) = ∂xµ

∂x̃α
∂x̃β

∂xν
T̃αβ(x̃). (1.161)

Plugging Eq. (1.152) and Eq. (1.142) in Eq. (1.161) yields

δρ −→ δρ̃ = δρ− T ρ̄′, (1.162)

δP −→ δP̃ = δP − T P̄ ′, (1.163)

vi −→ ṽi = vi + L′i, (1.164)

Sij −→ S̃ij = Sij . (1.165)

We have proved Eq. (1.162) in App. A.2 to show the spirit of the calculation. We
have seen that cosmological perturbations are subject to gauge freedom, and also
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how the metric and the stress-energy tensor components change under these gauge
transformations. However, this freedom can be problematic, since it can easily
produce fake perturbations with no physical meaning. There are two strategies to
deal with this issue: either work with gauge invariant quantities, or fix a gauge. We
describe these two strategies in the following.

Gauge invariant variables

By looking at the way the metric perturbations change under gauge transforma-
tions, one can define linear combinations of them that are left invariant. These are
the so-called Bardeen variables:

ψ ≡ A+H(B − E′) + (B − E′)′, (1.166)

φ ≡ −C −H(B − E′) + 1
3∇

2E, (1.167)

φ̂i ≡ Ê′i − B̂i, Êij . (1.168)

We note that there are 6 d.o.f. in the Bardeen variables: this is exactly what we expect
from the original 10 d.o.f. with 4 gauge choices. Using Eq. (1.157)-Eq. (1.160), one
can easily check that the Bardeen variables are indeed gauge invariant.

In a similar way, having a look at Eq. (1.162)-Eq. (1.164) as well as Eq. (1.157)-
Eq. (1.160), it is possible to construct linear combinations of the stress-energy tensor
components which are gauge-invariant:

δρGI ≡ δρ− ρ̄′(E′ −B), (1.169)

δPGI ≡ δP − P̄ ′(E′ −B), (1.170)

vGI
i ≡ vi + ∂i(E′ −B). (1.171)

One could study the dynamical equations of perturbations in terms of these gauge
invariant variables. In practice, this is not what it is usually done, since these
equations can be quite tricky.

Gauge fixing

This just consists in introducing a condition such that the time slicing is unique.
In the scalar sector, this is typically achieved by using the freedom of the transfor-
mation variables T and L in order to set two of the four scalar metric perturbations
to zero. There is no problem with this method, since observable quantities do not
depend on the gauges, only the computations do. Different gauges have their ad-
vantages. We are going to discuss the two gauge choices that are more commonly
used in the literature.

• The Newtonian gauge. This is defined by the choice B̃ = Ẽ = 0, which can be
achieved by setting L = E and T = E′ − B. This prescription fixes a unique time
slicing. A big advantage of this gauge is that the metric is diagonal and that the
perturbed quantities can be trivially linked to the Bardeen variables. Namely,
A = ψ and C = −φ. Thus, the metric reads

ds2 = a2(τ)
[
−(1 + 2ψ)dτ2 + (1− 2φ)δijdxidxj

]
. (1.172)

The name of the gauge stems from the fact that Eq. (1.172) looks very similar to
the weak-field limit of GR about the Minkowski metric. In fact, ψ plays the role of
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the Newtonian gravitational potential on sub-horizon scales. Furthermore, the
term a2(τ)(1− 2φ) represents a scale factor with a local distortion.

• The synchronous gauge. This gauge, originally introduced by LIFSHITZ (1946), is
obtained by the choice Ã = B̃ = 0, which can be achieved by picking L and T
such that T ′ +HT = A and L′ = T + B. Thus, scalar perturbations only enter in
the spatial part of the metric:

ds2 = a2(τ)
[
−dτ2 + (δij +Hij)dxidxj

]
, (1.173)

where Hij = 2Cδij + 2(∂i∂j − δij
3 ∇

2)E. It is traditional to trade C and E for the
scalar variables h an η. The first is defined as the trace of Hij, h ≡

∑
iH

i
i = 6C,

while the second is defined through the relation 2∇2E = 6η + h. Hence, we can
write in Fourier space:

−2k2E = 6η + h, (1.174)

Hij = δij
3 h− 2

(
kikj −

δij
3 k2

)
E = k̂ik̂jh+

(
k̂ik̂j −

δij
3

)
6η, (1.175)

where k̂i ≡ ki/k. Unfortunately, this still doesn’t fix the gauge. Indeed, Ã = 0
is obtained for any T satisfying T ′ + HT = A, i.e. aT =

∫
dτaA + c1, so the time

slicings haven’t yet been fixed due to this integration constant c1. It is always
possible to use the synchronous gauge as long as one uses some extra condition
that eliminates the residual gauge freedom. One common approach is to set
the initial velocity divergence of the CDM to zero, θini

cdm = 0 (synchronous gauge
comoving with the CDM).

It is practical to have equations that relate both gauges. For the metric per-
turbations, this can be straightforwardly achieved using the Bardeen variables in
Eq. (1.166) and Eq. (1.167). Setting B = E = 0 for the newtonian gauge and A = B = 0
for the synchronous gauge, we get (in Fourier space):

ψ = Hα+ α′, (1.176)

φ = η −Hα, (1.177)

where α ≡ −E′ = (6η+ h)′/2k2. In a very similar manner, we can relate elements of the
perturbed stress-energy tensor using the gauge invariant variables that we defined
in Eq. (1.169)-Eq. (1.171). We obtain:

δρnew = δρsyn + ρ̄′α, (1.178)

δP new = δP syn + P̄ ′α, (1.179)

vnew
i = vsyn

i − ∂iα. (1.180)

The last equation can equivalently be expressed as θnew = θsyn + k2α (after taking
the divergence and going to Fourier space). We observe that all the terms with α
at the r.h.s. of Eq. (1.178)-Eq. (1.180) are of the order ∼ H2/k2 or ∼ H/k, meaning
that they are very suppressed on sub-Hubble scales (k � H). Indeed, well inside
the Hubble radius we expect to recover a Newtonian perturbation theory, where the
gauge ambiguity (which is a purely relativistic effect) is absent.

The synchronous gauge is the one that is commonly adopted in Boltzmann codes,
owing to its numerical stability. For this reason, it is also the one we have adopted
in the Chapter 2, Chapter 3 and Chapter 4. However, physics is more intuitive using
the Newtonian gauge, so we will restrict to this gauge for the rest of this Chapter.
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1.6.2 Perturbation equations

Now that we have defined the perturbation d.o.f and fixed a gauge, it is time
to concentrate on the dynamical evolution of these perturbed variables. More pre-
cisely, we need to know:

1. How the evolution of matter fluctuations is influenced by gravitational potentials
and by the interactions among the different species.

2. How gravitational potentials respond to changes in the matter fluctuations.

The latter is dictated by the perturbed version of Einstein equations (see Eq. (1.10)).
For the former, there are a priori several strategies. We have seen that there are
four scalar variables in the perturbed stress-energy tensor, that can be taken
to be the density contrast δ, the perturbed pressure δP , the velocity divergence
θ and the anisotropic stress σ. The stress-energy conservation ∇µTµν = 0 (see
Eq. (1.13)) leads to two dynamical equations in the scalar sector, the continuity
and the Euler equation. Therefore, two more relations are needed to close the
system. For ideal fluids, adiabaticity allows to relate the sound speed c2

s ≡ δP/ρ̄δ
with the EoS w, whereas isotropy imposes σ = 0. In the most general case, for fluids
which are non-ideal and/or have non-negligible interactions with other species, the
stress-energy conservation provides an incomplete description. The most general
description is obtained thanks to the perturbed version of the Boltzmann equation
Eq. (1.58), that we proceed to discuss.

Perturbed Boltzmann equations

Let us consider a particle with mass m and energy E =
√
m2 + p2, where we remind

that the amplitude of the physical three-momentum is defined as p ≡
√∑

ij gijP
iP j.

As we show in App. A.3 , the elements of the 4-momentum vector Pµ = dxµ

dσ =
(P 0, P i) are given by

P 0 = E

a
(1− ψ), P i = pn̂i

a
(1 + φ). (1.181)

In terms of these variables, the 0 component of the geodesic equation leads to (see
App. A.3 for the derivation)

dq

dτ
= qφ′ − En̂ · ~∇ψ, (1.182)

where q = ap is the comoving momentum and E = aE is the comoving energy.
This equation describes the change in comoving momentum for a particle follow-
ing geodesic motion in a perturbed FLRW universe. The first term at the r.h.s of
Eq. (1.182) accounts for a local energy loss due to dilation, i.e. the fact that (locally)
the expansion is a bit ahead or behind the average. The second term describes the
energy increase for photons falling in gravitational wells, or the energy decrease of
those leaving the gravitational wells. In absence of inhomogeneities, φ = ψ = 0, we
recover the familiar momentum redshift, q = const., i.e. p ∝ a−1. A crucial observation
is that for massless particles, we can use E = q and rewrite Eq. (1.182) as

1
q

dq

dτ
= φ′ − n̂ · ~∇ψ. (1.183)
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That is, for massless particles, the relative change in momentum doesn’t depend on
momentum itself. This means that any massless particle that was in equilibrium in
the early universe, will retain the Fermi-Dirac or Bose-Einstein form, even at the
level of perturbations. The only way for this massless particle to acquire non-thermal
distortions is through non-gravitational interactions. On the contrary, gravitational
interactions can induce nonthermal distortions for massive particles, since the
momentum dependence can’t be eliminated from the r.h.s. of Eq. (1.182). This will
be important when discussing the evolution of perturbations for massive neutrinos.

We are ready to derive the Boltzmann equation for the PSD f in a inhomogeneous
universe. According to Eq. (1.58) we have

df

dσ
= P 0 df

dτ
= C[f ]. (1.184)

Using the chain rule, we can expand the derivative df/dτ , taking account that the PSD
has in this case a general dependence f = f(τ, xi, q, n̂i). Hence,

df

dτ
= ∂f

∂τ
+ ∂f

∂xi
dxi

dτ
+ ∂f

∂q

dq

dτ
+ ∂f

∂n̂i
dn̂i

dτ
. (1.185)

Both factors ∂f/∂n̂i and ∂n̂i/∂τ are first order in perturbations, since particles follow
straight lines in a homogeneous universe. Thus, we can can discard the last term in
Eq. (1.185). For the factor dxi/dτ , we notice that dxi/dτ = (dxi/dσ)(dσ/dτ) = P i/P 0.
Finally, for dq/dτ , we insert the result of the geodesic equation Eq. (1.182). We get

∂f

∂τ
+ qn̂i

E
∂f

∂xi
+ q

∂f

∂q

[
φ′ − E

q
n̂i
∂ψ

∂xi

]
= C[f ]

P 0 . (1.186)

At this stage, it is useful to switch to Fourier space, which means that the PSD is
now a function of the type f = f(τ, q, k, µ), where µ ≡ k̂ · n̂. Notice that the unit vector
n̂ enters only through µ, i.e. through the cosine of the angle between the direction
of propagation and the wavenumber. This indicates a rotational symmetry around n̂,
which arises just due to the isotropy of the FLRW background. It is customary to split
the PSD between a background and a linearly perturbed contribution

f(τ, q, k, µ) = f̄(τ, q)(1 + Ψ(τ, q, k, µ)). (1.187)

Plugging the decomposition of Eq. (1.187) into Eq. (1.186), we get two equations,
one at zeroth-order,

∂f̄

∂τ
= a2

E
C(0) != 0, (1.188)

and another at first-order

∂Ψ
∂τ

+ iµ
kq

E
Ψ + dlnf̄

dlnq

[
φ′ − iµkE

q
ψ

]
= a2

f̄E
C(1), (1.189)

where we have split the collision term in a zeroth-order and first-order contribution,
C = C(0) + C(1). In Eq. (1.188), we set C(0) = 0 since we assume that the relevant
interactions are such that they maintain an equilibrium distribution for f̄ . This is the
case for the Compton scattering between baryons and photons, that we shall discuss
later. Eq. (1.189) is the master equation governing the evolution of perturbations
of all relevant species in cosmology: photons, neutrinos, dark matter and baryons.



1.6. The linearly perturbed universe 51

In the following, we will particularize Eq. (1.189) for each species, by specifying the
energy-momentum relation and the collision term.

Before doing this task, let us detail how to obtain the elements of the perturbed
stress-energy tensor from Ψ. For this, it is convenient to eliminate the dependence of
Ψ on µ by doing an expansion over Legendre multipoles

Ψ(τ, q, k, µ) =
∑
`

(−i)`(2`+ 1)Ψ`(τ, q, k)P`(µ) (1.190)

We already showed in Eq. (1.50) how the stress-tensor components are obtained from
moments of the PSD. The linearly perturbed version of this equation is

δTµν(τ, k) = g

∫
d3 ~P

(2π)3 (−det(g))−1/2P
µPν
P 0 f̄(τ, q)Ψ(τ, q, k, µ). (1.191)

As we show in App. A.4, the elements of δTµν can be obtained from the multipoles
Ψ` in the following manner:

ρ̄δ = 4π
a4

∫ ∞
0

dqq2E f̄Ψ0, (1.192)

(ρ̄+ P̄ )θ = 4πk
a4

∫ ∞
0

dqq2qf̄Ψ1, (1.193)

ρ̄Π = 4π
3a4

∫ ∞
0

dqq2 q
2

E
f̄Ψ0, (1.194)

(ρ̄+ P̄ )σ = 8π
3a4

∫ ∞
0

dqq2 q
2

E
f̄Ψ2. (1.195)

From Eq. (1.194) and Eq. (1.195), we see that the perturbed pressure and anisotropic
stress of non-relativistic particles is suppressed by a factor q/am � 1. Let us now
describe the dynamics of each cosmological species.

Photons

Before decoupling, photons were in kinetic equilibrium with electrons thanks to
the frequent Compton interactions. We have seen that after decoupling the photon
distribution maintains the Bose-Einstein form both at the background (c.f. Eq. (1.70))
and the linearly perturbed level (c.f. Eq. (1.183)). Hence, the only way the photon PSD
can acquire anisotropies and inhomogeneities is through the temperature. Thus,
we can write the photon PSD as

fγ(τ, q, k, µ) =
[
exp

(
q

aT̄ (1 + Θ(τ, k, µ))

)
− 1

]−1

, (1.196)

where Θ ≡ δT/T̄ stands for the relative temperature shift. Expanding at first order,

fγ = f̄γ + ∂f̄γ

∂T̄
T̄Θ = f̄γ − q

∂f̄γ
∂q

Θ. (1.197)

We have used the fact that the background PSD f̄γ =
[
exp(q/aT̄ )− 1

]−1
satisfies ∂f̄γ

∂T̄
=

− q
T̄

∂f̄γ
∂q . This implies a very interesting relation

Ψγ(τ, q, k, µ) = −dlnf̄
dlnq

Θ(τ, k, µ) (1.198)
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That is, the perturbed PSD Ψ is a separable function on q and k . Inserting Eq. (1.198)
in Eq. (1.189), and using E = q, we get

∂Θ
∂τ

+ ikµΘ− φ′ + ikµψ = − a2

q2 ∂f̄
∂q

C(1)
γ = − a

p2 ∂f̄
∂p

C(1)
γ (1.199)

We have carried out the full derivation of the collision integral for photons, C(1)
γ , in

App. A.5. The final result reads

∂Θ
∂τ

+ ikµΘ− φ′ + ikµψ = an̄eσT

[
Θ0 −Θ + µvb −

P2(µ)
2 Θ2

]
(1.200)

where vb ≡ |~vb| = θb/ik is the common bulk velocity of baryons and electrons. The
terms Θ0 ≡ 1

4π
∫
dΩΘ and Θ2 ≡ 1

4π
∫
dΩP2(µ)Θ denote the monopole and quadrupole

perturbation, respectively. In Eq. (1.200) we have neglected for simplicity some extra
terms associated with photon polarization, which don’t affect the qualitative behavior
of Θ. We will say a few words about polarization in Sect. 1.6.5. The interaction term
at the r.h.s. of Eq. (1.200) can be understood intuitively, by considering the so called
tightly coupled limit (Γγ = an̄eσT � H). In this limit, Compton scattering enforces Θ2 → 0
(as we will see more clearly later), and the temperature perturbation becomes equal to
Θ = Θ0 + µvb, i.e. it is isotropic up to a dipole term accounting for the relative motion
between the photon-baryon fluid and the observer. This just reflects the idea that,
when interactions are strong, photons and electrons behave as a single fluid. In this
context, one typically introduces the optical depth, giving the opacity of the universe
at a given time τ seen from today

κγ(τ) ≡
∫ τ0

τ
dτ ′an̄eσT , −→ κ′γ = −an̄eσT . (1.201)

The optical depth tends to infinity at very early times, drops below one at recombina-
tion, and then decreases like an̄e ∼ a−2 (except during reionization, when it slightly
increases). Notice that the optical depth at reionization shown in Eq. (1.133) is
computed in the same way as in Eq. (1.201), but in a restricted time interval.

It is useful to perform a Legendre decomposition for Θ, similar to the one
we did for Ψ:

Θ(τ, k, µ) =
∑
`

(−i)`(2`+ 1)Θ`(τ, k)P`(µ) (1.202)

We can relate the temperature multipoles Θ` with elements of the perturbed stress-
tensor by inserting Ψγ,` = −dlnf̄

dlnqΘ` in Eq. (1.192)-Eq. (1.195). After doing integration by

parts, q4 df̄
dq = d

dq (f̄ q4)− 4f̄ q3, and discarding the total derivative term (since we assume
f̄ decreases sufficiently rapid for q → ∞), we end up with

δγ = 4Θ0, θγ = 3kΘ1, σγ = 2Θ2. (1.203)

The factor 4 in the δγ − Θ0 relation could have been anticipated by noting that the
photon density scales with temperature as ργ ∝ T 4. We can use the multipole ex-
pansion in Eq. (1.202) in order to eliminate the µ dependence from the Boltzmann
equation. The inverse relation of Eq. (1.202) is

Θ` = (−i)−`
∫ +1

−1

dµ

2 P`(µ)Θ(µ), (1.204)
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so the idea is to perform the integral (−i)−`
∫+1
−1

dµ
2 P`(µ) on each side of Eq. (1.200) 20.

This leads to the following hierarchy of equations for the photon multipoles:

δ′γ = −4
3θγ + 4φ′, (1.206)

θ′γ = k2
[
δγ
4 − σγ + ψ

]
+ κ′γ(θγ − θb), (1.207)

σ′γ = 4
15θγ −

6
5kΘ3 + 9

10κ
′
γσγ , (1.208)

Θ′` = k

2`+ 1 [`Θ`−1 − (`+ 1)Θ`+1] + κ′γΘ`, ∀ ` > 2. (1.209)

From the previous equations, we can understand why the anisotropic stress σγ and
higher moments are very suppressed in the tightly coupled limit, κγ � 1. The l.h.s. of
Eq. (1.208) is of order σγ/τ , which is much smaller than the third term at the r.h.s.,
of the order κγσγ/τ . Neglecting also the term with Θ3, we see that σγ ∼ τθγ/κγ, so σγ is
very suppressed with respect to θγ. In general, one shows that in the tightly coupled
regime, Θ` ∼ kτΘ`−1/κγ (which is the reason why we neglected the Θ3 term before).

Obviously, the infinite hierarchy of Eq. (1.206) -Eq. (1.207) needs to be truncated
at some multipole `max. The truncation scheme that has been recently adopted by all
Boltzmann codes is the one proposed by MA et al. (1995)

Θ′`max ' kΘ`max−1 −
`max + 1

τ
Θ`max + κ′γΘ`max . (1.210)

The first two terms at the r.h.s. are inspired by the recurrence relation for spherical
Bessel functions. Indeed, in the absence of time-varying gravitational potentials or
interaction terms, one can show that the exact solution of the Boltzmann hierarchy
gives Θ`(τ, k) ∝ j`(kτ) for ` > 0. As a side note, the Boltzmann hierarchy for massless
neutrinos is identical to the one showed in Eq. (1.206) -Eq. (1.208), except that all
collision terms proportional to κ′γ are set to zero.

Massive neutrinos

Neutrinos decoupled from the thermal plasma in the very early universe, as we
already saw in Sect. 1.5.3, so their collision term in Eq. (1.189) can be safely set
to zero, C(1)

ν = 0. Even if their background PSD is well described by a Fermi-Dirac
because they decoupled when they were relativistic, gravitational interactions induce
non-thermal distortions at the linearly perturbed level, due to the late-time effects
of their non-zero mass (c.f. Eq. (1.182)). Hence, the momentum d.o.f. cannot be
integrated out from the Boltzmann equation as was done for photons, and we have to
follow the full evolution in phase space.

Following the same logic that we applied to photons, we can eliminate the µ de-
pendence from the Boltzmann equation using the expansion in Legendre multipoles.
The inverse relation of Eq. (1.190) is Ψ` = (−i)−`

∫+1
−1

dµ
2 P`(µ)Ψ(µ), so performing the

20Doing this procedure, one encounters the integral
∫ +1
−1 dµµP`(µ)Θ(µ). In order to handle this term,

we use the recurrence relation

µP`(µ) = 1
2`+ 1[(`+ 1)P`+1(µ) + `P`−1(µ)]. (1.205)
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integral (−i)−`
∫+1
−1

dµ
2 P`(µ) in Eq. (1.189), we arrive at the following hierarchy of equa-

tions for the neutrino multipoles 21

Ψ′ν,0 = −kq
E

Ψν,1 −
dln̄f
dlnqφ

′, (1.211)

Ψ′ν,1 = kq

3E [Ψν,0 − 2Ψν,2]− Ek3q
dln̄f
dlnqψ, (1.212)

Ψ′ν,` = kq

(2`+ 1)E [`Ψν,`−1 − (`+ 1)Ψν,`+1], ∀ ` > 1. (1.213)

A similar truncation scheme as the one formerly discussed has been proposed for
massive neutrinos (MA et al. 1995)

Ψ′`max '
qk

E
Ψ`max−1 −

`max + 1
τ

Ψ`max . (1.214)

It is possible to derive conservation equations for the neutrinos by integrating the
Boltzmann hierarchy over the phase space. Indeed, if we integrate Eq. (1.211) over
4πa−4 ∫ dqq2E f̄ and Eq. (1.212) over 4πka−4 ∫ dqq3f̄ , we arrive at the continuity and
Euler equations (see App. A.6 for a proof):

δ′ν = −3H(c2
s − wν)δν − (1 + wν)

(
θν − 3φ′

)
, (1.215)

θ′ν = −H(1− 3c2
g)θν + k2

(
c2

s
1 + wν

δν + ψ − σν

)
, (1.216)

where c2
s ≡ δPν/δρν is the sound speed of the fluid and c2

g ≡ P̄ ′ν/ρ̄
′
ν is the adiabatic

sound speed. In general, c2
s is a spatially- and gauge-dependent quantity, as opposed

to c2
g. Eq. (1.215) and Eq. (1.216) could have been alternatively obtained using

the covariant conservation of the stress-energy tensor, ∇µTµν = 0 (c.f. Eq. (1.13)).
However, these conservation equations don’t provide a closed evolution of the system,
unless one specifies some recipe to compute c2

s and σν. The full description of the
system has to be obtained by solving for the multipoles Ψ`(τ, q, k) in the Boltzmann
hierarchy Eq. (1.211)-Eq. (1.213), and then using the momentum integrals in
Eq. (1.192)-Eq. (1.195) to get the elements of δTµν. As this is very time-consuming,
several approximate descriptions for the neutrino dynamics have been proposed.
These approaches typically describe neutrinos as a imperfect fluid, where the sound
speed is set to c2

s ' c2
g, and the anisotropic stress σν is expressed in terms of other

thermodynamic quantities (see for example SHOJI et al. (2010) or LESGOURGUES

et al. (2011) ). We will make use of such approximation to describe the warm decay
products of dark matter in Chapter 3.

Cold Dark Matter

Dark matter is also assumed to have decoupled very early from the primordial
bath, through some process such as the freeze-out mechanism that we sketched
in Sect. 1.5.4. Thus, its collision term in Eq. (1.189) can be set to zero, C(1)

cdm = 0.
CMB and LSS observations indicate that all or most of the dark matter needs to
be cold, i.e. non-relativistic. Therefore, the description of CDM is easily achieved by

21This set of equations can also be applied to describe any kind of collisionless warm dark matter
component.
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taking the non-relativistic limit of Eq. (1.215) and Eq. (1.216): c2
s ' c2

g ' 0, w ' 0
and σ ' 0. This yields

δ′cdm = −θcdm + 3φ′, (1.217)

θ′cdm = −Hθcdm + k2ψ. (1.218)

Let us express previous equations also in the synchronous gauge, since this will be
relevant for our discussion about decaying dark matter in Chapter 3. This can be done
straightforwardly with the help of the relations between the two gauges that we wrote
in Eq. (1.176)-Eq. (1.177) and Eq. (1.178)-Eq. (1.180). Applying these transformations
to the continuity equation, we get (δnew

cdm)′ = (δsyn
cdm − 3Hα)′ = −θnew

cdm + 3φ′ = −θsyn
cdm − k2α+

3η′ − 3(Hα)′. We see that the terms −3(Hα)′ cancel out and that −k2α + 3η′ = −h′

2 . We
do the same game with the Euler equation: (θnew

cdm)′ = (θsyn
cdm + k2α)′ = −Hθnew

cdm + k2ψ =
−Hθsyn

cdm − Hk2α +Hk2α + k2α′. In this case, both terms Hk2α and k2α′ cancel out. In
summary, the CDM equations in the synchronous gauge read

δ′cdm = −h
′

2 , (1.219)

θ′cdm = −Hθcdm. (1.220)

As we already mentioned at the end of Sect. 1.6.1, to fully fix the synchronous gauge,
one typically imposes the initial condition θini

cdm = 0. Since θ′cdm is just proportional to
θcdm according to Eq. (1.220), we see that in this case the velocity divergence of the
CDM remains zero at all times, θcdm = 0. This is the reason why in the synchronous
gauge comoving with the CDM, the only dynamical variable to describe CDM at the
perturbed level is δcdm.

Baryons

In the context of CMB physics, the only fully non-relativistic particles of the
“visible” sector with a non-negligible cosmic abundance are hydrogen and helium
(both in neutral and ionized forms) as well as electrons. At all epochs of interest,
electrons and protons remain tightly coupled thanks to frequent Coulomb scat-
terings. In addition, neutral atoms keep a high scattering rate with protons, even
after recombination (when the free proton ratio as small as Xp ∼ 10−4) (HANNESTAD

2001). Hence, baryons and electrons can be generally described by a single fluid
with δe = δb and θe = θb. Since the energy density is dominated by baryons (mp � me),
cosmologists often refer to the baryon-electron fluid simply as baryons. Electrons
and photons remain coupled until recombination due to Compton interactions, as
we already mentioned. The Compton scattering between protons and photons can
be neglected, because the Thomson cross-section scales as σT ∝ 1/m2, and thus
σpT /σ

e
T ∼ 10−6.

The dynamical equations equations of such baryon fluid can be derived by con-
sidering a separate Boltzmann equation like Eq. (1.189) for each species (electrons,
protons and neutral atoms), adding them together, and integrating over the phase
space. Given that baryons and electrons are non-relativistic, the non-collisional
part of such equations looks like the continuity and Euler equations for CDM (c.f.
Eq. (1.217)-Eq. (1.218)), except for the inclusion of a pressure term, k2c2

sδb (that we
will motivate later). Regarding the collision term, the contributions from electron-
baryon interactions cancel out (as a consequence of particle number and momen-
tum conservation), and we are only left with the Compton electron-photon interaction
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term. This can only enter through the Euler equation, given that Compton scattering
conserves the number of particles.

The collision term in the θ′b equation can easily be calculated using the covariant
conservation of energy flux in the photon-baryon fluid, ∇µ (δTµi|b + δTµi|γ) = 0. This
means that the collision terms in the equations for [(ρ̄γ + ργ)θγ ]′ and [(ρ̄b + ρb)θb]′ have
to cancel out, C̃γ = −C̃b 22. However, we are writing equations for θ′i (with i = γ, b),

so the associated collision term in each case is actually Ci ≡ C̃i
(ρ̄i+P̄i)

. In Eq. (1.207)
we already showed the collision term appearing in the θ′γ equation: Cγ = κ′γ(θγ − θb).

Therefore, for baryons we have Cb = C̃b
(ρ̄b+P̄b)

= − C̃γ
(ρ̄b+P̄b)

= − (ρ̄γ+P̄γ)
(ρ̄b+P̄b)

Cγ. In summary,
the equations for the baryon fluid read

δ′b = −θb + 3φ′, (1.221)

θ′b = −Hθb + k2c2
sδb + k2ψ +R−1κ′γ(θb − θγ), (1.222)

where we defined R ≡ 3ρ̄b/4ρ̄γ. We see that for ρ̄b → ∞, the collision term vanishes,
reflecting the fact that photons cannot change the electron velocity if the average mass
of the baryon-electron fluid is infinite. It is possible to define the drag depth for baryons,
similar to the optical depth of photons, but taking into account the extra factor R−1

κdr(τ) =
∫ τ0

τ
dτ ′R−1an̄eσT . (1.223)

This also goes from infinity in the early tightly-coupled regime to zero after decou-
pling. The time of baryon drag is defined by the condition κdr(τdr) = 1, giving the
moment at which baryons stop dragging the photons towards gravitational wells.
Because recombination happened already during the matter era, R = 3ρ̄b/4ρ̄γ < 1, so
baryon drag took place slightly after photon decoupling, zdrag < zdec.

What about the pressure term k2c2
sδb ? The motivation for including this term is

that it can become important for scales smaller than the so called Jeans length. To
see this more clearly, let’s suppose we have some non-relativistic decoupled species
I which dominates the energy content of the universe. It can thus be described by
equations like Eq. (1.221)-Eq. (1.222), but without the collision term. As we will see
in the next subsection, it is often a good approximation to neglect the time variation
of gravitational potentials, φ′ ' 0. Furthermore, on sub-Hubble scales we can use
the Poisson equation (c.f. Eq. (1.229)) to infer that k2ψ ' 4πGa2ρ̄totδI = 3

2H
2δI . Then,

combining the time derivative of the continuity equation with the Euler equation, we
arrive at a closed equation for the evolution of δi:

δ′′I +Hδ′I + (k2 − k2
J)c2

sδI = 0, (1.224)

22The fact that C̃γ = −C̃b is by itself a consequence of momentum conservation. Indeed, since these
collision terms appear in the equation for (ρ̄+ P̄ )θ (c.f. Eq. (1.193)), they are given by

C̃γ =
∫
dΠ2p2Cγ =

∫
dΠ1dΠ2dΠ3dΠ4|M|2δ4(P1 + P2 − P3 − P4)(2π)4 [fe(p3)fγ(p4)− fe(p1)fγ(p2)] p1,

C̃b =
∫
dΠ1p1Cb =

∫
dΠ1dΠ2dΠ3dΠ4|M|2δ4(P1 + P2 − P3 − P4)(2π)4 [fe(p3)fγ(p4)− fe(p1)fγ(p2)] p2,

where dΠi ≡ d3~pi
(2π)32Ei

. The total collision term in the photon-baryon fluid is thus C̃γb = C̃γ + C̃b. Applying

momentum conservation in the integrand of C̃γb, p1 + p2 = p3 + p4, and relabelling p1 ↔ p3 and p2 ↔ p4,
one quickly notices that C̃γb = −C̃γb → C̃γb = 0.
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where kJ ≡
√

3
2
H
cs

is the Jeans scale. When k > kJ , the effective mass term (k2 − k2
J)c2

s

becomes positive, and δI develops oscillations. Hence, we see that the Jeans length is
the scale below which pressure prevents gravitational collapse of the fluid. The same
scale can be defined for neutrinos, although in that context it is typically referred as
free-streaming scale kfs, and cs is referred as the velocity dispersion.

The baryon sound speed is typically identified with the adiabatic sound speed,
c2
s = c2

g. Since the baryon pressure follows the ideal gas law (c.f. Eq. (1.78)), P̄b = n̄bT̄b,

the baryon EoS reads wb = T̄b
µ , where µ is the mean molecular weight

µ ≡ ρ̄b
n̄b
' ρ̄tot

H + ρ̄tot
He

n̄tot
H + n̄tot

He + n̄e
' mH

1 + 4fHe
1 + fHe +Xe

. (1.225)

Neglecting the time variation of µ, and assuming ρ̄′b ' −3Hρ̄b, the baryon sound speed
can then be computed as:

c2
s = P̄ ′b

ρ̄′b
= wb

(
1 + w′b

wb

ρ̄b
ρ̄′b

)
= T̄b

µ

(
1− 1

3
dlnT̄b
dlna

)
, (1.226)

where the evolution of T̄b is given by Eq. (1.130).

Perturbed Einstein equations

To close the system of Boltzmann equations presented before, we still need to de-
termine the gravitational potentials ψ and φ. This can be achieved thanks to Einstein
equations, which relate ψ and φ with the total perturbed stress-energy tensor. In
the scalar sector, there are four independent Einstein equations, two of which are
redundant. This is just a consequence of Bianchi identities: Einstein equations can
be combined to arrive at the continuity and Euler equation for the total stress-energy
tensor. We have given a derivation of the four linearly perturbed Einstein equation in
App. A.7. The traceless longitudinal part of the (ij) components gives

k2(φ− ψ) = 12πGa2∑
I

(ρ̄I + P̄I)σI , (1.227)

where I runs over all cosmic species. This equation tells us that in a universe full of
perfect fluids (with σI = 0), the two metric perturbations are the same. In practice,
neutrinos and photons can have non-negligible anisotropic stress. For photons, we
already saw that σγ remains very suppressed until recombination, due to the tight
coupling with baryons. After recombination, σγ can be sizeable, but ρ̄γ is already
very small because photons decoupled during the matter era. This makes the overall
contribution of photons to the r.h.s of Eq. (1.227) still very minor. On the contrary,
neutrinos are free-streaming from the first instants of the universe (i.e. for T . 1 MeV),
and behave relativistically until late times (after recombination). Hence, they are the
only components capable of producing a significant departure of φ − ψ from zero.
This happens mainly during the radiation era, when the contribution from both ρ̄ν
and σν is important. Afterwards, neutrinos transition to the non-relativistic regime,
and the metric perturbations become equal, φ = ψ.

We still need one more Einstein equation to close the system. We can use the
(00) component, which gives

k2φ+ 3H(φ′ +Hψ) = −4πGa2∑
I

δρI , (1.228)
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Deep inside the Hubble radius, k � H, the previous equation simply reduces to
the Poisson equation

−k
2

a2φ = 4πG
∑
I

δρI , (1.229)

where −k2

a2 is the Fourier transform of the Laplacian in physical coordinates. We
note that it is only the total perturbed density δρtot and not ρ̄tot what sources
the gravitational potential. Indeed, in a FLRW universe without over-densities or
under-densities, there is no possibility for gravitational forces to appear.

Under some simplifying assumptions, it is possible to derive a closed equation
for the evolution of the gravitational potential φ, from which we can extract some
qualitative aspects of its evolution. This is important in order to understand some of
the key features in the CMB spectra that we will discuss in Sect. 1.6.4. First, let us
neglect the effects of the anisotropic stress from neutrinos, such that φ = ψ. In this
case, the trace of the (ij) Einstein equation (written in Eq. (A.89)), simplifies to

φ′′ + 3Hφ′ + (2H′ +H2)φ = 4πGa2∑
I

δPI . (1.230)

As we will explain in Sect. 1.6.3, if the universe is dominated by a single component
with a constant EoS w, and in addition we assume its fluctuations evolve adiabati-
cally, then we have δPtot ' wδρtot. This allows to relate Eq. (1.230) with Eq. (1.228).
The resulting equation can be simplified by noting that 2H′ + H2(1 + 3w) = 0, as a
consequence of Friedmann equations. We end up with the following closed equa-
tion for the evolution of φ

φ′′ + 3Hφ′(1 + w) + wk2φ = 0. (1.231)

One could now move to solve Eq. (1.231) for matter, radiation and Λ eras, by
looking at the corresponding H and w in each case. On super-Hubble scales, the
growing mode solution is always φ = const. The fact that φ is frozen reflects the
natural expectation that no causal physics should influence perturbations outside the
horizon (although this result is in reality only valid in the Newtonian gauge). However,
φ can still change of value on super-Hubble scales during the transition between eras.
For instance, it is a famous result of linear theory that the super-Hubble values of φ
during matter dominated and radiation dominated eras are related by: 23

φMD = 9
10φRD. (1.233)

It is interesting to find how density perturbations behave on super-Hubble
scales. To do that, let us express the generalized Poisson equation Eq. (1.228)
in the following manner

δtot = δρtot
ρ̄tot

= −2
3
k2

H2φ−
2
H
φ′ − 2φ. (1.234)

23This can be shown by using the expression for the comoving curvature perturbation R in Eq. (1.254).
As we discuss later, this quantity is conserved on super-Hubble scales. In this case, we can use that
φ′ ' 0 and H2 = 8πG

3 a2ρ̄tot, in order to rewrite R as

R = 5 + 3w
3 + 3wφ. (1.232)

Evaluating R in the matter (w = 0) and radiation eras (w = 1/3), we find R = 5
3φMD = 3

2φRD and hence
φMD = 9

10φRD.
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Figure 1.14 – Evolution of the two scalar metric perturbations in the Newtonian gauge, φ
and ψ. This is shown for three different wavenumbers, k = 1 Mpc−1 (purple), k = 10−2 Mpc−1

(blue) and k = 10−3 Mpc−1 (green), which crossed the horizon before, during and after matter-
radiation equality, respectively.

On super-Hubble scales, φ′ ' 0 and k/H � 1, so we find that the total overdensity
is also frozen and its value is given by

δtot = −2φ. (1.235)

Regarding the sub-Hubble limit of Eq. (1.231), the behavior is different depending on
which epoch we consider. During radiation domination, the metric potential oscil-
lates with an amplitude that decreases as a−2, while it stays constant during matter
domination. In summary, the gravitational potential only evolves when the EoS of the
universe changes (on all scales), and during the radiation era on sub-Hubble scales.
All those aspects are illustrated in Fig. 1.14, where we show the numerical resolution
of φ and ψ for different wavenumbers

1.6.3 Initial conditions

Before moving with our discussion about linear perturbations, it is essential to
introduce two important concepts related with the study of initial conditions: adia-
batic/isocurvature modes and the primordial power spectrum.

Adiabatic and isocurvature modes

Any mode of interest (those that can be observed on the CMB and linear matter
spectra) was outside the Hubble radius RH if we look far enough into the past (i.e. for
z & 105). Inflation establishes the initial conditions for these super-Hubble modes.
Let us suppose that the universe was initially filled with N decoupled perfect fluids.
This means that at the linearly perturbed level, each fluid is completely specified
by δI and θI , so there are 2N first-order equations, requiring 2N independent initial
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conditions 24. One can show that half of them seed decaying solutions and are thus
irrelevant for most applications. Therefore, the task is to find which combinations
of the remaining N initial conditions get excited. There is one combination that is
particularly simple and well-motivated.

In scenarios of single-field inflation, perturbations are generated due to a common,
local shift in time δτ(~x) of the background quantities:

ρI(τ, ~x) = ρ̄I(τ + δτ(~x)) ' ρ̄I(τ) + ρ̄′Iδτ(~x), (1.236)

PI(τ, ~x) = P̄I(τ + δτ(~x)) ' P̄I(τ) + P̄ ′Iδτ(~x), (1.237)

meaning that δρ = ρ̄′Iδτ and δP = P̄ ′Iδτ . Using the fact that δτ(~x) is the same for all
species and Eq. (1.14), we can write

δτ = δρI
ρ̄′I

= δρJ
ρ̄′J

−→ δI
1 + wI

= δJ
1 + wJ

, (1.238)

for all species I and J . This is a great simplification, implying that in the early universe
there is a single inhomogeneous degree of freedom, from which the rest of initial
conditions can be derived. For example, if the universe is initially filled with photons
(wγ = 1/3), baryons and cold dark matter (wb ' wcdm ' 0), we have

δcdm = δb = 3
4δγ . (1.239)

Eq. (1.236)-Eq. (1.237) have other interesting consequences:

• The pressure PI of each species can be generally expressed as a function of
the density ρI and the entropy SI . Performing a Taylor expansion around the
background quantities, we get

PI(ρI , SI) ' PI(ρ̄I , S̄I) + c2
s,IδρI + ΥIδSI , (1.240)

where c2
s,I ≡ ∂PI/∂ρI |SI is the sound speed and ΥI ≡ ∂PI/∂SI |ρI . From Eq. (1.236)

and Eq. (1.237) we have δPI = (P̄ ′I/ρ̄′I)δρI , meaning that

c2
s,I = P̄ ′I

ρ̄′I
= c2

g,I , δSI = 0, (1.241)

i.e. the sound speed of each component is adiabatic and the entropy pertur-
bations vanish. For this reason, such kind of initial condition is often referred
as adiabatic or isentropic mode. If in addition the EoS is constant for every species,
wI = const., then c2

s,I = c2
g,I = wI .

• The total pressure perturbation is also described by a sound speed c2
s which is a

weighted sum of the sound speeds for each species

δPtot
δρtot

=
∑
I c

2
g,IδρI/δτ∑
I δρI/δτ

=
∑
I c

2
g,I(ρ̄I + P̄I)∑
I(ρ̄I + P̄I)

≡ c2
s. (1.242)

From the previous equation we see that, even if c2
g,I = wI for every component, in

general we will have c2
s 6= wtot in the presence of several components.

24This is still true for imperfect fluids that were initially tightly coupled to other species, such as
photons. Indeed, we already saw that in the tightly coupled limit, all photon multipoles above ` = 0 and
` = 1 are negligible. The initial conditions for neutrinos are a bit more subtle and we don’t discuss them
here, we refer to LESGOURGUES et al. (2018) for details about this topic.
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Remark that adiabatic modes don’t necessarily have to remain adiabatic at later times.
In fact, without assuming Eq. (1.236)-Eq. (1.237), the relations Eq. (1.239), Eq. (1.241)
and Eq. (1.242) are not even true at initial times. In general, the total pressure
perturbation can be arranged as a sum over N independent functions

δPtot = c2
sδρtot +

∑
I 6=J

ΥIJ

[
δρI

ρ̄I + P̄I
− δρJ

ρ̄J + P̄J

]
. (1.243)

The term in brackets corresponds to the entropy perturbation δSIJ of the fluid I with
respect to a reference fluid J (typically the photons), while ΥIJ = ∂Ptot/∂SIJ |ρtot. The
initial entropy perturbations δSIJ are also commonly referred as isocurvature modes. To
understand the origin for the name, let us rewrite the defining condition for adiabatic
modes in terms of the number densities of each species, nI . From nI(τ, ~x) = n̄I(τ +
δτ(~x)) = n̄I(τ) + n̄′Iδτ(~x), we observe

δτ = δnI
n̄′I

= δnJ
n̄′J

−→ δnI
n̄I

= δnJ
n̄J

−→ δ

(
nI
nJ

)
= 0. (1.244)

That is, for the adiabatic mode, the relative ratios in number densities are unper-
turbed. It is associated with a global perturbation in the matter content, which is
translated into a fluctuation of the spatial curvature via Einstein’s equations (see
Eq. (1.252)). The isocurvature modes δSIJ = δnI

n̄I
− δnJ

n̄J
are thus the complement of

adiabatic modes, since they are characterized by variations in the particle number ra-
tios, but with a vanishing curvature perturbation (LANGLOIS 2003). In summary, the
most general initial condition can be expanded in a basis formed by 1 adiabatic mode,
N − 1 isocurvature modes, and N decaying modes which are unobservable. From the
previous discussion, it is clear that non-adiabatic modes are generated when there
are more than one inhomogeneous degrees of freedom in the early universe (for ex-
ample, this could naturally arise in scenarios of multi-field inflation). The presence
of isocurvature modes is tightly constrained by Planck18 data (N. LEE et al. 2021), so
in the following we will restrict to adiabatic initial conditions.

Primordial power spectrum

The theory of cosmological perturbations is stochastic by nature. Its main goal is
to determine how the probability distribution of perturbed quantities evolves in time.
The simplest hypothesis that is agreement with observations is that primordial per-
turbations follow gaussian statistics. As long as perturbations are linear, it is guaran-
teed that the gaussian shape of the distributions is preserved, so that all observable
properties can be encoded in two-point correlation functions. For some arbitrary per-
turbed quantity A(τ, ~x), the two-point correlation function in real space is given by

〈A(τ, ~x), A(τ, ~x′)〉 = ξA(τ, ~x, ~x′) = ξA(τ, r), (1.245)

with r = |~x′−~x|. The symbol 〈...〉 indicates an average over many different realizations.
The last equality in Eq. (1.245) follows as a consequence of statistical isotropy and
homogeneity of the perturbed FLRW universe. The two-point correlation function is
often written in Fourier space. Following our Fourier convention in Eq. (1.137) and
using that A∗(τ,~k) = A(τ,−~k) for a real quantity,

〈A(τ,~k), A∗(τ,~k′)〉 =
∫
d3~xd3~x′ξA(τ, |~x′ − ~x|)e−i~k·~x+i~k′·~x′ . (1.246)
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Now, changing variables from ~x′ to ~r = ~x′ − ~x, and using the identity
∫
d3~xei(

~k′−~k)·~x =
(2π)3δ3(~k′ − ~k), we get

〈A(τ,~k), A∗(τ,~k′)〉 = δ3(~k′ − ~k)
∫
d3~rξA(τ, r)ei~k′·~r = δ3(~k′ − ~k)4π

∫ ∞
0

drr2ξA(τ, r)sin (kr)
kr

,

where we have absorbed the factor (2π)3 inside ξA. If we define the power spectrum
of the quantity A as

PA(τ, k) ≡ 4π
∫ ∞

0
drr2ξA(τ, r)sin (kr)

kr
, (1.247)

we thus arrive at the very important relation

〈A(τ,~k), A∗(τ,~k′)〉 = PA(τ, k)δ3(~k′ − ~k). (1.248)

The Dirac delta indicates that different wavenumbers are uncorrelated, and arises as
a consequence of statistical homogeneity. On the other hand, the fact that PA only
depends on k = |~k| is a consequence of statistical isotropy. It is common to introduce
the dimensionless power spectrum, defined as

PA(k, τ) ≡ k3

2π2PA(τ, k). (1.249)

The motivation for the definition of PA is that it frequently appears convoluted
with some window function W (k) when computing the average of a certain
quantity in real space∫

d3~k

(2π)3PA(k)W (k) = 4π
∫

dkk2

(2π)3PA(k)W (k) =
∫
dlnkPA(k)W (k). (1.250)

The notion of “scale-invariant power spectrum” refers to PA being independent of k,
i.e. PA ∝ k−3.

It is useful to present the primordial power spectrum in terms of some variable
that is conserved on super-Hubble scales. Let us consider the spatial part of the
metric in some arbitrary gauge, gij = a2

[
(1 + 2C)δij + 2

(
∂i∂j − δij

3 ∇
2
)
E
]
. One can

show that the three-dimensional Ricci scalar associated with gij is given by a2R(3) =
4∇2

(
−C + 1

3∇
2E
)

(BAUMANN 2021). The term is parenthesis is the so called comoving
curvature perturbation, and it is defined in the comoving gauge (where B = 0 and vtot = 0):

R =
[
−C + 1

3∇
2E

]
B=vtot=0

. (1.251)

It is more convenient to have a gauge-invariant expression for R. Since B and vtot
vanish by definition in the comoving gauge, it is always possible to add linear com-
bination of these to R so as to make R gauge invariant. By looking at the gauge
transformations Eq. (1.157)-Eq. (1.160) and Eq. (1.164), one quickly realizes that the
following combination is gauge-invariant 25

R ≡ −C + 1
3∇

2E −H(B + vtot). (1.253)

25There is an alternative way to make −C+ 1
3∇

2E gauge-invariant, which results in a similar quantity

ζ ≡ −C + 1
3∇

2E +H δρtot

ρ̄′tot
. (1.252)

This is called the constant density curvature perturbation, and it corresponds to the comoving curvature
defined in the uniform density gauge (where B = 0 and δρtot = 0). Both R and ζ are widely used, and it
can be shown that on super-Hubble scales, R ' ζ (FERGUSSON 2015).
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We can now evaluate R in any gauge, such as the Newtonian one. In this gauge,
B = E = 0 and C = −φ. In addition, we can express vtot = −θtot/k

2 in terms of the
metric potentials using the 0i Einstein equation (see Eq. (A.86)). This yields,

R = φ+ H(φ′ +Hψ)
4πGa2(ρ̄tot + P̄tot)

. (1.254)

In App. A.8 we show that R is conserved on super-Hubble scales and for adiabatic
initial conditions. This is a big advantage, since it allows to relate predictions made
at horizon exit (given by some inflationary theory) to observables at horizon re-entry.
The power spectrum in Eq. (1.248) can be decomposed into the primordial spectrum
PR(k) and the square of the so called transfer function A(τ, k):

〈A(τ,~k), A∗(τ,~k′)〉 = δ3(~k′ − ~k)A(τ, k)2PR(k). (1.255)

The transfer function accounts for the linear evolution of A(τ,~k), irrespective of
its initial conditions. It is given by A(τ, k) = A(τ,~k)/R(~k), where it is common to
normalize initially R(~k) = 1. Note that we have written the transfer function with the
same name as the original variable. The only difference is that the transfer function
doesn’t depend on ~k, only on the modulus k = |~k|. This just reflects the idea that
isotropy is respected by the linear evolution of perturbations in a FLRW background.

The dimensionless primordial spectrum PR is usually parameterized as a power-
law near some reference scale (often taken to be k∗ = 0.05 Mpc−1):

PR = As

(
k

k∗

)ns−1
. (1.256)

Here As is the scalar amplitude and ns is the scalar spectral index. Inflation predicts small
deviations from a scale invariant primordial spectrum (ns = 1) as a consequence of
a nearly constant energy density during the inflationary period. In fact, one can re-
late the spectral index with the slow-roll parameters that we introduced in Sect. 1.4
as (BAUMANN 2021):

ns − 1 = −2ε− η. (1.257)

The last measurements from Planck18 indicate strong evidence for a nearly scale-
invariant spectrum with ns = 0.9665±0.0038. This constitutes one of the great triumphs
of the inflationary paradigm. In Chapter 2, we will comment on the consequences of
the Hubble tension for this measurement.

1.6.4 Acoustic oscillations

The goal of Boltzmann codes such as CLASS is to solve numerically the set of
perturbed Einstein and Boltzmann equations that we presented in Sect. 1.6.2.
However, one can adopt several approximations in order to gain a semi-analytic
understanding of the evolution of photon and baryon perturbations. This is essential
in order to understand the features in the CMB anisotropy spectra that we will
describe in Sect. 1.6.5.

As we discussed earlier, photons and baryons form a tightly coupled fluid until
recombination. Photons exert a strong pressure on this fluid that counteracts grav-
itational forces. As a consequence, inhomogeneities in the photon-baryon fluid don’t
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experience a continuous growth, but rather propagate in the form of acoustic waves.
The sound speed at which waves propagates can be computed as

c2
s = δPγ + δPb

δργ + δρb
' 3δργ
δργ + δρb

' 1
3(1 +R) , (1.258)

where we have used that the baryon pressure is negligible compared to that of the
photons, δPb � δPγ = 3δργ, and that tight-coupling imposes δb = 3δγ/4. Since R =
3ρ̄b/(4ρ̄γ) ∝ a, we see that the sound speed is close to the speed of light during the
radiation era, cs ' 1/

√
3, and then slowly drops down to zero during the matter era.

With this, we can define a quantity which is extremely relevant in the context of
CMB physics (and for the Hubble tension as we shall see): the sound horizon. At a
fixed time t, this corresponds to the comoving distance travelled by a wavefront since
some initial time ti, and it is given by

rs(τ) =
∫ τ

τini
cs(τ ′)dτ ′ =

∫ t

tini

cs(t)dt
a(t) =

∫ zini

z

cs(z′)dz′

H(z′) . (1.259)

This quantity is independent on the choice of τini as long as τini � τ . During the
radiation era, the sound speed is constant and thus the sound horizon is of the order
of the particle horizon, rs ' csτ ' χp/

√
3.

We can get more insight about the details of these acoustic oscillations by building
an equation that dictates the evolution of Θ0 = δγ/4 at leading order in the tight-
coupling limit. When the optical depth κγ is very large, we have already seen that
the photon hierarchy Eq. (1.206)-Eq. (1.208) implies σγ → 0 and θγ → θb. Combining
Eq. (1.207) for θ′γ with Eq. (1.222) for θ′b, we can get rid of the interaction term (notice
the baryon pressure term is totally negligible in this context). Then, we can combine
with Eq. (1.206) for δ′γ in order to eliminate θγ. Using RH = R′ and 3(1 + R) = c−2

s

in the remaining equation, we end up with

Θ′′0 + R′

1 +R
Θ′0 + k2c2

sΘ0 = −k
2

3 ψ + R′

1 +R
φ′ + φ′′. (1.260)

This corresponds to the equation of an harmonic oscillator with a time-dependent fre-
quency k2c2

s, a baryon-induced friction term R′

1+RΘ′ and a gravitational forcing function
on the r.h.s. If we were to consider a constant R and ignore the gravitational terms,
Eq. (1.260) becomes the equation of a perfect harmonic oscillator, whose solution is

Θ0(τ, k) = Θini cos (kcsτ + ϕ), (1.261)

where Θini and ϕ stand for the two integration constants. On the super-Hubble
limit, kτ � 1, the value of Θ0 should be frozen (for instance, Eq. (1.235) tells us that
during radiation era, δtot ' δγ = −2φ = const.). This fixes the phase to ϕ = 0. On the
sub-Hubble limit, we expect oscillations to appear. However, from Eq. (1.261) we see
that the threshold between constant and oscillatory behavior is set by kcsτ and not
by kτ . In particular, the oscillatory condition kcsτ � 1 is equivalent to say that a
comoving wavelength λ = 2π/k has entered the sound horizon, rs ' csτ � λ. Modes
with smaller λ crossed the sound horizon earlier and therefore experienced more
oscillations. Since the phase kcsτ of the cosine roughly stands for 2πrs/λ, the number
of oscillations is given by the ratio rs/λ.
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There is another important effect that cannot be described with Eq. (1.260). This
equation assumes that the scattering rate is infinite, i.e. that the distance between
scatters is virtually zero. Close to recombination, this approximation breaks down,
and inhomogeneities are washed out by random scatterings on small scales, below the
diffusion length (SILK 1968). One can get an estimate of this length by treating photon
diffusion as a random walk. The mean-free path of photons is given by r2

mfp = 1/Γγ,
where Γγ = an̄eσT is the comoving photon scattering rate. Then, at a given time τ , the
comoving distance travelled by a photon since some initial time τi is

r2
d(τ) '

∫ τ

τini
dτ ′Γγr2

mfp =
∫ τ

τini

dτ ′

aneσT
. (1.262)

This equation is essentially telling us that the diffusion length is of the order rd ∼
rmfp
√
N , where N ∼ τΓγ is the total number of scatters. This distance is close to zero in

the tight-coupling limit, and abruptly increases when approaching the time of photon
decoupling. A more accurate estimate for rd can be obtained by considering a non-
zero quadrupole Θ2 in the Boltzmann hierarchy Eq. (1.206)-Eq. (1.208). The idea is
to combine this set of equations with Eq. (1.222) for θ′b, restrict to small scales (where

the metric potentials can be neglected), and try solutions of the form ei
∫
wdτ . The

imaginary part of w in the resulting dispersion relation then accounts for damping.
The result is (see DODELSON (2003) for details):

r2
d = (2π)2

∫ τ

τini

dτ ′

aneσT

[
R2 + 8

9(1 +R)
6(1 +R)2

]
. (1.263)

Had we included polarization terms in the photon hierarchy, the numerical factor 8/9
would be replaced by 16/15 (HU et al. 1997).

We proceed now to discuss the behavior of Θ0 in the different parts of the (k, τ)
space. In Fig. 1.15, we have labelled four different regions, in order to highlight for
which times and scales the different effects of baryon damping, gravitational driving
and diffusion damping can play a role. Fig. 1.15 also depicts three different lines
corresponding to Hubble crossing (k = H), sound horizon crossing (k = 1/rs) and
diffusion damping crossing (k = 1/rd). Let us discuss each of the regions separately:

• On super-Hubble scales, we’ve already seen that the perturbation Θ0 is frozen.
However, its constant value is different in the matter and radiation domina-
tion epochs. Using Eq. (1.235) and considering adiabatic initial conditions, one
quickly realizes that

Θ0 = −ψ2 = −φ2 (Radiation era), (1.264)

Θ0 = −2ψ
3 = −2φ

3 (Matter era). (1.265)

• The region 1 corresponds to modes that are crossing the sound horizon before
photon decoupling. In this region, gravitational source terms are important. A
key consequence is that the zero point of oscillations is shifted. An approxima-
tion to the new zero-point of oscillations is achieved by setting to zero all time
derivatives in Eq. (1.260)

Θeq
0 = − 1

3c2
s

ψ = −(1 +R)ψ. (1.266)
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Figure 1.15 – Different portions of the (k, τ) space, leading to specific behaviors of Θ0. The
shaded areas indicate regions in which the gravitational potentials decay. Taken from POULIN

(2017).

This only lasts a small time, since ψ rapidly decays on sub-sound horizon scales
during the radiation era. Remark that the shifting effect crucially depends on R
and thus on the baryon fraction.

• The region 2 refers to scales that are inside the sound horizon during the radi-
ation era. In this region, the metric potentials have decayed, the friction terms
are negligible since R � 1, and cs ' 1/

√
3. Thus, this is the case of the perfect

harmonic oscillator solution for Θ0 that we showed in Eq. (1.261).

• The region 3 is located between matter-radiation equality and decoupling, on
scales well below rs. Here the metric potentials have decayed, but the effects
of baryons are important (R cannot be neglected). Hence the oscillator equation
has a friction term (increasing with time) and a time-dependent pressure term
(decreasing with time). This results in damped oscillations. The damping effect
is controlled by the duration of the stage between equality and decoupling.

• The region 4 corresponds to scales inside the diffusion length rd, that we wrote in
Eq. (1.262). This scale increases rapidly close to decoupling, encompassing a big
portion of the sub-sound horizon scales. Fluctuations become strongly damped,
as diffusion tends to erase any small-scale photon perturbation.

In addition, Fig. 1.15 shows in which parts of the (k, τ) space the gravitational
potentials decay. This will be important when discussing the integrated Sachs-Wolfe
effect in Sect. 1.6.5.

To get a confirmation of the qualitative description we just gave, we show in
Fig. 1.16 a numerical resolution of the photon transfer function Θ0(τ, k), evaluated
at the times of radiation-matter equality and photon decoupling. We also show the
zero-point of oscillations, Θeq

0 = −(1 +R)ψ, at the decoupling time. We observe that Θ0
is frozen on super-Hubble scales, and starts oscillating when krs(τ) > 1. The negative
values of Θ0 and −ψ in the long-wavelength limit come from the fact that transfer
functions are all normalized with respect to the curvature perturbation, R = 1. Notice
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Figure 1.16 – A snapshot of the photon transfer function Θ0 and the zero-point of oscillations,
Θeq

0 = −(1 + R)ψ, at the time of photon decoupling. The former is also shown at the time of
matter-radiation equality, in order to highlight the differences in the shape of the oscillations.
In the x axis, we have rescaled the wavenumbers by the corresponding value of the sound
horizon, to indicate that the phase of the oscillations is given by krs(τ).

also that the super-Hubble values of Θ0 are not exactly the same at τeq and τrec. In
fact, combining Eq. (1.233) with Eq. (1.264)-Eq. (1.265), one finds that the values of
Θ0 during radiation and matter domination are related by ΘMD

0 = 6
5ΘRD

0 .

Moving to the sub-sound-horizon limit in Fig. 1.16, we clearly see differences be-
tween the shape of the oscillations at τeq and τrec. At equality, Θ0 exhibits oscillations
with constant amplitude, roughly symmetric around Θeq

0 = −ψ ' 0. At decoupling,
Θ0 is affected by the three important effects we discussed previously: a suppression
in the global amplitude due to baryon friction, a shift in the zero point of oscilla-
tions by an amount −Rψ, and the exponential damping at k larger than the diffusion
wavenumber kd = 2π/rd. Importantly, the shift of the zero-point leads to an enhance-
ment of the absolute value of the odd extrema in Θ0 with respect to the even extrema.

1.6.5 The CMB power spectra

We would like to understand the pattern of anisotropies appearing the famous
temperature map of the CMB (shown in Fig. 1.4). Note that although temperature
fluctuations depend on space and time, Θ(τ, ~x, n̂), we only measure them on Earth
(that for simplicity we can take at the origin ~x = ~0) and at present time (τ = τ0). All
the information that we can extract comes from the variations in temperature for
each direction of the incoming photons, n̂. Then, one can expand the temperature
map in spherical harmonics

δT (n̂)
T̄

= Θ(τ0,~0,−n̂) =
∞∑
`=0

m=`∑
m=−`

a`mY`m(n̂), (1.267)



68 1. THE ERA OF PRECISION COSMOLOGY

(since when observing at n̂, we see photons traveling in the opposite direction). In
an all sky experiment, an observer can collect the coefficients a`m’s, given by the
inverse of the previous relation

a`m = (−1)`
∫
dΩn̂Y

∗
`m(n̂)Θ(τ0,~0, n̂), (1.268)

where we did a change of variables n̂ → −n̂ and used the properties
∫
dΩ−n̂ =

∫
dΩn̂

as well as Y`m(−n̂) = (−1)`Y`m(n̂). We can relate the coefficients a`m’s with theoretical
quantities such as the photon multipoles Θ`(τ,~k). To do so, we can expand Θ(τ0,~0, n̂) in
Fourier space and in Legendre multipoles, and then make use of the following identity

P ′`(k̂ · n̂) = 4π
2`′ + 1

m′=+`′∑
m′=−`′

Y ∗`′m′(k̂)Y`′m′(n̂). (1.269)

Proceeding in this way,

a`m = (−1)`

(2π)3

∫
dΩn̂Y

∗
`m(n̂)

∫
d3~k

∞∑
`′=0

(−i)`′(2`′ + 1)P`′(k̂ · n̂)Θ`′(τ0,~k)

= (−1)`

2π2

∫
d3~k

∑
`′m′

(−i)`′
∫
dΩn̂Y

∗
`m(n̂)Y`′m′(n̂)︸ ︷︷ ︸
δmm′δ``′

Y ∗`′m′(k̂)Θ`′(τ0,~k)

= i`

2π2

∫
d3~k Y ∗`m(k̂)Θ`(τ0,~k), (1.270)

where to reach the last equality we used the orthogonality of the spherical harmon-
ics. We see that the a`m’s and Θ`(τ,~k) linearly related. Hence, for gaussian linear
perturbations, the statistics of the a`m’s is fully encoded in the two-point correlation
function 〈a∗`ma`′m′〉. Using again the orthogonality of the spherical harmonics and

〈Θ`(~k)Θ`′(~k′)〉 = Θ`(k)Θ`′(k)2π2

k3 PR(k)δ3(~k − ~k′), (1.271)

it is straightforward to get the two-point correlation function for the a`m’s

〈a∗`ma`′m′〉 = δmm′δ``′
∫
dlnk
2π2 Θ2

` (τ0, k)PR(k) ≡ δmm′δ``′CTT
` . (1.272)

The quantity CTT
` is referred as the power spectrum of temperature anisotropies (in harmonic

space). The fact that 〈a∗`ma`′m′〉 is proportional to δmm′δ``′ indicates that different
multipoles are uncorrelated, while the fact that CTT

` is independent of m is a
consequence of statistical isotropy.

An important caveat is that we can never really observe the true harmonic spec-
trum. This is because CTT

` is obtained by carrying out an average of the a`m’s over
many realizations of the theory, i.e. over many universes obeying the same cosmo-
logical model. However, we only observe the CMB sky of our universe. This implies
there will necessarily be some scattering around CTT

` . We can reduce this scatter-
ing by taking advantage of the fact that, for a given `-mode, the distribution of the
observed a∗`ma`m is independent of m. Thus, for an ideal full sky observation, the
best estimator of the true CTT

` (= C`, to shorten notation) is the average of the co-
efficients a∗`ma`m over all m-modes

Ĉ` ≡
1

2`+ 1

m=`∑
m=−`

a∗`ma`m. (1.273)
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We notice that the mean of Ĉ` is given by

〈Ĉ`〉 = 1
2`+ 1

m=`∑
m=−`

〈a∗`ma`m〉︸ ︷︷ ︸
C`

= C`, (1.274)

which means that it is an unbiased estimator of the true C`. However, there is a
non-zero variance associated to Ĉ`:

σ2
C`

= 〈(Ĉ` − C`)(Ĉ` − C`)〉
C2
`

= 〈Ĉ`Ĉ`〉 − 2C`〈Ĉ`〉+ C2
`

C2
`

= 〈Ĉ`Ĉ`〉
C2
`

− 1, (1.275)

where 〈Ĉ`Ĉ`〉 = (2` + 1)−2∑
m,m′〈a∗`ma`ma∗`m′a`m′〉. To compute this quantity, we can

make use of the Wick’s probability theorem, which says that for gaussian distri-
butions, any even N-point correlation function is a sum over all possible pairings
of the products of 2-point functions. Hence 〈a∗`ma`ma∗`m′a`m′〉 = 〈a∗`ma`m〉〈a∗`m′a`m′〉 +
〈a∗`ma∗`m′〉〈a`ma`m′〉 + 〈a∗`ma`m′〉〈a`ma∗`m′〉. Now, from the requirement that Θ(n̂) has to
be real, one infers the property a∗`m = (−1)ma`−m, and thus 〈a`ma`m′〉 = 〈a∗`ma∗`m′〉 =
δm−m′(−1)mC`. In short, we can write the variance σ2

C`
as

σ2
C`

= 1
(2`+ 1)2C2

`

∑
m,m′

(C2
` + δ2

m−m′C
2
` + δ2

mm′C
2
` )− 1 = 2

2`+ 1 . (1.276)

We see that σ2
C`

decreases for larger `, which is to be expected, because at
high-` there are more m-modes available to sample the distribution. This funda-
mental uncertainty, which can be seen as theoretical error, is known as cosmic variance.

Let us discuss how we compute in practice the temperature power spectrum
that we wrote before,

CTT
` =

∫
dlnk
2π2 Θ2

` (τ0, k)PR(k). (1.277)

In the previous expression, we didn’t specify the integration limits of the k-integral.
For kmin, a reasonable choice is the inverse of the present Hubble radius, kmin ∼ H0 ∼
τ−1

0 , since RH = H−1
0 gives roughly the largest scale we can observe. What about kmax?

To find the best choice, we have to remember that the approximate solution for Θ`(τ, k)
(i.e. when neglecting the gravitational source terms) is given in terms of the spherical
Bessel function as Θ`(τ, k) ∝ j`(kτ). The functions j`(x) peak near x = ` + 1

2 , and
present damped oscillations for x > `. Therefore, at present time τ0 and as a function
of `, Θ`(τ0, k) peaks around ` ∼ kτ0, while multipoles with `� kτ0 are very suppressed.
This can be understood from a geometrical point of view. The multipoles index is
given by ` = π/θ, where θ is the angle subtending a comoving scale λ/2 = θDA(τrec) on
the last scattering surface, with DA(τrec) the comoving angular distance at decoupling
26 (see Fig. 1.17). This implies the following relation between ` and k:

λ

2 = π

k
= θDA(τrec) −→ k = `

DA(τdec)
. (1.278)

In a flat universe, the comoving angular distance at decoupling is simply given by
DA(τrec) = (τ0 − τdec), meaning

k = `

(τ0 − τrec)
, (1.279)

26The reason for dividing λ by 2 is that, in harmonic space, θ is the angle between a maximum and a
minimum, while in Fourier space the distance between a maximum and a minimum is λ/2.
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Figure 1.17 – Diagram to illustrate the geometric relation between the multipole ` and the
Fourier scale λ observed on the last scattering surface. Adapted from LESGOURGUES (2013).

where (τ0 − τrec) ' τ0. Hence, if the CMB experiment is observing multipoles up to
`max, the maximum wavenumber should be chosen of the order kmax ∼ `max/τ0. This
guarantees that the multipoles of the photon transfer function, Θ`(η0, k), are very
suppressed for ` > `max, so it is safe to compute them just until `max. Remark that
the one-to-one relation between ` and k in Eq. (1.279) is only valid for small angles,
or equivalently, for large values of `.

A brute-force approach for computing CTT
` would consist in truncating the photon

Boltzmann hierarchy Eq. (1.206)-Eq. (1.208) at `max, i.e. to solve as many equations
as observed multipoles. The problem is that this task is extremely time-consuming,
since for a Planck-like experiment the maximum multipole is of the order `max ∼ O(103).
In the next subsection, we introduce the alternative line-of-sight formalism, which
allows to get Θ`(η0, k) up to `max without having to solve thousands of differential
equations. In addition, it makes the underlying physics much more transparent.

The line-of-sight formalism

The main idea of the line-of-sight formalism, originally introduced by
ZALDARRIAGA et al. (1995), is to integrate the Boltzmann equation over the
photon trajectory and relate the temperature anisotropies observed today to that
at the last scattering surface. In doing this, it is assumed that photons travel
along a straight line. Strictly speaking, this is not true, since matter fluctuations
produce deviations in the travel direction of photons. However, this effect can be
neglected when restricting to first-order perturbations. The starting point is to
re-express the photon Boltzmann equation Eq. (1.200) in the following manner
(we will neglect the quadrupole Θ2 for simplicity):

e−ikµτ+κγ d

dτ

[
Θeikµτ−κγ

]
= φ′ − ikµψ − κ′γ [Θ0 + µvb] ≡ S̃T (k, µ, τ). (1.280)

We integrate this equation between some initial time τini and today τ0, and
use that κγ(τ0) = 0, to get

Θ(τ0, k, µ) =
∫ τ0

τini
dτS̃T (k, µ, τ)eikµ(τ−τ0)−κγ(τ). (1.281)

We have also used the fact that τini is early enough so that e−κγ(τini) � 1. Now, we would
like to remove the dependence of S̃T on µ, so that the only factor that depends on µ
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in the integrand is the exponential. This can be achieved by noting that µeikµ(τ−τ0) =
1
ik

d
dτ

[
eikµ(τ−τ0)

]
. After performing integration by parts for the two terms with µ in

ST and using vb = θb/ik, we get

Θ(τ0, k, µ) =
∫ τ0

τini
dτeikµ(τ−τ0)

{
e−κγ (φ′ − κ′γΘ0) + d

dτ

[
e−κγ

(
ψ −

θbκ
′
γ

k2

)]}
. (1.282)

We have dropped all surface terms, including one that yields ψ(τ0, k). In real space,
this corresponds to an isotropic term ψ(τ0,~0) that cannot be distinguished from a shift
in the average photon temperature. This justifies that we discarded ψ(τ0, k) in the pre-
vious expression. At this point, it is useful to introduce the so-called visibility function

g(τ) = −κ′γe−κγ . (1.283)

This gives the probability that the photons that we see today last scattered at the time
τ (notice it is correctly normalized,

∫ τ0
0 g(τ)dτ = 1). The visibility function is sharply

peaked around the time of photon decoupling. Indeed, at early times (when κγ � 1),
the exponential e−κγ is very small, while later (after τdec), the term κ′γ = −an̄eσT is also
very tiny. Thus, the time of photon decoupling can be defined as the peak of g(τ). The
terms of Eq. (1.282) inside brackets can now be expressed in terms of this function.
Then we can multiply each side by i`P`(µ)/2 and integrate over µ. Using the identity,

i`
∫ +1

−1

dµ

2 P`(µ)eikµ(τ−τ0) = j`(k(τ0 − τ)), (1.284)

we arrive at

Θ`(τ0, k) =
∫ τ0

τini
dτ
{
g(Θ0 + ψ) + (gk−2θb)′ + e−κγ (φ′ + ψ′)

}
j`(k(τ0 − τ)). (1.285)

This is what we were looking for. This equation allows to obtain any Θ`(τ0, k) in
terms of only a few transfer functions: Θ0, θb, ψ.... The truncation scheme should
be designed to compute with accuracy only these quantities. To give an example,
truncating the Boltzmann hierarchy in Eq. (1.206)-Eq. (1.208) at `max,γ ∼ O(10) is
enough for computing Θ`(τ0, k) (and hence CTT

` ) up to `max ∼ O(103). Notice that,
even if we have significantly reduced the number of differential equations to solve, it
is `max and not `max,γ that should be used to compute the maximum wavenumber,
kmax ∼ `max/τ0.

In order to gain further insight from Eq. (1.285), we will make the instantaneous
decoupling approximation. That is, we consider that the transition from an opaque to
a transparent universe was very abrupt. This means that we can approximate the
visibility function as a Dirac delta, g(τ) ' δ(τ − τdec), and the exponential as a step
function, e−κγ ' ΘH(τ − τdec). By integrating the θb term by parts, we get

Θ`(τ0, k) ' [Θ0(τdec, k) + ψ(τdec, k)] j`(k(τ0 − τdec)) ←− SW

+ k−2θb(τdec, k)j′`(k(τ0 − τdec)) ←− Doppler

+
∫ τ0

τdec
dτ(φ′ + ψ′)j`(k(τ0 − τ)) ←− ISW (1.286)

Here the prime
′

in the Bessel function indicates derivative with respect to its ar-
gument. As we see, there are three different contributions to Θ`(τ0, k). Let us de-
scribe each of them separately
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• The first contribution is called the Sachs-Wolfe (SW) term, in honor of the first
scientists that studied the large-scale anisotropies (SACHS et al. 1967). It corre-
sponds to the quantity Θ0 +ψ evaluated at the last-scattering surface, conveying
the general idea that the CMB map is “the picture of the universe when it was
only 380 000 years old”. The presence of ψ simply indicates that photons have
to climb out of their potential wells to reach us today. Its interpretation becomes
more clear when moving to real space. To do this, we can first go back to angle
space using Eq. (1.204) and Eq. (1.284), and then integrate over

∫ d3~k
(2π)3 , to get:

ΘSW(τ0,~0, n̂) ' Θ0(τdec, ~xdec, n̂) + ψ(τdec, ~xdec), (1.287)

where ~xdec = (τdec − τ0)n̂ is the comoving coordinate of the photon arriving from
a direction −n̂. For large (super-Hubble) scales and during the matter era, we
know from Eq. (1.265) that there is a relation Θ0 = −2ψ/3. Hence, the SW
contribution to the CMB anisotropies smoothed over small scales is written as

ΘSW,smoothed(τ0,~0, n̂) ' 1
3ψ(τdec, ~xdec) ' −

1
2Θ0(τdec, ~xdec, n̂). (1.288)

Surprisingly, hot regions in the observed CMB map corresponds to cold regions
on the last scattering surface, and vice-versa. This just arises because the grav-
itational redshift effect of photons climbing our of the potential well wins against
their intrinsic temperature monopole.

• The second contribution is the standard Doppler term. Photons are emitted
from a tightly coupled baryon-electron fluid with a different peculiar velocity at
different points on the last scattering surface. The projection along the line of
sight induces a Doppler shift in the photon wavelength.

• The third contribution is called the Integrated Sachs-Wolfe (ISW) term, and ap-
pears in the presence of time variations of the metric fluctuations. Physically,
the integral over ψ′ describes a cumulative temperature shift acquired by pho-
tons in the presence of a non-conservative gravitational potential. That is, for
non-static potentials, it is not true that the integral along the line-of-sight of the
gradient,

∫ τ0
τdec

dτn̂ · ~∇ψ, is simply equal to ψ(τ0)−ψ(τdec). In a similar manner, the
integral over φ′ accounts for the cumulative effect of local time dilation.

In this formalism, the temperature spectrum CTT
` is obtained by computing

Θ` with the line-of-sight integral of Eq. (1.285) and then taking its square and
convoluting with the primordial spectrum as demanded by Eq. (1.277). Therefore,
CTT
` receives contributions from the three terms we just discussed: the SW, Doppler

and ISW contributions. These are shown in Fig. 1.18.

We can understand the qualitative shape of the different contributions to CTT
`

by making two simplifying assumptions. First, we assume again that decoupling
happened instantaneously. Second, we restrict to high-` (i.e. small scales), for which
the functions j`(x) and j′`(x) are very peaked in x ' `. This means that the k-integrals
mainly receive contributions from ` ' k(τ0 − τdec), which has a simple geometrical
interpretation as we discussed around Eq. (1.279). Hence, in these two limits, the
SW, Doppler and ISW contributions are roughly given by 27

27The SW contribution to CTT
` can actually be computed analytically assuming large (super-Hubble)

scales instead of small ones, and considering also a scale invariant primordial spectrum, ns = 1. From
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Figure 1.18 – Different contributions to the temperature anisotropy spectrum CTT
` .

CSW
` ∼ 〈|Θ0 + ψ|2〉(τ,k)'(τdec,`/(τ0−τdec)), (1.290)

CDoppler
` ∼ 〈|θb|2〉(τ,k)'(τdec,`/(τ0−τdec)), (1.291)

CISW
` ∼

∫ τ0

τdec
dτ(τ0 − τ)〈|φ′ + ψ′|2〉(τ,k)'(τ,`/(τ0−τ)). (1.292)

Note that CTT
` is not exactly given by the sum of these three contributions because

of the different correlations among terms. Let us start discussing the SW part. From
Eq. (1.290), it is clear that the shape of the SW contribution should be qualitatively
similar to the square of the transfer function Θ0 + ψ at the time of decoupling, as
can be confirmed by comparing with Fig. 1.16. At low-`, corresponding to super-
Hubble scales at decoupling, we see a plateau since perturbations are frozen. On
larger `, we see a series of acoustic peaks modulated by the effects we discussed in
Sect. 1.6.4. Notoriously, we observe an enhancement of the odd peaks with respect
to the even peaks (due to the shift in the zero point of oscillations), as well as a an
exponential diffusion damping for multipoles above `d ∼ kd(τ0 − τdec). Moving to the
Doppler term, we see that its contribution is negligible at low-`, whereas at high-` it
exhibits oscillations with a phase shifted by π/2 with respect to those of the SW term.
The former can be again explained by the fact that super-horizon perturbations are
frozen. The latter can be understood by noting that in the tight-coupling limit, and
neglecting variations of the metric potential, the baryon velocity is of the order θb ∼
θγ ∼ Θ′0 ∼ sin (kcsτ) (see Eq. (1.206)). Finally, the ISW contribution is only important

Eq. (1.232) and Eq. (1.288), we see that the SW transfer function on large scales is simply Θ0 +ψ = ψ
3 = 1

5
(remember that we set R(~k) = 1). Hence,

CSW,smoothed
` = As

2π2

∫ ∞
0

dk

k
(Θ0 + ψ)2 j2

` (k(τ0 − τdec)) = As
2π2

1
25

∫ ∞
0

dxj2
` (x) = As

100π2
1

`(`+ 1) . (1.289)

This is the reason why it is common to plot D` = `(`+ 1)C`, in order to roughly get a plateau at small `.
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when φ′ 6= 0 and ψ′ 6= 0. In Fig. 1.15, we had indicated in which regions of the k − τ
plane the gravitational potentials decay:

• Since the moment of decoupling happened shortly after the beginning matter
domination , the metric fluctuations (which have decayed inside the Hubble ra-
dius during the radiation era) didn’t completely stabilize. This produces a resid-
ual variation in ψ and φ, which is known as the Early Integrated Sachs Wolfe (EISW)
effect.

• At late times, when dark energy begins to dominate the energy budget of the
universe, the metric fluctuations start decaying again. This produces the so
called Late Integrated Sachs Wolfe (LISW) effect.

It can be shown that both the EISW and LISW decrease as a function of `. Since
the EISW effect is only relevant inside the sound horizon after decoupling, its con-
tribution is peaked around ` ∼ 200 (as can be seen in Fig. 1.18), enhancing the first
acoustic peak. The LISW effect happens at all scales, so it peaks at the smallest `,
slightly tilting the Sachs-Wolfe plateau.

Parameter dependence of C`

We have now everything we need to understand the specific effects of the different
cosmological parameters on the shape of CTT

` . For simplicity, we consider a spa-
tially flat universe. We also ignore the effects of free-streamings neutrinos, which
are discussed in great details in LESGOURGUES et al. (2018). Nevertheless, we will
sketch the dominant effects of a non-zero neutrino mass when discussing decay-
ing neutrinos in Chapter 4.

There are many parameter basis that can be chosen. For convenience, we will
take the six free parameters to be

{As, ns, ωb, ωcdm, ΩΛ, τreio}, (1.293)

where we remind that ωi ≡ Ωih
2. Remark that the dimensionless Hubble parameter

h is not included since it can be obtained from the condition ωmh
−2 = 1 − ΩΛ. The

radiation density parameter is not included either, as it can be obtained from the
very precise measurement of the present CMB temperature (T0 = 2.7255 ± 0.0006 K),
and the theoretical prediction of the effective number of neutrino species, Neff ' 3.044.
It is important to remember that the scale factors at matter-radiation and matter-
Λ equality are controlled by the ratios ωr/ωm and ((1 − ΩΛ)/ΩΛ)1/3, respectively (c.f.
Eq. (1.24)-Eq. (1.25)). Since we assume ωr to be fixed, in practice the scale factor
at equality only depends on ωm. The degrees of freedom that sculpt the shape of
the temperature spectrum are:

1. The position of the peaks. All the peaks of the CMB spectrum in multipole space,
CTT
` , correspond to the harmonics of one single correlation length of the CMB

spectrum in real space, CTT(θ). This characteristic length is precisely the sound
horizon, rs(τdec), giving the comoving distance travelled by a wavefront by the
time of the decoupling. In multipole space, the peak location is given by π/`peak =
θs = rs(zdec)/DA(zdec). The sound horizon depends on the pre-decoupling expan-
sion history and on the sound speed, and thus is affected by ωm and ωb. The
comoving angular distance DA(zdec) depends on the post-decoupling expansion
history and thus it is affected by ΩΛ and ωm.
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2. The ratio of odd/even peaks. As we have already discussed, the asymmetry be-
tween odd and even peaks arises from squaring acoustic oscillations that are
shifted with respect to 0 by an amount −(1 +R)ψ. This effects depends on R and
therefore on ωb.

3. The overall amplitude of the peaks. Between the time of radiation-matter
equality and decoupling, the amplitude of acoustic oscillations decreases due to
baryon friction (see region 3 in Fig. 1.15). If radiation-matter equality happened
later, there would be fewer time for oscillations to decrease, and thus all peaks
in the spectrum would move upwards. The first peak would be additionally
increased by a larger EISW, since metric fluctuations would be less stabilized at
decoupling. Those effects are controlled by ωm.

4. The damping envelope. The diffusion processes induce an exponential cutoff
shaped like exp(−(`/`d)2), being `d = π/θd with θd = rd(zdec)/DA(zdec). The diffu-
sion length at decoupling, rd(zdec) depends on ωm (governing the conformal time
at equality) and ωb (governing the evolution of the free electron fraction ). In
addition, DA(zdec) depends on ΩΛ and ωm, as we said earlier.

5. The overall amplitude of the spectrum. The global amplitude of the spectrum
depends on As, since this just enters as a multiplicative factor in the expression
Eq. (1.277) for CTT

` .

6. The overall tilt of the spectrum. The global slope of the spectrum depends on the
one of the primordial spectrum, PR(k), controlled by ns.

7. Tilting of the plateau. The plateau at small ` is tilted further as a result of the
LISW. This comes from the fact that ψ and φ start decaying again after matter-Λ
equality. Consequently, this effect is enhanced by a larger value of ΩΛ.

8. Effect of reionization. A small fraction of the CMB photons that we see today
last-scattered not at the time of recombination, but at the time of reionization.
These rescattered photons come in random directions that average to zero, so
they tend to erase the CMB anisotropies. This produces a steplike suppression
in the overall amplitude of the peaks starting at ` ∼ 40 (which corresponds to
modes crossing the Hubble radius around z ∼ 10). This effect depends on the
optical depth at reionization, τreio.

We have assumed for simplicity that the redshift of recombination is fixed, but
in reality it has a small dependence on the baryon density ωb and the helium mass
fraction Yp. Notice also that τreio and ΩΛ are poorly constrained by the temperature
spectrum, since they are inferred from measurements of the lowest multipoles, domi-
nated by cosmic variance. Fortunately, the combination with polarization anisotropy
data and low-redshift probes breaks parameter degeneracies that allow to constrain
τreio and ΩΛ (respectively) with better precision.

A few words on CMB Polarization

At each point in space, photons are described by their temperature, but also
by a set of Stokes parameters specifying their polarization state. The invariant
amplitude for Thomson scattering depends on photon polarization, more precisely
on the product |ε̂ · ε̂′|2, where ε̂ and ε̂′ denote the polarizations of the incoming and
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outgoing photons. However, during the tight-coupling regime, isotropy implies that
photons cannot acquire a net polarization in the scatterings with electrons, so they
remain unpolarized on average. The situation changes close to the epoch of photon
decoupling. Photons experienced their last interactions in regions with increasing
anisotropies. The quadrupole Θ2(τ, ~x) associated to these anisotropies produces
a net linear polarization of scattered photons. As a consequence, polarization
patterns appear on the last scattering surface, which are strongly correlated with the
temperature patterns.

The polarization map is described by a vector field on a sphere, as opposed to
the temperature map, which is a scalar field. Therefore, it can be decomposed into
two scalar maps, a gradient and a curl field, or an E-polarization and B-polarization
component, by analogy with electromagnetism. It is possible to define harmonic
power spectra for these polarization modes. It can be shown that scalar perturbations
can produce both temperature and E-polarization anisotropies. If the primordial
universe features only gaussian scalar fluctuations, all the information of the
CMB maps is encapsulated in the temperature power spectrum, CTT

` , the E-type
polarization power spectrum CEE

` , and also the cross-correlation between both,
CTE
` . The latter really adds new information, since polarization anisotropies are only

partially correlated with temperature anisotropies.

At this stage, it is convenient to say a few words about tensor modes. As we
mentioned at the beginning of Sect. 1.6, tensor modes are associated to the traceless
divergenceless spatial components of the metric and the stress-energy tensor, and
their d.o.f. represent the polarization states of gravitational waves (GW). Tensor
perturbations can interact with any species having non-negligible tensor components
in their perturbed stress tensor δTµν (such as photons after recombination), and gen-
erate temperature and polarization anisotropies, including B-type polarization. But
how are these tensor modes produced? Decoupled neutrinos and photons possess
non-zero anisotropic stress that can seed tensor perturbations, but these are far too
small to generate any detectable effect. The most famous generation mechanism is
inflation. STAROBINSKY (1979) showed that, during inflation, quantum fluctuations of
the metric can generate a significant amount of primordial GWs, which are described
by a nearly scale-invariant power spectrum, Ph = At

(
k
k?

)nt
. The amplitude of this

spectrum is directly related to the square of the Hubble parameter when observable
wavelengths crossed the Hubble radius during inflation. Hence, these primordial
GWs directly probe the energy scale of inflation. In this scale is large enough, they can
contribute to CTT

` , but only at ` . 100, because GWs quickly decay inside the Hubble
radius. They also generate E-type and B-type polarization (at all scales). However,
temperature and E-polarization anisotropies are predominantly dominated by
scalars. A better way to detect primordial GWs by measuring the B-type polarization
spectrum, CBB

` , since in this case there is no scalar contamination. In practice, weak
gravitational lensing of the CMB produce a leak from E-type to B-type polarization,
so disentangling the tensor contribution to CBB

` is challenging. Tensors have not
been observed yet, so current experiments set an upper limit on the tensor amplitude
normalized to the scalar one, i.e. on the so called tensor-to-scalar ratio r ≡ At/As. The
last measurements from Planck18 indicate r < 0.10 (at 95 % CL). Notice that, even in
the presence of tensors, the cross-correlation spectra CTB

` and CEB
` should vanish.

Indeed, T and E modes remain unchanged under parity transformations, while
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B changes sign, so in the absence of parity violating physics we expect CTB
` = CEB

` = 0.

The calculation of CEE
` and CTE

` in a universe featuring just scalar perturbations
can be performed along the same line as for CTT

` . The photon polarization is de-
scribed by a new degree of freedom, ΘP (τ, k, µ), whose evolution is described by a
new Boltzmann equation coupled to the Boltzmann equation for the photon temper-
ature perturbation Θ(τ, k, µ). We neglected this effect when writing Eq. (1.200), but it
turns out that the impact of polarization on photon temperature anisotropies is quite
small, so our previous qualitative discussion on CTT

` remains valid. One can express
the photon polarization as the line-of-sight integral of an appropriate source function,
and then expand in Legendre multipoles (just as for temperature). For brevity, we just
quote the final result without providing any explicit calculation (we refer to DURRER

(2020) for more details on this rich subject). Under the assumption of instantaneous
decoupling, and restricting to small scales (kτ0 � 1), one can show that the photon
polarization multipoles today are roughly given by

E`(τ0, k) = ΘP,`(τ0, k) ' 15
8 Θ2(k, τdec)

`2j`(kτ0)
(kτ0)2

' 5k
6κ′γ(τdec)

Θ1(k, τdec)
`2j`(kτ0)

(kτ0)2 , (1.294)

where the last equality follows from the tight-coupling condition, Θ2 ' −4kΘ1/(9κ′γ).
There are three important aspects to discuss. First, the polarization spectrum
is seen to be smaller than the temperature spectrum by a factor of order k/κ′γ at
recombination. This arises as a combinaition of the facts that polarization can
only be generated by a quadrupole, and the quadrupole is suppressed in the early
universe due to the frequent Compton interactions. Second, we see that, E` ∝ Θ1,
so we expect the polarization spectrum to exhibit oscillations which are out of phase
with the temperature spectrum. Finally, there is no analogue to the ISW effect,
since polarization is not induced by photons movings through time-varying metric
potentials.

Measuring the EE and the TE power spectrum is interesting, since it contains
additional information that allows to break some degeneracies among parameters.
For instance, reionization imprints a very characteristic effect on CEE

` , as we illus-
trate in Fig. 1.19. A small fraction of photons rescattered during reionization acquire
additional polarization that manifests as a bump at ` . 10 in CEE

` . This effect is so
large that, despite cosmic variance, τreio can be well determined using polarization
data. In Chapter 4, we will see the implications of this measurement for a model
of decaying neutrinos.

A few words on CMB lensing

The anisotropies measured in the CMB can be classified as primary or secondary,
depending on whether they are affected by processes around the time of recombina-
tion or at much later times, respectively. We have already discussed two examples
of secondary anisotropies: the LISW effect and reionization. There is still a very im-
portant secondary anisotropy that we haven’t described: CMB lensing. In general,
gravitational lensing occurs when matter deflects the path of light as it travels from a
source to the observer. There are three types of gravitational lensing. Strong lensing
occurs when the deflection is large and multiple images are formed. Microlensing
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Figure 1.19 – Type-E polarization spectrum, with and without including the effects of the
cosmic reionization at low redshift.

occurs when the angular separation of images is too small to be resolved, and instead
the source is temporarily brightened. Finally, weak lensing occurs when the deflec-
tion is small, and no multiple images are formed. The latter is the one which is most
relevant in cosmology. The main idea of weak CMB lensing is that the trajectories of
photons coming from the last scattering surface are deflected by matter fluctuations
localized at redshifts z . 3. At leading order in perturbations, it’s possible to describe
CMB lensing in terms of a two-dimensional deflection field d̂(n̂), giving the difference
between the direction n̂ at which photons are emitted, and the observed direction
n̂ + d̂(n̂). Using the spatial component µ = i of the perturbed geodesic equation, one
can show that the deflection field is given by the gradient of a lensing potential ϕ,
related to the Newtonian metric potentials φ and ψ through a convolution along the
line of sight (see DODELSON (2003) for details)

ϕ(n̂) = −
∫ τ0

τrec
dτ
χ(τrec)− χ(τ)
χ(τrec)χ(τ) (φ+ ψ)(τ,~x=r(τ)n̂) , (1.295)

where χ(τ) represents the comoving distance introduced in Eq. (1.31). During the
matter era and inside the Hubble radius, we can relate ψ = φ to the total matter
density fluctuations δm using the Poisson equation Eq. (1.229). Hence, the harmonic
power spectrum Cϕϕ` of a given map ϕ(n̂) can be obtained from the matter power
Pm(z, k) (which we define in Eq. (1.296)) convolved with an appropriate kernel. Using
Cϕϕ` , one can compute the two-point statistics associated to the lensed temperature
map Θ̃(n̂) = Θ(n̂ + d̂(n̂)) from that of the unlensed map Θ(n̂) (LEWIS et al. 2006).
Lensing smoothes out the peaks in the temperature power spectrum, and adds power
on very small scales, as we illustrate in Fig. 1.20. The lensing effects are so small
that they are only evident in the fractional differences. However, these effects are
already larger than the error bars in current CMB experiments, so lensing needs to
be taken into account.
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Figure 1.20 – Top panel: Temperature power spectrum before and after lensing corrections
are applied. Bottom panel: Fractional difference between these two spectra.

Inferring the lensing spectrum Cϕϕ` from observations is not a trivial task, since we
only observe CMB anisotropies after lensing effects have taken place. Luckily, lensing
produces non-zero correlations between off-diagonal modes of the temperature maps,
i.e. 〈Θ̃(~̀)Θ̃(~̀′)〉 = fTT (~̀, ~̀′)ϕ(~̀− ~̀′) 6= 0 for ~̀ 6= ~̀′ (here Θ̃(~̀) denotes the flat-sky 2D
Fourier transform of Θ̃(n̂)). Thanks to this effect, one can build estimators that allow
to reconstruct the deflection potential ϕ(n̂) directly from the anisotropy maps Θ̃(n̂)
(OKAMOTO et al. 2003).

As we will see in Chapter 3 and Chapter 4, secondary CMB anisotropies (and spe-
cially, CMB lensing) are essential for constraining unstable relics, such as decaying
dark matter or decaying neutrinos, since these scenarios typically produce deviations
from ΛCDM only after recombination.

1.6.6 The matter power spectrum

Many Large Scale Structure (LSS) observables can be inferred from the matter
power spectrum at different scales and redshifts, Pm(z, k), which is defined as

〈δm(z,~k)δ∗m(z,~k′)〉 = Pm(z, k)δ(3)(~k − ~k′). (1.296)

Here δm is the total density contrast of non-relativistic matter components.
In the ΛCDM model, it receives contributions from CDM, baryons and non-
relativistic neutrinos

δm = δρm
ρ̄m

= ρ̄cdmδcdm + ρ̄bδb + ρ̄νδν
ρ̄cdm + ρ̄b + ρ̄ν

. (1.297)

In the following, we will discuss the shape of the matter power spectrum in the lin-
ear regime (although we will briefly comment the importance of non-linearities later
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on). The assumptions of linearity and gaussian initial conditions imply that, at any
time, the matter power spectrum can be expressed as the product of the primordial
spectrum and the square of the transfer function δm(z, k):

Pm(z, k) = 2π2

k3 As

(
k

k∗

)ns−1
δ2
m(z, k). (1.298)

Hence, one can get some insight about the shape of Pm(z, k) by studying the qualitative
evolution of δm(z, k), as we proceed to do now.

Theoretical understanding

For simplicity, let us first consider a neutrinoless universe with a negligible
amount of baryons Ωb � Ωcdm. This means that δm ' δcdm, so all we need to know
is the evolution of CDM perturbations. By combining the first derivative of the
continuity equation Eq. (1.217) with the Euler equation Eq. (1.218), we easily arrive
at a master equation for the evolution of δcdm

δ′′cdm +Hδ′cdm = −k2ψ + 3φ′′ + 3Hφ′. (1.299)

This equation tells us that the evolution of δcdm is governed by a competition between
friction due to the cosmic expansion (Hδ′cdm), gravitational forces (−k2ψ) and dilation
effects (3φ′′ + 3Hφ′).

As we have already discussed, δcdm is frozen on super-Hubble scales, and only
varies when the EoS of the universe changes (assuming the Newtonian gauge). Let
us focus on the evolution at sub-Hubble scales. In this regime, we saw earlier that
the dilation terms can be safely ignored. What about the gravitational force term
k2ψ? The Poisson equation tells us that k2ψ ' −4πGa2δρtot ' −4πGa2(ρ̄cdmδcdm + ρ̄γδγ).
During matter and Λ domination, the contribution from photons is negligible, so we
can simply replace k2ψ by −4πGa2ρ̄cdmδcdm. During radiation domination, the situ-
ation is more subtle, since both δcdm and δγ can be important. As pointed out by
WEINBERG (2002), in this case the full solution of the system can be decomposed into
fast modes (oscillating with a pulsation of the order k or kcs) and slow modes (evolv-
ing over a Hubble time scale). It turns out the gravitational back reaction between
the two modes (through the Poisson equation) can be neglected. Since we are only
looking at CDM, we just need to consider slow modes and thus make the same re-
placement as for the matter era, k2ψ = −4πGa2ρ̄cdmδcdm. In short, inside the Hubble
radius we can rewrite Eq. (1.299) as

δ′′cdm +Hδ′cdm −
3
2H

2Ωcdm(τ)δcdm = 0, (1.300)

where Ωcdm(τ) = ρ̄cdm(τ)/ρ̄c(τ) = 8πGρ̄cdm(τ)/3H2(τ) is the time dependent abundance
of CDM. This equation is sometimes referred as the Mészáros equation (MESZAROS 1974).
It is possible to get analytical solutions at all times, which are scale independent
since the Mészáros equation doesn’t involve k. However, the integration constants
can generally depend on k, and their expression is obtained by matching to the so-
lutions at horizon crossing. For simplicity, we don’t detail this procedure here. In
fact, for understanding the shape of the matter spectrum, it will be enough to just
look at the asymptotic solutions:
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• During the radiation era (Ωcdm(a) � 1) the growing solution has a sub-Hubble
limit δcdm ∝ log (ka) ∝ log (kτ). The full solution (valid at all scales) involves the
cosine integral, and its expression can be found in Eq. (22) of GREEN et al. (2005).

• During the matter era (Ωcdm(τ) ' 1), the growing sub-Hubble solution evolves
linearly with the scale factor δcdm ∝ a ∝ τ2. This is a famous result from linear
theory; it means that it is necessary to wait until the universe becomes matter
dominates in order for CDM perturbations to grow appreciably.

• During the Λ era, the growth of structures is slowed down, since Λ enhances the
expansion rate and consequently the friction term. It is common to parametrize
the sub-Hubble solution as δcdm ∝ ag(a,Ωm), where g(a,Ωm) is a function
capturing the deviations from the linear evolution with a: it is equal to 1 deep in
the matter era, and monotonically decreases afterwards. g(a,Ωm) can be written
in terms of a hypergeometric function, but simple fitting formulas in terms of
Ωm = 1 − ΩΛ can be found in the literature (e.g. see Eq. (A4) in EISENSTEIN et al.
(1998)).

We have everything we need to understand the global shape of the matter spec-
trum as a function of time. We will have to consider three different wavenumbers,
corresponding to modes crossing the Hubble radius at the time of matter-radiation
equality, matter-Λ equality and today: keq = aeqHeq, kΛ = aΛHΛ, and k0 = a0H0. Let us
now describe the evolution of Pm(k) with respect to time.

1. At initial times, all modes of interest were super-horizon, so Pm just follows the
shape of the primordial spectrum PR(k). Assuming a scale invariant spectrum
for simplicity (ns = 1), then Pm(k) ∝ k−3.

2. During the radiation era, sub-Hubble modes evolve like log (kτ). Thus, at
matter-radiation equality, super-Hubble modes (k � keq) are shaped like initially
(Pm(k) ∝ k−3), whereas the sub-Hubble modes (k � keq) have been amplified
by a k-dependent factor [δcdm(τeq, k)/δcdm(τini, k)]2 ' [log (kτeq)]2 (meaning that
Pm(k) ∝ k−3 [log (k)]2).

3. At the time of matter-Λ equality, super-Hubble modes (k � kΛ) keep being
shaped like initially. Modes with k � keq have been enhanced during the matter
era by a k-independent factor [δcdm(τΛ, k)/δcdm(τeq, k)]2 ' (τΛ/τeq)4. Finally, inter-
mediate modes crossing the Hubble radius during matter domination (kΛ � k �
keq) have been amplified by a k-dependent factor (τΛ/τ∗)4, where τ∗ is their time
of Hubble crossing, τ∗ ' 1/k. In summary, the spectrum has three branches,
which scale like

• Pm(k) ∝ k−3, for k < kΛ,

• Pm(k) ∝ k−3k4 = k, for kΛ < k < keq,

• Pm(k) ∝ k−3(log k)2, for k > keq.

4. During the Λ era, δcdm grows more slowly than τ2, but this suppression of growth
is the same for all scales. Hence, the shape of the matter spectrum is unaffected
by this stage, and the three branches are the same as during the matter era.
The only difference is that the primordial spectrum Pm ∝ k−3 is now recovered
for scales k < k0, which in practice are never directly observed.
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Figure 1.21 – Linear evolution of the density perturbations for photons, baryons and CDM,
corresponding to a mode (k = 0.5 Mpc−1) that crossed the Hubble radius during radiation
domination.

It still remains to see the effects associated to baryons, since in reality Ωb is not
negligible. As we already discussed in Sect. 1.6.2, baryons remain coupled to photons
until the time of baryon drag, which took place slightly after photon decoupling,
τdr > τdec. After that time, the collision term vanishes, and the evolution of baryons
is dictated by an identical equation as that for CDM, i.e. Eq. (1.299) (notice that
will always consider scales bigger than the Jean’s length, which means that we can
discard the baryon pressure term). Let us discuss separately the evolution of modes
that crossed the Hubble radius before and after baryon drag.

For modes that crossed the Hubble radius after baryon drag, the evolution of
baryons is trivial, since it matches that of CDM, δb = δcdm. Indeed, baryon and CDM
density perturbations are equal on super-Hubble scales due to the adiabatic initial
conditions. After Hubble crossing, they are subject to the same evolution equation of
the form Eq. (1.299), so they remain equal at all times.

The situation is a bit more complex for modes that crossed the Hubble radius
before baryon drag. In this case, baryons develop the same oscillatory behavior
as photons, since the tight-coupling between these species enforces δb = 3

4δγ. This
means that baryons experience all the effects discussed in Sect. 1.6.4, such as de-
creasing oscillations during the matter era, diffusion damping on the small scales,
etc. As long as baryons remain coupled to photons, they don’t cluster, but still con-
tribute to enhance the expansion rate. This is translated into a reduced growth of
CDM. For instance, one can consider sub-Hubble scales during the matter era, and
solve a Mészáros equation identical to Eq. (1.300) but including the contribution from
baryons in H. This gives a solution δcdm ∝ a1− 3

5fb, with fb ≡ ρ̄b
ρ̄b+ρ̄cdm

. This reduction of
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Figure 1.22 – The matter power spectrum at z = 0 computed with only CDM, adding baryons
(ωb = 0.022), and including non-linear corrections with HALOFIT (R. E. SMITH et al. 2003; R.
TAKAHASHI et al. 2012). In all cases, the present matter abundance is set to ωm = 0.142.

linear growth of the CDM perturbations produces a suppression in the matter power
spectrum for wavenumbers k > keq.

After baryon drag, baryons and CDM are collisionless species feeling the same
gravitational forces, so their perturbations are described the following set of coupled
equations at sub-Hubble scales

δ′′cdm +Hδ′cdm = 4πGa2(ρ̄cdmδcdm + ρ̄bδb), (1.301)

δ′′b +Hδ′b = 4πGa2(ρ̄cdmδcdm + ρ̄bδb). (1.302)

By solving this system of equations, one notices that δb (which at baryon drag
was much more suppressed than δcdm) rapidly approaches δcdm. In other words,
baryons fall into the potential gravitational wells created by the CDM. The time
needed to reach δb = δcdm is greater for smaller scales, because in the large-k limit
the ratio |δb/δcdm| is smaller at τdr due to Silk damping. This phenomenon, essential
to understand the formation of large-scale structures, is illustrated in Fig. 1.21,
where we show the numerical resolution of δγ, δb and δcdm for a mode that entered
the Hubble radius deep in the radiation era (k = 0.5 Mpc−1). Hence, in order to get
an approximate description of the matter power spectrum, it is enough to perform
a matching of the solution δc = δb for τ > τdr with the individual solutions δc and
δb during τ < τdr (as described in detail in EISENSTEIN et al. (1998)). The important
outcome is that baryons imprint small oscillations as a function of k in the matter
power spectrum, which are known as Baryon Acoustic Oscillations (BAO).

In Fig. 1.22 we show a numerical calculation of the matter power spectrum at z = 0,
with and without taking baryons into account 28. The shape of Pm(k) agrees very well

28Let us briefly motivate the choice of displaying k in units of h/Mpc. The evolution of sub-Hubble
perturbations depends primarily on how deep inside the Hubble radius a given mode is, i.e. on the ratio
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with our qualitative discussion. It shows a peak at k = keq, with the two branches
at k < keq and k > keq going roughly as Pm ∝ k and Pm ∝ k−3[log (k)]2, respectively.
In addition, baryons lead to an overall suppression for k > keq and imprint the BAO
feature, which has already been detected in galaxy surveys (EISENSTEIN et al. 2005).

Parameter dependence of Pm(k)

We can now discuss the effects of the different cosmological parameters on the
shape of the matter power spectrum, similarly as we did in Sect. 1.6.5 with the CMB
temperature spectrum. In this case, Pm(k) is impacted by only 5 parameters, since
the optical depth at reionization only affects the scattering rate of photons. Tak-
ing as a parameter basis,

{As, ns, ωb, ωcdm, ΩΛ}, (1.303)

we can enumerate each of the different effects.

1. The time of equality fixes the location of the peak, keq. In units of h/Mpc, this
scale is entirely determined by zeq and Ωm, or equivalently, by ωm and ΩΛ = 1−Ωm.

2. The abundance of baryons relative to CDM controls the branch at k > keq. A
higher fraction ωb/ωcdm implies more suppression at these scales and BAOs more
pronounced.

3. The phase of the BAOs is dictated by the comoving sound horizon at baryon
drag, rd = rs(τdr). Similarly to the scale of the acoustic oscillations in the CMB
spectra, rd depends on ωb and ωm. However, rd depends much more strongly on
ωb, because the time of baryon drag is affected by R = 3ρ̄b/4ρ̄γ.

4. The global amplitude depends on the amplitude of the primordial spectrum, As,
but also on ΩΛ, since we have seen that the Λ produces a scale-independent
suppression of growth during the Λ era.

5. The global tilt depends directly on the tilt of the primordial spectrum, i.e. on ns.

For simplicity we have not included a description of the effects of neutrinos, which
are nicely explained in LESGOURGUES et al. (2018). Let us just mention that massive
neutrinos have a very strong impact on the matter spectrum. In particular, they in-
duce a smooth steplike suppression on wavenumbers larger than the free-streaming
wavenumber at the non-relativistic transition, knr = kfs(znr) (where the function kfs(z)
exhibits a minimum). Indeed, on scales k > knr, neutrinos do not contribute to clus-
tering but still enhance the Hubble friction term, producing a reduced growth of CDM
perturbations (akin to the suppression due to baryons). We will encounter a very
similar behavior when discussing the dynamics of warm particles arising from DM
decays in Chapter 3.

Probes of structure formation

The theory of linear cosmological perturbations cannot provide a description of
matter fluctuations at small scales and small redshifts, where the approximation

k/aH. Thus, it is convenient to plot the matter power spectrum as a function of k/(a0H0), such that any
other choice of H0 would leave the overall shape of the spectrum invariant. However, H0 = h/3000 Mpc−1

and it is typically assumed a0 = 1, so in practice it is equivalent to simply write k in units of h/Mpc.
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δ(~x, z) � 1 breaks down. LSS observations are sensitive to such range of z and
k, so it is important to be able to compute the power spectra on mildly or even
strongly non-linear scales, in order to extract as much information as possible from
these observables 29. This is typically done with the help of N-body simulations.
In this approach, CDM (and eventually other species like baryons or neutrinos)
is represented as a set of N-body particles, with masses of the order of million
solar masses (not to be confused with real particles!). Initially, these particles are
distributed inside a box such that the power spectrum of the smoothed distribution
is given by the linear spectrum Pm(zini, k) for a given cosmology. Afterwards, particles
are evolved using equations from Newtonian gravity, but including the effects of
the expansion through a Hubble friction term. These simulations are performed in
boxes in comoving space with periodic boundary conditions. Their associated spatial
resolution simply scales like the volume of the box divided by the number of particles
N . State-of-the-art codes such as GADGET-2 (SPRINGEL et al. 2001; SPRINGEL 2005)
are based on the Tree Particle-Mesh (Tree-PM) approach, which is an intelligent
algorithm that avoids having to compute N(N − 1) forces between pairs of particles,
as would be required in a brute-force calculation. The Boltzmann solver CLASS
makes use of an accurate fitting formula based on the results of the GADGET-2
code, called HALOFIT (R. E. SMITH et al. 2003; R. TAKAHASHI et al. 2012), improved to
account for the effects of massive neutrinos (BIRD et al. 2012). We show in Fig. 1.22
the impact of the non-linear matter power spectrum, which starts to deviate from the
linear one at k ∼ 0.1h/Mpc. In Chapter 2, we will use the HALOFIT code to compute
the non-linear matter spectrum associated to a model of Early Dark Energy, in order
to test this model against LSS data.

Many LSS observables probe the σ8 parameter, measuring the present strength of
clustering on a certain range of scales. Given the importance that this parameter has
for the so-called “S8 tension” and for this work, it is worth pausing for a moment to
define this parameter properly. Often, one would like to smooth the matter density
field δm(~x, z) over some “window" in space. In fact, the actual density field is grainy
due to the presence of structures (stars, galaxies, etc) and the theory can only predict
the statistics of a smoothed density field. There are several choices for the smoothing
function, a popular one is the top-hat window function in real space:

WR(r) = 1
(4π/3)R3 ΘH(R− r), (1.304)

where r = |~x′ − ~x| and ΘH is the Heaviside step function. The smoothed density field
is obtained by a convolution with the window function

δm,R(~x, z) =
∫
d3~x′WR(|~x′ − ~x|)δm(~x′, z). (1.305)

In Fourier space, this corresponds to a simple multiplication δm,R(~k, z) = WR(k)δm(~k, z),
where WR(k) is the Fourier transform of the top-hat window function

WR(k) = 3sin (kR)− kR cos (kR)
(kR)3 . (1.306)

29Note however, that the amount of information that can be extracted tends to saturate at large kmax,
because, deeply in the non-linear regime, the non-linear matter spectrum gradually loses memory of
initial conditions, i.e. of early linear perturbations.
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Hence, the smoothed matter power spectrum reads Pm,R(k, z) = |WR(k)|2Pm(k, z). Now,
from Eq. (1.247) we know how to obtain the matter power spectrum Pm(k, z) from
the 2-point correlation function in real space, ξm(r, z). One can perform the inverse
Fourier-transform and evaluate the zero-lag correlation function ξm(r = 0, z),

ξm(r = 0, z) = 1
2π2

∫ ∞
0

dkk2Pm(k, z) lim
r→0

sin (kr)
kr

=
∫ ∞

0
dlnkPm(k, z), (1.307)

with Pm(k, z) = k3Pm(k, z)/2π2. We can now consider the autocorrelation function as-
sociated to the smoothed matter power spectrum (often referred as σ2(R, z) = ξm,R(r =
0, z) in the literature),

σ2(R, z) =
∫ ∞

0
dlnk|WR(k)|2Pm(k, z). (1.308)

This gives the r.m.s. amplitude of mass fluctuations smoothed over a scale R. Histor-
ically, cosmologists have first studied clustering on scales about the size of a galaxy
cluster (5 − 10 h−1Mpc), so an important quantity to choose was

σ8 ≡ σ(R = 8 h−1Mpc, z = 0). (1.309)

The σ8 parameter also provides an alternative way to normalize the matter power
spectrum, since it is proportionally related to the primordial amplitude As (but
note this relation is model-dependent). In the ΛCDM framework, σ(R, z) increases
smoothly with decreasing R, corresponding to a “bottom-up” scenario where the
smallest, least massive objects form first (such as stars and galaxies), and the larger,
more massive objects (like galaxy clusters) form later. Notice that the matter power
spectrum entering in the definition of σ8 is the linear one. In fact, one can estimate the
redshift at which a given scale R enters in the non-linear regime from the condition
σ(R, znl) ∼ 1.

Let us briefly comment on one technique used to probe the large-scale structures,
called galaxy weak lensing, which is very relevant in the context of the S8 tension.
The images of distant galaxies are slightly distorted due to the gravitational lensing of
the intervening large scale structures. The two main areas of galaxy weak lensing are
cosmic shear, the study of correlations between the shapes of pairs of galaxies, and
galaxy-galaxy lensing, the study of correlations between the position of foreground
galaxies and background galaxy shapes. Cosmic shear allows to probe the LSS more
directly than galaxy-galaxy lensing, where one needs to makes assumptions about
the relation between galaxies and the underlying matter distribution.

The basic observable in weak lensing studies is the ellipticity of a galaxy. The
measured ellipticity receives contributions from the intrinsic galaxy ellipticity and the
shear effect due to gravitational lensing (i.e. the squeezing of the image in one direc-
tion, and its stretching on the orthogonal direction). In the weak lensing regime, the
intrinsic ellipticity largely dominates over the small shear, so it is necessary to perform
an average over many galaxies. The main idea behind this approach is that galaxies
are intrinsically randomly oriented on the sky, so the intrinsic ellipticities average to
zero, leaving just the shear. Like for CMB lensing, galaxy lensing is described by a de-
flection potential, which is related to the Newtonian metric potentials φ and ψ through

ϕ(n̂) = −
∫ τ0

0
dτsg(τs)

∫ τ0

τs
dτ
χ(τs)− χ(τ)
χ(τs)χ(τ) (φ+ ψ)(τ,~x=r(τ)n̂) , (1.310)
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This expression is very similar to the one we wrote in Eq. (1.295) when presenting the
CMB lensing, although there are two important differences. First, the source is now
located at an arbitrary comoving distance χ(τs), rather than on the last-scattering
surface. Second, since we are measuring the distortions for a ensemble of galaxies,
we need to consider a distribution of galaxy redshifts, g(τs), normalized such that∫ τ0

0 dτsg(τs) = 1. As for the CMB lensing spectrum, the associated harmonic spectrum
Cϕϕ` is obtained by a convolution of the matter power spectrum Pm(k, z) with an
appropriate kernel. However, as opposed to the CMB lensing, it is strictly necessary
to consider the non linear matter power spectrum, since galaxy lensing covers much
smaller scales. Often, it is possible to split the catalog of galaxies in several redshift
bins i, described by selection functions gi(τ) such that g(τ) =

∑
i gi(τ), and to measure

the lensing spectrum C
ϕiϕj
` at each redshift bin. This tomographic approach is

particularly useful for measuring neutrino masses as well as dark energy properties.
Observational constraints are often reduced to the parameter combination to which
weak lensing surveys are mostly sensitive. In particular, constraints are typically
quoted in terms of S8 ≡ σ8

√
Ωm/0.3, which modulates the amplitude of weak lensing

measurements. We remark that the S8 parameter is not directly measured by the
collaborations, but inferred from Eq. (1.308) by adjusting the ΛCDM model to their
weak-lensing data (HEYMANS et al. 2021).

Let us just mention that other LSS probes can be similarly obtained from the mat-
ter power spectrum. For instance, galaxy clustering probes measure the galaxy power
spectrum, which in the simplest formulation is assumed to be Pg(z, k, µ) = (bg(z) +
fµ2)2Pm(z, k), where the first term includes the light-to-mass bias function bg(z), and
the second term proportional to the growth rate f ≡ dln(D(a))/dlna (with D(a) =
ag(a)/g(a0)) is accounting for Redshift Space Distortions (KAISER 1987). On the other
hand, probes of the Lyman-α forest measure the flux power spectrum PF (k), linearly
related to the one-dimensional matter spectrum Pm,1D(k) = 1

2π
∫∞
k dk′k′Pm(k′) through

another scale-dependent bias function, PF (k) = b2(k)Pm,1D (MURGIA et al. 2017).

1.7 Successes and challenges of the ΛCDM paradigm

The ΛCDM model provides outstanding explanation for a wide variety of early uni-
verse data, such as Cosmic Microwave Background (CMB) and Big Bang Nucleosyn-
thesis (BBN), as well as late universe observations of Large Scale Structure (LSS) in-
cluding the Baryon Acoustic Oscillation (BAO), and uncalibrated luminosity distance
to SuperNovae of type Ia (SNIa). In Fig. 1.23 we show a schematic representation of
the approximate redshift z and wavenumber k corresponding to different cosmolog-
ical observables. The fact that the ΛCDM model agrees well with such a disparate
compilation of observations (spanning many orders of magnitude in time and scale) is
an impressive proof of its success. Nevertheless, the ΛCDM model does not teach us
about the intrinsic nature of its dark sector, made up of both cold dark matter and
dark energy. In addition, as the accuracy of cosmological observations has improved,
the concordance cosmological model starts showing several experimental discrepan-
cies. In the following, we proceed to discuss each of this problems.

1.7.1 The nature of the dark sector

During the last couple of decades, a myriad of models have been proposed to
describe the dark components of the universe. Unfortunately, their nature remains a
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Figure 1.23 – Schematic view of the coverage of current and future cosmological probes across
various epochs and scales. The ranges of each individual probes are approximate. Similar
figures can be found in BODDY et al. (2022) and SABTI et al. (2022).

mystery, due to the absence of a clear signal independent from the gravitational ones.
Below we sketch some of the main candidates for dark matter and dark energy.

Dark matter candidates

• WIMPs. These remain amongst the most popular models, due to their simple
production mechanism in the primordial universe (discussed in Sect. 1.5.4), and
the fact that they are excellent CDM candidates (B. W. LEE et al. 1977). Indeed,
they are neutral, stable, have masses in the GeV-TeV range, and interact weakly
with the SM. Specific WIMP models arise for example in Supersymmetry (SUSY).
This is an extension of the gauge theories that was introduced in the 70s in order
to fill some of the gaps of the SM, such as the electro-weak hierarchy problem. It
predicts that each particle should have a super-partner with a spin that differs
by a half-integer, i.e. all fermions have bosonic super-partners and vice-versa.
The lightest of the neutralinos (which are the mass eigenstates of four neutral
super-partners, namely, two Higgsinos, the bino and the wino) has all the re-
quired properties to be a WIMP candidate. Another good candidate for WIMP DM
is the gravitino, the super-partner of the graviton (see JUNGMAN et al. (1996) for
a review on SUSY DM). Outside the SUSY framework, WIMPs also arise in mod-
els of extra-dimensions. These models are based on the seminal work by KALUZA

(1921) and KLEIN (1926), who pursued to unify electromagnetism and gravity
by postulating the existence of a compact fifth dimension. Modern examples
of extra-dimension theories include the Randall-Sundrum model (RANDALL et
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al. 1999) and the Universal Extra Dimensions (UED) model (APPELQUIST et al.
2001). In this context, particles that are allowed to propagate through all dimen-
sions exhibit excited, more massive states, denominated Kaluza-Klein (KK) states.
In UED, all SM particles can propagate in all dimensions, and the lightest KK
particle (LKP), if stable and neutral, becomes a perfect WIMP candidate. During
the recent years, WIMPs have lost their quasi-monopoly due to the null searches
in colliders and direct/indirect detection experiments, and the community is
starting to focus on other candidates.

• Axions. This corresponds to a very different class of DM candidates, which were
originally introduced to solve the CP (charge-parity) problem of the SM. This is a
fine-tuning problem that deals with the question of why there is no experimental
sign of CP-violating physics in strong interactions, even if the QCD Lagrangian
requires in full generality a CP-violating term. In a nutshell, the idea is to intro-
duce a new global chiral symmetry U(1)PQ that is spontaneously broken at scales
much higher than the QCD confinement scale (fa � ΛQCD ∼ 150 MeV). This gen-
erates the “axion” field as a pseudo-scalar Goldstone boson, whose dynamics
are such that it can naturally cancel the CP-violating term in QCD (PECCEI et
al. 1977; WEINBERG 1978; WILCZEK 1978). The axion field, which is initially
massless, acquires a non-zero mass when temperature of the bath drops below
T ∼ ΛQCD. At this point, the field starts rolling down to the minimum of its po-
tential, oscillating and diluting in the same way as a CDM fluid, ρ̄a ∝ a−3. One
can show that the axion mass scales as ma ∝ 1/fa, and in order to produce the
right DM abundance, it should fall in the range 10 µeV < ma < 0.1 eV. Many axion
models predict a coupling to photons, gaγ, which is the source of Primakoff effect:
the conversion of axions into detectable photons in a strong magnetic field. With
the years, QCD axions have paved the way to the study of more generic light
bosons, such as axion-like particles (generalizing the QCD axion but not necessarily
connected to the strong CP-problem) or ultralight axions (with masses as low
as ma ∼ 10−22 eV), making what is known as fuzzy DM (see MARSH (2016) for a
review on axion cosmology).

• Sterile neutrinos. These particles arise in the context of the neutrino mass puz-
zle. Even if active neutrinos are assumed to be massless in the SM, oscillation
experiments have provided convincing evidence that at least two of them must
posses tiny non-zero masses (see Sect. 4.2). One simple construction to explain
the smallness of neutrino masses is given by the type-I seesaw mechanism (DREWES

et al. 2017). The main idea is to add to the SM content a right-handed, sterile
neutrino, i.e. a fermion which is a singlet for all interactions. Then, one can con-
struct the most general mass matrix that is allowed by gauge invariance, and
from its eigenvalues one finds that the mass of the active neutrino is inversely
proportional to the mass of the heavy sterile neutrino. Notice that, a priori, the
mass of sterile neutrinos can cover a wide range of values. Those with masses
of the order MNR ∼ O(keV) have all the necessary properties to constitute cold
DM or warm DM, i.e. they are neutral, stable on cosmological scales, and posses
very weak interactions with other particles (if the mixing angles are small). In-
terestingly, sterile neutrinos can decay into an active neutrino and a photon,
providing a clean astrophysical signature than can be searched with X-ray ob-
servations (see BOYARSKY et al. (2019) for a recent review).
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• Primordial black holes. DM models don’t necessarily have to introduce new parti-
cles. Primordial black holes (PBHs) are a class of non-baryonic MACHOs (stand-
ing for Massive Astrophysical Compact Halo Object) that are naturally good DM
candidates. PBHs are believed to have formed in the very early universe, from
rare and extremely large density fluctuations that collapsed into BHs right after
entering the Hubble radius (ZEL’DOVICH et al. 1967; HAWKING 1971; CARR et al.
1974). The abundance of PBHs is controlled by the amplitude of the primordial
spectrum, and should be vanishingly small if the latter were at the level con-
strained by CMB and LSS observations. Nonetheless, this amplitude remains
very unconstrained at small scales, so it could still be possible that PBHs rep-
resent a sizable fraction of the DM. There has been recently a renewed interest
in PBHs thanks to the latest observations of black hole binary mergers with the
LIGO/Virgo gravitational wave detectors (B. P. ABBOTT et al. 2016; BIRD et al.
2016). However, they are subject to many observational constraints, such as
those coming from γ-rays, microlensing, the CMB or the Ly-α forest, to name a
few examples (see GREEN et al. (2021) for a recent compilation of constraints).

Dark energy candidates

• Cosmological constant. The simplest possible explanation for the cosmic accel-
eration which is in agreement with current observations is that dark energy is
in the form of a cosmological constant Λ, whose energy is independent of of
space and time. However, this triggers a number of questions. First, the stress-
energy tensor associated to Λ has the same form of that associated to the ground
state energy of the vacuum, TΛ

µν = −ρΛgµν, with ρΛ = Λ/8πG. Unfortunately, the
predicted size of the vacuum energy ρvac from the zero-point energy suggested
by quantum field theory is completely off, ρvac/ρΛ ∼ 10120. This is known as
the cosmological constant (CC) problem. Another issue is related to the fact that the
present abundance of dark energy ΩΛ is extremely similar to that of matter Ωm,
despite the very different scalings of each one (ρΛ ∝ a0 and ρm ∝ a−3). This is
the so-called coincidence problem. Faced with these questions, theorists have de-
veloped extensions of GR, which are pursued to understand gravity at a more
fundamental level. But how should one modify gravity? In fact, GR turns out
to be a very unique theory. According to Lovelock’s theorem (LOVELOCK 1971),
in a four-dimensional space-time, the only second order equations derived from
an action that depends only on the metric, S =

∫
d4xL(gµν), are precisely Ein-

stein field equations (c.f. Eq. (1.10)). Hence, new theories of gravity can be built
by breaking some of the assumptions of this theorem, e.g. by considering new
fields, extra dimensions, higher-order equations etc. It should be stressed that,
even if most of these models address the coincidence problem, there is still no
widely accepted solution for the CC problem.

• Quintessence. This is one of the simplest extensions, which consists in adding
a scalar field φ (playing the role of dark energy) minimally coupled to gravity
and described by some generic potential V (φ) (COPELAND et al. 2006). A well-
known example is the Ratra-Peebles potential V (φ) = k/φα (RATRA et al. 1988).
In quintessence models, the EoS is simply given by wφ = φ̇2/2−V (φ)

φ̇2/2+V (φ) , so the scalar
field can produce cosmic acceleration (wφ < −1/3) as long as the field is in slow-
roll (V (φ) � φ̇2/2), similarly to inflationary models. However, the EoS can never
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become strictly smaller than wφ = −1. The regime w < −1 actually defines a
different class of models, dubbed phantom dark energy. These scenarios produce
such a rapid acceleration that a big rip can take place, i.e., a→∞ is reached in a
finite amount of time, meaning that all the matter in the universe is eventually
torn apart (R. R. CALDWELL 2002; R. R. CALDWELL et al. 2003).

• Scalar-tensor theories. These theories postulate the existence of one extra scalar
field, with a possible non-minimal coupling to gravity. This leads to a vast array
possibilities, from the simplest forms of Brans-Dicke theories (BRANS et al. 1961)
to the most recent higher-derivative theories, where the scalar and the metric dy-
namics are strongly intertwined. Scalar-tensor theories are constrained by local
tests of GR and the equivalence principle, and by cosmological probes (since
they typically modify the growth of large-scale structures). Moreover, the re-
cent precise measurement of the gravitational wave speed from the detection
of GW170817 has already put under pressure many scalar-tensor theories de-
signed to account for the cosmic acceleration (CREMINELLI et al. 2017). It was
recently discovered that scalar-tensor theories can generally be grouped in the
Horndeski action, which was first written down in HORNDESKI (1974). This ac-
tion gives the most general scalar-tensor theory described by second order equa-
tions of motions and universally coupled to matter. The Horndeski action covers
quintessence, Brans-Dicke, f(R), covariant Galileons as well as many other ex-
otic modifications (see CLIFTON et al. (2012) for a review).

• Other theories of modified gravity. There are many other proposals of modified
gravity outside the scalar-tensor framework. For instance, theories of mas-
sive gravity propose that the elementary spin-2 excitations of the gravitational
field (the gravitons) can have a non-zero mass. In order to satisfy current con-
straints, this mass must be tiny (less than 10−23 eV), but can already have ef-
fects on the very large scales (RHAM 2014). Another important class of models
are higher-dimension theories. They are based on the idea that our universe
contains extra hidden dimensions only visible by gravity, while the rest of SM
particles are confined in a four-dimensional brane. A well-known example is the
Dvali–Gabadadze–Porrati (DGP) model (DVALI et al. 2000). These models share
many features with massive gravity and scalar-tensor theories, but the behavior
at large distances is different.

1.7.2 Cosmic discordance

The H0 tension

The so-called “Hubble tension” refers to the inconsistency between local mea-
surements of the current expansion rate of the Universe, i.e. the Hubble constant
H0, and the value inferred from early-Universe data using the flat ΛCDM model.
This tension is predominantly driven by the Planck collaboration’s observation
of the cosmic microwave background (CMB), which predicts a value in ΛCDM of
H0 = (67.27 ± 0.60)km/s/Mpc (AGHANIM et al. 2020b), and the value measured by the
SH0ES collaboration using the Cepheid-calibrated cosmic distance ladder, whose
latest measurement yields H0 = (73.04 ± 1.04)km/s/Mpc (RIESS et al. 2021a). Taken at
face value, these observations alone result in a 5σ tension.
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The problem, however, is more severe than the naïve comparison between Planck
and SH0ES may suggest. Today, there exist a variety of different techniques for
calibrating ΛCDM , and subsequently inferring the value of H0, which do not
involve Planck data – for example, one can use alternative CMB data sets such as
WMAP (C. L. BENNETT et al. 2013), ACT (S. K. CHOI et al. 2020), or SPT (DUTCHER

et al. 2021), or one can remove observations of the CMB altogether and combine
measurements of Big Bang nucleosynthesis (BBN) with data from baryonic acoustic
oscillations (BAO) (AUBOURG et al. 2015; BLOMQVIST et al. 2019; CUCEU et al.
2019; SCHÖNEBERG et al. 2019) or with supernovae constraints (VERDE et al. 2017;
BERNAL et al. 2021) 30. These probes, which invoke at least one measurement from
high redshifts, are often dubbed “early-Universe calibrations”, and all result in H0
values below 70 km/s/Mpc (typically in strong agreement with the value inferred by
Planck using ΛCDM ). Similarly, several alternative methods for directly measuring
the local expansion rate have been proposed in the literature. A large number
of these techniques offer alternative methods for calibrating the cosmic distance
ladder, removing any bias introduced from Cepheid observations. One example is
the recent determination of H0 obtained by the Chicago-Carnegie Hubble program
(CCHP), which calibrates SNIa using the tip of the red giant branch (TRGB); this
observation yielded a value of H0 = (69.8 ± 0.6 (stat) ± 1.6 (sys)) km/s/Mpc (FREEDMAN

et al. 2019; FREEDMAN 2021), in between the Planck CMB prediction and the
SH0ES calibration measurement. However, alternative analyses using similar
techniques have yielded values significantly closer to the value obtained by SH0ES,
in particular the latest calibration of the TRGB using the parallax measurement
of ω−Centauri from GAIA DR3 leads to H0 = (72.1 ± 2.0) km/s/Mpc (YUAN et al.
2019; SOLTIS et al. 2021). Additional methods intended to calibrate SNIa at large
distances include: surface brightness fluctuations of galaxies (KHETAN et al. 2021),
MIRAS (HUANG et al. 2019), or the Baryonic Tully Fisher relation (SCHOMBERT

et al. 2020). There also exists a variety of observations which do not rely on
observations of SNIa – these include e.g. time-delay of strongly lensed quasars
(BIRRER et al. 2020; K. C. WONG et al. 2020), maser distances (PESCE et al. 2020),
or gravitational waves as “standard sirens” (B. P. ABBOTT et al. 2021). In Fig. 1.24
we show an updated compilation of some of the direct and indirect determinations
of H0 we just discussed. While not all measurements are in tension with Planck,
these direct probes tend to yield values of H0 systematically larger than the value
inferred by Planck 31. Depending on how one chooses to combine the various mea-
surements, the tension may be elevated to as much as 6σ (DI VALENTINO et al. 2021b).

Intense experimental efforts are underway to establish whether this discrepancy
can be caused by yet unknown systematic effects (appearing in either the early or late
Universe measurements, or both). This includes (but is not limited to) issues in SNIa
dust extinction modeling and intrinsic variations (MORTSELL et al. 2021a,b), the im-
portance of Cepheid metallicity correction (EFSTATHIOU 2020), differences in TRGB cal-
ibration in the LMC (FREEDMAN et al. 2019; YUAN et al. 2019; FREEDMAN et al. 2020)
and in the Milky Way (CERNY et al. 2020; SOLTIS et al. 2021), different population of
SNIa at low-z and high-z (RIGAULT et al. 2015; JONES et al. 2018; RIGAULT et al. 2020;
BROUT et al. 2021), and the existence of a local void biasing H0 estimates (KENWORTHY

30The robustness of such probes have been investigated for example in BERNAL et al. (2020) and
CARTER et al. (2020).

31However, there is some debate about the robustness and independence of these additional measure-
ments, see e.g. FREEDMAN (2021).
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Figure 1.24 – Whisker plot showing 68% CL determinations of the Hubble constant H0
through a series of direct and indirect measurements. The yellow vertical band denotes the
H0 value from Planck18 (AGHANIM et al. 2020b), whereas the blue vertical band denotes the
H0 value reported by SH0ES (RIESS et al. 2021a). For clarity, we restricted to a subset of con-
straints with error bars smaller than σH0 . 3 km/s/Mpc, a full compilation of measurements
can be found in DI VALENTINO et al. (2021b).

et al. 2019; LOMBRISER 2020) (for a more complete review, see DI VALENTINO et al.
(2021b)). Yet, the appearance of this discrepancy across a wide array of probes seems
to suggest that a single systematic effect may not be sufficient to resolve this discrep-
ancy. The alternative possibility is that the Hubble tension reflects a breakdown of
the ΛCDM model; properly accounting for new physics operating either in the early-
or late-Universe could change the inference of H0 from the early-Universe probes to
be in agreement with the direct measurements. In Chapter 2 we will explain that any
viable ΛCDM extension likely requires reducing the sound horizon at recombination.

The S8 tension

The “S8 tension” is a longstanding discrepancy between the strength of matter
clustering measured by large-scale structure probes, and the value inferred from
early-Universe data. In particular, the value of the clustering strength estimated by
the primary anisotropies of the CMB (as measured by Planck) is typically 2− 3σ higher
than that obtained from lower redshift probes, such as weak gravitational lensing and
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Figure 1.25 – Whisker plot showing 68% CL determinations of the S8 parameter by various
CMB experiments and other low-redshift cosmological probes. The yellow vertical band de-
notes the S8 value from Planck18 (AGHANIM et al. 2020b), whereas the blue vertical band
denotes the S8 value reported by the joint analysis of KIDS1000+BOSS+2dfLenS (HEYMANS

et al. 2021). For clarity, we restricted to a subset of constraints with error bars smaller than
σS8 . 0.03, a full compilation of measurements can be found in ABDALLA et al. (2022).

galaxy clustering. As mentioned in Sect. 1.6.6, this is often quantified through the
S8 ≡ σ8

√
Ωm/0.3 parameter, where σ8 is the root mean square of matter fluctuations

on a 8h−1 Mpc scale, and Ωm is the total matter abundance. This parameter
combination is chosen to encapsulate the main degeneracy direction of weak lensing
measurements. The S8 parameter is intimately related to fσ8(z = 0) measured
by redshift space distortions (RSD) (GIL-MARIN et al. 2017), where f = [Ωm(z)]0.55

approximates the growth rate in GR. Notice that measuring S8 is model dependent,
and all current experimental determinations assume the flat ΛCDM model.

The CMB anisotropy data from Planck18 TT,TE,EE+lowE yields a constraint
S8 = 0.834 ± 0.016, which can be tightened when adding the CMB lensing reconstruc-
tion, S8 = 0.832 ± 0.013. As we mention later, this high S8 estimate could be related
to an excess of lensing inferred from the smoothing of the acoustic peaks within
Planck data. However, the combination of high-` data from ACT (S. K. CHOI et al.
2020) with the low-` measurements from WMAP (C. L. BENNETT et al. 2013) also
yields a high value, S8 = 0.834 ± 0.016, despite not exhibiting any lensing anomaly.



1.7. Successes and challenges of the ΛCDM paradigm 95

On the side of the low-z probes, there is a host of galaxy weak lensing surveys that
have provided accurate measurements of S8. The Canada France Hawaii Lensing
Survey (CFHTLenS) (HEYMANS et al. 2013) was the first to report a ∼ 2σ tension in
S8 with the initial Planck data release (ADE et al. 2014), which has persisted with
subsequent analysis of CFHTLenS data (JOUDAKI et al. 2017a). This motivated the
weak lensing community to carry out blinding procedures in their analysis. The
first blinded analysis of this type was performed by the Kilo Degree Survey on
their first 450 square degrees of data (KiDS-450, HILDEBRANDT et al. 2017), which
found a 2.3σ lower value of S8 compared to Planck 2015 (ADE et al. 2016a). All
subsequent published results from weak-lensing measurements have obtained S8
values which are systematically lower than the high-z estimates. The first year of
data from the Dark Energy Survey (DES-Y1, TROXEL et al. 2018) and Hyper Suprime
Cam (HSC, HIKAGE et al. 2019) found slightly higher but consistent values with
the results of KiDS-450. The improved analysis of KiDS-450 with photometric data
from VIKING (KV450) consistently found low S8 results (HILDEBRANDT et al. 2020). A
combination of KV450 and DES-Y1 was performed in ASGARI et al. (2020), finding
stronger constraints in good agreement with former results. The latest analysis of
KiDS (KiDS-1000, ASGARI et al. 2021) and DES (DES-Y3, SECCO et al. 2022) show
a similar trend with a better precision. The S8 parameter can also be measured
from redshift-space galaxy clustering; in particular, with the BOSS full-shape galaxy
power spectrum and bispectrum: S8 = 0.751 ± 0.039 (PHILCOX et al. 2022). The
precision of these measurements can be improved in a joint analysis with weak
lensing data. The combination of cosmic shear, galaxy-galaxy lensing and galaxy
clustering at the level of 2-point statistic is known as “3× 2pt” analysis. For instance,
the recent 3 × 2pt analysis by KIDS1000+BOSS+2dfLenS has yielded a constraint
S8 = 0.766+0.020

−0.014, which has the overall same precision as Planck but it is ∼ 3σ smaller.
This kind of combined analysis between galaxy clustering with weak lensing allows
to break the degeneracy between σ8 and Ωm, revealing that the tension is driven
by σ8, rather than Ωm. Another possibility to measure S8 is to use the number
density of DM halos, which is very sensitive to the growth of structure through the
cosmological halo mass function. The Planck mission has provided measurements
of the number counts of galaxy clusters detected through the Sunyaev-Zel’dovich
(SZ) effect, reporting a deficit with respect to the value expected from the fiducial
Planck TT,TE,EE+lowE ΛCDM model (ADE et al. 2016b). This can be translated into a
2 − 3σ tension in S8, which has been confirmed by other cluster count experiments
(PRATT et al. 2019). In Fig. 1.25 we show an updated compilation of some of the
high-z and low-z determinations of S8 we just discussed.

There is a large number of known systematic effects that can affect the low-redshift
measurements of large-scale structures. Weak-lensing systematics include: noise
bias affecting the galaxy shape measurements (MELCHIOR et al. 2012), errors in pho-
tometrically determined redshift distributions (HUTERER et al. 2006), intrinsic align-
ment of galaxies (BRIDLE et al. 2007), uncertainties in the modeling of baryon feedback
(MEAD et al. 2020) and small-angle approximations (KITCHING et al. 2017). Regard-
ing the galaxy clustering systematics, there can be issues with stellar contamination,
atmospheric extinction and blurring (ROSS et al. 2012), fiber collisions (HAHN et al.
2017) and selection bias (C. M. HIRATA 2009). Finally, the dominant source of sys-
tematic uncertainty in cluster count observations is the hydrostatic bias parameter
relating the mass observed through the hot gas and the true mass of the host halo,
1 − b = Mobs/Mtrue (BLANCHARD et al. 2021). Still, the appearance of this mismatch
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across such a variety of probes suggest that a single systematic might not be enough
to explain the discrepancy, similarly to what happens with the H0 parameter. Hence,
the S8 tension could also be a signal of a failure of the ΛCDM model. In particular,
it seems to point towards a suppression of power in the matter spectrum Pm(k) at
the scales selected by the window function k2|W8(k)|2, i.e. for k ∼ (0.1 − 1)h/Mpc. In
Chapter 3, we will study a model that can achieve precisely this type of suppression.

The Alens anomaly and other discrepancies

Another well studied ‘curiosity’ in the recent literature consists in the anomalous
amount of lensing estimated from the smoothing of the acoustic peaks at high-`’s
within Planck data, as quantified by the ‘Alens’ parameter (CALABRESE et al. 2008;
AGHANIM et al. 2017; EFSTATHIOU et al. 2019; AGHANIM et al. 2020b). However, this
anomalous ‘lensing’ is not supported by the lensing power spectrum reconstruction,
such that it is now commonly admitted that this tension (oscillating between the
2 − 3σ statistical level) cannot originate from a true lensing effect. On the other
hand, it has been understood that this anomaly can be easily resolved if the universe
is closed (DI VALENTINO et al. 2019; EFSTATHIOU et al. 2020; HANDLEY 2021), in
certain modified gravity theories (MOSHAFI et al. 2021), or in early-universe scenarios
inducing a pattern of primordial oscillatory features (X. CHEN 2010; CHLUBA et al.
2015; SLOSAR et al. 2019; DOMÈNECH et al. 2020). In fact, it has already been noted
that this anomaly could be related to the S8 tension: indeed, once including Alens as
an extra free-parameter in the analysis, it has been shown that the reconstructed
cosmology has a smaller As and ωcdm (as well as a higher H0), showing no S8 tension,
but a remnant ∼ 3.5σ Hubble tension (DI VALENTINO et al. 2018a; MOTLOCH et al.
2018, 2020). Interestingly, the cosmology deduced once marginalizing over the
lensing information is in better agreement with the recent results from the SPTPol
and SPT-3G (HENNING et al. 2018; CHUDAYKIN et al. 2020a; DUTCHER et al. 2021),
which shows no tension with the LSS measurement of S8, a weaker H0 tension,
and no lensing anomaly. Pin-pointing the source of such lensing anomaly (perhaps
a simple statistical fluke, although quantifying its likelihood and how to treat it is
complicated) is therefore of utmost importance to understand whether the S8 tension
derives from it. In Chapter 2 and Chapter 3 we will study the implications of the Alens
anomaly for models of Early Dark Energy and Decaying Dark Matter, respectively.

There are many other intriguing anomalies that we haven’t addressed in this
thesis, such as those related to the small-scale crisis of ΛCDM (BULLOCK et al. 2017),
the Lithium problem (MATHEWS et al. 2020), the cosmic dipole tension (SECREST et al.
2021; DALANG et al. 2022) or the Ly-α tension in ns (PALANQUE-DELABROUILLE et al.
2020; D. C. HOOPER et al. 2022) (a thorough review of cosmological tensions can be
found in ABDALLA et al. (2022)).

1.8 Outline

After this general introduction, the rest of the document is divided into three other
chapters. In Chapter 2, we reassess the viability of a pre-recombination Early Dark
Energy component as a solution to the Hubble tension, by confronting the model
against a host of high- and low-redshift measurements, including LSS observations
from recent weak lensing surveys, as well as CMB, BAO and SNIa data. We also
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perform a systematic comparison of seventeen different models which have been
proposed to resolve the H0 tension, and quantify the relative success of each using
different metric and a variety of datasets. In Chapter 3 we perform the first thorough
cosmological analysis of a scenario in which dark matter can decay into massless
and massive invisible particles, showing that the model can successfully explain
the low-S8 measurements reported by weak-lensing surveys. Finally, in Chapter 4
we update the bounds on the mass and lifetime of neutrinos decaying into dark
radiation after becoming non-relativistic, thanks to the latest Planck data release and
an improved Boltzmann formalism.

Complementary information can be found in the numerous appendices. In App. A
we detail some important calculations concerning linear perturbation theory. In
App. B we say a few words about statistical analysis and parameter inference. In
App. C, App. D and App. E we provide tables, plots and calculations that are intended
to complement the content of Chapter 2 , Chapter 3 and Chapter 4, respectively.
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2.1 Best-fit EDE cosmology solving the H0 discrepancy

Early dark energy (EDE) refers to a model in which a scalar field φ is frozen-in
at times prior to recombination, thus behaving during this epoch like a dark en-
ergy component. EDE representing ∼ 10% of the total energy density of the universe
around matter-radiation equality and diluting faster than radiation afterwards has
been shown to provide a very good resolution to the H0 tension. To be more pre-
cise, the reconstructed parameters from the Planck15+BAO+SNIa+SH0ES analysis of
T. L. SMITH et al. (2020) indicate 1

fEDE = 0.10± 0.03, Log10(zc) = 3.57+0.05
−0.14, H0 = 71.4± 1.2 km/s/Mpc. (2.1)

However, taken at face value, this model triggers a number of questions. On the
theoretical side, it suffers from a strong coincidence problem as the fluid needs
to become dynamical around a key era of the universe, matter-radiation equality
zc ' 3500. However, this coincidence might be the sign of a very specific dynamics
to be uncovered; in fact there exist models in which the field becomes dynamical
precisely around matter-radiation equality, either because of a phase-transition
triggered by some other process (SAKSTEIN et al. 2020) or because of a non-minimal
coupling to the Ricci curvature (BRAGLIA et al. 2020a). Other models set on a
stronger theoretical ground have been proposed in the literature, see for example
ALEXANDER et al. (2019), KALOPER (2019), BERGHAUS et al. (2020), BRAGLIA et al.
(2020b), GONZALEZ et al. (2020), NIEDERMANN et al. (2020), ALLALI et al. (2021),
FREESE et al. (2021), GOGOI et al. (2021), MCDONOUGH et al. (2021), NIEDERMANN

et al. (2021a), KARWAL et al. (2022), and SABLA et al. (2022)).

Furthermore, in order to preserve a good fit to CMB data while solving the H0 ten-
sion, EDE predicts values of some of the cosmological parameters which are some-
what different from those of baseline ΛCDM:

• A higher spectral index ns. For instance, a Planck18+BAO+SNIa+SH0ES analy-
sis of the EDE model indicates ns = 0.988 ± 0.007 (see Tab. (2.1)), i.e. it is com-
patible with a scale-invariant primordial spectrum at less than 2σ. If this trend
turns out to be confirmed with future data, it might require going beyond the
simplest slow-roll scenarios for inflation (see F. TAKAHASHI et al. (2021) for a
recent discussion on inflationary models that can achieve ns = 1).

• A smaller age of the universe t0. To give an example, the age of the universe de-
rived from a Planck18+BAO+SNIa+SH0ES analysis of the EDE gives t0 = 13.24±
0.17 Gyrs. This feature is actually generic to any early-time solution, since these
models increase H0 while leaving Ωm and ΩΛ unaffected. As a consequence, the
age of the universe, which scales as t0 ∝ 1/H0 (c.f. Eq. (1.28)), decreases roughly
by the same amount as H0 increases. This can therefore be tested against mea-
surements of the age of old objects such as globular clusters of stars, which
was recently determined as t0 = 13.5 ± 0.027 Gyrs (VALCIN et al. 2020, 2021).
This issue was discussed in great details in the context of the EDE cosmology,
but current data are not accurate enough to play a decisive role in arbitrating

1As we’ll explain later, these phenomenological parameters can be mapped into the theory parameters
entering into the scalar field potential. They correspond roughly to an ultra-light axion with a mass
m ∼ 10−27 eV and a decay constant f ∼ Mpl. The latter value is in stark contrast with the expectation
from the Weak Gravity Conjecture (HILL et al. 2020), but we remark that the EDE potential considered
here is just a way to capture the phenomenology that is required to explain the H0 tension.
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the tension (BERNAL et al. 2021; BOYLAN-KOLCHIN et al. 2021; VAGNOZZI et al.
2021b).

• Higher values of ωcdm and S8. Namely, the Planck18+BAO+SNIa+SH0ES analy-
sis indicates ωcdm = 0.130 ± 0.004 and S8 = 0.838 ± 0.013. This is related to some
“unexpected” effects within CMB power spectra, introduced by the increase in
H(z) at early-times. More precisely, the increase in ωcdm needed for EDE is re-
quired to match the observed height of the first CMB peak (POULIN et al. 2019;
VAGNOZZI 2021). Additionally, it was noted that a similar increase in ωcdm is
required to simultaneously preserve the BAO angular scale, because of the dif-
ferent rs − H0 degeneracy lines for BAO and CMB data (JEDAMZIK et al. 2021).
As a consequence of the larger ωcdm, the peak of the matter power spectrum is
shifted, and the growth rate of perturbation at late times increases. This leads
to a larger value of σ8 and hence a larger value of S8.

The last point is the focus of this work. As explained in Sect. 1.7.2, a number of
cosmic shear surveys (CFHTLenS (HEYMANS et al. 2013), KiDS/Viking (HILDEBRANDT

et al. 2020), DES (T. M. C. ABBOTT et al. 2018), HSC (HIKAGE et al. 2019)) have
provided accurate measurements of the cosmological parameter S8 which are
systematically lower than the Pl18-ΛCDM prediction. Since EDE predicts a higher
value of S8 than ΛCDM, taken at face values these experiments pose a challenge
to EDE cosmologies, and could exclude these models as a resolution to the Hubble
tension (HILL et al. 2020). A similar conclusion was reached in IVANOV et al. (2020)
and D’AMICO et al. (2021b) with the inclusion of BOSS data in the effective field
theory (EFT) of LSS framework.

In the first part of this chapter, we analyze the EDE cosmology resolving the
Hubble tension in light of the latest Planck18 data (and the more precise polarization
measurement) and confront it to the KIDS-VIKING measurement of the cosmic
shear power spectrum (ASGARI et al. 2020) and the joint measurement of S8 from
KIDS-VIKING+DES2. The KIDS-VIKING+DES measurements however rely on
modeling the non-linear matter power spectrum on relatively small scales. This
is done within numerical Einstein-Boltzmann solvers such as CAMB (LEWIS et al.
2000) or CLASS (LESGOURGUES 2011), through the HALOFIT (R. E. SMITH et al. 2003;
R. TAKAHASHI et al. 2012) or HMCODE (MEAD et al. 2015) algorithms, which have
not been calibrated for EDE cosmologies. We thus check the predictions of these
algorithms against the results of a set of dedicated cosmological N-body simulations,
confirming that the qualitative departures from ΛCDM arising in the EDE cosmology
are small enough to make use of these standard algorithms. We perform a series of
Monte Carlo Markov Chain (MCMC) analyses with various combination of the latest
Planck, BAO, growth factor and SNIa Luminosity distance measurements, the SH0ES
measurement of H0, and KiDS/Viking/DES data, in order to assess whether current
observations exclude the EDE resolution to the Hubble tension.

We find that, even if the S8 prediction from the best fit EDE cosmology is indeed
∼ 2.5σ higher than the weak-lensing determinations, KiDS data currently provide very
little constraining power on the EDE parameters. Yet, it has been found in ASGARI

et al. (2020) and JOUDAKI et al. (2020) that a combination of KiDS and DES-Y1 (after
re-calibration of the DES photo-metric redshifts) yields S8 = 0.755+0.019

−0.021, a result that

2The re-analysis of BOSS data in the EFT of LSS has been performed in T. L. SMITH et al. (2021).
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is in 3.2σ tension with Planck ΛCDM prediction3. At such a level of discrepancy,
one should be cautious when interpreting results obtained from combining Planck
and WL data, even within ΛCDM. Indeed, we show that despite the inclusion of a
Gaussian S8 likelihood, the resulting cosmological model yields a very bad fit to
the S8 data, while providing very strong constraints on any parameter correlated
with S8 (e.g. ωcdm, As, fEDE). It is easily conceivable that the resolution to the S8
tension lies elsewhere (whether new physics related – or not – to the EDE, or system-
atic effects), such that any constraints derived from these combined data are artificial.

As already mentioned in Sect. 1.7.2, It is also possible that the S8 tension is
related to the ‘Alens’ anomaly, i.e. the anomalous amount of lensing estimated from
the smoothing of the acoustic peaks at high-`’s within Planck data. Motivated by
this fact, we perform an analysis of the ΛCDM and EDE cosmology against Planck
and a prior on S8 from the joint DES-Y1 and KiDS results, while marginalizing over
the lensing information. We find that both the unlensed ΛCDM and EDE cosmology
spectrum agrees better with LSS data, and that the presence of EDE does not affect
the amount of anomalous lensing. This means that the anomalous lensing is not
due to the EDE, and also that the success of EDE is not due to opening up a new
degeneracy direction with some exotic lensing parameters.

In the last part, we make a systematic comparison of seventeen different models
which have been proposed to resolve the H0 tension (spanning both early- and
late-Universe solutions), and quantify the relative success of each model using a
series of metrics and a vast array of data combinations. Among these models,
we include the EDE proposal as well as the decaying DM scenario discussed in
Chapter 3. We note that the ranking that we’ve established is based on a full
reanalysis of all models, and not just on a bibliographic compilation. This analysis
establishes a foundation of tests which will allow the success of novel proposals to be
meaningfully “benchmarked”. In particular, it shows that the EDE scenario currently
stands as one of the most promising mechanisms that could be responsible for the
observed discrepancy.

The rest of this chapter is structured as follows. In Sect. 2.2 we discuss the general
characteristics that any model attempting to solve the Hubble tension might require.
In Sect. 2.3 we present the basic equations of the EDE scenario. In Sect. 2.4 we
present the results of our different data analyses for the EDE model. In Sect. 2.5
we discuss the different aspects of the “H0 olympics”: the proposed models, the tests
to quantify model success and the results of the contest. Finally, in Sect. 2.6 we
draw our conclusions.

2.2 Guidelines to solve the H0 tension

The inference of H0 from “early-Universe” probes (like the CMB) heavily depends
on the assumed cosmological model, as opposed to local determinations (such as
the cosmic distance ladder). For this reason, it is commonly stated that the H0
tension necessarily signals a breakdown of the ΛCDM model, if not originated by
unaccounted systematics. Let us explore this statement in more details, focusing on

3The joint analysis of KIDS1000+BOSS+2dfLenS has determined S8 = 0.766+0.020
−0.014 (HEYMANS et al.

2021) in 3σ tension with Planck. Making use of these data would not affect our conclusions.
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the CMB and cosmic-distance ladder determinations of H0.

Most local determinations aim to obtain H0 from the slope of the Hubble diagram,
which gives the luminosity distance dL(z) to some standard candle (typically, SNIa) in
terms of redshift. The redshift range should be chosen to reduce as much as possi-
ble the dependence on peculiar velocities at low-z and the dependence on cosmology
at high-z. As already mentioned in Chapter 1, a SNIa can be standardized using
light curve color c and shape x corrections, such that the peak absolute magnitude
in the B-band, Mb, is common to all SNIa. Hence, the peak apparent magnitude
mb at redshift z can be written as:

mb(z) = Mb + 25 + log10dL(z)
= −5ab + 5log10d̂L(z), (2.2)

where 5ab ≡ −(Mb + 25 − 5log10H0) is the intercept and d̂L(z) ≡ H0dL(z) is
the uncalibrated luminosity distance. For a spatially flat universe, the low-z
expansion of d̂L(z) gives

d̂L(z) = z

[
1 + (1− q0)z2 −

1
6(1− q0 − 3q2

0 + j0)z2
]
, (2.3)

where q0 ≡ − äa
ȧ2

∣∣∣
0

and j0 ≡
...
aa2

ȧ3

∣∣∣
0

are the deceleration and jerk parameters, respectively.

Therefore, in order to get H0 from the value of ab, a knowledge of Mb is required, i.e.,
the luminosity distances of SNIa need to be calibrated. The goal of the cosmic dis-
tance ladder is precisely to calibrate the distances to SNIa by using a succession of
overlapping methods, where each rung of the “ladder” is needed to determine greater
distances at the next rung. Getting direct measurements of distance is only possible
for nearby galaxies (anchors), located at a few ∼ kpc from us. The anchor galaxies
considered by SH0ES include the megamaser host NGC 4258, the Milky Way where
distances are obtained using parallaxes, and the Large Magellanic Cloud (LMC) where
distances are measured by detached eclipsing binaries. Those galaxies host a class
of pulsating stars known as Cepheids. These were the first standard candles to be
identified, when Henrietta Leavitt discovered that they exhibit a strong correlation be-
tween their period and their intrinsic luminosity (LEAVITT et al. 1912). The Wesenheit
apparent magnitude 4 of a jth Cepheid in the ith galaxy can generally be written as

mW
H,i,j = µi +MW

H + bW [P ]i,j + ZW [O/H]i,j . (2.5)

Here µi is the distance modulus to the galaxy, MW
H is the zeropoint Cepheid abso-

lute magnitude corresponding to a period P = 10 days, and bW , ZW denote the slope
parameters that capture the dependence on period, [P ] ≡ log10P − 1 (with P in units
of days), as well as metallicity, [O/H] ≡ log10(O/H) − log10(O/H)� (with O and H the
number of oxygen and hydrogen atoms per unit of volume, respectively). Thus, the
first step of the ladder consists in measuring distances to the aforementioned anchors
(hosting 980 Cepheids according to the latest SH0ES data relase), in such a way to

4The dereddended apparent magnitude mW
H is connected to the Wesenheit dust extiction parameter

RW as (PERIVOLAROPOULOS et al. 2022)

mW
H ≡ mH −RW (V − I), (2.4)

where mH is the apparent magnitude in the near-infrared H (F160W) band, V (F555W) and I (F814W)
are optical apparent magnitudes in the corresponding bands.
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determine MW
H , bW and ZW . Once the calibration of the period-luminosity-metallicity

relation is achieved, one can measure distances to much farther Cepheids. In the
second step of the ladder, a few thousands of Cepheids are observed in galaxies host-
ing SNIa (at distances between ∼ kpc to ∼ Mpc), hence permitting a calibration of
SNIa. In particular, the latest SH0ES analysis considers 37 galaxies with redshifts
0.0015 . z . 0.011 hosting 2150 Cepheids and 42 SNIa. This procedure yields (see
RIESS et al. 2021b for details)

Mb= 19.2435± 0.0373 (2.6)

In the third and last step of the ladder, the Hubble constant is determined from the
observations of SNIa in the Hubble flow (at distances of the order of ∼ Gpc). More
precisely, the SH0ES team converts the intrinsic magnitude Mb into a value of H0 via
the magnitude-redshift relation (see Eq. (2.2)) of 277 SNIa from the Pantheon catalog
(SCOLNIC et al. 2018) in the redshift range 0.023 < z < 0.15. In this procedure, the
deceleration and jerks parameters are set to q0 = −0.55 and j0 = 1 (corresponding to
the standard cosmological model). From this, we see that the SH0ES determination
of H0 is not fully cosmology-independent. However, this procedure is expected to
be very robust under changes in the cosmological model, since H0 is extrapolated
from measurements at very low z, as opposed to the early universe probes, which
extrapolate H0 from observations at z ∼ O(103).

Let us move to describe the “early-Universe” determination of the Hubble constant.
The key scales at play in the ΛCDM prediction are the observed angular scale of sound
horizon at recombination θs, measured at O(0.1%) precision in CMB data, and the
related angular scale of sound horizon at baryon drag θd, measured at O(1%) precision
within the latest BOSS data. As discussed in Chapter 1, these angular scales are
defined as θX ≡ rX/DA(zobs), where the numerator is either the sound horizon at
recombination rs or sound horizon at baryon drag rd, while the denominator is the
comoving angular diameter distance DA(zobs) to recombination, zobs ' zrec, or to the
redshift of the survey, zobs ' 0.1 − 3. Given that the relationship between rs and rd
is fixed within the ΛCDM cosmology, it is common to say that one can calibrate BAO
using the CMB sound horizon measurement. The sound horizon is calculated as

rs =
∫ ∞
zrec

csdz

H(z) , (2.7)

while the comoving angular diameter distance in flat space is given by :

DA(zobs) =
∫ zobs

0

dz

H(z) . (2.8)

There are different ways to approach the question of how the angles θX depend on the
Hubble parameter. Let us take the view in which the physical densities ρ̄I contribute
to the Hubble parameter H(z) via the Friedmann law (in other words, we parametrize
densities with ωi, rather than Ωi). One recognizes that a change of the Hubble pa-
rameter today (H0 ≡ H(z = 0)) can only be produced by a change in the total physical
density at present. Therefore, this change in H0 yields an impact on the angular diam-
eter distance DA (affected by densities at z ∈ [0, zobs]), but not on the sound horizon rs
(affected by densities at z ∈ [zrec,∞]). This means that there are two ways to increase
the inferred value of H0 while keeping the angles θX fixed
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Figure 2.1 – Differences in the luminosity distances, with respect to the prediction from the
best-fit ΛCDM model from Planck18. These distances are obtained from two sets of data:
measurements of SNIa apparent magnitudes calibrated using MSH0ES

b = 19.2435±0.0373 (RIESS

et al. 2021b), and BAO measurements calibrated with rPl18−ΛCDM
d = 147.18±0.29 Mpc (AGHANIM

et al. 2020b) and converted into luminosity distance with dL(z) = (1 + z)DA(z). The blue dots
correspond to SNIa data from the Pantheon catalog (SCOLNIC et al. 2018), while the red dots
correspond to BAO data from BOSS DR12 at z = 0.38, 0.51 and 0.61 (ALAM et al. 2017), eBOSS
DR16 quasars at z = 1.48 (HOU et al. 2020), and the joint constraints from the eBOSS DR14
Ly-α cross-correlation at z = 2.35 (BLOMQVIST et al. 2019).

• Early time solutions. This class of solutions aim to decrease the sound horizon
rs, by changing the physics before or around recombination, z & zrec. In this way,
the shift in θX is compensanted by an increase of H0, which rescales the angular
diameter distance.

• Late time solutions. Those solutions change physics well after recombination
(z � zrec) in such a way to attain a higher energy density today and thus a higher
H0. However, given that rs is unchanged, one has to be careful to keep the
angular diameter distance fixed in order not to change the measured θX . This
can be accomplished by requiring the energy density to be smaller in the past
(but still at z < zrec), in such a way so as to compensate for the higher energy
density today. This is known as the “geometrical degeneracy” within CMB data

The problem for late time solutions, however, arises from the multitude of low red-
shift measurements (such as supernovae, BAO, cosmic chronometers), which tightly
constrain H(z)/H0 in a redshift range of around z . 2. This becomes particularly clear
when combining BAO and supernovae data. Notice that, because of the distance du-
ality relation in Eq. (1.41), those two sets of observations are actually providing a
measurement of the same type of distance. This is illustrated in Fig. 2.1, where we
show the difference in luminosity distances with respect to the prediction from the
best-fit Planck18 ΛCDM model (Pl18-ΛCDM, to shorten notation), for two different
datasets: 1) the Pantheon SNIa calibrated using the SH0ES value of Mb, and 2) the
BAO data calibrated using the Pl18-ΛCDM value of rd and converted from angular
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diameter distance with5 dL(z) = (1 + z)DA(z). We see a clear discrepancy between the
BAO and SNIa data. This makes it hard for late-time modifications to resolve the ten-
sion, as it is not possible to fit simultaneously BAO and SNIa data without changing
rd. This problem can be reformulated in several equivalent ways:

• The “inverse distance ladder” determination of Mb, obtained from the combina-
tion of dL(z) = (1 + z)DA(z) as extracted from the Pl18-ΛCDM-calibrated BAO
data and the apparent magnitudes from the Pantheon survey, cannot be made
compatible with the direct determination from SH0ES. This has been shown for
example in CAMARENA et al. (2021) and EFSTATHIOU (2021).

• The value of the sound horizon rs obtained from a combination of DA(z) =
dL(z)/(1 + z) as extracted from the SH0ES-calibrated SNIa data and the BAO
data, is in disagreement with that inferred from Planck18 under ΛCDM . This
was highlighted in BERNAL et al. (2016), KNOX et al. (2020) and AYLOR et al.
(2019).

• The reconstructed expansion histories H(z) inferred from Pl18-ΛCDM-calibrated
BAO data and SH0ES-calibrated SNIa data are inconsistent with each other.
This was the approach of LEMOS et al. (2019) and POULIN et al. (2018b).

We conclude that in order to quantify the ability of a certain model to solve the ten-
sion with SH0ES, it is very important to use a prior on the intrinsic SNIa magnitude,
Mb, rather than a prior on H0, for two main reasons:

1. It is a fully cosmology-independent approach. Indeed, we saw earlier that what the
SH0ES team directly measures is Mb, and not H0. Focusing on Mb allows to
derive H0 from the supernovae self-consistently within the given exotic expan-
sion history. This point is effectively irrelevant for early-Universe solutions 6,
but might be important for late-Universe solutions. Nevertheless, DHAWAN et
al. (2020) explored several parametric forms of the expansion history at late
times, and concluded that the distance ladder values of H0 inferred from these
expansion histories agreed to within about 0.5 km/s/Mpc. Hence, a SH0ES-like
determination of H0 is expected to be quite robust under late-time changes in
the model. Still, using a Mb prior is very important for the reason given below.

2. It highlights the inconsistency between the SH0ES-calibrated Pantheon data and the ΛCDM-
calibrated BAO data. In fact, one could further split the late-Universe solutions into
two different categories. The first type considers smooth modifications of the
expansion history at late times. This is the case of the decaying dark matter
scenario that we will discuss in Chapter 3. For this kind of solutions, the incon-
sistency between SNIa and BAO data shown in Fig. 2.1 already prevents them
from predicting a high value of H0, even when a SH0ES prior is imposed. The
second type of late-time solutions generically consider sharp transitions in the
dark energy equation of state at very low z (BENEVENTO et al. 2020). Such kind
of solutions can in principle predict a high value of H0, even when both BAO and
SNIa data are considered, giving the impression that they have resolved the ten-
sion after imposing a SH0ES H0 prior. However, they are not resolving the true
origin of the tension, namely, the inconsistency between the distance ladder and

5This is sometimes referred as the the “inverse distance ladder”.
6In fact, all our EDE analysis presented in Sect. 2.4 consider a SH0ES prior on H0.
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inverse distance ladder calibration of SNIa. In order to correctly penalize this
kind of models, the use of a prior on Mb is essential.

From the above discussion, it becomes clear that a minimum ingredient that any
model attempting to solve the tension should have (although likely not the only one)
is the ability to decrease the sound horizon at recombination. In the next section we
proceed to describe one of such models.

2.3 Formalism of Early dark energy

The idea that an anomalous era of expansion arising from EDE at early times
might resolve the Hubble tension was first suggested in KARWAL et al. (2016), where
computation only at the level of the background was shown to partially alleviate the
tension. However, it is the work of POULIN et al. (2019) that showed through a fluid
approximation the key role played by perturbations in the scalar field to allow for a
resolution of the Hubble tension. In particular, it has been shown that Planck data
not only provide a detection of the background dynamics of the EDE component, but
also severely restricts the dynamics of perturbations, favoring either a non-canonical
kinetic term, whereby the equation of state w is approximately equal to the effective
sound speed c2

s (M.-X. LIN et al. 2019), or a potential that flattens close to the initial
field value (T. L. SMITH et al. 2020).

2.3.1 Basic equations

In this work, we study the modified axion potential introduced in KAMIONKOWSKI

et al. (2014), KARWAL et al. (2016), POULIN et al. (2018a, 2019), and T. L.
SMITH et al. (2020),

Vn(Θ) = m2f2[1− cos(Θ)]n, (2.9)

where m represents the axion mass, f the axion decay constant, and Θ ≡ φ/f
is a re-scaled dimensionless field variable defined such that −π ≤ Θ ≤ π. This
potential is a phenomenological generalization of the well motivated axion-like
potential (which can be recovered by setting n = 1) that arise generically in
string theory (SVRCEK et al. 2006; DOUGLAS et al. 2007; ARVANITAKI et al. 2010;
MARSH 2016). Such a potential may be generated by higher-order instanton
corrections (KAPPL et al. 2016), but taken at face values would suffer from strong
fine-tuning issues necessary to the cancelling of the lowest orders instantons (if
n > 1). Therefore, it should not be interpreted beyond a phenomenological description.

The dynamics of EDE are dictated by the Klein-Gordon equations at the
background level

φ′′ + 2Hφ′ + a2Vn,φ = 0, (2.10)

and at the linearly perturbed level

δφ′′ + 2Hδφ′ +
(
k2 + a2Vn,φφ

)
δφ = −h

′

2 φ
′, (2.11)
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where h denotes the scalar metric potential in the synchronous gauge. The elements
of the scalar field stress-energy tensor are given by7

ρ̄φ = a−2φ
′2

2 + Vn, P̄φ = a−2φ
′2

2 − Vn, (2.13)

δρφ = a−2φ′δφ′ + Vn,φδφ, δPφ = a−2φ′δφ′ − Vn,φδφ, (2.14)

(ρ̄φ + P̄φ)θφ = k2a−2φ′δφ, σφ = 0. (2.15)

We assume that the field always starts in slow-roll, Θ′i = 0 (as enforced by the very
high value of the Hubble rate at early times), and without loss of generality we restrict
0 ≤ Θi ≤ π. The model at this point has four free parameters: {m, f, n,Θi}. Given that
the dynamics are relatively insensitive to changes of 2 . n . 4.5 (AGRAWAL et al. 2019;
T. L. SMITH et al. 2020), we further restrict the parameter space by taking n = 3.
In order to make this model more physically accessible, instead of parameterizing
the dynamics using the mass m and decay constant f , we use the critical redshift
when the field becomes dynamical, zc, and the the fractional energy density at this
redshift, fEDE(zc) ≡ ρ̄φ(zc)/ρ̄tot(zc), which is roughly the maximum energy contribution
induced by EDE. The final degree of freedom is encoded in the dynamics of the linear
perturbations, which is fully characterized via the effective sound speed c2

s, and
physically related to the curvature of the potential close to the initial field value –
note that after fixing all other phenomenological parameters, this is fully described
by Θi (POULIN et al. 2018a; T. L. SMITH et al. 2020).

The background dynamics of EDE is easy to understand: at early times the
scalar field is frozen-in due to Hubble friction and contributes as dark energy to the
expansion; once the Hubble rate drops below its mass, Hubble friction is removed
and the field begins to perform damped oscillations about the minimum of the
potential; the rate of energy dilution is related to the period-averaged equation of
state, roughly given by w(n) = (n − 1)/(n + 1). In Fig. 2.2 we show the redshift
evolution for the fractional energy density and the equation of state in the EDE.
We see that EDE provides exactly the required behavior to explain a high value of
H0: thanks to the very peaked shape of its energy injection, it can boost the expan-
sion rate just prior to recombination, thereby reducing the value of the sound horizon.

To perform our analyses, we use the modified version of CLASS pre-
sented in T. L. SMITH et al. (2020). The code is publicly available at https:
//github.com/PoulinV/AxiCLASS. The main goal of this code is to solve the
Klein-Gordon equations Eq. (2.10) and Eq. (2.11), and to perform a shooting method
in order to map a choice of {zc, fEDE} into the theory parameters {m, f}.

7The expressions for the overdensity, perturbed pressure, energy flux and shear can easily be obtained
by considering linear perturbations in the general expression for the stress energy tensor of a scalar field
in Eq. (1.44),

δTµν = ∂µφ∂νδφ+ ∂µδφ∂νφ− δµν

(
ḡαβ

2 (∂αφ∂βδφ+ ∂αδφ∂βφ) + Vn,φδφ

)
= −δµ0 a

−2φ′∂νδφ+ δ0
νφ
′ḡαµ∂αδφ+ δµν

(
a−2φ′δφ′ − Vn,φδφ

)
, (2.12)

and then using the definitions of δρ, δP , θ and σ in Eq. (A.30).

https://github.com/PoulinV/AxiCLASS
https://github.com/PoulinV/AxiCLASS
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Figure 2.2 – Fractional energy density (upper) and equation of state (lower) in the EDE
as a function of redshift. Cosmological parameters are set to the best-fit values from the
Planck18+BAO+SNIa+SH0ES analysis (see third column of Tab. (2.1)).

In the following section, we detail the results of our different data analyses
for the EDE model. We start by performing an ‘anatomy’ of the EDE resolution
to the Hubble tension, to understand how each data set reacts to the presence
of EDE. We additionally introduce the new baseline 1-parameter EDE model that
is favored by Planck18 2018 data. Then, we present our N-Body simulations
validating for the first time the HMcode prediction and confront the 1-parameter
EDE model against WL data. We end by discussing the H0 and S8 tension in light
of the lensing-marginalized CMB spectrum.

2.4 Cosmological constraints

In this section, we test the EDE scenario with various combinations of data-sets,
in order to extract the cosmology that would resolve the Hubble tension, and compare
with results from past literature making use of Planck 2015 data.

• PLANCKTTTEEE+φφ: the high-` TT,TE,EE, low-` TT and EE data from Planck 2018
through the baseline PLIK, COMMANDER and SIMALL likelihoods (AGHANIM et al.
2020a,c), alone and combined with the lensing amplitude reconstruction (SIMCA

likelihood); we make use of a Cholesky decomposition to handle the large number
of nuisance parameters (LEWIS 2013). Following the procedure of Planck 2018,
we don’t consider the low-` TE part of the spectra, given its lower signal-to-noise
ratio (AGHANIM et al. 2020a).
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• BAO: the measurements from 6dFGS at z = 0.106 (BEUTLER et al. 2011), SDSS
MGS at z = 0.15 (ROSS et al. 2015), and BOSS DR12 data at z = 0.38, 0.51 and
0.61 (ALAM et al. 2017).

• FS: the measurements of the growth function fσ8(z) (FS) from the CMASS and
LOWZ galaxy samples of BOSS DR12 at z = 0.38, 0.51, and 0.61 (ALAM et al.
2017). In practice, we make use of the “consensus” BAO and FS result that
combines both in a single likelihood

• PANTHEON: the Pantheon SNIa catalogue, spanning redshifts 0.01 < z < 2.3;
we marginalize over the nuisance parameter M describing the SNIa calibration
(SCOLNIC et al. 2018).

• SH0ES: the SH0ES result, modeled with a Gaussian likelihood centered on H0 =
74.03±1.42 km/s/Mpc (RIESS et al. 2019). We could have alternatively considered
a prior on Mb as advocated in Sect. 2.2, but this is not expected to affect the
results, given that EDE only changes physics at very early times.

2.4.1 Baseline analysis: anatomy of the 3-parameter EDE model

Our baseline cosmology consists in the following combination of the six ΛCDM
parameters {ωb, ωcdm, H0, ns, As, τreio}, plus three parameters describing the EDE
sector, namely {fEDE(ac),Log10(ac),Θi} 8. We use wide flat priors on all these parame-
ters. We follow the Planck convention and assume two massless neutrinos and one
massive with mν = 0.06 eV. We perform our MCMC analyses using MontePython-v3 9

(AUDREN et al. 2013; BRINCKMANN et al. 2019a), and consider chains to be converged
with the Gelman-Rubin criterion10 R − 1 < 0.1(GELMAN et al. 1992). To extract
best-fit parameters, we make use of the MINUIT algorithm (JAMES et al. 1975) through
the iMinuit python package 11. Starting from Planck only, we now discuss the
impact of adding data-sets on the reconstructed EDE parameters. We compare
the evolution of the χ2 in the EDE cosmology as we add data-sets, to that of the
ΛCDM model in the same combined fit, with and without SH0ES data. The results
are presented in Tab. (2.1) and we show the 1D and 2D posterior distributions of
{H0, fEDE(zc),Θi,Log10(zc), ωcdm, ns, S8} in Fig. 2.3. All relevant χ2 information is given
in App. C.1.

Planck TT,TE,EE only: with PLANCKTTTEEE data only and three free parameters,
the EDE model under study is not detected. In agreement with HILL et al. (2020)
and NIEDERMANN et al. (2020), we find that the fraction of EDE at zc is limited to12

fEDE(zc) < 0.088, while Log10(zc) and Θi are unconstrained. Interestingly, we also find
that the best fit within Planck18 data only has {fEDE(zc) ∼ 8.5%, Log10(zc) ∼ 3.56,
Θi ∼ 2.8, H0 ∼ 70.5 km/s/Mpc} and a ∆χ2

min ≡ χ2
min(ΛCDM) − χ2(EDE) ' −5 in favor of

8One could have alternatively considered a logarithmic prior on fEDE, but this would have given more
weight to very small values of fEDE, which are uninteresting in the context of finding a solution to the
Hubble tension.

9https://github.com/brinckmann/montepython_public
10Most chains are in fact converged at the R − 1 ∼ 0.01 level, this somewhat ‘loose’ but reasonable

criterion was only used once including KIDS-VIKING data, which are much longer to converge.
11https://iminuit.readthedocs.io/
12Hereinafter, we quote 1-sided constraints at 95%C.L., and two-sided ones at 68%C.L.

https://github.com/brinckmann/montepython_public
https://iminuit.readthedocs.io/
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3-parameter EDE cosmology
Parameter PLANCKTTTEEE +SH0ES +PLANCKφφ+BAO+PANTHEON +FS

H0 [km/s/Mpc] 68.29(70.49)+0.75
−1.3 71.49(73.05)± 1.2 71.34(72.41)+1

−1.1 71.01(71.96)+1.1
−1

100 ωb 2.252(2.270)+0.019
−0.023 2.284(2.281)+0.022

−0.024 2.282(2.292)+0.021
−0.022 2.28(2.285)+0.021

−0.022
ωcdm 0.1232(0.1278)+0.0019

−0.004 0.13(0.135)+0.0042
−0.004 0.1297(0.1327)+0.0036

−0.0039 0.1289(0.1323)± 0.0039
109As 2.116(2.124)+0.035

−0.041 2.153(2.160)+0.036
−0.042 2.152(2.183)+0.031

−0.035 2.144(2.135)+0.032
−0.033

ns 0.9706(0.9829)+0.0058
−0.0087 0.9889(0.9966)+0.0076

−0.0075 0.9878(0.9963)+0.0066
−0.007 0.9859(0.9895)+0.007

−0.0071
τreio 0.0552(0.0524)+0.0076

−0.0086 0.0586(0.0558)+0.0077
−0.0091 0.0585(0.0633)+0.007

−0.008 0.0574(0.0528)+0.007
−0.0079

fEDE(zc) < 0.088(0.085) 0.108(0.152)+0.035
−0.028 0.106(0.133)+0.031

−0.028 0.097(0.126)+0.035
−0.029

Log10(zc) 3.705(3.569)+0.37
−0.22 3.612(3.569)+0.13

−0.049 3.615(3.602)+0.11
−0.029 3.61(3.572)+0.13

−0.054
Θi unconstrained (2.775) 2.604(2.756)+0.33

0.0087 2.722(2.759)+0.17
−0.092 2.557(2.705)+0.37

0.025
100 θs 1.04165(1.04371)+0.00039

−0.00034 1.04131(1.04070)+0.00039
−0.0004 1.04143(1.04122)+0.00036

−0.00039 1.04145(1.04098)+0.00038
−0.00039

rs(zrec) 142.8(140.1)+1.9
−0.72 138.8(136.4)+1.7

−1.9 139(137.5)+1.7
−1.7 139.4(137.8)+1.7

−1.9
S8 0.839(0.834)+0.018

−0.019 0.838(0.842)+0.018
−0.019 0.838(0.846)± 0.013 0.837(0.838)± 0.013

Ωm 0.314(0.304)+0.0088
−0.0091 0.3004(0.2969)+0.0079

−0.0084 0.301(0.2980)+0.0051
−0.0055 0.3022(0.3009)+0.0053

−0.0054
∆χ2

min (ΛCDM w/ SH0ES) − -20.8 -19.1 -18.7
∆χ2

min(ΛCDM w/o SH0ES) -4.9 -1.5 -0.02 -0.6

Table 2.1 – The mean (best-fit) ±1σ error of the cosmological parameters reconstructed from
the combined analysis of various data sets (from left to right, each column adds a set of data to
the previous one). We also report the ∆χ2

min with respect to a ΛCDM fit to the same data-sets,
with and without a prior on H0 from SH0ES.

the EDE model13. One can already note a curiosity: the best fit value of fEDE(zc) is
very close to the 2σ bound that we obtain. This, as we will discuss later, is due to the
choice of flat, uninformative prior on Log10(zc) and Θi.

Planck TT,TE,EE+SH0ES: Once a prior on H0 given by SH0ES is included in the
analysis, the sampler explores more easily a part of parameter space with higher H0
values, and the EDE is now well detected: {fEDE(zc)' 0.11+0.036

−0.031, Log10(zc)= 3.6+0.14
−0.039,

Θi = 2.569+0.36
−0.032}, with H0 = 71.4 ± 1 km/s/Mpc. This is in excellent agreement with

results from past literature (M.-X. LIN et al. 2019; POULIN et al. 2019; NIEDERMANN

et al. 2020; T. L. SMITH et al. 2020). Remarkably, the best fit values of both Θi

and Log10(zc) are in perfect agreement with that obtained Planck18 only. This is
highly non-trivial, and seem to indicate that Planck18 does favor the region of the
{Log10(zc),Θi}-space that resolves the Hubble tension. However, the best fit fraction
reaches 15%, a value that one would naively consider to be strongly excluded by the
Planck18 only analysis. In fact, that is not the case, as the the fit to Planck18 data
is barely affected by the additional H0 prior, while one can get an excellent fit of
SH0ES data. Concretely, the χ2

min(EDE) when fitting Planck18+SH0ES increases
by ∼ 3, such that even in this combined fit, the χ2 of Planck18 data is smaller
than that of ΛCDM fitted on Planck18 data only. This indicates that the limit on
fEDE(zc) derived in a Planck18 only analysis is not robust, as it is entirely driven
by our choice of flat priors. This was also discussed in NIEDERMANN et al. (2020)
and T. L. SMITH et al. (2020), and the reason for that is clear14: there exists a
strong χ2 degeneracy in Planck18 data between ΛCDM and the EDE cosmology,
that, given our choice of uninformative priors on Θi and Log10(zc), leads to an
artificially strong bound on fEDE(zc). Indeed, once fEDE(zc) drops below . 4% (as
seen from the 2D posterior), its impacts on the power spectrum is not detectable
given current measurement accuracy. As a result, the quantity Log10(zc) and Θi

have no impact on observables, such that any choice of Log10(zc) and Θi leads to a

13To guide the reader, we mention that a 1σ shift in the quality of the fit to Planck18 data roughly
corresponds to a ∆χ2 of ∼ 6 (see the distribution of Planck18’s χ2 in the tables available at this link).

14Here, let us mention that IVANOV et al. (2020) make the comment that such degeneracy does not
exist. This is of course only true because they include the 3σ discrepant S8 data to their analysis. The
degeneracy is very clear within Planck18 data.

https://wiki.cosmos.esa.int/planck-legacy-archive/images/b/be/Baseline_params_table_2018_68pc.pdf
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Figure 2.3 – Reconstructed 2D posterior distributions of a subset of parameters for various
data set combinations (see legend) in the 3-parameters EDE cosmology.

cosmology indistinguishable from ΛCDM. Therefore, the sampler spends much more
time exploring this degeneracy direction, rather than efficiently sampling the narrow
degeneracy between fEDE(zc) and H0, which requires a specific choice of Log10(zc) and
Θi to appear15. Following NIEDERMANN et al. (2020), we will discuss a natural way to
alleviate this issue in Sect. 2.4.2.

Planck TT,TE,EE+PP+BAO+SNIa+SH0ES: We now add to our analysis
the lensing reconstruction PLANCKφφ, the PANTHEON SNIa data-set, and the
BAO data from BOSS. Strikingly, the addition of these three data-sets has

15Let us mention that HEROLD et al. (2022) recently derived new constraints on EDE with the profile
likelihood method, which does not suffer from volume effects. Using Planck CMB and BOSS full-shape
data, they obtain fEDE = 0.072± 0.036, which is extremely similar to the results of the 1-parameter EDE
analysis of T. L. SMITH et al. (2021) using the same data-sets.
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1-parameter EDE cosmology
Parameter PLANCKTTTEEE +PLANCKφφ+BAO+PANTHEON+FS +SH0ES

H0 [km/s/Mpc] 70.10(70.83)+1.4
−1.6 70.00(69.84)+0.98

−1.4 71.71(72.21)+1.0
−0.95

100 ωb 2.258(2.265)+0.018
−0.018 2.259(2.263)+0.015

−0.016 2.273(2.282)± 0.013
ωcdm 0.1282(0.1306)+0.0039

−0.0046 0.1270(0.1265)+0.0033
−0.0043 0.1317(0.1310)+0.0036

−0.0037
109As 2.137(2.164)+0.037

−0.042 2.131(2.118)+0.03
−0.036 2.15(2.140)+0.032

−0.031
ns 0.9803(0.9851)+0.0079

−0.0085 0.9795(0.9788)+0.0063
−0.0074 0.9884(0.9917)+0.0062

−0.0057
τreio 0.0558(0.0602)+0.0079

−0.0085 0.0553(0.0522)+0.0069
−0.0075 0.0561(0.0536)+0.0071

−0.0076
fEDE(zc) 0.082(0.104)+0.037

−0.038 0.074(0.070)+0.03
−0.036 0.118(0.122)+0.029

−0.026
100 θs 1.04147(1.0413)+0.00036

−0.00035 1.04153(1.04159)+0.00035
−0.00032 1.04157(1.04127)± 0.00034

rs(zrec) 140.1(138.9)+2.2
−2.0 140.6(140.8)+2.1

−1.6 138.2(138.2)+1.6
−1.8

S8 0.844(0.851)+0.017
−0.018 0.838(0.835)± 0.012 0.843(0.839)+0.012

−0.013
Ωm 0.3084(0.3067)+0.009

−0.0093 0.3067(0.3071)+0.0055
−0.0058 0.3017(0.2962)+0.0051

−0.0054
∆χ2

min (ΛCDM) -5 -6 -18.5 (-0.5)

Table 2.2 – The mean (best-fit) ±1σ error of the cosmological parameters reconstructed from
the combined analysis of various data-sets (from left to right, each column adds a sets of
data to the previous one). We also report the ∆χ2

min with respect to a ΛCDM fit to the same
data-sets. In the last row, we also report the ∆χ2 with respect to ΛCDM fit to the combined
data without SH0ES in parenthesis.

almost no impact on the reconstructed posteriors, nor on the best fit. This
is far from a trivial test to pass, as many of the suggested resolutions to
the Hubble tension are strongly constrained by the addition of these data-
sets (BERNAL et al. 2016; DI VALENTINO et al. 2017a,b; ZHAO et al. 2017;
ADDISON et al. 2018; POULIN et al. 2018b; AYLOR et al. 2019; RAVERI 2020).
However, as noted in POULIN et al. (2019), NIEDERMANN et al. (2020), and
T. L. SMITH et al. (2020), we find that the reconstructed ωcdm and ns in
the EDE cosmology are somewhat higher than in ΛCDM, such that the
S8 tension is slightly increased. As suggested in past literature (HILL et
al. 2020; IVANOV et al. 2020; D’AMICO et al. 2021b), this opens up the
possibility of constraining the EDE resolution using LSS data, and in par-
ticular the S8 measurement from weak gravitational lensing surveys. How-
ever, combining KiDS+VIKING/HSC data with Planck18 to constrain exten-
sion to ΛCDM can be problematic as: i) they require the ability to predict
the non-linear power spectrum at relatively small scales in models beyond
ΛCDM; ii) the ΛCDM best fit model from Planck18 is not a good fit to these
data.

All Data: As a starter, we add the ‘consensus’ fσ8 BOSS likelihood to the analy-
sis, which is consistent with the ΛCDM model from Planck18; we find a mild ∼ 0.4σ
decrease in the reconstructed mean, now being H0 ' 71 ± 1 km/s/Mpc and fEDE '
0.1 ± 0.03. This is consistent with the fact that the fσ8 measurements are sensibly
lower than the ΛCDM prediction, while the EDE cosmology leads to slightly larger
values. Still, the χ2 of the FS data is barely affected; in fact, as before, ΛCDM pro-
vides a slightly worse fit to the joint data-set, even when the SH0ES prior is not
included in the analysis. Before including weak lensing measurements to the anal-
ysis, we therefore conclude that the 3-parameter EDE model under study performs
very well in resolving the Hubble tension, but future measurement of fσ8 will cer-
tainly put the model under crucial tests.
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Figure 2.4 – Reconstructed 2D posterior distributions of a subset of parameters for various
data set combinations (see legend) in the 1-parameter EDE cosmology.

2.4.2 Towards a 1-parameter resolution to the H0 tension

Before turning to the inclusion of WL data, we show that the apparently tight
bounds obtained when the SH0ES prior on H0 is not included is due to our choice of
uninformative priors for Θi & Log10(zc). In fact, one can strongly weaken the bound
on fEDE by reducing the EDE parameter space to a suitable choice of Log10(zc) and Θi.
This might sound counter-intuitive: in principle, one expects to relax constraints
on a given parameter by enlarging the parameter space such as to introduce a
new degeneracy. Here however, it is the poor prior choice which leads to a strong
bound on fEDE(zc) independently of the data combination. Fixing Log10(zc) and Θi

to some fiducial values surely rises the question of what values should one choose.
In a realistic scenario, one might know these values a priori; one example is the
scenario discussed in SAKSTEIN et al. (2020) in which a scalar field experiences a
phase-transition around the redshift at which neutrinos become non-relativistic 16,
such that the critical redshift is specified by the value of the neutrino mass, while

16Current constraints on the sum of neutrino masses set
∑

mν < 0.12 eV (Planck18+lensing+BAO),
meaning that neutrinos become non-relativistic after recombination. Taken at face value, this would
exclude the proposal of SAKSTEIN et al. (2020), but to confirm this one should perform a full analysis
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Θi is set by the dynamics of the phase-transition (see also BERGHAUS et al. (2020),
BRAGLIA et al. (2020a), GONZALEZ et al. (2020), and NIEDERMANN et al. (2020) for
different EDE models with fewer free parameters). Here however, we have been
considering a phenomenological model whose primary characteristics is to have
enough freedom to extract information from the data to resolve the tension – we will
therefore make use of that information and fix Θi & Log10(zc) to their best fit value
from Planck18 data only – which, we recall, are close-to-identical to that obtained in
the combined fit.

We report in Tab. (2.2) the reconstructed cosmological parameters from
Planck18 only and from the combined fit of all data, with and without including
SH0ES. We show the reconstructed 2D posteriors of {fEDE(zc), H0, S8} in Fig. 2.4.
Notice how the degeneracy direction fEDE(zc)−H0 clearly opens up. Furthermore,
the mild ∆χ2 preference in favor of the EDE cosmology now leads to reconstructing
fEDE(zc)= 0.082 ± 0.037, i.e., a ∼ 2σ preference for non-zero EDE from Planck18 data only.
The inferred H0 = 70.1 ± 1.4km/s/Mpc is now in agreement with the SH0ES determi-
nation at better than 17 2σ. The addition of BAO, FS and PANTHEON measurements
has little impact; the reconstructed EDE fraction shifts downward by ∼ 0.3σ, slightly
degrading the success of the resolution to the Hubble tension, while the 2σ preference
for non-zero EDE is still present. These results are in excellent agreement with these
presented in NIEDERMANN et al. (2020) for a different EDE model.

Finally, the inclusion of a prior from SH0ES pulls up the fraction of EDE to
fEDE(zc)= 0.118 ± 0.029 and the value of H0 = 71.7 ± 1 km/s/Mpc, at the cost of a
small degradation in χ2

min (∆χ2 ∼ +6). Yet, as before, the χ2
min of the combined fit

Planck18+BAO+FS+PANTHEON+SH0ES in the 1-parameter EDE cosmology is slightly
lower than a ΛCDM fit to Planck18+BAO+FS+PANTHEON (no SH0ES). This attests
that, despite this small degradation in χ2

min, the goodness of fit is still excellent. How-
ever, as discussed previously, the values of S8 are in significant tension with weak
lensing measurements, and one might expect that it is possible to strongly constrain
the EDE model by including LSS data. We study this possibility in detail in Sect. 2.4.3,
following HILL et al. (2020), IVANOV et al. (2020), and D’AMICO et al. (2021b).

2.4.3 Confronting EDE to weak-lensing data

In order to make use of weak gravitational lensing data to perform LSS analyses,
one needs to accurately model the matter power spectrum in the late-time non-linear
regime. To this purpose, one can adopt the HALOFIT semi-analytical prescription
R. E. SMITH et al. (2003), as revised by R. TAKAHASHI et al. (2012), which has been
shown to be accurate at 5% level in reproducing the non-linear power spectra of
ΛCDM models up to wavenumbers k ≤ 10h/Mpc. However, the version developed
by authors of R. TAKAHASHI et al. (2012) does not consider the impact of baryon
feedback. A further improvement, dubbed as HMCODE , has been developed in MEAD

et al. (2015), its main advantage being its flexibility to account for the effects of

accounting for the coupling between EDE and the neutrino sector, since adding non-standard neutrino
interaction typically shifts neutrino mass constraints (see Chapter 4).

17For all the EDE analysis carried out in this section, we quote ‘tension’ and ‘agreement’ assuming
Gaussian posteriors for simplicity. While this is surely a crude approximation, we believe this is justified
because the posterior of interest (H0, S8) are close to Gaussian. In Sect. 2.5 we use a different estimator
of tension, following RAVERI et al. (2019), that allows to better capture the non-gaussian shape of the
posteriors.
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Model Particles (N ) Box size (L) Mass resolution Label

ΛCDM/EDE 10243 250 h−1 Mpc 1.2 · 109 h−1 M� HR
ΛCDM/EDE 10243 1000 h−1 Mpc 7.5 ·1010 h−1 M� LB
ΛCDM/EDE 2563 250 h−1 Mpc 7.5 ·1010 h−1M� LR

Table 2.3 – Summary of the properties of the cosmological simulations used in this work.
Notice that the Figures shown in this Section have been obtained by splicing together (for
each redshift and model) the non-linear matter power spectra extracted from the first two
simulations listed here, by using the third one to correct for finite-volume and resolution
effects (see App. C.2 for details). The labels listed in the last column stand for High Resolution,
Large Box, and Low Resolution, respectively.

baryon physics on the small-scale clustering of matter, particularly important at very
low redshifts. Both HALOFIT and HMCODE have been shown to be suitable to describe
the ΛCDM scenario, as well as some common extensions beyond it, such as models
with varying DE EoS or massive neutrinos (JOUDAKI et al. 2017b).

First, we confront the non-linear matter power spectra produced by using HALOFIT
/HMCODE in the EDE framework, against the outputs of dedicated cosmological N-
Body simulations, to explicitly demonstrate the accuracy of our LSS data analyses.
Afterwards, we discuss the results of our MCMC analysis against weak lensing data.

Non-linear matter power spectrum: a comparison with N -Body simulations

The goal of this Section is to show that the impact on the non-linear matter power
spectrum due to the presence of EDE is mainly due to changes in the standard
ΛCDM free parameters with respect to their reference values, and therefore such
impact can be safely studied without further modifying or re-calibrating HALOFIT
/HMCODE .

To this end, we perform two sets of N-Body DM-only simulations (one set for
the EDE and one for the ΛCDM scenarios), as reported in Tab. (2.3), by using the
N-body code GADGET-3, a modified version of the publicly available numerical
code GADGET-2 (SPRINGEL et al. 2001; SPRINGEL 2005). The initial conditions
have been produced by displacing the DM particles from a cubic Cartesian grid
according to second-order Lagrangian Perturbation Theory, with the 2LPTIC

public code (CROCCE et al. 2006), at redshift z = 99. The corresponding input
linear matter power spectra, for both the EDE and ΛCDM cases, were computed
with AXICLASS, the aforementioned modified version (T. L. SMITH et al. 2020) of
the publicly available code CLASS (BLAS et al. 2011). For all of the simulations,
we kept the cosmological parameters fixed to their EDE best fit values from
T. L. SMITH et al. (2020) (very close to ours), namely H0 = 72.81, Ωm = 0.2915,
As = 2.191 · 10−9, ns = 0.986 for both cosmological scenarios; plus the additional
parameters log10(zc) = 3.53, fEDE(zc) = 0.132, Θi = 2.72, n = 2.6 for the EDE model.
To bind together the matter power spectra extracted from simulations with different
resolutions we adopt a splicing technique described in detail in App. C.2. Our results
are summarized in Fig. 2.5, and we refer to App. C.2 for a deeper technical discussion.

In the top panel of Fig. 2.5 we compare the matter power spectra extracted from
our simulations, with the ones computed with HALOFIT /HMCODE , at redshift z = 0.
The blue curves refer to the ΛCDM scenario – dubbed hereafter as ΛCDM “equivalent”
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Figure 2.5 – In the top left panel we show the matter power spectra extracted from our
simulations, and the ones computed with HALOFIT /HMCODE . The blue curves refer to the
ΛCDM scenario, while the red ones refer to the EDE best fit model. We also report the best
fit ΛCDM case from Planck 2018.The spliced power spectra are reported as thick dot-dashed
lines. Symbols stand for the outputs of the LB and HR simulations. The solid/dotted lines
are the non-linear power spectra from HALOFIT /HMCODE , whereas the dashed lines are the
corresponding linear power spectra used to produce the initial conditions for the simulations.
The cyan shaded band roughly corresponds to the scales probed by DES-Y1. In the top right
panel, we show the ratio between the non-linear matter power spectra from our simulations
and the ones computed with HALOFIT /HMCODE , for both the ΛCDM “equivalent” and the EDE
best fit models, adopting the same linestyle-code and color-code. In the bottom right panel
we compare departures from the ΛCDM model in terms of ratios of non-linear matter power
spectra, adopting the same linestyle-code and color-code.

– while the red ones refer to the EDE best fit model. As a reference, we also report the
best fit ΛCDM case from Planck 2018. The spliced power spectra are denoted by thick
dot-dashed lines. Symbols stand for the output power spectra of the “non-spliced”
LB and HR simulations. The solid/dotted lines are the non-linear power spectra from
HALOFIT /HMCODE , while the dashed lines are the corresponding linear power spectra
used to set the initial conditions for the simulations. In the right panel, we adopt the
same linestyle-code and color-code to show the ratio between the non-linear power
spectra produced by HALOFIT /HMCODE with respect to the ones extracted from our
simulations. The thick horizontal lines highlight ±5% deviations.
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In App. C.2 we extend the analysis to three additional redshift bins – z = 0.5, 1.5, 2
– obtaining analogous results. We can thus conclude that the differences between
HALOFIT /HMCODE predictions with respect to the outputs of our N-Body simulations
are below 5% level, for scales 10−2 . k . 10 h/Mpc, at redshifts 0 ≤ z ≤ 2, for both
ΛCDM and EDE models. Whereas this is a very well established result for the ΛCDM
paradigm, this is not often the case for alternative cosmological scenarios, such as
the one considered in this work. Let us note that the exponential increase in the
difference between the outputs by simulations and HALOFIT at k ∼ 10 h/Mpc is
absent when one compares the outputs from simulations with the predictions by
HMCODE . As expected, the latter method is more accurate than HALOFIT in modeling
the very small-scale and very low-z regime. In this work, we therefore make use of
HMCODE to model the non-linear evolution of perturbations, following the approach
adopted by the KiDS collaboration.

We also present our results in terms of ratios between the matter power spectra in
the EDE and the ΛCDM models in Fig. 2.5 bottom panel. The comparison between the
EDE best fit and the ΛCDM equivalent confirms that it is not the intrinsic presence
of EDE that enhances the matter power spectrum on small scales, exacerbating
the S8 tension. Rather, the EDE reduces the growth of perturbations at fixed ωcdm.
As already pointed out, such power enhancement is instead due to variations in
the standard ΛCDM parameters – mostly an increase in ωcdm – induced to balance
the EDE impact on the CMB. This suggests that the limitations of the EDE are
not intrinsic to its presence, but rather to an accidental degeneracy that could be
alleviated in an extended model (i.e. by adding non-standard interactions to the dark
matter sector, see Chapter 3).

In view of these considerations, it is straightforward to conclude that LSS surveys
constitute an ideal counterpart to CMB data, given the complementarity between the
regimes that they probe. However, in section Sect. 2.4.3 we will show that currently
available weak lensing data are not sensitive enough to unequivocally capture the
signature of EDE. This will clearly not be the case when more precise data (e.g. from
Euclid (AMENDOLA et al. 2018)) will become available. As also our results suggest, it
will soon be necessary to go beyond the HALOFIT /HMCODE prescription for modeling
the non-linear power spectrum (see e.g. (CHUDAYKIN et al. 2020b; IVANOV et al.
2020; D’AMICO et al. 2021b; KLYPIN et al. 2021)). Furthermore, it might be already
possible to test O(20%) deviations in the small-scale power, as the ones shown in
the bottom panel of Fig. 2.5, with current Lyman-α forest flux power spectrum data
(MURGIA et al. 2017, 2018; ARCHIDIACONO et al. 2019; MILLER et al. 2019; BALDES

et al. 2020) and the EFT of LSS data analysis of BOSS data (see e.g. IVANOV et al.
(2020) and D’AMICO et al. (2021b) for a recent analysis in the 3-parameter model).
We leave these tasks for future work.

MCMC analysis against weak lensing data

In the following, we will focus on the 1-parameter EDE cosmology, fixing Θi and
Log10(zc) to their best fit values from Planck18 only. Firstly, we test the model against
the KIDS-VIKING cosmic shear measurements. We follow the prescription described
in HILDEBRANDT et al. (2020) and make use of the HMCODE algorithm (MEAD et al.
2015) (with 9 nuisance parameters) to model the non-linear matter power spectrum.
Secondly, we perform an analysis trading KIDS-VIKING data for a split-normal



2.4. Cosmological constraints 119

67 68 69
H0

0.29

0.30

0.31

0.32

Ω
m

0.116

0.118

0.120

0.122

ω
c
d
m

2.05

2.10

2.15

2.20

2.25

1
0
−

9
A
s

0.76

0.80

0.84

S
8

0.80 0.85
S8

2.1 2.2
10−9As

0.117 0.120
ωcdm

0.30 0.32
Ωm

Planck+BAO/FS+Pantheon

+KiDS/Viking

+DES (COSEBIs)

Figure 2.6 – Reconstructed 2D posterior distributions of a subset of parameters for various
data set combinations (see legend) in the ΛCDM cosmology.

likelihood on S8 as inferred from the joint KIDS-VIKING+DES data using Complete
Orthogonal Sets of E/B-Integrals (COSEBIs), namely18 S8 = 0.755+0.019

−0.021 (ASGARI et al.
2020). We report results of MCMC analysis of ΛCDM and EDE against the KIDS-
VIKING data and the joint KIDS-VIKING+DES data in table Tab. (2.4) and Tab. (2.5).

Results for ΛCDM : Starting with the ΛCDM cosmology, we find that combining
Planck18 with KIDS-VIKING data leads to a mild degradation of the χ2

min of the
combined fit: While one might naively expect that the χ2

min of the global fit should be
roughly the sum of the χ2

min of individual fits, we find that the global χ2
min is degraded

by ∼ +6.5. Similarly, the inclusion of a tight Gaussian likelihood on S8 as measured
by KIDS-VIKING+DES leads to a degradation in the combined χ2 ∼ +15.5, while one
expects ∼ +1 for a good fit. In Fig. 2.6, we show the reconstructed 2D posteriors of
{H0, S8, 10−9As, ωcdm,Ωm} in the ΛCDM model. One can see that the degradation in
χ2

min is accompanied by shifts in the mean of any parameter correlated with S8, in

18We stress that S8 is a model-dependent quantity, and it is particularly sensitive to the treatment of
the neutrino mass. We therefore make use of the value that was derived following our convention, i.e.
at fixed

∑
mν = 0.06 eV.
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particular As, ωcdm and H0, without succeeding in getting a good fit to the WL data.
We therefore stress that any of the combined results should be taken with a grain of
salt, even in the ΛCDM framework. This joint analysis serves mostly to demonstrate
that the EDE cosmology does not sensibly degrade the fit to the S8 measurement as
compared to ΛCDM, and that currently available WL measurements do not strongly
constrain the EDE resolution to the Hubble tension.

Results for EDE against Planck+KiDS-VIKING: In Fig. 2.7 we show the
reconstructed 2D posteriors of {fEDE(zc), H0, S8,Ωm} in the 1-parameter EDE real-
ization for various data combinations. We start by performing an analysis of EDE
against KIDS-VIKING data only; as expected we find that the KIDS-VIKING data
have no constraining power on the fraction of EDE. However, the reconstructed
S8 = 0.738+0.041

−0.038 is ∼ 2.4σ discrepant with that obtained from previous analyses,
suggesting a potential discordance between the cosmologies. For comparison,
the prediction for S8 in the ΛCDM model obtained from Planck18 data is 2.3σ
discrepant with that from KIDS-VIKING data (HILDEBRANDT et al. 2020). Therefore,
although the mean value has increased, the level of the S8 tension in the EDE
cosmology is similar to that in ΛCDM because of larger error bars. Combining
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Model ΛCDM EDE
Parameter Base+KIDS/VIKING +SH0ES Base+KIDS/VIKING +SH0ES

H0 [km/s/Mpc] 67.97± 0.38 68.4± 0.38 69.75(68.95)+0.99
−1.1 71.58(72.22)+1

−0.97
100 ωb 2.248(2.248)± 0.013 2.257(2.256)± 0.013 2.261(2.253)+0.014

−0.015 2.277(2.282)+0.013
−0.015

ωcdm 0.1187(0.1188)± 0.0009 0.1179(0.1180)± 0.0009 0.1245(0.1235)+0.0028
−0.0039 0.1291(0.1310)± 0.0034

109As 2.10(2.08)± 0.028 2.11(2.12)+0.03
−0.032 2.117(2.116)+0.03

−0.033 2.136(2.130)+0.03
−0.033

ns 0.9685(0.9667)+0.0038
−0.0036 0.9708(0.9691)+0.0039

−0.0035 0.9778(0.9740)+0.0061
−0.0068 0.9872(0.9907)+0.0064

−0.0055
τreio 0.0556(0.0520)+0.0069

−0.0066 0.0585(0.0589)+0.0074
−0.0075 0.0547(0.0559)+0.0067

−0.0074 0.0552(0.0536)+0.0068
−0.0073

fEDE(zc) − − 0.058(0.042)+0.028
−0.034 0.104(0.122)+0.029

−0.025
100 θs 1.04198(1.04165)± 0.00028 1.04207(1.04210)± 0.00028 1.04165(1.04181)+0.00035

−0.00032 1.04146(1.04130)+0.00031
−0.00034

S8 0.8172(0.8137)+0.009
−0.0096 0.8092(0.8094)+0.0091

−0.0098 0.826(0.831)± 0.011 0.829(0.828)+0.012
−0.011

Ωm 0.307(0.309)± 0.005 0.302(0.302)± 0.005 0.3037(0.3085)+0.0054
−0.0055 0.2976(0.2962)+0.005

−0.0051
χ2

min 3996.82 4011.16 3992.11 3997.67

Table 2.4 – The mean (best-fit) ±1σ error of the cosmological parameters reconstructed
from the combined analysis of KIDS/Viking with other data. The ‘Base’ dataset refers to
Planck18+BAO/FS+PANTHEON. We also report the χ2

min for each model and data set combi-
nation.

Model ΛCDM EDE
Parameter Base+KIDS/VIKING/DES +SH0ES Base+KIDS/VIKING/DES +SH0ES

H0 [km/s/Mpc] 68.16(68.15)± 0.38 68.56(68.69)+0.38
−0.39 69.56(69.55)+0.72

−1.2 71.29(71.81)+0.94
−0.94

100 ωb 2.251(2.253)± 0.013 2.26(2.263)+0.013
−0.014 2.262(2.270)+0.014

−0.015 2.278(2.288)± 0.014
ωcdm 0.1183(0.1183)+0.00084

−0.00082 0.1175(0.1172)+0.00085
−0.00083 0.1223(0.1199)+0.002

−0.0036 0.1264(0.1270)+0.003
−0.0032

109As 2.094(2.091)+0.029
−0.03 2.104(2.115)+0.029

−0.032 3.046(2.107)+0.014
−0.015 2.121(2.117)± 0.031

ns 0.9691(0.9705)± 0.0037 0.9712(0.9731)± 0.0037 0.9765(0.9782)+0.0051
−0.0065 0.9854(0.9892)+0.0055

−0.0057
τreio 0.0546(0.0538)+0.0069

−0.0073 0.0576(0.0602)+0.0069
−0.0077 0.05339(0.0559)+0.0071

−0.0072 0.05441(0.05254)+0.007
−0.0072

fEDE(zc) − − < 0.094(0.029) 0.087(0.097)+0.029
−0.024

100 θs 1.04198(1.04195)+0.00028
−0.00029 1.04207(1.04209)+0.00028

−0.00029 1.04178(1.04190)+0.00032
−0.00031 1.04157(1.04149)+0.00033

−0.00032
S8 0.8043(0.8102)+0.0055

−0.0057 0.8039(0.8023)+0.0056
−0.0058 0.8145(0.8036)+0.0098

−0.01 0.817(0.812)+0.01
−0.011

Ωm 0.3045(0.3046)+0.0048
−0.005 0.2994(0.2978)± 0.0049 0.3008(0.2961)+0.0054

−0.0053 0.2949(0.2919)+0.0047
−0.005

χ2
min 3821.93 3837.98 3820.46 3826.35

Table 2.5 – The mean (best-fit) ±1σ error of the cosmological parameters reconstructed
from the combined analysis of the KIDS/Viking/DES data with other data discussed in
the text, with and without a prior on H0 from SH0ES. The ‘Base’ dataset refers to
Planck18+BAO/FS+PANTHEON. We also report the χ2

min for each model and data set com-
bination.

KIDS-VIKING to Planck18+BAO+PANTHEON+FS, a non-zero EDE contribution is
still favored at ∼ 1.5σ, but the reconstructed mean fraction has moved downwards
by ∼ 0.7σ. This was expected, given the positive correlation between fEDE(zc) and
S8. In this cosmology, Planck18 data are still slightly better fitted (∆χ2

min ∼ −6)
than in ΛCDM , while the fit to KIDS-VIKING data is degraded by ∼ +2. Once a
prior on H0 from SH0ES is added, we find again fEDE(zc) ∼ 10 ± 3%, at the cost of
increasing the total χ2

min ∼ +5.5. The increase in χ2 is partly due to the inclusion
of SH0ES (χ2 ∼ 1.62, a reasonably good fit), and also to a mild degradation in
the fit to Planck18 (∼ +3) and BAO (∼ +1.6). The reason is that the inclusion
of KIDS-VIKING data reduces the degeneracy between fEDE(zc) and the ΛCDM
parameters, in particular the one with ωcdm. Note that the goodness of Planck18 fit
is not sensibly degraded as compared to ΛCDM , since the χ2 stays better than that
from ΛCDM fitted on Planck18 only. In fact, when compared to ΛCDM, the combined
χ2 is improved by ∼ −13 (for one extra parameter), indicating a significant preference
for EDE despite the presence of KIDS-VIKING data. Looking at the individual
χ2

min, we find indeed that the quality of the fit to KIDS-VIKING data in the EDE
cosmology that resolves the Hubble tension is barely changed (∆χ2 ∼ +1.6 for 195
data points (HILDEBRANDT et al. 2020)) compared to the ΛCDM fit to the same data set.
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Figure 2.8 – Reconstructed 2D posterior distributions of a subset of parameters for various
data set combinations (see legend) in the 1-parameter EDE cosmology. “All data” stands for
the combination Planck+BAO/FS+Pantheon+SH0ES+KiDS/Viking/DES.

Results for EDE against Planck+KIDS+DES: We now trade KIDS-VIKING data
for a split-normal likelihood on S8 as inferred from the joint KIDS-VIKING+DES data.
We note that the tension between the value of this joint S8 measurement and that pre-
dicted by our fiducial EDE model (obtained from the global fit of Planck18+BAO+FS+
PANTHEON+SH0ES) is at the ∼ 3.8σ level (slightly increased from 3.2σ tension in
ΛCDM). It would be interesting to quantify the level of tension between these data
sets in the ΛCDM framework using more robust statistical tools than the ‘difference
in the mean’ used here, as done for instance in HANDLEY et al. (2019) and RAVERI et
al. (2019). However, we note that authors from RAVERI et al. (2019) found that the less
precise KIDS-VIKING data available at that time were already in significant statistical
disagreement with the prediction from ΛCDM . We anticipate that this more robust
approach would strengthen the case for a statistically significant discrepancy, even in
ΛCDM, and therefore the need to apply caution when drawing conclusions from the
combined analyses. We show the reconstructed 2D posteriors of {fEDE(zc), H0, S8,Ωm}
in the 1-parameter EDE model in Fig. 2.8.

Without the SH0ES prior, fEDE(zc) is compatible with 0 at 1σ, and we find an upper
limit on fEDE(zc) < 0.094 at 95% C.L. This constraint is significantly weaker than that
derived in HILL et al. (2020), despite the fact that we have reduced the parameter
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Model ΛCDM EDE
Parameter PLANCKTTTEEE+PLANCKφφ All Data PLANCKTTTEEE+PLANCKφφ All Data

H0 [km/s/Mpc] 68.44(68.66)+0.74
−0.72 69.16(69.37)± 0.41 71.17(72.18)+1.4

−1.6 71.64(72.07)+0.94
−1

100 ωb 2.262(2.269)± 0.018 2.277(2.284)± 0.014 2.284(2.292)± 0.02 2.292(2.294)± 0.015
ωcdm 0.1179(0.1174)± 0.0016 0.1164(0.1159)± 0.00087 0.1253(0.1286)+0.0037

−0.0045 0.1248(0.1255)+0.003
−0.0033

109As 2.069(2.071)+0.038
−0.035 2.048(2.053)+0.039

−0.032 2.101(2.122)± 0.041 2.064(2.066)+0.047
−0.033

ns 0.9718(0.9730)± 0.005 0.9755(0.9786)± 0.0037 0.9862(0.9925)+0.008
−0.0088 0.9884(0.9925)+0.0059

−0.0056
τreio 0.0494(0.0506)+0.0089

−0.0079 0.0464(0.0480)+0.0093
−0.0074 0.0507(0.0529)+0.0087

−0.008 0.0429(0.0431)+0.012
−0.0071

Aφφlens 1.071(1.075)+0.04
−0.043 1.104(1.110)+0.034

−0.038 1.064(1.056)+0.04
−0.043 1.093(1.099)+0.035

−0.039
ATTTEEE

lens 1.195(1.208)+0.066
−0.07 1.247(1.266)+0.06

−0.066 1.187(1.188)+0.065
−0.07 1.222(1.238)+0.061

−0.067
fEDE(zc) − − 0.078(0.108)+0.035

−0.038 0.082(0.092)± 0.027
100 θs 1.04205(1.04207)± 0.00031 1.04215(1.04214)± 0.00029 1.04165(1.04343)+0.00036

−0.00035 1.04165(1.04164)± 0.00034
S8 0.800(0.795)+0.019

−0.02 0.780(0.776)± 0.011 0.801(0.812)± 0.02 0.794(0.793)± 0.013
Ωm 0.302(0.297)+0.009

−0.01 0.2924(0.2883)+0.0049
−0.0051 0.2938(0.2870)+0.0095

−0.01 0.2891(0.2870)± 0.0052
χ2

min (ΛCDM) 2765.98 3816.23 2761.98 3808.40

Table 2.6 – The mean (best-fit) ±1σ error of the cosmological parameters recon-
structed from the lensing-marginalized Planck18 data only and in combination with
BAO/FS+PANTHEON+KIDS-VIKING-DES. We also report the χ2

min for each model and data
set combination.

space. We have simply adopted a different ‘prior’ choice on Θi and Log10(zc) (i.e. here
we fix them), demonstrating that the current constraints from WL – besides being
derived from statistically inconsistent data set 19 – are not robust. Looking at χ2

min,
we find that the resulting best fit cosmology degrades the fit to Planck by ∼ +6 while
providing a poor fit to the S8 likelihood (χ2 = 8.3 for a single data point). Still, the
best-fit is marginally better than that of ΛCDM adjusted on the same sets of data
(∆χ2

min ∼ −1.5). Once we include the SH0ES prior, we find again fEDE(zc) to be non-
zero at more than 3σ, fEDE(zc)' 9 ± 3%, with a global ∆χ2

min ' −11.6. Looking at
individual χ2

min, we find that the fit to PLANCKTTTEEE, PLANCKφφ, BAO and FS data
is somewhat degraded compared to the best fit EDE cosmology obtained without S8
prior, as a consequence of the breaking of the fEDE(zc)−ωcdm degeneracy. However, as
expected, we note that the S8 likelihood has a χ2 ' 9, which is not particularly worst
that the one obtained in the ΛCDM case without SH0ES (χ2 ' 8.3). This indicates that
any constraint on the EDE derived from this combined analysis should be regarded
with caution, as the cosmology reconstructed from the analysis does not provide a
good fit to the S8 data. This naturally impacts the reconstructed H0, which is ∼ 0.6σ
lower than without the S8 likelihood, although the fit to SH0ES is still reasonably good
(χ2 ' 2.4). We therefore conclude that current S8 measurements do not exclude the
EDE resolution to the Hubble tension; however, they do call for new physics beyond
EDE – or unknown systematics – to explain the intriguingly low measured S8 values.

2.4.4 EDE and the S8 tension in light of the Alens anomaly

It has been noted that there exists a number of ‘curiosities’ in Planck18 that can
potentially shed light on cosmological tensions. In particular, there is a residual
oscillatory feature in the Planck18 TT data at 1100 . ` . 2000 compared to the best
fit ΛCDM prediction (AGHANIM et al. 2017, 2020b). This feature can be captured
by an extra source of smoothing of the acoustic peaks, as modelled by the ‘Aφφlens’

19Since Pl18−ΛCDM provides an even worse fit to SH0ES data, one could argue that Planck and SH0ES
are also statistically inconsistent. However, we remind that the notion of “statistically inconsistent
datasets” is generally model-dependent (specially when including CMB or other early-universe data),
and in fact Pl18 − EDE gives a very good fit to SH0ES. This latter point is only evident when looking
at the long tails of the EDE posteriors, so to properly quantify the agreement with SH0ES one should
consider metrics that generalize the standard Gaussian Tension estimators, as we do in Sect. 2.5.2.
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parameter which is used to re-scale the amplitude of the lensing potential power
spectrum Cφφ` → AφφlensC

φφ,
` at every point in parameter space. However, the amplitude

of the lensing potential power spectrum can also be estimated directly from the
lensing-reconstruction and is compatible with the ΛCDM expectation, such that while
this extra smoothing looks like lensing, it cannot be attributed to actual gravitational
lensing. A thorough investigation of the lensing-like tensions in the Planck legacy
release was performed in AGHANIM et al. (2017) and MOTLOCH et al. (2018, 2020). It
has been noted in particular that, once marginalizing over the lensing information,
the ‘unlensed’ CMB temperature and polarization power spectra favor a cosmology
with a lower As and Ωcdmh

2. Indeed, these parameters are strongly correlated with
the amplitude of the lensing power spectrum, such that the lensing-like anomaly
pulls these parameters up. Additionally, since the acoustic feature of the CMB tightly
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Figure 2.10 – Reconstructed 1- and 2D-posterior of a subset of parameters in the 1-parameter
EDE cosmology for various data sets (see legend), once marginalizing over Alens and Aφφlens.

constraints the parameter combination Ωmh
3, a lower Ωcdmh

2 is compensated by a
higher H0. As a consequence, the unlensed ΛCDM cosmology shows no S8 tension,
and a milder (although still > 3.5σ significant) H0 tension. It was also pointed out
that this ‘unlensed’ cosmology is in good agreement with the ΛCDM cosmology
reconstructed from the SPTPol data (HENNING et al. 2018; CHUDAYKIN et al. 2020a).

It is therefore reasonable to ask what is the impact of such anomalies on
extensions to ΛCDM like the EDE under study. To that end, we introduce two
additional parameters Alens and Aφφlens whose goal is to marginalize over the lensing
information in Planck20. The latter parameter re-scales the amplitude of the theory
lensing potential power spectrum, while the former only re-scales the amplitude
of the acoustic peak smoothing. In practice, the amplitude of the acoustic peak
smoothing is then determined by the product ATTTEEE

lens ≡ Alens×Aφφlens. We first perform
MCMC analysis of the ΛCDM and EDE cosmologies against Planck18 data. In a

20An alternative, more thorough, way is to use CMB lensing principal components as introduced in
MOTLOCH et al. (2018, 2020). As we will show shortly, our reconstructed ‘unlensed’ cosmologies are in
good agreement. Our approach follows that introduced in SIMARD et al. (2018) and WU et al. (2019).
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second step, we perform a global analysis combining all the data considered in this
work. As before, the joint KIDS-VIKING+DES results is modeled via a split-normal
likelihood distribution on S8. The results of these analysis are reported in Tab. (2.6)
and shown in Fig. 2.9 and Fig. 2.10 .

Results for ΛCDM: We start by analyzing the ΛCDM cosmology in light of the
‘unlensed’ Planck spectra. We confirm the results of AGHANIM et al. (2020b) and
MOTLOCH et al. (2020): we find that the amount of lensing determined from the peak
smoothing ATTTEEE

lens is ∼ 2.8σ higher than the expectation from the ΛCDM model
deduced from the ‘unlensed’ CMB power spectrum. Moreover, the difference between
the reconstructed Aφφlens ' 1.07 ± 0.04 and ATTTEEE

lens ' 1.2 ± 0.07 illustrates the fact
that this extra smoothing component cannot be due to actual gravitational lensing.
Still, this ΛCDM ‘unlensed’ cosmology is now in much better agreement with the S8
measurements from KiDS and DES, as can be seen in Fig. 2.9. This is due to the fact
that the reconstructed As and ωcdm are lower than in the analysis including lensing
information. We then perform a global analysis, including all data sets considered in
this work. We find that the ‘unlensed’ ΛCDM cosmology can indeed accommodate a
low S8, however this is at the cost of worsening somewhat the fit to BAO+FS data
(∆χ2 ' +3.5), when compared to the ‘concordance’ ΛCDM model obtained from a fit
to the full Planck data, BAO and FS (without S8 priors). Additionally, we note that
accommodating such a low S8 requires a somewhat smaller ωcdm and As (by a little
less than 1σ), which are compensated for by pulling up the Aφφlens and ATTTEEE

lens by a
similar amount. The fit to SH0ES on the other hand is still very poor, χ2

min ' 10,
suggesting that the global unlensed cosmology is still in strong tension with SH0ES.

Results for EDE: Turning now to the 1-parameter EDE model, we wish to check
whether the EDE cosmology deduced from ‘unlensed’ Planck18 spectra only is in
better agreement with both S8 and H0 direct measurements 21. As one can see from
Fig. 2.10, the lensing-marginalized CMB data does favor non-zero fEDE(zc) at ∼ 2σ
(∆χ2

min ' −4 with respect to ΛCDM) and predicts H0 ' 71.2 ± 1.5 and S8 ' 0.81 ± 0.02.
Compared to the EDE cosmology reconstructed from the full Planck data, the
‘tension’ with H0 and S8 has therefore decreased by ∼ 1σ due to a shift in the mean of
the reconstructed posterior in the unlensed cosmology. It is now in 1.4σ agreement
with SH0ES but stays in mild (∼ 2.7σ) tension with the combined S8 measurement.
The S8 prediction is however in very good agreement with the KIDS-VIKING and
DES measurements when considered individually (an important note since the
combined low S8 value relies on a re-calibration of DES‘photo-metric redshift by the
KIDS-VIKING team). Additionally, the Aφφlens and ATTTEEE

lens parameters are unchanged
with respect to that reconstructed in the ΛCDM cosmology. Therefore, while the
anomalous amount of lensing in Planck18 data is not an effect due to the presence
of the EDE, these parameters do not correlate with a non-zero fEDE(zc), i.e., they do
not take values different from the ΛCDM ones to ‘hide’ the effect of the EDE.

Once all data sets are included in the analysis, a non-zero fraction of EDE is
favored at ∼ 3.5σ. Interestingly, most of the reconstructed parameters do not shift by
more than ∼ 0.5σ; rather, the uncertainty on the reconstructed parameters tighten
significantly, as one would expect from making use of additional data. However,

21A similar study was performed in MOTLOCH et al. (2020) for Neff. There, it was found that polarization
and BAO data exclude Neff as a resolution to the Hubble tension, even after marginalizing over the
lensing anomaly in Planck18.
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similarly to what happens in the ΛCDM cosmology, the inclusion of the tight-and-
low S8 value does force a slightly (∼ 1σ) smaller As, that is compensated by slightly
higher Aφφlens and ATTTEEE

lens parameters. The fit to SH0ES is good (χ2 ∼ 1.9) and stable
when compared to that obtained including Planck lensing information. On the other
hand, as expected, the fit to the joint KIDS-VIKING+DES S8 is better than in the
‘lensed’ cosmology (∆χ2 ∼ −4.3), but its value is still somewhat poor (χ2 ∼ 4). We
emphasize again that the fit to individual S8 measurements, on the other hand, is
excellent. If future S8 measurements stay low while becoming more precise, they will
be in tension even with the ‘unlensed’ cosmology (whether ΛCDM or EDE), confirming
the need for new physics beyond EDE (or an unknown systematic effect).

2.5 EDE in the context of other proposed solutions

We have seen that EDE provides an excellent fit to Planck and SH0ES data, even
when LSS data is considered in the analysis. However, there are hundreds of solutions
beyond the ΛCDM framework that have been proposed in the recent years, so it is
fair to ask whether these models perform worse, better or equally good than EDE in
explaining the H0 discrepancy. Hence, in the second part of this Chapter, we seek to
ascertain the relative success of various cosmological models proposed to solve the
H0 tension. We do this by systematically confronting each of the considered models
to data from the early and late Universe, assessing at each point the extent to which
the tension between the Planck and local measurements remains. This allows a direct
comparing between EDE and other proposed solutions, but the broader intent is really
to better understand the successes and drawbacks of each approach, and to generate
a meaningful set of benchmarks for future proposals.

2.5.1 Brief overview of competitors

We have considered seventeen different models which are intended to be represen-
tative of the wide variety of models presented in the literature, such as those listed in
DI VALENTINO et al. (2021b). For clarity, we split the models in three different cate-
gories: early Universe models that invoke extra relativistic dark relics (in addition to
other ingredients), alternative early Universe models that do not involve dark radia-
tion, and finally, models modifying the cosmological expansion at late times (i.e.well
after recombination). Below we list all the models that we have considered.

Dark Radiation solutions

• Free-streaming Dark Radiation [∆Nur].

• Self-Interacting Dark Radiation [SIDR].

• Free-streaming plus self-interacting Dark Radiation [mixed DR],

(BRUST et al. 2017; BLINOV et al. 2020b).

• Self-interacting Dark Radiation scattering on Dark Matter [DR-DM],

(LESGOURGUES et al. 2016; BUEN-ABAD et al. 2018; ARCHIDIACONO et al. 2019).

• Self-interacting neutrinos plus free-streaming Dark Radiation [SIν+DR],

(PARK et al. 2019; KREISCH et al. 2020).
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• Interacting neutrinos with a Majoron [Majoron],

(ESCUDERO et al. 2020a, 2021).

Let us emphasize that it has been shown in many different studies (e.g. BERNAL

et al. (2016), POULIN et al. (2019), and DI VALENTINO et al. (2020a)) that ∆Neff fails
at resolving the Hubble tension. Thus, rather than a real competitor, we will treat it
as a useful benchmark model, in order to assess the extent to which the additional
complexity introduced by other models really helps for relieving the Hubble tension.
Remark also that the SIDR model is very similar to the ∆Nur model, except that the
anisotropic stress vanishes, σdr = 0, in order to reflect the fact that the dark radiation
behaves as a perfect fluid due to the strong self-interactions.

Other early Universe solutions

• primordial magnetic field [primordial B],

(JEDAMZIK et al. 2011, 2020).

• varying effective electron mass [varying me],

(HART et al. 2018, 2020).

• varying effective electron mass in a curved universe [varying me+Ωk],

(SEKIGUCHI et al. 2021; SOLOMON et al. 2022).

• Early Dark Energy [EDE].

This is the model introduced in Sect. 2.3 of this Chapter.

• New Early Dark Energy [NEDE],

(NIEDERMANN et al. 2020, 2021a).

• Early Modified Gravity [EMG],

(BRAGLIA et al. 2021).

We note that, in order to decrease the sound horizon at recombination rs(zrec),
the first three models in this category increase the recombination redshift zrec, while
the last three models change the expansion rate H(z)/H0 near recombination. The
combination varying me+Ωk might appear surprising (since curvature has an entirely
disjoint cosmological effect to that of a varying electron mass), but it is mainly in-
cluded because it produces a strong shift in H0. The reason for this degeneracy is
further explained in SEKIGUCHI et al. (2021). We have verified explicitly that this is a
peculiar degeneracy that uniquely appears in this model – allowing curvature to float
in other models seems to have no significant impact.

Late Universe solutions

• Late Dark Energy with Chevallier-Linder-Polarski parametrization [CPL],

(CHEVALLIER et al. 2001; LINDER 2003).

• Phenomenological Emergent Dark Energy [PEDE],

(LI et al. 2019; PAN et al. 2020; YANG et al. 2021a).
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• Generalized Phenomenological Emergent Dark Energy [GPEDE],

(YANG et al. 2021b).

• fraction of CDM decaying into DR [DM → DR],

(AUDREN et al. 2014; POULIN et al. 2016; NYGAARD et al. 2021).

• CDM decaying into DR and WDM [DM → DR+WDM].

This model will be discussed in detail in Chapter 3.

Similarly, to the case of ∆Neff , it is already well known that the CPL model does not
resolve the Hubble tension (POULIN et al. 2019; DI VALENTINO et al. 2020a). Therefore,
rather than a real competitor, we will consider the CPL parameterization of the Dark
Energy equation of state as a historical benchmark model, useful to gauge the extent
to which more complex late-universe models truly performs. In addition, notice that
the PEDE model considers a parametrization of the DE energy density with no new
free parameters (i.e. it has not ΛCDM limit), while GPEDE has an additional parameter
such that ΛCDM can be recovered for a particular value of this parameter.

2.5.2 Statistical tests to quantify model success

For each modelM and compilation of data sets D, we discuss three ways to quan-
tify the tension between the cosmological inferred value and the SH0ES experiment
22, each one related to a different question:

• Criterion 1: When considering a dataset D not including SH0ES, what is the residual level of
tension between the posterior on Mb inferred using D and the SH0ES measurement?

The tension on x = Mb can be quantified through the Gaussian Tension (GT),
defined as

x̄D − x̄SH0ES
(σ2
D + σ2

SH0ES)1/2 , (2.16)

where xi and σi are the mean and standard deviation of observation i. A problem
of this metric is that it is only strictly valid if the parameter’s posteriors are
Gaussian, and it could disfavor models with long tails in the posterior. This can
happen for instance if the data set D cannot disentangle between ΛCDM and a
more complex model which has parameters that become irrelevant when others
are close to their ΛCDM limit. As a result, the posterior is necessarily dominated
by the Gaussian ΛCDM limit, and the easing power of the model can only show
up in the aforementioned tails of the probability distribution (this is precisely
what happens with EDE cosmologies, as we saw in Sect. 2.4.2). In addition, this
criterion does not quantify how good (or bad) the χ2 of the new model is. As a
result, a model which does not contain the ΛCDM best fit (like the PEDE model)
can appear arbitrarily good. In order to avoid such problems, we instead use the
two additional tests listed below.

• Criterion 2: How does the addition of the SH0ES measurement to the data set D impact the fit
within a particular modelM?

22We treat SH0ES not as a model-dependent measurement of H0, but as a direct measurement of the
intrinsic magnitude of supernovae Ia (SNIa), Mb = −19.2435±0.0373 (RIESS et al. 2021b). As discussed in
Sect. 2.2, this allows to take into account the correlation between the information contained in SH0ES
and Pantheon catalog of remote SNIa.
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We compute the change in the effective best-fit chi-square χ2 = −2 lnL between
the combined data set and the dataset D as

∆χ2 = χ2
min,D+SH0ES − χ2

min,D. (2.17)

In the ΛCDM framework, the χ2 of the combined fit to D+SH0ES is notably worse
than the sum of the separate best-fitting χ2 to D and to SH0ES, reflecting the fact
that the data sets are in tension. Since we are comparing the χ2 values within
a given model, there is no change in the number of model parameters, and the
tension can simply be expressed as

√
∆χ2 in units of σ, which is identical to

the QDMAP metric discussed in RAVERI et al. (2019). This criterion naturally
generalizes the commonly used criterion discussed in point 1 to the case of non-
Gaussian posteriors. Indeed, for any Gaussian posterior, it is equivalent to that
criterion. However, it is sensitive to the effect of over-fitting (i.e. a model with
arbitrarily large number of parameters could fit any features better than ΛCDM),
which usually requires Bayesian methods to compute Occam’s razor factors. For
this reason, we also consider a third criterion, which attempts to penalize overly
complex models, and to quantify the intrinsic success of a model.

• Criterion 3: When the dataset D includes the SH0ES likelihood, does the fit within a particular
modelM significantly improve upon that of ΛCDM?

We compute the Akaike Information Criterium (AIC) of the extended model M
relative to that of ΛCDM , defined as

∆AIC = χ2
min,M − χ2

min,ΛCDM + 2(NM −NΛCDM), (2.18)

where NM stands for the number of free parameters of the model. This metric
attempts to penalize models which introduce new parameters that do not subse-
quently improve the fit. Thus, the ability of a modelM to resolve the tension at a
significant level despite having more parameters can be assessed through ∆AIC,
with more negative values indicating larger model success. While this metric
does indicate whether a model is favored compared to ΛCDM for the combined
data set, it does not quantify whether this improvement stems from improving
the Hubble tension or from simply fitting better other data sets such as Planck
data. This criterion is thus especially useful if applied together with criterion 1
or 2 above. The ∆AIC criterion offers the advantage of being numerically cheap
and prior independent, as opposed to several Bayesian estimators (VERDE et al.
2013; RAVERI et al. 2021), including the Bayes factor ratio (KASS et al. 1995), or
the related “suspiciousness” (HANDLEY et al. 2019).

In the case of Tests 1 and 2 , we require models to reduce the tension below the
3σ level. This may not seem like a very stringent threshold for success since, at the
end of the day, 3σ may still be considered as a significant tension. However, we will
show that only a limited number of models are capable of reducing the tension to
this rather meager level. In addition, it is important to bear in mind that some of
the current data likelihoods might underestimate systematic errors. In the future,
as long as systematic errors are revised slightly but not drastically, there is a good
chance that the models that do not pass our 3σ criteria will remain excluded, while
the models not passing some possible 2σ criterion could be rescued. For Test 3, we
demand that the preference for the extended cosmology M over ΛCDM is larger than
a “weak preference” on Jeffrey’s scale (JEFFREYS 1961; NESSERIS et al. 2013), that is,
p = 101.5. Using exp (∆AIC/2) = p in the AIC formalism, this leads to the criterion
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∆AIC ≤ −6.91.

Since the questions addressed by criteria 1 and 2 are very similar 23, and since
criterion 2 does not assume Gaussian posteriors, we consider that criterion 2 super-
sedes criterion 1. On the other hand, criteria 2 and 3 address significantly different
questions. Each of them has its pros and cons and they complement each other.
Thus, as long as the ∆χ2 computed for the AIC test is negative (i.e. as long as a model
is not giving a worse combined fit than ΛCDM), we will conservatively consider that
it is successful when one of criterion 2 or 3 is fulfilled. To summarize the success of
each suggested solution we attribute “medals” to models passing our tests: A model
passing either criterion 2 (obtaining a good combined fit) or 3 (strongly improving the
fit over ΛCDM) receives a bronze medal. A model passing both criteria receives a silver
medal. We reserve the gold medal for models that additionally pass criterion 1, that
is, whose posterior distributions allow for high values of H0 (or MB) independently of
the inclusion of a local distance ladder prior.

2.5.3 Results of the contest

For our baseline dataset, Dbaseline , where

Dbaseline = Planck18 (including TTTEEE and lensing)
+ BAO (including BOSS DR12 (ALAM et al. 2017) + MGS (ROSS et al. 2015)

+ 6dFGS (BEUTLER et al. 2011)) + Pantheon (SCOLNIC et al. 2018) ,

the result of our main tests (QDMAP for Mb and Akaike Information Criterion) are
summarized in Tab. (2.7) and represented graphically in Fig. 2.11. For the sake
of completeness, we also present the results obtained using criterion 1 (Gaussian
Tension on Mb), both in Tab. (2.7) and in the discussion. First and foremost, no
model is perfect – in fact, none of the models studied here are capable of reducing
the tension below the ∼ 1.6σ level. A number of models, however, are capable of
passing the criteria identified above (with varying levels of success). We enumerate
the results for each of the test criteria below:

• Adopting the GT estimator, only four models can reduce the tension to the 3σ
level, with the best model (varying me+Ωk) showing a residual 2.0σ tension. From
best to worse, they are: varying me+Ωk, PEDE, varying me in a flat universe, and
the Majoron.

• Making use instead of the more robust QDMAP criterion, which compares χ2 of
models with and without the inclusion of the SH0ES determination of Mb, we
find that models with non-Gaussian tails perform significantly better. This most
strongly impacts the two models of EDE and the EMG model, reducing their level
of tension from roughly 3.1 − 3.7σ to 1.6 − 2.3σ. From best to worse, models that
pass criterion 2 are: EDE, varying me+Ωk, NEDE, EMG, PEDE, varying me, and
the Majoron.

• Adopting the ∆AIC criterion, which attempts at quantifying the role of enlarged
model complexity in the improvement of the fit to Dbaseline +SH0ES, we find that

23The most notable difference is that one is based on average properties of the posterior distribution,
as opposed to the χ2 of a single point, and the ability to capture the effect of long tails in non-Gaussian
posterior distributions.
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Table 2.7 – Test of the models based on dataset Dbaseline, using the direct measurement of Mb

by SH0ES as the GT for the quantification of the tension (4th column), the QDMAP criterion
(5th column), or the computation of the ∆AIC (7th column).

eight models are capable of significantly improving over ΛCDM 24. They are, in
decreasing level of success: EDE, varying me+Ωk, NEDE, EMG, varying me, the
Majoron model, a primordial magnetic field, and SIDR.

Before declaring the official finalists, let us briefly comment on models that do not
make it to the final, starting with late-universe models. The CPL parameterization,
our “late-universe defending champion”, only reduces the tension to 3.7σ, inducing
a minor improvement to the global fit. The PEDE model noticeably degrades the
χ2 of BAO and Pantheon data, leading to an overall worse fit than ΛCDM. Thus,
according to our general rules, we must exclude PEDE from the final.The GPEDE
model, which generalises PEDE to include ΛCDM as a limiting case, does not pass
any of the tests. This shows the danger of using only criterion 1 or 2 for models
that do not include ΛCDM as a limit. Ideally, one should always perform a test
equivalent to the ∆AIC or consider models in which ΛCDM is nested. As emphasized
in Sect. 2.2, for late-time modifications of ΛCDM, it is also important to treat the
SH0ES observation as a model-independent measurement of Mb , rather than a
model-dependent measurement of H0 . We checked explicitly that using a SH0ES
likelihood on H0 rather than Mb incorrectly yields more favorable results for these
late-time models, a result consistent with the claims of (BENEVENTO et al. 2020;
CAMARENA et al. 2021; EFSTATHIOU 2021). Finally, the models of decaying dark
matter studied here are only capable of reducing the tension from 4.4σ to 4.2σ, despite
only introducing two new parameters. Consequently, the ∆AIC criteria disfavors both
DDM models. We thus conclude that the late-time DE and dark matter decay models

24None of our models show a significant preference in AIC over ΛCDM when only considering the
baseline Dbaseline
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Figure 2.11 – ∆χ2 (Test 2) and ∆AIC (Test 3) of the various models considered in this work.
We additionally display the thresholds that have to be reached as purple dashed lines, and
the regions of successful models as a purple region.

considered in this work cannot resolve the Hubble tension.

Secondly, the class of models invoking extra relativistic degrees of freedom
perform significantly better than late-universe models, but a majority are not
successful enough to pass our pre-determined thresholds. Self-Interacting Dark
Radiation [SIDR], Self-interacting Dark Radiation scattering on Dark Matter [DR-DM],
and Free-streaming plus self-interacting Dark Radiation [mixed DR], all improve
upon the “early-universe defending champion”, that is, free-streaming DR (for
all three criteria). However, none of them reduces the tension below the ∼ 3.2σ
level. Perhaps the most surprising case is that of Self-interacting neutrinos plus
free-streaming Dark Radiation [SIν+DR], which has long been claimed as a promising
solution to the Hubble tension, but performs worse on ∆AIC and QDMAP than the
benchmark of free-streaming DR. It may also sound surprising that the DR-DM
model does not perform significantly better than the SIDR model (the latter model
passing the ∆AIC criterion). We emphasize that in several previous papers, the
success of this model was boosted by a lower prior on the amount of DR that
excluded ΛCDM as a limit, a situation comparable to that of PEDE. The only model
which successfully passes both criteria is that of the Majoron, which reduces the
tension to the level of ∼ 2.9σ and shows a significant improvement to the fit. It
is perhaps interesting to point out that this is the only model in this categoriza-
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Figure 2.12 – Contours of {H0,Mb, S8} obtained when considering the Dextended dataset for the
finalists models compared to ΛCDM. The purple band represents the S8 measurement from
KiDS-1000 (ASGARI et al. 2021).

tion which invokes a non-trivial evolution of H(z). It is thus in some ways more
similar to Early Dark Energy than to the other Dark Radiation models presented here.

In summary, the models that pass at least one of criterion 2 or 3 without leading
to a worse global fit, ranked from the best to worst ∆AIC, are the following:

1. EDE,

2. varying me+Ωk,

3. NEDE,

4. EMG,

5. primordial B,

6. varying me,

7. Majoron,

8. SIDR.

These models constitute our “finalist” sample. In Fig. 2.12 we highlight the
predicted distributions of S8 for each of the finalist models 25. As we can see, none of
these models are able to relieve the S8 tension, however neither do any of the models
dramatically increase the tension. As discussed extensively in Sect. 2.4 and in other
works (HILL et al. 2020; IVANOV et al. 2020; D’AMICO et al. 2021b; NIEDERMANN

et al. 2021b; T. L. SMITH et al. 2021), the inclusion of LSS data doesn’t spoil the
resolution to the H0 tension provided by the EDE and NEDE models, even if they
slightly increase the mean value of S8. Nevertheless, this figure clearly illustrates
that resolving the both H0 and S8 tensions will likely require multiple extensions.

There has been attempts in the literature at resolving both tensions simultane-
ously. In particular, models of DM-DR interactions seemed particularly promising
given that they predict both a higher H0 and a smaller S8 (BUEN-ABAD et al. 2015;
CHACKO et al. 2016; BUEN-ABAD et al. 2018). However, none passed the tests we con-
sidered in this work. Similarly, the primordial magnetic field model was advertised as
promising to resolve both tensions (JEDAMZIK et al. 2020). While it does pass our ∆AIC

25We remark that this analysis corresponds to an extended dataset Dextended = Dbaseline + Redshift-
Space-Distortions (from BOSS DR12 (ALAM et al. 2017), 6dFGS (BEUTLER et al. 2011), MGS (ROSS et al.
2015) and eBOSS DR 14 quasars (ZARROUK et al. 2018)) + Cosmic Chronometers (VAGNOZZI et al. 2021a)
+ Lyman-α based high-z BAO (BLOMQVIST et al. 2019; SAINTE AGATHE et al. 2019).
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criterion, it only reduces the H0 tension at the 3.5σ level, and the S8 tension is barely
affected (S8 is even slightly larger than in ΛCDM). Nevertheless, it is possible that the
resolutions of the S8 and H0 tension lie in different sectors, or require more involved
modifications than the ones discussed here. In fact, as we discussed in Sect. 1.7.2, it
is becoming clear that the S8 tension lies in the amplitude of fluctuation σ8 rather than
Ωm, in particular due to constraints on Ωm from uncalibrated SNIa data (SCOLNIC et al.
2018), and from the cross-correlation of weak lensing and galaxy surveys that breaks
the Ωm−σ8 degeneracy (HEYMANS et al. 2021). Therefore, one might expect that the σ8
tension hints at new perturbation properties, while H0, which is a measure of the total
energy density, hints at a new background contribution. Many models discussed so
far are mainly motivated by their impact at the background level, and it is perhaps not
surprising that they fail at simultaneously reducing σ8 due to the small freedom they
have at the level of perturbations. For instance, it was recently noted that extending
the (N)EDE sector with an additional ultra-light axion of mass m ∼ 10−26 eV represent-
ing ∼ 5% of the DM would resolve both tensions (ALLALI et al. 2021). Alternatively,
while less pleasing from the Occam’s razor point of view, new properties of DM, such
as decays (see Chapter 3), cannibalism (HEIMERSHEIM et al. 2020), interactions with
DR (BUEN-ABAD et al. 2015; CHACKO et al. 2016), with neutrinos (DI VALENTINO et al.
2018b; MOSBECH et al. 2021) or with DE (DI VALENTINO et al. 2020b; LUCCA 2021), as
well as new neutrino properties (KREISCH et al. 2020; DAS et al. 2022) could indepen-
dently resolve the σ8 tension, and leave unaffected the (relative) success of the models
studied here at resolving the H0 tension. In this context, it was recently shown that
a naïve combination of the EDE model with the DM → DR+WDM decay scenario can
indeed address both tensions successfully (CLARK et al. 2021b).

2.6 Summary and outline

In the first part of this work, we have reassessed the viability of the EDE against
a host of high- and low-redshift measurements, by combining LSS observations from
recent weak lensing surveys KIDS-VIKING and DES with Planck18 2018 CMB data,
BOSS-DR12 BAO and growth function measurements, and the PANTHEON compila-
tion of luminosity distance to SNIa. Our results can be summarized as follows:

1. Within a phenomenological 3-parameters EDE model (3pEDE), we confirm that
Planck18+ BAO+FS+PANTHEON+SH0ES favor fEDE(zc) ' 0.1±0.03, zc ' 4000+1400

−500
and Θi = 2.6+0.4

−0.03, with a ∆χ2 = −18.7 compared to ΛCDM fitted on the same
data set. The inclusion of the latest Planck18 data (and in particular the more
precise polarization measurements) does not spoil the success of the EDE res-
olution to the Hubble tension. When compared to the ‘concordance’ ΛCDM
model (i.e. obtained from analysis without SH0ES data), the EDE cosmology fits
Planck18+BAO+FS+ PANTHEON equally well, but can additionally accommodate
the high local H0 values.

2. Following the approach of NIEDERMANN et al. (2020), we have then shown that
reducing the parameter space to a 1-parameter EDE (1pEDE) model by fixing
Log10(zc) and Θi to their best fit values as obtained from a Planck18 data only
analysis – which strikingly coincide with those from the combined analysis with
SH0ES – leads to ∼ 2σ preference for non-zero EDE, namely fEDE(zc) ' 0.08±0.04
from Planck18 CMB data alone. In this cosmology, the inferred H0 ' 70 ± 1.5
km/s/Mpc is in agreement at better than 2σ with its local measurement from
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SH0ES. The addition of BAO, FS and PANTHEON data has no significant impact
on the result. Including a prior on H0 from SH0ES pulls up the reconstructed
fraction to the ∼ 10% level, with H0 ' 71.7± 1, while the fit to Planck18 is slightly
better than in the concordance ΛCDM cosmology (∆χ2 ∼ −5).

3. To justify the inclusion of LSS data in our analyses, we have confronted the
EDE non-linear matter power spectrum as predicted by standard semi-analytical
algorithms against a dedicated set of N-body simulations. We have then tested
the 1pEDE cosmology against WL data, finding that it does not significantly
worsen the fit to the S8 measurements as compared to ΛCDM, and that current
WL observations do not exclude the EDE resolution to the Hubble tension.

4. We also caution against the interpretation of constraints obtained from combin-
ing Planck18 with KIDS-VIKING+DES. As we showed, the ‘compromise’ cos-
mology that is obtained is a poor fit to KIDS-VIKING+DES and degrades the fit
to Planck18 data, even in ΛCDM. This illustrates that these data sets are sta-
tistically inconsistent in a ΛCDM framework, and it is easily conceivable that
the resolution of this tension lies elsewhere (whether systematic effect or new
physics).

5. In light of the CMB lensing anomaly, we have shown that the lensing-
marginalized CMB data favor non-zero EDE at ∼ 2σ, predicts H0 in 1.4σ
agreement with SH0ES and S8 in 1.5σ and 0.8σ agreement with KIDS-
VIKING and DES, respectively. There still exists however a ∼ 2.5σ tension
with the joint results from KIDS-VIKING and DES. Moreover, the presence of
EDE does not affect the amount of anomalous lensing. This suggests that the
anomalous lensing is not due to the presence of EDE, but also that the success
of EDE is not due to opening up a new degeneracy direction with some exotic
lensing parameters.

Interestingly, recent analysis of the 3pEDE model using data from the Atacama
Cosmology Telescope’s fourth data release (ACT DR4) (S. K. CHOI et al. 2020) alone
have shown a slight (∼ 2.2σ) preference for the presence of an EDE component with
a fraction fEDE(zc) ∼ 0.15 and H0 ∼ 74 km/s/Mpc (HILL et al. 2021; POULIN et al.
2021). These studies showed that the inclusion of large-scale CMB temperature
measurements by the Wilkinson Microwave Anisotropy Probe (WMAP) (C. L. BENNETT

et al. 2013) or Planck18 restricted to the WMAP multipole range increases the
preference to ∼ 3σ. A similar analysis using the third generation South Pole
Telescope 2018 (SPT-3G) data (DUTCHER et al. 2021) was presented in LA POSTA

et al. (2022). There is no evidence for 3pEDE over ΛCDM using SPT-3G alone or
when combined with the Planck temperature power spectrum restricted to the WMAP
multipole range. Combining ACT and/or SPT-3G with the full Planck CMB power
spectra returns an upper limit on fEDE(zc), albeit less restrictive than for Planck
alone. In HILL et al. (2021) and POULIN et al. (2021) it was argued that the ACT
preference for 3pEDE is mainly driven by a feature in the ACT EE power spectrum
around ` ∼ 500 when ACT is considered alone, with an additional broadly-distributed
contribution from the TE spectrum when in combination with restricted Planck TT
data (` < 650 or ` < 1060). Building on these previous studies, in T. L. SMITH et al.
(2022) we derived constraints on 3pEDE using ACT DR4, SPT-3G 2018, Planck
polarization, and restricted Planck temperature data, finding a 3.3σ preference for
EDE over ΛCDM. This is the first time that a moderate preference for EDE has been
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reported for these combined CMB data sets including Planck polarization. However,
with the inclusion of Planck TT data at ` > 1300, the constraint on fEDE(zc) becomes
compatible with ΛCDM at 1σ. In addition, we explored whether systematic errors
in the Planck polarization data could affect our conclusions and found that changing
the TE polarization efficiencies 26 significantly reduces the Planck preference for
EDE. More work will be necessary to establish whether these hints for EDE within
CMB data alone are the sole results of systematic errors or an opening to new physics.

In the second part of this work, we have used a common analysis pipeline to
compare and contrast the relative success of seventeen models (including EDE)
proposed to ease the Hubble tension; this approach is thus intended as a fair
comparison between proposed solutions, and provides a useful benchmark for
those wishing to put forth novel ideals. We have broken down the various models
into three generic categories: those that modify the sound horizon by including a
component of Dark Radiation (DR) impacting the early expansion history, solutions
which modify the sound horizon through some other mechanism (such as a delay
of recombination or some pre-recombination contribution to the expansion), and
solutions that attempt to modify the late-time expansion history.

For each model and data-set, we quantify the residual tension using a series of
metrics, each of which has both advantages and shortcomings, and attempting to
answer slightly different questions, namely: given a model, (i) to what extent does
confrontation with data (other than SH0ES) generate posteriors compatible with high
values of H0, (ii) to what extent can one obtain a good combined fit to all data, and
(iii) to what extent is that model favored over ΛCDM? The summary of our findings
is that no model does perfectly well in all of our tests – all models are left with a
residual tension, with the most promising reducing the tension to the ∼ 1.6σ level,
and with very few models actually reducing the tension below 3σ. Similarly, only a
small subset of the models are capable of improving the fit sufficiently to the pass the
AIC test. Six models, EDE, NEDE, EMG, varying me (with and without curvature),
and the Majoron, are able to simultaneously satisfy the QDMAP and ∆AIC criteria.
Furthermore, only the varying me (with and without curvature) passes the Gaussian
criterion and allows for high H0 (or MB) without a SH0ES prior, receiving the only
“gold medal” of our tournament.

Additionally we note that, besides EDE, none of the models of interest alleviate (nor
exacerbate) the S8 tension. Some models which had previously shown some success
in reducing the S8 tension, namely DM-DR and the strongly interacting neutrinos, are
now disfavored by the data. Finding a common resolutions to both tensions would
certainly reinforce the degree of belief into the new concordance cosmology; however,
we reiterate that the resolution of these tensions could arise from independent sec-
tors – either from new physics or systematics. We conclude that some of the models
presented in this work can provide a good combined fit to all data considered (in-
cluding SH0ES), demonstrating that there at least exist potential solutions to the H0

26Polarization efficiencies are calibration factors multiplying polarization spectra. In principle, the
polarization efficiencies found by fitting the TE spectra should be consistent with those obtained from
EE. However, in Planck, small differences (at the level of 2σ) are found between the two estimates at 143
GHz. There are two possible choices: the ‘map-based’ approach, which adopts the estimates from EE
(which are about a factor of 2 more precise than TE) for both the TE and EE spectra; or the ‘spectrum-
based’ approach, which applies independent estimates from TE and EE.
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tension, but there are still many difficulties to be overcome in the model building
and in explaining the growing S8-tension. Further work must be done to establish
whether these remaining theoretical and observational issues can be overcome in a
new concordant cosmology, one that may either build upon the models studied here,
or perhaps lie in a yet unexplored direction.



III

Decaying dark matter and the S8
tension

“Caminante, son tus huellas
el camino y nada más;
Caminante, no hay camino,
se hace camino al andar.
Al andar se hace el camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.
Caminante no hay camino
sino estelas en la mar. .”

Antonio Machado, Proverbios y cantares
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3.1 Unstable dark matter and cosmic tensions

From the point of view of particle physics model building, the stability over cos-
mological timescales is one of the most peculiar property of the dark matter particle,
reviewed e.g. in HAMBYE (2011). Often, an additional symmetry (typically a discrete
Z2 symmetry) has to be assumed to make the DM candidate stable. Nevertheless,
DM decays at late-times are known signatures of many models in the literature such
as (for instance) models with R-parity violation (BEREZINSKY et al. 1991; KIM et al.
2002), super Weakly Interacting Massive particles (super WIMPs) (COVI et al. 1999;
FENG et al. 2003; ALLAHVERDI et al. 2015), sterile neutrinos (ABAZAJIAN et al. 2012)
or models with an additional U(1) gauge symmetry (C.-R. CHEN et al. 2009; G. CHOI

et al. 2020a,c) 1.

Decays to electromagnetically charged particles are tightly constrained by Planck
data (POULIN et al. 2017; SLATYER et al. 2017), γ-ray (CIRELLI et al. 2012; ESSIG

et al. 2013) and cosmic-ray searches (JIN et al. 2013; GIESEN et al. 2015), typically
requiring Γ−1 >O(1026s), with some level of dependence on the decay channel. Still,
a purely gravitational constraint, although weaker, is very interesting in the spirit
of being ‘model-independent’, while applying to models with decay to a dark sector,
or to (non-interacting) neutrinos. The canonical example is perhaps that of the keV
majoron (BEREZINSKY et al. 1993; LATTANZI 2008) decaying into relativistic neutrinos.
Models of CDM decays with massive daughters have also been invoked as a potential
solution to the observational discrepancies with CDM on small (sub-galactic) scales
after structure formation (W. B. LIN et al. 2001; CEMBRANOS et al. 2005; KAPLINGHAT

2005; PETER et al. 2010a,b). Even more recently, decaying dark matter models were
proposed (G. CHOI et al. 2020b; XU et al. 2021) as a way to explain the excess of
events in the electronic recoils reported by the Xenon1T collaboration (APRILE et al.
2020).

In the literature, most studies restricted themselves to massless daughter
particles (AUDREN et al. 2014; POULIN et al. 2016; NYGAARD et al. 2021), with
the benefit of greatly simplifying the cosmological analysis, but limiting the true
‘model-independence’ of the bound, and therefore its robustness. Nevertheless, some
studies have attempted at including the effect of massive daughters in a cosmological
context but either neglected cosmological perturbations of the daughter particles
(VATTIS et al. 2019; HARIDASU et al. 2020; CLARK et al. 2021a) or were limited by
computational power to perform a complete analysis against a host of cosmological
data (AOYAMA et al. 2011, 2014).

It has originally been suggested that DM decaying into massless daughters could
help with cosmological tensions (BEREZHIANI et al. 2015; ENQVIST et al. 2015),
but careful analysis of this scenario in light of Planck 2015 data has excluded this
possibility (CHUDAYKIN et al. 2016; POULIN et al. 2016) (although see BRINGMANN

et al. (2018) for a different conclusion if the decay rate is not constant). Attempting
to go beyond these studies, the authors of VATTIS et al. (2019) suggested that
considering a non-zero mass for (at least one of) the decay product would affect the
phenomenology and allow for a resolution of the Hubble tension. However, a recent

1Recently, the authors of G. CHOI et al. (2022) engineered a model in the context of supergravity
that explicitely reproduces the kind of late 2-body decays considered here, and also provides a natural
explanation for the small mass splitting that seems to be favoured by cosmic data.
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study based on a combination of both BAO and uncalibrated SNIa data-sets has
been carried out in HARIDASU et al. (2020). As opposed to VATTIS et al. (2019), they
conclude that a ΛDDM scenario does not predict higher H0 values. This is in good
agreement with model-independent analyses existing in the literature in which it has
been established that a combination of BAO and uncalibrated SNIa data strongly
constrain any late-time modification as a resolution to the Hubble tension (see our
discussion in Sect. 2.2). A similar conclusion is also reached when CMB data are
considered (CLARK et al. 2021a). Yet, these recent analyses were limited to the study
of the effects of ΛDDM on the background evolution of the universe.

In this work, we reassess the phenomenology of this 2-body Decaying Cold
Dark Matter (DCDM) scenario, where the decay products are one massive Warm
DM (WDM) particle and one (massless) DR component, interacting only through
gravitation with the standard model particles. We will refer to the full model as
ΛDDM. We perform the first thorough analysis of the ΛDDM model including a
realistic treatment of linear cosmological perturbations. To that end, we introduce
a new approximation scheme that allows to accurately and quickly compute the
dynamics of the WDM linear perturbations by treating the WDM species as a
viscous fluid. Thanks to this new fluid approximation, we show that the ΛDDM
model, while unable to ease the Hubble tension, can fully explain the low-S8
measurement from recent weak lensing surveys. We then investigate the implications
for the ‘S8 tension’ against a number of changes in the analysis: different S8
priors, marginalization over the lensing information in Planck data, trading Planck
high−` polarization data for those from the SPTpol and ACTPol surveys, and the
inclusion of the recent results from the Xenon1T collaboration. We conclude that
the preference for decaying DM, apparent only when the S8 value determined
from weak lensing data is added to the analysis, does not sensibly degrade the
fit to any of the cosmological data-sets considered, and that the model could
potentially explain the anomalous electron recoil excess reported by the Xenon1T
collaboration. Furthermore, we explicitly show that while current CMB data alone
are not sensitive enough to distinguish between standard CDM and decaying DM,
next-generation CMB observations (CMB-S4) can unambiguously detect its signature.

The rest of this chapter is structured as follows. In Sect. 3.2 we introduce the
formalism of ΛDDM (both at the background and linearly perturbed level) and the
novel approximation scheme for the WDM species. In Sect. 3.3 we discuss in de-
tail the impact of the ΛDDM model on the CMB and linear matter power spectra. In
Sect. 3.4 we discuss the results of our numerous data analyses. Finally, in Sect. 3.5
we draw our conclusions.

3.2 Formalism of the two-body Dark Matter decay

Hereafter, we adopt the Boltzmann formalism by AOYAMA et al. (2014), where
the time-evolution of the PSD for both the mother and the daughter particles was
derived. However, in Sect. 3.2.1 we explicitly show that, at the background level,
such formalism is equivalent to the one by BLACKADDER et al. (2014).

While the (cold) mother particle can be safely described as a perfect fluid,
computing the density perturbation evolution for the daughter particles requires a
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more sophisticated treatment. The central role in the game is played by `max, i.e. the
highest multipole to consider when drawing up the hierarchy of equations describing
the PSD of the daughter particles. In the massless case, the degrees of freedom
associated to momentum can be removed after the PSD multipole decomposition and
integration over q (AUDREN et al. 2014). Due to its non-trivial energy-momentum
relation, this approach is not possible for the warm daughter particle. One has to
study the full evolution in phase space, which would be computationally prohibitive
when performing MCMC analyses. For this reason, in Sect. 3.2.3 we provide a
detailed description of a novel approximation scheme, based on describing the WDM
component as a viscous fluid on sub-Hubble scales. This allows us to integrate out
the momentum degrees of freedom and the hierarchy of equations to be truncated
at `max = 1. We will show that the new, computationally faster scheme is accurate
enough to be used for cosmological analyses, allowing to establish accurate and
robust CMB limits on this class of models.

Our framework is characterized by two additional free parameters with respect to
ΛCDM: the DCDM lifetime, Γ−1, and the fraction of DCDM rest mass energy converted
into DR, given by (BLACKADDER et al. 2014):

ε = 1
2

(
1− m2

wdm
m2

dcdm

)
, (3.1)

where 0 ≤ ε ≤ 1/2. The lower limit corresponds to the standard CDM case, so that
Ωcdm = Ωdcdm + Ωwdm, whereas ε = 1/2 corresponds to DM decaying solely into DR. In
general, small ε values (i.e. heavy massive daughters) and small Γ values (i.e. lifetimes
much longer than the age of the universe) induce little departures from ΛCDM .

We choose to work in the synchronous gauge co-moving with the mother particle
(that we introduced in Sect. 1.6.1), where the scalar metric potentials are referred
as h and η. This gauge choice, in conjunction with the assumption that the mother
particles are fully cold, imply the PSD of mother particles should be proportional to
the Dirac delta function of ~q (AOYAMA et al. 2014):

fdcdm(k, q, τ) = Ndcdm(k, τ)δ(3)(~q) = Ndcdm(k, τ) δ(q)4πq2 , (3.2)

where

Ndcdm(k, τ) ≡ a3ρdcdm(k, τ)
mdcdm

= a3ρ̄dcdm(τ)
mdcdm

(1 + δdcdm(τ, k)) (3.3)

denotes the comoving number density of the DCDM. Then, the Boltzmann equations
describing the evolution of the I-th dark component (I = {dcdm, dr,wdm}) reads 2

∂fI
∂τ

+ iµ
kq

EI
fI + ∂fI

∂q

dq

dτ
=
(
∂fI
∂τ

)
C
, (3.4)

where the evolution of the comoving momentum is related to the metric potentials as

1
q

dq

dτ
= η′ − h′ + 6η′

2 µ2, (3.5)

2The second term at the l.h.s. of Eq. (3.4) is assumed to be a first order perturbation, see App. D.1.
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and the collision terms of each species are(
∂fdcdm
∂τ

)
C

= −aΓfdcdm, (3.6)(
∂fdr
∂τ

)
C

=
(
∂fwdm
∂τ

)
C

= aΓNdcdm
4πq2 δ(q − apmax). (3.7)

In the previous expression pmax = pwdm = pdr = mwdmε/
√

1− 2ε 3 denotes the modulus
of the initial physical momentum of the daughter particles. We provide a derivation
of Eq. (3.4)-Eq. (3.7) in App. D.1.

Let us decompose the PSD function of the I-th dark component into a background
contribution f̄I plus a linear perturbation ∆fI as

fI(k, q, µ, τ) = f̄I(q, τ) + ∆fI(k, q, µ, τ). (3.8)

Notice that this time we are considering an absolute perturbation to the background
PSD, instead of the relative perturbation we considered in Eq. (1.187). As a matter of
fact, the zeroth order collision term for decaying dark matter is not zero (as opposed to
the standard species we discussed in Sect. 1.6.2), so the Boltzmann equations for the
daughter particles are simpler when expressed in terms of an absolute perturbation.
As usual, the linear perturbation term ∆fI is expanded over Legendre polynomials:

∆fI(k, q, µ, τ) =
∞∑
`=0

(−i)`(2`+ 1)∆fI,`(k, q, τ)P`(µ). (3.9)

We remind that the mean energy density and pressure are obtained by

ρ̄I = 4π
a4

∫ ∞
0

dq q2EI f̄I , (3.10)

P̄I = 4π
3a4

∫ ∞
0

dq q2 q
2

EI
f̄I , (3.11)

while perturbed energy density, pressure, energy flux and shear stress are given by

δρI = ρ̄IδI = 4π
a4

∫ ∞
0

dqq2EI∆fI,0, (3.12)

δPI = ρ̄IΠI = 4π
3a4

∫ ∞
0

dqq2 q
2

EI
∆fI,0, (3.13)

(ρ̄I + P̄I)θI = 4πk
a4

∫ ∞
0

dqq2q∆fI,1, (3.14)

(ρ̄I + P̄I)σI = 8π
3a4

∫ ∞
0

dqq2 q
2

EI
∆fI,2. (3.15)

Throughout the rest of this Chapter and unless stated otherwise, we compare ΛDDM
models at fixed ωini

dcdm ≡ Ωini
dcdmh

2 with ΛCDM models having the same ωcdm. All other
cosmological parameters are fixed to {H0 = 67.7 km/s/Mpc, ωcdm = ωini

dcdm = 0.1194,
ωb = 0.0224, ns = 0.9673, ln(1010As) = 3.052, τreio = 0.0582}, which constitutes our
baseline ΛCDM model. These values correspond to the best-fit from the combined

3This expression is easily derived using energy-momentum conservation. In the rest frame of the
DCDM, we have Edcdm = mdcdm = Ewdm +Edr, with Ewdm =

√
p2

wdm +m2
dcdm and Edr = pdr = pwdm. Solving

for pwdm yields pwdm = (mdcdm/2)(1−m2
wdm/m

2
dcdm) = mdcdmε = mwdmε/

√
1− 2ε.



144 3. DECAYING DARK MATTER AND THE S8 TENSION

analysis (including S8 data from weak lensing) that we present in Sect. 3.4.2 (see
fourth column of Tab. (3.1)), which are however very similar to the ΛCDM best-fit
parameters from Planck18. We implement the equations describing the ΛDDM model
in a modified version of CLASS (BLAS et al. 2011; LESGOURGUES et al. 2011). Our code
is available at https://github.com/PoulinV/class_majoron.

3.2.1 Background equations

Gathering the zeroth order terms of the Boltzmann equations Eq. (3.4), we arrive
at the background evolution of the mother and daughter particles

f̄ ′dcdm = −aΓf̄dcdm, (3.16)

f̄ ′dr = f̄ ′wdm = aΓN̄dcdm
4πq2 δ(q − apmax). (3.17)

Here N̄dcdm = a3ρ̄dcdm/mdcdm denotes the mean value of the DCDM comoving number
density. From Eq. (3.16), one sees that it evolves as N̄dcdm = (Ωini

dcdmρc/mdcdm)e−Γt 4. By
combining Eq. (3.10) and Eq. (3.11) with Eq. (3.16) and Eq. (3.17) we obtain:

ρ̄′dcdm = −3Hρ̄dcdm − aΓρ̄dcdm, (3.18)

ρ̄′dr = −4Hρ̄dr + εaΓρ̄dcdm, (3.19)

ρ̄′wdm = −3(1 + w)Hρ̄wdm + (1− ε)aΓρ̄dcdm. (3.20)

Here w(τ) ≡ P̄wdm/ρ̄wdm refers to the WDM Equation of State 5. We give a proof of
Eq. (3.20) in App. D.2.

Eq. (3.20) will be useful to analytically derive the fluid equations that we present in
Section Sect. 3.2.3, but for a numerical resolution it is much simpler to use an integral
formula for ρ̄wdm, as it was done in BLACKADDER et al. (2014). This formula can be
obtained by integrating Eq. (3.17) firstly with respect to τ , and then with respect to q.
The first integration requires using the relation δ(q − apmax) = δ(τ − τq)/qH, where τq
represents the conformal time when daughter particles with co-moving momentum q
are born, q = a(τq)pmax (AOYAMA et al. 2014). This yields

f̄wdm(τ, q) = aqΓN̄dcdm(τq)
4πq3Hq

Θ(τ − τq). (3.21)

where aq = a(τq) and Hq ≡ H(aq). Now, we can obtain an expression for ρ̄wdm by
taking the integral 4πa−4 ∫∞

0 dqq2Ewdm at each side of the equation. Then, changing the
integration variable from q to aq, and applying the Heaviside function Θ(a−aq) leads to

ρ̄wdm(a) = ρcΩini
dcdmΓ
a4

∫ a

0
daq

e−Γtq

Hq

√
ε2a2

q + (1− 2ε)a2, (3.22)

where tq ≡ t(aq). We note the equivalence between Eq. (3.22) and the analogous ex-
pression derived in BLACKADDER et al. (2014) with a different formalism. Concerning

4The initial abundance of DCDM, Ωini
dcdm, is related to the present DCDM abundance by Ω0

dcdm ≡
Ωini

dcdme
−Γt0 , with t0 the age of the universe.

5This expression does not coincide with the EoS used in BLACKADDER et al. (2014), which regarded it
as an average squared velocity.

https://github.com/PoulinV/class_majoron
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Figure 3.1 – Redshift evolution of the abundances of the DCDM, WDM and DR species,
assuming Γ−1 = 30 Gyrs and ε = 0.1. We also show the abundance for a standard CDM
species with Ω0

cdm = Ωini
dcdm.

Figure 3.2 – Redshift evolution of the Hubble parameter for the ΛCDM and four different
ΛDDM models. The Hubble parameter today is fixed to H0 = 67.7 km/s/Mpc.

the mean energy density of the massless DR species, ρ̄dr, we simply take the limit
ε → 1/2 of Eq. (3.22).

In both cases, the background evolution Eq. (3.22) needs to be solved iteratively, as
the Hubble parameter H depends on ρ̄wdm and ρ̄dr through the Friedmann equation.
For a flat universe, this equation reads

H2(a) = 8πGa2

3
∑
i

ρ̄i(a), (3.23)

where ∑
i

ρ̄i(a) = ρ̄dcdm(a) + ρ̄dr(a) + ρ̄wdm(a) + ρ̄γ(a) + ρ̄ν(a) + ρ̄b(a) + ρ̄Λ. (3.24)

Here ρ̄γ, ρ̄ν, ρ̄b and ρ̄Λ denote the mean densities of photons, neutrinos, baryons and
dark energy, respectively.

In Fig. 3.2, we show the evolution of the Hubble parameter for ΛCDM and several
ΛDDM models. In Fig. 3.1, we also show the evolution of the fractional densities
Ωdcdm(z), Ωwdm(z) and Ωdr(z) for a particular ΛDDM model (Γ−1 = 30 Gyrs and ε = 0.1)
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as well as Ωcdm(z) with the same initial amount of dark matter, namely Ω0
cdm = Ωini

dcdm.
The two new parameters affect H(a) as follows: at fixed ε, a shorter lifetime Γ−1 implies
a lower Hubble parameter. This is clearly visible at z & 1. The behavior below z ∼ 1 is
due to our assumption of a flat universe and the requirement of fixing H0: to fulfill the
budget equation, a lower DM abundance requires a larger ΩΛ, meaning that the period
of accelerated expansion begins earlier with respect to ΛCDM. At fixed lifetime Γ−1, a
larger ε also induces a lower H(a), because more energy is converted into radiation,
which dilutes faster. We thus anticipate a negative correlation between Γ−1 and ε at
the background level. The degeneracy can be captured by the matter contribution
from the WDM species, Ωm

wdm ≡ Ω0
wdm(1− 3w), which is well constrained by data. This

quantity is roughly approximated by 6

Ωm
wdm ' Ωini

dcdm(1− e−Γt0)
√

1− 2ε, (3.25)

For small Γ and small ε, Ωm
wdm ∝ Γ(1− ε) and we expect data to constrain a parameter

combination of the form ε ∝ Γ−1.

3.2.2 Linear perturbation equations

The continuity and the Euler equations for the DCDM can be obtained by integrat-
ing over momenta the first two multipoles (∆fdcdm,0 and ∆fdcdm,1) of the Boltzmann
equation in Eq. (3.4). The calculation is analogous to one we have done in App. A.6
to arrive at the conservation equations for massive neutrinos. The main differences
is that we have to take into account the fact that DCDM is pressureless and has a
non-zero collision term associated to the decay. When rewriting the equations for
δρdcdm and ρ̄dcdmθdcdm as equations for δdcdm and θdcdm (respectively), the decay terms
coming from the background and perturbed equations cancel out and we are left with
the same equations as for CDM (c.f. Eq. (1.219)-Eq. (1.220)):

δ′dcdm = −h
′

2 , (3.26)

θ′dcdm = −Hθdcdm. (3.27)

Given our gauge choice, θini
dcdm = 0, so we can set θdcdm = 0 at all times. Let us

recall that, strictly speaking, the synchronous gauge in CLASS (BLAS et al. 2011) is
coded with respect to the CDM. Nevertheless, for adiabatic initial conditions, one
can choose θini,dcdm = θini,cdm = 0, such that the gauge co-moving with CDM is also
co-moving with DCDM at all times (AUDREN et al. 2014). Hence, hereinafter we
neglect this irrelevant complication.

To obtain the dynamical equations for the daughter particles, we plug the Legendre
decomposition of Eq. (3.9) in the Boltzmann equation of Eq. (3.4), so that we have
the following hierarchy of equations

6One can arrive at this expression simply by taking the limit ε� 1 in Eq. (3.22) and then performing
the integral analytically noticing that daq/Hq = dtq.
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∂ (∆fI,0)
∂τ

= −qk
EI

∆fI,1 + q
∂f̄I
∂q

h′

6 + aΓN̄dcdm
4πq2 δ(q − apmax)δdcdm, (3.28)

∂ (∆fI,1)
∂τ

= qk

3EI
[∆fI,0 − 2∆fI,2] , (3.29)

∂ (∆fI,2)
∂τ

= qk

5EI
[2∆fI,1 − 3∆fI,3]− q∂f̄I

∂q

(h′ + 6η′)
15 , (3.30)

∂ (∆fI,`)
∂τ

= qk

(2`+ 1)EI
[`∆fI,`−1 − (`+ 1)∆fI,`+1] (` ≥ 3), (3.31)

where I = {dr, wdm}. The system of Eq. (3.28)-Eq. (3.31) is in the same form
as the one for massive neutrinos (MA et al. 1995), except for the last term
in Eq. (3.28) and the fact that the partial derivative ∂f̄I/∂q in Eq. (3.28) and
Eq. (3.30) is now time-dependent.

Given that the DR species satisfies the condition q/Edr = 1, the hierarchy of equa-
tions can be simplified by taking the moments 7

Fdr,` ≡
1
ρc

∫ ∞
0

dq 4πq2q∆fdr,` (3.32)

of Eq. (3.28)-Eq. (3.31), and integrating over all the momentum degrees of
freedom, so that

F ′dr,0 = −kFdr,1 −
2
3rdrh

′ + r′drδdcdm, (3.33)

F ′dr,1 = k

3Fdr,0 −
2k
3 Fdr,2, (3.34)

F ′dr,2 = 2k
5 Fdr,1 −

3k
5 Fdr,3 + 4

15rdr(h′ + 6η′), (3.35)

F ′dr,` = k

(2`+ 1) [`Fdr,`−1 − (`+ 1)Fdr,`+1] (` ≥ 3). (3.36)

We have adopted the convention rdr ≡ a4ρ̄dr/ρc, as in POULIN et al. (2016), which
in the 2-body decay scenario under study leads to:

r′dr = εaΓ(ρ̄dcdm/ρ̄dr)rdr. (3.37)

The first three multipoles are given by:

Fdr,0 = rdrδdr, Fdr,1 = 4rdr
3k θdr, Fdr,2 = 2σdrrdr. (3.38)

We choose the maximum multipole `max to truncate the hierarchies of equa-
tions according to the scheme proposed in MA et al. (1995) for both massless
and massive neutrinos, i.e.

F ′dr,`max = kFdr,`max−1 −
`max + 1

τ
Fdr,`max , (3.39)

∆f ′wdm,`max = qk∆fwdm,`max−1
Ewdm

− `max + 1
τ

∆fwdm,`max . (3.40)

7Even if the momentum degrees of freedom are integrated out, we can not write equations in terms of
temperature multipoles as we did for photons in Sect. 1.6.2, since the DR species are never in thermal
equilibrium.
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3.2.3 Fluid approximation for the warm component

In order to compute the WDM dynamics one cannot integrate over the momentum
degrees of freedom, as we did in the DR case. Indeed, when taking the moments of the
hierarchy of Eq. (3.28)-Eq. (3.31), higher velocity-weight integrals appearing at ` = 2
cannot be computed from the system of equations itself. Therefore, one has to follow
the evolution of the full time-dependent PSD to obtain the elements of the perturbed
stress-energy tensor δwdm, θwdm and σwdm through Eq. (3.12)-Eq. (3.15). A typical
set-up for CMB analyses requires roughly ∼ 500 wavenumbers, ∼ 20 multipoles and
∼ 104 momentum bins, i.e. O(108) linear differential equations to be computed. On a
single processor, this leads to runs with a CPU time of 1− 2 days per each parameter
choice, making a systematic scan of the parameter space computationally prohibitive.

To overcome the problem, we make use of a new fluid approximation for the WDM
species,where the momentum dependence is removed, and one only needs to track
the evolution of the first two multipoles. The number of linear differential equations
to be solved is now reduced to O(103), with a CPU time per single run ∼ 30 − 40 s.
The novel approximation scheme is based on the treatment of massive neutrinos as a
viscous fluid by LESGOURGUES et al. (2011), and it is only valid at scales deeply inside
the Hubble radius, where high- and low-` modes are effectively decoupled. In App.
App. D.4 we explicitly demonstrate the accuracy of this approximation.

Similarly to the DR case, the fluid equations can be derived by multiplying both
sides of Eq. (3.28) and Eq. (3.29) by 4πq2Ewdma

−4 and 4πq3ka−4, respectively, and inte-
grating over q. Then, by using Eq. (3.12)-Eq. (3.15) and Eq. (3.20), one can write
down the continuity equation,

δ′wdm = −3H(c2
s − w)δwdm − (1 + w)

(
θwdm + h′

2

)
+ (1− ε)aΓ ρ̄dcdm

ρ̄wdm
(δdcdm − δwdm), (3.41)

and the Euler equation,

θ′wdm = −H(1− 3c2
g)θwdm + c2

s
1 + w

k2δwdm − k2σwdm − (1− ε)aΓ
1 + c2

g

1 + w

ρ̄dcdm
ρ̄wdm

θwdm. (3.42)

Notice that we have introduced the WDM sound speed in the synchronous gauge,
c2

s ≡ δPwdm/δρwdm, and the WDM adiabatic sound speed, c2
g ≡ P̄ ′wdm/ρ̄

′
wdm. The lat-

ter can be written as

c2
g = w

P̄ ′wdm
P̄wdm

(
ρ̄′wdm
ρ̄wdm

)−1
, (3.43)

and it can be computed as follows

c2
g = w

(
5− pwdm

P̄wdm
− ρ̄dcdm
ρ̄wdm

aΓ
3wH

ε2

1− ε

)(
3(1 + w)− ρ̄dcdm

ρ̄wdm

aΓ
H

(1− ε)
)−1

. (3.44)

Here pwdm denotes the so-called pseudo-pressure, a higher momenta integral of f̄wdm
which reduces to the standard pressure in the relativistic limit (LESGOURGUES et al.
2011). Taking the relativistic limit of Eq. (3.41) and Eq. (3.42) and multiplying the
decay terms by 2 (to account for the decay into two massless particles), we recover
the conservation equations for DR written in POULIN et al. (2016). We give a complete
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proof of Eq. (3.41)-Eq. (3.44) in App. D.3.

Obtaining an analytical expression for c2
s is less straightforward, since we do not

have a dynamical equation for the pressure perturbation δPwdm. In LESGOURGUES

et al. (2011) it is assumed that c2
s is scale-independent and approximately equal to

c2
g. For the WDM species, we have found that this assumption leads to accurate

results for the CMB power spectrum, but not for the matter power spectrum. In fact,
calculations using the full Boltzmann hierarchy of Eq. (3.28)-Eq. (3.31) reveal that c2

s
exhibits a particular k-dependence that cannot be captured by a background quantity
such as c2

g. In particular, c2
s gets slightly enhanced on scales k > kfs, where kfs is the

free-streaming scale of the WDM species, defined as (c.f. Eq. (1.224))

kfs(τ) ≡
√

3
2
H(τ)
cg(τ) . (3.45)

It is possible to gain a semi-analytic understanding of this behavior by building a
formal equation for the evolution of c2

s , as detailed in App. D.3.5. To account for such
an enhancement, we adopt the following prescription

c2
s (k, τ) = c2

g(τ) [1 + (1− 2ε)T (k/kfs)] , (3.46)

where the function T (x) = 0.2
√
x has been fitted to the sound speed obtained using

the full Boltzmann hierarchy, for the parameter values ε = 0.5, 0.1, 0.01, 0.001 and
Γ/H0 = 0.1, 1, 10. The factor (1 − 2ε) is inserted to make the k-dependent correction
vanishingly small close to the relativistic limit, where c2

s ' c2
g ' 1/3.

In order to trace the evolution of the shear σwdm one could follow a similar approach
to that of LESGOURGUES et al. (2011), where the authors obtained a dynamical equa-
tion for the neutrino shear by means of an improved truncation scheme at `max = 2.
We tested the implementation of a generalization of that equation suitable to the de-
caying case (which can be found in App. D.3), but we found it to be only relevant
close to the relativistic case ε ' 1/2, when it reduces to the DR shear equation from
ENQVIST et al. (2015). In this regime, the dynamics of the daughter particles do not
significantly impact the CMB and matter power spectra, we thus decided to not in-
clude any dynamical equation for the shear of the WDM species, when switching to
the fluid approximation. In practice, we simply set σwdm to a constant value, ob-
tained via integration of the second PSD multipole in the Boltzmann hierarchy (see
Eq. (3.15)). We explicitly checked that this approach yields better results rather than
simply setting σwdm = 0 in the fluid equations, or than using the DR shear equation
of ENQVIST et al. (2015) when ε = 1/2.

3.2.4 Dynamics of perturbations

Before discussing the signatures of varying the parameters Γ and ε on the relevant
cosmological observables, it is worth having a look at the linear perturbations of the
mother and daughter particles. In Fig. 3.3 we show the evolution of the linear density
perturbations for the DCDM, WDM and DR species, corresponding to a mode that
enters the horizon very early (i.e. k = 1 Mpc−1). To clarify the impact of the two extra
free parameters, the perturbations are shown for DCDM lifetimes similar and smaller
than the age of the universe (Γ−1 = H−1

0 ∼ 14.5 Gyrs and Γ−1 = (10H0)−1 ∼ 1.5 Gyrs) ,
and for massive daughters behaving either as warm or cold particles (ε = 10−2 and
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Figure 3.3 – Time evolution of the linear density perturbations of the DCDM, WDM and DR
species, corresponding to a wavenumber k = 1 Mpc−1. Each panel displays the perturbations
for a different combination of the parameters Γ and ε. The black dashed and solid lines
indicate the times of horizon crossing (at H(τ) = k) and WDM free-streaming scale crossing (at
kfs(τ) = k), respectively. The purple dotted line indicates the characteristic decay time, given
by t(τ) = Γ−1.

ε = 10−3).

One can see that initially, the perturbations of the daughter species always track
those of the mother, because the coupling term dominates the dynamics (i.e. the
ratios ρdcdm/ρwdm and ρdcdm/ρdr are large). When a mode crosses the free-streaming
scale, the pressure support of the daughter particles becomes important and the
perturbations develop oscillatory features. For the DR species, the free-streaming
scale simply corresponds to the horizon (kfs ∼ H,) while for the WDM it corresponds
to a larger value, given by kfs ∼ H/cg (see Eq. (3.45)). This time- and scale-dependent
power suppression, together with the different background dynamics, lead to key
signatures on the CMB and matter power spectra, as we discuss later.

By comparing upper and lower panels of Fig. 3.3, it is clear that the value of the
WDM free-streaming scale is essentially determined by the value of ε, as expected.
On the other hand, by comparing left and right panels, one notices that the intensity
of the oscillations due to the pressure support can be compensated by the coupling
to the DCDM if the lifetime is long enough, as the daughter particles keep being
produced.

Interestingly, the decoupling time of the daughter perturbations from the mother
perturbations is always set by the free-streaming crossing time, and not by the char-
acteristic decay time. In order to illustrate that, in Fig. 3.4 we show perturbations
corresponding to a smaller wave-number, k = 10−2 Mpc−1, that enters the horizon
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Figure 3.4 – Same as in Fig. 3.3, but corresponding to a wavenumber k = 10−2 Mpc−1. In this
case, the WDM perturbations never cross the free-streaming scale.

much later. For this mode, the WDM species does not have time to cross the free-
streaming length (the crossing will occur in the future), so that δdcdm and δwdm re-
main equal, even if the lifetime is smaller than the age of the universe. This can
be understood from the fluid description in Eq. (3.41)-Eq. (3.42): when the decay
term that includes Γ is relevant, δwdm is driven by δdcdm. Therefore, the WDM density
perturbation δwdm will continue to track the behaviour of δdcdm, as long as the free-
streaming scale is not crossed, i.e., as long as the pressure term, containing c2

sk
2δwdm,

is small compared to δ′′wdm ∼ δwdmH2.

3.3 Observable effects of the Dark Matter decay

3.3.1 Impact on the matter power spectrum

Firstly, we focus on describing the effects of the 2-body decay on the linear
matter power spectrum, since this will allow to better understand some of the effects
on the CMB spectra. In this section, we use the same ΛCDM parameters as in
Sect. 3.2.1, except for fixing 100θs = 1.04217 instead of H0, to better connect with
CMB observations, that accurately pin down θs. In Fig. 3.5, we compare the residual
differences in the linear power spectra (at redshifts z = 0 and z = 2) with respect to
our baseline ΛCDM. The left panel shows several lifetimes and a fixed DR energy
fraction ε = 0.1, while the right panel shows a fixed lifetime Γ−1 = 30 Gyrs and several
values of the DR energy fraction ε.

One important feature of the C+WDM scenarios, such as the one considered in
this work, is that they are expected to produce a suppression in the linear matter
power spectrum at scales smaller than a ‘cutoff scale’, with a non-trivial shape
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Figure 3.5 – Left panel: Residuals of the linear matter power spectrum at z = 0 (upper)
and z = 2 (lower) for several values of the lifetime Γ−1 = 10, 30, 100, 300 Gyrs and a fixed DR
energy fraction ε = 0.1. Residuals are taken with respect our baseline ΛCDM model. Right
panel: Same as in the left, but for several DR energy fractions ε = 0.5, 0.1, 0.01, 0.001 and a fixed
lifetime Γ−1 = 30 Gyrs.

(MURGIA et al. 2017, 2018; MILLER et al. 2019; BOHR et al. 2020). The cut-off scale is
determined by the free-streaming scale of the WDM species, kfs, given by Eq. (3.45).
On scales k > kfs, pressure becomes important and WDM particles cannot stay
confined in gravitational potential wells, which inhibits structure formation. Fig. 3.5
clearly illustrates that: while the parameter ε fixes the value of the cut-off kfs

8, the
lifetime Γ−1 essentially determines the depth of the suppression at very small scales.
This is to be expected, since the amount of power suppression grows with the WDM
abundance, which increase for smaller lifetimes. In a similar way, the effects of decay
become less important when considering the matter spectrum at a higher redshift
z = 2, since the abundance of WDM was smaller in the past.

In general, for late-time decay scenarios (well after recombination) as the one stud-
ied in this work, it is possible to distinguish three different regimes depending on the
value of ε, as it is shown in the right panel of Fig. 3.5:

• Non-relativistic decay: if ε . 0.001 (black curve), the WDM leaves the expansion
rate unaffected, since its contribution to the matter density, ρ̄wdm(1 − 3ω) '
ρ̄wdm, compensates the reduction in the DCDM density, ρ̄dcdm. In addition,
the WDM free-streaming length is very small, inducing a power suppression at
k & 1 hMpc−1. Such scales are beyond the range of scales probed by the observ-
ables considered in this work, so in this regime the WDM is almost degenerate
with standard CDM.

8By looking at Eq. (3.44) and Eq. (3.45), we see that for small values of ε, the cut-off approximately
satisfies the scalings kfs ∝ c−1

g ∝ w−1/2 ∝ ε−1.
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• Relativistic decay: if ε ' 0.5 (red curve), the WDM component acts as DR, which
can appreciably reduce the expansion rate 9. Moreover, the free-streaming length
kfs gets as large as the horizon, so that the WDM does not cluster at all. The
reduction in the Hubble friction is balanced by a reduction in the clustering
density of the daughter particles, δρwdm ' δρdr ' 0, inducing a very little overall
suppression of the growth of fluctuations. However, there is an impact coming
from another background effect: the significant decrease in the co-moving matter
density, a3ρm, leading in turn to an increase of the angular diameter distance,
thereby a reduction of θs. This effect can be compensated by increasing H0,
which shifts the location of the peak, keq/(a0H0), towards smaller k in the matter
power spectrum – since we are keeping the matter-radiation equality era fixed.
The net effect on the residuals is twofold, a large-scale enhancement and small-
scale suppression of power.

• Warm decay: For intermediate values of ε, namely 0.001 . ε . 0.5 (green and blue
curves), the WDM component partially contributes to the matter energy density,
leaving to an expansion rate almost unchanged. However, the values of kfs that
determine the cut-off scale in the matter power spectrum are not as small as
in the case of non-relativistic decay, leading to δρwdm ' 0 for k > kfs. Hence, on
scales k > kfs the Hubble friction gets enhanced with respect to the clustering
density δρtot, slowing down the growth of DCDM perturbations. The net impact
on the matter power spectrum is thus a suppression on intermediate scales,
somewhat similar to that induced by massive active neutrinos (LESGOURGUES et
al. 2006; GIUSARMA et al. 2016; PARIMBELLI et al. 2019).

3.3.2 Impact on the CMB anisotropy spectra

We now discuss the impact of the 2-body decay scenario on the CMB anisotropy
temperature and polarization angular power spectra, as well as on the lensing po-
tential power spectrum reconstructed from the CMB 4-point correlation function. In
the left panel of Fig. 3.6 we report the residuals of the (lensed) TT, EE and lensing
potential power spectra with respect to our baseline ΛCDM, for different lifetimes Γ−1

and a fixed DR energy fraction ε = 0.1. The effects, more and more pronounced as
the lifetime decreases, can be understood as follows:

• At the background level, the decay decreases the value of Ωm with respect
to ΛCDM. This is compensated by an increase in ΩΛ (earlier beginning of
Λ-domination) and thus an enhancement in the Late Integrated Sachs-Wolfe
(LISW) effect, leaving a signature in the low-` TT power spectrum. Furthermore,
a modified background history alters quantities integrated along z, such as τreio,
which impacts the multipoles ` ∼ 10 in the EE power spectrum.

• At the perturbation level, the late-time reduction of a3ρ̄dcdm implies a reduction
of the quantity a2δρdcdm, which acts as a source of gravity through the Poisson
equation. This induces a damping in the metric fluctuations, and hence yields
a further enhancement of the LISW effect. Furthermore, the suppression in the
matter power spectrum and in Ωm lowers the amplitude of the lensing potential

9Note that since now we are fixing 100θs instead of H0, the Hubble rate H(z) can increase with respect
to ΛCDM at z . 1, once dark energy starts to dominate. However, this effect is small for long lifetimes,
and at early times the Hubble rate is still smaller than in ΛCDM.
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Figure 3.6 – Left panel: Residuals (with respect our baseline ΛCDM model) of the CMB lensed
TT (upper), EE (middle) and lensing potential (lower) power spectra for several values of the
lifetime Γ−1 = 10, 30, 100, 300 Gyrs and a fixed DR energy fraction ε = 0.1. Right panel: Same
as in the left, but for several values of the DR energy fraction ε = 0.5, 0.1, 0.01, 0.001 and a fixed
lifetime Γ−1 = 30 Gyrs.

power spectrum, consequently reducing the smoothing of the peaks in the high-
` part of both the TT and EE spectra, as one can see from the ‘wiggles’ in the
corresponding plots.

In the right panel of Fig. 3.6 we show the CMB residuals for a fixed Γ−1 and various
values of ε. The effects can be readily understood:

• At the background level, smaller values of ε weaken the effects previously
discussed, because the decay product dilute in a way similar to dark matter.
Namely, the decrease in Ωm is less prominent due to the significant WDM
contribution (i.e. the increase in ΩΛ is shallower), and the impact on τreio is
smaller. Therefore, the signatures in the low-` part of the TT and EE spectra
become less visible.

• At the level of perturbations, ε leads to some interesting signatures on the LISW
effect and on the lensing potential. Since the LISW effect is only relevant for
small multipoles ` (i.e. very large scales), one just needs to look at wavenumbers
such that k < kfs. On these scales, the growth suppression does not play any
role, and the decrease in a2δρdcdm due to the decay gets partially compensated by
the increase in a2δρwdm, which is more significant for smaller values of ε. Thus,
the damping in the metric fluctuations is less relevant for smaller ε, reducing
the LISW enhancement.

• Regarding the effects on the lensing potential, one can see that the suppres-
sion in the corresponding power spectrum monotonically decreases for smaller
ε. Naively, one might expect the opposite, since we have argued that the matter
power suppression increases for small ε. This can be understood by looking at
the CMB lensing kernel W (z), given by the following expression (MANZOTTI 2018)

W (z) = 3Ωm
2

H2
0

H(z)(1 + z)χ(z)χ∗ − χ(z)
χ∗

, (3.47)
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where χ∗ is the co-moving distance to the last-scattering surface. Firstly, the
CMB lensing kernel peaks at z ∼ 2, where the suppression is less important (see
bottom panels of Fig. 3.5). Secondly, it gets highly suppressed for higher values
of ε, and this effect can dominate over the effect on the matter power spectrum.
This suppression happens mainly due to the smaller Ωm, as we have verified by
computing W (z) for several ΛDDM models, with and without including the factor
Ωm. Note that coincidentally, the effects on the lensing power spectrum at high
` are very similar for ε = 0.5 and ε = 0.1: this is because in the former case Ωm is
highly reduced and the small scales power spectrum is almost unaffected, while
the opposite occurs in the latter case.

Let us finally remark that, even if the effects of varying either ε or Γ on the observ-
ables are different, one can easily exploit the degeneracy mentioned at the background
level to get different couples of values (large Γ and small ε or vice-versa) with a similar
cosmological signature, especially on the CMB. We do indeed expect the Monte Carlo
analysis to show a negative correlation in the reconstructed 2D posteriors for ε and Γ.

3.4 Cosmological constraints

We now confront the ΛDDM cosmology to a host of recent cosmological observa-
tions. Our goal is to set constraints on the lifetime of DM and the mass-ratio of the
mother and daughter particles. We also wish to check to what extent the ΛDDM model
can play a role in resolving cosmological tensions. To that end, we perform compre-
hensive MCMC analyses with the MontePython-v3 (AUDREN et al. 2013; BRINCKMANN

et al. 2019a) code interfaced with our modified version of CLASS , considering various
combinations of the following data-sets:

• The BAO measurements from 6dFGS at z = 0.106 (BEUTLER et al. 2011), SDSS
DR7 at z = 0.15 (ROSS et al. 2015), BOSS DR12 at z = 0.38, 0.51 and 0.61 (ALAM

et al. 2017), and the joint constraints from eBOSS DR14 Ly-α auto-correlation at
z = 2.34 (SAINTE AGATHE et al. 2019) and cross-correlation at z = 2.35 (BLOMQVIST

et al. 2019).

• The measurements of the growth function fσ8(z) (FS) from the CMASS and LOWZ
galaxy samples of BOSS DR12 at z = 0.38, 0.51, and 0.61 (ALAM et al. 2017).

• The Pantheon SNIa catalogue, spanning redshifts 0.01 < z < 2.3 (SCOLNIC et al.
2018).

• The low-` CMB TT, EE, and the high-` TT, TE, EE data 10 + the gravitational
lensing potential reconstruction from Planck18.

• The KIDS-1000+BOSS+2dFLens (HEYMANS et al. 2021), DES-Y1 (T. M. C. ABBOTT

et al. 2018) and KIDS-1000+Viking+DES-Y1 (JOUDAKI et al. 2020) weak lens-
ing data, compressed as a a split-normal likelihood, i.e., S8 = 0.766+0.02

−0.014, S8 =
0.773+0.026

−0.02 , S8 = 0.755+0.019
−0.021, respectively.

• The local measurement of the Hubble constant from SH0ES 11, modelled with a
Gaussian likelihood centered on H0 = 74.03± 1.42 km/s/Mpc (RIESS et al. 2019).

10In our main analysis, we use the ‘lite’ version of the CLIK likelihood. We have verified that this leads
to negligible differences with respect to the full likelihood.

11A new version of the SH0ES measurement (RIESS et al. 2021a) was published during completion of
this work. We do not expect it to have any impact on our conclusions.
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We start by performing two distinct sets of studies in order to illustrate the impor-
tance of taking CMB data into account when studying the ΛDDM scenarios, even in
the long-lived regime (i.e.when the DCDM decays after photon decoupling):

(1) A background-only analysis against BAO 12 and Pantheon SNIa data.

(2) A full analyses including linear perturbations, where we combine the data-set
used in (i) with CMB TT, TE, EE + lensing data, with and without including the
aforementioned informative priors on S8 and H0.

In the case of (1), the parameter space is fully characterized by the fol-
lowing free parameters: {

Ωini
dcdm, H0,Γ, ε

}
,

whereas in (2) the whole parameter space is described by:{
Ωbh

2, ln
(
1010As

)
, ns, τreio,Ωini

dcdm, H0,Γ, ε
}
.

For both (1) and (2) we adopt logarithmic priors on ε and Γ 13, namely,

−4 ≤ Log10 ε ≤ Log10(0.5),
−4 ≤ Log10 (Γ/Gyrs−1) ≤ 1,

and a flat prior on the initial DCDM abundance:

0 ≤ Ωini
dcdm ≤ 1.

Secondly, we explore the possibility of resolving the infamous Hubble and S8
tensions, and the ‘Alens’ anomaly that exists within Planck data. We also briefly discuss
the viability of the 2-body decay scenario as solution for the Xenon1T anomaly
(APRILE et al. 2020). We then test the robustness of our results to various changes in
the pipeline, and in particular to trading the high-` Planck CMB data for those from
the SPT collaboration (HENNING et al. 2018), which are known to be less in tension
with local S8 measurements, as well as ACTPol data (AIOLA et al. 2020), which shows
a level of tension with S8 measurements similar to Planck. We end by showing that
next-generation CMB observations (CMB-S4) can detect the ΛDDM model.

We adopt flat priors on the rest of parameters, and we set two massless and one
massive neutrino species with mν = 0.06 eV, following Planck18 conventions. We
assume our chains to be converged when the Gelman-Rubin criterion R − 1 < 0.02
(GELMAN et al. 1992). To extract the best-fit parameters, we make use of the MINUIT

algorithm (JAMES et al. 1975) through the iMinuit python package. In App. D.5 we
report all individual χ2’s per each of the analyses performed.

3.4.1 General constraints: background vs. linear perturbations

In Fig. 3.7 we show the 2σ posterior distributions of the parameters charac-
terizing the ΛDDM model, Log10(ε) and Log10(Γ/Gyrs−1). Red contours refer to the

12As discussed in Sect. 3.1, we calibrate BAO data by imposing a Gaussian prior on the sound horizon
at recombination rs(zrec) = 144.7± 0.5 Mpc, to not to spoil CMB data.

13For comparisons with previous works, an useful conversion is the following Log10(Γ/Gyrs−1) '
Log10(Γ/km s−1Mpc−1) − 2.991. We also note that the lower limits for the Γ and ε priors are simply
chosen because we verified that the ΛCDM limit is fully recovered for Γ < 10−4 Gyrs−1 and ε < 10−4 (at
least for the observables considered in this work).
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Figure 3.7 – 1 and 2D marginalized posterior distributions for the cosmological parameters
relevant for our analysis. Hereafter, unless otherwise stated, the green shaded bands refer to
the joint S8 measurement from KiDS-1000+BOSS+2dFLens, while the gray bands stand for
the H0 measurement by the SH0ES collaboration. Note that the BAO+SNIa analysis is based
on background evolution only, whereas the BAO+SNIa+CMB analysis also includes linear
perturbations (see the main text for further details).

background-only analysis (1), while blue contours refer to the full analysis (2), at the
perturbation level, when CMB data are also added 14. From BAO+SNIa and Planck
data, the DDM is not detected. We confirm our expectation from Sect. 3.2.1 and
Sect. 3.3 that there is a negative correlation between Log10(ε) and Log10(Γ/Gyrs−1),
apparent within all data sets: as ε decreases, the 95% C.L. upper limit on Γ relaxes.
In practice, we find that for decay rates Γ ∼ 10−3 − 10−1Gyrs−1, our 2σ exclusion curve
is roughly described by ε ' 1.6× 10−4(Γ/Gyrs−1)−1.1.

14The results of the full BAO+SNIa+Planck analysis are reported in the third column of Tab. (3.1)
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For large Γ and small ε, the factor ‘1 − e−Γt0 ’ in Eq. (3.25) reaches 1 faster than
‘
√

1− 2ε’ (assuming t0 ' 13.8 Gyrs), explaining why our constraint on the DR energy
fraction becomes flat even for very large decay rates. In particular, for small decay
rates Log10(Γ/Gyrs−1) . −3 and very massive daughters Log10(ε) . −2.7 the DCDM
behaves like CDM, leading to departures indistinguishable from ΛCDM. Of utmost
importance, we find that constraints on the ΛDDM free parameters become much
stronger when CMB data are included, increasing by more than one order of magni-
tude over the whole parameter space, contrarily to the naive expectations that CMB
data do not weigh-in on late-time decays.

Interestingly, we see that the background-only analysis predicts a value of H0
slightly higher than the one inferred assumed ΛCDM, though it can be noticed
that the standard ΛCDM value for H0 is still perfectly compatible, due to larger
uncertainties with respect to the full analysis, which anyhow pulls H0 back to its
standard value. This suggests that this kind of models is not suitable for relieving
the Hubble tension, contrarily to earlier claims (VATTIS et al. 2019), and in agreement
with HARIDASU et al. (2020) and CLARK et al. (2021a). However, in contrast to CLARK

et al. (2021a), we observe a significant decrease in the S8 contours for ε ∼ 0.01 and
Γ−1 ∼ 102 Gyrs. We attribute this disagreement to the fact that CLARK et al. (2021a)
does not include a treatment of WDM perturbations, which are responsible for the
suppression in the matter power spectrum. Hence, the 2-body decay presented here
could potentially reconcile the inferred value of S8 with its direct measurements from
LSS observations. We present an explicit comparison of our constraints with those
from CLARK et al. (2021a) in App. D.6.

Finally, in order to compare our constraints on Γ with previous literature, we have
carried out a MCMC analysis including BAO + SNIa + Planck data, but fixing 15 ε = 0.5
(i.e. in the limit in which the daughter particle behaves as dark radiation). We find a
2σ upper limit on the DCDM decay rate of log10(Γ/[Gyr−1]) . −2.67, corresponding to
Γ−1 & 468 Gyrs. Our constraints on DM decays to DR are three times tighter than those
found in works using older Planck data (AUDREN et al. 2014; POULIN et al. 2016) but
also ∼ 40% tighter than NYGAARD et al. (2021) due to the use of a logarithmic prior on
Γ as opposed to linear (as we argue in App. D.7, a logarithmic prior is more agnostic
because it doesn’t carry any scale).

3.4.2 Implications for the S8 tension

So as to quantify the ability of the model to solve the S8 tension, we have
re-conducted the BAO + SNIa + Planck analysis for the ΛDDM scenario, but including
the S8 prior as measured by KiDS-1000+BOSS+2dFLens. Note that we neglect the po-
tential co-variance between S8 and BOSS BAO/FS data for simplicity, and we checked
that removing the BAO/FS data from the analysis does not affect the result. To gauge
the importance of the late-time decay in the success of the solution, we compare the
ΛDDM model with another cosmological scenario that features a power suppression
at small scales, namely massive neutrinos (νΛCDM). We model these as three de-
generate states and vary the total mass Mν, on top of the standard ΛCDM parameters.

15This is not equivalent to directly reading the constraints on Γ at ε = 0.5 from the Γ vs. ε contours,
since the 95% C.L. derived from a χ2 distribution with different degrees of freedom correspond to differ-
ent ∆χ2.
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Figure 3.8 – Reconstructed 2D posterior distributions of a subset of parameters in the ΛDDM
and in the νΛCDM models when confronted to BAO + SNIa + Planck data and a prior on S8
from KiDS-1000+BOSS+2dFLens.

We assess the remaining level of tension by computing the QDMAP (for “difference
in the maximum a posteriori”) tension metric introduced in RAVERI et al. (2019), which
essentially (for flat priors) makes use of the difference in χ2 between the fit of a given
model with and without including the S8 data point. The tension is then estimated as√

∆χ2 in unit of σ. Finally, we also compute the Bayesian evidence with the sampler
MULTINEST (FEROZ et al. 2009), taking 1000 live points and a tolerance condition on
the evidence for stopping the sampling equal to 0.1. We perform model comparison
by calculating ∆logB = logB(ΛDDM) − logB(νΛCDM).

Our results are reported in Tab. (3.1) and summarized in Fig. 3.8: In the ΛDDM
scenario (red contours) we find that the best-fit (when including the S8 prior) has
ε ' 0.7% and Γ−1 ' 55 Gyrs, yielding S8 ' 0.767 and Ωm ' 0.31, in excellent agreement
with the KiDS1000+BOSS+2dfLenS measurement. Moreover, the decrease in S8 is
driven by a smaller σ8, while Ωm is not affected, which is also what is favored by the
data. We find a strong negative correlation between ε and Γ, which approximately
scales like Γ−1 ' 55 (ε/0.007)1.4 Gyrs. On the other hand, the νΛCDM model
can only achieve S8 ' 0.81, with Mν < 0.1614 (95% C.L.). Remarkably, we find a
∆χ2

min = χ2
min(ΛDDM)− χ2

min(νΛCDM) ' −5.5 in favor of the ΛDDM model. The negative
∆χ2 is driven entirely by the low S8 value (the χ2

min per experiment is reported in
App. D.5). The fit to other data set is barely affected by the inclusion of a S8 prior
in the ΛDDM model (but degrades in the νΛCDM case), such that without the S8
prior, there is no preference for DDM and S8 seems unchanged. Looking at the
reconstructed S8 = 0.821+0.017

−0.011 in the ΛDDM model without the prior information, one
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Model νΛCDM ΛDDM

Parameter w/o S8 w/ S8 w/o S8 w/ S8

100 ωb 2.245(2.242)± 0.013 2.251(2.253)± 0.013 2.243(2.244)+0.014
−0.013 2.246(2.241)± 0.013

ωcdm or ωini
dcdm 0.1193(0.1194)± 0.0009 0.1182(0.1184)+0.0009

−0.0008 0.1195(0.1195)± 0.00095 0.1191(0.1194)+0.0009
−0.001

H0/[km/s/Mpc] 67.55(67.76)+0.46
−0.44 67.85(68.08)+0.47

−0.44 67.71(67.71)± 0.42 67.92(67.70)+0.43
−0.42

Ln(1010As) 3.052(3.045)+0.014
−0.016 3.047(3.043)+0.014

−0.015 3.051(3.052)+0.014
−0.015 3.048(3.052)+0.014

−0.016
ns 0.9676(0.9663)± 0.0037 0.9697(0.9683)+0.0037

−0.0036 0.9674(0.9672)± 0.0038 0.9682(0.9673)± 0.0037
τreio 0.058(0.055)+0.007

−0.008 0.0569(0.0549)+0.007
−0.008 0.0576(0.0582)+0.0071

−0.0076 0.0570(0.0582)+0.0071
−0.0077

Mν/eV < 0.1395 < 0.1611 − −
Log10(ε) − − −2.69(−2.97)+0.32

−1.3 −2.28(−2.16)+0.8
−0.78

Log10(Γ/[Gyr−1]) − − unconstrained (-3.86) −1.89(−1.74)+0.82
−1.5

Ωm 0.3127(0.3104)+0.0057
−0.0061 0.3083(0.3061)+0.0056

−0.006 0.3102(0.3109)+0.0056
−0.0058 0.3071(0.3099)+0.0053

−0.0058
S8 0.824(0.824)± 0.011 0.81(0.816)± 0.01 0.821(0.828)+0.017

−0.011 0.795(0.767)+0.024
−0.016

χ2
min 2053.4 2060.5 2053.4 2055.0

∆logB 0 0 -1.4 -0.81

QDMAP tension 2.7σ 1.3σ

Table 3.1 – The mean (best-fit) ±1σ errors of the cosmological parameters from the analysis
of Planck, BAO/FS, SN1a data, with and without a split-normal likelihood on S8 from KiDS-
1000+BOSS+2dFLens. For each model and data-set, we also report the best-fit χ2, the level of
tension estimated through the QDMAP metric (RAVERI et al. 2019) and the Bayesian evidence.

might naively expect S8 ' 0.767 to be largely excluded. In fact, the combined χ2 with
the prior on S8 only increases by ∼ +1.6 (as opposed to ∼ +7.1 in the νΛCDM). This
is because S8 has a non-Gaussian posterior with a tail extending to low values due
the degeneracy between Γ and ε. This degeneracy becomes clear when incorporating
the S8 prior. As a result, the QDMAP estimator indicates that the tension evolves from
2.7σ within ΛCDM to 1.3σ within ΛDDM.

Nevertheless, the model comparison is slightly in favor of νΛCDM, ∆logB = −0.81,
although based on the modified Jeffrey’s scales (JEFFREYS 1961; TROTTA 2008;
NESSERIS et al. 2013) the preference is ‘weak’ or ‘inconclusive’. We thus conclude
that, while the tension between our baseline data set and S8 is resolved in the ΛDDM,
current data do not favor the model in a Bayesian sense 16.

As we show later in Sect. 3.4.2, the ΛCDM model with two massless neutrinos
and one massive with Mν = 0.06 eV yields results very similar to the νΛCDM model.
Similarly, letting the neutrino masses free to vary in the ΛDDM model does not af-
fect the results (see App. D.8). We also note that making use of linear priors on
ε and Γ does not affect the reconstructed S8 value, but the scale chosen for the
prior (i.e. sampling over the original prior range or in a more restricted range where
ε ∼ O(10−2)) affects the reconstructed 2D posteriors of ε and Γ. We discuss these
issues in more details in App. D.7.

Best-fit cosmology solving the S8 tension

To better understand the ΛDDM success in resolving the S8 tension compared
to the case of massive neutrinos, in Fig. 3.9 we shown the residual differences in

16Let us point out that, assuming the ∆χ2 is χ2-distributed with 2 degrees of freedom, the ΛDDM
model is favored at 93.3% (∼ 2σ) over ΛCDM (in the combined analysis). This indicates that part of the
‘inconclusive’ evidence is driven by our choice of wide priors and that different choices can affect the
Bayesian evidence.
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Figure 3.9 – Residuals in the linear matter power spectrum P (k) at redshifts z = 0, 3, with
respect to our baseline νΛCDM model, for the best-fit ΛDDM model (red lines) and a νΛCDM
scenario yielding the same S8 (blue lines). The gray band indicates the approximate range of
comoving wavenumbers contributing to σ8.

Figure 3.10 – Same as in Fig. 3.9, for the (lensed) CMB TT, EE and lensing power spectrum.
In this case, the gray bands show Planck 1σ errors.

linear matter power spectrum P (k) with respect to our baseline νΛCDM model (first
column of Tab. (3.1)) for two models:

1. The best-fit ΛDDM scenario (fourth column of Tab. (3.1)).

2. A νΛCDM model with three degenerate massive neutrinos of total mass Mν = 0.27
eV 17, which yields σ8 ' 0.75 and Ωm ' 0.31, in agreement with weak lensing data
(HEYMANS et al. 2021).

17We adjust ωcdm = 0.1154 whereas all other parameters are fixed to the baseline νΛCDM model
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These scenarios feature two key differences: i) a distinct redshift evolution for the
power suppression. In the ΛDDM scenario, it is less significant at higher redshifts,
since the abundance of the WDM daughter is smaller; ii) a time-evolving cut-off scale;
in the ΛDDM model, kfs =

√
3/2H(a)/cg(a), while in the νΛCDM it is obtained by eval-

uating kfs at the redshift at which neutrinos become non-relativistic (LESGOURGUES

et al. 2006). As a consequence, the CMB power spectra, well constrained by Planck,
are vastly different. This is illustrated in Fig. 3.10, for both the best-fit ΛDDM sce-
nario and the νΛCDM model which yields the same S8 value. The νΛCDM predicts
different early-integrated Sachs-Wolfe effects, as well as different amount of lens-
ing, because of a significant power suppression at z ∼ 2 − 3, where the CMB lensing
kernel peaks MANZOTTI 2018. On the other hand, the differences between ΛCDM
and ΛDDM until z ∼ 2 are very small, explaining why Planck cannot disentangle be-
tween the two scenarios.

The role of S8 priors

Instead of using a split-normal likelihood on S8, a more accurate approach would
have been to include the full galaxy shear and clustering power spectra. Making
use of the full likelihood would however require the ability to compute the matter
power spectrum on non-linear scales in a ΛDDM universe, a task that is beyond the
scope of this work. Let us note that it has been established in various cases that the
reconstructed S8 value only mildly vary from one model to another. In particular, the
KiDS collaboration has established that the reconstructed value of S8 is insensitive
to the neutrino mass (HILDEBRANDT et al. 2020) – a model that has physical effects
very similar to the ΛDDM model 18. This provides confidence in making use of a prior
on S8 derived in the ΛCDM context.

Nevertheless, to highlight the impact of a different S8 measurement, we conduct
two extra BAO + SNIa + Planck + S8 runs for ΛDDM, but replacing the S8 prior
from KiDS-1000+BOSS+2dFLens by the one determined in the combined analysis
KiDS+Viking+DES-Y119 (JOUDAKI et al. 2020), S8 = 0.755+0.019

−0.021 and with the DES-Y1
data only (T. M. C. ABBOTT et al. 2018), S8 = 0.773+0.026

−0.02 . We also performed three anal-
ogous ΛCDM runs (one per each S8 prior), in order to compute ∆χ2

min = χ2
min(ΛDDM)−

χ2
min(ΛCDM) in each case. From the reconstructed parameters and the ∆χ2

min:

Log10(Γ/[Gyr−1]) = −1.89+0.82
−1.5 KiDS1000 + BOSS+ 2dFLens

Log10(ε) = −2.28+0.8
−0.78

S8 = 0.795+0.024
−0.016

∆χ2
min = −5.7,

18The differences between the ΛDDM and νΛCDM models that we have highlighted in Fig. 3.9 concern
the shape of the power suppression with respect to a reference model adjusted to Planck data. This
doesn’t mean that similar differences will appear between these models when looking directly at the
corresponding matter power spectra adjusted to KiDS data.

19Note that this combined analysis includes a photo-metric redshift correction applied to DES result,
slightly lowering the S8 value compared to what is advocated by the DES collaboration (T. M. C. ABBOTT

et al. 2018).
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Log10(Γ/[Gyr−1]) = −1.62+0.81
−1 KiDS+ Viking + DES−Y1

Log10(ε) = −2.23+0.48
−0.59

S8 = 0.778+0.025
−0.023

∆χ2
min = −8.6,

Log10(Γ/[Gyr−1]) = −2.15+0.41
−1.8 DES− only

Log10(ε) = −2.52+0.38
−1.5

S8 = 0.809+0.021
−0.01

∆χ2
min = −2.3,

one can see that the level of preference is higher for the KiDS+Viking+DESY1 case
while it is lower in the DES-only case. This explicitly demonstrates that the statis-
tical significance of the DDM “detection” is strongly driven by the level of tension
of the S8 value used in the analysis. If the S8 tension increases in the future, the
preference for ΛDDM over ΛCDM would likely increase. On the other hand, if the
S8 tension disappears, cosmological data would not favour the ΛDDM scenario com-
pared to the standard ΛCDM scenario.

3.4.3 Implications for other cosmic tensions and the Xenon1T anomaly

The H0 tension

In order to test the implications of the 2-body decay for the Hubble tension, we
conduct a run that includes the local measurement of H0 from SH0ES (RIESS et al.
2019), CMB, BAO and SNIa data. For the sake of brevity we do not report the results
of the runs here. We find that the shape of the posterior probabilities is almost un-
changed, except for a tiny shift in H0 to a higher value, H0 = 68.21 ± 0.4 km/s/Mpc.
We thus confirm the inability of this model to resolve the Hubble tension. In fact,
any late-time solution that does not modify the sound horizon at recombination is
expected to fail when combining BAO with SNIa data, as we discussed in Sect. 2.2.
Although this is not of material importance in the context of the present work, let
us note that a more correct way of combining Pantheon and SH0ES is through a
prior on the intrinsic magnitude of SN1a (see Sect. 2.2). Yet, this does not affect our
conclusions, as it was explicitly shown in Sect. 2.5.

The Alens anomaly in Planck data

We focus now on the ‘Alens’ anomaly, i.e. the anomalous amount of lensing
estimated from the smoothing of the acoustic peaks at high-`’s within Planck data,
as quantified by the ‘Alens’ parameter. We wish to check whether this anomaly
could impact constraints on the ΛDDM model, and conversely if the ΛDDM model
could help explaining the existence of such anomalies, since it has already been
noted that this anomaly could be related to the S8 tension (see our discussion in
Sect. 1.7.2). To do so, we follow the approach of the SPTpol collaboration and
implement two new parameters in CLASS that allows to (roughly) marginalize over
the lensing information in Planck. The parameter ATTTEEE

lens re-scales the amplitude of
the lensing power spectrum entering in the high-` part of the CMB TT,TE,EE spectra,
while the parameter Aφφlens re-scales the amplitude of the lensing power spectrum
reconstruction. We present the result of a MCMC analysis including data from Planck



164 3. DECAYING DARK MATTER AND THE S8 TENSION

−3 −2 −1 0
Log10(Γ/Gyrs−1)

1.0

1.1

1.2

A
φ

φ
le

ns

1.1

1.2

1.3

1.4

A
T

T
T

E
E

E
le

ns

0.76

0.80

0.84

S 8

−3

−2

−1

Lo
g 1

0(
ε)

−3 −2 −1
Log10(ε)

0.75 0.80
S8

1.1 1.2 1.3 1.4
ATTTEEE

lens

1.0 1.1 1.2
Aφφ

lens

w/ Alens

w/o Alens

Figure 3.11 – 2D posterior distribution of a subset of parameters from our BAO + SNIa
+ Planck + S8 (from KiDS+BOSS+2dFLens) analysis, with and without including the extra
ATTTEEE

lens and Aφφlens to marginalize over CMB lensing information.

high-` TT,TE,EE+lensing+BAO+SNIa+S8 (from KiDS-1000+BOSS+2dFLens) – with the
two extra lensing parameters – in Tab. (3.2) and Fig. 3.11.

One can see that the S8 parameter reconstructed once marginalizing over the ‘Alens’
anomaly is lower by ∼ 0.5σ than in the baseline analysis. However, the preference for
ΛDDM decreases, with Log10(ε) now unconstrained. Note also that the ATTTEEE

lens is still
more than 2σ away than the fiducial value ATTTEEE

lens = 1. We can therefore conclude
that the ΛDDM model cannot explain this anomaly and that the preference for ΛDDM
would likely disappear if the S8 tension turns out to be explained by a systematic in
Planck data leading to the anomalous value of the Alens parameters.

The Xenon1T excess

Let us explore the implications of the ΛDDM model for the excess of events in
the electronic recoils recently reported by the Xenon1T Collaboration (APRILE et al.
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Parameter w/ Alens
100 ωb 2.262(2.260)+0.016

−0.015
Ωini

dcdm 0.2506(0.2526)+0.0049
−0.0059

H0/[km/s/Mpc] 68.56(68.38)+0.5
−0.45

Ln(1010As) 3.025(3.032)+0.02
−0.018

ns 0.9725(0.9718)+0.0042
−0.0039

τreio 0.0474(0.0506)+0.0098
−0.008

Log10(Γ/[Gyr−1]) −2.10(−1.49)+0.39
−1.9

Log10(ε) unconstrained (-2.47)
Ωm 0.2991(0.3009)+0.0053

−0.0066
S8 0.784(0.768)+0.018

−0.014
ATTTEEE

lens 1.208(1.192)+0.066
−0.064

Aφφlens 1.086(1.072)+0.035
−0.041

χ2
min 2043.2

Table 3.2 – The mean (best-fit) ±1σ errors of the cosmological parameters from our BAO +
SNIa + Planck + S8 (from KiDS+BOSS+2dFLens) analysis performed by marginalizing over the
amplitude of the lensing potential Alens. We also report the best-fit χ2.

2020). It has been pointed out that this excess could potentially be explained by
the elastic interactions of electrons with a fast DM component of mass m & 0.1 MeV
and velocities 0.05 . v/c . 0.13 (KANNIKE et al. 2020). Interestingly, the WDM
daughter species in the ΛDDM scenario could in principle play the role of such a
fast component, since our results indicate that the 1-σ range for the speed of the
daughter particle extends up to v/c ' ε ' 0.05.

In order to test this hypothesis further, we perform another MCMC analysis includ-
ing Planck high-` TT,TE,EE+lensing+BAO+SNIa+S8 (from KiDS-1000+BOSS+2dFLens),
with the DR energy fraction now fixed to ε = 0.05. This serves as a proxy for tak-
ing into account Xenon1T measurement (alternatively, one could enforce ε > 0.05).
The results are summarized in Fig. 3.12 and Tab. (3.3). We find best-fit values
Log10(Γ/Gyrs−1) ' −2.4 and S8 ' 0.784, at the cost of a mild degradation in the fit
to Planck data (∆χ2 ' +1.7), indicating that the 2-body decaying scenario has indeed
the potential to provide a common resolution to the S8 and Xenon1T anomalies. We
leave the construction of a realistic model and study of the subsequent cosmolog-
ical implications beyond the effect the decay to another study (see (G. CHOI et al.
2020b; XU et al. 2021) for examples).

3.4.4 Detecting DDM in the CMB: impact of current and future data

In this section, we confront the DDM model to additional CMB data from current
ground based surveys and perform forecast for future surveys. In addition to Planck,
we consider first, the high-` CMB EE and TE (50 ≤ ` ≤ 8000) (HENNING et al. 2018)
measurements and the reconstructed gravitational lensing potential (100 ≤ ` ≤ 8000)
(BIANCHINI et al. 2020) from the 500deg SPTpol survey (CHUDAYKIN et al. 2020a). We
then include the high-` CMB TT, EE and TE (350 ≤ ` ≤ 4125) data from the DR4 of the
ACTPol survey (AIOLA et al. 2020; S. K. CHOI et al. 2020). Finally, we demonstrate
that an experiment like CMB-S4 can unambiguously detect the DDM model.
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Figure 3.12 – 2D posterior distribution of a subset of parameters in our BAO + SNIa + Planck
+ S8 (from KiDS+BOSS+2dFLens) analysis when fixing the DR energy fraction to a value mo-
tivated by the recent Xenon1T anomaly (ε = 0.05).

Parameter ΛDDM (ε = 0.05)
100 ωb 2.244(2.245)+0.014

−0.015
Ωini

dcdm 0.2597(0.2595)+0.0054
−0.0067

H0/[km/s/Mpc] 67.76(67.78)+0.54
−0.45

ln(1010As) 3.050(3.047)+0.015
−0.016

ns 0.9674(0.9674)+0.0042
−0.0039

τreio 0.0573(0.0559)+0.0073
−0.0079

log10(Γ/[Gyr−1]) −2.72(−2.44)+0.61
−0.21

Ωm 0.3093(0.3090)+0.0057
−0.007

S8 0.794(0.786)+0.021
−0.015

χ2
min 2057.6

Table 3.3 – The mean (best-fit) ±1σ errors of the cosmological parameters from our Planck
high-` TT,TE,EE+lensing+BAO+SNIa+S8 analysis, when fixing the DR energy fraction to ε =
0.05. We also report the best-fit χ2.

Confronting ΛDDM to SPTpol data

It is interesting to test the robustness of the DDM “detection” to a change of CMB
data sets, especially given the impact of marginalizing over the ‘Alens’ anomaly as
discussed in the previous section. We thus confront the ΛDDM scenario under study
against a set of CMB data constituted by low-` temperature and polarization as well
as high-` temperature data from Planck, in combination with high-` polarization data
from SPTpol (see Sect. 3.4 for further details and references). It has been shown
indeed that such a joint analysis predicts an amount of CMB lensing consistent
with the ΛCDM expectation (CHUDAYKIN et al. 2020a), i.e. no ‘Alens’ anomaly, and no
S8 tension. This is manifest in Fig. 3.13, where we compare predictions from the
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Figure 3.13 – 2D posterior distribution of a subset of parameters in the joint BAO + SNIa +
Planck + SPTpol analysis, with and without imposing a prior on S8 from KiDS+BOSS+2dFLens,
compared to the ΛCDM scenario.

Data BAO + SNIa + PlanckTT + SPTpol
Parameter w/o S8 w/ S8
100 ωb 2.239(2.2378)+0.019

−0.018 2.241(2.247)+0.016
−0.019

Ωini
dcdm 0.2544(0.2557)+0.0057

−0.0061 0.2514(0.2532)+0.0054
−0.0055

H0/[km/s/Mpc] 68.15(68.03)+0.51
−0.48 68.39(68.25)+0.47

−0.46
ln(1010As) 3.031(3.026)+0.016

−0.017 3.026(3.018)+0.017
−0.014

ns 0.9701(0.9695)+0.0041
−0.0042 0.9712(0.9707)+0.0037

−0.004
τreio 0.0509(0.0481)+0.0074

−0.0081 0.0494(0.0457)+0.0082
−0.0073

log10(Γ/[Gyr−1]) −2.38(−1.73)+0.38
−1.6 −2.25(−1.35)+0.42

−1.7
log10(ε) unconstrained(-2.73) unconstrained(-2.57)
Ωm 0.3033(0.3046)+0.0064

−0.0067 0.2999(0.3013)+0.0059
−0.0062

S8 0.799(0.798)+0.022
−0.015 0.787(0.767)+0.016

−0.013
χ2

min 1816.3 1816.8

Table 3.4 – The mean (best-fit) ±1σ errors of the cosmological parameters from our BAO +
SNIa + PlanckTT + SPTpol analysis, with and without imposing a split-normal likelihood on
S8 (from KiDS+BOSS+2dFLens). For each data-set, we also report the best-fit χ2.

ΛCDM and the ΛDDM models, the latter both with and without including information
on S8 from KIDS1000+BOSS+2dFLens. As one can easily see, both cosmological
models predict a S8 value in excellent agreement with the KIDS1000+BOSS+2dFLens
measurement, displayed as a green horizontal band. Our results regarding the
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Figure 3.14 – 2D posterior distribution of a subset of parameters in our from our BAO +
SNIa + Planck + S8 (from KiDS+BOSS+2dFLens) analysis, compared to the joint BAO + SNIa +
Planck + SPTpol + S8 analysis.

ΛDDM model are also reported in Tab. (3.4).

In Fig. 3.14, instead, we report a comparison between our baseline ΛDDM analy-
sis and the Planck+SPT one. First and foremost, SPTpol appears in very good agree-
ment with the ΛDDM model resolution of the S8 tension required by Planck. How-
ever, the ΛDDM parameters are largely unconstrained in that case and no deviations
from ΛCDM are visible, which further establishes that if the S8 tension turns out to
be explained by a systematic in Planck high-` polarization data, the preference for
ΛDDM is likely to vanish.

Confronting ΛDDM to ACTpol data

Second, we confront the ΛDDM model to the combination of Planck and
ACTPol data, to test whether more accurate measurements at high-` can further
constrain the model. Within ΛCDM, it has been found that ACTPol data (when
combined with WMAP) also favor relatively high S8, in 2.1σ disagreement with
KiDS1000+BOSS+2dFLens (AIOLA et al. 2020). To limit double counting of infor-
mation, we follow the procedure of the ACT collaboration and truncate multipoles
` < 1800 in the ACT TT data. The results of this analysis are presented in Fig. 3.15
and Tab. (3.5). Interestingly, the ΛDDM parameter ε is more precisely measured
with the inclusion of the ACTPol data, while the mean value is barely affected.
Compared with ΛCDM, the ∆χ2 in favor of ΛDDM is now −6.7, and the level of
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Figure 3.15 – 2D posterior distribution of a subset of parameters in the case BAO + SNIa +
Planck + S8 (from KiDS+BOSS+2dFLens), with and without the inclusion of ACT data.

Data BAO + SNIa + Planck + ACTPol
Parameter w/o S8 w/ S8
100 ωb 2.245(2.242)± 0.013 2.243(2.243)± 0.012
Ωini

dcdm 0.26(0.261)± 0.005 0.2583(0.2591)+0.0048
−0.0051

H0/[km/s/Mpc] 67.77(67.73)+0.33
−0.42 67.92(67.84)± 0.40

ln(1010As) 3.058(3.054)± 0.015 3.056(3.061)± 0.015
ns 0.9703(0.9697)+0.0034

−0.004 0.9708(0.9706)± 0.0036
τreio 0.0571(0.0549)+0.0069

−0.0084 0.0567(0.0592)+0.007
−0.0075

log10(Γ/[Gyr−1]) 0.92(−2.92)+0.55
−1.90 −1.56(−1.19)+1.10

−1.50
log10(ε) unconstrained (-3.88) −2.34(−2.54)± 0.65
Ωm 0.3094(0.3108)+0.0051

−0.0054 0.3069(0.3068)+0.0050
−0.0056

S8 0.822(0.829)+0.018
−0.011 0.792(0.772)+0.025

−0.019
χ2

min 2294.54 2296.20
∆χ2(ΛCDM) -0.12 -6.7

Table 3.5 – The mean (best-fit) ±1σ errors of the cosmological parameters from our BAO +
SNIa + Planck + ACTPol analysis, with and without imposing a split-normal likelihood on
S8 (from KiDS+BOSS+2dFLens). For each data-set, we also report the best-fit χ2 and the
∆χ2(ΛCDM) ≡ χ2

min(ΛDDM)− χ2
min(ΛCDM).

tension between Planck+ACT+BAO+SN1a and S8 from KIDS1000+BOSS+2dFLens
is 1.3σ. We conclude that ACT data are in very good agreement with the ΛDDM
model, slightly increasing its preference over ΛCDM.
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Figure 3.16 – 2D posterior distribution of a subset of parameters reconstructed from a
fit to simulated Planck and CMB-S4 data. The fiducial model has Log10(ε) = −2.16 and
Log10(Γ/[Gyr−1]) = −1.74, as denoted by the gray dotted lines.

Towards detecting the ΛDDM model with CMB-S4

As we have extensively discussed, current CMB data are not sensitive enough to
detect DDM, so that the preference for non-standard values for ε and Γ is fully driven
by the inclusion of the S8 measurement from weak lensing data in the analysis.
To further stress this aspect we have performed additional analyses fitting a set
of mock CMB data generated starting from our reference best-fit ΛDDM model (i.e.
that from the Planck+BAO+SNIa+KiDS+BOSS+2dFLens run, reported in the fourth
column of Tab. (3.1)). The resulting contour plots are shown in Fig. 3.16, where we
compare the constraints that Planck would obtain if the “true” cosmological model
actually contained DDM, with those that a future generation CMB survey (CMB-S4)
would get. Concretely, this task was pursued by using the ‘Planck-fake-realistic’
and ‘CMB-S4’ likelihoods available in MontePython-v3 . The former allowed us to
generate synthetic Planck data, whereas the latter includes multipoles ` from 30 to
3000, assuming a sky coverage of 40%, uncorrelated Gaussian error on each a`m’s,
uncorrelated temperature and polarization noise, and perfect foreground cleaning up
to `max

20. All details about the likelihood can be found in Tab. 1 of BRINCKMANN

et al. (2019b).

20To overcome the lack of low-` data in the CMB-S4 analysis, we have imposed a Gaus-
sian prior on the optical depth to reionization, centered on its best-fit value from our reference
Planck+BAO+SNIa+KiDS+BOSS+2dFLens analysis, namely τreio = 0.0582± 0.008.
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As expected, from Fig. 3.16 it is manifest that Planck alone could not detect DDM
even if its signature was truly imprinted in CMB data. Note indeed that the red
contours barely features an overlap at 2σ in S8, and only upper limits on Log10Γ,
Log10ε. This, as we explained earlier, is a consequence of the degeneracy that exists
within ΛDDM and leads to a bias in the Bayesian analysis. Therefore, the information
that matters in quantifying the success of the resolution is rather contained in the
χ2 values: just like in the analysis of real data, we find that, when testing the ΛCDM
model against the mock data that contains the ΛDDM signal, the χ2 in the ΛCDM
model is identical to that of the ΛDDM model. This clearly shows that Planck cannot
disentangle between ΛCDM and ΛDDM, while the S8 measurements favors ΛDDM
(in terms of χ2). This is not the case for CMB-S4, which contours are over-plotted
in blue: if the real Universe contains DDM, CMB-S4 would unequivocally detect its
signature, finding ε 6= 0 at & 2 σ level. The ∆χ2 in favor of the ΛDDM model from
(mock) CMB-S4 data alone is in fact ' +8.

3.5 Summary and outline

In this work, we have performed a comprehensive cosmological study of the CDM
2-body decay scenario dubbed ‘ΛDDM’, whereby decays are characterized both by
the decay rate Γ and energy fraction converted to radiation ε, including for the first
time a fully consistent treatment of the linear perturbations of the WDM daughter
component. To that end, we have made use of a new approximation scheme,
that allows to accurately and quickly compute the dynamics of the WDM linear
perturbations by treating the WDM species as a viscous fluid. Close to the best-fit
values, our approximation scheme is accurate at the O(0.1%) level in the CMB power
spectra and O(1%) level in the linear matter power spectrum (see App. D.4). We have
then discussed in detail the dynamics of linear density perturbations of the mother
and daughter particles, as well as the physical effects of the ΛDDM model on the
CMB and matter power spectra.

In a second part, we have performed a set of MCMC analyses of the ΛDDM model
against a suite of up-to-date low- and high-redshift data-sets. We have compared the
constraints obtained from BAO and SNIa data, thereby solely based on background
effects, to those obtained from the full Planck data-set, that requires instead an
accurate description of the WDM linear perturbations. We find that Planck CMB data
constrain the ΛDDM model ∼ 1 order of magnitude better than current BAO+SNIa
data. However, we also show that despite these constraints, the ΛDDM model
provides a promising possibility to resolve the S8 tension.

We have then tested the robustness of the ΛDDM resolution to the S8 tension to a
number of change in the analysis. We show that the mild preference for the ΛDDM
model over ΛCDM is tied to the S8 value chosen in the analysis. Concretely, the S8
value from the KiDS+Viking+DES analysis, which has a higher level of tension with
the Planck ΛCDM prediction than the baseline KiDS+BOSS+2dFLens value, leads to
a stronger preference in favor of the ΛDDM model. However, the DES-only result,
which is in reasonable agreement with Planck, leads to a weaker preference of the
ΛDDM model. Similarly, once marginalizing over the lensing information in Planck
through the Alens parameter (we used two extra parameters in practice describing the
normalization of the lensing power spectrum and the normalization of the lensing
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Figure 3.17 – Growth rate of matter fluctuations for our baseline νΛCDM model (solid line),
compared to the best-fit ΛDDM model (dashed line) and to the νΛCDM scenario yielding the
same σ8 and Ωm (dotted line). The observational constraints are taken from AGHANIM et al.
(2020b) and references therein.

smoothing effect in the high-` TT,TE,EE power spectra), or when trading the Planck
high-` TE,EE power spectra for the SPTpol ones, the preference for the ΛDDM model
decreases. This is because in these two cases the inferred ΛCDM model has a smaller
S8 value, showing less of a tension with the weak lensing surveys. This indicates
that if the S8 tension ends up coming from an unknown systematic within weak
lensing surveys or within Planck data, the preference for the ΛDDM model would
likely disappear. On the other hand, when combining Planck with ACTPol the mild
preference for ΛDDM increases, and the remaining ‘tension’ with S8 is now only ∼ 1.3σ.

We have also tested the intriguing possibility that the recent Xenon1T excess
is due to the ΛDDM model. To that end, we have performed an additional MCMC
analysis fixing ε = 0.05 as required by Xenon1T. We find that it is easy to resolve the
S8 tension in that case, pointing to a DCDM lifetime of Log10(Γ/[Gyr−1]) = −2.72+0.61

−0.21.
Interestingly, this comes at the cost of a very minor degradation in Planck fit
(∆χ2 ' +1.7), indicating that Planck, BAO and SNIa data are in good agreement with
this model. Finally, by performing an analysis where we artificially introduce a DDM
signal in a set of mock CMB data, we explicitly demonstrate that while current CMB
data alone are not sensitive enough to distinguish between standard CDM and DDM,
next-generation CMB experiments (CMB-S4) can unambiguously detect its signature.

It will be very interesting to go beyond the linear aspects discussed in this work
and study the non-linear evolution of density perturbations, in order to be able to
make use of the full power of the KiDS and DES likelihoods. This task would likely
require using N-body simulations, as in WANG et al. (2012, 2014). This will be even
more crucial with upcoming surveys such as Euclid (AMENDOLA et al. 2018), LSST
(MANDELBAUM et al. 2018), and DESI (AGHAMOUSA et al. 2016). For instance, these
surveys will be able to measure the differences between the growth rate fσ8 in the
ΛDDM scenario and ΛCDM at 0 . z . 1, which at present remain below the sensitivity
of current experiments (see Fig. 3.17). It might also be possible to test the ΛDDM
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model with current Lyman-α forest flux power spectrum data (WANG et al. 2013;
MURGIA et al. 2017; ARCHIDIACONO et al. 2019; ENZI et al. 2021).

In SIMON et al. (2022), we have already extended the analysis to the mildly
non-linear scales using the Effective Field Theory of LSS (EFTofLSS) (CHUDAYKIN

et al. 2020b; D’AMICO et al. 2021a). This allowed us tot test the ΛDDM model against
the full shape galaxy power spectrum as measured by BOSS, significantly improving
the constraints at 68 % C.L. on the CDM lifetime. We also showed that, in order to
fit EFTofBOSS data while lowering S8 to match the values measured by weak-lensing
surveys, the best-fit model has a longer lifetime Γ−1 ' 120 Gyr and a larger kick
velocity vkick/c ' ε ' 1.2% than without EFTofBOSS.

To finish, let us point out that the DES collaboration recently derived new con-
straints on the ΛDDM scenario using observations of Milky Way satellites (MAU et al.
2022). These constraints exclude Log10(Γ/Gyr−1) & −1.5 for Log10(vkick/c) ' Log10(ε) &
−4. The best-fit model of our baseline BAO+SNIa+Planck+S8 analysis, and a large
fraction of the 68 % C.L., lie well within the allowed region, but these observations
certainly provide a crucial test of the DCDM cosmology, as a deficit of satellites com-
pared to ΛCDM is expected in this model.





IV

New cosmological limits on the
neutrino mass and lifetime

“When I heard the learn’d astronomer,
When the proofs, the figures, were ranged in columns before me,
When I was shown the charts and diagrams, to add, divide, and
measure them,
When I sitting heard the astronomer where he lectured with much
applause in the lecture-room,
How soon unaccountable I became tired and sick,
Till rising and gliding out I wander’d off by myself,
In the mystical moist night-air, and from time to time,
Look’d up in perfect silence at the stars.”

Walt Whitman, Leaves of Grass
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4.1 Constraints on neutrino mass and lifetime from cosmo-
logical data

Even though neutrinos were first detected more than six decades ago, they remain
among the most mysterious particles in nature, with many of their fundamental
properties still to be determined. In particular, although oscillation experiments
have provided convincing evidence that neutrinos have non-vanishing masses, these
measurements are only sensitive to the mass-squared splittings and consequently
the spectrum of neutrino masses remains unknown. The lifetimes of the neutrinos
are also poorly constrained, especially in comparison to the other particles in
the Standard Model (SM). The determination of the masses and the lifetimes of
these mysterious particles remain some of the most important open problems in
fundamental physics.

The fact that cosmic neutrinos are among the most abundant particles in the
universe, contributing significantly to the total energy density at early times, provides
an opportunity to measure their properties. In particular, the evolution of the
cosmological density fluctuations depends on

∑
mν, the sum of neutrino masses.

This translates into characteristic effects on the CMB and LSS (BOND et al. 1980;
HU et al. 1998) (for reviews see Y. Y. Y. WONG (2011), LATTANZI et al. (2018), and
LESGOURGUES et al. (2018)), that are large enough to allow the sum of neutrino
masses to be determined in the near future.

This determination is based on the observation that massive neutrinos contribute
differently to cosmological observables than either massless neutrinos or CDM. At
early times, while still relativistic, massive neutrinos contribute to the energy density
in radiation, just as in the case of massless neutrinos. However, after neutrinos
become non-relativistic, their energy density redshifts as matter and therefore
contributes more to the expansion rate than massless neutrinos, which would
continue to redshift as radiation. As a result, over a given redshift span, the higher
expansion rate reduces the time available for the growth of matter density pertur-
bations. However, since massive neutrinos retain pressure until late times, their
contribution to the density perturbations on scales below their free streaming lengths
is too small to compensate for the shorter structure formation time. Therefore, if
neutrinos become non-relativistic after recombination, the net effect of non-vanishing
neutrino masses is a suppression of the matter power spectrum and the CMB lensing
potential. Based on this, current observations are able to place a bound on the sum
of neutrino masses,

∑
mν . 0.12 eV (AGHANIM et al. 2020b). It is important to note

that this result assumes that neutrinos are stable on timescales of order the age of
the universe. In scenarios in which the neutrinos decay (SERPICO 2007, 2009), or
annihilate away into lighter species (BEACOM et al. 2004; FARZAN et al. 2016) on
timescales shorter than the age of the universe, this bound is no longer valid and
must be reconsidered.

Cosmological observations can also be used to place limits on the neutrino
lifetime. In the case of neutrinos that decay to final states containing photons, the
bounds on spectral distortions in the cosmic microwave background (CMB) can
be translated into limits on the neutrino lifetime, τν & 1019 s for the larger mass
splitting and τν & 4 × 1021 s for the smaller one (AALBERTS et al. 2018). In the case of
decays to invisible final states, the limits are much weaker. For neutrinos that decay
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while still relativistic, the decay and inverse decay processes can prevent neutrinos
from free streaming. Measurements of the CMB power spectra sets a lower bound
on the neutrino lifetime, τν ≥ 4 × 106 s (mν/0.05eV)5, in the case of decay into dark
radiation (BARENBOIM et al. 2021) 1 (for earlier work, see HANNESTAD et al. (2005),
BASBOLL et al. (2009), ARCHIDIACONO et al. (2014), and ESCUDERO et al. (2019)).

In the case of non-relativistic neutrino decays into dark radiation, the energy
density of the decay products redshifts faster than that of stable massive neutrinos.
Unstable neutrinos therefore have less of an effect on structure formation than
stable neutrinos of the same mass. Consequently, cosmological observables depend
both on the masses of the neutrinos and their lifetimes, and heavier values of

∑
mν

may still be allowed by the data provided the neutrino lifetime is short enough.
In CHACKO et al. 2020, Planck15 and LSS data were used to place constraints
on the neutrino mass as a function of the lifetime, and found that values of∑
mν as large as 0.9 eV were still allowed by the data. Future LSS measure-

ments at higher redshifts may be able to break the degeneracy between the neutrino
mass and lifetime and measure these parameters independently (CHACKO et al. 2021).

It is worth noting that there are also bounds on the neutrino lifetime from Super-
nova 1987A (FRIEMAN et al. 1988), solar neutrinos (BEACOM et al. 2002; JOSHIPURA

et al. 2002; BANDYOPADHYAY et al. 2003; BERRYMAN et al. 2015), astrophysical
neutrinos measured at IceCube (BAERWALD et al. 2012; PAGLIAROLI et al. 2015;
BUSTAMANTE et al. 2017; DENTON et al. 2018; ABDULLAHI et al. 2020; BUSTAMANTE

2020), atmospheric neutrinos and long baseline experiments (GONZALEZ-GARCIA

et al. 2008; GOMES et al. 2015; CHOUBEY et al. 2018; AHARMIM et al. 2019). How-
ever, these constraints are in general much weaker than the limits from cosmology.

We revisit the scenario in which neutrinos decay into dark radiation after
becoming non-relativistic, and obtain updated limits based on the newer data from
Planck18. In order to take advantage of the greater precision of the new data, the
analysis we perform is also more accurate. We find that, under the assumption that
neutrinos decay after becoming non-relativistic, the neutrino mass bound from
Planck18 data (in combination with BOSS BAO data and Pantheon SN1a data) is
relaxed to

∑
mν . 0.42 eV (95% C.L.)2. While this represents a remarkable relaxation

of the constraints as compared to the case of stable neutrinos, we note that it is
much stronger than the limit derived from Planck15 data for the same decaying
neutrino scenario,

∑
mν . 0.9 eV at (95% C.L.). We show that the improvement of the

bound arises primarily from the more precise low-` polarization data from Planck18,
which allows an improved determination of the optical depth to reionization τreio,
thereby breaking the correlation with

∑
mν that appears (for relatively high neutrino

masses) through the impact of neutrinos on the overall height of the acoustic peaks

1More concretely, this work considered a scenario in which a heavier neutrino decays relativistically
into a lighter neutrino and a massless scalar, νH → νl + φ, and derived bounds assuming mνl = 0.
Recently, J. Z. CHEN et al. (2022) updated those bounds by accounting for the experimentally determined
mass splittings between the parent and the daughter neutrino, ∆m2

ν . They showed that, for a parent
neutrino with mνH . 0.1 eV, the constraints on its lifetime weaken by a factor 50 and 105, if ∆m2

ν

corresponds to the atmospheric and solar mass gap, respectively.
2This is a factor of two weaker than the constraints advocated in LORENZ et al. (2021), which used a

model-independent approach to constrain the neutrino mass as a function of redshift, but neglected the
effect of the daughter particles.
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(i.e. the “early integrated Sachs-Wolfe effect") (LESGOURGUES et al. 2018).

Besides using up-to-date cosmological data, we also improve the analysis from
CHACKO et al. 2020 – hereafter C19 – by incorporating higher order corrections
due to neutrino decays into the Boltzmann equations that describe the evolution of
Universe’s energy and metric fluctuations. Recently, BARENBOIM et al. 2021 – here-
after B20 – provided a complete set of Boltzmann equations for the neutrino decay,
but did not conduct MCMC runs necessary to update the bounds on non-relativistic
neutrino decays. In this work, we derive Boltzmann equations exactly valid in the
absence of ‘inverse-decays’ and quantum statistics (i.e. Fermi blocking and Bose
enhancement terms). For the numerical implementation, we follow a consistent
Tdec/mν expansion, where Tdec is the temperature at the time of the decay, so that the
analysis is under control when neutrinos decay after become non-relativistic.

The rest of this chapter is organized as follows. In Sect. 4.2 we review the neutrino
mass conundrum and its interplay with cosmology. In Sect. 4.3, we present a sum-
mary of constraints on the parameter space of decaying neutrinos. In Sect. 4.4, we
derive the set of Boltzmann equations to describe neutrino decay that are valid in the
non-relativistic regime and compare our improved analysis to past work. In Sect. 4.5,
we present a MCMC analysis of the decaying neutrino scenario against up-to-date
cosmological data. Finally, we conclude in Sect. 4.6.

4.2 The neutrino mass conundrum

Neutrinos are neutral fermions with spin 1/2 which were postulated by W. Pauli in
1930 in order to explain the continuous spectrum observed in the β-decay of nuclei.
They come in three flavors which are paired to leptons within SU(2)L doublets, and
are charged only under the weak interaction. Because of this, neutrinos typically
pass through matter unimpeded and therefore are very hard to detect. Electron
neutrinos (νe) were discovered by Reines and Cowan in 1956, muon neutrinos (νµ)
in 1962 at Brookhaven and tau neutrinos (ντ ) in 2000 at Fermilab, by the DONUT
experiment. Neutrinos were long thought to be massless, but this started to change
with the observation of the solar neutrino flux. The sun is a potent source of νe in
the energy range E ∼ O(MeV), produced in thermonuclear fusion reactions inside the
core. After the technology required to detect the solar neutrino flux was developed
in the 70s, the observations showed that the number of detected solar νe was only
about one third of the number predicted by the standard solar model. This is the
famous solar neutrino problem. The breakthrough came in 2001, thanks to the data from
the SuperKamiokande experiment and the Sudbury Neutrino Observatory. Those
combined observations allow to compare the total number of solar neutrinos of all
types, to the number of just νe: the first was in good agreement with theoretical
expectations, while the second still showed the same deficit, pointing at conversion
of neutrino flavor during their propagation. The most plausible explanation invoked
neutrino oscillations, which were confirmed in subsequent experiments.

Neutrino oscillations had been theorized in the 50s by Bruno Pontecorvo
(PONTECORVO 1957). They arise from a quantum mechanical phenomenon linked to
the fact that neutrino possess non-zero masses. The principle of superposition allows
the three flavor states to be (orthogonal) combinations of three neutrino states with
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a definite mass. Introducing the Pontecorvo-Maki-Nakgawa-Sakata (PMNS) mixing
matrix U , a 3× 3 unitary matrix, a certain “ket” state can generally be written as

|να〉 =
3∑
i=1

U∗αi |νi〉 with α = e, µ, τ, (4.1)

where greek (latin) indices label flavor (mass) states, and it is assumed the normal-
ization 〈να|νβ〉 = δαβ and 〈νi|νj〉 = δij. Considering neutrinos propagating in vacuum at
semi-relativistic speeds, one can compute the survival probability Pνα→να as a function
of the distance of the detector from the neutrino source (GIUNTI et al. 2007)

Pνα→να(L) = 1− 4
∑
i>j

|Uαi|2|Uαj |2 sin2
(

2π L

Losc
ij

)
, (4.2)

where Losc
ij is the characteristic oscillation length

Losc
ij ≡

4πE
∆m2

ij

' 2.47 E/MeV
∆m2

ij/eV2 m, (4.3)

and ∆m2
ij ≡ m2

i −m2
j denote the (squared) mass splittings. Therefore, flavor transitions

can take place only if neutrinos are massive, their masses are non-degenerate,
and the corresponding PMNS matrix elements are non-zero. From the argument of
the sinusoidal function, we see that for a given distance L and source energy E,
experiments are mainly sensitive to mass splittings ∆m2

ij such that L & Losc
ij . In fact,

the sun is not the single source of neutrinos available. Nuclear reactors typically
produce neutrinos with energy of the order E ∼ O(MeV), and are classified between
short (L ∼ 10 m) (SBL), long (L ∼ 1 km) (LBL) and very long (L ∼ 102 km) (VLBL) baseline
experiments, sensitive to ∆m2

ij & 0.1, 10−3 and 10−5 eV2, respectively. An analogous
classification can be made for neutrino beams produced at accelerators in the energy
range E ∼ O(GeV) due to the pion, kaon and muon decays. In this case, SBL are
characterized by L ∼ 1 km and LBL by L ∼ 103 km, sensitive to ∆m2

ij & 0.1 and 10−3 eV2,
respectively. Finally, atmospheric neutrinos are produced when cosmic rays, consisting
mainly of protons, interact with atoms in our atmosphere. These interactions
create a lot of pions which subsequently decay into muons and neutrinos. In this
case, the energy and distance cover a very wide range, but neutrinos are typically
detected with energies centered at E ∼ O(GeV) and distances up to L ∼ 104 km (for
neutrinos produced on the other side of the Earth), which corresponds to a sensitivity
∆m2

ij & 10−4 eV2.

The PMNS matrix is unitary, so it contains a priori nine real d.o.f. However, five
of these real parameters can be absorbed as phases of the lepton fields, and thus the
PMNS matrix is fully described by four parameters (assuming Dirac neutrinos), and
can be parametrized in the following form

U =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδCP

0 1 0
−s13e

iδCP 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 , (4.4)

where cij = cos (θij) and sij = sin (θij), with θij the mixing angle of mass states i and j,
and δCP is a Dirac CP violating phase. Hence, neutrino oscillations are described in
general by six parameters, that can taken to be {θ13, θ23,θ12, δCP,∆m2

21,∆m2
31}. However,
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Figure 4.1 – Sum of neutrino masses as a function of the lowest neutrino mass, together
with the most recent upper limits (at 95 % C.L.) from cosmology and the estimated KATRIN
sensitivity limit. The grey bands represent 5σ uncertainty on the oscillation measurements.
Taken from JIMENEZ et al. (2022).

in many cases, the observations can be understood in terms of oscillations driven by
just one ∆m2

ij. Solar and VLBL reactor neutrino experiments (e.g. SNO, KamLAND)
have measured the parameters {∆m2

12, θ12}, while atmospheric and LBL accelerator
experiments (e.g. SuperKamiokande, K2K, MINOS, OPERA) have measured the pa-
rameters {|∆m2

31 + ∆m2
32|/2, θ23}. Finally, LBL reactor (e.g. Daya Bay, RENO, Double

Chooz) have provided information on the mixing angle θ13. In a medium, the presence
of a high energy density of electrons can enhance the effective mixing angle, an ef-
fect which is known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect (WOLFENSTEIN

1978; MIKHEYEV et al. 1985). Because of the correction to the vacuum mixing pic-
ture, studies of solar neutrinos have been able to deduce the sign of ∆m2

21. The
most recent determinations of the solar and atmospheric mass splittings indicate
∆m2

21 ' 7.6 × 10−5 eV2 and |∆m2
31| ' 2.5 × 10−3 eV2, respectively (SALAS et al. 2018).

Since the sign of ∆m2
31 is still unknown, this leaves two possibilities for the mass or-

dering of neutrinos: normal hierarchy (NH), if m3 � m2 > m1, or inverted hierarchy (IH), if
m2 > m1 � m3. The absolute scale of neutrino mass is unknown as well. The sum of
neutrino masses

∑
mν can be related to the mass splittings as follows∑
mNH
ν = m1 +

√
m2

1 + ∆m2
21 +

√
m2

1 + ∆m2
31, (4.5)∑

mIH
ν = m3 +

√
m2

3 + |∆m2
31|+

√
m2

3 + |∆m2
31|+ ∆m2

21, (4.6)

Hence, the minimum value for the total neutrino mass depends on the mass
ordering. For the normal hierarchy, setting m1 = 0 gives

∑
mNH
ν & 0.06 eV, while

for the inverted hierarchy, setting m3 = 0 gives
∑
mIH
ν & 0.10 eV. In Fig. 4.1 we

show the sum of neutrino masses (=
∑

, to shorten notation) as a function of
the lowest neutrino mass (mL), together with some current and projected upper
bounds on

∑
. Currently, cosmology provides the strongest constraints on the

sum of neutrino masses. As mentioned previously, the latest constraints from
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Planck18 TT,EE,TE+lowE+lensing+BAO give
∑

cosmo < 0.12 eV (AGHANIM et al. 2020b).
This bound strengthens to

∑
cosmo < 0.102 eV when combining with redshift-space

distortions (RSD) from eBOSS (ALAM et al. 2021) and to
∑

cosmo < 0.089 eV when com-
bining with the Lyman-α forest 1D flux power spectrum (PALANQUE-DELABROUILLE

et al. 2020).

It is also possible to measure the absolute neutrino mass scale with laboratory
experiments on Earth. These experiments typically look at the energy spectrum of
electrons emitted from the tritium beta decay

H3 −→ He3 + e− + ν̄e, (4.7)

which have Qβ = m H3 −m He3 −me ' 18.58 keV. The main idea is that the endpoint of
the spectrum (or maximum electron energy) is shifted with respect to Qβ due to the
presence of neutrino masses. Assuming mass splittings much smaller than the ex-
perimental energy resolution, one expects to measure a shift Qβ − mνe, where mνe

is the effective electron mass

m2
νe ≡

∑
i

|Uei|2m2
i . (4.8)

The combination of the first and second campaign of the KArlsruhe TRItium Neutrino
(KATRIN) β-experiment have yielded a constraint on the effective neutrino mass of
mνe < 0.8 eV (AKER et al. 2022), corresponding to

∑
KATRIN < 2.4 eV 3 (at 90 % C.L.).

The expected final sensitivity of KATRIN is
∑

KATRIN < 0.6 − 0.8 eV. One important
benefit of KATRIN is that the neutrino mass determination is fully model independent
(even independent of the Dirac or Majorana nature of neutrinos), as opposed to the
CMB/LSS determinations, which always rely on the cosmological model.

The origin of neutrino masses cannot be successfully explained in the framework
of the SM of particle physics, so they currently provide the only certain evidence of
physics beyond the SM (GIUNTI et al. 2007). Besides the absolute mass scale and
hierarchy, other open questions in the neutrino sector include: their Majorana/Dirac
nature, the existence of new sterile neutrinos (inducing a small non-unitarity in the
mixing matrix) or the possibility of CP violation in the leptonic sector (possibly related
to the matter-antimatter asymmetry). As we discussed in the previous section, mas-
sive neutrinos influence both the cosmic expansion as well as the growth of structure
in the universe, so cosmological observations provide very valuable clues about their
properties. Future LSS surveys such as Euclid (AMENDOLA et al. 2018) aim at a detec-
tion of the absolute neutrino mass scale. Notice also from the above discussion that a
possible detection of

∑
by KATRIN would immediately enter in conflict with CMB/LSS

determinations. In the rest of this chapter, we study the cosmological implications of
a model of decaying neutrinos that could potentially reconcile those measurements.

4.3 Parameter space of decaying neutrinos

Here we outline the constraints on the mass and lifetime of neutrinos decaying
into dark radiation. As explained in Sect. 4.1, current cosmological observables

3For the range of masses probed by KATRIN, neutrino mass states are quasi-degenerate, mi ' m, so
the effective electron mass is roughly given by m2

νe ' m2∑
i
|Uei|2 = m2, where the last equality follows

from unitarity. Hence the sum of neutrino masses is indeed given by
∑
∼ 3m ∼ 3mνe.
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Figure 4.2 – The plot shows the current constraints on decaying neutrinos in the
∑
mν − Γν

parameter space. The colored regions are excluded by current data while the white region is
allowed. The orange dashed line represents Γν = H(anr). Our study focuses on the region
below this line, meaning decay happens after neutrinos have become non-relativistic. The
light grey region shows current constraints on neutrino mass and lifetime coming from the
requirement that neutrinos are free streaming close to recombination (B20). The shaded
region indicates that this bound may not be applicable when neutrino mass is larger than
the temperature of recombination: mν > T∗ ∼ 0.2 eV. Our analysis excludes the red (blue)
region labelled “Planck 2015” (“Planck 2018”) based on the data (Planck+BAO+Pantheon).
The vertical brown line shows the projected KATRIN sensitivity.

only place limits on a combination of the sum of neutrino masses and their lifetime.
Therefore, in this study we will map out the constraints in the two-dimensional
parameter space spanned by the sum of neutrino masses (

∑
mν ) and the neutrino

decay width (Γν ), as shown in Fig. 4.2.

In our analysis we assume that all three neutrinos are degenerate in mass. This
is a good approximation because the current bounds on

∑
mν are larger than the

observed mass splittings (see Fig. 4.2). We further assume that all three neutrinos
have the same decay width Γν. Since the mixing angles in the neutrino sector are
large, this is a good approximation in many simple models of decaying neutrinos if the
spectrum of neutrinos is quasi-degenerate. While this is a simple parameterization
of neutrino decays, our bounds can easily be applied to specific models, as done in
great details in ESCUDERO et al. (2020b).

The CMB can be used to constrain the masses and decay widths of neutrinos that
decay prior to recombination. When neutrinos decay while still relativistic, decay
and inverse decay can prevent neutrinos from free-streaming. If this happens before
recombination, it can alter the well-known ‘neutrino drag’ effect that manifests as a
phase-shift at high-`’s in the CMB power spectrum (BASHINSKY et al. 2004; AUDREN

et al. 2015; FOLLIN et al. 2015; BAUMANN et al. 2016). Therefore, CMB data can
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place a constraint on the decay width of neutrinos. The resulting bound depends on
neutrino masses, and was recently updated in B20, τν ≥ 4 × 106 s (mν/0.05 eV)5. This
bound excludes the grey region at the top of Fig. 4.2.

In addition, based on the analysis in this paper, part of the ‘late-decay’ parameter
space can also be excluded based on the gravitational impacts of massive neutrinos
on the CMB and LSS. Through the Monte Carlo study presented in Sect. 4.5,
the blue (red) shaded region in Fig. 4.2 is excluded by the data combination
Planck18 (Planck15) + BAO + Pantheon.4. The orange dashed line in the figure
(Γν = H(anr)) separates the region where neutrinos decay when non-relativistic from
the region where they decay while still relativistic. Here anr corresponds to the
approximate scale factor at the time that neutrinos transition to non-relativistic,
and is defined as 3Tν(anr) = mν. This simple definition is based on the fact that
for relativistic neutrinos at temperature Tν, the average energy per neutrino is
approximately 3Tν. The Hubble scale at anr is given by,

H(anr) = H0
√

Ωm

(∑
mν

9Tν,0

)3/2
(4.9)

' 7.5× 105km/s/Mpc
(

H0
68km/s/Mpc

)(Ωm

0.3

)1/2(∑mν

1eV

)3/2(1.5× 10−4eV
Tν,0

)3/2
,

where Tν,0 is the present neutrino temperature. Since our study focuses on the decay
of neutrinos after they become non-relativistic, we only present constraints below the
orange dashed line. Our analysis shows that

∑
mν as large as 0.42 eV is still allowed

by the data.

Our results have important implications for current and future laboratory
experiments designed to detect neutrino masses. As discussed in Sect. 4.2, next
generation tritium decay experiments such as KATRIN (ANGRIK et al. 2005) are
expected to be sensitive to values of mνe as low as 0.2 eV, corresponding to

∑
mν of

order 0.6 eV. Naively, a signal in these experiments would conflict with the current
cosmological bound for stable neutrinos,

∑
mν < 0.12 eV. However, since the unstable

neutrino paradigm greatly expands the range of neutrino masses allowed by current
cosmological data, it is interesting to explore whether this scenario can accommodate
a potential signal at KATRIN. In Fig. 4.2, we display a brown vertical line

∑
mν = 0.6

eV that corresponds to the expected KATRIN sensitivity. We see that this value of∑
mν is too large to be accommodated in the non-relativistic decay regime, where our

analysis is valid. However, our result, in combination with those from the ‘relativistic
decay’ scenario studied in B20, leaves open the interesting possibility that neutrinos
decaying with a decay width between Log10

(
Γν

km/s/Mpc

)
∼ 5.5 − 9 could reconcile

cosmological observations with a potential detection at KATRIN, thereby opening a
large discovery potential for laboratory experiments. To confirm this conjecture, more
work needs to be done to cover the ‘intermediate’ decay regime (i.e. where neutrinos
are neither fully relativistic nor fully non-relativistic). We leave this for future work.

In recent years, a number of studies have attempted to constrain the neutrino
mass ordering, showing that under the assumption of stable neutrinos, the inverted

4Note that in our analysis we scanned the region between 0 ≤ Log10

(
Γν

km/s/Mpc

)
≤ 6. In Fig. 4.2,

we have extrapolated the bound at Log10
( Γν

km/s/Mpc

)
= 0 to Γν = 0, because the constraint on

∑
mν is

independent of Γν when Γν � H0.
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ordering is now disfavored by a compilation of cosmological data (A. CALDWELL et al.
2017; GERBINO et al. 2017; SIMPSON et al. 2017; VAGNOZZI et al. 2017; DI VALENTINO

et al. 2021a; JIMENEZ et al. 2022) (see also SCHWETZ et al. (2017), GARIAZZO et al.
(2018), HERGT et al. (2021), and GARIAZZO et al. (2022) for a different take) as well
as from Ly-α observations (PALANQUE-DELABROUILLE et al. 2020). However, these ar-
guments are centered on the fact that these analyse leads to a constraint on

∑
mν

at odds with the lower bound on the sum of neutrino masses in the case of inverted
ordering,

∑
mν & 0.1 eV. Our result suggests that these constraints are strongly de-

pendent on the assumption of neutrino stability over cosmological timescales, and
therefore that the inverted ordering is not robustly excluded. It would be very inter-
esting to extend our analysis to the inclusion of Ly-α data to confirm this conclusion.

4.4 Formalism of invisible non-relativistic neutrino decay

In this section, we revisit the set of Boltzmann equations describing the evolution
of the phase space distribution (PSD) of massive particles decaying into daughter
radiation. In our analysis, we assume the decay happens after the neutrinos have
become non-relativistic so that the contribution from inverse decay processes and
quantum statistics can be safely neglected.

4.4.1 Derivation of Boltzmann equations

We denote the phase space distribution of each species as fI(k, q, µ, τ) (in Fourier
space), where I = {ν, dr1, dr2}, since we are assuming a two-body decay to massless
daughters. As in previous chapters, we work in the synchronous gauge co-moving
with the CDM (introduced in Sect. 1.6.1), where the scalar metric potentials are re-
ferred as h and η. In this gauge, and neglecting all terms that are at least second
order in perturbations, the Boltzmann equations controlling the evolution of fI is
written as (c.f. Eq. (3.4)) :

∂fI
∂τ

+ iµ
kq

EI
fI + dfI

dlnq

(
η′ − h′ + 6η′

2 µ2
)

=
(
∂fI
∂τ

)
C
. (4.10)

The collision terms
(
∂fI
∂τ

)
C

describe the decay process

ν(Q) −→ DR(Q1) + DR(Q2), (4.11)

where we labelled the comoving four-momentum Q = (E , ~q) of each species, and
are given by (C19) :(

∂fν
∂τ

)
C

=− a2

2Eν

∫
d3~q1

(2π)32E1

d3~q2
(2π)32E2

|M|2(2π)4δ(4)(Q−Q1 −Q2)fν(q), (4.12)(
∂fdr1
∂τ

)
C

= + a2

2E1

∫
d3~q

(2π)32Eν
d3~q2

(2π)32E2
|M|2(2π)4δ(4)(Q−Q1 −Q2)fν(q), (4.13)(

∂fdr2
∂τ

)
C

= + a2

2E2

∫
d3~q

(2π)32Eν
d3~q1

(2π)32E1
|M|2(2π)4δ(4)(Q−Q1 −Q2)fν(q). (4.14)

To separate the Boltzmann equations into zeroth and first order contributions, we will
eventually perform the same decomposition as in Eq. (3.8)

fI(k, q, µ, τ) = f̄I(q, τ) + ∆fI(k, q, µ, τ). (4.15)
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Let us start with the derivation of the zeroth order equations. As we show in App. E.1,
the collision term in Eq. (4.12) for the decaying neutrinos simplifies to(

∂fν
∂τ

)
C

= −a
2Γνmν

Eν
fν = −aΓν

γ
fν , (4.16)

where γ ≡ Eν/(amν) denotes the Lorentz boost factor. Hence, the background equation
for the neutrino mother particles can be simply written as

∂f̄ν
∂τ

= −aΓν
γ
f̄ν , (4.17)

Multiplying each side of the former equation by 4πa−4q2Eν, and integrating over q, we
find the continuity equation for ρ̄ν:

ρ̄′ν + 3Hρ̄ν(1 + wν) = −aΓνmν n̄ν , (4.18)

where n̄ν = 4πa−3 ∫ dqq2f̄ν(q) is the neutrino number density. On the other hand,
the continuity equation for the total background density of daughter radiation, ρ̄dr =
4πa−4∑

i=1,2
∫
dqiq

3
i f̄dri, is given by

ρ̄′dr + 4Hρ̄dr = aΓνmν n̄ν , (4.19)

where the term at the r.h.s. follows from Eq. (4.18) and conservation of energy. In
practice, we never use Eq. (4.18) to solve for the evolution of the neutrino back-
ground density. Rather, we directly compute the PSD f̄ν at each time step, and
then integrate over momenta to find ρ̄ν and n̄ν. The formal solution f̄ν(q, τ) to the
differential equation Eq. (4.17) is

f̄ν(q, τ) = f̄ν,i(q)e
−Γν

∫ τ
τi

adτ ′
γ(a) , (4.20)

where τi denotes the initial conformal time and f̄ν,i represents the initial momentum
distribution, which we take to be of the Fermi-Dirac form f̄ν,i = 1/(eq/Tν,0 + 1).

We now turn to the Boltzmann equations describing the perturbations of the PSD
of decaying neutrinos and their decay products. From Eq. (4.10) and Eq. (4.16), the
Boltzmann equation for ∆fν reads

∂∆fν
∂τ

+ iµ
kq

Eν
∆fν + df̄ν

dlnq

(
η′ − h′ + 6η′

2 µ2
)

= −a
2Γνmν

Eν
∆fν . (4.21)

As usual, we will expand ∆fI in Legendre multipoles

∆fI(k, q, µ, τ) =
∞∑
`=0

(−i)`(2`+ 1)∆fI,`(k, q, τ)P`(µ). (4.22)

With this, we can turn Eq. (4.21) into the following hierarchy of equations

∆f ′ν,0 = −qk
Eν

∆fν,1 + q
∂f̄ν
∂q

h′

6 −
a2Γνmν

Eν
∆fν,0, (4.23)

∆f ′ν,1 = qk

3Eν
[∆fν,0 − 2∆fν,2]− a2Γνmν

Eν
∆fν,1, (4.24)

∆f ′ν,2 = qk

5Eν
[2∆fν,1 − 3∆fν,3]− q∂f̄ν

∂q

(h′ + 6η′)
15 − a2Γνmν

Eν
∆fν,2, (4.25)

∆f ′ν,`>2 = qk

(2`+ 1)Eν
[`∆fν,`−1 − (`+ 1)∆fν,`+1]− a2Γνmν

Eν
∆fν,`. (4.26)
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We have derived fluid equations for the decaying neutrinos in order to integrate out
the dependency on momenta, similarly as we did for the warm daughter species in
Chapter 3. However, we found that it is not so trivial to relate the collision terms
in the Boltzmann hierarchy for the DR daughter (see Eq. (4.34)-Eq. (4.37)) with the
elements of the neutrino stress-energy tensor: δν , θν and σν. In addition, the gain
in speed provided by these fluid equations is not a high as for the decaying dark
matter scenario of Chapter 3. This is mainly because the CLASS code implements an
optimal sampling in momentum space 5 that makes the resolution of the neutrino
Boltzmann hierarchy very manageable. For these reasons, we don’t use any fluid
equations for our analysis, but we show them in App. E.3 for the sake of completeness.

To study the perturbations of the daughter radiation, we can take moments of the
perturbed PSD, following the same convention of Chapter 3,

Fdr,` ≡
4π
ρc

∑
i=1,2

∫
dqiq

3
i ∆fdri,`, (4.27)

In terms of Fdr,`, the Boltzmann hierarchy for the radiation daughter reads

F ′dr,0 = −kFdr,1 −
2
3h
′ rdr + C0, (4.28)

F ′dr,1 = k

3Fdr,0 −
2k
3 Fdr,2 + C1, (4.29)

F ′dr,2 = 2k
5 Fdr,1 −

3k
5 Fdr,3 + 4(h′ + 6η′)

15 rdr + C2, (4.30)

F ′dr,`>2 = k

(2`+ 1) [`Fdr,`−1 − (`+ 1)Fdr,`+1] + C`, (4.31)

where rdr ≡ a4ρ̄dr/ρc. The terms C` appearing in Eq. (4.28)-Eq. (4.31) arise from
the integrated daughter collision terms in Eq. (4.13)-Eq. (4.14) projected in Leg-
endre polynomials:

C` = 2i`
∫
dΩk

4π P`(µ)
(4π
ρc

∫
dq1q

3
1

(
∂fdr
∂τ

)
C

[q1, µ]
)
, (4.32)

with µ = k̂ · q1. The overall factor of two in the equation above arises because we are
adding the collision integrals of the two massless daughters, which are of the same
form,

(
∂fdr1
∂τ

)
C

=
(
∂fdr2
∂τ

)
C

=
(
∂fdr
∂τ

)
C
. In App. E.2, we show that C` can be written as

C` =
(

8πmνΓνa2

ρc

)∫
dq

Eν
q∆fν,`

∫ q+
1

q−1

dq1q1P`

(
2Eνq1 − a2m2

ν

2qq1

)
, (4.33)

with q±1 = 1
2 (Eν ± q). Eq. (4.33) may also be obtained by taking the appropriate limit of

the more general expression in B206. Performing the integral over q1, we can obtain

5The optimal momentum sampling of CLASS typically involves a Gauss-Laguerre quadrature, which
is expected to give good results for PSD which are close to a Fermi-Dirac, like the one considered in
Eq. (4.20). On the contrary, the PSD of the warm daughter particles considered in Chapter 3 has a very
different shape from a Fermi-Dirac, so that’s why the optimal sampling was not used in that case.

6We note that the same Boltzmann hierarchy has been derived in the context of warm dark matter
decaying into dark radiation (BLINOV et al. 2020a).
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the following expressions for the first few C`’s,

C0 = 4πa2Γνmν

ρc

∫
dqq2∆fν,0, (4.34)

C1 = 4πa2Γνmν

ρc

∫
dqq2 q

Eν
∆fν,1, (4.35)

C2 = 4πa2Γνmν

ρc

∫
dqq2g2(q, Eν)∆fν,2, (4.36)

C3 = 4πa2Γνmν

ρc

∫
dqq2g3(q, Eν)∆fν,3. (4.37)

Here the functions g2(q, εν) and g3(q, εν) are given by,

g2(q, Eν) ≡ 5
2 −

3
2
E2
ν

q2 + 3
4

(E2
ν − q2)2

Eνq3 ln
(Eν + q
Eν − q

)
, (4.38)

g3(q, Eν) ≡ 25
2
Eν
q
− 4q
Eν
− 15

2
E3
ν

q3 + 15
4

(E2
ν − q2)2

q4 ln
(Eν + q
Eν − q

)
. (4.39)

Given the complicated integrals in Eq. (4.33), it is technically challenging to keep
track of all the collision terms in the Boltzmann hierarchy. Instead, we choose to
keep just the first few C`’s for ` ≤ `max. The idea behind this approach is that C`
is of order O((Tdec/mν)`) around the time of decay. Therefore, for non-relativistic
decay (Tdec/mν � 1), it is self-consistent to set C`>`max = 0 because those terms only
have negligible effect on physical observables. To understand the scaling of C`, we
first note that the integral over q in Eq. (4.34)-Eq. (4.37) receives most of its support
from the region around q ∼ Tν,0 because ∆fν,` inherits features of the Fermi-Dirac
distribution from f̄ν,i = 1/(eq/Tν,0 + 1). Deep in the non-relativistic region, q � Eν and
Tν0 � amν. In this regime, we can employ a Taylor expansion for the functions g2
and g3 in powers of q/Eν to obtain,

g2(q, Eν) ≈ 4
5
q2

E2
ν

, g3(q, Eν)≈4
7
q3

E3
ν

, for (q � Eν). (4.40)

Inserting Eq. (4.40) above into Eq. (4.34)-Eq. (4.37), it is straightforward to see that
C` ∝ (Tν0/amν)`. Moreover, if we assume decay happens deep in the non-relativistic
region, we will get C` ∝ (Tdec/mν)` when decay happens, where Tdec = Tν0/adec.
Therefore, C` is suppressed by powers of Tdec/mν � 1 for higher `. To further justify
this argument, we show in Sect. 4.4.3 that setting `max = 2 or `max = 3 makes
negligible difference to cosmological observables (see Fig. 4.5). Therefore, we only
keep C`≤3 and set C`>3 = 0 in our numerical study for simplicity.

Physically, the expansion in the small parameter Tdec/mν corresponds to perturb-
ing about the ultra-nonrelativistic limit in which the momentum of the mother parti-
cle has completely redshifted away, so that it has come to rest in the cosmic frame.
Energy and momentum conservation is respected order by order in this expansion.
The earlier work C19 approximated the Boltzmann hierarchy for daughter radiation
(Eq. (4.28)-Eq. (4.31)) by just keeping C0 and setting all the C`≥1 = 0. It is clear
from the above discussion that this is a consistent approximation to zeroth order in
an expansion in the small parameter Tdec/mν. The authors in B20 argued that the
Boltzmann hierarchy for daughter radiation in C19 does not reproduce the standard
decaying CDM scenario and does not respect momentum conservation. Both criti-
cisms can be addressed by considering the term C1. Since C1 begins at O(Tdec/mν),
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Figure 4.3 – Residuals in the the CMB lensed TT (upper), EE (middle) and lensing (lower)
spectrum for a fixed value of the neutrino mass and several decay widths. The residuals are
taken with respect to the ΛCDM best-fit parameters from Planck 2018. The ΛCDM parameters
are kept fixed in all cases.

we see that the Boltzmann hierarchy in C19 does in fact reproduce the decaying CDM
scenario and respects momentum conservation up to O(Tdec/mν) corrections, consis-
tent with the approximation. In this limit, the momenta of the daughter particles
arise entirely from the rest mass of the mother. In practice, since the contributions
of neutrinos to the density perturbations are small, we will see that the higher order
terms do not significantly affect the constraints derived in C19 with Planck15 data.

4.4.2 Impact of the non-relativistic neutrino decay on the CMB spectra

We briefly summarize the impact of the non-relativistic invisible neutrino decays
on the CMB spectra, following the discussion in C19. In Fig. 4.3, we display the
residuals in the CMB (lensed) TT, EE and lensing power spectra, for the sum of neu-
trino masses

∑
mν = 0.6 eV and several decay widths Log10(Γν/km/s/Mpc) = 0, 2, 4, 6.

In all cases, the ΛCDM parameters are set to their best-fit values from Planck18,
that is, {100θs = 1.04089, ωcdm = 0.1198, ωb = 0.02233, ns = 0.9652, ln(1010As) = 3.043,
τreio = 0.0540}. Our reference ΛCDM model makes use of the same parameters and
assumes standard massless neutrinos.

For the value of the mass considered (
∑
mν = 0.6 eV) and at fixed angular size

of the sound horizon θs, neutrino masses primarily impact the lensing spectrum.
Indeed, as they reduce power below the free-streaming scale, they produce a
significant matter power suppression at small scales, which leads to a ∼ 20%
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reduction in the Cφφ` at large ` (blue curve in Fig. 4.3). Consequently, this power
suppression decreases the smoothing in the high-` part of the TT and EE spectra,
which can be seen as ‘wiggles’ in the corresponding plots.

In addition, stable neutrinos dilute like non-relativistic matter at late times
(ρ̄ν ∼ a−3), which increases the value of Ωm. As we impose the closure relation
Ωm+ΩΛ = 1 at late-times, this is compensated for by a decrease in ΩΛ (later beginning
of Λ-domination), and thus a reduction in the Late Integrated Sachs-Wolfe effect
(LISW), leaving a signature in the low-` TT spectrum. Furthermore, the modified
expansion history H(z) changes quantities integrated along z, such as τreio, which
affects the multipoles at ` ∼ 10 in the EE spectrum.

When a non-negligible Γν is considered (orange, green and red curves in Fig. 4.3),
one can see that the aforementioned effects typically become less prominent for earlier
decays. This is particularly true for the high-` part of the lensing spectrum (and
consequently the smoothing at high-` in TT and EE) since decay of neutrinos reduce
their impact on structure formation. The reduction of the effect in the low-` part of
the TT and EE spectra is not entirely monotonic, as intermediate values of Γν can
induce additional time variation in the gravitational potentials (thereby affecting the
LISW effect), as well as time variations in H(z) (thereby affecting τreio). As a result,
the ΛCDM limit is reached not only for small values of

∑
mν, but also for high values

of Γν. This will be reflected in the MCMC analysis in Sect. 4.5, which shows a large
positive correlation between both parameters. It is precisely this degeneracy which
relaxes the neutrino mass bounds.

4.4.3 Consistency of the implementation of the Boltzmann equations

We begin by comparing the approximation used in C19 for the background energy
density of decaying massive neutrinos to the more accurate results obtained by eval-
uating the integral in Eq. (4.20) numerically. In C19, the phase space distribution of
neutrinos in Eq. (4.20) is approximated through the following analytic formula,

f̄ν(q, τ) = f̄ν,i(q)e−Γνt/γ . (4.41)

As argued in C19, this approximation is valid under the assumption that the
decay happens deep in the non-relativistic regime. To see the difference between
the approximation and the full result, we plot the ratio r ≡ (ρ̄ν + ρ̄dr)/ρ̄ur in Fig. 4.4,
for several values of the decay width Γν and a fixed value of the total neutrino mass∑
mν = 0.06 eV. Here ρ̄ur denotes the energy density of stable massless neutrinos.

If neutrinos decay while relativistic, this ratio always gives r ' 1. However, if the
decay happens when the neutrinos are already non-relativistic (ρ̄ν ∼ a−3 ), then
the ratio evolves from r ' 1 to r ∼ a, and will eventually reach a plateau once
all the neutrinos have decayed. From Fig. 4.4, we can see that the approximate
formula in Eq. (4.41) gradually improves as we go to smaller decay widths (that
is, going deeper into the regime of non-relativistic decays), as expected. The error
in the case of neutrinos decaying right around the time of the non-relativistic
transition (Log10(Γν/[km/s/Mpc]) ' 4 for

∑
0.06 eV) is around 25%. Nevertheless, as

we argue below, the impact on observables is much smaller given that neutrinos
only contribute a small fraction of the total energy density for masses considered in
this work. Not surprisingly, the approximate formula fails in the relativistic regime,
leading to r < 1 at late-times. Therefore future work focusing on this regime should
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Figure 4.4 – Redshift evolution of the quantity (ρ̄ν+ρ̄dr)/ρ̄ur (where ρ̄ur denotes the energy den-
sity of stable massless neutrinos), which should be equal to 1 in the limit of relativistic decays.
We consider a very small value of the neutrino mass sum,

∑
mν = 0.06 eV, and several values

for the decay width, Log10(Γν/km/s/Mpc). “approx. PSD” refers to the approximated phase
space distribution in Eq. (4.41) while “Full PSD” refers to the exact solutions of Eq. (4.20).

make use of the exact formula.

In Fig. 4.5 and Fig. 4.6, we show the effects of various approximations in
dealing with decaying neutrinos (at the background and perturbation level) on
the CMB TT, EE and lensing spectra. We compare the impact of using either
the approximated or the exact PSD of neutrinos discussed above, as well as the
impact of only keeping C`≤`max in the Boltzmann hierarchy of daughter particles in
Eq. (4.28)-Eq. (4.31), where we vary `max from zero to three. We show the residuals
of these approximations with respect to the ‘optimal’ case (i.e. including all terms
up to `max = 3 and the exact background PSD) for a fixed value of the neutrino mass
(
∑
mν = 0.6 eV) and two different decay widths (Log10(Γν/[km/s/Mpc]) = 5.5 in Fig. 4.5

and Log10(Γν/[km/s/Mpc]) = 4 in Fig. 4.6). Fig. 4.5 corresponds to decays happening
around the time of the non-relativistic transition, Tdec/mν ' 0.3, where the effects of
the approximations are expected to be largest. Fig. 4.6 on the other hand refers to
decays happening deep in the non-relativistic regime, Tdec/mν ' 0.03. We also show
the Planck18 1-σ error bars, as well as the (binned) cosmic variance.

For decays close to the non-relativistic transition Tdec/mν ' 0.3 shown in Fig. 4.5,
we find that the biggest improvement in the CMB TT spectrum occurs when including
C`≤1 (i.e., the contribution from the decaying neutrino bulk velocity) in the Boltzmann
hierarchy of daughter radiation, which impacts the integrated Sachs-Wolfe (ISW)
effect at multipoles ` . 100. On the other hand, the approximate background
distribution of neutrinos does not have a significant effect. For the CMB EE spectrum
shown in the same figure, which is not sourced by the ISW effect, the impact of
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Figure 4.5 – Fractional change in the CMB TT (upper), EE (middle) and lensing (lower) spec-
trum, when imposing different prescriptions for the background energy density distribution
and Boltzmann hierarchies. “approx. PSD” refers to the approximate phase space distribution
in Eq. (4.41) while “Full PSD” refers to the exact solution of Eq. (4.20). “C`” in the plot means
we only keep those collision terms in Eq. (4.28)-Eq. (4.31). The chosen values of the neutrino
mass (

∑
mν = 0.6 eV) and decay width (Log10(Γν/[km/s/Mpc]) = 5.5) correspond to the case

when neutrinos decay close to non-relativistic transition (Tdec/mν ' 0.3). The gray shaded re-
gion indicates Planck18 1-σ uncertainties, while the pink boxes indicate the (binned) cosmic
variance.

the approximate background distribution of neutrinos is comparable to the effect of
the approximate perturbed hierarchy. Nevertheless, one can see that for `max ≥ 2,
additional contributions to the daughter hierarchy have negligible impacts, which
justifies our choice of cutting the collision term C` contribution at `max = 3. Finally
for the CMB lensing spectrum, the effects due to the approximate treatment of
the background PSD dominate over the ones due to including higher order terms
in the Boltzmann hierarchy of the dark radiation. This is expected given that the
matter power spectrum suppression scales approximately with ρ̄ν/ρ̄m (HU et al.
1998; LESGOURGUES et al. 2018) where ρ̄m is the total matter density, while neutrino
perturbations are very small well below the free-streaming scale, so that their detailed
dynamics is not as important as on larger scales.

The impact of the various approximations in the case of decays deep in
the non-relativistic regime Tdec/mν ' 0.03, displayed in Fig. 4.6, is much less
visible. In that case, one can therefore safely neglect C`>0 and consider the
approximate PSD, as done in C19.
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Figure 4.6 – Same as in Fig. 4.5 , but with a smaller decay width (Log10(Γν/[km/s/Mpc]) = 4),
corresponding to a neutrino decay happening deep in the non-relativistic limit (Tdec/mν ' 0.03).

4.5 Cosmological constraints

4.5.1 Details of the analysis

In this section we perform a numerical scan over the parameter space to obtain
updated limits on the neutrino mass and lifetime. We perform comprehensive MCMC
analyses with the MontePython-v3 (AUDREN et al. 2013; BRINCKMANN et al. 2019a)
code interfaced with our modified version of CLASS . We fit the decaying neutrino
model to a combination of the following data-sets:

• The Planck18 high-` TT, TE, EE + low-` data TT, EE + lensing data. We will also
compare these results with the use of Planck15 data to disentangle the effects of
our improved formalism and that of the new data.

• The BAO measurements from 6dFGS at z = 0.106 (BEUTLER et al. 2011), SDSS
DR7 at z = 0.15 (ROSS et al. 2015), BOSS DR12 at z = 0.38, 0.51 and 0.61 (ALAM

et al. 2017), and the joint constraints from eBOSS DR14 Ly-α auto-correlation at
z = 2.34 (SAINTE AGATHE et al. 2019) and cross-correlation at z = 2.35 (BLOMQVIST

et al. 2019).

• The measurements of the growth function fσ8(z) (FS) from the CMASS and LOWZ
galaxy samples of BOSS DR12 at z = 0.38, 0.51, and 0.61 (ALAM et al. 2017).

• The Pantheon SNIa catalogue, spanning redshifts 0.01 < z < 2.3 (SCOLNIC et al.
2018).
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Figure 4.7 – 2D posterior distribution of the decaying neutrino model reconstructed from the
analysis of BAO + FS + Pantheon together with either Planck15 or Planck18 data. In the top
panel, we show the correlation with other cosmological parameters.

We adopt flat priors on the following six ΛCDM parameters: {ωb, ωcdm, H0, ns, As, τreio}.
We assume three degenerate neutrinos decaying into massless radiation and consider
flat priors on

∑
mν/eV and Log10(Γν/[km/s/Mpc]). In order to accelerate conver-

gence, we split the parameter space between Log10(Γν/[km/s/Mpc]) ∈ [0.1, 2.5] and
Log10(Γν/[km/s/Mpc]) ∈ [2.5, 6.5]. In both cases we take wide priors on

∑
mν ∈ [0.06, 1.5]

eV. We assume our MCMC chains to be converged when the Gelman-Rubin criterion
R − 1 < 0.05 (GELMAN et al. 1992). In our baseline analysis, we do not apply any
specific cut to the parameter space, even if neutrinos decay in the (mildly-)relativistic
regime (this occurs for low

∑
mν and high Γν ). In App. E.4, we investigate the

impact of excluding the parameter space corresponding to relativistic decay from our
analysis and show that the limit at 95% on

∑
mν agrees within a few percent.

4.5.2 Updated limits on the neutrino mass and lifetime

The results of our analyses are presented in Fig. 4.7. For very late decays, corre-
sponding to Log10(Γν/[km/s/Mpc]) . 2.5, no relaxation of the constraints on

∑
mν/eV is

visible, in agreement with what was found in C19. The impact of the new Planck data
is visible as a significantly improved bound on the sum of neutrino mass, namely we
find

∑
mν < 0.127 eV (95%C.L.), an improvement of about ∼ 35% over 2015 data, in

good agreement with AGHANIM et al. (2020b). For Log10(Γν/[km/s/Mpc]) & 2.5, one can
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see that the bound relaxes as expected, although not as much with Planck18 data
as for Planck15 data. Taking the intersect of the non-relativistic decay line with our
2σ limit, we find that Planck18 excludes neutrino decaying non-relativistically with
masses

∑
mν > 0.42 eV (95% C.L.). This is significantly stronger than the limits from

Planck15 data, for which
∑
mν ∼ 0.9 eV was still allowed in the non-relativistic decay

scenario.

Our result also has implications for laboratory searches. For
∑
mν = 0.6 eV, the

smallest mass scale that the KATRIN experiment is designed to probe, Planck18 data
requires decay rate Γν & 105.5 km/s/Mpc, a constraint roughly one order of magnitude
stronger than from Planck15 data. However, this value of the decay rate is now
slightly beyond the regime of validity of our work 7, indicating that, in the event
of a neutrino mass discovery at KATRIN, a more involved analysis including inverse-
decays would be necessary to confirm that the decay scenario can reconcile laboratory
and cosmological measurements.

4.5.3 Comparison with former results and impact of Planck 2018 data

Comparing with the constraints presented in C19 for Planck15, we find that,
while the impact of our improved treatment is clearly visible in the CMB power
spectra (and will be relevant for future experiments), it has only a marginal impact
on the constraints, and our bounds are in very good agreement with those derived in
C19, which only included the leading order term in the daughter radiation hierarchy
8. The bulk of the improvement is due to the newest Planck18 data and can be
understood as follows.

As shown in Fig. 4.3, for the masses we consider, the main effect is an almost
scale independent suppression of CMB lensing spectrum. This suppression can be
compensated for by increasing the primordial amplitude As or by adjusting the matter
density ωcdm (see ARCHIDIACONO et al. (2017) for a discussion of the correlation
between {

∑
mν , As, τreio, ωcdm}). Due to the well-known degeneracy between As and

e−2τreio, Planck15 data, which was limited in polarization, were unable to place a
tight constraint on As, and thus the constraining power on the sum of neutrino
mass and lifetime was limited. The precise measurements of low-` polarization from
Planck18 leads to constraints on τreio that are tighter by a factor of two than those
from Planck15. As a result, parameters degenerate with τreio such as As are now
much better constrained. Consequently, the constraints on the sum of neutrino
mass and lifetime have significantly improved with Planck18 data.

To confirm this simple argument, we perform another run with Planck15 data and
a tight gaussian prior on τreio = 0.0540 ± 0.0074, chosen to match the optical depth to
reionization reconstructed from Planck18. Given that the constraints on

∑
mν are in-

dependent of Γν below Γν . 103, and the scaling above Γν . 105.5 is monotonic, we focus
on the parameter space Log10(Γν/[km/s/Mpc]) ∈ [3, 5.5] to accelerate convergence. Our

7For
∑

mν = 0.6 eV and assuming degenerate neutrino masses, the non-relativistic condition requires
Γν < 105.3 km/s/Mpc.

8Let us note that the implementation of the BAO/fσ8 DR12 likelihood used in C19 within the Mon-
tePython code had an issue that led to constraints on

∑
mν that were somewhat milder than the true

bounds. MontePython has since then been corrected, leading to an improvement on the constraints on
the stable/long-lived (Γν < 103 km/s/Mpc) case by about 20%. However, we have verified that this bug
had no impact in the short-lived case (Γν > 102.5 km/s/Mpc).
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Figure 4.8 – Posterior distribution of
∑
mν and Log10(Γν/[km/s/Mpc]) with Planck18 and

Planck15 + a prior on τreio from Planck18.

results are presented in Fig. 4.8, where one can see that this simple prescription leads
to constraints that are very similar to those from the full Planck18 data. We attribute
the remaining differences to the additional constraining power of Planck18 data on
the parameters ωcdm and ωb, which are mildly correlated with

∑
mν (see Fig. 4.7, top

panel). Note that our constraints are a factor of two weaker than those advocated
in LORENZ et al. (2021), which performed a ‘model-independent’ reconstruction of
the neutrino mass as a function of redshift, but neglects the decay products. As we
show here, including details about the daughter radiation is necessary to accurately
compute the effect of neutrino decays even in the non-relativistic regime. Finally,
as discussed in ARCHIDIACONO et al. (2017) and CHACKO et al. (2021), a combina-
tion of CMB data with future tomographic measurements of the power spectrum by
DESI (FONT-RIBERA et al. 2014) or Euclid (AMENDOLA et al. 2018), and an improved
determination of the optical depth to reionization by 21-cm observations with SKA
(MAARTENS et al. 2015; LIU et al. 2016), could greatly increase the sensitivity of cos-
mological probes to neutrino masses and lifetimes.

4.6 Summary and outline

Cosmological observations are known to set the strongest constraints on the sum
of neutrino masses. Yet, the existing mass bound from CMB and LSS measurements,
which assumes that neutrinos are stable, is significantly weakened if neutrinos
decay. In this work, we provide up-to-date limits on the lifetime of massive neutrinos
that decay into dark radiation after becoming non-relativistic, from a combination of
CMB, BAO, growth factor measurements, and Pantheon SN1a data.
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Compared to the earlier analysis in C19, we have incorporated higher-order
corrections up to O((Tdec/mν)3) when solving the dark radiation perturbations, and
also performed the full calculation of the background energy density of the decaying
neutrino using Eq. (4.20). The more precise treatment of the Boltzmann equations
and the background energy evolution in our MCMC study improves the coverage of
the case when the neutrinos decay early so that their average momenta are close
to their masses. As shown in Fig. 4.6, if neutrinos decay when having Tν � mν/3,
the inclusion of higher moment perturbations C`≥2 gives a negligible change to the
power spectra as compared to the experimental uncertainties. However, the complete
calculation of the neutrino energy does improve the prediction for the power spectrum
significantly from the approximate result using Eq. (4.41) when the decays happen
semi-relativistically. Nevertheless, we have found that constraints from Planck15,
given their limited precision, are unaffected by these considerations. However, we
anticipate that these effects will be relevant for future experiments (as well as an
essential contribution in the relativistic case, to be considered in the future).

In fact, we have shown that the bulk of the improvement in the constraining
power compared to C19 comes from the use of Planck18 data. Indeed, we have
demonstrated that the improved τreio measurement from the low-` polarization
data helps breaking the degeneracy in the CMB power spectrum amplitude and
strengthens the bound on the neutrino mass and lifetime. As a result, we have
found that neutrinos with

∑
mν > 0.42 eV (2σ) cannot be made consistent with

cosmological data if they decay while non-relativistic, a significant improvement from
Planck15 data for which masses as high as

∑
mν ∼ 0.9 eV were consistent with the

non-relativistic decay scenario (C19).

We have argued that one notable application of this result is that, if the KATRIN
experiment sees an electron neutrino with mν ≈ 0.2 eV (the advocated sensitivity),
our result would constrain Γν & 105.5 km/s/Mpc, i.e. the neutrinos would need
to decay between z ≈ 2 × 102 − 4 × 103, while they are still relativistic, so that our
bounds and the bounds studied in B20 would not apply. In case of a neutrino
mass discovery at KATRIN, a more involved analysis including inverse-decays would
be necessary to firmly confirm that the decay scenario can reconcile laboratory
and cosmological measurements. Additionally, our results show that the tentative
exclusion of the inverted mass ordering (SIMPSON et al. 2017; VAGNOZZI et al. 2017;
PALANQUE-DELABROUILLE et al. 2020; DI VALENTINO et al. 2021a), based solely on
the fact that the inverted ordering predicts

∑
mν > 0.1 eV, is highly dependent on the

hypothesis that neutrinos are stable on cosmological time-scales. Non-relativistic
decays can still easily reconcile the inverted ordering with cosmological data.

Finally, let us mention that even though current exclusion bounds in Fig. 4.7 do
not set independent constraints on the neutrino mass and lifetime, next generation
measurements of the matter power spectrum at different redshifts can help break
that degeneracy (CHACKO et al. 2021). It will be interesting to revisit the forecast on
the sensitivity of future cosmological data to the sum of neutrino masses and their
lifetime in light of our improved formalism.
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Conclusions

The main goal of this work was to constrain or search for signs of exotic physics
using current cosmological data. An important focus has been the theoretical inter-
pretation of two longstanding experimental discrepancies in cosmology: the H0 and
S8 tensions. While unknown systematic effects at the origin of these discrepancies
are not excluded, the existence of several independent observations disfavoring the
CMB predictions could point to a major failure of the ΛCDM scenario. I have put new
and robust constraints on several extensions of ΛCDM that are targeted at explaining
these tensions, such as Decaying Dark Matter and Early Dark Energy. Additionally,
I have used cosmic data to better characterize the properties (mass and lifetime) of
one of the most elusive particles in the universe, the neutrino. In all my projects, a
special attention has been given to the CMB anisotropies, which provides a powerful
tool to test deviations from the standard model of cosmology and the standard model
of particle physics. My approach has always been very phenomenological, so that
the derived constraints can apply to many different theoretical high-energy physics
models.

In Chapter 1, I started with a thorough review of the standard tools needed to
compute the most relevant cosmological observables, including the CMB and matter
power spectra. At the end of this Chapter, I briefly discussed the challenges that
the ΛCDM paradigm has to face: the nature of the dark sector and the cosmological
tensions.

In Chapter 2, I have analyzed a model of Early Dark Energy, which has been shown
to provide a simple resolution to the Hubble tension if the EDE component contributes
a fraction fEDE ' 10% of the energy density of the universe at zc ' 3500, and dilutes
as or faster than radiation afterwards. However, some authors have pointed out that
the best-fit EDE cosmology requires a larger value of S8, so that including LSS data
in the analysis highly restricts the resolution to the tension. I have reassessed this
claim by confronting an EDE model whose only parameter is fEDE(zc) against a wide
variety of datasets. This analysis shows that EDE is detected at ∼ 2σ from Planck
CMB data alone, and that the addition of BAO, SNIa and weak-lensing data does not
significantly worsen the fit to the S8 measurements with respect to ΛCDM. The main
conclusion is that current weak-lensing data is not constraining enough to rule out
the resolution to the H0 tension provided by EDE.
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In addition, I have participated in a review of different models that have proposed
to resolve the Hubble tension, spanning early-time solutions (such as Early Dark
Energy) and late-time solutions (such as Decaying Dark Matter). The main goal was
to go beyond a simple bibliographic compilation, and quantify for the first time the
relative success of several models in explaining the discrepancy. To achieve that, we
confronted seventeen different models proposed in the literature against a variety of
cosmological data, and quantified the relative success of each model using a series
of metrics. This work provides a series of benchmarks for future model-builders
wishing to assess the level of success of a given model/scenario.

In Chapter 3, I have studied the cosmological impact of a scenario where CDM
is allowed to decay into massless (dark radiation) and massive (warm DM) species.
I have performed the first thorough analysis of this 2-body DM decay scenario
including a realistic treatment of linear perturbations. In this way, I have obtained
the strongest constraints up-to-date for these kind of models (using CMB, BAO and
SNIa data), and showed that the S8 tension can be resolved if DM decays with a
lifetime of Γ−1 ' 55 Gyr and transfers around 0.7% of its rest-mass energy to the
massless component. This analysis was possible thanks to a new and accurate fluid
approximation scheme that I developed for the warm species, and which allowed
to reduce the CPU time in the calculations from ∼ 1 day to only ∼ 1 minute. I
also considered alternative CMB data-sets (like those from ACT-DR4 and SPTPol),
discussed a potential connexion with the recent XENON1T excess, and showed that,
while current data are not sensitive enough to distinguish between standard CDM
and decaying DM, future CMB observations can unambiguously detect its signature.

In Chapter 4, I have updated the constraints on the mass and lifetime of active
SM neutrinos. Currently, the strongest limit of the sum of neutrino mass comes
from cosmology,

∑
mν < 0.12 eV, but these determinations assume that neutrinos are

stable on cosmic timescales. The idea of neutrino decay is particularly interesting
in the eventuality that laboratory experiments (like KATRIN) will measure a value
of the neutrino mass bigger than the one inferred from cosmological observations.
It has been shown that, for neutrinos decaying to dark radiation while being
non-relativistic, the stringent CMB constraints on the sum of neutrino masses can
be significantly relaxed (up to

∑
mν ∼ 0.9 eV). I have gone beyond previous work by

improving the Boltzmann treatment of neutrino decays both at the background and
linear perturbation level. This has allowed us to show that, given the new Planck
2018 CMB measurements, non-relativistic neutrino decays can relax the bound of
neutrino masses only up to

∑
mν ∼ 0.4 eV.
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In conclusion, current cosmological data carry a wealth of information that is still
far from being fully exploited. It is an exciting time for cosmology, since the upcoming
arrival of new and more precise data will allow to test models suggested to resolve cos-
mic tensions (such as the ones studied in this work), and to possibly establish a new
concordance model. I hope that my research work has been useful in that direction.





Appendices





A
Complements on linear

perturbation theory

In this appendix we provide some important calculations regarding the theory of
linear cosmological perturbations, that were a bit too long to be included in Chapter 1.
We always assume a spatially flat background metric.

A.1 The four velocity in a generic gauge

The goal is to compute the four-velocity Uµ = Ūµ + δUµ at linear order in a generic
gauge. We remind that metric perturbations are generically written as

δg00 = −2a2(τ)A, δg0i = a2(τ)Bi, δgij = a2(τ)Hij , (A.1)

For a comoving observer, Ūµ = a−1δµ0 (the a−1 factor appears because we are working
in conformal time), which means Ūµ = ḡµνŪ

ν = −aδ0
µ. Let us now obtain δUµ and δUµ.

Using that ḡµνŪµŪν = gµνU
µUν = −1, we get at linear order

δgµνŪ
µŪν + 2ŪνδUν = 0, (A.2)

from which we can infer that δU0 = −a−1A. Writing δU i = a−1vi, where vi is the
coordinate velocity, we arrive at

Uµ = 1
a

[1−A, vi]. (A.3)

A.2 Gauge transformations

We want to prove the following gauge transformation for the 0i metric perturbation

Bi −→ B̃i = Bi + ∂iT − L′i (A.4)

We simply have to substitute the coordinate transformation Eq. (1.152) and the per-
turbed metric elements Eq. (A.1) in the transformation law for tensors Eq. (1.153).
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Expanding the derivatives and always keeping linear order:

g0i(x) = a2(τ)Bi = ∂x̃α

∂x0
∂x̃β

∂xi
g̃αβ(x̃)

= ∂x̃0

∂x0
∂x̃0

∂xi
g̃00 + ∂x̃0

∂x0
∂x̃j

∂xi
g̃0j +

�
���

��∂x̃j

∂x0
∂x̃0

∂xi
g̃j0 + ∂x̃l

∂x0
∂x̃s

∂xi
g̃ls

= a2(τ + T )
(
−∂iT (1 + T ′)(1 + 2Ã) + (1 + T ′)(δij + ∂iLj)B̃j + L′l(δis + ∂iLs)(δls + H̃ls)

)
= a2(τ)(1 + 2HT )

(
−∂iT + B̃i + L′i

)
= a2(τ)

(
−∂iT + B̃i + L′i

)
. (A.5)

Let us now prove the gauge transformation for the overdensity

δρ −→ δρ̃ = δρ− T ρ̄′, (A.6)

Expanding the derivatives in Eq. (1.161) and keeping linear order:

T 0
0(x) = −(ρ̄(τ) + δρ) = ∂x0

∂x̃α
∂x̃β

∂x0 T̃
α
β(x̃)

= ∂x0

∂x̃0
∂x̃0

∂x0 T̃
0

0 +
�
���

��
∂x0

∂x̃0
∂x̃i

∂x0 T̃
0
i +

��
����

∂x0

∂x̃i
∂x̃0

∂x0 T̃
i
0 +

���
���∂x0

∂x̃i
∂x̃j

∂x0 T̃
i
j

= −(1− T ′)(1 + T ′) (ρ̄(τ + T ) + δρ̃) = −
(
ρ̄(τ) + T ρ̄′ + δρ̃

)
. (A.7)

A.3 The 0 component of the geodesic equation

The goal is to compute the 0 component of the geodesic equation. But for this, we
first need to compute the Christoffel symbols in a perturbed FLRW universe, which
will also be useful for other calculations. From now on, we work in conformal time and
assume the Newtonian gauge. We will simply have to plug the elements of the metric

g00 = −a2(1 + 2ψ), gij = a2(1− 2φ)δij , (A.8)

and the inverse metric

g00 = −a−2(1− 2ψ), gij = a−2(1 + 2φ)δij , (A.9)

in the definition for the Christoffel symbols:

Γµαβ = 1
2g

µλ (∂αgβλ + ∂βgαλ − ∂λgαβ) . (A.10)

We start with Γ0
00, systematically discarding all terms beyond linear order

Γ0
00 = g00

2 (2∂0g00 − ∂0g00) = g00

2 ∂0g00 = (1− 2ψ)
2a2 ∂0

[
a2(1 + 2ψ)

]
= H+ ψ′. (A.11)

We compute in the same way the rest of Christoffels, having in mind that g0i = g0i = 0.

Γ0
0i :

Γ0
0i = 1

2g
0λ (∂0gλi + ∂ig0λ − ∂λg0i) = g00

2 ∂ig00 = (1− 2ψ)
2a2 2a2∂iψ = ∂iψ. (A.12)

Γi
00 :
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Γi00 = 1
2g

iλ (2∂0g0λ − ∂λg00) = 1
2g

ij (2∂0gj0 − ∂jg00) = −1
2g

ij∂jg00

= δij

2a2 (1 + 2φ)2a2∂jψ = δij∂jψ. (A.13)

Γ0
ij :

Γ0
ij = 1

2g
0λ (∂igjλ + ∂jgiλ − ∂λgij) = −1

2g
00∂0gij = δij

2a2 (1− 2ψ)(a2 − 2a2φ)′

= (1− 2ψ)δij
(
H− φ′ − 2φH

)
= δij

(
H− φ′ − 2H(φ+ ψ)

)
. (A.14)

Γi
j0 :

Γij0 = 1
2g

iλ (∂jg0λ + ∂0gjλ − ∂λgj0) = 1
2g

ik∂0gjk = δikδjk(1 + 2φ)
2a2

(
a2 − 2φa2

)′
= (1 + 2φ)δij(H− φ′ − 2φH) = δij(H− φ′). (A.15)

Γi
jk :

Γijk = 1
2g

iλ (∂jgkλ + ∂kgjλ − ∂λgjk) = 1
2g

il (∂jglk + ∂kglj − ∂lgjk)

= a2δil(1 + 2φ)
2a2 (−2δlk∂jφ− 2δlj∂kφ+ 2δjk∂lφ) = −2δi(j∂k)φ+ δjkδ

il∂lφ. (A.16)

The remaining ingredients needed to compute the geodesic equation are the elements
of the 4-momentum vector Pµ = dxµ

dσ = (P 0, P i). For computing P 0, we can expand
the closure relation

−m2 = gµνP
µP ν = −a2(1 + 2ψ)(P 0)2 + p2. (A.17)

From this, we get that P 0 = E

a
√

1+2ψ
. Now, to determine P i, we write P i = Cn̂i, where n̂i

is a unit vector and C is a constant to be determined. From the definition of p, we have

p2 = C2∑
ij

gij p̂
ip̂j = a2(1− 2φ)C2∑

ij

δijn̂
in̂j = a2(1− 2φ)C2, (A.18)

which means C = p

a
√

1−2φ
. In short, using that (1 + 2ψ)−1/2 ' 1 − ψ and (1 − 2φ)−1/2 '

1 + φ, we can write:

P 0 = E

a
(1− ψ), P i = pn̂i

a
(1 + φ). (A.19)

We are finally ready to compute the 0-component of the geodesic equation. Set-
ting µ = 0 in Eq. (1.5):

dP 0

dσ
= dτ

dσ

dP 0

dτ
= P 0dP

0

dτ
= −Γ0

αβP
αP β. (A.20)

This can also be written as

d

dτ

[
E

a
(1− ψ)

]
= −Γ0

αβ

PαP β

E
a(1 + ψ), (A.21)
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where we used (P 0)−1 ' a
E (1 + ψ). By expanding the derivative and then multiplying

by a(1 + ψ) we get (after dropping all quadratic terms):

dE

dτ
= EH+ E

dψ

dτ
− Γ0

αβ

PαP β

E
a2(1 + 2ψ). (A.22)

Now, notice that we expand the derivative of ψ as dψ
dτ = ∂ψ

∂τ + dxi

dτ
dψ
dxi

, where dxi

dτ =
P i

P 0 = pp̂i

E
1+φ
1−ψ . In addition, using that E =

√
m2 + p2 we have dE

dτ = p
E
dp
dτ . We can

thus rewrite Eq. (A.22) as

dp

dτ
= E2

p
H+ E2

p

(
∂ψ

∂τ
+ pp̂i

E

dψ

dxi

)
− Γ0

αβ

PαP β

p
a2(1 + 2ψ). (A.23)

Using the expressions for the Christoffels that we derived in Eq. (A.11), Eq. (A.12) and
Eq. (A.14), we can work out the factor Γ0

αβP
αP β at the r.h.s of Eq. (A.23):

Γ0
αβP

αP β = Γ0
00(P 0)2 + 2Γ0

0iP
0P i + Γ0

ijP
iP j

= E2

a2 (H+ ψ′)(1− 2ψ) + 2pE
a2 n̂

i∂iψ + p2

a2
(
H− φ′ − 2H(φ+ ψ)

)
(1 + 2φ)

= E2

a2 (H(1− 2ψ) + ψ′) + 2pE
a2 n̂

i∂iψ + p2

a2
(
H(1− 2ψ)− φ′

)
(A.24)

We plug this in Eq. (A.23). After using (1 − 2ψ)(1 + 2ψ) ' 1, many terms simplify
and we are left with

dp

dτ
= −pH+ pφ′ − En̂i∂iψ. (A.25)

In terms of comoving momentum q = ap and comoving energy E = aE:

dq

dτ
= qφ′ − E n̂i∂iψ. (A.26)

A.4 Elements of perturbed stress-energy tensor

We want to derive the relations between the elements of the perturbed stress-
energy tensor and the Legendre multipoles of the perturbed PSD Ψ. We remind that

δTµν(τ, k) = g

∫
d3 ~P

(2π)3 (−det(g))−1/2P
µPν
P 0 f̄(τ, q)Ψ(τ, q, k, µ). (A.27)

For the newtonian gauge, the determinant gives (−det(g))−1/2 = a−4(1 − ψ − 3φ), but
the ψ and φ terms are irrelevant since the integrand in Eq. (A.27) contains Ψ, which
is already first-order. We remind that the integral in Eq. (A.27) is over covariant
three-momenta, which is given by

Pi = gijP
j = a2(1− 2φ)(1 + φ)pn̂i/a = (1− φ)qn̂i. (A.28)

This means that the integral measure can be expressed as∫ ∫ ∫
d3 ~P =

∫ 2π

0
dϕ

∫ 1

−1
dµ

∫ ∞
0

dqq2(1− 3φ), (A.29)
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where the term with φ is again irrelevant for being first-order. Now, the µ integrals
will select some particular multipole Ψ` for each of the components of δTµν 1, which
can easily be seen by plugging the expansion of Eq. (1.190) in Eq. (A.27) , and using
the orthogonality property of the Legendre polynomials∫ 1

−1
dµP`(µ)Pm(µ) = 2δ`m

2`+ 1 . (A.31)

The overdensity ρ̄δ picks the ` = 0 multipole (P0 = 1), since in this case the integrand
contains no µ terms, just the factor P0 = g00P

0 = −E(1 + ψ). The same arises for the
pressure perturbation δP , whose integrand has

∑
i

P iPi
P 0 = q2

E
(1 + ψ)

∑
i

n̂in̂jδij , (A.32)

with
∑
i n̂

in̂jδij = 1. The velocity divergence selects the ` = 1 multipole (P1 = µ) , given
that the integrand includes

∑
i k̂iPi = (1 − φ)qµ. Lastly, the anisotropic stress σ picks

the ` = 2 multipole (P2 = 1
2(3µ2 − 1)), as the integrand contains

∑
i,j

(−k̂ik̂j + δij
3 )P

iPj
P 0 = q2

E
(1 + ψ)

∑
i,j

(−k̂ik̂j + δij
3 )n̂in̂j

︸ ︷︷ ︸
−µ2+ 1

3

. (A.33)

In short,

ρ̄δ = 4π
a4

∫ ∞
0

dqq2E f̄Ψ0, (A.34)

(ρ̄+ P̄ )θ = 4πk
a4

∫ ∞
0

dqq2qf̄Ψ1, (A.35)

ρ̄Π = 4π
3a4

∫ ∞
0

dqq2 q
2

E
f̄Ψ0, (A.36)

(ρ̄+ P̄ )σ = 8π
3a4

∫ ∞
0

dqq2 q
2

E
f̄Ψ2, (A.37)

where we have absorbed a factor g/(2π)3 inside f̄ .

A.5 Collision term for photons

The task is to determine the collision integral Cγ appearing in the Boltzmann equa-
tion for the photon perturbations (c.f. Eq. (1.199)). We’ll start assuming totally generic
PSD for the particles involved, and perform the decomposition into a background
and a linear contribution at the end. In practice, we’ll see that the collision inte-
gral only contains first-order terms Cγ = C(1)

γ . The process we want to describe is
the Compton scattering off electrons

e−(~q) + γ(~p) ←→ e−(~q′) + γ(~p′), (A.38)

1In Fourier space, the elements of the perturbed stress-energy tensor are computed as

ρ̄δ = −δT 0
0, (ρ̄+ P̄ )θ = ik

∑
i

k̂iδT
0
i, ρ̄Π = 1

3
∑
i

T ii, (ρ̄+ P̄ )σ =
∑
i,j

(
−k̂ik̂j + δij

3

)
δT ij . (A.30)
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where we have already labelled the momenta of each particle (beware of notation, we’re
working with physical and not comoving momenta, even if we use the letter q). Ac-
cording to the general expression that we wrote in Eq. (1.63), the collision term reads 2

Cγ [fγ(p)] =
∫

d3~q

(2π)32Ee(q)

∫
d3~q′

(2π)32Ee(q′)

∫
d3~p′

(2π)32Eγ(p′) |M|
2(2π)4 δ3 [~p+ ~q − ~p′ − ~q′

]
× δ

[
Eγ(p) + Ee(q)− Eγ(p′)− Ee(q′)

] {
fe(q′)fγ(p′)− fe(q)fγ(p)

}
, (A.39)

whereM =Meγ,eγ denotes the invariant amplitude for Compton scattering. In the pre-
vious expression, we have neglected (1± f) factors related to stimulated emission and
Pauli blocking, since they play a negligible role in this context. Energies are of the or-
der of relativistic limit for photons and non-relativistic for electrons. Namely, Eγ(p) = p

and Ee(q) = me+ q2

2me . During the recombination epoch, the kinetic energy of electrons
is very small compared to their mass, so we can set Ee ' me in the denominator of
Eq. (A.39). Performing the d3~q′ integral with the 3-dimensional delta distribution yields

Cγ = π

4m2
e

∫
d3~q

(2π)3

∫
d3~p′

(2π)3p′
δ

[
p+ q2

2me
− p′ − |~q + ~p− ~p′|2

2me

]
× |M|2

{
fe(q + p− p′)fγ(p′)− fe(q)fγ(p)

}
. (A.40)

We can simplify the scary-looking aspect of the Dirac delta by noticing that, in the
non-relativistic Compton scattering process, very few energy is transferred

Ee(q)− Ee(q + p− p′) = q2

2me
− (~q + ~p− ~p′)2

2me
' (~p′ − ~p) · ~q

me
, (A.41)

since q � p, p′. That is, we can restrict ourselves to the Thomson limit of Compton
scattering. Now, given that p ' p′, the rhs of Eq. (A.41) is roughly pq/me, where q/me

is of the order of the baryon velocity q/me ∼ vb � 1. Therefore, we can consider the
quantity Ee(q) − Ee(q + p − p′) to be a small perturbation around (p − p′) inside the
delta distribution, and formally perform an expansion up to first order. With this and
using that fe(q + p − p′) ' fe(q), we write Eq. (A.40) as

Cγ = π

4m2
e

∫
d3~q

(2π)3 fe(q)
∫

d3~p′

(2π)3p′
|M|2

[
δ(p− p′) + (~p− ~p′) · ~q

me

∂δ(p− p′)
∂p′

] {
fγ(p′)− fγ(p)

}
.

(A.42)
The expansion of the Dirac delta is obviously very ill-defined, but it will soon find
justification when doing integration by parts. What about |M|2? This amplitude can
be computed with the help of the Feynman rules for quantum electrodynamics, as
explained for example in PESKIN et al. (1995). It can be written as

|M|2 = 6πσTm2
e(1 + (p̂ · p̂′)2) (A.43)

where we have introduced the Thomson cross-section σT = 8πα2

3m2
e
, with α = e2/4π the

fine-structure constant. In reality, the invariant amplitude also depends on polar-
ization (∝ |ε̂ · ε̂′|2, where ε̂ and ε̂′ are the polarizations of the incoming and outgoing
photons), which has been implicitly summed over in Eq. (A.43). This means that
Compton scattering induces some level of polarization on the CMB. Since the descrip-
tion of the polarization photon field is beyond the scope of this work, and its impact

2To shorten notation, we will omit the dependence of the PSD fi on µ, τ, k, and write only the depen-
dency on momenta.
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on the evolution of the photon temperature field is very small, we will neglect this ef-
fect in the following (however see Sect. 1.6.5 for a short discussion). For the moment,
let us consider the angle average of Eq. (A.43)

|Miso|2 = 8πσTm2
e (A.44)

Using Eq. (A.44), Eq. (A.42) can be expressed as

Cγ = 2π2n̄eσT

∫
d3~p′

(2π)3p′

[
δ(p− p′) + (~p− ~p′) · ~vb

∂δ(p− p′)
∂p′

] {
fγ(p′)− fγ(p)

}
. (A.45)

The factors with n̄e and n̄e~vb have appeared as a result of two integrals in q:∫
d3~q

(2π)3 fe =
∫

d3~q

(2π)3 f̄e +
�
���

��∫
d3~q

(2π)3 δfe = n̄e, (A.46)∫
d3~q

(2π)3 fe~q =
�
���

��∫
d3~q

(2π)3 f̄e~q +
∫

d3~q

(2π)3 δfe~q = (ρ̄e + P̄e)~vb ' men̄e~vb. (A.47)

In Eq. (A.46), we discard the integral over δfe since we neglect the impact of per-
turbed recombination on the CMB. In Eq. (A.47), the integral over f̄e~q vanishes by
symmetry, and we use P̄e ' 0 and ρ̄e ' men̄e, since electrons were non-relativistic by
this time. The next step is to plug in Eq. (A.45) the expansion for the photon PSD
that we showed already in Eq. (1.197)

fγ = f̄γ − p
∂f̄γ
∂p

Θ. (A.48)

This yields:

Cγ = C(1)
γ = 2π2n̄eσT

∫
d3~p′

(2π)3p′

[
δ(p− p′) + (~p− ~p′) · ~vb

∂δ(p− p′)
∂p′

]
×
{
f̄(p′)− f̄(p)− p′ ∂f̄

∂p′
Θ(p̂′) + p

∂f̄

∂p
Θ(p̂)

}

= n̄eσT
4π

∫ ∞
0

dp′p′
∫
dΩ′

(
δ(p− p′)

[
−p′ ∂f̄

∂p′
Θ(p̂′) + p

∂f̄

∂p
Θ(p̂)

]

+ (~p− ~p′) · ~vb
∂δ(p− p′)

∂p′

(
f̄(p′)− f̄(p)

))
(A.49)

In Eq. (A.49) there are only two terms that depend on p̂′ and thus must be accounted
in the solid angle integral: Θ(p̂′) and p̂′ · ~vb. The first one will just give rise to the
monopole perturbation Θ0 = 1

4π
∫
dΩ′Θ(p̂′). The second term will vanish, since we are

integrating p̂′ · ~vb = vbµ
′ over dΩ′ = −dϕ′dµ′ (notice that ~vb = vbk̂ since we only consider

the scalar/ irrotational component of the velocity). Therefore,

C(1)
γ = n̄eσT

∫ ∞
0

dp′p′
(
δ(p− p′)

[
−p′ ∂f̄

∂p′
Θ0 + p

∂f̄

∂p
Θ(p̂)

]
+ pµvb

∂δ(p− p′)
∂p′

(
f̄(p′)− f̄(p)

))
.

(A.50)

It just remains to use integration by parts on the second term inside the integrand,
and then apply the Dirac deltas. This leads to

C(1)
γ = −p2∂f̄

∂p
n̄eσT [Θ0 −Θ + µvb] . (A.51)
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This is not yet the final expression, since we totally neglected the angular dependence
in Eq. (A.43). Taking this dependence into account, leads an extra term in the collision
integral which is proportional to the quadrupole Θ2. To see this, let us extract the
anisotropic part of the invariant amplitude

δ|M|2 = |M|2 − |Miso|2 = 2πσTm2
e[3(p̂ · p̂′)2 − 1]. (A.52)

The term in square brackets is equal to 2P2(p̂ · p̂′). It will be convenient to factorize the
dependence on p̂ and p̂′ by means on the useful identity

P`(p̂ · p̂′) = 4π
2`+ 1

m=+`∑
m=−`

Y`m(p̂)Y ∗`m(p̂′). (A.53)

Hence,

δ|M|2 = σTm
2
e

16π
5

m=+2∑
m=−2

Y2m(p̂)Y ∗2m(p̂′) != σTm
2
e

16π
5 Y20(p̂)Y20(p̂′). (A.54)

In the last equality, we have taken only the m = 0 part, since the other Y2m contain
factors e±iϕ, e±2iϕ, which would vanish under the

∫ 2π
0 dϕ integral. The spherical har-

monic Y20 is directly related to the second Legendre polynomial, Y20(p̂) = −
√

5
4πP2(µ),

with µ = p̂ · k̂. Thus, the extra anisotropic contribution to the collision term is

δC(1)
γ = n̄eσT

8π P2(µ)
∫ ∞

0
dp′p′

∫
dΩ′P2(µ′)

(
δ(p− p′)

[
−p′ ∂f̄

∂p′
Θ(µ′) + p

∂f̄

∂p
Θ(µ)

]

+ (~p− ~p′) · ~vb
∂δ(p− p′)

∂p′

(
f̄(p′)− f̄(p)

))
. (A.55)

In the previous expression, the only term that survives after performing the
solid angle integral is the one proportional to Θ(µ′), since

∫+1
−1 dµ

′P2(µ′) = 0 and∫+1
−1 dµ

′P2(µ′)µ′ = 0. Thus,

δC(1)
γ = − n̄eσT2 P2(µ)

∫ ∞
0

dp′p′2δ(p− p′) ∂f̄
∂p′

∫ +1

−1

dµ′

2 P2(µ′)Θ(µ′). (A.56)

The µ′ integral in the previous equation gives rise to −Θ2. After applying
the Dirac delta,

δC(1)
γ = p2∂f̄

∂p

n̄eσT
2 P2(µ)Θ2, (A.57)

so the full collision term reads

C(1)
γ = −p2∂f̄

∂p
n̄eσT

[
Θ0 −Θ + µvb −

P2(µ)
2 Θ2

]
. (A.58)

A.6 Conservation equations from the collisionless Boltz-
mann equation

Here we derive the two conservation equations, by integrating the collisionless
Boltzmann hierarchy over the phase space. This calculation is relevant for mas-
sive neutrinos but also for any warm species that decoupled in the very early uni-
verse. We’ll be using repeatedly the integral expressions for δ, θ, δP and σ shown in
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Eq. (1.192)-Eq. (1.195), as well as the integral expressions for ρ̄ and P̄ shown in
Eq. (1.55) and Eq. (1.56). We start with the perturbed continuity equation. This can
be obtained from the equation for the zeroth multipole (c.f. Eq. (1.211))

∂Ψν,0
∂τ

= −kq
E

Ψν,1 −
dln̄f
dlnqφ

′, (A.59)

The idea is to integrate previous equation over 4πa−4 ∫ dqq2E f̄ , in order to get a dy-
namical equation for δρν. This yields

4π
a4

∫
dqq2E ∂(f̄Ψν,0)

∂τ︸ ︷︷ ︸
I

= − 4πk
a4

∫
dqq3f̄Ψν,1︸ ︷︷ ︸
II

− φ
′4π
a4

∫
dqq3E df̄

dq︸ ︷︷ ︸
III

. (A.60)

Let us focus on each term separately. The term II is the easiest one, since it directly
gives (ρ̄ν + P̄ν)θν by definition. For the term III, we need to perform integration by
parts. Using ∂E

∂q = q
E , we get

q3E df̄
dq

= d

dq

(
q3E f̄

)
− 3

(
f̄ q2E + f̄

q4

3E

)
. (A.61)

When this is inserted in the integral for the term III, the total derivative term vanishes,
and we are left with −3(ρ̄ν + P̄ν)φ′. Moving to the term I, the goal is to take the time
derivative out of the integral, which will require to know the time derivative of the
energy, E ′. Since E =

√
q2 + a2m2

ν, this gives

E ′ = m2
νa

2

E
H = E

2 − q2

E
H = EH − q2

E
H. (A.62)

We can now proceed to take the time derivative out of the term I in order to make
δρ′ν appear, and evaluate the remaining terms:

I = 4π
a4

∂

∂τ

(∫
dqq2E f̄Ψν,0

)
− 4π
a4

∫
dqq2f̄Ψν,0E ′.

= (δρν)′ + 4Hδρν −H
(

4π
a4

∫
dqq2E f̄Ψν,0 −

4π
a4

∫
dqq2 q

2

E
f̄Ψν,0

)
= (δρν)′ + 4Hδρν −H(δρν − 3δPν)
= (δρν)′ + 4Hδρν −Hδρν(1− 3c2

s)
= (δρν)′ + 3Hδρν(1 + c2

s). (A.63)

Putting all together,

(δρν)′ = δ′ν ρ̄ν + δν ρ̄
′
ν = −3Hδρν(1 + c2

s)− ρ̄ν(1 + wν)θν + 3ρ̄ν(1 + wν)φ′. (A.64)

Dividing by ρ̄ν, it can be equivalently written as:

δ′ν = − ρ̄
′
ν

ρ̄ν
δν − 3Hδν(1 + c2

s)− (1 + wν)
(
θν − 3φ′

)
. (A.65)

Using ρ̄′ν
ρ̄ν

= −3H(1 + wν) 3, we arrive at the perturbed continuity equation:

δ′ν = −3H(c2
s − wν)δν − (1 + wν)

(
θν − 3φ′

)
. (A.66)

3The background continuity equation, ρ̄′ν = −3H(1 + wν)ρ̄ν , could be derived in a very similar way by
integration of the background Boltzmann equation, ∂f̄

∂τ
= 0, over 4πa−4 ∫ dqq2E.
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Let us now consider the Euler equation. It can be derived from the equation for
the first multipole (c.f. Eq. (1.212))

∂Ψν,1
∂τ

= kq

3E [Ψν,0 − 2Ψν,2]− Ek3q
dln̄f
dlnqψ, (A.67)

To get a dynamical equation for θν, we integrate the former equation over
4πka−4 ∫ dqq3f̄ , yielding

4π
a4

∫
dqq3∂(f̄Ψν,1)

∂τ︸ ︷︷ ︸
I

= 4πk2

3a4

∫
dq
q4

E
f̄Ψν,0︸ ︷︷ ︸

II

− 8πk2

3a4

∫
dq
q4

E
f̄Ψν,2︸ ︷︷ ︸

III

− ψ4πk2

3a4

∫
dqq3E df̄

dq︸ ︷︷ ︸
IV

. (A.68)

The terms II and III give by definition k2δPν and k2(ρ̄ν + P̄ν)σν, respectively. For the
term IV we need to integrate by parts on q3E df̄dq , but this is precisely what we already
did in Eq. (A.61). Thus, the term IV just gives −(ρ̄ν + P̄ν)k2ψ. Regarding the term I,
the goal is again to take the time derivative out of the integral to make θ′ν appear:

I = 4π
a4

∂

∂τ

(∫
dqq3f̄Ψν,1

)
= ∂

∂τ

[
(ρ̄ν + P̄ν)θν

]
+ 4H(ρ̄ν + P̄ν)θν

= ρ̄′ν(1 + c2
g)θν + ρ̄ν(1 + wν)θ′ν + 4Hρ̄ν(1 + wν)θν . (A.69)

Putting all together,

ρ̄ν(1+wν)θ′ν = −ρ̄′ν(1+c2
g)θν−4Hρ̄ν(1+wν)θν+k2δPν−k2ρν(1+wν)σν+k2ρν(1+wν)ψ. (A.70)

The expression simplifies after diving by ρ̄ν(1 + wν),

θ′ν = − ρ̄
′
ν

ρ̄ν

(1 + c2
g)

(1 + wν)θν − 4Hθν + k2c2
sδρν

ρ̄ν(1 + wν) − k
2σν + k2ψ. (A.71)

Finally, using ρ̄′ν
ρ̄ν

= −3H(1 + wν), we arrive at the Euler equation

θ′ν = −H(1− 3c2
g)θν + k2

(
c2

s
1 + w

δν + ψ − σν

)
. (A.72)

A.7 Perturbed Einstein equations

The goal is to determine Einstein equations in the perturbed FLRW universe, fo-
cusing only in the scalar sector. We’ll have to compute the Ricci tensor Rµν and Ricci
scalar R appearing in the Einstein tensor at the l.h.s. of Einstein equations:

Gµν ≡ Rµν −
1
2gµνR = 8πGTµν . (A.73)

In order to compute the components of the perturbed Ricci tensor, we just need to
plug the Christoffels we computed in Eq. (A.11)-Eq. (A.16) into the definition for Rµν:

Rµν ≡ ∂λΓλµν − ∂νΓλµλ + ΓλλρΓρµν − ΓρµλΓλνρ. (A.74)
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R00:

R00 = ∂λΓλ00 − ∂0Γλ0λ + ΓλλρΓ
ρ
00 − Γρ0λΓλ0ρ

= ��
��

∂0Γ0
00 + ∂iΓi00 −��

��
∂0Γ0

00 − ∂0Γi0i + �����Γ0
00Γ0

00 + ����Γ0
0iΓi00 + Γii0Γ0

00

+ ΓiijΓ
j
00︸ ︷︷ ︸

O(2)

−�����Γ0
00Γ0

00 −����Γi00Γ0
0i − Γ0

0iΓi00︸ ︷︷ ︸
O(2)

−Γi0jΓ
j
0i

= ∇2ψ − 3∂0
(
H− φ′

)
+ 3(H+ ψ′)(H− φ′)− (H− φ′)2 δjiδ

i
j︸ ︷︷ ︸

=3

= −3H′ +∇2ψ + 3H(φ′ + ψ′) + 3φ′′. (A.75)

R0i:

R0i = ∂λΓλ0i − ∂iΓλ0λ + ΓλλρΓ
ρ
0i − Γρ0λΓλiρ

= ∂0Γ0
0i + ∂jΓj0i − ∂iΓ

0
00 − ∂iΓ

j
0j + ����Γ0

00Γ0
0i + Γjj0Γ0

0i +
�

���
Γ0

0jΓ
j
0i

+ ΓkkjΓ
j
0i −����Γ0

00Γ0
0i −����

Γ0
0jΓ

j
0i − Γj00Γ0

ij − Γk0jΓ
j
ik

= ���∂iψ
′ − ∂iφ′ −���∂iψ

′ + 3∂iφ′ + 3(H− φ′)∂iψ−3δji(H− φ
′)∂jφ︸ ︷︷ ︸

−3H∂iφ

− δjkδij︸ ︷︷ ︸
δki

∂kψ{H − φ′ − 2H(φ+ ψ)}−(H− φ′)δkj{−2δj(i∂k)φ+ δikδ
jl∂lφ}︸ ︷︷ ︸

+3H∂iφ

= 2∂iφ′ + 3H∂iψ −H∂iψ = 2∂iφ′ + 2H∂iψ. (A.76)

We have of course neglected all higher order terms and used that ∂iH = 0.
Rij:

Rij = ∂λΓλij − ∂jΓλiλ + ΓλλρΓ
ρ
ij − ΓρiλΓλjρ

= ∂0Γ0
ij + ∂kΓkij − ∂jΓ0

i0 − ∂jΓkik + Γ0
00Γ0

ij + Γkk0Γ0
ij + Γ0

0kΓkij︸ ︷︷ ︸
O(2)

+ ΓkklΓl ij︸ ︷︷ ︸
O(2)

−Γ0
i0Γ0

j0︸ ︷︷ ︸
O(2)

−Γki0Γ0
jk − Γ0

ikΓkj0 − ΓkilΓl jk︸ ︷︷ ︸
O(2)

=
[
H− φ′ − 2(φ+ ψ)

]′
δij + ∂k

(
−2δk(i∂j)φ+ δijδ

kl∂lφ
)

− ∂j∂iψ + 3∂j∂iφ+ (H+ ψ′)
[
H− φ′ − 2H(φ+ ψ)

]
δij

+ (H− φ′)
[
H− φ′ − 2(φ+ ψ)

]
(3δij − δki δkj − δkj δki)

=
[
H′ + 2H2 − φ′′ +∇2φ− 2(H′ + 2H2)(φ+ ψ)−Hψ′ − 5Hφ′

]
δij + ∂i∂j(φ− ψ). (A.77)

Let us now compute the Ricci scalar, R ≡ gµνRµν. Its expression gets simplified
because of the fact that g0i = 0, meaning that R = g00R00 + gijRij. By collecting the
previous results for the Ricci tensor and using δij∂i∂j = ∇2 and δijδij = 3, we have

a2R = −(1− 2ψ)
[
−3H′ +∇2ψ + 3H(φ′ + ψ′) + 3φ′′

]
+ (1 + 2φ)∇2(φ− ψ)

+ 3(1 + 2φ)
[
H′ + 2H2 − φ′′ +∇2φ− 2(H′ + 2H2)(φ+ ψ)−Hψ′ − 5Hφ′

]
= 6(H′ +H2)− 2∇2ψ + 4∇2φ− 12(H′ +H2)ψ − 6φ′′ − 6H(ψ′ + 3φ′). (A.78)

We are now ready to compute each component of Gµν.
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G00:

G00 = R00 −
1
2g00R = −3H′ +∇2ψ + 3H(φ′ + ψ′) + 3φ′′ + 3(1 + 2ψ)(H′ +H2)

+ 1
2
[
−2∇2ψ + 4∇2φ− 12(H′ +H2)ψ − 6φ′′ − 6H(ψ′ + 3φ′)

]
= 3H2 + 2∇2φ− 6Hφ′. (A.79)

G0i:

G0i = R0i = 2∂i(φ′ +Hψ). (A.80)

Gij:

Gij = Rij −
1
2gijR =

[
H′ + 2H2 − φ′′ +∇2φ− 2(H′ + 2H2)(φ+ ψ)−Hψ′ − 5Hφ′

]
δij

+ ∂i∂j(φ− ψ)− 3(1− 2φ)(H′ +H2)δij

− 1
2
[
−2∇2ψ + 4∇2φ− 12(H′ +H2)ψ − 6φ′′ − 6H(ψ′ + 3φ′)

]
δij

= −(2H′ +H2)δij +
[
∇2(ψ − φ) + 2φ′′ + 2(2H′ +H2)(φ+ ψ) + 2Hψ′ + 4Hφ′

]
δij

+ ∂i∂j(φ− ψ). (A.81)

It is time to relate the components of the perturbed Einstein tensor we just
obtained, to the components of the perturbed stress-energy tensor in Eq. (1.147)-
Eq. (1.150), as demanded by Einstein equations. We switch at this point to Fourier
space, meaning that we can make the replacements ∂i → iki and ∇2 → −k2.

• We start with the trace-free projection of the ij equation. That is, we consider
G̃ = 8πGT̃ , where G̃ ≡

∑
i,j

(
k̂ik̂j − δij

3

)
Gij and T̃ ≡

∑
i,j

(
k̂ik̂j − δij

3

)
Tij, with Tij =

gikT
k
j. According to Eq. (A.81), G̃ = −2

3k
2(φ− ψ), whereas T̃ gives at linear order

−a2∑
I(ρ̄I + P̄I)σI , by definition of the anisotropic stress. Hence, we have

k2(φ− ψ) = 12πGa2∑
I

(ρ̄I + P̄I)σI (A.82)

The index I runs over all cosmological species: photons, neutrinos, cold dark
matter and baryons.

• We move to the 00 equation. From Eq. (A.79) we get

3H2 − 2k2φ− 6Hφ′ = 8πGg0µT
µ
0 = 8πGg00T

0
0 = 8πGa2(1 + 2ψ)

∑
I

(ρ̄I + δρI). (A.83)

The zeroth-order part gives the first Friedmann equation (in conformal time)

H2 = 8πG
3 a2∑

I

ρ̄I , (A.84)

while the first-order part gives −k2φ− 3Hφ′ = 4πGa2(
∑
I δρI + 2ψ

∑
I ρ̄I). By using

Eq. (A.84) this last equation can be more conveniently expressed as

k2φ+ 3H(φ′ +Hψ) = −4πGa2∑
I

δρI . (A.85)
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• Next, we consider the 0i equation, G0i = 8πGT0i. By virtue of Eq. (A.80), we find it
to be iki(φ′+Hψ) = 4πGg00T

0
i = −4πGa2δT 0

i. Contracting each side of the equation
with i

∑
i k

i, we get
k2(φ′ +Hψ) = 4πGa2∑

I

(ρ̄I + P̄I)θI . (A.86)

• At last, we compute the trace of the ij equation,
∑
iG

i
i = 8πG

∑
i T

i
i. For the

r.h.s. we have
∑
i T

i
i = 3

∑
I(P̄I + δPI), whereas the l.h.s. gives:∑

i

Gii =
∑
i,k

gikGki

= 3a−2
[
−(2H′ +H2) + 2k2

3 (φ− ψ) + 2φ′′ + 2ψ(2H′ +H2) + 2H(ψ′ + 2φ′)
]

(A.87)

At zeroth order we get the second Friedmann equation

2H′ +H2 = −8πGa2∑
I

P̄I . (A.88)

At first order, we obtain

φ′′ +H(ψ′ + 2φ′) + (2H′ +H2)ψ + k2

3 (φ− ψ) = 4πGa2∑
I

δPI . (A.89)

A.8 Conservation of the comoving curvature perturbation

We want to show that the comoving curvature perturbation, whose expression in
the Newtonian gauge is given by

R = φ+ H(φ′ +Hψ)
4πGa2(ρ̄tot + P̄tot)

, (A.90)

is indeed constant for super-Hubble scales and for adiabatic initial conditions.
Differentiating Eq. (A.90) and multiplying by 4πGa2(ρ̄tot + P̄tot), we get:

4πGa2(ρ̄tot + P̄tot)R′ = 4πGa2(ρ̄tot + P̄tot)φ′ +H′(φ′ +Hψ) +H(φ′′ +H′ψ +Hψ′)

+H2(φ′ +Hψ) + 3H2 P̄
′
tot
ρ̄′tot

(φ′ +Hψ), (A.91)

where we used ρ′tot = −3H(ρ̄tot + P̄tot). Let us try to simplify the previous expres-
sion. Using the two Friedmann equations Eq. (A.84) and Eq. (A.88) we can replace
4πGa2(ρ̄tot + P̄tot) by H2 − H′. In the last term on the r.h.s., we can use the Poisson
equation Eq. (A.85) in order to replace 3H(φ′ +Hψ) by −4πGa2δρtot − k2φ. Hence:

(H2 −H′)R′ = (H2 −H′)φ′ +H′(φ′ +Hψ) +H(φ′′ +H′ψ +Hψ′)

+H2(φ′ +Hψ)−H P̄
′
tot
ρ̄′tot

(k2φ+ 4πGa2δρtot). (A.92)
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We can now add and substract 4πGa2HδPtot + k2H
3 (ψ − φ) on the r.h.s. and

simplify, to find

(H2 −H′)R′ = H
[
φ′′ +H(ψ′ + 2φ′) + (2H′ +H2)ψ + k2

3 (φ− ψ)− 4πGa2δPtot

]

+ 4πGa2HδPnad −Hk2
(
φ
P̄ ′tot
ρ̄′tot
− (φ− ψ)

3

)
, (A.93)

where δPnad is the non-adiabatic pressure perturbation

δPnad ≡ δPtot −
P̄ ′tot
ρ̄′tot

δρtot. (A.94)

This quantity vanishes for adiabatic modes. In addition, we notice that the first term
in brackets at the r.h.s. of Eq. (A.93) vanishes by virtue of the ii Einstein equation
Eq. (A.89). We are thus left with

(H2 −H′)R′ = −Hk2
(
φ
P̄ ′tot
ρ̄′tot
− (φ− ψ)

3

)
. (A.95)

This equation tells us that the variation of R is of the order dR
dlna ∼

(
k
H

)2
φ, meaning

that the comoving curvature perturbation doesn’t evolve on super-Hubble scales.



B
Complements on parameter

inference

In this appendix, we explain some basic tools about bayesian statistics and pa-
rameter extraction, that are routinely used to test cosmological models (such as the
ones considered in this work) against actual data. We mainly follow VERDE (2010),
HEAVENS (2009) and TROTTA (2008).

B.1 Parameter extraction

Statistics has become an essential tool for cosmologists. A minimum knowledge
of some sophisticated statistical techniques is required in order to properly extract
cosmological information from the current observables, allowing us to test deviations
from the standard ΛCDM model, or to better determine the values of a specific set of
parameters.

There are two different ways of dealing with statistics: the frequentist and the
Bayesian approach. As the name suggests, the first one is based on the classical
thought that probability can be seen as a frequency, that is, the number of times
some event occurs over the total number of trials. That is, for a frequentist, data are
repeatable but the model is fixed. For several reasons, the frequentist approach is not
the most preferred in cosmology. In particular, we cannot conduct the same proce-
dure for measuring a particular quantity (let’s say, H0), since we only observe one
realization of the universe. The predominant method in cosmology is the Bayesian
approach, in which probability is seen as a measurement of the degree of belief about
a proposition. With this notion, one can consider the probability of any event, without
necessarily having to repeat many experiments. Thus, for a Bayesian, what is repeat-
able is the model, while data are fixed. Another consequence of this definition is that,
unlike in the frequentist case, hypothesis can also be considered as events with a
certain probability distribution. The prescription for dealing with states of belief is
given by Bayes theorem, that we proceed to describe below.
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B.1.1 Bayes Theorem

The Bayes Theorem is a trivial consequence of the axioms of probability. Let us
consider some propositions A and B. The probabilities that these propositions have
a certain outcome, assuming some information I is true, are denoted by P (A|I) and
P (B|I). These probabilities can be discrete or continuous. The multiplication rule
says that the joint probability of A and B equals the probability of B, times the condi-
tional probability of A given that B has ocured (both conditional on I), i.e.

P (A,B|I) = P (A|B, I)P (B|I). (B.1)

Since we have P (A,B|I) = P (B,A|I), one easily arrives at the Bayes theorem

P (B|A, I) = P (A|B, I)P (B|I)
P (A|I) . (B.2)

What is less obvious is the way we interpret previous formula in order to extract
parameter information. Let us suppose that I is a modelM we assume to be true (for
example, the flat ΛCDM model with gravity described by General Relativity). We now
replace B by some hypothesis θ we want to test (here θ = {θ1, ..., θN} can represent the
set of N parameters of the underlying modelM) and A by the observed data d. In this
manner, we can rewrite the Bayes theorem in a more informative way

P (θ|d,M) = P (d|θ,M)P (θ|M)
P (d|M) . (B.3)

Here P (θ|M) is the prior, P (θ|d,M) is the posterior, P (d|θ,M) is the likelihood, and
P (d|M) is the Bayesian evidence. Let us describe each of these quantities:

• The prior. This represents our state of knowledge before observing the data. It is
a key quantity in Bayesian inference, since we can update a posterior probability
by using it as a prior on a new application of the Bayes theorem. For example,
a prior of the Hubble parameter P (H0|ΛCDM) can be just a top-hat function on
the interval [50, 100] km s−1Mpc−1.

• The posterior distribution. This is what we aim to determine, it gives the
probability of observing the parameters of the model, given some data. One
is in general interested in the 1-dimensional posterior distribution for the ith
parameter, P (θi|d,M). If the parameter space is N-dimensional, then P (θi|d,M)
is obtained by integrating the posterior over the remaining N−1 parameters (this
is known as marginalization). For example, if our model aims to describe the data
with only the parameters ΩM and H0, we can get the marginal 1D posterior of H0
by

P (H0|d,M) =
∫
dΩMP ({H0,ΩM}|d,M). (B.4)

Once the 1D distribution P (X|d,M) of a certain parameter X is determined, one
can compute the corresponding moments, such as the mean

µ = X̄ = 〈X〉 =
∫
XP (X|d,M)dX, (B.5)

or the variance (giving the width of the distribution)

σ2 = 〈(X − µ)2〉 =
∫

(X − µ)2P (X|d,M)dX. (B.6)
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For the uncertainty, it’s customary to quote the 68.3 % confidence intervals
+b
−a. This can be obtained with the following prescription: 1) find the value that
maximizes the posterior, Xmax, 2) go to smaller and larger values than Xmax
until the 68.3 % of the total probability is enclosed, i.e. find a and b such that
P (X = a|d,M) = P (X = b|d,M) and∫ b

a
P (X|d,M)dX = 0.683

∫ ∞
−∞

P (X|d,M)dX. (B.7)

In a similar way, one can find the 95.4 % confidence intervals 1.

• The likelihood. This represents the probability of observing the data, given the
parameters of the model. For a fixed data and model, it is typically written as
L(θ) = P (d|θ,M), so it describes a surface over the parameter space. One can find
the most likely model (or best-fit), by maximizing L(θ). For normally distributed
data consisting in N data points di (for example, the distance luminosity curves
to several SNIa), and a model yi(θ) for these data, the likelihood is expressed as
a multivariate gaussian 2

L(θ) = 1
(2π)N/2(det[Cij ])1/2 e

−χ2/2 (B.8)

where χ2 is the the chi-squared statistics, given by

χ2 =
N∑

i,j=1
(di − yi(θ))C−1

ij (dj − yj(θ)), (B.9)

and Cij ≡ 〈(di − yi(θ))(dj − yj(θ))〉 is the covariance matrix. The variances are
given by the diagonal elements of the correlation matrix, σ2

i = Cii. The ubiquity
of gaussian likelihoods is motivated by the central limit theorem. This theorem
tells us that the joint distribution of a collection of data points (independent and
identically distributed, but not necessarily in a gaussian way), approaches that
of a gaussian as the sample size increases. For gaussian likelihoods, we see that
maximizing the likelihood is equivalent to minimizing the χ2.

In many cases, the distribution of χ2 around its minimum follows a χ2 distribu-
tion with n = N −N degrees of freedom, where N is the number of independent
data points and N is the number of parameters. The χ2 distribution is formally
defined as the distribution for the sum of the squares of gaussian variables,
Y = X2

1 + X2
2 + ... + X2

n (where Xi are gaussian variables with zero mean and
variance of one), and is given by

P (Y ) = 1
2n/2Γ(n/2)

Y n/2−1e−Y/2 (B.10)

This distribution has a mean given by n and a variance of 2n. An alternative
way to derive confidence intervals by looking at regions of the N-dimensional
parameter space with constant χ2 around the minimum (best-fit) χ2

min. This is

1The 68.3 % and 95.4 % confidence interval are often referred as the 1-σ and 2-σ values, because the
nomenclature agrees for gaussian distributions. However, this is an abuse of notation, since in most
cases the posterior distribution do not have a gaussian shape.

2It’s important to note that the likelihood is gaussian in the data, but in general it is not gaussian in
the parameters, due to the non-linear relations between the observable and the parameters.
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Table B.1 – ∆χ2 values for the conventionals 1, 2 and 3-σ as a function of the number of
parameters in the joint distribution.

a common approach in frequentist analysis, since one doesn’t need to integrate
probabilities over prior regions in order to get confidence limits. Using the prop-
erties of the χ2 distribution, one can find the intervals of ∆χ2 = χ2−χ2

min enclosing
regions of 68.3 %, 95.4 % and 99.5% probability, as a function of the number
of parameters in the joint distribution. Some of these ∆χ2 values are shown in
Tab. (B.1).

Apart from finding the best-fit parameter values (as well and the confidence lim-
its), one might wonder whether the model, evaluated at the best-fit, provides a
good fit to the data. A simple rule of thumb to estimate the goodness-of-fit is
the compute the χ2 statistics and compare its minimum value to the number
of degrees of freedom n. If the model provides a good fit to the data, we expect
the data to scatter symmetrically around the model by 1-σ (on average), which is
translated into the requirement χ2

min ' n = Ndof .

• The Bayesian evidence. This plays the role of a normalization constant, that
can be computed by means of an integral over the parameter space

P (d|M) =
∫
dNθ P (d|θ,M)P (θ|M). (B.11)

This quantity is important in model selection, and we shall discuss it in more
detail later

Thus, given some data sets (whose likelihood is for example gaussianly distributed)
and some choice of priors, we can obtain the 1D posterior distributions of the param-
eters in which we are interested, by means of the previous formulas. Unfortunately,
when the parameter space is big, these analytical recipes are very time consuming.
For example, let us suppose we take a model with N = 10 parameters, a typical
amount in cosmology. In order to compute the integrals appearing in Eq. (B.4) and
Eq. (B.11), we decide to grid each parameter in M = 20 discrete points. In this case,
one is forced to carry out MN = 2010 likelihood evaluations, a huge number that makes
the data analysis completely unachievable. In order to overcome these complications,
one typically resort to Monte Carlo methods.

B.2 Monte Carlo Markov chains

Monte Carlo Markov chains (MCMC) are a class of algorithms which allow to
sample the posterior distribution in an extremely efficient way. Instead of going
exponentially with the number of parameters, the MCMC calculation goes linearly
with N . The name "Monte Carlo" indicates that they are based on the generation
of random numbers, while the name "Markov process" indicates that we consider
processes (or chains) in which the future state depends only on the present state,
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and not on the past ones.

The main idea is to explore the parameter space in some intelligent manner, that
is, to cover only the regions which are close enough to the best-fit values. For doing
so, the MCMC starts from sone initial point θ(t) in the N-dimensional parameter space,
and evaluates its likelihood, L(θ(t)). Then a new point θ(new) is proposed in a random
way (but using a specific probability distribution), and the likelihood is computed
again. Depending on the value of L(θ(new)), a specific algorithm must decide whether
this new point should be accepted or rejected.

B.2.1 Metropolis-Hastings algorithm

A commonly used MCMC algorithm is the Metropolis-Hastings (MH) algorithm,
defined by the following iterative steps:

• We propose a random point in the parameter space around the last point in a
chain, drawn from a proposal probability distribution Q(θ(new)|θ(t)).

• We compute the likelihood at this point, L(θ(new)), and the ratio r =
L(θ(new))/L(θ(t)).

• If r ≥ 1, we accept and move to the new point in the chain, θ(t+1) = θ(new).
Otherwise, we select a random number α from a uniform probability distribution
U [0, 1]:

– If α ≥ r, we reject the new point and stay where we were: θ(t+1) = θ(t).

– If α < r, we accept and move to the new point, θ(t+1) = θ(new).

Therefore, the MH algorithm does not accept new points only when the likelihood
is higher, in which case it would reach a maximum too rapidly. The algorithm also
accepts points with smaller likelihood, at a smaller rate, so that it can explore the
parameter space and trace the underlying posterior distribution. To be more precise,
we end generating the weights of each point in the parameter space, i.e., the number
of times we waited and did not move. If the number of steps Nsteps performed in the
chain is big enough (the order of 104 − 106), then these weights are proportional to the
posterior distribution that we are looking for. Obtaining marginal 1D distribution of
some parameter θi is also very easy, we simply have to plot the histogram with the
values of θi versus the corresponding weights. From these histograms, quantities
such as the mean, best-fit and 1-σ values (the first two do not necessarily agree
for asymmetrical distributions) are straightforward to compute. Notice that the
MH algorithm does not provide information about the bayesian evidence in Eq. (B.11).

The idea of the algorithm is pretty simple, but there are questions that remain.
What is the best starting point for the chain? And which is a good choice for the
proposal distribution? A good strategy is the following: for the starting point, use
an estimate of the best-fit value, and for a proposal distribution, use a multi-variate
gaussian (centered in the current point), with an estimate of the covariance matrix
3. These estimates can be pre-computed with a short initial run. Using good initial
values and a good proposal distribution is important in order to make sure the

3Typically the covariance matrix is scaled up by a a certain factor, whose optimal value has been
shown to be approximately 2.4.
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chain converges in a reasonable amount of time. A sign that the chain is efficient is
that the acceptance ratio is ∼ 0.3, that is to say, that new points θ(new) are accepted
about 1/3 of the times. To speed up the MCMC analysis, it is also common to
decompose the covariance matrix into fast and slow parameters, using the so-called
Cholesky decomposition (LEWIS 2013). This allows to handle separately the part of
the likelihood associated with nuisance parameters, that do not require to re-run the
full Boltzmann code.

Another way of decreasing the runtime is to initialize several different chains and
then analyze them together. Since the Markov chains often take same time to con-
verge, normally the first ∼ 1000 steps of each chain need to be discarded, this is the
so called burn-in stage. Finally, it is necessary to use some convergence diagnostic
to determine if the chains have converged. One of the most used is the Gelman-
Rubin criterium. It is based on the calculation of a ratio R (for a given parameter of
the model), which compares the variance of means within each chain with the mean
of variances among different chains. In practice, one calculates first the mean x̄i
and the variance σ2

i from each chain i = 1, .., nc, as well as the total mean from all
chains, x̄ =

∑
i x̄i/(nc − 1). Afterwards, one calculates the variance of the chain means

σ2(x̄) =
∑
i(x̄2

i − x̄2)/(nc−1) and the mean of the chain variances σ̄ =
∑
i σi/(nc−1). The

ratio R ≡ σ(x̄)/σ̄ should be close to one if the chains are converged. The threshold for
convergence is a matter of taste, but a common criterion to stop the chains is when
we have R − 1 < 0.01 for all the parameters of the model.

B.3 Model selection

We introduced previously the χ2 test to quantify the goodness-of-the-fit. However,
this method is not adequate to compare the goodness-of-the-fit among different
models, since it does not include Occam’s razor factors to penalize models with
a larger number of free parameters. A tool that is widely used to perform model
comparison in the Bayesian framework is the Bayes factor.

Until now we have considered that all probabilities were conditional on some
model M, that we assume to be true. However, the Bayesian framework also al-
lows to do comparison between models. For example, given CMB data, ¿is there
preference for dark energy as a cosmological constant (ΛCDM) or as fluid with a
generic equation of state (wCDM)? For that purpose, let us apply Bayes theorem
again, but on a model level

P (M|d) = P (d|M)P (M)
P (d) . (B.12)

Here P (M) is the model prior (irrespective on the data), while P (d) is the data prior
(irrespective of the model). Let us suppose we have two different models M0 and M1
that we wish to compare. In that case, we can take the ratio between the posteriors
on the models, which according to eq. (B.12) gives

P (M0|d)
P (M1|d) = P (d|M0)P (M0)

P (d|M1)P (M1) ≡ B01
P (M0)
P (M1) , (B.13)
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Table B.2 – Empirical Jeffreys’ scale for evaluating the strength of evidence when comparing
two models M0 and M1. The probability column refers to the posterior probability of the
favored model assuming P (M0) = P (M1) and that the two models cover entirely the model
space P (M0|d) + P (M1|d) = 1.

where B01 is the Bayes factor, given by the ratio of the Bayesian evidences
in each model,

B01 ≡
P (d|M0)
P (d|M1) . (B.14)

Given the observed data d, and assuming the same prior probability for both models
P (M0) = P (M1), a value of the Bayes factor that is bigger (smaller) than 1, increases
(decreases) the support in favor of model M1 with respect to model M2. Bayes factor
are usually interpreted against the empirical “Jeffreys’ scale” for the strength of
evidence (JEFFREYS 1961), that we report in Tab. (B.2).

From the definition of Bayes factor, it’s clear that we need to integrate the
likelihood over the prior volume for each model. In general, this is something not
easy to achieve with MCMC, so one needs to use Nested sampling algorithms such
as MultiNest (FEROZ et al. 2009). For brevity we don’t describe this algorithm in
details, but the main idea is the following: one samples from the prior volume,
and gradually concentrates more points near the maximum of the likelihood, by
repeatedly replacing the point with the lowest target density by one drawn from
the prior volume with higher target density. Nested sampling methods are also
more adequate for handling complicated multi-modal posteriors, for which the MH
algorithm could easily get stuck in local minima.

Bayes factors correctly account for the increased complexity of a model, but they
are very sensitive to the choice of priors, which can be problematic when a parameter
is not well constrained. There are frequentist tools for model comparison that do
not suffer from this problem, such as the Akaike Information Criterium (AIC) that we
introduced in Chapter 2. In this work, we have made use of the MontePython-v3
code (AUDREN et al. 2013; BRINCKMANN et al. 2019a), which incorporates both the
Metropolis-Hastings and the MultiNest algorithms.





C
Complements on Early Dark

Energy

In this appendix we provide some complements on Chapter 2, concerning the χ2

information and the details about our N-body simulations.

C.1 χ2 Tables

We report all χ2
min’s obtained with the MINUIT algorithm (JAMES et al. 1975) through

the iMinuit python package for the various model and data-set combination con-
sidered in this work.

ΛCDM cosmology
Planck18 high−` TT,TE,EE 2347.86 2351.81 2347.02 2349.78 − 2351.53 2349.68 2351.24 2352.88
Planck18 low−` EE 396.03 395.8 399.60 395.71 − 395.78 396.94 395.88 397.21
Planck18 low−` TT 23.18 22.25 22.74 22.62 − 22.99 22.83 22.34 22.09
Planck18 lensing − − 8.65 9.56 − 9.49 9.05 9.93 10.05
PANTHEON − − 1026.83 1026.82 − 1026.84 1026.69 1026.72 1026.67
BAO FS BOSS DR12 − − 6.25 6.11 − 6.23 5.88 5.86 6.18
BAO BOSS low−z − − 1.38 1.39 − 1.34 1.82 1.65 2.22
SH0ES − 16.57 − 18.57 − − 16.05 − 14.23
KIDS/VIKING − − − − 177.9 182.62 182.21 − −
COSEBI − − − − − − − 8.30 6.44
total 2767.07 2786.43 3812.47 3830.57 177.9 3996.82 4011.16 3821.93 3837.98

Table C.1 – Best-fit χ2 per experiment (and total) in the ΛCDM model.

3-parameter EDE cosmology
Planck18 high−` TT,TE,EE 2343.07 2350.24 2349.30 2347.73
Planck18 low−` EE 397.47 396.20 398.19 395.88
Planck18 low−` TT 21.54 20.80 20.56 21.09
Planck18 lensing − − 10.12 9.85
PANTHEON − − 1026.72 1026.68
BAO BOSS DR12 − − 3.46 −
BAO BOSS low−z − − 2.06 1.81
BAO/FS BOSS DR12 − − − 6.73
SH0ES − 0.47 1.38 2.13
total 2762.08 2767.72 2786.43 3811.89

Table C.2 – Best-fit χ2 per experiment (and total) in the 3-parameter EDE model.
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1-parameter EDE cosmology
Planck18 high−` TT,TE,EE 2345.02 2347.63 2344.98 2347.42 − 2345.16 2349.15 2350.22 2349.82
Planck18 low−` EE 395.80 395.97 395.82 395.90 − 396.33 395.88 396.10 395.79
Planck18 low−` TT 21.49 20.82 21.89 20.85 − 22.38 20.97 21.54 20.84
Planck18 lensing − − 9.39 10.00 − 9.07 10.04 10.22 10.91
PANTHEON − − 1026.80 1026.69 − 1026.84 1026.7 1026.69 1026.80
BAO FS BOSS DR12 − − 6.44 7.18 − 6.43 7.08 6.47 7.70
BAO BOSS low−z − − 1.41 2.33 − 1.33 2.33 2.38 2.83
SH0ES − 1.07 − 1.64 − − 1.62 − 2.43
KIDS/VIKING − − − − 178.0 184.57 183.88 − −
COSEBI − − − − − − − 6.83 9.22
total 2762.31 2765.49 3806.74 3812.01 178.0 3992.11 3997.67 3820.46 3826.35

Table C.3 – Best-fit χ2 per experiment (and total) in the 1-parameter EDE model.

Model ΛCDM EDE cosmology
Planck18 high−` TT,TE,EE 2339.92 2340.96 2335.71 2336.12
Planck18 low−` EE 395.67 395.87 395.80 397.01
Planck18 low−` TT 21.93 21.03 20.65 20.44
Planck18 lensing 8.47 8.35 9.82 9.36
PANTHEON − 1026.88 − 1026.99
BAO FS BOSS DR12 − 8.04 − 9.02
BAO BOSS low−z − 3.20 − 3.48
SH0ES − 10.67 − 1.91
COSEBI − 1.2 − 4.07
total 2765.99 3816.23 2761.98 3808.40

Table C.4 – Best-fit χ2 per experiment (and total) in ΛCDM and the 1-parameter EDE model
when marginalizing over the lensing information in Planck.

C.2 A closer look to N-body simulations

The main systematical uncertainties in numerical simulations come from their
limited box size and resolution, as it has been thoroughly discussed in past literature
(see, e.g. HEITMANN et al. (2010), RASERA et al. (2014), SCHNEIDER et al. (2016), and
KLYPIN et al. (2019)). In order to minimize the missing large-scale modes, potentially
affecting small-box simulations, and to overcome the impossibility of capturing the
very non-linear scales in our large-box simulations, we adopted a splicing technique
to bind together the matter power spectra extracted from simulations with different
resolutions, for each redshift and model, as in MCDONALD (2003) and BORDE et al.
(2014).

For both the ΛCDM model and the EDE best fit model from T. L. SMITH et al. (2020),
we indeed performed: i) one Large Box (LB hereafter) simulation with N = 10243 DM
particles and box size L = 250h−1Mpc; ii) one High Resolution (HR hereafter) sim-
ulation with N = 10243 DM particles and box size L = 1000h−1Mpc; iii) one Low
Resolution (LR hereafter) simulation with the same box size of the HR one and the
same resolution of the LB, namely N = 2563 and L = 250h−1Mpc, to be used as a
transition simulation. The spliced non-linear matter power spectrum P (k) is given
by (BORDE et al. 2014)

P (k) =



PLB(k) · PHR(k250
MIN)

PLR(k250
MIN) , if k ≤ k250

MIN

PLB(k) · PHR(k)
PLR(k) , if k250

MIN < k < 1
2k

LB
Nyq

PHR(k) ·
PLB(0.5 · kLB

Nyq)
PLR(0.5 · kLB

Nyq)
, if k ≥ 0.5 · kLB

Nyq

(C.1)
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Figure C.1 – Here we compare the matter power spectra extracted from our simulations,
with the ones computed with HALOFIT /HMCODE , in three different redshift bins from z = 1.5
to z = 0.5. The blue curves refer to the ΛCDM scenario, whereas the red ones refer to the
EDE best fit model. As a reference, we also report the best fit ΛCDM case from Planck 2018.
The spliced power spectra are denoted by thick dot-dashed lines. Symbols stand for the
output power spectra of the “non-spliced” LB and HR simulations. The solid/dotted lines
are the non-linear power spectra from HALOFIT /HMCODE , while the dashed lines are the
corresponding linear power spectra used to set the initial conditions for the simulations. The
cyan shaded band approximately corresponds to the scales probed by DES-Y1.

where k250
MIN is the minimum k-mode in our small-box simulations (HR and LR),

while kLB
Nyq is the Nyquist wave-number of the LB one.

Besides the aforementioned systematical uncertainties, numerical simulations
are also affected by two primary sources of statistical errors: the cosmic variance,
affecting the large-scale part of the spectra, and the shot noise due to the discreteness
of the DM particles, thereby affecting the smallest scales.

Concerning the shot noise term, its contribution to the power spectrum is simply
given by PSN = (L/N)3. It is straightforward to see that it is largely subdominant at
the scales and redshifts considered in this work, from Fig. C.1, where we compare
the matter power spectra extracted from our simulations with the ones computed
with HALOFIT /HMCODE , in three different redshift bins from z = 1.5 to z = 0.5 – given
that we have already discussed the z = 0 case in Sect. 2.4.3. In Fig. C.2 we plot the
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Figure C.2 – Here we show the ratio between the non-linear matter power spectra from our
simulations and the ones computed with HALOFIT /HMCODE , for both the ΛCDM equivalent
and the EDE best-fit models. We have adopted the same linestyle-code and color-code of
Fig. C.1.

ratio between the power spectrum predicted by HALOFIT /HMCODE and that extracted
from the numerical simulation in order to explicitly demonstrate that the differences
are below 5% level, for scales 10−2 . k . 10 h/Mpc, at redshifts 0.5 ≤ z ≤ 2, for both
ΛCDM and EDE models. This extends the z = 0 result presented in the main text to
cover the full redshift range from KIDS-VIKING.

It is also informative to compare the prediction from algorithms with N-body at
larger scales than that depicted in Fig. C.1 and Fig. C.2. Indeed, these are affected by
higher statistical noise, due to cosmic variance, as one might already guess from the
lower−k part of both figures. To beat down cosmic variance, one should run several
statistical realizations of the same simulation, by producing initial conditions starting
from different random seeds. To circumvent this issue and save computational time,
we adopted the simple solution to run the two sets of simulations (EDE and ΛCDM)
with identical random seeds for the realization of their initial conditions, and to
present our results in terms of ratios in the matter power spectra between the EDE
and the ΛCDM models, in Fig. C.3 and Fig. C.4. Any scatter related to the cosmic
variance is now removed, allowing us to go down one order of magnitude in terms
of wave-numbers k’s. We show in both figures by vertical dashed lines the scales
corresponding to k250

MIN and kLB
Nyq/2. One can clearly see again that the EDE by itself
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Figure C.3 – Here we compare departures from the ΛCDM “equivalent” model in terms of
ratios of non-linear matter power spectra. The EDE best-fit case is shown in red, while the
gray lines refer to the ΛCDM best-fit model. Solid and dotted lines stand for the non-linear
power spectra from HALOFIT and HMCODE , respectively. Dot-dashed lines refer to the outputs
of our simulations. The cyan shaded band approximately corresponds to the scales probed
by DES-Y1.

lead to a decrease in power. However, the increase in ωcdm, leads the EDE best-fit
model to predict O(20%) increase in power, when compared to the best-fit ΛCDM
model. Note how the differences become even more manifest at higher redshift.
This illustrates that high-z LSS measurements have the potential to put EDE under
crucial tests (KLYPIN et al. 2021).

Another way of presenting our results is in terms of the accuracy at which HALOFIT
/HMCODE can predict deviations in the non-linear power spectrum of EDE models
with respect to the ΛCDM ‘equivalent’ case (as opposed to predicting the absolute
power spectrum). This is what we show in Fig. C.4, where we now compare the ratio
between the EDE and ΛCDM power spectra from HALOFIT /HMCODE against the same
ratio extracted from simulations. The thick horizontal lines highlight ±5% deviations.
In light of all of this, we conclude that, in the EDE framework, HALOFIT /HMCODE
predictions on ΛCDM departures are reliable at ≤ 5% level with respect to the outputs
of N-Body simulations, for scales 10−2 . k . 10 h/Mpc, at redshifts 0 ≤ z ≤ 2.
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Figure C.4 – Here we compare the outputs of our simulations with the HALOFIT /HMCODE
predictions, in terms of deviations in the ratios of the EDE best-fit power spectra over the
ΛCDM “equivalent” ones, in four redshift bins from z = 2 to z = 0. Solid and dotted lines
stand for HALOFIT and HMCODE , respectively.



D
Complements on decaying dark

matter

In this appendix we detail some important calculations concerning the dynamics
of decaying dark matter with warm decay products, that were too long to be included
in the main text of Chapter 3. We also describe our numerical implementation, and
include some extra tables and plots.

D.1 Boltzmann equation for decaying dark matter in the
synchronous gauge

The goal is to derive the generic Boltmann equation for decaying dark matter
models with arbitrary decay mass products. We’ll work with the synchronous
gauge comoving with the mother particles, following AOYAMA et al. (2014). The
metric is thus written as

ds2 = a2(τ)
[
−dτ2 + (δij +Hij)dxidxj

]
, (D.1)

where Hij reads in Fourier space

Hij = k̂ik̂jh+
(
k̂ik̂j −

δij
3

)
6η. (D.2)

Let us denote the PSD distribution of the I-th dark component as fI(k, q, µ, τ), where
I = {dcdm,dr,wdm}. The starting point is the same as in Eq. (1.185)

∂fI
∂τ

+ ∂fI
∂xi

dxi

dτ
+ ∂fI

∂q

dq

dτ
+ ∂fI
∂n̂i

dn̂i

dτ
=
(
∂fI
∂τ

)
C

= C[fI ]
P 0 . (D.3)

We focus first on the l.h.s. of previous equation. The last term at the l.h.s. can
be neglected as usual because it’s second order in perturbations. For the second
term, we note that

dxi

dτ
= dxi

dσ

dσ

dτ
= P i

P 0 . (D.4)
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Let us obtain P 0 and P i1. To get P 0, we simply use the closure relation gµνP
µP ν =

g00(P 0)2 + p2 = −m2 and the fact that g00 = −a2(τ). To get P i, we write P i = Cn̂i (where
n̂i is some unit vector), and obtain the constant C from the definition of p

p2 = gijP
iP j = a2

[
1 +Hijn̂

in̂j
]
C2 −→ C ' p

a

[
1− 1

2Hijn̂
in̂j
]
. (D.5)

Therefore, the elements of the 4-momentum in synchronous gauge are

P 0 = E
a2 , P i = qn̂j

a2

[
δij −

1
2Hij

]
, (D.6)

so that

dxi

dτ
= qn̂j

E

[
δij −

1
2Hij

]
. (D.7)

D.1.1 Geodesic equation

For the factor dq
dτ in Eq. (D.3), we need to use the 0 component of the

geodesic equation:

P 0dP
0

dτ
= −Γ0

αβP
αP β. (D.8)

The calculation is similar to the one we did in App. A.3, except that now we’re
working in a different gauge. Firstly, we need to know Γ0

00,Γ0
i0 and Γ0

ij. Using the
definition of the Christoffel symbols given in Eq. (A.10), we get

Γ0
00 :

Γ0
00 = g0λ

2 (2∂0gλ0 − ∂λg00) = g00

2 ∂0g00 = H. (D.9)

Γ0
i0 :

Γ0
i0 = g0λ

2 (∂0gλi + ∂igλ0 − ∂λgi0) = g00

2 ∂ig00 = 0. (D.10)

Γ0
ij :

Γ0
ij = g0λ

2 (∂igλj + ∂jgλi − ∂λgij) = −g
00

2 ∂0gij = 1
2H
′
ij +H(δij +Hij). (D.11)

Now, we want to express the l.h.s. of Eq. (D.8) in terms of q. This can be straight-
forwardly achieved by differentiating the relation a4(P 0)2 = q2 + a2m2. After a little
bit of algebra, this yields

P 0dP
0

dτ
= − 2

a4Hq
2 − m2

a2 H+ q

a4
dq

dτ
. (D.12)

Using the expression for the Christoffels that we computed in Eq. (D.9)-Eq. (D.11),
we can compute the r.h.s. of Eq. (D.8)

1We omit the label I in P 0 and P i to shorten notation.
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−Γ0
αβP

αP β = −Γ0
00(P 0)2 − Γ0

ijP
iP j

= −H
a4

(
q2 +m2a2

)
−
[
H ′ij
2 +H(δij +Hij)

]
qk

a2

[
δik −

Hik

2

]
ql

a2

[
δjl −

Hjl

2

]

= −H
a4

(
q2 +m2a2

)
− 1
a4

[
H ′ij
2 +H(δij +Hij)

] [
qiqj − qjqk

2 Hik −
qiql

2 Hjl

]

= −2H
a4 q

2 − H
a4m

2a2 − 1
2a4H

′
ijq

iqj . (D.13)

Equating Eq. (D.12) with Eq. (D.13), as demanded by the geodesic equation, some
terms cancel out and we are left with

1
q

dq

dτ
= −1

2H
′
ijn̂

in̂j .

= −1
2

[
k̂ik̂jh

′ +
(
k̂ik̂j −

δij
3

)
6η′
]
n̂in̂j

= η′ − h′ + 6η′

2 µ2. (D.14)

In summary, we write the Boltzmann equation in Fourier space as

∂fI
∂τ

+ iµ
kq

EI
fI + dfI

dlnq

(
η′ − h′ + 6η′

2 µ2
)

=
(
∂fI
∂τ

)
C
, (D.15)

where it is understood that the second term at the l.h.s is first order.

D.1.2 Collision integrals

Let us now move to describe the collision term for the decay process

DCDM (Q1) −→ WDM (Q2) + DR (Q3), (D.16)

where we labelled already the comoving four-momentum of each species, QI = (EI , ~qI).
Notice that E1 = amdcdm and E3 = q3. Neglecting quantum statistics and inverse decays,
the collision integrals for the mother and daughter particles can be written as(

∂fdcdm
∂τ

)
C

=− a2

2E1

∫
d3~q3

(2π)32E3

d3~q2
(2π)32E2

|M|2(2π)4δ(4)(Q1 −Q2 −Q3)fdcdm(q1), (D.17)(
∂fwdm
∂τ

)
C

= + a2

2E2

∫
d3~q1

(2π)32E1

d3~q3
(2π)32E3

|M|2(2π)4δ(4)(Q1 −Q2 −Q3)fdcdm(q1), (D.18)(
∂fdr
∂τ

)
C

= + a2

2E3

∫
d3~q1

(2π)32E1

d3~q2
(2π)32E2

|M|2(2π)4δ(4)(Q1 −Q2 −Q3)fdcdm(q1). (D.19)

These integrals are performed over comoving three-momenta. As we already dis-
cussed in Sect. 3.2, because of our gauge choice and the assumption that mother
particles are fully non-relativistic, we can take the following ansatz for the PSD of
the DCDM species:

fdcdm(k, q, τ) = Ndcdm(k, τ) δ(q)4πq2 , (D.20)
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with Ndcdm the comoving number density of the DCDM. This will allow to simplify the
collision integrals written above. In the context of two-body decays to massive and
massless particles, the invariant amplitude squared |M|2 is simply related to the rest-
frame decay width of the DCDM as |M|2 = 8πΓmdcdm/ε, with ε = 0.5(1 −m2

wdm/m
2
dcdm)

the fraction of DCDM rest mass energy converted into DR (BARNETT et al. 1996).
In addition, we will be using two useful mathematical relations associated with the
Dirac delta function:∫

d3 ~qI
2EI

=
∫
d4QI δ(E2

I − q2
I − a2m2

I)Θ(EI), (D.21)

δ(f(x)) =
∑
i

δ(x− x0)
|f ′(x0)| , with x0 such that f(x0) = 0. (D.22)

Let us start with Eq. (D.17):(
∂fdcdm
∂τ

)
C

= −a|M|
2fdcdm(q1)

2mdcdm(2π)2

∫
d3~q3
2E3

δ
(
(E1 − E3)2 − |~q1 − ~q3|2 − a2m2

wdm

)
Θ(E1 − E3)

= −aΓfdcdm(q1)2
ε

∫
dq3q3δ

(
2amdcdmq3 − a2(m2

dcdm −m2
wdm)

)
Θ(amdcdm − q3)

= −aΓfdcdm(q1)2
ε

∫
dq3q3

δ(q3 − εamdcdm)
2amdcdm

Θ(amdcdm − q3)

= −aΓfdcdm(q1). (D.23)

We proceed in a similar fashion for Eq. (D.18):(
∂fwdm
∂τ

)
C

= a2|M|2

2E2(2π)2

∫
d3~q1
2E1

δ
(
(E1 − E2)2 − |~q1 − ~q2|2

)
Θ(E1 − E2)fdcdm(q1)

= a2Γmdcdm
E22πε

∫
d3~q1
E1

δ
(
2E1E2 + 2~q1 · ~q2 − a2(m2

dcdm +m2
wdm)

)
Θ(E1 − E2)fdcdm(q1)

= aΓNdcdm
E22πε δ

(
2amdcdm

√
q2

2 + a2m2
wdm − a

2(m2
dcdm +m2

wdm)
)

= aΓNdcdm
E22πε

δ(q2 − amdcdmε)E2
2amdcdmq2

= aΓNdcdm
4πq2

2
δ(q2 − apmax). (D.24)

A similar procedure could be carried out for Eq. (D.19) and the result would be the
same as in Eq. (D.24).

D.2 Background continuity equation for the WDM species

We seek to obtain the background continuity equation for the WDM species, by
integrating the corresponding Boltzmann equation over the phase space. The start-
ing point is (c.f. Eq. (3.17))

∂f̄wdm
∂τ

= aΓN̄dcdm(τ)
4πq2 δ(q − apmax), (D.25)

with pmax = mdcdmε = mwdmε/
√

1− 2ε. We integrate the previous equation
over 4πa−4 ∫ dqq2E2:

4π
a4

∫
dqq2E2(q)∂f̄wdm(q)

∂τ
= ΓN̄dcdm(τ)

a3

∫
dqE2(q)δ(q − apmax). (D.26)
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Let us focus first on the l.h.s. of the equation. To get an equation for ρ̄wdm, we
have to move the time derivative out of the integral. This is easily achieved using
that E ′2 = E2H − q2

E2H. Hence:

4π
a4

∫
dqq2E2(q)∂f̄wdm(q)

∂τ
= 4π
a4

∂

∂τ

(∫
dqq2E2f̄wdm

)
− 4π
a4

∫
dqq2f̄wdmE ′2.

= ρ̄′wdm + 4Hρ̄wdm −H
(

4π
a4

∫
dqq2E2f̄wdm −

4π
a4

∫
dqq2 q

2

E2
f̄wdm

)
= ρ̄′wdm + 4Hρ̄wdm −H(ρ̄wdm − 3P̄wdm)
= ρ̄′wdm + 4Hρ̄wdm −Hρ̄wdm(1− 3w)
= ρ̄′wdm + 3Hρ̄wdm(1 + w). (D.27)

We move now to compute the r.h.s. of Eq. (D.26). It’s just a matter of applying
the Dirac delta and simplify

ΓN̄dcdm
a3

∫
dqE2(q)δ(q − apmax) = ΓN̄dcdm

a3

√
a2m2

wdm + a2p2
max

= aΓN̄dcdmmdcdm
a3

√
1− 2ε+ ε2

= aΓρ̄dcdm(1− ε). (D.28)

In summary, the continuity equation for the WDM reads:

ρ̄′wdm = −3(1 + w)Hρ̄wdm + (1− ε)aΓρ̄dcdm. (D.29)

D.3 Linear fluid equations for the WDM species

In this section we proceed to derive the fluid equations for the WDM daughter
particles that we wrote in Eq. (3.41)-Eq. (3.44). We start considering the Boltzmann
hierarchy for the WDM linear multipoles (c.f. Eq. (3.28)-Eq. (3.31)):

∂ (∆fwdm,0)
∂τ

= −qk
E2

∆fwdm,1 + q
∂f̄wdm
∂q

h′

6 + aΓN̄dcdm
4πq2 δ(q − apmax)δdcdm, (D.30)

∂ (∆fwdm,1)
∂τ

= qk

3E2
[∆fwdm,0 − 2∆fwdm,2] , (D.31)

∂ (∆fwdm,2)
∂τ

= qk

5E2
[2∆fwdm,1 − 3∆fwdm,3]− q∂f̄wdm

∂q

(h′ + 6η′)
15 , (D.32)

∂ (∆fwdm,`)
∂τ

= qk

(2`+ 1)E2
[`∆fwdm,`−1 − (`+ 1)∆fwdm,`+1] (` ≥ 3). (D.33)

The continuity and Euler equations are obtained by multiplying both sides of
Eq. (D.30) and Eq. (D.31) by 4πq2E2a

−4 and 4πq3ka−4, respectively, and integrating
over q. We already did most of the job in App. A.6, when writing the conservation
equations for massive neutrinos, so there is no need to repeat all the steps. However,
we have to take into account three important differences. Firstly, these equations
were written in the Newtonian gauge, and not the synchronous one. This simply
amounts to replacing −3φ′ by h′/2 in the continuity equation, and removing the
ψ term in the Euler equation. Secondly, the background density has a more
complicated evolution, ρ̄′wdm/ρ̄wdm 6= −3H(1 + w). And thirdly, there is an extra term
associated to the decay at the l.h.s. of Eq. (D.30).
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D.3.1 Continuity equation

Having all of this in mind, after integrating 4πq2E2a
−4×Eq. (D.30) over momenta

and dividing by ρ̄wdm, we get:

δ′wdm = − ρ̄
′
wdm
ρ̄wdm

δwdm−3Hδwdm(1+c2
s)−(1+w)

(
θwdm + h′

2

)
+ ΓN̄dcdmδdcdm

a3ρ̄wdm

∫
dqE2δ(q−apmax).

(D.34)
For the last term, we apply the Dirac delta as in Eq. (D.28), to get

ΓN̄dcdmδdcdm
a3ρ̄wdm

∫
dqE2δ(q − apmax) = aΓ ρ̄dcdm

ρ̄wdm
δdcdm(1− ε). (D.35)

Using ρ̄′wdm/ρ̄wdm = −3H(1 + w) + (1 − ε)aΓρ̄dcdm/ρ̄wdm (by virtue of Eq. (D.29)), we ar-
rive at the continuity equation

δ′wdm = −3H(c2
s − w)δwdm − (1 + w)

(
θwdm + h′

2

)
+ (1− ε)aΓ ρ̄dcdm

ρ̄wdm
(δdcdm − δwdm), (D.36)

where c2
s = δPwdm/δρwdm.

D.3.2 Euler equation

In a similar way, we can integrate 4πq3ka−4×Eq. (D.31) over momenta and di-
vide by ρ̄wdm(1 + w), to get:

θ′wdm = − ρ̄
′
wdm
ρ̄wdm

(1 + c2
g)

(1 + w) θwdm − 4Hθwdm + k2c2
sδwdm

(1 + w) − k
2σwdm, (D.37)

where c2
g = P̄ ′wdm/ρ̄

′
wdm. Using again that ρ̄′wdm/ρ̄wdm = −3H(1 +w) + (1− ε)aΓρ̄dcdm/ρ̄wdm,

we arrive at the Euler equation

θ′wdm = −H(1− 3c2
g)θwdm + c2

s
1 + w

k2δwdm − k2σwdm − (1− ε)aΓ
1 + c2

g

1 + w

ρ̄dcdm
ρ̄wdm

θwdm. (D.38)

D.3.3 Adiabatic sound speed

We still need to compute the adiabatic sound speed c2
g. As we mentioned in

Sect. 3.2.3, we can write c2
g as

c2
g = w

P̄ ′wdm
P̄wdm

(
ρ̄′wdm
ρ̄wdm

)−1
. (D.39)

The factor (ρ̄′wdm/ρ̄wdm)−1 is just given by the background continuity equation.
To get P̄ ′wdm, we have to take the time derivative of the general expression for
the background pressure:

P̄wdm = 4π
3a4

∫ ∞
0

dq
q4

E2
f̄wdm (D.40)

Thus,

P̄ ′wdm = −4HP̄wdm −
4π
3a4

∫ ∞
0

dq
q4

E2
2
E ′2f̄wdm + 4π

3a4

∫ ∞
0

dq
q4

E2
f̄ ′wdm

= −4HP̄wdm −HP̄wdm +H 4π
3a4

∫ ∞
0

dq
q6

E3
2
f̄wdm + 4π

3a4

∫ ∞
0

dq
q4

E2
f̄ ′wdm, (D.41)
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where we used once more time that E ′2 = E2H− q2

E2H. We see that P̄ ′wdm involves a new
higher momenta integral of f̄wdm, called the pseudo-pressure

pwdm ≡
4π
3a4

∫ ∞
0

dq
q6

E3
2
f̄wdm. (D.42)

For the last term in Eq. (D.41), we just have to insert the background Boltzmann
equation Eq. (D.25) and again apply the Dirac delta:

4π
3a4

∫ ∞
0

dq
q4

E2
f̄ ′wdm = ΓN̄dcdm

3a3

∫ ∞
0

dq
q2

E2
δ(q − apmax)

= ΓN̄dcdm
3a3

a2p2
max√

a2m2
wdm + a2p2

max

= ΓN̄dcdm
3a3

amdcdmε
2

√
1− 2ε+ ε2

= aΓρ̄dcdm
3

ε2

1− ε. (D.43)

To summarize, the time derivative of the pressure is

P̄ ′wdm = H(pwdm − 5P̄wdm) + aΓρ̄dcdm
3

ε2

1− ε (D.44)

so that the adiabatic sound speed reads

c2
g = w

(
5− pwdm

P̄wdm
− ρ̄dcdm
ρ̄wdm

aΓ
3wH

ε2

1− ε

)(
3(1 + w)− ρ̄dcdm

ρ̄wdm

aΓ
H

(1− ε)
)−1

. (D.45)

When Γ → 0, this expression reduces to the adiabatic sound speed for massive neu-
trinos (LESGOURGUES et al. 2011). In addition, it yields c2

g → 1/3 in the relativis-
tic limit, as it should.

D.3.4 Anisotropic stress

To close the system of equations Eq. (D.36) and Eq. (D.38), we need to select an
appropriate truncation formula for ∆fwdm,2. One might naively apply Eq. (3.40) with
`max = 2. However, Eq. (3.40) relies on the fact that the formal solution for the PSD
multipoles are approximately proportional the spherical Bessel functions, j`(kτ), and
thus they inherit the same recurrence relation (MA et al. 1995). This is only true
when the source term S (which in the collisionless DM case only depends on h′ and
η′) can be neglected. If S 6= 0, the the PSD multipole solution contains an additional
non-trivial integral (convoluted with a Bessel function), involving derivatives of terms
in S (BLAS et al. 2011). To circumvent this problem, publicly available Boltzmann
codes generally consider `max � 1.

Alternatively, it is possible to limit the analysis to sub-Hubble scales (kτ � 1),
truncate at a lower `max (= 2 for a viscous fluid), and obtain an approximated analytical
result for the aforementioned convolution integral. This is what is done in BLAS

et al. (2011) in order to derive fluid equations for the massless neutrinos, and is
further generalized in LESGOURGUES et al. (2011) to the case of massive neutrinos.
We apply the same philosophy of those two works to the WDM case, where the source
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function S now also includes a term related to the decay. Inspired by those works,
we write the truncation formula as

∆f ′wdm,2 = qk

E2
∆fwdm,1 −

3
τ

∆fwdm,2 − q
∂f̄wdm
∂q

h′

6 − f̄
′
wdmδdcdm. (D.46)

Now, in a similar way as we did before for the δ′wdm and θ′wdm equations, we multiply
at each side of Eq. (D.46) by (8π/3)[ρ̄wdm(1 + w)a4]−1(q4/E2), and then integrate over
q. After some algebra, we find

σ′wdm = −3
(

1
τ

+H
[2

3 − c
2
g −

1
3

Σwdm
σwdm

]
+ aΓ ρ̄dcdm

ρ̄wdm
(1− ε)

1 + c2
g

3(1 + w)

)
σwdm

+ 2
3

[
Θwdm + h′

2
w

(1 + w)

(
5− pwdm

P̄wdm

)
− aΓ ρ̄dcdm

ρ̄wdm

ε2

(1− ε)
δdcdm

(1 + w)

]
. (D.47)

We have introduced two higher momenta variables, defined as

(ρ̄wdm + P̄wdm)Θwdm ≡
4πk
a4

∫ ∞
0

dqq2 q
3

E2
2

∆fwdm,1, (D.48)

(ρ̄wdm + P̄wdm)Σwdm ≡
8π
3a4

∫ ∞
0

dqq2 q
4

E3
2

∆fwdm,2. (D.49)

As we see from above definitions, it’s clear that Θwdm → θwdm and Σwdm → σwdm in
the relativistic limit, and that Θwdm/θwdm � 1 and Σwdm/σwdm � 1 in the non-relativist
regime. Thus, one way of closing the system of fluid equations is to replace Θwdm
and Σwdm by the usual θwdm and σwdm multiplied by functions depending only on
background quantities. Following LESGOURGUES et al. (2011), we write 2

Σwdm = 3wσσwdm, (D.50)

Θwdm + h′

2
w

(1 + w)

(
5− pwdm

P̄wdm

)
= 3wθ

[
θwdm + h′

2

]
, (D.51)

where wσ and wθ can be any function of time going from 1/3 in the relativistic limit
to 0 in the non-relativistic one. We set wσ = pwdm/3P̄wdm and wθ = 4wc2

g/(1 + w),
which were found to be good choices in LESGOURGUES et al. (2011). With this in
mind, Eq. (D.47) can be rewritten as

σ′wdm = −3
(

1
τ

+Hξ + (1− ε)aΓ ρ̄dcdm
ρ̄wdm

1 + c2
g

3(1 + w)

)
σwdm

+
8wc2

g

1 + w

[
θwdm + h′

2

]
− 2

3
ε2aΓ

(1− ε)
ρ̄dcdm
ρ̄wdm

δdcdm
(1 + w) , (D.52)

2The extra terms proportional to h′ in Eq. (D.51) arise due to the gauge dependence of θ, θnew =
θsyn + αk2, with α = (6η′ + h′)/2k2. At the level of the phase space variable ∆fwdm,1, this corresponds to
a relation

∆fnew
wdm,1 = ∆f syn

wdm,1 − αk
E2
3
df̄wdm

dq
.

When integrating this relation to find Θwdm, we thus get a term proportional to

4π
a4

∫
dq
q5

E2
df̄wdm

dq
= −wρ̄wdm

(
5− pwdm

P̄wdm

)
.

However, it was found in BLAS et al. (2011) that removing the η′ term leads to better results for the
matter power spectrum, as can be justified by an analytic approximation of the full solution. That’s why
we simply replace αk2 by h′/2.
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where ξ ≡ 2/3 − c2
g − pwdm/3P̄wdm is a function that vanishes in the relativistic limit.

Let us now consider the relativistic limit of Eq. (D.52), and multiply the decay terms
by a factor of 2. Such an expression, corresponding to a CDM decay into 2 mass-
less components, reads

σ′dr = −
(3
τ

+ aΓ ρ̄dcdm
ρ̄dr

)
σdr + 2

3θdr + h′

3 − aΓ ρ̄dcdm
ρ̄dr

δdcdm
2 (D.53)

In ENQVIST et al. (2015), the authors derived an equation for the shear of the dark
radiation daughters. It turns out that their equation is formally incorrect 3, but if one
places all numerical factors fairly, their equation is identical to Eq. (D.53).

D.3.5 Semi-analytic understanding of the WDM sound speed

Here we obtain a formal equation that dictates the evolution of the WDM sound
speed in the synchronous gauge, c2

s . The first natural step is to write a dynamical
equation for the normalized pressure perturbation, Πwdm = δPwdm/ρ̄wdm. This can be
achieved by multiplying Eq. (D.30) by 4πq2 q2

3E2a
−4, integrating over q and then using

Eq. (D.29). By doing so, two higher velocity-weight integrals appear. One of them is
Θwdm, that we already wrote in Eq. (D.48), and the other is

δPwdm ≡
4π
3a4

∫ ∞
0

dq
q6

E3
wdm

∆fwdm,0. (D.54)

Similarly to what happens with Θwdm, we see that δPwdm → δPwdm in the relativistic
limit, while δPwdm/δPwdm � 1 in the non-relativistic one. This means that one can write
δPwdm = δPwdm3ωp and Θwdm = θwdm3ωθ 4, where ωp and ωθ are arbitrary functions,
going from 1/3 in the relativistic limit, to 0 in the non-relativistic case. In terms of
these functions, the equation for Πwdm becomes

Π′wdm = −3HΠwdm

(2
3 − ωp − ω

)
− ωθ(1 + ω)θwdm −

h′ω

6

[
5− pwdm

pwdm

]
+ aΓ ρ̄dcdm

ρ̄wdm

[
ε2

(1− ε)
δdcdm

3 − (1− ε)Πwdm

]
(D.55)

One can convert this into an equation for the sound speed by noting that
Πwdm = c2

sδwdm, and using the background continuity equation Eq. (D.29).
The final result reads:

∂c2s
∂τ

= −3Hc2
s

(2
3 − ωp − c

2
s

)
− (1 + ω)θwdm

δwdm
(ωθ − c2

s )− h′

2δwdm

[
ω

3

(
5− pwdm

P̄wdm

)
− c2

s (1 + ω)
]

+ aΓ ρ̄dcdm
ρ̄wdm

δdcdm
δwdm

[
ε2

3(1− ε) − (1− ε)c2
s

]
. (D.56)

We remark that the previous equation is highly non-linear in the perturbed quanti-
ties, so it can easily give rise to numerical instabilities. In addition, there is no closed
expression for computing ωp and ωθ. If these functions were scale independent, one
possible approximation would be to trade them for some background functions,

3In particular, in their derivation they used that the value of the integral
∫∞

0
j2(x)
x

is −1/3, while the
correct value is 1/3.

4We forget about the issue of the gauge dependence of ∆fwdm,0 and ∆fwdm,1, since we will be restricting
to sub-Hubble scales later on.
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Figure D.1 – Left panel: The sound speed of the WDM species in the synchronous gauge,
as a function of conformal time and wavenumber. Right panel: The ratio between the per-
turbed densities of the DCDM and the WDM components, as a function of conformal time
and wavenumber. The black solid and dashed lines indicate the horizon and free-streaming
crossing scales, respectively. We have set ε = 0.007 and Γ−1 = 55 Gyrs.

such as w or c2
g. However, calculations using the full hierarchy show that ωp and ωθ

exhibit a k-dependence similar to that of c2
s. For these reasons, we do not implement

Eq. (D.56) in our code.

Nonetheless, by making some simplifying assumptions, Eq. (D.56) allows to qual-
itatively understand why there is a particular k-dependence of c2

s in the decaying
scenario, that is not present in the case of massive neutrinos. Let us consider the
non-relativistic limit of Eq. (D.56), since data favors in general very small DR energy
fractions, ε � 1. This also implies that wp, c2

s , w � 1. Let us further assume that ωθ
and c2

s behave similarly, so that the difference ωθ − c2
s can be neglected. Finally, let us

also restrict to sub-Hubble scales, for which the term h′/δwdm is very small and can
be also neglected. In this case, Eq. (D.56) reduces to

∂c2s
∂τ

= −2Hc2
s − aΓ ρ̄dcdm

ρ̄wdm

δdcdm
δwdm

c2
s . (D.57)

In absence of the decay term, we see that the sound speed dilutes as c2
s ∝ a−2, which is

a well-known result for massive neutrinos. This dilution can be compensated by the
presence of the decay term, leading to a c2

s ∼ cte, as long as the ratio δdcdm/δwdm doesn’t
change. In practice, for scales and times such that k < kfs(τ), we have δdcdm/δwdm = 1.
In this regime, the sound speed c2

s is well approximated by the adiabatic sound speed
c2
g. However, when k > kfs(τ), δwdm oscillates and starts to become suppressed with
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Figure D.2 – Schematic view of the implementation of the ΛDDM model in the public Boltz-
mann solver CLASS . The grey boxes denote the standard modules of CLASS , while the pink
boxes indicate which parts of these modules have been modified in order to describe the new
species.

respect to δdcdm, which leads to oscillatory features and a small enhancement in the
evolution of c2

s . This is visible in Fig. D.1, where we have plotted c2
s and δdcdm/δwdm in

the k−τ plane using the full Boltzmann hierarchy, and setting ε = 0.007, Γ−1 = 55 Gyrs.

One can see that this k-dependent effect appears only because of the coupling
term in Eq. (D.57), which is not present for massive neutrinos. This also justifies
why the sound speed c2

s is well approximated by a background function such as c2
g

in the case of massive neutrinos. In the case of the WDM daughter species, the
approximation c2

s ' c2
g will only work when k < kfs(τ). This motivates the use of the

fitting formula introduced in Eq. (3.46), that accounts for the small enhancement at
scales smaller than the free-streaming scale. While this simple fitting formula is not
able to capture the oscillatory features described previously, it leads to results that
are accurate enough for all the observables analyzed in this work.

D.4 Numerical implementation and accuracy of the fluid ap-
proximation

In order to solve the cosmic evolution equations discussed in Sect. 3.2, we
modified the publicly available numerical Boltzmann solver CLASS (BLAS et al. 2011;
LESGOURGUES et al. 2011). We now briefly illustrate our implementation of the
ΛDDM model.

First let us notice that, when solving the background equations for all cosmolog-
ical species, the dark energy abundance is iteratively derived through the budget
equation, ΩΛ = 1 −

∑
i Ωi, where the sum includes the current abundance of all other

components, which are not known a priori. We thus applied a shooting method
for the aforementioned parameter, i.e. we guess an initial ΩΛ, we solve the system
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of background equations to obtain
∑
i Ωi, and re-compute ΩΛ

5. The procedure is
iterated until convergence is achieved. The WDM density is computed by solving
Eq. (3.22) in 2800 momentum bins, approximately as many as the time-steps used
to describe its background evolution.

At the linear perturbation level, we truncate the hierarchy of the PSD multipole
equations for both the daughter particles at a `max = 17 (see Eq. (3.39) and Eq. (3.40)).
We set the initial conditions for the WDM species following the same procedure of
AOYAMA et al. (2014). On conformal times τ < τq, we set all ∆fwdm,` = 0, since
no daughter particle with comoving momentum q could have been produced. On
the crossing time τ = τq, one should be more careful, as the terms with f̄wdm in
Eq. (D.30) and Eq. (D.32) contain a Dirac delta and, when integrated, a Heaviside
function. Thus, the corresponding initial conditions for ∆fwdm,0(τq) and ∆fwdm,2(τq)
are not-vanishing. We set them according to the analytical formulas (A.5) and (A.7)
from AOYAMA et al. (2014):

∆fwdm,0(q, τq) =
[
−h′(τq)

6Hq
+ δdcdm(τq)

]
aqΓN̄dcdm(τq)

4πq3Hq
, (D.58)

∆fwdm,2(q, τq) = 1
Hq

[
h′(τq)

15 + 2η′(τq)
5

]
aqΓN̄dcdm(τq)

4πq3Hq
. (D.59)

Finally, on times τ > τq, we treat the WDM component as a massive neutrino species,
and we solve the corresponding hierarchy of equations in 300 momentum-bins.
This number of bins is chosen simply because it gives a good compromise between
speed and accuracy: it is large enough to accurately describe the super-Hubble and
Hubble-crossing scales, where the dynamics is relatively simple, and small enough
to not become too computationally expensive 6. On sub-Hubble scales, when kτ is
larger than a threshold value (kτ)fluid, we switch-on the fluid approximation described
in section Sect. 3.2.3. The WDM dynamics is now described by Eq. (3.41)-Eq. (3.44)
and Eq. (3.46). After trying several values of (kτ)fluid, we found (kτ)fluid = 25 to
provide the speed yet accurate enough for the purposes of the current analyses. Our
implementation is summarized in Fig. D.2.

In Fig. D.3 and Fig. D.4 we explicitly compare the novel approximation scheme
with the results of the “exact” computation for the WDM species. For the latter,
we solve the full Boltzmann hierarchy using 104 momentum-bins and `max = 17.
In Fig. D.3 we show the residuals of the lensed CMB TT and EE power spectra in
the WDM fluid approximation, with respect to the full computation, for a grid of
parameter values given by Γ/H0 = 0.1, 1, 10 and ε = 0.5, 0.1, 0.01, 0.001. These values
span most of the parameter space in the ΛDDM framework, and for none of them
the residuals exceed the Planck 1σ uncertainties, which are indicated by the gray
shaded regions, nor the error bars for a cosmic-variance-limited experiment (close to
CMB-S4 errors), indicated by the pink shaded regions.

5This procedure corresponds to the case in which Ωini
dcdm is passed as an input parameter. Alterna-

tively, the user can pass as input the present abundance of DCDM, WDM and DR, Ωdcdm+dr+wdm, in
which case a shooting method is also performed in order to find the corresponding Ωini

dcdm.
6Note that the number of bins used at both the background and perturbation level is much larger

than the one typically used in standard CLASS analysis for massive active neutrinos, given that the
time-dependence of the background PSD of the WDM requires a finer momentum resolution. Regarding
the momentum spacing, we have considered a logarithmic Simpson quadrature instead of the Gauss-
Laguerre quadrature typically used in standard CLASS analysis.
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Figure D.3 – Residuals of the lensed CMB TT power spectrum (upper) and EE power spectrum
(lower) in the WDM fluid approximation, with respect to the full hierarchy calculation, for a
grid of values covering most of the parameter space: Γ/H0 = 0.1, 1, 10 and ε = 0.5, 0.1, 0.01, 0.001.
The gray shaded regions indicate Planck 1σ errors, while the pink shaded areas indicate
cosmic variance up to ` = 3000.

Figure D.4 – Residuals of the linear matter power spectrum (at z = 0), with respect to the
baseline ΛCDM model, for the same grid of parameter values considered in Fig. D.3, both from
the full hierarchy calculation (solid lines) and the WDM fluid approximation(dashed lines).

The predictions for the linear matter power spectrum P (k) are less accurate than
for the anisotropy spectra, because the former is more sensitive to the dynamics of
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the daughter particles. Close to the best-fit parameter values, and in general close
to ΛCDM, the residual errors between the full and the fluid calculations in P (k) are
O(1%), but they can become higher far away from the best-fit. In particular, we
have verified that inside the parameter region delimited by Log10ε ∈ [−2.3,−0.7] and
Log10(Γ/Gyrs−1) ∈ [−1.3, 1], the residual errors are typically larger than 10%, so the
fluid approximation should be used with caution in this region. However, this portion
of the parameter space is deeply inside the 2σ exclusion region, as one can check
by looking at Fig. 3.7. In addition, given that current data are mostly sensitive to
integrals over P (k) (e.g. S8, CMB lensing), we are mainly interested in getting accurate
predictions for the departures from ΛCDM (rather than the exact shape of the matter
spectrum itself). To illustrate that, we have computed the residuals of the linear
matter power spectrum (at z = 0) with respect to our baseline ΛCDM model, for both
the fluid and the full hierarchy calculations. The results are shown in Fig. D.4, where
we have spanned the same parameter values as in Fig. D.3. We can see that, for all
the ΛDDM models, the shape of the power suppression (that is, the depth and the
cut-off scale) is excellently well-captured by our fluid prescription. Furthermore, we
verified that the residuals in the structure growth parameter S8 ≡ σ8(Ωm/0.3)0.5 are
always smaller than the ∼ 1.8% relative error of the S8 measurement from HEYMANS

et al. (2021). We thus conclude that the new WDM viscous fluid approximation is
accurate enough for our analyses.

D.5 Best-fit χ2 per experiment

In Tab. (D.1) and Tab. (D.2) we report all χ2
min’s obtained with the MINUIT algorithm

(JAMES et al. 1975) through the iMinuit python package for the various model and
data-set combinations considered in this work.

BAO+SNIa +Planck +Planck w/ S8 +SPTpol +ACTPol
w/o S8 w/ Alens ε = 0.05 w/o S8 w/ S8 w/o S8 w/ S8

Pantheon SNIa 1026.9 1028.2 1027.5 1026.8 1029.2 1028.0 1027.1 1027.0 1026.9 1027.0 1026.84
BAO+FS BOSS DR12 – 6.63 7.06 6.93 7.11 6.14 6.59 5.94 6.17 6.78 6.66
BAO BOSS DR12 3.52 – – – – – – – – – –
BAO BOSS low−z 1.84 1.20 1.22 1.18 1.24 1.83 1.28 1.58 1.79 1.17 1.34
BAO eBOSS DR14 4.29 4.94 4.91 4.94 4.83 4.52 4.88 4.68 4.53 4.97 4.77
Planck high−` TT,TE,EE ‘lite’ – 584.8 585.9 585.3 586.9 577.7 587.5 – – 589.216 590.545
Planck high−` TT ‘lite’ – – – – – – – 207.8 207.8 – –
Planck low−` EE – 396.9 396.9 397.2 396.3 395.7 396.3 395.8 396.1 396.2 397.15
Planck low−` TT – 23.1 23.1 23.2 23.0 22.1 23.0 22.3 22.1 22.6 22.46
Planck lensing – 8.78 9.12 8.88 9.47 8.53 9.83 – – 8.8 8.94
SPTpol high−` TE,EE – – – – – – – 145.9 145.6 – –
SPTpol lensing – – – – – – – 5.43 5.93 – –
ACTPol – – – – – – – – – 238.235 237.359
KiDS+BOSS+2dFLens – – 0.0003 – – 0.0097 0.98 – 0.0015 –
DES – – – 0.19 – – – – – – –
KiDS+Viking+DES – – – – 0.20 – – – – – –
total χ2 1036.6 2053.4 2055.0 2054.8 2055.9 2043.2 2057.6 1816.3 1816.8 2294.8 2296.2

Table D.1 – Best-fit χ2 per experiment (and total) for the different ΛDDM analyses performed
in this work.

D.6 Comparison with the Planck constraints from CLARK

et al. (2021a)

Here we carry out an explicit comparison of our constraints with those of CLARK

et al. (2021a), which performed an analysis of the ΛDDM model against Planck data,
neglecting the perturbations of the warm daughter particles. As shown in Fig. D.5,
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Model νΛCDM ΛDDM

Experiment w/o S8 w/ S8 w/o S8 w/ S8

Planck high−` TT,TE,EE 586.67 587.57 584.82 585.74
Planck low−` EE 396.06 396.05 396.92 396.92
Planck low−` TT 23.18 22.66 23.12 23.09
Planck lensing 8.93 9.60 8.78 9.07
Pantheon 1026.93 1026.73 1026.94 1026.93
BAO BOSS low−z 1.23 1.62 1.20 1.21
BAO FS BOSS DR12 6.51 5.88 6.63 6.95
eBOSS DR14 Ly−α 4.93 4.68 4.94 4.91
KIDS1000+BOSS+2dfLenS − 5.64 − 0.15

total 2053.4 2060.5 2053.4 2055.0

Table D.2 – Best-fit χ2 per experiment (and total) in νΛCDM and ΛDDM, with and without a
split-normal likelihood on S8 from KiDS-1000+BOSS+2dFLens.

Figure D.5 – Comparison between the 2σ exclusion bounds (solid lines) from the Planck anal-
ysis of CLARK et al. (2021a) and our Planck+BAO+SNIa analysis. In each case, the dashed line
indicates a fit that roughly describes the 2σ limit in the range Γ ∼ 10−3 − 10−1 Gyrs−1.

we find that the constraints on the ΛDDM models are up to (roughly) one order of
magnitude stronger when our improved treatment is considered.

D.7 Results with a linear prior on Γ and ε

In our baseline analysis we have made use of log-prior on ε and Γ, to ease
comparison with earlier works (VATTIS et al. 2019; CLARK et al. 2021a) who adopted
the same choice. Here we present results using linear priors on the DDM parameters.
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Figure D.6 – Reconstructed 2D posteriors of a BAO + SNIa + Planck + S8 (from
KiDS+BOSS+2dFLens) analysis, with linear priors and sampling either with the original prior
range (upper panel) or within a restricted prior range (lower panel).

Let us however stress that the use of a linear prior is less informative than
adopting a logarithmic one. That is because a linear prior carries a scale (due to the
large error bars used in the proposal distribution of the MCMC sampler), so that it
is hard for the sampler to detect fine structure over 4 orders of magnitude by using
a linear scale, in particular at very small values. In other words, given the difference
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Figure D.7 – Reconstructed 2D posterior distributions of
{S8,Ωm,Log10(Γ/Gyrs−1),Log10(ε),

∑
mν/eV} with the neutrino mass fixed to 0.06 eV (blue) or

let free to vary (red).

between the scale of the upper limit on Γ/Gyrs−1 an ε (∼ 10−1) and that of the lower
limit (∼ 10−3)), it is very difficult to accurately reconstruct the parameter space with
a linear prior. Such a difficulty is illustrated in Fig. D.6, where we provide the results
of two linear-prior analyses: the upper panel corresponding to the original prior
range, the lower panel corresponding to a more restricted range: ε ∈ [0.0001, 0.015]
and Γ/Gyrs−1 ∈ [0.0001, 0.05]. While in the latter case ε and Γ are detected at the 2σ
level – similarly to the log-prior results – the former case weighs in favor of larger ε
values, so that one would incorrectly deduce an upper limit only.

D.8 Results with the neutrino mass free in the ΛDDM
cosmology

We show in Fig. D.7 the 2D posteriors of {S8,Ωm,Log10(Γ/Gyrs−1),Log10(ε),
∑
mν/eV}

with the (individual) neutrino mass fixed to 0.06 eV (red) or let free to vary (blue).
When considering the neutrino mass a free parameter, we model neutrinos as three
degenerate state, while when the neutrino mass is fixed to 0.06 eV we consider one
massive, two massless neutrinos. One can see that the results are unaffected by our
choice of keeping the neutrino mass fixed to 0.06 eV in our fiducial analysis.





E
Complements on decaying

neutrinos

In this appendix we detail some important calculations concerning the dynamics
of decaying neutrinos to dark radiation, that were too long to be included in the main
text of Chapter 4. We also include an extra run to show the effects of imposing the
non-relativistic limit as a prior on the MCMC.

E.1 Collision term for decaying neutrinos

The goal is to simplify as much as possible the general expression for the decaying
neutrino collision term (c.f. Eq. (4.12)):

(
∂fν
∂τ

)
C

= − a2fν(q)
2Eν(2π)2

∫
d3~q1
2E1

d3~q2
2E2
|M|2δ(4)(Q−Q1 −Q2). (E.1)

In the context of two-body decays to massless particles, the invariant amplitude
squared |M|2 is simply related to the rest-frame decay width of the neutrinos as
|M|2 = 16πΓνmν (BARNETT et al. 1996). As in App. D.1, we will be using the following
relations associated with the Dirac delta function:

∫
d3 ~qI
2EI

=
∫
d4QI δ(E2

I − q2
I − a2m2

I)Θ(EI), (E.2)

δ(f(x)) =
∑
i

δ(x− x0)
|f ′(x0)| , with x0 such that f(x0) = 0. (E.3)

The calculation is very similar to the one we performed for decaying dark matter in
App. D.1. However, there are two important differences we have to take into account:
1) the momentum of mother particles is not negligible anymore, ~qν = ~q 6= 0, and 2)
both daughter particles are massless, E1 = q1, E2 = q2. The former implies that now
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we’ll have to take care of the angular integral over q̂ · q̂1 = cos θ. Hence:(
∂fν
∂τ

)
C

= −2a2Γνmνfν
πEν

∫
d3~q1
2E1

δ
(
(Eν − E1)2 − |~q − ~q1|2

)
Θ(Eν − E1)

= −2a2Γνmνfν
Eν

∫ ∞
0

dq1q1

∫ +1

−1
d cos θ δ

(
2Eνq1 − 2qq1 cos θ − a2m2

ν

)
Θ(Eν − q1).

= −2a2Γνmνfν
Eν

∫ ∞
0

dq1q1

∫ +1

−1
d cos θ δ (cos θ − cos θ∗)

2qq1
Θ(Eν − q1), (E.4)

where cos θ∗ is given by

cos θ∗ = 2Eνq1 + a2m2
ν

2qq1
. (E.5)

The integral over cos θ is performed trivially thanks to the Dirac delta. However, this
will introduce a step function Θ(1 − cos2 θ∗), in order to enforce the condition cos θ∗ ∈
[−1, 1]. This will in turn restrict the integration limits for the remaining momentum in-
tegral to q±1 = 1

2 (Eν ± q), which are nothing but the roots of 1−cos2 θ∗. Thus, we arrive at(
∂fν
∂τ

)
C

= −a
2Γνmνfν
Eνq

∫ q+
1

q−1

dq1 = −a
2Γνmνfν
Eν

. (E.6)

E.2 Collision term for dark radiation daughters

The starting point is the collision term appearing in the equations for the perturbed
PSD multipoles of the dark radiation, Fdr,`. It is given by (c.f. Eq. (4.32))

C` = 2i`
∫
dΩk

4π P`(k̂ · q1)
(4π
ρc

∫
dq1q

3
1

(
∂fdr
∂τ

)
C

[q1, k̂ · q1]
)

= i`
(

8a2Γνmν

πρc

)∫
dΩkP`(k̂ · q1)

∫
dq1
2E1

q3
1

∫
d3q2
2E2

d3q

2Eν
∆fν(q, k̂ · q)δ(4)(Q−Q1 −Q2). (E.7)

where in the second line we inserted the expression for
(
∂fdr
∂τ

)
C

in Eq. (4.13) and

used that |M|2 = 16πΓνmν. In this expression dΩk represents the differential solid
angle along the direction k̂, while q1,2 are the momenta of daughter particles. The d3q2
integral can be easily evaluated using the delta function corresponding to momentum
conservation. In order to perform the integral over dΩk, we notice that the direction
of k̂ enters only via P`(k̂ · q̂1) and ∆fν(q, k̂ · q̂). Now, using the Legendre expansion of
∆fν(q, k̂ · q̂) in Eq. (4.22) and employing the identity∫

dΩkP`(k̂ · q̂)P`′(k̂ · q̂1) =
( 4π

2`+ 1

)
P`(q̂ · q̂1)δ``′ , (E.8)

we can evaluate the dΩk integral to obtain

C` =
(

32mνΓνa2

ρc

)∫
d3qdq1

8EνE1E2
q3

1P`(q̂1 · q̂)∆fν,`(q)δ(Eν − E1 − E2). (E.9)

Now, notice that the direction of the neutrino momentum only enters the integrand via
the angle between the neutrino momentum q and the daughter momentum q1, cos θ ≡
q̂ · q̂1. The energy conserving delta function can be expressed in terms of this angle as

δ(Eν − E1 − E2) = E2
qq1

δ (cos θ − cos θ∗) , (E.10)
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where cos θ∗ is given by Eq. (E.5). As before, The energy conservation restricts the
daughter momentum to a range of values (q+

1 , q
−
1 ). The edges of this range occur

when the extreme values, cos θ∗1 = ±1, are reached. These values correspond to
q±1 = 1

2 (Eν ± q). After integrating over the delta function corresponding to energy
conservation, this reduces to

C` =
(

8πmνΓνa2

ρc

)∫
dq

Eν
q∆fν,`

∫ q+
1

q−1

dq1q1P`

(
2Eνq1 − a2m2

ν

2qq1

)
. (E.11)

E.3 Fluid equations for decaying neutrinos

We seek to derive viscous fluid equations for decaying neutrinos, in order to sim-
plify the dynamics dictated by the following Boltzmann hierarchy of equations:

∆f ′ν,0 = −qk
Eν

∆fν,1 + q
∂f̄ν
∂q

h′

6 −
a2Γνmν

Eν
∆fν,0, (E.12)

∆f ′ν,1 = qk

3Eν
[∆fν,0 − 2∆fν,2]− a2Γνmν

Eν
∆fν,1, (E.13)

∆f ′ν,2 = qk

5Eν
[2∆fν,1 − 3∆fν,3]− q∂f̄ν

∂q

(h′ + 6η′)
15 − a2Γνmν

Eν
∆fν,2, (E.14)

∆f ′ν,`>2 = qk

(2`+ 1)Eν
[`∆fν,`−1 − (`+ 1)∆fν,`+1]− a2Γνmν

Eν
∆fν,`. (E.15)

The fluid viscous equations are obtained by truncating Eq. (E.12)-Eq. (E.15) at ` = 2
and integrating over q as discussed in BLAS et al. (2011) and LESGOURGUES et al.
(2011). As already mentioned in Chapter 3, the fluid description is only valid at
scales deeply inside the Hubble radius, where high-` and low-` modes are effectively
decoupled. The calculations are totally analogous to the ones carried out for the
warm dark daughter in App. D.3, except that the decay terms are slightly different.
The continuity and Euler equation are:

δ′ν = −3H(c2
syn − wν)δν − (1 + wν)

(
θν + h′

2

)
− aΓνδν

(
1− 3wδ −

n̄νmν

ρ̄ν

)
, (E.16)

θ′ν = −H(1− 3c2
g)θν +

c2
syn

1 + wν
k2δν − k2σν − aΓνθν

(
1− 3wθ −

1 + c2
g

1 + wν

n̄νmν

ρ̄ν

)
, (E.17)

while the dynamical equation for the shear stress is written as

σ′ν = −3
(1
τ

+Hξ
)
σν +

8wνc2
g

1 + wν

[
θν + h′

2

]
− aΓνσν

(
1− 3ωσ −

1 + c2
g

1 + wν

n̄νmν

ρ̄ν

)
, (E.18)

where ξ ≡ 2/3 − c2
g − pν/(3P̄ν). As usual, we have introduced the adiabatic sound

speed, c2
g ≡ P̄ ′ν/ρ̄′ν, and the sound speed in the synchronous gauge, c2

syn ≡ δPν/δρν. For
the latter, one can follow the same approximation as for stable massive neutrinos
(LESGOURGUES et al. 2011)

c2
syn ' c2

g. (E.19)

The adiabatic sound speed can straightforwardly be computed using the fol-
lowing expression

c2
g = wν

(
5− pν

P̄ν
+ aΓν

3wνH
nνmν

ρ̄ν

)[
3(1 + wν) + aΓν

H
n̄νmν

ρ̄ν

]−1
. (E.20)
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When setting Γν to 0, Eq. (E.16)-Eq. (E.20) reduce to the fluid equations for mas-
sive stable neutrinos considered in LESGOURGUES et al. (2011). In Eq. (E.20), the
quantities pν and nν denote the pseudo-pressure and pseudo-number density, re-
spectively. These are higher momenta integrals of the background p.s.d., f̄ν(q, τ),
that reduce to the standard pressure P̄ν and number density n̄ν in the relativistic
limit. They can be computed as:

pν = 4π
3a4

∫
dq
q6

E3
ν

f̄ν , nν = 4π
a3

∫
dq
q4

E2
ν

f̄ν . (E.21)

In Eq. (E.16)-Eq. (E.18), the quantities wi (for i = δ, θ, σ) are determined through the
following expressions:

1− 3ωδ ≡
mνδnν
δρν

=
4π
a4
∫
dqq2amν∆fν,0

4π
a4
∫
dqq2Eν∆fν,0

, (E.22)

1− 3ωθ ≡
(ρ̄ν + P̄ν)Θν

(ρ̄ν + P̄ν)θν
=

4πk
a4
∫
dqq3 amν

Eν ∆fν,1
4πk
a4
∫
dqq3∆fν,1

, (E.23)

1− 3ωσ ≡
(ρ̄ν + P̄ν)Σν

(ρ̄ν + P̄ν)σν
=

8π
3a4

∫
dqq4 amν

E2
ν

∆fν,2
8π
3a4

∫
dq q

4

Eν ∆fν,2
. (E.24)

The variables Θν and Σν were already discussed in App. D.3 when writing fluid equa-
tions for the warm daughter particles. In order to close the system of Eq. (E.16)-
Eq. (E.18) we need some prescription for computing the quantities ωδ, ωθ and ωσ
without having to solve the full Boltzmann hierarchy for each momentum bin. By
having a look at Eq. (E.22)-Eq. (E.24), we realize that mνδnν/δρν → 1, Θν/θν → 1 and
Σν/σν → 1 in the non-relativistic limit, while mνδnν/δρν → 0, Θν/θν → 0 and Σν/σν → 0
in the relativistic limit (by a factor amν/q � 1). Therefore, we could approximate ωδ,
ωθ and ωσ by some background functions that go from 0 in the non-relativistic limit to
1/3 in the relativistic limit. An obvious guess would be the following

wδ ' wθ ' wσ ' wν , (E.25)

where wν ≡ P̄ν/ρ̄ν is the EoS of the neutrino species. However, there are many other
possible choices, such as c2

g, 3wνc2
g, 3wν(1 + wν)/4, pν/3P̄ν, nν/3n̄ν, etc. In order to get

the best candidates, one should compare these background functions with the exact
formulas Eq. (E.22)-Eq. (E.24) computed with the full hierarchy, to see which one
reproduces better the transition regime. For all the choices we tried, we verified that
the decay terms in Eq. (E.16)-Eq. (E.18) play a very minor role, i.e. they give almost
the same results as the fluid equations for stable massive neutrinos. This is not
so surprising, given that these decay terms vanish both in the relativistic limit (for
which wi ' wν ' c2

g ' 1/3 and n̄νmν � ρ̄ν ) and in the non-relativistic one (for which
wi ' wν ' c2

g ' 0 and n̄νmν ' ρ̄ν ).

We would still need to relate the collision terms up to `max = 2 in the Boltzmann
hierarchy for the dark radiation daughter with δν, θν and σν, and then set C`>`max = 0.
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The first three collision terms are (c.f. Eq. (4.34)-Eq. (4.37))

C0 = 4πa2Γνmν

ρc

∫
dqq2∆fν,0, (E.26)

C1 = 4πa2Γνmν

ρc

∫
dqq2 q

Eν
∆fν,1, (E.27)

C2 = 4πa2Γνmν

ρc

∫
dqq2

[
5
2 −

3
2
E2
ν

q2 + 3
4

(E2
ν − q2)2

Eνq3 ln
(Eν + q
Eν − q

)]
∆fν,2. (E.28)

By looking at the asymptotic limits of Eq. (E.26) and Eq. (E.27), it’s easy to see that
they can be interpolated in the following manner:

C0 = a5Γν
ρc

(1− 3wδ)ρ̄νδν , (E.29)

C1 = a5Γν
ρc

(1− 3wθ)ρ̄ν(1 + wν)θν
k
. (E.30)

Unfortunately, it’s not so easy to relate C2 with the neutrino shear σν, given the com-
plicated integrand appearing in Eq. (E.28). In addition, the fluid equations do not
provide such a high gain in speed as compared to the decaying dark matter sce-
nario, because CLASS implements an optimal momentum sampling that makes the
resolution of the neutrino Boltzmann hierarchy in Eq. (E.12)-Eq. (E.13) very man-
ageable. For these reasons, we don’t use the fluid equations in our analysis. Nev-
ertheless, Eq. (E.16)-Eq. (E.18) provide a first step to achieve a fluid description
of the relativistic neutrino decay, for which the inverse decay terms cannot be ne-
glected and would likely make the resolution of the full Boltzmann hierarchy com-
putationally prohibitive.

E.4 Excluding the relativistic decay regime from the
MCMC analysis

In our baseline analysis, we have extrapolated our scans to the (mildly-)relativistic
decay regime, despite the fact that the equations do not include inverse decays. We
have then interpreted the bound on the sum of neutrino masses when considering
non-relativistic decays as the intersect between the non-relativistic decay condition
Γν > H(Tν = mν/3) and the 2σ limit derived from our analysis.

In this appendix, we investigate how excluding the relativistic decay regime
of parameter space from the scan can affect the bounds on

∑
mν/eV and

Log10(Γν/[km/s/Mpc]). As we are interested in (semi-)relativistic decays, we focus
on the parameter space Log10(Γν/[km/s/Mpc]) ∈ [3, 6.5]. Our results are presented
in Fig. E.1. In the 2D plane {Log10Γν ,

∑
mν} and below the non-relativistic line

Γν = H(Tν = mν/3), we find that imposing the condition directly within the MCMC
prior relaxes the bound by ∼ 10 − 20%. Nevertheless, after marginalizing over
Log10(Γν), we find that the ‘naive’ bound coming from the intersect between the
non-relativistic line ( Γν > H(Tν = mν/3)) and the 2σ limit without priors is in
excellent agreement with that coming from imposing this condition as a prior in
the analysis, both yielding

∑
mν < 0.42 eV.
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F
Résumé détaillé en français

F.1 L’ère de la cosmologie de précision

La cosmologie est l’étude de l’évolution et des propriétés de l’univers dans son
ensemble. Cette discipline scientifique aborde des questions aussi anciennes que
l’humanité elle-même (c’est-à-dire "l’univers tel que nous le connaissons a-t-il existé
depuis toujours ?" "quel est le destin ultime du cosmos ?"). Cependant, ce n’est qu’au
début du 20e siècle qu’elle est devenue une science prédictive, lorsque la théorie
de la relativité générale (RG) s’est imposée comme un cadre théorique solide pour
décrire l’univers. Depuis lors, le domaine de la cosmologie n’a cessé d’évoluer, grâce
à l’augmentation rapide de la quantité et de la précision des observations.

Au cours des deux dernières décennies, le modèle de cosmologie appelé Λ Cold
Dark Matter (ΛCDM ) est devenu un paradigme réussi pour expliquer plusieurs
sondes indépendantes avec un degré de précision étonnant. Ce modèle suppose que
l’univers est bien décrit par une métrique plate de Friedman-Lemaître-Robertson-
Walker, et qu’il est principalement composé d’environ 5 % de matière ordinaire,
26 % de matière noire froide et 69 % d’énergie noire sous forme de une constante
cosmologique Λ. Malheureusement, la nature de ses principaux constituants, la
matière noire et l’énergie noire, reste encore un mystère. De plus, l’augmentation
de la précision des données cosmologiques a récemment conduit à l’apparition
de plusieurs divergences expérimentales entre les sondes de l’univers primordial
et tardif. En particulier, il existe une tension de 5σ dans la détermination du
taux d’expansion actuel de l’univers (la constante de Hubble), et une tension
de 2 − 3σ dans la détermination de l’amplitude d’agglutination dans l’univers
(décrite par le paramètre S8). Pour ces raisons, ces dernières années, il y a eu un
intérêt croissant pour l’exploration de différentes extensions du modèle ΛCDM ,
qui pourraient donner des indices sur les composants sombres très mystérieux, et
éventuellement offrir une explication aux divergences expérimentales susmentionnés.

D’autre part, la découverte des oscillations des neutrinos fournit des preuves
solides de l’existence de masses de neutrinos minuscules mais non nulles, un
phénomène qui ne peut pas être expliqué dans le cadre du modèle standard de la
physique des particules. La cosmologie est actuellement la sonde la plus puissante
des masses de neutrinos, et elle peut offrir des indices très précieux sur ses
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propriétés.

Dans cette thèse, nous avons étudié en détail les implications cosmologiques
de plusieurs extensions du paradigme ΛCDM . Dans la première partie, nous
avons étudié deux modèles, l’énergie sombre précoce (EDE) et la matière noire
instable (DDM), qui sont directement ciblés à expliquer les tensions de Hubble
et S8, respectivement. Dans la deuxième partie, nous avons analysé un autre
scénario exotique motivé par le mystère de la masse des neutrinos, la désintégration
des neutrinos, dont le formalisme est très similaire à celui de la matière noire instable.

Nous avons expliqué comment les mesures très précises des anisotropies du fond
diffus cosmologique (CMB) jouent toujours un rôle central dans la définition de nou-
velles contraintes robustes pour chacun de ces modèles. Pour rendre ce travail aussi
autonome que possible, tout d’abord nous avons décrit les outils mathématiques et
les observables les plus pertinents en cosmologie. Nous avons commencé par une
courte introduction historique de la cosmologie moderne et une esquisse de les évé-
nements majeurs de l’histoire de l’univers. Ensuite, nous avons passé à la récapi-
tulation du formalisme nécessaire pour comprendre les observables cosmologiques
telles que l’anisotropie du fond diffus cosmologique et le spectre de puissance de la
matière. Nous avons commencé par la description de l’univers homogène, et avons
expliqué quelques concepts essentiels sur l’inflation. Plus tard, nous avons procédé
à l’étude des écarts à l’équilibre en introduisant le formalisme de Boltzmann. Nous
avons continué avec une présentation très détaillé de la théorie des perturbations li-
néaires. Dans la partie finale, nous avons discuté des défis les plus importants du
modèle ΛCDM: la nature du secteur sombre et les tensions cosmologiques.

F.2 Energie noire précoce et la tension H0

Une composante constante d’énergie sombre précoce (EDE) contribuant à une frac-
tion fEDE(zc) ∼ 10% de la densité d’énergie de l’univers autour de zc ' 3500 et se di-
luant au même rythme ou plus rapidement que le rayonnement par la suite, peut
fournir une résolution simple à la tension de Hubble. Cependant, il a été souligné
que l’inclusion de données de structure à grande échelle (LSS), qui sont en tension
∼ 3σ avec les cosmologies ΛCDM et EDE, pourrait briser une certaine dégénérescence
des paramètres et modifier ces conclusions. Nous réévaluons la viabilité de l’EDE
en combinant les observations LSS des récentes enquêtes à faible lentille (WL) avec
les données CMB, BAO, fonction de croissance (FS) et SNIa. Nos résultats peuvent
être résumés comme suit :

1. Dans un modèle EDE phénoménologique à 3 paramètres (3pEDE), nous confir-
mons que Planck18+ BAO+FS+PANTHEON+SH0ES favorisent fEDE(zc) ' 0.1 ±
0.03, zc ' 4000+1400

−500 et Θi = 2, 6+0,4
−0,03, avec un ∆χ2 = −18, 7 par rapport à ΛCDM

ajusté sur le même ensemble de données. L’inclusion des dernières données
Planck18 (et en particulier les mesures de polarisation plus précises) ne gâche
pas le succès de la résolution EDE à la tension de Hubble.

2. Nous avons alors montré que réduisant l’espace des paramètres à un modèle
EDE à 1 paramètre (1pEDE) en fixant Log10(zc) et Θi à leurs meilleures va-
leurs d’ajustement tel qu’obtenu à partir d’une analyse de Planck18 données
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uniquement – qui coïncide de manière frappante avec celles de l’analyse combi-
née avec SH0ES – conduit à une préférence ∼ 2σ pour l’EDE non nul, à savoir
fEDE(zc) ' 0.08± 0.04 à partir des données Planck18 CMB seules. Dans cette cos-
mologie, le H0 ' 70± 1.5 km/s/Mpc inféré est en accord à mieux que 2σ avec sa
mesure locale de SH0ES. L’ajout des données BAO, FS et PANTHEON n’a pas
d’impact significatif sur le résultat.

3. Pour justifier l’inclusion des données LSS dans nos analyses, nous avons
confronté le spectre de puissance de la matière non linéaire EDE tel que
prédit par des algorithmes semi-analytiques standard à un ensemble dédié de
simulations N-corps. Nous avons ensuite testé la cosmologie 1pEDE par rapport
aux données WL, constatant qu’elle n’aggrave pas de manière significative
l’ajustement aux mesures S8 par rapport à ΛCDM, et que les observations WL
actuelles n’excluent pas la résolution EDE à la tension de Hubble.

4. Nous mettons également en garde contre l’interprétation des contraintes obte-
nues en combinant Planck18 avec KIDS-VIKING+DES. Comme nous l’avons
montré, la cosmologie de « compromis » obtenue est un mauvais ajustement à
KIDS-VIKING+DES et dégrade l’ajustement aux données de Planck18 , même
en ΛCDM. Cela illustre que ces ensembles de données sont statistiquement in-
cohérents dans un cadre ΛCDM, et il est facilement concevable que la résolution
de cette tension se situe ailleurs (qu’il s’agisse d’un effet systématique ou d’une
nouvelle physique).

5. À la lumière de l’anomalie Alens du CMB, nous avons montré que les données
CMB marginalisées par Alens favorisent l’EDE non nul à ∼ 2σ, prédisent H0 en
accord 1, 4σ avec SH0ES et S8 en 1.5σ et 0.8σ concordent respectivement avec
KIDS-VIKING et DES . Il existe cependant toujours une tension ∼ 2.5σ avec
les résultats conjoints de KIDS-VIKING et DES. De plus, la présence d’EDE
n’affecte pas la quantité de lentilles anormales.

Dans la deuxième partie de ce travail, nous avons utilisé une méthodologie com-
mune pour comparer et contraster le succès relatif de dix-sept modèles (y compris
EDE) proposés pour atténuer la tension de Hubble; cette approche se veut donc une
juste comparaison entre les solutions proposées, et fournit un repère utile pour ceux
qui souhaitent proposer des idéaux nouveaux. Nous avons réparti les différents mo-
dèles en trois catégories génériques: ceux qui modifient l’horizon sonore en incluant
une composante de rayonnement sombre (DR) impactant l’histoire de l’expansion
précoce, les solutions qui modifient l’horizon sonore par un autre mécanisme (tel
qu’un retard de recombinaison ou une certaine contribution à l’expansion avant la re-
combinaison), et des solutions qui tentent de modifier l’histoire de l’expansion tardive.

Pour chaque modèle et ensemble de données, nous quantifions la tension rési-
duelle à l’aide d’une série de mesures, chacune présentant à la fois des avantages et
des inconvénients, et en essayant de répondre à des questions légèrement différentes,
à savoir : étant donné un modèle, (i) dans quelle mesure la confrontation avec des
données (autres que SH0ES) génèrent des distributions a posteriori compatibles
avec des valeurs élevées de H0, (ii) dans quelle mesure peut-on obtenir un bon
ajustement combiné à toutes les données, et (iii) dans quelle mesure ce modèle est-il
préféré à ΛCDM ? Le résumé de nos conclusions est qu’aucun modèle ne fonctionne
parfaitement bien dans tous nos tests – tous les modèles se retrouvent avec une
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tension résiduelle, le plus prometteur réduisant la tension au niveau ∼ 1, 6σ, et avec
très peu modèles réduisant réellement la tension en dessous de 3σ. De même, seul un
petit sous-ensemble de modèles est capable d’améliorer suffisamment l’ajustement
pour réussir le test AIC. Six modèles, EDE, NEDE, EMG, varying me (avec et sans
courbure), et le Majoron, sont capables de satisfaire simultanément les critères
QDMAP et ∆AIC. De plus, seul le varying me (avec et sans courbure) passe le critère
gaussien et permet un haut H0 (ou MB) sans SH0ES préalable, recevant la seule
“médaille d’or” de notre tournoi.

De plus, nous notons qu’en dehors de l’EDE, aucun des modèles d’intérêt n’atté-
nue (ni n’exacerbe) la tension S8. Certains modèles qui avaient précédemment montré
un certain succès dans la réduction de la tension S8, à savoir DM-DR et les neutrinos
à forte interaction, sont maintenant défavorisés par les données. Trouver une résolu-
tion commune aux deux tensions renforcerait certainement le degré de croyance dans
la nouvelle cosmologie de la concordance; cependant, nous réitérons que la résolu-
tion de ces tensions pourrait provenir de secteurs indépendants - soit de la nouvelle
physique, soit des erreurs systématiques. Nous concluons que certains des modèles
présentés dans ce travail peuvent fournir un bon ajustement combiné à toutes les
données considérées (y compris SH0ES), démontrant qu’il existe au moins des so-
lutions potentielles à la tension H0, mais il reste encore de nombreuses difficultés
à surmonter dans la construction du modèle et dans l’explication de la tension S8
croissante. Des travaux supplémentaires doivent être effectués pour établir si ces
problèmes théoriques et observationnels restants peuvent être surmontés dans une
nouvelle cosmologie concordante, qui peut soit s’appuyer sur les modèles étudiés ici,
soit peut-être se situer dans une direction encore inexplorée.

F.3 Matière noire instable et la tension S8

Dans ce travail, nous avons réalisé une étude cosmologique complète du scénario
de désintégration de la matière noire froide (CDM) à 2 corps appelé ‘ΛDDM’, dans
lequel les désintégrations sont caractérisées à la fois par le taux de désintégration
Γ et la fraction d’énergie convertie en rayonnement ε, incluant pour la première fois
un traitement totalement cohérent des perturbations linéaires de la composante fille
tiède (WDM). À cette fin, nous avons utilisé un nouveau schéma d’approximation,
qui permet de calculer avec précision et rapidité la dynamique des perturbations
linéaires de la WDM en traitant l’espèce WDM comme un fluide visqueux. Proche
des valeurs les mieux ajustées, notre schéma d’approximation est précis au niveau
O(0, 1%) dans les spectres de puissance de CMB et O(1%) dans le spectre linéaire
de puissance de la matière. Nous avons ensuite discuté en détail la dynamique des
perturbations linéaires des particules mères et filles, ainsi que les effets physiques
du modèle ΛDDM sur les spectres de puissance du CMB et de la matière.

Dans une deuxième partie, nous avons effectué un ensemble d’analyses MCMC
du modèle ΛDDM par rapport à une suite d’ensembles de données à jour à faible
et à haut décalage vers le rouge. Nous avons comparé les contraintes obtenues à
partir des données BAO et SNIa, donc uniquement basées sur les effets de fond,
à celles obtenues à partir du jeu de données complet Planck, qui nécessite plutôt
une description précise des perturbations linéaires WDM. Nous constatons que les
données CMB Planck contraignent le modèle ΛDDM ∼ 1 ordre de grandeur mieux que
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les données BAO+SNIa actuelles. Cependant, nous montrons également que malgré
ces contraintes, le modèle ΛDDM offre une possibilité prometteuse pour résoudre la
tension S8.

Nous avons ensuite testé la robustesse de la résolution de ΛDDM à la tension S8
à un certain nombre de changements dans l’analyse. Nous montrons que la légère
préférence pour le modèle ΛDDM par rapport à ΛCDM est liée à la valeur S8 choisie
dans l’analyse. Concrètement, la valeur S8 de l’analyse KiDS+Viking+DES, qui a
un niveau de tension plus élevé avec la prédiction Planck ΛCDM que la valeur de
référence KiDS+BOSS+2dFLens, conduit à une préférence plus forte en faveur du
modèle ΛDDM. Cependant, le résultat DES uniquement, qui est raisonnablement
en accord avec Planck, conduit à une préférence plus faible pour le modèle ΛDDM.
De même, une fois marginalisé sur les informations de lentille dans Planck via
le paramètre Alens, ou lors de l’échange des spectres de puissance TE,EE ` élevés
Planck contre les spectres SPTpol, la préférence pour les Le modèle ΛDDM diminue.
En effet, dans ces deux cas, le modèle inféré ΛCDM a une valeur S8 plus petite,
montrant moins de tension avec les enquêtes à faible lentille. Cela indique que si
la tension S8 finit par provenir d’une systématique inconnue dans les enquêtes à
faible lentille ou dans les données Planck, la préférence pour le modèle ΛDDM dis-
paraîtra probablement. D’un autre côté, en combinant Planck avec ACTPol, la légère
préférence pour ΛDDM augmente, et la ‘tension’ restante avec S8 n’est plus que ∼ 1.3σ.

Nous avons également testé la possibilité intrigante que le récent excès de Xe-
non1T soit dû au modèle ΛDDM. À cette fin, nous avons effectué une analyse MCMC
supplémentaire fixant ε = 0.05 comme requis par Xenon1T. Nous constatons qu’il
est facile de résoudre la tension S8 dans ce cas, indiquant une durée de vie DCDM
de Log10(Γ/[Gyr−1]) = −2.72+0.61

−0.21. Fait intéressant, cela se fait au prix d’une dégrada-
tion très mineure de l’ajustement Planck (∆χ2 ' +1.7), indiquant que les données
Planck, BAO et SNIa sont en bon accord avec ce modèle. Enfin, en effectuant une
analyse où nous introduisons artificiellement un signal DDM dans un ensemble de
données CMB fictives, nous démontrons explicitement que, même si les données CMB
actuelles ne sont pas suffisamment sensibles pour faire la distinction entre CDM
standard et DDM, les expériences CMB de nouvelle génération (CMB- S4) pourront
détecter sans ambiguïté sa signature.

F.4 Nouvelles contraintes sur la masse et la durée de vie
des neutrinos

Les observations cosmologiques sont connues pour imposer les contraintes
les plus fortes sur la somme des masses des neutrinos. Pourtant, les contraintes
liées aux mesures CMB et LSS, qui supposent que les neutrinos sont stables, est
considérablement affaiblie si les neutrinos se désintègrent. Dans ce travail, nous
fournissons des limites à jour sur la durée de vie des neutrinos massifs qui se
désintègrent en rayonnement sombre après être devenus non-relativistes, à partir
d’une combinaison de mesures de CMB, BAO, de facteurs de croissance et de
données Pantheon SN1a.

Par rapport à l’analyse précédente dans C19, nous avons incorporé des correc-
tions d’ordre supérieur jusqu’à O((Tdec/mν)3) lors de la résolution des perturbations
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de rayonnement sombre, et a également effectué le calcul complet de la densité
d’énergie moyenne du neutrino instable. Le traitement plus précis des équations
de Boltzmann et de l’évolution de l’énergie moyenne dans notre étude MCMC
améliore la couverture du cas où les neutrinos se désintègrent tôt de sorte que leurs
impulsions moyennes sont proches de leurs masses. Si les neutrinos se désintègrent
lorsqu’ils ont Tν � mν/3, l’inclusion de perturbations de moment plus élevées
C`≥2 donne un changement négligeable au spectre de puissance par rapport aux
incertitudes expérimentales. Cependant, le calcul complet de l’énergie du neutrino
améliore considérablement la prédiction du spectre de puissance à partir du résultat
approximatif lorsque les désintégrations se produisent de manière semi-relativiste.
Néanmoins, nous avons trouvé que les contraintes de Planck15, étant donné leur
précision limitée, ne sont pas affectées par ces considérations. Cependant, nous
prévoyons que ces effets seront pertinents pour les expériences futures (ainsi qu’une
contribution essentielle dans le cas relativiste, à considérer dans le futur).

En fait, nous avons montré que l’essentiel de l’amélioration du pouvoir contrai-
gnant par rapport à C19 provient de l’utilisation des données de Planck18 . En
effet, nous avons démontré que la mesure améliorée de τreio à partir des données de
polarisation à faible ` aide à briser la dégénérescence de l’amplitude du spectre de
puissance CMB et renforce la limite sur la masse et la durée de vie des neutrinos.
En conséquence, nous avons constaté que les neutrinos avec

∑
mν > 0, 42 eV (2σ)

ne peuvent pas être rendus cohérents avec les données cosmologiques s’ils se
désintègrent alors qu’ils ne sont pas relativistes, une amélioration significative par
rapport AUX données de Planck15 pour lesquelles des masses aussi élevées que∑
mν ∼ 0, 9 eV étaient cohérentes avec le scénario de désintégration non-relativiste

(C19).

Nous avons soutenu qu’une application notable de ce résultat est que, si l’expé-
rience KATRIN detecte un neutrino électronique avec mν0, 2 eV (la sensibilité prédite),
notre résultat contraindra Γν & 105.5 km/s/Mpc, i.e. les neutrinos auraient besoin de
se désintégrer entre z ≈ 2× 102 − 4× 103, alors qu’ils sont encore relativistes, de sorte
que nos bornes et les bornes étudiées dans B20 ne s’appliqueraient pas. Dans le cas
d’une découverte massive de neutrinos à KATRIN, une analyse plus complexe compre-
nant des désintégrations inverses serait nécessaire pour confirmer fermement que le
scénario de désintégration peut concilier les mesures de laboratoire et cosmologiques.
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Abstract

With the advent of large astronomical surveys coming from ground- and space- based telescopes, the
field of cosmology has undergone a scientific revolution in the last decades. It is said that we have en-
tered in the era of precision cosmology: not only do we have plenty of measurements from the early and
late universe, but also we can use them to test theoretical models with astonishing accuracy. One of
such models, describing the universe with a flat Friedman-Lemaître metric and containing around 5 %
baryons, 25 % Cold Dark Matter (CDM) and 70 % dark energy in the form of a cosmological constant (Λ),
has shown to provide a remarkable fit to a wide variety of observables. Unfortunately, the nature of its
main constituents -dark matter and dark energy - lacks identification. In addition, several experimental
discrepancies have emerged in recent years, possibly shedding light on the properties of these myste-
rious components. On the other hand, the discovery of neutrino oscillations has provided convincing
evidence that neutrinos possess non-zero masses, a phenomenon that cannot be explained within the
Standard Model of Particle Physics. In my work, I have put new and robust constraints on many differ-
ent extensions of the ΛCDM paradigm, aiming at explaining some of the present anomalies in cosmology,
or to better characterize the properties of the elusive neutrinos. I start confronting a 1-parameter model
of Early Dark Energy against a wide variety of data sets, showing that it can resolve the H0 tension, and
that the addition of weak-lensing data doesn’t affect this conclusion. In addition, I have made a sys-
tematic comparison of seventeen different models which have been proposed to resolve the H0 tension
(including Early Dark Energy), and quantified the relative success of each model using a series of metrics
and a wide array of data combinations. Secondly, I have performed a detailed cosmological analysis of a
scenario in which dark matter can decay into dark radiation and warm dark matter species, including
for the first time a full treatment of perturbations. This study has shown that this model, while unable to
ease the Hubble tension, can fully explain the low-S8 measurement from recent weak lensing surveys. I
end discussing updated cosmic constraints on a scenario in which neutrinos can decay into dark radia-
tion while being non-relativistic. I show that this allows to significantly relax the bounds on the neutrino
masses, making a potential detection in the laboratory compatible with cosmological constraints.

Résumé

Avec l’avènement de grands relevés astronomiques provenant de télescopes terrestres et spatiaux,
le domaine de la cosmologie a connu une révolution scientifique au cours des dernières décennies. On
dit que nous sommes entrés dans l’ère de la cosmologie de précision : non seulement nous disposons de
nombreuses mesures de l’univers ancien et tardif, mais nous pouvons également les utiliser pour tester
des modèles théoriques avec une très grande précision. L’un de ces modèles, décrivant l’univers avec
une métrique de Friedman-Lemaître plate et contenant environ 5 % baryons, 25 % Matière Noire Froide
(acronyme anglais CDM) et 70 % d’énergie noire sous la forme d’une constante cosmologique (Λ), s’est
avérée fournir un ajustement remarquable à une grande variété d’observables. Malheureusement, la
nature de ses principaux constituants - la matière noire et l’énergie noire - n’est pas encore identifiée.
De plus, plusieurs divergences expérimentales sont apparues ces dernières années, qui pourraient
révéler les propriétés de ces composants mystérieux. D’autre part, la découverte des oscillations des
neutrinos a fourni des preuves convaincantes que les neutrinos possèdent des masses non nulles,
un phénomène qui ne peut pas être expliqué dans le modèle standard de la physique des particules.
Dans mon travail, j’ai mis de nouvelles contraintes robustes sur de nombreuses extensions différentes
du paradigme ΛCDM, visant à expliquer certaines des anomalies actuelles en cosmologie, ou à mieux
caractériser les propriétés des neutrinos insaisissables. Je commence par confronter un modèle à
1 paramètre supplémentaire d’énergie noire précoce à une grande variété d’ensembles de données,
montrant qu’il peut résoudre la tension H0, et que l’ajout de données du lentillage gravitationnelle faible
des galaxies n’affecte pas cette conclusion. De plus, j’ai fait une comparaison systématique de dix-sept
modèles différents qui ont été proposés pour résoudre la tension H0 (y compris l’énergie noire précoce),
et quantifié le succès relatif de chaque modèle en utilisant une série de métriques et un large éventail
de combinaisons des données. Deuxièmement, j’ai effectué une analyse cosmologique détaillée d’un
scénario dans lequel la matière noire peut se désintégrer en un rayonnement sombre et une particule de
matière noire "chaude", incluant pour la première fois un traitement complet des perturbations. Cette
étude a montré que ce modèle, bien qu’incapable d’atténuer la tension de Hubble, peut pleinement
expliquer la mesure de S8 par des récentes enquêtes à lentillage gravitationnelle faible des galaxies.
Je termine en discutant des nouvelles contraintes cosmologiques sur un scénario dans lequel les
neutrinos massifs non-relativistes se désintégrent en rayonnement noir. Je montre que cela permet de
réduire significativement les limites de masse des neutrinos, rendant compatible une possible détection
en laboratoire avec les contraintes cosmologiques.
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