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Abstract

Falls are a significant problem for the elderly, with identification and evaluation of risk factors being
essential to reduce fall rates. However, fall prevention requires a pedagogical and repeated approach, time,
and expertise to target actionable risk factors accurately. This thesis aims to evaluate the risk factors for
falls using a real data set and Bayesian networks.
Using real data poses challenges, particularly in data preprocessing, which is time-consuming and requires
expertise. Additionally, an application based on AI raises new challenges such as trustability, which
depends on the interpretability and explainability of the results.
To address these challenges, this thesis proposes a knowledge model (Bayesian networks) that automatically
evaluates the main actionable risk factors. The model is trained on a real data set combined with expert
knowledge. Two iterations of the data preprocessing steps are presented and explained, including missing
value imputation, variable selection, and the use of balancing techniques for imbalanced data. The first
iteration included only the main variables to validate the process’s feasibility, and the second iteration
included as many variables as possible to improve the prediction and the process.
The model is compared with other well-known classifiers through different measures, including all or
partial observation, and using or not balancing methods to manage the delicate question of imbalanced
data. A Bayesian network is presented as a good solution, combining the quality of the results to evaluate
the risk factors and the interpretability/explainability of the model from the expert’s point of view.
The results show that predicting the presence or absence of risk factors for falls is a challenging task.
While Bayesian Networks and other classifiers perform equivalently in terms of measures such as balanced
accuracy and f1-score, the interest of Bayesian networks lies in their interpretability and the ability to use
partial observations.
In summary, this thesis presents a contribution toward an application for fall prevention that facilitates
automatic risk factor evaluation from partial observations of the patient, using a real data set and Bayesian
networks. The proposed knowledge model (Bayesian networks) addresses the challenges of using real data
and AI-based applications, respectively.

Keywords: Classification, Machine Learning, Problem of Falls, Fall Prevention, Bayesian Networks
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Résumé

Les chutes constituent un problème important pour les personnes âgées, et l’identification et l’évaluation
des facteurs de risque sont essentielles pour réduire les taux de chute. Cependant, la prévention des chutes
nécessite une approche pédagogique et répétée, du temps et de l’expertise pour cibler avec précision les
facteurs de risque exploitables. Cette thèse vise à évaluer les facteurs de risque de chute en utilisant un
ensemble de données réelles et des réseaux bayésiens.
L’utilisation de données réelles pose des défis, en particulier en ce qui concerne le prétraitement des
données, qui prend du temps et nécessite de l’expertise. De plus, une application basée sur l’IA soulève de
nouveaux défis tels que la confiance, qui dépend de l’interprétabilité et de l’explicabilité des résultats.
Pour relever ces défis, cette thèse propose un modèle de connaissance (réseaux bayésiens) qui évalue
automatiquement les principaux facteurs de risque pouvant faire l’objet d’une action. Le modèle est entraîné
sur un ensemble de données réelles combinées à des connaissances d’experts. Deux itérations des étapes de
prétraitement des données sont présentées et expliquées, y compris l’imputation des valeurs manquantes,
la sélection des variables et l’utilisation de techniques d’équilibrage pour les données déséquilibrées. La
première itération n’incluait que les principales variables pour valider la faisabilité du processus, et la
seconde itération incluait autant de variables que possible pour améliorer la prédiction et le processus.
Le modèle est comparé à d’autres classificateurs bien connus par le biais de différentes mesures, y compris
l’observation totale ou partielle, et l’utilisation ou non de méthodes d’équilibrage pour gérer la question
délicate des données déséquilibrées. Un réseau bayésien est présenté comme une bonne solution, combinant
la qualité des résultats pour évaluer les facteurs de risque et l’interprétabilité/explicabilité du modèle du
point de vue de l’expert.
Les résultats montrent que prédire la présence ou l’absence de facteurs de risque de chute est une tâche
difficile. Alors que les réseaux bayésiens et d’autres classificateurs ont des performances équivalentes en
termes de mesures telles que la précision équilibrée et le score f1, l’intérêt des réseaux bayésiens réside
dans leur interprétabilité et la possibilité d’utiliser des observations partielles.
En résumé, cette thèse présente une contribution à une application pour la prévention des chutes qui
facilite l’évaluation automatique des facteurs de risque à partir d’observations partielles du patient, en
utilisant un ensemble de données réelles et des réseaux bayésiens. Le modèle de connaissance proposé
(réseaux bayésiens) répond aux défis de l’utilisation de données réelles et des applications basées sur l’IA,
respectivement.

Mots clés : Classification, Apprentissage Automatique, Problème des chutes, Prévention des chutes, Ré-
seaux Bayésiens
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Chapter1
Introduction

Context

Falls are a common and serious problem, particularly among older adults [23, 36, 93]. Falls
can result in significant injuries, such as fractures and head trauma, and can lead to a loss of
independence, reduced quality of life, and even death. Falls are a leading cause of injury-related
hospitalizations and deaths among older adults. According to a report by the European Public
Health Association, 3.8 million older people attend emergency departments each year with
fall-related injuries, of which 1.4 million are admitted to hospitals for further treatment [118].
There are many risk factors associated with falls, including muscle weakness, gait, and balance
problems, medication side effects, vision and hearing impairments, and environmental hazards
such as slippery floors and poor lighting [53, 120]. Identifying and evaluating these risk factors
is crucial to reduce fall rates and preventing injuries. However, accurately identifying and
addressing fall risk factors can be a challenging task that requires a pedagogical and repeated
approach, time, and expertise. Injuries from falls are also a financial burden. The study [118]
shows that medical costs in Europe associated with fall-related injuries were approximately 25
billion euros per year.

The problem of falls is particularly relevant given the aging of the population in many
countries. As the population in the world aged above 65 years is expected to increase from 9.3%
in 2020 to 15.9% by 2050 [119], the incidence of falls is likely to increase, leading to a greater
burden on healthcare systems and society as a whole. If effective prevention strategies are not
established, the total cost of treating fall-related injuries in the European Union is also expected
to increase up to 45 billion euros per year by 2050 [118]. As such, there is a need for effective
and efficient methods to identify and evaluate fall risk factors, which can aid in fall prevention
efforts and improve the health and well-being of older adults.

A large number of successful studies have addressed the problem of falls in elderly people
[11, 23, 28, 36, 93, 120]. The authors in [19] state in their review that the problem of falls can
be divided into two parts: Fall detection and fall prevention. The research in fall detection has
been intensively investigated. The work related to fall detection is not part of this thesis.

The identification of risk factors for falls in an elderly person is essential to target an appro-
priate intervention to reduce that risk. Furthermore, a reduction of the risk factors could lead to
a decrease in fall rate [96]. However, despite the volume of studies in the area, fall prevention
remains an active subject of research [19, 28].

1



2 Chapter 1. Introduction

Fall prevention can be achieved by providing recommendations that help reduce the risk
factors that are present for a given person (for instance: physiotherapy may improve balance
and reduce the risk of muscular weakness). In the context of fall prevention, a large number of
stakeholders can be considered, such as physicians, nurses, physiotherapists, close family mem-
bers, caregivers, and the person himself. Various fall prevention systems have been proposed,
often based on sensors [19, 28], but very few are based on a knowledge-based system [132, 18].

The evaluation of risk factors for falls requires time and expertise, and specific tests and
devices may also be necessary. Therefore, a knowledge-based model could be useful to evaluate
the risk factors to prevent falls. Moreover, the family physician who is one of the main actors
in fall prevention generally does not have a lot of time, whereas fall prevention requires a
pedagogical and repeated approach. As a consequence, the collection of information for a
complete evaluation of risk factors for falls is not feasible regularly and the risk factors for
falls of a person should be assessed from an incomplete set of observations. When there is
no direct information for a specific risk factor, it is however possible to get a sense of it from
general knowledge about its frequency in a specific context which is described by the other
available information about the person. As an example, the experts know that a person who
is afraid of falling and has neuropathy is much more likely to have balance problems than the
average elderly. In this deduction, the expert combines general knowledge and reasoning with
uncertainty. In order to support the identification of fall risks for a given person, we would like
to be able to combine general knowledge and real data observed on this person.

The goal of this thesis is to automatically evaluate the main actionable risk factors for falls
using a real data set combined with expert knowledge. To achieve that goal we propose the use
of Bayesian networks (BN).

Bayesian networks are well-known models of knowledge. These probabilistic graphical
models can manage uncertainty and allow updating the belief on a variable given information
about other variables [58, 89]. In addition, BNs are understandable and modifiable by the expert
thanks to the graph. These models are inherently explainable from their construction and thus
allow transparency and visibility while decision-aiding. Another advantage of BNs is to update
belief on any variable of the model from incomplete observations on any subset among the other
variables. Also among the variables selected for this study, an arbitrary number of them can be
observed, whether they are target or not. Moreover, risk factors are not independent of each
other, meaning that when one of them is observed, it should be used to improve the evaluation of
the others, in addition to other observed features. That situation makes very difficult the use of
usual classifiers because a new model would have to be learned for each target variable, and each
possible subset of observed variables. BN models allow overcoming that problem, since the same
model can be used to evaluate any variable of the model, regarding any subset of observations.
Another advantage of BN is that the model can be built both from data and expert knowledge
which is very interesting in the context of health. It is also very important to make the model
interpretable/ understandable by the final user (general practitioners) since it contributes to
making the aiding system acceptable and augments the trust in results. So BN becomes the good
choice to use because of the graphical representation that is easy to explain and understand.

Furthermore, in this thesis, we present two iterations of the data preprocessing steps, in-
cluding missing value imputation, variable selection, and the use of balancing techniques for
imbalanced data. The first iteration included only the main variables to validate the process’s
feasibility, and the second iteration included as many variables as possible to improve the predic-
tion and the process. In addition, in order to evaluate the quality of prediction we compare the
performance of Bayesian networks with other well-known classifiers through different measures,
including all or partial observation, and using or not balancing methods to manage the delicate
question of imbalanced data.
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In summary, this thesis presents a contribution toward an application for fall prevention
that facilitates the automatic evaluation of risk factors for falls from partial observations of the
patient, using a real data set and Bayesian networks. Our results demonstrate the potential
of Bayesian networks to manage uncertainty and provide a graphical view of the model of
knowledge that contributes to the confidence of the expert and their validation of the model.

Plan of the thesis

The remainder of this dissertation is composed of 4 chapters as follows:
Chapter 2 - Basics and State of the art: This chapter describes the basic concepts of data

preparation and machine learning algorithms followed by an overview of previous works that
focus on the use of machine learning algorithms in healthcare.

Chapter 3 - Real data set: This chapter presents the details about the real data set from the
service of fall prevention, hospital of Lille, France, used in our thesis and its analysis: manual
selection of variables based on the ontology developed with the same service, steps of data
preprocessing: data cleaning, reducing the size of the data, missing value imputation methods
and the selected target risk factors to be evaluated.

Chapter 4 - Evaluate risk factors for falls using static data: This chapter describes the
results obtained in order to evaluate the presence or absence of risk factors for falls using both
iterations. Here we have presented the comparison of the predictive performance of Bayesian
networks with other well-known classifiers, also the results when using a complete set or a
specific subset, and the effect of using balancing techniques before training the classifier.

Chapter 5 - Conclusion: This chapter presents the conclusion of this thesis and the short
and long-term perspectives for our research.



4 Chapter 1. Introduction



Chapter2
Basics and State of the art

Outline of the current chapter
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2.2 Fall prevention problem 6
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2.6 Limitations and open challenges 31
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2.1 Introduction

Due to various advancements in data gathering technologies, such as physiological monitoring
data and insurance claims data, hospitals, care centers, and other healthcare institutions are
collecting an increasing amount of data [1].

Analysis and machine learning algorithms can aid in early illness identification, patient care,
and community services as the amount of data in healthcare grow. Different approaches to
healthcare prediction have been researched, and several methodologies have been evaluated
[22].

In our work, we focus on the problem of falls. More precisely the identification of the
presence or absence of risk factors for falls. With that aim, in this chapter, we first describe the
problem of fall prevention.

5
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Furthermore, the use of machine learning algorithms to detect health-related risks in patients
is now common and a large number of studies in the literature have addressed this approach.
With this aim, in the next part of this chapter, we describe the basics of machine learning followed
by the literature review which shows an overview of different machine learning methods which
have been tested on healthcare data. However, using machine learning in healthcare also poses
some challenges such as dealing with imbalanced data, interpreting the results, ethical concerns,
and data limitations. Imbalanced data can make it difficult to accurately predict the minority
class. The results of machine learning models may be complex and hard to understand, and may
not align with the clinical understanding of a disease or condition. Additionally, there are ethical
concerns in using machine learning algorithms in healthcare such as privacy issues and ensuring
fair and equitable treatment for all patients. Lastly, healthcare data is often siloed, scattered,
incomplete and sensitive, making it difficult to access and use for machine learning purposes,
and it’s important to protect patient privacy and ensure compliance with regulations. In this
context, in the last part of this chapter, we discuss the limitations of using machine learning
with healthcare data.

2.2 Fall prevention problem

Falls present a striking danger to health and safety in older people [23, 36, 93]. According to
a report by the European Public Health Association [118], 3.8 million older people in Europe
attend emergency departments each year with fall-related injuries, of which 1.4 million are
admitted to hospitals for further treatment. The most common consequences of these injuries are
fractures, bruises, traumatic brain injury and reduced quality of life [53, 120]. Injuries from falls
are also a financial burden. The study [118] shows that medical costs associated with fall-related
injuries were approximately 25 billion euros per year.

The population aged above 65 years is expected to increase from 9.3% in 2020 to 15.9%
by 2050 [119]. If effective prevention strategies are not established, the total cost of treating
fall-related injuries in the European Union is also expected to increase up to 45 billion euros per
year by 2050 [118].

A large number of successful studies have addressed the problem of falls in elderly people
[11, 36, 93, 28, 23, 120]. In [19] the author stated in their review that the problem of falls can be
divided into two parts: Fall Detection and Fall prevention.

The detection of risk factors for falls in an elderly person is essential to target an appropriate
intervention. Reduction of the risk factors could lead to a decrease in fall rate [96]. Furthermore,
research in fall detection has been intensively investigated; however, despite the volume of
studies in the area, fall prevention remains an active subject of research [19, 28].

Fall prevention is a challenge to population aging, but it is one of the issues that have not
been given sufficient attention. Since falls result from a complex interaction of risk factors,
an important step in fall prevention is to detect the presence of risk factors for falls. Also,
it has been shown that reducing the risk factors for falls reduces the risk of falls. Thus, fall
prevention can be achieved by providing recommendations that help reduce the risk factors that
are present for a given person (for instance: kinesiotherapy may improve balance and reduce
the risk of muscular weakness). Among the risk factors for falls, some of them are reducible (or
actionable) meaning that some actions can be carried out in order to reduce the risk factor. We
focus on evaluating these risk factors. In the literature various fall prevention systems have been
proposed, often based on sensors [19, 93, 36, 28], but very few are based on a knowledge-based
system. Furthermore, the evaluation of risk factors for falls remains a challenge since it requires
time and expertise, and specific tests and devices may also be necessary. Therefore, a knowledge-
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based system could be useful to evaluate the risk factors to prevent falls. Moreover, the family
physician who is one of the main actors in fall prevention generally does not have a lot of time,
whereas fall prevention requires a pedagogical and repeated approach. As a consequence, the
collection of information for a complete evaluation of risk factors is not feasible regularly and
the risk factors for fall of a person should be assessed from an incomplete set of observations. In
order to tackle that problem, this work is the first step toward a fall prevention aiding system.

Figure 2.1 shows a simplified view of the general architecture of the fall prevention aiding
system. Lots of actors could contribute to fall prevention (doctors, family members, physiother-
apists, nurses, specialists etc.). The objective of a fall prevention aiding system is to propose
them a small number of adapted recommendations regarding the elderly they care for. These
recommendations are selected on the basis of the most important risk factors for falls that are
present in the elderly.

Figure 2.1: Proposition for a Fall Prevention system

The evaluation of risk factors for falls is a multi-factorial problem, and some risk factors
can not be evaluated by a simple and rapid question. Moreover, the potential actors of fall
prevention usually do not have much time for these questions, which makes it necessary to store
useful information in a personal database. Fortunately, the value of some risk factors and useful
variables to evaluate them could be automatically extracted from shared electronic medical
records. However, some kinds of information are rarely present in the medical file, and the
amount of information available for each elderly person is very different. Thus, the evaluation of
the presence or absence of some risk factors for falls has to be done on the basis of information
available about the person (partial or complete).

The use of machine learning algorithms to detect health-related risks in patients is now
common [64, 78, 125] and a large number of successful studies have addressed the problem of
falls in elderly [28, 36, 93, 120]. With that aim in our work, we use several machine-learning
methods to evaluate the presence or absence of risk factors for falls. In the following section,
we first introduce the basics of machine learning followed by a literature review that shows an
overview of different machine learning algorithms which have been tested on healthcare data.
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Summary of the Objectives

✓ focus on actionable risk factors for falls

✓ evaluate the level of risk for each (actionable) risk factor (allow
ranking and a small number of recommendations)

✓ evaluation based on incomplete (partial) observations of the pa-
tient

✓ use a knowledge model (to make the system widely usable)

✓ provide possibility to view the graph of a causal model (augment
trustability for expert users)

2.3 Basics of machine learning

In this section, we first describe the different types of machine learning methods, followed by
the different classification algorithms. Then we present the different measures to evaluate the
performance of a model.

2.3.1 Introduction to machine learning

Computer scientist and AI pioneer Tom Mitchell gave the definition of machine learning: Machine
Learning is the study of computer algorithms that improve automatically through experience. More
formally he states that: A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E [79].

Machine learning investigates the research and development of such algorithms and strategies
that can learn from data and make predictions on data. These algorithms bypass the limitations
of strictly static computer instructions by generating data-driven predictions or choices based
on sample inputs [12]. Machine learning enables us to solve a wide range of computer tasks that
would be impossible or impractical to handle using explicit algorithms or rule-based techniques.

Furthermore, in this section, we discuss the types of learning in machine learning. Figure
2.2 shows the classification of machine-learning algorithms by type of learning with a couple of
examples.

2.3.1.1 Supervised learning

In this situation, a "teacher" presents the computer with sample inputs and desired outputs,
and the objective is to learn a general rule that maps inputs to desired outputs. Desired output,
also known as goal variable, is chosen to reflect the answer to a question that the organization
would want to answer or a value unknown when the model is used to aid in decision making.
Predictive modeling is another term for supervised learning [87]. Supervised learning includes:

• Classification - addresses the problem of determining which class (category) a new obser-
vation belongs to. In this situation, the target variables are categorical discrete variables.
There are numerous categorization types based on the number of classes:

1Source: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861

https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
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Figure 2.2: A description of the different types of machine learning1. On the left is supervised
learning, which makes predictions using labeled data. Then we have unsupervised learning,
which uses unlabeled data to try to uncover patterns and structures. Then we have semi-
supervise learning, which makes predictions using a mixture of labeled and unlabeled data. At
the very right is reinforcement learning, which attempts to learn from its own experience.

– A problem having two classes is commonly referred to as a two-class or binary
classification problem, for example, spam filtering.

– A problem with more than 2 classes is called multi-class classification problems such
as the categorization of photographs of fruits that may be oranges, apples, or pears.

– A problem where input is assigned multiple classes is called a multi-label classification
problem such as recognizing subjects in documents - the text might be about religion,
politics, money, or education all at the same time, or none of these.

• Regression - These models operate with continuous target variables. Regression is a
method for modeling the connection between one or more independent variables X and a
dependent variable y (output/target variable) (explanatory variable). Predictor functions
are used to characterize the connection between the dependent and independent variables.
We distinguish the following forms of regression based on the number of independent
variables:

– Simple linear regression - 1 independent variable, such as predicting an employee’s pay
based on his years of experience. Salary is the dependent variable (y) in this example,
while years of experience are the independent variable (X).

– Multiple linear regression - is used when there is more than one independent variable.
Predicting the price of an automobile, for example. The automobile attributes - brand,
year, engine capacity, and mileage - are inputs. The output is the car’s pricing. We
have four independent variables in this case.

– Polynomial regression - previous regression types used linear functions to describe
the relationship between variables. Polynomial regression can be used when linear
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models are too limiting. As an example, consider the prior case of predicting the price
of an automobile. If there is no linear link between a car’s qualities and its price, we
may try polynomial regression.

2.3.1.2 Unsupervised learning

We simply have input data in this sort of learning; there is no goal variable. The goal of these
approaches is to investigate the structure of data and discover patterns within it. The input
space is structured in such a way that certain patterns appear more frequently than others, and
we want to explore what happens and what does not. This is known as density estimation in
statistics. Clustering is one way for estimating density. It is a problem of grouping a set of items
so that those in the same group (cluster) are more similar to those in other groups (clusters) [87].
This approach is also used to detect outliers in the input data. Possible uses include customer
segmentation, recommender systems, targeted marketing, structure discovery, etc.

2.3.1.3 Semi-supervised learning

It refers to a learning problem (and the algorithms developed to solve it) with a limited number
of labeled instances and a large number of unlabeled examples from which a model must learn
and predict new examples. As such, it is a learning problem that lies somewhere between
supervised and unsupervised learning. A semi-supervised learning algorithm that is successful
can outperform a supervised learning algorithm that is simply trained on labeled training
instances [134]. Some examples include text classification, lane-finding on GPS data, etc.

2.3.1.4 Reinforcement learning

It is a branch of machine learning inspired by behaviorist psychology that is concerned with
how software agents should behave in a given environment in order to maximize some concept
of cumulative reward. It differs from supervised learning in that neither correct input/output
pairings nor suboptimal behaviors are explicitly corrected.

The system’s output is a series of actions. In this scenario, a single proper action is less crucial
than a succession of correct actions leading to the objective. In any intermediate stage, there
is no optimum action; an action is regarded as excellent if it is part of a good policy. A good
application of reinforcement learning is game playing, where a single move is not as essential as
a series of correct movements. A good move is one that is part of a solid game policy. Chess is an
example of a game in which reinforcement learning was effectively employed. It is a game with
few rules, but it is extremely difficult due to the enormous number of possible movements at each
state and the large number of moves that a game may have. Once we have excellent algorithms
that can learn to play games successfully, we can apply them to more obvious economic value
applications [49].

As a reminder, our objective in this work is to evaluate the presence or absence of the risk
factors for falls in the elderly which is an application of classification. With that objective, in the
next section, we will discuss different types of classification algorithms.

2.3.2 Classification algorithms

In the literature, there exist numerous algorithms to do classification. In this section, we intro-
duce several types of classification algorithms which we use in our work with their advantages
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and disadvantages. First, a baseline or dummy classifier. Then we present logistic regression
followed by the decision tree and random forest. Then we introduce the support vector machine
and artificial neural networks and naive Bayes algorithm. In the end, we present the bayesian
network classifiers.

2.3.2.1 Baseline or Dummy classifier

A baseline or dummy classifier makes predictions that ignore the input features. The role of the
baseline classifier is to help to evaluate the quality of the results by comparing them against
other more complex classifiers. The specific behavior of the baseline is selected with the strategy
parameter. In our work, we use the most frequent strategy which means the baseline classifier
always predicts the most frequent class in the target variable.

2.3.2.2 Logistic Regression

The technique of logistic regression has grown in significance in the field of machine learning.
It enables the categorization of incoming information based on previous data by examining
the correlation between one or more already present independent variables and forecasts a
dependent data variable. Furthermore, it reduces complicated probability calculations to simple
arithmetic problems. This helps to significantly reduce the impact of confounding factors and
dramatically clarifies analyzing the impact of various variables. The algorithms become more
accurate at making prediction classifications within data sets as new pertinent data is added [60].
This method has the benefit of directly providing the user with probabilities rather than just
the class label information which can be helpful specifically when we have imbalanced datasets
because the probability of each class allows it to predict the outcome of the minority class more
accurately [99]. On the contrary, when the independent variables are strongly correlated, the
model may not be able to correctly identify the outcomes because the estimates of the model
coefficients may become unstable and inconsistent. Also, large quantities of noise or irrelevant
characteristics in the data could be too much for the model to manage, since these might make
the model less accurate. [97] Furthermore, a logistic regression classifier is applied in [4] to
predict the chance of hospital readmission. The authors of [20] apply logistic regression to
predict breast cancer patient survival.

2.3.2.3 Decision Tree

A decision tree consists of internal decision nodes and terminal leaves. Each node in the decision
tree implements a test function with discrete output values that designate the branches. Each
node accepts an input, runs the test, and then chooses one of the branches based on the outcome.
This procedure begins at the root node and is continued recursively until a leaf node, which
represents the class in which the input was classified, is reached. Figure 2.3 represents an
example of a decision tree.

Decision trees are a type of recursive partitioning technique that is easy to define and execute.
The following stages are shared by each variation of these algorithms [87]:

1. Assess the best approach to split the data into two or more divisions for each possible input
variable, choose the optimal split, then divide the data into groups indicated by the split.

2. For all groups repeat step 1 (recursively).

3. Continue splitting until all records after a split belong to the same class or until another
stop condition (statistical significance test or minimum record count) is met.
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Figure 2.3: An example of a decision tree classifying/predicting a person’s chances of survival
on the Titanic. According to the results, a female from 1st/2nd class cabin or a male youngster
from 1st/2nd class cabin has a good probability of being saved from the ship.

The main concept that distinguishes distinct algorithms in this category of classifiers is how
they divide. They all offer a measure of the class distribution’s purity. Some different types
of decision tree algorithms are: ID3, C4.5, C5.0, etc [87]. According to [49], decision trees are
one of the most often used classification algorithms. Because they are deemed simple to grasp,
they are composed of a series of if-then-else principles that are more clear to ordinary people
than mathematical formulas. In comparison to other types of classifiers, decision trees are
simple to construct and scalable. They can deal with both numerical and categorical variables
(some classification models only require numerical (neural networks) or categorical (naive bayes)
variables). Sometimes, decision trees are likely to create over-complex trees that do not generalize
the data well – this is called overfitting. In such circumstances, we may utilize strategies like
pruning, limiting the number of samples necessary at a leaf node, or limiting the tree’s maximum
depth to minimize overfitting.

2.3.2.4 Ensemble methods

They combine numerous learning algorithms to achieve higher prediction performance than
each of the constituent learning algorithms alone. A machine learning ensemble is made up of
a limited number of different models, but it often enables far more flexible structures to exist
within those models. Ensemble approaches aim to increase the capacity to generalize over a
single estimate by combining the predictions of numerous base estimators created with a specific
learning procedure. We identify two types of ensemble methods [87]:

• Bagging methods - the essential premise of averaging (bagging) approach is to create
numerous estimators independently and then average their estimates. Due to lower
variance, the combined estimator is generally superior to any of the single base estimators.
Bagging, forests of randomized trees, and severely randomized trees are some examples.

• Boosting methods - unlike earlier methods, base estimators are generated successively and
the bias of the aggregate estimator is attempted to be reduced. The key idea is to combine



2.3. Basics of machine learning 13

multiple weak estimators to form a powerful ensemble. Examples include AdaBoost and
Gradient Boosting.

Now, we present a type of bagging method called random forest.
Random Forest
Despite the fact that decision trees are relatively popular classifiers, they may overfit their
training dataset despite producing generally decent results. Random forests solve the decision
tree problem. Random forests are an ensemble learning approach for classification (as well as
regression) and other tasks that work by creating several decision trees during training and
outputting the class that is the mode of the classes. [87]

Random forests are a method of averaging numerous decision trees that have been trained on
various regions of the same training dataset in order to reduce variation [55]. This comes at the
expense of a slight increase in bias and some loss of interpretability, but it significantly improves
the final model’s performance. Bagging is applied to decision trees in random forests. Let X =
{x1,x2, ...,xn} represent a collection of training samples with associated outputs. Y = {y1, y2, ..., yn},
bagging repeatedly (M times), choose a random sample with X replacement and fit trees to these
samples; for m = (1, ...,M)

1. Sample, with replacement, n training samples from X, Y ; call these Xm, Ym.

2. Train a decision tree fm on Xm, Ym.

After training, predictions for unseen samples X
′

are determined by taking the majority of
votes of all trees. The output of a single tree is highly sensitive to training sample noise, whereas
the average of several trees, assuming the trees are not connected, is not sensitive to training
sample noise. Training several trees on a single training set may result in highly linked trees;
bagging is a method of de-correlating the trees by exposing them to various training sets. This
improves performance by lowering the variance of the model without raising the bias.

Moreover, the approach above describes the original bagging algorithm for trees. Random
forests vary in just one way [14]: they employ a modified tree algorithm that picks a random
subset of the features at each candidate split in the learning process. This is sometimes referred
to as feature bagging. For a classification issue with N features,

√
N features are typically

employed in each split [55]. A graphic overview of a random forest classifier is given in figure
2.4.

Figure 2.4: An example of a random forest model2
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2.3.2.5 Support Vector Machine (SVMs)

SVMs are a type of supervised learning algorithm that can be used to classify and predict
linear and nonlinear data. Assume we have an n-dimensional input vector training set. Each
of these data items falls into one of two categories. The purpose is to separate them using an
n-1 dimensional hyperplane, which is known as a linear classifier. Of course, there are several
such classifiers that may meet this feature. However, we want to discover a hyperplane with
the greatest margin/separation between two classes - that is, the greatest distance between the
hyperplane and the nearest data points. The term support vectors refer to the vectors (data
points) that are closest to this hyperplane. Figure 2.5 represents an example of an SVM classifier.

Figure 2.5: An example of an SVM classifer3

Later, a soft margin was created as a modification to the maximum margin [15]. Misclassifi-
cations are permitted in this situation, but they penalize the function to minimize by a factor
proportional to a parameter C and the distance of the errors from the margin. In other words,
SVM optimizes the margin between classes while reducing the penalization term, which is
weighted by parameter C, which serves as a limit for the number of misclassifications. Also
using kernel functions, which transform the data into a higher-dimensional space, SVM model
can represent non-linear interactions between dependent and independent variables. On the
contrary, the SVM model can be computationally expensive to train, particularly when the
dataset is big or complex kernel functions are used. [24]

Furthermore, text classification tasks such as spam detection and sentiment analysis are
performed using SVMs. They are also widely utilized in picture recognition tasks and in various
fields of handwritten digit recognition, such as postal automation services. They are memory
efficient because they employ a subset of training samples in the decision function (support
vectors). [111]

2Source: https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
3Source: https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-

934a444fca47

https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
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2.3.2.6 Naive Bayes

The supervised machine learning algorithms that are primarily employed for classification also
include Naive Bayes. It is referred to as "naive" because of the presumption that the input
features used to build the model are independent. Therefore, altering one input feature will
have no impact on the others. It is therefore naive in the sense that it is highly unlikely that this
assumption is accurate. Furthermore, it is based on the Bayes theorem and is often suitable for
very high-dimensional data sets. Bayes theorem can be described as follows:

P (A|B) =
P (B|A) ∗ P (A)

P (B)

where, P (A|B) is called posterior which represents the probability of hypothesis A on the
observed event B, and P (B|A) is called likelihood which means the probability of the evidence
given that the probability of a hypothesis is true, and P (A) is called prior which represents the
probability of hypothesis before observing the evidence, and P (B) is marginal that represents the
probability of evidence [95].

Furthermore, naive Bayes models are simple to set up. When there is a large correlation be-
tween feature variables, we may have low classification accuracy. Naive Bayes models are named
after their assumption of feature independence. Despite their oversimplified assumptions, they
produce extremely promising results in a variety of real-world problems, including document
categorization and spam filtering [97]. They can be highly quick compared to other machine
learning models. The main distinction between naive Bayes models and other machine learning
models is that Naive Bayes models only consider one class at a time. They compute a likelihood
for each class, and the class with the highest probability is allocated to the sample.

2.3.2.7 Artificial Neural Networks

In some ways, Artificial Neural Networks (ANN) resembles how the human brain learns. Neurons
are the building blocks of an artificial neural network, and they in turn create layers. Each
layer has a unique nonlinear activation function that aids in the learning process and the layer’s
output. The output of each layer is transferred to the following layer. Each epoch updates the
weights connected to the neurons and is in charge of the overall predictions. Several optimizers
are used to optimize the learning rate. Every ANN has a cost function, which is minimized
as learning progresses. Then, the weights that produce the best results according to the cost
function are used. The relationship between the neuron’s input and output can be described as
follows:

y = f (
n∑
i=1

wixi + b),

where xi denotes the input signal, wi denotes the weight, y denotes the output, b denotes the
threshold, and f denotes the activation function. These neurons are linked together to form
ANN. Figure 2.6 represents an example of an ANN algorithm.

The ANN prediction algorithm has the advantage of not requiring an exact mathematical
relationship between input and output parameters. The incorporation of spatial information,
for example, does not necessitate its explicit parameterization. Another advantage of the ANN
prediction algorithm is that as more data sets become available, the training sample sizes can
easily be increased. On the contrary, the computational time of the ANN prediction algorithm
rapidly increases as the number of parameters (layers) increases. Another disadvantage of ANN
is to obtain optimal performance, as it requires careful adjustment of the hyperparameters (e.g.,
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the number and size of the hidden layers), which can be time-consuming. Because it is not
always evident how the network makes choices, and it can be challenging to interpret. [97, 130]

Figure 2.6: An example of a neural network model4

2.3.2.8 Bayesian Networks

A particular kind of probabilistic graphical model called Bayesian networks (BNs) is an effective
tool for capturing uncertainty and evaluating risk [89]. The Bayes theorem and conditional
probability theory are used to structure BNs. By computing the posterior probability distribution
of any unobserved variable given new data input in a specific state, Bayes’ theorem allows us to
reason logically, rationally, and consistently. More formally, a Bayesian network is a graphical
representation of a set of variables U = {X1,X2, . . . ,Xn} with a joint probability that can be
factorized as follows:

P (X1,X2, ...,Xn) =
n∏
i=1

P (Xi |P arent(Xi))

where P arent(Xi) is the set of variables that correspond to direct predecessors of Xi in the
graph. It consists of a directed acyclic graph where each node represents a distinct random
variable and each edge represents a conditional dependency. It also contains a set of the local
probability distributions for each node/variable.

Figure 2.7 shows the graphical representation of a BN where each box represents a variable
and the colored partitions inside each box represent the distributions of probability for each state
of the variable. It represents a part of the graph learned during our experiment. Here left side
(figure 2.7a) represents the BN with general knowledge about the population and the right side
(figure 2.7b) shows that if we know that a given person has no problem in vision (trV ision = 0),
it increases our belief that this person has less chance of having balance disorder (trEq).

Modeling of a BN includes (1) selecting the variables to be included in the model, (2)
establishing network structure, and (3) obtaining a conditional probability table (parameters) for
each variable. We now present different structure learning and parameter learning approaches
for BN.

4Source: https://williamkoehrsen.medium.com/deep-neural-network-classifier-32c12ff46b6c

https://williamkoehrsen.medium.com/deep-neural-network-classifier-32c12ff46b6c
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(a) BN with general knowledge
(b) BN after information trVision = 0

Figure 2.7: A graphical representation of a Bayesian Network

Structure learning in BN: There are two types of approaches in the literature for learning the
structure of a BN from data. The first category of approaches is based on learning the conditional
independence relations of the BN, from which the network is learned. These approaches are
sometimes referred to as constraint-based approaches. The second category of methods, known
as score-based approaches, views structure learning as an optimization issue, with scores targeted
at maximizing the probability of the data given to the model. However, both approaches are
known to provide NP-hard formulations, necessitating the employment of heuristic methods to
discover near-optimum solutions with high probability in a reasonable amount of repetitions.
We now briefly describe the basic concept behind this class of techniques. We refer to [89] for a
more in-depth examination of this subject.

Constraint-Based Approaches: This family of approaches aims to construct a graph structure
that reflects the dependency and independence relationships in the data that correspond to the
empirical distribution. Nonetheless, the number of conditional independence tests that such
algorithms would have to conduct among every pair of nodes to test all conceivable relations
is exponential, necessitating the usage of some approximations. Some examples of this type of
algorithm are the PC algorithm, the Incremental Association Markov Blanket (IAMB) algorithm,
etc.

Score-Based Approaches: These techniques attempt to maximize the likelihood L of a collection
of observed data D, which may be calculated as the product of each observation’s probability.
Because we aim to infer the optimal model G from the observed data, we define the likelihood of
observing the data given a certain model G as:

LL(G : D) =
∏
d∈D

P (d|G)

In practice, however, the most likely graph for any random collection of data is always the
fully connected one, because adding an edge can only raise the likelihood of the data, i.e., this
strategy overfits the data. To compensate for this constraint, the likelihood score is nearly usually
paired with a regularization term that penalizes model complexity in favor of sparser solutions.
As previously stated, such an optimization problem is intractable due to the vast search space
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for viable solutions. As a result, heuristic approaches are frequently used to tackle optimization
tasks. Some examples of such heuristic approaches include Hill Climbing, Tabu Search, Genetic
algorithms, etc.

There is another type of method to learn the structure of BN called Hybrid approach which is
the combination of the above two mentioned groups.

Parameter learning in BN: Parameter learning entails estimating CPT values from a data set
for a known structure. There are two main approaches to dealing with the parameter-estimation
task: one based on maximum likelihood estimation, and the other using Bayesian approaches
[89].

So far we have described some of the numerous existing algorithms to do classification. Now,
we present different methods to evaluate the performance of a model.

2.3.3 Measuring model’s performance

What constitutes a good model is determined by the organization’s interests and is described
as the business success criterion. These criteria must be translated into predictive modeling
criteria before they can be used to choose candidate models. If we require very precise forecasts,
we utilize accuracy measures. However, in order to better comprehend the predictions, a more
transparent model may be used. In such circumstances, we employ subjective measurements to
gain more understanding. Some projects may utilize a combination of both to avoid selecting the
most accurate model when a less accurate but more transparent model with roughly the same
accuracy is available [55]. In that aim, we now present the different measures used to evaluate
the performance of a classifier.

A number of techniques can be used to assess machine learning models. Analytical research
is anticipated to expand with the use of a variety of evaluation tools. A classification model’s (or
"classifier’s") performance on a set of test data for which the true values are known is described
by a confusion matrix. Shown in Table 2.1, where TN (TP) is number of negative (positive)
samples correctly classified, and FP (FN) is number of negative (positive) samples incorrectly
classified as positive (negative). Also, Actual positive (negative) means that the sample is positive
(negative) [110].

Table 2.1: A confusion matrix

Predict Predict
Positive (PP) Negative (PN)

Actual Positive (P) TP FN
Actual Negative (N) FP TN

Accuracy is calculated as the ratio of the total number of correct predictions to the total
number of predictions made by the model. It provides a general sense of how well the model is
performing in terms of making correct predictions overall. It is a useful metric when the classes
in the dataset are roughly balanced, meaning that there are roughly equal numbers of samples
in each class. However, when the classes are imbalanced, accuracy may not be an appropriate
metric to use because it can be misleading. For example, if 95% of the samples belong to one
class, a classifier that always predicts that class would achieve an accuracy of 95%, but would
not be very useful in practice. Accuracy can be defined as follows:
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Accuracy =
T P + TN

T P +FN + TN +FP

Misclassification Rate (Error Rate) tells overall, how often is the classifier wrong. It can be
defined as follows:

Error Rate =
FP +FN

T P +FN + TN +FP
= 1−Accuracy

True Positive Rate (Sensitivity or Recall) measures the proportion of actual positive samples
that are correctly classified as positive by the model, out of the total number of actual positive
samples. It should be used when the goal is to identify as many positive samples as possible while
minimizing the number of false negative predictions. For example, in medical diagnosis, the
true positive rate is a critical metric because we want to minimize the number of false negative
predictions, that is, cases where the model incorrectly predicts that a patient does not have a
disease when in fact they do. In this case, we would want to maximize the true positive rate to
ensure that we capture as many positive cases as possible. Mathematically, it is defined as:

Recall =
T P

T P +FN

False Positive Rate tells how often the model predicts True if the actual value is False. It
should be used when the goal is to minimize the number of false positive predictions while
capturing as many true negative cases as possible. For example, in airport security screening, the
fast positive rate is a critical metric because we want to minimize the number of false positive
predictions, i.e., cases where the model incorrectly predicts that a passenger has a dangerous
item when in fact they do not. In this case, we would want to minimize the fast positive rate to
ensure that we do not unnecessarily delay or inconvenience passengers, while still maintaining a
high level of security. Mathematically, it is defined as:

False P ositive Rate =
FP

TN +FP

Specificity tells how often the model predicts False if the actual value is False. In the context
of imbalanced data, specificity is particularly useful when the negative class is the minority class,
and the model’s performance is dominated by its ability to correctly identify the positive class.
Specificity provides additional insight into the model’s ability to correctly identify negative
cases, which is also important in many applications. For example, suppose a medical test is
designed to identify patients who have a rare disease. If the disease is indeed rare, the dataset
will be imbalanced, with the negative class (healthy patients) being the majority. In this case, a
high specificity will indicate that the model is able to correctly identify healthy patients, which
is crucial for preventing unnecessary treatment or alarm. Mathematically it is defined as:

Specif icity =
TN

TN +FP
= 1− False P ositive Rate

Precision tells how often is the model correct if it predicts True. Precision is useful in
situations where the cost of a false positive is high, such as in medical diagnosis, fraud detection,
or spam filtering. In these cases, it is important to minimize false positives, even at the cost of
increased false negatives. In the context of imbalanced data, precision can be a more informative
metric than accuracy, as it is less affected by the imbalance. For example, in a dataset with 90%
negative examples and 10% positive examples, a classifier that always predicts negative will
have an accuracy of 90%, but a precision of 0% for the positive class. Mathematically is defined
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as:

P recision =
T P

T P +FP

Prevalence tells how often the True condition actually occurs in data and is defined as:

P revalence =
P

P +N

Balanced accuracy Both binary and multi-class classification use balanced accuracy. It is
widely used when working with imbalanced data, or when one of the target classes shows up
much more frequently than the other. It is the arithmetic mean of sensitivity and specificity.

Balanced Accuracy =
1
2

(
T P

T P +FN
+

TN
TN +FP

)

Area under ROC curve (AUC-ROC) Area Under the Receiver Operator Characteristic Curve
provides a summary of the trade-offs between true positive rates and false-positive rates for
the given predictive model. When the observations are evenly distributed among the classes,
AUC-ROC produces good results. Also, it is a good metric to use with imbalanced data because
it is not affected by the imbalance in the dataset. It is also a better metric than accuracy for
imbalanced datasets because accuracy can be misleading when the dataset is imbalanced. AUC
ROC considers both the True Positive Rate and the False Positive Rate, making it more suitable
for evaluating the performance of models on imbalanced datasets.

Area under PR curve (AUC-PR) A simple graph with precision values on the y-axis and
recall values on the x-axis makes up a PR curve. AUC-PR measures the quality of a classifier by
computing the area under the PR curve. It is particularly useful when the dataset is imbalanced
because it provides a more informative evaluation of the performance of a classifier when the
positive class is rare. In such cases, accuracy may be misleading since a model that predicts the
majority class most of the time can achieve high accuracy, despite being ineffective at identifying
the minority class. By contrast, AUC-PR considers precision and recall, which are more relevant
metrics in imbalanced datasets.

F1 score F1-score maintains a balance between recall and precision. F1 score (also known
as F-measure, or balanced F-score) is an error metric that measures model performance by
calculating the harmonic mean of precision and recall. It is useful when dealing with imbalanced
data because it takes into account both true positives and false negatives. It is often used
in classification tasks such as spam filtering, fraud detection, and medical diagnosis, where
correctly identifying both positive and negative cases is important. Mathematically, it is defined
as:

F1− score =
2 ∗ precision ∗ recall
recall + precision

F2 score The F2 score is based on the premise that recall should be given more weight than
precision. It is useful in imbalanced datasets where recall is more important than precision. For
example, in medical diagnosis tasks, it may be more important to correctly identify all positive
cases, even at the cost of some false positives. Mathematically it is defined as:

F2− score =
5 ∗ precision ∗ recall
4 ∗ recall + precision
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So far we have presented the basics of machine learning algorithms and how to evaluate the
quality of the prediction for a given machine learning algorithm. But, building a good machine
learning model requires a good data set. Furthermore, working with data is more difficult than it
may appear since it necessitates, first of all, careful handling of the data. Moreover, according to
The State of Data Science 2020 report5, data preparation and understanding is one of the most
important and time-consuming tasks of the machine learning project lifecycle. With that aim in
the next section, we present the basics of data preparation.

2.4 Basics of data preparation

Datasets typically need considerable preparation before they can produce significant insights
since the majority of machine learning algorithms require data to be structured in a very specific
way. In this section, we discuss some of the different steps of data preparation such as missing
value imputation, the problem of imbalance in data, and feature selection to evaluate a target for
a given machine learning algorithm.

2.4.1 Missing Value Imputation

The enhancement of technology in the modern world is relying on data. There is a lot of
chaos incurred in the lively datasets. Missing data is a common problem faced with real-world
datasets. Missing data can be anything from missing sequence, incomplete features, files missing,
incomplete information, data entry error, etc. The origin of missing values can be caused by
different reasons and depending on these origins missing values should be considered differently
and dealt with in different ways [9].

Missing data are commonly classified as ‘missing completely at random’ (MCAR), ‘missing at
random’ (MAR), and ‘missing not at random’ (MNAR) [5, 9, 34, 37, 41, 61, 92, 108, 123]. When
the probability of missing data on a given variable is independent of the values of that variable,
and of the values of other variables in the data set, the data are assumed to be MCAR [41].
For example, an observation is missing when a questionnaire of a study subject is accidentally
lost when it is not related to any other patient characteristics. The missing data here would be
MCAR. When the probability of non-response is independent of the missing value but is related
to the values of another variable in the data set, the data are considered to be MAR [41]. For
example, suppose we want to evaluate the predictive value of a diagnostic test for depression,
and the test results are known for all diseased patients but unknown for a random sample of the
non-diseased patient. In this case, the missing data would be MAR. When a missing data point
is not dependent on other variables in the data set but is dependent on the unobserved missing
value itself, missingness is assumed to be MNAR [41]. For example, suppose we want to conduct
a depression survey, but some patients failed to fill in a depression survey because of their level
of depression.

Furthermore, there are several options for handling missing values each with its own PROS
and CONS. The choice of method for dealing with missing data is crucial for the validity
of conclusions and should be based on careful consideration of the reasons for the missing
data, missing data patterns and the availability of auxiliary information [61]. Researchers and
Scientists discussed various techniques in their published work. Some of the basic techniques
are discussed as under:

5https://www.anaconda.com/state-of-data-science-2020?utm_medium=blog&utm_source=anaconda&utm_
campaign=sods-2020&utm_content=data-prep-blog

https://www.anaconda.com/state-of-data-science-2020?utm_medium=blog&utm_source=anaconda&utm_campaign=sods-2020&utm_content=data-prep-blog
https://www.anaconda.com/state-of-data-science-2020?utm_medium=blog&utm_source=anaconda&utm_campaign=sods-2020&utm_content=data-prep-blog
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• Listwise deletion: Listwise deletion removes all data for a case with one or more missing
values. It is the simplest technique to handle missing data but comes with an assumption
that data are MCAR which is not always the case and hence produces biased results [92].

• Pairwise Deletion: Unlike to listwise deletion, pairwise deletion attempts to minimize
the loss and maximizes all data available on an analysis-by-analysis basis. It means that
pairwise deletion will not delete a case completely from the analyses but delete cases based
on the variables included in the analysis. As a result, analyses may be completed on subsets
of the data depending on where values are missing. But, the disadvantage of pairwise
deletion is that it also requires the MCAR assumption to produce unbiased parameter
estimates [92].

• Mean Imputation: Mean imputation is a method in which the mean of the available cases
replaces the missing value on a certain variable. It is easy to use and can be used regardless
of whether the data are MCAR, MAR, or MNAR. But the variability in the data is reduced,
so the standard deviations and the variance estimates tend to be underestimated. Also, the
magnitude of the covariance and correlation decreases by restricting the variability. Hence
this method often causes biased estimates [92].

• Last observation carried forward: As the name states, it replaces the missing value with
the last observation collected. This method makes the assumption that the observation of
the individual has not changed at all since the last measured observation, which is mostly
unrealistic [37].

• K-Nearest Neighbour Imputation: KNN approximates the missing value in the data with
the help of k nearest values of that missing value. It measures the distance statistic between
the case of missing data and all other cases in the data set and imputes missing values
considering k number of values that are mostly similar to the values of interest. The
disadvantage of using KNN is that whenever it looks for the most similar instances, the
algorithm searches through all the data set.

• Regression Imputation: In regression imputation, the imputed value is predicted from
a regression equation. It uses the information provided in the complete observations to
predict the values of the missing observations [37].

Researchers have also developed some complex techniques to handle missing values such
as missForest [123], EM algorithm, Maximum Likelihood Estimation, and Multiple Imputation
[92].

2.4.2 Imbalance in data

Most of the machine learning classifiers trained on data with an uneven distribution of classes
are prone to over-predicting the majority class. As a result, the minority class has a higher
rate of misclassification. In addition, classification algorithms penalize false positives and false
negatives equally, which is not adapted for imbalanced data.

An imbalanced data set occurs when there is an unequal representation of classes. A severe
imbalance in a data set may raise a problem in the machine learning algorithm. These algorithms
are more likely to classify a new observation in the majority class since the probability of
belonging to the majority class is higher and the algorithm tries to minimize errors [57]. We
encounter the imbalanced classification problem when our training data’s class distribution has a
significant skew. Even though the skew may not always be extreme (it can vary), we still consider
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imbalanced classification to be a problem because it can affect how well our machine learning
algorithms performs. One way of handling imbalanced data is oversampling. Oversampling
is the duplicating of samples using the minority class. Another way is undersampling which
includes deleting samples from the majority class. We can also handle the imbalanced data using
hybrid methods which include both oversampling and undersampling. However, undersampling
is interesting when the total number of cases is large enough, and deleting some cases does not
lead to a loss of information.

One of the oversampling techniques to address the imbalance issue is SMOTE (synthetic
minority oversampling technique) [21]. By increasing minority class examples at random and
duplicating them, it seeks to balance the distribution of classes. SMOTE creates new minority
instances by combining minority instances that already exist. For the minority class, it creates
virtual training records using linear interpolation. For each example in the minority class, one or
more of the k-nearest neighbors are randomly chosen to serve as these synthetic training records.
SVM-SMOTE [133] is an additional oversampling technique. After training SVMs on the initial
learning set, SVM-SMOTE uses support vectors to roughly estimate the borderline area. Each
minority class support vector will be connected at random to a few of its closest neighbors by
lines of synthetic data. Another SMOTE variant that doesn’t concentrate on neighbors or borders
is adaptive synthetic sampling (ADASYN) [56]. Instead, it emphasizes data density and generates
fictitious data in line with that.

In the medical field, imbalanced data is frequent, and balancing techniques can be used to
improve classification performance. In a recent study [42], Recurrent Neural Network (RNN) is
utilized for classification, and Synthetic Minority Over-sampling Technique (SMOTE) is used to
solve the problem of data imbalance. The SMOTE approach uses over- and under-sampling of
the attributes based on the k Nearest Neighbor (kNN) algorithm. For categorization, the RNN
processes the instance without reference to the prior instance [42].

In the real world, classifying imbalanced data is a difficult task for many data sets. In another
study [17], SMOTE, Borderline-SMOTE, and ADASYN are put to the test to see how well they
handle data set imbalance and what effect it has on classification accuracy. In this study, a
classifier based on gradient boosting is deployed across seven datasets, and F1-Score, AUC,
accuracy, recall, and precision are used to gauge classifier performance. Studies for the data
sets Mammography, Liver Disorders, Diabetes (Pima Indian), Indian Liver, Habberman, and
Immunotherapy indicated that oversampling technique increased accuracy from 2% to 11%.
When compared to other oversampling techniques, borderline-SMOTE boosts accuracy more
significantly. Surprisingly, Breast Cancer Wisconsin consistently achieves accuracy, whether
oversampling is used or not [17].

2.4.3 Feature Selection

Feature selection is primarily focused on removing non-informative or redundant predictors
from the model. Some predictive modeling problems have many features that can slow the
development and training of models and require a large amount of system memory. Additionally,
the performance of some models can degrade when including input features that are not relevant
to the target feature. In literature, many studies focus on the evaluation of the features which
are most affecting a given risk factor. For example, the risk factors for orthostatic hypotension,
which is an important risk factor for falls, are studied in [44], and the factors associated with the
fear of falling are examined in [45]. Generally, feature selection methods are classified into 3
categories:

• Wrapper methods: Wrappers require some method to search the space of all possible
subsets of features, assessing their quality by learning and evaluating a classifier with
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that feature subset. The feature selection process is based on a specific machine learning
algorithm that we are trying to fit on a given dataset. It follows a greedy search approach
by evaluating all the possible combinations of features against the evaluation criterion.
e.g.- Forward features selection, backward feature selection, recursive feature elimination,
etc. [16].

• Filter methods: Filter methods pick up the intrinsic properties of the features measured
via univariate statistics instead of cross-validation performance. These methods are faster
and less computationally expensive than wrapper methods. When dealing with high-
dimensional data, it is computationally cheaper to use filter methods. e.g. - chi-square,
mutual information gain, pearson correlation, fisher method, etc. [16].

• Embedded methods: These methods encompass the benefits of both the wrapper and
filter methods, by including interactions of features but also maintaining reasonable
computational cost. Embedded methods are iterative in the sense that they take care of
each iteration of the model training process and carefully extract those features which
contribute the most to the training for a particular iteration. e.g.- lasso regularization (L1),
random forest importance, etc. [16].

So far, we have discussed in this chapter the basics of machine learning and how to prepare
the data in order to gain some insights. In the following, we present a brief literature review of
the use of machine learning algorithms in healthcare.

2.5 State of the art of using machine learning in healthcare

In the recent 20 years, as more data becomes available, the field of machine learning in healthcare
is increasing. In order to construct methods for recognizing patterns in data, machine learning
incorporates several diverse topics, including computer science, statistics, and optimization.
Using those patterns, one can gain a deeper knowledge of a present situation or make predictions
about a future one [128].

This section provides an overview of machine learning approaches to solve healthcare
challenges. Table 2.2 provides an overview of several machine-learning approaches used in
the healthcare domain as well as related references. We searched on Scopus database with the
following string {KEY ( machine-learning AND classification AND healthcare ) }. We selected
articles that are open source, in English, and published between 2013 and 2023 in a journal
or conference proceedings. This process resulted in a total of 166 articles. We then excluded
the articles which deal with image analysis, text data, big data, sensor data, and time series
data. These steps lead us to 22 articles from this search strategy. We also added 4 more articles
previously known to the author. Finally, we included a total of 26 articles for our analysis.

Furthermore, the selection of these 26 articles specifically focuses on the use of machine
learning in healthcare for several reasons. Firstly, the articles showcase the various applications
of machine learning in healthcare, such as predictive diagnostics, personalized treatment plans,
and real-time monitoring of patients. Secondly, they provide insights into the current state of
the field, including its challenges and limitations. These articles aim to provide a comprehensive
overview of the use of machine learning in healthcare, including its benefits and limitations,
helping to drive further research and development in this area. It can be seen from table 2.2
that all the classifiers listed are used, with a slightly smaller number of uses for ANN and BN.
Furthermore, 10 out of 26 articles use only 1 or 2 classifiers whereas 9 articles use 4 classifiers or
more. In this thesis, we use all 7 classifiers mentioned above. Furthermore, a brief explanation
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of each of these references is provided as follows in order to provide insights into the recent
literature on machine learning in healthcare.

Table 2.2: Overview of references using different machine learning methods

Reference LR DT RF SVM NB ANN BN Total
[2] ✗ ✗ ✗ ✗ ✗ ✗ 6
[3] ✗ ✗ ✗ ✗ ✗ 5
[7] ✗ ✗ 2
[8] ✗ 1

[10] ✗ ✗ ✗ 3
[32] ✗ ✗ ✗ ✗ 4
[38] ✗ ✗ ✗ 3
[46] ✗ ✗ ✗ ✗ ✗ ✗ 6
[48] ✗ ✗ ✗ ✗ 4
[51] ✗ ✗ ✗ ✗ ✗ 5
[52] ✗ ✗ ✗ 3
[54] ✗ 1
[62] ✗ ✗ 2
[66] ✗ ✗ ✗ 3
[67] ✗ ✗ ✗ ✗ ✗ 5
[74] ✗ ✗ 2
[81] ✗ ✗ ✗ 3
[84] ✗ 1
[91] ✗ ✗ 2
[82] ✗ ✗ ✗ ✗ 4

[107] ✗ ✗ ✗ ✗ ✗ 5
[112] ✗ 1
[115] ✗ ✗ ✗ 3
[124] ✗ ✗ 2
[126] ✗ ✗ 2
[127] ✗ ✗ ✗ 3

26 studies 15 12 16 17 12 6 3

The study [2] proposes non-invasive machine learning models for continuous glucose moni-
toring in diabetes patients. Random Forest and Decision Tree algorithms performed best, with
84% accuracy for the PIDD dataset6 and 70% accuracy for the iGLU dataset7. The proposed
device provides an excellent solution for continuous glucose monitoring compared to similar
methods.

In [3] the author proposes an enhanced approach for identifying potential risk factors and
predicting the incidence of stroke using ten classification models, including advanced boosting
classifiers. The method achieved a high accuracy rate of 97% on all feature classifications, with
gradient and ensemble boosting-tree-based models being the most suitable for predicting strokes
in real-world situations. The study identifies age, heart disease, glucose level, hypertension, and
marital status as the most significant risk factors, with other attributes also playing essential
roles in obtaining the best performance.

6Source: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
7Source: https://paperswithcode.com/dataset/iglu

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://paperswithcode.com/dataset/iglu
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The author in [7] discusses the use of data mining techniques in the healthcare sector,
specifically for the diagnosis of heart disease. The author explains that extreme values in data
sets can reduce the accuracy of classification, and data conversion is an important step to pre-
configure the process of converting data into suitable mining models. The authors applied
classification methods such as Naive Bayes and Random Forest to original datasets and datasets
with feature selection methods. The research was conducted on three different sets of heart
disease data to analyze the pre-treatment effect in terms of accuracy.

The author in [8] explores the use of machine learning methods for predicting intensive care
unit (ICU) admissions of COVID-19 patients and guiding hospital decision-makers in resource
allocation. The authors analyzed the clinical and laboratory data of 100 patients with laboratory-
confirmed COVID-19 tests using a weighted radial kernel support vector machine coupled with
Recursive Feature Elimination. The proposed method outperformed other classification methods
in discriminating between ICU and non-ICU admissions and identified a set of significant
features that can assist in resource allocation and mobilization between intensive care and
isolation units. The authors note that the study was retrospective and will require training to
forecast prospectively.

Several data mining and classification methods are used in [10] to forecast breast cancer risk
and diagnosis. Support Vector Machine, decision tree, Naive Bayes, and k-Nearest Neighbors are
all compared by the authors. These techniques are used on the well-known Wisconsin Breast
Cancer dataset. When comparing accuracy, it is demonstrated that SVM produces the best
results.

The study [32] discusses the development of a diagnosis system to detect chronic kidney
disease (CKD) using machine learning algorithms with the support of a hybrid feature selection
approach. The study used clinical data from 400 CKD patients, prepared the dataset for the
prediction model, and proposed a feature selection approach to remove redundant features. The
Extra trees classifier was found to have the highest accuracy at 98%, while the Bagging classifier
performed worst with only 60% accuracy. Early detection of CKD is important for saving lives,
and this study offers a promising method for detecting the disease.

The author in [38] compares the performance of logistic regression with several other machine
learning methods for estimating the risk of death in patients following emergency hospital
admission using first blood test results and physiological measurements. The logistic model
performed well compared to other methods, with a calibration slope of 0.90 and an area under the
receiver operating characteristic curve of 0.847. The authors suggest that, given the complexity
of tuning parameters for other methods, logistic regression with transformations is a competitive
option for predicting in-hospital mortality with no evidence of overfitting.

In [46] the author presents a new hybrid predictive model for early mortality prediction in
the Intensive Care Unit (ICU) using a combination of Genetic Algorithm, Stacking, and Boosting
ensemble methods. The new model is designed to solve the highly imbalanced data problem
using the SVM-SMOTE method. The study compared the new model with various machine
learning models and achieved better performance than other classifiers. The proposed model
was also benchmarked against state-of-the-art predictive models applied to the MIMIC dataset
and outperformed them. The new model has the potential to provide valuable information about
patients’ lives and reduce costs at the earliest possible stage.

The author in [48] discusses the use of data mining and machine learning techniques to
diagnose CKD at an early stage. The study evaluates the performance of five ML classification
models, including support vector machine, random forest, logistic regression (LR), K-nearest
neighbor, and decision tree, on a benchmark CKD dataset from UCI repository. The proposed
model involves data pre-processing in two stages and the results show that the random forest
model has accomplished the best results with a maximum precision of 0.99, recall of 0.99, and
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F-score of 0.99 with a minimal error rate of 0.012.
The study [51] describes a case study conducted in a small city in Pakistan where healthcare

facilities are limited to handle the COVID-19 pandemic. The study focuses on developing a
machine learning classification model to predict the severity of COVID-19 patients to manage
resources effectively. Among seven tested algorithms, the SVM was chosen to predict the severity
of patients, which classified patients into mild, moderate, and severe levels with an accuracy of
60%.

In [52] the author discusses decision assistance for identifying patients at high risk of
developing hyperlactatemia. The objective is to anticipate hyperlactatemia early on so that
healthcare personnel can intervene and patient health can be improved. The scientists used
741 patients’ electronic health records in their investigation. Various classification approaches,
such as naive Bayes, support vector machines, Gaussian models, and Markov models, were
applied. It was demonstrated that only three characteristics, the median lactate levels, the mean
arterial pressure, and the median absolute deviation of the respiratory rate, may be used to make
reasonable predictions.

The authors of [54] created a technique that practitioners may use to anticipate the diagnosis
of diabetes patients. For prediction, this system employs a decision tree and k-nearest neighbors.
The decision tree produced the best results, with an accuracy of more than 90%.

The author in [62] discusses how CKD is a growing global health crisis and that early
prediction of CKD is important to improve patient outcomes. The article presents a methodology
that uses machine learning techniques, such as logistic regression, decision tree classification,
and K-nearest neighbor, to predict CKD status using clinical data. The study found that logistic
regression had the highest accuracy rate of approximately 97%. The dataset used in the study
was the CKD dataset, and the results show that the models employed in this study are more
trustworthy than those used in previous studies.

In [66] the author discusses the issue of imbalanced medical datasets, where negative cases
outnumber positive cases. Using two lung cancer datasets, the study compares the performance
of 23 class imbalance methods with three classifiers to determine the best technique for medical
datasets. The results show that class imbalance learning can improve the classification ability of
the model. Over-sampling techniques have the lowest standard deviation and are generally more
stable, with the random forest classifier performing the best with the random over-sampling
method.

The author in [67] discusses the use of machine learning techniques to develop a predictive
model for diagnosing and predicting the severity of cardiovascular disease (CVD). Various
machine learning algorithms such as artificial neural networks, support vector machine, logistic
regression, decision tree, random forest, and AdaBoost were applied to a heart disease dataset
to predict the disease. The study constructed fusion models by combining the decisions of
two algorithms using a weighted sum rule and applying a weighted score fusion approach to
improve classification performance. The proposed approach was experimented with different
test training ratios for binary and multiclass classification problems, with the highest accuracy
being 95% for binary and 75% for multiclass classification.

In [74] the author discusses the development of an e-diagnosis tool for coronary artery disease
(CAD) based on machine learning algorithms. ML methods, such as RandomForest, XGboost,
MultilayerPerceptron, J48, AdaBoost, NaiveBayes, LogitBoost, and KNN were applied to medical
datasets to predict and detect CAD. To improve accuracy, an ensemble model using majority
voting was designed to combine the forecasts of individual classifiers. The results showed that
the ensemble majority voting approach based on the top 3 classifiers, MultilayerPerceptron,
RandomForest, and AdaBoost, achieved the highest accuracy of 88.12%. The study demonstrates
that the majority voting ensemble approach proposed is the most accurate ML classification
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approach for the prediction and detection of CAD.
In study [81] the author focuses on predicting readmission of patients with Chronic Obstruc-

tive Pulmonary Disease (COPD) using machine learning algorithms, with the goal of reducing
healthcare costs and improving the quality of care. The study evaluates the performance of dif-
ferent machine learning models using Area Under Curve (AUC) and Accuracy (ACC) as criteria
for prediction power. The study also identifies important variables for predicting readmission
and achieves the highest accuracy of 91%.

In [84], the author suggests building a system to facilitate intelligent decision-making in
the diagnosis of preeclampsia using Bayesian networks to assist specialists in the pregnant’s
care. They used information on the symptoms of 20 pregnant women with varying degrees of
hypertension severity to evaluate and validate the suggested technique.

The study [91] investigated 26525 adult cancer patients. The author’s objective is to forecast
six-month mortality. The authors’ approaches include random forest, gradient boosting, and
logistic regression. The gradient boosting technique has also been used in real-time to categorize
patients as being at high risk. The outcomes of this real-world application met the practitioners’
expectations.

The study [82] aimed to evaluate the performance of the six best classifiers for analyzing the
Autism Spectrum Disorder (ASD) screening training dataset. The study found that J48 produced
promising results compared to other classifiers when tested in both circumstances, with and
without missing values, and could assist health practitioners in making accurate diagnoses
of ASD occurrences in patients. The study also addressed the issue of missing values in the
dataset through an imputation method, where missing values were replaced with the mean of
the available records in the dataset. The study’s outcome may help health practitioners predict
the occurrence of ASD more accurately using machine learning algorithms.

The author in [107] discusses using machine learning algorithms for binary classification in
decision support systems to improve operations and reduce costs. The study compares the per-
formance of different algorithms using the Scikit-learn machine learning library for Python and
evaluates them on public diabetes and human resource dataset. The best-performing algorithm
for supervised learning was Random Forest, while Balanced Iterative Reducing and Clustering
Using Hierarchies and Spectral Clustering algorithms performed best for unsupervised cluster-
ing. The study suggests that applying unsupervised clustering as a preprocessing step can boost
performance in supervised techniques.

The author of [112] proposes an architecture for tracking the patient’s hand motions. Fog
and cloud gateways for real-time response generation are employed for frequent monitoring of
arthritis sufferers. The suggested architecture includes a thread protocol and a Bayesian network
classifier to achieve reliable communication and anomaly detection, respectively. A dataset of
431 arthritis patients is collected in real-time and simulated using the OMNet++ simulator. In
comparison to not employing the fog and thread protocol, observations reveal that the packet
delivery ratio is increased by 15-20%, the response time is lowered by 20-30%, and the packet
delivery rate is enhanced by 25-35%.

The authors of [115] attempt to predict postoperative sepsis and acute kidney injury. This
topic is approached using a variety of models, including logistic regression, generalized additive
models, naive Bayesian, closest shrunken centroid, and support vector machines. The area
under the receiver operating characteristic curve, accuracy, and positive projected value is used
to compare the various models. It is discovered that logistic regression, generalized additive
models, and support vector machines outperform the naïve Bayesian model, with AUC scores as
high as 0.858 for acute kidney injury and as high as 0.909 for severe sepsis.

The authors of [124] employ logistic regression and random forest to predict the progression
of inflammatory bowel disease. Their technique was validated on a dataset of over 20000 patients.
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The random forest produces the best performance, with an area under the receiver operating
characteristic curve of 0.85. The authors state that this model can help practitioners differentiate
between patients who are at high and low risk of a disease flare, which can help them tailor their
therapy.

In study [126] the author discusses the use of machine learning algorithms to classify and
discriminate between malignant and benign breast cancer cases. Three algorithms, k-NN, Naive
Bayes, and Support Vector Machine, were used to analyze and classify data from the Wisconsin
breast cancer database. The accuracy of the classifiers was evaluated using train/test split and
cross-validation techniques, with k-NN providing the highest accuracy at 97.07%. The results
show the potential for machine learning in improving predictive performance in breast cancer
classification.

The authors of [127] conducted research on 378256 patients utilizing clinical data collection.
The study’s purpose is to evaluate machine learning algorithms for detecting cardiac failure. The
authors contrast four machine learning approaches: random forest, logistic regression, gradient
boosting, and neural networks. Furthermore, they compare the outcomes of those approaches
to the results of a commonly used algorithm in the United States. A neural network produced
the best results. When compared to the accepted method, 355 more people experienced cardiac
failures in this situation.

So far we have presented an overview of the literature review which represents the use
of machine-learning algorithms to solve healthcare problems. Now we present some insights
we gained from this literature review. Table 2.3 represents the main topic, number of cases,
variables, targets, and classes in a given reference article. From this table, we can say that
machine learning is used in a wide range of applications in healthcare such as predicting
diabetes, cancer, cardiovascular diseases, and so on. We also noted that all studies mentioned
here use the real data set for their analysis except 3 studies. In addition, 3 studies use data sets
from 2 different sources. Furthermore, the size of the data sets used ranges from 99 cases to
378256 cases, with 18 studies having a data set including less than 1000 cases. and 5 studies use
a data set with more than 10000 cases and 3 variables up to 559 variables for different studies.
Also, the focus of most of these studies is to predict a single target variable (mostly binary target
except 3 multi-target studies) except for 1 study which predicts 2 target variables and 3 studies
did not mention the number of target variables.

As a reminder in this thesis, we work with a real data set of about 1810 patients obtained
from the hospital of Lille, France. In our work, we have 12 target risk factors for falls we want to
evaluate. Our data set initially includes 445 columns including redundancy and various details.
we finally selected 45 variables in the first iteration and 90 variables in the second iteration. It
is also important to keep in mind that when evaluating a given target risk factor the other 11
targets are considered features of the patient as they represent important information about
the patient. Another point has to be noted that the prediction is usually achieved with the
assumption that all other variables are observed. We relax this strong assumption in this work,
(this point is explained in the next chapter). In the next chapter, we will discuss in detail the
process and reason for the selection of these target variables.

In this section, we provided an overview of the machine-learning algorithms used to solve
healthcare challenges. In the next section, we discuss some of the limitations and unresolved
issues when using machine learning models in healthcare.
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2.6 Limitations and open challenges

In this chapter, we have seen that increased data availability in healthcare has opened up a
variety of new opportunities. Several machine-learning methods have been used to solve a wide
range of issues. These algorithms can provide valuable insights into healthcare by extracting
patterns and predicting outcomes from real data sets. However, the quality of the output from
these models depends heavily on the quality of the input data, and healthcare data sets often
suffer from issues such as imbalanced data, missing values, and too many variables. Imbalanced
data occurs when the distribution of the classes of interest is not equal, which can lead to
models that are biased toward the majority class. Missing values are another common issue in
healthcare data, which can occur due to incomplete data collection, data entry errors, or patients
not reporting certain information. Finally, selecting the appropriate variables or features to use
in a machine learning model can be challenging due to a large number of potential predictors,
some of which may be irrelevant or even harmful to the model’s performance.

In the previous section, we presented an overview of the literature review representing
the use of different machine learning algorithms in healthcare problems. Now we present the
insights from these studies regarding the challenges mentioned above. Table 2.4 represents the
list of reference articles dealing with missing values, imbalanced data, and variables selection.
We see from this table that out of 26 articles, 14 of them mentioned the problem of missing value
in the data, in which missing values were present in 10 of them. Furthermore, only 5 out of 26
articles mentioned the problem of imbalanced data, and only 9 out of 26 mentioned the variable
selection procedures.

Furthermore, there are several other challenges that need to be addressed in order to ensure
the accuracy and reliability of these algorithms. One such challenge is data limitations, where
the quality or quantity of data available for analysis is limited. This can lead to reduced accuracy
and limited generalizability of the algorithm. Multiple studies have highlighted this problem
in their research, for example, the author in [33] emphasizes the importance of technological
advancement as well as a dedication to open science in order to fully achieve the promise of
machine learning in healthcare. The author in [40] mentioned the quality of data as a critical
concern in healthcare. It also states that, in order for data to be valuable, it must be of high
quality, and so it must be properly kept and retrieved. They also emphasize data preprocessing
as a critical issue, claiming that machine learning algorithms in healthcare lag behind those in
other fields due to a lack of consistent and trustworthy data management in hospitals.

Also, interpretability is a major challenge, as many machine learning algorithms are consid-
ered "black boxes" and it is difficult to understand how the algorithm arrived at its predictions.
This lack of interpretability makes it difficult to trust and apply the algorithm’s output in clinical
practice. Multiple studies have highlighted it in their research, for example, the authors of [114]
recognize the benefits of machine learning in healthcare, particularly in identifying sickness
patterns but underline the significance of taking into account variables such as patient trust,
transparency of the methods utilized, and potential bias by algorithms. Also, the author in [122]
emphasizes one key problem with machine learning models: they are frequently complicated and
nonlinear, making them difficult to examine and explain. This is a critical challenge, particularly
in healthcare, and it may limit the use of machine learning models in practice. The authors
advocate for the use of data and model visualization, as well as the incorporation of healthcare
practitioners’ expertise into the creation of data-driven procedures.

As a reminder, in this thesis, we deal with all the challenges mentioned above: missing
values, imbalanced data, variable selection, data quality, and interoperability, in the context
of the evaluation of risk factors for falls in elderly patients. Also, using the right measure is a
really important point in the evaluation of the quality of a classifier since all measures are not
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Table 2.4: Analysis of references about classification in healthcare: represents if a given reference
article deals with missing values, imbalanced data, and variables selection

Reference missing data imbalance variable selection
[2] yes yes
[3] yes yes yes
[7] yes
[8] yes

[10]
[32] yes yes
[38] no
[46] no yes
[48] yes
[51]
[52] no
[54]
[62] no yes
[66] yes yes
[67] yes yes
[74] yes yes
[81]
[84]
[91]
[82] yes

[107] yes
[112]
[115] yes yes
[124] yes
[126]
[127] yes
#yes 10 5 9
#no 4
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equivalent and some measures can be completely inadequate such as accuracy when dealing
with imbalanced data. However, regarding the data limitation problem, we are aware that a
larger data set would be interesting but in this work, we use a limited data set with 1810 cases.
Moreover, a larger data collection is currently ongoing (thanks to the PREMOB project, lead
by Lille’s hospital) Furthermore, to address the problem of interpretability we also work with
experts in order to help in our analysis.

2.7 Conclusion

The use of machine learning algorithms in healthcare is an area of growing interest and has the
potential to improve the quality and efficiency of healthcare services. However, the success of
these algorithms heavily relies on the quality of data used for training, as well as the ability to
handle and process the data effectively. This chapter has identified several challenges (missing
values, imbalanced data, variable selection, data quality, and interoperability) that need to be
addressed to ensure the accuracy and effectiveness of machine learning algorithms in healthcare.

Furthermore, machine learning algorithms can be used as a way to aid in early illness
identification, patient care, and community services as the amount of data in healthcare grow. In
our work, we focus on the problem of the prevention of falls. In this context, machine learning
algorithms can be used to detect health-related risks in patients, which can aid in the evaluation
of risk factors for falls. With that aim, in this chapter, we first briefly described the problem
of fall prevention followed by the basics of machine learning. But, building a good machine
learning model requires a good data set. Furthermore, working with data is more difficult than
it may appear since it necessitates, first of all, careful handling of the data. In that aim, we
presented the basics of data preparation more specifically about handling missing data, the
problem of imbalance in data, and the selection of relevant variables to build a good machine
learning model. We also presented an overview of a literature review that shows the use of
different machine learning algorithms in the healthcare domain and the challenges faced by
researchers.

Despite these challenges, there is a growing need for the development of accurate and reliable
predictive models for fall risk assessment. With the rapid growth in healthcare data, machine
learning has the potential to revolutionize the way falls are prevented through a facilitated
evaluation of modifiable risk factors, even when available data on the patient is very partial. As
a result, it is important for future research to continue exploring methods for addressing these
challenges, improving the interpretability of results, and ensuring the clinical applicability of
the models.

In conclusion, while machine learning has the potential to provide valuable insights for
fall risk assessment, it is important to approach the development and implementation of these
models with caution. By acknowledging the challenges and limitations of machine learning
algorithms and taking steps to address them, we can ensure that the predictive models are
reliable and clinically applicable, ultimately leading to improved patient outcomes.
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3.1 Introduction

Oxford Dictionary defines a data-set1 as “a collection of data that is treated as a single unit by a
computer”. This means that a dataset contains a lot of separate pieces of data but can be used to
train an algorithm with the goal of finding predictable patterns inside the whole dataset.

Data is an essential component of an AI or ML model and, one of the main reasons for the
spike in the popularity of machine learning that we witness today. It can come in many forms.
Machine learning models rely on certain data types such as numerical data, categorical data,
time series data, text data, and so on2.

1https://www.oxfordlearnersdictionaries.com/definition/english/data-set
2https://www.datarobot.com/blog/the-importance-of-machine-learning-data/
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• Numerical data, also known as quantitative data, is a type of information that can be
measured and expressed in numbers, such as height, weight, or cost. To identify numerical
data, one can apply mathematical operations like averaging or sorting. Numerical data can
be classified as discrete, which are whole or exact numbers like the number of students in
a class, or continuous, which are numbers falling within a certain range, such as interest
rates. It is important to note that numerical data is not time-specific but represents raw
figures.

• Categorical data is organized based on distinct features, such as gender, social class,
ethnicity, hometown, or other similar labels. It is important to note that categorical data
is non-numerical, which means that it cannot be summed up, averaged or arranged in
chronological order. Categorical data is useful for grouping individuals or ideas that share
common characteristics, enabling machine learning models to analyze data in a more
streamlined manner.

• Time series data is comprised of data points that are indexed at different time intervals,
usually collected regularly. Utilizing and understanding time series data enables us to
compare data points from different time periods, such as weeks, months, or years. Unlike
numerical data, time series data is characterized by having specific starting and ending
points, which allows for a more meaningful analysis of the data over time.

• Text data refers to written language, consisting of words, sentences, or paragraphs, which
can provide valuable insights for machine learning models. However, because these words
are often challenging for models to understand on their own, they are typically analyzed
through techniques such as text classification, sentiment analysis, or word frequency
analysis. These methods enable the text data to be processed and grouped, allowing for a
more accurate interpretation and utilization of the information.

Moreover, the sources for collecting a dataset vary and strongly depend on the domain we
are working on. Broadly speaking, there are four main sources of data: real-world usage data,
survey data, public data sets, and simulated data [15, 49].

• Real-World Usage Data: When AI products are already in the market, real-world data
from actual consumers might be a valuable resource. We may look at searches, total results,
which results users click on, and what they look at and purchase, for example, using a
search engine or search function. Social media platforms can collect information about
what users publish, like, share, and comment on. Smartphones, in-car systems, and home
assistants with speech recognition capabilities can capture spoken requests and computer
answers. There is additional data broadcast from music providers and websites such as
YouTube that may track what users look at. We know that utilizing actual data correctly
represents how people use the system, and we don’t have to spend to produce it. However,
there are legal questions associated with collecting it, as well as privacy concerns.

• Survey Data: The second source for machine learning data is surveys. We go directly to the
users or prospective users, and ask what they like or don’t like, and what we can improve
about the product. This approach gives data from actual users and gets around privacy
concerns and legal issues as, by taking the survey, people are opting to participate. Surveys
provide context and the opportunity to follow up on anything that’s unclear. We also have
some control over what people say and do in that we can direct them to the specific topics
we want to address. On the other hand, survey data is somewhat unreliable, because what
people say they do and want on the survey might be quite different than what they actually
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do and want. Additionally, survey data is often skewed toward dissatisfied users, as people
who get what they want are less motivated to provide feedback.

• Public Data Sets: There are a number of different types of public data sets available
from search engines, social media, Amazon Web Services, Wikipedia, universities, data
science communities, and other data repositories. There’s also an enormous amount of
public data from academic efforts in speech and language processing from the last 40 years,
licensable from various organizations. For most commercial purposes, affordability is the
real advantage of these data sets. This kind of data is often used for applications like basic
language recognition or machine translation.

• Engineered or Collected Data: The fourth main way to collect quality data is to make it
ourselves. This is often the only way to proceed with a new solution when there aren’t
any users or usage data yet. We can simulate the user experience by hiring speakers and
professionals, and gathering and annotating the data for project-specific needs. We can
mimic the conditions where people will use the product like driving in a car on a city
street, etc. On one hand, we can get exactly what we need faster this way because we are
in control and always know the context. We can follow up with the professionals and
speakers if there’s a question. And, since we are not using real data, there are no legal or
privacy concerns. Most importantly, the model will produce a better end result. On the
other hand, this type of data collection will require a larger investment.

In addition, high quality is an essential thing to take into consideration when collecting a
dataset for a machine learning project. It is as important as quantity even if we have implemented
great algorithms for machine learning models.

Acquiring a high-quality dataset is an essential prerequisite for constructing real-world
AI/ML applications. However, working with real-world datasets can be challenging as they
are often complex, unstructured, and difficult to work with. The performance of any Machine
Learning or Deep Learning model is directly linked to the quantity, quality, and relevance
of the dataset, and striking the right balance can be difficult. Fortunately, there is a wealth
of open-source datasets available that has encouraged researchers and the AI community to
undertake state-of-the-art research and develop AI-enabled products. Nonetheless, even with
the abundance of datasets, there are still significant challenges in addressing new problem
statements. These include3:

• Insufficient Data: A lack of large samples of data points required by Machine Learning
algorithms can limit the accuracy and effectiveness of the model.

• Bias and Human Error: The tools used for data collection can often result in human error
or bias towards specific aspects, potentially skewing the model’s results.

• Quality: Real-world datasets are frequently disorganized and complex, making it difficult
to ensure high data quality.

• Privacy and Compliance: Some sources do not share their data due to privacy and compli-
ance regulations, such as medical or national security data.

• Data Annotation Process: Manually labeling datasets for quality can be a time-consuming
and expensive process that is prone to errors due to human intervention.

3https://www.datatobiz.com/blog/datasets-in-machine-learning/

https://www.datatobiz.com/blog/datasets-in-machine-learning/
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Addressing these challenges is crucial for data scientists to produce robust and effective AI
applications. It is important to note that these challenges stem from the inherent complexities of
working with real-world datasets and the tools used for data collection. As such, it is necessary
to develop solutions that can mitigate these challenges and produce high-quality datasets that
can be used to develop powerful AI/ML models.

Furthermore, sufficient volumes of data allow us to analyze the trends and hidden patterns
and make decisions based on the dataset [69]. However, while it may look rather simple, working
with data is more complicated since it requires, first of all, proper treatment of the data you
have, from the purposes of using a dataset to the preparation of the raw data for it to be actually
usable [26]. As per The State of Data Science 2020 report4, data preparation and analysis is
a crucial and time-consuming task in the Machine Learning project lifecycle. It reveals that
a significant portion of a Data Scientist’s or an AI developer’s time is spent on data analysis,
accounting for around 70% of their work time. The remaining 30% of their time is allocated to
other essential activities such as model selection, training, testing, and deployment.

In this work, we focus on using the real-world data collected at the service of fall prevention,
hospital of Lille, France. This data contains numerical variables as well as some other variables,
including text data. The size of the initial data set provided by the hospital is very small which
includes information about 440 variables for 1810 patients who visited the service between
January 2005 and December 2016. Also, there are many missing values present in the data
maybe some of them due to human error. Furthermore, the privacy of the person who took part
in this study is preserved as the information used in this study is anonymous.

In that aim, in this chapter, we provide the description of the data in section 3.2. Section
3.3 is focused on the ontology of risk factors for fall prevention, which was developed with the
help of experts from the same service of fall prevention. Finally, in section 3.4 we describe the
different steps of data preprocessing.

3.2 Subjects and data

In this section, we will first describe the data source from where we get the data. Also, the
procedure for data collection. Furthermore, we will discuss the characteristics of the initial
dataset.

3.2.1 Data source and collection

The data for this study were collected at a specialized service for fall prevention. This service
is part of the Lille University Hospital Center5 which is one of the largest public health estab-
lishments in Northern Europe. It provides geriatric care in three hospitalization sectors (acute
medicine, follow-up care, and rehabilitation and long-term care) and two complementary units
in rehabilitation and radiology 6. It is lead by Prof. François PUISIEUX.

On the day of consultation in the service for fall prevention, the patients are admitted for
a full day, during which they interact with various medical professionals who each look into a
variety of factors, including past falls, diet, physical activity, and medical tests like a balance
test. The patient’s information is recorded at each step. The patient’s case file is then discussed
among a group of experts on the subject of elderly falls, and they discuss to summarize the

4https://www.anaconda.com/state-of-data-science-2020?utm_medium=blog&utm_source=anaconda&utm_
campaign=sods-2020&utm_content=data-prep-blog

5https://www.chu-lille.fr/
6https://fr.wikipedia.org/wiki/Centre_hospitalier_universitaire_de_Lille

https://www.anaconda.com/state-of-data-science-2020?utm_medium=blog&utm_source=anaconda&utm_campaign=sods-2020&utm_content=data-prep-blog
https://www.anaconda.com/state-of-data-science-2020?utm_medium=blog&utm_source=anaconda&utm_campaign=sods-2020&utm_content=data-prep-blog
https://www.chu-lille.fr/
https://fr.wikipedia.org/wiki/Centre_hospitalier_universitaire_de_Lille
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patient’s risk factors for falls identified during the day. They also partially sort the list of risk
factors regarding their importance. Based on that, they discuss the best course of action for the
patient. At the end of the day, one of the experts receives the patient and explains to them a few
suitable recommendations. The patient is invited to return to the hospital six months later for a
brief consultation so that the recommendations and the number of falls over the previous six
months can be evaluated. This data is first collected on the paper file of the patient and later
copied onto the excel file that was given to us for analysis.

3.2.2 Data description

The data for this study includes 1810 patients who visited the service between January 2005 and
December 2016, of which 28% of them are male and 72% are female. The age of patients ranges
from 51 years old to 100 years old, with an average age of 81 years old. Table 3.1 represents the
description of variables present in the initial data set based on their category. In total, we have a
total number of 440 variables present in the initial file.

Category Number of columns Description / explanation
Empty column 2
Grayed column 59 During the 12 years of use of the file,

some columns were copied, modified,
and grayed

Error value 3 Error value due to a formula with a
problem

Recommendation 17
Collected after 6 months 36 Collected during the second appoint-

ment 6 months after the hospital day
Value is a free text 41 Often provide text detail related with

a previous column
Administrative information 4

Personal characteristics 9 Examples are age, sex, size, weight,
body mass index, ...

Disease and health problem 78 Disease, symptom, disorder, history
of health problem (except fractures),
incapacity

Fracture 11 Different kind of fractures
Behavior 19 Activity of daily living
Medicine 100 Medicine, drugs associations

Medical test 41 Gait and balance test, cognitive test,
blood pressure, heart frequency, etc.

Autonomy 10 Autonomy in the activity of daily liv-
ing

Environmental variables 5
Number of falls 5 Number of falls during the last six

months
Total number of columns 440

Table 3.1: Description of 440 variables present in the initial data set based on their category.

Among those 440 variables, some variables are duplicated, or partially duplicated. In some
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cases, this is due to the evolution of the file over more than 10 years (for instance, the textual
domain of a variable is replaced by numerical values in a new column). In other cases, the same
piece of information is deliberately collected several times (for instance regarding orthostatic
hypotension, since it is not always visible, achieving several texts is the right way to detect it).
The 440 variables of the initial file are not fully listed in this manuscript, but the two subsets of
variables that we used in this study are completely described in section 3.4.2.

It should be noted that no variable reports the risk of falls, even if that information is
sometimes mentioned in the paper report written at the end of the first appointment. When
information is available about the evaluated risk of fall of the patient, it is usually qualified as
"faible", "modéré" or "élevé", even if many other words can be used.

Out of a total of 1810 patients, the paper reports of 530 patients were manually analyzed,
and information about the risk of falls was found in 330 cases. For the 200 remaining patients,
the report was not found or in progress for 19 cases and no information about the risk of falls
was found in the report for 181 cases. Among those 330 cases with information about the risk of
falls, we have:

• 2% with a low risk of fall ("faible" or equivalent),

• 46% with a moderate risk of fall ("modéré" or equivalent),

• 52% with a high risk of fall ("élevé" or equivalent).

It is important to remark that this distribution does not represent the (french) population
of elderly people (over 65). Indeed, the population represented by this data set includes only
people who had an appointment in the service of fall prevention at Lille’s hospital, naturally
having an important proportion of persons with a high risk of falls. Thus, the use of a data
set representing a very specific population has to be kept in mind when analyzing the results,
and the evaluation of risk factors for falls in the general population of elderly people should be
adapted to take into account the true distributions. However, the benefit of such a data set is to
concentrate on targeted people, meaning those with a high risk of falls, and thus offers a very
detailed analysis of that population.

We now present the ontology of risk factors for falls that was intensively used to understand
the variable and build subsets of variables used in this work.

3.3 Ontology about risk factors for falls

With the aim of developing an application for fall prevention, it is necessary for both medical
experts and the computer science team to understand each other. In that aim, an ontology of fall
prevention fall has been developed7, allowing a better understanding of the multiple factors
that can cause falls in the elderly [19]. Those risk factors have their origins in the aging process,
but they are also impacted by a person’s behavior, habits, and surroundings [96]. By addressing
all of these risk factors, falls can be prevented. The goal of such a system is to enable proper and
continuous follow-up of the individual through a pedagogical and instructive approach, which
includes evaluation of risk factors for falls and giving adopted recommendations. Following
that context, in this section, we describe the methodology used to design an ontology for fall
prevention followed by the resulting ontology for the risk of falling.

7The work of this section was previously done and published in [30], and it is not part of this thesis.
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3.3.1 The Ontology Design Methodology

There are several approaches for creating an ontology, for example, [6, 121]. The creation of the
ontology was based on methods in [90, 121], which included four steps: defining the purpose,
conceptualization, formalization, and validation. The schematic picture for the definition of
ontology is shown in figure 3.1.

Figure 3.1: The ontology definition process

The purpose of this ontology is to support the evaluation of risk factors of falls in the elderly
in order to prevent falls. This ontology is the basis for the development of the fall prevention
software system. The conceptualization requires the definition of the ontology’s scope, concepts,
relations, and constraints, and a description of a glossary for all concepts and attributes specified.
This ontology serves as the foundation for the creation of the fall prevention software system.
It symbolizes the modeling of knowledge itself. To begin, we followed the advice of ontology
methodology [73, 90], and set competence questions (i.e., requirements in the form of questions
that the ontology must answer) as follows:

1. What are the important characteristics to be observed for a person at risk of falling?

2. What are the falling risk factors?

3. What are the appropriate recommendations for fall prevention?

Once we identify the traits of a person that are suggested in risk factors recognized by
physicians, the first two competency questions become intimately interrelated. Based on the
characteristics of the elderly and the risk factors he/she has, physicians define specific recom-
mendations. Since the last part (providing recommendations) is out of scope for this thesis, we
focus on the first 2 parts. We organized the ontology which focuses on the elderly person at
risk of falling (to address the first two competency questions, presented above). We present the
resulting ontology in section 3.3.2. Furthermore, formalization entailed creating the ontology
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using the W3C Web Ontology Language (OWL)8. Finally, the ontology was validated using
physicians’ analysis and by instantiating it with real cases from the hospital unit’s historical
record.

3.3.2 Ontology about Elderly Person at Risk of Falling

The fall of the elderly is a multifaceted condition, according to physicians and literature [13, 19,
98]. When attempting to comprehend the factors that contribute to a person’s risk of falling, it is
vital to understand several aspects of their disease, the medicine they take, their daily activities,
and the environment in which they lives. All of these variables that characterize a person show
which risk factors exist for that individual and may be refined based on the possible risk it may
cause. To that end, the ontology depicted in Figure 3.2 has been developed, which focuses on the
older person at risk of falling.

Figure 3.2: The ontology about the elderly person at risk of falling

The fundamental features of a person (age and sex) are relevant for analyzing risk factors
in all of the aspects shown in figure 3.2. Even if these characteristics are not assessed in an

8https://www.w3.org/OWL/

https://www.w3.org/OWL/
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isolated way, they might have an impact on the evaluation. Women, for example, are more prone
than males to fall [117]. Furthermore, the combined effects of aging and age-related diseases
increase the risk of falls [13, 116]. Some chronic or acute diseases are known to increase the risk
of falling in the elderly [109]. In addition, according to [13], different types of chronic disease
(cognitive impairment and dementia, locomotor system disorder, sensory disorder, neurological
disorder, musculoskeletal affections, neurosensory disorder, neurological condition, dementia,
urinary incontinence, depression, denutrition) and acute disease (hypotension, dehydration,
hypoglycemia, delirium, infection confusional state) are important factors that influence the
risk of falls. Furthermore, the elderly frequently have many diseases, necessitating the usage of
multiple medications. Psychotropic medications (such as antidepressants, sedative-hypnotics,
tranquilizers, and neuroleptics) and cardiovascular medications (for instance, antiarrhythmic
drugs, nitrates, and diuretics) are the two types of drugs that are more specifically connected
with an increased risk of falls [13, 71, 72, 94].

In addition to the medicine taken, the activities of daily life and environmental features must
be considered when assessing the risk of falling. The literature (INEPS9, 2017) and the hospital’s
historical database allow for the identification of the following factors connected to activities of
daily living:

• Alcohol consumption - This includes both excessive alcohol consumption over a short
period of time and chronic alcohol consumption with the associated mean level of con-
sumption.

• Wearing inappropriate shoes - The question of the type of shoes is quite well documented
(for instance the use of rigid-soled shoes, closed).

• Physical activity - Regular physical activity delays the onset of major chronic diseases.
In particular, it promotes mobility, which can help to reduce falls. Insufficient physical
activities lead progressively to sarcopenia. Daily thirty minutes of physical activity is
recommended.

• Nutrition disorders - The lack of food is a cause of muscular weakness, which may cause
gait and balance disorders.

• Risk taking - Some behaviors such as hurrying, or climbing on a chair contribute to
increasing the risk of fall. Wearing inappropriate glasses may impact balance;

• Use of auxiliary equipment - The use of a walking stick or a walking frame may become a
source of risk either because of bad use of the equipment or because the equipment is not
well adapted to the person.

In addition, various research provided in INEPS10(2005) has demonstrated that the great
majority of older people’s houses constitute environmental hazards. The involvement of the
following elements is noted in the literature: inadequate illumination; soil condition; the
presence of barriers; and lack of safety equipment (for example, handrail, grab bar).

Furthermore, severity factors (or gravity factors) influence the consequences of falls and the
severity level of related injuries and complications. According to our geriatric experts, the most
important ones are:

• Bone fragility - augment the risk of fracture when falling

9https://www.ineps.fr/
10https://www.ineps.fr/

https://www.ineps.fr/
https://www.ineps.fr/
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• Incapacity to get up from the floor - augment the risk to keep a long time on the floor,
especially in case of isolation.

• Anticoagulant treatment - augment the risk of bleeding following a fall, especially in case
of prolonged stance on the ground.

• Living alone (isolation) - augment the risk of keeping a long time on the floor when the
person cannot get up from the floor.

Incidence factors are more important in lowering the risk of falling. In reality, most preven-
tative measures rely on external factors. These variables do not cause falls systematically, but
their presence in an aged person with limited physical capacity might generate a risk. Identi-
fying these characteristics helps us to make required environmental changes and acquire new
behaviors that can make life simpler and safer for the elderly. Advanced age adds to an increase
in the risk of falling. It invariably causes physical, cognitive, and behavioral changes (including
sensory, musculoskeletal, neurological, and metabolic changes). These changes are characterized
as precipitating causes, which occur on a regular basis, such as acute pathologies, pharmaceutical
effects, and so on, and predisposing factors, which are mostly connected to the impacts of aging
and chronic diseases. In addition to the aforementioned considerations, the history of prior falls
is regarded as one of the strongest predictors of a future fall: elderly people who have one or
more falls may have decreased physical ability and experience fear. As a result, the senior’s
quality of life is reduced which led him to restrict his mobility, which favors the loss of muscular
strength, balance, and reflexes. Following a fall, a person having one or more of these factors is
likely to have more serious fall-related consequences, which may affect his balance and mobility,
hence an increased risk of future falls.

This ontology of risk factors for falls constitutes a strong basis that for our understanding of
the variables of the data set. In the following, we present the steps of data preprocessing that
lead to the definition of the two subsets of our data set that we used in our analysis.

3.4 Data Preprocessing

Data preprocessing has a significant impact on the performance of machine learning models
because unreliable samples may lead to wrong outputs [26, 69]. To perform a meaningful data
preprocessing, either the domain expert should be integrated in the data analysis or the domain
should be extensively studied before the data is preprocessed [39]. In this study we have used
expert knowledge to provide a better understanding of data. Also, the understanding of the
data was made easier by the help of an ontology about fall prevention [30] developed previously
with the same service of fall prevention of Lille’s Hospital as discussed in section 3.3. Moreover,
we used an iterative approach for the pre-processing of data. It is divided into two iterations.
The objective for the first (second) iteration is to select the minimum (maximum) number of
variables from the initial data set in order to evaluate the risk factors for falls respectively. Here,
in the first iteration, the goal was to provide a model with a reasonable size and in the second
iteration to improve the results obtained by the 1st iteration and try to keep as many variables as
possible. In this section, we first describe the steps taken for cleaning the data followed by the
list of variables and the target selected. Furthermore, we describe the steps for the imputation of
missing values in our data.
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3.4.1 Data cleaning and variable definition

Detecting and repairing dirty data is one of the perennial challenges in research, and failure to
do so can result in unreliable decisions [43]. The data can have many irrelevant and incomplete
variables with missing information. Cleaning is required to get understandable information
from this kind of data [39]. In our study, we also need some cleaning of the data prior to building
any network.

Furthermore, data forms the foundation of any machine learning algorithm. The size of
a data set consists of: number of cases, number of variables and size of the domain of each
variable. The data can contain a huge number of variables, some of which are not even required.
Such redundant information makes modeling complicated. Thus reduction in the number of
variables when using machine learning algorithms is very important. We will discuss about how
we reduced the number of variables in the following section. Furthermore, the size of domain of
a variable is also an important factor when using machine learning algorithms. In study [70],
the author shows that the model trained on sparse data performed poorly in the test dataset. In
other words, the model during the training learns noise and they are not able to generalize well.
Hence they overfit. Thus the size of the domain of a variable is also an important factor when
using machine learning algorithms. We discuss how we discretize the continuous variables and
variables with large domain sizes in the following section.

Furthermore, in our case, we have a data set that consists of information about 1810 patients.
We used the following 2 criteria to include a person in this study:

• the person should be 65 years or older.

• the person should be able to walk.

After this cleaning, in total, we have information for 1745 patients.
Now in the following sections, we present the data cleaning steps that are common to

iterations 1 and 2, followed by the specific steps for each iteration of data cleaning as presented
in Figure 3.3.

Figure 3.3: Data cleaning main steps: common steps (left); first iteration (upper right); second
iteration (bottom right); here RFFs means risk factors for falls
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3.4.1.1 Common steps of data cleaning

In order to identify the variables to be kept for our study, we first use the criterion of data quality
to remove unusable variables, such as old ones that were replaced by new ones but still present
in the data file, or columns with an error value due to a problem with a formula in the excel
file. These variables correspond to the first categories of variables shown in Table 3.1. We also
removed variables whose value is free text, since we consider they are both not usable and not
interesting, as agreed with our experts. We also use a second criterion to remove variables that
can not be used to evaluate some risk factors for falls. In that aim, we remove variables related
to information that comes after the present time where we aim to evaluate the risk factors. It
concerns the recommendations provided at the end of the day at the hospital, and all variables
collected during the second appointment, six months later. We also removed administrative
information such as the date of the meeting, since they are of no interest in the evaluation of any
risk factors. Now we provide the detail of the number of variables removed following these two
criteria.

Data quality - In order to have relevant and understandable observations, we removed:

• 2 empty columns

• 3 columns with error due to the excel formula

• 59 old grayed-out variables,

• 41 text columns

Focus on the characteristics related to risk factors of fall - We remove variables that are not
useful for the evaluation of risk factors for fall:

• 17 variables associated with recommendations

• 36 variables associated with the second appointment after 6 months

• 4 administrative columns

(total 162 variables removed)

3.4.1.2 Data cleaning and variable definition for Iteration 1

After the removal of the variables guided by the above two criteria, we use a third criterion
that is specific for the data cleaning of the first iteration and consist in providing a model with
reasonable size. Indeed, the aim of the first iteration is to have a first view of the evaluation of
the risk factors for falls, by using only the most important variables, instead of including all
interesting parameters. In order to keep a small number of variables, we used ontology and we
had discussions with our experts to identify the most important variables. In that aim, we first
identified the variables of the data file directly or closely related to the main concepts of the
ontology. We found one or several variables for most of the concepts present in the ontology. In
the second step, for each concept of the ontology, we either selected one representative variable
or regrouped several variables with the same or close one using the OR operator. This step was
achieved thanks to an interview with our main expert (Pr. Puisieux).

Furthermore, the first column of Table 3.2 represents the concepts of the ontology that is
represented in our data means concepts for which at least one variable was found in the initial
data file provided by Lille’s hospital. We rearrange these concepts into different categories based
on their meaning. The second column provides the number of variables in the initial data file
that directly or closely correspond to a concept. In that step, we did not consider variables
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with more than 30% of missing values. Indeed, using such variables would require specific
treatments that are not the objective of this first iteration. Moreover, this threshold was decided
as a compromise between not adding too much noise and the maximum possible information
for a given patient. The third column states the method used to define the final variable: When
considering a subgroup of variables corresponding to a risk factor for fall in the ontology, we
used one of the next two methods: either we select one variable from the subgroup that is a good
representative of the subgroup (designated by « selection » method), or we define a new variable
as a disjunction of a set of variables (designated by «logical OR operator » method). when only
one variable was found for a given risk factor for falls, we kept that variable (the column method
is left empty). The fourth column is the short name of the resulting variable, corresponding to
the abbreviation of the french name of the variable.

The next paragraphs provide some explanations about Table 3.2.
The variable demence was defined with the following formula to manage a ternary variable

(dem3) and a continuous variable (MMS): demence = 1 if dem = 1 or dem3 = 1 or dem3 = 2 or
demAP = 1 or MMS < 24.

The variable "auTrNeur" regroups the following eight neurological disorders: neuropathy,
ataxia, cerebellar ataxia, myopathy, proprioception disorder, lack of deep sensibility, cerebellar
syndrom, and vestibular syndrome.

The loss of autonomy is represented by the index of the activity of Daily Living (ADL). In
addition, we kept two other variables that are closely related to the loss of autonomy: the fact to
drive his car (conduit) and the difficulty to use the toilet (dif WC).

Regarding the concept Incapacity to get up from the floor, we kept two related variables in the
initial data file: the person stayed on the ground for more than one hour after a fall (gt1hSol),
and the person was able to get up from the floor after a fall (aSuSeRel).

Among the selected variables, three of them were non-binary variables, namely the age of
the person, the body mass index, and the index of activity of Daily Living (ADL). We discretized
them as follows: the variable agegt80 is 1 when the age is greater than 80 and 0 else; the variable
ADLinf 5 is 1 when the ADL index is less than 5, corresponding to a loss of autonomy, and
0 else; the variable BMI4 is discretized in four values: BMI4 = 0 if BMI < 18.5, BMI4 = 1 if
BMI ∈ [18.5,25[, BMI4 = 2 if BMI ∈ [25,30[.

We also added the following variables after an interview with our expert in Lille’s hospital:
use of a diuretic, heart disease cardiopathy and cardiac arrhythmia (cardiop and arithm), other
important diseases such as pneumopathy (pneumo), diabetes (diabete) and High blood pressure
(HTA), and additional behavioral factors such as smoking (tabac), the ability to drive his/her
car (conduit) and the difficulty to use the toilet (dif WC) which is closely related with the loss of
autonomy. Also, cardiovascular diseases are associated with greater fall risk [63], we have two
variables (cardiopathy cardiop and cardiac arrhythmia arithm) associated with these diseases in
our data.

Some of the concepts in the ontology of risk factors for falls are not represented in the data
file. This is the case for the properties of the indoor and outdoor environment such as insufficient
lightening, state of the floor, presence of obstacles, and the absence of security equipment. This
is because the data collection is made during a day hospital that does not allow the collection
of detailed data on the person’s living space. One variable is however present in the initial
data file stating the presence or not of any environmental risk factors. This is the same for
some risk factors linked with the daily activity that is not directly represented in the data file
(risk-taking and inappropriate footwear). Another concept present in the ontology is the use of
the cardiovascular drug or anticoagulant treatment. Since these variables can not be directly
identified in the initial data file, they do not belong to the set of selected variables. Most of the
precipitating factors are not present in the initial data file (dehydration, hypoglycemia, delirium,
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Concept of the ontology that is repre-
sented in the data

NbV Method Variable name

Personal characteristics and number of falls
Sex 1 sexe
Age 1 agegt80
Body mass index 1 BMI4
Number of falls 3 Selection nbChu2

Precipitating factors
Psychotropic drug 1 gt1psych
Number of medicine 2 Selection nbMed3
Orthostatic hypotension 3 OR newHypoT
Psychotropic drug 4 Selection gt1psych

Predisposing factors
Loss of Autonomy 1 ADLinf 5
Loss of Autonomy (closely related) 1 dif WC
Loss of Autonomy (closely related) 1 conduit
Balance impairment 1 trEq
Balance impairment (closely related) 1 apUniGt5
Gait impairment 9 Selection trMar
Gait impairment (closely related) 3 Selection GUGOgt20
Sarcopenia 2 OR df OuFaiM
Dementia 4 OR specific demence
CVA - TIA 1 AVC −AIT
Parkinson’s disease 5 Selection parkOuSP
Neurological disorder other than CVA, TIA,
Parkinson’s disease and dementia

8 OR auT rNeur

Locomotor system disorder (instance of) 2 OR arthP oly
Vision disorder 1 trV ision
Hearing disorder 1 trAudit
Urinary Incontinence 1 pathUro
Depression 1 dep

Behavioral factors
Fear of falling 1 peurT om
Fear of falling (closely related) 1 evitSort
Alcohol consumption 1 alc
Physical activity (closely related) 3 Selection sort
Use of assistive device 2 Selection utiATM

Severity factors
Isolation 1 vitSeul
Isolation (closely related) 1 maisRet
Incapacity to get up from the floor 2 Selection aSuSeRel
Incapacity to get up from the floor 1 gt1hSol
Fracture 2 OR f racturA
Osteoporosis 2 Selection osteoConf
Osteoporosis (closely related) 2 OR newT rOst

Environmental factors
Environmental factors 2 Selection f actEnv

Secondary risk factors
Diuretic drug 2 Selection diuretiq
Smoking 2 Selection tabac
Heart disease 1 cardiop
Heart disease 1 arithm
Pneumopathy 1 pneumo
Diabete 1 diabete
High blood pressure 1 HTA

Table 3.2: 45 Variables selected for the first iteration based on the ontology. The second column
(NbV) shows the number of variables in the initial data file that corresponds to a concept of the
ontology
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and infection). This can be explained by the short-term (or non-regular) nature of these factors,
making them difficult to be anticipated. The other risk factors in the ontology that are not
present in the initial are aging, vitamin D deficiency, and sedentarity.

Finally, as visible in Figure 3.3, we found 89 variables directly or closely related to the main
risk factors for falls defined in the ontology. Among them, we regrouped 64 variables into 20
variables, by either selecting a variable or merging by using a disjunction of a subgroup. The
final result of this cleaning leads to 45 variables.

3.4.1.3 Data cleaning and variable definition for Iteration 2

After completing the first iteration (data preprocessing, prediction of the targets, and evaluation),
we started a second iteration with the aim to improve each step of the first iteration. This second
iteration also consists of data cleaning and variables definition, which were achieved in three
steps as for the first iteration (see Figure 3.3). The first step is common with the first iteration
and led to 278 variables. We present as follows the other two steps: the manual selection of
variables from the initial data set based on ontology about risk factors, and the grouping of
variables to avoid redundancy. At the end of this cleaning, we have in total of 90 variables.

The manual selection of variables from the initial data set in the second iteration
In this second iteration, our goal is to improve the evaluation of the risk factors for falls,

and thus we use as many variables as possible. For that aim, we conducted manual variable
selection with the aid of our expert. Our guideline was to keep any variable that could help in
the evaluation of at least one of the target variables. We started with 278 variables and removed
142 variables.

Most of the variables of the first iteration were kept for the second iteration except four
of them: the variables related to environmental factors, smoking, cardiac arrhythmia, and
pneumopathy. Regarding environmental factors, they are clearly listed among the main risk
factors for falls, meaning that their presence increases the risk of falling. However, they are
completely independent of all other risk factors, meaning that knowing the presence or the
absence of environmental factors for a given person does not help to evaluate any other risk
factors for falls for her. Regarding smoking, cardiac arrhythmia, and pneumopathy, which we
considered secondary risk factors, they were finally dismissed by the expert.

Regrouping variables to remove redundancy in the second iteration
After this manual cleaning in the second iteration, in total, we have information about 136

variables, among which:

• 97 binary variables

• 6 tertiary variables

• 21 discrete variables with larger domain

• 12 continuous variables

To understand better we further divide these variables into four groups presented in Table
3.3.

Now, we describe the steps done in each group to remove redundancy and reduce the size of
the domain of the variables.

Group A: subgroups of binary or ternary variables with same or close meaning
Group A includes 36 variables corresponding to 10 subgroups of binary or ternary variables

with the same or close meaning. We describe the way how we combined them as follows. Table
3.4 presents the 10 resulting variables.
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Group Description Number before grouping Number after grouping
A Subgroups of binary or

ternary variables with
same or close meaning

36 10

B Subgroups of variables
with same or close mean-
ing including variables
with a larger domain or
continuous variables

29 12

C Variables with large do-
main and continuous vari-
ables for which no other
variable exists with a very
close meaning

16 13

D Binary variables for which
no other var exists with a
very close meaning

55 55

Total 136 90

Table 3.3: Different groups of variables and their numbers before and after regrouping variables
with the same or close meaning

• sarcopen - This subgroup consists of 2 binary variables: Lower limb strength deficit
(defmmi) and lower limb muscle weakness (faibmmi). We combine variables in this
group using the OR function as follows:

sarcopen =


1, if defmmi = 1 OR faibmmi = 1
0, if defmmi = 0 AND faibmmi = 0
NA, otherwise

• hypotenO - This subgroup consists of 3 binary variables: orthostatic hypotension in con-
sultation (hypot) and symptomatic orthostatic hypotension during the consultation test
(hypotenc) and known orthostatic hypotension before consultation (hypotavt). We combine
variables in this group using the OR function as follows:

hypotenO =


1, if hypot = 1 OR hypotenc = 1 OR hypotavt = 1
0, if hypot = 0 AND hypotenc = 0 AND hypotavt = 0
NA, otherwise

• antiArit - This subgroup consists of 8 binary variables related to medicine taken by the
patient: digoxin, Ia, Ib, Ic, II, III, cordarone, IV. We combine variables in this group using
the OR function as follows:

antiArit =



1, if digoxin = 1 OR Ia = 1 OR Ib = 1 OR Ic = 1 OR II = 1 OR III = 1
OR cordarone = 1 OR IV = 1

0, if digoxin = 0 AND Ia = 0 AND Ib = 0 AND Ic = 0 AND II = 0
AND III = 0 AND cordarone = 0 AND IV = 0

NA, otherwise

• osteopor - This subgroup consists of 2 binary variables: osteoporosis reported history or
BMD (osteo) and confirmed osteoporosis with BMD score < 2.5 (osteodmo). We combine
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variables in this group using the OR function as follows:

osteopor =


1, if osteo = 1 OR osteodmo = 1
0, if osteo = 0 AND osteodmo = 0
NA, otherwise

• aSuSeRel - This subgroup consists of 2 binary variables (asuserel0 and asuserel1) with
similar descriptions regarding whether a person could stand up on his own. We combine
variables in this group using the OR function as follows:

aSuSeRel =


1, if asuserel0 = 1 OR asuserel1 = 1
0, if asuserel0 = 0 AND asuserel1 = 0
NA, otherwise

• aidTecMa - This subgroup consists of 3 binary variables (uniaid0, uniaid1, and uniaid2)
with similar descriptions regarding if a person uses an assistive device while walking. We
combine variables in this group using the OR function as follows:

aidT ecMa =


1, if uniaid0 = 1 OR uniaid1 = 1 OR uniaid2 = 1
0, if uniaid0 = 0 AND uniaid1 = 0 AND uniaid2 = 0
NA, otherwise

• demence - This subgroup consists of 5 variables: dementia (dem)= yes or no; dementia
(dem3)= yes likely or yes confirmed or no; dementia (demAP) = yes or no, with history
or diagnosis made at the end of the consultation; 2 similar variable representing MMS
less than 24 (mmslt24) = yes or no, discretized to a single binary variable. We combine
variables in this group using the OR function as follows:

demence =


1, if dem = 1 OR dem3 = 1 or 2 OR demAP = 1 OR mmslt24 = 1
0, if dem = 0 AND dem3 = 0 AND demAP = 0 AND mmslt24 = 0
NA, otherwise

• fracture - This subgroup consists of 2 binary variables: fracture when falling from height
excluding spontaneous fractures (fracExS) and fracture when falling from height or spon-
taneous fractures (fracS). We combine variables in this group using the OR function as
follows:

f racture =


1, if fracExS = 1 OR fracS = 1
0, if fracExS = 0 AND fracS = 0
NA, otherwise

• parkOuSP - This subgroup consists of 6 variables: parkinson disease = yes or no (park-
mal2); parkinson or parkinsonian syndrome (parksydA)= yes or no; parkinson’s syndrome
(parksyd2) = yes or no; parkinson disease (parkmal3) = yes probably or yes confirmed or
no; parkinson’s syndrome (parksyd3) = yes probably or yes confirmed or no; parkinson or
parkinsonian syndrome diagonosis made at the end of the consultation (parkousp)= yes or
no. We combine variables in this group using the OR function as follows:

P arkOuSP =



1, if parkmal2 = 1 OR parksydA = 1 OR parksyd2 = 1 OR
parkmal3 = 1 or 2 OR parksyd3 = 1 or 2 OR parkousp = 1

0, if parkmal2 = 0 AND parksydA = 0 AND parksyd2 = 0 AND
parkmal3 = 0 AND parksyd3 = 0 AND parkousp = 0

NA, otherwise
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• traAnOst - This subgroup consists of 3 binary variables: biphosphonates (biphosp); os-
teoporosis treatment before consultation (tranost); and calcium / vitamine D (calvitD).
We excluded biphosp variable because it is included in the definiiton of tranost. Also, we
excluded calvitD following the recommendation of the domain expert.

Short name Description Details of variable involved
sarcopen Sarcopenia 2 variables: defmmi, faibmmi
hypotenO Orthostatic hypotension 3 variables: hypot, hypotenc, hy-

potavt
antiArit Anti arrhythmic 8 variables: digoxin, Ia, Ib, Ic, II, III,

cordarone, IV
osteopor Osteoporosis 2 variables: osteo, osteodmo
aSuSeRel was able to get up from floor on his

own
2 variables: asuserel0, asuserel1

aidTecMa use an assistive device while walking 3 variables: uniaid0, uniaid1, uniaid2
demence Dementia 4 variables: dem, dem3, demAP, mm-

slt24
fracture fracture when falling from height 2 variables: fracExS, fracS

parkOuSP Parkinson disease 6 variables: parkmal2, parksydA,
parksyd2, parkmal3, parksyd3, park-
ousp

traAnOst anti-osteoporosis treatment 3 variables: biphosp, tranost, calvitD

Table 3.4: Summary of variables in group A

Group B: subgroups of variables with same or close meaning including variables with a
larger domain or continuous variables

Group B includes 29 variables corresponding to 12 subgroups of variables with the same or
close meaning including variables with a large domain or continuous variables. We describe the
way how we combined these subgroups as follows. Table 3.5 presents the 12 variables obtained
from group B.

• nbmed3 - This subgroup consists of 2 variables: number of medications and class variable
where

class =


0 if no. of medication ∈ [0,4]
1 if no. of medication ∈ [5,8]
2 if no. of medication ≥ 9

we selected the class variable for our analysis because the domain size if this variable is
smaller than the other variable and named it nbmed3.

• nbchu2 - This subgroup consists of 5 variables related to the number of falls in the past 6
months with different discretization. we decided to use the variable with a domain size
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equal to 2 and is given as follows:

nbchu3 =

0 if no. of falls ∈ [0,1]
1 if no. of falls ≥ 2

• bmi_lt19 - This subgroup consists of 2 variables related to the Body mass index (BMI) of a
given person with different discretization. We decided to use the variable with a domain
size equal to 2 and is given as follows:

bmi_lt19 =

0 if BMI ≥ 19
1 if BMI < 19

• apUniGt5 - This subgroup consists of 3 variables: time standing on one leg (left and right
each) and binary variable if a person can stand on one leg (either left or right) more than 5
sec. We use the binary variable from this group and named it apUniGt5.

• TUGgt20 - This subgroup consists of 3 variables: time taken in performing timed up and
go tests with simple and double tasks respectively and binary variable if a person takes
time more than 20 seconds to perform the test with the simple task. We use the binary
variable from this group and named it TUGgt20.

• vitMar - This subgroup consists of 2 variables regarding the time taken in walking 10
meters and speed in meters per second. We selected the walking speed variable and
discretized it as follows [47, 83]:

vitMar =


0 if walking speed < 0.7 m/s
1 if walking speed ∈ [0.7− 1.1) m/s
2 if walking speed ≥ 1.1 m/s

• X, no. of X type variables - This category consists of 6 small groups regarding the number
of diuretics, nitro derivatives, neuroleptics, sedative drugs, antidepressant drugs, and
psychotropic drugs. We keep the binary variable for groups of variables about diuretics (di-
uretiq), nitro derivatives (derivNit), neuroleptic (neurolep), sedative drugs taken (a1medSad),
antidepressant drugs (a1AntiDep) respectively, because we have a very small number of
data points other than 0 and 1, in variables number of X in these groups. The number of
psychotropic drugs is discretized with variable with domain size 3 because the number
of persons with at least 2 psychotropic drugs is important and also because psychotropic
drugs regroup several subcategories such as "antidepresseurs", "sédatifs", etc. it is defined
as follows:

nbP sych3 =


0 if no. of psychotropic drugs = 0
1 if no. of psychotropic drugs = 1
2 if no. of psychotropic drugs ≥ 2

Group C: variables with large domain and continuous variables for which no other vari-
able exists with a very close meaning

Group C consists in 16 variables for which no other variable with the same or close meaning
exists. Group C includes 3 continuous variables and 13 variables with larger domain sizes. We
present as follows how we discretized 13 of these variables and why we finally removed 3 of
them.

• age4 - In the data set from the hospital of Lille, we have

– 83 patients whose age is between 65 and 70 years old;
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Short name Variable description Details (if any)
nbmed3 number of medications variable with large domain
nbchu2 number of falls in last 6 months variable with large domain

bmi_lt19 BMI continuous variable
apUniGt5 standing more than 5 seconds on one

leg
2 continuous variables combined

TUGgt20 Get up and Go in more than 20 sec-
onds

2 continuous variables combined

vitMar walking speed 2 continuous variables combined
diuretiq numbers of diuretics variable with large domain
derivNit numbers of nitro derivatives variable with large domain
neurolep numbers of neuroleptic drugs variable with large domain

a1medSed numbers sedative drugs taken variable with large domain
a1AntiDep numbers of antidepressant drugs

taken
variable with large domain

nbPsych3 numbers of psychotropic drugs taken variable with large domain

Table 3.5: Summary of variables in group B

– 111 patients from 70 to 80 years old,

– 933 patients from 80 to 90 years old and

– 155 patients older than 90 years of age.

We discretized this variable based on the equal length principle and is given as follows:

age4 =


0 if age ∈ [65,70)
1 if age ∈ [70,80)
2 if age ∈ [80,90)
3 if age ≥ 90

• ADLlt5 - This variable represents the activity of daily life score. A score of 6 indicates the
full function, 4 indicates moderate impairment, and 2 or less indicates severe functional
impairment11. Based on the interview with the expert from the hospital of Lille we propose
the following discretization of this variable:

ADLlt5 =

0 if ADL score ∈ [5,6]
1 if ADL score ∈ [0,5)

• LSAi4 - This variable represents the life space assessment score of a given person. The
maximum LSA score of a given person can be 120 [113]. To discretize this variable we used
the equal-frequency algorithm. The discretization is given as follows:

LSAi4 =


0 if LSA score < 17
1 if LSA score ∈ [17,32)
2 if LSA score ∈ [32,57]
3 if LSA score ∈ [57,120]

• nFrac4 - This variable represents the total number of fractures a given person has. Based

11https://www.alz.org/careplanning/downloads/katz-adl.pdf



3.4. Data Preprocessing 55

on interviews with the experts in fall prevention, we discretized this variable as follows:

nFrac4 =


0 if no. of fractures = 0
1 if no. of fractures = 1
2 if no. of fractures = 2
3 if no. of fractures ≥ 3

• variables related to habits of a person - In this group, we have 7 variables representing the
habits of a person namely: (1)Dressing and undressing; (2) taking a shower or bath; (3)
getting up from a chair or shitting down; (4) going down or up;(5) reaching over their head
or to the ground; (6) going down or up a slope; (7) going out example a church, etc. All
these variables are a score between 0 and 4.

• antiHT3 - This variable represents the number of anti-hypertensive drugs taken and is
discretized as follows:

antiHT 3 =


0 if no. of anti-hypertensive drugs = 0
1 if no. of anti-hypertensive drugs = 1
2 if no. of anti-hypertensive drugs ≥ 2

• respHypo3 - This variable represents the number of drugs possibly responsible for the
orthostatic hypotension and is discretized as follows:

respHypo3 =


0 if no. of drugs = 0 or 1
1 if no. of drugs = 2 or 3
2 if no. of drugs ≥ 4

• other variables - We have 3 variables in this categories:
"alpha blocker" is removed because it is counted as the number of anti-hypertensive drugs;
"alpha blocker for urinary use" and "Ldopa" are removed because they are counted as the
number of drugs responsible for hypotension.

Short name Variable description Details (if any)
age4 Age variable with large domain

ADLlt5 Activities of daily living continuous variable
LSAi4 Life space assessment continuous variable
nFrac4 Number of fractures variable with large domain

habiDhab Dress and undress variable with large domain
doucBain Take a shower or a bath variable with large domain
levChais Get up from a chair or sit down variable with large domain
montdesc Going up or down stairs variable with large domain
atQqchHB Reaching for something above your

head or on the ground
variable with large domain

marPente Descending or ascending a slope variable with large domain
sortir Going out (e.g. church service) variable with large domain

antiHT3 Number of anti-hypertensive drugs variable with large domain
respHypo3 Number of drugs possibly responsible

for orthostatic hypotension
variable with large domain

Table 3.6: Summary of variables in group C
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Group D: binary variables for which no other variable exists with a very close meaning
We kept these 55 variables with no change in the second iteration.

Finally, after grouping variables as described above for groups A, B, and C, this last step of
data cleaning for the second iteration leads us to 90 variables. In the next section, we present
these 90 variables following their category in the ontology.

3.4.2 Description of the variables selected for iteration 1 and 2

In this section, we describe the variables selected after the cleaning of the data during both the
first and second iterations. We organize the list of variables based on their categories in the
ontology described in section 3.3 :

• variables related to a person’s characteristics (Table 3.7)

• variables related to severity factors (Table 3.8)

• variables related to predisposing factors associated with chronic disease (Table 3.9)

• variables related to other predisposing factors (Table 3.10)

• variables related to precipitating factors (Table 3.11)

• variables related to behavioral factors (Table 3.12 )

Variables related to characteristics of a person
In this category, we have 5 variables namely, sex, age, body mass index of the person as well
as the number of falls in the last 6 months, and if the person went to higher studies. In the
first iteration, the age variable was used as a binary variable (if a person is older than 80 years
or not) whereas in the second iteration, is used with a domain size equal to 4. This difference
in discretization was done after the recommendation by the experts. Also, the high level of
study variable was not present during the first iteration. Table 3.7 represents the list of variables
related to the characteristics of a person.

Variable description Variable description Short name
(french) (english) selection 1 selection 2
sexe de la personne sex of the person sex sexe
âge de la personne age of the person agegt80 age4
Indice de masse corporelle de
la personne

Body mass index of the person BMI4 bmi_lt19

haut niveau d’étude high level of study htNivEtu
nombre de chutes au cours des
6 derniers mois

number of falls in last 6
months

nbChu2 nbchu2

Table 3.7: List of variables related to the characteristics of a person

Variables related to severity factors
In this category, we have in total 6 variables of which 2 variables are related to isolation, 2
variables are related to the incapacity of a person to get up from the floor, and 2 variables are
related to bone fragility. In the first iteration, the variable regarding fracture is a combination
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of fracture and vertebral collapse whereas the latter was removed in the second iteration by
following the recommendation of the experts. Also, the variable number of fractures is not
present in iteration 1. Table 3.8 represents the list of variables related to severity factors.

Variable description Variable description Short name
(french) (english) selection 1 selection 2
vit seul lives alone vitSeul vitSeul
vit en maison de retraite lives in retirement home maisRet maisRet
repos au sol > 1 heure rest on the floor > 1 hour gt1hSol gt1hSol
a su se relever tout seul was able to get up on his own aSuSeRel aSuSeRel
fracture lors d’une chute de sa
hauteur

fracture when falling from
height

fracturA fracture

nombre de fractures number of fractures nbFrac4

Table 3.8: List of variables related to severity factors

Variables related to predisposing factors associated with chronic disease
In this category, we have in total of 32 variables related to predisposing factors associated with
chronic disease. In the first iteration, we have one variable arthPoly which is a combination
of two different variables arth and polyArth, we use these variables separately in the second
iteration. Also, in the first iteration, we have one variable about other neurological diseases
(auTrNeur)which is combined with 8 different variables, we use these variables separately in
the second iteration. Furthermore, we have 10 variables in this category which are used only in
the second iteration. This selection and combination of variables are done with the help of the
experts. Table 3.9 represents the list of variables related to predisposing factors associated with
some type of chronic disease.

Variables related to other predisposing factors
In this category, we have in total of 15 variables of which 2 variables are associated with
functional tests related to gait, 1 variable is associated with a functional test related to balance, 8
variables are related to loss of autonomy, and 4 variables are related to functional difficulties of
the person. From this category, we have 8 variables of which 7 related to the daily activities of a
person and 1 related to walking speed are not present in the first iteration. Table 3.10 represents
the list of variables related to other predisposing factors.

Variables related to precipitating factors
In this category, we have in total of 22 variables of which 2 variables are associated with acute
disease, and 20 variables are related to medication taken by the person. From this category,
we have 17 variables that are not present in the first iteration. Furthermore, the number of
psychotropic variables is used with domain size equal to 2 and 3 in the first and second iterations
respectively. Table 3.11 represents the list of variables related to other predisposing factors.

Variables related to behavioral factors
In this category, we have in total 11 variables of which 2 variables are associated with fear of
falling, and 9 variables are related to the daily activities of the person. From this category,
we have 5 variables that are not present in the first iteration. Table 3.12 represents the list of
variables related to behavioral factors.

Other variables
In this category, we have in total 8 variables that do not belong to the categories defined above
but are important factors to evaluate the risk of falls. From this category, we have 3 variables
that are not present in the first iteration as well as 4 variables that are not present in the second
iteration. Table 3.13 represents the list of other selected variables.
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Variable description Variable description Short name
(french) (english) selection 1 selection 2
épilepsie epilepsis epilep
dépression depression dep dep
arthrite arthritis arthPoly arth
polyarthrite rhumatoïde rheumatoid arthritis polyArth
malnutrition malnutrition malnut
pathologie urologique urological pathology pathUro pathUro
trouble de la vision vision impairment trVision trVision
trouble de l’audition hearing disorder trAudit trAudit
problème podologique podiatric problem pbPodo pbPodo
neuropathie neuropathy neurPath
ataxie périphérique ou sensi-
tive

peripheral or sensory ataxia ataxPeri

myopathie ou atteinte neu-
rologique proximale

myopathy or proximal neuro-
logical damage

myopat

ataxie cérébelleuse cerebellar ataxia auTrNeur ataxCer
trouble proprioceptif proprioceptive disorder trProp
troubles de la sensibilité pro-
fonde

deep sensory disturbances trSensPer

syndrome cérébelleux cerebellar syndrome syndCer
syndrome vestibulaire vestibular syndrome syndVes
akinésie akinesia akines
tremblement tremor trembl
démence dementia demence demence
parkinson ou syndrome
parkinsonien

parkinson or parkinsonian syn-
drome

parkOuSP parkOuSP

tumeur cérébrale brain tumor tumCer
pathologie médullaire spinal pathology pathMed
pathologie radiculaire root pathology pathRad
cardiopathie heart disease cardiop cardiop
hypertension hypertension HTA HTA
diabète diabetes diabete diabete
hyperthyroïdie hyperthyroidism hyperThy
ostéoporose osteoporosis osteoConf osteopor

Table 3.9: List of variables related to predisposing factors associated with chronic disease
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Variable description Variable description Short name
(french) (english) selection 1 selection 2
Timed get up and go > 20 s. Timed get up and go > 20 s. GUGOgt20 TUGgt20
Vitesse de marche walking speed vitMar
Appui unipodal > 5 sec unipodal support > 5 s. apUniGt5 apUniGt5
Vous habiller et vous désha-
biller

Dress and undress habiDhab

Prendre une douche ou un bain Take a shower or a bath doucBain
Vous lever d’une chaise ou
vous asseoir

Get up from a chair or sit down levChais

Monter ou descendre les es-
caliers

Going up or down stairs montDesc

Atteindre quelque chose au
dessus de votre tête ou par
terre

Reaching for something above
your head or on the ground

atQqchHB

Descendre ou monter une
pente

Descending or ascending a
slope

marPente

Sortir (par ex. service re-
ligieux)

Going out (e.g. church service) sortir

Activités de la vie quotidienne Activities of Daily Living ADLinf5 ADLlt5
Difficulté à utiliser les toilettes difficulty using the toilet difWC difWC
Trouble de la marche walking disorder trMar trMar
Trouble de l’équilibre balance disorder trEq trEq
Manque de force musculaire
ou faiblesse musculaire des
membres inférieurs

lack of muscle strength OR
muscle weakness of the lower
limbs

dfOuFaiM sarcopen

Table 3.10: List of variables related to other predisposing factors
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Variable description Variable description Short name
(french) (english) selection 1 selection 2
confusion confusion confusion
hypotension orthostatique orthostatic hypotension newHypoT hypotenO
traitement anti HTA anti-hypertension treatment trAnHTA
au moins 1 antalgique classe II
ou III

at least 1 class II or III analgesic gt1antal

anticholinergiques anticholinergics antiChol
AGONISTES dopaminergiques dopaminergic AGONISTS agonDopa
au moins 2 psychotropes at least 2 psychotropic drugs gt2psych
corticothérapie > 3 mois corticosteroid therapy > 3

months
corticTh

antiandrogénique (décapeptyl,
. . .)

antiandrogens (decapeptyl,
etc.)

antiAndr

anti arithmique anti arithmic antiArit
nombre de médicaments number of drugs nbMed3 nbmed3
traitement anti-ostéoporose
avant consultation

anti-osteoporosis treatment be-
fore consultation

newTrOst traAnOst

au moins un médicament di-
urétique

at least one diuretic drug dieretiq diuretiq

au moins un dérivé nitré at least 1 nitrate derivative derivNit
au moins un neuroleptique at least 1 neuroleptic neurolep
au moins un sédatif at least 1 sedative drug sedatif
au moins un antidépresseur at least 1 antidepressant antidepr
nombre de médicaments psy-
chotropes

number of psychotropic drugs gt1psych nbPsych3

au moins un antihypertenseur at least 1 antihypertensive
drug

antiHT3

nombre de médicaments
éventuellement responsables
d’hypotension orthostatique

number of drugs possibly re-
sponsible for orthostatic hy-
potension

respHypo3

Table 3.11: List of variables related to precipitating factors
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Variable description Variable description Short name
(french) (english) selection 1 selection 2
Evite de sortir de peur de
tomber

avoid going out for fear of
falling

evitSort evitSort

Peur de tomber fear of falling peurTom peurTom
Aide humaine human aid aideHum
Alcool alcohol alc alcool
Conduit sa voiture drive his car conduit conduit
Sortir (quitter son domicile) go.out (leaving his home) sort sort
Porter des bas de contention wearing compression stockings basCount
Sortir avec quelqu’un Going out with someone com-

pany
sortAcc

Sortir seul à pied Going out alone on foot sortSeul
Utilisation d’une aide tech-
nique de marche

use of a walking aid utiATM aidTecMa

Évaluation de l’espace de vie
(initial)

Life Space Assessment (initial) LSAi4

Table 3.12: List of variables related to behavioral factors

Variable description Variable description Short name
(french) (english) selection 1 selection 2
AVC-AIT AVC-AIT AVC_AIT avc_ait
Hématome ED/SD ED/SD hematoma hematome
lipothymie / syncope concomi-
tante à la chute

lipothymia / syncope concomi-
tant with the fall

lipoth

ovariectomie < 45 ans ou
ménopause précoce

oophorectomy < 45 years or
early menopause

ovariect

facteurs environnementaux environmental factors factEnv
tabac tobacco tabac
arythmie cardiaque cardiac arrhythmia arythm
pneumo (maladie pulmonaire
obstructive chronique (MPOC),
asthme)

pneumo (chronic obstructive
pulmonary disease (COPD),
asthma)

pneumo

Table 3.13: List of other selected variables
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3.4.3 Target Variables selected

Several target variables have been chosen for prediction from the list of variables selected because
it is important to assess their value. Indeed, outside of specialized fall prevention services,
information about these risk factors is frequently unavailable. It’s interesting for a number of
reasons to assess how likely it is that these factors will exist in the present or the future:

1. All of these factors go into determining fall risk, and since they are all modifiable, it is
possible to take certain steps to lower that risk.

2. Since depression, dementia, orthostatic hypotension, Parkinson disease, and other neuro-
logical disorders are not always diagnosed, assessing the likelihood of their occurrence
enables one to alert a doctor to the need for additional testing.

3. In order to prevent osteoporosis and loss of autonomy, it’s interesting to evaluate their
likelihood of developing positively in the future even if they don’t already exist.

Table 3.14a provides the list of target variables and their prevalence selected during the
first iteration. Similarly, table 3.14b represents the list of target variables and their prevalence
selected during the second iteration. We distinguish two groups among these target variables:

• Group M0 - the risk factors with majority class 0

• Group M1 - the risk factors with majority class 1.

The target variables are listed in decreasing order of their prevalence.

Group Target prevalence
variable of the RFF

M1 trMar 83.3 %
M1 peurTom 77.2 %
M1 trEq 74.5 %
M1 auTrNeur 70.1 %
M1 dFouFaiM 66 %
M1 nbChu2 58.4 %
M0 demence 42.2 %
M0 newHypoT 32.5 %
M0 dep 28.4 %
M0 ADLinf5 25.5 %
M0 osteoConf 19.2 %
M0 parkOuSP 16.5 %

(a) using iteration 1

Group Target prevalence
variable of the RFF

M1 trMar 82.5 %
M1 peurTom 75.6 %
M1 trEq 73.4 %
M1 sarcopen 62 %
M1 nbchu2 57.9 %
M0 demence 42.1 %
M0 osteopor 33.2 %
M0 hypotenO 32.1 %
M0 dep 27.8 %
M0 ADLlt5 22.9 %
M0 parkOuSP 17.1 %

(b) using iteration 2

Table 3.14: Target Risk Factors for Falls and their group

3.4.4 Missing value imputation

Missing data is a common problem faced with real-world datasets. Missing data can be anything
from missing sequence, incomplete features, files missing, incomplete information, data entry
error, etc [9].
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In our data, we also have missing values meaning for some variables we do not have any
information about a given person. Moreover, there are many unusual values in the data set.
These values are mostly present because of human error which is very common during the data
collection [26]. For example, let us assume, a variable "X" from the data set is binary. For some
patients, the value of this variable "X" is 11 or 8 or any other text. We treated this type of value
as missing values. Now, we present the different steps taken to do the imputation of missing
values in our data set during both iterations.

3.4.4.1 Iteration 1

As a reminder for this iteration, the data contains values for 1810 patients with 45 features of
the mixed type that is numerical and categorical. All the methods we have discussed earlier (see
section 2.4.1) have their advantages and disadvantages, but we selected KNN Imputation over
other methods. Since our data is of mixed type using KNN is a suitable choice [5]. The other
reasons behind selecting KNN are as follows
- It is very simple and easy to use as compared to others.
- It can be applied irrespective of the data that is whether data are MCAR, MAR or MNAR [5]
(which is the same situation we have with our data)

The number of neighbors is set to five after evaluating different choices.

3.4.4.2 Iteration 2

In this iteration, our data set consists of information on 90 variables for 1745 patients which
also includes some missing information. Figure 3.4 represents the distribution of missing
information in our data selected after the second iteration. The X-axis represents the percentage
of missing values and the y-axis represents the number of variables with less than or equal to
that percentage of missing values. Furthermore, in this section, we will discuss the interest in
doing missing value imputation and the algorithm to use when doing missing value imputation
after the second selection of variables.

Should we do missing value imputation or not?
Here, the objective is to evaluate the interest in the imputation of missing values. In that aim, we
first extract a subset of complete data, we call it "no_mv". It includes data from 912 patients
(out of 1745) for 67 variables (out of 90 variables). We have 9 targets (out of 11) present in this
selection. This subset is the result of a compromise between the number of variables and the
number of cases. Keeping all the 95 variables leads to a subset of complete data including only
112 cases, which is not usable. Then we perform the prediction of each of these 9 RFFs on the
basis of the 66 remaining variables. Second, we impute missing values on the remaining cases
by using Naive Bayes, resulting in a second data set including all available cases (1745 cases).
In order to compare the results, we keep the same set of 67 variables. We call it "after_mvi".
Table 3.15 represents the accuracy of the prediction of 9 target RFF by using 4 well-known
classifiers namely Logistic regression (LR), Support vector machine (SVM), Random forest (RF)
and Bayesian Networks (BN) when using subset "no_mv" versus subset "after_mvi". The first
column represents the target risk factor, second column represents the categories of the subset
used, third column represents the prevalence (proportion of most frequent class) for a given
target, and column 4 to 7 represents the improvement or decrement in accuracy form the
prevalence using different classifiers.

In order to see the difference in accuracy when using "no _mv" subset and "after_mvi" subset,
we first subtract the results when using "no _mv" subset from results using the subset "after_mvi".
Furthermore, we took the average increment or decrement of the difference in accuracy using
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Figure 3.4: Distribution of missing values in our data set selected after the second iteration

Table 3.15: Accuracy of prediction of 9 target RFFs when using subset "no_mv" versus subset
"after_mvi"

prevalence SVM LR RF BN
trMar no_mv 81.58 0.89 2.64 3.52 -1.86

after_mvi 82.53 2.8 3.26 3.31 -3.67
peurTom no_mv 78.73 0.43 0.21 1.86 -7.03

after_mvi 75.65 0.68 1.6 1.54 -3.79
trEq no_mv 74.02 8.33 5.8 6.58 -0.55

after_mvi 73.46 8.44 7.69 7.23 2.65
defORfaib no_mv 64.15 3.4 2.3 3.73 -3.96

after_mvi 62.81 3.38 3.55 4.24 -2.41
nbchu3 no_mv 44.95 -1.09 -1.31 -3.18 -0.33

after_mvi 42.18 3.32 3.78 3.95 2.41
hypot_OR no_mv 65.79 -1.87 -4.06 0.43 -31.58

after_mvi 66.71 -0.81 -1.61 0.16 -3.28
dep no_mv 72.15 12.4 11.74 12.5 12.51

after_mvi 72.2 11.87 11.75 11.7 10.03
osteo_OR no_mv 66.22 10.3 10.95 11.83 8.43

after_mvi 66.31 11.75 12.26 10.48 5.9
park_OR no_mv 82.35 0.11 -0.11 0 -9.54

after_mvi 82 0.01 0.86 0.52 -14.95
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a given classifier for a given target. Table 3.16 represents the average difference (increment or
decrement) in accuracy when using subset "after_mvi" than subset "no_mv".

Table 3.16: Average difference (increment or decrement) in accuracy when using subset "af-
ter_mvi" than subset "no_mv"

var SVM LR RF BN avg
trMar 1.91 0.62 -0.21 -1.81 0.13
peurTom 0.25 1.39 -0.32 3.24 1.14
trEq 0.11 1.89 0.65 3.2 1.46
defORfaib -0.02 1.25 0.51 1.55 0.82
nbchu3 4.41 5.09 7.13 2.74 4.84
hypot_OR 1.06 2.45 -0.27 28.3 7.89
dep -0.53 0.01 -0.8 -2.48 -0.95
osteo_OR 1.45 1.31 -1.35 -2.53 -0.28
park_OR -0.1 0.97 0.52 -5.41 -1.01
avg 0.95 1.66 0.65 2.98

From table 3.16 we can see that on average using SVM, we got 0.95% better results with data
after missing value imputation and on average, using LR we got 1.66% better results with data
after missing value imputation. In addition, on average using RF, we got 0.65% better results
with data after missing value imputation, and on average using BN we got 2.98% better results
with data after missing value imputation. Moreover, when we take an average of all classifiers
for trMar we got 0.13% more accurate results when using data after missing value imputation.
Also, we can see similar results for other variables. We can conclude from these results that
doing missing value imputation is the right step in our case. Furthermore, in the next part, we
will address the question of choosing an algorithm to do missing value imputation.

What algorithm for missing value imputation?
Here, the objective is to evaluate the interest of an algorithm for the imputation of missing values.
As we discussed at the beginning of this section, there are plenty of algorithms to perform
missing value imputation. In our work, we try to use simpler and easier-to-perform algorithms
for the imputation of missing values since this is not the main objective of our thesis. In order to
accomplish that, we compare the KNN algorithm with the naive Bayes algorithm for values of k
ranging from 1 to 19 when imputing missing values from our data set. In figure 3.5 we present
the performance of KNN versus naive Bayes for doing imputation of missing values. For a given
target variable we present in the figure the improvement in accuracy (y-axis) from the baseline
given the frequency of the most frequent class (x-axis). Each point in the figure represents one
target variable. From these results, we can conclude that naive bayes is the right choice for the
imputation of missing values in our case.

3.5 Conclusion

Data is an essential component of an AI or ML model. As data collection becomes simpler as a
result of increased digitization, it is also becoming more widely accessible in the healthcare sector.
The information is collected at hospitals, care centers, and other healthcare institutions. These
data could include, among other things, information about biological processes, administrative
processes, and insurance claims. The amount of data being used to solve healthcare-related
issues is increasing, as is the use of data-driven methods.
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Figure 3.5: Missing value imputation using Naive Bayes versus KNN

In this chapter, firstly, we described the source (Service of Fall Prevention, Hospital of Lille,
France) from where we got our data and the description of the data used. The initial data
includes 1810 patients who visited the service between January 2005 and December 2016, of
whom 28% are male and 72% are female, with ages ranging from 51 years old to 100 years old,
with an average age of 81 years old. In our study, we included a person who can walk and is 65
years of age or older.

Secondly, we described the methodology used to design an ontology for fall prevention,
followed by the resulting ontology for the risk of falling. The goal of this ontology, which
served as the foundation for the creation of the fall prevention software system, is to support the
assessment of elderly individuals’ risk factors for falls. It also provides a solid foundation for
our knowledge of the variables in our data set.

Finally, we presented the different steps of data preprocessing that led to the definition of
the two data sets that we used in our analysis. In order to identify the variables to be kept for
our study, we first used the criterion of data quality to remove unusable variables ( 2 empty, 3
with errors in formula, 59 grayed out, and 41 text columns), and a second criterion is to remove
variables which can not be used to evaluate any risk factors for falls. In pursuit of that aim,
we removed 17 variables related to recommendations, 36 variables associated with the second
appointment after 6 months, and 4 administrative variables. After the variables guided by the
first two criteria are removed, we also use a third criterion that is specific to the first (second)
iteration of data cleaning and consists of providing a model with a reasonable size (aim to
improve each step of the first iteration). This cleaning led to a data set containing 45 variables
in the first and 90 variables second iterations. Additionally, we have identified 12 target risk
factors (11 in the second iteration because the other 1 is not present in the data after cleaning) to
evaluate from our data.

In the subsequent chapter, we present the various findings for evaluating a specific target
risk factor using the data sets chosen during both iterations 1 and 2.
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4.1 Introduction

In the previous chapter, we have explained the description and preprocessing of our data. As a
reminder, the main objective of our work is to predict the presence or absence of risk factors for
falls based on the information for a given person. To that aim, we have also described the various
methods we propose to use according to the characteristics of the data. In this chapter, we
present the results obtained. As mentioned earlier, we used an iterative approach for analyzing
our data. It is divided into two iterations. The objective for the first (resp. second) iteration is to
select the minimum (resp. maximum) number of variables from the initial data set in order to
evaluate the risk factors for falls respectively. Here, in the first iteration, the goal was to provide

67



68 Chapter 4. Evaluate risk factors for fall using static data

a model with a reasonable size and in the second iteration to improve the results obtained by the
1st iteration and try to keep as many variables as possible. With that in mind, in this chapter, we
focus on the following questions:

Question to focus on using iteration 1

→ Should we use a complete set of variables or a specific subset of
variables for the evaluation of a given target risk factor?

→ How to evaluate a target risk factor based on the available partial
observations for a given person?

→ Should we balance the data before using a classifier or not?

Question to focus on using iteration 2

→ Should we use a complete set of variables or a specific subset of
variables for the evaluation of a given target risk factor?

→ Which classifier to use to evaluate a target risk factor for a given
person?

→ How to assess the quality of prediction when evaluating a given
target risk factor using a given classifier?

We organize the chapter as follows: first, we present the following results when using iteration
1: prediction using a complete set of variables versus a specific subset; prediction based on
the percentage of observations available; prediction based on imbalanced data versus balanced
data. Furthermore, we present the following results when using iteration 2: prediction using
all variables versus a specific subset of variables; prediction of different targets using a single
BN model versus a specific BN for each target; procedure to learn the structure of BN model;
comparison of the predictive performance of BN with other usual classifiers. To compute all
these results we used the following python libraries: scikit-learn1, pandas2, numpy3, matplotlib4,
pyAgrum5, tensorflow6, keras7, and scikeras8.

4.2 Results using iteration 1

In this section, we describe the results obtained when using data obtained after the first iteration
of data preprocessing. We first describe whether we should be using a specific subset or a
complete set of variables to predict each of the target risk factors for falls. After that, we
examine how the performance of different classifiers evolves when the evaluation is based on
partial observations. To that aim we consider different percentages of observations to make the

1https://scikit-learn.org/sTable/
2https://pandas.pydata.org/
3https://numpy.org/
4https://matplotlib.org/
5https://pyagrum.readthedocs.io/en/latest/
6https://www.tensorflow.org/
7https://keras.io/
8https://www.adriangb.com/scikeras/sTable/

https://scikit-learn.org/sTable/
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://pyagrum.readthedocs.io/en/latest/
https://www.tensorflow.org/
https://keras.io/
https://www.adriangb.com/scikeras/sTable/
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prediction. The next question concerns the problem of imbalance in the data, more precisely,
should we use the imbalanced data as it is (that is in the original form) or should we balance the
data using some balancing techniques before using the prediction models? Furthermore, the
results presented in this section are published in [100, 104, 105, 106].

4.2.1 Should we use a specific subset or a complete set of variables?

As we have seen in the previous chapter, after preprocessing of data for this iteration we have
information on 45 variables for 1810 patients. Since our goal is to evaluate each of the 12
target risk factors for falls thanks to these 45 variables, we first try to answer the question of
whether should be using a specific subset or a complete set of variables to predict the target risk
factors for falls. With that aim, in this first iteration, we compare the results of the prediction
using the complete set of variables and a specific subset obtained by variable selection using
different classifiers, namely Bayesian Networks (BN), Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF) and Support Vector Machine (SVM). In that context, we use the
chi-square method in order to identify a subset of variables associated with each of the target
risk factors for falls. We consider a significance level of 0.05, which is the usual (most commonly
used) value, meaning that all the variables with a significance level of less than 0.05 are selected
for a given target risk factor. We also compare the results with a significance level of 0.02 and it
makes no change. Figure 4.1 represents the schematic diagram of the methodology used.

Figure 4.1: Methodology used when evaluating the interest of using all variables versus a specific
subset of variables in iteration 1

Table 4.1 presents the difference between the results when using a complete set of variables
(45 variables) and a specific subset of variables selected using hypothesis testing for each risk
factor. We compared the accuracy and F1 score for each risk factor shown in the first and second
rows respectively. The maximum value of accuracy for a given risk factor is shown in blue (red
for the F1 score).

Table 4.1 shows that for the prediction of any given risk factor, the results using a complete set
of variables are very similar when using the specific subset of variables. However, the difference
is always very small and hence can be neglected and we can use any of the discussed scenarios
for prediction. This can seem counter-intuitive since it is known that unuseful variables may
alter the performance of the classification but we choose to use the complete set of variables.
Indeed the advantage of using a complete set of variables over the specific subset comes from
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Table 4.1: Comparison of accuracy (acc) and F1 score (F1) using specific subset (sss) for each risk
factor vs complete data (45var).

RFFs BN LR DT RF SVM
sss 45var sss 45var sss 45var sss 45var sss 45var

trMar acc 86.24 86.8 86.88 87.06 80.65 80.36 86.65 86.57 87.28 87.24
F1 0.92 0.92 0.92 0.92 0.88 0.88 0.92 0.92 0.93 0.93

peurTom acc 78.7 79.8 78.98 79.04 73.94 72.93 77.16 79.02 78.82 78.99
F1 0.87 0.88 0.87 0.87 0.83 0.82 0.86 0.88 0.87 0.88

dfOufaim acc 68.69 69.49 70.06 69.5 60.04 60.19 69.32 70.99 70.15 70.59
F1 0.8 0.8 0.79 0.79 0.69 0.69 0.79 0.8 0.8 0.8

trEq acc 82.2 82.51 81.47 81.03 71.06 70.19 81.3 81.46 82.09 82.06
F1 0.89 0.89 0.88 0.88 0.8 0.8 0.88 0.88 0.89 0.89

auTrNeur acc 71.01 71.17 71.57 71.17 58.14 60.19 68.83 71.71 71.12 71.69
F1 0.82 0.82 0.82 0.82 0.69 0.71 0.8 0.82 0.82 0.83

nbchu2 acc 57.15 59.19 61.57 61.34 55.26 55.55 58.52 61.61 62.14 61.98
F1 0.69 0.71 0.7 0.7 0.61 0.62 0.67 0.71 0.72 0.71

ADLinf5 acc 78.5 79.16 80.4 80.22 70.9 79.71 79.68 79.91 80 79.9
F1 0.53 0.55 0.54 0.54 0.45 0.44 0.49 0.47 0.48 0.49

demence acc 66.48 67.22 68.15 69.27 58.18 58.64 65.88 68.6 67.86 68.8
F1 0.55 0.54 0.59 0.61 0.51 0.51 0.56 0.58 0.58 0.58

newHypoT acc 67.39 67.47 67.72 66.87 60.2 56.61 62.48 67.55 67.37 67.35
F1 0.01 0.02 0.18 0.22 0.33 0.35 0.31 0.14 0.04 0.03

dep acc 73.73 73.9 75.07 73.7 72.82 67.62 73.7 73.78 75.11 74.56
F1 0.45 0.42 0.47 0.46 0.46 0.45 0.5 0.35 0.47 0.4

osteoconf acc 81.65 82.26 83.24 83.46 76.41 76.2 80.97 82.3 82.72 82.52
F1 0.49 0.52 0.46 0.48 0.38 0.4 0.39 0.3 0.4 0.32

parkOuSP acc 83.4 83.48 83.88 83.69 74.94 72.91 81.7 83.3 83.44 83.47
F1 0.06 0 0.12 0.19 0.27 0.25 0.16 0.02 0.01 0
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the fact that if we use a specific subset to evaluate a given risk factor we are restricting our
model to use a smaller set of information. Also, this small set is not always entirely available in
our context where only partial information can be obtained, and not always the same part of
information. Moreover, the final objective of our work is to provide an aiding system that will
be used by the general practitioner in real-life situations. Hence, if we use the complete set of
variables we have more chances to get the information about a given patient, since a piece of
the available information may partially compensate for the absence of another element. We will
discuss more about partial information as follows.

In summary, it is better to use the complete set of variables to build the model instead of
using the specific subset to predict the risk factors for falls because as shown in this study the
results using a complete set of variables are as good as the other. Also, in real-life situations, the
number of observations can be different for each patient. So for each new patient, we have to
learn a new model using the available information which can be very time-consuming. With
that in mind, in the next section, we present the prediction of the presence or absence of the
target risk factors based on the available information.

4.2.2 Comparison of classifiers based on percentages of observations

So far we evaluated whether should we use a specific subset or a complete set of variables to
predict the target risk factor and it comes out based on results presented in the previous section
that using a complete set of variables is a better choice in our situation. With that in mind, in
this section, we present the results when using the complete set of variables for the prediction of
target risk factors for falls when using a partial observation. Here, by the partial observations
set, we mean for example if we have a total of 44 variables and we say we only have 25% of the
information of a given person, that means for that person we only have information available for
11 variables and we have to predict the presence or absence of our target risk factor based on
these 11 variables instead of the complete set with 44 variables.

In order to estimate the risk factors based on available information, we build a Bayesian
Networks (BN) model and compare the results with other classifiers, namely Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). Figures 4.2
and 4.3 show a schematic diagram of the methodology to predict the presence or absence of
the risk factors using BN and other classifiers (LR, DT, RF, SVM) respectively. The approach
is roughly the same on both algorithms, except that the BN model (graph and parameters) is
learned only once whereas the other classifiers have to be learned again for each target variable
and each subset of variables. To evaluate the prediction model performance we used 10-fold
cross-validation. In each fold, 10% cases were used as testing sets and 90% cases as training
sets. Then the average over these 10-fold evaluations is compared to the results with the baseline
classifier. The above procedure is repeated for different sets of observations with different sizes.

Furthermore, to evaluate the quality of prediction by a classifier we compare the results with
a baseline classifier that always predicts the most frequent class when comparing accuracy scores
and the positive class when comparing accuracy F1 scores. Because, when we have a negative
class as the majority and we chose the baseline to predict always majority class, the recall will
always be 0 hence F1 score for the baseline classifier will always be zero. Tables 4.2, 4.3, and 4.4
represent the accuracy (left) and F1 score (right) for our targets calculated using a complete set
of variables for different percentages of available observations. The horizontal axis represents
the percentage of randomly selected observations used to predict the target risk factor starting
from 10% up to 100%.

Based on the results presented in Tables 4.2, 4.3, and 4.4 we can see that the accuracy of all
target variables except ParkOuSP and newHypoT increases with the percentage of observations for
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Figure 4.2: Methodology used when evaluating the target risk factors using BN based on partial
observations in iteration 1

Figure 4.3: Methodology used when evaluating the target risk factors using the usual classifier
(LR, DT, RF, SVM) based on partial observations in iteration 1
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Table 4.2: Accuracy and F1 score for each risk factor respectively. Horizontal axis represents the
% of available observations among the 44 remaining variables
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Table 4.3: Accuracy and F1 score for each risk factor respectively. Horizontal axis represents the
% of available observations among the 44 remaining variables
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Table 4.4: Accuracy and F1 score for each risk factor respectively. Horizontal axis represents the
% of available observations among the 44 remaining variables
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all classifiers except DT. Regarding the F1 score, it clearly increases along with the percentage of
observation only for the targets ADLinf5, osteoconf, trEq, dep, and demence, and to a small extent
for trMar. However, regarding the variables dep and demence, no classifier clearly outperforms
the baseline in terms of the F1 score. For the targets ParkOuSP and newHypoT, the performance
of the classifiers seems to be independent of the percentage of available observation, meaning
that the classifiers fail to provide a correct evaluation of the RFF.

After analyzing the behavior of the classifiers regarding the percentage of available informa-
tion, we consider some other points in the analysis of these results: A first point is that it can be
seen that the predictive performance of the BN model is comparable to the other classifiers used.
We note that BNs provide roughly the same quality of results for the different target variables as
the other classifiers with some variations according to the target risk factors for falls. None of the
classifiers that we tested is clearly better than the others, even if LR provides sometimes slightly
better results and DT sometimes slightly lower performance. For example, for the number
of falls (nbChu2) (Table 4.2 first row), there is from 2 to 3% difference between the baseline
accuracy and the best three classifiers here (LR, SVM, RF) when at least 60% of observations are
available, whereas BN’s accuracy is slightly lower, and DT’s accuracy is lower than the baseline
classifier. With regards to the F1 score for the prediction of the number of falls, the value for
any of the classifiers is less than the baseline value. About dementia variable (demence), the
accuracy of the prediction is rather good whatever the classifier, except DT, but the F1 score is
lower than the baseline value. This reveals the inability to detect dementia from this data set,
with the only positive result for this variable being to state the absence of dementia. However,
the results are better for other variables such as for activities of daily living (ADLinf 5) and
osteoporosis confirmed (osteoConf ). The model’s accuracy and F1 score increase from baseline
as the percentage of available observations increases respectively (as shown in Table 4.2).

These results show that we are able to evaluate most of the risk factors (even if with a low
improvement compared with the baseline classifier) except orthostatic hypotension (newHypoT )
and Parkinson (parkOuSP ). One of the reasons may be the data we used for this study is from
a very specific population that is at high risk of falling, most of them presenting several risk
factors. This bias probably making more difficult to get a clearer separation. Another reason,
as stated by the expert regarding orthostatic hypotension, is that our set of variables does not
include enough details about the class of drugs that are known to be predictive of hypotension.
As for the variable parkOuSP , the expert states that it is not predictable from our set of variables.

In summary, based on the results presented above, we can conclude that all classifiers except
DT allow to improve the accuracy with partial information, but only some targets are correctly
predicted in terms of F1 score. In particular, the prediction of the targets osteoConf, ADLinf5,
and trEq keeps interesting even when based on only 50% of the observations. In addition, BN’s
predictive performance is equivalent to that of the other classifiers implemented since it yields
predictions that are approximate of a similar standard for various target variables, varying
somewhat depending on the target risk factor for falls. Furthermore, among the 45 variables
selected for this study, an arbitrary number of them can be observed, whether they are targets
or not. Moreover, risk factors are not independent of each other, meaning that when one of
them is observed, it should be used to improve the evaluation of the others, in addition to other
observed features. That situation makes more difficult the use of usual classifiers because a new
model would have to be learned for each target variable, and for each possible subset of observed
variables. BN models allow overcoming that problem, since the same model can be used to
evaluate any variable of the model, regarding any subset of observations. In addition, BNs allow
the combination of general statistical knowledge and specific individual information, and to
update belief on any node from incomplete observations. These features, the unicity of the model
for any target variable and the possibility to combine knowledge from different sources, exactly
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answer the problem of predicting risk factors in real-life situations. Another advantage of BN is
that the model can be built both from data and expert knowledge which is very interesting in the
context of health. It is also very important to make the model interpretable/ understandable by
the final user (general practitioners) since it contributes to making the aiding system acceptable
and augments the trust in results. So BN becomes the good choice to use because of the graphical
representation that is easy to explain and understand.

However, the above-mentioned classifiers do not account for the data imbalance while making
predictions. When classes are not equally represented, the data collection is imbalanced. A
classifier may have trouble if the data set is severely imbalanced. Due to the increased chance of
belonging to the majority class and the algorithm’s attempt to reduce mistakes, these algorithms
are more likely to classify a new observation in the majority class. With that in mind, in the
next section, we deal with this problem of imbalance and present the use of some balancing
techniques and their effects on the prediction of risk factors for falls.

4.2.3 Prediction using imbalanced versus balanced data

So far we have discussed the use of a complete set of variables to predict the presence or
absence of a risk factor for falls and presented the results of prediction based on the available
information about a patient (partial or complete). In this section, we describe the effect of
balancing techniques when doing the prediction versus when we have imbalanced data. With
that aim, we have compared the outcomes for six different classifiers namely Logistic Regression
(LR), Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machine (SVM),
Naive Bayes (NB), and Bayesian Networks (BN), in order to see the differences between utilizing
imbalanced data for classifications and using the data after balancing with various balancing
approaches (three oversampling methods: SMOTE, SMOTE-SVM, and ADASYN), with the aim
of predicting separately 12 target variables. Figure 4.4 represents the schematic diagram of the
methodology used.

Figure 4.4: Schematic diagram of the methodology used when evaluating the interest of using
oversampling techniques in iteration 1
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Figure 4.5: Percentage of increment from baseline regarding AUC-ROC, when averaging over
all targets for each classifier, using imbalanced and balanced data with SMOTE, ADASYN and
SVM-SMOTE respectively.

In this section, we first show the results for each classifier when averaging over all targets.
Second, we present the results for each target when averaging over each classifier. In each case,
we show the statistical t-test to summarize our findings.

4.2.3.1 Results by classifiers, averaging over targets

Figures 4.5 to 4.9 present the results when averaging over all targets for each classifier regarding
(1) AUC-ROC, (2) AUC-PR, (3) Balanced accuracy, (4) F1 score, (5) F2-score, using imbalanced
and balanced data (with the above balancing methods). The horizontal axis represents the
different classifiers used. The vertical axis represents the percentage of increment or decrement
from the baseline results when comparing using AUC-ROC, AUC-PR, and balanced accuracy
and percentage of the score when comparing F1 and f2 scores. Here for F1 and F2 scores, we did
not show the increment or decrement from baseline results because when the majority class is
negative the baseline F1 (or f2) score is not defined because precision is not defined. The baseline
results are computed using a dummy classifier which always predicts the majority class.

Regarding the results of all measures (Figures 4.5 to 4.9), it can be seen that when using
imbalanced data, the average improvement regarding the baseline classifier is variable depending
on the classifier. For example, regarding AUC-ROC (Figure 4.5), ANN improves the results from
the baseline by about 6 points on average while the Bayesian network improves it by about 16
points when using the imbalanced data. On the other hand, the use of an oversampling method
makes the improvement of all classifiers very similar with differences of only a few points. A
second remark is that using an oversampling technique provides improvement for all classifiers
except the Bayesian network which performs generally better when using imbalanced data, and
for all measures. A third point to be noted is that SVM-SMOTE always leads to a slightly better
improvement than SMOTE and ADASYN.

From the result presented here, the first conclusion is that the results of different classifiers are
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Figure 4.6: Percentage of increment from baseline regarding AUC-PR, when averaging over
all targets for each classifier, using imbalanced and balanced data with SMOTE, ADASYN and
SVM-SMOTE respectively.

Figure 4.7: Percentage of increment from baseline regarding balanced accuracy, when averaging
over all targets for each classifier, using imbalanced and balanced data with SMOTE, ADASYN
and SVM-SMOTE respectively.
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Figure 4.8: Percentage of F1 score, when averaging over all targets for each classifier, using
imbalanced and balanced data with SMOTE, ADASYN and SVM-SMOTE respectively.

Figure 4.9: Percentage of F2-score, when averaging over all targets for each classifier, using
imbalanced and balanced data with SMOTE, ADASYN and SVM-SMOTE respectively.
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rather similar for all the considered measures, except the Bayesian network whose results using
imbalanced data are comparable with the results of other classifiers when using balanced data.
In order to evaluate the significance of the improvement after using oversampling techniques,
we present the p-values as follows.

4.2.3.2 Statistical tests when averaging over targets

We now use a t-test to check the significance of improvement in the prediction results after using
the oversampling techniques. We use classification techniques, SVM, LR, RF, BN, MNB, and
ANN, to classify the averaged target variable for the original (imbalance) dataset and obtain
the corresponding values of accuracy measures; AUC-ROC, AUC-PR, Bal-acc, F1, and F2 scores.
Similarly, we obtain the values of each of these accuracy measures after using the oversampling
techniques; SMOTE, ADASYN, and SVM-SMOTE, corresponding to each classifier. We then use
a one-tailed t-test to test the null hypothesis which states that there is no improvement in the
results for a given measure by using oversampling techniques. If the p-value is smaller than 0.05
then we reject the null hypothesis and conclude that the improvement is significant. Table 4.5
presents the p-values of a one-tailed t-test for improvement of prediction results under different
measures after using the oversampling techniques.

Table 4.5: One-tailed t-test when averaging over targets

p-values
SMOTE ADASYN SVM-SMOTE

AUC-ROC 0.037 0.047 0.029
AUC-PR 0.095 0.135 0.042
Bal-acc 0.037 0.047 0.029

F1 0.015 0.023 0.012
F2 0.013 0.02 0.015

Results provided in Table 4.5 show that there is a significant improvement in prediction for
the three oversampling methods for AUC-ROC, Bal-acc, F1 score, and F2- score, and in some
cases for AUC-PR. Regarding AUC-PR, only SVM-SMOTE provides a significant improvement
compared with unbalanced data, after averaging on all targets.

In the next part, we analyze the results for each target separately but averaging over the
classifiers. This makes sense since we saw that the results of different classifiers are rather
similar.

4.2.3.3 Results by target, averaging over classifiers

Figures 4.10 to 4.14 represent the results when we average each quality measure over the
five classifiers for each target, using imbalanced and balanced data (with different balancing
methods) respectively. The horizontal axis represents the different targets predicted. The vertical
axis represents the percentage of scores when showing results for F1 and F2 measures and the
percentage of increment or decrement from the baseline results when showing results for other
measures.

Regarding AUC-ROC, AUC-PR, and balanced accuracy (Figures 4.10 to 4.12), using balanced
data provides better results than imbalanced data for 10 targets out of 12 whatever the balancing
method (the prediction of the variables demence and ADLinf5 is not, or very slightly, improved for
those measures). Let’s also remark that the prediction of the variable newHypoT is hardly better
than the baseline, whatever the data set. Looking more in detail, this result also not depends on
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Figure 4.10: Percentage of increment or decrement from the baseline results regarding AUC-ROC
when averaging over classifiers for each target.

Figure 4.11: Percentage of increment or decrement from the baseline results regarding AUC-PR
when averaging over classifiers for each target.
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Figure 4.12: Percentage of increment or decrement from the baseline results regarding balanced
accuracy when averaging over classifiers for each target.

Figure 4.13: Percentage of F1 score when averaging over classifiers for each target.
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Figure 4.14: Percentage of F2-score when averaging over classifiers for each target.

the classifier; thanks to a discussion with an expert, it appears that some important variables
that could help to predict hypotension are not part of the 45 selected variables. For these three
measures (AUC-ROC, AUC-PR, and balanced accuracy), the balancing using SVM-SMOTE most
often provides slightly better improvement than SMOTE and ADASYN.

Regarding F1 and F2 scores, (Figures 4.13 and 4.14) clearly shows the difference between
targets for which the majority class is 1 (on the left), and for which majority class is 1, on the
right. As mentioned above, F1 score is usually used for targets with a majority class 0. For the
targets in groups with majority class 0, the use of oversampling method clearly improves the F1
score as well as F2-score. Furthermore, in order to evaluate the significance of the improvement
after using oversampling techniques, we present the p-values as follows.

4.2.3.4 Statistical tests when averaging over classifiers

We use a t-test to check the significance of improvement in the results for each of the 12 target
variables after using the oversampling techniques, averaging over all the classifiers. We use
classification techniques, SVM, LR, RF, BN, MNB, and ANN, to classify target variables for the
original (imbalance) dataset and obtain the values of evaluation measures; AUC-ROC, AUC-PR,
Bal-acc, F1, and F2-scores for each target variable. Similarly, we obtain the values of each of
these evaluation measures after using the oversampling techniques, SMOTE, ADASYN, and
SVM-SMOTE, for each of the target variables. After averaging the values of the evaluation
measures of different classifiers, we use a one-tailed t-test to test the null hypothesis which states
that there is no improvement in the results by using oversampling techniques. If the p-value
is smaller than 0.05 then we reject the null hypothesis and conclude that the improvement
is significant. Table 4.6 presents p-values for each of the oversampling techniques using all
evaluation measures.

It is clear from Table 4.6 that there is a significant improvement when comparing AUC-
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Table 4.6: One-tailed t-test when averaging over classifiers

p-values
SMOTE ADASYN SVM-SMOTE

AUC-ROC 2.13E-4 2.63E-4 2.12E-5
AUC-PR 0.021 0.031 0.001
Bal-acc 2.13E-4 2.63E-4 2.12E-5

F1 0.064 0.079 0.051
F2 0.014 0.134 0.103

ROC, AUC-PR, and balanced accuracy for all the target variables when averaging over all
classifiers used. Regarding F1 score, when using smote and adasyn the difference from using the
imbalanced data is significant with 93% and 92% significance levels respectively. However, when
using svm-smote the difference is significant with a 94% significance level. When considering
F2-score for comparison, we can see that using smote gave a significant difference and when
using adasyn and svm-smote, the difference is significant with 86% and 89% significance levels
respectively. The fluctuation of significant difference when comparing F1 and F2-scores may be
due to the dominance of results for the targets for which the majority class is 1 as we can see in
Figures 4.13 and 4.14.

4.2.4 Summary of results using iteration 1

We have first presented the results in order to answer the question: should we use a specific
subset of variables or the complete set of variables when evaluating a given target? From the
results presented, we can see that there is no big difference in using the two to predict the risk
factors for falls because as shown in this study the results using a complete set of variables are
as good as the other. Also, in real-life situations, the number of observations can be different
for each patient. So for each new patient, we have to learn a new model using the available
information which can be time and memory consuming.

Furthermore, to evaluate the quality of prediction results based on partial observations, we
have compared the results using BN with other classifiers namely, LR, DT, RF, and SVM. Based on
those results we can conclude that BN’s predictive performance is equivalent to that of the other
classifiers implemented since it yields predictions that are approximate of a similar standard
for various target variables, varying somewhat depending on the target risk factor for falls. The
results have also shown that when using partial observations, the quality of the prediction in
terms of F1 score is clearly better than the baseline for only 4 target variables.

In addition, we have discussed the problem of classification with imbalanced data and
analyzed the impact of three oversampling methods SMOTE, SMOTE-SVM, and ADASYN. In
order to see the difference when using original imbalanced data versus the data after balancing
with given oversampling methods, we have compared the results using several classifiers namely
Logistic Regression, Random Forest, Artificial Neural Networks, Naive Bayes, and Bayesian
Networks. To evaluate the performance of different classifiers, we use several measures: Balanced
Accuracy, F1 score, F2-score, the area under the Precision-Recall curve, and the area under the
Receiver Operating Characteristic curve. We have presented the results summarised by the
classifier (averaging over targets) and by target (averaging over classifiers).

As observed, the results of different classifiers used on Lille’s data set when averaging over
all targets are rather similar for all the considered measures, except the Bayesian network
whose results using imbalanced data are comparable with results of other classifiers when using
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balanced data. Similarly, the results of different targets when averaging over all classifiers shows
the improvement in each type of measure used when using the balanced data with oversampling
methods versus using imbalanced data. In addition, we also see that SVM-SMOTE gives slightly
better results as compared to other oversampling techniques.

Furthermore, the one-tailed t-test confirms our findings that when averaging over targets,
there are significant improvements in AUC-ROC, AUC-PR, F1 score, and balanced accuracy
for all classifiers when using oversampling methods. Also from the one-tailed t-test when
averaging over classifiers, we can conclude that there are significant improvements in AUC-ROC,
AUC-PR, and balanced accuracy when using oversampling methods. For F1 score the results are
dominated by target variables with a majority class 0.

Also, recall that fall prevention requires to provide a small number of recommendations
depending on the risk factors present for a person. Thus the evaluation of risk factors is the
basis of fall prevention. Also, in real life, imbalanced data sets are very common. So based
on the results and discussion presented, we propose using balancing techniques, specifically
SVM-SMOTE, as a possible solution to the data imbalance problem.

Points to remember after analyzing the results using iteration 1

✓ We decided to use a complete set of variables for the evaluation of
a given target risk factor

✓ BN’s predictive performance is as good as the other classifiers used

✓ Using SVM-SMOTE is a better choice when the data is imbalanced
except for the BN classifier

4.3 Results using iteration 2

In this section, we describe the results when using data obtained after the second iteration of
data preprocessing. In that aim, we first describe whether should be using a specific subset or a
complete set of variables to predict the target risk factor for falls. After that, we show the results
of different structure learning algorithms for the BN model. Furthermore, as we learned from the
results of the previous iteration, using SVM-SMOTE before training the classifier improves the
performance of a given classifier. Now, we further investigate if this claim is still true when using
BN with our data set as we have a different set of input variables in this iteration. Additionally,
in order to evaluate the quality of prediction results we present the comparison of the results of
BN with other classifiers.

4.3.1 Should we use all variables or a specific subset

In this iteration, our data set consists of information on 90 variables listed in Tables 3.7 to 3.12
(see Chapter 3, section 3.4.2). As the literature suggests, not all the features are important to
evaluate specific risk factors. With that aim, in this section, we discuss the interest in doing
feature selection from this subset of variables extracted from our data during the second iteration.

Should we do feature selection or not?
Here the objective is to evaluate the interest in doing feature selection. To that aim, we use
chi-square (chi2) score (scores with associated p-values) and mutual information (mi) score to
evaluate the importance of a feature for a given target risk factor. Figure 4.15 represents the
schematic diagram of the methodology used.
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Figure 4.15: Methodology used when evaluating the interest of using all variables versus a
specific subset of variables in iteration 2

Methodology:

• use chi2 and mi score for each target to obtain 2 sorted lists of variables selected for each
risk factor

• threshold used to select a variable using chi2: we select a variable for a given target if its
p-value is less than 0.05 that is we select a variable with 95% confidence. We called this set
of selected variables “chi2”.

• threshold used to select a variable using mi: we select a variable for a given target if its mi
score is greater than 0. We called this set of selected variables “mi”.

Now, for a given target “y” we have the following set of selected variables:

• chi2: variables selected using chi2 score

• mi: variables selected using mi score

• intersection: set of variables which are commonly selected using chi2 and mi

• union: set of variables which are selected using either chi2 or mi

Classifiers used to evaluate the effect of feature selection:
support vector machine (svm); logistic regression (lr); random forest (rf); bayesian networks (bn);
multinomial naive bayes (mnb)

Results:
Table 4.7 represents the average increment or decrement in the accuracy from baseline for each
classifier over all the targets. Here, baselineAcc represents the accuracy of the baseline classifier
meaning the prevalence in the M1 group and (1- prevalence) in the M0 group, and the number
presented in all other columns is the increment or decrement in accuracy using a given classifier
from baseline accuracy. It shows that when we use the subset of variables selected using chi-
square, SVM and LR give the best prediction: 6.91% and 6.83% more accurate predictions than
the baseline classifier respectively. whereas when we use all variables, RF and BN give the best
prediction (6.4% and 1.33% more accurate predictions than the baseline classifier respectively).
Moreover, MNB gives the best prediction (3.36% more accurate predictions than the baseline
classifier respectively) when using the intersection.

Similarly, Table 4.8 represents the average increment or decrement in the accuracy from
baseline when predicting a given target after averaging over all the classifiers used. It shows
that for 4 out of 11 targets we have the best prediction when using the subset of variables
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Table 4.7: Average percentage increment or decrement in the accuracy from baseline for each
classifier over all the targets

all chi2 mi intersection union
baselineAcc 68.43 68.43 68.43 68.43 68.43
SVM - baselineAcc 6.5 6.91 6.46 6.41 6.59
LR - baselineAcc 5.94 6.83 6.06 6.31 6.38
RF - baselineAcc 6.4 5.33 5.95 4.72 6.12
BN - baselineAcc 1.33 1.3 1.31 1.2 1.07
MNB - baselineAcc 2.62 3.24 3.06 3.36 2.89

selected using chi-square and for 3 out of 11 we have the best prediction when using the subset
of variables selected using mutual information; for 2 out of 11 using all variables, for 1 out of 11
using the intersection, and 1 out of 11 using the union.

Table 4.8: Average percentage increment or decrement in the accuracy from baseline when
predicting a given target over all the classifiers used

all chi2 mi intersection union
trMar 1.38 1.53 1.4 1.65 1.32
peurTom 3.16 3.42 2.53 2.74 3.06
sarcopen 2.91 3.04 2.93 2.81 3.03
trEq 4.78 5.03 4.46 4.37 4.85
nbchu2 4.81 4.37 4.12 3.49 4.34
ADLlt5 0.21 0.09 -0.19 -0.09 -0.19
demence 8.82 9.27 8.82 8.49 9.45
hypotenO -1.77 -1.66 -1.05 -1.17 -1.77
dep 10.57 11.16 11.02 10.97 10.98
osteopor 10.77 11.09 11.16 10.56 10.74
parkOuSP 4.5 4.57 5.05 4.6 4.86

From Tables 4.7 and 4.8, we can see that no method for the variable selection clearly outper-
forms the other. We summarize these results in Table 4.9. It represents, the average percentage
difference in accuracy when using a classifier with all variables versus a specific subset selected
using a given feature selection method. Here, we see that for using the subset of variables se-
lected by chi-square score we have 0.16% more accurate results than using all variables, whereas
for using the subset of variables selected by mi score we have 0.1% more accurate prediction as
compared to using all variables. From these results, we can conclude that on average there is
no difference when using a specific subset of variables or all variables when predicting a given
target.

4.3.1.1 A specific BN for each target versus a single BN for all targets

So far we have seen that using a specific subset is not very different than using a complete set of
variables. Since our focus is on using BN, we investigate this question further with a different
set of structure learning algorithms for BN. Furthermore, in the previous section, we used
chi-square, mutual information, their intersection, and their union to select a specific subset
of variables, but now we use chi-square from this list for the selection of variables because the
number of variables selected is always less and if we repeat this process the number of variables
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Table 4.9: Average percentage difference in accuracy when using a classifier with all variables vs
specific subset selected using a given feature selection method

Avg difference
all 0
chi2 0.16
mi 0.01
intersection -0.16
union 0.05

selected is always the same. Table 4.10 represents the number of variables selected for a given
target using a given feature selection method.

Table 4.10: Number of variables selected for a given target using a given feature selection method

Targets chi2 mi intersection union
trMar 45 63 36 72

peurTom 30 46 26 50
sarcopen 35 50 23 62

trEq 43 53 28 68
nbchu2 28 48 13 63
ADLlt5 47 67 39 75

demence 46 58 32 72
hypotenO 19 48 13 54

dep 22 44 14 52
osteopor 33 52 26 59

parkOuSP 32 59 23 68

In addition, we have selected 3 target risk factors to evaluate the difference between using
a single BN with all variables to predict all targets or a specific BN using a specific subset of
variables to predict a given target. To select these targets we used the results presented in the
previous section. We have the following criteria to select a given target:

1. good prediction results: we have selected the target for which we have the overall best
results given any classifier with any measure.

2. different percentages or prevalence: we selected 3 targets whose prevalence is not in the
same range to have more generality in our selection.

3. interesting to predict: we have selected those variables which are interesting and impor-
tant to predict because they are very important risk factors, often difficult to diagnose (or
often undiagnosed).

4. the number of variables selected using chi-square: we have selected those variables for
which the number of variables selected by the chi-square test is less. The objective here is
to have a small number of variables with maximum information.

Now we present in detail the procedure to select these 3 targets for our analysis. We have
the following 6 variables with the negative class as the majority class: ADLlt5, dep, demence,
osteopor, hypotenO, parkOuSP. Based on criteria 1, we have selected dep, demence, and osteopor
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because they are the ones with good results for any given measure and given classifiers, and
finally, we have selected dep and demence from this group because they are very important to
predict, generally not diagnosed and they have a small number of variables in the subset selected
using chi-square. Furthermore, we have 5 variables in this group: trMar, trEq, peurtom, sarcopen,
nbchu2. Based on criteria 1, we have selected trEq from this group because it has the best results
than others for a given classifier using a given measure.

In order to see the difference when using a single BN model using all variables for all targets
versus a specific BN model using a specific subset for a given target we compared the balanced
accuracy score for a given model and for a given target. With that aim we used 13 different
structure learning algorithms for BN, namely: greedy hill climbing (GHC) and Tabu list (Tabu),
each with scores: Akaike information criterion (AIC), Bayesian Information Criterion (BIC),
Bayesian-Dirichlet scoring (BD), Bayesian-Dirichlet equivalent uniform (BDeu), K2 score, and
log2 likelihood ratio test (Log2); and Multivariate Information based Inductive Causation (MIIC).

Table 4.11 represents the percentage difference in balanced accuracy score using all variables
minus using a specific subset selected using chi-square when predicting a given target using a
given algorithm. For example, the number -1.32 (see first row, the second column in the Table)
means that the balanced accuracy score is 1.32% less when using all variables as compared to
using a specific subset selected by the chi-square method when predicting trEq using the BN
model learned using GHC with AIC score.

Table 4.11: Difference in balanced accuracy between using all variables and using variables
selected with chi2 when predicting trEq, demence, and dep using BNs learned with different
structure learning algorithms

Method / target trEq demence dep
GHC_AIC -1.32 -1.87 2.01
GHC_BIC 0.43 0.72 0.12
GHC_BD 0.31 -0.01 0.1

GHC_BDeu 0.32 0.21 -0.06
GHC_K2 -1.84 -0.08 -0.83

GHC_Log2 0.32 0.21 -0.06
Tabu_AIC 1.17 -1.81 -1.49
Tabu_BIC 0.57 0.41 -0.16
Tabu_BD -0.95 -0.25 -0.24

Tabu_BDeu 0.18 -2.21 -0.37
Tabu_K2 -1.37 -0.6 -0.6

Tabu_Log2 0.18 -2.21 -0.37
MIIC -1.33 -1.4 -1.7
mean -0.26 -0.68 -0.28

std 0.96 1.07 0.89

We can see from Table 4.11 that when predicting trEq, we have a difference of less than 1%
for 8 out of 13 algorithms of which for 7 of them using a single BN using all variables is better.
For the remaining 5 out of 13 algorithms, the difference is always between 1% to 2%. Also, the
mean difference in balanced accuracy using all algorithms is 0.26% which is very close to no
difference with a standard deviation of 0.96%. Similarly, when predicting demence, we have a
difference of less than 1% for 8 out of 13 algorithms of which for 4 of them using a single BN is
better and for 4 of them using specific BN is better. For the remaining 5 out of 13 algorithms,
we have a difference for 3 algorithms between 1% and 2%, and for the remaining 2 algorithms
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we have a difference equal to 2.21%. Also, the mean difference using all algorithms is 0.68%
with a standard deviation of 1.07%. Likewise, when predicting dep, we have a difference of less
than 1% for 10 out of 13 algorithms. for the remaining 3 algorithms, we have differences of
2.01%, -1.49%, -1.7% respectively. Also, the mean difference using all algorithms is -0.28% with
a standard deviation of 0.89%. Furthermore, in order to see if the difference when using BN
with all variables versus a specific subset of variables selected using “chi2” is significant or not
we perform a one-tailed t-test. We have the null hypothesis as there is no significant difference
and with the alternative hypothesis as there is a significant difference when using a BN with
all variables versus a specific subset of variables selected using the chi-square method. Table
4.12 represents the p-values when comparing balanced accuracy for a given target. Here, if the
p-value is less than 0.05 we reject the null hypothesis. From this Table, we can say that there is
no significant difference when predicting trEq and dep. However, the difference is significant
when predicting demence but as we can see from Table 4.11 the difference is not too much. After
seeing these results we propose the use of a single BN model using all variables to predict all
target risk factors for falls.

Table 4.12: one-tailed t-test for difference in using all variables versus specific subset for BN

p-values
trEq demence dep

Bal-acc 0.178 0.02 0.139

Points to remember from this section

✓ We decided to use a single BN model using a complete set of
variables for the evaluation of the target risk factors

4.3.2 BN Structure learning

So far we have seen that it is better to use a single BN model to predict all the target risk factors
from our data set. But it is not very clear which algorithms should we use to learn the structure
of the BN model. As discussed in the earlier chapter, there are many possible algorithms to
learn the structure of the BN model. To decide which learning algorithms to use, we focus
on the following two criteria: (1) the predictive performance; (2) the understandability of the
graph. With that aim, in this section, we present the comparison of prediction results using
different structure learning algorithms. We use the following 13 different structure learning
algorithms for BN, namely: greedy hill climbing (GHC) and Tabu list (Tabu), each with scores:
Akaike information criterion (AIC), Bayesian Information Criterion (BIC), Bayesian-Dirichlet
scoring (BD), Bayesian-Dirichlet equivalent uniform (BDeu), K2 score, and log2 likelihood ratio
test (Log2); and Multivariate Information based Inductive Causation (MIIC). Furthermore, we
present our approach to get a more understandable structure with the help of domain experts.

4.3.2.1 Comparison of performance for different algorithms

Tables 4.13 and 4.14 represent the percentage increment from baseline balanced accuracy when
predicting a given target using a BN model with a given structure learning algorithm. For
example, the number 30.58 (first row, first column in Table 4.13) means when predicting trMar
using a BN model constructed using GHC structure learning algorithms with AIC score the
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improvement in balanced accuracy from baseline score is 30.58% that is the actual balanced
accuracy score is 80.58%. At the bottom of both Tables, we show the mean and standard deviation
over all algorithms for each given target risk factor. The results suggest that there is only a
small variation in balanced accuracy for a given target using the different BN structure learning
algorithms. The standard deviation from the mean is less than 1% except for the variables
demence (1.1%) and osteopor (1.12%). Since the predictive performance of all the BN models with
different structure learning used is rather similar, we focus on our second criterion about the
understandability of the BN graph.

Table 4.13: Percentage increment from baseline balanced accuracy score (baseline bal-acc = 50%)
when predicting a given target with the positive class as majority class using a BN model with
different structure learning algorithms

algorithm trMar peurTom sarcopen trEq nbchu2
ghc_aic_base 30.58 28.87 11.13 23 6.75
ghc_bic_base 30.12 29.22 10.27 22.4 6.04
ghc_bd_base 30.75 27.89 9.91 23.22 7.16

ghc_bdeu_base 29.39 27.5 9.86 22.97 8.04
ghc_log2_base 29.39 27.5 9.86 22.97 8.04
ghc_k2_base 27.82 29.15 9.55 24.06 7.81

tabu_aic_base 31.21 27.94 10.64 23.09 6.54
tabu_bic_base 29.53 29.18 10.27 21.42 6.04
tabu_bd_base 29.4 28.16 10.02 22.83 6.98

tabu_bdeu_base 29.99 27.15 9.61 23.1 7.97
tabu_log2_base 29.99 27.15 9.61 23.1 7.97
tabu_k2_base 30.67 26.67 9.72 23.96 7.81

miic_base 28.74 26.75 11.78 22.8 8.06

mean 29.81 27.93 10.17 22.99 7.32
std 0.88 0.89 0.64 0.62 0.75

4.3.2.2 Towards an understandable BN graph: using mandatory arcs on local BN around
each target

So far we have seen that using different structure learning algorithms for the BN model does
not make any difference in terms of predictive performance. As a reminder, one of the main
objectives of our work is to support the general practitioner to evaluate the risk of falls. With
that aim, we want to provide a model which can be understandable by the final user such that
the results can be explained. So, we want to focus on the relationship between the variables in
our BN model to make the graph more understandable.

Furthermore, several configurations are possible between two variables A and B:

1. A is a cause of B (or B is a cause of A)

2. A and B are dependent but A is not a cause of B and B is not a cause of A (this can occur
when another variable is a common cause of A and B)

3. A and B are "independent"

In a causal graph, the first case is represented by an arc A–> B in the BN network graph.
However, usual BN structure learning algorithms can not learn the causal direction of the arcs. It
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Table 4.14: Percentage increment from baseline balanced accuracy score (baseline bal-acc = 50%)
when predicting a given target with the negative class as majority class using a BN model with
different structure learning algorithms (continued)

algorithm ADLlt5 demence hypotenO dep osteopor parkOuSP
ghc_aic_base 20.04 16.34 8.66 30.03 24.8 30.9
ghc_bic_base 18.92 12.7 8.96 29.98 25.44 30.85
ghc_bd_base 19.27 16.02 7.43 29.55 26.74 30.93

ghc_bdeu_base 19.12 15.3 8.15 30.1 27.72 30.78
ghc_log2_base 19.12 15.3 8.15 30.1 27.72 30.78
ghc_k2_base 19.25 15.59 8.77 30.11 26.47 31.01

tabu_aic_base 19.1 16.13 8.08 30.36 26.25 30.41
tabu_bic_base 18.9 12.95 8.96 30.34 24.75 30.85
tabu_bd_base 18.22 15.03 7.93 30.28 27.37 30.99

tabu_bdeu_base 19.06 14.42 7.89 29.9 27.24 30.16
tabu_log2_base 19.06 14.42 7.89 29.9 27.24 30.16
tabu_k2_base 20.8 15.88 7.41 29.82 26.12 30.81

miic_base 19.05 14.56 7.9 27.83 24.37 30.47

mean 19.22 14.97 8.17 29.87 26.33 30.7
std 0.59 1.1 0.5 0.63 1.12 0.29

is thus possible to get an arc A–>B when the causality is in the opposite direction. In the second
case, when the common parent is not part of the set of considered variables, the dependence
between the variable is also represented by an arc between the two variables, whereas this arc
does not represent causality. Finally, the third case should result in no arc between A and B in
the BN graph.

The property of completeness means that any common cause of several variables does belong
to the set of considered variables. In our case, the hypothesis of completeness is probably
not verified, meaning that the second case may occur. Moreover, given some hypotheses, it
is sometimes assumed that the arcs involved in a V-structure can be causal. However, in our
case, we clearly found several examples of V-structure whose arcs are clearly not causal (for
example, several arcs toward the variable sexe are certainly not causal ones since no variable
can be considered as a cause of the sexe). With that context, in this study, we aim to get a causal
graph since it contributes to the understandability of the graph by the experts. In that aim, we
worked with domain experts and defined some mandatory arcs to be included in the structure
of the BN model learned. Since we had limited time with the domain expert and the number
of arcs learned by any given algorithm is very high. We focus on the possible arcs around each
target risk factor. In order to define causal arcs we focus on the Markov blanket for a given target.
Markov blanket for a given node X is the set of nodes MB(X) such that X is independent of the
rest of the nodes given MB(X).

Also, we first define the mandatory arcs and use the 13 structure learning algorithms previ-
ously mentioned in order to see whether using this list of mandatory arcs makes any difference
in predictive performance for any given model. The methodology we use to define mandatory
arcs is as follows:

• select the nodes that are present in the Markov blanket of a given target node for a given
model (produced by one of the BN structure learning algorithms)

• count the presence of a given node in the MB obtained by the different structures for each
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target (list given in Tables 4.15 and 4.16)

• select the nodes that are present in most of the MBs for a given target

• from the selected nodes, define the relationship with the target node using the general
knowledge with the help of the domain expert. We defined the mandatory arcs only for the
direct cause or direct consequences of each target variable. Meaning that some variables
of the MB of a risk factor for falls have not been included in the list of mandatory arcs.
Figures 4.16 and 4.17 show the local BN graph around each target variable, composed of
the nodes of the Markov blanket with mandatory arcs for each target. (see B.1 for the full
BN graph learned)

Table 4.15: list of nodes in the Markov blanket of each target in group M1 and their number of
occurrences regarding the 13 BN structure learning algorithms

trMar peurTom trEq sarcopen nbchu2
var count var count var count var count var count

sarcopen 13 sortir 13 trProp 13 trMar 13 a1AntiDep 13
trEq 13 evitsort 13 pbPodo 13 aidTecMa 13 TUGgt20 13

aidTecMa 13 sexe 7 trMar 13 myopat 13 agonDopa 1
aideHum 13 sortSeul 7 basCont 13 vitSeul 1 trMar 1
apUniGt5 13 LSAi4 5 trAudit 11 agonDopa 1 parkOuSP 1
ataxPeri 11 montDesc 4 age4 11 antiHT 1 ADLlt5 1
ataxCer 11 a1medSed 1 apUniGt5 8 osteopor 1 gt1hSol 1
vitMar 10 dep 1 sexe 6 fracture 1 lipoth 1

neurPath 6 pbPodo 1 trVision 2 sort 1
difWC 6 htNivEtu 1 neurPath 1 BMI_lt19 1
trProp 5 osteopor 1 htNivEtu 1 evitsort 1

TUGgt20 3 alcool 1 hypotenO 1 trAnHTA 1
sexe 1 akines 1 osteopor 1

pathUro 1 traAnOst 1 aideHum 1
evitsort 1 nFrac4 1

agonDopa 1
trAudit 1
syndCer 1
trembl 1

parkOuSP 1
ADLlt5 1
nbchu2 1

Now in order to see the difference when using a BN model with structure learned with or
without mandatory defined arcs we compare the balanced accuracy when predicting a given
target. Tables 4.17 and 4.18 represent the percentage difference in balanced accuracy when using
mandatory arcs and when not using mandatory arcs. For example, the number 1.27 (first row,
first column in Table 4.17) means for predicting trMar when we use BN model with structure
learned using GHC with AIC score and with predefined mandatory arcs, we have 1.27% better
balanced accuracy than using BN without predefined mandatory arcs.

In order to summarize these results, we also present the mean and standard deviation over all
algorithms used as well as all targets predicted. As we can see from Table 4.17, when averaging
over all algorithms, for 2 out of 5 targets, the difference is positive, meaning a better balanced
accuracy when using mandatory arcs, and for 3 out of 5 targets the difference is negative means
using BN model without mandatory arcs is better. But the difference is always between 0%
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Table 4.16: list of nodes in the Markov blanket of each target in group M0 and their number of
occurrences regarding the 13 BN structure learning algorithms (continued)

demence osteopor hypotenO dep ADLlt5 parkOuSP
var count var count var count var count var count var count
sexe 13 sexe 13 a1AntiDep 13 a1AntiDep 13 sexe 13 agonDopa 13

htNivEtu 13 nFrac4 13 basCont 13 gt2psych 13 difWC 13 akines 13
ADLlt5 13 traAnOst 13 lipoth 5 sexe 4 demence 13 trembl 13
akines 13 pbPodo 11 sortir 2 aideHum 3 TUGgt20 13 alcool 11

conduit 13 conduit 6 pbPodo 1 hydrocep 3 pathUro 13 sexe 10
epilep 9 diabete 6 trEq 1 syndVes 3 sortSeul 13 neurolep 9

confusion 9 nbmed3 6 aideHum 1 ADLlt5 2 conduit 12 a1medSed 9
trembl 5 BMI_lt19 5 trembl 1 antiEmet 2 vitMar 10 trSensPr 7

aideHum 4 gt1antal 4 a1medSed 1 maisRet 10 difWC 6
malnut 4 malnut 4 pbPodo 1 LSAi4 10 antiEmet 2
tumCer 4 sortir 4 htNivEtu 1 akines 8 vitSeul 1
vitMar 1 dep 1 osteopor 1 a1AntiDep 3 trProp 1

medPsych 1 htNivEtu 1 alcool 1 evitsort 2 trMar 1
pbPodo 1 neurPath 1 peurTom 1 dep 2 ataxPeri 1
osteopor 1 alcool 1 akines 1 gt2psych 1 ADLlt5 1
basCont 1 peurTom 1 traAnOst 1 gt1hSol 1 nbchu2 1
evitsort 1 sort 1 agonDopa 1
sortSeul 1 trAnHTA 1 trAudit 1
traAnOst 1 trProp 1 trMar 1
derivNit 1 trEq 1 aideHum 1

akines 1 trembl 1
basCont 1 a1medSed 1
derivNit 1 medPsych 1

a1medSed 1 aidTecMa 1
antiHT 1 parkOuSP 1

sarcopen 1 nbchu2 1
demence 1 apUniGt5 1

Table 4.17: Percentage difference in balanced accuracy when predicting a given target using BN
with mandatory arcs minus without mandatory arcs for a given structure learning algorithm

algorithm trMar peurTom sarcopen trEq nbchu2 mean std
ghc_aic 1.27 -0.23 -0.32 -0.18 1.41 0.39 0.87
ghc_bic 1.94 0.1 -0.65 0.2 1.42 0.6 1.05
ghc_bd -0.67 -1.16 -0.61 -0.2 1.51 -0.23 1.03

ghc_bdeu 0.72 0.16 1.2 -0.95 0.66 0.36 0.82
ghc_log2 0.72 0.16 1.2 -0.95 0.66 0.36 0.82
ghc_k2 2.6 -1.7 0.57 -1.32 -0.4 -0.05 1.72

tabu_aic 0.43 -0.42 0.17 -0.22 0.4 0.07 0.38
tabu_bic 1.2 -2.26 -0.85 0.7 -1.32 -0.51 1.43
tabu_bd 1.28 -2.1 -0.57 -1.68 -0.95 -0.8 1.31

tabu_bdeu 0.27 -0.3 0.87 -1.65 -1.53 -0.47 1.11
tabu_log2 0.27 -0.3 0.87 -1.65 -1.53 -0.47 1.11
tabu_k2 -1.27 -1.27 0.54 -1.38 -1.95 -1.07 0.94

miic 1.71 -0.51 -0.46 -1.01 0 -0.05 1.05
mean 0.81 -0.76 0.15 -0.79 -0.12 -0.14 0.67

std 1.05 0.85 0.76 0.78 1.24 0.94 0.21
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(a) Balance disorder (trEq) (b) Sarcopenia (sarcopen) (c) Number of falls (nbchu2)

(d) Osteoporosis (osteopor)
(e) Orthostatic Hypotention (hy-
potenO) (f) Fear of falling (peurTom)

(g) Parkinson Syndrome (parkOuSP) (h) Gate disorder (trMar)

Figure 4.16: Markov Blanket with Mandatory arcs (blue line) for each target
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(a) Dementia (demence) (b) Depression (dep)

(c) Activities of daily living (ADLlt5)

Figure 4.17: Markov Blanket with Mandatory arcs (blue line) for each target (continued)
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Table 4.18: Percentage difference in balanced accuracy when predicting a given target using BN
with mandatory arcs minus without mandatory arcs for a given structure learning algorithm
(continued)

algorithm ADLlt5 demence hypotenO dep osteopor parkOuSP mean std
ghc_aic 1.98 0.17 -0.18 1.27 0.82 -0.33 0.62 0.9
ghc_bic 2.97 2.66 1.44 1.36 -0.98 -1.32 1.02 1.8
ghc_bd 0.08 -0.11 1.05 1.39 -0.82 -1.76 -0.03 1.17

ghc_bdeu 0.68 0.8 -0.11 0.92 -1.59 -1.88 -0.2 1.25
ghc_log2 0.68 0.8 -0.11 0.92 -1.59 -1.88 -0.2 1.25
ghc_k2 1.71 0.27 0.27 -0.15 -0.51 -0.86 0.12 0.89

tabu_aic 4.07 -1.75 0.25 0.89 -0.46 -1.45 0.26 2.12
tabu_bic 2.58 1.51 1.33 0.95 0.83 -1.39 0.97 1.31
tabu_bd 2.52 -0.48 0.69 -0.01 -1.71 -1.58 -0.1 1.58

tabu_bdeu 1.98 -0.4 0.45 0.25 -1.15 -0.93 0.03 1.14
tabu_log2 1.98 -0.4 0.45 0.25 -1.15 -0.93 0.03 1.14
tabu_k2 1.91 -1.17 2.05 0.2 -0.46 -1.46 0.18 1.51

miic 0.29 0 0 0 0.47 0.63 0.23 0.28
mean 1.8 0.15 0.58 0.63 -0.64 -1.16 0.23 1.04

std 1.14 1.13 0.7 0.56 0.88 0.7 0.85 0.24

and 1%. In addition, the standard deviation is also close to 1% which means that the results
using different algorithms do not vary too much. Also, when averaging over these 5 targets,
the difference is always less than or very close to 1%. The average difference is -0.14% with
a standard deviation of 0.21% which means there is no big difference in predicting these five
targets.

Similarly, we can see from Table 4.18 that when averaging over all algorithms, the difference
is always less than 1% except for ADLlt5 (1.8%) and parkOuSP (-1.16%). Additionally, when
averaging over all targets, the difference is always close to or less than 1%. Overall, the mean
difference when using all algorithms and predicting all targets is 0.23% with a standard deviation
of 0.24%.

From the results presented here, we can conclude that in terms of predictive performance
when using the mandatory arcs there is no difference or very little difference as compared to not
using the mandatory arcs. Hence we will use these mandatory arcs to learn the structure of the
BN model.

4.3.2.3 Total number of arcs

So far we have seen that there is no difference in terms of predictive performance for all the 13
algorithms used to learn the structure of the BN model. However, the structure learned using a
different algorithm is different as we can see from Tables 4.19 and 4.20 which represents the
structural hamming distance (SHD) between all the algorithms used. Two perfectly identical
structures have SHD equal to 0 and the more the SHD means the more different the structures
are.

So in order to select an algorithm to learn the structure in our case we refer to using the
algorithm which produces the less number of arcs in total. Table 4.21 represents the total number
of arcs learned using each algorithm. We can see that when using GHC with the BIC score
provides us with 121 arcs, hence we decided to use this algorithm to learn the structure of the
BN model from our data.
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Table 4.19: Structural hamming distance (SHD)

ghc_aic ghc_bic ghc_bd ghc_bdeu ghc_k2 ghc_log2
ghc_aic 0
ghc_bic 50 0
ghc_bd 33 76 0

ghc_bdeu 31 75 5 0
ghc_k2 35 66 29 28 0

ghc_log2 11 58 30 31 38 0
tabu_aic 65 103 86 87 89 74
tabu_bic 94 60 112 114 105 100
tabu_bd 77 113 70 71 89 81

tabu_bdeu 76 112 69 70 88 80
tabu_k2 77 105 86 87 75 83

tabu_log2 70 107 86 87 91 67
miic 129 141 141 141 141 133

Table 4.20: Structural hamming distance (SHD) (continued..)

tabu_aic tabu_bic tabu_bd tabu_bdeu tabu_k2 tabu_log2 miic
tabu_aic 0
tabu_bic 79 0
tabu_bd 43 107 0

tabu_bdeu 43 105 4 0
tabu_k2 41 98 22 26 0

tabu_log2 9 83 42 42 42 0
miic 143 155 154 155 153 145 0

Table 4.21: Total number of arcs for a given algorithm for structure learning

ghc_aic ghc_bic ghc_bd ghc_bdeu ghc_k2 ghc_log2 tabu_aic
#arcs 144 121 160 160 150 152 149

tabu_bic tabu_bd tabu_bdeu tabu_k2 tabu_log2 miic
#arcs 122 161 161 152 156 195
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Points to remember from this section

✓ All the structure learning that we used provided very similar per-
formance in terms of balanced accuracy

✓ We decided to use the greedy hill climbing (GHC) algorithm with
a BIC score to learn the structure of our BN model

✓ We introduce some mandatory arcs involving the target variables
based on general knowledge and with help from domain experts

4.3.3 Using BN with oversampling versus without oversampling

We have seen in previous sections that using a classifier after balancing the data gives better
results. Since we focus on using BN and also the average results when using BN were good,
we further investigate whether this claim is still true for BN. With that aim, in this section,
we present the difference in balanced accuracy when predicting a given target when using
oversampling versus without oversampling. As we have also seen that using SVM-SMOTE gives
the best results in our case. We will focus on the difference when using SVM-SMOTE as the
balancing technique. Figure 4.18 represents the schematic diagram of the methodology used:
for each target, the 10-fold cross-validation method is applied; a new learning set is obtained
after balancing the original one with SVM-SMOTE according to the imbalance ratio of the target;
a first BN is learned based on the non-modified learning set and a second one based on the
balanced learning set. The performance of these two BNs is compared regarding balanced
accuracy.

Figure 4.18: Methodology used when evaluating the interest of using BN after balancing the
data versus imbalanced data in iteration 2

Figure 4.19 represents the balanced accuracy when predicting all targets using BN with
SVM-SMOTE versus with imbalanced data.

We can clearly see from the Figure that using BN with imbalanced data is always better than
using BN after balancing the data using SVM-SMOTE. The difference ranges from approximately
1% up to 14%. Balanced accuracy is a symmetric measure regarding positive and negative
classes. The highest gap is obtained for two highly imbalanced targets (trMar and peurTom)
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Figure 4.19: Percentage of increment or decrement from the baseline results regarding Balanced
accuracy when using BN with imbalanced data versus using BN with balanced data (using
SVM-SMOTE).

with a difference of more than 12% in favor of using the original imbalanced data set. For three
targets, the difference is between 4% and 5% (sarcopen, nbChu2, hypotenO) and six targets show
a difference in balanced accuracy between 0.5 and 3%, always in favor of using the imbalanced
data set. Hence for our further analysis, we decide to use BN with imbalanced data. Now in the
next section, we present the comparison of results when using BN versus all other classifiers
mentioned earlier.

Points to remember from this section

✓ We decided to use the BN model with original imbalanced data for
the evaluation of a given target risk factor

4.3.4 Comparison of BN with other classifiers

So far we have seen that BN provides good prediction results. But in order to see the quality
of prediction, in this section, we compare the results of prediction using BN with other usual
classifiers namely: LR, DT, RF, SVM, ANN, and MNB. Here the BN is built using original
imbalanced data and other classifiers are built after balancing the data using SVM-SMOTE (as
discussed earlier). In addition, BN is learned using GHC with BIC score and mandatory arcs (as
defined in previous section). Furthermore, we use balanced accuracy, F1 score, the area under
ROC, and PR curves for evaluation. We use 10-fold cross-validation with a stratified strategy
and an exhaustive search over specified parameter values for an estimator (gridsearchcv) for
hyperparameter tuning. Figure 4.20 represents the schematic diagram of the methodology used.

Table 4.22 represents the list of parameters and their different values, and Tables 4.23
and 4.24 represent the values selected for each parameter for a given classifier after tuning of
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Figure 4.20: Methodology used when comparing the predictive performance of BN with all other
classifiers used in iteration 2

hyperparameter using gridsearchcv. We can see that the best value of a parameter for a given
classifier differs for each target. For example: for the classifier logistic regression (lr), the best
value of the parameter C is either 0.01 or 0.1 (and C=1 for the target trEq); and the best value for
parameter solver is liblinear for all variables in group M0 and lblgs for variables in group M1,
except the variable trMar.

Table 4.22: Possible combination of parameter for tuning

Parameters Values
lr C 0.01 0.1 1 10 100

Solver lbfgs liblinear newton-cg sag saga
dt criterion gini entropy

max_depth 10 30 50 70 90 None
max_features log2 sqrt None

rf criterion gini entropy
max_depth 10 30 50 70 90 None

max_features log2 sqrt None
n_estimators 10 50 100 150 200 250

svm C 0.1 1 10 100
kernel linear poly rbf sigmoid

ANN batch_size 10 20 40 60 80 100
epochs 10 50 100

Now we provide the comparison of results using different classifiers when predicting a
given target. Figures 4.21 to 4.24 show the comparison of the performance of the BN with
other classifiers regarding balances accuracy, F1 score, the area under the precision-recall curve
and the area under the ROC curve. In those Figures, the target risk factors for falls are sorted
according to their prevalence: variables of group M1 (prevalence more than 50%) are on the
left and those in group M0 (prevalence less than 50%) are on the right. The variables in the
middle have a better balance in their classes. Figure 4.21 represents the percentage increment or
decrement when comparing balanced accuracy for a given classifier when predicting a given
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Table 4.23: Selected parameter after tuning for each target in group M1

Parameters trMar peurTom trEq sarcopen nbchu2
lr C 0.1 0.1 1 0.1 0.01

solver liblinear lbfgs lbfgs lbfgs lbfgs
dt criterion gini entropy gini entropy entropy

max_depth 10 30 10 30 10
max_features None None None sqrt None

rf criterion gini gini entropy entropy gini
max_depth 30 30 30 50 10

max_features log2 log2 sqrt log2 log2
n_estimators 100 250 250 250 100

svm C 1 1 1 1 1
kernel rbf rbf rbf rbf rbf

ANN batch_size 100 10 10 20 100
epochs 50 10 10 10 10

Table 4.24: Selected parameter after tuning for each target in group M0

Parameters demence osteopor hypotenO dep ADLlt5 parkOuSP
lr C 0.1 0.01 0.01 0.1 0.1 0.1

solver liblinear liblinear liblinear liblinear liblinear liblinear
dt criterion gini entropy entropy gini gini gini

max_depth 10 10 10 10 30 30
max_features None None log2 None sqrt None

rf criterion gini gini entropy entropy entropy entropy
max_depth 10 30 30 10 30 30

max_features log2 sqrt log2 sqrt log2 None
n_estimators 200 250 150 200 100 100

svm C 0.1 1 1 1 100 100
kernel linear rbf rbf rbf rbf rbf

ANN batch_size 20 40 80 20 80 20
epochs 10 10 10 10 100 10
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target. We can see from this Figure that overall LR, SVM, and BN have the best balanced accuracy.
Furthermore, we have 10-15% increments from the baseline for targets nbchu2 and hypotenO;
15-20% for targets sarcopen, and trEq; 20-25% for targets trEq and ADLlt5; 25-30% for targets
trMar, peurTom, osteopor, dep, and parkOuSP; where the baseline balanced accuracy is always
50%.

Figure 4.21: Comparison of prediction results of BN with other classifiers when for a given target,
percentage of increment or decrement from the baseline results regarding Balanced accuracy.

Figure 4.22 represents the percentage increment or decrement when comparing the area
under the ROC curve (AUC-ROC) for a given classifier when predicting a given target. We can
see from this Table that overall LR, RF, SVM, and BN have the best evaluation. Furthermore, we
have 10-15% increments from the baseline for targets nbchu2 and hypotenO; 15-20% for targets
sarcopen; 20-30% for targets trEq and demence; 30-40% for targets trMar, peurTom, osteopor, dep,
ADLlt5, and parkOuSP; where the baseline AUC-ROC is always 50%.

Figure 4.23 represents the percentage increment or decrement when comparing the area
under the PR curve (AUC-PR) for a given classifier when predicting a given target. We can see
from this Table that overall LR, RF, SVM, ANN, and BN have the best evaluation. Furthermore,
we have 10-15% increments from the baseline for targets trMar, sarcopen, nbchu2 and hypotenO;
15-20% for targets peurTom, trEq and demence; 30-40% for targets ADLlt5; 40-50% for targets
osteopor, dep, and parkOuSP; where the baseline AUC-PR for each target is mentioned in the
horizontal axis with their respective names.

Figure 4.24 represents the F1 score (F1) for a given classifier when predicting a given target.
We can see from this Table that overall LR, RF, SVM, ANN, and BN have the best evaluation.
For targets hypotenO we have an F1 score of 40-50%; 50-60% for ADLlt5; 60-70% for demence,
osteopor, dep, nbchu2 and parkOuSp; 70-80% for sarcopen; 80-90% for trMar, peurTom, and trEq.
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Figure 4.22: Comparison of prediction results of BN with other classifiers when for a given
target, percentage of increment or decrement from the baseline results regarding area under
ROC curve.

Figure 4.23: Comparison of prediction results of BN with other classifiers when for a given
target, percentage of increment or decrement from the baseline results regarding area under PR
curve.
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Figure 4.24: Comparison of prediction results of BN with other classifiers when for a given
target, percentage of F1 score.

Points to remember from this section

✓ BN’s predictive performance is as good as some other classifiers
used

4.3.5 Summary of results using iteration 2

In this section, we have first presented the results in order to answer the question: should we
use a specific subset of variables or the complete set of variables to evaluate a given target risk
factor? We have used chi-square and mutual information methods to select a specific subset of
variables. From the results presented, we concluded that on average there is no difference when
using a specific subset of variables or all variables when predicting a given target. In addition,
since our focus is more on using BN, we further investigated if we should use a single BN to
predict all targets or use a specific subset of variables to learn a specific BN for a given target
risk factors. Here we selected 3 target risk factors for comparison based on several criteria and
also used 13 different BN models. From the results presented, we conclude that it is better to use
a single BN model using all variables to predict a given target risk factor.

Furthermore, we also compared 13 different structure learning algorithms in order to have a
structure that has a good representation of the data, an understandable relationship between
variables, and good prediction results. From the results presented, we decided to use the greedy
hill climbing (GHC) algorithm with a BIC score for structure learning for the BN model. We
also introduce some mandatory arcs with the help of domain experts and based on general
knowledge in order to make the graph more understandable. In addition, we also investigated
whether to use the oversampling method before building the BN model or use the imbalanced
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data itself. The results suggest that the BN model performs better when build using imbalanced
data.

Furthermore, to evaluate the quality of the prediction results of BN we compared the results
with several well-used classifiers namely: LR, DT, RF, SVM, ANN, and MNB. To evaluate the
performance of different classifiers we presented balanced accuracy, F1 score, the area under
ROC, and PR curves. As can be seen from the results presented, BN is among the best-performing
classifiers when predicting a given target risk factor and we are able to predict most of the targets
with some variability in the results.

4.4 Benefits of Iteration 2 compared to Iteration 1

So far we have presented the results obtained using both the first and second iterations. Now in
this section, we present the difference in those results. Table 4.25 presents the difference between
iteration 1 and iteration 2. The first column represents the different steps with the second
column focusing on the criteria used for each step. The third and fourth columns represent the
values for each criterion when using iterations 1 and 2 respectively.

Table 4.25: Differences in iteration 1 and iteration 2

Criteria Iteration 1 Iteration 2

manual var selection # var 45 90
# targets 12 11

missing values imputation KNN (k=5) NB, KNN (k= [1, 2, ...
, 19])

all VS sss
var selection chi2 chi2, mi, union, inter-

section
classifier BN, LR, DT, RF, SVM BN, LR, RF, SVM,

MNB
measures Acc, F1 Acc

imbalance problem
oversampling SMOTE, ADASYN,

SVM-SMOTE
SVM-SMOTE

classifier BN, LR, RF, SVM,
ANN, MNB

BN

measures Bal-acc, F1, F2, AUC-
ROC, AUC-PR

Bal-acc

risk factor prediction
classifier BN, LR, DT, RF, SVM BN, LR, DT, RF, SVM,

MNB, ANN
measures Acc, F1, Bal-acc Bal-acc, F1, AUC-

ROC, AUC-PR
use % observation Yes No

We can see from the above Table that in the first iteration we selected 45 variables after
preprocessing of data whereas, in the second iteration, we selected 90 variables. The goal of the
first iteration was to get a first view of the feasibility, the methodology, and the quality of results
while keeping a small model in order to make easier this first round of the study. In that aim,
the 45 selected variables correspond to the most important variables involved in fall prevention.
On the opposite, the aim in the second iteration was to improve the quality of the prediction,
and in that aim, we considered any variable likely to contribute to the prediction of at least one
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of the targets. The difference at this step is not only just in terms of the number of variables
selected but also in the quality of the way the variables have been either selected or defined
by combining several variables with the same or very close meaning. In addition, the number
of target variables was reduced from 12 to 11 in iteration 2. This is due to the removal of the
variable auTrNeur that had been defined in the first iteration. This variable regrouped a set of 8
neurological disorders except for dementia, CVA-TIA, or Parkinson’s disease. These last three
neurological disorders are among the main risk factors for falls whereas the eight others play a
secondary role. It finally appeared that it was not relevant to predict the presence of one of these
eight neurological disorders. We have thus added each of them as distinct variables in the second
iteration, but not considered as target variables. Regarding the missing value imputation, in
iteration 1, we only used KNN (k=5) in order to get a completed data set; in the second iteration,
we tried to optimize this step, first by answering the question of whether to use MVI or not, and
then with what algorithm. In that aim, in iteration 2, we compared the performance of NB and
KNN with the value of k ranging from 1 to 19 (see section 3.4.4).

In order to evaluate the interest in using a complete set of variables versus a specific subset
of variables, in iteration 1 we only used the chi2 method for variables selection and BN, LR, DT,
RF, and SVM for prediction with accuracy and F1 score as measures to evaluate the quality of
prediction. But in iteration 2 we achieved a more complete test to answer the question, and we
used chi2, mi, their intersection, and union for variable selection with BN, LR, RF, MNB, and
SVM for prediction with accuracy as measures.

In order to evaluate the interest in using imbalanced data versus balanced data for the
prediction of a given target risk factor, in the first iteration we compare the results using the
following oversampling methods: SMOTE, ADASYN, SVM-SMOTE with the following classifiers:
BN, LR, RF, SVM, ANN, MNB and evaluated the quality of results using the following measures:
Bal-acc, F1, F2, AUC-ROC, AUC-PR. This first comparison showed (1) the interest to use the
balancing method for usual classifiers, (2) the difference regarding the Bayesian network, and (3)
the advantage of SVM-SMOTE over SMOTE and ADASYN. Based on those results, in the second
iteration 2, we only investigated the use of SVM-SMOTE with BN using bal-acc as a measure to
evaluate the quality of prediction. For other classifiers, we use them with SVM-SMOTE (based
on the results from iteration 1).

Since our main focus is on using BN to evaluate the risk factor, in the first iteration we only
used GHC algorithms with AIC score to learn the structure of BN whereas, in the second iteration,
we compared 13 different structure learning algorithms namely GHC and Tabu list each with
scores: AIC, BIC, BD, Bdeu, K2, and Log2; and MIIC. Furthermore, in order to evaluate the
quality of the predictive performance of BN for a given target, in the first iteration we compare
the results of BN with the following classifiers: BN, LR, DT, RF, and SVM with the following
measures: accuracy and F1 score. But for the second iteration, we used the following classifiers:
LR, DT, RF, SVM, MNB, and ANN with the following measures: Bal-acc, F1, AUC-ROC, and
AUC-PR. Furthermore, in the first iteration, we evaluated the interest or prediction of a given
target risk factor using the partial observation available but in the second iteration, we did not
perform this evaluation based on partial observation because of time constraints. In future
perspectives, we plan to evaluate the target risk factors based on partial observation using the
data selected using iteration 2.

Now, we present the difference in results of the prediction of BN using iteration 1 versus
iteration 2. Figure 4.25 represents the percentage increment in balanced accuracy from baseline
when using BN with iteration 1 versus iteration 2. We can see from the figure that using BN
after iteration 2 clearly gives a higher balanced accuracy when predicting all the targets except
sarcopen and osteopor. The difference in these targets is also very small.

Figure 4.26 represents the percentage F1-score when using BN with iteration 1 versus
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Figure 4.25: percentage increment in balanced accuracy from baseline when using BN with
iteration 1 versus iteration 2

iteration 2. We can see from the figure that using BN after iteration 2 gives a higher F1-score
when predicting all the targets in group M1 except sarcopen and nbchu2 but the difference in
these targets is also very small. Similarly, for targets in group M0, the F1-score is always better
when using BN with iteration 2.

4.5 Conclusion

As mentioned in earlier chapters, fall prevention requires to provide a small number of rec-
ommendations that are selected depending on the risk factors present in a person. Thus the
evaluation of risk factors is the base of fall prevention. To that aim, in this chapter, we used an
iterative approach for analyzing our data. It is divided into two iterations. The objective for
the first (second) iteration is to select the minimum (maximum) number of variables from the
initial data set in order to evaluate the risk factors for falls. Here, in the first iteration, the goal
was to provide a model with a reasonable size and in the second iteration to improve the results
obtained by the first iteration and try to keep as many variables as possible.

We have presented the results using iteration 1 versus iteration 2 regarding the question:
(1) should we use a complete set or a specific subset of variables to evaluate a given target risk
factor? From the results presented, we see that there is no big difference in using either of the
two. Also, in real-life situations, not all the information is available for a given patient; as a
consequence, reducing the number of variables will further reduce the chances of getting the
relevant information to predict a given target risk factor. So we decided to use the complete set
of variables.

In addition, we have evaluated the interest in using imbalanced data versus balanced data in
order to evaluate the target risk factor. We have presented the results using several oversampling
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Figure 4.26: percentage F1-score when using BN with iteration 1 versus iteration 2

techniques namely: SMOTE, ADASYN, and SVM-SMOTE. From the results, we have decided to
use the BN model with imbalanced data. Finally, we evaluated the target risk factors using both
iterations and presented the difference in results.

Among the variables selected for this study, an arbitrary number of them can be observed,
whether they are targets or not. Moreover, risk factors are not independent of each other,
meaning that when one of them is observed, it should be used to improve the evaluation of the
others, in addition to other observed features. That situation makes more difficult the use of
usual classifiers because a new model would have to be learned for each target variable, and for
each possible subset of observed variables. BN models allow overcoming that problem, since
the same model can be used to evaluate any variable of the model, regarding any subset of
observations. In addition, BNs allow a combination of general statistical knowledge and specific
individual information, and to update belief on any node from incomplete observations. These
features exactly answer the problem of predicting risk factors in real-life situations. Another
advantage of BN is that the model can be built both from data and expert knowledge which is very
interesting in the context of health. It is also very important to make the model interpreTable/
understandable by the final user (general practitioners) since it contributes to make the aiding
system accepTable and augments the trust in results. So BN becomes the good choice to use
because of the graphical representation that is easy to explain and understand.



Chapter5
Conclusion and perspectives

In this chapter, we first summarize the main ideas from our proposed approaches, including rel-
evant methodologies, results analysis, and discussion; then we describe the future improvements
of this thesis in both short-term and long-term aspects. All details are presented as follows.

5.1 Conclusion

The use of machine learning algorithms in healthcare is an area of growing interest and has the
potential to improve the quality and efficiency of healthcare services. These algorithms can be
used as a way to aid in early illness identification, patient care, and community services as the
amount of data in healthcare grows. However, the success of these algorithms heavily relies on
the quality of the data used for training as well as the ability to handle and process the data
effectively. Furthermore, building a good machine learning model requires a good data set. Also,
working with data is more difficult than it may appear since it necessitates, careful handling of
the data. With that aim, in our work, we have presented the basics of data preparation more
specifically about handling missing data, the problem of imbalance in data, and the selection of
relevant variables to build a good machine learning model. We also presented an overview of a
literature review that shows the use of different machine learning algorithms in the healthcare
domain and the challenges faced by researchers. Furthermore, in our work, we focus on the
problem of the prevention of falls. In this context, machine learning algorithms can be used to
detect health-related risks in patients, which can aid in the evaluation of risk factors for falls.

Fall prevention is a challenge to population aging, but it is one of the issues that require more
attention. It assures that a large part of the elderly has a regular and efficient evaluation of their
risk of fall and adopted recommendations to reduce their risk of fall. Since falls result from a
complex interaction of risk factors, an important step in fall prevention is to detect the presence
of these risk factors. Also, it has been shown that reducing the risk factors leads to a reduction
in the risk of falls. Thus, fall prevention can be achieved by providing recommendations that
help reduce the risk factors that are present for a given person (for instance: kinesiotherapy
may improve balance and reduce the risk of muscular weakness). Among the risk factors for
falls, some of them are reducible (or actionable), meaning that some actions can be carried out
in order to reduce them. We focus on evaluating these risk factors. Furthermore, the evaluation
of risk factors for falls remains a challenge since it requires time and expertise, and specific
tests and devices may also be necessary. Moreover, the family physician, who is one of the main
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actors in fall prevention, generally does not have a lot of time, whereas fall prevention requires
a pedagogical and repeated approach. As a consequence, the collection of information for a
complete evaluation of risk factors is not feasible regularly, and the risk factors for a person’s fall
should be assessed from an incomplete set of observations. When there is no direct information
about a specific risk factor, it is however possible to get a sense of it from general knowledge
about its frequency in a specific context, which is described by the other available information
about the person. As an example, the experts know that a person who is afraid of falling and
has neuropathy is much more likely to have balance problems than the average elderly. In this
deduction, the expert combines general knowledge and reasoning with uncertainty.

This thesis is a contribution to the development of a knowledge-based system to evaluate
risk factors to prevent falls. In that context, we aim to use a knowledge model with an inference
engine that allows the updating of beliefs under uncertainty, the results and the model itself can
be interpretable or explainable and have a good predictive performance. Furthermore, among
the variables selected for this study, an arbitrary number of them can be observed, whether they
are targets or not. Moreover, risk factors are not independent of each other, meaning that when
one of them is observed, it should be used to improve the evaluation of the others, in addition to
other observed features. That situation makes the use of usual classifiers more difficult because
a new model would have to be learned for each target variable and for each possible subset
of observed variables. With that in mind, we proposed the use of Bayesian networks (BN)
which is a type of probabilistic graphical model. BN models allow for overcoming that problem
since the same model can be used to evaluate any variable of the model, regarding any subset
of observations. In addition, BNs allow a combination of general statistical knowledge and
specific individual information to update beliefs on any node based on incomplete observations.
These features exactly answer the problem of predicting risk factors in real-life situations.
Another advantage of BN is that the model can be built both from data and expert knowledge,
which is very interesting in the context of health. It is also very important to make the model
interpretable/ understandable by the final user (general practitioners) since it contributes to
making the aiding system acceptable and augments trust in the results. Hence BN becomes a
good choice to use because of the graphical representation that is easy to explain and understand.
So we constructed a BN model to automatically evaluate the main actionable risk factors using
a real data set combined with expert knowledge and we compared the quality of results with
other usual classifiers.

Data is an essential component of an AI or ML model. As data collection becomes simpler as a
result of increased digitization, it is also becoming more widely accessible in the healthcare sector.
The information is collected at hospitals, care centers, and other healthcare institutions. These
data could include, among other things, information about biological processes, administrative
processes, and insurance claims. The amount of data being used to solve healthcare-related
issues is increasing, as is the use of data-driven methods.

In this work, we have presented the description of the data used which was collected at the
Service of Fall Prevention, Hospital of Lille, France. The initial data includes 1810 patients
who visited the service between January 2005 and December 2016, of whom 28% are male
and 72% are female, with ages ranging from 51 years old to 100 years old, with an average age
of 81 years old. In our study, we included persons who can walk and are 65 years of age or
older. In addition, the methodology used to design an ontology for fall prevention, followed by
the resulting ontology for the risk factors of falling, has also been presented. The goal of this
ontology, which served as the foundation for the creation of the fall prevention software system,
is to support the assessment of elderly individuals’ risk factors for falls. It also provides a solid
foundation for our knowledge of the variables in our data set.

To achieve that aim, in this work, we used an iterative approach for analyzing our data. It
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is divided into two iterations. The objective of the first (or second) iteration is to select the
minimum (or maximum) number of variables from the initial data set in order to evaluate the
risk factors for falls. The idea here is to "begin small" during the first iteration to get a first
return about the feasibility, the results, and the difficulties; then make a second iteration with
the aim to improve the evaluation of the risk factors for falls by improving each step of the
whole process. Furthermore, in order to identify the variables to use for our study, we first
used the criterion of data quality to remove unusable variables and a second criterion was to
remove variables that could not be used to evaluate any risk factors for falls. In pursuit of that
aim, we removed variables related to recommendations, variables associated with the second
appointment after 6 months, and administrative variables. After the variables guided by the
first two criteria are removed, we also use a third criterion that is specific to each iteration of
data cleaning and consists in providing a model with a reasonable size for the first iteration
and improving each step of the first iteration for the second iteration. This cleaning led to a
data set containing 45 variables in the first iteration and 90 variables in the second iteration.
Additionally, we have identified 12 target risk factors (11 in the second iteration) to evaluate
from our data. These risk factors have been selected as targets because they are actionable; are
not frequently present in the patient’s file; and are not easy to collect. All of them are with binary
domains with prevalence ranges from 83% to 17% and can be divided into 2 groups: Group M0:
targets having a majority class equal to 0; and Group M1: targets with a majority class equal to 1.

As mentioned earlier, fall prevention requires providing a small number of recommendations
that are selected depending on the risk factors present in a person. Thus, the evaluation of risk
factors is the basis of fall prevention. With that goal in mind, we first analyzed whether we
should use a complete set or a specific subset of variables to evaluate a given target risk factor.
In that aim, we compared the quality of the prediction for each target variable after using all
variables, or a specific subset of variables selected thanks to one of the four following methods:
chi-square, mutual information, and the intersection and union of these two subsets. From
the results presented, we observed that there is no big difference between using either of the
two. Also, in real-life situations, not all the information is available for a given patient; as a
consequence, reducing the number of variables will further reduce the chances of getting the
relevant information to predict a given target risk factor. So we decided to use the complete
set of variables. In addition, we have evaluated the interest in using imbalanced data versus
balanced data in order to evaluate the target risk factor. We have presented the results using
several oversampling techniques, namely: SMOTE, ADASYN, and SVM-SMOTE. To achieve
these results, we learned the structure and the parameters of Bayesian networks (thanks to the
Greedy Hill Climbing algorithm with the BIC score), first based on the original imbalanced
learning set, and second, based on the balanced learning set using the oversampling techniques.
We compared the performance of these experiments using different metrics and we conclude that
for this study, the use of a balancing method does not allow for improvement in the performance,
except when focusing on the F1-score and only for the variables with imbalance classes in favor
of the positive class (which is not the most frequent situation in real data sets). When focusing
on highly imbalanced classes in favor of the negative class (which is a frequent case), the use
of the original imbalanced data set is clearly better. When focusing on the metrics area under
the precision-recall curve (AUC-PR) and area under the receiver operating characteristic curve
(AUC-ROC), the results are mitigated except for highly imbalanced variables with a negative
majority class. Based on these results, we have decided to use the BN model with imbalanced
data.

Furthermore, we evaluated the target risk factors using both iterations and presented the dif-
ference in results. To achieve these results, we learned six usual classifiers based on SVMSMOTE
balanced data: logistic regression, support vector machine, random forest, multinomial naive
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Bayes classifier, artificial neural network and decision tree, and a Bayesian network based on
the original imbalanced data set. The hyperparameters of all the classifiers have been tuned to
maximize the performance. We compared the performance of these experiments using different
performance metrics and focusing on balanced accuracy and F1-score. Despite the different
measures showing some global similar trends, it appears that the choice of an appropriate
measure is important together with a true analysis of the results regarding the performance
metric since a quick look at the performance provided by a specific metric does not allow us
to conclude easily on the results. In addition, we conclude that six out of the eleven target risk
factors for falls are well predicted and the prediction of four other risk factors for falls shows
lower performance whereas one risk factor is hardly predictable from our data set. Regarding
the set of classifiers, six of them show similar performance with however important variations
either for a target or for a metric and the ranking of the classifiers depends on the performance
metric. Only one classifier (decision tree) provides regularly a less good evaluation.

5.2 Future perspectives

In this section, we present the future perspectives of our thesis. We mentioned some perspectives
when we discussed our contributions and their implications. The objective of this section is to
develop these perspectives and aggregate them. In this regard, we present five perspectives:
causal BN graph, reasoning with partial observations, data collection, reasoning based on
temporal information, and application for the general physician as follows.

Causal BN graph

In this study, we aim to get a causal graph since it contributes to the understandability of the
graph by experts. To achieve that aim, we worked with domain experts and defined some
mandatory arcs to be included in the structure of the BN model. But we had limited time with
domain experts and the number of arcs learned by any given algorithm is very high. Due to this
constraint, we focused on the possible arcs around each target risk factor. In future work, it will
be interesting to build a fully causal graph. As a reminder, one of the main objectives of our
work is to support the general practitioner in evaluating the risk of falls. With that aim, we want
to provide a model that can be understood by the final user so that the results can be explained.
So, we want to focus on the relationship between the variables in our BN model to make the
graph more understandable and thus, augment the trust of final users in the results of a future
fall prevention application.

Reasoning with partial information

As a reminder, the family physician, who is one of the main actors in fall prevention, generally
does not have a lot of time, whereas fall prevention requires a pedagogical and repeated approach.
As a consequence, the collection of complete information for the evaluation of risk factors is not
feasible regularly by the general practitioner, and the risk factors for a person’s fall should be
assessed from an incomplete set of observations. In our work, we have only investigated this part
during iteration 1 which is when the number of selected variables was less. The results obtained
in the first iteration showed that for some target variables, the quality of the evaluation augment
with the proportion of available information whereas for other variables, the evaluation was not
better (and not good). However, this result depends also on the performance metric considered.
We expect the results of the risk factor evaluation from partial observation to be better in the
second iteration, because of the larger set of variables, and also because of the improvements of
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the results in the second iteration (due to the careful consideration of each step of the whole
process). Due to the time constraints, it was not feasible to investigate this. Hence in future
work, it will be very interesting to check the quality of prediction based on available information
for a given person (partial or complete).

Data collection

The data for this work was provided by the service of Fall Prevention, Hospital of Lille, France
which includes 1810 patients who visited the service between January 2005 and December
2016. As the size of our dataset was limited, it will be very interesting to evaluate the quality
of our model when learned using a larger data set. Also, the data set used does not represent
the general elderly population because the patients who visited the service are already at high
risk of falls. It will also be interesting to consider a more representative group of the elderly
when building a prediction model to evaluate the risk factors for falls. Another perspective is to
gather information about any elderly person based on a large panel of different sources such
as automatic extraction from the Electronic Health Record, and from the medical database of
hospitals where the patient has been received, different sensors, and manual input from different
stakeholders in fall prevention: the elderly person, family members and caregivers, nurses,
physiotherapist, any physician and specialists related with the elderly person, and also medical
staff in a hospital where the person has been. This larger number of sources of information about
the patient would allow for getting a more complete set of information about the patient, which
is very important for the evaluation of a repeated risk factor for falls. We recall that except in a
fall prevention service where the information of the patient is completely and carefully collected,
the amount and the quality of information available on a person is a key point for fall prevention.
Such a multisource and continuous process of data collection about a given person with the aim
of fall prevention could provide a partial set of dated information, associated with the source of
each piece of information.

Reasoning based on temporal information

A large part of the information of a person changes with time. In real life, when information is
required immediately for a given person, such as for fall prevention by general practitioners,
the available information can be seen as a partial time-stamped observation set as explained
above. Beyond this thesis, a perspective is to allow an assessment of the risk factors for falls
based on a partial set of dated information. This perspective raises the first question which is to
evaluate the current state of a variable given a dated observation (or a set of dated observations).
For this purpose, we need knowledge about the dynamics of the considered variables, as well
as a sufficient temporal data set that allows to reason about the changes regarding a person’s
features over a long period of time. Faced with the difficulty of finding such a data set, we have
proposed an algorithm to simulate such a data set, based on real static data provided by the
service of fall prevention at Lille’s hospital. We have selected five persistent variables, meaning
that their value may change at most once. An example of such a variable is Parkinson’s disease:
when we consider a binary variable, the initial value is the absence of the disease, and it may
change toward the positive value at most once in the life of a person, and then it never changes
again. We call this variable a positive persistent variable. The algorithm to simulate a temporal
data set for a subset of persistent variables is based on assumptions regarding the temporal
evolution of each contextualized variable, as defined by a Bayesian network learned on the real
static data set. The temporal data set simulated thanks to the proposed algorithm is evaluated by
the comparison of the temporal distribution of each contextualized variable with the functions
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obtained by linear interpolation from the real data set. Since our static data set includes the
age of the person, we analyzed the proportion of positive values for each age group. From this
analysis, we built a dynamic BN that was used to validate the simulated temporal data.

Further information about this process can be found in appendix A. However, given the scale
of the question and time constraints we did not go further in this direction, and in future work,
it will be very interesting to explore the way to manage dated observation sets.

Application for the General Physician

As a reminder, the main objective of this work was to help the general physician evaluate the
main risk factors for falls. But generally, they are no experts in using different inference engines.
With that in mind, it would be very helpful to have an application that can be easily used by
the general physician as well as the other actors such as the nurse or the person himself to get
the evaluation of risk factors for falls and associated recommendations for fall prevention. In
this direction, we have co-supervised a master’s student project whose aim was to develop a first
draft of an application which can be found at https://chutepa.uphf.fr/.

https://chutepa.uphf.fr/
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A.1 Introduction

Data are the basis of a lot of work in artificial intelligence, often related to learning and reasoning.
A temporal data set includes a series of values over time for a set of variables and a set of samples.
With regard to data on people, describing, for example, their abilities, environment, behavior, etc,
longitudinal studies allow for a collection of repeated observations over time of a phenomenon

129
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and/or a sample of individuals. However, such data collection is very costly and it often concerns
either a short period of time, and/or a small number of persons, and/or a limited number of
observations for a given variable.

In order to palliate that difficulty, we aim to simulate a complete temporal data set that
includes the values of all variables at each time step for a long period (several decades) and for a
large number of elderly.

When dealing with static data, it is frequent to simulate data from a Bayesian network [50,
27]. Temporal data sets can also be simulated with dynamic Bayesian networks (DBN) [86]. An
example is given in [76] where a cohort is simulated for fifteen years, thanks to a DBN learned
from a longitudinal study. In a DBN, variables are related to each other over two or more time
slices. From a theoretical point of view, in order to consider sequences of arbitrary length, a
solution is to consider that the probability distributions describing the temporal dependencies
are time-invariant. In that way, the relations defined between two time slices can be easily
deployed (unrolled) for a particular number of steps. However, when we create a junction tree
from an unrolled DBN, the cliques tend to be very large, often making exact inferences tends to
become intractable [35, 86].

In this work, we propose another approach to simulate a temporal data set that allows
us not to make the strong assumption that temporal evolution is time-invariant. We present
an algorithm to simulate a temporal data set on the basis of a real static data set. including
information collected during the multidisciplinary consultation for fall prevention in Lille’s
Hospital. The real data set includes only one observation per person and per variable. We first
present the context and the motivation to simulate a temporal data set, followed by the real
static data set from Lille’s hospital. Second, we explain the algorithm and related assumptions
and definitions. We also provide some elements to evaluate the quality of the simulated data set.
Finally, we give some perspective about how this data set could be used in the context of the
prediction of risk factors for fall from a partial time-stamped data set.

A.2 Context and motivation

This work takes place in the context of fall prevention. We present below our collaboration with
Lille’s hospital and our motivation to simulate a temporal data set from a real static data set
provided by that service.

One-third of people aged 65 and over living at home fall every year. This is the case for half
of those over 85 years of age [25]. Falls account for 40% of all injury deaths [96]. According
to the World Health Organization [129], falls and consequent injuries are major public health
problems that require frequent medical attention. Falls prevention is a challenge to population
aging, but it is one of the issues that have not been given sufficient attention. Since falls result
from a complex interaction of risk factors, an important step in fall prevention is to detect the
presence of risk factors for falls.

At the hospital in Lille, patients are received in a day hospital for a multidisciplinary eval-
uation of the risk factors for falls. This leads to the selection of a small number of adapted
recommendations. Most part of the time this specialized consultation consists of data collection
by different specialists, using specific types of equipment and tests. It provides a picture of the
person’s current state, behavior, and environment, incorporating past events that can help to
assess risk factors for falls.

However, outside the context of a specialized consultation on falls, such a complete data
collection is not possible because of a lack of time, expertise, and equipment. Though, there are
many potential actors in the prevention of falls, and furthermore, it is possible to have almost
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instantaneously a partial set of information on a person from his or her personal medical record
(electronic health record). These records regroup a collection of reports and information over
the patient’s life and are increasingly being used. It is therefore possible to extract quickly dated
information about a person. But for some variables, the person’s current condition may have
changed making the information useless, even misleading.

In real life, when information is required immediately for a given person, such as for fall
prevention by general practitioners, the available information can be seen as a partial time-
stamped observation set. Beyond this study, our overall objective is to allow an assessment of
the risk factors for falls, based on a partial set of dated information [29]. For this purpose, we
need knowledge about the dynamics of the considered variables, as well as a sufficient temporal
data set in a number of patients, covering a long period of time with a fine time step. For
these reasons, we aim to simulate a realistic temporal data set about features of interest in fall
prevention.

The simulated data will make it possible to simulate a partially dated observation set and
to build and evaluate some models or algorithms to predict fall risk factors from a partially
dated observation set. The prediction of the unobserved risk factors for falls contributes to fall
prevention since adequate actions may reduce those risks and in turn, reduce the risk of falls. In
this work, the variables about the loss of autonomy (ADLinf5) and dementia (demence) are two
target risk factors for falls.

Below, we present a brief overview of some existing methods to predict fall risk, then, we
present the static data set provided by Lille’s hospital that we use to simulate temporal data.

A.3 Overview on some methods to predict fall risk

Several recent articles focus on the prediction of fall or fall risk based on models learned from
large data sets [77, 75, 59, 131] which comes from the population for which the data collection
is facilitated (in-patients [77], nursing home residents [75], or people with a specific program
of given health insurance, ensuring complete claims coverage [59]. Despite this favorable data
source, in [77], the authors mentioned the limitation to generalizing their findings due to the
significant amount of missing data for some sub-items. Our work is also motivated by this aspect
with the final objective to propose a way to help in fall prevention for the whole elderly popula-
tion, on the basis of their available information, even if it is very partial. Furthermore, existing
Electronic Medical Record (EMR) systems do not provide an easy mechanism to synthesize and
summarize information on changing risk variables collected in various portions of the EMR to
support clinical decision-making [75]. This point brings us to our second consideration, which
is determining how old data can be used to assess present risk. Finally, all of those articles are
concerned with assessing fall risk, whereas we focus on the evaluation of risk factors for falls.

A.4 Lille’s data set and variable selection

As a reminder, the real data set from the multidisciplinary consultation for fall prevention of
Lille’s Hospital includes personal data from about 1810 persons, collected between 2005 and
2016. In that study, we keep only the 1752 cases with ages between 65 and 95.

The original file contains more than 400 columns, among which we have first selected 65
variables for a previous study about the prediction of the main risk factors for fall [100]. We
now present the five variables selected for this work.
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Short
name

Description Persistent
vari-
able

G GUGOgt20 true when the result of
the Get Up and GO test
is greater than 20 sec-
onds

positive

C conduit true when the person
still drives her car

negative

A ADLinf5 true when the score of
Activities of Daily Liv-
ing (ADL) is less than 5

positive

D demence true when a dementia is
probable or confirmed

positive

M maisRet true when the person
lives in a retirement
home

positive

Table A.1: The persistent variables selected for that study

A.4.1 Variables selection from the real data set

We had several interviews with Pr. Puisieux, from the multidisciplinary consultation on fall
prevention at Lille’s hospital about the way the 65 variables previously selected evolve with time.
As a result, we have identified a subset of variables whose temporal behavior is simple and that
we name (positive) persistent variables. They are binary variables, whose value is most often
false for young people and that can change at most once during the life of a person. Table A.1
presents the 5 persistent variables that we select for the purpose of the current study.

The variables demence and ADLinf5 are important predisposing risk factors for fall [30]. The
variable ADLinf5 is an indicator of loss of autonomy. ADL measurements and scales can vary
significantly [80]. The Katz Index of independence in ADLs [65] is one of the most commonly
used tools to asses basic ADLs (bathing, dressing, toileting transferring, continence, and feeding).
Both demence and ADLinf5 are important to be predicted because information related with these
risk factors can be difficult to collect and because they are modifiable, meaning that specific
actions can be conducted to reduce them.

The get-up and go test (GUGOgt20) is related to gait disorder. When its score is greater than
20 seconds, it is considered a risk factor for fall [30].

The four variables GUGOgt20, maisRet, ADLinf5 and demence are positive persistent: when
they become true for a given person, there is no chance that they become false again later. The
variable conduit is negative persistent since it is generally true for adults and becomes false when
the capacities of the elderly decrease, while people who did not drive as adults will not drive as
elderly.

A.5 Definitions and assumptions

Before presenting our algorithm to simulate a temporal data set that represents information over
time on a set of persons, we first introduce some notations, definitions, and assumptions used
for the temporal data simulation.
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A.5.1 Notations

Here is a list of some notations:

• X: main set of variables,

• X,Xi ∈ X: some random variables,

• Dom(X): domain of the variable X,

• Dom(Y) = Dom(Y1)× . . .×Dom(Ym), where Y = {Y1, . . . ,Ym} ⊂ X

• x ∈Dom(X), xi ∈Dom(Xi): a value of X or Xi
1,

• T = {t0, t1, . . . , tp} with ti+1 = ti +∆t: period of time over which information is simulated
and ∆t is the length of a step,

• t, tk ∈ T : different times,

• xt ∈ Dom(X), xti ∈ Dom(Xi): values of the variables X and Xi at the time t for a given
person.

• N : size of the population (number of samples),

• n: index of a specific person,

• DT : complete temporal data set over the period T ,

We now present the definitions and related assumptions regarding the variables and their
temporal evolution in a context defined by the Bayesian network.

A.5.2 Variables, observations and temporal data set

In this study, we consider only binary variables. For any variable X, Dom(X) = {0,1}, where 1
is called the positive value. We also consider only hard observation (see [85] about uncertain
observations and [29] about their use in fall prevention). Let’s precise definitions and notations
regarding dated information.

Definition 1 Time stamped observation
A time stamped observation o on a variable X for a given person n is a tuple o = (X,x, t,n) where

x ∈Dom(X) is the value of X observed at t.

An time stamped observation o = (X,x, t,n) of a binary variable X is said to be positive when
the observed value is positive (x = 1).

Definition 2 Complete temporal data set
A time stamped data set D on the set of variables X and a set of persons indexed by [1..N ] is said to

be complete over a period T when the set D = {(X,x, t,n),X ∈ X, t ∈ T ,n ∈ [1..N ]} includes exactly one
value for each element (X,t,n) ∈ X×T × [1..N ].

1We do not use a specific notation to distinguish the different values of X in Dom(X)
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When we consider a specific ordered subset of variables XJ = (. . . ,Xj , . . . ) and one of its a
possible setting v = (. . . ,vj , . . .), we write that (XJ,v, t,n) ∈ D to denote that for each variable
Xj ∈ XJ and its value vj , the element (Xj ,vj , t,n) belongs to the temporal data set D.

Furthermore, in order to set the way each variable evolves with time, it appears useful to take
into account the value of some other variables. Indeed, for a given variable, different schemas of
temporal changes can be defined depending on the values of some other variables.

In that aim, we use a Bayesian network to define the dependence between variables [88]. We
denote pa(X) as the parents of the variable X in the graph of the Bayesian network.

In this work, we assume that the Bayesian network graph does not change with time. As a
consequence, each variable is associated with a context defined by the values of its parents in the
graph.

We denote (X,v) a variable X in a context v, where v is one of the possible combinations of
values of the parents of X in the graph of a Bayesian network B: v ∈Dom(pa(X)). We name such
a couple a contextualized variable, and say that v is one of the context of X in B.

In order to simplify the notation, when X has no parent in the graph of the Bayesian network,
(pa(X) = ∅), the couple (X,v) represents the variable X.

In the following, we present a schema of temporal evolution for each contextualized variable
(X,v).

A.5.3 Persistent variable

We got a better understanding of the way the variables change with time thanks to the interviews
with Professor Puisieux. It appears that variables can be classified into several classes regarding
the characteristics of their change over time. Except for constant variables that never change,
such as sex, we define the concept of persistent variables as the simplest class regarding temporal
evolution. A variable is called persistent if its value never changes once it becomes true. for
example, once a person has developed Parkinson’s disease he never gets recovered.

Definition 3 Positive (resp. negative) persistent variable
A binary variable X with Dom(X) = {0,1} is said to be positive persistent in a temporal data set D

when its value never changes after the value becomes 1 for a given person indexed by n :

∀t, t′ ∈ T , with t′ > t, (X,1, t,n) ∈ D⇒ (X,1, t′ ,n) ∈ D

Respectively, the value of a negative persistent variable never changes after it becomes zero.

As a consequence, when we consider a population composed of a group of persons, the
proportion of persons with X being positive increases with the age of the persons. Thus, when a
variable X is positive persistent, the function f (age) = P (X = 1 | age) is an increasing function,
where P (X = 1 | age) denotes the probability for a variable X to be positive among the given age
group2.

In this work, we consider only persistent variables. Figure A.1 shows the graph of the
Bayesian network for the five variables that we consider in this article. To get it, we first learned
a Bayesian network from the real data set, then we removed the arc conduit→ demence so that
every node has at most two parents. Indeed, the number of combinations of the values of the

2In our simulated temporal data set, the number of persons is constant whatever the age group. On the contrary, in
the real static data set, the distribution regarding the age is not constant, making it important to consider the conditional
probability and not the joint probability.



A.5. Definitions and assumptions 135

parents is higher with three parents, making it possible that some cases have no representing
sample in the data set.

Figure A.1: Graph of the Bayesian network.

Since our real data set includes the age of the persons, we use that information to extract the
temporal behavior of the variables: we assume that the distributions of each variable in function
of the age on the whole population allow us to derive the evolution of the variables for a given
person regarding her age. In that aim, we plot the distribution of each variable regarding the age
of the persons from the real data set (see Figure A.2).

In order to simulate temporal series for each of these variables, we consider a linear interpo-
lation for each curve. This approximation, combined with the feature of persistent variables, is
used to compute the probability of a variable to become positive at a defined time step when it
was negative at the previous time step. It is important to note that more complex interpolation
functions could be used in the algorithm that we propose.

In addition, we also want that the simulated data set reflects the dependencies between
variables, such as described by a Bayesian network. With that aim, we make further assumptions
described below.

A.5.4 Parent-persistent contextualized variable

Our goal is now to combine the information given by dependencies between variables in the
Bayesian network and information from the distribution of positive value in function of the
age, in order to simulate a temporal data set. In that aim, we introduce a concept related to
the evolution of a variable in the context of its parents’ values, which extends the concept of a
persistent variable.

Consider a Bayesian network B on a set of variables including a binary variable X, and let
v ∈Dom(pa(X)) be a context of X in B.

Definition 4 Positive (resp. negative) parent-persistent contextualized variable
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Figure A.2: Proportion of positive values for each variable according to the age in Lille’s real
data set.

A contextualized variable (X,v) is said to be positive parent-persistent in a temporal data set D
when its value in the context v never changes after the value becomes 1 for a given person indexed by
n:

∀t, t′ ∈ T , with t′ > t,

if for each couple(Y ,y) with Y ∈ pa(X)

and y is the value of Y in v,
(Y ,y, t,n) ∈ D and (Y ,y, t′ ,n) ∈ D, then

(X,1, t,n) ∈ D⇒ (X,1, t′ ,n) ∈ D

(A.1)

Respectively, we consider also negative parent-persistent contextualized variables.

Remark: If a variable X is positive persistent in a data set D, then for any context v, the
contextualized variable (X,v) is positive parent-persistent in D.

In this work, we thus assume that all contextualized variables are parent-persistent. For
convenience, we also speak about contextualized variables when the set of parents is empty.

Figures A.3 to A.6 shows the distribution of each contextualized variable in function of the
age, computed from our real static data set. These plots are based on intervals of five years for
the age. For each contextualized variable (X,v), we plot the proportion

#samples(X = 1, P a(X) = v,Age = al)
#samples(P a(X) = v,Age = al)

where Dom(Age) = a1, . . . al , . . ., computed from the real static data set.
More data is needed to obtain smoother curves.

A.5.5 Linear assumption

Figures A.3 to A.6 show the distribution of contextualized variables regarding the age of patients.
These curves are based on a discretization of Lille’s data set with intervals of 5 years, which is a
compromise between information quality and statistical quality.
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Figure A.3: Proportion of positive values of Conduit variable in function of the age.

Figure A.4: Proportion of positive values of Activity of daily living variable in function of the
age.
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Figure A.5: Proportion of positive values of lives in retirement home variable in function of the
age.

Figure A.6: Proportion of positive values of Dementia variable in function of the age.



A.6. Algorithm to simulate temporal data set from a static data set 139

In order to generate temporal data with any desired temporal granularity, while remaining
faithful to the real data set, we replace these curves by interpolated functions. We choose linear
interpolation:

• the functions f (age) = P (X = x | age) are linear functions, for all X ∈ X,

• the functions f (age) = P (X = x | XJ = v, age) are linear functions, for all v ∈Dom(XJ) where
XJ = pa(X).

From the distributions plotted in Figure ??, we have defined a linear function associated with
each contextualized variable.

A.5.6 About Survival Analysis

The functions shown in Figures A.2 and from A.3 to A.6 are very similar to survival functions
and hazard rate conditional [68]. We show the evolution of the risk whereas survival functions
usually show the chances that a person survives. In our case, the event of interest is the change
of value of a risk factor, from absent (0) to present (1). Some methods to estimate the Survival
function are based on the assumption that data follows some distribution (such as exponential,
gamma, weibull, log-normal, etc.) and then we calculate its parameters. Other methods such
as ‘Kaplan-Meier’ estimator do not have any prior assumptions. However, estimating survival
function from data supposes that data include information about the response for each subject.
In that kind of data, the subject is always "alive" when the study period starts, and the event
of interest may or not occur before the end of that period. When the event does not occur, the
survival time is labeled as ‘Censored’.

In our case, our data from Lille’s Hospital are very different since it corresponds to a single
moment of observation for each subject, and we do not know when the risk occurs. At the
moment of the observation, the risk is present for some people and absent for others. Because
we do not have information about the time when the event of interest occurs, we take benefit
from the fact that the observed population involves persons of different ages, and we assume
that the proportion of persons with a risk factor at a given age may give us a way to estimate the
survival function.

A.5.7 Assumptions regarding the period of time over which data are simu-
lated

In order to simplify the simulation of the data set, we assume that the period T starts at time
t0 with all persons being 65 years old. This assumption can be easily removed later by shifting
each data row randomly in time. This would allow us to get a data set in which people of any
age over 65 are considered at time t0.

Second, we simulate data for all persons during the complete period, meaning that we do not
consider the death of people. When we want to remove that second assumption, the age of death
could be simulated on the basis of general knowledge about the distribution of the age of death.

In addition, let’s precise that we consider ∆t = 6 months.

A.6 Algorithm to simulate temporal data set from a static data
set

The objective is to generate a temporal data set. The real data set includes the age of the person.
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We now describe an algorithm to generate a temporal data set on a set of variables X, on
the basis of a real data set that includes a set of observations collected only once for a given
person. We follow two main ideas: (1) respect the proportion of positive values for each variable
given the age of the patient, (2) respect the dependence between the variables as described by a
Bayesian network B learned on X.

Let X = {X1, . . .Xi , . . .} such that the order of the variables in X is compatible with the partial
order defined by the graph of the Bayesian network B.

The algorithm simulateTDS generates a value for each variable Xi at each time on a given
period, based on the values of the parents of Xi in the graph of the Bayesian network at the same
time and on the value of Xi at the previous time.

As explained above, we extract the temporal behavior of each contextualized variable regard-
ing the age of the person.

Two basic functions are used by the algorithm to simulate the temporal data set: parents(X)
and linearF(X,v,a). These functions are based on a Bayesian network B and the set of linear
functions associated with each contextualized variable (X,v), where X is a variable associated
with a node of B, and v is a vector of values of the parents of X in B. The function parents(X)

returns the list of variables that are parents of the variable X in the graph of the Bayesian
network. The function linearF(X,v,a) returns the value of the linear function associated with
the contextualized variable (X,v) for the age a. In addition, the function generate(p) returns 0
or 1 with probability distribution (1− p,p) where the parameter p is a value in [0,1].

In order to simplify the presentation of the algorithm, we assume that we have only positive
persistent variables. Indeed, a negative persistent variable can be replaced by a positive persistent
variable by exchanging values 0 and 1. The temporal data are generated with a regular time step
for a given number of iterations and a given number of samples. The simulateTDS algorithm
generates each new value and fills gradually a 3D table whose dimensions correspond to the
samples, the variables, and the time (lines 1–3).

The values are generated following a partial order of the variables so that the values of the
parents of a given variable can be used to generate the value of this variable, and following the
temporal order, so that the previous value of a variable can be used to generate its next value.

The operations to generate a value for a given person (or sample), a given variable, and a given
time are detailed in the simulateOne algorithm. At first, the context of the variable is identified
by extracting the value of its parents from the data already simulated (lines 1–2). In order to
generate a value of a variable at the first time step (age = 65), one generates randomly 0 or 1
with a uniform probability corresponding to the value of 65 for the linear function associated
with the contextualized variable (lines 3–5). When a previous value has already been generated
for a given variable, the value to be generated depends on it: When the previous value is 1, the
new value has to remain 1, by definition of a positive persistent variable (lines 6–7). When the
previous value is 0, one generates randomly 0 or 1 with a uniform probability corresponding to
the increase of the linear function associated with the contextualized variable during one step
of time and reduced to the negative cases (lines 9–12). Remark that this step is based on the
interpolated functions, but does not require these functions to be linear.

A.7 Evaluation of the simulated temporal data set

Using this algorithm and the real static data set of Lille, we have simulated a temporal data set
of 2000 cases, over a period of 30 years, with a time step of 6 months.

In order to evaluate the quality of the simulated temporal data set, we plot the proportion
of positive values for each variable in the simulated data set (Figure A.7). In comparison to
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Algorithme 1 : simulateTDS(X,K,∆t,N )

Input : X ▷ an ordered set of variables
Input : K ▷ number of temporal iterations
Input : ∆t ▷ length of the time step
Input : N ▷ number of samples
Output : D ▷ a 3-dimension table containing the simulated temporal data set on X over the period T . The cell

D[n, i, t] contains the simulated value of sample n for the variable Xi , at time t.

1 D← 0 ▷ initialize the 3D array to zero
2 foreach k ∈ [1..K] do ▷ generate data at time tk
3 foreach person n ∈ [1..N ] do ▷ generate N samples
4 foreach variable Xi ∈ X (in topological order) do ▷ generate value of Xi at tk
5 D[n, i,k]← simulateOne(n, i, tk,∆t,D)

6 return D

Algorithme 2 : simulateOne(n, i, tk ,∆t,D)

Input : n ▷ sample index
Input : i ▷ variable index
Input : tk ▷ time to be simulated
Input : ∆t ▷ length of the time step (tk − tk−1)
Input-Output :D ▷ a 3-dimension table containing the already simulated temporal data set on X over the period

T

Data : a Bayesian network B
Data : Linear functions associated with each contextualized variable (X,v), regarding B

1 XJ← parents(Xi)
2 v← values of XJ generated at tk ▷ a context of Xi

3 if k = 0 then ▷ first time step t0
4 p← linearF(Xi,v,65) D[n, i,0]← generate(p)
5 else ▷ generate data at time tk from value at tk−1
6 if D[n, i,k − 1] = 1 then ▷ previous value
7 D[n, i,k]← 1 ▷ positive persistent variable
8 else ▷ compute the probability to become 1 among the negative cases
9 c← linearF(Xi,v, tk)− linearF(Xi,v, tk−1)

10 p← c/(1− linearF(Xi,v, tk−1))
11 D[n, i,k]← generate(p)
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Figure A.2, the result clearly shows that the linear assumption is faithfully reproduced in the
simulated data set when considering each variable separately.

Figure A.7: Proportion of positive values of each variable in simulated data.

In addition, the algorithm of data simulation is also based on information provided by the
Bayesian network learned on the real static data set, by taking into account the way each variable
changes in a given context. In order to evaluate that second point, we show in Figures A.8 to
A.11 the proportion of positive values for each variable in a given context along with time in the
simulated data set, and we compare with the linear functions computed for each contextualized
variable defined from the static data set (based on Figures A.3 to A.6).

Figure A.8: Linear functions associated with conduit variable (left) and Proportion of positive
value of conduit in simulated data (right).

The comparison of the linear functions and the plot from simulated data shows that in most
cases, the proportion of positive values in the simulated data is faithful with the linear functions.
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Figure A.9: Linear functions associated with activities of daily life variable (left) and Proportion
of positive value of activities of daily life variable in simulated data (right).

Figure A.10: Linear functions associated with lives in retirement home variable (left) and
Proportion of positive value of lives in retirement home variable in simulated data (right).
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Figure A.11: Linear functions associated with dementia variable (left) and Proportion of positive
value of dementia variable in simulated data (right).

A.8 Perspective and conclusion

This article proposes a first attempt to simulate temporal data using a Bayesian network with the
aim to complete a real static data set to be applied in the context of fall prevention for elderly
people.

We combine several assumptions and expert knowledge in order to provide a temporal data
set that is faithful with the real data set. In that aim, we select a small number of variables of the
real data set regarding their schema of temporal evolution. We focus on a subset of persistent
variables whose value may evolve only once in the life of a person, e.g., from zero to one for
the positive persistent variables. This concept emerged during discussions with experts about
temporal changes of a large set of variables of interest for fall prevention.

The persistent feature of the selected variables is visible on the plot of the distributions of
positive values as functions of the age. We assume that these distributions can be used as a basis
for the evolution of the associated variables for a given person. We also consider a set of possible
contexts for each variable, as defined by a Bayesian network learned on the static real data set.
Finally, we use linear interpolation to get a simple model of the proportion of positive values for
each contextualized variable.

On this basis, we propose an algorithm to simulate a temporal data set. The results are evalu-
ated through the comparison of the temporal distributions in the temporal data set generated
thanks to the algorithm and the linear functions computed from the real data set.

We are aware that the data are generated on the basis of two strong assumptions: the persis-
tence of the concerned variables and the linear approximation of their distribution according to
the age. However, the data generation algorithms and their first results consist of a first step
toward the necessary filling of the data gaps in our health application context.

As a perspective, we now intend to exploit this data set in the context of fall prevention.
More precisely, the objective is to predict some risk factors for falls based on a partial set of
time-stamped observations. In this problem, the challenge is first to take benefit from old
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observations, meaning that the value of some variable observed in the past may have changed,
and second to reason with a number of observations that can be arbitrarily small.

About perspectives on data simulation, it could be interesting to compare our data simu-
lation with the one obtained by a dynamic Bayesian network when linear functions are used
to approximate the dynamic of contextualized variables since it makes changes time-invariant.
Other perspectives concern the use of non-linear functions for interpolation, the inclusion of
variables with other temporal schema, such as semi-persistent variables, and variables with
larger domains.
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AppendixB
Full Bayesian Graph

Figure B.1 represents the full BN graph learned in our study. This graph includes the mandatory
(causal) arcs related to the target risk factors for falls but the rest of the graph is not completely
causal.
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Figure B.1: Full BN graph learned
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