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Abstract

Thanks to its ability to evaluate metabolic functions in tissues from the temporal evolution of a previously

injected radiotracer, dynamic positron emission tomography (PET) has become an ubiquitous analysis tool

to quantify biological processes. Several quantification techniques from the PET imaging literature require a

previous estimation of global time-activity curves (TACs) (herein called factors) representing the concentration

of tracer in a reference tissue or blood over time. To this end, factor analysis has often appeared as an

unsupervised learning solution for the extraction of factors and their respective fractions in each voxel.

Inspired by the hyperspectral unmixing literature, this manuscript addresses two main drawbacks of general

factor analysis techniques applied to dynamic PET. The first one is the assumption that the elementary response

of each tissue to tracer distribution is spatially homogeneous. Even though this homogeneity assumption has

proven its effectiveness in several factor analysis studies, it may not always provide a sufficient description

of the underlying data, in particular when abnormalities are present. To tackle this limitation, the models

herein proposed introduce an additional degree of freedom to the factors related to specific binding. To this

end, a spatially-variant perturbation affects a nominal and common TAC representative of the high-uptake

tissue. This variation is spatially indexed and constrained with a dictionary that is either previously learned or

explicitly modelled with convolutional nonlinearities affecting non-specific binding tissues. The second drawback

is related to the noise distribution in PET images. Even though the positron decay process can be described by

a Poisson distribution, the actual noise in reconstructed PET images is not expected to be simply described by

Poisson or Gaussian distributions. Therefore, we propose to consider a popular and quite general loss function,

called the β-divergence, that is able to generalize conventional loss functions such as the least-square distance,

Kullback-Leibler and Itakura-Saito divergences, respectively corresponding to Gaussian, Poisson and Gamma

distributions. This loss function is applied to three factor analysis models in order to evaluate its impact on

dynamic PET images with different reconstruction characteristics.

Keywords: dynamic PET images, blind source separation, unsupervised learning, non-convex optimization,

majorization-minimization algorithms.
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Résumé

La tomographie par émission de positrons (TEP) est une technique d’imagerie nucléaire non-invasive qui permet

de quantifier les fonctions métaboliques des organes à partir de la diffusion d’un radiotraceur injecté dans le corps.

Alors que l’imagerie statique est souvent utilisée afin d’obtenir une distribution spatiale de la concentration du

traceur, une meilleure évaluation de la cinétique du traceur est obtenue par des acquisitions dynamiques. En

ce sens, la TEP dynamique a suscité un intérêt croissant au cours des dernières années, puisqu’elle fournit

des informations à la fois spatiales et temporelles sur la structure des prélèvements de traceurs en biologie in

vivo. Les techniques de quantification les plus efficaces en TEP dynamique nécessitent souvent une estimation

de courbes temps-activité (CTA) de référence représentant les tissus ou une fonction d’entrée caractérisant

le flux sanguin. Dans ce contexte, de nombreuses méthodes ont été développées pour réaliser une extraction

non-invasive de la cinétique globale d’un traceur, appelée génériquement analyse factorielle.

L’analyse factorielle est une technique d’apprentissage non-supervisée populaire pour identifier un modèle

ayant une significat physique à partir de données multivariées. Elle consiste à décrire chaque voxel de l’image

comme une combinaison de signatures élémentaires, appelées facteurs, fournissant non seulement une CTA

globale pour chaque tissu, mais aussi un ensemble des coefficients reliant chaque voxel à chaque CTA tissulaire.

Parallèlement, le démélange - une instance particulière d’analyse factorielle - est un outil largement utilisé dans

la littérature de l’imagerie hyperspectrale. En imagerie TEP dynamique, elle peut être très pertinente pour

l’extraction des CTA, puisqu’elle prend directement en compte à la fois la non-négativité des données et la

somme-à-une des proportions de facteurs, qui peuvent être estimées à partir de la diffusion du sang dans le

plasma et les tissus.

Inspiré par la littérature de démélange hyperspectral, ce manuscrit s’attaque à deux inconvénients majeurs

des techniques générales d’analyse factorielle appliquées en TEP dynamique. Le premier est l’hypothèse que

la réponse de chaque tissu à la distribution du traceur est spatialement homogène. Même si cette hypothèse

d’homogénéité a prouvé son efficacité dans plusieurs études d’analyse factorielle, elle ne fournit pas toujours

une description suffisante des données sous-jacentes, en particulier lorsque des anomalies sont présentes. Pour

faire face à cette limitation, les modèles proposés ici permettent un degré de liberté supplémentaire aux facteurs

liés à la liaison spécifique. Dans ce but, une perturbation spatialement variante est introduite en complément

d’une CTA nominale et commune. Cette variation est indexée spatialement et contrainte avec un dictionnaire,
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qui est soit préalablement appris ou explicitement modélisé par des non-linéarités convolutives affectant les

tissus de liaisons non-spécifiques. Le deuxième inconvénient est lié à la distribution du bruit dans les images

PET. Même si le processus de désintégration des positrons peut être décrit par une distribution de Poisson, le

bruit résiduel dans les images TEP reconstruites ne peut généralement pas être simplement modélisé par des

lois de Poisson ou gaussiennes. Nous proposons donc de considérer une fonction de coût générique, appelée

β-divergence, capable de généraliser les fonctions de coût conventionnelles telles que la distance euclidienne, les

divergences de Kullback-Leibler et Itakura-Saito, correspondant respectivement à des distributions gaussiennes,

de Poisson et Gamma. Cette fonction de coût est appliquée à trois modèles d’analyse factorielle afin d’évaluer

son impact sur des images TEP dynamiques avec différentes caractéristiques de reconstruction.

Mots-clés: images TEP dynamiques, séparation aveugle des sources, apprentissage non supervisé, optimi-

sation non convexe, algorithmes de majoration-minimisation.
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Introduction

Context and objective of the thesis

Positron emission tomography (PET) is a non-invasive nuclear imaging technique that allows the organ metabolic

functions to be quantified from the diffusion of an injected radiotracer within the body. This technique enables

the distinction of different tissues from metabolism particularities not easily apparent in other biomedical

image modes, which may help to diagnose various pathologies, ranging from cancers to epilepsy. Additionally

to diagnostic interests, PET has also been increasingly promoted for the follow-up of treatment or disease

evolution. While static imaging is often performed in order to obtain a map of the spatial distribution of tracer

concentration, the best evaluation of tracer kinetics is achieved in dynamic acquisitions [Muz+12]. In this sense,

dynamic PET has received increasing interest, since it provides both spatial and temporal information on the

pattern of tracer uptakes within an in vivo context. To provide interpretable results, PET images have to pass

through a process called quantification [Buv07]. It consists in exploring the variations of the concentration of

radiopharmaceuticals or radiotracers over time, characterized by time-activity curves (TACs), to estimate the

kinetic parameters that describe the studied process. The most effective quantification techniques in dynamic

PET often require an estimation of reference TACs representing tissues or an input function characterizing the

blood flow. In this context, many methods were developed to perform a non-invasive extraction of the global

kinetics of a tracer, generically referred to as factor analysis.

Factor analysis refers to several unsupervised learning techniques that aim to identify physically meaningful

patterns from multivariate data [HJA85; JH91]. It consists in describing each voxel of the image as a combination

of elementary signatures, called factors, providing not only an overall TAC that describes each tissue but also a

set of coefficients relating each voxel with each tissue TAC [Bar80]. This description underlies the assumption

that any perturbations affecting the kinetic process under study are negligible, thus each tissue contains a

spatially homogeneous tracer concentration. In the dynamic PET literature, two main approaches have stood

out. The first one is based on singular value decomposition (SVD) or apex-seeking [Pao+82; CBD84], while

the second one tries to directly estimate the factors and their respective fractions through optimization schemes

[SDG00]. Among the second group, nonnegative matrix factorization techniques naturally appeared as a solution

to take the nonnegativity of PET data into account [Lee+01b]. It also allowed for a divergence measure that

1



Introduction

matches the Poissonian nature of the count-rates in PET, the Kullback-Leibler (KL) divergence [Kim+01], while

the previous methods often relied on the assumption of a Gaussian noise through the use of a Frobenius norm

on the cost function.

Meanwhile, unmixing - a specific instance of factor analysis - is a widely employed tool in the hyperspectral

imagery literature [Bio+12; Dob+09]. In dynamic PET imaging, it can be very relevant for the extraction of

factor TACs, since it directly takes into account both the nonnegativity of the data and the sum-to-one of the

factor proportions that can be derived from the diffusion of blood in plasma and tissues. Over the last decades,

cutting-edge techniques have been developed by the hyperspectral unmixing community to deal with several

limitations of general blind source separation (BSS) solutions. It is the case of the homogeneity assumption

embedded in the description of linear mixing models (LMM). Hyperspectral data can often present nonlinearities

[NB09; Dob+14b] or spectral variability [ZH14; HDT15], which yielded new models and solutions that modify

the LMM structure of standard unmixing. Moreover, as in dynamic PET, several BSS methods assume the

noise to follow a Gaussian distribution. Borrowing techniques from the audio literature [FI11], a hyperspectral

unmixing solution was also developed to generalize the model of the underlying noise on data [FD15].

Therefore, the main goal of this work is to develop practical contributions to dynamic PET applications that

overcome the above-mentioned issues. The strategies adopted in this manuscript adapt the solutions developed

in the hyperspectral literature to fit the particularities of PET data. To this end, we introduce in Chapter 3 a

novel perturbation model that handles the variability of high-uptake tissues, often neglected in factor analysis

techniques. The solution capitalizes on a previous model from the hyperspectral literature that generalizes

the standard LMM with an additive spatially indexed term. The variability term is described by a previously

learned dictionary and its corresponding map of coefficients. Based on a Gaussian assumption on the noise, the

chosen cost function is the Frobenius norm. Then, Chapter 4 generalizes this solution to deal with different

shapes of noise distribution, from Gamma and Poisson to Gaussian, including undetermined distributions in-

between. This is done by means of the β-divergence. Finally, Chapter 5 presents a perspective work that

benefits from the physiological knowledge inherent to parametric imaging of PET data to propose a nonlinear

unmixing framework.

The work presented in this thesis has been carried out in the Institut de Recherche en Informatique de

Toulouse (France), within the Signal and Communication group, in collaboration with the University of Tours

and the Institut National de la Santé et de la Recherche Médicale (INSERM). This thesis has been funded

by the Coordenação de Aperfeiçoamento de Ensino Superior (CAPES), attached to the Brazilian Ministry of

Education, in the program “Doutorado Pleno no Exterior (DPE)”.
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Structure of the manuscript

Part I introduces the general context of this thesis and reviews the state-of-the-art methods that provide the

technical basis of this work. It comprises two chapters.

– Chapter 1 introduces more thoroughly the relevance of dynamic PET for clinical assessment, that is in

the heart of this work. It further discusses several effects of acquisition and reconstruction affecting the

quality of the final data. Finally, it presents the main challenges related to quantification and its need for

a previous estimation of reference TACs or the input function.

– Chapter 2 recalls the key theoretical tools and practical concepts of blind source separation applied to

multivariate data analysis. After a brief review on general non-parametric methods applied in the PET

literature for extraction of global TACs, it presents factor analysis as a more general alternative. Then it

summarizes some of the solutions to the BSS problem and provides a brief history of factor analysis in the

PET domain. Hyperspectral unmixing is subsequently detailed with its nonlinear and spectral-variability

instances, preparing the reader to the developments that are to follow.

Part II gathers the contributions of this thesis to the factor analysis problem applied to the dynamic PET

domain. The content of its three chapters is described hereafter.

– Chapter 3 introduces an unmixing approach to deal with the variability inherent to specific binding

tissues. While factor analysis assumes the classes to be spatially homogeneous, after a careful examination

of real data, we decided to propose an approach that no longer disregards possible fluctuations on the rate

of tracer concentration in voxels affected by specific binding. Therefore, based on a previous perturbation

model that explicitly accounts for spatial factor variability [TDT16a], we derive a formulation that allows

fluctuations solely to the specific binding factor. Moreover, we constrain these variations to be described

by a previously learned dictionary according to a spatial map that provides the amount of variation in each

voxel of the image. The noise is considered to be Gaussian and the Frobenius norm is used to evaluate

the level of fit between the data and the proposed model. The variables of this model are estimated using

an optimization algorithm that ensures convergence of the iterates to a critical point, namely proximal

alternating linearized minimization (PALM) [BST13]. The performance of the proposed unmixing method

is evaluated on synthetic and real data. A comparison with state-of-the-art algorithms that do not take

factor variability into account allows the interest of the proposed unmixing solution to be appreciated.

– Chapter 4 further generalizes the approach proposed in the previous chapter to a framework that is

more adaptable to different noise distributions. To this end, it resorts to a class of divergences that are

related to a wide family of distributions that include the Gamma, Poisson and Gaussian distributions.
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This divergence is called the β-divergence. Due to its possibly nonsmooth nature, this divergence is not

easily adaptable to all optimization algorithms. Therefore, we apply a majorization-minimization (MM)

technique that results on multiplicative updates and that is often used to resolve this kind of problem

[FI11]. A similar MM solution has also been applied to deal with nonlinearities in hyperspectral unmixing

in [FD15]. We derive new updates particularly suited to the model introduced in the previous chapter.

Three algorithms are then evaluated on synthetic data: β-NMF, β-LMM and β-SLMM. The β-NMF is a

standard approach from the audio domain [FI11], while β-SLMM is the approach developed throughout

this chapter and β-LMM is its particular instance which neglects spatial variability. Simulations are

conducted on two sets of synthetic data: with and without variability. Results obtained on real data are

also evaluated.

– Chapter 5 introduces a more prospective work that directly relates the kinetics of specific binding tis-

sues with non-specific binding ones through nonlinear unmixing. It capitalizes on data-driven parametric

imaging methods [GGC01] to provide a physical description of the underlying PET data. This characteri-

zation is introduced in the factor analysis formulation to yield a novel nonlinear unmixing model designed

for PET image analysis. This model also explicitly introduces global kinetic parameters that allow for a

direct estimation of the binding potential with respect to (w.r.t.) the free fractions in each non-specific

binding tissue. As a high number of variables have to be estimated, once again the PALM algorithm is

used to minimize the corresponding objective function. The algorithm is evaluated on synthetic and real

data to show the potential interest of the approach.

Main contributions

Chapter 3. The contribution of this chapter lies in the introduction of a model that explicitly takes into

account the variability on the specific binding factor time-activity-curve, until now neglected in the PET liter-

ature. The proposed decomposition relies on a new interpretation of the spatial heterogeneity of PET images.

A joint deconvolution step is also considered in the analysis. Proximal gradient updates are computed for each

variable, allowing for the inclusion of elaborate constraints [Con15] and nonsmooth penalizations. The proposed

approach yields competitive performances and variability estimates on both synthetic and real data.

Chapter 4. The β-divergence is first introduced to the PET domain. The model proposed in the previous

chapter is adapted with this flexible data-fitting term, yielding a novel algorithm. Exhaustive simulations

conducted on both synthetic and real data show that optimal results for images with different reconstruction

parameters may be obtained with different values of β. As a perspective, this study shows that the β-divergence

has a potential interest in several steps of the dynamic PET pipeline.
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Chapter 5. This chapter introduces a new paradigm for factor analysis in dynamic PET, capitalizing on

parametric imaging. It studies the potential interest of jointly conducting nonlinear unmixing with global

kinetic parameter estimation in a reference tissue compartment model framework, by considering each non-

specific binding tissue as a reference. An elementary synthetic data example and a real data simulation show

the promising perspective of this contribution.
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This chapter introduces the principle and objectives of dynamic positron emission tomography (PET). It

further discusses the main challenges that hamper its analysis. To this end, Section 1.1 provides a brief overview

of PET imaging. Section 1.2 describes the physical properties of this imaging technique from tracer injection to

acquisition of dynamic frames, while Section 1.3 discusses the posterior tomographic reconstruction procedure

as well as further corrections. Section 1.4 briefly exposes the advantages that this nuclear imaging method offers

for the in vivo study of organ metabolism. General properties of both static and dynamic PET are detailed on

Section 1.5. Finally, the quantification of PET images is explained in Section 1.6 through the introduction of

9



Chapter 1. Dynamic Positron Emission Tomography

two relevant techniques: standardized uptake value and parametric imaging.

1.1. Positron Emission Tomography (PET): a brief overview

PET is a functional imaging technique that explores the physiology of organs. It is able to deliver relevant

information on dysfunctions, which will precede the appearance of morphological abnormalities such as cancer

and dementia, hardly detectable by anatomical imagery. The general principle of PET is the scintigraphy, which

consists in injecting a radioactive tracer intravenously. The radiolabelled tracer is composed of a radioisotope

attached to a molecule with specific affinity towards an organ or function within an organ. After fixation, it

disintegrates emitting a positron that will be annihilated with an electron of the environment after a short

course of a few millimetres. This annihilation produces two gamma photons of 511keV that leave in the same

direction but opposite senses and may be detected in coincidence by the ring detectors situated around the

patient, thus reporting the presence of a molecular target. The place of emission of each detected pair of

photons lies on the line joining two detection points, the so-called line-of-response (LOR). When the number

of detected pairs of photons is sufficient, the distribution of the radiopharmaceutical in the body of the subject

can be reconstructed, using mathematical techniques or algorithms of reconstruction. This procedure provides

a three-dimensional image with the quantitative information on the metabolic activity of an organ through the

measure of the concentration of radiotracer in the body. Fig. 1.1 shows the scheme of a PET acquisition.

In clinical PET applications, static imaging is often performed in order to obtain a map of the spatial

distribution of tracer concentration. However, the best evaluation of tracer kinetics, i.e., the dynamic process of

tracer uptake and retention, is achieved through the examination of changes in tracer concentration in the body

over time, which prevents static imaging bias on the description of tracer metabolism [Muz+12]. In this sense,

dynamic PET has received increasing attention over the last years, since it provides both spatial and temporal

information about the pattern of tracer uptakes on in vivo biology. A single tracer injection allows knowledge

on a large amount of information about the rate of ongoing metabolic events. Dynamic PET provides a series

of frames of sinogram data with varying durations that can reach from seconds to hours. Nonetheless, as an

outcome of its short acquisition intervals, especially on the earlier frames that are kept short to capture the fast

kinetics right after tracer injection, dynamic PET data is highly corrupted by noise.

1.2. Physical principles of acquisition

1.2.1. Radioisotopes

Radioactivity is a natural physical phenomenon through which unstable atomic nucleus, known as radioisotopes,

spontaneously transforms into more stable atomic nucleus loosing energy through the emission of radiation, such
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Figure 1.1.: PET acquisition scheme

as α, β+ and β− rays which are frequently followed by high energy photon emission or γ rays.

Radioactive decay, which in physics corresponds to the transformation of matter into energy, occurs when

the electric charge of an atom is unbalanced. The possible situations of instability are as follows:

– nucleons excess: emission of α particles;

– neutrons excess: transformation of neutron into proton, emitting electrons (β− decay);

– protons excess: transformation of proton into neutron, emitting positrons (β+ decay), showed in Fig. 1.2.

Radioisotopes that have a positive charge excess are used as positron emitters. They are bonded with an

organic molecule to form radiopharmaceuticals. The most relevant group of these compounds is the radiotracers,

used in PET to diagnose abnormalities in the body tissues. We can divide them into three main categories:

– the first one includes tracers with an excellent emission rate, but a short half-life, which is the indicator

that determines the time required to reduce the radioisotope activity to the half. They can only be

produced and synthesized at research centres that have a PET scan because of their short duration. Some

examples: 11O,13N ,11C;

– the second one comprises the radioisotopes with long-duration, which includes 18F , the most used isotope

due to its long duration. 76Br is also part of this group, but as it has a high positron emission kinetic

energy, which can be dangerous, it is only used for therapeutic purposes;
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– finally, the group with very short duration but coming from isotopic generators of very long-duration,

which are used for the calibration of PET scans.

The main radiotracer used in PET is 18F -FDG, a glucose analog. It is obtained by replacing the normal

hydroxyl group by the positron-emitting radionuclide fluorine-18. As glucose consumption is disturbed by

numerous dysfunctions, 18F -FDG turns out to be an excellent radiotracer for several diseases.

1.2.2. Positron decay in PET

Due to its high positive charge, as stated previously, PET radioisotopes undergo β+ decay (Fig. 1.2), i.e.,

when a proton transforms into a neutron, releasing a positron β+(particle analogous to the electron, but with

opposite charge) and a neutrino ν. The positron is released with a certain kinetic energy and, as it passes

through the tissue, it ionizes neighboring electrons, losing energy. When resting state is reached, it combines

with an electron from the tissue to form a positronium. Then, the positron-electron pair suffers annihilation,

which releases two γ rays of 511keV in opposite sense, that is, with 180 degrees of separation between them.

The principle of PET imaging is based on the detection of these two γ photons of 511keV by the PET scan

crystals in order to determine the place of annihilation. An example of β+ emission is the decay of fluorine-18

(18F ) into stable oxygen-18 (18O):

18F →18 O + β+ + ν (1.1)

Figure 1.2.: Illustration of a β+ decay [JP05]

Two major physical phenomena of this process negatively affect the spatial resolution of the PET scan:

positron range and non-collinearity of γ rays.

– Positron range: The event of annihilation does not detect the emission of the positron itself. After

emission, the positron follows a dentition trajectory through the tissue and interacts with it through

ionization. There is a distance between annihilation and decay that is called free-course and depends on

the initial energy of the positron and the composition of the tissue, in particular its density. For low-energy

positron emitters, this distance in soft tissues is small (for instance, 0.5 mm for the 18F ). For high-energy

positron emitters, it will highly affect resolution.

– Non-collinearity of γ rays: For a positron to combine with an electron from the tissue, it must lose

all its energy and have the same kinetic energy as that due to the tissue temperature. Although the
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positronium is at the same temperature as the tissue, its angular momentum is not negligible, since

photons have little angular momentum compared to energy and they must maintain the same momentum

of the positronium. If the positronium is moving in the same direction as one of the photons, this photon

will have more energy than the other, but generally this effect does not significantly affect PET scan

detection. If the positronium is moving in a direction perpendicular to the annihilation photons, due to

conservation of momentum, they will be slightly non-collinear (non-collinearity is, in average, typically of

the order of less than 1 degree), resulting in a loss of resolution of 1 to 2 mm. Fig. 1.3 illustrates this

process.

Figure 1.3.: Non-collinearity due to conservation of the momentum. [JP05]

Radioisotopes with excess of protons may also decay by electron capture, but these will not be detected by

a PET scan. To disintegration by β+ decay, the isotope needs to have at least 1,02MeV more energy than the

isotope for which it decays.

1.2.3. Coincidence detection

If two detectors on opposite sides of the patient detect an event at about the same time, then annihilation

occurred somewhere along the straight line between the detectors, as illustrated by Fig. 1.4. This straight line

is called the LOR. The key to PET acquisition is precisely the ability to identify these coincidental events.

Figure 1.4.: Detection of positron annihilation

In order to detect the simultaneous arrival of the two γ rays in opposite directions, it is essential to have

two detectors on opposite sides of the patient in all directions. Therefore, detectors are usually constructed as
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annular arrays of small crystals that are placed around the patients, as showed in Fig. 1.4. The area defined

by crystals where annihilation occurs is tubular (and not simply a line). In analog systems, each detector is

formed by a scintillation crystal and a photomultiplier 1. Detection is then performed if the two γ rays arrive

at the same time with the same energy. In this case, simultaneity is defined by a coincidence circuit, which is

based on two windows:

– the temporal window: is usually in the range of 5 to 16 ns. In practice, when the first photon is

detected, the time window is started and remains open for a given time τ . Every photon detected while

the time window is open will be associated with the first photon. A new pair of photons can only be

detected after the window is closed.

– the energy window: detects photons with an energy comprised within a range with mean value of

approximately 511eV. It is useful to neglect the arrival of photons from scattering, which have a lower

energy and prevent pile-up effects in which the crystal receive energy from several photons.

Several phenomena directly affecting image resolution can be identified:

– True coincidences: when two photons of the annihilation event are detected by crystals in opposite

directions as a photopick;

– Scattered coincidences: when one of the photons goes through a Compton effect, altering its LOR due

to the interaction of a γ ray with an electron of the tissue;

– Random coincidences: when two photons from different annihilations are detected as originating from

the same annihilation.

The interaction of photons entering the detectors with electrons from the crystal occurs either through the

photoelectric effect, where the full photon energy is transmitted to the crystal, or through the Compton effect

that, due to its scintillation, only transmits part of the energy. The light energy generated is then transferred to

the photocatode of the photomultiplier tube through a light guide. The role of the photocatode is to transform

the light energy into electrons that are directed to the first dynode to be multiplied by the factor of secondary

emission. The signal coming out of the photomultiplier provides a measurable electrical impulse whose integral

is proportional to the energy of the photon that has entered the crystal. During the integration time, which

depends on the rate of light decrease in the crystal, the detector is not able to measure another event. This

phenomenon, called dead time, is responsible for losses in sensitivity to high counts. In general, the density, as

well as the energetic and temporal resolutions, affects the performance of different PET imaging devices.

1Recently, digital PET detectors were developed to overcome the limitations of conventional photomultiplier technology. This
topic will not be further detailed in this work for brevity purposes.
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Figure 1.5.: Illustration of annular arrays of small crystals [JP05]. View of a PET scanner from the annular
plane (left) and view along the axis of the scanner (right).

1.2.4. Time-of-flight

The photons released during the course of a PET scan reach the detectors at almost the same time. The key

to understand the concept of time-of-flight (TOF) relies on the “almost”. TOF is the time difference between

the detection of photons released during coincident events. The measurement of the difference in arrival times

allows to more accurately identify the location of the annihilation event along the line between the two detectors.

With TOF PET scanners then, each event is more informative. The key limitation to building a TOF scanner

is the time taken by the scintillation process within the crystals.

1.2.5. Photon-tissue interaction

Before reaching the detector, the photons pass through the patient and some of them interact with the tissue.

There are three possible interactions between the 511keV photons and the tissue: the photoelectric effect, the

Compton effect and the Rayleigh scattering, which are shown in Fig. 1.6

– Photoelectric effect: In the photoelectric effect, the photon is completely absorbed by an electron from

the atom, overcoming the binding energy and releasing the electron with kinetic energy corresponding

to the rest of the photon energy. This phenomenon usually happens with low-energy photons and high

atomic number atoms.

– Compton effect: In the Compton effect, or incoherent scattering, the annihilation photon interacts

with an electron from an upper layer. The photon loses a part of its energy and is dispersed in a new

direction, while the electron leaves the valence layer. The Compton effect contributes to the attenuation

of γ rays. The effect of the Compton diffusion on the final resolution of the PET image depends on several

instrumental considerations of the machine.

– Rayleigh scattering: Rayleigh dispersion or coherent dispersion occurs when a photon bounces the

atoms in the matrix without causing ionization. The photon changes direction and there is therefore a

change in the moment, which is transferred to the atoms of the matrix. However, such dispersion is not

frequent at 511 kV in the tissue and can be ignored.
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Figure 1.6.: Effects of the interaction of radiation with matter [JP05]

Due to the small angle of the scattered photons, the apparent attenuation may be smaller than the actual

attenuation. The coefficient of the apparent attenuation depends on the geometry and the energy resolution

of the system. Actual attenuation can be measured with experimental configurations that exclude almost all

dispersed photons. A closely collimated, i.e. directed, source and detector allow only non-scattered photons

to reach the detector. In some cases, the attenuation coefficient serves as the input parameter used during

reconstruction. A lower value than the actual value can be used to account for small angle dispersion.

1.3. Reconstruction and corrections

1.3.1. Reconstruction process

PET data is constructed through the projection of the location of coincidences occurring within the object of

study (e.g., an organ). Therefore a step of tomographic reconstruction becomes essential to recognize the object

from its projection.

Data arrangement into a sinogram

The elementary PET data are the LORs connecting a pair of detectors that are placed in coincidence. The

coincidences recorded on each LOR may be arranged in a matrix called sinogram. Each row of this matrix

corresponds to a different angle of the one-dimensional projection. The number of columns is equivalent to the

number of LORs for each measurement angle. Sinograms may have, for instance, 256 rows of measurement

angles while 192 pairs of detectors for an angular position. Each element of the sinogram represents a LOR

between two detectors.

Figure 1.7 shows two detectors d1 and d2 connected by an LOR that corresponds to a point of the sinogram.

The sum of the coincidences detected within this LOR is allocated in the position defined by s1 and φ1. Each

event accepted by the coincidence circuits adds a unity to the total value of this point of the sinogram.
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Figure 1.7.: Line-of-response (right) and point correspondent to the LOR in a sinogram (left) [Rey07]

PET data corresponding to one acquisition time may be of two or three dimensions. In “2D” mode, the system

only registers the coincidences occurring between two crystals belonging to the same ring or two neighboring

rings. To this end, the scanner is equipped with septa between the detection rings in order to stop annihilation

photons whose direction correspond to a high copolar angle. In “3D” mode, the LORs are not only in the axial

plane, but also at a considerable angle to these planes and for each angle there is a stack of planes.

Reconstruction methods

After detection and allocation of coincidences, the next step consists of computing the radioactivity distribution

within the field of view (FOV) with the information recorded in the sinogram. There are two main techniques

of reconstruction: filtered back-projection and iterative reconstruction.

– Filtered back-projection: This method is generally applied aiming to implement Fourier reconstruction.

The first step of the algorithm consists on filtering each line of the sinogram with a ramp filter that is

generally combined with a low-pass filter to prevent noise amplification. Then the method proceeds to

the backprojection of filtered projections for each different measured angle. The major advantages of this

method are its speed, low complexity and good performance when tracer binding is rather homogeneous.

On the other hand, it amplifies the statistical noise of the acquired data.

– Iterative reconstruction: Iterative algorithms are initialized with a random estimation of the solution

and iteratively proceed to the reconstruction and projection operations. Reconstruction consists of ac-

quiring a frame of the image from the sinogram. The inverse operation, i.e., calculating the sinogram of a

given frame, is called projection. In each iteration, the projection of the current solution is compared to

the measured projection. The error between those two is supposed to decrease in the next iteration and
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the process continue until this error is smaller than a previously defined criterion, meaning the algorithm

has converged. Iterative reconstruction allows a more robust modelling of the effects occurring in the PET

scan and therefore is more general than Fourier reconstruction. However, it presents a high computational

cost and, consequently, is much slower than the latter one. Nonetheless, this drawback has been overcome

by our current computational resources that allows the use of these algorithms for clinical practice. The

preferred iterative algorithms for reconstruction are based on expectation maximization (EM). The most

frequently used method accelerates EM by an ordered subset, corresponding to the acronym OSEM.

1.3.2. Standard corrections

Several coincidences are detected in PET image acquisition, but just a few hold relevant information about

the place of annihilation as stated in Section 1.2.3. Furthermore, the interaction of the photon with the tissue

(detailed in 1.2.5) when passing through the patient before getting to the detector attenuates the signal. In

order to correct the deteriorated signal, different strategies were proposed. Some examples of corrections are

described in the following.

Attenuation correction

Attenuation occurs when the emitted photons are absorbed before reaching the detector. In a PET scan, it is

mainly due to the effects presented in Section 1.2.5. Attenuation correction is then applied to obtain a more

realistic representation of the radiotracer distribution from the obtained deteriorated information.

Attenuation correction is easily modeled along a line, knowing the linear attenuation coefficient at each point

of space and for an energy of 511keV. Once these parameters are known, it is sufficient to calculate the integral

of the attenuation coefficient along each LOR. To this end, a projection step is performed through an image

of the attenuation coefficient, in order to compute the set of corrective factors corresponding to these integrals

(one by LOR). Whatever the point of annihilation of the coincidence detected along the line joining the two

crystals, the total distance traveled by these two photons is the same. The amount of attenuating material

traversed is, therefore, the same. Thus, attenuation on an LOR does not depend on the location of annihilation.

The main challenge when applying this method of correction relies on the determination of the set of linear

attenuation coefficients. In practice, a mean coefficient for each voxel of the reconstructed image is defined

and an image of the linear attenuation coefficients is produced. This image is often called attenuation map.

This map is measured by means of an acquisition in transmission carried out either by a computed tomography

(CT) scanner or by an external source emitting 511 keV annihilation photons. Currently, most PET scans are

coupled to a CT scanner that estimates the attenuation coefficients for given values of photon energy. The final

attenuation map is obtained by converting it to correspond to 511keV.
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Scatter and random correction

In a clinical PET scan conditions, the effects presented in Section 1.2.3 are an important source of inaccu-

racy. To reduce these negative effects, some techniques were developed for correction of random and scattered

coincidences.

– Correction of random coincidences: There are two most currently used methods to estimate the

distribution of random coincidences and its variants. The first method uses the measurement of the count

rate of events detected by each crystal. It therefore assumes that the tomograph is able to record these

data. At the end of the acquisition, an estimation of the number of random coincidences per LOR is

inferred from the number of events detected by each crystal of the LOR within a coincidence window.

This method has two disadvantages: in most cases, it overestimates the amount of random coincidences,

and it does not take into account the characteristics of the coincidence detection chain (dead time and

multiple coincidence processing). In addition, event rates may vary throughout the acquisition. A second

effective and simple way of avoiding random coincidences is through temporal windows, as described in

Section 1.2.3. The advantage of this method is that the estimate of random coincidences has exactly the

same characteristics as the raw coincidences [Stu10].

– Correction of scattered coincidences: The correction of scattered coincidences has been explored in

many works. The first category of methods assumed that after correction of all phenomena except scatter-

ing, the coincidences detected outside the patient or object are scattered coincidences. The contours of the

patient or object are either obtained directly via CT, if available, or estimated from a first reconstruction

of the PET data after correction for attenuation and random coincidences. Since the distribution of the

scattered coincidences is a low frequency signal, the tails of this distribution are measured outside the

patient or the object in the sinograms and then completed by adjustment with different functions in order

to estimate the distribution of the coincidences scattered inside the patient or the object (always in the

sinograms). A second category of methods explores the fact that only the events detected around 511keV

are of interest. It is based on energy windowing, as detailed in Section 1.2.3. The challenge in this case

is to determine whether a low energy received is due to the limited energy resolution of the crystals, or

to a hypothetical previous scatter. Many other methods were proposed in the literature that will not be

detailed in this review but can be consulted in [Stu10].

1.4. Dynamic PET imaging

Dynamic PET imaging consists of acquiring a series of static PET images in different frame durations after the

injection of the radiopharmaceutical, followed by its reconstruction. The frames of time may vary according to
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L acquisiti
on times

Figure 1.8.: Illustration of a 3D+time dynamic PET image.

the study being made and can be very short in order to detect the quick variations in radiotracer concentration

after injection or very long when less noisy images are required. Fig. 1.8 shows an illustration of a dynamic

PET image with three-dimensional frames.

The main interest of dynamic imaging is to assess the concentration distribution of the tracer in the organs

as a function of time. It is used to explore the functionality of organs over time in in vivo applications. It has

proven its relevance in many applications from cancer [Muz+12] to neuroinflammation[Lav+15].

Dynamic PET acquisition can be achieved using two general approaches:

– acquisitions in list mode, if the PET scan contains this mode. This acquisition allows a storage of each

event, with the instant of detection, the number of the corresponding LOR, and the energy of the photon

detected. In this mode, the L times of acquisition will be specified after the process, where the sinogram

will be divided into L frames followed by an individual reconstruction of each image frame.

– standard dynamic acquisition, which consists in pre-specifying the different time steps before acquisition

and saving each detected event in the corresponding sinogram at each time step. Then the sinograms are

reconstructed independently for each time step [RTZ]. The final set of dynamic images obtained holds

the information on the kinetics of the radiotracer in the FOV.

1.5. Properties of PET images

As stated in Sections 1.2 and 1.3, PET image acquisition and reconstruction are affected by several phenomena

that can bias the quantification, making its analysis a challenging task. In this section, we describe some

characteristics of PET images that should be considered in any quantitative analysis.
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1.5.1. Partial volume effect

Spatial resolution can be defined as the smallest discernible detail in an image [GW08], i.e., it represents the

smallest distance between two distinguishable objects. In PET images, the detector size plays the main role

in determining spatial resolution, but some other effects such as non-collinearity, positron range, penetration

into the detector, among others, are also relevant (refer to [Mos11] for more details). Due to the cylindrical

geometry of the scanners, the spatial resolution is non-stationary in the FOV, i.e., it varies according to the

location of measurement, as shown in Fig. 1.9.

Figure 1.9.: The transaxial resolution includes a tangential component and a radial component. By moving
the radioactive source away from the tomographic axis, the probability that the incident photons
interact with the scintillators of several detectors before being absorbed increases. It is therefore
more difficult to define precisely the place of interaction of the 511 keV gamma rays when the
distance to the axis increases, this is why the spatial resolution is degraded in this direction [MAI12].

Meanwhile, another procedure that deeply affects the reconstructed images is the sampling, which produces

the tissue-fraction effect. The voxels in the reconstructed image may contain heterogeneous tissues, i.e., tissues

with different metabolic activities. Therefore, as each PET voxel contains a definite volume, it may only partially

present the desired tissue, being the averaging of the activity of different emission sources.

The effects from both spatial resolution and sampling constitute the Partial volume effect (PVE). It represents

the mix of different signals into the same voxel due to these phenomena. The limited spatial resolution spreads

the signal coming from a given object into a larger number of voxels than the real voxels that represent this

structure. Hence, it produces spill-out of radioactivity from a high-activity region into the surrounding tissue

and spill-in from surrounding tissues with high-activity into the volume of interest. The impact of the PVE is

shown in Fig. 1.10

The extent of the PVE depends on spatial resolution, sampling, the contrast of a structure with respect to

its surrounding environment and the size of the volume of interest.
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Figure 1.10.: Tissue-fraction effect due to sampling. (B) spill-out of the black structure with the value of 10
over the gray structure with the value of 5, (C) spill-in of the gray structure into the black one,
(D) final result from both spill-in and spill-out effects.[SBB07]

1.5.2. Noise

Positron emission is a random process and the tomographic acquisition is done with a limited amount of

time. Therefore, the measured data is corrupted by a high statistical noise and its posterior reconstruction

estimates the noisy radioactivity distribution. Even though the positron decay process can be described by a

Poisson distribution, the observed noise in reconstructed images has not a simple Poisson or Gaussian shape,

especially when non-linear iterative image reconstruction methods are used, such as ordered subset expectation

maximization (OSEM). The noise in OSEM images is known to be object dependent, with higher noise in regions

with high uptake compared to low uptake ones [Raz+05; BLL01]. Parameters values, such as the number of

reconstruction iterations, may also change the aspect and the correlation within the noise significantly. Moreover,

post-processing corrections and filtering operated by modern PET systems significantly alter the nature of the

noise, thus corrupting the final reconstructed images. Modelling the noise on this final data, thus becomes a

highly challenging task [WTB94].

Considering the difficulties in characterizing the noise properties in PET images, many works assumes that

the data is corrupted by a Gaussian noise [Fes94; CHB97; Kam09]. This assumption may also be substantiated

by the central limit theorem (CLM) [Tro59], which presents the Gaussian distribution as a limiting form of the

Poisson distribution (and others) when the mean value is very large. Thus, the Poisson parameter becomes

both the mean and variance for this Gaussian limiting distribution of a originally Poissonian data. Hybrid

distributions, such as Poisson-Gaussian [MOM00] and Poisson-Gamma [Ira+11], have also been proposed in

an attempt to take into account the various phenomena occurring in the data. The work of Teymurazyan

et al. [Tey+12] tried to determine the statistical properties of data reconstructed by filtered-back projection

(FBP) and iterative EM algorithms. While FPB reconstructed images were sufficiently described by a normal

distribution, the Gamma statistics were a better fit for EM reconstructions. The recent work of Mou et al.

[MHO17] further studied the Gamma behaviour that can be found on PET reconstructed data.

Another aspect to take into account when studying the properties of the noise is that its properties can

change from one frame to another. In a PET scan, activity contrast between organs varies from frame to frame
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because of changes in the tracer distribution over time. Dynamic PET uses time frames with varying durations

to capture the initial fast changes in tracer distribution while minimizing the data size. The frame durations

in a dynamic PET scan may range from a few seconds to several minutes or hours. As a result, the noise level

varies significantly from frame to frame [CQ10]. The frames in dynamic PET are often considered independent

consequently producing poor image statistics on each time frames, what affects mainly the shorter ones. More

advanced approaches indicate that improvements can be obtained through removal of the assumption of time-

frame independence, which can feed through to improved functional parameter estimates [Hon+08].

1.6. Quantification

Emission tomography is a great tool to assess the quantitative characterization of in vivo functional and molec-

ular processes. To this end, voxel values in the reconstructed PET images have to be converted into an in-

terpretable physical quantity, namely radiotracer concentration that reveals the targeted physiological process,

further allowing for the derivation of the parameters of interest characterizing molecular processes from the

physiological model that describes the system. Such quantitative interpretation of PET images is often referred

to as quantification [Buv07].

Quantitative assessment is extremely appealing for many applications, as it results in much superior informa-

tion than the only visual inspection of images, with less user-dependency [TTA12]. While visual assessment may

be a sufficient tool for initial diagnosis and staging, quantification is especially relevant for differential diagnosis

and evaluation of therapeutic efficacy, benefiting from the comparison of (semi)quantitative indices before and

after treatment. Moreover, only a quantitative analysis of data can provide the necessary parameters to eval-

uate the pharmacokinetics properties and efficacy of drugs, such as peak time, clearance, area-under-the-curve

(AUC) in plasma, healthy tissues and tumours. In the future, this ability will become even more relevant to

the selection of the most appropriate tracer for each application. Quantification techniques may be applied in

the voxel level or may require the definition of regions-of-interest (ROI) from which the TACs will be extracted.

These ROIs may correspond to blood regions or non-specific binding regions. When using ROIs, the TACs are

obtained with two main steps that consist, in a first moment, in ROI demarcation and then, averaging of the

TACs in one ROI. In the following, two of the main quantitative methodologies that are currently used in PET

will be described and completed by an analysis of the challenges that are still to be addressed.

1.6.1. Standardized uptake value (SUV)

SUV is the most commonly employed semi-quantitative method in clinical practice, in particular for static

imaging. It consists on the ratio between the radiotracer concentration in a certain ROI and the injected
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activity, divided by a normalization factor

SUV =
Rc

Ia

NF

, (1.2)

where the Rc is the radiotracer concentration (e.g., kMq/ml) measured with PET in the ROI, Ia is the total

injected activity (e.g. MBq) and NF is a normalization factor, e.g., body weight, body surface area and square

meters, computed from the height and weight of the patient.

However, the SUV depends significantly on several different factors making it difficult to compare SUVs

computed in different centres when the experimental procedures are even slightly different, e.g., the time interval

between injection and scanning, the settings characterizing image acquisition, the reconstruction algorithm.

On the other hand, despite the current lack of a standardized and reliable SUV protocol, when computed

in the same centre with the same settings, SUV remains a simple and effective tool for assessing treatment

response to therapy, for diagnosis and other evaluations in clinical routine.

1.6.2. Parametric imaging methods

Tracer kinetic modelling techniques are used to estimate biologically interpretable parameters by describing

the TACs in a region-of-interest with mathematical models. A wide range of techniques models the PET

signals based on compartmental analysis of the tracer. These approaches may be divided in two major groups:

model-driven methods and data-driven methods, as defined by [Gun+02]. Model-driven methods are based on

a previously chosen compartmental model, whereas data-driven techniques do not need any a priori decisions

about the most appropriate model structure. In model-driven methods, micro or macro parameters of the

system are estimated from a previously defined compartmental structure. Meanwhile, data-driven methods

derive macro system parameters from a less constrained description of the kinetic processes of a tracer.

Compartmental modelling (CM)

Compartment modelling, also known as kinetic modelling, is the most accurate method to describe the ki-

netic behaviour occurring within the voxel in a dynamic PET dataset. While it has been explored for a long

time, it still has significant traction thanks to its quantitative accuracy. In CM, the tracer is assumed to be

exchanged between compartments, where each compartment represents a physiological or biochemical entity.

There are several different types of compartment models described in the literature, e.g., 1-tissue, 2-tissues

and 3-tissues models. While some of them require an arterial blood or plasma input function, such as those

that are used for the quantification of blood flow [KS48], cerebral metabolic rate for glucose [Sok+77; Phe+79]

and for neuroreceptor ligand binding [Min+84], others are based on reference tissue models [Blo+89; Cun+91;

Hum+92; LH96]. The selection of a given compartment model is based on the radiotracer under study [Gun+97;

Inn+07], but most of the models consider that the measured signal in a given voxel is the sum of the comprising
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CF+NS+SCP
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Figure 1.11.: Configuration of the classic three-compartment kinetic model used in many imaging studies.

compartments. Moreover, the rates at which the radiotracer is transferred are given by first-order differential

equations.

Figs. 1.11, 1.12 and 1.13 illustrate three models currently applied in dynamic PET, where F stands for free,

NS for nonspecific, S for specifically bound tracer in tissue and the ks are rate constants describing the rate of

tracer exchange between compartments. CP represents the radioligand concentration in arterial plasma and Vp

represents the fraction of arterial plasma appearing in the tissue. CT is the total tissue concentration of tracer.

For all models, it can be considered that the TAC of the voxel is a linear combination that accounts for the

blood volume by a spillover term governed by Vp :

CPET = VpCP + (1− Vp)CT. (1.3)

In the following, the three mentioned models are further detailed in terms of CT.

– 1-tissue model: In the 1-tissue model [KS48] depicted in Fig. 1.11, the radioligand is assumed to move

between the plasma compartment CP that represents the radioligand concentration in arterial plasma,

and the tissue compartment CF+NS+S that contains the concentration of radioligand on free, nonspecific

and specific tissues. The total tissue concentration of tracer is given by

CT = K1e
−k2t ∗ CP, (1.4)

where t = [t1, · · · , tL]T are the times of acquisition, which are previously known and ∗ stands for temporal

convolution. For simplification purposes, throughout this work we will use the notation eθ as an element-

wise operation, i.e., when θ is a vector it will produce a vector in which each element is the exponential

of the corresponding element in vector θ.

– 2-tissue model: Figure 1.12 presents the compartmental structure for the 2-tissue compartmental

model [Min+84], where the radioligand is assumed to move between three compartments: CP, CF+NS that
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Figure 1.12.: Configuration of the classic three-compartment kinetic model used in many imaging studies.

represents the free plus non-specific compartment, and CS represents the specifically bound compartment.

The exchange between compartments are subject to rate constants kj (j = 1, . . . , 4) [HBS16]. The total

tissue concentration is computed as

CT =
K1

α2 − α1
[(k3 + k4 − α1)e−α1t + (α2 − k3 − k4)e−α2t] ∗ CP, (1.5)

where

α1,2 =
k2 + k3 + k4 ±

√

(k2 + k3 + k4)2 − 4k2k4

2
. (1.6)

– Full reference tissue compartment model (FRTM): An alternative to using a known input function

consists in using a region of reference that is supposed to be devoided of the target of the radiotracer.

The advantage of this method consists in reducing the degree of invasiveness and the level of complexity

of the scanning protocol as well as data analysis procedures, as no arterial cannulation and sampling

are required. Moreover, labeled metabolites that can bias the measurements of plasma concentration in

arterial blood are no longer an issue with this technique [LH96]. Fig. 1.13 depicts the compartmental

structure for the FRTM [Blo+89; Cun+91; LH96]. To successfully apply this model, it is essential to

choose a reference region with no specific binding. Also, the distribution volume in the tissue of interest

has to equal that in the reference tissue, i.e., K1

k2
=

K′

1

k′

2

2. In that case, the PET signal becomes:

CT = R1(CR + b1CR ∗ e−α1t + b2CR ∗ e−α2t), (1.7)

where R1 represents the tracer delivery ratio between the tissue of interest and the reference region

2the primes (’) refer to the reference tissue parameters.
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Figure 1.13.: Configuration of the classic reference three-tissue kinetic model used in many imaging studies.

(R1 = K1

K′

1
= k2

k′

2
), with

b1 =
(k3 + k4 − α1)(α1 − k2/R1)
√

(k2 + k3 + k4)2 − 4k2k4

, (1.8)

b2 =
(α2 − k3 − k4)(α2 − k2/R1)
√

(k2 + k3 + k4)2 − 4k2k4

. (1.9)

The binding potential is BP = k3

k4
. Gunn et al. [GGC01] further developed the binding potential rela-

tionship as

BF.fT = R1

(

1 +
b1

α1
+
b2

α2

)

− 1

=

K1

k2

(

1 + k3

k4

)

K′

1

k′

2

− 1,

(1.10)

where fT is the free fraction of radioligand in tissue.

Considering both the 2-tissue and reference compartment models, the assumption of constant kinetic pat-

terns seems appropriate for the blood compartment as well as non-specific binding tissues, since they present

some homogeneity besides some perfusion difference (e.g. white matter versus gray matter). Therefore, their

contribution to the voxel TAC should be fairly proportional to the fraction of this type of tissue in the voxel.

CM is considered the “gold standard” in PET quantification thanks to its reliability and its independence on
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scanning time or plasma clearance, in contrast with the SUV. However, its complex acquisition protocol, that

requires dynamic scanning and arterial blood sampling to measure the time course of plasma concentration of

tracer (also called input function), is a great limitation of the method. Simplifications based on non-invasive

estimation of the input function or employment of the reference-region approach are currently being studied to

better facilitate the use of CM in clinical practice.

Data-driven methods

Graphical analysis [Gje82; PBF83] and spectral analysis [CJ93] are among the group of data-driven methods.

Graphical methods consist in estimating macroparameters (which are combinations of microparameters) by

appropriately transforming the multiple time measurements of plasma and tissue uptake data. There are two

types of graphical methods: the Patlak plot [PBF83] and the Logan plot [Log00], which can be applied to

irreversible and reversible tracers, respectively.

In this work, we will be especially interested in the general theory introduced by Gunn et al. [GGC01] for

plasma and reference input models. Inspired by spectral analysis, it characterizes the compartmental system in

terms of its impulse response, as summarized hereafter.

– Plasma input models: Spectral analysis [CJ93] describes the system impulse response as a positive

sum of exponentials and considers the plasma or blood input function as input, which yields

CT = (
V∑

i=1

bie
−αit) ∗ CP, (1.11)

where the coefficients bi and αi describe the kinetics of the tracer and V is the total number of tissue

compartments in the target tissue. Moreover, the coefficients bi are constrained to be nonnegative which

is true as this is a plasma input model. In this formulation, the blood volume is neglected in the target

tissue.

Gunn et al. [GGC01] constructs a general model for blood and plasma in a basis function framework

that writes

CT = (1− VB)(
V∑

i=0

bie
−αit) ∗ CP + VBCB, (1.12)

where CB is the tracer activity concentration in blood, VB is its corresponding fraction and the delivery

of the tracer to the tissue is given by K1 =
∑V

i=1 bi. Moreover, Gunn differentiates the models with

reversible and irreversible kinetics.

(i) Reversible kinetics (αi > 0): The volume of distribution VD of plasma input models exhibiting
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reversible kinetics is given by the integral of the impulse response function, which gives

VD =
V∑

i=0

bi

αi

.

(ii) Irreversible kinetics (αk(i6=0) > 0, αk0 = 0): In the case of irreversible kinetics models, the

irreversible uptake rate constant from plasma, KI , is given by

KI = b0.

– Reference tissue input models: The reference tissue input model is defined as

CT = ((1 + b0)δ(t) +
V∑

i=1

bie
−αit) ∗ CR, (1.13)

where CT is the target tissue, V is the sum of the total number of tissue compartments in both the

target and reference tissues, CR is the reference tissue TAC chosen to describe the studied ROI, δ(t) is

the impulse function and the ratio of delivery of the tracer between the target and reference tissues is

R1 = 1 + b0. In the case of reference tissue input models, it is natural to assume that negative coefficients

bi can also be encountered [Gun+02]. As in [Gun+02], in this definition, the presence of blood volume is

neglected in both the target and reference tissue. In [GGC01], a definition including the blood volume is

presented.

(i) Reversible target tissue kinetics (αi > 0): From the set of reversible models, [GGC01] derives

the relation

1 + b0 +

V∑

i=1

bi

αi

=
VD

V ′D
,

with VD and V ′D the total volume of distribution in the target and reference tissues, respectively.

This relation allows for a direct computation of the biding potential with respect to the free fractions

of the radioligand in tissue (fT ), i.e., BP.fT . It is given by:

BP.fT = b0 +
V∑

i=1

bi

αi

. (1.14)

(ii) Irreversible kinetics (α(i6=0) > 0, α0 = 0) In the case of irreversible kinetics in the target tissue

and reversible kinetics in the reference tissue, the normalized irreversible uptake rate constant from

plasma is given by

KI

V ′D
= bV .
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This general formulation is transparent because it returns information about the underlying compartmental

structure. The number of nonzero coefficients returned corresponds to the model order. However, the real

underlying configuration, i.e., if compartments are in series or in parallel, is indistinguishable. In particular, for

reference tissue input models, a model order of four, for instance, may present seven possible configurations.

1.6.3. Challenges of quantification

While quantification techniques from the PET literature present a sufficiently accurate performance in several

clinical applications, some challenges inherent to this general problem leave room for improvements. As pre-

viously discussed, while the SUV is a very simple and efficient approach, it is not able to benefit from the

temporal information of dynamic PET and produces biased results, as a consequence of its applications on

static images. Parametric imaging capitalizes on the temporal information of dynamic PET. However, it is very

complex and requires the estimation of a high number of parameters. There are many possible sources of errors

and uncertainties in kinetic parameters obtained through model-driven methods based on CM. First, they need

a previous knowledge on the model that better fits the tracer under study. However, even if we choose an ap-

propriate model, to compute each parameter of the model is a highly challenging task and may still oversimplify

the underlying kinetics of the tracer. The variation in the number of detected photons caused by the random

nature of radioactive decay is of course always a major source of error. As previously stated, other sources may

include: the camera detectors and electronics, image acquisition protocol, image reconstruction algorithm with

corrections (attenuation, random and scattered coincidences, detector uniformity, decay) and so on. Moreover,

PET image noise leads to quantitative inaccuracy that can cause both bias and uncertainty in measured entities

such as SUV and kinetic parameters. Data-driven methods seem to be more robust and, consequently, more

complex. Besides the computation of parameters, which already imposes a non-unique problem, it also carries

the challenge of knowing which compartmental configuration better fits the estimated parameters.

There is, of course, potentially a huge interest in including kinetic parameters in clinical applications. However,

despite the potential benefits, full kinetic modelling for monitoring treatment response is rarely used, since it

requires time-consuming dynamic scanning, is more complicated and less reproducible than SUV based methods.

Moreover, they require a knowledge of the activity concentration in arterial blood or a reference tissue, what

makes kinetic modelling tricky for the clinical routine, being today mainly utilized for research applications. To

improve the quality of parametric imaging results, we have to be able to provide a high-quality arterial input

function and/or reference tissue TAC. This remains a challenge, especially for radiotracers that do not have

any anatomical regions that can be a priori considered to be devoid of specific binding (e.g. radiotracers of

neuroinflammation).
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1.7. Conclusion

This chapter provided an overall view of the PET image domain and the relevance of dynamic PET. After

summarizing the acquisition and reconstruction processes, roughly describing all the effects affecting data, we

discussed the relevance of quantification and the current methods to apply it. The main challenges in PET image

quantification were also discussed. The next chapters will try to overcome some of the obstacles presented in

this chapter. The first one is the need for a non-invasive estimation of reference TACs from non-specific tissues.

The undetermined nature of PET noise, a main challenge for quantification, will also be addressed. Moreover,

the complexity encountered in parametric imaging and its main drawbacks will be confronted.
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This manuscript is based on factor analysis and matrix factorization techniques borrowed from the multi-

band imaging literature. Indeed, multi-band imaging is now in the heart of various applications, including Earth

observation [Bio+12], microscopy [DB12], astronomy [DTS07] and functional imaging, among others. State-

of-the-art factor analysis techniques have been further developed in these domains in the last years and some

applications have shown a greater advance on this topic than others have. For this reason, the techniques de-

veloped throughout this manuscript have been inspired by matrix factorization methods from the hyperspectral

domain, rather than the PET domain that is our main application.

This chapter presents the fundamental models and algorithms that underlie this work. To this end, Section

2.1 discusses the main methods used for the extraction of elementary TACs for clinical PET analysis. Section 2.2

introduces the concept of blind source separation and the linear combination model that is the basis of most of
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these methods. It also briefly summarizes classical matrix factorization algorithms for blind source separation.

In particular, Section 2.3 introduces factor analysis methods from the PET literature while Section 2.4 presents

some unmixing methods proposed in the hyperspectral literature that will provide the fundamentals for the

methods developed throughout this manuscript. Section 2.5 summarizes the main nonlinear models from the

hyperspectral imaging literature. The variability encountered in linear mixtures, which is a topic that recently

raised interest in the hyperspectral community with applications to Earth observation, is addressed in Section

2.6. Section 2.7 concludes the chapter. The approaches presented in this chapter will inspire the techniques

subsequently developed along this thesis for the PET domain.

2.1. From non-parametric methods to factor analysis in dynamic

PET

As discussed in the last chapter, compartmental models (CMs) are one of the most accurate ways to quantify

the distribution of radiotracer in a PET image. Some of the most well established CMs [GGC01] in PET require

an arterial blood or plasma input function [KS48; Sok+77; Phe+79], while others require a reference tissue TAC

[Blo+89; Cun+91; Hum+92; LH96]. Either way, an estimation of reference TACs representing tissues or an

input function characterizing the blood flow is required.

In this context, many methods were developed in order to perform a non-invasive extraction of the global

kinetics of reference TACs. Segmentation has constantly appeared as a relevant tool in the analysis of dynamic

PET, generally categorized in the domain as supervised or unsupervised clustering of TACs. Many unsupervised

approaches have been proposed based on the hypothesis that voxels with homogeneous behaviors can be identi-

fied by analysing the similarity between their TACs. Ashburner et al. [Ash+96] applied a clustering treatment

based on the shapes of the pixel TACs rather than their absolute scaling while Brankov et al. [Bra+03] used a

similarity metric for clustering. An algorithm similar to K-means was proposed by Wong et al. [Won+02] that

improved the standard method with a least-square distance that assures within-cluster cost minimization. A

parametric imaging algorithm with components extraction based on an average linkage method for hierarchical

cluster was presented by Zhou et al. [Zho+02] while Guo et al. [Guo+03] combined hierarchical linkage to a

precluster in a two-stage clustering process. Krestyannikov et al. [KTR06] used the least-square method to

cluster PET data in the projection space. Maroy et al. [Mar+08] proposed a method of local means analysis

also based in hierarchical linkage. Clustering the sinogram domain by maximizing the posterior probability was

proposed by Kamasak [Kam09]. Cheng Liao and Qi [CQ10] developed a weighted multiphase level set method to

achieve segmentation. A method based on spectral clustering where data mapped into a high dimensional space

is clustered to a low-dimensional space of the Laplacian matrix was proposed by Mouysset et al. [Mou+13].

In clinical PET research for microglial activation, the supervised cluster analysis (SVCA) algorithm proposed
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by Turkheimer et al.[Tur+07] has been often used as an automatic approach for reference tissue kinetics extrac-

tion. It is based on the segmentation of PET voxels by analysing the differences in time-activity curves (TACs).

The algorithm SVCA6 for brain imaging requires 6 predefined kinetic classes that describe the gray matter

(reference tissue), white matter, skull, blood, soft tissue and one additional class for microglial activation. Each

voxel of the image is described by a linear combination of the class kinetics. Indeed, this linearity assumption for

voxel decomposition can be envisioned in the light of CM that considers that the resultant signal is composed

by the sum of the contribution of each compartment representing a physiological structure. The last step of

SVCA6 consists in a linear regression procedure that computes the contribution of each class to each voxel.

A modified method considering only 4 kinetic classes (SVCA4), i.e., excluding bone and soft tissue zones, was

proposed by Boellaard et al. [Boe+08]. It requires a previously defined brain mask which can be acquired from

a magnetic resonance image (MRI) of the subject. Fig. 2.1 presents an illustration of this assumption, where

each region of the brain is expected to contain blood, specific gray (sGray) matter, non-specific gray (nsGray)

matter and white matter elements. As a result of a smaller number of classes, precision was improved. Tomasi

et al. [Tom+08] proposed a method with the ability of improving even further the precision of SVCA with an

image-derived blood TAC [Yaq+12]. The blood input function automatic extraction consists in selecting the

10 pixels with maximum area under the curve (AUC) in the first 5 frames, where the blood peak concentration

should be present.

Still aiming at extraction of reference TACs, factor analysis has naturally appeared as a more general and

flexible way to perform TAC tissue extraction in the PET domain [Bar80; CBD84; Wu+95]. It consists in

describing each voxel of the image as a linear combination of all other voxels, providing not only an overall TAC

that describes each tissue but also a matrix of coefficients that present the relation of each voxel with each tissue

TAC. The experiments reported in [Lee+01b; Pad+12; Sch13] showed the interest of applying factor analysis

in the PET domain in a constrained framework, where both TACs and coefficients are assumed to be positive,

which is coherent with the knowledge that we have on reconstructed PET images.

Factor analysis techniques belong to a group of generic methods that aim at tackling blind source separation

(BSS) problems. The next section further discusses BSS, its mathematical formulation and possible solutions.

2.2. A brief overview on blind source separation (BSS)

An effective way to improve signal quality and extract as much information as possible from an observed signal

is to recognize all the agents affecting the resulting data and possibly selecting the ones of greatest interest.

This rationale may be behind our brain selective attention, i.e., its ability to focus on a particular stimulus

while neglecting a wide range of other stimuli perceived by our natural sensors. A classical example is the

cocktail party effect [Aro92], which basically highlights our ability to focus on a single conversation despite of
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Figure 2.1.: A measured PET voxel is composed by the contributions of each ROI tissue TAC in the correspond-
ing studied region.
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a noisy-room situation.

This kind of problem is commonly referred to as blind source separation (BSS). Introduced in the mid-80s

[HJA85; JH91], BSS is an unsupervised learning tool that consists in separating a mixture of a priori unknown

signals by identifying the underlying mixing system.

BSS has been advocated as a relevant and efficient tool to identify the underlying synthesis occurring in mul-

tivariate signals acquired in various applicative contexts, ranging from Earth science [Bio+12] to experimental

physics [DB12]. Historically, it has been widely used for the audio and biomedical signal processing domains.

In audio applications, it is used to describe different speech signals in one conversation [CC97]; to characterize

and separate speech and music background [LBO97; Van03]; to describe sounds issued from different musical

instruments [KP00], among others [Vin+03]. In the biomedical domain, it was widely applied to characterize

electrophysiology signals, such as electroencephalograms (EEG) [VO00], electrocardiograms (ECG) [DDV00],

electromyograms (EMG )[Far+04; Far+03]. It was also applied in functional imaging, such as functional mag-

netic resonance imaging (fMRI) [McK+98] and PET [Wu+95].

Besides the above-mentioned classical applications, the same problem can be found in a long list of other

domains. It is the case of chemometrics, where it was used to identify the different spectra constituting a

chemical substance [GPH04; Mou05]. In telecommunications, it was applied for radio surveillance [CT03],

interference reduction [XB99] and cognitive radio [ZXY09]. Hyperspectral imaging for Earth Observation also

has several examples of the use of linear combination models [ND05a; DKS06].

The first step to distinguish each signal altering the perceived data is to identify its corresponding mixing

system. Let M = [m1, ...,mK ] be a matrix of K elementary sources, with mk ∈ R
L the kth source and

Y = [y1, ...,yN ] the matrix comprising the N observed signals, denoted by yn ∈ R
L, for n = 1 · · ·N . The

relation between the source signals and the observed ones is illustrated in Fig. 2.2 and can be defined as

Y = S(M), (2.1)

where S denotes the mixing system and the noise that depends on the physical phenomena affecting the latent

(i.e. unobserved) data. The system S is often mathematically characterized with an approximation of the

observation matrix Y by a model, denoted as X(θ) such that

Y ≈ X(θ), (2.2)

where θ contains the latent variables belonging to the model, where M ∈ θ, and the approximation symbol ≈

generalizes the relation between the model and the measured data.
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Figure 2.2.: Illustration of a mixing system

2.2.1. Linear model

In a wide bunch of applications from the signal and image processing domains, a sufficiently general assumption

is that each approximation variable xn ∈ R
L is composed by a linear combination of the K elementary signals

(or sources) and their respective mixing coefficients. More explicitly, this model is mathematically expressed as

xn =

K∑

k=1

ak,nmk, (2.3)

where mk is the factor corresponding to the kth source, ak,n is the coefficient that represents the influence of

the kth source in the nth signal. In matrix form, (2.3) simply writes

X = MA, (2.4)

where X = [x1, ...,xN ] is a L×N matrix comprising the approximated data, M is a L×K matrix of factors,

A = [a1, . . . ,aN ] is a K × N matrix containing the coefficients, also known as activations. In this case,

θ = {M,A}.

2.2.2. Classical approaches

Among the most classical BSS solutions to this problem are singular-value decomposition (SVD), principal

component analysis (PCA) [Bis06], independent component analysis (ICA) [Com94], nonnegative matrix fac-

torization (NMF) [LS00] and sparse coding [OF96] (also called dictionary learning [Kre+03; Fer+ed]).

PCA is a multivariate analysis method that aims at identifying the most relevant trends and patterns on data

through dimension reduction. High-dimensional data is often highly correlated and one of the challenges of

PCA when dealing with this kind of input is to transform this large number of variables into a smaller number

of uncorrelated principal components. To this end, it searches for the direction of maximum variance in the

input space. Thus, the first principal component contains most of data variability and each following component

accounts for the remaining variability not represented in the precedent ones.
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A routine for performing PCA starts with the computation of a measure of data variability. From multivariate

statistics, recall that the variance σ2 is an one-dimensional measure of the spread of data in a dataset. In multi-

dimensional data, however, it is often useful to know how much the dimensions vary from the mean with respect

to each other. Therefore, covariance appears as a good way to compare two dimensions. For two variables

[X]1 ∈ R
N and [X]2 ∈ R

N , it is mathematically defined as

cov([X]1, [X]2) =
1

N − 1

L∑

l=1

(x1n − µ1)(x2n − µ2), (2.5)

where µ1 and µ2 are the mean of the variable [X]1 and [X]2 in the R
N dimension, respectively. Data covariance

computation is essential to PCA. The matrix formulation concerning a data set may be written as cov(X) =

XµXT
µ with Xµ the centered data, i.e., after mean subtraction.

SVD is often used as a method for PCA, since they are both based on finding an uncorrelated description of

both M and A through orthogonalization [WEG87]. SVD consists on decomposing X in (2.4) as follows

X ≈ USVT , (2.6)

where S is a diagonal matrix of singular values whose elements are arranged in descending order of magnitude,

V is composed by the eigenvectors of cov(X) and U is the matrix of projections of X onto cov(X).

After covariance computation, the first step of a SVD routine is to find a number K of non-zero eigenvalues

of the covariance matrix to constitute the non-square matrix S with a diagonal formed by their square root in

descending order of magnitude. All non-diagonal elements of S are set to zero. Then, the eigenvectors of cov(X)

are arranged in the same order as their corresponding eigenvalues to form V. The projection matrix U may

be computed as uk = s−1
k Xvk with k = [1, · · · ,K]. SVD can be used to find the component vectors of PCA.

Truncated SVD performs filtering by discarding the eigenvectors with negligible eigenvalues, while keeping the

eigenvectors associated with the K largest eigenvalues.

While in PCA the eigenvectors point out the direction of maximum variation, ICA tries to decompose the

data into an additive series of statistically independent non-Gaussian vectors [HO00]. It is relevant to highlight

that uncorrelation is not the same as statistical independence, since that, in uncorrelated data, the value of one

variable may still provide information about the others. Beyond uncorrelation, statistical independence between

variables means that they are uniquely defined, i.e., knowing the value of one of them provides absolutely no

information on the others. To this end, it iteratively updates M in equation (2.4) so as to maximize or minimize a

given cost function that measures independence and non-Gaussianity, e.g., mutual information, entropy, kurtosis

(fourth moment). A drawback of ICA is that statistical independence can be rarely ensured in practice [Fri98;

ND05a].
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Even though these approaches have proven their effectiveness in various domains, its performance is com-

promised when sources are correlated or present a strong statistical relation. Among the principal challenges,

these approaches face the non-uniqueness and the undetermined nature of the optimization problem [DS04].

In order to reduce the number of possible solutions, although not entirely solving the non-uniqueness problem,

additional assumptions can be made on data. They can be expressed in terms of penalizations and constraints.

It is the case of NMF and sparse coding. Indeed, linear decomposition can be formulated as an optimization

problem which consists in estimating the parameter vector θ assumed to belong to a set denoted C with the

possible complementary penalizations R(θ). It is mathematically described as

θ̂ ∈ arg min
θ∈C

{

D(Y|X(θ)) +R(θ)
}

(2.7)

where D(·|·) is a measure of dissimilarity between the observed data Y and the proposed model that should

depend on the noise properties of the signal.

In the standard NMF formalism [LS00], to provide an additive and part-based description of the data,

nonnegative constraints are assumed for the signatures and respective coefficients

A � 0K,N , M � 0L,K , (2.8)

where 0W,H denotes the W × H-matrix made of 0’s and � stands for a component-wise inequality. The

corresponding NMF optimization problem has been largely considered in the literature.

Sparse coding searches a compact representation of data by penalizing A so as to enforce sparsity. The

most direct way to recover a k-sparse matrix, i.e., a matrix with at most k non-zero elements, is through the

ℓ0 operator, mathematically written as ‖A‖0, that denotes the number of non-zero entries in the matrix A.

However, this operator is very difficult to adapt to most classical optimization problems. For its adaptability,

in particular its ability to be written as a linear programming problem, one of the most popular tools to induce

sparsity is the ℓ1-norm, also called the LASSO regularizer [Tib96]. Mathematically written as ‖A‖1, it produces

shrinkage on data depending on the value of its corresponding tuning parameter, that works as a baseline in

order to set more or less coefficients to zero. To define them as penalizations for A in problem (2.7), we write

R(A) = ‖A‖0 or R(A) = ‖A‖1. In general, sparsity is relevant in many applications, since, in practice, it takes

the form of variable or feature selection, increasing interpretability of the solution [Bac+12]. Moreover, it can

be combined in various different ways with different techniques, including NMF [Hoy04].

In the following section, a brief summary of the BSS methods applied in the PET domain will be presented.

Subsequently, to provide the basis of the methods developed throughout this thesis, BSS methods from the

hyperspectral literature will be further detailed.
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2.3. Factor analysis in PET

In the search for a non-invasive extraction of the blood input function as well as an unsupervised estimation of

reference tissue TACs to help in quantification, BSS methods, namely factor analysis or matrix factorization,

raised a lot of interest in the dynamic PET community.

Factor analysis consists in interpreting each voxel TAC of the image as a linear combination of K elementary

factor TACs, corresponding to distinct tissues, and their respective coefficients, as illustrated in Fig. 2.3. In

this work, we will categorize factor analysis in dynamic PET with two generations of methods: SVD-based and

optimization-based.

2.3.1. SVD-based factor analysis

The first generation is mainly based on apex-seeking and SVD for extraction of principal components or factors.

Based on previous studies made on principal component analysis for quantitative evaluation on medical imaging

[Sch79; Mor90], Barber [Bar80] was the first to effectively propose a matrix factorization-based analysis technique

for gamma camera imaging. The main assumption of this method is that tissues are spatially homogeneous with

respect to a given tracer and therefore a single TAC is able to characterize the variation of tracer concentration

over time for all points within an organ. Moreover, while pure voxels of a tissue would present the most

extreme values of their corresponding coefficient, overlapping voxels would be identified with coefficient values

partitioned between each mixing factor. Indeed, Barber defines the coefficients in a voxel as summing to one

and determines that they have to be positive so as to represent a physically realistic situation. This technique,

referred to as factor analysis of dynamic structures (FADS), was further developed by Di Paola et al. [Pao+82]

and applied by Cavailloles et al. [CBD84] for non-invasive gated cardiac studies under positivity constraints.

Nijran and Barber [NB85; NB86] highlighted the relevance of providing physiological a priori information on

at least one of the factors to reduce the number of possible solutions to the problem. As an example, they used

the differential equations from a three-compartment model to describe the tracer flow in the kidney, considered

as the factor of interest. The impact of poor identification of factors was discussed in [Hou84]. Houston [Hou86]

further addressed the identification of physiologically meaningful factors, by the use of set theory and clustering,

while the work in [Sam+87] tried to achieve the same goal by the use of rotation procedures. In a posterior

work, Samal et al. [Sam+87] investigated the ambiguous nature of general factor analysis problems applied

to dynamic PET. In [NB88], the relevance of constraints on providing physically meaningful factors for FADS

approaches is studied. Nakamura et al. [NSK89] evaluated the performance of a factor analysis method based

on the maximum entropy principle in dynamic radionuclide images. In [Dae+90], a background correction is

implemented within factor analysis.

Buvat et al. [Buv+93] proposed a target apex-seeking method that identifies a factor when knowing part or

41



Chapter 2. Blind source separation in multi-band imaging

the entirety of its shape. In its first decades, FADS was inherently associated with PCA and factors extraction

was mainly based on orthogonality or apex-seeking principles. Indeed, Bernali et al. [Ben+93] summarized the

step-by-step procedure applied in the domain until its publication as the following:

– First, a preprocessing step that often consists on clustering and selection of TACs is conducted on data

to improve SNR;

– Then, an orthogonal analysis (often SVD) is applied to the selected TACs to reduce dimensionality,

producing basis vectors;

– An oblique rotation of the previously estimated basis vectors is then conducted to obtain non-orthogonal

factor TACs, representative of tissues and blood.

– Finally, an oblique projection of the image is used to produce factor coefficients.

In their work, they analysed an appropriate metric for orthogonal and oblique analysis, proposing an iterative

statistical method based on the fixed-effect model [Cau86] to explicitly take into account physical considerations

of data. The method allowed the direct application of nonnegativity and normalization to the factor proportions

as a step of the iterative procedure. It also enabled the modeling of Poisson or Gaussian noise in the data.

In [Ben+94], the interest of directly applying a priori knowledge of data into factor analysis was further

investigated.

Furthermore, Wu et al. [Wu+95] applied FADS to extract the blood TACs from dynamic FDG-PET studies

and the method was successfully validated in a breast cancer study into humans when compared to aortic

plasma. Houston et al. [HS97] compared different FADS methods in renal dynamic studies, showing that they

work well when the compartments are homogeneous and non-homogeneous without pathology. However, the

presence of an abnormality in the tissues lowers the performance of factor analysis. A realistic estimation of

the blood input function also appeared to be of relevance for the good performance of FADS methods.

2.3.2. Optimization-based factor analysis

In opposition to the previous SVD-based approaches, the second generation of methods is based on optimization.

A Monte-Carlo-simplex iterative method was first introduced in the domain by Bazin et al. [Baz+80]. Van

Daele et al. [Dae+91] proposed a vertex-finding algorithm that is based on the minimization of a function of

the vertices. Sitek et al. [SDG00] applied a conjugate gradient algorithm to conduct FADS on cardiac images

by minimizing a least square function such as in the optimization problem posed in (2.7) with

D(Y|MA) = ‖Y−MA‖2
F , (2.9)
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where ‖ · ‖F is the Frobenius norm and is associated with a Gaussian assumption on the noise or the approx-

imation residual. The article also proposed a post-processing step to reduce the non-uniqueness encountered

on factor analysis approaches. Instead of using a constraint to impose nonnegativity, as in standard NMF, the

proposed method applied a penalization in both M and A that was defined as

R+(θ) =
L∑

l=1

K∑

k=1

λMH(mlk) +
K∑

k=1

N∑

n=1

λAH(akn), (2.10)

where λM and λA determine the trade-off between its respective penalization term and the data-fitting term

with

H(θ) =







θ2, if θ < 0,

0, if θ ≥ 0.
(2.11)

The works of Sitek et al. [SGH02] further improved nonnegative FADS with a penalization that promoted non-

overlapping regions in each voxel aiming at tackling the non-uniqueness problem inherent of factor analysis.

El Fakhri et al. [El +05] validated the approach with the extraction of left and right ventricle factor TACs in

cardiac dynamic PET. In [El +06], factor analysis is further generalized to a five-dimensional framework that

includes three spatial dimensions, one temporal dimension and a photon-energy dimension.

In another direction, independent component analysis (ICA) has been widely advocated to solve BSS prob-

lems. Thus, naturally, ICA has also been considered to analyse PET images, e.g., to segment various cardiac

tissues and blood [Lee+01a; Che+07; Mar+10]. However, ICA assumes statistical independence of the sources,

which significantly lowers its performance when the sources to be recovered are correlated and short-numbered,

as encountered when analysing PET images [ND05a]. Furthermore, ICA not necessarily provides physically

meaningful factors since it does not impose nonnegativity constraints.

Meanwhile, Lee et al. [Lee+01b] popularized NMF with multiplicative updates as a solution to explicitly

consider nonnegativity while adapting the divergence measure D(Y|MA) to the Poissonian nature of the noise

distribution in the count-rates with the Kullback Leibler (KL) divergence. The KL-divergence K(Y|X) writes

K(Y|X) =
L∑

l=1

N∑

n=1

ylnlog
xln

yln

. (2.12)

Kim et al [Kim+01] applied KL-NMF to the extraction of the carotid input function followed by a partial

volume correction. A scale-corrected NMF was used in [BSK07] for estimation of the vascular TAC in 5

healthy subjects injected with [18F]-Altanserin. Padilla et al. [Pad+12] applied NMF for dimension reduction,

followed by a support vector machine (SVM) classifier for the diagnosis of Alzheimer disease. Schulz et al.

[Sch13] compared NMF and standard factor analysis performances in the distinction between the myocardial

tracer concentration and the blood input function. NMF presented superior results. A more deterministic
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Figure 2.3.: Illustration of the factor analysis scheme

approach was proposed by Ouedraogo et al. [Oue+14] to perform BSS on the non-negative data domain. It is

a geometrical method based on the simplicial cone shrinking concept. More recently, Filippi et al. [FDM17]

applied a non-negative factor analysis approach with an additional penalization on the factor proportions based

on pre-defined regions of interest for each tissue.

2.4. Hyperspectral unmixing

This manuscript focuses on dynamic PET images and is mainly inspired by several methods proposed in the

hyperspectral imaging literature, in particular for Earth observation. Multispectral and hyperspectral imaging

consists in the acquisition and processing of images whose pixels are characterized by tens to hundreds different

wavelength channels, in opposition to single-valued gray-level images or even three-channel red, green and blue

(RGB) images. These channels provide the reflectance spectrum of the surfaces captured in the image, i.e.

the response of the surface to visible light that depends on absorption features caused by pigments. In Earth

observation applications, this deeper spectral information allows to differentiate materials in a scene from its

reflectance.

The constitution of pixels in hyperspectral images is often described with linear mixing models (LMM) that

consist of a linear combination of endmembers, that contain the spectral signature of a given material on the

observed scene, and abundances, which correspond to the proportion of each endmember in each voxel, as

shown in Fig. 2.4. This mixture is often explained by the limited spatial resolution of hyperspectral sensors.

Hyperspectral unmixing then consists of the identification of these elements described by LMM. It is a valu-

able technique widely applied in the hyperspectral imagery literature, especially in remote sensing for Earth
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observation [Bio+12; BN08; Amm+14; Dob+09; IBP11].

Figure 2.4.: An observed hyperspectral voxel is composed by the contributions of each material in the final
spectral response.

The factorization (2.4) and constraints (2.8) that describe a typical NMF can also be envisaged under the light

of LMM. As already stated, BSS problems may lead to several solutions and further assumptions on data may

reduce the set of search. Thus, additionally to the nonnegativity constraints defined in (2.8), LMM generally

assumes the following abundance sum-to-one constraint (ASC)

AT 1K = 1N (2.13)

where 1N is the N -dimensional vector made of ones.

This constraint forces the abundances to be interpreted as concentrations [Kes03]. Therefore, all factor

proportion vectors lie inside the unit (or probability) (K − 1)-simplex, denoted as ∆K and defined by ∆K =

{a ∈ R
K ,∀k ∈ [1, · · · ,K], ak ≥ 0 and

∑K
k=1 ak = 1}. Similarly, the TAC xn belong to the convex set whose

simplices are the columns of M, represented by a (K − 1)-simplex in R
L [Bio+12]. Fig. 2.5 shows an example

of a simplex defined by K = 3 elementary factors. A simplex can be interpreted as a generalization of a triangle

to higher dimensions, i.e., in a k-dimensional subspace, a k-simplex is a subset defined by the simplest (k − 1)-

dimensional object of this subspace. The rationale behind this definition is the fact that a high-dimensional

data can actually be defined on a subspace of much lower dimension. This geometric interpretation for LMMs

led to a two-step strategy that became the most common way to perform hyperspectral unmixing: endmember

extraction followed by abundance estimation.

In this work, a parallel between hyperspectral images and dynamic PET images is drawn, where the TACs

of PET, constituted by temporal samples, correspond to spectra, constituted by spectral bands. This allows us

to address dynamic PET with approaches not yet applied in the domain.
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xn = Man

m1 m2

m3

Figure 2.5.: Illustration of the simplex for a mixing matrix of 3 factors (a similar representation was introduced
in [Bar80]). The filled circles represent the vertices of the simplex, corresponding to the factors and
empty circles are the TACs.

2.4.1. Endmember extraction

Endmember extraction requires a priori knowledge (or estimation) of the number of classes. In general, it is

based on the computation of a simplex whose vertices are the endmembers, as in Fig. 2.5. Many approaches

proposed in the literature are built on the pure pixel hypothesis [Pla+04]. A pure pixel is solely constituted by

one material in the scene, i.e., there is no mixing in its composition. The mentioned hypothesis assumes that

for each material in the observed image, there is at least one pure pixel. Otherwise said, we observe the vertices

of the simplex. As the pure-pixel approaches are very popular in the domain, in the following, a brief review

on two standard and effective techniques will be provided. These techniques, called N-findr [ZP09; CWT11;

Cha+11] and vertex component analysis (VCA) [ND05b], will be used for comparison purposes throughout this

work.

N-findr consists in searching for the simplex with the largest volume among the possible simplices in the data

subspace. It assumes that this simplex of maximum volume will be most likely specified by the purest pixels.

The vertices of this simplex will define the endmembers. N-findr often applies dimensionality reduction as a

preprocessing step, e.g., by conducting minimum noise fraction (MNF) transformation or a PCA and maintaining

the K main eigenvectors. The algorithm is initialized with a set of endmembers randomly extracted from the

input data. The volume of the convex hull whose facets are delineated from this initial endmember set is

computed. An exhaustive search is conducted in order to find the points that comprise the smallest convex

set containing the data. This is done by replacing each endmember position in this set by each pixel in the

hyperspectral data and recalculating the volume in each replacement so as to find the greater one. If none

of the recalculated volumes is greater than the initial one, then no endmember is replaced. Otherwise, the

combination with maximum volume is retained.

The first step of VCA also consists of dimensionality reduction through SVD or PCA. Then data are projected

onto the subspace previously identified and a projected projection is applied. The concept of projected projection
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or perspective projection comes from geometry [Cra94] and consists in projecting each voxel yn from the observed

dataset onto the plane yT
n u = 1, where u ∈ R

K is chosen so that yT
n u > 0. This is equivalent to rescaling

each observation voxel yn such that ỹn = yn

yT
n u

, ∀n. The initial K-dimensional cone is thus transformed into a

K− 1-simplex, making the algorithm more robust with respect to scaling variations of the data. The algorithm

is initialized with randomly generated vectors and data is projected onto a direction orthogonal to the subset

spanned by the identified endmembers. From this random group of endmembers, the data point maximizing the

projection is identified as an endmember. This is iteratively done until each endmember signature correspond

to the extreme of the projection, in an exhaustive search.

Both algorithms rely on the search for extreme points on the data distribution. However, this mechanism

increases their sensitivity to outliers or noise, especially when the SNR is low. They are, nonetheless, very

popular in the hyperspectral domain for endmember extraction.

2.4.2. Abundance estimation

Once the endmembers have been extracted, abundances can be estimated in a convex framework. Two main

variants of the corresponding optimization problem may be pointed out.

– Constrained least squares (CLS): only the abundance nonnegativity constraint (ANC) is considered.

Â = arg min
A

1

2
‖Y−MA‖2

F , s.t. A � 0K,N (2.14)

– Fully constrained least squares (FCLS): both the ANC and the ASC are considered.

Â = arg min
A

1

2
‖Y−MA‖2

F , s.t. A � 0K,N , 1T
KA = 1T

N (2.15)

where Â is the estimated abundance. In classic applications, the noise is generally assumed to be Gaussian,

which makes the Frobenius norm ‖ · ‖2
F a suitable choice for the data-fitting term.

A widely used algorithm to solve this problem is presented in [HC01]. The method, based on an orthogonal

subspace projection (OSP), rewrites the problem in (2.3) as

xn = dar,n + Us, (2.16)

where d = mr is an endmember of interest that is selected from matrix M for classification, ar,n its corresponding

abundance, U of size L×K−1 and s of size K−1×1 are the matrices containing the remaining endmembers and

abundances, respectively. This formulation allows the definition of an OSP to annihilate U from the observed
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voxel yn, such as

POSP(yn) = dT P⊥U(yn), (2.17)

where

P⊥U(yn) = I−UU# (2.18)

with U# = (UT U)−1UT the pseudo-inverse of U. The solution to this least square problem with ASC is

ân = P⊥M,1α+ (MT M)−11[1T (MT M)−11]−1, (2.19)

where α is the solution to unconstrained least square problem given by

α = (MT M)−1MT yn (2.20)

and

P⊥M,1 = I− (MT M)−11[1T (MT M)−11]−11T (2.21)

with 1 a K × 1 vector of ones.

More recently, a more efficient solution based on the alternated direction method of multipliers (ADMM) was

proposed [BF10]. In this strategy, the abundance constraints are taken into account as Lagrange multipliers. The

general principle of ADMM, detailed in [Boy+11], is presented in Appendix A.4.1. Below, the implementation

of FCLS into ADMM, also used for comparison throughout this manuscript, is summarized.

Optimizing (2.15) with respect to A is equivalent to solving the following problem for each voxel:

an = arg min
an

{

1

2
‖yn −Man‖2

2 s.t. an � 0K , aT
n 1K = 1

}

. (2.22)

After introducing the splitting variable w(A)
n ∈ R

K for n = 1, ..., N such that

(
IK

1T
K

)

︸ ︷︷ ︸

Q

an +

(−IK

0T
K

)

︸ ︷︷ ︸

R

wn =

(
0K

1

)

︸ ︷︷ ︸
s

, (2.23)

the resulting scaled augmented Lagrangian is expressed as

L
µ

(A)
n

(an,w(A)
n ,λ(A)

n ) =
1

2
‖yn −Man‖2

2 +
µ

(A)
n

2
‖Qan + Rw(A)

n − s + λ(A)
n ‖2

2 + ιR+(w(A)
n ), (2.24)

where ιR+(·) is the indicator function defined on the positive quadrant. Algorithm 1 provides the final ADMM.

Another approach to account for ANC and ASC is the projected gradient scheme that benefits from the abun-

dance projection onto the simplex, efficiently computed by Condat [Con15].
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Algorithm 1: ADMM optimization w.r.t. A

Data: Y,A(0),µ
A(0)
n

Result: A
begin

for n = 1 to N do
k ← 1

λ(A)(0)
n = 0

w(A)(0)
n = 0

while stopping criterium not satisfied do
a(k)

n ← arg min
an

L
µ

(A)(k−1)
n

(an,w
(A)(k−1)
n ,λ(A)(k−1)

n )

w(A)(k)
n ← arg min

w
(A)
n

L
µ

(A)(k−1)
n

(a(k)
n ,w(A)

n ,λ(A)(k−1)
n )

λ(A)(k)
n ← λ(A)(k−1)

n + Qa(k)
n + Rw(A)(k)

n − s
k ← k + 1

an ← a(k)
n

Other approaches have been proposed in the domain when data are not expected to contain pure pixels

[Pla+12]. Finally, many statistical approaches based on hierarchical Bayesian models [Dob+09] and NMF were

also widely used.

However, all those LMM-based approaches are subjected to several limitations because the observations may

present nonlinearities and spectral variability. In the hyperspectral domain, nonlinearities may happen due to

the interaction of the light that reaches the sensor with several different materials, bouncing on objects several

times [NB09]. To deal with these effects, nonlinear mixing models and their corresponding unmixing algorithms

appeared, raising a fertile branch of research in the hyperspectral community. Next section will present a brief

summary on the topic and more comprehensive reviews can be found in [HPG14; Dob+14b].

Meanwhile, spectral variability can be caused by changes on lightening and the environment during the

acquisition process, since reflectance depends on the incidence of light as well as the viewing angle. Therefore,

the interest on endmember variability in the hyperspectral domain has increased in recent years [ZH14; HDT15]

and many works have pointed out to this kind of approach. Indeed, in practice, all materials present intra-class

variability, inducing local modifications in the spectrum of pure materials. Section 2.6 will present different

ways to approach this problem based on the definition of a local simplex that will take the variability into

account while trying to maintain a correctly located pure pixel vertex.

2.5. Nonlinear unmixing

Two main assumptions are necessary for the linear mixture assumption to hold: the mixing process must occur

at a macroscopic scale and the photons that reach the sensor must interact with only one material. Otherwise,

nonlinear effects must occur, as presented in Fig. 2.6. Thus, nonlinear spectral mixture models have recently
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Figure 2.6.: Photons interacting with several materials produces nonlinearities.

received particular attention in hyperspectral image processing [Dob+14b; Dob+14a]. In the following, we will

provide a brief summary on a group of these models that inspired the nonlinear model developed for PET

applications that will be presented in Chapter 5. This group can be characterized by the following general

formulation:

xn = Man + µ(M,an,bn), (2.25)

where in addition to a linear contribution similar to LMM, the observed pixel is also composed of an additive

nonlinear term µ(·) that may depend on the factors matrix M, the factor proportion coefficients an and

additional nonlinearities coefficients bn, introduced to adjust the amount of nonlinearity in each pixel. Among

the models represented by (2.25) are the bilinear models [ADT11], the quadratic-linear model [Meg+14], the

postnonlinear model [Alt+11] and the bilinear-bilinear model [EG14]. The next paragraphs describe the bilinear

and postnonlinear models.

2.5.1. Bilinear models

In hyperspectral imaging, the photons suffer scattering effects before reaching the sensor. In an attempt to

model these effects, a wide class of nonlinear models defines the nonlinear component µ(M,an,bn) from (2.25)

as [ADT11]

µ(M,an,bn) =
K−1∑

i=1

K∑

j=i+1

bi,j,nmi ◦mj , (2.26)
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with

mi ◦mj =









m1im1j

...

mLimLj









. (2.27)

The set of nonlinearity coefficients {bi,j,n} adjusts the amount of nonlinearity between each pair of materials

mi and mj in the nth voxel. The definition of these coefficients, as well as the constraints considered for each

variable, is what mainly differentiates the various bilinear models of the literature.

The model proposed in [Som+09; NB09] includes the coefficients {bi,j,n} into the nonnegativity and sum-to-

one constraints from the factor proportions, yielding

xn = Man +
K−1∑

i=1

K∑

j=i+1

bi,j,nmi ◦mj (2.28)

with 





akn ≥ 0, ∀k, ∀n

bi,j,n ≥ 0, ∀n, ∀i 6= j

∑K
k=1 akn +

∑K−1
i=1

∑K
j=i+1 bi,j,n = 1, ∀n

(2.29)

When bi,j,n = 0, ∀i 6= j, the model in (2.28) reduces to the standard LMM. However, when the coefficients are

non-zero, the factor proportions no longer follow the sum-to-one constraint.

The approach introduced in [Fan+09] defines the nonlinearity coefficients as the product of the factor pro-

portions bi,j,n = ainajn, leading to

xn = Man +
K−1∑

i=1

K∑

j=i+1

ainajnmi ◦mj (2.30)

with the standard unmixing constraints applied to the factor proportions. The rationale behind this relation

between the nonlinear coefficients and the amount of linear contributions ain and ajn comes from the fact that

a pixel containing more of a given material is more subjected to nonlinear interactions. If a material is not

present in one pixel, it cannot interact with other materials. However, this bilinear model is not an extension

of the LMM.

In order to relate both the nonlinear coefficients to the linear factor proportions and provide an extension of

the LMM, Halimi et al. [Hal+11] introduced a generalized bilinear model (GBM) that weights the products of

the factor proportions ainajn with additional free parameters γi,j,n ∈ (0, 1), leading to bi,j,n = γi,j,nainajn and

xn = Man +
K−1∑

i=1

K∑

j=i+1

γi,j,nainajnmi ◦mj . (2.31)
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2.5.2. Postnonlinear mixing model

Altmann et al. [Alt+11] proposed a nonlinear model that introduces a second-order polynomial expansion of

the nonlinearity

µ(M,an,bn) = bn(Man) ◦ (Man),

= bn

K∑

i=1

K∑

j=1

ainajnmi ◦mj ,
(2.32)

leading to

xn = Man + bn

K∑

i=1

K∑

j=i+1

ainajnmi ◦mj . (2.33)

This model has shown great flexibility on describing several nonlinearities not only for unmixing purposes

[Alt+11] but also to detect nonlinear mixtures in the observed image [ADT13]. Moreover, this model allows

the amount of nonlinearity to be governed by a unique parameter bn in each pixel, differently from the previous

bilinear models. Additionally to the interaction between materials, it also models the interaction of similar

materials.

2.6. Handling the variability in linear models

In the hyperspectral domain, due to the scene environment (e.g., different lightening, atmospheric effects) or

the intrinsic characteristics of the object, the assumption that a given material can be fully characterized by a

single signature may not sufficiently describe reality.

Considering that the endmembers are sources, and that the abundances are mixing coefficients, in the hyper-

spectral imaging domain, endmember variability refers to the fact that a spectral signature of a given material

can vary either in the spatial domain of the image, the temporal domain, or both. In this work, we will focus

on spatial variability, which has a direct correlation to kinetics variability in the PET domain.

In order to deal with spatial spectral variability, various statistical and deterministic models were proposed

in the hyperspectral unmixing literature [ZH14; DCJ16]. These methods, illustrated in Fig. 2.7, can be

categorized according to their fundamental basis in four different classes: endmember bundles, local spectral

unmixing, computational models and parametric models (that will not be further developed in this manuscript).

In the following, a brief summary of the first three categories will be presented. The interested reader is invited

to consult detailed surveys on the domain [ZH14; DCJ16; Som+11].
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(a) (b) (c)

Figure 2.7.: Illustration of a simplex with : (a) endmember without variability, (b) endmember bundles and (c)
endmembers as a multivariate probability distribution [HDT15].

2.6.1. Endmember bundles

In the first approach, different spectra describing the response of one material under various experimental

conditions are grouped into one set (or bundle) that will characterize one endmember. The sets may either

be previously available or be learned from data. The simplest way to automate the extraction of each bundle

dictionary consists in randomly choosing subsets and then estimating their internal endmembers [Som+12].

Recently, another approach for endmember bundles extraction was proposed by [Uez+16b]. It uses the shape

of the spectral curve to identify a set of similar endmember spectra within each class, making it more robust to

illumination variations that produce scale changes. Once the bundles are grouped, the task becomes abundance

estimation that may be done with any state-of-the-art unmixing algorithms [BF10], or techniques of sparse

unmixing [IBP11], Gaussian processes[Uez+16a] or endmember selection procedures [Hey+16]. Each element

of a bundle has its own associated abundance map. The global abundance of a bundle is finally computed by

simply summation of the contributions of each abundance instance of the corresponding bundle.

2.6.2. Local spectral unmixing

In the local spectral unmixing framework, unmixing is conducted in data subsets, i.e., both endmembers and

corresponding abundances are computed for each previously defined subgroup of data. The idea here is that

variability may be mitigated through a local approach. This is especially true for hyperspectral imaging, where

different lightening in a whole scene may provide different endmembers for a single material, while this material

may be locally expressed by a single endmember, assuming uniformity in the chosen subsets [ZGC13]. The

simplest way to construct these subsets is through sliding windows [Goe+13; Can+11], even though it does

not ensure meaningful samples. To optimize the segmentation of samples, a strategy based on binary partition

trees (BPT) [Veg+14b] is applied. BPT provides meaningful regions of the image at different scales through
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a hierarchical segmentation, where, at each iteration, the two most similar regions are merged. A drawback

of local spectral unmixing is the impossibility of acquiring global abundances, which is generally expected in

unmixing approaches. A solution is to perform a posteriori grouping of these local abundances.

2.6.3. Computational models

In this thesis, we will be especially interested in computational models. Contrary to bundles or local approaches,

these techniques explicitly include the variability into the estimation model. Therefore, a material is often

represented with a reference endmember that is allowed to locally vary. The challenge here is to correctly

determine the flexibility trade-off that will capture variability while avoiding endmember merging, i.e., to mix

endmember information within the variability. Moreover, as the variability itself is often not explicitly modeled,

its physical interpretation is a difficult task. Both statistical and deterministic approaches were proposed with

this underlying philosophy and are detailed hereafter.

Statistical approaches

Statistical approaches consist in modelling endmembers as multivariate probability distributions. Among these

approaches, normal compositional models (NCM) [Ech+10] allow the spatially indexed endmembers to follow

a normal distribution, i.e,

yln =

N∑

i=1

aknmkn, with mkn ∼ N (m̄k, σ
2IL). (2.34)

A generalization of this method, proposed in [HDT15], allows for a deeper expression of the variability with

an additive noise that accounts for mismodelling. The approach, denoted generalized NCM (GNCM), solves

the following problem

yln =

N∑

i=1

aknmkn + rn,

mkn ∼ N (m̄k, σ
2IL), rn ∼ N (0L,Ψ

2
nIL),

(2.35)

where rn is an additive noise and Ψ2
n is the noise variance for which a prior enforcing small values is assigned.

This formulation provides information on the spatial and spectral variability of each material at each pixel.

Another method similar to the NMC is the Beta compositional model (BCM). It replaces the endmember

Gaussian prior by the beta distribution, which is better adapted for some materials, such as the grass. The

BCM mixture model proposed in [Du+14] writes

yln =
N∑

i=1

aknmkn, with mkn ∼ B(αl,k, βl,k), (2.36)
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where B is the beta distribution and its corresponding parameters αl,k and βl,k are previously learned from

data.

Deterministic approaches

A novel class of methodologies promotes a more flexible modelling of the variability through its explicit math-

ematical expression. An extended LMM (ELMM) accounting for scaling variations was proposed in [Veg+14a;

Dru+16]. This model is particularly relevant when dealing with hyperspectral images since changes on lighten-

ing in a scene induce the same spectral response to be represented at different scales. The ELMM simplifies the

Hapke model [Hap81; Hap93] while taking into account the geometry of the scene. It is mathematically defined

as

X = M(Ψ ◦A) + R, (2.37)

where R is the matrix accounting for noise and mismodelling errors, “◦” is the point-wise product and Ψ is a

K ×N matrix containing the scaling factors that describe local variations in the spectral response.

To further address the problem of hyperspectral variability, Thouvenin et al. [TDT16a; TDT16b] proposed

an additive and spatially varying representation of endmember perturbation. The final model, called Perturbed

LMM (PLMM), is defined as

yn =
K∑

k=1

ak,n(mk + dmk,n) + rn, for n = 1, · · · , N, (2.38)

where dmk,n denotes the perturbation of the kth endmember in the nth pixel and rn once again accounts for

the noise. While providing relevant information on the spatial distribution of the variability in a scene, the

PLMM does not address the semantic ambiguity resulting from the physical nature of the observed variability

[Tho17].

Inspired by the robust NMF (rNMF) [Zha+11] models from the audio literature, Févotte and Dobigeon [FD15]

proposed a robust LMM (rLMM) that accounts for outliers in the dataset through an additive spatially indexed

term. The rLMM model writes

yn =
K∑

k=1

ak,nmk + fn, (2.39)

where fn denotes the outlier term. A ℓ2,1 norm regularizer is applied to induce sparsity in fn, since outliers are

expected to be exceptions on the overall data.
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2.7. Conclusion

This chapter showed the interest of blind source separation methods, which, under different denominations,

are the key tool for analysing various datasets, ranging from audio recording to spectral imagery or functional

imaging. In most of the cases, the aim of BSS is twofold: to provide a compact representation of data while

providing physically meaningful factors.

Often appearing as factor analysis or matrix factorization in the dynamic PET literature, it has become a

valuable tool for the extraction of TACs representative of body tissues. Many priors previously introduced by

the PET community as constraints or penalizations are also explored throughout this thesis.

For hyperspectral imagery applications, BSS was formulated as unmixing and introduced many concepts that

were essential to the development of this thesis. Among them is spectral variability that can be generalized

as endmember or factor variability so as to fit in other contexts. A drawback from all variability models is

the several constraints and penalizations applied on the parameters associated with variability that have to

be carefully chosen so as to limit variation overfitting. In this chapter, factor variability was presented for

hyperspectral imagery applications. However, it may come at hand in other domains when the signal is not

expected to follow a linear mixing process. For each application, additional a priori information may be needed

in order to adapt the model accordingly.

In the following chapters, the methods and techniques developed with the use of the concepts herein presented

will be detailed.
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Chapter 3.

Unmixing dynamic PET images with

variable specific binding kinetics

The publications related to this chapter are [Cav+17b; Cav+17a; Cav+18b]
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3.1. Introduction

As described in Chapter 1, the analysis of dynamic PET images, in particular the quantification of the kinetic

properties of the tracer, requires the extraction of tissue time-activity-curves (TACs) in order to estimate the

parameters from compartmental modelling [Inn+07]. Section 2.3 summarized several blind source separation
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(BSS) methods that have been applied to estimate these elementary TACs and their corresponding proportions

from dynamic PET images [Bar80; CBD84; Wu+95; SDG00; Lee+01b].

The approach proposed in this chapter follows the same line as NMF or nonnegative FADS. It aims at

decomposing each PET voxel TAC into a weighted combination of pure physiological factors, representing the

elementary TACs associated with the different tissues present within the voxel. This factor modelling is enriched

with a sum-to-one constraint to the factor proportions, so that they can be interpreted as tissue percentages

within each voxel. In particular, this additional constraint explicitly solves the scaling ambiguity inherent to

any NMF models, which has proven to increase robustness as well as interpretability. As detailed in Section

2.4, this BSS technique, referred to as unmixing or spectral mixture analysis, originates from the geoscience and

remote sensing literature [Bio+12] and has proven its interest in other applicative contexts, such as microscopy

[Hua+11] and genetics [DB12].

However, factor TACs to be recovered cannot always be assumed to have constant kinetic patterns, as im-

plicitly considered in conventional methods. Considering both the 2-tissue and reference compartment models

introduced in Chapter 1, the assumption of constant kinetic patterns seems appropriate for the blood com-

partment as well as non-specific binding tissues, since they present some homogeneity besides some perfusion

difference (e.g. white matter versus gray matter). Therefore, their contribution to the voxel TAC should be

fairly proportional to the fraction of this type of tissue in the voxel. However, things get different regarding the

specific binding class, as the TAC associated with this tissue is nonlinearly dependent on both the perfusion and

the concentration of the radiotracer target. The spatial variation in target concentration is in part governed by

differences in the k3 and k4 kinetic parameters, which nonlinearly modify the shape of the TAC characterizing

this particular class.

The main motivation of this chapter is to propose a more accurate description of the tissues and kinetics

composing the voxels in dynamic PET images, in particular for those affected by specific binding. To this

end, this work proposes to explicitly model the nonlinear variability inherent to the TAC corresponding to

specific binding, by allowing the corresponding factor to vary spatially. This variation is approximated by a

linear expansion over the atoms of a dictionary, which have been learned beforehand by conducting a principal

component analysis on a learning dataset.

The sequel of this chapter is organized as follows. Section 3.2 provides the physical motivation of this work.

The proposed mixing-based analysis model is described in Section 3.3. Section 3.4 presents the corresponding

unmixing algorithm able to recover the factors, their corresponding proportions in each voxel and the variability

maps. Simulation results obtained with synthetic data and experimental results on real data are reported in

Sections 3.5 and 3.6, respectively. Section 3.7 discuss the significance of the results and Section 3.8 concludes

the chapter.
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3.2. Variability on specific binding kinetics

In this work, we raise the hypothesis that TACs cannot be assumed to be driven by constant kinetic parameters

over time, as implicitly considered in general factor analysis methods from the dynamic PET literature seen

in Section 2.3. Indeed, depending on the concentration of the biomarker, they may suffer from fluctuations

in the exchange rate of tracer between the free compartment and a specifically bound ligand compartment in

high-uptake region (see Fig. 1.12), which induces inaccuracies on compartment modelling [Gun+97][Inn+07].

For instance, Houston et al. [HS97] studied the performance of factor analysis on renal dynamic images and

arrived to the conclusion that they work well when the compartments are homogeneous and non-homogeneous

without pathology. However, the presence of an abnormality in the tissues lowers the performance of factor

analysis. Muzi et al. [Muz+05] discussed the accuracy of parameter estimates for tumor regions and underlined

high errors for the parameters related to specific binding, namely 26% for k3 and 49% for k4. These results

were further confirmed by Schiepers et al. [Sch+07]. More specifically, they studied the kinetics of lesioned

regions that were tumor and treatment change predominant, showing that variations on k3 and k4 may allow

for differentiation. Bai et al. [BBC13] further discussed nonuniformity in intratumoral uptake and its impact

on predicting treatment response and tumor aggressiveness. Indeed, intratumoral spatial heterogeneity may

indicate differences on malignant potential. In this context, a big challenge for precision medicine is the rig-

orous detection of regions with primary lesion or metastasis as sequencing a portion of the tumor may miss

therapeutically relevant information [Sub16]. Eary et al. [Ear+08] showed that spatial heterogeneity can be

used to predict tumor biological aggressiveness while Yu et al. [Yu+09] found that abnormal nodes were more

heterogeneous than normal tissues in PET images. In stroke neuroinflammation, some regions may also be

more or less affected by inflammation or lack of oxygen. To illustrate the hypothesis, Fig. 3.1 depicts some

samples of the TACs belonging to the high-uptake tissue of 10 different patients that were manually labelled

by an expert based on a magnetic resonance imaging (MRI) acquisition. The real images from which the TACs

were extracted were produced from the [18F]-DPA-714 injection in each patient and acquired in 3D mode using

an Ingenuity TOF Camera from Philips Medical Systems. The dynamic emission scan consisted of 31 frames

with a total scan duration of 59 minutes ([6× 10, 8× 30, 4× 60, 5× 120, 8× 300 seconds). The presented TACs

were normalized with the highest intensity of its corresponding image.

In those images, at least 6 patients show a significant variation between the specific binding TACs in both

shape and area under the curve (AUC). The two patients in the last column have suffered a stroke while the

others are healthy subjects. Indeed, stroke patients show great variability, but some of the normal subjects as

well. Nonetheless, this fluctuation phenomenon has not been taken into account by the decomposition models

from the literature. In the attempt of modelling this variability neglected in the dynamic PET domain, this

work is inspired by solutions from the hyperspectral unmixing domain, detailed in Section 2.6.
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Figure 3.1.: Samples of TACs inside the high-uptake region (thalamus for healthy subjects and thalamus plus
stroke for unhealthy subjects) of 10 real images of different patients, as delimitated by a specialist.

3.3. Method

3.3.1. Specific binding linear mixing model (SLMM)

Consider N voxels of a 3D dynamic PET image acquired at L successive time-frames. First, we omit the spatial

blurring induced by the point spread function (PSF) of the instrument and any measurement noise. The TAC

in the nth voxel (n ∈ {1, . . . , N}) over the L time-frames is denoted xn = [x1,n, . . . , xL,n]T . Akin to various

BSS techniques introduced in Chapter 2 and following the linear mixing model (LMM) for instance advocated

in the PET literature by [Bar80], each TAC xn is assumed to be a linear combination of K elementary factors

mk

xn =
K∑

k=1

mkak,n (3.1)

where mk = [m1,k, . . . ,mL,k]T denotes the pure TAC of the kth tissue type and ak,n is the factor proportion

of the kth tissue in the nth voxel. The factors mk (k = 1, . . . ,K) correspond to the kinetics of the radiotracer

in a particular type of tissue in which they are supposed spatially homogeneous. For instance, the experiments

conducted in this work and described in Sections 3.5 and 3.6 consider 3 types of tissues that fall into this

category: the blood, the non-specific gray matter and the white matter.

Additional constraints regarding these sets of variables are assumed. First, since the elementary TACs are

expected to be nonnegative, the factors are constrained as

ml,k ≥ 0, ∀l, k. (3.2)
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Figure 3.2.: Simplex with one varying factor.

Moreover, nonnegativity and sum-to-one constraints are assumed for all the factor proportions (n = 1, . . . , N)

∀k ∈ {1, . . . ,K} , ak,n ≥ 0 and
K∑

k=1

ak,n = 1. (3.3)

For a given voxel indexed by n, this sum-to-one constraint (3.3) enforces the mixing coefficients ak,n (k =

1, . . . ,K) to be interpreted as concentrations. As discussed in Section 2.4, all factor proportion vectors an

(n = 1, . . . , N) lie inside the unit (K − 1)-simplex. Similarly, the TAC xn belongs to the convex set whose

vertices are the columns of matrix M = [m1, ...,mK ] containing the factors, represented by a (K − 1)-simplex

in R
L [Bio+12].

More importantly, when factors are affected by possibly nonlinear and spatially varying fluctuations within

the image, the conventional NMF-like linear mixing model (3.1) no longer provides a sufficient description of

data. Therefore, as detailed in Section 2.6, factor variability has received increased interest in the hyperspectral

imagery literature over recent years as it allows changes on lightening and the environment to be taken into

account [ZH14; HDT15]. The perturbed LMM (PLMM) proposed in [TDT16a] and detailed in Section 2.6.3

further addresses this problem. In the dynamic PET image framework, factor variability is expected to mainly

affect the TAC associated with specific binding, denoted m1, while the possible variabilities in the TACs

mk (k ∈ {2, . . . ,K}) related to tissues devoid of a specifically bound compartment are supposed weaker and

neglected in this study. Fig. 3.2 illustrates this idea with a simplex defined by three factors, where only one is

allowed to vary. Since this so-called specific binding factor (SBF) is assumed to vary spatially, it will be spatially

indexed. Thus, adapting the PLMM approach to our problem, the SBF in a given voxel will be modelled as a

spatially-variant additive perturbation affecting a nominal and common SBF m̄1:

m1,n = m̄1 + δm1,n, (3.4)
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Figure 3.3.: Graphical representation of SLMM.

where the additive term δm1,n describes its spatial variability over the image. However, recovering the spa-

tial fluctuation δm1,n in each image voxel is a high-dimensional problem. To reduce this dimensionality, the

variations will be assumed to lie inside a subspace of small dimension Nv ≪ L. As a consequence, similarly to

the strategy followed by Park et al. [PDH14], the additive terms δm1,n (n ∈ {1, . . . , N}) are supposed to be

approximated by the linear expansion

δm1,n =

Nv∑

i=1

bi,nvi, (3.5)

where the Nv variability basis elements v1, . . . ,vNv
can be chosen beforehand, e.g., by conducting a PCA on

a learning set composed of simulated or measured SBFs (see Section 3.5.1 for further details on the dictionary

generation). The PCA aims at extracting the main variability patterns, while allowing for dimension reduction.

Thus, the set of coefficients {b1,n, . . . , bNv,n} quantify the amount of variability in the nth voxel.

Combining the linear mixing model (3.1), the perturbation model (3.4) and its linear expansion (3.5), the

voxel TACs are described according to the following so-called specific binding linear mixing model (SLMM)

xn = a1,n

(

m̄1 +

Nv∑

i=1

bi,nvi

)

+
K∑

k=2

ak,nmk. (3.6)

To be fully comprehensive and motivated by the findings of [Hen+14], this work also proposes to explicitly

model the PET scan point spread function (PSF), combining a deconvolution step jointly with parameter
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estimation. Therefore, the need to explicitly model the PSF and, further on, perform a joint PSF deconvolution.

We will denote by H the linear operator that computes the 3D convolution by some known and spatially

invariant PSF. In brain imaging using a clinical PET scanner, it is a widely admitted approximation, since the

degradation of the scanner resolution mainly affects the borders of the field-of-view [RQS13; Meh+17]. This

deconvolution step relies on the assumption that the blurring matrix H ∈ R
N×N is a block circulant matrix

with circulant blocks (BCCB), which corresponds to convolve the image with an isotrope filter using cyclic

convolution boundaries. Finally, the L × N matrix Y = [y1, ...,yN ] of the TACs associated with the image

voxels can be written

Y = MAH +
[

E1A ◦VB
]

H
︸ ︷︷ ︸

∆

+R (3.7)

where M = [m̄1, ...,mK ] is a L×K matrix containing the factor TACs, A = [a1, . . . ,an] is a K×N matrix com-

posed of the factor proportion vectors, “◦” is the Hadamard point-wise product, E1 is the matrix [1L,10L,K−1],

V = [v1, . . . ,vNv
] is the L×Nv matrix containing the basis elements used to expand the spatial variability of

the SBF, B = [b1, . . . ,bn] is the Nv ×N matrix containing the intrinsic proportions, and R = [r1, . . . , rN ]
T

is

the L × N matrix accounting for noise and mismodelling. Note that if B = 0 and H = I, the model in (3.7)

reduces to the conventional linear mixing model generally assumed by factor model techniques like NMF and

ICA. A graphical representation of this final model is shown in Fig. 3.3.

While the noise associated with the count rates is traditionally modelled by a Poisson distribution [SV82],

postprocessing corrections and filtering operated by modern PET systems significantly alter the nature of the

noise corrupting the final reconstructed images. Modelling the noise on this final data is a highly challenging

task [WTB94]. However, as demonstrated by [Fes94], pre-corrected PET data can be sufficiently approximated

by a Gaussian distribution, even though this is not an optimal assumption. As a consequence, in this work,

the noise vectors rn = [r1,n, . . . , rL,n] (n ∈ {1, . . . , N}) are assumed to be normally distributed. A more

general setting will be considered in the next chapter by the use of the β-divergence. Moreover, without loss

of generality, all vector components rℓ,n (ℓ = 1, . . . , L and n = 1, . . . , N) will be assumed to be independent

and identically distributed. This assumption seems to evade any spatial and temporal correlations that may

characterize the noise generally affecting the reconstructed PET images [TS15]. However, the proposed model

can be easily generalized to handle colored noise by weighting the model discrepancy measure, according to

the noise covariance matrix, as done by [Fes94]. Alternatively, after diagonalizing the noise covariance matrix,

the PET image to be analysed can undergo a conventional whitening pre-processing step [Thi+06; Bul+01;

Tur+03] (see Appendix A.2 for further details on the whitening transform).

In addition to the nonnegativity constraints applied to the elementary factors (3.2) and factor proportions

(3.3), the intrinsic variability proportion matrix B is also assumed to be nonnegative, mainly to avoid spurious

ambiguity, i.e.,
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B � 0Nv,N . (3.8)

We accordingly fix the nominal SBF m̄1 with a robust estimation of the TAC chosen as a lower bounding

signature of a set of previously generated or measured SBF TACs. This means that a negative bias on the SBF

is artificially introduced to model the spatially-varying SBF TACs m1,n (n ∈ {1, . . . , N}). This is alternatively

compensated by a variability that is distorted by the same quantity but positively. This constraint is chosen

to avoid a high correlation between the other factor TACs and
∑Nv

i=1 vibi,n when bi,n is allowed to be negative.

Capitalizing on this model, the unmixing-based analysis of dynamic PET images is formulated in the next

paragraph.

3.3.2. Problem formulation

The SLMM (3.7) and constraints (3.2), (3.3) and (3.8) can be combined to formulate a constrained optimization

problem. Fig. 3.4 provides an overall view of the optimization scheme. In order to estimate the matrices M,

A, B, a proper cost function is defined. The data-fitting term is defined as the Frobenius norm ‖ · ‖2
F of the

difference between the dynamic PET image Y and the proposed data modelling MAH+∆. This corresponds to

the negative log-likelihood under the Gaussian noise assumption. Since the problem is ill-posed and non-convex,

additional regularizers become essential. In this chapter, we propose to define penalization functions Φ, Ψ and

Ω to reflect the available a priori knowledge on M, A and B, respectively. The optimization problem is then

defined as

(M∗,A∗,B∗) ∈ arg min
M,A,B

{

J (M,A,B) s.t. (3.2),(3.3),(3.8)
}

(3.9)

with

J (M,A,B) =
1

2

∥
∥
∥Y−MAH−

[

E1A ◦VB)
]

H
∥
∥
∥

2

F
+ αΦ(A) + βΨ(M) + λΩ(B) (3.10)

where the parameters α, β and λ control the trade-off between the data fitting term and the penalties Φ(A),

Ψ(M) and Ω(B), described hereafter.

Factor proportion penalization

The factor proportions representing the amount of different tissues are assumed to be spatially smooth, since

neighbouring voxels may contain the same tissues. We thus penalize the energy of the spatial gradient

Φ(A) =
1

2
‖AS‖2

F , (3.11)
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where S is the operator computing the first-order spatial finite differences. In our case, the considered PET

image is of three dimensions, leading to the neighbourhood system depicted in Fig. (3.5). The first order finite

differences in the three directions x,y and z are then defined for each pixel as

[AS]x,y,z =









ax,y,z − ax−1,y,z

ax,y,z − ax,y−1,z

az,x,z − ax,y,z−1









.

On the boundaries, finite differences are not taken into account. The transposed matrix ST , which will appear

in gradient computation of the penalization, results also in a first-order finite difference calculus but in the other

sense for each direction. Note also that the application of both S and ST leads to a discrete 3D Laplacian.

adh−1,dv,dt
adh,dv,dt

adh,dv−1,dt

adh,dv,dt−1

Figure 3.5.: Diagram of voxel neighbourhood structure for three dimensions, where the blue voxel is the one
considered and the red ones are its direct neighbours.
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Factor penalization

The chosen factor penalization benefits from the availability of rough factor TACs estimates M0 =
[
m̄0

1, . . . ,m
0
K

]
.

Thus, we propose to enforce similarity (in terms of Euclidean distances) between these primary estimates and

the factor TACs to be recovered

Ψ(M) =
1

2

∥
∥M−M0

∥
∥

2

F
. (3.12)

Classical penalizations found in the hyperspectral literature consist of constraining the size of the simplex

whose vertices are the factors. We also studied to consider a penalization based on the mutual distance between

endmembers, defined as

Ψ(M) =
1

2

K∑

i=1

( K∑

k=1
k 6=i

‖mi −mk‖2
2

)

=
1

2

K∑

k=1

∥
∥MGk

∥
∥

2

F

(3.13)

where

Gk = −IK + ek1T
K (3.14)

and ek denotes the canonical basis vector of RK . However, in dynamic PET imaging of the brain, the factors

are highly correlated and promoting its approximation ended up by producing ambiguous results.

Variability penalization

The SBF variability is expected to affect only a small number of voxels, those belonging to the region containing

the SBF. As a consequence, we propose to enforce sparsity via the use of the ℓ2,1-norm, also known as the Group

Lasso regularizer [YL06; Fer+17]

Ω(B) = ‖B‖2,1 =
N∑

n=1

‖bn‖2, (3.15)

where ‖.‖2,1 is the ℓ2,1 norm. This penalty forces the columns bn to be 0 outside the high-uptake region, thus

reducing overfitting.

3.4. Algorithm implementation

Given the nature of the optimization problem (3.9), which is genuinely nonconvex and nonsmooth, two strategies

can be envisaged: gradient-descent-based and Lagrangian-computation-based. First, we studied the implemen-

tation of a Lagrangian-based algorithm based on a block coordinate descent alternating direction method of

multipliers (ADMM). However, the resulting algorithm (see Appendix A.3) had a high computational cost with
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several iterations within each variable loop. Thus, the adopted minimization strategy relies on the proximal

alternating linearized minimization (PALM) scheme [BST13]. PALM is an iterative, gradient-based algorithm,

which generalizes the Gauss-Seidel method. It consists in iterative proximal gradient steps with respect to A,

M and B and ensures convergence to a local critical point A∗, M∗ and B∗.

The principle of PALM is briefly recalled in the following section. Then it will be specifically instantiated for

the unmixing-based kinetic component analysis considered in this chapter.

3.4.1. PALM: general principle

PALM is based on alternating partial gradient steps coupled with proximal mappings. For simplicity purposes,

a nonconvex-nonsmooth problem composed of two blocks of variables x ∈ R
n and y ∈ R

m is considered

min
x,y

Ψ(x, y) := f(x) + g(y) +H(x, y),

where H(·, ·) is a smooth and gradient-Lipschitz coupling function and the functions f and g are extended valued

(i.e., allow constraints to be included). A classic approach to solve this problem is the Gauss-Seidel iteration

scheme, also known as alternating minimization [Aus71]. A necessary assumption for this method do converge

is that, in each iteration step, the minimum is uniquely attained [Pow73]. This strict convexity assumption can

be removed by coupling the method with a proximal term [ABS13]. However, in the resultant method, only the

convergence of the subsequences can be demonstrated [GS00]. To deal with nonconvex and nonsmooth settings,

Bolte et al. [BST13] proposed an approximation of the proximal version of the Gauss-Seidel method via the

proximal linearization of each subproblem. Thus, PALM consists in alternating minimization approach to the

proximal forward backward algorithm, with the following minimal assumptions:

(i) f : R
n → (−∞,+∞] and g : R

m → (−∞,+∞] are proper, semi-algebraic and lower semi-continuous

functions, i.e., infRn f > −∞ and infRm g > −∞;

(ii) The objective function Ψ is also semi-algebraic, satisfies the Kurdyka-Lojasiewicz property and infRn×Rm Ψ >

−∞;

(iii) with y fixed, H(x, y) : Rn×R
m → R is a C1,1

L1(y) function, where the partial gradient ∇xH(x, y) is globally

Lipschitz continuous with constant L1(y)

‖∇xH(x1, y)−∇xH(x2, y)‖ ≤ L1(y)‖x1 − x2‖,∀x1, x2 ∈ R
n

and likewise for ∇yH(x, y);
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(iv) for i = 1, 2, there are λ−i , λ
+
i > 0 such that

inf{L1(y)k : k ∈ N ≥ λ−1 } and inf{L2(x)k : k ∈ N ≥ λ−2 }

sup{L1(y)k : k ∈ N ≤ λ+
1 } and sup{L2(x)k : k ∈ N ≤ λ+

2 }

(v) ∇H is Lipschitz continuous in bounded subsets.

The resultant algorithm, summarized in Algo. 2, is a maximization-minimization scheme with an uniform

quadratic surrogate.

Algorithm 2: PALM: Proximal Alternating Linearized Minimization

Initialization:
(
x0, y0

)
∈ R

n × R
m

Input: Algorithmic parameters γ1 > 1 and γ2 > 1
k ← 0
for k ≥ 1 do

Set ck = Lx(yk)
γ

Compute xk+1 ∈ prox f
ck

(

xk − 1
ck
∇xH(xk, yk)

)

Set dk =
Ly(xk+1)

γ

Compute yk+1 ∈ prox g
dk

(

yk − 1
dk
∇yH(xk+1, yk)

)

k ← k + 1

Result: A sequence
{(
xk, yk

)}

k≥0

Within this algorithmic scheme, proxf denotes the proximal map associated to the function f defined as

proxf (v) = arg min
x

f(x) +
1

2
‖x− v‖2

2,

γ is a constant ensuring the convergence of the algorithm and may be fixed at, e.g., 0,99.

This general principle is applied to solve the unmixing problem. The resulting SLMM unmixing algorithm

is sketched in Algo 3 whose main steps are described in the following paragraphs. The details are reported in

Appendix A.1 for the sake of brevity.

3.4.2. Optimization with respect to M

A direct application of the approach presented by [BST13] under the constraints defined by (3.2) leads to the

following updating rule

Mk+1 = P+

(

Mk − 1

Lk
M

∇MJ (Mk,Ak,Bk)

)

(3.16)
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Algorithm 3: SLMM unmixing: global algorithm

Data: Y
Input: A0, M0, B0

1 k ← 0
2 while stopping criterion not satisfied do

3 Mk+1 ← P+

(

Mk − γ

Lk
M

∇MJ (Mk,Ak,Bk)

)

4 Ak+1 ← PAR

(

Ak − γ

Lk
A

∇AJ (Mk+1,Ak,Bk)

)

5 Bk+1 ←
prox λ

Lk
B

‖.‖1

(

P+

(

Bk − γ

Lk
B

∇BJ (Mk+1,Ak+1,Bk)

))

6 k ← k + 1

7 A← Ak+1

8 M←Mk+1

9 B← Bk+1

Result: A, M, B

where P+(·) is the projector onto the nonnegative set {X|X � 0L,R} and the required gradient writes1

∇MJ (M,A,B) = ((E1A ◦VB) H−Y) HT AT + M(AHHT AT ) + β(M−M0). (3.17)

Moreover, Lk
M is a bound on the Lipschitz constant of ∇MJ (Mk,Ak+1,Bk), defined as

LM (A) =

∥
∥
∥
∥
AHHT AT

∥
∥
∥
∥

+ β, (3.18)

where the spectral norm
∥
∥X
∥
∥ = σmax(X) is the largest singular value of matrix X. The BCCB deconvolution

matrix can be decomposed as H = FHΛF, where F and FH are associated with the Fourier and inverse

Fourier transforms (satisfying FFH = FHF = IN ) and Λ = diag{Fh} is a diagonal matrix of eigenvalues

whose diagonal elements are the Fourier coefficients of the first column of matrix H, namely h. Therefore

‖H‖ ≤ ‖FH‖‖Λ‖‖F‖ = ‖Λ‖ = max{Fh}. The kernel that generates the operator H can be decomposed as

three one-dimensional filters. The Lipschitz bound corresponding to H is then computed as the product of the

norms of these one-dimensional filters.

3.4.3. Optimization with respect to A

Similarly to paragraph 3.4.2, the factor proportion update is defined as the following

Ak+1 = PAR

(

Ak − 1

Lk
A

∇AJ (Mk+1,Ak,Bk)

)

, (3.19)

1Note that the iteration index has been omitted in the following definitions of the gradients to lighten the notations.

71



Chapter 3. Unmixing dynamic PET images with variable specific binding kinetics

where PAR
(·) is the projection on the set AR defined by the factor proportion constraints (3.3), which can be

computed with efficient algorithms, see, e.g., the work of [Con15]. The gradient writes

∇AJ (M,A,B) = −MT DA −ET
1 (DA ◦ (VB)) + αASST

with DA = (Y−MAH− (E1A ◦VB)H)HT .

Moreover, Lk
A is the Lipschitz constant of ∇AJ (Mk,Ak,Bk).

LA(M,B) =
∥
∥H
∥
∥

2
(
∥
∥E1

∥
∥
∥
∥VB

∥
∥(2
∥
∥M

∥
∥
∞

+
∥
∥E1

∥
∥
∥
∥VB

∥
∥
∞

)

)

+
∥
∥H
∥
∥

2∥
∥MT M

∥
∥+ α

∥
∥SST

∥
∥, (3.20)

where
∥
∥X
∥
∥
∞

= max1≤i≤m

∑n
j=1 |xij | is the maximum absolute row sum norm. As in [Jen+12], we will consider

∥
∥SST

∥
∥ ≤ 12. This result is a generalization of the proof presented in [Dah+09].

3.4.4. Optimization with respect to B

Finally, the updating rule for the variability coefficients can be written as

Bk+1 = prox λ

Lk
B

‖.‖2,1

(

P+

(

Bk − 1

Lk
B

∇BJ (Mk+1,Ak+1,Bk)

))

,

where the proximal mapping operator is the group soft-thresholding operator

proxc‖·‖2,1
(U) =







(

1− c
‖ui‖2

)

ui if ‖ui‖2 > c

0 otherwise,

(3.21)

with ui a column of matrix U. Indeed, the proximal map of the sum of the nonnegative indicator function and

the ℓ2,1 norm is exactly the composition of the proximal maps of both individual functions, following the same

principle showed by Bolte et al. [BST13]. The gradient writes

∇BJ (M,A,B) = VT
(
(E1A) ◦ (−Y + MAH + ∆) HT

)
.

Moreover, Lk
B is a bound of the Lipschitz constant of ∇BJ (Mk+1,Ak+1,Bk)

LB(A) =
∥
∥E1A

∥
∥

2

∞

∥
∥V
∥
∥

2∥
∥H
∥
∥

2
. (3.22)
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3.5. Evaluation on Synthetic Data

3.5.1. Synthetic data generation

To evaluate, analyse and tune the performance of algorithms, researchers need databases generated from fully

controlled and acknowledged processes. In this scenario, two kinds of data can be considered: realistic synthetic

images for which the ground truth is known and real images with no ground truth to compare. The ground

truth regarding the actual tracer uptake and kinetics is never completely known for clinical PET studies. The

collection of patient data can take months or even years before the dataset is large enough to yield sufficient

statistics. Furthermore, studies with healthy volunteers are restricted due to the radiation dose associated with

PET scans. To tackle this limitation, an object, called phantom, that is specially designed such as to respond

to the system under study in a similar way as human tissues and organs, is often used. Even though phantom

studies solve part of this problem, dynamic scans where the tracer kinetics is of interest are not available, even

with state-of-the-art phantoms. Advanced as they may be, phantoms can never truly represent a real patient

in a clinical situation.

This is where the role of simulations come in. All properties of the patient (phantom) and kinetics are

known, and the degree of complexity and detail of the simulation can be chosen according to the specific aim

of the study. Physical effects can be included or not depending on the focus of the investigation and the level

of complexity. If needed, a large (even huge) number of simulations can be performed in a reasonable time

[Häg14].

Thus, in this work, synthetic images are generated and studied in order to validate the methods presented

in this manuscript. Images are constructed from the Zubal high resolution numerical phantom [Zub+94] with

TACs generated from real PET images acquired with the Siemens HRRT and injected with 11C-PE2I. The

original phantom data has size 128× 128× 64, and was acquired at L = 20 times of acquisition that range from

1 to 5 minutes with 60 minutes of acquisition in total. Its voxel size is of 1.1 × 1.1 × 1.4 mm3. Its regions-of-

interest are segmented with a corresponding MRI to provide averaged TACs for each different tissue of the brain.

This supervised segmentation neglects any labelled molecule concentration differences due to the variability on

the specific binding region and describes the entire region by a single averaged TAC. TACs corresponding to

each segmented region are then averaged. This high-resolution numerical phantom is presented in Fig. 3.6. To

illustrate the accuracy of our algorithm, a synthetic data for which the ground truth of the main parameters of

interest (i.e., factor TACs and factor proportion maps) is known is then constructed from this realistic phantom.

The overall generation process is presented in Fig. 3.7 and described in what follows:

• The dynamic PET phantom showed in Fig. 3.6 has been first linearly unmixed using the N-FINDR

[Win99] and SUnSAL [BF10] algorithms to select the ground-truth non-specific factor TACs m2, ...,mK
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Figure 3.6.: 15th time-frame of the dynamic PET phantom: from left to right, transversal, sagittal and coronal
views.
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Figure 3.7.: Synthetic image generation scheme. The red ellipses constitute the ground truth data used for
quantitative assessment.
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and factor proportions a1, . . . ,aN , respectively. As in [Boe+08; Yaq+12], we consider K = 4 pure TACs

representative of the brain, which is the organ of interest in the present work: specific gray matter, pure

blood or veins, pure white matter and non-specific gray matter. These factor TACs and corresponding

factor proportion maps are depicted in Fig. 3.8.

• A large database of SBF TACs has been generated with a 2-tissue compartmental model [PMS86] by

randomly varying the k3 parameter (representing the specific binding rate of the radiotracer in the tissue).

The generation function of the TAC in the nth pixel xn is based on the 2-tissue compartment model

presented in Section 1.6.2. After generation, a PCA is conducted on this dataset, and an analysis of the

eigenvalues leads to the choice of a unique variability basis element V = v1 (i.e., Nv = 1), depicted in

Fig. 3.9 (left).

• The nominal SBF TAC m̄1 is then chosen as the TAC of minimum AUC among all the TACs of this

database. This TAC is depicted in Fig. 3.9 (right, red curve).

• The 1st row of the factor proportion matrix A, namely A1 , [a1,1, . . . , a1,N ] is designed to locate the

region associated with specific binding. Then, the Nv ×N matrix B = [b1, . . . , bN ], showed in Fig. 3.10

mapping the SBF variability in each voxel is artificially generated. The high-uptake region is divided

into 4 subregions with non-zero coefficients bn, as shown in Fig. 3.10, while these coefficients are set to

bn = 0 outside the region affected with SBF. In each of these subregions, the non-zero coefficients bn

are drawn according to Gaussian distributions with a particular mean value and small variances. The

spatially-varying SBFs in each region are then generated according to the model in (3.5) and (3.4). Some

resulting typical SBF TACs are shown in Fig. 3.9.

After the synthetic phantom process, a PSF defined as a space-invariant and isotropic Gaussian filter with

FWHM= 4.4mm is applied to the output image. This is a strong approximation. However, as the degradation

of the scanner resolution mainly affects the borders of the field-of-view [RQS13; Meh+17], this is a frequent

approximation in brain imaging using a clinical PET scanner, since the brain is centered and more far from

the FOV than in images of other parts of the body. Moreover, the idea here is to apply the same PSF for the

generation and analysis processes. Finally the measurements are corrupted by a zero-mean white Gaussian noise

with a signal-to-noise ratio SNR = 15dB, in agreement with the preliminary study conducted on the realistic

replicas of [Stu+15] (presented in Section 4.3.1), which shows that the SNR ranges from approximately 10dB

on the earlier frames to 20dB on the latter ones. The resulting image is shown in Fig. 3.11. Simulations are

conducted in 20 different realizations of the noise to get reliable performance measures.
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Figure 3.8.: Ground truth of factors (right) and corresponding proportions(left), extracted from SUnSAL/N-
findr
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Figure 3.9.: Left: variability basis element v1 identified by PCA. Right: generated SBFs (blue) and the nominal
SBF signature (red).
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Figure 3.10.: Variability matrix B randomly generated.

3.5.2. Compared methods

The results of the proposed algorithm are compared to those obtained with several classical linear unmixing

methods and other BSS techniques presented in Sections 2.2.2 and 2.4. The methods are recalled below with

their most relevant implementation details.

NMF (no variability) The NMF algorithm herein applied is based on multiplicative update rules using

the Euclidean distance as the cost function [LS00]. The stopping criterion is set to 10−3. To obtain a fair

comparison mitigating scale ambiguity inherent to matrix factorization-like problems, results provided by the
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Figure 3.11.: 15th time-frame of 3D-generated image with PSF and a 15dB noise: from left to right, transversal,
sagittal and coronal planes.
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NMF have been normalized by the maximum value for the abundance, i.e.,

Âk ←
Âk

∥
∥Âk

∥
∥
∞

m̂k ← m̂k

∥
∥Âk

∥
∥
∞

(3.23)

where Âk denotes the kth row of the estimated factor proportion matrix Â.

VCA (no variability) The factor TACs are first extracted using the vertex component analysis (VCA) which

requires pure voxels to be present in the analysed images [ND05b]. The factor proportions are subsequently

estimated by sparse unmixing by variable splitting and augmented Lagrangian (SUnSAL) [BF10].

LMM (no variability) To appreciate the interest of explicitly modelling the spatial variability of the SBF,

a depreciated version of the proposed SLMM algorithm is considered. More precisely, it uses the LMM (3.1)

without allowing the SBF m1,n to be spatially varying. The stopping criterion, defined as ε, is set to 10−3. The

values of the regularization parameter are reported in Table 3.1.

SLMM (proposed approach) As detailed in Section 3.3.1, matrix B is constrained to be nonnegative to

increase accuracy. Consequently, the nominal SBF TAC m̄1 is initialized as the TAC with the minimum AUC

learned from the generated database to ensure a positive B. The regularization parameters have been tuned to

the values reported in Table 3.1. As for the other approaches, the stopping criterion is set to 10−3.

Since the addressed problem is non-convex, these algorithms require an appropriate initialization. In this

work, the factor TACs have been initialized as the outputs M0 of a K-means clustering conducted on the PET

image. These K-means TACs estimates are also considered for performance comparison.

Table 3.1.: factor proportion, factor and variability penalization hyperparameters for LMM and SLMM with
SNR= 15dB

LMM SLMM
α 0.010 0.010
β 0.010 0.010
λ - 0.020
ε 0.001 0.001

The performance of the algorithms is assessed by computing the normalized mean square error (NMSE) for

each variable

NMSE(θ̂) =
‖θ̂ − θ‖2

F

‖θ‖2
F

(3.24)

where θ̂ denotes the estimated variable and θ the corresponding ground truth. The NMSE has been computed

for the following variables: the factor proportions A1 corresponding to the high-uptake region, the remaining

factor proportions A2:K , the SBFs affected by the variability M̃1 , [m1,1, . . . ,m1,N ], the non-specific factor

TACs M2:K , [m2, . . . ,mK ] and finally the internal variability matrix B.
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3.5.3. Hyperparameter influence

Considering the significant number of hyperparameters to be tuned in both LMM and SLMM approaches (i.e.,

α, β, λ), a full sensitivity analysis is a challenging task, which is further complexified by the non-convex nature

of the problem. To alleviate this issue, each parameter has been individually adjusted while the others have

been set to zero. Several simulations empirically showed that the result is not too sensitive to the choice of

parameters. The parameters have been tuned such that the total percentage of their corresponding term in the

overall objective function does not surpass 25% of the total value of the function. Given the high level of noise

corrupting the PET images, the hyperparameter α associated with the factor proportions has been set so as to

reduce the noise impact while avoiding too much smoothing. The factor TAC penalization hyperparameter β

results from a trade-off between the quality of the initial factor TAC estimates M0 and the flexibility required

by PALM to reach more accurate estimates. Finally the variability penalization λ has been tuned to achieve

a compromise between the risks of capturing noise into the variability term (i.e., overfitting) and of losing

information. While there are more automatized ways to choose the hyperparameter values (e.g., using cross-

validation, grid search, random search and Bayesian estimation), these hyperparameter choices have seemed to

be sufficient to assess the performance of the proposed method. The hyperparameter values used in LMM and

SLMM are finally reported in Table 3.1.

3.5.4. Results

The factor proportion maps recovered by the compared algorithms are shown in Fig. 3.12. Each column corre-

sponds to a specific factor: SBF, white matter, non-specific gray matter, blood (from left to right, respectively).

The six rows contain the factor proportion maps of the ground truth, and those estimated by K-means, NMF,

VCA, LMM and the proposed SLMM (from top to bottom, respectively). A visual comparison suggests that

the factor proportion maps obtained with LMM and SLMM are more consistent with the expected localization

of each factor in the brain than VCA. Meanwhile, they are less noisy than the maps obtained by NMF. The

estimated LMM and SLMM proportions maps are closer to the ground truth than VCA and NMF, particularly

in the region affected by specific binding, as quantitatively shown in Table 3.2. It can also be observed that

the factor proportion maps obtained with the proposed SLMM approach present a higher contrast compared to

LMM and other approaches, especially in the high-uptake region.

The maps of SLMM are also sharper compared to LMM. Additionally, it is also possible to see that NMF

results for white matter are sharper but also noisier than both LMM and SLMM approaches. However, for the

specific gray matter, both LMM and SLMM approaches show sharper estimated factor proportion maps. Note

that the sharpness of the factor proportions is not necessarily a good criterion of comparison. Indeed, factor

analysis-based methods do expect to recover smooth maps that take into account the spilling part of partial
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Figure 3.12.: Factor proportion maps of the 15th time-frame obtained for SNR=15dB corresponding to the
specific gray matter, white matter, gray matter and blood, from left to right. The first 3 columns
show a transaxial view while the last one shows a sagittal view. All images are in the same scale
[0, 1].
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Figure 3.13.: TACs obtained for SNR = 15dB. For the proposed SLMM algorithm, the represented SBF TAC
corresponds to the empirical mean of the estimated spatially varying SBFs m1,1, . . . ,m1,N .

Figure 3.14.: Ground-truth (left) and estimated (right) SBF variability.
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Table 3.2.: Normalized Mean Square Errors of the estimated variables A1, A2:K , M̃1, M2:K and B for K-means,
VCA, NMF, LMM and SLMM

A1 A2:K M̃1 M2:K B
K-means 0.567 0.669 0.120 0.442 -

± 4.3 ×10−4 ± 2.2 ×10−3 ± 1.5 ×10−4 ± 6.1 ×10−2

VCA 0.547 0.481 0.517 0.248 -
± 6.7 ×10−4 ± 1.8 ×10−3 ± 9.3 ×10−5 ± 1.3 ×10−3

NMF 0.512 0.558 0.517 0.133 -
± 1.0 ×10−6 ± 3.8 ×10−5 ± 4.5 ×10−5 ± 1.5 ×10−4

LMM 0.437 0.473 0.349 0.148 -
± 3.8 ×10−6 ± 4.3 ×10−8 ± 6.0 ×10−7 ± 1.5 ×10−6

SLMM 0.359 0.495 0.009 0.128 0.259
± 1.3 ×10−5 ± 3.1 ×10−5 ± 3.0 ×10−8 ± 9.8 ×10−7 ± 2.3 ×10−5

volume effect, which is not considered within deconvolution. The aim of unmixing is not hard-clustering or

classification.

The corresponding estimated factor TACs are shown in Fig. 3.13 where, for comparison purposes, the SBF

depicted for SLMM is the empirical average over the whole set of spatially varying SBFs, as it is also the case

for the SBF ground truth TACs. The best estimate of the SBF TAC seems to be obtained by the proposed

SLMM approach, for which the TAC has been precisely recovered, as opposed to K-means, VCA and NMF.

K-means provide the best estimate of the white matter TAC, closely followed by SLMM while NMF highly

overestimates it. The best estimate of the non specific gray matter TAC is obtained by VCA and NMF, even

though it is slightly overestimated. It can be observed that SLMM and LMM underestimate this factor TAC,

which has been compensated with higher values in the corresponding factor proportion map. The factor TAC

associated with blood is correctly estimated by all methods.

Table 3.2 presents the NMSE over the 20 realizations of the noise for all algorithms and variables of interest.

These quantitative results confirm the preliminary findings drawn from the visual inspection of Fig. 3.12 and

3.13. The proposed method outperforms all the others for the estimation of M̃1, M2:K and a1. In particular,

SLMM provides a very precise estimation of the mean SBF TAC with an NMSE of 0.9%. In Fig. 3.13, the

mean of the estimated SBF TACs m1,1, . . . ,m1,N is very close to the ground truth for LMM and SLMM but the

individual errors computed for each voxel demonstrate better performance obtained by SLMM. It also shows

better results than K-means and NMF for A2:K , even though it is less effective but still competitive when

compared to LMM and VCA. Moreover, Kmeans and VCA results present a higher variance, as seen in Table

3.2.

Taking into account the SBF variability allows the estimation of A1 to be improved up to 35%. Fig. 3.14

compares the actual variability factor proportions and those estimated by the proposed SLMM. This figure

shows that the estimated non-zeros coefficients are correctly localized in the 4 subregions characterized by some

SBF variability. These non-zero values seem to be affected by some estimation inaccuracies, mainly due to the
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No deconvolution Wiener pre-deconvolution Joint deconvolution
α 0.010 0.010 0.010
β 0.010 0.010 0.010
λ 0.020 0.020 0.020
ε 0.001 0.001 0.001

Table 3.3.: Factor proportion, factor and variability penalization parameters for SLMM with no deconvolution,
wiener pre-deconvolution and joint deconvolution with SNR = 15dB.

No deconvolution Wiener pre-deconvolution Joint deconvolution
a1 0.525 0.923 0.382

A2:K 0.482 0.553 0.482
M̃1 0.013 0.032 0.009

M2:K 0.220 0.270 0.174
B 0.346 0.844 0.248

Table 3.4.: NMSE of estimated parameters for SLMM with no deconvolution, with Wiener pre-deconvolution
and with joint deconvolution for SNR=15dB

deconvolution. However, the estimation error still stays close to 25%.

3.5.5. Impact of the deconvolution

PSF modelling has proven its interest within reconstruction [Kar+15] since it reduces the partial volume effect

and enhances contrast. Similarly, conducting deconvolution and unmixing jointly has been shown to provide

more reliable unmixing results [Hen+14]. To further demonstrate the interest of joint deconvolution, SLMM

was applied in three different frameworks:

• SLMM without deconvolution;

• SLMM with a Wiener-based pre-deconvolution;

• SLMM within deconvolution (our original model).

The results from these simulations with a synthetic image are presented in the following.

Table 3.3 shows the parameters applied in each simulation while Table 3.4 shows the NMSE computed for

each variable in each simulation. Visual comparison suggests that the error is the smallest for all variables

with joint deconvolution. As expected, the Wiener pre-deconvolution increases the statistical noise, while no

deconvolution presents a highly smoothed result. These results are enforced by Figs. 3.15, 3.16 and 3.17.

Moreover, in the regular LMM, the factor proportions are directly affected by the PSF effect, providing smooth

boundaries in between regions. However, our model contains two spatial maps related to the SBF that can be

affected by the PSF: the corresponding factor proportion and the internal variability map. This may produce

ambiguous results, since we cannot know which one will be affected by the boundary smoothness. This is why

we chose to implement a joint deconvolution step in our model.
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Figure 3.15.: Factor proportion maps of the 15th time-frame obtained for SNR=15dB corresponding to the
specific gray matter, white matter, gray matter and blood, from left to right. The first 3 columns
show a transaxial view while the last one shows a sagittal view.
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Figure 3.16.: TACs obtained for SNR=15dB. For the proposed SLMM algorithm, the represented SBF corre-
sponds to the empirical mean of the estimated spatially varying SBFs m1,1, . . . ,m1,N .

Figure 3.17.: Ground-truth (left) and estimated (right) SBF variability.
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Figure 3.18.: Variability basis elements of first subject (left) and second subject (right)

3.6. Evaluation on Real Data

3.6.1. PET data acquisition

To assess the behaviour of the proposed approach when analysing real dynamic PET images, the different

methods have been applied to two dynamic PET images of stroke subjects injected with [18F]DPA-714. Cerebral

stroke is a severe and frequently occurring condition. While different mechanisms are involved in the stroke

pathogenesis, there is an increasing evidence that inflammation, mainly involving the microglial and the immune

system cells, account for its pathogenic progression. The [18F]DPA-714 is a ligand of the 18-kDa translocator

protein (TSPO) for in vivo imaging, which is a biomarker of neuroinflammation. The subjects were examined

using an Ingenuity TOF Camera from Philips Medical Systems, seven days after the stroke.

The PET acquisitions were reconstructed into a 128× 128× 90-volume with L = 31 time-frames. The PET

scan images acquisition times ranged from 10 seconds to 5 minutes over a 59 minutes period. The voxel size was

of 2×2×2 mm3. As for the experiments conducted on simulated data, once again as in [Boe+08; Yaq+12], the

voxel TACs have been assumed to be mixtures of K = 4 types of elementary TAC: specific binding associated

with inflammation, blood, the non-specific gray and white matters. For the first subject, the K-means method

was applied to the images to mask the cerebrospinal fluid and to initialize NMF, LMM and SLMM algorithms.

For the second subject, SVCA was applied to obtain the initialization of factors and factor proportions. A

ground truth of the high-uptake tissue was manually labeled by an expert based on a magnetic resonance

imaging (MRI) acquisition. The stroke region was segmented on this registered MRI image to define a set of

voxels used to learn the variability descriptors V by PCA with Nv = 1. Fig. 3.18 presents the final variability

basis elements for the two subjects. The nominal SBF is fixed as the empirical average of the corresponding

TACs with AUC comprised between the 5th and 10th percentile. The choice to use the average of a percentile

instead of the minimum AUC TAC is motivated by the fact that, in this case, the learning set is corrupted by

noise and partial volume effects. The algorithm parameters are set to α = 0, β = 0.1 and λ = 0.5.
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3.6.2. Results

Figure 3.19 depicts the factor proportion maps estimated by the compared methods. The corresponding es-

timated factor TACs are shown in Fig. 3.20. The LMM and SLMM algorithms estimate four distinct TACs

associated with different tissues, as expected. In Fig. 3.19, a remarkable result is the factor proportion maps

for the blood. The sagittal view represented in the last row is in the exact center of the brain. Both NMF

and SLMM recover factor proportion maps that are in very good agreement with the superior sagittal sinus

vein that passes on the higher part of the brain. On the contrary, VCA estimates two factors that seem to be

mixtures of the vein TACs and other region TACs.

Fig. 3.21 depicts three different views of the stroke area identified by the expert on MRI acquisition (1st

row), the estimated specific gray matter factor proportions (2nd-6th rows) and the estimated corresponding

variability (7th row). All methods seem to correctly recover the main localization of the stroke area. However,

the proposed SLMM approach identifies a significantly larger area. This result seems to be in better agreement

with the stroke area identified in the MRI acquisition of the same patient. Moreover, the specific gray matter

factor proportion maps estimated by SLMM and K-means show high values in the thalamus, which is a region

known to present specific binding of [18F]DPA-714. It is possible to note an interesting improvement of the final

SLMM estimate when compared to its K-means initialization. This demonstrates that the method converges to

an estimation of the specifically bound gray matter that is more accurate with the proposed model.

Fig. 3.22 depicts the factor proportions of the second stroke subject. While SVCA seems to provide a good

approximation of both white and gray matter, VCA is completely unable to unmix the two tissues. NMF

increases the intensity of the gray matter regions, but seems to mix up the white matter with the blood factor

proportion. Both LMM and SLMM better maintain and improve the regions found with SVCA for white and

gray matter tissues. However, the intensity of the gray matter proportion is greater in SLMM while LMM

presents some gray matter regions as high-uptake tissues. This visual comparison on factor proportions is

further confirmed by the analysis of factors in Fig. 3.23. For the blood factor, while SVCA, LMM and SLMM

present a pick in the initial frames, as expected from an input function, both VCA and NMF show completely

different shapes. LMM and SLMM show the lower white matter factor, apart from VCA that presents a

completely unexpected shape. The gray and white matter TACs from NMF are very near each other, as well

as for SVCA. LMM and SLMM show more distinguishable white and gray matter factor TACs. As we can see

in Fig. 3.24, the stroke region is more accurately detected by LMM and SLMM. LMM shows a larger area,

but also present other non-affected gray matter tissues with high intensities. On the other hand, SLMM, even

though not completely identifying the extremities of the affected regions, is more accurate in specifying the

stroke region, with no “false alarm” intensities in terms of visual interpretability, i.e., no intensities higher than

50% for non-stroke or thalamus regions.
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Figure 3.19.: Factor proportion maps of the first stroke subject. The first 3 columns show a transaxial view
while the last one shows a sagittal view. From left to right: the specific gray matter, white matter,
non-specific gray matter and blood.
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Figure 3.20.: TACs obtained by estimation from the first subject image.
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Figure 3.21.: From top to bottom: MRI ground-truth of the stroke area for the first stroke subject, SBF coef-
ficient maps estimated by K-means, NMF, VCA, LMM, SLMM and SBF variability estimated by
SLMM.
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Figure 3.22.: Factor proportion maps of the second stroke subject. The first 3 columns show a transaxial view
while the last one shows a sagittal view. From left to right: the specific gray matter, white matter,
non-specific gray matter and blood.
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Figure 3.23.: TACs obtained by estimation from the second stroke subject image.
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Figure 3.24.: From top to bottom: MRI ground-truth of the stroke area for the second stroke subject, SBF
coefficient maps estimated by K-means, NMF, VCA, LMM, SLMM and SBF variability estimated
by SLMM. 93
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3.7. Discussion

3.7.1. Performance of the method

This chapter proposes a novel unmixing method, called SLMM, that takes into account the spatial variability of

high-uptake tissues by modelling the SBF with an additional degree of freedom at each pixel. It also introduces

a simplified version of this model with no variability, which consists of a regularized and constrained unmixing

algorithm, herein named LMM.

For the cases studied in this chapter, SLMM and LMM always provide physically interpretable results, though

not always the best, on the estimation of non-specific binding tissues. In Fig. 3.13 from synthetic data, we

can see that both algorithms provide very accurate results for the white matter and blood factors. However,

they provide the worst results for the gray matter factor, along with K-means, when compared with VCA and

NMF. This results from the poor initialization of LMM and SLMM by the K-means outputs that are further

propagated through the iterations by the factor regularization. A better initialization for the gray matter

would provide better results. On the other hand, it is also the accurate initialization provided by K-means

for the white matter that allows LMM and SLMM to present good results for this factor in comparison with

the other algorithms. Both VCA and NMF show a very low performance for this factor TAC, in opposition to

its good estimation of the gray matter TAC. As the gray and white matter TACs are highly correlated, it is

natural to expect ambiguity on their results and therefore, a good performance on one of them may lower the

performance on the other. Concerning the blood factor, both LMM and SLMM are able to overcome the poor

K-means initialization and show a very accurate performance, along with VCA and NMF. In real data, while

VCA is completely unable to differentiate tissues and LMM gets far away from the K-means initialization, both

NMF and SLMM maintain the initialization structure for the non-specific binding tissues with some additional

artifacts on the SLMM result due to deconvolution, as seen in Fig. 3.19. Moreover, the noisy artifacts produced

by LMM and SLMM in real simulations are mainly due to the deconvolution step that has been included into

the method. Note that the other methods (K-means, NMF and VCA) do not take into account this blurring

effect. However, since the convolution by the PSF is known to affect accurate estimations of the factors and

proportion maps, obtaining smoother (i.e., less noisy) maps does not mean better results.

Concerning high-uptake tissues, SLMM performs better than LMM and all the other algorithms for both

the SBF and its associated proportion, as seen in Fig. 3.12, showing the interest of explicitly modelling the

variability. Indeed, the variability proportion map computed by SLMM, depicted in Fig. 3.14 for synthetic

simulations, not only delineates the specific binding region, but also is able to differentiate the intensity of

high-uptake. This accurate estimation can be expected to characterize tissues differently affected by a tumor

(some in early stages of metastasis and others already aggressively affected) or, in the case of stroke, to detect

regions more or less affected by lack of oxygen or inflammation. When inspecting the experimental results
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obtained on the real datasets in Figs. 3.21 and 3.24, the factor proportion related to specific binding seems to

be estimated with a visually higher precision by the proposed model than the others. SLMM provides sharper

and more accurate maps, characterized by a larger area with high uptake, as in the MRI ground-truth. The

proposed technique seems to detect this meticulous difference, which are until now neglected in state-of-the-art

computer-aided PET analysis.

3.7.2. Flexibility of the method

The method is an unsupervised approach and is easily adaptable to other contexts. In this work, two radiotracers

for microglial activation were studied. Synthetic images were based on a phantom that presented the kinetics

of the [11C]-PE2I radioligand, while real images were acquired from [18F]DPA-714 injection. Besides these two

tracers, the algorithm may be adapted to any tracer and any subject. To be transposed to another setting, the

method only requires:

(i) as in all factor analysis techniques, the number of expected kinetic classes in a ROI;

(ii) an initial guess of the factors and proportions;

(iii) a dictionary with the specific binding variability pattern, that can be learned as long as TACs containing

specific binding kinetics can be identified.

Thus, changes in perfusion along patients and scans do not affect the performance of the method, since both (ii)

and (iii) are subject and scan-dependent, i.e., are provided for each subject and scan. What indeed affects the

performance of the method is rather the quality of (ii) and (iii) previous estimations. In this work, the initial

guess (ii) was provided by K-means, however, the choice of the initialization can be adapted to the available

data (e.g. an MRI scan of each subject, pre-defined population-based classes or atlas-based segmentations,

SVCA results). The specific binding TACs needed in (iii) were identified by visual inspection of the real image,

a procedure that can generally be repeated in any case, as long as some high-uptake voxels can be identified.

A thresholding can also be used to identify these TACs, e.g., the 10% maximum AUC voxels in the last frames,

or some atlas if high specific binding regions are known, e.g. the thalamus for [18F]DPA-714.

Note however that we also have a high number of priors that may need to be adapted to each new scenario,

even though their a priori assumptions are often very generic. The factor proportion penalization, related to the

homogeneity of neighbouring regions in the image, is a quite general prior for all biomedical image processing

applications. The factors prior is related to the reliability of initialization. It further intensifies the dependency

of the LMM and SLMM solutions on a good initialization of factors, but also allows to benefit from a previous

knowledge on the pattern of the factors, e.g., the kinetics of the tracer. Finally, the prior of the variability

related to specific binding induces sparsity, i.e., assumes that only a few voxels in the image are impacted
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by specific binding. The [11C]-PE2I is expected to mainly specifically bind in the striatum, so, in this case,

sparsity is an adequate assumption. On the other hand, the [18F]DPA-714 targets microglial activation and

therefore neuroinflammation in the brain, which can potentially affect a greater part of the image, in opposition

to the sparsity assumption. Nevertheless, in our specific case of stroke patients, neuroinflammation was mainly

expected in the stroke area and the thalamus, which represent a very small part of the brain, therefore this

assumption was still adequate. Depending on the application, the intensity of the expected sparsity may be

easily regulated by its corresponding weight (as for the other penalties), i.e., if specific binding is expected in a

greater part of the image, we may reduce the level of the sparsity penalty or even set it to zero. So it is also

quite adaptable. However, this highlights a drawback of our method that is the high number of hyperparameters

to be tuned. The use of automatic estimation strategies within the algorithms should be envisaged in future

developments.

3.8. Conclusion

This chapter introduced a new model to conduct factor analysis of dynamic PET images. It relied on the

unmixing concept accounting for specific binding TACs variation. The method was based on the hypothesis

that the variations within the SBF can be described by a small number of basis elements and their corresponding

proportions per voxel. The resulting optimization problem was extremely non-convex with highly correlated

factors and variability basis elements, which leaded to a high number of spurious local optima for the cost

function. However, the experiments conducted on synthetic data showed that the proposed method succeeded

in estimating this variability, which improved the estimation of the specific binding factor and the corresponding

proportions. For the other quantities of interest, the proposed approach compared favourably with state-of-the-

art unmixing techniques. The proposed approach has many potential applications in dynamic PET imaging. It

could be used for the segmentation of a region-of-interest, classification of the voxels, creation of subject-specific

kinetic reference regions or even simultaneous filtering and partial volume correction.
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4.1. Introduction

The previous chapter presented a model that handles the variations in perfusion and labelled molecule con-

centration affecting the TACs from specific binding tissues. As in several other methods from the dynamic

PET literature, the data-fitting term in the previous method relies on the Frobenius norm that results from

the assumption that the dynamic PET noise and the model approximation errors follow Gaussian distributions.

However, this is a strong simplification of the underlying statistics of PET images. To overcome this limitation,

[Ben+93] proposed a statistical model, demonstrating that accounting for Poisson noise instead of Gaussian

noise was especially important in low count settings. Other works applied nonnegative matrix factorization

(NMF) techniques, allowing the Kullback-Leibler (KL) divergence to be used, which is more appropriate for

data corrupted by Poisson noise [Lee+01b; Pad+12; Sch13]. NMF with multiplicative updates is the approach

generally employed since the algorithm is simple and there are fewer parameters to adjust than in FADS.

Nevertheless, even though the positron decay process can be described by a Poisson distribution [SV82], the

actual noise in reconstructed PET images is not expected to be simply described by Poisson nor Gaussian

distributions, as discussed in Section 1.5.2. Several acquisition characteristics, such as the detector system and

electronic components, as well as post-processing corrections for scatter and attenuation, significantly alter the

initial Poissonian statistics of the count-rates [Alp+82; Raz+05]. Considering the difficulties in characterizing

the noise properties in PET images, many works have assumed the data to be corrupted by a Gaussian noise

[Fes94; CHB97; Kam09]. Under some approximations, Barret et al. [BWT94; WTB94] have found the noise

distribution on emission tomography (and images reconstructed with the EM algorithm in general) as being

rather close to log-normal than normal statistics. Hybrid distributions, such as Poisson-Gaussian [MOM00]

and Poisson-Gamma [Ira+11], have been also proposed in an attempt to take into account various phenomena

occurring in the data. The work of Teymurazyan et al. [Tey+12] tried to determine the statistical properties of

data reconstructed by filtered-back projection (FBP) and iterative expectation maximization (EM) algorithms.

While FPB reconstructed images were sufficiently described by a normal distribution, the Gamma statistics

were a better fit for EM reconstructions. The recent work of Mou et al. [MHO17] further studied the Gamma

behaviour that can be found in PET reconstructed data.

While these works mainly put the emphasis on the noise model, we decide to investigate the impact of the

divergence measure to be used for factor analysis of dynamic PET images. To this end, our study applies a

popular and quite general loss function in NMF, namely the β-divergence [Bas+98; FI11]. The β-divergence

is a family of divergences parametrized by a unique scalar parameter β ∈ [0, 2]. In particular, it has the great

advantage of generalizing conventional loss functions such as the least-square, KL and Itakura-Saito divergences,

respectively corresponding to Gaussian, Poisson and Gamma distributions.

The current chapter will empirically study the influence of β on the factor estimation for three different
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methods. First, the standard β-NMF algorithm is applied. Then, an approach that includes a normalization of

the factor proportions (herein called β-LMM) and previously considered in [EK04], is used to provide factors

with a physical meaning. Finally, the β-divergence is also used to generalize the previous model introduced in

Chapter 3, yielding an algorithm that we herein refer to as β-SLMM. Simulations are conducted on two different

sets of synthetic data based on realistic count-rates and one real image of a patient’s brain.

This chapter is organized as follows. The considered factor analysis models are described in Section 4.2.

Section 4.3 presents the β-divergence as a measure of similarity. Section 4.4 discusses the corresponding factor

analysis algorithms. Simulation results obtained with synthetic data are reported in Section 4.5. Experimental

results on real data are provided in Section 4.6, and Section 4.7 concludes the chapter.

4.2. Factor analysis techniques

In this chapter, we apply three factor analysis models discussed in the previous chapters: nonnegative matrix

factorization (NMF), linear mixing model (LMM) and specific binding LMM (SLMM). To this end, we recall the

notations already provided in chapter 2, where Y is the L×N observation matrix that can be approximated by

an estimated image X(θ) according to a factorization model described by P physically interpretable variables

θ = [θ1, · · · , θP ]:

Y ≈ X(θ). (4.1)

The observation image is affected by a noise whose distribution characterization is a highly challenging task,

as previously explained. For this reason, for the sake of generality, the description in (4.1) makes use of an

approximation symbol ≈ that generalizes the relation between the factor-dependent estimated image X(θ)

and the observed data Y. As in chapter 2, we formulate the optimization problem as the estimation of the

parameter vector θ assumed to belong to a set denoted C with possible complementary penalizations R(θ). It

is mathematically described as

θ̂ ∈ arg min
θ∈C

{

D(Y|X(θ)) +R(θ)
}

, (4.2)

where D(·|·) is a measure of dissimilarity between the observed PET image Y and the proposed model. The

choice of this dissimilarity measure will be discussed in Section 4.3.

Table 4.1 summarizes the three factor analysis techniques - NMF, LMM and SLMM - presented in this

chapter under (4.2) formulation. For both NMF and LMM, M = [m1, ...,mk] is a L×K matrix of factors and

A = [A1, . . . ,aN ] is a K ×N matrix containing the factor coefficients. To produce a low-rank approximation

of the matrix X, we choose K ≪ L,N .

For SLMM, M = [m̄1, . . . ,mK ] where m̄1 is the nominal specific binding factor. Moreover, “◦” is the

Hadamard point-wise product, E1 is the matrix [1L,10L,K−1], V = [v1, . . . ,vNv
] is the L×Nv matrix composed
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of the basis elements used to describe the variability of the specific binding factor (SBF) with Nv ≪ L,

and B = [b1, . . . ,bn] is the Nv ×N matrix composed of internal variability proportions. Differently from the

optimization problem described in Chapter 3, here we will discard the factors and factor proportions penalization

and only keep the variability sparsity penalization for simplification purposes. The final SLMM cost function

writes

J (M,A,B) = D(Y|MA +
[

E1A ◦VB)
]

︸ ︷︷ ︸

∆

) + λϕ‖B‖2,1, (4.3)

where the trade-off between the data fitting term and the penalty ‖B‖2,1 is controlled by the parameter λ and

also depends on the dispersion parameter ϕ that is related to the noise distribution and will be further detailed

in Section 4.3.1.

Table 4.1.: Summary of NMF, LMM and SLMM under (4.2)

θ X(θ) C R(θ)

NMF {M,A} X = MA
A � 0K,N -
M � 0L,K

LMM {M,A} X = MA
A � 0K,N

-M � 0L,K

AT 1K = 1N

SLMM {M,A,B} X = MA +
[

E1A ◦VB
]

A � 0K,N

‖B‖2,1 =
∑N

n=1 ‖bn‖2
M � 0L,K

B � 0Nv,N

AT 1K = 1N

4.3. Divergence measure

When analyzing PET data, most studies in the literature have considered the Euclidean distance or the Kullback-

Leibler divergence as the loss function D(·|·) to be used in the inverse problem (4.1). These choices are in-

trinsically related to the assumptions of Gaussian and Poissonian noise, respectively, as detailed in the next

paragraphs. However, as previously discussed, the noise encountered in PET data is altered by several external

circumstances and parameters, even though the initial count-rates are known to follow a Poisson distribution.

Hence, to provide a generalization of these PET noise models, this work proposes to resort to the β-divergence

as the dissimilarity measure underlying the approximation in (4.1).

4.3.1. Noise in PET images

Before introducing the solution proposed in this chapter to deal with the unknown nature of the noise in PET

images, we present a study conducted on 64 samples simulated with the realistic count-rates process posteriorly

detailed in Section 4.5.1, with 6 reconstruction iterations. Each sample is a 4D image (3D+time) of size
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128 × 128 × 64 × 20. This study further explains the noise and effects discussed in Section 1.5.2. There are

many ways to study the noise, such as through the calculus of pixel normalized standard deviation [Paj+98]; the

study of the histogram of the region of interest in order to characterize the noise probability density function;

the evaluation of differences between the histogram of a population from a reference distribution with graphical

methods such as Quantile-Quantile (Q-Q) plots; the use of skewness (third standardized moment) and kurtosis

(fourth standardized moment) [Tey+12]; and finally the analysis of the spatial variance in the region-of-interest

(ROI) [RT13]. In this section, we will limit ourselves to the study of spatial variation and estimation of the

noise distribution with the histogram.

First, we present pixel variance, covariance and mean over time inside a ROI containing high-uptake tissue of

size 20× 20× 10 pixels. As previously discussed, the varying durations of frames, among other factors, change

the noise levels from frame to frame [CQ10]. On Fig. 4.1, the variation seems to be directly proportional to the

signal power, since the earlier frames of a typical dynamic PET acquisition are expected to have fewer photon

counts and be more heavily corrupted by noise than the latter ones. This is also seen in Fig. 4.2, since the

time bins of the earlier parts of the scan are kept short to capture the fast kinetics right after tracer injection

[DLL13]. From Fig. 4.2, we also verify that the SNR is always around 12dB, in a range between 8dB and 15dB.
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Figure 4.1.: Empirical covariance, mean and variance of a randomly chosen region.

A second study is conducted to investigate the distribution of the noise. It consisted in a comparison of the

histogram with three distributions, particularly Poisson, Gaussian and Gamma distributions, whose parameters

are estimated by computing their maximum likelihood estimators (MLE). Acknowledging that the noise changes

with time, we compare the histogram in six different time frames (1, 4, 7, 10, 13, 16) and four different pixels

over the 64 samples.

Computing the MLE related to a given noise distribution consists in minimizing the partial derivative of the

negative log-likelihood of this distribution with respect to the parameter we want to estimate. In the following,

the MLE of the parameters for the three distributions will be provided.
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Figure 4.2.: Empirical SNR for each frame of time (in dB)

– MLE for the Gaussian distribution: Considering an observation y corrupted by an additive white

Gaussian noise n affecting a signal x, i.e. y = x + n with n ∼ N (0, σ2), the probability density function

that describes the data distribution writes

p(y|x, σ2) =
1√

2πσ2
exp

(

− 1

2

(y − x)2

σ2

)

(4.4)

and its negative log likelihood is

− log(p(y|x, σ2)) =
1

2σ2
(y − x)2 + cte. (4.5)

As the noise mean is zero, the mean of the observations is the signal x. Moreover, the variance σ2 that

describes this Gaussian distribution is estimated from P samples as:

σ̂2 =
1

P

P∑

j=1

(yj − x). (4.6)

– MLE for the Gamma distribution: Considering a multiplicative Gamma noise, i.e. y = xn with

n ∼ G(η, η) and E[n] = 1, the Gamma distribution describing the noise n is given by

p(n|η, η) =
ηηnη−1e−ηn

Γ(η)
. (4.7)
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The negative log likelihood for the data y writes:

− log(p(y|x, η, η)) = − log p(n|η, η)/x

= − log
1

x

ηη

(

y
x

)η−1

e
−η

(

y
x

)

Γ(α)

= η

(
y

x
− log

(
y

x

))

+ cte.

(4.8)

From the minimization of negative log likelihood of the Gamma distribution regarding η, the MLE η̂ is

P (log η̂ − ∂

∂η
log Γ(η̂) +

1

P

P∑

j=1

log yj) = 0. (4.9)

As there is no closed-form solution for η̂, a numerical iterative solution, such as the Newton-Raphson

technique or the fixed-point method, must be applied [KR09].

– MLE for the Poisson distribution: A Poisson distribution is described by the following discrete

probability

p(y|x) =
xye−x

y!
(4.10)

and the negative log-likelihood is

− log(p(y|x)) = −y log x+ x+ cte. (4.11)

The MLE for the Poisson parameter simply gives E[y] = x. However, the images herein studied do not

follow a standard Poisson distribution. The generation process of the count-rates y can be approximated

with scaled Poisson random variables, i.e., y = γv and v ∼ P( x
γ

).

The mean of variable y may be written as

E[y] = γE[v] = x, (4.12)

while the variance is

var[y] = γ2var[v] = γx. (4.13)

Thus, to obtain a rough estimation of the scaling constant γ for each studied frame, we simply compute

γ =
var[y]

E[y]
. (4.14)
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Note that scaled Poisson random variables do not follow a Poisson distribution.
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Figure 4.3.: Histogram study in 4 different regions of the image and 4 different time frames

Fig. 4.3 shows the empirical histograms as well as the corresponding theoretical probability density functions

(i.e., whose parameters are the MLEs) obtained from the 64 samples of each pixel. Visual comparison suggests

that in the earlier frames the noise distribution is close to the Gamma distribution, gradually acquiring a more

Poisson-like shape until it is no longer visually recognizable which distribution fits the best. Note that for

sufficiently large values of the mean, the Poisson distribution can be approximated by a Gaussian distribution

with equal mean and variance. This may also explain why they are so close in latter frames, where the tracer

concentration in tissues is generally higher.
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4.3.2. The β-divergence

The β-divergence first appeared in the works of Basu et al. [Bas+98] and Eguchi and Kano [EK01]. Since

then, it has been intensively used, with noticeable successes in the audio literature for music transcription and

separation [OP08; FCC09; FBD09]. More precisely, the β-divergence applied to two matrices Y and X follows

the component-wise separability property

Dβ(Y|X) =
L∑

ℓ=1

N∑

n=1

dβ(yℓ,n|xℓ,n) (4.15)

and is defined, for β ∈ (0, 2), as

dβ(y|x) =
1

β(β − 1)
(yβ + (β − 1)xβ − βyxβ−1) (4.16)

with

d′β(y|x) = x(β−2)(x− y), (4.17)

d′′β(y|x) = x(β−3)[(β − 1)x− (β − 2)y]. (4.18)

The limit cases for the β-divergence are the following

dβ(y|x) =







1
2 (y2 + x2 − 2yx) β = 2,

y log y
x
− y + x β = 1,

y
x
− log y

x
− 1 β = 0.

(4.19)

Note that the cases β = 1 and β = 2 lead to the Kullback-Leibler divergence and the squared Euclidean distance,

respectively, already discussed above, while β = 0 leads to the Itakura-Saito divergence. To illustrate this family,

Fig. 4.4 compares the loss functions d(y = 1|x) as functions of x for various values of β. A comprehensive

presentation of the β-divergence is available at [CA10].

Among its interesting properties, the β-divergence can be related to a wide family of distributions, namely

the Tweedie distributions, via its corresponding density p(y|x) following

− log p(y|x) = ϕ−1dβ(y|x) + const. (4.20)

where ϕ is the dispersion parameter that is related to the variance of the distribution. In particular, the Tweedie

distributions encompass a large class of popular distributions, including the Gaussian y ∼ N (x, σ2), Poissonian

y ∼ P(x) and Gamma y ∼ G(η, η/x) observation noises studied in Section 4.3.1. As we can see from (4.5), the
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Figure 4.4.: β-divergence dβ(y = 1|x) as a function of x.

Gaussian distribution corresponds to the Euclidian distance with dispersion parameter ϕ = σ2. For Poisson,

the corresponding divergence in (4.11) is the Kullback-Leibler and the dispersion parameter is 11. The Gamma

distribution corresponds to the Itakura Saito divergence, as proved in (4.8), with ϕ = var, where var = 1
η
.

To summarize, choosing the β-divergence as the loss function in (4.2) allows the approximation (4.1) to stand

for a wide range of noise models. As a consequence, thanks to its genericity, the β-divergence seems to be

relevant and flexible tool to conduct factor analysis when the PET noise is difficult to be characterized.

4.4. Block-coordinate descent algorithm

The non-convex minimization problem stated in (5.12) is solved through a block-coordinate descent (BCD)

algorithm. For each factor analysis model discussed in Section 4.2, the corresponding algorithm iteratively

updates a latent variable θi while all the others are kept fixed, allowing for convergence towards a local solution.

The definition of these blocks naturally arises according to the considered latent factor model. The method

detailed hereafter resorts to multiplicative update rules, i.e., consists in multiplying the current variable values

by nonnegative terms, thus preserving the nonnegativity constraint along the iterations. To avoid undesirable

solutions, given the non-convexity of the problem, the algorithms require proper initialization.

The algorithm and corresponding updates used for β-NMF have been introduced in [FI11] and are recalled

in Algo. 4. The present chapter focuses on the SLMM model, that turns into LMM when fixing B = 0.

1For scaled Poisson variables, ϕ =
var[y]
E[y]

.

106



Chapter 4. Factor analysis of dynamic PET images: beyond Gaussian noise

The updates are derived following the strategy proposed in [FD15], while some heuristic rules are inspired by

[FBD09]. The principles of these updates are briefly recalled in paragraph 4.4.1 and particularly instantiated

for the considered SLMM-based factor model in paragraphs 4.4.2–4.4.4. The resulting β-LMM and β-SLMM

algorithms are summarized in Algos. 5 and 6, respectively. In Algos. 4, 5 and 6, all multiplications (identified

by the ◦ symbol), divisions and exponentiations are entry-wise operations, 1K,L denote a K ×L matrix of ones

and ΓB , diag[‖b1‖1, · · · , ‖b1‖N ]−1.

Algorithm 4: β-NMF unmixing

Data: Y
Input: A0, M0

1 k ← 0
2 A← A0

3 M←M0

4 X̃←MA
5 while stopping criterion not satisfied do
6 % Update factor TACs

M←M ◦
[

(Y◦X̃β−2)AT

X̃β−1AT

]

7 X̃←MA
8 % Update factor proportions

A← A ◦
[

MT (Y◦X̃β−2)

MT X̃β−1

]

9 k ← k + 1

10 X̃←MA
Result: A, M

Algorithm 5: β-LMM unmixing

Data: Y
Input: A0, M0

1 k ← 0
2 A← A0

3 M←M0

4 X̃←MA
5 while stopping criterion not satisfied do
6 % Update factor TACs

M←M ◦
[

(Y◦X̃β−2)AT

X̃β−1AT

]

7 X̃←MA
8 % Update factor proportions

A← A ◦
[

MT (Y◦X̃β−2)+1K−1,LX̃β

MT X̃β−1+1K−1,L(Y◦X̃β−1)

]

9 k ← k + 1

10 X̃←MA
Result: A, M
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Algorithm 6: β-SLMM unmixing

Data: Y
Input: A0, M0, B0, λ

1 k ← 0
2 A← A0

3 M←M0

4 B← B0

5 X̃←MA +
[

E1A ◦VB
]

6 while stopping criterion not satisfied do
7 % Update variability matrix

B← B ◦
[

1T
Nv

A1,:◦(VT (Y◦X̃β−2))

1T
Nv

A1,:◦(VT X̃β−1)+λBkΓB

] 1
3−β

8 X̃←MA +
[

E1A ◦VB
]

9 % Update factor TACs

M2:K ←M2:K ◦
[

(Y◦X̃β−2)AT
2:K

X̃β−1AT
2:K

]

10 X̃←MA +
[

E1A ◦VB
]

11 % Update SBF factor proportion

A1 ← A1 ◦
[

1T
L((M11T

N +VB)◦(Y◦X̃β−2)+x̃β)

1T
L

((M11T
N

+VB)◦X̃β−1+Y◦X̃β−1)

]

12 % Update other factor proportions

A2:K ← A2:K ◦
[

MT
2:K (Y◦X̃β−2)+1K−1,LX̃β

MT
2:K

X̃β−1+1K−1,L(Y◦X̃β−1)

]

13 k ← k + 1

14 X̃←MA +
[

E1A ◦VB
]

Result: A, M, B
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4.4.1. Majorization-minimization algorithm

Majorization-minimization (MM) algorithms consist in finding a surrogate function that majorizes the original

objective function and then computing its minimum. MM algorithms used to solve NMF problems are based

on gradient-descent updates, whose step-size is specifically chosen to provide multiplicative updates [CZA06].

The algorithm iteratively updates each variable θi given all the other variables θj 6=i. Hence, the subproblems

can be written

min
θi

J (θi) = D(Y|X(θ)) +R(θi) s.t. θi ∈ C. (4.21)

By denoting θ̃i the state of the latent variable θi at the current iteration, we first define an auxiliary function

G(θi|θ̃i) that majorizes J (θi), i.e., G(θi|θ̃i) ≥ J (θi), and is tight at θ̃i, i.e. G(θ̃i|θ̃i) = J (θ̃i). The optimization

problem (4.21) is then replaced by the minimization of the auxiliary function. Setting the associated gradient

to zero generally leads to multiplicative updates of the form [FI11]

θi = θ̃i

[
N(θ̃i)

D(θ̃i)

]γ(β)

, (4.22)

where the functions N(·) and D(·) are problem-dependent and γ(β) is 1
2−β

for β < 1, 1 for β ∈ [1, 2] and 1
β−1

for β > 2.

A heuristic alternative to this algorithm was provided in [FBD09]. It consists in decomposing the gradient

w.r.t. the variable θ̃i as the difference between two nonnegative functions [FI11]:

∇θi
J (θ̃i) = ∇+

θi
J (θ̃i)−∇−θi

J (θ̃i) (4.23)

and the multiplicative updates of [CZA06; FBD09] can be heuristically written as in (4.22) with

N(θ̃i) = ∇−
θ̃i
J (θ̃i), (4.24)

D(θ̃i) = ∇+

θ̃i
J (θ̃i). (4.25)

Kompass [Kom07] proved the monotonicity of the corresponding algorithm with the β-divergence for the

interval β ∈ (1, 2). Note however, that monotonicity does not imply convergence while not being a strict

requirement. Nonetheless, despite the lack of theoretical guarantees, in practice, the multiplicative algorithm

based on these updates has shown to provide a decreasing cost function at each iteration, even when β does not

belong to (1, 2), as already pointed out in [FI11].
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4.4.2. Update of the factor TACs M

According to the optimization framework described above, given the current values A and B of the abundance

matrix and the internal proportions updating, the factor matrix M can be formulated as the minimization

sub-problem

min
M
J (M) = D(Y|MA + ∆) s.t. M � 0L,K . (4.26)

As in [FD15], the objective function J (M) can be majorized for β ∈ [1, 2] using Jensen’s inequality:

J (M) =
∑

ln

d(yln|
∑

k

mlkakn + δln)

=
∑

ln

d(yln|
∑

k

t̃lkn

t̃lkn

mlkakn +
t̃l(K+1)n

t̃l(K+1)n

δln)

≤
∑

ln

[
∑

k

t̃lknd(yln|
mlkakn

t̃lkn

) + t̃l(K+1)nd(yln|
δln

t̃l(K+1)n

)

]

[Jensen’s inequality]

(4.27)

with

t̃lkn =
m̃lkakn

x̃ln

t̃l(K+1)n =
δln

x̃ln

.

(4.28)

Hence

J (M) ≤
∑

ln

[
∑

k

m̃lkakn

x̃ln

d(yln|
x̃lnmlk

m̃lk

) +
δln

x̃ln

d(yln|x̃ln)

]

= G(M|M̃),

(4.29)

where x̃kn =
∑

k m̃lkakn +δln is the current state of the model-based reconstructed data. The auxiliary function

G(M|M̃) majorizes the divergence of the sum by the sum of the divergences, allowing the optimization of M

to be conducted element-by-element. The gradient w.r.t. the variable mlk writes

∇mlk
G(M|M̃) =

∑

n

aknx̃ln
β−1

(
mlk

m̃lk

)β−1

−
∑

n

aknylnx̃
β−2
ln

(
mlk

m̃lk

)β−2

. (4.30)

Thus, minimizing G(M|M̃) w.r.t. M leads to the following element-wise update

mlk = m̃lk

[∑

n aknylnx̃
β−2
ln

∑

n aknx̃
β−1
ln

]γ(β)

. (4.31)

The update is the same for all three algorithms β-NMF, β-LMM and β-SLMM.
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4.4.3. Update of the factor proportions A

Given the current values M and B of the factor matrix and internal propositions, the update rule for A is

obtained by solving

min
A
J (A) = D(Y|MA +

[

E1A ◦W)
]

) s.t. A � 0K,N , AT 1K = 1N , (4.32)

with W = VB. The sum-to-one constraint (2.13) could be handled within gradient descent methods by

introducing Lagrange multipliers that would further lead to projection onto the corresponding simplex [Con15].

However, incorporating this constraint into a MM formulation is not straightforward. On the other hand,

normalizing the factor proportions at each iteration seems sufficient to produce a similar effect. To this end,

this work proposes to resort to a change of variable that demonstrated its interest in previous works [EK04;

FD15]. More precisely, the factor proportions matrix A can be expressed thanks to an auxiliary matrix U, such

that

akn =
ukn
∑

j ujn

, (4.33)

which explicitly ensures the sum-to-one constraint (2.13). The new optimization problem is then

min
U
J (U) s.t. U � 0K,N , (4.34)

with

J (U) = D(Y|M
[

u1

‖u1‖1
, · · · , uN

‖uN‖1

]

+
[

E1

[
u11

‖u1‖1
, · · · , u1N

‖uN‖1

]

◦W)
]

)

=
∑

ln

d(yln|
[
u1n

‖un‖1

]

wln +
∑

k

mlk

[
ukn

‖un‖1

]

). (4.35)

However, contrary to the strategy followed in paragraph 4.4.2, majorizing J (U) does not lead to an auxiliary

function easy to minimize. Conversely, as motivated in paragraph 4.4.1, one proposes to resort to the heuristic

MM by using the multiplicative updates (4.22) combined with (4.24) and (4.25). The gradient of J (U) can be

expressed as

∇ukn
J (U) = ∇+

ukn
J (U)−∇−ukn

J (U) (4.36)

The heuristic algorithm simply writes

ukn = ũkn

(∇−ukn
J (U)

∇+
uknJ (U)

)

(4.37)
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The updates are also different for k = 1 and k 6= 1. For k 6= 1, the gradient writes

∇ukn
J (U) =

∑

l

(
mlk

‖un‖1
− x̃ln

‖un‖1

)(

x̃β−1
ln − x̃β−2

ln yln

)

=
1

‖un‖1

∑

l

(

mlkx̃
β−1
ln + ylnx̃

β−1
ln

)

︸ ︷︷ ︸

∇+
ukn
J (U)

− 1

‖un‖1

∑

l

(

x̃β
ln +mlkylnx̃

β−2
ln

)

︸ ︷︷ ︸

∇−

ukn
J (U)

(4.38)

with x̃ln =
∑

k mlkãkn + ã1nwln being the pixel value reconstructed with the previous factor proportion value

ãkn, leading the following update

ukn = ũkn

[ ∑

l

(
x̃β

ln +mlkylnx̃
β−2
ln

)

∑

l

(
mlkx̃

β−1
ln + ylnx̃

β−1
ln

)

]γ(β)

. (4.39)

This is the same update as for all the factor proportions in the β-LMM algorithm.

Meanwhile, the gradient for k = 1 writes

∇u1n
J (U) =

∑

l

(
ml1 + wln

‖un‖1
− x̃ln

‖un‖1

)(

x̃β−1
ln − x̃β−2

ln yln

)

=
1

‖un‖1

∑

l

(

(ml1 + wln)x̃β−1
ln + ylnx̃

β−1
ln

)

︸ ︷︷ ︸

∇+
ukn
J (U)

− 1

‖un‖1

∑

l

(

x̃β
ln + (ml1 + wln)x̃β−2

ln yln

)

︸ ︷︷ ︸

∇−

ukn
J (U)

(4.40)

and the respective update rule when β < 1 is then

u1n = ũ1n

[ ∑

l

(
x̃β

ln + (ml1 + wln)x̃β−2
ln yln

)

∑

l

(
(ml1 + wln)x̃β−1

ln + ylnx̃
β−1
ln

)

]γ(β)

. (4.41)

To summarize, we can write

ukn = ũknυ
γ(β)
kn

with

υkn =







∑

l

(
x̃

β

ln
+(ml1+wln)x̃

β−2
ln

yln

)

∑

l

(
(ml1+wln)x̃

β−1
ln

+ylnx̃
β−1
ln

) , if k = 1;
∑

l

(
x̃

β

ln
+mlkylnx̃

β−2
ln

)

∑

l

(
mlkx̃

β−1
ln

+ylnx̃
β−1
ln

) , otherwise.

Finally, the update for β-NMF writes

υkn =

∑

l mlkylnx̃
β−2
ln

∑

l mlkx̃
β−1
ln

, ∀k.
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4.4.4. Update of the internal variability B

Given the current states M and A of the factor matrix and factor proportions, respectively, updating B consists

in solving

min
B
J (B) = D(Y|MA +

[

E1A ◦VB)
]

) + λϕ‖B‖2,1 s.t. B � 0Nv,N , (4.42)

Denoting by B̃ the current state of B, the model-based reconstructed data using the current estimates is defined

by x̃ln = sln + a1n

∑

i vlib̃in with sln =
∑

k mlkakn.

Assuming β ∈ [1, 2], and defining

t̃lin =







sln

x̃ln
if i = Nv + 1

a1nvlib̃in

x̃ln
otherwise,

(4.43)

so that
∑Nv+1

i tlkp = 1, we use Jensen’s inequality as follows.

D(Y|S + [E1A ◦VB])

=
∑

ln

d

(

yln|
∑

k

mlkakn

︸ ︷︷ ︸
sln

+
∑

i

a1nvlibin

)

(4.44)

=
∑

ln

d

(

yln|
t̃l(Nv+1)n

t̃l(Nv+1)n

sln +
∑

i

t̃lin
t̃lin

a1nvlibin

)

≤
∑

ln

[
sln

x̃ln

d(yln|x̃ln) +
∑

i

a1nvlib̃in

x̃ln

d

(

yln|
x̃lnbin

b̃in

)]

= F (B|B̃).

The data fitting term is then majorized as

D(Y|S + [E1A ◦VB]) ≤
∑

ln

[
sln

x̃ln

d(yln|x̃ln) +
∑

i

a1nvlib̃in

x̃ln

d(yln|
x̃lnbin

b̃in

)

]

︸ ︷︷ ︸

F (B|B̃)

.

The auxiliary function associated with J (B) can be decomposed as G(B|B̃) = F (B|B̃) + λϕ‖B‖2,1. However,

minimizing this auxiliary function w.r.t. B is not straightforward. Hence, as in [FD15], the regularization

‖B‖2,1 is majorized, benefiting from the concavity of the square-root function as showed in [TF13]

(
bin

b̃in

)

− 1 ≤ 1

2

[(
bin

b̃in

)2

− 1

]

, (4.45)
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leading to

‖B‖2,1 ≤
1

2

∑

n

(‖bn‖2
2

‖b̃n‖2

+ ‖b̃n‖2

)

︸ ︷︷ ︸

H(B|B̃)

. (4.46)

The gradient of H(B|B̃) is

∇bin
H(B|B̃) =

bin

‖b̃n‖2

. (4.47)

If the extra majorization in (4.46) is only applied to H(B|B̃), minimizing G(B|B̃) w.r.t. B becomes a very

difficult task. Thus, to match the quadratic upper bound of the penalty function, we further majorize the linear

term bin, as in [TF13]. For β ≤ 2, we have

1

β

[(
bin

b̃in

)β

− 1

]

≤ 1

2

[(
bin

b̃in

)2

− 1

]

. (4.48)

By replacing only the first term of the following divergence

d(yln|
x̃lnbin

b̃in

) =
1

β

(

x̃ln

bin

b̃in

)β

− yln

β − 1

(

x̃ln

bin

b̃in

)β−1

+
yβ

ln

β(β − 1)
(4.49)

with (4.48), we will have

d̂(yln|
x̃lnbin

b̃in

) = x̃β
ln

[
1

2

(
bin

b̃in

)2

+ cte

]

− yln

β − 1

(

x̃ln

bin

b̃in

)β−1

+
yβ

ln

β(β − 1)
. (4.50)

This leads to the following gradient for F̂ (B|B̃)

∇bin
F̂ (B|B̃) = a1n

∑

l

vli

(
bin

b̃in

− ylnb̃in

x̃lnbin

)

. (4.51)

By minimizing G(B|B̃), the following update is obtained:

bin = b̃in

(
a1n

∑

l vliylnx̃
β−2
ln

a1n

∑

l vlix̃
β−1
ln + λϕ b̃in

‖b̃n‖2

) 1
3−β

. (4.52)

All the above results are also valid for the interval β ∈ [0, 1), as shown in [FI11], using the heuristic approach

previously presented. Practical simulations showed that when β ∈ [1, 2], ignoring the exponent 1
3−β

increases

the speed of convergence [FI11].
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4.5. Experiments with synthetic data

4.5.1. Synthetic data generation

Simulations are conducted on synthetic images with realistic count-rate properties [Stu+15]. These images have

been generated from the Zubal high resolution numerical phantom [Zub+94] with values derived from real PET

images acquired with the Siemens HRRT using the 11C-PE2I radioligand. The original phantom data is of size

256 × 256 × 128 with a voxel size of 1.1 × 1.1 × 1.4 mm3 , and was acquired over L = 20 frames of durations

that range from 1 to 5 minutes for a 60 minutes total acquisition.

Phantom I generation

A clinical PET image with 11C-PE2I of a healthy control subject has been segmented into regions-of-interest

using a corresponding magnetic resonance image. Then averaged TACs of each region have been extracted

and set as the TAC of voxels in the corresponding phantom region. It is worth noting that this supervised

segmentation neglects any labelled molecule concentration differences due to possible variability in the specific

binding region. Thus, it describes each entire segmented region by a single averaged TAC. This phantom,

referred to as Phantom I, has been used to evaluate the reconstruction error for different values of β.

Phantom II generation

To evaluate the impact of β on the factor analysis, the synthetic phantom generated with the process described

in Section 3.5.1, herein referred to as Phantom II, is also used. The generation process is recalled in the

following. Phantom I has been unmixed with the N-FINDR [Win99] to extract K = 4 factors [Yaq+12] that

correspond to the tissues of the brain: specific gray matter, blood or veins, white matter and non-specific gray

matter. The corresponding ground truth factor proportions have been subsequently set as those estimated by

SUnSAL [BF10]. Then, the SBF as well as the variability dictionary have been generated from a compartment

model [PMS86], while the internal variability has been generated by dividing the region concerned by specific

binding into 4 subregions with different mean variabilities. Phantom II has been finally obtained by mixing

these ground truth components according to SLMM in Table 4.1.

Dynamic PET image simulation

The generation process that takes realistic count rates properties into consideration is detailed in [Stu+15]. To

summarize, activity concentration images are first computed from the input phantom and TACs, applying the

decay of the positron emitter with respect to the provided time frames. To mimic the partial volume effect, a

stationary 4mm FWHM isotropic 3D Gaussian point spread function is applied, followed by a down-sampling

to a 128 x 128 x 64 image matrix of 2.2 x 2.2 x 2.8 mm3 voxels. Data is then projected with respect to real
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crystal positions of the Siemens Biograph TruePoint TrueV scanner, taking attenuation into account. A scatter

distribution is computed from a radial convolution of this signal. A random distribution is computed from

a fan-sum of the true-plus-scatter signal. Realistic scatter and random fractions are then used to scale all

distributions and compute the prompt sinograms. Finally, Poisson noise is applied based on a realistic total

number of counts for the complete acquisition. The standard ordered-subset expectation maximization (OSEM)

algorithm with 16 subsets is used to reconstruct the data, along with the PSF used in the simulation process.

Two images, referred to as 6it (Fig. 4.5) and 50it (Fig. 4.6), are considered for the analysis: the 6th iteration

without post-smoothing, and the 50th iteration post-smoothed with the PSF [SC13]. A set of 64 independent

samples of each phantom were generated to assess statistical consistency.
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Figure 4.5.: 15th time-frame of 6it image: from left to right, transversal, sagittal and coronal planes.
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Figure 4.6.: 15th time-frame of 50it image: from left to right, transversal, sagittal and coronal planes.

4.5.2. Compared methods

Phantom I

The main objective when using Phantom I is to evaluate the influence of β on the factor modelling (i.e., by

evaluating the reconstruction error) for images reconstructed with 6 and 50 iterations. It also provides a relevant

comparison of the β-LMM and the regular β-NMF algorithms. Within this experimental setup, β ranges from

0 to 2.4 with a step size of 0.2. Factor TACs are initialized by vertex component analysis (VCA) [ND05b],
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while the factor proportions are initialized either thanks to SUnSAL or randomly, depending on the considered

setting (see paragraph 4.5.4). The stopping criterion ε, defined as the relative decrease of the cost function, is

given in Table 4.2.

Phantom II

For the sake of comparison, Phantom II will be analysed with both the β-SLMM algorithm and its simpler

version, β-LMM, which does not take variability into account. The corresponding algorithms are applied

for β ∈ {0, 1, 2} where factor TACs have been initialized with K-means, while factor proportions have been

initialized either with SUnSAL or randomly, depending on the considered setting (see paragraph 4.5.5). The

variability matrix B is randomly initialized on both settings. The values for ε in Table 4.2 are also valid in this

setting.

4.5.3. Performance measures

Phantom I

In the first round of experiments, the reconstruction error is computed in terms of peak signal-to-noise ratio

(PSNR)

PSNR(X̂) = 10 log10

max(X∗)2

‖X̂−X∗‖2
F

(4.53)

where max(X∗) is the maximum value of the ground-truth image X∗ and X̂ , X(θ̂) is the image recovered,

according to the considered factor model (4.1) with the estimated latent variables θ̂.

Phantom II

In addition to the PSNR, performances on Phantom II have been evaluated w.r.t. each latent variable by

computing the normalized mean square error (NMSE):

NMSE(θ̂i) =
‖θ̂i − θ∗i ‖2

F

‖θ∗i ‖2
F

, (4.54)

where θ∗i and θ̂i are the actual and estimated latent variables, respectively. In particular, the NMSE has been

computed for the following variables: the high-uptake factor proportions A1, the remaining factor proportions

A2:K , the SBF TAC M̃1, the non-specific factor TACs M2:K and finally, when considering β-SLMM, the point-

wise product of A1 and the internal variability B. The estimation performance of A1 ◦ B rather than B is

evaluated because the partial volume effect (due to the PSF) can be propagated either in variable A1 or in B.
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4.5.4. Results on Phantom I

In the first round of simulations, β-NMF and β-LMM algorithms are evaluated in terms of the reconstruction

error (4.53) for several values of β. Two cases are considered. The first one assumes that the factor TACs

previously estimated by VCA are fixed. Thus, the algorithm described in Section 4.4 only updates the factor

proportions, within a convex optimization setting. In this case, the factor proportions have been randomly

initialized. Within the second and non-convex setting, the algorithm estimates both factor TACs and proportions

where the factor proportions have been initialized using SUnSAL.

β-NMF results
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Figure 4.7.: PSNR mean and standard deviation obtained on the 6it (left) and 50it (right) images after factor-
ization with β-NMF with fixed (top) and estimated (bottom) factor TACs over 64 samples.

Fig. 4.7 shows the PSNR mean and corresponding standard deviation obtained on the 6it and 50it images

when analysed with β-NMF. The first line corresponds to the convex estimation setting (i.e., fixed factor TACs)

while the non-convex framework (i.e., estimated factor TACs) is reported in the second line. The 6it images
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show higher PSNRs for the values of β ∈ [0, 0.6] in both convex and non-convex settings. This result indicates a

residual noise that is rather between Gamma and Poisson distributed, which is consistent with previous studies

from the literature [Tey+12; MHO17]. The best performance PSNR = 25dB with fixed M is reached for β = 0,

which significantly outperforms the result obtained with the Euclidean divergence β = 2 commonly adopted in

the literature. Within a non-convex optimization setting, when estimating both factor TACs and proportions,

the maximum PSNR = 22.2dB is obtained for β = 0.6 , followed by β = 0.4. In this case, the difference between

the greatest and smallest PSNRs is of almost 3.5 dB. As non-convex optimization problems are highly sensitive

to the initialization, the convex frameworks shows a better mean performance for all values of β, as well as less

variance among the different realizations.

The reconstruction of the 50it images is clearly less sensitive to the choice of the divergence. Yet, values β = 1

and β = 0.5 in the convex and non-convex settings, respectively, increase the reconstruction PSNR by about

1dB. This is consistent with prior knowledge about the noise statistics: whereas the nature of noise in the 50it

image still presents a reminiscent Poissonian nature, its power is very low due to a higher level of filtering.

β-LMM results

Fig. 4.8 shows the PSNR mean and standard deviation after factorization with β-LMM with fixed (top) and

estimated (bottom) factor TACs. The results look similar as with the β-NMF: the factorization of the 6it image

is optimal for a value of β around 0.5, which is in agreement with the expected Poisson-Gamma nature of the

noise before post-filtering. Factor modelling with β = 0.5 is about 5dB better than the one obtained from the

usual Euclidean divergence relying on Gaussian noise (β = 2). Again, the β parameter has less impact for the

50it image which has been strongly filtered, but the optimal β is still around 1. The results are also similar in

the non-convex setting, but with expected lower performance.

For the 50it image, once again, it is possible to see a more Poisson-like distributed noise with a higher PSNR

around 30dB with β = 1. In this setting, the difference between the highest PSNR and the lowest one for β = 0

is of more than 3dB. The highest PSNR for the non-convex case is reached with β = 1 and is of 32dB. The

highest PSNR is 9dB greater than the lowest one obtained with β = 0 when estimating both TAC factors and

proportions. However, the difference between the PSNR reached with β = 1 and β = 2 is of less than 0.5dB.

All remarks previously made for β-NMF in this case are confirmed by the results of β-LMM.

4.5.5. Results on Phantom II

This paragraph discusses the results of β-SLMM obtained on Phantom II. This experiment considers both the

reconstruction error (in terms of PSNR) and the estimation error for each latent variable (in terms of NMSE).

The factorization with β-SLMM requires the tuning of parameter λ, which controls the sparsity of the internal

variability. In this work, the value of this parameter has been empirically tuned to obtain the best possible
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Figure 4.8.: PSNR mean and standard deviation obtained on the 6it (left) and 50it (right) images after factor-
ization with β-LMM with fixed (top) and estimated (bottom) factor TACs over 64 samples.
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Table 4.2.: Stopping criterion and variability penalization parameters

λ ε
β=0 β=1 β=2 M fixed M estimated

6it 1, 3.10−4 1, 3.10−3 3, 9.10−3 10−5 10−4

50it 6, 8.10−5 6, 8.10−4 2.10−3 10−5 10−4

Table 4.3.: Mean NMSE of A1, A2:K and A1 ◦B and PSNR of reassembled images estimated by β-LMM and
β-SLMM with fixed M over the 64 samples, for different values of β.

β-LMM β-SLMM
β 0 1 2 0 1 2

6i
t

A1 0.500 0.497 0.491 0.273 0.262 0.274
A2:K 0.304 0.282 0.290 0.292 0.267 0.276

A1 ◦B - - - 0.423 0.439 0.492
PSNR 28.325 28.345 28.224 31.905 31.693 29.825

50
it

A1 0.447 0.453 0.452 0.209 0.196 0.204
A2:K 0.262 0.251 0.268 0.255 0.236 0.258

A1 ◦B - - - 0.293 0.305 0.371
PSNR 31.992 32.799 32.180 34.556 36.385 35.178

result for the different values of β and for the two 6it and 50it images. Two settings have been considered. In

the first one, the factor TACs are fixed to their ground-truth value. Thus, the algorithm described in Section

4.4 only updates the factor proportions and the internal variability B. In this case, the factor proportions have

been randomly initialized. In the second setting, the algorithm estimates the factor TACs and proportions, as

well as the internal variability. In this setting, the factor proportions have been initialized using SUnSAL.

Table 4.2 reports the values of λ for each value of β and each image. The parameters are the same for fixed

and estimated M. Figs. 4.9 and 4.11 present the factor proportions resultant from β-SLMM with fixed M for

β = 0, 1, 2 applied to a 6it and a 50it image, respectively. As we can see, with M fixed on the ground-truth, it is

natural to expect good and similar results for all tissues and blood. Moreover, 50it results seem noisier than 6it.

Figs. 4.10 and 4.12 show the variability matrices estimated in the same simulations. A more attentive analysis

shows that β = 0 is able to recover more variability pixels with intensities that are nearer the ground-truth,

while β = 2 recovers the smallest variability area for both 6it and 50it images. These differences are, however,

not easily perceivable. Table 4.3 presents the mean NMSE for A1, A2:K and A1 ◦B as well as the mean PSNR

for the same simulations but considering all samples. Both 6it and 50it images present similar results, with the

smallest NMSE of A1 and A2:K obtained for β = 1 and the best estimation performance of A1 ◦ B obtained

for β = 0. Interestingly, even though the results for 50it seem noisier when looking at the corresponding factor

proportion figure, the table of errors show that the factor proportions are better recovered in 50it than in 6it.

The PSNR values show that, while 6it reaches its best performance for β = 0 closely followed by β = 1, 50it

achieves its highest PSNR for β = 1, followed by β = 2. This result confirms the previous results on phantom I,

which exhibited a Poisson-Gamma noise distribution on the 6it image and a Poisson-Gaussian noise distribution

on the 50it images.
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Figure 4.9.: From left do right: factor proportions from specific gray matter, non-specific gray matter, white
matter and blood for one 6it sample, estimated with fixed M.
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Figure 4.10.: Variability matrices estimated with fixed M on a 6it sample.
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Figure 4.11.: From left do right: factor proportions from specific gray matter, non-specific gray matter, white
matter and blood for one 50it sample, estimated with fixed M.
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Figure 4.12.: Variability matrices estimated with fixed M on a 50it sample.

123



Chapter 4. Factor analysis of dynamic PET images: beyond Gaussian noise

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 4.13.: From left do right: factor proportions from specific gray matter, non-specific gray matter, white
matter and blood for one 6it sample.
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Figure 4.14.: β-SLMM TACs for β = 0, 1, 2 corresponding to the specific binding factor, gray matter, white
matter and blood for one 6it sample.
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Figure 4.15.: Variability matrices estimated on a 6it sample.
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Fig. 4.13 shows the factor proportions estimated from β-SLMM on a 6it image when all variables are

estimated. The quality of this estimation is clearly lower than for the fixed M framework. Moreover, the

K-means clustering is used to provide the initialization. It induces a local minimum that becomes difficult to

overcome due to the high non-convexity of this framework. In Fig. 4.14 we can see the corresponding factors

estimated by the same simulation. While the estimated white matter is close to the ground-truth, the blood

and gray matter TACs are very much different. The difference in the input function can be further explained

by the lower intensities in the corresponding factor proportion ground-truth in Fig. 4.13, in opposition to high

intensities for the same image in the estimated results. Finally, Fig. 4.15 shows the internal variability estimated

in this framework. Once again, the variability of β = 0 and β = 1 are close to each other. However, this time,

β = 1 is able to recover a larger zone, almost matching the ground-truth. Although β = 2 approximately finds

the good localization of the variability, its intensities are very far away from the expected ones, showing the

lower performance between the three values of β.
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Figure 4.16.: From left do right: factor proportions from specific gray matter, non-specific gray matter, white
matter and blood for one 50it sample.

Meanwhile, Fig. 4.16 shows the factor proportion results from β-SLMM applied to 50it when all variables are
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Figure 4.17.: β-SLMM TACs for β = 0, 1, 2 corresponding to the specific binding factor, gray matter, white
matter and blood for one 50it sample.
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Figure 4.18.: Variability matrices estimated on a 50it sample.
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Table 4.4.: Mean NMSE of A1, A2:K , M̃1, M2:K and A1 ◦ B and PSNR of reassembled image estimated by
β-LMM and β-SLMM with M estimated over the 64 samples, for different values of β.

β-LMM β-SLMM
β 0 1 2 0 1 2

6i
t

A1 0.382 0.336 0.327 0.323 0.311 0.313
A2:K 0.629 0.616 0.608 0.634 0.629 0.628
M̃1 0.300 0.343 0.375 0.007 0.006 0.010

M2:K 0.356 0.346 0.306 0.398 0.390 0.380
A1 ◦B - - - 0.475 0.450 0.686
PSNR 27.046 29.445 30.231 31.301 30.279 27.178

50
it

A1 0.482 0.491 0.472 0.441 0.423 0.428
A2:K 1.018 0.842 0.799 1.055 0.886 0.808
M̃1 0.430 0.294 0.332 0.006 0.004 0.003

M2:K 0.716 0.896 0.832 0.707 0.811 1.169
A1 ◦B - - - 0.382 0.307 0.223
PSNR 31.302 27.335 28.891 31.599 31.775 31.080

estimated. 50it images are very noisy even with the post-filtering, thus, the non-convexity of the model presents

a very bad performance in this case. It is specially true for β = 0 that clearly show the worst performance.

β = 2 seems to acquire the best estimation. In Fig. 4.17 we can see the corresponding factors estimated by the

same simulation. The blood TAC is completely misestimated in all cases. It seems to be transferred into the

white matter in the case β = 0. The white matter is also misestimated for all values of β. Even though the

estimated gray matter TACs are far from the ground-truth, they show the most interpretable shape. Finally,

4.15 show the variability estimated in this framework. This time, β = 2 shows the best estimation, while β = 0

presents a low performance.

Table 4.4 shows the mean NMSE for A1, A2:K , M̃1, M2:K and A1 ◦B in the setting where M is estimated

with the other latent variables. Unlike the previous experiments, the results here are less clear since, depending

on the variable, different values of β lead to the best results. This could be explained by the strong non-

convexity of the problem, and possibly identifiability issues since 3 sets of latent variables need to be estimated.

The results in Table 4.4 show that β-LMM with β = 2 performs the best for the estimation of A2:K and M2:K

in the 6it image, and for the estimation of A2:K in the 50it image. All variables related to specific binding, i.e.,

A1, M̃1 and A1 ◦ B, are best estimated by β-SLMM with β = 1. For 50it, due to the high level of filtering

along with the non-convexity of this setting, analysing the results is more difficult. It is, however, possible to

state that a rather Poisson-Gaussian distributed noise yields the overall best mean NMSE of each variable.

Regarding the PSNRs, once again, the best PSNR on the 6it image is reached for β = 0, closely followed

by β = 1. Conversely, on the 50it image, the best performance is reached for β = 1, then followed by β = 0.

As also stated in the non-convex case of Phantom I, the initialization plays a relevant role when several sets of

variables are to be estimated. This explains the differences found for the results with M fixed and estimated.

Indeed, the high non-convexity of the problem with estimated M may sometimes alter the expected response.
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4.6. Experiments with real data

4.6.1. Real data acquisition

A real dynamic PET image of a stroke subject injected with [18F]DPA-714 has been used to evaluate the be-

haviour of β-SLMM in a real setting. The image is the same as the first subject of Chapter 3. The [18F]DPA-714

is a ligand of the 18-kDa translocator protein (TSPO) and has shown its relevance as a biomarker of neuroin-

flammation [Cha+09]. The image of interest has been acquired seven days after the stroke with an Ingenuity

TF64 Tomograph from Philips Medical Systems. The image has been reconstructed using the clinical recon-

struction protocol used for this study. It consists of L = 31 frames with durations that range from 10 seconds

to 5 minutes over a total of 59 minutes. Each frame is composed of 128× 128× 90 voxels of size 2× 2× 2 mm3.

Each voxel TAC is assumed to be a mixture of K = 4 types of elementary TACs: specific binding associated

with neuroinflammation, blood, non-specific gray matter and white matter. A supervised segmentation from

a registered MRI image has provided a ground-truth of the stroke region, containing specific binding. The

variability descriptors V have been learned by PCA from this ground-truth. The cerebrospinal fluid has been

segmented and masked as a 5th class of a K-means clustering that has also provided the initialization of the

factors. Factor proportions have been initialized with the clustering labels found by K-means. For β-SLMM,

the nominal SBF has been fixed as the empirical average of TACs from the stroke region with area-under-the-

curve (AUC) between the 5th and 10th percentile. Note that the reconstruction settings typically used on the

Ingenuity TF64 tomograph for this kind of imaging protocol produce PET images that are characterized by a

relatively high level of smoothness, inducing spatial noise correlation.

4.6.2. Results

Figure 4.19 shows, from left to right, the factor proportions for gray matter, white matter and blood estimated

by β-SLMM for β ∈ {0, 1, 2} where the stopping criterion ε was defined as 5× 10−4 and the hyperparameter λ

was set to 1. Visual analysis suggests that all the algorithms provide a good estimation of both gray and white

matters. The results for β = 1 and β = 2 are very similar and it is difficult to state which one achieves the best

performance. This is in agreement with the synthetic results previously presented, that showed very similar

estimation errors in case of more post-reconstruction filtering. The result for β = 0 is quite different from the

others with more contrasted factor proportions. The sagittal view of the blood in the 3rd column has been

taken from the center of the brain. The proposed approach correctly identifies the superior sagittal sinus vein

of the brain for all tested β values. However, some clear differences can be observed and the blood is also more

easily identified for β = 0 than for the other values of β. Fig. 4.21 confirms these findings, showing TACs that

are very similar for β ∈ {1, 2} while the TACs for β = 0 are always a bit apart from the others. The expected

initial pick characterizing the blood TAC is more easily identified with β = 1 and β = 2. On the other hand,
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for β = 0 the TAC associated with the non-specific gray matter has a lower AUC than the two others, further

differentiating from the specific binding TAC.
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Figure 4.19.: From left do right: factor proportions from non-specific gray matter, white matter and blood
obtained with β-SLMM for β = 0, 1, 2.

Fig. 4.20 shows a manual segmentation of the stroke zone along with the corresponding factor proportions and

variability matrices estimated with SLMM. The results obtained with β = 0 show a more correct identification

of the stroke zone. Results with β = 1, 2 are very similar, they better detect the thalamus, known for having

higher binding of neuroinflammation. Nevertheless, they also contain the non-specific gray matter in the factor

proportion related to specific binding. All values of β show variability matrices that are correctly located.

Moreover, they present an expected magnitude around 30, as roughly estimated from the segmented stroke

region. Besides, some differences may be highlighted in the variability matrix estimation. Indeed, β = 0 shows

a slightly weaker magnitude of the variability. However, it identifies some variability in a region not located

by the others, as shown in the last row. As no variability is expected in this region, adjusting the sparsity

parameter λ so as to make it disappear would also decrease the intensities of the variability matrix in the other

regions and so the weaker result for β = 0 is not due to a wrong parameter tuning. The results for β ∈ {1, 2}
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are very similar but β = 2 shows a stronger intensity, while β = 1 shows a more spread result, even presenting

the influence of the thalamus in the 2nd row, similarly to β = 0.

4.7. Conclusion

This chapter studied the role of the data-fidelity term when conducting factor analysis of dynamic PET images.

We focused on the beta-divergence, for which the NMF and LMM decompositions were already proposed in other

applicative contexts. We introduced a new algorithm to conduct analysis, allowing for variable specific-binding

factor, termed β-SLMM.

For all those three models, experimental results showed the interest of using the β-divergence in place of

the standard least-square distance. The factor and proportion estimations were indeed more accurate when

computed with a suitable value of β. The improvement was shown to be higher when the image had not

suffered too strong post-processing corrections. The β-divergence thus appeared to be a general and flexible

framework for analysing different kinds of dynamic PET images.
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Figure 4.20.: From top to bottom: MRI ground truth of the stroke zone, factor proportions from specific gray
matter and variability matrices obtained with β-SLMM for β = 0, 1, 2.
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Figure 4.21.: TACs corresponding to the specific binding factor, gray matter, white matter and blood.
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5.1. Introduction

Chapter 3 introduced a factor analysis model that handles nonlinearities in specific binding (SB) kinetics with

a spatially indexed variability. The previous model tried to extract a factor for the blood input function, a

factor for each non-specific binding (nSB) tissue of the region under study and assigned a factor for high-uptake

tissues explicitly, in which the variability was applied. However, the kinetics of SB tissues are often related

to that of nSB tissues, as shown by the reference tissue input models presented in Section 1.6.2. Moreover,

when abnormalities are present, the kinetics of a tissue that is non-specific under healthy circumstances will be

nonlinearly modified in the presence of the labelled molecule, though it is still the same tissue or organ.
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Therefore, we decide to study SB as an instance of nSB kinetics. The main idea is to perform factor analysis

on nSB tissues and blood while allowing for nonlinearities on each nSB tissue that will describe SB regions.

Nonlinear unmixing is a wide branch of study in hyperspectral imaging [Dob+14b; Dob+14a]. As discussed in

Section 2.5, a large family of nonlinear models can be described as

xn = Man + µ(M,an,bn), (5.1)

where the observed pixel xn is composed by a linear contribution, as in LMM, and an additive nonlinear term

µ(·) that often depends on the factors matrix M, the factor proportion coefficients an and internal nonlinearities

coefficients bn that adjust the amount of nonlinearity in each pixel.

Moreover, we want these nonlinearities to directly provide an interpretable result in terms of quantification,

representing different levels of binding. To do so, we came across the parametric pharmacokinetic models

[GGC01] discussed in Section 1.6.2. They are very useful in providing physiologically meaningful estimates on

the analysis of PET data. Conventional methods used for kinetic parameter estimation often define a ROI

and then perform estimation based on the ROI average [LH96; Ber+10]. These approaches neglect any spatial

variations in the tracer kinetics within the ROI, e.g., due to partial volume effects and tissue heterogeneity.

To avoid this homogeneous ROI assumption, some studies performed a voxel-by-voxel estimation of kinetic

parameters and, in an attempt to overcome the low SNR, applied additional penalizations to stabilize the

estimation [Kam+05; HZ98].

As presented in (1.13) from Section 1.6.2, Gunn et al. [Gun+02] use the following model to describe each

target voxel TAC:

xn(bn,α) =

(

(1 + b0n)δ(t) +

V∑

i=1

bine
−αit

)

∗mR, (5.2)

where, as in Section 1.6.2, t = [t1, · · · , tL]T are the times of acquisition, which are previously known, ∗ stands

for temporal convolution, V is the number of compartments, δ(t) is the impulse function and eθ is a point-wise

exponentiation. Moreover, xn is the target tissue in the nth voxel, mR is the reference tissue TAC chosen to

describe the studied ROI and bn = [b1n, . . . , bV n] and α = [α1, . . . , αV ] describe the kinetics of the tracer.

Recall that this formulation neglects the blood volume in both target and reference tissues. In [Gun+02], the

basis functions defined by α are pre-calculated and an undetermined system of equations is defined to fit to the

data with a technique named DEPICT. As this is an ill-posed problem, an additional sparsity penalization is

imposed to the basis coefficients b. This sparsity assumption is based on the fact that data are expected to be

described by just a few compartments. Peng et al. [Pen+08] investigated the use of sparse Bayesian learning

for parametric estimation further allowing the weights of the basis functions to be nonnegative to fit reference

tissue models.
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Nevertheless, these approaches still assume that there is only one kinetic process occurring per voxel, while,

due to the low spatial resolution, the partial volume effect and biological heterogeneity, the resulting signal

is often a mixture of multiple kinetic processes. This is also the rationale behind the factor analysis models

presented in the previous chapters. To overcome this limitation, Lin et al. [Lin+14] proposed a two-stage

algorithm that benefits from the prior information provided by parametric imaging models on the physics and

physiology of metabolism while introducing partial volume with a linear combination of the different kinetics.

The first step consists in a dictionary-based estimation of the nonlinear kinetics of each considered tissue and

the second step computes the tissue fractions and the linear terms of the tissue kinetic models. The model

in [Lin+14] considers that each image voxel is described by a linear mixing of K classes, including blood and

assuming that the blood input function mK is known. Each tissue factor TAC mk(κ), for k = 1, · · · ,K − 1 is

described by a three-tissue compartment model [Hua+80] with kinetic parameters κ. The final formulation for

each voxel can be written as

xn =
K−1∑

k=1

aknmk(κ) + aKnmK , (5.3)

following both the nonnegative and sum-to-one constraints in (2.8) and (2.13). A similar approach is also

proposed in [Che+11]. Based on the same idea, Klein et al. [Kle+10] tries to describe each factor TAC with an

input function-based kinetic model and to jointly estimate this input function as well as the model parameters

for each factor.

However, many experimental results indicate that the use of commonly accepted multi-compartment models

often leads to considerably biased and high-variance estimates of the pharmacokinetics parameters, due to the

high number of parameters to be estimated [PH01; Pad03; Buc02]. Moreover, they often oversimplify the kinetics

of several tracers, especially when they present tissue heterogeneity [DeL+09]. As an attempt at providing a

more accurate description of the kinetics of the tracer while benefiting from the physiological description of

parametric imaging, the approach proposed in this chapter relies on a parametrically nonlinear factor analysis.

Differently from [Lin+14], factor TACs from nSB tissues will be directly estimated in the model and, based on

the data-driven reference input model presented in Chapter 1, will be used as reference tissue TACs for the

recovery of the kinetic parameters from SB. The idea of linking factor analysis to compartmental modeling has

already been investigated by some works from the PET literature. In particular, Nijran and Barber [NB85]

proposed to constrain the space of possible solutions of factor analysis with the space of theoretical solutions

given by compartmental models. Szabo et al. [Sza+93] used factor analysis to differentiate SB and nSB TACs

and determine the number of compartments needed to model the kinetics of [11C] pyrilamine in the brain. El

Fakhri et al. [El +05; El +09] used a previous factor analysis step to extract the input functions that were used

to compute the TACs in each voxel with a two-compartment model. The work proposed in this Chapter goes

one step further by jointly conducting factor and kinetic analysis.
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This Chapter is organized as follows. The proposed analysis model is presented in Section 5.2. The optimiza-

tion problem is formulated in Section 5.3. Section 5.4 presents the corresponding PALM algorithm. Synthetic

simulations are presented in Section 5.5 and real image results are reported in Section 5.6. Section 5.7 concludes

the chapter.

5.2. Proposed model

The model proposed in this chapter combines the model in (5.2) with the generalization of (5.3), yielding a

parametrically nonlinear mixing model (PNMM)

xn =
K−1∑

k=1

akn(mk +
V∑

i=1

bkinmk ∗ e−αkit + bk0nmk) + aKnmK , (5.4)

where bkin receives an additional index k since we will consider one coefficient for each reference tissue TAC

as well. This model is expected to be more robust than the previous ones, as it accounts for possible partial

volume effects induced by mixing between tissues and blood, while benefiting from the physical considerations

of parametric imaging. It also directly estimates the global kinetics of one tissue, thus not being completely

dependent of kinetic parameters. This can offer a more precise quantification as it automatically analyses

different nSB tissues separately. It may also allow the tissue affected by SB to be identified, through the

computation of the binding potential (BP) within each nSB tissue.

In matrix form, we may write

Y = MA +
V∑

i=0

Qi(Ã ◦Bi) + R (5.5)

where M is a L×K matrix containing the factor TACs, A is a K×N matrix composed of the factor proportion

vectors an = [a1,n, . . . , aK,n]
T

, “◦” is the Hadamard point-wise product and R = [r1, . . . , rN ]
T

is an L × N

matrix accounting for noise and mismodelling. Moreover, we define Ã = [A1, · · · ,AK−1], i.e., eliminating the

blood factor proportion and

Qi =

[

m1 ∗ e−α1it · · · mK−1 ∗ e−α(K−1)it

]

, for i ∈ {0, . . . , V }. (5.6)

Furthermore, as in [Che+11], we replace the convolution operator by a Toeplitz matrix of the vectors e−αkit,

i.e.,

Eki = Tp(e−αkit), i ∈ {0, . . . , V } (5.7)

where Tp is the operator that transforms a vector into a symmetric Toeplitz matrix whose dimensions are the
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length of the vector. Thus, matrix Qi can be written as

Qi =

[

E1im1 · · · E(K−1)imK−1

]

, for i ∈ {0, . . . , V }. (5.8)

Note that αk0 = 0 ∀k ∈ {1, . . . ,K − 1} and therefore Ek0 = IL and Q0 = [m1, · · · ,mK−1]. Also, the matrices

of internal coefficients related to the basis functions are given by

Bi =












b1i1 b1i2 · · · b1iN

b2i1 b2i2 · · · b2iN

...
...

...
...

b(K−1)i1 b(K−1)i2 · · · b(K−1)iN












, for i ∈ {0, . . . , V }, (5.9)

with B = {B0, . . . ,BV }.

Besides, additional constraints regarding these sets of parameters are assumed. As in the previous chapters,

non-negativity (2.8) and sum-to-one (2.13) are assumed for the factors and corresponding proportions to reflect

physical considerations.

As in [Gun+02], we define maximum and minimum values for the elements of the vector αi =

[

α1i · · · α(K−1)i

]

to reduce the indeterminacy of the basis elements solution while allowing a suitable coverage of the kinetic spec-

trum. Thus, we define

αi ∈ R, ∀i ∈ {1, . . . , V },

R = {z ∈ R
K−1 : αimin

� zk � αimax
}.

(5.10)

The same choice is adopted for the internal weights as

Bi ∈ B, ∀i ∈ {0, . . . , V },

B = {z ∈ R
(K−1)×N : bimin � zkn � bimax}.

(5.11)

5.3. Derivation of the objective function

The PNMM (5.5) and constraints (2.8), (2.13),(5.10) and (5.11) are combined to formulate a constrained

optimization problem. We thereby define a cost function to estimate the matrices M, A and α and the set

B containing the matrices Bi. For simplification purposes, we consider the noise to be Gaussian and the

data-fitting term is defined as the Frobenius norm ‖ · ‖2
F of the difference between the dynamic PET image Y

and the proposed data modelling X. This formulation could be generalized for other noise distributions with

the β-divergence studied in the previous chapter. Since the problem is ill-posed and non-convex, additional

regularizers become essential. In this chapter, we propose to define penalization functions Φ, Ψ and Ω to reflect

the available a priori knowledge on M, A and B, respectively. The optimization problem is then defined as
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(M∗,A∗,B∗,α∗) ∈ arg min
M,A,B,α

{

J (M,A,B,α) s.t. (2.8),(2.13),(5.10),(5.11)
}

(5.12)

with

J (M,A,B,α) =
1

2

∥
∥
∥
∥
∥
Y−MA−

∑

i=0

Qi(Ã ◦Bi)

∥
∥
∥
∥
∥

2

F

+ ηΦ(A) + βΨ(M) + λΩ(B) (5.13)

where the parameters η, β and λ control the trade-off between the data fitting term and the penalties Φ(A),

Ψ(M) and Ω(B). The factors and factor proportions penalizations are given by (3.12) and (3.11), respectively.

The penalization function for the variable B is separable, leading to

Ω(B) =
V∑

i=0

Ωi(Bi), (5.14)

with Ωi(Bi) the spatial sparsity-inducing group lasso regularizer, as defined in (3.15).

5.4. A PALM algorithm

As in Chapter 3, our optimization problem (5.12) is nonconvex and nonsmooth. Therefore, we will apply the

same minimization strategy detailed in Section 3.4. This means that we will iteratively update each variable

A, M, B and α while all the others are fixed, finally converging to a local critical point A∗, M∗, B∗ and α∗.

The resulting unmixing algorithm, whose main steps are described in the following paragraphs, is summarized

in Algo. 7.

5.4.1. Optimization with respect to M

A direct application of [BST13] under the constraints defined by (3.2) leads to the following updating rule

Mh+1 = P+

(

Mh − γ

Lh
M

∇MJ (Mh,Ah,Bh,αh)

)

(5.15)

where P+(·) is the projector onto the nonnegative set {X|X � 0L,R}.

For k = (1, · · · ,K − 1), the required gradient is written1

∇mk
J (mk,Ak,Wk,Ek) = −(Ỹ−mkAk)AT

k −
V∑

i=0

ET
kiỸWT

k,i +
V∑

i=0

(Eki + ET
ki)mkWk,iAT

k

+
1

2

V∑

i=0

V∑

j=0

(ET
kiEkj + (ET

kiEkj)T )(mkWk,jWT
k,i) + β(M̃− M̃0)

(5.16)

1Note that the iteration index has been omitted in the following definitions of the gradients to lighten the notations.
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Algorithm 7: PNMM unmixing: global algorithm

Data: Y
Input: A0, M0, B0, α0

1 h← 0
2 while stopping criterion not satisfied do

3 Mh+1 ← P+

(

Mh − γ

Lh
M

∇MJ (Mh,Ah,Bh,αh)

)

4 Ah+1 ← PAR

(

Ah − γ

Lh
A

∇AJ (Mh+1,Ah,Bh,αh)

)

5 for i← 0 to V do

6 Bh+1
i ← prox λ

Lh
Bi

‖.‖1

(

PB
(

Bh
i − γ

Lh
Bi

∇Bi
J (Mh+1,Ah+1,Bh,αh)

))

7 for i← 1 to V do
8 for k ← 1 to K do

9 αh+1
ki ← PR

(

αh
ki − γ

Lh
αki

∇αki
J (Mh+1,Ah+1,Bh+1,αh)

)

10 h← h+ 1

11 A← Ah+1

12 M←Mh+1

13 B← Bh+1

14 α← αh+1

Result: A, M, B, α

with Ỹ = Y −∑j 6=k

(

mjAj −
∑V

i=0 EjimjWji

)

and Wi = (Ã ◦ Bi). Moreover, Lmk
is a bound on the

Lipschitz constant of ∇M̃J (mk,Ak,Wk,Ek), defined as

Lmk
= ‖AkAT

k ‖+

V∑

i=0

‖Eki + ET
ki‖‖Wk,iAT

k ‖+
V∑

i=0

V∑

j=0

‖ET
kiEkj‖‖Wk,jWT

k,i‖+ β (5.17)

where the spectral norm
∥
∥X
∥
∥ = σmax(X) is the largest singular value of X and

∥
∥X
∥
∥
∞

= max1≤i≤m

∑n
j=1 |xij |

is the sum of the absolute values of the matrix row entries. It is important to note that this value may be not

optimal and a lower value can be found to accelerate the updates.

For k = K, the gradient writes

∇mK
J (mK ,AK) = −(Ỹ−mKAK)AT

K + β(mK −m0
K)

with Ỹ = Y− M̃Ã−∑V
i=0 Qi(Ã ◦Bi). The Lipschitz constant is

LmK
= ‖AKAT

K‖+ β.
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5.4.2. Optimization with respect to A

Similarly to paragraph 5.4.1, the abundance update is defined as the following

Ah+1 = PAR

(

Ah − γ

Lh
A

∇AJ (Mh+1,Ah,Bh,αh)

)

, (5.18)

where PAR
(·) is the projection on the set AR defined by the abundance constraints (3.3), which can be computed

with efficient algorithms, see, e.g., [Con15].

For Ã, the gradient can be computed as

∇ÃJ (M̃, Ã,Q,B) = −M̃T (Ỹ− M̃Ã−
V∑

i=0

Qi(Ã ◦Bi))

−
V∑

i=0

(

(QT
i (Ỹ− M̃Ã−

V∑

j=0

Qj(Ã ◦Bj))) ◦Bi

)

+ ηÃSST

(5.19)

with Ỹ = Y−mKAK and M̃ = [m1, · · · ,mK−1]. Moreover, LÃ is the Lipschitz constant of ∇ÃJ (M̃, Ã,Q,B)

LÃ = ‖M̃T M̃‖‖+
V∑

i=0

(

2‖M̃T Qi‖‖Bi‖+ ‖Bi‖
V∑

j=0

‖QT
i Qj‖‖Bj‖

)

+ η
∥
∥SST

∥
∥. (5.20)

For AK , the gradient writes

∇AK
J (mK ,AK) = −mT

K(Ỹ−mKAK) + ηAKSST

with Ỹ = Y− M̃Ã−∑V
i=0 Qi(Ã ◦Bi). The Lipschitz constant is

LAK
= ‖mT

KmK‖+ η
∥
∥SST

∥
∥.

5.4.3. Optimization with respect to Bi

The updating rule for the basis function coefficients, under the constraints defined by (5.11), can be written as

Bh+1
i = prox λ

Lh
Bi

‖.‖1

(

PB
(

Bh
i −

γ

Lh
Bi

∇Bi
J (Mh+1,Ah+1,Bh,αh)

))

,

where the proximal mapping operator is the group soft-thresholding operator defined in (3.21). Also, PB is the

projection into the set B defined in (5.11). Indeed, the proximal map of the sum of an indicator function and

the ℓ1 norm is exactly the composition of the proximal maps of both individual functions, following the same
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principle showed in [BST13]. The gradient writes

∇Bi
J (Ã,B,Q) = −

(

(QT
i (Ỹ−Qi(Ã ◦Bi))) ◦ Ã

)

(5.21)

with Ỹ = Y−MA−∑j 6=i Qj(Ã ◦Bj). Moreover, LBi
is the Lipschitz constant of ∇Bi

J (Ã,B,Q)

LBi
= ‖QT

i Qi‖‖Ã‖2. (5.22)

5.4.4. Optimization with respect to αki

Finally, the updating rule for the basis function exponential coefficients, under the constraints in (5.10), is

αh+1
ki = PR

(

αh
ki −

γ

Lh
αki

∇αki
J (Mh+1,Ah+1,Bh+1,αh)

)

. (5.23)

Also, PR is the projection into the set R defined in (5.10). The gradient writes

∇αki
J (αki) = Wk,i(ỸT (Tp(t) ◦Eki)−

1

2
WT

k,im
T
k ((Tp(t) ◦Eki)

T Eki + ET
ki(Tp(t) ◦Eki)))mk,

with Ỹ = Y−MA−∑j 6=i QjWj −
∑

u6=k Euimuwui. The Lipschitz constant is

Lαki
= ‖Wk,i‖

(

‖ − ỸT +
1

2
WT

k,im
T
k ET

ki‖+
3

2
‖WT

k,im
T
k ‖‖Eki‖

)

‖Eki‖‖Tp(t)‖2‖mk‖. (5.24)

5.5. Evaluation on synthetic data

5.5.1. Synthetic data generation

To illustrate the accuracy of our algorithm, experiments are conducted on synthetic data for which the ground

truth of the main parameters of interest (i.e., factor TACs, factor proportion maps, internal coefficients maps

and exponential coefficients) is known. Thus, experimentations are conducted on one 128× 128× 64 synthetic

image acquired in L = 20 times of acquisition ranging from 1 to 5 minutes in a total period of 60 minutes. In

this image, each voxel is constructed as a combination of K = 3 pure classes representative of the brain, which

is the organ of interest in the present work: pure nSB gray matter, pure nSB white matter and pure blood or

veins. Moreover, SB tissues are subjected to nonlinearities affecting the pure nSB tissues, although they do not

represent new factors. As in Section 3.5.1, the image is generated from the Zubal high resolution dynamic PET

numerical phantom with TACs generated from real PET images acquired with the Siemens HRRT and injected

with 11C-PE2I. The overall generation process is presented in Fig. 5.1 and described in what follows:
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Generate anomaly
for white matter

Parameters
generation

α1, · · · ,αV

Dynamic PET phantom

N-FINDR

m1, ...,mK

SUnSAL

A1,A2, ...,AK
SB gray

matter map

Generate bi-
nary maps

Merge SB+nSB
gray matters

B0, · · · ,BVGenerate image

Figure 5.1.: Synthetic image generation scheme. The red ellipses constitute the ground truth data used for
quantitative assessment.
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• The dynamic PET phantom showed in Fig. 3.6 has been first linearly unmixed using the N-FINDR

[Win99] and SUnSAL [BF10] algorithms with an initial number of classes of 4, accounting for SB and nSB

gray matter, white matter and blood. The TAC factor for SB gray matter found by N-FINDR is discarded

while the other factors are selected to constitute the ground-truth non-specific factor TACs m1, ...,mK .

The factor proportions found by SUnSAL are used to generate binary maps after a thresholding. Factors

are shown in Fig. 5.2 (right).

• The binary maps of SB and nSB gray matter generated from the SUnSAL output are merged to yield

a general gray matter factor proportion. The white matter and blood binary maps are directly used as

factor proportions. All factor proportions are shown in Fig. 5.2 (left).
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Figure 5.2.: Ground truth of factors (right) and corresponding proportions(left), extracted by SUnSAL/N-findr

• The SB gray matter binary map is used to provide the location of the weight coefficients of nonlinearity in
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the gray matter. An anomaly binary map is generated inside the white matter factor proportion to provide

the location of SB in white matter. Even though this is not necessarily a clinically relevant localization

of the dopamine transporter, this area of SB in white matter is included for experimentation purposes.

• The weights and exponential coefficients describing the nonlinearities are generated from the two-tissue

FRTM detailed in Section 1.6.2 and described by Eqs. (1.6) and (1.9). Moreover, two levels of binding

are generated for each tissue by altering R1 and keeping the other parameters constant. For the SB gray

matter, we used the following parameters: R1 = [1, 1.7], k2 = 0.2, k3 = 0.3 and k4 = 0.1. For the SB white

matter, we use the following parameters: R1 = [1, 1.6], k2 = 0.2, k3 = 0.2 and k4 = 0.1. The choice of the

two-tissue FRTM is based on a study by Pinborg et al. [Pin+02], that compared the one and two-tissue

compartment models for human [11C]-PE2I injection in SPECT data. The two-tissue compartment model

presented a better performance. In the same line, DeLorenzo et al. [DeL+09] investigated the use of one-

and two-tissue compartment models in several different ROIs of the brain, in particular the cerebellum.

All the studied regions and their subregions fit better with the two-tissue compartment model.

• Parameter generation directly yields the exponential coefficients α1, · · · ,αV , while the output of the

weights is applied to the binary maps of SB previously defined for the gray and white matters accordingly

to produce the final maps. BP maps w.r.t. the free fractions of the radioligand in tissue (fT ), i.e., BP.fT

computed with (1.14) are shown in Fig. 5.3 for the gray and white matters. The final TACs generated

using these parameters are shown in red along with the elementary TACs in blue in Fig. 5.4.

0

1

2

0

1

2

Figure 5.3.: Binding potential maps w.r.t. the free fraction of radioligand per tissue.

As in Chapter 3, after the phantom generation process, a PSF defined as a space-invariant and isotropic

Gaussian filter with FWHM= 4.4mm is applied to the output image. Finally, as in [SDG00], the measurements

are corrupted by a Gaussian noise whose variance is 25% of the pixel value. The resulting image is shown in

Fig. 5.5. For fair comparison, the ground-truth for the factor proportions A and the basis function coefficients

B corresponding to nonlinearities are computed by conducting the proposed algorithm with fixed factors and
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20 40 60
0

10

20

30

Figure 5.4.: Factors (blue) and TACs generated from the 2-tissue reference model.

PNMM SLMM
η 0.500 0.500
β 0.100 0.100
λ 0.500 0.500
ε 0.010 0.001

Table 5.1.: Parameters

exponential coefficients in an image with no noise affected by the PSF. This allows partial volume effect to be

taken into account.
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Figure 5.5.: 15th time frame of 3D-generated image with PSF and a 15dB noise: from left to right, transversal,
sagittal and coronal planes.

5.5.2. Compared methods

The presented method is compared against the basis pursuit method in [Gun+02], referred to as DEPICT, and

the SLMM-unmixing proposed in Chapter 3.
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DEPICT

This method describes the data as

Y = QB + R, (5.25)

where, in this case, Q is a L × P matrix containing the P basis functions to be considered and B is a P ×N

matrix containing its corresponding coefficients. Including a sparsity regularization given by the ℓ2,1 norm, the

optimization problem to be solved is

(B∗) ∈ arg min
B

{1

2
‖Y−QB‖2

F + λ‖B‖2,1

}

. (5.26)

In this work, DEPICT is implemented with proximal gradient steps for comparison purposes. As in [Gun+02],

the basis pursuit denoising approach is implemented with 30 basis functions logarithmically spaced between 0.03

and 6 min−1 and an additional basis function to represent the offset. The number of basis functions is fixed

to 31 as a trade-off between precision and computation time. For comparison purposes, DEPICT is conducted

with two different reference TACs: first the gray, then the white matter factors that are extracted as described

in the following.

SLMM-unmixing

To appreciate the interest of extracting a physically interpretable quantity, the proposed algorithm is also

compared with the previous method presented in Chapter 3. The penalizations chosen for M and A are the

same, as the one for matrix B from SLMM and the set of matrices B from PNMM. Thus, we consider the same

regularization parameters (see Table 5.1) to allow fair comparison. The stopping criterion ε is set to 10−3. The

variability dictionary is learned from a predefined high-uptake region of the image, comprising both SB gray and

white matters. Factors and their corresponding proportions are initialized as described in the next paragraph

for SLMM. Matrix B is initialized with zeros and we allow the method to run 50 iterations with fixed M so as

to improve the initializations of A and B, while preventing factors from merging.

PNMM-unmixing (proposed approach)

Factor proportions for our method are initialized with the binary maps coming from the generation process.

In a real image, this is equivalent to using an MRI segmentation to produce the maps of tissues. Regarding

the initialization of the factors, the TACs from each tissue are organized from the lower area-under the curve

(AUC) TAC to the higher. The first 10% AUC TACs are discarded and we average the TACs whose AUC

are the 10% to 20% lowest ones. Then, the basis functions and their corresponding coefficients are computed

with an instance of our algorithm, where factors and proportion maps are not updated. As in [Gun+02], the
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exponential coefficients for our method will be limited with αmin = dc, where dc is the decay constant for [11C]

and dc = 0.034 min−1 and αmax = 6 min−1. Limits are also imposed for the nonlinearity coefficients. We know

that b0n = R1n
− 1 cannot be nonnegative in SB tissues when nSB tissue are used as a reference. Moreover,

the maximum value of R1n
is generally not greater than 1.7. Thus, we choose b0min

= 0 and b0max
= 0.7. The

limits for the nonlinearity coefficients can be chosen by analyzing the relations of the known kinetic parameters

of the tracer under study and the weights defined by Eq. (1.9). In our study, we found to be sufficient to choose

b1min
= −0.2, b1max

= 0, b2min
= 0 and b2max

= 0.15. Table 5.1 presents the regularization parameters used.

As in Chapter 3, the performance of the method is measured by the NMSE defined by (3.24).

5.5.3. Results and discussion

Fig. 5.6 shows, from top to bottom: the ground-truth factor proportion, the initial segmentation and the

final SLMM and PNMM results. The first column shows the gray matter, the second column shows the white

matter and the third column presents the blood factor proportion. We can clearly see that both SLMM and

PNMM techniques are able to include the partial volume effect into the factor proportions, as expected. Note

that the SB gray and white matters have disappeared from the corresponding SLMM factor proportion, since

the algorithm deals with nSB and SB as different tissues. Moreover, in Fig. 5.7 showing the corresponding

factors, visual comparison suggests that PNMM improves the initial factor estimation with final global TACs

that are very near the ground-truth. The SLMM result is a bit far from the ground-truth, since this simulation

corresponds to a situation that is distinct from the initial assumptions of SLMM. These results are further

confirmed by the quantitative evaluation of Table 5.2 that shows the NMSE of the variables of interest as

chosen during the initialization and after conducting SLMM and PNMM unmixing. The SLMM result for A is

not entirely negative, as it is a characteristic of the algorithm to identify the SB regions with an exclusive factor.

The PNMM results for both A and M are remarkably improved. This seems to be an interesting outcome,

since it suggests that PNMM is able to improve the results with this initialization setting that can be easily

replicated in real image applications.

Fig. 5.8 shows the binding potential w.r.t. the free fractions in tissue BP.fT for the gray matter (left) and

white matter (right). The first two rows present the ground-truth and initial BP.fT and the last row presents

the PNMM estimation of BP.fT in the PNMM formulation, where there are two BP.fT to be estimated in the

same setting: one for the gray matter (BP.fG) and one for the white matter (BP.fW). It is hard to determine

by visual comparison whether the binding potential is improved from initialization by the PNMM-unmixing.

Table 5.2 presents the quantitative results of the NMSE for the matrix R1 that corresponds to the value of

R1n = 1 + b0n for each voxel, where b0n includes the coefficient for both non-specific tissues, and the NMSE

for the matrix BP.fT with the binding potential in each voxel for each tissue. Quantitative results suggest

that BP.fT is better estimated by conducting the whole PNMM-unmixing, which would be natural since the
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Figure 5.6.: Factor proportion maps obtained from the synthetic image corresponding to the gray matter, white
matter and blood, from left to right. The first 2 columns show a transaxial view while the last one
shows a sagittal view. All images are in the same scale [0, 1].
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Figure 5.7.: Factor TACs estimated from the synthetic image
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Figure 5.8.: From top to bottom: ground-truth, initial and PNMM estimations of BP.fT . The first column
corresponds to the gray matter and the second to the white matter. Note that for DEPICT BP.fT

was estimated for the whole image using the respective tissue TAC as reference.
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Figure 5.9.: From left to right: SLMM factor proportion related to the SBF, SLMM variability result and
DEPICT BP.fT estimation using the white and gray matters as reference TACs, respectively.

Initial PNMM SLMM
A 0.279 0.049 0.339
M 0.147 0.082 0.181
R1 0.946 0.303 -

BP.fT 0.182 0.123 -

Table 5.2.: NMSE of A, M and BP as chosen in initialization and after conducting PNMM-unmixing

estimations of the factors and factor proportions are also improved. Moreover, the ratio of delivery of the tracer

R1 seems to show a much greater improvement.

Fig. 5.9 reports, from left to right, the SLMM results for the factor proportion and the internal variability and

the DEPICT results taking the white matter as reference TAC (3rd column) and the gray matter as reference

TAC (4th column). SLMM results are not equivalent to the binding potential or any other physical quantity of

clinical use. Still, it is possible to see that SB tissues have been identified and the missing regions from gray

and white matter factor proportions of Fig. 5.6 are relocated in the SB factor proportion. The evaluation of R1

and BP.fT is not done for the DEPICT result, since the ground-truths are not equivalent. Visual inspection

suggests that DEPICT is able to correctly locate the specific binding tissues with similar intensities of BP.fT .

The gray matter result presents some binding in the white matter tissue, showing the potential bias that could

be expected when the whole image is represented by one reference TAC, while considering distinct reference

TACs in distinct non-specific binding tissues is more accurate. Even though the overall result may often be

sufficient for clinical applications, given the challenge of interpreting dynamic PET images, they seem to be less

accurate than the method herein proposed, in terms of both BP intensities and location. Moreover, DEPICT

does not allow the user to differentiate the tissue that is affected, for instance, by an abnormality, while our

method may provide this detailed information.

Note that if the factor proportions are initialized with an MRI segmentation and fixed, PNMM works as a

“local reference model (LRM)”, where each non-specific tissue of the image is treated as a different region-of-

interest (ROI) and is therefore allowed to have its own reference TAC. This is equivalent of conducting DEPICT

in each segmented tissue, but allowing the global reference TAC to be improved in each step. This setting is

also able to provide the tissues affected by specific binding but does not take into account the partial volume
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effect.

5.6. Evaluation on real data

5.6.1. PET data settings

The different methods have been applied to one dynamic PET image acquired with an Ingenuity TOF Camera

from Philips Medical Systems of a stroke subject injected with [18F]DPA-714, seven days after the stroke. The

image is the same as for Chapter 4. Recall that the PET acquisitions were reconstructed into a 128× 128× 90-

volume with L = 31 time frames. The PET scan images acquisition times ranged from 10 seconds to 5 minutes

over a 59 minutes period. The voxel size was of 2× 2× 2 mm3.

Factor proportions are initialized with binary maps mainly constituted from a manually labelled MRI seg-

mentation and improved with a K-means result for the voxels that were not labelled in the MRI segmentation.

Factors are initialized as in the synthetic case.

The stroke region is segmented on this registered MRI image. It is used to define a set of voxels used to learn

the variability descriptors V by PCA with Nv = 1 for SLMM-unmixing. The nominal SBF for SLMM is fixed

as the empirical average of the corresponding TACs with AUC comprised between the 10th and 20th percentile.

Matrix B is initialized with zeros and, as before, we allow the method to run 50 iterations with fixed M.

For PNMM, the basis functions and their corresponding coefficients are initialized as in the synthetic case, with

an instance of our algorithm, where factors and proportion maps are not updated. The exponential coefficients

are limited with αmin = 0.0063 min−1 and αmax = 6 min−1. The nonlinearity coefficients are limited with

bimin
= −1 and bimax

= 1 ∀i.

5.6.2. Results and discussion

Fig. 5.10 presents, from top to bottom, the initial binary factor proportion map and the maps estimated by

SLMM and PNMM. As before, both algorithms consider partial volume in their estimation. Fig. 5.11 shows

the initial and estimated factor TACs. The initial gray and white matter factor TACs are very similar. The

blood factors estimated by both SLMM and PNMM are very close, showing a high pick at the beginning and

reducing its intensities in the other acquisition times. SLMM estimates gray and white matter TACs that are

lower than initialization. This may be because the SBF, that is fixed, is very near the gray matter factor TAC,

inducing the gray matter factor to be smaller. On the other hand, PNMM seems to be able to differentiate the

gray and white matter factor TACs in both intensity and shape, showing a promising result.

Fig. 5.12 shows a 3D visualization of the results corresponding to the gray matter. From top to bottom, the

stroke segmented with an MRI, the initial gray matter factor proportion AG, the PNMM gray matter factor
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Figure 5.10.: Factor proportion maps obtained from the real image corresponding to the gray matter, white
matter and blood, from left to right. The first 2 columns show a transaxial view while the last
one shows a sagittal view. All images are in the same scale [0, 1].

0 2000 4000
0

2000

4000

6000

8000

0 2000 4000
0

2000

4000

6000

8000

0 2000 4000
0

5000

10000

15000

Figure 5.11.: Factor TACs estimated from the real image
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proportion AG, the DEPICT BP.fG result using the initial gray matter TAC as reference and the PNMM

BP.fG result corresponding to the gray matter. The factor proportions are presented together with this result,

so the reader can see the difference between the DEPICT result and the PNMM result. While DEPICT provides

the binding potential for the entire image, the PNMM result shows the SB gray matter voxels. This is a very

particular outcome, that was previously shown to work in the synthetic case and that seems to be also useful in

the real case, showing the potential interest of the method. Moreover, DEPICT presents other brain regions not

expected to be affected by SB with a relevant binding potential, while PNMM is more visually accurate. Fig.

5.13 shows the corresponding results for the white matter, complementary of the results in Fig. 5.12 (except for

DEPICT). From top to bottom, the stroke segmented with an MRI, the initial white matter factor proportion

AW, the PNMM white matter factor proportion AW, the DEPICT BP.fW result using the initial white matter

TAC as reference and the PNMM BP.fW result corresponding to the white matter. We can see that the SB

regions missing in the PNMM binding potential for the gray matter can be found in this complementary result

for the white matter. It is also interesting to note that the DEPICT result using the white matter TAC presents

stronger intensities, which is natural since this TAC has lower AUC. These DEPICT results also reinforces our

theory that using the same TAC of reference for the whole image may potentially bias the result. Finally, Fig.

5.14 shows the SLMM ASB factor proportion and internal variability B results in this setting. While the ASB

result presents a lot of nSB gray matter, it highlights a large area affected by SB, which is a relevant outcome.

The variability B, that has no physically meaningful unit, shows a small area of SB, which is complementary

to the information brought with the corresponding factor proportion. Although the result is informative, it is

not complete in terms of clinical assessment, in opposition to the other two methods studied.

5.7. Conclusion

This chapter presented a prospective work that combines nonlinear unmixing and parametric imaging to yield

a clinically interpretable result for factor analysis. To this end, this work was based on reference tissue input

models with reversible kinetics to produce a physically meaningful nonlinearity affecting the TACs of non-

specific binding tissues. Moreover, it considered an aspect generally neglected in parametric imaging methods:

the mixed kinetics that can be present in each voxel due to partial volume, PSF and biological heterogeneity.

The resulting method looks promising, since it manages to recover the binding potential related to the different

responses of the tissues to tracer kinetics on simulations. It also provides the tissue affected by abnormalities.

The potential interest of this novel technique was evaluated on synthetic and real data. A deeper evaluation of

the method with real images for which arterial sampling is available remains to be studied.

155



Chapter 5. Towards parametric nonlinear unmixing of dynamic PET images

0

0.5

1

0

0.5

1

0

0.5

1

0

20

40

0

10

20

30

0

0.5

1

0

0.5

1

0

0.5

1

0

20

40

0

10

20

30

0

0.5

1

0

0.5

1

0

0.5

1

0

20

40

0

10

20

30

Figure 5.12.: From top to bottom: stroke region, initial gray matter factor proportion, gray matter factor
proportion estimated by PNMM, DEPICT BP.fT using the gray matter TAC as reference and
PNMM BP.fT for the gray matter.

156



Chapter 5. Towards parametric nonlinear unmixing of dynamic PET images

0

0.5

1

0

0.5

1

0

0.5

1

0

20

40

0

10

20

30

0

0.5

1

0

0.5

1

0

0.5

1

0

20

40

0

10

20

30

0

0.5

1

0

0.5

1

0

0.5

1

0

20

40

0

10

20

30

Figure 5.13.: From top to bottom: stroke region, initial white matter factor proportion, white matter factor
proportion estimated by PNMM, DEPICT BP.fT using the white matter TAC as reference and
PNMM BP.fT for the white matter.
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Conclusions and perspectives

Context

Factor analysis is an efficient unsupervised learning technique to extract physically meaningful global patterns

from multivariate data. In dynamic positron emission tomography, it has shown its value as a non-invasive tool

to identify reference tissue global TACs and arterial plasma or blood input functions, that are generally required

by quantification techniques based on kinetic parameter estimation. Conventional factor analysis techniques

generally assume spatial homogeneity on the distribution of radiotracer concentration in each factor. However,

variations on perfusion or labelled molecule concentration in high-uptake regions may alter the TAC pattern

in each voxel. Moreover, general factor analysis techniques assume the noise distribution of data to follow a

standard probability density function, such as Gaussian or Poisson. Even though the count-rates that constitute

the elementary PET data present a Poissonian nature, the noise in the final signal is hard to characterize, due

to the several effects that corrupt the initial signal in acquisition and reconstruction.

To address these issues, the present manuscript first investigated a new explicit mixture model to handle

spatial specific binding variability on the corresponding factor TAC. Based on this model, a second approach

generalized the optimization problem to deal with the undetermined nature of the PET image noise. Finally, a

nonlinear unmixing model was also proposed to explicitly relate specific and non-specific binding tissues. The

study conducted in this manuscript allowed the following conclusions to be drawn.

Conclusions

Part I introduced the global context of this manuscript, which capitalizes on the hyperspectral unmixing

literature to develop solutions for factor analysis in dynamic PET applications.

– Chapter 1 discussed the properties that led PET imaging to become an ubiquitous tool for the diagnosis

and treatment evaluation of several diseases. It also reviewed the main effects that deteriorate the quality of

the final data, making PET image analysis a challenging task. This chapter then addressed the challenges

of quantification that justify the need for a non-invasive estimation of global TACs, naturally leading to

factor analysis solutions.

161



Conclusions and perspectives

– Chapter 2 summarized the key concepts of blind source separation applied to multi-band imaging. After

briefly discussing the state-of-the-art non-parametric methods generally used in clinical research to conduct

a non-invasive extraction of reference tissue TACs or blood input function, it introduced factor analysis

as an unsupervised learning alternative. General solutions historically applied to handle the BSS problem

were then discussed. In particular, a literature review on factor analysis in dynamic PET was presented.

To provide the fundamental basis of the manuscript, this chapter also detailed hyperspectral unmixing

with its nonlinear and spectral-variability instances.

Part II described our contributions to factor analysis techniques adapted to PET imaging, as detailed in the

following.

– Chapter 3 introduced an unmixing approach that explicitly models the spatial variability in high-uptake

tissues, referred to as specific binding linear mixing model (SLMM). The variability was described by

a dictionary of eigenvectors that have been previously learned with PCA and its corresponding map of

coefficients. Due to the high number of variables to be estimated, we resorted to an algorithm that has

proven convergence to a local optimum when the optimization problem is non-convex, namely proximal

alternating linearized minimization (PALM). The results obtained on real data have notably exemplified

the relevance of the proposed model to handle images presenting an abnormality. In practice, the pro-

posed approach provided physically interpretable results on the estimation of non-specific binding tissues

and an accurate estimation of specific binding ones. In particular, the high level of detail captured by

the variability spatial map may improve diagnosis, since it may potentially describe different levels of

abnormalities in the tissues. Moreover, as an unsupervised learning technique, the method has shown to

be very flexible. To be transposed to another setting, it only required a previous knowledge on the number

of expected kinetic classes in a ROI, an initial guess of the factors and proportions and TACs containing

specific binding kinetics to conduct a dictionary learning for the variability.

– Chapter 4 investigated the use of the β-divergence in PET imaging factor analysis. To this end, three

algorithms were studied: β-NMF, β-LMM and β-SLMM. An algorithm based on multiplicative updates

was derived for the SLMM model. Exhaustive simulations were conducted on two different phantoms

using an analytical approach to generate the final synthetic image with realistic count-rates properties.

The first phantom was used to evaluate the denoising potential of each value of β for images with different

iterations and various levels of postfiltering. No variability was considered in this first framework. Results

showed that changing the value of β can indeed alter the quality of the estimation and an optimal value

can be found for different numbers of iterations. When a lot of postfiltering was applied, even though

slight improvements can be made by tuning the value of β, it was less relevant. Raw data was then shown

to benefit from the use of the β-divergence. The second phantom was used to evaluate the estimation
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of variables in the framework where variability is taken into account, further validating the results found

in the previous setting. Moreover, real data results were also evaluated on an image that was subjected

to postfiltering. Visual inspection showed some differences between the results for different values of β,

highlighting the relevance of considering the β-divergence for PET applications.

– Chapter 5 illustrated the interest of combining factor analysis and parametric imaging in dynamic PET.

In brain imaging, even though gray and white matter factor TACs are very correlated, they are not

exactly the same. This is also true for different tissues and organs in other ROI of the body. Our method

allowed high-uptake voxels located in different non-specific binding tissues to be described by different

reference TACs. Moreover, it took into account the partial volume effect in neighboring classes that is

neglected in most applications. Even though the final problem is extremely non-convex, results showed

that the proposed method is able to improve the initial guess based on a previous segmentation and

directly provides the binding potential w.r.t. the free fractions in tissue.

Perspectives and future work

The present study has raised several research perspectives summarized in the following lines.

Model developments

The SLMM considered in Chapter 3 provides a measure of specific binding through the variability spatial map.

However, these internal coefficients are not directly associated to a physically interpretable quantities, as the

volume of distribution or the binding potential. Chapter 5 presents a formulation that yields the measure of

binding potential w.r.t. the free fractions in the tissue, which is inherent to reference tissue input models with

reversible target tissue kinetics. Other models could be studied to generalize the method for other parametric

imaging settings. As such, the design of physically inspired models can be further investigated to provide more

informative results in the sense of clinical analysis.

Moreover, none of the models proposed in this manuscript consider the temporally varying statistical uncer-

tainty of the measures. This deficiency could be corrected with a previous whitening step (see Appendix A.2),

as discussed in Chapter 3, or by directly adding the inverse of the covariance matrix to the model, herein called

W, as in [Gun+02]. For the SLMM with no convolution operator, it yields

W
1
2 Y ≈W

1
2 MA + W

1
2

[

E1A ◦VB
]

.
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With the same approach, the nonlinear model in Chapter 5 would become

W
1
2 Y ≈W

1
2 MA + W

1
2

V∑

i=0

Qi(Ã ◦Bi).

The PSF in Chapter 3 is approximated as a spatially invariant isotropic Gaussian filter, while the spatial

resolution is non-stationary in the FOV [MAI12]. Even though we obtained good results for real data with this

rough approximation, improvements can be made with a pre-estimation of the PSF [Ash+17; Ira+16] or even

a joint estimation of the PSF within the model.

Furthermore, Chapters 4 and 5 do not include the convolutional operator introduced in Chapter 3 within

the model because it would significantly increase the computational complexity of the resulting algorithms.

In Chapter 4, the convolutional operator was also neglected because it complicated the computation of the

update steps. However, this induces ambiguity between the results of the internal coefficients related to the

variability or nonlinearity and the corresponding factor proportion. Considering the convolution operator into

the formulation of Chapter 5 would yield

Y ≈MAH +
V∑

i=0

Qi(Ã ◦Bi)H. (5.27)

This issue can be further investigated in future developments with alternative algorithms or tools to include

this deconvolution step, while maintaining a reasonable computational complexity.

Computational aspects

Hyperparameter selection. The factor analysis problems formulated in Chapters 3 and 5 depend on

several hyperparameters that have been empirically adjusted by testing several values on a predefined grid. In

future works, the use of automatic estimation strategies within the algorithms developed in this manuscript

could be envisaged. An alternative would be to apply approaches based on the Stein’s unbiased risk estimate

[Ste81; Del+14]. The methods developed in [PBF15] could also be considered. They assign appropriate priors

to the hyperparameters (which are generally gamma) and then estimate them along with the other parameters

of interest. The final optimization problem is then minimized by an alternating optimization algorithm, such

as block coordinate descent [Wri15]. Alternatively, a two-step strategy could be adopted, as in [Fre+17].

Computational improvements. To increase the computational speed of the methods, an accelerated PALM

approach can be envisaged [LL15]. To this end, adaptive steps inspired by the method devised by Nesterov

[Nes83] could be implemented, as done in [BT09b; BT09a]. Another approach to allow a more efficient estimation

of the variance in terms of convergence speed would rely on variable metrics [CPR14; CPR16]. Moreover, the
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most expensive step in terms of processing time is the convolution of Chapter 3 and it is particularly penalizing

since it is done several times. This is why this step was discarded for the subsequent studies. A way to try to

alleviate this issue would be to propose an efficient approach to compute these convolutions.

Application-oriented developments

The β-divergence was applied in Chapter 4 into a factor analysis setting. Results showed that the quality of

estimation can indeed be improved by tuning β. Several configuration parameters on reconstruction may alter

the nature of the final noise, in particular the number of reconstruction iterations. This aspect should be further

investigated by evaluating images with several different values of reconstruction iterations in order to find a

general rule for tuning β. Distinct reconstruction algorithms will also produce dissimilar results and thus the

study would have to be done for each setting. Moreover, this study opens the discussion on the application

of the β-divergence in any optimization problems related to PET imaging. This means that an interesting

perspective would be to apply this measure for different steps of the PET imaging pipeline. A potential direct

application would be the derivation of a generic reconstruction algorithm.

Another aspect that could be investigated is the direct application of the methods developed in this manuscript

into the sinogram domain. The idea would be to combine analysis along with reconstruction in the same problem

formulation. This could be especially interesting since the nature of the noise in the count-rates is easier to

recognize. On the other hand, the identification of tissues or high-uptake voxels for initialization would be a

much more challenging task.

Moreover, future works should evaluate the impact of the method on clinical applications, in particular

by conducting quantification with the use of non-anatomical reference curves to assess the performance of the

method in comparison with standard techniques such as SVCA. Comparison of the performance of the proposed

developments with state-of-the-art methods using similar priors should also be considered, as well as evaluation

of the robustness and relevance of the proposed approaches on patient scans with a well-defined quantification

output for which arterial sampling is available. The quality of segmentation based on the resulting spatial maps

and the correction of partial volume effect also remains to be evaluated. In particular, the PNMM proposed in

Chapter 5 should be validated with additional experiments on real images.
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Appendix to chapter 3

A.1. Solutions to the optimization sub-problems

A.1.1. Resolution with respect to A

Using the basic definition of a differentiable function

〈

∇af(A), h
〉

= f(A+ U)− f(A)− o(‖U‖)

for

J (A) =
1

2
‖Y−MAH− (E1A ◦VB)H‖2

F

it yields

f(A + U) =
1

2
‖Y−MAH− (E1A ◦VB)H‖2

F

︸ ︷︷ ︸

J (A)

−
〈

Y−MAH− (E1A ◦VB)H|MUH + (E1U ◦VB)H
〉

+
1

2
‖MUH + (E1U ◦VB)H‖2

F

︸ ︷︷ ︸

o‖U‖

so the trace becomes

Tr(∇AJ (A)T U) = Tr(−(Y−MAH− (E1A ◦VB)H
︸ ︷︷ ︸

DA

)T (MUH + (E1U ◦VB)H))

knowing that

Tr(ABC) = Tr(BCA) = Tr(CAB)

Tr((AT ◦BT )C) = Tr(AT (B ◦ C))

then

Tr(∇AJ (A)T U) = Tr(−HDT
AMU) + Tr((−HDT

A ◦ (VB)T )E1U)
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and

∇AJ (A) = −MT DAHT −ET
1 (DAHT ◦ (VB))

The Lipschitz constant computation is based in the following inequalities:

‖AB‖ ≤ ‖A‖‖B‖

‖AB‖φ ≤ ‖A‖∞‖B‖φ from Holder’s inequality

‖A ◦B‖ ≤ ‖A‖‖B‖[Hua11]

so the chosen value for the Lipschitz constant of the factor proportion is

LA = ‖∇2
aJ (A)‖ = ‖MT M‖‖H‖2 + 2‖E1‖‖M‖‖VB‖‖H‖2 + ‖E1‖2‖VB‖2‖H‖2

A.1.2. Resolution with respect to M

‖Y−MAH−∆‖2
F = ‖Y‖2

F − 2
〈

Y|MAH + ∆
〉

+ ‖MAH + ∆‖2
F

The only terms depending on M are

‖MAH‖2
F + 2

〈

∆−Y|MAH
〉

= Tr(AHHT AT MT M) + 2Tr(MAH(∆−Y)T )

So

∇MJ (M) = MAHHT AT + AH(∆−Y)T

and the Lipschitz constant of the factors is

LM = ‖∇2
MJ (M)‖ = ‖AHHT AT ‖

A.1.3. Resolution with respect to B

For

J (B) =
1

2
‖Y−MAH− (E1A ◦VB)H‖2

F

we will have
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J (B+U) =
1

2
‖Y−MAH− (E1A ◦VB)H‖2

F

︸ ︷︷ ︸

J (B)

−
〈

Y−MAH−(E1A◦VB)H|(E1A◦VU)H
〉 1

2
‖(E1A ◦VU)H‖2

F

︸ ︷︷ ︸

o‖U‖

so the trace becomes

Tr(∇BJ (B)T U) = −Tr((Y−MAH− (E1A ◦VB)H)T ((E1A ◦VU)H))

= −Tr(((H(Y−MAH− (E1A ◦VB)H)T ) ◦ (E1A))VU)

and

∇BJ (B) = V T ((E1A) ◦ (−Y + MAH + ∆)HT )

The Lipchitz constant is

LB = ‖∇2
BJ (B)‖ =

∥
∥E1A

∥
∥

2

∞

∥
∥V
∥
∥

2∥
∥H
∥
∥

2
(A.1)

A.2. The whitening transform

Whitening is a linear transformation that converts a multivariate Gaussian N -dimensional random vector Y

with positive definite covariance matrix ΣY and mean vector µY into a new random vector

IW = WY (A.2)

whose covariance matrix ΣI is an identity, i.e., the components of IW are uncorrelated and its variance equals

to 1. The whitening matrix is denoted by W.

The whitening procedure is a generalization of the standardization procedure, with which a decorrelation step

is combined. These transformations are often associated to a mean-centering to ensure EI = 0 but this step is

not essential to acquire a white covariance matrix.

The first step on whitening is decorrelation of the vector components. The aim is to extract a diagonal

covariance matrix. In order to do this, a first assumption is that ΣY is positive definite and that X is zero-

mean, what can be ensured with a previous step of subtracting the mean. Then we need the eigendecomposition

of the covariance matrix which may be known or can be estimated from data. The covariance matrix writes

ΣY = E[YYT ] = ΦY ΛY Φ−1
Y = ΦY Λ

1
2

Y Λ
1
2

Y Φ−1
Y (A.3)

where ΦY is the matrix of eigenvectors φi of ΣY and ΛY is the corresponding diagonal matrix of eigenvalues
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λi. Additionally, as the columns of Φ are othonormal

Φ−1
Y = ΦT

Y (A.4)

Let ID be a random vector with decorrelated multivariates Gaussian distribution defined as

ID = WDY (A.5)

where WD is the decorrelatin tranformation. The covariance matrix of ID can be approximated as

E[IDIT
D] ≃ IDIT

D

N
(A.6)

≃ WDYYT WT
D

N
(A.7)

≃WDE[YYT ]WT
D (A.8)

≃WDΦY ΛY ΦT
Y WT

D (A.9)

So we reach decorrelation by defining WD = ΦT
Y , and the covariance becomes

E[IDIT
D] ≃ ΦT

Y ΦY ΛY ΦT
Y ΦY (A.10)

≃ ΛY (A.11)

and the components of ID are uncorrelated since the covariance matrix is diagonal.

Then we proceed to standardization which is equivalent to scale the different components of the vector so

that they have a unit variance. The aim is to turn the already diagonal covariance matrix into an identity. The

whitened matrix is defined as

IW = WSΦT
Y Y (A.12)

where WS is the standardization operator. The diagonal matrix ΛY is symmetric and

Λ−1
Y ΛY = I (A.13)

Therefore, considering WS = Λ
− 1

2

Y we will have the following covariance matrix
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E[IW IT
W ] ≃ IW IT

W

N
(A.14)

≃ Λ
− 1

2

Y ΦT
Y ΦY ΛY ΦT

Y ΦY Λ
− 1

2

Y (A.15)

≃ Λ
− 1

2

Y ΛY Λ
− 1

2

Y (A.16)

≃ Λ
− 1

2

Y Λ
1
2

Y Λ
1
2

Y Λ
− 1

2

Y (A.17)

≃ I (A.18)

The total whitening matrix is W = ΦT
Y Λ
− 1

2

Y

A.2.1. Noise whitening

In dynamic PET, different frames of time presented different statistical noises. Therefore, we studied the

application of noise whitening is an alternative for standardization of the frames. The total Y signal writes

Y = X + N (A.19)

The whitening matrix is considered

W = ΦT
N Λ
− 1

2

N (A.20)

where ΦN is the matrix of eigenvectors of the noise covariance matrixΣN and ΛN is the corresponding diagonal

matrix of eigenvalues. The whitened matrix is defined as

IW = ΦT
N Λ
− 1

2

N (X + N) (A.21)

The covariance matrix of the origial signal Y is

E[YYT ] = E[XXT ] + E[NNT ] (A.22)

and the covariance matrix of IW becomes

E[IW IT
W ] = ΦT

N Λ
− 1

2

N E[XXT ]Λ
− 1

2

N ΦN + ΦT
N Λ
− 1

2

N E[NNT ]Λ
− 1

2

N ΦN (A.23)

= ΦT
N Λ
− 1

2

N E[XXT ]Λ
− 1

2

N ΦN + I (A.24)
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In this case, whitening distortes the covariance matrix of the signal in order to reduce the relevance of highly

noised frames. In our case, this turns unmixing into a difficult task since the early frames are important to

detect blood, the middle frames are extremely important to differentiate between white and gray matter and

the latter frames hold information on the specific binding region and its variability. To simulate the validity

of whitening before unmixing, we could synthetically induce extra noise in several different frame locations to

subsequently whiten the data. In dynamic PET image, a previous whitening preprocessing step may not be

ideal as, along with the noise, some of the true signal is also extracted from the highly noised frames.

A.3. An ADMM approach

A.3.1. Problem formulation

Previous to our PALM approach, we studied to use an ADMM approach to solve the problem in Chapter 3.

In this formulation, a depreciated version of SLMM (3.7) with no deconvolution step was combined to the

constraints in (3.2) and (3.3). An appropriate cost function is required to estimate the parameters M, A, B.

Assuming the signal is corrupted by a zero-mean white Gaussian noise, we also define the data fitting term as

the Frobenius norm of the difference between the acquisitions Y and the reconstructed data MA + ∆. Since

the problem is ill-posed, additional penalization terms are needed. In this formulation, we propose to define

penalization functions Φ and Ψ to reflect the available a priori knowledge on M and A. As a result, the

optimization problem is expressed as

(M∗,A∗,B∗) ∈ arg min
M,A,B

{

J (M,A,B) s.t. (3.2) and (3.3)
}

(A.25)

with

J (M,A,B) =
1

2
‖Y−MA−∆‖2

F + αΦ(A) + γΨ(M) (A.26)

where the penalization parameters α and γ control de trade-off between the data fitting term ‖Y−MA−∆‖2
F

and the penalties Φ(A) and Ψ(M).

In addition, we assume that the penalization functions are separable, leading to

Φ(A) =
N∑

n=1

φ(an) (A.27)

Ψ(M) =
L∑

l=1

ψ(m̃ℓ) (A.28)

where m̃ℓ denotes the lth row of M and φ and ψ are non-negative differentiable convex functions. The variability

penalization of Chapter 3 is a nonsmooth function and could not be transposed to this setting.
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Abundance penalization

The abundance spatial smoothness penalization is expressed in matrix form as

Φ(A) =
1

2
‖AH‖2

F (A.29)

where H is a matrix computing the differences between the abundances of a given pixel and those of its 4 nearest

neighbors.

Endmember penalization

Classical penalizations found in the literature consist of constraining the size of the simplex whose vertices are

the endmember signatures. Under the pure pixel and linear mixture assumptions, the data points are enclosed

in a (K-1)-simplex whose vertices are the endmembers. Let T be the projection of M on the space spanned by

the K-1 principal components of Y. The expression of the volume of this subspace is

V(T) =
1

(K − 1)!

∣
∣
∣
∣
det

(
T
1T

K

)∣
∣
∣
∣

(A.30)

To ensure the differentiability of the penalization with respect to T, we propose to consider the following

penalty

Ψ(M) =
1

2
V2(T) (A.31)

Algorithm 8: SLMM-unmixing: global algorithm

Data: Y,A(0),M(0),B(0)

Result: A,M,B
1 begin
2 k ← 1
3 while stopping criterium not satisfied do
4 A(k) ← arg min

A

J (M(k−1),A,B(k−1))

5 M(k) ← arg min
M

J (M,A(k),B(k−1))

6 B(k) ← arg min
B

J (M(k),A(k),B)

7 k ← k + 1

8 A← A(k)

9 M←M(k)

10 B← B(k)
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A.4. An ADMM-based algorithm

A.4.1. ADMM: general principle

Given f : Rp → R
+, g ∈ R

m → R
+, A ∈ R

n×p and B ∈ R
n×m, consider the general optimization problem

minimize
x,z

f(x) + g(z)

subject to Ax+ Bz = c

(A.32)

The scaled augmented Lagrangian associated with this problem can be written

Lρ(x, z,u) = f(x) + g(z) +
ρ

2
‖Ax + Bz− c + u‖2

2

where ρ > 0. Denote as x(k+1),z(k+1) and u(k+1) the primal avariables and dual variable at iteration k + 1 of

the algorithm, respectively

x(k+1) ∈ arg min
x

Lρ(x, z(k),u(k))

z(k+1) ∈ arg min
z

Lρ(x(k+1), z,u(k))

u(k+1) = u(k) + Ax(k+1) + Bz(k+1) − c

The ADMM consists in successively minimizing Lρ with respect to x,z and u. A classical stopping criterion

involves the primal and dual residuals at iteration k + 1: the procedure is iterated until

∥
∥
∥r(k)

∥
∥
∥

2
≤ εpri and

∥
∥
∥s(k)

∥
∥
∥

2
≤ εdual (A.33)

where the primal and dual residuals at iteration k+1 are respectively given by

r(k+1) = Ax(k+1) + Bz(k+1) − c

s(k+1) = ρAT B(z(k+1) − z(k))

(A.34)

and

εpri =
√
pεabs + εrel max

{∥
∥
∥Ax(k)

∥
∥
∥

2

2
,
∥
∥
∥Bz(k)

∥
∥
∥

2

2
, ‖c‖2

2

}

εdual =
√
nεabs + εrel

∥
∥
∥AT y(k)‖2

2

(A.35)

Finally, the parameter ρ can be adjusted using the rule
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ρ(k+1) =







τ incrρ(k) if ‖r(k)‖2 > µ‖s(k)‖2

ρ(k)/τdecr if ‖s(k)‖2 > µ‖r(k)‖2

ρ(k) otherwise

(A.36)

A.4.2. Optimization with respect to A

Optimizing the cost function J with respect to A under the constraints (3.3) is equivalent to solving the

following problems:

a∗n = arg min
an







1

2
‖yn − [m̃1, ..., m̄j + vnBn, ..., m̃k]an‖2

2 + αΦ(an)

s.t. an � 0K , aT
n 1K = 1







(A.37)

After introducing the splitting variable w(A)
n ∈ R

K for n = 1, ..., N such that

(
IK

1T
K

)

︸ ︷︷ ︸

Q

an +

(−IK

0T
K

)

︸ ︷︷ ︸

R

wn =

(
0K

1

)

︸ ︷︷ ︸
s

(A.38)

The resulting scaled augmented Lagrangian is expressed as

L
µ

(A)
n

(an,w(A)
n ,λ(A)

n ) =
1

2
‖yn − [m̃1, ..., m̄j + vnBn, ..., m̃k]an‖2

2 +
µ

(A)
n

2
‖Qan + Rw(A)

n − s + λ(A)
n ‖2

2

+ αΦ(an) + IS+
K,1

(w(A)
n )

(A.39)

Algorithm 9: ADMM optimization w.r.t. A

Data: Y,A(0),M(0),εpri,εdual,τ
incr,τdecr,µ

A(0)
n

Result: A
1 begin
2 for n = 1 to N do
3 k ← 1

4 λ(A)(0)
n = 0

5 w(A)(0)
n = 0

6 while stopping criterium not satisfied do
7 a(k)

n ← arg min
an

L
µ

(A)(k−1)
n

(an,w
(A)(k−1)
n ,λ(A)(k−1)

n )

8 w(A)(k)
n ← arg min

w
(A)
n

L
µ

(A)(k−1)
n

(a(k)
n ,w(A)

n ,λ(A)(k−1)
n )

9 λ(A)(k)
n ← λ(A)(k−1)

n + Qa(k)
n + Rw(A)(k)

n − s
10 k ← k + 1

11 an ← a(k)
n
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A.4.3. Optimization with respect to M

Optimizing the cost function J with respect to M under the constraints (3.3) is equivalent to solving the

following problems:

m̃∗ℓ = arg min
m̃∗

ℓ







1

2
‖ỹℓ − m̃ℓA−∆ℓ‖2

2 + γΨ(m̃ℓ)

s.t. m̃ℓ � 0K for n = 1, .., N







(A.40)

After introducing the splitting variable W(M)
ℓ ∈ R

K for n = 1, ..., N such that

m̃ℓ −W(M)
ℓ = 0K (A.41)

The resulting scaled augmented Lagrangian is expressed as

L
µ

(M)

ℓ

(m̃ℓ,W
(M)
ℓ ,Λ(M)

ℓ ) =
1

2
‖ỹℓ − m̃ℓA−∆ℓ‖2

2 +
µ

(M)
ℓ

2
‖m̃ℓ−W(M)

ℓ + Λ(M)
ℓ ‖2

F

+ γΨ(m̃ℓ) + IS+
1,K

(W(M)
ℓ )

(A.42)

with µ
(M)
ℓ > 0.

Algorithm 10: ADMM optimization w.r.t. M

Data: Y,A(0),M(0),εpri,εdual,τ
incr,τdecr,µ

M(0)
ℓ

Result: M
1 begin
2 for l = 1 to L do
3 k ← 1

4 Λ(M)(0)
ℓ = 0

5 W(M)(0)
ℓ = 0

6 while stopping criterium not satisfied do
7 m̃(k)

ℓ ← arg min
m̃ℓ

L
µ

(M)(k−1)

ℓ

(m̃ℓ,W
(M)(k−1)
ℓ ,Λ(M)(k−1)

ℓ )

8 W(M)(k)
ℓ ← arg min

W
(M)

ℓ

L
µ

(M)(k−1)

ℓ

(m̃(k)
ℓ ,W(M)

ℓ ,Λ(M)(k−1)
ℓ )

9 Λ(M)(k)
ℓ ← Λ(M)(k−1)

ℓ + m̃(k)
ℓ −W(M)(k)

ℓ

10 k ← k + 1

11 m̃ℓ ← m̃(k)
ℓ
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A.4.4. Optimization with respect to B

The optimization w.r.t. variable B is, in this setting, much more simple than the others since no constraints or

penalizations are considered. It is equivalent to solving

b∗n = arg min
Bn

{
1

2
‖yn −Man − 1L×1ajnVBn‖2

2

}

. (A.43)

It directly gives

b∗n =
VTǫp
ajnINv

(A.44)

A.4.5. Constraints and penalization terms

Abundance penalization: spatial smoothness

The abundance smoothness is expressed in matrix form as

Φ(A) =
1

2
‖AH‖2

F

where H denotes the matrix computing the differences between the abundances of a given pixel and the

respective abundance of its 4 neighbors

H =
[

H←|H→|H↑|H↓
]

∈ R
N×4N

where N = W ×H, W is the width and H is the height of the image matrix. For h = 1, ...,H, we introduce

Hh =
















0 −1 0 · · · 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . 1 −1

0 · · · · · · 0 1
















∈ R
W×W

H̃h =
















1 0 · · · · · · 0

−1 1
. . .

...

0
. . .

. . .
. . .

...

...
. . .

. . . 1 0

0 · · · 0 −1 0
















∈ R
W×W
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Hence

H← = Diag(H1, ...,HH) and H→ = Diag(H̃1, ..., H̃H)

In addition

H↑ = [0N,W ,H1
↑] and H↓ = [H1

↓,0N,W ]

with

H̃1
↑ =



















W

x








y

−1 0 · · · 0

. . .
. . .

...

1
. . . 0

N −W

x








y

0
. . . −1

...
. . .

. . .

0 · · · 0 1



















∈ R
N×(N−W )

H1
↓ = H1

↑

As we know:

‖AH‖2
F = (

3∑

k=0

h2
n,n+kN )‖an‖2

2 + 2(
N∑

i=1
i6=n

3∑

k=0

hn,n+kNhi,n+kN aT
i )an +

N∑

i=1
i6=n

N∑

j=1
j 6=n

hj,n+kNhi,n+kN aT
i aT

j

So the only terms in 1
2‖AH‖2

F related to an are

Φ(an) =
1

2
(

3∑

k=0

h2
n,n+kN )

︸ ︷︷ ︸

cAn

‖an‖2
2 + (

N∑

i=1
i6=n

3∑

k=0

hn,n+kNhi,n+kN aT
i )

︸ ︷︷ ︸

cT
n

an (A.45)

Endmember penalization

Volume and endmember positivity constraint The volume penalization is expressed using T, hence the

need to find a condition equivalent to the positivity of M. We will first analyze the general expression of the

volume penalization with respect to t̃(k), and then give a condition on T ensuring the positivity of M.

• Volume The determinant of a matrix X ∈ R
K×K can be developed along its ith row yielding:

det(X) =
∑

j

(−1)i+jxijdet(Xij) = x̃ifi

with

fi = [(−1)i+jdet(Xij)]Kj=1 ∈ R
K
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Consequently for k = 1, ...,K − 1

det

(
T
1T

K

)

= t̃kfk (A.46)

Using previous developments

Ψ(̃tk) =
1

2(K − 1)!2
(̃tkfk)2 (A.47)

• Positivity constraint on M Using the following notation

Y = UYproj + Ȳ1, Ȳ1 = [ȳ|...|ȳ] ∈ R
L×N

M = UT + Ȳ2, Ȳ2 = [ȳ|...|ȳ] ∈ R
L×K

where Ȳ is the mean of Y, Ȳ1 is this mean replied N times and Ȳ2 is this mean replied K times. The

same way T is the projection of M in the space spanned by the K-1 principal components of Y, Yproj is

the equivalent projection of Y. Thus, one has

mℓr =
∑

j

uℓjtjr + ȳℓ =
∑

j 6=k

uℓjtjr + uℓktkr + ȳℓ

The positivity constraint for mℓr can then be expressed as

tkr ≥ −
ȳℓ +

∑

j 6=k uℓjtjr

uℓk

Introducing the two sets of integers

U+
k = {ℓ|uℓk>0}

U−k = {ℓ|uℓk<0}

The previous equation implies that tkr ∈ [t−kr, t
+
kr], with

t−kr = max
ℓ∈U+

k

(

−
ȳℓ +

∑

j 6=k uℓjtjr

uℓk

)

t+kr = min
ℓ∈U−

k

(

−
ȳℓ +

∑

j 6=k uℓjtjr

uℓk

) (A.48)

We introduce the functions gk defined by

gk : R1×K → R
2×K

x̃ 7→






x̃− t̃−k
−x̃ + t̃+k




 (A.49)
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where

t̃+
k = [t+k1, ..., t

+
kK ]

t̃−k = [t−k1, ..., t
−
kK ]

Finally, the positivity constraint of the endmembers can be written

m̃ℓ � 0T
K ∀ℓ, ∀n

⇔ gk(t̃k) � 02,K ∀k = 1, ...,K − 1

(A.50)

A.4.6. Solutions to the optimization sub-problems

Resolution with respect to A

The scaled augmented Lagrangian becomes

L
µ

(A)
n

(

an,w(A)
n ,λ(A)

n

)

=
1

2
‖yn − [m̃1, ..., m̄j + Bnvn, ..., m̃k]an‖2

2 +
µ

(A)
n

2

∥
∥
∥Qan + Rw(A)

n − s + λ(A)
n

∥
∥
∥

2

2

+
α

2

(

cAn‖an‖2
2 + 2cT

n an

)

+ IS+
K,1

(w(A)
n )

To find the optimum value of a∗n, we consider

∂L
µ

(A)
n

(

an,w
(A)
n ,λ(A)

n

)

∂an

= 0

We will define

DM = [m̃1, ..., m̄j + Bnvn, ..., m̃(k)]

thus we have

a∗n =
[

DT
MDM + µ(A)

n QT Q + αcAnIK

]−1[

DT
M yn − αcn + µ(A)

n QT (s−Rw(A)
n − λ(A)

n )
]

(A.51)

and

wA∗
n = max (an + λA

n,1:K ,0K) (A.52)

where λA
n,1:K is the vector composed of the K first elements of λA

n and the max must be understood as a term-

wise operator. In the absence of any penalization, the solution is obtained by making α = 0 in the previous

equations.
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Resolution with respect to M

Volume penalization

‖Y−MA−∆‖2
F = ‖U(Yproj −TA)−∆ + Ȳ1 − Ȳ2A‖2

F

= ‖U(Yproj −TA)−∆‖2
F + 2

〈

U(Yproj −TA)−∆
∣
∣
∣Ȳ1 − Ȳ2A

〉

+ ‖Ȳ1 − Ȳ2A‖2
F

The only terms depending on T are

‖Yproj −TA‖2
F + 2

〈

U(∆− Ȳ1 + Ȳ2A)
︸ ︷︷ ︸

S

∣
∣
∣TA

〉

with

〈S|TA〉 = Tr(ST TA) =
N∑

n=1

(K−1∑

j=1

sjnt̃jan

)

For k = 1, ...,K − 1, the resulting sub-problems are

t̃∗k = arg min
t̃k







1

2
‖ỹproj

k − t̃kA‖2
2 +

N∑

n=1

(sknt̃kan)

+
β

2(K − 1)!2
(̃tkfk)2

s.t. gk (̃tk) � 02,K







(A.53)

Introduce the splitting variables W(T)
k such that

gk (̃tk) = W(T)
k ∀k = 1, ...,K − 1 (A.54)

The scaled augmented Lagrangian is

L
µ

(T)

k

(̃tk,W
(T)
k ,Λ(T)

k ) =
1

2
‖ỹproj

k − t̃kA‖2
2 +

N∑

n=1

(sknt̃kan) +
β

2(K − 1)!2
(̃tkfk)2 + IS+(W(T)

k ) +
µ

(T)
k

2
‖gk (̃tk)−W(T)

k + Λ(T)
k

To find the optimum value of t̃∗k, we consider

∂L
µ

(T)

k

(̃tk,W
(T)
k ,Λ(T)

k )

∂t̃k

= 0
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t̃∗k =
[(

ỹproj
k − s̃k

)
AT

+ µ
(T)
k

(
t̃−k + t̃+

k + [1 − 1]
(
W(T)

k −Λ(T)
k

))]

[

AT A +
β

(K − 1)!2
fkf (T)

k + 2µ
(T)
k

]−1

(A.55)

and

W(T)∗
k,p = max

([

gk (̃tk) + ΛT
k

]

,02

)

(A.56)

Resolution with respect to B

b∗n = arg min
bn

{
1

2
‖yn −MA
︸ ︷︷ ︸

ǫp

−ajnbnV‖2
2

}

(A.57)

And as eigenvalues V are orthogonal

b∗n =
VTǫp
ajnINv

(A.58)
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B.1. Solutions to the optimization sub-problems

B.1.1. Resolution with respect to mk

For k = (1, · · · ,K − 1)

The optimization problem becomes

J (mk) =
1

2

∥
∥
∥
∥
Ỹ−mkAk −

V∑

i=0

Ekimk (Ak ◦Bi)
︸ ︷︷ ︸

Wk,i

‖2
F ,

=
1

2

∥
∥
∥
∥
Ỹ

∥
∥
∥
∥

2

F

− Tr
(

ỸT (mkAk +

V∑

i=0

EkimkWk,i)

)

︸ ︷︷ ︸

g(mk)

+
1

2

∥
∥
∥
∥
mkAk +

V∑

i=0

EkimkWk,i

∥
∥
∥
∥

2

F
︸ ︷︷ ︸

f(mk)

with Ỹ = Y−∑j 6=k

(

mjAj −
∑V

i=0 EjimjWji

)

. First, we compute the gradient of g(mk), yielding

∇mk
g(mk) = ỸAT

k +
V∑

i=0

ET
kiỸWT

k,i.

Than developing f(mk)

f(mk) =

∥
∥
∥
∥
mkAk

∥
∥
∥
∥

2

F

+ 2Tr

(

(mkAk)T (
V∑

i=0

EkimkWk,i)

)

+

∥
∥
∥
∥

V∑

i=0

EkimkWk,i

∥
∥
∥
∥

2

F

=

∥
∥
∥
∥
mkAk

∥
∥
∥
∥

2

F

+ 2
V∑

i=0

Tr

(

(mkAk)T (EkimkWk,i)

)

+
V∑

i=0

Tr

(

(EkimkWk,i)
T

V∑

j=0

EkjmkWk,j

)

=

∥
∥
∥
∥
mkAk

∥
∥
∥
∥

2

F

+ 2
V∑

i=0

Tr

(

(mkAk)T (EkimkWk,i)

)

+
V∑

i=0

V∑

j=0

Tr

(

(EkimkWk,i)
T (EkjmkWk,j)

)

.
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Its gradient is

∇mk
f(mk) = 2mkAkAT

k + 2
V∑

i=0

(Eki + ET
ki)mkWk,iAT

k +
V∑

i=0

V∑

j=0

(ET
kiEkj + (ET

kiEkj)T )(mkWk,jWT
k,i).

Tt yields

∇mk
J (mk) = −(ỸAT

k +
V∑

i=0

ET
kiỸWT

k,i) + mkAkAT
k +

V∑

i=0

(Eki + ET
ki)mkWk,iAT

k

+
1

2

V∑

i=0

V∑

j=0

(ET
kiEkj + (ET

kiEkj)T )(mkWk,jWT
k,i)

The Lipschitz constant computation is based in the following inequalities:

‖AB‖ ≤ ‖A‖‖B‖

‖AB‖φ ≤ ‖A‖∞‖B‖φ from Holder’s inequality

‖A ◦B‖ ≤ ‖A‖‖B‖[Hua11]

so the chosen value for the Lipschitz constant of the abundance is

Lmk
= ‖∇2

mk
J (mk)‖ = ‖AkAT

k ‖+
V∑

i=0

‖Eki + ET
ki‖‖Wk,iAT

k ‖+
V∑

i=0

V∑

j=0

‖ET
kiEkj‖‖Wk,jWT

k,i‖

For k = K

In this case, we will have

J (mK) =
1

2
‖Ỹ−mKAK‖2

F ,

with Ỹ = Y− M̃Ã−∑V
i=0 Qi(Ã ◦Bi), it yields

∇mK
J (mK) = −(Ỹ−mKAK)AT

K .

The Lipschitz constant is

LmK
= ‖∇2

mK
J (MK)‖ = ‖AKAT

K‖.
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B.1.2. Resolution with respect to Ã

Using the definition of differentiable function

〈

∇AJ (A), h
〉

= J (A+ U)− J (A)− o(‖U‖)

for

J (Ã) =
1

2
‖Ỹ− M̃Ã−

V∑

i=0

Qi(Ã ◦Bi)‖2
F ,

with Ỹ = Y−mKAK , it yields

J (Ã + U) =
1

2
‖Ỹ− M̃Ã−

V∑

i=0

Qi(Ã ◦Bi)‖2
F

︸ ︷︷ ︸

J (Ã)

−
〈

Ỹ− M̃Ã−
V∑

i=0

Qi(Ã ◦Bi)|M̃U +
V∑

i=0

Qi(U ◦Bi)
〉

1

2
‖M̃U−

V∑

i=0

Qi(U ◦Bi)‖2
F

︸ ︷︷ ︸

o‖U‖

so the trace becomes

Tr(∇ÃJ (Ã)T U) = Tr
(

− (Ỹ− M̃Ã−
V∑

i=0

Qi(Ã ◦Bi)

︸ ︷︷ ︸

DÃ

)T M̃U +

V∑

i=0

Qi(U ◦Bi)
)

knowing that

Tr(ABC) = Tr(BCA) = Tr(CAB)

Tr((AT ◦BT )C) = Tr(AT (B ◦ C))

then

Tr(∇ÃJ (Ã)T U) = Tr

(

−DT
Ã

M̃U
)

+
V∑

i=0

Tr

(

− ((DT
Ã

Qi) ◦BT
i )U

)

and

∇ÃJ (Ã) = −M̃T DÃ −
V∑

i=0

(

(QT
i DÃ) ◦Bi

)

The Lipschitz constant computation is based in the following inequalities:
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‖AB‖ ≤ ‖A‖‖B‖

‖AB‖φ ≤ ‖A‖∞‖B‖φ from Holder’s inequality

‖A ◦B‖ ≤ ‖A‖‖B‖[Hua11]

so the chosen value for the Lipschitz constant of the abundance is

LÃ = ‖∇2
Ã
J (Ã)‖ = ‖M̃T M̃‖‖+

V∑

i=0

(

2‖M̃T Qi‖‖Bi‖+ ‖Bi‖
V∑

j=0

‖QT
i Qj‖‖Bj‖

)

B.1.3. Resolution with respect to AK

The optimization problem is

J (AK) =
1

2
‖Ỹ−mKAK‖2

F ,

with Ỹ = Ỹ− M̃Ã−∑V
i=0 Qi(Ã ◦Bi), it yields

∇AK
J (AK) = −mT

K(Ỹ−mKAK).

The Lipschitz constant is

LAK
= ‖∇2

AK
J (AK)‖ = ‖mT

KmK‖

B.1.4. Resolution with respect to Bi

For

J (Bi) =
1

2
‖Ỹ−Qi(Ã ◦Bi)‖2

F

with Ỹ = Y−MA−∑j 6=i Qj(Ã ◦Bj), we will have

J (Bi + U) =
1

2
‖Ỹ−Qi(Ã ◦Bi)‖2

F

︸ ︷︷ ︸

J (Bi)

−
〈

Ỹ−Qi(Ã ◦Bi)|Qi(Ã ◦U)
〉 1

2
‖Qi(Ã ◦U)‖2

F

︸ ︷︷ ︸

o‖U‖

so the trace becomes

Tr(∇Bi
J (Bi)

T U) = −Tr
(

(Ỹ−Qi(Ã ◦Bi)
︸ ︷︷ ︸

DBi

)T Qi(Ã ◦U)

)

= −Tr
(

((DT
Bi

Qi) ◦ ÃT )U
)
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and

∇Bi
J (Bi) = −

(

(QT
i (Ỹ−Qi(Ã ◦Bi))) ◦ Ã

)

∇Bi
J (Bi) = −

(

(QT
i DBi

) ◦ Ã
)

Knowing that

∂(X ◦ Z) = ∂X ◦ Z + X ◦ ∂Z

The Lipschitz constant is

LBi
= ‖∇2

Bi
J (Bi)‖ = ‖QT

i Qi‖‖Ã‖2

B.1.5. Resolution with respect to αi

Knowing that αi =

[

α1i α2i · · · α(K−1)i

]

, we will first derive a solution to the optimization of αki.

J (αki) =
1

2
‖Ỹ−EkimkWk,i‖2

F ,

with Ỹ = Y−MA−∑j 6=i QjWj −
∑

u6=k Euimuwui, it yields

J (αki) =
1

2
‖Ỹ‖2

F −
〈

Ỹ|EkimkWk,i

〉

+
1

2
‖EkimkWk,i‖2

F .

From the definition of trace

〈

Ỹ|EkimkWk,i

〉

= Tr(ỸT EkimkWk,i) =

N∑

n=1

wkn,iỹT
n Ekimk

Its derivative with respect to αki is

∂
〈

Ỹ|EkimkWk,i

〉

∂αki

= −
N∑

n=1

wkn,iỹT
n (Tp(t) ◦Eki)mk

with the following property

Tr(abT ) =
n∑

i=1

aibi = aT b,

we can write
∂
〈

Ỹ|EkimkWk,i

〉

∂αki

= −Wk,iỸT (Tp(t) ◦Eki)mk

Also, the Frobenius norm writes
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1

2
‖EkimkWk,i‖2

F =
1

2
Tr(WT

k,im
T
k ET

kiEkimkWk,i) =
1

2

N∑

n=1

wkn,imT
k ET

kiEkimkwkn,i

Its derivative with respect to αki is

∂ 1
2‖EkimkWk,i‖2

F

∂αki

= −1

2

N∑

n=1

wkn,imT
k (Tp(t) ◦Eki)

T Ekimkwkn,i −
1

2

N∑

n=1

wkn,imT
k ET

ki(Tp(t) ◦Eki)mkwkn,i

= −1

2

N∑

n=1

wkn,imT
k ((Tp(t) ◦Eki)

T Eki + ET
ki(Tp(t) ◦Eki))mkwkn,i

Considering Tr((AT ◦BT )C) = Tr(AT (B ◦ C))

∂ 1
2‖EkimkWk,i‖2

F

∂αki

= −1

2
Wk,iWT

k,im
T
k ((Tp(t) ◦Eki)

T Eki + ET
ki(Tp(t) ◦Eki))mk.

The gradient w.r.t. αki, we can write

∇αki
J (αki) = Wk,iỸT (Tp(t) ◦Eki)mk −

1

2
Wk,iWT

k,im
T
k ((Tp(t) ◦Eki)

T Eki + ET
ki(Tp(t) ◦Eki))mk

= Wk,i(ỸT (Tp(t) ◦Eki)−
1

2
WT

k,im
T
k ((Tp(t) ◦Eki)

T Eki + ET
ki(Tp(t) ◦Eki)))mk

The Lipschitz constant is

Lαki
= ‖∇2

αki
J (αki)‖ = ‖Wk,i‖

(

‖ − ỸT +
1

2
WT

k,im
T
k ET

ki‖+
3

2
‖WT

k,im
T
k ‖‖Eki‖

)

‖Eki‖‖Tp(t)‖2‖mk‖
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