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A document is more than a random combination of sentences. It is, instead, a cohesive entity where sentences interact with each other to create a coherent structure and convey specific communicative goals. The field of discourse examines the sentence organization within a document, aiming to reveal its underlying structural information. Discourse analysis plays a crucial role in Natural Language Processing (NLP) and has demonstrated its usefulness in various downstream applications like summarization and question answering. Existing research efforts have focused on automatically extracting discourse structures through tasks such as discourse relation identification and discourse parsing. However, these data-driven methods have predominantly been applied to monologue scenarios, leading to limited availability and generalizability of discourse parsers for dialogues. In this thesis, we address this challenging problem: discourse analysis in dialogues, which presents unique difficulties due to the scarcity of suitable annotated data.

We approach discourse analysis along two research lines: "Discourse Feature Discovery" and "Discourse Structure Prediction". In the first research line, we conduct experiments to investigate linguistic markers, both lexical and non-lexical, in text classification tasks. We are particularly interested in the context of mental disorder identification since it reflects a realistic scenario. To address the issue of data sparsity, we propose techniques for enhancing data representation and feature engineering. Our results demonstrate that non-lexical and discourse-level (even though shallow) features are reliable indicators in developing more general and robust classifiers. In the second research line, our objective is to directly predict the discourse structure of a given document. We adopt the Segmented Discourse Representation Theory (SDRT) framework, which represents a document as a graph. The task of extracting this graph-like structure using machine learning techniques is commonly known as discourse parsing. Taking inspiration from recent studies that investigate the inner workings of Transformer-based models ("BERTology"), we leverage discourse information encoded in Pre-trained Language Models (PLMs) such as Bidirectional Encoder Representations from Transformers (BERT) and propose innovative extraction methods that require minimal supervision. Our discourse parsing approach involves two steps: first, we predict the discourse structure, and then we identify the relations within the structure. This two-stage process allows for a comprehensive analysis of the parser's performance at each stage. Using self-supervised learning strategies, our parser achieves encouraging results for the full parsing. We conduct extensive analyses to evaluate the parser's performance across different discourse structures and propose directions for future improvements.

Résumé Court

Un document est plus qu'une combinaison aléatoire de phrases. Il s'agit plutôt d'une entité cohésive où les phrases interagissent les unes avec les autres pour créer une structure cohérente et transmettre des objectifs de communication spécifiques. Le domaine du discours examine l'organisation des phrases au sein d'un document, dans le but de révéler les informations structurelles sous-jacentes. L'analyse du discours joue un rôle crucial dans le Traitement Automatique des Langues (TAL) et a démontré son utilité dans diverses applications telles que le résumé et les systèmes de questions-réponses. Les efforts de recherche existants se sont concentrés sur l'extraction automatique des structures du discours à travers des tâches telles que l'identification des relations du discours et l'analyse du discours (discourse parsing). Cependant, ces méthodes axées sur les données ont été principalement appliquées à des scénarios de monologues, ce qui a conduit à une disponibilité et une généralisation limitées des analyseurs de discours pour les dialogues. Dans cette thèse, nous abordons ce problème difficile en raison de la rareté des données annotées : l'analyse du discours dans les dialogues.

Nous abordons l'analyse du discours selon deux axes de recherche : la « découverte des marqueurs du discours » et la « prédiction de la structure du discours ». Dans le premier axe de recherche, nous menons des expériences pour étudier les marqueurs linguistiques, à la fois lexicaux et non lexicaux, dans les tâches de classification de texte. Nous nous intéressons particulièrement au contexte de l'identification des troubles mentaux qui est un cas d'application. Pour résoudre le problème de la rareté des données, nous proposons des techniques d'amélioration de la représentation des données et de l'ingénierie des traits. Nos résultats démontrent que les marqueurs non lexicaux au niveau du discours (même s'ils sont surfaciques) sont des indicateurs fiables pour développer des classificateurs plus généraux et plus robustes. Dans un second axe, notre objectif est de prédire directement la structure du discours d'un document. Nous adoptons le cadre de la théorie Segmented Discourse Reprsentation Theory (SDRT), qui représente les relations rhétoriques présentes dans un document sous la forme d'un graphe. L'extraction de cette structure à l'aide de techniques d'apprentissage automatique est communément appelée discourse parsing. En nous inspirant des études récentes portant sur le fonctionnement interne des modèles basés sur les Transformers (« BERTology »), nous exploitons les informations discursives encodées dans les modèles de langage pré-entraînés (PLMs) tels que les Bidirectional Encoder Representations from Transformers (modèle BERT) et proposons des méthodes d'extraction innovantes qui qui minimisent la supervision. Notre approche de l'analyse du discours comporte deux étapes : tout d'abord, nous prédisons la structure du discours, puis nous identifions les relations au sein de la structure. Ce processus en deux étapes permet une analyse complète des performances de l'analyseur à chacune d'entre elles. En utilisant des stratégies d'apprentissage auto-supervisé, notre analyseur obtient des résultats encourageants dans l'analyse complète du discourse. Nous effectuons des analyses approfondies pour évaluer les performances de l'analyseur sur différentes structures de discours et proposons des pistes d'amélioration pour de futurs travaux.

Mots-clés: Analyse du discours, apprentissage automatique, dialogue, rareté des données, apprentissage auto-supervisé

Résumé Long

Un document n'est pas un ensemble de segments textuels aléatoires et indépendants, mais plutôt formé de séquences de phrases, ordonnées et liées entre elles, qui forment un ensemble cohérent et signifiant : cette organisation est appelée structure du discours [START_REF] Hobbs | Coherence and coreference[END_REF]. Dans cette thèse, nous nous sommes particulièrement intéressés à la compréhension des liens entre les clauses (extraits de texte qui ont une longueur inférieure ou égale à celle des phrases) : comment elles interagissent les unes avec les autres, quel est le type de relation qui décrit la connexion, et comment pouvons-nous automatiquement extraire cette structure d'un document.

En Traitement Automatique des Langues (ci-après TAL), l'analyse du discours est le traitement du langage au-delà des limites de la phrase. Elle se réfère à la récupération de la structure inhérente des documents, qui comprend différents niveaux d'analyse tels que la structure thématique : les signaux lexicaux et la distribution des mots indiquent les changements de sujet, la structure référentielle : les liens de coréférence entre les pronoms et les entités pour créer une cohérence locale, et la structure de cohérence relationnelle : deux extraits de texte sont liés par une relation rhétorique spécifique à l'aide de connecteurs explicites ou implicites [START_REF] Stede | Discourse processing[END_REF].

Contrairement à l'analyse lexicale ou syntaxique, qui étudient les mots et l'interaction des mots dans une phrase individuelle, les éléments de base du discours sont des extraits de texte similaires à des clauses, connus sous le nom de Unités de Discours (Discourse Units, ci-après DUs). Les plus petites unités de discours sont les Unités Discursives Élémentaires (Elementary Discourse Units, ci-après EDUs). Nous considérons une EDU comme le plus petit porteur d'information, ou comme le dit [START_REF] Stede | Discourse processing[END_REF], « une unité d'information complète et distincte, à laquelle le discours subséquent peut se connecter ». Normalement, une EDU reste dans la portée d'une phrase, de sorte qu'il n'y a pas d'EDUs inter-phrastiques. La combinaison des EDUs sont les Unités Complexes de Discours (Complex Discourse Units, ci-après CDUs). Comme première étape de l'analyse du discours, une segmentation de bonne qualité doit être effectuée de manière la plus neutre possible, pour ne pas influencer le processus d'analyse subséquent [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF]. Aussi simple que cela puisse paraître, la tâche de Segmentation des Unités de Discours n'est pas triviale. Ce n'est que récemment que la performance moyenne sur la tâche de segmentation pour différentes langues a finalement atteint des scores proches de 90 (F 1 ≈ 92%) [START_REF] Zeldes | The disrpt 2021 shared task on elementary discourse unit segmentation, connective detection, and relation classification[END_REF].

Une fois les EDUs obtenues, l'étape cruciale suivante consiste en la construction d'une structure qui illustre les interactions entre ces unités, éventuellement enrichie de relations telles que Élaboration et Contraste. Dans la Segmented Discourse Representation Theory (ci-après SDRT) [START_REF] Asher | Logics of conversation[END_REF], un document est représenté comme un Graphe Orienté Acyclique (Directed Acyclic Graph, DAG), avec des sommets représentant les EDUs et des arêtes codant les relations discursives. Le principal cadre discursif que nous employons dans cette thèse est la théorie de la SDRT.

D'autres cadres discursifs ont des représentations structurales différentes. Certains d'entre eux utilisent des arbres, comme dans la Rhetorical Structure Theory (ci-après RST) [START_REF] Mann | Discourse structures for text generation[END_REF] et le Linguistic Discourse Model [START_REF] Polanyi | A syntactic approach to discourse semantics[END_REF][START_REF] Polanyi | A formal model of the structure of discourse[END_REF]. De plus, la RST donne également une importance aux deux DUs liées, connue sous le nom de « nucléarité ». Le noyau est l'unité discursive centrale et le satellite est celle qui fournit des informations auxiliaires. Il faut noter que tous les cadres discursifs ne montrent pas la structure complète d'un document : le modèle du Penn Discourse Treebank (PDTB) (Prasad et al., 2008a), par exemple, se concentre particulièrement sur la relation entre les segments discursifs. Il utilise des connecteurs discursifs (donc, parce que, cependant, etc.) pour révéler des relations discursives locales, qui ne couvrent pas nécessairement tous les DUs d'un document. On parle en général de Chunking Discursif (Discourse Chunking) ou d'Analyse Discursive de Surface (Shallow Discourse Parsing, définition de la tâche partagée organisée lors de la conférence CoNLL 2015).

La représentation du discours sous forme de graphes ou d'arbres est très utile. Ces structures reflètent le flux d'information dans un document cohérent : où se trouve une nouvelle phrase et comment elle s'intègre dans le contexte actuel. De plus, des informations telles que les types de relation et la nuclearité reflètent l'importance relative des unités discursives. Ces informations sont bénéfiques pour de nombreuses applications en TAL, telles que la classification de textes [START_REF] Ji | Neural discourse structure for text categorization[END_REF][START_REF] Ferracane | Leveraging discourse information effectively for authorship attribution[END_REF], l'analyse de sentiment [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF][START_REF] Hogenboom | Using rhetorical structure in sentiment analysis[END_REF][START_REF] Nejat | Exploring joint neural model for sentence level discourse parsing and sentiment analysis[END_REF], la segmentation thématique (Jiang et al., 2021a), la traduction automatique [START_REF] Marcu | The theory and practice of discourse parsing and summarization[END_REF][START_REF] Tu | A novel translation framework based on rhetorical structure theory[END_REF][START_REF] Joty | Discourse structure in machine translation evaluation[END_REF], le résumé [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF][START_REF] Hirao | Single-document summarization as a tree knapsack problem[END_REF][START_REF] Yoshida | Dependency-based discourse parser for single-document summarization[END_REF][START_REF] Gerani | Abstractive summarization of product reviews using discourse structure[END_REF][START_REF] Xu | Discourse-aware neural extractive text summarization[END_REF], et la tâche de questionréponse (Verberne et al., 2007b;[START_REF] Jansen | Discourse complements lexical semantics for non-factoid answer reranking[END_REF]. En particulier, la représentation discursive de type dépendance a été étudiée intensivement ces dernières années pour des tâches liées au dialogue, telles que la compréhension du dialogue sous forme de réponse à des questions [START_REF] Ma | Enhanced speaker-aware multi-party multi-turn dialogue comprehension[END_REF][START_REF] Li | Dadgraph: A discourse-aware dialogue graph neural network for multiparty dialogue machine reading comprehension[END_REF][START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF], et le résumé de dialogue [START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF][START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF].

Les théories du discours telles que la RST [START_REF] Mann | Discourse structures for text generation[END_REF], la SDRT [START_REF] Asher | Logics of conversation[END_REF], et le PDTB (Prasad et al., 2008a) ont conduit divers projets d'annotation à travers le monde, produisant des corpus de discours en plusieurs langues : l'anglais (Carlson et al., 2002a), le français [START_REF] Péry-Woodley | La ressource annodis, un corpus enrichi d'annotations discursives[END_REF]Afantenos et al., 2012a), le basque [START_REF] Iruskieta | The rst basque treebank: an online search interface to check rhetorical relations[END_REF], le chinois [START_REF] Cao | Discourse segmentation for building a rst chinese treebank[END_REF][START_REF] Cao | The rst spanish-chinese treebank[END_REF], le russe [START_REF] Shelmanov | Towards the data-driven system for rhetorical parsing of russian texts[END_REF], etc. Parmi ceux-ci, le corpus de style RST, RST-DT [START_REF] Carlson | RST discourse treebank[END_REF], et le corpus de style SDRT, STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], sont les plus couramment utilisés pour former et tester les parsers de discours pour les monologues et les dialogues, respectivement.

Malgré leur popularité, ces corpus sont relativement limités en taille : RST-DT est composé de seulement 385 articles de Wall Street Journal (environ 21, 8k DUs), et STAC comprend 45 conversations de jeux (environ 10k DUs). Les autres ressources disponibles sont encore plus petites en taille. D'autres problèmes dans les corpus de discours incluent l'annotation non standardisée provenant de différentes théories du discours [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF], l'utilisation de critères d'évaluation non comparables [START_REF] Zeldes | The disrpt 2021 shared task on elementary discourse unit segmentation, connective detection, and relation classification[END_REF], et parfois la qualité de l'annotation qui est problématique. Il y a de bonnes raisons de croire que les performances en analyse du discours ont encore un long chemin à parcourir pour atteindre de bonnes performances [START_REF] Morey | How much progress have we made on RST discourse parsing? a replication study of recent results on the RST-DT[END_REF][START_REF] Zeldes | The disrpt 2019 shared task on elementary discourse unit segmentation and connective detection[END_REF].

Les approches traditionnelles d'analyse du discours se concentrent presque exclusivement sur les modèles supervisés, entraînés et testés dans le même domaine. Ces modèles peuvent être grossièrement catégorisés en approches basées sur les transitions ou basées sur la représentation graphique : la première se concentre sur l'optimisation globale de toute la structure, tandis que la seconde se concentre sur l'optimal locale. Les modèles état de l'art sur le corpus STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] tels que Deep Sequential [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF], Structure-aware GNN (Wang et al., 2021a), et Structural-joint [START_REF] Chi | Structured dialogue discourse parsing[END_REF] atteignent les F 1 scores proche de 70% pour la prédiction de structure nue (sans relations), et seulement ≈ 55% pour le parsing complet.

En raison du problème de la rareté des données et de la prévalence des techniques d'apprentissage par transfert, les chercheurs ont commencé à explorer différentes formes d'approches semisupervisées et faiblement supervisées. Dans le travail pionnier de Liu and Lapata (2018), les auteurs ont produit des structures d'arbres latents à partir de tâches de résumé. Même si les arbres générés se sont avérés être superficiels et triviaux [START_REF] Ferracane | Evaluating discourse in structured text representations[END_REF], leur approche pour inférer la structure de l'arbre de discours à partir de mécanismes d'attention a inspiré de nombreuses études ultérieures, y compris notre propre recherche sur la prédiction de structure de discours nue dans le Chapitre 7.

Pour le paradigme de la supervision à distance, plusieurs études ont émergé qui exploitent les informations d'autres tâches telles que l'analyse de sentiment [START_REF] Huber | Predicting discourse structure using distant supervision from sentiment[END_REF], le résumé [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF], et la segmentation thématique (Jiang et al., 2021a). Ces études visent à inférer la structure du discours uniquement à partir des informations obtenues par des tâches auxiliaires, éliminant ainsi le besoin d'annotation humaine. Bien que ces approches offrent des idées innovantes et des résultats perspicaces, les performances de leurs modèles ont tendance à être relativement faibles. La plupart de ces modèles sont axés sur la prédiction de structure, avec peu ou pas de discussion sur la prédiction des relations. De plus, leur évaluation a été principalement effectuée dans le scénario de monologue, spécifiquement avec l'analyse de style RST. Une autre ligne de recherche explore le potentiel de l'apprentissage faiblement supervisé (Badene et al., 2019b,a), où l'idée est de faire un léger compromis entre qualité et quantité.

La récente montée en puissance des méthodes de transcription fiables et une augmentation de la communication en ligne ont conduit à une explosion impressionnante des données de dialogue. Par conséquent, le besoin de systèmes automatiques pour traiter les dialogues a considérablement augmenté. Par exemple, le résumé de réunions ou d'échanges avec des agents de service clientèle pourrait être utilisée pour améliorer les collaborations ou analyser les problèmes des clients [START_REF] Li | Keep meeting summaries on topic: Abstractive multi-modal meeting summarization[END_REF]Feng et al., 2021a); la compréhension de lecture automatisée sous forme de questionréponse pourrait améliorer les performances des agents de dialogue et aider à la construction de graphes de connaissance [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF][START_REF] Li | Dadgraph: A discourse-aware dialogue graph neural network for multiparty dialogue machine reading comprehension[END_REF].

Les dialogues sont généralement moins structurés, entrecoupés d'un usage linguistique plus informel [START_REF] Sacks | A simplest systematics for the organization of turn taking for conversation[END_REF], et ont des particularités structurelles telles que des structures en forme de losange [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF]. Ces caractéristiques font la richesse des dialogues, mais posent également des difficultés pour l'analyse. Par conséquent, les caractéristiques simples de niveau superficiel ne sont souvent pas suffisantes pour extraire des informations précieuses des conversations [START_REF] Qin | Joint modeling of content and discourse relations in dialogues[END_REF]. Il est plutôt nécessaire de comprendre les relations sémantiques et pragmatiques qui structurent le dialogue, telles que l'utilisation de l'information discursive et de la structure de relation de cohérence.

Par conséquent, nous proposons dans cette thèse deux questions de recherche liées à l'analyse du discours dans les dialogues : RQ1 Comment pouvons-nous utiliser efficacement le discours et les informations structurelles comme les marqueurs linguistiques pour les tâches de classification de texte pour le dialogue, surtout dans la détection de troubles mentaux ?

RQ2 Comment pouvons-nous générer des structures discursives avec des techniques d'apprentissage automatique en utilisant une supervision minimale pour obtenir la meilleure applicabilité dans des scénarios réels ?

Les deux questions de recherche sont abordées à travers plusieurs sous-projets.

Pour répondre à la RQ1, nous poursuivons la première direction de recherche intitulée « Découverte des Marqueurs Discoursifs », qui vise à étudier le discours dans un sens général qui ne se limite pas aux structures de type SDRT ou RST. Au départ, nous nous concentrons sur les tâches de classification de texte qui impliquent l'utilisation de marqueurs discursifs de base tels que les connecteurs discursifs et les actes de dialogue. Deux tâches sont menées dans le domaine du déficit cognitif : la première est la détection de la schizophrénie, qui a donné lieu à deux publications [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF]Li et al., 2021a) et à plusieurs présentations, notamment lors de la Journée commune AFIA-THL / ATALA -la santé et le langage en France et lors de Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2021); la seconde est la détection de la dépression avec une publication internationale et une présentation à la conférence SIGDial [START_REF] Li | Multi-task learning for depression detection in dialogs[END_REF].

Le contexte du déficit cognitif constitue une situation réaliste. Aujourd'hui, environ 1% des adultes dans le monde sont touchés par la schizophrénie. L'impact de la dépression est encore plus grand : environ 4% de la population mondiale, et un taux plus élevé chez les personnes âgées, selon les chiffres rapportés par l'Organisation Mondiale de la Santé. Ces maladies mentales présentent divers symptômes, parmi lesquels des troubles linguistiques tels que le langage désorganisé et la pauvreté du vocabulaire (Kuperberg, 2010a). Les praticiens du TAL peuvent s'intéresser à ces troubles du langage et considérer leurs analyses linguistique comme potentielle source de descriptions des symptômes et être utile à une meilleure compréhension de la maladie et de ses manifestations. Cela pourrait aider à la détection précoce de la maladie et éventuellement fournir une aide dans son traitement. Cependant, les modèles actuels pour la détection des troubles mentaux sont loin d'être idéaux. La majorité des recherches dans ce domaine s'appuient sur les données des réseaux sociaux [START_REF] Benton | Multitask learning for mental health conditions with limited social media data[END_REF][START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF]Birnbaum et al., 2017a;[START_REF] Guntuku | Detecting depression and mental illness on social media: an integrative review[END_REF], avec un accent particulier sur l'information lexicale. Cependant, comme souligné dans notre étude (Li et al., 2021a), ces approches ont des limites dans certaines langues et pourraient conduire à des résultats biaisés.

Notre objectif est de développer des modèles plus fiables et robustes, ce qui nous incite à explorer des marqueurs linguistiques qui dépendent moins de l'information lexicale et privilégient plutôt l'information structurelle. Les résultats de notre investigation sont présentés dans deux projets. Le Chapitre 4 présente le premier projet sur la détection linguistique de la schizophrénie. Nous observons que les caractéristiques lexicales, bien que très précises, présentent un fort biais. Par conséquent, nous explorons des caractéristiques délexicalisées telles que les arbres syntaxiques et des caractéristiques moins lexicalisées telles que les connecteurs discursifs.

Ensuite, dans le Chapitre 5, nous nous penchons sur la détection de la dépression dans les dialogues. En l'absence de structures discursives de référence, nous proposons d'incorporer l'information discursive dans le cadre de l'Apprentissage Multi-Tâches (Multi-Task Learning, MTL). Nous adoptons une approche simple mais efficace connue sous le nom de schéma entièrement partagé (fully-shared ), où les couches cachées sont partagées entre toutes les tâches.

Pour répondre à la RQ2, nous établissons une deuxième direction de recherche intitulée « Prédiction de Structure du Discours ». Notre travail s'ancre dans la SDRT et utilise le corpus STAC pour sa mise en oeuvre pratique. Nous adoptons une approche en deux étapes pour aborder cette ligne de recherche. La première étape concerne la prédiction de la structure discursive nue, présentée dans le Chapitre 7. Il convient de noter que les structures nues ont été démontrées comme étant des caractéristiques précieuses pour certaines tâches, telles que la sélection de contenu (content selection) [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF] et l'extraction de fils de discussion (thread extraction) [START_REF] Jiang | How can we know what language models know?[END_REF]. Il s'agit d'un travail collaboratif mené avec des collègues de l'Université de Colombie-Britannique à Vancouver durant mon stage au sein du groupe TAL de l'UBC. Ce projet a abouti à une publication lors de la conférence EACL 2023 [START_REF] Li | Discourse structure extraction from pre-trained and fine-tuned language models in dialogues[END_REF] et à une présentation lors du 4ème Workshop on Computational Approaches to Discourse (CODI 2023).

Contrairement aux études précédentes qui s'appuient sur une supervision complète [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF][START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF][START_REF] Chi | Structured dialogue discourse parsing[END_REF], notre objectif est d'effectuer un parsing discursif avec moins de données nécessitant une annotation humaine, afin que notre analyseur puisse être utilisé dans des cas plus généraux. Cependant, sélectionner les signaux de supervision à distance (par exemple de sentiment ou de résumé) ou faiblement supervisés (de règles heuristiques) n'est pas simple. Au vu des résultats prometteurs de l'information discursive capturée dans les modèles de langage pré-entraînés (Pre-trained Language Models, ciaprès PLMs), comme introduit dans le Chapitre 6, nous choisissons finalement les PLMs comme source de supervision. Nous explorons divers PLMs et découvrons que le réseau encodeur du modèle BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] est le plus performant. Nous proposons également des tâches de fine-tuning adaptées aux dialogues pour renforcer l'information discursive codée dans les matrices d'attention, sans nécessiter d'annotation supplémentaire.

Par la suite, dans le Chapitre 8, nous menons une étude sur la prédiction des relations discursives basée sur la structure extraite des PLMs. En nous inspirant des approches décrites dans [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF], nous utilisons des stratégies de bootstrapping via le selftraining. À l'aide de quelques documents annotés, nous formons d'abord un modèle source puis l'utilisons pour générer des étiquettes pseudo sur des données non annotées. Les instances étiquetées pseudo de haute confiance sont sélectionnées et combinées avec les documents originaux pour un nouveau cycle de construction du modèle. À l'issue de ces expériences, nous disposons de multiples élements pour répondre à nos problématiques.

Dans le premier projet, nous proposons deux méthodes pour aborder le problème de la rareté des données dans la tâche de classification de textes pour la schizophrénie. La première méthode consiste à explorer différents niveaux d'ingénierie des features, y compris des marqueurs lexicaux (Bag-Of-Words), syntaxiques (POS tagging) et discursifs (Backchannel response, Open Class Repairs, connecteurs discursifs). La seconde méthode consiste à modéliser les dialogues en limitant l'analyse aux tours de parole des patients et en testant différentes fenêtres de contexte pour améliorer la représentation des données. Nous comparons plusieurs algorithmes de classification et constatons que le Naive Bayes fonctionne bien avec les décomptes lexicaux, tandis que les SVM et Logistic Regression sont mieux adaptés aux données rares et aux caractéristiques de haute dimension. L'analyse révèle que les patients ont tendance à discuter volontairement de leur maladie et de leur traitement, aboutissant à des sujets liés à la maladie, ce qui biaise fortement le lexique. Les modèles délexicalisés, qui mettent l'accent sur les informations morpho-syntaxiques et les caractéristiques discursives de haut niveau, sont plus généralisables. Nous découvrons également des résultats intéressants concernant les caractéristiques des patients schizophrènes, tels que leur utilisation de davantage de phrases verbales et adverbiales et moins d'expressions phatiques, ce qui est cohérent avec les études précédentes.

Le second projet examine la structure hiérarchique du discours dans les dialogues et son potentiel pour la détection de la dépression. Pour pallier le problème de rareté des données, nous nous inspirons du cadre d'apprentissage multi-tâches et apprenons conjointement des caractéristiques à partir de plusieurs tâches connexes. Nous considérons trois tâches auxiliaires : la classification des émotions, la classification des actes de dialogue et la classification des sujets, pour explorer comment une information superficielle sur la structure du dialogue peut améliorer les performances. Pour intégrer l'organisation du dialogue, nous proposons une architecture hiérarchique spécifique au dialogue, où deux tâches (classification des émotions et des actes de dialogue) sont réalisées au niveau du tour de parole, tandis que deux autres (détection de la dépression et classification des sujets) sont réalisées au niveau du document. Nous observons des améliorations significatives lors de l'ajout de chaque tâche séparément. Apprendre conjointement les quatre tâches entraîne une amélioration dans tous les indicateurs (F 1 +27%, Accuracy +11%). Nos études d'ablation montrent que la détection des émotions et de la dépression se renforcent mutuellement. Les résultats positifs pour les marqueurs superficiels, tels que les actes de dialogue et les sujets, indiquent également leur pertinence pour la structure du dialogue.

Dans le troisième projet, nous proposons un cadre conçu en pipeline pour l'extraction automatique de la structure et des relations discursives. La partie extraction de la structure du discours innove en utilisant des méthodes semi-supervisées et non supervisées pour traiter les problèmes de rareté des données dans les dialogues et extraire des informations discursives à partir de modèles de langue pré-entraînés. Nous examinons la robustesse et la localité des structures discursives dans les PLMs en analysant les informations capturées à travers les têtes d'attention et diverses tâches de fine-tuning. Choisir la meilleure tête d'attention est un problème crucial lors de l'utilisation des PLMs pour extraire des informations discursives au niveau du document. Les résultats expérimentaux sur le corpus STAC montrent que les méthodes non supervisées et semi-supervisées surpassent un baseline assez puissant (F 1 56, 8%), offrant des gains substantiels sur l'ensemble de données complet (F 1 59, 3%) et des améliorations supplémentaires sur le sousensemble structuré en arbre (F 1 68, 1%). L'analyse qualitative des structures déduites montre que notre modèle prédit avec succès plus de 82% des arcs projectifs, certains s'étendant sur quatre EDUs. Ce résultat est encourageant et suggère que notre approche est capable d'extraire des structures discursives raisonnables avec une supervision minimale.

Le deuxième module -prédiction de la relation -est construit sur la partie extraction de structure et se concentre sur l'exploitation des PLMs par le self-training. Nous examinons diverses techniques de sélection des données pseudo-étiquetées, et constatons que la sélection des échantillons basée uniquement sur les scores de confiance n'est pas suffisante. Bien que le self-training puisse améliorer les performances du modèle, l'amélioration est modeste (environ 1%). Le défi principal de self-training réside dans la génération d'étiquettes pseudo précises et diversifiées. Pour surmonter cette limitation, nous étudions le potentiel d'une stratégie « human-in-the-loop » en fournissant une annotation correcte pour les exemples incertains ayant des scores de confiance faibles. Nos résultats suggèrent que l'effort humain peut être bénéfique, mais nécessite une quantité considérable d'annotation. Cependant, dans des situations pratiques, il peut être difficile d'obtenir une telle supervision étendue.

De plus, nous fournissons des résultats de parsing complet qui combinent la segmentation EDU, la prédiction de structure et la classification des relations, établissant ainsi la première référence pour un analyseur discursif complet pour les dialogues formés à l'aide d'une supervision faible. Les résultats empiriques montrent une progression graduelle, bien que modeste, qui ouvre la voie à un parsing discursif complet dans les dialogues.

Bien que nous ayons abordé les deux questions de recherche avec les projets précédents, il y a encore de la place pour des améliorations.

Pour modéliser l'interaction dans la classification de la langue de la schizophrénie, des réseaux de neurones pourraient être utilisés à la place des modèles probabilistes classiques. Une possibilité est d'utiliser le adversarial learning au sein d'un modèle neuronal. Dans le adversarial learning, un modèle adversaire est formé pour maximiser une fonction de perte opposée à celle du modèle original. En introduisant cette composante antagoniste, le modèle original est forcé d'apprendre des caractéristiques plus généralisables moins sujettes au biais (Zhang et al., 2018a). Nous pouvons nous inspirer des travaux qui s'attaquent au biais de genre, comme dans [START_REF] Bordia | Identifying and reducing gender bias in word-level language models[END_REF]; [START_REF] Liu | Mitigating gender bias for neural dialogue generation with adversarial learning[END_REF].

Afin de coder la structure du dialogue, nous pourrions également envisager des informations structurales plus profondes telles que le parsing discursif. Cependant, cette approche pose un défi direct en raison du manque de parseurs discursifs généraux et puissants, un problème que nous prévoyons d'aborder dans des travaux futurs. Une étape supplémentaire consistera à étudier la généralisation de notre modèle à d'autres troubles de la santé mentale, tels que la détection de la démence.

Dans la dernière partie de la thèse, bien que nous montrions des résultats initiaux prometteurs sur la capacité à capter des structures discursives valides à partir de méthodes semi-supervisées et de self-training, la performance de nos méthodes proposées reste limitée, notamment par rapport aux systèmes entièrement supervisés sur les modèles de parsing intra-domaine.

Nous laissons plusieurs questions sans réponse qui pourront être approfondie dans nos futurs travaux.

La première concerne l'amélioration de la structure discursive extraite pour qu'elle s'aligne mieux avec les graphes de type SDRT. Une approche possible serait de ré-implémenter les méthodes de Integer Linear Programming présentées dans [START_REF] Perret | Integer linear programming for discourse parsing[END_REF] mais avec des PLMs comme structures de base. La deuxième question ouverte concerne l'approche conçue en pipeline employée pour le parsing discursif, qui est susceptible de propager d'erreurs. Dans ce cas, une simple proposition du modèle conjoint est d'augmenter les structures discursives avec des informations supplémentaires. Par exemple, si une relation de haute confiance est identifiée entre deux EDUs qui n'ont pas été reliées, nous pourrions effectuer un raffinement a posteriori et ajouter l'attachement manquant à la structure. Troisièmement, après avoir montré toutes les applications en synergie en aval dans le Chapitre 3, nos parseurs discursifs ont un potentiel significatif pour être appliqués à de nouveaux domaines et utilisés pour d'autres tâches. Nos approches semi-supervisées sont actuellement les ressources les plus efficaces pour produire des structures discursives pour des documents bruts. 

Discourse Structure & Parsing

A document is not a random and independent text spans, but instead sequences of ordered and related sentences which together make coherent and meaningful documents: this organization is called discourse structure [START_REF] Hobbs | Coherence and coreference[END_REF]. In this thesis, we are particularly interested in understanding the connection between clauses (text spans that are shorter than or equal to sentences in length): how they interact with each other, what is the relation type to describe the attachment, and how can we automatically extract the structure out of a document.

In Natural Language Processing (NLP), discourse analysis is language processing beyond the sentence boundary. It refers to the retrieval of the inherent structure of documents, which include different levels of analysis such as topic structure: lexical signals and word distribution indicate topic shifts, referential structure: coreference links between pronouns and entities in order to create local coherence, and coherence-relational structure: two text spans are linked together with specific semantic relation using explicit or implicit connectives [START_REF] Stede | Discourse processing[END_REF].

Different from lexical or syntactic analysis, which study words and the interaction of words in individual sentence, the basic elements in discourse are clause-like text spans, known as Discourse Units (DUs). The smallest units of DUs are Elementary Discourse Units (short in EDUs), and the combination of EDUs are Complex Discourse Units (short in CDUs). Normally, a EDU stays within the range of a sentence, so that there are no inter-sentential EDUs. In the related literature, we do not find a consensus on the definition of EDUs (Section 2.1). Linguists hold their own opinions when defining the criteria with linguistic phenomena such as ellipsis, relative clause, and prepositional phrases [START_REF] Mann | Discourse structures for text generation[END_REF][START_REF] Polanyi | A syntactic approach to discourse semantics[END_REF][START_REF] Asher | Reference to abstract objects in discourse[END_REF][START_REF] Tofiloski | A syntactic and lexical-based discourse segmenter[END_REF]. We regard a EDU as the smallest piece of information carrier, or as put in [START_REF] Stede | Discourse processing[END_REF], "a complete, distinct unit of information that the subsequent discourse may connect to". We show a concrete example from the Strategic Conversation Corpus (STAC) [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], a corpus of online conversations during the game Settlers of Catan and was annotated under the Segmented Discourse Rhetorical Theory (SDRT) [START_REF] Asher | Logics of conversation[END_REF]: In example (1), each line is a speech turn, i.e., one entry, which contains a speech index (167, 170, etc.), a participant (gwfs, lj, tk ), and a text span. STAC corpus contains sub-dialogues or threads that divide and merge as the dialogue proceeds. For readability, we only extract the speech turns in one thread, which explains the disjoint speech indices.

This dialogue consists of 6 speech turns and 7 Discourse Units (marked with subscript numbers), the first five are EDUs and the last one is a CDU. As the very first step in discourse analysis, a good quality segmentation should be performed in an objective and impartial manner to lay the ground for subsequent analysis such as link attachment and relation prediction [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF]. Simple may it looks, the task of Discourse Unit Segmentation is non-trivial. Only recently, the average performance on segmentation task for different languages has finally reached the low 90s [START_REF] Zeldes | The disrpt 2021 shared task on elementary discourse unit segmentation, connective detection, and relation classification[END_REF]. Thanks to the DISRPT shared tasks, we now have state-of-the-art EDU segmentors such as ToNy [START_REF] Muller | ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents[END_REF], DisCoDisCo [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF], and DisCut [START_REF] Ezzabady | Multi-lingual discourse segmentation and connective identification[END_REF] that work well in 11 languages 1 .

Disposed of elementary discourse units, the next crucial step is to build a structure that illustrates the interactions among these units, eventually enriched with relations. We show a realization of SDRT-type discourse structure for example (1) in Figure 1.1. EDUs are ranged vertically to echo the order of their appearance2 ; they are linked with each other with typed edges, reflecting the discourse relations. Speaker gwfs first asks a question, other two participants both address it -thus creating two question answer pairs ("qap"). With the development of the conversation, we discover more relation types, such as parallel (170 -175) when the lj and gwfs share a common theme, elaboration (174 -176) when tk provides more information on her previous speech, and contrast (176 -178) as participants tk and gwfs present opposite opinions, etc. With vertices representing EDUs and edges encoding discourse relations, a document3 is thus represented as a Directed Acyclic Graph (DAG) -the standard discourse structure in the SDRT framework. In part III of this thesis (Chapter 7,8), we adopt SDRT as our theoretical foundation for discourse analysis and we perform discourse parsing to automatically extract such graph structure from a given document.

Other discourse frameworks have different structure representation (Section 2.2). Some of them use trees, such as in Rhetorical Discourse Theory (RST) [START_REF] Mann | Discourse structures for text generation[END_REF] and Linguistic Discourse Model [START_REF] Polanyi | A syntactic approach to discourse semantics[END_REF][START_REF] Polanyi | A formal model of the structure of discourse[END_REF]. Additionally, RST also gives relative importance to the linked DUs, namely nulcearity. Nucleus is the core discourse unit and satellite is the one that provides auxiliary information. An example of an RST-style discourse tree is shown in Figure 1.2. Note that not all the discourse frameworks show the full structure of a document: the Penn Discourse Treebank's framework (PDTB) (Prasad et al., 2008a) for instance, has a particular focus on the relationship between discourse segments, they utilize connectives (so, because, however, etc.) to reveal local discourse relations, which not necessarily cover all the DUs in a document. We call discourse analysis in PDTB-style parsing Shallow Discourse Parsing.

Discourse represented in graph-or tree-structure is very useful. These structures reflect the information flow in a coherent document: where a new sentence is located and how it fits into the current context. Further, information such as the relation types and nuclearity reflect the relative importance of discourse units. This information is beneficial for many downstream applications in NLP (Section 3.3). We discover synergistic tasks such as text classification [START_REF] Ji | Neural discourse structure for text categorization[END_REF][START_REF] Ferracane | Leveraging discourse information effectively for authorship attribution[END_REF], sentiment analysis [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF][START_REF] Hogenboom | Using rhetorical structure in sentiment analysis[END_REF] et al., 2015;[START_REF] Nejat | Exploring joint neural model for sentence level discourse parsing and sentiment analysis[END_REF], topic segmentation (Jiang et al., 2021a), machine translation [START_REF] Marcu | The theory and practice of discourse parsing and summarization[END_REF][START_REF] Tu | A novel translation framework based on rhetorical structure theory[END_REF][START_REF] Joty | Discourse structure in machine translation evaluation[END_REF], summarization [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF][START_REF] Hirao | Single-document summarization as a tree knapsack problem[END_REF][START_REF] Yoshida | Dependency-based discourse parser for single-document summarization[END_REF][START_REF] Gerani | Abstractive summarization of product reviews using discourse structure[END_REF][START_REF] Xu | Discourse-aware neural extractive text summarization[END_REF], and question answering (Verberne et al., 2007b;[START_REF] Jansen | Discourse complements lexical semantics for non-factoid answer reranking[END_REF]. In particular, dependency-style discourse representation has been studied intensively in recent years for dialogue-related tasks such as dialogue comprehension in the form of question answering [START_REF] Ma | Enhanced speaker-aware multi-party multi-turn dialogue comprehension[END_REF][START_REF] Li | Dadgraph: A discourse-aware dialogue graph neural network for multiparty dialogue machine reading comprehension[END_REF][START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF], and dialogue summarization [START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF][START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF].

Resources & Existing Models

Discourse theories such as RST [START_REF] Mann | Discourse structures for text generation[END_REF], SDRT [START_REF] Asher | Logics of conversation[END_REF], and PDTB's framework (Prasad et al., 2008a) have lead various annotation projects worldwide, leaving discourse corpora in multiple languages (Section 2.3): English (Carlson et al., 2002a), French [START_REF] Péry-Woodley | La ressource annodis, un corpus enrichi d'annotations discursives[END_REF]Afantenos et al., 2012a), Basque [START_REF] Iruskieta | The rst basque treebank: an online search interface to check rhetorical relations[END_REF], Chinese [START_REF] Cao | Discourse segmentation for building a rst chinese treebank[END_REF][START_REF] Cao | The rst spanish-chinese treebank[END_REF], Russian [START_REF] Shelmanov | Towards the data-driven system for rhetorical parsing of russian texts[END_REF], etc 4 . Among these, the RST-style corpus RST-DT [START_REF] Carlson | RST discourse treebank[END_REF] and the SDRT-style corpus STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] are the most commonly used for training and testing automatic discourse parsers in monologue and dialogue settings, respectively. Despite their popularity, these corpora are relatively limited in size: RST-DT consists of only 385 Wall Street Journal news articles (approximately 21.8k DUs), and STAC comprises 45 gaming conversations (approximately 10k DUs). Other resources available are even smaller in size. In comparison to research on syntax parsing, Universal Dependencies5 [START_REF] Nivre | Universal dependencies v1: A multilingual treebank collection[END_REF] offers a vast collection of over 200 treebanks spanning over 100 languages. For English alone, there are nine treebanks available, comprising more than 46k annotated sentences. The size of annotated discourse treebanks may hinder the development of general and high-functional discourse parsers, making them not easily applicable to downstream applications [START_REF] Vargas | Rhetorical structure approach for online deception detection: A survey[END_REF]. Other issues in discourse corpora include the unstandardized annotation guidelines originating from different discourse theories [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF], the un-matchable evaluation criteria [START_REF] Zeldes | The disrpt 2021 shared task on elementary discourse unit segmentation, connective detection, and relation classification[END_REF], and sometimes the questionable annotation quality (Section 2. 3.5). There is good reason to believe that performance on discourse analysis and parsing has a substantial way to go [START_REF] Morey | How much progress have we made on RST discourse parsing? a replication study of recent results on the RST-DT[END_REF][START_REF] Zeldes | The disrpt 2019 shared task on elementary discourse unit segmentation and connective detection[END_REF]. Through shared tasks like DISRPT, the discourse community shares the desire to foster collaboration and promote standardized data formats, consistent evaluation guidelines, and diverse discourse tasks. Through these collective efforts, we anticipate achieving greater transparency in comparing different systems and their performance in the field.

Traditional discourse parsing approaches are near-exclusively focusing on supervised models, trained and tested in the same domain (Section 3.2.1). These models can be roughly categorized into transition-based and graph-based approaches: the first one focuses on global optimization over the entire structure, while the second focuses on local optimal. State-of-the-art models on STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] corpus such as Deep Sequential [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF], Structureaware GNN (Wang et al., 2021a), and Structural-joint [START_REF] Chi | Structured dialogue discourse parsing[END_REF] reach the low 70s on naked structure prediction (without relations), and only middle-50s on the full parsing.

Due to the data sparsity issue and the prevalence of transfer learning techniques, researchers started to explore different forms of semi-supervised and weakly-supervised approaches. In the pioneering work of [START_REF] Liu | Learning structured text representations[END_REF], authors produced latent tree structures from summarization task. Even though the generated trees are proven to be shallow and trivial [START_REF] Ferracane | Evaluating discourse in structured text representations[END_REF], their approach of inferring discourse tree structure from attention mechanisms has inspired many subsequent studies, including our own research on naked discourse structure prediction (Chapter 7). In the paradigm of distant supervision (Section 3.2.2.1), several studies have emerged that leverage information from other tasks such as sentiment analysis [START_REF] Huber | Predicting discourse structure using distant supervision from sentiment[END_REF], summarization [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF], and topic segmentation (Jiang et al., 2021a). These studies aim to infer discourse structure solely based on the information obtained from auxiliary tasks, eliminating the need for human annotation. While these approaches offer novel ideas and insightful findings, their model performances tend to be relatively low. Additionally, most of these models are focused on structure prediction, with limited or no discussion on relation prediction. Furthermore, their evaluation has been primarily conducted in the monologue scenario, specifically with RST-style parsing. Another line of research explores the potential of weakly supervised learning (Section 3.2.3), where the idea is to make a slight trade-off between quality and quantity. For instance, Badene et al. (2019b,a) employed expert-composed heuristics within the Snorkel framework [START_REF] Ratner | Snorkel: Rapid training data creation with weak supervision[END_REF] to capture EDU attachment on raw data. They demonstrated promising results on the STAC corpus, comparable to those of a locally supervised model [START_REF] Perret | Integer linear programming for discourse parsing[END_REF]. However, this approach has a drawback in terms of the complex rule-writing process, which requires experts and a large validation set for verification. Moreover, these rules can only address a limited number of relation attachments, resulting in biased outcomes.

In real-life scenarios, how can we make use of pre-trained discourse parsers on the target domain? Research by [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF] shows that direct transfer results in poor performance which can be lower than simple baselines. The generalization issue in discourse parsing thus triggered studies in unsupervised domain adaptation (Section 3.2.4). Particularly, we advocate the work by [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] where authors apply several bootstrapping strategies, including self-training, co-training, and tri-training for domain adaptation. By using pseudolabeled data to enrich the model during retraining, they increased the initial performances in the dialogue setting by 6 and 2 points for naked structure and full structure parsing, respectively. Inspired by their work, we build up our research for discourse relation prediction using selftraining strategies (Chapter 8).

Focus & Contributions

A dialogue corresponds to exchanges between two or more people, in contrast to monologues which are usually authored by a single person. Dialogues are generally less structured, interspersed with more informal linguistic usage [START_REF] Sacks | A simplest systematics for the organization of turn taking for conversation[END_REF], and have structural particularities such as diamond-shaped structures [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] (Section 2.4). These characteristics construct the richness in dialogues but also pose difficulties in analysis. Our focus in this thesis is discourse in dialogues.

The recent rise of reliable transcription methods and a spike in online communication led to an astonishing explosion of dialogue data. As a result, the need for automatic systems to process dialogues has increased dramatically. For example, summarization of meetings or exchanges with customer service agents could be used to enhance collaborations or analyze customers issues [START_REF] Li | Keep meeting summaries on topic: Abstractive multi-modal meeting summarization[END_REF]Feng et al., 2021a); machine reading comprehension in the form of question-answering could improve dialogue agents' performance and help knowledge graph construction [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF][START_REF] Li | Dadgraph: A discourse-aware dialogue graph neural network for multiparty dialogue machine reading comprehension[END_REF]. However, simple surface-level features are oftentimes not sufficient to extract valuable information from conversations [START_REF] Qin | Joint modeling of content and discourse relations in dialogues[END_REF]. Instead, it is necessary to comprehend the semantic and pragmatic relationships that structure the dialogue, such as the RQ1 How can we effectively use discourse and structural information as linguistic features in text classification tasks for dialogue, such as mental disorder illness detection?

RQ2 How can we generate discourse structures with machine learning techniques using minimal supervision to achieve the greatest applicability in real-life scenarios?

Both research questions are approached with a few sub-projects. We illustrate the research objectives ("Level"), corresponding tasks ("Task"), employed methods ("Model / Architecture"), and outcomes ("Output") in Figure 1.3. Each project has typically one publication, and we intend to showcase them in their respective chapters ("Presentation").

To address RQ1, we pursue the first research line "Feature Discovery", which aims to investigate discourse in a general sense that is not limited to SDRT-style or RST-style structures. Initially, we focus on text classification tasks that involve the use of basic discourse markers like discourse connectives and dialogue acts. Two tasks are conducted in the cognitive impairment field: the first one is Schizophrenia detection (Chapter 4), which leads to two publications [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF]Li et al., 2021a) and a few communication talks including French national Health and Language Seminar6 and Semantics and Pragmatics of Dialogue Workshop (SemDial 2021) 7 ; the second one is depressive detection (Chapter 5) with one international publication and presentation at SIGDial conference [START_REF] Li | Multi-task learning for depression detection in dialogs[END_REF]. The cognitive impairment setting makes for a realistic situation. Today, approximately 0.5% of adults worldwide are affected by Schizophrenia. Depression's impact is even larger: around 4% of the world population and a higher rate in elderly people, according to the numbers reported by the World Health Organization. These mental illnesses manifest varied symptoms, among which there are linguistic disorders such as the disorganized language and poverty in vocabulary (Kuperberg, 2010a). NLP

Focus & Contributions

practitioners can leverage language disorders as a potential source of symptoms for linguistic analysis to gain insights into the disease and its manifestations. This, in turn, could aid in the early-stage detection of the disease and eventually provide assistance in its treatment. Current models for mental disorder detection, however, are far from ideal. The majority of research in this field relies on social media data [START_REF] Benton | Multitask learning for mental health conditions with limited social media data[END_REF][START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF]Birnbaum et al., 2017a;[START_REF] Guntuku | Detecting depression and mental illness on social media: an integrative review[END_REF], with a particular emphasis on lexical information. However, as highlighted in our study (Li et al., 2021a), these approaches have limitations in certain languages and could lead to biased results. Our objective is to develop more reliable and robust models, which prompts us to explore linguistic features that rely less on lexical information and instead leverage structural information. The outcomes of our investigation are gradual and unfold across two projects. Chapter 4 presents the first project of the language detection of Schizophrenia. We observe that lexical features, although highly accurate, exhibit heavy bias. As a result, we explore delexicalized features such as syntactic trees and less-lexicalized features such as discourse connectives. Further, in our exploration of dialogue structure modeling, we introduce diverse context window sizes to investigate the influence of context length. This approach not only enables us to expand the training instances but also serves as a partial remedy for the limited annotated data. By replicating state-of-the-art results, we confirm some previous observations regarding specific linguistic features present in the language of Schizophrenia. Following that, in Chapter 5, we delve into the detection of depression in dialogues. In the absence of gold discourse structures, we propose to incorporate discourse information into the Multi-Task Learning (MTL) framework by utilizing shallow discourse features, such as dialogue acts, from another annotated resource. We adopt a simple yet effective approach known as the fully-shared scheme, where hidden layers are shared across all tasks. To enhance the modeling of dialogue structures, we introduce a hierarchical structure within the MTL framework. Our approach achieves the highest performance compared to existing studies, validating the advantages of incorporating multi-level structural-aware model architecture.

To address RQ2, we establish a second research line called "Structure Prediction". Our work is grounded in the Segmented Discourse Representation Theory and utilizes the STAC corpus for practical implementation. We embark on a two-step approach to tackle this research line. The first step is naked discourse structure prediction, presented in Chapter 7. It is worth noting that naked structures have been demonstrated to be valuable features for specific tasks, such as content selection [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF] and thread extraction [START_REF] Jiang | How can we know what language models know?[END_REF]. It is a collaborative effort with colleagues at the University of British Columbia in Vancouver during my internship at the UBC NLP group. This project results in a publication at the EACL 2023 conference [START_REF] Li | Discourse structure extraction from pre-trained and fine-tuned language models in dialogues[END_REF] and a presentation at the 4 th Workshop on Computational Approaches to Discourse (CODI 2023). Unlike previous studies that rely on full supervision [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF][START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF][START_REF] Chi | Structured dialogue discourse parsing[END_REF], our goal is to perform discourse parsing with less human-annotated data, so that our parser can be used in more general cases. However, selecting the appropriate distant or weak supervision signals is not an easy feat. In view of the promising findings of discourse information captured in pre-trained language models (PLMs), as introduced in Chapter 6, we ultimately choose PLMs as the source of supervision. We explore various PLMs and discover that the encoder network in BART model [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] performs the best. We also propose fine-tuning tasks tailored to dialogues to enhance discourse information encoded in attention matrices, without requiring additional annotation. Subsequently, in Chapter 8, we carry out a study on discourse relation prediction based on the structure extracted from PLMs. Taking cues from the approaches outlined in [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF], we employ bootstrapping strategies via self-training. Using a few annotated documents, we first train a source model and then use it to generate pseudo labels on unannotated data. High-confidence pseudo-labeled instances are selected and combined with the original documents for a new round of model training. Through iterative self-training, we obtain a model that achieves optimal accuracy and class coverage. In addition, we provide complete parsing results that combine EDU segmentation, structure prediction, and relation classification, thereby establishing the first benchmark for a full discourse parser for dialogues trained using weak supervision. The empirical findings demonstrate a gradual advancement, albeit modest, that signifies the pioneering nature of this project in the expectation of full discourse parsing in dialogues.

Thesis Organization

The thesis is organized into three parts. Part I, titled "Discourse Analysis Foundations", focuses on discourse theories and state-of-the-art models for discourse parsing. It comprises two chapters.

In Chapter 2, we briefly introduce basic elements of discourse analysis, followed by a presentation of two influential discourse theories: Rhetorical Structure Theory [START_REF] Mann | Discourse structures for text generation[END_REF] and Segmented Discourse Representation Theory [START_REF] Asher | Logics of conversation[END_REF]. These theories have inspired the creation of many discourse corpora, including RST-DT (Carlson et al., 2002a) and STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], the latter being the primary corpus for our experiments. We also explore other discourse corpora, including the PDTB framework (Prasad et al., 2008a) and datasets constructed under other frameworks. To address the concerns about the quality of discourse annotation, we conduct a detailed examination of the recent SDRT-style corpus Molweni [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF]. Finally, we expand the discourse analysis discussion to the specificities of discourse in different language settings, including distinctions between spoken and written language, as well as between monologues and dialogues.

Chapter 3 explores the existing discourse parsing models, typically under the RST and the SDRT frameworks. In the past decade, supervised methods with graph-based or transition-based parsing paradigms have been commonly used. They are trained and tested in the same domain and contribute the state-of-the-art performances on corpora such as RST-DT and STAC. In recent years, transfer learning strategies have shown rapid development, but most semi-supervised and distantly-supervised methods have only been applied to monologues. We study these models in great detail by comparing their architecture and training process. Lastly, we focus on the practical applications of discourse in Natural Language Understanding (NLU) and Natural Language Generation (NLG) tasks. We conclude this chapter by discussing the current state of discourse usage in downstream applications and offering insights for the development of future discourse-aware models.

Part II, titled "Discourse Structure Discovery", is dedicated to addressing the first research question (RQ1). It showcases two text classification projects in two chapters.

Chapter 4 discusses the task of classification of the language of Schizophrenia. We start by analyzing the existing work in the field, along with the drawbacks of current models due to lexical biases and the limited size of the dataset. To address these challenges, we propose various strategies, including better data representation and dialogue structure modeling. The experiments are performed on a small French corpus derived from the SLAM project. Our results demonstrate the effectiveness of delexicalized and less-lexicalized features in building more robust models. Moreover, we conduct an extensive analysis of lexical, syntactic, discourse, and dialogue features in the context of the language of Schizophrenia.

Chapter 5 delves into the challenge of detecting depression in dialogues. In this chapter, we place a greater emphasis on enhancing dialogue structural modeling. We discover a larger, publicly available corpus DAIC-WOZ [START_REF] Devault | Simsensei kiosk: A virtual human interviewer for healthcare decision support[END_REF] that allows for comparisons with existing 1.4. Thesis Organization work. Our design is a hierarchical architecture that encodes interactions in a dialogue. We test this model under a Multi-Task Learning framework, allowing us to learn from disease-related information, such as sentiment and dialogue acts. Our model attains the highest performance compared to existing approaches, establishing a new state-of-the-art. Our analysis highlights the crucial role of integrating structural information and discourse-relevant signals.

Part III, titled "Discourse Structure Prediction", tackles the second research question (RQ2) and aims to construct a full discourse parsing pipeline with minimal supervision. This part contains three chapters.

In Chapter 6, we provide an introduction to Pre-trained Language Models (PLMs) and delve into the field of "BERTology", which focuses on studying the inner workings of Transformer-based models. This chapter serves as a foundation for the subsequent chapters, as we utilize PLMs as the backbone to learn and extract discourse information. We also explore various studies in the discourse field that employ probing tasks or self-supervised learning to extract discourse information, thereby establishing the context for our research.

Chapter 7 introduces our innovative approaches for extracting naked discourse structures from the attention matrices of PLMs. This step is crucial in the development of a complete discourse parser. We begin by providing a detailed presentation on the selection of PLMs, discourse tree inference methods, and semi-supervised and unsupervised strategies for identifying the most discourse-rich attention heads. Our experiments on the STAC corpus yield promising results, even with a small annotated dataset of only 50 documents. We then conduct a comprehensive analysis to investigate various factors that influence model performance, for instance, document length and the distance between EDUs. To assess the generalization of our approach, we also evaluate our model on the dialogue portion of the GUM corpus [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF], albeit with less satisfactory results. It is worth mentioning that GUM uses a different annotation framework (RST) and it contains monologue-like conversations. In a deployment scenario, we utilize predicted EDUs instead of gold-standard ones for link prediction, aiming to evaluate the performance of our model under realistic conditions. Lastly, we explore methods to extend the tree structures into graphs and present modest improvements.

In Chapter 8, we present our experiments on relation prediction as a second step towards achieving full discourse parsing. Our approach involves utilizing a self-training strategy inspired by the work of [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. We employ a BERT-base model, fine-tuned with small-size annotated relation data. Despite its simplicity, leveraging PLMs as backbones has proven effective in capturing implicit relations Shi and Demberg (2019). We conduct an in-depth analysis to evaluate the impact of iterative self-training on relation prediction. Our findings reveal that this approach improves the performance of infrequent relations, although it necessitates careful tuning. We also explore the trade-off between the model's reliability and coverage, investigating how different strategies can balance these two aspects. In addition, we delve into the potential benefits of incorporating human feedback to further enhance the performance of our model.

Part I

Discourse Analysis Foundations

Part I of this thesis focuses on establishing the foundation for discourse analysis, which is divided into two chapters. In Chapter 2, we cover the fundamental elements and theories of discourse analysis, as well as annotation projects inspired by those theories. We discuss discourse in general, as well as in specific scenarios, such as different language devices (monologues versus dialogues, spoken versus written), to provide a general understanding of this topic. This chapter offers a step-by-step explanation of discourse processing for those unfamiliar with the concept, while for those who are, we hope that it serves as a summary and refresher.

In Chapter 3, we shift our focus to a specific task in discourse processing, i.e., discourse parsing. We provide an overview of the most commonly used methods for automatically extracting a discourse structure (SDRT-style graph or RST-style tree) from full documents. Due to the scarcity of annotated data, various Machine Learning methods have been proposed, mostly focusing on supervised learning strategies. Other strategies include transfer learning and weakly supervised learning to tackle insufficient learning examples. We conduct a thorough analysis of different strategies for discourse parsing and include pointers to our own experiments where applicable. For readers who are already familiar with these studies, they may utilize these references to proceed to our contributions in part III. Finally, at the end of the chapter, we expand the discourse parsing discussion to include its application in downstream tasks. We explore how discourse knowledge can be beneficial for NLP tasks such as summarization and sentiment analysis, and provide a comprehensive summary of current state-of-the-art discourse-aware models. We also provide suggestions on how to enhance the integration of discourse information in these tasks. Although we do not conduct any experiments on downstream tasks in this thesis, it is an intriguing topic for future research. Discourse refers to the use of language by humans in a variety of contexts, such as essays, conversations, speeches, and more. It can take different forms, including spoken or written, monologues or dialogues, and can appear in various domains such as online technical forums or news articles. Regardless of these different expressions, the term discourse refers to the organization of language in a context. The objective of discourse analysis is to reveal the structural organization of language and understand how sentences interact with each other in order to give a plausible interpretation of communicative goals.

In this chapter, our focus is on the theoretical background of discourse analysis. We begin by presenting some key elements in discourse analysis in Section 2.1. Discourse Units (DUs) are the building blocks of discourse analysis, and refer to spans of texts that serve as the basic information carrier. The smallest discourse units are known as Elementary Discourse Units (EDUs), and the composition of EDUs creates intermediate discourse units, called Complex Discourse Units (CDUs) in some theories. Discourse connectives provide important clues for discourse relations. For instance, the word but shows strong evidence of the relation Contrast relation, and because demonstrate an Explanation relation. Different formalisms interpret what kind of relationship should be established in discourse, with some being intention-based and stressing communicative goals, while others are semantic-based and use states and event descriptions. Following the presentation of the basic elements in discourse analysis, we delve into two major discourse theories in Section 2.2: Rhetorical Structure Theory (RST) [START_REF] Mann | Discourse structures for text generation[END_REF][START_REF] Mann | Rhetorical structure theory: Description and construction of text structures[END_REF] and Segmented Discourse Representation Theory (SDRT) [START_REF] Asher | Reference to abstract objects in discourse[END_REF][START_REF] Lascarides | Temporal interpretation, discourse relations and commonsense entailment[END_REF][START_REF] Asher | Logics of conversation[END_REF]. These theories are widely recognized as the most influential in full discourse analysis, which involves constructing the global structure of a document, as opposed to local discourse analysis (also known as "chunking" or "chunk parsing") such as the Penn Discourse Treebank-(PDTB-) style analysis. In Section 2.3, we discuss several annotation projects influenced by various formalisms, such as RST and SDRT, along with other frameworks. These annotated corpora are essential for training automatic discourse parsers, providing valuable examples and patterns for machine learning. Additionally, we draw attention to potential annotation issues in a recently released corpus Molweni [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF]. Finally, in Section 2.4, we conclude the chapter by comparing discourse across different language settings (e.g., monologues vs. dialogues) and reviewing recent attempts to adapt existing discourse theories to new scenarios (e.g., from written to spoken language).

Basic Elements in Discourse Analysis

We start by introducing the basic elements of discourse analysis, including Elementary Discourse Units, discourse connectives, and discourse relations. Connectives and discourse relations are useful for identifying important information in a text. For example, an Elaboration relation signifies a more detailed explanation of a given statement, while an explicit connective like but typically indicates a Contrast between two text spans, with more emphasis on the second. Some frameworks also provide information on the relative importance of elements in addition to discourse relations, which could be useful for downstream NLP tasks like text summarization.

Discourse Units

Given a two-sentence text, as shown in example (1), how many discourse units are there? This might seem to be an easy question at first sight, but has arose lots of discussion in the field of computational linguistics since the 80s [START_REF] Grosz | Attention, intentions, and the structure of discourse[END_REF][START_REF] Polanyi | A formal model of the structure of discourse[END_REF][START_REF] Hobbs | Coherence and coreference[END_REF][START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF][START_REF] Passonneau | Discourse segmentation by human and automated means[END_REF]. Before addressing this question, it is important to establish a definition of what constitutes a discourse unit. These segments, largely known as Elementary Discourse Units (EDUs) or Basic Discourse Units (BDUs, in [START_REF] Polanyi | A formal model of the structure of discourse[END_REF]), are the building blocks for discourse analysis. For written text, it is basically taken for granted that sentence boundary is also EDU boundary, which means that EDUs do not span across sentences [START_REF] Stede | Discourse processing[END_REF]. So, the question becomes whether a sentence should be further divided into smaller units. wsj_0627 in RST-DT [START_REF] Carlson | RST discourse treebank[END_REF] Taken from the guidelines of Rhetorical Structure Theory (RST) [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF], annotators of RST identified 6 discourse units (bracketed units sub-scripted with numbers) in example (1). However, in the Linguistic Discourse Model (LDM) [START_REF] Polanyi | A syntactic approach to discourse semantics[END_REF][START_REF] Polanyi | A formal model of the structure of discourse[END_REF], authors would probably argue that segments 4, 5, 6 together form one basic unit so they would end up with 4 discourse units in total. This is because, in the LDM, proper discourse units are only those that can be independently continued in the subsequent discourse. So in this example, the interpolation segment "-manufacturing strength -" can not be considered as a separate segment.

Other commonly seen linguistic problems when defining the criteria for EDUs include the treatment of various kinds of ellipsis, relative clauses (example ( 2)), and prepositional phrases (example (3)).

(2) a. [The car that was red] [START_REF] Stede | Discourse processing[END_REF] For relative clauses, the restrictive relative clause ("that was red" in (2)a) serves only to identify a referent which often can be paraphrased with an adjectival modifier (identical to "the red car"), so that we would not want to separate this clause from the noun phrase "The car". In the case of non-restrictive clause ((2)b), on the other hand, "which my friend had bought last week" provides a new information piece and thus a new discourse unit, so we could treat it as a separate EDU. Note that not all restrictive/non-restrictive relative clauses are easy to distinguish, and not all the theories agree on treating non-restrictive relatives clauses as separate EDUs -as the case in [START_REF] Polanyi | A rule based approach to discourse parsing[END_REF].

(3) [Tom is late] 1 [because of the rain.] 2

Researchers have different perspectives when it comes to prepositional phrases. According to [START_REF] Tofiloski | A syntactic and lexical-based discourse segmenter[END_REF], every EDU must contain a verb. Therefore, in example (3), the second part should not be separated. However, in the RST-DT annotation guideline [START_REF] Carlson | RST discourse treebank[END_REF], it is a classic case with two EDUs and an inner-sentential relation of causality.

In the Linguistic Discourse Model [START_REF] Polanyi | A rule based approach to discourse parsing[END_REF], discourse segments are defined as "syntactic constructions that encode a minimum unit of meaning and/or discourse function interpretable relative to a set of contexts". The "minimum unit of meaning" communicates information about no more than one event, event type, or state of affairs, and the "minimal functional unit" encodes information about how it relates structurally, semantically, internationally, or rhetorically to other units in the discourse or to the extra-linguistic context. Based on discourse segments, basic discourse units are then identified, which are "discourse segments of a type that can be independently continued". Operator segments that are heavily integrated into other nominal (such as the interpolation in Example ( 1)) or verbal constructions cannot be accessed for independent continuation, thus not a EDU. A more loose definition of EDUs consider that these small units convey a minimum unit of meaning, similar to "words" in syntactic analysis, as in RST [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF] which do not stress on the independent continuation property. The Penn Discourse Treebank (PDTB) model (Prasad et al., 2008a) does not incorporate the concept of discourse units. Instead, it employs the notion of arguments, which are text segments that express discourse relations. This distinction arises from PDTB's unique annotation process, which involves first identifying discourse relations and then identifying segments. Essentially, [START_REF] Stede | Discourse processing[END_REF] proposed a general definition of EDU as follows:

Definition 1 (Elementary Discourse Unit (EDU)) A span of text, usually a clause, but in general ranging from minimally a (nominalization) NP to maximally a sentence. It denotes a single event or type of event, serving as a complete, distinct unit of information that the subsequent discourse may connect to. An EDU may be structurally embedded in another.

From the discussion above, we realize that it is very difficult to reach one precise definition of discourse segments. Different theories have different reasoning for linguistic phenomena and thus different criteria to segment discourse units. Most of them are not even clearly described [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF]. It is clear, however, that a discourse segment must serve a specific purpose in relation to the other parts of the text. These semantic and/or pragmatic functions determine the relationships that are established between these segments. As the initial step in discourse analysis, the segmentation of discourse units should be performed in an objective and impartial manner, in order to avoid any potential bias in subsequent processing.

Discourse Connectives

Having looked at elementary discourse units, we now present signals that help to identify the coherence relations, typically, the connectives. Words (or multiwords) such as because, but, although, and in contrast provide signals for new pieces of information, and indicate how they link with the previous ones: seeing because, readers expect an explanation to follow; reading but, readers anticipate a contrast and often times expect a more crucial information to come.

What do connectives link and how do they contribute to the interpretation of text? In [START_REF] Rouchota | Discourse connectives: what do they link[END_REF], the author presented two frameworks to explain the semantic and pragmatic properties of connectives: coherence-based framework and relevance-theoretic framework. The former follows the line of research of [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF]; [START_REF] Fraser | An approach to discourse markers[END_REF]; [START_REF] Sanders | Coherence relations in a cognitive theory of discourse representation[END_REF]; [START_REF] Knott | Using linguistic phenomena to motivate a set of coherence relations[END_REF], stressing coherent text and how these "cue words" can make such discourse relations explicit. The latter -relevance-theoretic approach -focuses on communicative purpose and how connectives can encode procedural information, as supported by [START_REF] Blakemore | Semantic constraints on relevance[END_REF]; [START_REF] Wilson | Linguistic form and relevance[END_REF]. In this section, we mainly focus on the coherence aspect of connectives and discuss how connectives can help identify coherence relations.

We consider that discourse connectives form a closed set and can be of different morphosyntactic categories. Different languages have different ways of relation expression, thus the size of connective inventories varies. PDTB (Prasad et al., 2008a) for instance, contains around 100 forms of English connectives and is classified into 3 sense hierarchies (i.e. relation). Note that the modified forms of connectives are treated as belonging to the same type as the unmodified forms. It annotates both explicit connectives -including subordinating conjunctions (e.g., "when", "although", "if"), coordinating conjunctions (e.g., "and", "but"), and adverbial connectives (e.g., "however", "therefore"), and implicit connectives which are identified between adjacent sentences that are not related by an explicit connective 1 . German connective lexicon DiMLex [START_REF] Stede | Dimlex: A lexicon of discourse markers for text generation and understanding[END_REF] was constructed around 170 frequent connectives. For Chinese, since the morphological forms of connectives are more flexible 2 , 282 Chinese connectives are annotated on the 1 The annotation of implicit connectives is intended to capture discourse relations that are implicitly expressed between adjacent sentences. During annotation, annotators were asked to provide an explicit connective that can best describe the relation. In this thesis, we coarsely characterize discourse relations into two types: explicit connectives and implicit connectives. But this classification is not accurate. Note that there are cases where an implicit connective could not be provided. In PDTB 2.0 annotation guideline, "AltLex", "EntRel" and "NoRel" are used for these cases (Prasad et al., 2008a).

2 Chinese connectives can contain more than one word and can be discontinuous. For example "不是...而是(is not... is)" or even paired connectives such as "因为...所以(because...so)".

Chinese Discourse Treebank (CDTB) [START_REF] Xue | The penn chinese treebank: Phrase structure annotation of a large corpus[END_REF][START_REF] Li | Building chinese discourse corpus with connective-driven dependency tree structure[END_REF]. LexConn [START_REF] Roze | Lexconn: a french lexicon of discourse connectives[END_REF] is a French connective inventory that contains 328 forms of connectives. Subsequently, French Discourse Treebank (FDTB1) [START_REF] Steinlin | Fdtb1: Repérage des connecteurs de discours en corpus[END_REF] was created based on LexConn and it gathered more than 10k connectives corresponding to 353 forms, much larger than that in English. Other connective lexicons include for instance Spanish [START_REF] Alemany | Lexicón computacional de marcadores de discurso[END_REF], Czech [START_REF] Mírovskỳ | Czedlex-a lexicon of czech discourse connectives[END_REF], and Italian [START_REF] Feltracco | Lico: A lexicon of italian connectives[END_REF]. Very recently, an effort towards multilingual lexicon resources for connectives has been put forward by [START_REF] Stede | Connective-lex: A web-based multilingual lexical resource for connectives[END_REF], where an online discourse database Connective-Lex displays the existing and newly-created lexicons in 13 different languages 3 .

Apart from the forms of connectives, each connective can present in different positions of the sentence, depending on their syntactic role. Take English connectives as an example, discourse connectives could take different morpho-syntactic forms, such as coordinating conjunction (and, but), subordinating conjunction (if, because), discourse adverbials (however, since, consequently), nominal phrases (the reason, as a result of ), or even some verbs (cause). Due to their syntactic nature, they can occur at different places in a sentence [START_REF] Rouchota | Discourse connectives: what do they link[END_REF]. Conjunctions, for instance, can only occur at the beginning of the clause they introduce: but is the prototypical example in this category, where it can only appear at the beginning of the sentence ((4)a) and not elsewhere ((4)b):

(4) a. John bought a house, but he is not happy. b. John bought a house, he is, but, not happy. * Other connectives, such as adverbials, have more flexible syntactic properties so that they may occur at the beginning, middle, or end of the sentence. A similar example by replacing but to however :

(5) a. John bought a house. However, he is not happy. b. John bought a house. He is, however, not happy. c. John bought a house. He is not happy, however.

In principle, connectives are very useful indices for identifying coherence relations. However, recognizing the form of a connective is not sufficient. For one point, some relations are always implicit, meaning that they are simply not lexicalized, such as Frame in ANNODIS corpus Afantenos et al. (2012a). This relation describes a relationship that links a detached adverbial at the head of a proposition, introducing a frame that localizes a situation temporally or spatially, and the segment to which this frame relates. An example in [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF]: "The next day, Mr Pitoun was found safe and sound.", where the relation between the two text spans can not be lexicalized.

For lexicalized relations, sometimes, explicit connectives can also be omitted. For instance, in the following example, the omitted discourse connective is however, and the discourse relation (or sense in the PDTB terminology) is Comparison.Contrast. We can manually add back the connective. However, it is worth noting that this action could, sometimes, modify the sense or remove the existing sense. In example [START_REF]ztime: can give wheat[END_REF], inferred connective however does not contain the idea of a temporal succession between the sentences. [START_REF]ztime: can give wheat[END_REF] ["Kemper is the first firm to make a major statement with program trading."] arg1 He added that ["having just one firm do this isn't going to mean a hill of beans."] arg2 wsj_1000 in PDTB (Prasad et al., 2008a) For another point, the form of connectives can be ambiguous at two levels: first, they can be used in discourse-usage or non-discourse-usage settings. One word with the form of a connective is not always employed for discourse use. For instance, and is a conjunction connective when it links the propositions (in (7)b and implies continuation relation), but it not when it coordinates nominal words (in (7)a). Another example is the word once: it can be either a temporal discourse connective or simply a word meaning "formerly". ( 7) a. Lithuania, Latvia and Estonia thus open themselves to the multiparty system. b. The CGT transport federation have risen against "the lack of consultation" and consider that employees have "nothing positive to expect from this restructuring."

FDTB1 [START_REF] Danlos | Vers le fdtb: French discourse tree bank[END_REF], translation provided by [START_REF] Laali | Automatic disambiguation of french discourse connectives[END_REF] Secondly, discourse connectives may be used to signal more than one discourse relation. For example, the word since can serve as either a temporal or causal connective. In the shared task CoNLL-2016 (using PDTB-2.0 dataset (Prasad et al., 2008a)), we find connectives with more than 8 senses, such as then, as, when, and but, making the sense classification very difficult. There exists a fruitful line of research on the disambiguation of discourse connectives: pioneered by [START_REF] Pitler | Using syntax to disambiguate explicit discourse connectives in text[END_REF] where authors proposed to use syntactic features and connectives themselves, with very promising results on PDTB. Follow-up works such as [START_REF] Lin | A pdtb-styled end-to-end discourse parser[END_REF] further increased the results using contextual and lexico-syntactic information. There has been relatively little research on connective disambiguation in languages other than English, likely due to the lack of annotated corpora. Nonetheless, some work has been done in French [START_REF] Laali | Automatic disambiguation of french discourse connectives[END_REF] and in Arabic [START_REF] Al-Saif | Modelling discourse relations for arabic[END_REF].

Despite the ambiguity property in discourse connectives, there are works investigating plausible semantic sense applicable to a particular connective. Typically, we notice the work by [START_REF] Sileo | Discsense: Automated semantic analysis of discourse markers[END_REF] where authors used a pre-trained model to predict discourse markers with known semantic relations such as discourse relations and sentiment, and study the linkage between discourse markers and relations. They showed association patterns between discourse connectives and semantic categories in discourse corpora such as PDTB, STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], GUM [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF] and several corpora in Natural Language Inference (NLI) tasks, revealing inconspicuous but sensible discourse markers for discourse relations. For example, in example (8), the relation Contradiction can be expressed with any of the following markers: in contrast, initially, and curiously. At first glance, the association of initially and curiously with Contradiction might seem surprising, as one would typically link initially to Explanation or Background relations, and curiously to Elaboration or Explanation relations. However, upon closer examination of the context, they do seem like reasonable matches. A similar case goes for seriously as a marker of Sarcasm. This work provides a novel approach to semantic analysis, utilizing unsupervised methods on a large scale. Rather than relying on established discourse connective sets, the authors investigated a wider range of potential connections between discourse relations and connectives. This approach led to an expanded set of possible associations, although some of these require individual examination and may not be widely applicable 4 . ( 8) a. You will seldom meet new people, in contrast, in medellin you will definitely meet people.

b. If I burn a fingertip I'll moan all night. Initially, it didn't look so bad.

c. He puncture is about the size of a large pea. Curiously, he can see almost no blood.

Discourse markers with contradiction relation, in Discovery [START_REF] Sileo | Mining discourse markers for unsupervised sentence representation learning[END_REF].

Discourse Relations

With discourse units and connectives as clues, we can then use specific relations to link these units. In full discourse parsing theories (such as RST and SDRT), the linkage between two DUs is created in a recursive manner. In a text, two EDUs are connected to one another, forming a larger discourse unit (an internal node, or complex discourse unit (CDU) as we call it in SDRT), which in turn is also subject to relation linking. Recall the previous example ( 1):

( wsj_0627 in RST-DT [START_REF] Carlson | RST discourse treebank[END_REF] When we process RST-style relation linking for this example, elaboration is the relation that links EDU 4 and EDU 5 since the interpolation "manufacturing strength" provides precision on "the thing it's supposed to measure", making them together a larger DU. Contrast relation attaches EDU The concept of discourse structure is linked to the principle of coherence. Theoretical frameworks assume that all coherent discourse has a structure and aim to account for this coherence by describing the organization of discourse. Discourse relations are generally viewed as binary predicates, taking two discourse units. Depending on the theoretical frameworks, they are defined based on various criteria, which leads to different sets of relations, sometimes refined in extensions and in discourse corpora (such as RST and RST-DT corpus). The inventories generally include relations of temporal, causal, conditional, additive, and comparative types. Theoretical frameworks and formalisms also differ in terms of the constraints imposed on the final structure of the document, and thus the way units are linked, possibly prohibiting certain configurations. Depending on the constraints, the final structure obtained is either a tree (as in RST) or a graph (as in SDRT).

In the three main theoretical frameworks, we find different sizes of relations. Initially, [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF] had suggested about 25 relations in the RST framework. When constructing the first large RST-style Discourse Treebank (RST-DT), Carlson et al. (2002a) used a much finer relation inventory: 53 mono-nuclear relations where one DU is more salient than the other one, and 25 multi-nuclear relations where two DUs are of equal importance. The relations are then grouped into 16 coarse-grained categories, see Carlson and Marcu (2001) for a detailed description of the relations. STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] is the most commonly used corpus under the SDRT framework [START_REF] Asher | Logics of conversation[END_REF]. It contains 16 relations. Different from the relations in monologues, dialogue-specific relations such as question-answer-pair, comment, and acknowledgment occupy a large portion of the STAC corpus. In the most popular local discourse analysis corpus PDTB [START_REF] Webber | The penn discourse treebank 3.0 annotation manual[END_REF], there are 3 sense hierarchies for discourse relations. The first level contains 4 coarse relations: temporal, contingency, comparison, and expansion.

Level-2 provides precision on the sub-types of Level-1 relations, for instance, concession and similarity are sub-relations of comparison. Level-3 encodes the direction for asymmetric level-2 relations such as concession, cause, and purpose. Precisely, a sense relation R is symmetric if and only if R(Arg 1 , Arg 2 ) and R(Arg 2 , Arg 1 ) are semantically equivalent. If a relation is not symmetric, it is asymmetric. Although different discourse frameworks have varying relation types, there has been work trying to map discourse relations between frameworks. For instance, an interesting survey by [START_REF] Demberg | How compatible are our discourse annotation frameworks? insights from mapping rst-dt and pdtb annotations[END_REF] explored the compatibility of discourse relations in RST-DT and PDTB 2.0. The findings revealed that RST-DT and PDTB exhibit higher agreement on explicit relations (over 70%) than implicit relations (less than 50%). The ambiguity of connectives emerged as a significant source of disagreement for mapping, and some relations were inherently challenging to distinguish (such as contrast and concession), possibly due to different frequency of usage in RST-DT and PDTB.

An interesting follow-up question is: how to infer these semantico-pragmatic relations between discourse units? Originated with [START_REF] Hobbs | Coherence and coreference[END_REF], there is a line of research trying to model the reasoning process such as the Rhetorical Structure Theory, the Segmented Discourse Representation Theory, Discourse Lexicalized Tree Adjoining Grammer (DLTAG) [START_REF] Webber | Anaphora and discourse structure[END_REF], etc.. As presented in the previous section, explicit discourse markers such as discourse connectives can be of great help when recognizing discourse relations. Their role is similar to that of the "cue word" for topic segmentation and can be interpreted successfully once two discourse units are being set into correspondence with each other [START_REF] Stede | Discourse processing[END_REF]. On the other hand, with no overt linguistic signals, people need to reason about the most likely relation between two segments, possibly by inserting implicit connectives. This inferential process may be more challenging. In a comparison experiment conducted by [START_REF] Soria | Lexical marking of discourse relations-some experimental findings[END_REF], subjects were asked to identify the coherence relation in a text with and without connectives. The study tested three relations: additive, cause, and contrast, and revealed that recognition rates significantly decreased when connectives were absent: 73% → 64%, 89% → 60%, 83% → 43% for the three relations respectively. This is an intriguing discovery that suggests that while explicit linguistic signals aid in the comprehension and reasoning of discourse relations to a great extent, the context itself can provide sufficient information for readers to make accurate inferences even in the absence of connectives.

More recently, some shared tasks around discourse relation prediction have been proposed, such as Shallow Discourse Parsing in CoNLL-2015 [START_REF] Xue | The conll-2015 shared task on shallow discourse parsing[END_REF] and CoNLL-20165 . CoNLL-2016 used the Penn Discourse Treebank and Chinese Discourse Treebank as the shared task datasets to conduct shallow discourse parsing. The parsing task is referred to as "shallow" because the relations in a document are not connected to one another to form a connected structure.

Starting from 2021, the CODI workshop has been organizing DISRPT shared tasks6 , including EDU segmentation, discourse connective identification, and discourse relation classification. These tasks are designed to accommodate various discourse frameworks and are applicable to multiple languages.

Lastly, we briefly present other indices that convey coherence relation. In the PDTB, relations can be expressed lexically by non-connective expressions. In this case, the label "AltLex" is assigned to indicate that adding an implicit connective to express an inferred relation results in redundancy. For example, in sentence ( 9), the phrase "mayhap this metaphorical connection" in bold indicates the relationship with the previous segment, and no additional connective is required.

(9) Ms. Bartlett's previous work, which earned her an international reputation in the nonhorticultural art world, often took gardens as its nominal subject. AltLex Mayhap this metaphorical connection made the BPC Fine Arts Committee think she had a literal green thumb.

Example (7) in Prasad et al. (2008a) Some verbs can also bring strong clues, such as "concede" for Concession relation and "cause" for Cause relation. Punctuation, such as dashes (-) or two colons (:), can succinctly express Explanation and Cause relations. The presence of numbers, such as money or percentages, or comparative lexicons ("stronger", "better", etc.) indicate comparative relationships; dates, days of the week, or months can show temporal relationships [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF].

Different Views of Discourse Analysis

So far we have presented the notions of elementary discourse unit, coherence relation, and explicit signals for relation recognition -discourse connectives. These basic ingredients provide local information about relations between text spans. We are aware that in a text, the linear order of text spans is not arbitrary. Rather, it reflects an underlying logic. To examine the inner coherence in a larger context, we now move from atomic elements to hierarchical structures. Different theoretic frameworks have been proposed to study discourse at the document level. These frameworks aim to define the nature of structures that glue a document together. We present here two frameworks that led to the annotation of corpora at the discourse level: Rhetorical Structure Theory (RST) in Section 2.2.1 and Segmented Discourse Representation Theory (SDRT) in Section 2.2.2.

Rhetorical Structure Theory

The Rhetorical Structure Theory (thereafter RST) is a theory that describes a text by assigning a structure to it. It was first proposed by [START_REF] Mann | Discourse structures for text generation[END_REF]Thompson (1987, 1988) and enriched by the work of [START_REF] Marcu | The rhetorical parsing of unrestricted natural language texts[END_REF]. It has been largely influenced by [START_REF] Grimes | The thread of discourse[END_REF]; [START_REF] Mckeown | Discourse strategies for generating natural-language text[END_REF]; [START_REF] Mann | Discourse structures for text generation[END_REF]. With the original inception for text planning (i.e. generation), RST was also extended in various applications in computational linguistics, cross-linguistic studies, dialogues, and multimedia settings [START_REF] Taboada | Applications of rhetorical structure theory[END_REF]. RST was initially created for just one purpose: text organization [START_REF] Mann | Discourse structures for text generation[END_REF][START_REF] Mann | Rhetorical structure theory: Description and construction of text structures[END_REF]. In order to create a comprehensive theory of text organization while limiting immediate task complexity, Mann and Thompson developed two parts of RST which stand for two theoretic meanings: descriptive and constructive. A Descriptive RST gives almost all small published texts an RST analysis by showing what relations are essential in composing text and how they are linked together. RST analysis is informative about the phenomena of clause combining, conjunction, and related issues about forms and functions. It also has rich knowledge representation. On the other hand, a Constructive RST is the basis of an autonomous computational text planner. It goes beyond the descriptive theory by describing an approach for structure synthesis. It can mimic part of the generation of natural texts and produce appropriate structures. The building process is composed of multiple "Oracles" blocks, such as belief oracle, evidence proposing oracle and evidence supporting oracle.

RST Schemas: Descriptive RST is built upon the elementary analysis units, called schemas. A generic schema is diagrammed in Figure 2.2. It indicates how a particular unit of text is decomposed into multiple components: the two horizontal lines represent two text spans and are linked together by a curved line with relation; the vertical line points to one of the text spans which is called nucleus while other text spans are called satellites. Conceptually, a schema is an abstract pattern that depicts the constituency arrangement of text. They are loosely analogous to grammatical rules [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF].

In most cases, a schema takes two text spans (one satellite and one nucleus), as in Figure 2.3(a). The majority of both schemas and schema applications follow this pattern. Multiple satellites and one nucleus are also allowed in RST, such as the Inform schema in Figure 2.3(d), with the middle text span being the nucleus and two satellites set aside. Another schema type Request, containing motivation and enablement as relations, shares a similar pattern. Figure 2.3(b) is a multinuclear schema to represent a few equal-importance text spans. Here, Contrast schema has exactly two nuclei. Sequence (Figure 2.3(e)) and Joint (Figure 2.3(c)) schemas, on the other hand, have indefinitely many elements. We do not use narrowed curves in the latter case but simply attached curves for multi-nuclei. Depending on the relation types, a satellite may appear on the left or right side of the nucleus. Schema names are the same as the corresponding relation names. We use uppercase for the first letter in schema name and lowercase in relation name, for distinction. In order to initiate an instance of schema, the nucleus must be present, but all satellites are optional. Conventionally, the creation of schemas is not restricted to certain orders, while the analysis of a text takes the left-to-right order when applicable.

A short text is given with a full rhetorical RST structure in [START_REF] Mann | Discourse structures for text generation[END_REF]. The text is an [Tempting as it may be,] 2

[we shouldn't embrace every popular issue that comes along.] 3

[When we do so] 4

[we use precious, limited resources where other players with superior resources are already doing an adequate job.] 5

[Rather, I think we will be stronger and more effective] 6

[if we stick to those issues of governmental structure and process, broadly defined, that have formed the core of our agenda for years.] 7

[Open government, campaign finance reform, and fighting the influence of special interests and big money, these are our kinds of issues.] 8 The clauses are discourse units. In total, there are 7 applications of 5 different schemas: Concessive, Conditional, Thesis/Antithesis, Evidence and Inform. We will present the corresponding relations in the next section (precisely for evidence relation, circled in dashed boxes). As we can see, the constituent tree is built in a bottom-up fashion. An analysis of such structure consists of recursive decomposition into intermediate units (such as [1,[2][3][4][5][START_REF]ztime: can give wheat[END_REF][7][8], [2][3][4][5][START_REF]ztime: can give wheat[END_REF][7][8]) and finally, the smallest text spans (e.g.: [2,3], [4,5]).

RST Relations:

Relation definition is at the heart of RST. A definition is given between two non-overlapping text spans (one nucleus (N) and one satellite (S)), and consists of four fields: (1) constraints on N; (2) constraints on S; (3) constraints on the combination of N and S; (4) the effect. The "effect" field shows how the application of such a relation could satisfy the writer's desire. It secures a valid analysis for a coherent text. When applying RST schemas, "effect" serves as a constraint against inappropriate use of relations. [START_REF] Mann | Rhetorical structure theory: Description and construction of text structures[END_REF] mentioned that descriptive RST is a functional account of a text since this analysis always tries to find out what the writer wants to convey in each part of the text. We retake the example (10) and show one example relation evidence in Table 2.1:

relation: EVIDENCE constraint on N:
Reader might not believe N to a degree satisfactory to Writer constraints on S:

Reader believes S or will find it credible constraints on N+S:

Reader's comprehending S increases reader's belief on N effect:

Reader's belief of N is increased In RST, the application of schemas is recursive. In example (10), we apply twice the evidence relation: the first one is between spans [2][3] and [4][5] and the second one is between [1] and the rest of text spans [2][3][4][5][START_REF]ztime: can give wheat[END_REF][7][8] (circled in dashed boxes in Figure 2.4). In the first scenario, clauses [2][3] make a statement on "we should not embrace every popular issue that comes along" -which may not be believed by a reader at this point; the writer immediately proposes evidence (clauses [4][5]) with an argument on ineffective usage of "precious resources" to support her claim. As such, if the reader finds the evidence convincing, it will increase her belief in the initial statement. Similarly, in the second case, the writer uses the whole text span ( [2][3][4][5][START_REF]ztime: can give wheat[END_REF][7][8]) as evidence to back up her first claim "endorsing NFI is not the right step".

Apart from evidence, justify satellite also intends to increase the reader's belief in the nucleus statement. Instead of providing a new piece of evidence, justify clarifies the statement and increases the readiness. Since the two relations share the same effect, they form a sub-group in the RST relation definition list [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF]. We show the organization of relation groups in Table 2.2. Each group reassembles relations that share a number of characteristics and differ in other attributes. Take another example in the sub-group Antithesis & Concession: both relations aim to cause positive regard towards the nucleus. Antithesis reach the objective by using contrast, while concession does not. Meanwhile, we note that almost all relations are asymmetric. For instance, if span A serves as evidence of span B, then B is definitely not serving as evidence for A.

Another way of organizing RST relations is dichotomous division, such as semantic vs. pragmatic, ideational or non-ideational, etc. [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF] proposed a two-way distinction based on "subject-matter" and "presentational" aspects. In the "subject-matter" group, the relation satellite presents parts of the subject matter, through a causal effect (volitional cause or non-volitional cause), a new piece of information (elaboration, solutionhood ), etc. [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF].

in the "presentational" group, on the other hand, are used to facilitate the presentation process itself. The communicative goal is to increase readers' belief (evidence and justify), desire (motivation), or positive view (antithesis and concession) on the nucleus statement.

The set of relations in RST is not closed [START_REF] Mann | Rhetorical structure theory: Description and construction of text structures[END_REF]. New relation types can be added; old ones can be subdivided or even manipulated to meet the needs of specific phenomena or new domains. The initial relation list in [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF] work has 23 relations (Table 2.2), and then enriched to 30 relations. Among these, Joint is a schema and not a relation.

Nuclearity:

We have already mentioned nucleus and satellite in the schema section. They refer to the relative importance of two text spans in the RST. This characteristic is known as nuclearity. Nuclearity describes the hierarchical structure in a schema. In principle, combined text spans have different functions: one span is more prominent and essential than the others. It delivers the core information and appears at the higher level of schema. Such span is known as nucleus and the remaining ones are satellites. For schemas with multiple relations, there is a single nucleus that all other satellites are related to. Most of the relations in RST obey the single nucleus principle. However, multi-nuclear relations also exist: Sequence and Contrast are two typical relations with multi-nuclei, as shown in sentences [START_REF]Ah great![END_REF] Rhetorical representation theory website: https://www.sfu.ca/rst/01intro/definitions.html Interestingly, nuclearity seems not able to cover all text organization. In enveloping structure (i.e., letters and mails) for instance, the conventional openings and closing are not easily described with nuclearity. Similar in parallel structures such as recipes and product manuals, parallelism organization of text makes the nuclearity assignment less apparent.

Satellite before nucleus: Antithesis, Background, Conditional, Concessive, Justify, Solutionhood Nucleus before satellite: Elaboration, Enablement, Evidence, Purpose, Restatement Table 2.3: Canonical orders of satellite and nucleus in some relations.

Naturally, the concept of nuclearity is closely linked to relations. We have noted that most relations are asymmetric in RST. If A is the consequence of B, then B is not the consequence of A. These asymmetries form a pattern which is represented in the relation definition. Thus, the assignment of nucleus and satellites is generally a by-product of relation labeling.

As we indicated above, the schema and relation do not constrain the order of spans in the text. However, in practice, there are strong tendencies of frequent ordering of spans for certain relations and thus, the relative position of nucleus and satellite. For instance, satellite usually appears before nucleus in relation Background ; while nucleus appears prior to satellite in Elaboration relation. In [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF], authors present the canonical ordering for some relations (Table 2.3).

RST Construction:

The RST construction process is in fact the recursive application of schemas on the whole text to obtain a tree-shape structure. [START_REF] Mann | Discourse structures for text generation[END_REF] presented 7 application conventions, from which we can resume four constraints [START_REF] Braud | Identification automatique des relations discursives implicites à partir de corpus annotés et de données brutes[END_REF]: First of all, one schema should be instantiated to describe the entire text: this is the convention for completeness. The connection constraint requires that each text span must be connected to at least another span, either an elementary unit or an intermediate unit built with smaller spans. However, the schema does not constrain the order of the nucleus or satellite. Thirdly, one schema must contain a nucleus but allow multiple satellites. Only one relation type is allowed between a nucleus and a satellite. This constraint is called uniqueness. Lastly, as already shown in Figure 2.4, all schemas are constructed within adjacent text spans. The constraints, however more or less strict, later became the targets of criticism. Uniqueness and adjacency particularly pose problems [START_REF] Taboada | Applications of rhetorical structure theory[END_REF]. For instance, adjacency is abandoned in Segmented Discourse Representation Theory (SDRT) in order to cover long-distance relations between text spans.

Segmented Discourse Representation Theory

The Segmented Discourse Representation Theory (SDRT) [START_REF] Lascarides | Temporal interpretation, discourse relations and commonsense entailment[END_REF][START_REF] Asher | Reference to abstract objects in discourse[END_REF][START_REF] Asher | Logics of conversation[END_REF] is a dynamic representation theory of discourse extended from the Discourse Representation Theory (DRT) [START_REF] Kamp | Evénements, représentations discursives et référence temporelle[END_REF][START_REF] Kamp | From discourse to logic: Introduction to model theoretic semantics of natural language, formal logic and discourse representation theory[END_REF]. Different from the RST [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF] which focuses on an intention-based approach that models the communication goals, SDRT favors a semantic-based approach using states or event description [START_REF] Amblard | Modeling the dynamic effects of discourse: Principles and frameworks[END_REF], similar to the Linguistic Discourse Model (LDM) [START_REF] Polanyi | A formal model of the structure of discourse[END_REF]. As we know, discourse analysis is the analysis applied at the document level. It distinguishes from the sentence-level analysis since the semantic content of a sentence is not necessarily the same as that in a larger context. In other words, there exists the notion of dynamics which underlies the content of discourse. Precisely, imagine we have some elements and knowledge that are already established in a given world (i.e., context), such as a person, her name, her status, an ongoing event, etc. When a new context (i.e., new sentences) is introduced, new elements will, in turn, access and modify the old world while maintaining coherence; meanwhile, make the current world accessible for future new contexts. This process can continue infinitely.

We need to dynamically mimic the movement and the impact that comes along. SDRT is one of the frameworks that enable such dynamic modeling of discourse. To make the new states of the world understandable, some elements should remain accessible. This brings up the second crucial feature in discourse analysiscoherence. In SDRT, such coherence is obtained via a structure of rhetorically connected propositions. We say that discourse is coherent in case (a) every introduced proposition is rhetorically connected to another piece of information, and (b) all anaphoric expressions can be resolved [START_REF] Asher | Logics of conversation[END_REF].

In this section, before diving into the SDRT framework, we first lay the ground by briefly revising dynamic semantics and the predecessor of SDRT: Discourse Representation Theory (DRT). We then present the relations and structures in SDRT.

Dynamic Semantics: In semantics, the meaning of a sentence derives from the meaning of its parts and how they combine together. This principle is known as compositionality, sometimes called Frege's Principle [START_REF] Pelletier | The principle of semantic compositionality[END_REF], pioneered by [START_REF] Frege | Die Grundlagen der Arithmetik: eine logisch mathematische Untersuchung über den Begriff der Zahl[END_REF]. It has had a tremendous impact on modern linguistics ever since Montague Grammars became known [START_REF] Montague | English as a formal language[END_REF][START_REF] Montague | The proper treatment of quantification in ordinary english[END_REF]. For instance, take the following example from [START_REF] Asher | Logics of conversation[END_REF]:

(12) a. A man walked in. This example is easy to process if we know the meaning of "man" and "walk". Once combining them, we understand that a male person does an action which is walking. The temporal description further tells us that this action has already been accomplished. Now, if we add another sentence right after (12)a, the discourse becomes: A reasonable reader would naturally consider the pronoun "he" refers to the "man" in the first sentence. Therefore, the individual who walked in is exactly the same individual who ordered a beer. However, this reasoning poses problems for static semantics such as in Montague's or [START_REF] Davidson | Essays on Actions and Events: Philosophical Essays[END_REF]. Since in static semantics, the meaning of a sentence is merely the set of models it satisfies; it can not bridge cross-sentence anaphora. While in dynamic semantics, the meaning of a sentence is the application results between a set of prior contexts being proceeded and a set of posterior contexts that represents the content of the discourse including that sentence. Therefore, dynamic semantics is able to solve anaphoric resolution.

The basic idea of dynamic semantics is to develop a notion of context and of contextual interpretation so that the context for new information (such as (12)b) can take into consideration the material from its previous sentences ((12)a). Generally speaking, it must provide a context where discourse referents can be stored and accessed. It achieves the such effect by making the assignment functions that map free variables to individuals of the content in discourse. We will give an illustration of how Discourse Representation Theory (DRT) [START_REF] Kamp | Evénements, représentations discursives et référence temporelle[END_REF][START_REF] Kamp | From discourse to logic: Introduction to model theoretic semantics of natural language, formal logic and discourse representation theory[END_REF] manages to achieve it in the next section. Meanwhile, we note that similar works have been proposed in other dynamic semantic theories such as the File Semantics [START_REF] Heim | The semantics of definite and indefinite noun phrases[END_REF][START_REF] Heim | File change semantics and the familiarity theory of definiteness[END_REF] and different ways of the combination of Montague Semantics and discourse dynamics [START_REF] Groenendijk | Dynamic montague grammar[END_REF][START_REF] Muskens | Combining montague semantics and discourse representation[END_REF][START_REF] De Groote | Towards a montagovian account of dynamics[END_REF].

Discourse Representation Theory (DRT): It is a formalism introduced and developed by [START_REF] Kamp | Evénements, représentations discursives et référence temporelle[END_REF] and [START_REF] Kamp | From discourse to logic: Introduction to model theoretic semantics of natural language, formal logic and discourse representation theory[END_REF]. It provides a paradigm of a dynamic semantic theory. Compared with other dynamic alternatives, it is said to be the most explicit analysis of anaphoric phenomena [START_REF] Asher | Logics of conversation[END_REF].

DRT represents discourse with a Discourse Representation Structure (DRS). A DRS is represented as a box with a pair of sets < U, C >. The element U stands for discourse referents (such as constants and variables of individuals), and C represents a list of conditions (i.e., properties and relations that hold among referents). For instance, a DRS for the two-sentence discourse in (12) can be written in the following logic formula: (13) ∃x, y, z.man(x) ∧ walked_in(x) ∧ ordered(y, z) ∧ male(y) ∧ beer(z) ∧ y = x

The initial DRS box is empty. Because of the existential quantifier, ( 12)a updates the context with a new variable x -introduced on the top part of the box. Additionally, the formula keeps track of the properties referent x satisfies: two unary predicates man(•) and walked_in(•), so both conditions are listed at the lower part of the box. As shown in ( 14): ( 14) Sentence (12)b then adds two news referents: y and z and two properties: two unary predicates beer (•) and male(•), and a binary predicate ordered (•). The only issue in this new context is the value for variable y. In sentence-level discourse analysis, we do not have enough information to deduce the linkage between y and other referents. [START_REF]We all want wheat man[END_REF] When we merge the two DRSs (( 14) and ( 15)), we simply consider that all the referents and conditions join together. On the top, we have referents x, y, and z. In the second half of the box, we list all the properties. The ' ?' in the linkage in ( 14) is initiated with a discourse referent which is accessible7 from the referents. Naturally, we link the pronoun y to the predicate man(•), which also satisfies the condition that y is male. We thus resolve the anaphoric issue (box (16)):

(16) SDRT -A Refined DRT: We have shown with example (12) how dynamic semantics such as DRT could help resolve anaphora phenomena. However, this problem is not completely resolved in DRT. The constraints on anaphora in DRT are in fact very coarse-grained, which could lead to over-generation or under-generation issues. That is one of the main motivations for a more refined DRT. A second drawback of DRT is the analysis of temporal structures, which could result in a logical interpretation that is contradictive to reality. We will give examples on both points. To tackle these shortcomings, [START_REF] Asher | Reference to abstract objects in discourse[END_REF]; [START_REF] Asher | Logics of conversation[END_REF] proposed to enrich the discourse structure with rhetorical structures, thus the creation of Segmented Discourse Representation Theory (SDRT).

Before presenting concrete examples, we first present an important constraint in SDRT: the Right Frontier Constraint (RFC), firstly proposed by [START_REF] Polanyi | A theory of discourse structure and discourse coherence in papers from the general session at the twenty-first regional meeting[END_REF]. When adding a new sentence to existing discourse, we need to decide where this sentence should be attached. In the surface form, the new sentence is linearly attached to the previous one. However, considering the anaphora or temporal order, they can only be attached at certain positions. RFC assumes that the last sentence is a possible location for attachment, as well as any nodes (sentence) that subordinate it, visually seeming like a frontier at the right side of the discourse. Such a rule is called the right frontier constraint. Now consider a classic example in SDRT (shown in [START_REF] Thomas | u can place a settlement[END_REF]). In DRT, when there is no subordination such as "every", "each" or conditional structure "if ... then ..." in the discourse, the DRS form is a simple atomic box, where we have no constraints for accessibility. From this point of view, there is no blockage for the pronoun "it" in the last sentence (f) to referent the previous discourse. Therefore, it should be accessible to all the referents: "salmon", "cheese", and "competition", and attach itself to "salmon". However, in reality, we consider [START_REF] Thomas | u can place a settlement[END_REF]f to be an odd continuation of ( 17)a-e. Interestingly, the continuation of ( 17 SDRT, on the other hand, can tackle this issue by utilizing rhetorical relations and the right frontier constraint. The rhetorical representation of example ( 17) is shown in Figure 2.5. Each sentence is represented with a discourse marker π (π 1 to π 5 ). We colored the intermediate boxes (π 7 , π 6 and π 0 ) for a clearer presentation. Figure 2.5 is a hierarchical structure: some relations induce subordination: create a deeper level such as Elaboration, and others cause coordination which horizontally extends the content, such as Narration. The discourse starts with π 1 , then elaborated with π 2 "a fantastic meal"; π 2 is further refined by π 3 and π 4 describing the meal. π 3 and π 4 together form π 7 . Finally, π 5 gives a new piece of information on "dancing competition" which moves up in the structure and links with π 2 as a Narration. Together, π 2 and π 5 form π 6 which extends π 1 "a great evening". By convention, we label the whole discourse π 0 . The right frontier constraint regulates that a new sentence can be attached to the previous discourse (called LAST in the terminology in [START_REF] Asher | Logics of conversation[END_REF]) and the nodes that subordinates it. The notion of accessibility constraints anaphora. In our case, sentence [START_REF] Thomas | u can place a settlement[END_REF]f can be attached to π 5 (LAST) and above (π 6 , π 1 , π 0 ). Since π 3 is not included, we can not attach the anaphora "it" to the referent "salmon" -what we wish for to avoid the odd continuation. We see that the usage of rhetorical relations and right frontier constraint limit the over-generation issue, showing the superiority of SDRT over DRT in anaphora resolution.

A second argument for using rhetorical relations in SDRT is about temporal anaphora. Asher and Lascarides found that the append-based approach to dynamically construct the logical form is insufficient. Rather, one needs to rank decisions before appending them to the established structure. They gave a pair of discourses for illustration: (18) a. Max fell. John helped him up. b. Max fell. John pushed him.

In example (18), both discourses have the same tense forms. Under the DRT framework, one would expect that (18)a and b have the same temporal structure, i.e., the order of occurrence of two events. In reality, however, only (18)a matches the temporal order; (18)b exhibits the opposite of textual order: "John pushed Max" happens before "Max fell". Such reasoning can be enhanced using rhetorical relations. (18)a is obviously a Narration, describing the event that happens afterward, whereas (18)b is an Explanation which gives the cause of the previous discourse. This analysis is more complex than the append-based definition of discourse update. It calls for in-depth reasoning about which rhetorical connections to hold. Nevertheless, SDRT rhetorical-enhanced discourse update accounts for more general pragmatic phenomena bridging anaphora in both entity and temporal aspects.

SDRT Structure: In SDRT, the basic structure is called segmented discourse representation structure (SDRS). A well-formed SDRS contains the following vocabulary [START_REF] Asher | Logics of conversation[END_REF]:

Definition 2 (SDRS Vocabulary Sets) vocab-1. A set Ψ: logical forms for atomic natural language clauses. vocab-2. A set of labels: {π 1 , π 2 , . . ., π k }. Each π is a discourse unit; π can be elementary or intermediate discourse.

vocab-3. A set of relation symbols

Φ: {R 1 , R 2 , . . ., R n }.
With these vocabularies, we can define formally an SDRS:

Definition 3 (SDRS Structure) SDRS as a tuple ⟨A, F, LAST ⟩, where:

• A is a set of labels in vocab-2.

• LAST is a label in A. Intuitively, it is the last clause added in A.

• F is a function that assigns each member of A a member of Φ.

In the short version, we can also write an SDRS as a couple of ⟨A, F⟩ if no confusion of LAST. Again let us illustrate with the example [START_REF] Thomas | u can place a settlement[END_REF]. The following is a well-formed SDRS, where K π represents the content of discourse π, i.e. the text. ( 19) ⟨A, F, LAST ⟩, where:

-A = {π 0 , π 1 , π 2 , π 3 , π 4 , π 5 , π 6 , π 7 } -F(π 1 ) = K π 1 F(π 2 ) = K π 2 F(π 3 ) = K π 3 F(π 4 ) = K π 4 F(π 5 ) = K π 5 F(π 0 ) = Elaboration(π 1 , π 6 ) F(π 6 ) = Narration(π 2 , π 5 ) ∧ Elaboration(π 2 , π 7 ) F(π 7 ) = Narration(π 3 , π 4 ) -LAST = π 5
SDRT Relations: Given the formal definition of SDRS, we still have one important aspect to discuss: the rhetorical relations in vocabulary Φ. In SDRT, the choice of relation types must be justified on the basis of truth condition of semantic interpretation. In other words, they count R as a distinct relation if and only if R affects the truth condition of the elements it connects, but do not consider the subtle differences in intentions or goals during communication. Compared to RST, this principle narrows down the vocabulary of relations. For instance, Contrast, Antithesis, Concession are all eligible relations to convey the meaning of contrast in RST, while in SDRT, these relations are grouped into one type: Contrast. On such a basis, one can define the truthconditional effects of relations. We will not enter into syntactic details of the relation definition part, but present briefly several levels of relation in SDRT. These relation levels are extracted from Appendix D, page 459 in [START_REF] Asher | Logics of conversation[END_REF]:

• Content-level relations involve events and individuals. It contains most common relations such as Alternation, Background, Consequence, Continuation, Elaboration, and Explanation.

• Text-structuring-level relations such as Parallel and Contrast. These two relations require that the contents of the discourse they linked (i.e. K π 1 and K π 2 ) have the same propositional structure, i.e., they always express propositions. SDRT provides a more elaborate discussion about relations in dialogues. Upon examining the definitions of different levels of relations, we found that relations such as "cognitivelevel", "divergent-level", and "metatalk-level" mostly describe discourse relations between dialogue agents, thus being applicable to dialogue settings. For example, the relations in the dialogue examples [START_REF] Shawnus | [END_REF] and ( 21) correspond to Acknowledgement and Plan Correction, respectively. [START_REF] Shawnus | [END_REF] A: Close the window.

B. Ok. (21)

A: Close the window.

B. I am afraid I can't do that.

SDRT also discusses an important feature in dialogues, which is how people engage in disputes and come to an agreement. The relations that indicate disputes are referred to as "divergent relations". These relations are typically not found in monologues, although self-repair utterances, which are another form of correction, can rarely be observed. In dialogues, the Correction relation links discourse units with contradictory contents, as shown in ( 22) and ( 23):

(22)

A: John distributed the copies.

B: No, Sue distributed the copies.

(23) A: John went to jail. He was caught embezzling funds from the pension plan.

B: No! John was caught embezzling funds, but he went to jail because he was convicted of tax evasion.

To infer rhetorical relations, SDRT uses axiom schemata. The general schema is given in (24), where α and β are discourse units; λ is context; connective > means "then normally,". In English, (24) states that β is attached to α in a certain context, and moreover there are "some stuff" (evidence) about α, β and λ, then normally, the discourse relation is R.

(24) (?(α, β, λ) ∧ some stuff) > R(α, β, λ)

Various information is needed to infer the most appropriate relation. Normally, lexical features are good indicators. In a concrete example (25), cue phrases such as "and then" monotonically yield Narration relation, with its axiom scheme looks like (26):

(25) π 1 . Kim watched TV. π 2 . And then she went out.

(26) ?(α, β, λ) ∧ and-then(α, β)) → Narration(α, β, λ)

Apart from lexical markers, the relation prediction phase also searches for information on punctuation, intonation, and domain knowledge. In dialogue settings, information about speakers' speech acts and (rational) moves could also be useful. The determination of discourse coherence depends on both structural rhetorical information and Gricean reasoning [START_REF] Benz | Discourse relations and relevance implicatures: A case study[END_REF]. According to Asher and Lascarides, Grice's Maxim of Relation [START_REF] Grice | Logic and conversation[END_REF] is equivalent to discourse coherence. This implies that a new text segment is relevant to a given segment only if there is a rhetorical relation connecting them.

SDRS Update:

We have mentioned in the previous part that SDRT differs from other dynamic theories in its sophisticated and more complex discourse updates, in comparison to the "append-based" methods. We have also shown how SDRT makes use of rhetorical relations and right frontier constraint to block odd anaphora attachments (cf pink salmon example [START_REF] Thomas | u can place a settlement[END_REF]). Here, we take one step further in examining how old SDRS absorbs and binds the new information from new SDRS. This process is called SDRS update. It contains two tasks: first identify the part of discourse to which the new SDRS will bind; secondly, infer the rhetorical relation.

The formal language used in SDRS update is glue language. As the name suggests, this language glues the different logical parts together to form an SDRS form for discourse. Glue language builds up glue logic, which is a logic that supports nonmonotonic inferences. [START_REF] Asher | Logics of conversation[END_REF] argue that the relation prediction in discourse analysis should not take the "wait-and-see" strategy that inferring the rhetorical relation only when newly present information monotonically ensures such connection. For instance, because is a monotonic clue for relation Explanation. Rather, the inference should be made even when the monotonic clues are absent. In (24) we show the syntax of axiom schemata in glue language, namely ?(α, β, λ).

The update tasks contain three steps:

• Build the available subsets of labels from ⟨A, F⟩, from which discourse β will attach.

• For each previous discourse α, identify a label λ and use glue logic to infer discourse relation(s) between α and β.

• Eliminate other SDRSs obtained in the first step if they fail to meet certain structural constraints (details omitted).

Further, when multiple relations are available, SDRT employs two principles to resolve potential conflicts. The first one is Specificity Principle: "when the consequences of default axioms conflict, the axiom with the more specific antecedent win." The intuition behind this principle is that people tend to remember new information when it is specifically linked to a previous context. Another important principle is called Maximum Discourse Coherence (MDC) principle. Asher and Lascarides have designed a way to determine which interpretation is more coherent than another. SDRS update aims for as many relations as possible and as many as preferred (simpler and more consistent structures) as possible. By contrast, it does not favor under-specified conditions. We retake the salmon example [START_REF] Thomas | u can place a settlement[END_REF] to illustrate SDRS update when π 5 is introduced. Before π 5 , the SDRS is featured in (27), where K + π implies simple SDRS update with no under-specified conditions.

(27)

When introducing a new discourse π 5 , there are five possible points of attachments: π 0 , π 1 , π 2 , π 7 , and π 4 . π 3 is excluded since it is blocked by π 4 . It is when the maximum discourse coherence principle puts into effect. If correctly using this principle, one shall link π 5 to π 2 . Due to the specificity principle, it is not favorable to attach π 5 to π 0 in the first place. Next, we can rule out π 7 and π 4 as well since the updates will bring under-specified conditions. Another way to test coherence is by comparing different attachment effects. If we attach π 5 to π 4 , the sequence of discourse in (28) is much less coherent than that in (29).

(28) He ate salmon. He devoured lots of cheese. He won a dancing competition.

(29) John had a great evening last night. He had a fantastic meal. He won a dancing competition. Now, we compare the attached points π 1 and π 2 . If attached to π 1 , we obtain a relation Elaboration(π 1 , π 5 ), meaning "the meal" and "winning the dance competition" both contribute to the "great evening". However, since we already know that Elaboration holds between π 1 and π 2 , which makes two Elaboration relations sharing the same first discourse. Under such circumstances, π 1 is viewed as the common topic for a sequence of elaboration (π 2 and π 5 ), and π 5 is naturally attached to π 2 with Narration relation. The updated result is shown in ( 30). An interesting follow-up is the constraints on update: once π 5 is attached to π 2 , it also can not attach to π 4 . Further, since now LAST is π 5 , it blocks the access to π 2 , π 6 , π 3 , and π 4 for future discourse. The pronoun in "* It was a beautiful pink." thus can not be resolved. We have said that the continuation of [START_REF] Thomas | u can place a settlement[END_REF]f to [START_REF] Thomas | u can place a settlement[END_REF]a-d is also strange. Even without the topic change of π 5 , SDRS in (27) shows that π 3 is still blocked by π 4 , making any further description on π 3 after π 4 not feasible. Previously, we have given theoretical reasoning why [START_REF] Thomas | u can place a settlement[END_REF]f is not a good continuation (right frontier constraint). Here, we provide SDRS updates to prove the oddness of such continuation in practice. By which, we conclude the discussion of the SDRT framework.

(30)

This section provides an overview of two prominent full discourse analysis frameworks: Rhetorical Structure Theory and Segmented Discourse Representation Theory. Both frameworks involve segmenting the text into elementary discourse units (EDUs) and identifying relations between them while adhering to certain structural constraints. The relation assignment process is incremental and recursive, with annotators linking EDUs to form intermediate discourse units (CDUs) that are connected to cover the entire document. Although both frameworks share similarities in the analysis process, they differ in some aspects. For instance, RST produces tree-like structures, whereas SDRT generates graph-like structures. The definition of relations also differs, with RST focusing more on intentions and SDRT on truth conditions. Moreover, SDRT introduces relations at the "divergent-level" and "cognitive-level", which makes it more suitable for dialogue analysis. It should be noted that the SDRT framework is not the only one that can be used for analyzing dialogues. In the GUM corpus [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF]) (that we will present in the next section), for instance, the conversational component is annotated using the RST framework.

There are other discourse analysis frameworks besides SDRT and RST, such as the Lexicalized Discourse Tree Adjoining Grammar (L-DTAG) [START_REF] Webber | D-ltag: extending lexicalized tag to discourse[END_REF]. L-DTAG builds on the Tree-Adjoining Grammar (TAG) [START_REF] Schabes | Mathematical and computational aspects of lexicalized grammars[END_REF][START_REF] Schilder | Tree discourse grammar, or how to get attached to a discourse[END_REF][START_REF] Gardent | Discourse tree adjoining grammars[END_REF] to combine elements in discourse. It was first proposed in [START_REF] Webber | Anchoring a lexicalized tree-adjoining grammar for discourse[END_REF] and has inspired the creation of the Penn Discourse Treebank (PDTB) annotation project, which is one of the largest datasets of its kind. This leads us to the topic of discourse annotation projects and important discourse corpora.

Discourse Corpora

Discourse structures for complete documents have been mainly annotated within the Segmented Discourse Representation Theory or the Rhetorical Structure Theory, with the latter leading to the largest corpus and many discourse parsers for monologues, while SDRT is the main theory for dialogue corpora, i.e., STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] and Molweni [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF]. The issue of data sparsity is not limited to monologues but is even more pronounced in dialogues. Existing discourse-annotated treebanks are scarce and only available in limited domains, such as RST-DT (Carlson et al., 2002a) for news articles (385 documents), SciDTB for scientific abstracts [START_REF] Yang | Scidtb: Discourse dependency treebank for scientific abstracts[END_REF]) (798 abstracts), STAC for online board game [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] (45 games), and Molweni [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF] for Ubuntu chat log discussion (10, 000 short dialogues, in average 9 utterances/dialogue) [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF].

In this section, we describe the corpora annotated within the RST (Section 2.3.1) and the SDRT (Section 2.3.2) frameworks, followed by an introduction of the Penn Discourse Treebank (Section 2.3.3). We then present other discourse-annotated corpora in Section 2.3.4. Furthermore, we provide the results of an investigation of the Molweni corpus which shows some nonnegligible annotation flaws (Section 2.3.5).

Corpora in the RST Framework

The RST framework led to the creation of the first annotated discourse corpus, known as the Marcu 1999 RST corpus [START_REF] Marcu | Experiments in constructing a corpus of discourse trees[END_REF], which aimed to assess the feasibility of conducting RST analysis manually and automatically. Marcu's experimental annotation prompted another significant RST annotation project on the Penn Treebank [START_REF] Marcinkiewicz | Building a large annotated corpus of english: The penn treebank[END_REF], resulting in the largest and most widely used RST-style discourse corpus, the RST Discourse Treebank [START_REF] Carlson | RST discourse treebank[END_REF].

• The Marcu 1999 RST Corpus: The first corpus that was annotated using the RST framework. It is comprised of 90 documents selected from various corpora, including 30 texts from MUC7, 30 from Brown-Learned, and 30 from Wall Street Journal. Although this corpus has not been extensively used for training automatic systems, it demonstrated the feasibility of annotating texts using the RST framework and served as the basis for developing the first annotation guidelines.

• The RST Discourse Treebank8 (RST-DT), developed by Carlson et al. (2002a), comprises 385 news articles from the Wall Street Journal section of the Penn Treebank [START_REF] Marcinkiewicz | Building a large annotated corpus of english: The penn treebank[END_REF]. The Penn Treebank is already manually annotated in syntax. The RST-DT is considered the primary corpus for developing full discourse analysis systems.

• The GUM Treebank [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF] is a continuously growing corpus with a multi-layer annotation that includes POS tagging, sentence segmentation, and RST-style discourse parsing. As of version 8.0, it comprises 193 documents from 12 genres, including interviews, news stories, and travel guides. Both constituency and dependency tree structures are provided for the discourse parses in this corpus.

• The Instructional Corpus9 (Instr-DT) [START_REF] Subba | An effective discourse parser that uses rich linguistic information[END_REF] consists of 176 documents pertaining to home repair. The corpus features a total of 5, 172 annotated rhetorical relations for 5, 744 EDUs in RST-style constituent trees.

The previously mentioned corpora are all in English. It is important to note that the RST framework has also been utilized for the creation of corpora in other languages. For instance, the Potsdam Commentary Corpus [START_REF] Stede | The potsdam commentary corpus[END_REF] for German, the Spanish RST Discourse Treebank [START_REF] Da Cunha | On the development of the rst spanish treebank[END_REF] for Spanish, the RST Basque Treebank10 ( [START_REF] Iruskieta | The rst basque treebank: an online search interface to check rhetorical relations[END_REF] for Basque, the Russian RST Treebank [START_REF] Pisarevskaya | Towards building a discourse-annotated corpus of russian[END_REF] for Russian, and the GCDT [START_REF] Peng | GCDT: A Chinese RST Treebank for Multigenre and Multilingual Discourse Parsing[END_REF] for Chinese11 .

Corpora in the SDRT Framework

The initial annotation of the SDRT framework was carried out for the DiSCoR project [START_REF] Reese | Reference manual for the analysis and annotation of rhetorical structure (version 1.0)[END_REF], which focused on monologues such as news articles. However, with the release of STAC in 2016, SDRT is now more commonly associated with dialogue, particularly multiparty dialogues. To date, STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] and Molweni [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF] corpora are the most widely used datasets for training SDRT-style parsers.

• The DiSCoR Corpus [START_REF] Reese | Reference manual for the analysis and annotation of rhetorical structure (version 1.0)[END_REF] is the first corpus annotated under the SDRT framework, which was developed to investigate the interaction between rhetorical structures and coreference phenomena. This corpus includes 60 documents from MUC6 (Wall Street Journal) and ACE2 (news articles) corpora, and it has been annotated with 14 discourse relations.

• The ANNODIS Corpus12 (Afantenos et al., 2012a) is a corpus of written French texts from four sources: 39 regional daily news articles, 30 French Wikipedia articles, 25 articles from the proceedings of the Congrès Mondial de Linguistique Française, and 32 reports from the Institut Français de Relations Internationales. The corpus was created as part of the ANNODIS project (ANNOtation DIScursive). The annotation includes 3k elementary discourse units (EDUs) and 1.4k complex discourse units (CDUs) linked by 3k rhetorical relations.

• The STAC Corpus13 [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] 

Penn Discourse Treebank

Unlike corpus in RST-and SDRT-style, Penn Discourse Treebank (short PDTB) is not annotated under a theoretical framework for document-level discourse analysis. This project is mainly focused on the identification of local discourse connectives. It has been enriched three times. We show its historical versions and related projects:

• The PDTB 1.0 [START_REF] Miltsakaki | The penn discourse treebank[END_REF] was released in 2005. The aim was to produce a large-scale corpus in which discourse connectives and their arguments are annotated.

In total this first version contains 30, 000 annotations: 10, 000 implicit connectives, and 20, 000 annotations of the 250 explicit connectives.

• The PDTB 2.0 (Prasad et al., 2008a) extends the number of annotations of discourse relations and their two abstract object arguments to 35, 136, which covers over 1-million words Wall Street Journal corpus. Sense annotation was added for all the explicit, implicit, and AltLex relations. AltLex label refers to the case when the insert of implicit connectives brings redundancy since an alternative non-connective expression is already presented.

• The most recent version Penn Discourse Treebank 3.0 [START_REF] Webber | The penn discourse treebank 3.0 annotation manual[END_REF] consists of annotations for 53, 631 tokens, which is approximately 13, 000 more than its predecessor. Additionally, new sense and relation annotations have been included, such as the sense mark for question-response pairs, known as Hypophora.

• The Biomedical Discourse Relation Bank (BioDRB ) [START_REF] Prasad | The biomedical discourse relation bank[END_REF] PDTB is widely regarded as one of the largest and most influential treebanks featuring sentence-level discourse information. Similar PDTB-style projects have been established for several other languages, such as the Hindi Discourse Treebank [START_REF] Prasad | Towards an annotated corpus of discourse relations in hindi[END_REF] for Hindi, the Turkish Discourse Treebank [START_REF] Zeyrek | A discourse resource for turkish: Annotating discourse connectives in the metu corpus[END_REF][START_REF] Zeyrek | Annotating subordinators in the turkish discourse bank[END_REF] for Turkish, the French Discourse Treebank [START_REF] Danlos | Vers le fdtb: French discourse tree bank[END_REF] for French, the Prague Discourse Treebank 1.0 [START_REF] Poláková | Introducing the prague discourse treebank 1.0[END_REF] for Czech, and the Chinese Discourse Treebank 0.5 [START_REF] Xue | The penn chinese treebank: Phrase structure annotation of a large corpus[END_REF] for Chinese. More recently, a multilingual resource known as TED-Multilingual Discourse Bank [START_REF] Zeyrek | Ted multilingual discourse bank (ted-mdb): a parallel corpus annotated in the pdtb style[END_REF] has been released, which features TED-talks annotated at the discourse level in 6 languages: English, Polish, German, Russian, European Portuguese, and Turkish.

Corpora Constructed under Other Frameworks

• The GraphBank15 [START_REF] Wolf | Representing discourse coherence: A corpus-based study[END_REF] is a collection of 135 Wall Street Journal newswire texts that are manually annotated with coherence relations, totaling 70, 000 words in English. It employs a graph-like structure instead of trees and defines 11 rhetorical relations based on the work of [START_REF] Hobbs | On the coherence and structure of discourse[END_REF]. The authors adopted the graph structure because trees are inadequate to represent all discourse structures, including crossing edges.

• The SciDTB16 [START_REF] Yang | Scidtb: Discourse dependency treebank for scientific abstracts[END_REF] [START_REF] Wang | Cord-19: The covid-19 open research dataset[END_REF].

So far, we have given a brief overview of the languages and treebanks that are available in the RST, SDRT, PDTB, and dependency formalisms. It should be noted that this list is not exhaustive, and for a more comprehensive reference, we recommend consulting the DISRPT shared task website18 .

Investigation of Molweni Corpus

Molweni [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF] is a corpus derived from the Ubuntu Chat Corpus [START_REF] Lowe | The Ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems[END_REF], consisting of 10, 000 short dialogues with 8 to 15 utterances annotated in the SDRT framework. Due to its size, it is an ideal corpus for supervised learning of discourse structures. Moreover, the corpus contains 30, 066 annotated questions and is utilized for Machine Reading Comprehension (MRC) task. Given the complexity of Ubuntu chat logs (e.g., multiple speakers, entangled discussions with various topics), the corpus was examined first. However, we found a significant amount of repetition in sequential documents and inconsistency in discourse annotation for the same utterances.

Clusters: Out of the 500 dialogues in the discourse augmented test set, we discovered 105 "clusters" in total. One particular cluster includes all the documents that have only one or two differing utterances. We hypothesize that this may be due to the previous disentanglement process. For example, documents with ID 10 and 11 are in the same cluster since only the second utterance differs, as illustrated in Figure 2.6. A similar situation is attested in the documents {1, 2, 3}, {7, 8, 9}, {19, 20, 21}, to name a few. The number of similar documents in one cluster varies: with some clusters containing up to 8 highly similar documents. ), which we refer to as link error and relation error, respectively. In total, we found 6% of link errors (#err link) and 14% of relation errors (#err rel) in the test set, with similar error rates for the validation and train sets. See Table 2.5 for precise scores. Due to its lengthy and intricate dialogues, the Ubuntu Chat Corpus underwent disentanglement preprocessing, which resulted in a set of shorter, slightly different sub-dialogues. While these may be useful for other dialogue studies such as Machine Reading Comprehension task, our focus on discourse structure requires more various data points with consistent discourse annotation. As a result, we decided to exclude this corpus from our experiments in this thesis.

Discourse in Different Language Settings

Having looked at discourse theories and applied annotation corpus, we now examine the use cases of these theories in different language settings. Typically, we present two dimensional analysis: spoken vs. written language, and monologues vs. dialogues.

It is generally acknowledged that discourse in speech and writing differs. Although not explicitly stated, the frameworks discussed in Section 2.2 have mostly influenced annotation projects with written language. For example, the RST-DT corpus (Carlson et al., 2002a) is annotated using 385 well-written news articles from the Wall Street Journal (WSJ), which have also been used in the Penn Discourse Treebank (PDTB). There are differing opinions on the complexity of processing discourse in speech and writing. Some linguists believe that oral grammar is simpler than written grammar with sparse vocabulary, resulting in simpler discourse structure. [START_REF] Chafe | Integration and involvement in speaking, writing, and oral literature. Spoken and written language: Exploring orality and literacy[END_REF] is among the advocates of this view. In contrast, opponents argue that discourse structure in speech is much more complex, as stated in [START_REF] Halliday | Spoken and written modes of meaning[END_REF]: "Speech is not, in any general sense, 'simpler' than writing; if anything, it is more complex". Halliday further argues that [e 6 ] sugi: vocx : iso 9660 cd-rom filesystem data udf filesystem data ( unknown version , id 'nsr01 ') [e 7 ] ikonia: looks like that should work as a loop back file system [e 8 ] sugi: -mount -o loop but instead of .iso .mdf ? or the .mds file ? [e 9 ] ikonia: try it , linux see 's it as a " image " so it may work [e 10 ] sugi: vocx : wow it worked , i feel retard for nto "speech is grammatically intricate, with meanings related serially". The frequent occurrences of under-specification, implicitness, and ambiguity in spoken language make it more complex compared to written language. Nevertheless, there seems to have an uncontroversial agreement on that spoken and written language differ as for their respective kind of complexity [START_REF] Crible | Discourse markers in speech: characteristics and challenges for corpus annotation[END_REF].

Another dimension to review the discourse theories is by looking at speech devices: monologue contains one person's speech whereas dialogue is the mixed speeches of two or more speakers. Some theories are more suitable to analyze monologue discourse structure, while others may be extended to dialogue. RST, for instance, with its rooted-tree structure, is mostly used as guideline theory for monologue annotation. RST has also been used in GUM conversation documents annotation (from Santa Barbara Corpus). The annotation schema for PDTB, on the other hand, shows more shallow discourse structure and relations, which makes it more flexible. It has been used for annotation in both monologue and dialogue settings. [START_REF] Tonelli | Annotation of discourse relations for conversational spoken dialogs[END_REF]; [START_REF] Riccardi | Discourse connective detection in spoken conversations[END_REF] tested the applicability of PDTB to spontaneous conversations. They applied the schema on an Italian dialogue corpus LUNA and proposed revision suggestions. LUNA is available on the DISRPT website. In an annotation project for SMS message conversation, [START_REF] Xue | Annotating the discourse and dialogue structure of sms message conversations[END_REF] made distinction of discourse relations between same-participant and among differentparticipant, and they adopted PDTB relations for the same-participant part. In total, 44 files have been annotated, with an average 88 messages per file. This corpus is not publicly available online. SDRT, derived from DRT, was initially designed for monologues. In [START_REF] Asher | Logics of conversation[END_REF], authors extend the theory to handle dialogue by incorporating questions and requests in discourse structure. We see discourse relations such as Question Answer Pair, Acknowledgement, Correction, etc. The extension makes SDRT adapted in multi-speaker setting. The flexible graph structure (compared to tree structure) also makes it a suitable choice for dialogues.

This section begins by introducing some linguistic peculiarities in Section 2.4.1, namely differences between spoken and written language, and monologues versus dialogues. Subsequently, in Section 2.4.2, we examine research on discourse relations in both domains. Specifically, we explore how monological SDRT relations are expanded to the dialogue setting and the current status of adapting written annotation frameworks to spoken language.

Language Specificities

Discourse in Spoken vs. Written Language:

Discourse patterns of spoken and written communication are distinct. Compared to written language, spoken language frequently includes ungrammatical and unfinished sentences, disfluencies, fillers, and hesitations (Wang et al., 2017a). The speaker and listener in oral conversations have access to additional channels of information, such as facial expressions, body posture, and eye movement, so the information conveyed solely through words may be incomplete and elliptical at times. On the other hand, spoken communication places emphasis on rapid online processing, leading to shorter sentences and a higher degree of interactivity [START_REF] Rehbein | Annotating discourse relations in spoken language: A comparison of the pdtb and ccr frameworks[END_REF]. Consequently, speakers primarily focus on the current speech turns, leading to a more linear and a priori simpler discourse structure.

Here we briefly discuss a typical phenomenon in spoken language: disfluency, which is commonly seen in spontaneous human oral speech, both in monologues and dialogues. At the pragmatic level, disfluencies can communicate valuable information such as hesitation or the introduction of new or unfamiliar information related to the discourse entity being discussed [START_REF] Yoshida | Disfluency patterns in dialogue processing[END_REF]. This phenomenon has attracted considerable attention from researchers, as evidenced by the organization of the Disfluency in Spontaneous Speech (DiSS) workshop, which has been held for over ten editions since 1999. Disfluency in spontaneous speech typically includes pauses, hesitations, prolongations, truncations, repetitions, self-repairs, and similar phenomena. According to the research by [START_REF] Levelt | Monitoring and self-repair in speech[END_REF] and [START_REF] Shriberg | Preliminaries to a theory of speech disfluencies[END_REF], disfluencies in speech tend to follow a regular pattern (see Figure 2.7). Except for the moment of interruption and continuation, all elements in the pattern are optional. This pattern and the relations between its elements can be used to classify disfluencies into different types [START_REF] Ginzburg | Disfluencies as intra-utterance dialogue moves[END_REF]. In (31), we provide some examples of disfluencies annotated according to this pattern from the Switchboard corpus [START_REF] Godfrey | Switchboard: Telephone speech corpus for research and development[END_REF]. In the examples, the symbol "+" indicates the moment of interruption and separates the reparandum from the alteration, while "{}" brackets represent editing items and filled pauses, and "[]" brackets enclose the disfluency as a whole. Disfluency examples in Switchboard corpus [START_REF] Godfrey | Switchboard: Telephone speech corpus for research and development[END_REF] The annotation described above is not easily legible and requires additional efforts for text pre-processing. In addition to disfluencies, spoken discourse often includes arguments that are separated by fragments, as illustrated in example (32) where argument 1 and 2 are separated by "filler words". A filler, filled pause, hesitation marker, or planner is a vocalization or word or sound used by conversation participants to indicate that they are pausing to think but have not yet finished speaking. In this example, the second and third speech turns are filled with filler words. As an extension, we note that there are also a lot of non-verbal signals in oral communication: smiling, frowning, sighing, etc. They may do not have the same effect as words and phrases, but they can directly or indirectly impact the development of discourse. Laughter, for instance, can present propositional content such as repair, implicature, or irony [START_REF] Ginzburg | Understanding laughter[END_REF][START_REF] Ginzburg | Laughter as language. Glossa: a journal of general linguistics[END_REF]. The abundance of information in spoken language poses processing challenges for discourse analysis. Initially, the complex transcription, as demonstrated in (31), presents difficulties in segmenting the discourse into elementary discourse units (EDUs). When provided with a clean transcription and pre-segmented EDUs, discourse relation definition in spoken language could differ from that in written language. For example, when identical or near-identical sequences are repeated, determining the appropriate relation type may not be straightforward [START_REF] Rehbein | Annotating discourse relations in spoken language: A comparison of the pdtb and ccr frameworks[END_REF]. Additionally, certain discourse connectives employed in spoken language may contain different semantic meanings. An example of this is the connective so, which often conveys a sense of conclusion in spoken language, as we will explore further in Section 2.4.2.

Discourse in Monologues vs. Dialogues: Unarguably, dialogue is different and more difficult to analyze than monologue. With the introduction of more than one participant, there emerges the possibility of information exchange, cooperation, agreement, and disagreement [START_REF] Asher | Logics of conversation[END_REF]. A few discourse relations such as questions and informs, directives and commissives must also be incorporated.

Dialogue can have unique structures, such as in multi-party conversations where multiple speakers may give an answer or acknowledgment to the same utterance simultaneously, resulting in a diamond -shaped (losange-shaped) graph [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], as illustrated in Dialogue presents several distinctive properties, including entangled conversation, which is a commonly seen phenomenon in online chat forums. In this phenomenon, multiple conversations occur concurrently, and one needs to disentangle the topics to obtain coherent conversations. The "reply-to" indicator is very useful in entangled conversation, showing the link between the current and previous utterances. Figure 2.9 shows an example where Speaker A and B ask two questions independently, forming two sub-conversations. To improve readability, we have colored the speech turns in different sub-conversions with green and blue. Speaker C firstly answers A's question (C 3 ) and then answers B's question (C 4 -C 5 ). A does not comment back to C's reply but addresses B's question directly. In the end, B replies back to A and C. Thus, the graph structure of this example contains two parts: utterances A 1 , C 3 form one independent structure and the other utterances form another structure. Interestingly, we see one message (B 2 ) that receives multiple responses and one message (B 8 ) that responds to multiple messages, forming a losange-shaped graph that has just been discussed before. The complexity of multi-conversation participation and discourse structure presents a great challenge for discourse analysis in dialogues.

At the pragmatic level, analyzing dialogue requires in-depth analysis and cognitive knowledge, especially when it contains rhetorical interaction. An excerpt from a conversation between a schizophrenia patient and a psychologist from the French corpus SLAM Amblard et al. (2014) illustrates this point. In Example (33), the psychologist (Speaker A) seeks to learn more about the patient's (Speaker B) opinion on management and treatment. The patient mostly responds with backchannel utterances, such as "hum" and "yeah", which are typical in spontaneous conversations but rarely seen in monologues. These utterances are phatic expressions that encourage more speech and indicate more focus on the conversation. Backchannels are useful discourse markers for discourse analysis, and in some cases, such as with patients with Schizophrenia, they may also indicate adherence and satisfaction with treatment [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF]Li et al., 2021a). We will explore the usage of backchannel in discourse structure discovery in Chapter 4. The examples discussed above demonstrate that the discourse structure in dialogue can be more diverse and intricate than that of monologue. Moreover, the interpretation of dialogue often requires pragmatic and para-linguistic factors to be taken into account. In the following section, we discuss the current efforts in discourse analysis across various language settings. Despite the challenges and variations, researches have proposed adaptation methods to overcome these difficulties.

Discourse Relation Adaptation

From Monologue to Dialogue: According to [START_REF] Sacks | A simplest systematics for the organization of turn taking for conversation[END_REF]; [START_REF] Sacks | Lectures on conversation: Volume i[END_REF]; [START_REF] Mann | Discourse structures for text generation[END_REF]; [START_REF] Asher | Logics of conversation[END_REF], speech turns provide an important clue to discourse structure. By analyzing the speech turns within and between speakers, one can utilize discourse relations (e.g., RST and SDRT relations) to connect these elements for a cohesive semantic implication. In SDRT, each speaker has their interpretation of the dialogue. Even though their beliefs may differ, they follow the same rules of interpretation [START_REF] Asher | Logics of conversation[END_REF]. In other words, they mutually agree on the meanings of rhetorical relations and the default axioms used to infer them. Therefore, dialogue and monologue share some rhetorical relations. To illustrate this point, consider the following example (34), where two speakers (A and B) are discussing another person:

(34) A 1 : There was this guy. He came to the sessions. He never said anything. Then one day he shows up, and he starts talking, interesting.

B 2 : Why didn't he say anything before? A 3 : Dunno. Shy maybe.

A 4 : But anyway he's yammerin away and telling these jokes... Example ( 5) in Section 7.2.2 in [START_REF] Asher | Logics of conversation[END_REF] This example features an Elaboration between speech turns A 1 and A 4 as event "telling these jokes" (E refers to event, therefore: E tell_jokes ) follows the event "he starts talking, interesting" (E talking ), and a Contrast across A 3 and A 4 as indicated by the connective "but". It is important to recognize the rhetorical relations in dialogues, since just as in monologues, their truth-conditional entailments can help predict the next event, making the whole dialogue easy to understand (E tell_jokes reinforces the truth of "interesting" in E talking ).

Apart from the intra-speaker relations Elaboration and Contrast, we can also find the interactions between different speakers: B 2 gives a Comment to A 1 by asking a question, inquiring the reason for the event E talking . The pronominal reference "he" indicates that both speakers have the same grounding and "he" refers to the "this guy" in A 1 . Then A's response A 3 to B 2 constructs a Question Answer Pair (QAP) relation. We can now construct an SDRT representation for this example, as shown in Figure 2.10, where inter-speaker relations are highlighted in orange and those within the same speaker in blue. Precision: this SDRT structure is constructed on the speech-turn level. A standard SDRT analysis should consider segmenting speech turns into EDUs. According to [START_REF] Asher | Logics of conversation[END_REF], most rhetorical relations that apply to monologue can also be extended to conversational turns, but they require additional context assumptions. For instance, Elaboration and Narration must pertain to events that both speakers have observed or agreed upon. Additionally, relations such as Parallel and Contrast can also apply to dialogues, but they may lead to additional inferences, such as dispute, as exemplified in Section 2.2.2 with examples ( 22) and ( 23).

From Written to Spoken: Discourse theories discussed in this thesis are initially designed for written language. Recently, there are efforts in adapting these frameworks to spoken language for a more general analysis of discourse. Among these, [START_REF] Tonelli | Annotation of discourse relations for conversational spoken dialogs[END_REF] adapted the PDTB annotation scheme for spontaneous conversation in Italian. Their study addresses two issues:

(1) multi-lingual adaptation, they employed PDTB on Italian texts and conducted an analysis of the most common connectives employed, juxtaposing them with their English translation counterparts; (2) relation adaptation, they suggested that certain adaptations to the PDTB scheme were necessary to effectively address particular types of relations in spoken languages, such as implicit connections between non-adjacent arguments (quite often in dialogues). Other adjustments are about the sense hierarchy, typically at the second (or type) and third (subtype) levels in PDTB. For instance, they added Goal as a type under contingency class, extending the original Cause and Condition. They also removed List in the expansion class since they found that discourse in conversational speech is less structured and in well-written articles. Considering the significant influence of pragmatics in dialogues, they argued that the speaker's intention and implicit connections in a dialogue are fundamental to the discourse structure, thus providing more fine-grained senses for the third-level subtype pragmatic.

In a study by [START_REF] Rehbein | Annotating discourse relations in spoken language: A comparison of the pdtb and ccr frameworks[END_REF], two discourse frameworks, PDTB and Cognitive approach to Coherence Relations (CCR) [START_REF] Sanders | Toward a taxonomy of coherence relations[END_REF][START_REF] Sanders | Coherence relations in a cognitive theory of discourse representation[END_REF], were compared for their ability to annotate discourse relations in spoken genres such as broadcast interviews and telephone conversations. The researchers found that explicit relations were more prevalent in spoken language compared to written text, and the interpretation of discourse connectives differed. For instance, the connective so is typically used for causal relation in written language, but often appears as a conclusion relation in spoken discourse (example ( 35)). To address these differences, the authors suggested new categories such as Alternative Topicalisation and Alternative Stress to express contrast in spoken language.

(35) A 1 : I've already had a meeting hum an update meeting so the place hasn't burnt down or anything.

Finally, in a study by Wang et al. (2017a), RST was utilized as a foundation for manual annotations of discourse structure in non-native speakers' monologue speech during an English proficiency assessment (TOEFL). The aim was to examine features extracted from the annotated tree structure to assess discourse coherence and speech proficiency. RST framework was chosen over PDTB to acquire a complete discourse structure. The standard RST-DT annotation method was followed, where EDUs were first segmented, and then satellite and nucleus were identified before assigning relations. To handle special cases in speech, the authors created new discourse relations during the annotation process, including disfluency, unfinished-utterance, and discourse particle for filler words such as "you know" or "right". These relations are not strictly rhetorical nor do they convey a specific communicative intention, so they may not fit well within RST's relation inventory. Nonetheless, they address specific linguistic peculiarities in spoken language. As the authors suggest, it would be interesting to investigate how the features perform in an automatic RST parser, possibly trained on written text, and whether the features can be transferred from one text genre to another.

In this chapter, we have explored the theoretical foundations of discourse analysis. We started by discussing the fundamental elements of discourse, including discourse units, connectives, and relations, and then examined the different theories that link these elements together to create a complete discourse structure. We also surveyed several discourse corpora that have been annotated under various frameworks, highlighting the differences in discourse across different languages and settings.

While the idea of creating a unified framework for discourse analysis is appealing, no effective framework has been established so far. Although proposals have been put forth in [START_REF] Benamara | Mapping different rhetorical relation annotations: A proposal[END_REF]; [START_REF] Bunt | Iso 24617-2: A semantically-based standard for dialogue annotation[END_REF], they have yet to gain widespread adoption. Even within the written language, there is still disagreement on the categories and number of coherence relations that should be distinguished. Studies presented in the last section have proposed various strategies to adapt from one framework to another or from one language setting to another. Recent efforts have been made to establish connections between different annotation frameworks, corpora, and languages, such as the DISRPT shared task, aimed at creating a unified format for all datasets. This initiative is a significant step towards developing a general and unified discourse annotation scheme. To promote discourse analysis in a broader range of NLP tasks, a unified framework is necessary that can be easily applied to various domains, encompassing both written and spoken language, in both monologue and dialogue settings. In the previous chapter, we have learned that discourse examines the relationships between sentences in a document, and we have explored various corpora annotated under different frameworks. This chapter focuses on a particular discourse analysis task called discourse parsing. Discourse parsing aims to produce a comprehensive discourse structure for a given document, which involves connecting individual EDUs and assigning labels to their relations. The outcome structure can be advantageous for various NLP tasks, including summarization, sentiment analysis, and topic segmentation, which we will explore towards the end of this chapter.

This chapter is organized as follows: we begin by defining the discourse parsing task and outlining the main steps involved in the RST and SDRT frameworks in Section 3.1. Although RST and SDRT create different forms of structures, they generally follow the same steps. We then discuss various automatic discourse parsers proposed in the literature, which are made possible by the availability of annotated discourse corpora (discussed in Section 2.3). In Section 3.2, we explore different machine learning strategies for discourse parsing, including supervised learning, weakly supervised learning, and unsupervised learning approaches. Due to the scarcity of annotated data, several studies have explored transfer learning and multi-task learning methods. Some of these studies have served as inspiration for our research conducted in Chapter 7. We analyze the effectiveness of these parsing models, discuss their strengths and limitations, and compare their similarities and differences. In Section 3.3, we showcase the applications of discourse information in downstream natural language understanding (NLU) and natural language generation (NLG) tasks. Finally, we provide an in-depth analysis of the utilization of discourse information in downstream tasks, including the discourse features employed, the methods employed for their incorporation, and an evaluation of the performance of discourse-aware models.

Discourse Parsing Task

Generally speaking, both RST-style and SDRT-style discourse parsing can be divided into three steps:

(1) Discourse Unit Segmentation: Splitting a document into non-overlapping minimal discourse units, also known as EDUs.

(2) Link Attachment: Creating attachments among EDUs.

(3) Relation Prediction: Predicting a discourse relation for each pair of EDUs.

The final result of parsing is a relation-typed tree (RST-style) or graph (SDRT-style), where nodes represent discourse units and edges represent discourse relations, providing a comprehensive discourse structure of a document.

RST-Style Parsing

For RST, except for the three main steps, one more action is required after link attachment, that is to assign nuclearity for discourse units. Nuclearity tells which part is more important in a linked pair. Let us revisit an example (presented in Section 1.1) and its RST-style parsing structure in Figure 3.1. This text fragment consists of two sentences, which are segmented into four EDUs. The first two EDUs, denoted by e 1 and e 2 , are connected by a mono-nuclear relation called Consequence, while e 3 and e 4 are linked by the relation Circumstance. In the parsing process, we determine which node is the nucleus ("N") and which is the satellite ("S") for every pair of nodes. The nucleus represents the most salient part of the local relation, while the satellite 3.1. Discourse Parsing Task plays a supplementary role. Note that there are both mono-nuclear types ("N-S" or "S-N") and multi-nuclear type ("N-N") relations are presented in this example. The parsing process can be performed in a bottom-up manner, where EDUs are first linked together to create intermediate nodes ( e 1:2 ande 3:4 ), and gradually move up to the root. The final result is a binary tree-shaped structure. Two metrics have been employed for evaluating RST-style parsing. The first one is the standard Parserval metric, which originated from syntactic parsing [START_REF] Black | A procedure for quantitatively comparing the syntactic coverage of english grammars[END_REF]. It examines the label and word span of the parser output and compares it with the gold treebank.

In the example illustrated in Figure 3.1, the gold Parserval has three text spans: e 1:2 , e 3:4 , and e 1:4 . However, this metric is quite strict, as it does not distinguish between linguistically more or less significant errors, nor does it take into account cases where the label is accurate but the phrase boundary is slightly incorrect [START_REF] Rehbein | Evaluating evaluation measures[END_REF].

Another commonly used metric is RST-parseval proposed by [START_REF] Marcu | The theory and practice of discourse parsing and summarization[END_REF], which considers a larger set of nodes to collect all nuclearity and relation labels. All leaves (i.e., EDUs) are included except for the root node. Thus, in the case of Figure 3.1, 7 nodes would be considered for evaluation: three intermediate nodes ( e 1:2 , e 3:4 , e 1:4 ) andfour individual nodes (e 1 , e 2 , e 3 , e 4 ). However, this metric has an artificial increase in accuracy since every EDU automatically has the correct nuclearity (nucleus) and the label (span). This convention artificially increases the accuracy for prediction, with four out of seven nodes being correctly predicted by default. As pointed out by [START_REF] Morey | How much progress have we made on RST discourse parsing? a replication study of recent results on the RST-DT[END_REF], RST-Parseval considers approximately twice as many nodes as the original Parseval would on binarized trees. Since a binarized tree with n EDUs has n -1 attachments, and RST-Parseval includes n leaves which results in 2n -1 nodes. This lack of a unified evaluation metric makes the comparison among parsers difficult, with RST parsers either reporting RST-Parseval or original Parseval scores (or both). [START_REF] Morey | How much progress have we made on RST discourse parsing? a replication study of recent results on the RST-DT[END_REF] were the first to explicitly use an evaluation procedure for RST parsing that is closer to the original Parseval. They converted all metrics to the original Parseval and found that most gains reported are an artifact of implicit differences in evaluation procedures. They suggested that the original Parseval provides a more accurate picture.

SDRT-Style Parsing

SDRT framework represents DUs in embedded boxes (recall the salmon example [START_REF] Thomas | u can place a settlement[END_REF] in Section 2.2.2), with intermediate boxes representing complex discourse units. However, in the STAC corpus annotation, both EDUs and CDUs are simplified as nodes. Each CDU node is linked to its constituent EDUs with individual links, resulting in a weakly-connected graph structure1 . When we mention SDRT-style parsing, we are referring to the representation of graph-like structures.

An example from the STAC corpus is displayed in Figure 3.2. In this example, three speakers "dmm", "inca", and "cheshireCatGrin" are discussing a potential trade of goods during a game. The direction of the links (such as e 1 → e 2 ) indicates that e 1 is the head and e 2 is the dependent. In dialogues, most of the time, there are only forward links, i.e., in chronological order, since an utterance cannot be anaphorically or rhetorically dependent on following utterances, as they are previously unknown. This feature is known as the turn constraint [START_REF] Afantenos | Modelling strategic conversation: model, annotation design and corpus[END_REF] in SDRT-style parsing. Compared to RST-style parsing, SDRT-style parsing demonstrates more flexibility. For example, the SDRT-style parser can establish connections between distant EDUs and allow non-projective links (such as crossing links between e 1 and e 4 , and between e 3 and e 5 ), while RST-style parsing only permits adjacent attachments and restricts links to be projective. Two metrics are commonly used for evaluation: the Unlabeled Attachment Score (UAS), which only assesses link attachment without considering relations, and the Labeled Attachment Score (LAS), which evaluates whether both attachment and relation type are correctly predicted simultaneously. The latter is also referred to as Full performance, a similar assessment is adopted for syntactic dependency parsing. Initially introduced in [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF], the common practice is to compute the micro-F 1 score for UAS and LAS performances:

Precision = TP/predicted links (3.1) Recall = TP/gold links (3.2) F 1 = 2 * Precision * Recall/(Precision + Recall) (3.3)
Previous research on SDRT-style parsing has mainly focused on predicting tree structures, as seen in works like [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF]; [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF]; [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]. This approach employed a simplification in predicting tree structures instead of graphs and utilized algorithms such as Maximum Spanning Trees (with details in Section 3.2.1). The number of link attachments is thus fixed: for n EDUs, the model always predicts n -1 links. As a result, the evaluation metric UAS actually refers to the recall score.

Machine Learning Strategies for Discourse Parsing

In this section, we provide an overview of various machine learning approaches for discourse parsers, which we present in the following sequence: supervised (Section 3.2.1), transfer learn-ing (Section 3.2.2), weakly supervised (Section 3.2.3), and unsupervised (Section 3.2.4) methods.

While it is an intriguing topic in itself, we do not focus on how to categorize different learning approaches in this chapter. Supervised models learn and predict data from the same domain. For transfer learning, we emphasize that knowledge is acquired (partially or extensively) from other tasks or domains. We classify three transfer learning methods: (1) distant supervision, where information is entirely borrowed from auxiliary tasks; (2) domain integration strategy, where the model is trained for the target task but in a different domain; (3) multi-task learning, where auxiliary tasks and the target task are trained together. In other literature, multi-task learning (MTL) is distinct from transfer learning2 . Here we stress that MTL facilitates learning representations from other tasks, thereby serving as a means to transfer knowledge to our main parsing task. For weakly supervised learning, we emphasize the training set's quality, which is frequently noisy and imprecise. Studies employing this learning method often compromise the quality to obtain more annotated data for quantifying purposes. Lastly, if we consider the extreme scenario of transfer learning and learn with few or no labeled instances, we arrive at fewshot, one-shot, or zero-shot learning. Unsupervised learning, also known as zero-shot learning, is the last part of this section's presentation.

Supervised Methods

Our attention in this section is on SDRT-style parsing in dialogues since it is the primary focus of this thesis. We provide a comprehensive summary of supervised parsers to date, along with their performance on STAC and Molweni datasets, in Table 3.1. It is worth noting that some transformer-based parsers employ diverse pre-trained language models as their backbone, making it difficult to evaluate their impact on the final scores. To facilitate better comparison, we report the scores achieved using the base version.

We classify the existing systems based on two key aspects: (1) parsing paradigms (Section 3.2.1.1), whether they are graph-based or transition-based; (2) encoding strategies (Section 3.2.1.2), whether they employ separate encoding or joint encoding. We evaluate a dozen dependency parsers, taking into account their structure, performance, and any unique features they may have.

Parsing Paradigms

Existing models can be roughly categorized into graph-based approaches, as in [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF]; [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF]; [START_REF] Perret | Integer linear programming for discourse parsing[END_REF]; Wang et al. (2021a)) and transition-based approaches (also known as sequential or incremental parsing), as in [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]; Liu and Chen (2021); [START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF]. A novel way is to combine these two approaches, as done in [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF]. We show in Table 3.2 a list of parsers in these three paradigms.

Graph-Based Approaches:

The graph-based approach utilizes an edge-factoring algorithm that enables global parameter optimization over the entire tree structure [START_REF] Sagae | Analysis of discourse structure with syntactic dependencies and data-driven shift-reduce parsing[END_REF], such as the Maximum Spanning Tree (MST) algorithm [START_REF] Mcdonald | Non-projective dependency parsing using spanning tree algorithms[END_REF]. For instance, the parser developed by [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF] is a representative example, where the authors first employ hand-crafted features to represent the EDU pairs f ij and then use maximum entropy (MaxEnt) to estimate the parameters w ij . The values for different parameters ŵ are obtained by maximizing the log-likelihood of the training data T : Model STAC Molweni Link Link&Rel Link Link&Rel MST [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF] 68.8 50.4 69.0 § 48.7 § ILP [START_REF] Perret | Integer linear programming for discourse parsing[END_REF] 68.9 53.1 67. [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF] 75.3 ∥ 56.9 ∥ 79.7 ∥ 55.9 ∥ QA-DP Multi-task [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF] --75.9 † 56.0 † DiscProReco Multi-task [START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF] 74.1 * 57.0 * --Distance-Aware Multi-task (DAMT) [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF] 73.6 57.4 82.5 58.9 SSP+SCIJE [START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF] 73.0 57.4 83.7 59.4 Struct-Joint [START_REF] Chi | Structured dialogue discourse parsing[END_REF] 74.4 59.6 83.5 59.9 [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF] Hierarchical [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF]) ILP [START_REF] Perret | Integer linear programming for discourse parsing[END_REF] QA-DP Multi-task [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF]) Struct GNN (Wang et al., 2021a) SSAM [START_REF] Wang | Multi-level cohesion information modeling for better written and dialogue discourse parsing[END_REF]) DiscProReco [START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF] SSP+SCIJE [START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF]) Struct-Joint [START_REF] Chi | Structured dialogue discourse parsing[END_REF] Table 3.2: Graph-based, transition-based, and joint discourse parsers for dialogues. Left column: MST: maximum spanning tree; A * : decoding strategy, shortest-path searching; ILP: integer linear programming; GNN: graph neural network; DiscProReco: discourse parsing and pronoun recovery multi-task. Middle column: Deep seq: Deep Sequential model; QA-DP: question-answering and discourse parsing multi-task setting; SSAM: structure self attention model; SSP+SCIJE: same-speakerprediction and speaker-context interaction joint encoding. Right column: DAMT: distance-aware multi-task.

P ij = 1 Z(c) exp m ij=1 w ij f ij (3.4) ŵ = arg max w T ij log P ij (3.5)
where ij is a pair of EDU and m is the number of features. In the decoding step, they use the Chu-Liu Edmonds [START_REF] Chu | On the shortest arborescence of a directed graph[END_REF][START_REF] Edmonds | Optimum branchings[END_REF]) version of the MST algorithm which examines all possible tree structures and chooses the one that has the biggest sum of weight probabilities.

T * = arg max T ⊂G e∈E(T )
w(e) (3. 6)

w(e) = log( p(e) 1 -p(e) ) (3.7)
where G is the complete graph of all possible edges and E(T ) contains all the edges in candidate tree T . This is very similar in syntactic parsing when the dependencies are established within sentences [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF][START_REF] Li | Text-level discourse dependency parsing[END_REF].

Transition-Based Approaches: In contrast, transition-based methods prioritize local optimality by selecting the best action at each step. A typical example is the Deep Sequential parser created by [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]. In their method, after obtaining a structured global representation of each pair of EDUs, including both current and previously attached links, denoted as H i,j , the link predictor calculates the probability that each EDU u j with is the antecedent of u i , with (j < i):

P (p i = u j |H i,<i ) = exp o i,j k<i exp o i,k (3.8) 
p i = arg max u j :j<i P (p i = u j |H i,<i ) (3.9) 
where o i,j is the vector representation of pair attachment i, j. Notice the difference between Equations 3.6 and 3.9: the former stresses on the probabilities of all edges, whereas the latter considers historical structures to make the current decision and selects the local maximum at each step.

In terms of time complexity, transition-based approaches are normally quicker -they can finish in linear time, while graph-based algorithms such as Chu-Liu Edmonds have a complexity of O(n 3 ), with n being the number of EDUs. However, one major drawback for transition-based is the error propagation issue, as discussed in Wang et al. (2021a).

Joint Framework: [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF] firstly proposed a joint model (DAMT) that combines the benefits of graph-based and transition-based paradigms. To construct the connection between the transition-based and graph-based semantic representation (H t and H g ), they used Unidirectional Cross Attention (UCA) layers to create new representations of H tc and H gc in the encoding module:

H g→t = UCA(W q H g , W k H t , W v H t ) (3.10) H gc = L(H g + H g→t ) (3.11) H t→g = UCA(W q H t , W k H g , W v H g ) (3.
12)

H tc = L(H t + H t→g ) (3.13)
where W q , W k , W v are the weight matrices for query, key, and value that map vectors to the same feature space; L(.) is a layer normalization function. Structure Self Attention (SSA) is then applied to H tc and H gc to incorporate structural information of conversation. For the decoding part, they use a pointer network and transition-based process to obtain the probability s ij between the current EDU i and previous EDU j.

s ij = H ⊤ tc W h dk + U H tc + V h dk + b (3.14)
where W is the weight matrix of bi-linear term; U and V are two weight vectors of the linear term; b is the bias vector; h dk is the k th step output of a Biaffine Attention mechanism [START_REF] Dozat | Deep biaffine attention for neural dependency parsing[END_REF] of the input H tc . Finally, in a multi-task learning setting, the authors aim to minimize the sum of losses of both encoding and decoding, thus integrating the two dependency parsing paradigms. The evaluation demonstrates notable enhancements, particularly for long-distance dependency links. The authors attribute this improvement to the fusion of the transition-based module, which performs better for a link distance greater than one, and the graph-based module, which is competitive with other state-of-the-art parsers for a distance of one.

Encoding & Decoding Strategy

We will now examine parsing models by evaluating their encoding and decoding strategies. Initially, approaches used feature engineering techniques to encode EDU pairs by incorporating lexical and positional information, and then adopted various decoding strategies such as the Maximum Spanning Tree algorithm [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF][START_REF] Li | Text-level discourse dependency parsing[END_REF][START_REF] Afantenos | Modelling strategic conversation: model, annotation design and corpus[END_REF] or Integer Linear Programming [START_REF] Perret | Integer linear programming for discourse parsing[END_REF]. With the introduction of the first neural model Deep Sequential [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF], feature engineering has received less attention, and researchers have instead employed Recurrent Neural Networks (such as GRU) [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF][START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF][START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF], Graph Neural Networks (Wang et al., 2021b,a;[START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF], or Pre-trained Language Models (PLMs) [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF][START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF] to encode contextual information. Additionally, some have used multi-task learning frameworks, such as question-answering or pronoun recovery, to obtain representations, as in [START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF]; [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF]; [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF].

Most of the aforementioned work treats link attachment and relation prediction as two distinct tasks, with the link predicted before the relation. We categorize these studies under the Sequential Prediction Group. In contrast, studies that jointly optimize link attachment and relation prediction are referred to as the Joint Prediction Group. Table 3.3 gives a summarization of information about the encoders and decoders in these two groups.

Sequential Prediction:

Group Sequential contains models that treat link and relation prediction as two separate tasks. The initial work by [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF] used traditional feature engineering techniques, mainly incorporating lexical features (such as opinion markers, quantifiers, punctuation presence) and positional features (e.g., the distance between EDUs, position in [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] local, global, struct multiclass classif -speaker STAC Hierarchical [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF] global, struct multiclass classif --STAC, Molweni SSP+SCIJE [START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF] global, struct multiclass classif -speaker STAC, Molweni Struct GNN (Wang et al., 2021a) global multiclass classif lexi, posit -STAC, Molweni SSAM [START_REF] Wang | Multi-level cohesion information modeling for better written and dialogue discourse parsing[END_REF] local / / cohesion STAC DAMT [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF] global, struct multiclass classif -multi-task STAC, Molweni (Afantenos et al., 2012a).

the dialogue), as well as coarse-grain dialogue act tags (offer, refusal, etc.) and syntactic dependencies using the Stanford CoreNLP pipeline [START_REF] Manning | The stanford corenlp natural language processing toolkit[END_REF]. They utilized a maximum entropy model [START_REF] Berger | A maximum entropy approach to natural language processing[END_REF] as an encoder to estimate the maximum parameters ŵ for each pair of EDUs, where each EDU is represented by a feature vector. For the decoder, they utilized a Maximum Spanning Tree algorithm to obtain the tree with the highest probability for all edges.

The Deep Sequential architecture proposed by [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] was the first neural architecture based on a hierarchical Gated Recurrent Unit (GRU) that processes segment attachment and relation allocation sequentially. To encode the input, Shi and Huang (2019) used a combination of different representations, including local representations (h i ), non-structured global representations (g N S i , g N S j ), and structured global representations (g S j,a i ), as shown in Equation 3.15. Non-structured vectors were obtained from the output of an encoder based on Gated Recurrent Units (GRUs) that processed the EDU sequence, while structured vectors also incorporated information about previous dependency links and relation types. Additionally, the authors proposed a Speaker Highlighting Mechanism that considers speaker information (a i ):

H i,j = h i ⊕ g N S i ⊕ g N S j ⊕ g S j,a i (3.15)
The decoding process is performed incrementally, involving multiple choices where the current EDU selects its parent with the highest probability, attaches to it, and then determines the most probable relation type. This method resulted in significant improvements in parsing accuracy for STAC (+6%) and Molweni (+7%). The primary advantage of this approach lies in the encoding of global information. Although link and relation predictions are made separately at each step, the previous relation choice is taken into account through the global structured representation, which aids in making subsequent decisions.

The SSP+SCIJE model [START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF] is a recent extension of the Deep Sequential model.

In this model, the authors begin by pre-training a language model on the Same-Speaker Prediction (SSP) task. They then incorporated the resulting information (h s i,j ) into the EDU pair encoding:

H i,j = αh s i,j + (1 -α)h u i,j (3.16)
where α is a hyper-parameter; h s i,j is the representation from SSP pre-trained model; h u i,j is the concatenation of representation of two EDUs. From Equations 3.15 and 3.16, it is evident that both encoding processes incorporate speaker information (g S j,a i and h s i,j ). However, the Deep Sequential model additionally considers individual EDU representation, which is not taken into account by the SSP+SCIJE model.

In a recent study, Wang et al. (2021a) utilized Graph Neural Networks (GNNs) to learn the structure between each pair of EDUs. Instead of focusing on EDU representation, they explored edge-specific vectors to capture the implicit structure information between EDU pairs. To initialize edge vectors, they encoded features such as "if-the-same-speaker", "if-continuous-utterance", and "distance between two EDUs". However, this structured GNN model only showed marginal improvement for link prediction on STAC compared to the Deep Sequential model (F 1 73.5% vs 73.2%).

Another GNN-based model was proposed by [START_REF] Wang | Multi-level cohesion information modeling for better written and dialogue discourse parsing[END_REF], where they incorporated additional cohesion information into EDU encoding using the WordNet resource and a coreference resolution model to extract lexical and coreference chains. However, it is unclear whether they considered historical decisions and how they carried out the decoding part for link and relation.

Joint Prediction:

Group Joint contains models that simultaneously optimize link attachment and relation prediction. In an early work by [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF], authors have proposed to jointly calculate the loss for link attachment and relation types:

W u,v = -log(P (attach(u, v) = T rue) × max R P (R|attach(u, v) = T rue)) (3.17)
However, when evaluated on the SDRT-style French corpus ANNODIS (Afantenos et al., 2012a), their results showed poorer performance compared to their sequential model for link attachment and similar performance for full structure prediction. Thus, Muller and colleagues concluded that predicting relations does not improve link attachment.

Another study proposed by [START_REF] Perret | Integer linear programming for discourse parsing[END_REF] explored the use of Integer Linear Programming for joint decoding, where an objective function is defined based on the scores of attachment and relation:

n i=1 n j=1 (a ij s a (i, j) + m k=1 r ijk s r (i, j, k)) (3.18)
where a ij and r ijk are binary variables for link and relation: equals to 1 if link (ij) or relation k for link (ij) are correct, else 0; s a (i, j) and s r (i, j, k) are the scores of attachment and relation obtained from feature engineering. Maximizing this objective function is, in fact, learning the best combination of link and relation.

In addition to the previously mentioned work, A recent study by Chi and Rudnicky (2022) introduced a structured encoding approach where link attachments and relation predictions are jointly optimized on an adjacency matrix. They achieved this by constructing each pair of EDUs as a triplet (h, m, r) where h and m represent the indices of the parent and child utterances, [START_REF] Chi | Structured dialogue discourse parsing[END_REF]. Orange rows mean the 1 st utterance can connect to later utterances to choose which one is the child; green columns mean the 4 th utterance can have one previous utterance as its parent. V r and V c are concatenated together and pass through a linear transformation to obtain the purple vector θ.

respectively, and r represents one of the 17 (16 relations in STAC + no-relation) relation types between the two. Figure 3.3 illustrates this process. For a given row h (in orange, where h = 1, parent node), the hidden states for all timesteps t that follow h (rows 2 -5) are computed and stored in V r h,t . Similarly, the column m th representation (in green, where m = 4, child node) is computed by considering all the previous columns:

{V r h,t } n t=h+1 = LSTM({V r h,t } n t=h+1 ) (3.19) {V c t,m } m-1 t=0 = LSTM({V c t,m } m-1 t=0 ) (3.20)
The transformation of V r h,t and V c t,m into individual scores with relation information (as shown in purple) is accomplished by applying a linear transformation layer. This conversion changes the dimensions of V from R (n+1)×(n+1)×2d to R (n+1)×(n+1)×17 , where n is the total number of utterances in a document and d is the token dimension:

θ h,m = Linear(V r h,m + V c h,m ) (3.21)
With parameterization in Equation 3.21, each EDU-pair is aware of neighboring pairs as well as the relation types. For the decoding part, they applied Chu-Liu Edmonds algorithms. The novelty in Chi's work is to directly transform the parent-child vector into a relation-aware vector (Equation 3.21), enabling the joint prediction objective.

To conclude, from Table 3.1, we observe that traditional models (upper part) are significantly outperformed by recent neural models (lower part). Most supervised neural models achieve around 73% and 57% UAS and LAS performances, respectively. Among neural models, the Transformer-based Deep Sequential model [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF]) achieves the highest UAS score (75.3%), and the joint structured model [START_REF] Chi | Structured dialogue discourse parsing[END_REF] [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]. However, the differences in adopting different parsing paradigms (graph-based and transition-based) and encoding strategies (Sequential or Joint) are not obvious.

In contrast to syntactic dependency parsing, supervised models for discourse dependency parsing lag behind in performance 3 . The primary reason for this is the lack of annotated data. The training set is restricted in size and domain, making supervised models trained on STAC (and Molweni) hard to generalize to other domains. Even with domain integration strategies, the study by [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF] (that we will present in Section 3.2.2.2) shows that inter-domain performance drops by approximately 20% for both UAS and LAS, indicating that supervised models are not yet suitable for wide usage.

Transfer Learning Methods

To tackle data scarcity in discourse parsing, there has been a recent trend towards transfer learning strategies, which has mainly focused on monologues. In this section, we describe three methods to achieve the goal of information transfer: discovery of distant signals from other tasks (Section 3.2.2.1), joint pretraining to help the model adapt to another domain (Section 3.2.2.2), and learning shared representation in a multi-task framework (Section 3.2.2.3). We summarize these studies in Table 3.4, including the domain, framework, model output, auxiliary task used, and testing corpora. Precision: in the previous section, we have already discussed the work of [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF], which uses a multi-task framework to combine graph-based and transition-based parsing paradigms. Since both tasks are discourse parsing and they do not leverage information from another different task, we classify their work in supervised learning. Nonetheless, we still include it under "Multi-task learning" in Table 3.4. 

Distant Supervision

The work of [START_REF] Huber | Predicting discourse structure using distant supervision from sentiment[END_REF] drew inspiration from prior studies that used discourse parsing to improve sentiment analysis [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF][START_REF] Nejat | Exploring joint neural model for sentence level discourse parsing and sentiment analysis[END_REF]. In contrast, they investigated the potential synergy between sentiment and discourse by exploring the use of multiple-instance learning (MIL) [START_REF] Angelidis | Multiple instance learning networks for fine-grained sentiment analysis[END_REF] techniques. Their approach involved smoothing the gold global sentiment label (i.e., the sentiment of the entire document) to local sentiment and attention scores at the EDU level, which were then used to construct a discourse tree using a chart-based algorithm like CKY [START_REF] Jurafsky | Speech and language processing[END_REF]. Figure 3.4 from their paper provides an example, in which a strong negative review in the Yelp'13 [START_REF] Tang | Document modeling with gated recurrent neural network for sentiment classification[END_REF] corpus (food reviews) is parsed. The last EDU in the review has the most negative sentiment and is placed at a higher level in the tree, while EDUs with positive sentiments, such as 5, 6, and 7, are located at lower levels. Thus, the hierarchical sentiment structure aligns with discourse importance and can be represented in a tree-like form.

The pipeline for generating discourse trees can be divided into two main stages. In the first stage, during training, the input text is segmented into EDUs and passed through a hierarchical RNN network. The output of this stage is a vector representation for each EDU i , which is used to obtain sentiment scores (S E ) and attention scores (A E ).

S E i = Sigmoid(FF(H E i )) (3.22
)

A E i = Sigmoid(H E i ) (3.23)
where H E i is hidden-state of EDU i and FF(•) is a feed-forward layer. These two scores are summed up to calculate the final sentiment prediction (O D ) of the MIL model for document D:

O D = E i ∈D S E i * A E i (3.24)
Next, the MIL model's parameters are optimized by comparing the predicted scores with the gold label. After training the model, step (2) involves using the sentiment scores of each EDU to construct a discourse tree using the CKY algorithm. This step is simpler, but it involves computing the scores for all possible tree structures.

The advantages become evident when testing in inter-domain settings: the parsers trained on the Yelp'13 corpus enriched with discourse information outperformed those trained on another human-annotated corpus in a different domain. Specifically, the authors trained a two-stage parser [START_REF] Wang | A two-stage parsing method for text-level discourse analysis[END_REF] on RST-DT and tested it on Instr-DT, achieving a precision of 73.7; and vice versa, achieving a precision of 74.5. When they trained a two-stage parser on Yelp'13 and tested on Instr-DT and RST-DT, they achieved 74.2 and 77.2, respectively, resulting in a gain of 0.5 and 2.7 points, respectively. This demonstrates the ability to capture more general discourse structure from sentiment information. Their method has the advantage of creating large-scale "silver standard" discourse trees for more general usage, thanks to the abundance and accuracy of sentiment-rich datasets such as Yelp'13 food reviews.

However, there are several drawbacks to this study that should be noted. Firstly, the parser has a limited scope, as it can only generate discourse structure and not nuclearity and relations. While the nuclearity prediction was improved in follow-up work MEGA-DT [START_REF] Huber | MEGA RST discourse treebanks with structure and nuclearity from scalable distant sentiment supervision[END_REF] and Weighted-RST [START_REF] Huber | W-RST: Towards a weighted RST-style discourse framework[END_REF], the relation prediction remains an unresolved issue. Secondly, the method has limited applicability. As stated in the paper, due to computational power constraints and the non-scalable nature of the CKY algorithm, the authors were only able to process documents with ≤ 20 EDUs and were unable to consider inter-sentence relations.

In their follow-up work MEGA-DT [START_REF] Huber | MEGA RST discourse treebanks with structure and nuclearity from scalable distant sentiment supervision[END_REF], authors used averaged attention values a and polarity scores p from the left and right subtrees for internal nodes. For the mono-nucleus class (N-S or S-N ), they assign N to the subtree with a larger a value and S to the node with a lower value. They also created an artificial node N-N to tackle multi-nucleus classes. The results, however, are not satisfactory: with parser over-predicted multi-nucleus nodes and low accuracy for the mono-nucleus classes. Finally, authors have proposed a new perspective on nuclearity prediction in [START_REF] Huber | W-RST: Towards a weighted RST-style discourse framework[END_REF] where they argue that binary assessment of this attribute can be replaced by real-valued scores, the so-called "Weighted-RST" framework. They show that the distantly learned weighted discourse trees can better benefit some downstream applications.

After analyzing this line of study, we think that the exploration of better nuclearity inference is valuable since this attribute encodes local importance in a document. Linguistic features, such as discourse markers, can provide assistance in this regard. For instance, connectives like but and however often imply the emergence of a more significant utterance (S-N ), while connective and indicate equal importance (N-N ). Regarding relation prediction, it is still a challenging task for both monologues and dialogues, and the authors did not propose a proper solution. In our experiments, we made the initial attempt to predict relations for dialogues, as detailed in Chapter 8.

Another signal for distant supervision in discourse parsing can be obtained from the attention matrices in neural summarizers [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF]. In this work, authors suggested that attention matrices in summarizers contain structural information that can be used to extract discourse trees. The authors first trained a summarizer and then extracted discourse trees from the summarizers' attention matrices. These trees can be considered a by-product of the summarization task. To extract the trees, they used hierarchical CKY [START_REF] Jurafsky | Speech and language processing[END_REF] algorithm for constituent trees, and hierarchical Eisner [START_REF] Eisner | Three new probabilistic models for dependency parsing: An exploration[END_REF] and Chu-Liu Edmonds [START_REF] Chu | On the shortest arborescence of a directed graph[END_REF][START_REF] Edmonds | Optimum branchings[END_REF]) algorithms for dependency trees. They also experimented with layer-wise attention, which averages all the attention heads in a layer (the first two layers were tested). However, in our own experiments described in Chapter 7, we examined both layer-wise and head-wise attentions. As a teaser, our results showed that layer-wise aggregation of attention scores is not the best approach for generating discourse trees.

Domain Integration

Previously discussed studies have attempted to incorporate discourse information from other tasks, while Liu and Chen (2021) focused on transferring information across different domains 4 . First, the researchers demonstrated that a parser trained solely on STAC performs poorly on Molweni, and vice versa. Consequently, they proposed a solution to the domain integration problem by conducting joint training on both datasets. They modified the supervised Deep Sequential model [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] 3) utilized vocabulary refinement techniques to eliminate infrequently occurring vocabulary in both datasets. By using the language model backbone and conducting joint pre-training, the researchers achieved approximately 2% and 10% improvements in cross-domain results (training on STAC and testing on Molweni, and vice versa). It is worth noting that language model implementation contributes the most to these improvements among the three modifications. However, due to the predominantly lexical nature of adaptation strategies, the improved outcomes still fall short of both simple baselines and our semi-supervised outcomes (Chapter 7).

Multi-Task Learning

A recent approach to discourse parsing is to incorporate related tasks and leverage shared representations using the Multi-Task Learning (MTL) framework. Here, we discuss two relevant studies in this regard.

Regarding SDRT-style parsing, [START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF] suggested utilizing Dropped Pronoun Recovery (DPR) as an additional task. Dropping pronouns like "你[you] " and "我[I] " is a common phenomenon in oral Chinese conversations. This task is aimed at restoring the dropped pronouns in a conversation. They tested on a Chinese conversational dataset which contains 684 SMS dialogues [START_REF] Yang | Recovering dropped pronouns from chinese text messages[END_REF]. They annotated the dataset under the SDRT framework and obtained 39k relations. The idea behind this work is that discourse parsing offers information on linked utterances, which can assist in pronoun recovery. Conversely, the recovered pronouns can complete utterances and be beneficial for discourse parsing. The link attachment part is very much similar to that of [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF] (see Equation 3.14 in Section 3.2.1). They also use a Biaffine Attention Network to obtain the probability of attaching current EDU (X j ) to a previous parent (X i ):

s i,j = r (head) i U (arc) r (dep) j + r (head) ⊤ i u (arc) (3.25) P arc (X j |X i , C) = softmax(s (arc) i,j ) (3.26)
The utterance-specific states for the head and dependent are denoted as r (head) i and r

(dep) i , respectively, while U (arc) and u (arc) refer to the weight matrix and bias. The context is represented by C. The prediction of an arc is accomplished using a softmax function, and a relation score distribution s (rel) i,j is calculated for each pair of utterances (X i , X j ). In the auxiliary task, utterances augmented with discourse structure are utilized for pronoun referent. The overall training objective is to minimize the loss from link and relation prediction, as well as from DPR in a joint manner:

loss = α • (loss arc + loss rel ) + β • loss dpr (3.27)
Another study by [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF] explored the joint training of discourse structure prediction and dialogue comprehension tasks. The evaluation was performed on the Molweni dataset. In contrast to [START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF], where the updated utterance representation from discourse parsing is directly passed to the next task, [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF] initially constructed a representation for the dialogue comprehension task based on QA and then adapted this representation for discourse parsing:

S = encode([CLS], Q, [SEP], D, [SEP]) (3.28) F ij = (E i sep , E j sep , E i sep -E j sep , E i sep • E j sep ) (3.29)
In the QA-based dialogue comprehension task, utterances are not encoded in a linear fashion. Instead, they are encoded in the order specified in Equation 3.28, where the question (Q = w 1 w 2 . . . w n ) is followed by [SEP] token and then the dialogue context (i.e., an utterance D = w 1 w 2 . . . w m ). This way, each utterance is encoded with information from the question. The resulting utterance features are then passed to the discourse parsing task, as shown in Equation 3.29, where E i sep is the output feature of the separator for the i th utterance, andand • represent Euclidean and cosine distances, respectively. The representation for a pair of EDUs (ij) is defined by combining the individual EDU representations and distance representations.

The training for link and relation prediction in discourse parsing is executed sequentially. While QA in dialogues can benefit DP, particularly for relation types such as QAP, the model performance is not very impressive: 75.9% for link prediction (versus 77.3% using Deep Sequential model [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]) and 56.0% for joint link and relation prediction (versus 54.2% with Deep Sequential ). The representation of EDU pair F ij is quite complex, and it is not clear how question-encoded (Q) utterances would help in finding the appropriate parent node in discourse parsing.

To conclude, in this section, we have discussed several transfer learning approaches that can be utilized to address the issue of data scarcity, ranging from leveraging distant signals in other tasks [START_REF] Huber | Predicting discourse structure using distant supervision from sentiment[END_REF][START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF], to joint training of cross-domain datasets [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF], and finally multi-task learning [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF][START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF]. Each approach has its own unique use case, depending on the availability of resources and the relevance of the tasks. It is important to note that only closely related tasks can fully benefit from each other. When searching for transferable signals, the source and target settings should also be taken into consideration. For example, while sentiment-augmented datasets are rich in monologues (such as movie and food reviews), they are less commonly seen in dialogues. Although sentiment annotation for individual speech turns may be available, overall judgments for entire conversations are rare. Therefore, the distant learning strategy employed in [START_REF] Huber | Predicting discourse structure using distant supervision from sentiment[END_REF] may not be easily transferable to dialogues. Nonetheless, studying these strategies can provide inspiration and help identify useful tasks that can benefit discourse parsing. [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. UDC †: Ubuntu Dialogue Corpus [START_REF] Lowe | The Ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems[END_REF]. Note that [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] use SciDTB [START_REF] Yang | Scidtb: Discourse dependency treebank for scientific abstracts[END_REF] and STAC [START_REF] Asher | Logics of conversation[END_REF] in monologue and dialogue settings resp. for training.

Weakly Supervised Methods

Instead of relying solely on transfer learning, another approach to address data scarcity is to employ weakly supervised methods. This involves sacrificing some level of quality in exchange for a greater quantity of annotated data, which may be noisier. In this section, we discuss weakly supervised strategies. Table 3.5 provides a summary of related studies. In dialogue settings, Badene et al. (2019a,b) investigated a weak supervision paradigm where expert-composed heuristics, combined with a generative model, are applied to unseen data. They used a data programming paradigm -introduced by Ratner et al. ( 2016) with the Snorkel framework [START_REF] Ratner | Snorkel: Rapid training data creation with weak supervision[END_REF] to create attachment signals. Precisely, their pipeline includes two steps: (1) Labeling Functions (short in LF) where expert-composed attachment rules are created. For instance, to make an attachment of relation Result, one of the rules is to match the starting word of the second EDU to a pre-defined result word list (including "so", "accordingly", "as a result", etc.). If a candidate EDU contains a result word, then the LF returns the value 1 for "attached" (0: "do not know"; -1: "not attached"). This is a simple example; other rules can be more complex and take into account dialogue act types and different speakers. A total of 17 rules covering 9 relation types have been created 5 . Once the LFs are applied to all the candidates (EDUs), step ( 2) utilized a generative model to calculate probabilities of possible attachments. For this, they built a matrix M ij of size m × n where m is the number of EDUs and n the number of LFs. Each EDU receives an attachment score ϕ(•):

ϕ j (M i , y j ) := M ij y j (3.30) p θ (M, Y ) ∝ exp( m i=1 n j=1 θ j ϕ j (M i , j i )) (3.31)
where y j is the gold label; ϕ(•) is score of candidate in matrix M ; θ j are parameters to optimize; p θ is the probability with parameter θ. The objective, as shown in Equation 3.32, is to minimize the negative log likelihood:

arg min θ -log Y p θ (M, Y ) (3.32)
The generative model's performance on STAC testing is comparable to that of the local model in [START_REF] Perret | Integer linear programming for discourse parsing[END_REF] (F 1 51 vs. 48), but much lower than Perret's Integer Linear Programming approach (68.9). As noted in this study, a major disadvantage of weak supervision is the low precision score, likely due to the imprecise or inaccurate supervision signals provided by the LFs [START_REF] Zhou | A brief introduction to weakly supervised learning[END_REF]. This study is valuable for exploring weak supervision in dialogues, but its approach requires domain-specific annotation, carefully designed rules (such as deciding which rule to apply first or whether two rules capture similar information), and a relatively large validation set for rule verification.

Another weakly supervised approach is to increase the size of datasets through self-training. In a study about causal discourse detection in the biomedical domain, [START_REF] Mihăilă | Semi-supervised learning of causal relations in biomedical scientific discourse[END_REF] used an iterative self-training strategy to overcome the problem of a large amount of unannotated data. They trained a classifier µ, or the teacher, with a small amount of labeled data and then tested on unannotated data, or the student. Only instances with high confidence scores above a pre-set threshold τ were considered gold and added to the labeled data. This process was repeated until all instances were annotated, thereby augmenting the BioCause corpus [START_REF] Mihăilă | Biocause: Annotating and analysing causality in the biomedical domain[END_REF]. The authors found that, despite the potential noise in the augmented data, more discourse spans were correctly recognized as the dataset size increased (an increase of 4.35 points in F score). In our experiments for discourse relation prediction, we also adopted selftraining strategies. However, we found that adding pseudo-labeled examples with high confidence scores did not consistently improve model performance. Instead, we discovered the importance of balancing the label classes for the added examples, as elaborated in Section 8.5.2.

In recent work by [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF], self-training was also employed to generate complete discourse structures, including link attachment and relation types. However, unlike [START_REF] Mihăilă | Semi-supervised learning of causal relations in biomedical scientific discourse[END_REF], their goal was to produce annotations for data in a different domain, using unsupervised domain adaptation (UDA). The authors adapted a model trained on a source domain with limited labeled data to a target domain where only unlabeled data was available. The bootstrapping strategy was applied, where one or more teacher models generated pseudo-labels for student models, and the students learned from these pseudo-supervisions, as illustrated in Figure 3 For the crucial step of pseudo example selection, the authors employed two selection criteria: "rank-above-k" and "rank-diff-k". "Rank-above-k" strategy selects only the top N × k samples with the highest confidence scores. On the other hand, "rank-diff-k" strategy keeps only those samples whose relative ranking on the teacher side is k higher than that on the student side. The proposed pipeline is evaluated on both monologues and dialogues, where a domain transfer is performed from scientific papers to biomedicine documents for monologues, and from gaming conversations to technical chat for dialogues. Among the tested models, the co-training approach using shift-reduce model [START_REF] Nivre | Incrementality in deterministic dependency parsing[END_REF] trained with arc-factored model [START_REF] Mcdonald | Non-projective dependency parsing using spanning tree algorithms[END_REF] achieved the best UAS score of 78.8 for monologues. For dialogues, a backward shift-reduce model using co-training achieved the highest UAS and LAS scores of 67.7 and 39.2, respectively. In comparison, the SOTA supervised model presented in Section 3.2.1 obtained UAS and LAS scores of 75.3 and 59.6 for link and relation prediction. Additionally, self-training and tri-training also demonstrated promising results under specific selection criteria, such as "rank-above-0.6" or "rank-diff-100".

This section describes three studies that employ different weak learning strategies: heuristic rules (Badene et al., 2019a), in-domain self-training [START_REF] Mihăilă | Semi-supervised learning of causal relations in biomedical scientific discourse[END_REF], and outof-domain bootstrapping [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. Each of these strategies has its own advantages and is suitable for different scenarios depending on the availability of resources. These approaches are particularly useful for discourse parsing because they demonstrate that even with limited data, it is possible to generate additional (and potentially noisy) training data and improve the performance of our models.

Unsupervised Methods

When there is no annotated data for the main task or similar tasks, we encounter an extreme case of data scarcity. The field of unsupervised discourse parsing has mostly been neglected in the past, likely because of its inferior performance. In this section, we present the results of unsupervised parsers in Table 3.6, mostly applied in the monologue setting. The use of fully unsupervised methods for RST discourse tree extraction was first explored by [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF]. They employed dynamic programming to create discourse trees based on similarity and dissimilarity scores. Furthermore, they investigated three granularities, namely EDU-level, sentence-level, and paragraph-level. Figure 3.6 illustrates right branching at different levels. [START_REF] Nishida | Unsupervised discourse constituency parsing using viterbi em[END_REF] conducted a similar study and also used these granularities.

The calculation of similarity in [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF] is simple. They defined similarity between two adjacent spans using pre-defined word embeddings (ELMo (Peters et al., 2018a) and Glove [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]) and an effective sentence vector calculation called smooth inverse frequency (SIF), which was originally proposed in [START_REF] Arora | A simple but tough-to-beat baseline for sentence embeddings[END_REF]. The core calculation for the similarity score is shown below :

- → u t = w∈Wt a p(w) + a - → w (3.33) -→ l i:k = [ - → u i ; -→ u k ] (3.34) sim( -→ l i:k , ---→ r k+1:j ) = 1 2 { -→ l i:k • ---→ r k+1:j ∥ -→ l i:k ∥∥ ---→ r k+1:j ∥ + 1} (3.35)
The SIF calculation is applied to each atomic unit -→ u t , which is comprised of words w and their corresponding concatenated word embeddings in ELMo and Glove, denoted as -→ w . The span vector -→ l i:k concatenates the leftmost and rightmost atomic unit vectors -→ u i and -→ u k to obtain the similarity score of two adjacent spans, -→ l i:k and ---→ l k+1:j . By using 1 -sim(•) as the dissimilarity score, they obtain the split score for the optimal tree. To perform the tree merge or split process, a dynamic CKY programming algorithm is used, which uses a matrix to store scores for all possible sub-spans of a tree at its granularity level and builds complete trees incrementally from the EDU-tree to sentence-tree and paragraph-tree. The algorithm proceeds from coarse to fine levels to construct trees accordingly. The granularity levels for the algorithm were defined as EDU-level, sentence-level, and paragraph-level, as used in other studies [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF][START_REF] Nishida | Unsupervised discourse constituency parsing using viterbi em[END_REF].

The experiments conducted on RST-DT (Carlson et al., 2002a) and Potsdam Commentary Corpus (PCC 2.0) [START_REF] Stede | Potsdam commentary corpus 2.0: Annotation for discourse research[END_REF] yielded highly encouraging results, achieving a maximum micro-F 1 score of 81.1 and 78.4, respectively, on the entire dataset. It should be noted that the then state-of-the-art transition-based supervised parsers achieved 85.6 [START_REF] Wang | A two-stage parsing method for text-level discourse analysis[END_REF] and 80.2 [START_REF] Braud | Cross-lingual rst discourse parsing[END_REF] on these two corpora. A comparison of the scores obtained by using different granularities shows that the finest D2P2S2E setting yielded a large improvement of about 15% over the coarsest D2E setting. This highlights the significance of structural information as parsing a document hierarchically best conforms to its initial skeleton, an observation that has been made in [START_REF] Joty | Combining intra-and multi-sentential rhetorical parsing for document-level discourse analysis[END_REF]; Feng and Hirst (2014a) and later employed in [START_REF] Nishida | Unsupervised discourse constituency parsing using viterbi em[END_REF]; [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF]. However, it is worth noting that although their approach has shown promising results for RST-style texts, it cannot be directly applied to discourse graph-style for dialogues. Shortly after, [START_REF] Nishida | Unsupervised discourse constituency parsing using viterbi em[END_REF] proposed an unsupervised RST-style parsing method based on the hypothesis that discourse tree and syntactic tree structures share similar constituent properties, making unsupervised learning algorithms transferable. In contrast to [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF], this study used more intricate features for EDU feature extraction and scoring, which involved syntactic cues like the head word present in each EDU. They employed the Viterbi EM algorithm [START_REF] Spitkovsky | Viterbi training improves unsupervised dependency parsing[END_REF] to train a discourse constituency parser in an unsupervised manner 6 . The approach involved automatically sampling initial discourse trees using prior knowledge (document hierarchy, discourse right-branching tendency, syntax-aware branching tendency, and locality bias) of document structures, followed by alternating E step and M step until reaching the early stopping criteria. The goal of the E step was to perform discourse parsing on the entire dataset and generate pseudo discourse trees:

D = {(x, T )|x ∈ X , T = argmax T ∈valid(x) s(x, T )} (3.36)
where D is pseudo treebank with all generated discourse trees; x is one document; T is the highest-scoring tree for document x; valid(x) contains all valid trees for x; s(x, T ) is a score of the tree T . The scoring function s(•) is the sum of constituent scores over all internal nodes.

In the M step, the model parameters are updated to meet specific constraints. In this scenario, the objective is to optimize the score of the best-parsed tree, ensuring that it outperforms all other potential trees by a large margin (∆):

s(x, T ) ≥ s(x, T ′ ) + ∆( T , T ′ ) (3.37)
where T is the best tree; T ′ is another parse tree in all candidates; ∆( T , T ′ ) is the difference between two trees. During the E-M iterations, an early stopping criterion was defined using 30 annotated documents in the validation set. The results on the RST-DT corpus were superior to previous work: the RST-Parseval score was 84.3 for structure prediction, compared to 80.0 in [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF], and on par or even better than some supervised models, such as Feng and Hirst (2014a) at 84. 4 and Joty et al. (2015) at 82.5.

The success of this approach is largely due to the effective tree initialization step, which increased the model performance by 10 points compared to uniform initialization. However, an analysis of relation classes reveals that initialization rules can also impede the creation of certain relation types, such as Evaluation and Summary. In general, this work has many similarities with [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF]: both studies adopt a bottom-up strategy and use the CKY algorithm for decoding. They follow the hierarchical structure of documents from EDU-to sentence-and paragraph-level during tree generation. While both studies show good results on the RST-DT dataset, it is unclear if similar results could be achieved in other domains. While these methods are inspiring, they can only be applied to constituent-style trees, which makes them unsuitable for our intended use in SDRT-style parsing. This section presents two unsupervised parsing methods for monologues. One method merges (or splits) spans based on similarity (or dissimilarity) scores [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF], while the other applies unsupervised syntactic parsing methods, specifically Viterbi EM, to discourse parsing by leveraging transferable properties [START_REF] Nishida | Unsupervised discourse constituency parsing using viterbi em[END_REF]. However, there is currently no unsupervised study on dialogue parsing. To address this gap, we propose strategies for tackling this issue and report our results in Chapter 7.

Discourse in Downstream Applications

Discourse parsing is a fundamental task in NLP that has been widely applied in Natural Language Understanding (NLU) applications. Examples of these applications include general text categorization [START_REF] Ji | Neural discourse structure for text categorization[END_REF], author attribution prediction (Feng and Hirst, 2014a;[START_REF] Ferracane | Leveraging discourse information effectively for authorship attribution[END_REF], fake news detection [START_REF] Karimi | Learning hierarchical discourse-level structure for fake news detection[END_REF], political leaning prediction [START_REF] Devatine | Predicting political orientation in news with latent discourse structure to improve bias understanding[END_REF], and sentiment analysis [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF][START_REF] Hogenboom | Using rhetorical structure in sentiment analysis[END_REF]Huber and Carenini, 2020a). These applications will be discussed in Section 3.3.1. Discourse structure has also been found to be useful in some Natural Language Generation (NLG) tasks, such as summarization [START_REF] Marcu | The theory and practice of discourse parsing and summarization[END_REF][START_REF] Louis | Discourse indicators for content selection in summarization[END_REF][START_REF] Yoshida | Dependency-based discourse parser for single-document summarization[END_REF][START_REF] Li | The role of discourse units in near-extractive summarization[END_REF][START_REF] Liu | Single document summarization as tree induction[END_REF] and machine translation [START_REF] Haenelt | Towards a quality improvement in machine translation: Modelling discourse structure and including discourse development in the determination of translation equivalents[END_REF][START_REF] Mitkov | How could rhetorical relations be used in machine translation?[END_REF]. Furthermore, with the increasing popularity of online chatting, dialogue machine reading comprehension in the form of question answering has become a hot research topic where discourse also plays a beneficial role [START_REF] Li | Dadgraph: A discourse-aware dialogue graph neural network for multiparty dialogue machine reading comprehension[END_REF][START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF]. These topics will be covered in Section 3.3.2. Finally, in Section 3.3.3, we will discuss the similarities, usefulness, and limitations of these studies.

Discourse for NLU Tasks

Text Categorization

Text classification is a fundamental task in NLU that involves organizing texts into groups, such as sentiment analysis, spam detection, and topic labeling. Earlier methods for this task involved encoding sequences of sentences with sparse embeddings, such as hand-crafted features or lexical clues like n-grams, and passing them through a classifier [START_REF] Minaee | Deep learning-based text classification: a comprehensive review[END_REF]. However, these methods assumed that all parts of a text equally influence categorization. To address this limitation, researchers have sought to weigh different text spans, for example, by using hierarchical structures or attention mechanisms for word-and sentence-level representation [START_REF] Ko | Improving text categorization using the importance of sentences[END_REF]. However, these methods still did not include inter-sentential interaction in sentence encoding.

One approach to incorporating discourse structure in text categorization was proposed by [START_REF] Ji | Neural discourse structure for text categorization[END_REF]. They investigated five text categorization tasks, including (1) sentiment analysis on Yelp reviews [START_REF] Zhang | Character-level convolutional networks for text classification[END_REF]; ( 2) news article classification on Media Frame Corpus [START_REF] Card | The media frames corpus: Annotations of frames across issues[END_REF]; (3) congressional speaker voting on debate corpus [START_REF] Thomas | Get out the vote: Determining support or opposition from congressional floor-debate transcripts[END_REF]; ( 4) review classification on movie corpus [START_REF] Pang | A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[END_REF]; and ( 5) legislative bill survival voting on a congressional bill corpus [START_REF] Yano | Textual predictors of bill survival in congressional committees[END_REF]. They hypothesized that treeshaped structural information could provide better cues on the importance of different text spans. Using an RST-style discourse parser DPLP [START_REF] Ji | Representation learning for text-level discourse parsing[END_REF], they segmented texts into EDUs and constructed an "unlabeled model" (not considering the relations) and a "full model" (with RST relations) where texts composed of EDUs are aggregated into trees. Text spans are then passed into a recurrent neural network for classification, as shown in Figure 3.7. Despite being trained on news articles, the DPLP parser has shown to be effective in tasks involving restaurant and movie reviews (on Yelp and Movie corpora, respectively). However, the bill voting prediction task did not benefit from a discourse-aware model, which may be due to its technical legal terms and highly specialized conventions that make it the most distant from the news genre. Regarding the "unlabeled model" and "full model", the former yielded better performance than the latter in four tasks, except for Yelp food reviews. The authors did not provide any explanations for this observation, and we speculate that it may be due to inaccurate relations produced by the parser. Degradation studies also showed that parsing performance and text classification results were positively correlated, suggesting that further improvements in discourse parsing could lead to greater gains.

Author Attribution:

The task of Author Attribution (AA) is to identify the author of a text, which can be done through binary or multi-class classification.

In [START_REF] Ferracane | Leveraging discourse information effectively for authorship attribution[END_REF], the authors explored the AA task by incorporating discourse information, building on the previous work of Feng (2015), which found that above-sentence level discourse information can aid in identifying stylometric cues. To achieve this, they utilized the Entity Grid Model proposed by Feng and Hirst (2014a), where sentences and key entities (noun phrases) form the rows and columns, respectively, and Rhetorical Structure Theory (RST) discourse information is stored in the cells. The RST features represent discourse relations and nuclearity, such as [definition.N, attribution.S], which were obtained using an off-theshelf RST parser, DPLP [START_REF] Ji | Representation learning for text-level discourse parsing[END_REF]. The resulting feature vectors were fed into a Convolutional Neural Network (CNN) for author prediction.

Experimental results on three AA datasets demonstrated the effectiveness of incorporating RST relations into the entity grid, particularly when entities are tracked across the entire document (i.e., in a global setting) with a macro-F 1 multi-class classification of 98.8%, compared to 95.3% without discourse. Prior to [START_REF] Ferracane | Leveraging discourse information effectively for authorship attribution[END_REF], AA task had been studied by [START_REF] Feng | Patterns of local discourse coherence as a feature for authorship attribution[END_REF]; [START_REF] Feng | RST-style discourse parsing and its applications in discourse analysis[END_REF]. However, Feng's work had limitations, such as the local encoding of discourse relations (only adjacent sentences) which brought less remarkable results than those of Ferracane's.

Fake News Detection

The task of detecting fake news is becoming increasingly popular in text classification. In Karimi and Tang (2019)'s study, latent discourse-level dependency tree structures were learned and constructed for fake and real news articles. As there was no available discourse corpus for the fake news domain, the authors built the latent discourse trees in an automated and data-driven manner, inspired by [START_REF] Liu | Learning structured text representations[END_REF]. They used a hierarchical bi-LSTM network to obtain sentence representations and constructed a matrix A that stores the parent-child link probabilities. This work did not conduct EDU segmentation. A document-level representation is the average value of each sentence's structure-aware vectors (g j ), which is composed of a parent node (p j ), a child node (c j ), and a fixed bi-LSTM representation (f j ):

p j = r j × e root + k z=1 A[z, j] × f j (3.38) c j = k z=1 A[j, z] × f j (3.39) g j = G(W [p j ∥c j ∥f j ] + b) (3.40)
where r j is probability of a sentence j being the root node; e root denotes a special root embedding vector; ∥ means concatenation operation.

Similar to [START_REF] Ji | Neural discourse structure for text categorization[END_REF], this work assumed that document-level structural-rich representation is beneficial for text classification. Upon examination, the authors found significant property divergence between real and fake news articles, including (1) the number of leaf nodes, (2) the positional difference between the preorder traversal of the discourse tree (subtrees are ordered based on when they are added as the child nodes of a parent node) and the original sentential order, and (3) the distance between parent-child nodes. These differences indicated less coherence in fake news texts, according to the conclusions. Later, a study by [START_REF] Ferracane | Evaluating discourse in structured text representations[END_REF] concluded that Liu and Lapata (2018)'s approach is easily biased by lexical cues so that the extracted latent discourse trees might capture something else than the structure.

Political Orientation Prediction

Recently, discourse information has been explored by [START_REF] Devatine | Predicting political orientation in news with latent discourse structure to improve bias understanding[END_REF][START_REF] Devatine | An integrated approach for political bias prediction and explanation based on discursive structure[END_REF] to predict political orientation, a task that aims to determine the political leaning of an article among three classes: left, center, and right. Following the work of [START_REF] Karimi | Learning hierarchical discourse-level structure for fake news detection[END_REF], they used the latent discourse structure extraction method introduced in Liu and Lapata (2018) but with some adaptations suggested in [START_REF] Ferracane | Evaluating discourse in structured text representations[END_REF]. These adaptations relate to (1) the pooling operation, (2) the removal of document-level bi-LSTM, and (3) the percolation of descendant trees for the final document representation. Additionally, they used ToNy segmenter [START_REF] Muller | ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents[END_REF] to perform EDU segmentation as the first step, which is omitted in [START_REF] Karimi | Learning hierarchical discourse-level structure for fake news detection[END_REF]. The authors evaluated their model on the Allsides dataset and compared its performance with that of the model proposed in [START_REF] Baly | We can detect your bias: Predicting the political ideology of news articles[END_REF]. Their results demonstrated that the structured attention model outperformed the others by a large margin, achieving an increase of 7 points in accuracy and 6 points in macro-F 1 . The increase came from fine-grained discourse (EDU level instead of sentence level) and the consideration of larger context (no token length limitation).

According to their analysis, attention was directed towards distinct lexical fields depending on the political leaning: health for left, statistics for center, and economy for right. Regarding structural analysis, they provided a qualitative assessment indicating that the structures learned were complex and not merely simplistic flat trees. In contrast to [START_REF] Karimi | Learning hierarchical discourse-level structure for fake news detection[END_REF], this study did not provide a discussion on variations in structure among the different political classes, which could be due to the absence of such observations. To enhance the current study, it may be useful to conduct further investigation and provide possible explanations for the absence of structural differences.

Sentiment Analysis

Sentiment analysis is a popular downstream task where the goal is to determine the overall polarity of a document, usually categorized as binary (positive or negative) or multi-class (such as positive, negative, and neutral). [START_REF] Hogenboom | Using rhetorical structure in sentiment analysis[END_REF] proposed a weighting scheme that incorporates nuclearity and relation information from RST into sentiment analysis. They proposed two ways to calculate the weight: (1) a heavier weight (1 or 1.5) for the nucleus and a lighter weight (0 or 0.5) for the satellite, and (2) a weight that considers both nuclearity and relation. The authors evaluated their approach on a movie review dataset and obtained accuracies between 65% (baseline) and 72% (best model). Their proposed weighting system outperformed a lexicon-based analyzer [START_REF] Wilson | Recognizing contextual polarity in phrase-level sentiment analysis[END_REF]) by 4 points. However, it was later demonstrated by [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF] that a basic classification model based on discourse depth can achieve much better performance on the same dataset. This may be because the weighting scheme doesn't capture inter-sentence information, which could be key to predicting sentiment. Nonetheless, an interesting finding in this work is that finer-grained discourse structures, such as sentence-or EDU-level RST trees, are better suited for sentiment analysis than paragraph-level or document-level trees. [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF] conducted a study to improve sentiment prediction by incorporating discourse information at the document level. They revisited the weighting system and proposed a new approach that uses RST parses within a recurrent neural network (RNN). They utilized the DPLP discourse parser [START_REF] Ji | Representation learning for text-level discourse parsing[END_REF] to extract subtrees and gradually compose the constituent parts, similar to the approach taken in [START_REF] Ji | Neural discourse structure for text categorization[END_REF] for text categorization. This study included experiments on two movie review datasets with binary sentiments [START_REF] Pang | A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[END_REF]Socher et al., 2013a), and they compared their approach with a lexicon-based analyzer and a logistic regression classifier. The rhetorical RNN system significantly outperformed the baselines by 5 -10 points. The authors also explored the usefulness of discourse relations and compared the system with and without relations, like the "full model" and "unlabeled model" in [START_REF] Ji | Neural discourse structure for text categorization[END_REF]. However, the improvement brought by the relation-enriched RST tree was minor, likely due to the average relation prediction capacity of the DPLP model, which was reported to be only 60% accurate.

Similar to [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF]'s RNN model, [START_REF] Tai | Improved semantic representations from tree-structured long short-term memory networks[END_REF] developed a tree-LSTM architecture that was later improved with a discourse-LSTM by [START_REF] Kraus | Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees[END_REF]. The discourse-LSTM merged the information from the tree leaves and propagated it to the higher levels until it reached the root node where a final prediction was made.

In a different approach to using discourse for sentiment prediction, Huber and Carenini (2020a) employed a silver-standard sentiment-leveraged discourse treebank MEGA-DT 7 instead of a human-annotated gold discourse corpus like RST-DT. They hypothesized that the MEGA-DT treebank -obtained using distant supervision but in the same domain as target task -would be more useful than the gold-standard discourse treebank in a inter-domain scenarios. Their approach involved augmenting sentiment annotations with discourse information to improve sentiment predictions. The results showed that their approach was particularly effective for longer documents, but the best-performing model's accuracy was still quite low (approximately 66% for binary classification). While it is interesting to observe how information travels from one task to another, some concerns remain regarding the potential introduction of noise in the long pipeline and the proper evaluation of such noise, as well as the applicability of this approach in other domains.

Discourse for NLG Tasks

Machine Translation

Machine Translation (MT) task involves translating a text from one language to another, requiring both text understanding in the source language and text generation in the target language. In this context, discourse information can be useful at both stages of the process.

The use of discourse structure in MT has been discussed for over thirty years. For example, [START_REF] Haenelt | Towards a quality improvement in machine translation: Modelling discourse structure and including discourse development in the determination of translation equivalents[END_REF] proposed the KONTEXT model, which defined discourse as sequences of transitions between multi-layer information such as sentence structure, referential structure, and thematic structure. [START_REF] Mitkov | How could rhetorical relations be used in machine translation?[END_REF] introduced the Text Organization Framework Grammar, which maps the source paragraph structures of rhetorical predicates into specific target paragraph structures of rhetorical predicates.

In 2000, [START_REF] Marcu | The theory and practice of discourse parsing and summarization[END_REF] designed an "analysis-transfer-translate" pipeline for Japanese-English translation, where a Japanese text is first encoded in an RST-style tree and then transferred into an English RST tree, which is used as the base for English sentence generation. [START_REF] Tu | A novel translation framework based on rhetorical structure theory[END_REF] integrated this module into Statistical Machine Translation (SMT) and tested it on Chinese-to-English translation. For RST-tree acquisition, they used hand-crafted features and a Bayesian model to jointly perform EDU segmentation and relation prediction. They annotated around over 1000 complicated sentences in the Chinese Penn Treebank (CTB) [START_REF] Xue | The penn chinese treebank: Phrase structure annotation of a large corpus[END_REF] based on relation types defined in [START_REF] Yue | Rhetorical structure annotation of chinese news commentaries[END_REF] and trained their parser. The second step was translation rule extraction, where source RST trees were aligned with target language strings, and the final step was decoding the source RST trees into the target language using the extraction rules. While this pipeline has shown to be effective, it does require a significant amount of human-annotated training data for RST-style parser training.

Another study that highlights the potential of integrating discourse structure into MT is presented by [START_REF] Joty | Discourse structure in machine translation evaluation[END_REF]. In this study, the authors did not propose a new pipeline for discourse integration but instead designed similarity measures that compare the discourse parse trees of a generated translation and a gold translation. These measurements can provide additional information on the performance of an MT system. Essentially, the more similar the generated RST tree is to the gold RST tree, the better the system is. Furthermore, the authors analyzed the relevance of different elements in RST trees (i.e., attachment, nuclearity, and relation) and demonstrated that all aspects are useful, with nuclearity information being particularly important. This study confirms the usefulness of discourse parsing for MT evaluation.

To gain a better understanding of how the use of discourse devices impacts translation quality, [START_REF] Li | Assessing the discourse factors that influence the quality of machine translation[END_REF] conducted manual evaluations of translations from Chinese and Arabic to English. They found a strong mismatch in the notion of what constitutes a sentence in Chinese and English, the usage of discourse connectives, and the ambiguity of the connectives. Interestingly, these differences are less present in Arabic-English translations. It appears that discourse usage may affect MT between some language pairs but not others. Other discourse properties such as topic mix, style, coherence patterns (including explicit and implicit rhetorical relations), and the use of anaphora and coreference are essential for producing a more coherent translation.

In this regard, interested readers can refer to an ACL workshop DiscoMT [START_REF] Webber | Proceedings of the workshop on discourse in machine translation[END_REF]. This workshop was established in 2011 and seeks to encourage new approaches that incorporate discourse-level features to enhance machine translation. Four successful workshops have been organized to date, with more than 50 accepted papers covering various discourse phenomena such as lexical consistency, lexical cohesion, and implicit relations.

Machine Reading Comprehension

Machine Reading Comprehension (MC or MRC) is a task that involves automatically extracting answers from questions based on a given text, in the form of question answering. This technology is highly beneficial in identifying crucial information from various types of text such as Wikipedia pages, stories, essays, and forum discussions like those found on Reddit or Ubuntu.

Prior works that investigated discourse information in QA have mostly relied on handannotation of discourse relations, as in [START_REF] Chai | Discourse structure for context question answering[END_REF]; Verberne et al. (2007b); [START_REF] Jansen | Discourse complements lexical semantics for non-factoid answer reranking[END_REF]. Verberne et al. (2007a,b) focused on answering why-questions and found that answers often consisted of propositions spanning multiple sentences and linked by discourse relations such as cause and explanation. Their proposed method involved extracting text spans with the same proposition as the question topic and then extracting the siblings of those text spans as candidate answers. These answers were then re-ranked using a probability model based on a general language model [START_REF] Croft | Language modeling for information retrieval[END_REF], resulting in a reported success rate of 60%. [START_REF] Jansen | Discourse complements lexical semantics for non-factoid answer reranking[END_REF] studied non-factoid answer reranking for open-ended questions related to manner (how -questions) and reason (how -questions), using both shallow discourse markers (from Hirst and Marcu (1998)'s list) and a discourse parser [START_REF] Feng | Text-level discourse parsing with rich linguistic features[END_REF] to incorporate discourse information. They found that both shallow and deep discourse representations are useful, and that combining these two strategies led to the best performance. However, both studies relied on supervised discourse parsers. When testing on target domains, the parser may fail to generate trees on different domain data (for instance news→biology cross-domain [START_REF] Jansen | Discourse complements lexical semantics for non-factoid answer reranking[END_REF] reported > 40% failed cases).

In contrast to the presented approaches where a trained parser is used to provide discourse tree structure, [START_REF] Narasimhan | Machine comprehension with discourse relations[END_REF] proposed a method for discourse relation induction. They argued that distantly supervised methods can introduce errors due to the mismatch between training and testing data. Instead, they proposed using a probability model to optimize a task-specific objective, thus eliminating the need for explicit annotation. Their approach involved designing a discriminative model that captures relationships between sentences, where a hidden variable r ∈ R represents the type of relationship (the set R contains causal, temporal, explanation, other ):

P (a, r, z 1 , z 2 |q) = P (z 1 |q) • P (r|q) • P (z 2 |z 1 , r, q) • P (a|z 1 , z 2 , r, q) (3.41)
where a, q, r, z 1 , and z 2 are answer, question, relation, and candidate sentences (z 1 , z 2 ), respectively. They marginalized all the hidden variables and chose the answer that maximizes P (a|q).

Their proposed model is particularly advantageous when answering questions that require multiple sentences, as the discourse relation type can help to moderate the relationships between sentences. The component P (r|q) conditions the relation type based on the question, such as when answering a why-question that often requires a causal relation. An interesting comparison was made with a model that used relations from RST trees produced by a parser [START_REF] Feng | Text-level discourse parsing with rich linguistic features[END_REF], and the results showed that the RST-based model performed worse. This was because the RST-trained parser over-predicted elaboration and failed to provide distinctive inter-sentential relations.

This work is one of the first to investigate unsupervised discourse information injection without relying on discourse parsers. However, the study's consideration of discourse information is limited to the relation level with only four types. As the analysis showed, the model's accuracy was low, with correct predictions for only 50% of causal and other relations, while explanation and temporal relations were below 30%. Additionally, model accuracy varied significantly based on question types, with where-and when-questions having higher accuracy than why-and whichquestions.

In contrast to traditional MRC, multi-party MRC involves a more complex dialogue structure that typically involves two or more people. This makes the task even more challenging. [START_REF] Li | Dadgraph: A discourse-aware dialogue graph neural network for multiparty dialogue machine reading comprehension[END_REF] are the first to propose a discourse-aware graph neural network (GNN) for multiparty MRC. Their approach consists of two primary modules. The first one is the Discourse Graph module, which is a GNN responsible for updating the representations of utterances by leveraging the information from their dependency links. The second module is the MRC module, which takes the updated utterances representations and combines them with word representations using attention mechanisms, thereby introducing the dialogue discourse graph structure to all the words. The proposed approach was evaluated on the Molweni corpus [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF], which contains both SDRT-style discourse annotation and question-answer pairs. Analysis showed that both discourse structure and relations are helpful in predicting answers -even though meager, increasing the F 1 score by one point. The study demonstrated that the discourse-aware GNN model outperformed the state-of-the-art models such as DialogueGCN [START_REF] Ghosal | Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation[END_REF] and DialogueRNN [START_REF] Majumder | Dialoguernn: An attentive rnn for emotion detection in conversations[END_REF]. Nonetheless, certain concerns must be addressed. Firstly, Molweni, the dataset used for the study, has quality issues such as a high repetition rate and inaccurate annotation (Section 2.3.5), which raises questions about the reliability of the results. Secondly, the generalizability of the study to other domains is unclear since the annotation for discourse parsing and MRC came from the same corpus. It would be beneficial to test the model with a supervised parser trained on another corpus or a parser trained on Molweni but tested on a different MRC corpus.

Summarization

The task of summarization involves condensing key information from a lengthy document. Two methods of summarization exist: extractive, which selects the most pertinent sentences from the original text, and abstractive, which creates a summary using new words and sentences. Other types of summarization include extreme summarization -a one-sentence summary of scientific documents -, and lay summarization -a brief summary in layman's terms with less technical jargon that captures the essence of the research paper. Discourse analysis plays a significant role in identifying the most informative sentences in the original text. Discourse trees provide a suitable representation for summaries and can aid in the discovery of informative sentences, with roots and high-level nodes being the most important parts. This idea was first proposed by [START_REF] Marcu | Experiments in constructing a corpus of discourse trees[END_REF] and supported by Carlson et al. (2001); [START_REF] Prasad | Towards an annotated corpus of discourse relations in hindi[END_REF]. It was further developed by [START_REF] Hirao | Single-document summarization as a tree knapsack problem[END_REF]; [START_REF] Yoshida | Dependency-based discourse parser for single-document summarization[END_REF] who adapted the trees from constituent to dependency form, and by [START_REF] Liu | Single document summarization as tree induction[END_REF] who applied it to the entire document representation. [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF] explored the potential usefulness of discourse information in single document extractive summarization. They investigated two types of discourse information: structure and semantic sense (i.e., relation). To evaluate structural features, they employed a scoring system to determine the relative importance of text spans. The system included a nucleus-satellite penalty [START_REF] Ono | Abstract generation based on rhetorical structure extraction[END_REF], depth-based and promotion-based scores [START_REF] Marcu | To build text summaries of high quality, nuclearity is not sufficient[END_REF]. Semantic features were evaluated using PDTB (Prasad et al., 2008a) relations. The study found that dis-course features based on structure were strong indicators of sentence importance, while semantic relations were useful in determining what content should not be included, but did not reliably indicate importance. The best results were obtained by combining both types of features. [START_REF] Liu | Single document summarization as tree induction[END_REF] also tackled the extractive summarization for single document. Their approach involved formulating the task as a multi-root tree induction problem where summaryworthy sentences are the roots and satellite sentences provide additional details as nodes attached to them. The process involved conducting binary classification for each sentence to decide whether they are roots or edges, followed by using a structured attention model to calculate the loss for root and edge prediction iteratively to refine the induced tree. The resulting tree is a latent discourse tree, later work such as [START_REF] Devatine | Predicting political orientation in news with latent discourse structure to improve bias understanding[END_REF] employed a similar approach for political orientation prediction.

In the domain of abstractive summarization, [START_REF] Gerani | Abstractive summarization of product reviews using discourse structure[END_REF] proposed a system that combines multiple product reviews into an aspect-based summary using discourse structure and relation. The authors recognized that while global sentiment summarization is common, very few studies predict fine-grained aspect sentiments. They hypothesized that discourse structure explicitly reveals inter-sentential relations, which could be of help in aspect sentiment detection. The system they proposed consisted of four steps: (1) extraction and pruning of discourse trees, (2) transformation of discourse trees into an Aspect Rhetorical Relation Graph (ARRG), ( 3) selection of contents, and (4) summary generation. For discourse tree extraction, they used a pre-trained discourse parser [START_REF] Joty | Combining intra-and multi-sentential rhetorical parsing for document-level discourse analysis[END_REF] 8 . They then pruned the parsed trees and retained only aspect words, such as photo and camera, in the leaves. Using several Aspect-based Discourse Trees (ADTs), they extracted relation tuples and aggregated them into an ARRG. In step (3), they selected only the most important aspects by relying on measurement based on the hierarchical structure of discourse trees and the Weighted Page Rank algorithm [START_REF] Xing | Weighted pagerank algorithm[END_REF]. The final step was to generate language based on the extracted sub-graphs (AHT).

When compared to extractive summaries, abstractive summaries were preferred by human raters, and they rated summaries that incorporated discourse-based features higher than those that did not. The feedback provided by raters, such as "very complete" and "related features", indicated that the aspect information was well-aligned with the sentiment thanks to the inclusion of discourse in both step (1) and step (3).

The aforementioned studies highlight the potential of using discourse to improve text summarization in different ways. For extractive summarization, discourse can be leveraged to identify important text spans based on nuclearity and hierarchical information [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF][START_REF] Liu | Single document summarization as tree induction[END_REF][START_REF] Hirao | Single-document summarization as a tree knapsack problem[END_REF]. On the other hand, for abstractive summarization, discourse can help discover aspect-based knowledge by exploiting relations such as elaboration and the hierarchical structure of the text. This enables the targeting of specific relations between text spans and their relative importance. It would be valuable to conduct a correlation study between parser quality and summarization performance to further enhance this approach.

The field of dialogue summarization is gaining popularity as evidenced by recent studies [START_REF] Koay | How domain terminology affects meeting summarization performance[END_REF]Zhu et al., 2020a;[START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF][START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF]. In particular, [START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF] proposed a method to explicitly model discourse and action relations (constructed as the "WHO-DOING-WHAT" triplets) into the summarization process. They employed a pre-trained Deep Sequential parser [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] trained on the STAC corpus to generate discourse parse trees for the SAMSum summarization corpus [START_REF] Gliwa | SAMSum corpus: A human-annotated dialogue dataset for abstractive summarization[END_REF]. These trees were then encoded into utterance representations using a Graph Attention Network [START_REF] Veličković | Graph attention networks[END_REF], and the resulting discourse-enhanced graph was injected into the BART model's [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] cross-attention layers for decoding. The results on the SAMSum and ADSC [START_REF] Misra | Using summarization to discover argument facets in online idealogical dialog[END_REF] test sets demonstrated that incorporating structured information such as discourse and action relations led to improved performance. Interestingly, the performance of structured BART improved with longer conversations, but only up to a certain threshold (when the number of discourse edges was within the range of 8.3 to 9.1). Beyond that threshold (when the number of discourse edges exceeded 9.5), the structured model began to perform poorly. Longer conversations typically involve more long-distance relations that are challenging to predict for discourse parsers, as demonstrated in our analysis in Chapter 7. We speculate that the discourse relation extraction failed to capture these intricate dependencies, which limited its effectiveness for summarization. [START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF] also proposed utilizing dependency relations to enhance the interaction between different speech turns. To generate discourse trees, they followed the same procedure as described in [START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF]. After obtaining the original SDRT-style dependency trees, they performed a Levi graph transformation [START_REF] Gross | Handbook of graph theory[END_REF], which treated SDRT relations as new vertices. Utterance vertices and relation vertices were connected with additional relation types like default-in-discourse and default-out-discourse, allowing for explicit modeling of discourse relations and the simultaneous updating of both the utterance and relation vertices. Speaker information was explicitly encoded by combining a one-hot vector representation of the speaker with the utterance vector. They employed Relational Convolutional Graph Networks [START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF] and Pointer network [START_REF] See | Get to the point: Summarization with pointergenerator networks[END_REF] for the graph encoder and decoder parts, respectively. Compared to baseline Seq2Seq models, their discourse-enhanced approach outperformed in both the AMI [START_REF] Carletta | The ami meeting corpus: A pre-announcement[END_REF] and ICSI [START_REF] Janin | The icsi meeting corpus[END_REF] corpora. Human evaluation on the relevance and informativeness of the summaries showed a preference for the discourse model. This study conducted some insightful analyses. They found that the higher the quality of the discourse parser, the better the summarization performance. Moreover, the importance of different relation types varied for different testing corpora. For instance, on the AMI corpus, conditional and background were important relations, while on the academic meeting ICSI corpus, result was more beneficial.

Discussion

We show a summary in Table 3.7 that covers five NLU tasks and three NLG tasks presented earlier. In this section, we will discuss various aspects of these discourse-aware models. This includes an examination of the discourse features employed, how they are integrated with other information, and the accuracy and usefulness of these models. Additionally, we provide suggestions for improving the incorporation of discourse in downstream applications.

Discourse Feature Consideration

In RST and SDRT frameworks, we consider structure (EDU or sentence attachments) and relation as major discourse features. In RST, nuclearity is also a crucial component (feature) that determines the relative importance of discourse units. In SDRT, although nuclearity is not explicitly provided, we can infer such information from subordinating (e.g., Elaboration) and coordinating (e.g., Continuation) relations. However, this information in SDRT has not been well explored. Structure and nuclearity are essential in NLU tasks such as sentiment analysis [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF][START_REF] Kraus | Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees[END_REF]) and text classification [START_REF] Ji | Neural discourse structure for text categorization[END_REF]. These features are used during the aggregation process to combine sentence-level vectors following the tree structure and taking into account the nuclearity importance. For instance, [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF] demonstrated a significant improvement in performance compared to models that do not consider discourse features, even without differentiating between discourse relations. Although incorporating relations leads to further improvements, the gains are fairly modest, likely due to the lower accuracy of relation detection, even for the best systems.

Discourse features are also important in NLG tasks such as question-answering. Jansen et al. ( 2014) utilized discourse relations and markers to enhance non-factoid question-answering. When incorporating discourse into answer generation, nuclearity proved to be useful because the text span that requires elaboration, evidence, or explanation typically serves as the nucleus of the relation, while the text providing this information acts as the satellite, as demonstrated in [START_REF] Verberne | Discourse-based answering of why-questions[END_REF].

A noteworthy study by [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF] compares the advantages of two discourse features: the structure of the text and the semantic sense of discourse relations. In a single document summarization task, they discovered that structure information is a more robust indicator of importance compared to relations. While relations complement structure information, they alone did not prove to be a strong indicator. The study also compares two different forms of structure features: graph-based (as in Graph Bank) and tree-based (as in RST). The results indicate that both structures are equally valuable. In other works, such as extractive [START_REF] Hirao | Single-document summarization as a tree knapsack problem[END_REF] and abstractive summarization [START_REF] Gerani | Abstractive summarization of product reviews using discourse structure[END_REF], and multi-party conversation summarization [START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF][START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF], complete discourse information using pre-trained parsers is used. Both structure and relation play crucial roles in these studies, where structure builds links within utterances and relation provides additional evidence and reasoning.

Discourse Information Incorporation

Our presentation of strategies to incorporate discourse information into downstream applications reveals an interesting trend that aligns with the evolution of NLP models: from classical statistical models to more advanced deep neural networks.

(1) Weighting Schema: In NLU tasks such as sentiment analysis [START_REF] Hogenboom | Using rhetorical structure in sentiment analysis[END_REF][START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF], combination methods for sentences are simple and straightforward: sentiment scores of EDUs are weighted based on the tree structure. These weights are normally pre-determined and hand-crafted [START_REF] Kraus | Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees[END_REF]. [START_REF] Hogenboom | Using rhetorical structure in sentiment analysis[END_REF] considered nuclearity labels i.e., nucleus or satellite) and relation types (e.g., nucleus weights by RST relation). [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF] incorporated discourse based on the EDU depth in dependency tree: they first converted the constituent tree into a dependency tree following [START_REF] Hirao | Single-document summarization as a tree knapsack problem[END_REF] and then used a linear function to weight the importance of each unit with d i the EDU depth:

λ i = max(0.5, 1 -d i /6) (3.42)
(2) RNN: A data-driven approach that uses Recursive Neural Networks (RNN) has been developed to combine discourse trees. The RNN recursively propagates the nodes' sentiment scores upwards until the root node is reached, allowing for the representation of the root node to be used for prediction. The hyperbolic tangent function (tanh(•)) is commonly used as an aggregating function, as seen in tasks such as sentiment analysis [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF] and text categorization [START_REF] Ji | Neural discourse structure for text categorization[END_REF]. The representation of internal nodes varies slightly depending on the type of discourse tree used:

Discourse in Downstream Applications

v i = tanh(e i + j∈children(i) W r i,j v j ) (3.43) v i = tanh(W r i n v n(i) + W r i s v s(i) ) (3.44)
Equation 3.43 represents the internal node vector v i in the dependency tree in [START_REF] Ji | Neural discourse structure for text categorization[END_REF]. It is composed of its own vector and the sum of all its children's vectors v j . W r i,j is a relation-specific composition matrix. Equation 3.44 represents the intermediate node composed from relation r i in constituent tree [START_REF] Bhatia | Better document-level sentiment analysis from RST discourse parsing[END_REF]. The subscripts n and s represent nucleus and satellite resp.; W r n and W s s are relation matrices with regards to nucleus and satellite. In multi-nuclear cases, the second component will be simply changed W n v n .

(3) LSTM: Since RST-style discourse structures are trees, some researchers have employed LSTM for discourse information injection, such as RST-LSTM [START_REF] Fu | Long short-term memory network over rhetorical structure theory for sentence-level sentiment analysis[END_REF] and Discourse-LSTM [START_REF] Kraus | Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees[END_REF], both were employed for sentiment analysis task. The RST-LSTM model utilized nuclearity information from RST parse trees to explicitly model the importance of different text segments 9 . The Discourse-LSTM, proposed by [START_REF] Kraus | Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees[END_REF], extended RST-LSTM by incorporating the relation type between two nodes and replacing the weight matrices with tensor-based weights10 .

(4) GNN: For summarization tasks, dependency structure is commonly used, especially in the multi-party dialogue scenarios [START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF][START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF]. Discourse structure is represented as a dependency graph with utterances as nodes and edges as rhetorical relations. For each utterance, its representation is updated by its neighbour nodes and the relation in a graph convolutional network (Equation 3.45 in [START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF]) or a graph attention network (Equation 3.46 and 3.47 in Chen and Yang (2021)):

h (l+1) i = σ( r∈R v j ∈N r i 1 |N r i | W (l) r h (l) j ) (3.45) a ij = exp(σ(a T [W v i ||W v j ||W r e i,j ] 
))

k∈N i exp(σ(a T [W v i ]||W v k ||W r e i,k )) (3.46) h i = σ( j∈N i a ij W v j ) (3.47)
where σ is the activation function; N i is the set containing node i's neighbours; [•||•] is concatenation symbol; W and W r are learnable node-and relation-specific parameters; (l) represents the h-th layer in convolutional network. Note that in [START_REF] Feng | Dialogue discourse-aware graph model and data augmentation for meeting summarization[END_REF], authors applied Levi transformation on relations, transforming them into nodes, which explains the sum over all relations r in Equation 3.45. Despite slight differences, the encoding processes are much alike.

We have presented various methods for discourse information incorporation. Since the granularity of tasks is different -some tasks more focus on document-level prediction, while others focus on local interaction (rhetorical relations between sentence pairs), the integration of discourse information varies. In the work by [START_REF] Verberne | Discourse-based answering of why-questions[END_REF] and [START_REF] Jansen | Discourse complements lexical semantics for non-factoid answer reranking[END_REF] for instance, authors focus on extracting answers with the help of discourse markers (shallow discourse level) and parsed discourse relation (deeper level). When the text spans are extracted, they used a ranking system to select the final answer spans, which is very different from the aggregation methods in NLU.

Pipeline Design

Typically, the process for incorporating discourse information into downstream applications involves using an off-the-shelf discourse parser, like DPLP [START_REF] Ji | Representation learning for text-level discourse parsing[END_REF], HILDA [START_REF] Hernault | Hilda: A discourse parser using support vector machine classification[END_REF], or Two-stage [START_REF] Wang | A two-stage parsing method for text-level discourse analysis[END_REF]. The parser is trained on a gold annotation corpus, such as RST-DT or STAC, and then used on the target test set to generate discourse trees. However, this approach has two drawbacks: First, the pre-trained parser may introduce errors due to the cross-domain mismatch between training and testing data. Second, the choice of discourse framework with regards to the downstream task is not clear given the wide spectrum of discourse frameworks available (RST [START_REF] Mann | Rhetorical structure theory: Toward a functional theory of text organization[END_REF], PDTB (Prasad et al., 2008a), Graph Bank [START_REF] Wolf | Representing discourse coherence: A corpus-based study[END_REF], SDRT [START_REF] Asher | Logics of conversation[END_REF]). Additionally, the different types of relation variants within the same framework further add complexity. For instance, while the GUM corpus is annotated with the same RST framework as RST-DT, the relation classes differ between these two datasets. This makes it challenging to directly transfer a parser trained on GUM to be tested on RST-DT or vice versa.

In contrast, some studies, such as [START_REF] Narasimhan | Machine comprehension with discourse relations[END_REF], opt not to rely on externally trained parsers but to induce relations between sentences while optimizing a task-specific objective. They proposed a joint probabilistic model to identify single or multiple relevant sentences given a question and established a rhetorical relation between them.

To address the issues of cross-domain supervised parsing, [START_REF] Liu | Learning structured text representations[END_REF] proposed a method for automatically inducing structural dependencies of text. They enlarged the sentencelevel attention mechanism to document level, capturing the interaction among sentences and creating a latent discourse structure for a document. This approach has been adopted by several subsequent studies for single document summarization [START_REF] Liu | Single document summarization as tree induction[END_REF][START_REF] Karimi | Learning hierarchical discourse-level structure for fake news detection[END_REF] and bias detection (such as fake news and political standing prediction [START_REF] Devatine | Predicting political orientation in news with latent discourse structure to improve bias understanding[END_REF]). However, the method has been criticized by [START_REF] Ferracane | Evaluating discourse in structured text representations[END_REF], who found that the generated tree structures were often shallow and trivial and not well-aligned with human annotation.

At the end of this chapter, we offer some thoughts on how to better utilize discourse for downstream applications and drive advancements in discourse-aware NLP. There are several aspects for potential improvements, for instance:

(1) Discourse Parsing Performance: Admittedly, discourse parsing by itself is a hard task. The state-of-the-art RST and SDRT parsers are now achieving respectively low 50 (Parseval metric in [START_REF] Nguyen | Rst parsing from scratch[END_REF]) and low 60 (micro F 1 score, presented in Table 3.1) on full parsing. In the study conducted by [START_REF] Ji | Neural discourse structure for text categorization[END_REF], authors explored the relationship between parsing performance and the gains observed in text classification. Through training on different sizes of subsets of annotated data, they discovered a positive correlation, suggesting that enhancing discourse parsing, either by using larger annotated datasets or improving the models, could yield greater improvements in downstream applications.

(2) Domain Adaptation Methods: To bridge the gap between training and target domains, adaptation methods such as direct discourse annotation for genres of interest, as suggested in [START_REF] Ji | Neural discourse structure for text categorization[END_REF], could be an efficient approach.

(3) Discourse Information Incorporation: Further investigation is needed to determine which aspects of discourse information are necessary for a given task (Section 3.3.3.1), as well as how to best integrate it (Section 3.3.3.2). The discourse community would benefit from more studies such as [START_REF] Ji | Neural discourse structure for text categorization[END_REF] and [START_REF] Louis | Discourse indicators for content selection in summarization[END_REF].

(4) Hybrid Data Annotation: The lack of large and unified annotated datasets for discourse is a major factor contributing to the gap between syntactic and discourse parsing. While the Universal Dependencies serve as a substantial resource for syntactic parsing, the training dataset for discourse parsing is still limited in size and domain. As a result, training high-quality discourse parsers is a challenging task. One potential is to leverage the powerful GPT-like large language models (such as ChatGPT11 and other similar models like InstructGPT [START_REF] Ouyang | Training language models to follow instructions with human feedback[END_REF] and GPT-4 (OpenAI, 2023)) to assist in the annotation process, with human intervention being reserved for more challenging cases.

Part II

Discourse Structure Discovery

In Part I, we have provided an introduction to the fundamental theories and state-of-the-art models for discourse parsing. With this groundwork laid, we now turn our attention to addressing the first research question of this thesis, namely:

RQ1 How can we effectively use discourse and structural information as linguistic features in text classification tasks for dialogue, such as mental disorder illness detection?

Our focus lies in discovering discourse structure in dialogues, a task that presents both similarities and differences to that of monologues. To achieve this, we initially concentrate on a specific domain: the detection of mental disorders. Through an analysis of linguistic features present in the language production of patients, we hope to unveil structural information in dialogues.

Chapter 4 describes our efforts to identify language specificities of Schizophrenia, using a small dataset of 41 clinical interviews in French. We extract linguistic features at different levels and discover a significant lexical bias when using lexical features, highlighting the importance of corpus study in similar genres. Although not yielding the best performance, we promote the utilization of discourse and dialogue level information, as they uncover intriguing language particularities. In Chapter 5, we address the challenge of interaction modeling in dialogues by switching to another mental disorder -depression detection -and using a larger corpus with neutral data collection process: DAIC-WOZ. We employ a multi-task neural network system and consider different levels of information: from speech turns to the entire dialogue. To leverage information from semantic-and structural-related tasks, we utilize emotion classification in conversation, dialogue act and topic classification in the DailyDialog dataset. Our aim is to explore the potential of hierarchical neural networks in capturing different levels of information and to learn dialogue structure through various tasks.

Along the way, we encounter various challenges, such as data scarcity, innate bias, and interaction modeling. We devise several strategies to address each of these challenges and receive promising results.

Chapter 4

Investigating Language Markers of Schizophrenia in Dialogues This chapter aims to address the query of how to utilize linguistic markers such as discourse in classification tasks within dialogue settings. Specifically, we focus on the identification of the language used by individuals with Schizophrenia during spontaneous conversations. Schizophrenia is defined as a severe mental illness (APA, 2015) that comes with varied symptoms, ranging from delirium to hallucinations. Among these symptoms, there are language disorders, especially the so-called positive thought disorder (i.e., disorganized language output such as derailment and tangentiality)1 and negative thought disorder2 . Schizophrenia affects about 1% of the world's adult population, with cognitive troubles for around 70 -80% of the patients [START_REF] Potvin | L'insight neurocognitif dans la schizophrénie[END_REF]. Since the symptoms often affect language skills, several studies proposed using NLP techniques on patients' productions (details in Section 4.1). These studies can help to identify what is affected in language, thus understand better the disease and its symptoms and how language works in general. Another goal of such studies could be to design systems that would help psychiatrists with diagnosis, by giving them additional indices through simple discussions, possibly alleviating the need for the patients to go through several cognitive tests, but this is a long-reach goal. In this study, we explore linguistic markers, especially discourse related markers through feature exploration within a classification system. We do so on spontaneous dialogues in French where all the previous work was in English and most used social media data or monologues. Replicating state-of-the-art results allows us to confirm some previous findings of specific features of the language of Schizophrenia.

Our study focuses on two aspects: carefully exploring data representations and investigating preliminary modeling of dialogues, both with scarce data. Using spontaneous conversations makes for a realistic scenario -the patient is merely talking with her clinician. However, representing dialogues is a challenging task: preliminary experiments indicate that it is easy to distinguish between the speech turns of clinicians when they talk with patients or controls (detailed scores in Table 4.2), possibly due to their proficiency in adapting the topic of conversation according to the participant. To mitigate any bias from clinician's speech, we thus restrict ourselves to patients' speech turns, and test varied context windows to tackle data sparsity. Additionally, we compare several representations and confirm that lexicon is a good indicator, making for high-performing models with at best 93.7% (accuracy). Nevertheless, our analysis demonstrates that it probably corresponds to a bias in our data caused by the constraints imposed during the collection process. Most of the datasets are likely biased the same way. This analysis leads us to delexicalized models while focusing on dimensions presumed to be affected in Schizophrenia: morpho-syntactic, syntactic, dialogue, and discourse information are therefore considered. Our best delexicalized model gets 77.9% accuracy and shows the importance of morpho-syntactic information and high-level features in dialogue.

When dealing with medical data, ethical questions arise [START_REF] Glaz | Machine learning and natural language processing in mental health: systematic review[END_REF]. The diagnosis of Schizophrenia is complex and relies on many indices. In Martinez- [START_REF] Martinez-Martin | Is it ethical to use prognostic estimates from machine learning to treat psychosis?[END_REF], authors raise concerns about the ethical implications of using machine learning prognostic estimates to treat psychosis. They question whether the model's validity could be affected by local context variables such as differences in psychiatric practice and social support. It is evident that AI systems cannot replace the expertise of a human in diagnosing medical conditions. They cannot provide diagnoses, but only human can. We concur with Martinez- [START_REF] Martinez-Martin | Is it ethical to use prognostic estimates from machine learning to treat psychosis?[END_REF] that linguistic cues, while essential, must be understood in the context of a patient's social environment. In this study, we only focus on linguistic factors. In future research, we suggest incorporating both linguistic and socioeconomic criteria when designing machine learning algorithms, thus creating more objective AI tools for psychiatric research and practice.

This chapter is adapted from two publications: one paper at the 27th French National Conference of NLP (TALN 2020) [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF] and one paper at the 2nd Workshop on Computational Approaches to Discourse (CODI 2021) (Li et al., 2021a). It is structured as follows: we begin with an overview of previous studies that utilized NLP and machine learning techniques for mental health in Section 4.1, with a specific focus on Schizophrenia detection. Through examining the key aspects of these related works, we observe that our study differs from its predecessors in that the latter primarily utilize social media data and/or do not address the issue of lexical bias. In Section 4.2, we introduce our methods, providing details on dialogue modeling and data representation. Our experiments are conducted on a French corpus created under the project SLAM, which we present in Section 4.3. Results of our experiments are presented in Section 4.43 , followed by a series of analyses in Section 4.5. Finally, we conclude our study in Section 4.6.

Related Work

Mental Disorder & Linguistic Clues

A long line of work in psychiatry, starting in the 1960s, proposed descriptions of language output of patients with Schizophrenia, as reviewed in [START_REF] Kuperberg | Language in schizophrenia part 1: an introduction[END_REF]. Psychiatrists rely on language and speech behavior as one of the main clues in psychiatric diagnosis [START_REF] Ratana | A comprehensive review of computational methods for automatic prediction of schizophrenia with insight into indigenous populations[END_REF]. They found that these patients' speech tends to be less predictable [START_REF] Salzinger | Verbal behavior of schizophrenic and normal subjects[END_REF][START_REF] Salzinger | The immediacy hypothesis and response-produced stimuli in schizophrenic speech[END_REF][START_REF] Salzinger | Ecolinguistics: A radical behavior theory approach to language behavior[END_REF], with a poorer vocabulary [START_REF] Salzinger | Some formal characteristics of schizophrenic speech as a measure of social deviance[END_REF][START_REF] Manschreck | Reduced primacy and related features in schizophrenia[END_REF]. It has also been found that their language productions tend to be more grammatically deviant [START_REF] Hoffman | An analysis of grammatical deviance occurring in spontaneous schizophrenic speech[END_REF] and less syntactically complex than that of controls [START_REF] Fraser | The diagnosis of schizophrenia by language analysis[END_REF][START_REF] Morice | Language analysis in schizophrenia: Diagnostic implications[END_REF]. At discourse level, they associate words within a larger context than controls [START_REF] Maher | Quantitative assessment of the frequency of normal associations in the utterances of schizophrenia patients and healthy controls[END_REF] with often more diffuse associations [START_REF] Chaika | A linguist looks at "schizophrenic" language[END_REF][START_REF] Elvevåg | Quantifying incoherence in speech: an automated methodology and novel application to schizophrenia[END_REF]. They also present referential impairments -categorized as vagueness, missing information, or confusing reference [START_REF] Rochester | Crazy talk: A study of the discourse of schizophrenic speakers[END_REF][START_REF] Docherty | Communication disturbances in schizophrenia and mania[END_REF] -, and specific discontinuities at the discourse level [START_REF] Musiol | Eléments de psychopathologie cognitive: le discours schizophrène[END_REF][START_REF] Rebuschi | Using SDRT to analyze pathological conversations. Logicality, rationality and pragmatic deviances[END_REF].

On the other hand, many researchers have used NLP methods to help to identify varied mental disorders, such as depression [START_REF] De Choudhury | Identifying relevant social media content: leveraging information diversity and user cognition[END_REF], 2013b,a;[START_REF] Schwartz | Personality, gender, and age in the language of social media: The open-vocabulary approach[END_REF][START_REF] Nguyen | Affective and content analysis of online depression communities[END_REF][START_REF] Sekulić | Adapting deep learning methods for mental health prediction on social media[END_REF][START_REF] Howes | Linguistic indicators of severity and progress in online text-based therapy for depression[END_REF][START_REF] Guntuku | What twitter profile and posted images reveal about depression and anxiety[END_REF], posttraumatic stress disorder (PTSD) [START_REF] Pedersen | Screening twitter users for depression and ptsd with lexical decision lists[END_REF][START_REF] He | Automated assessment of patients' self-narratives for posttraumatic stress disorder screening using natural language processing and text mining[END_REF][START_REF] Kleim | Early linguistic markers of trauma-specific processing predict post-trauma adjustment[END_REF], suicide risk [START_REF] Coppersmith | Exploratory analysis of social media prior to a suicide attempt[END_REF][START_REF] Benton | Multitask learning for mental health conditions with limited social media data[END_REF][START_REF] Coppersmith | Natural language processing of social media as screening for suicide risk[END_REF]), Alzheimer's disease (AD) [START_REF] Orimaye | Learning predictive linguistic features for alzheimer's disease and related dementias using verbal utterances[END_REF][START_REF] Fraser | Linguistic features identify alzheimer's disease in narrative speech[END_REF][START_REF] Gosztolya | Identifying mild cognitive impairment and mild alzheimer's disease based on spontaneous speech using asr and linguistic features[END_REF], and autism [START_REF] Goodkind | Detecting language impairments in autism: A computational analysis of semi-structured conversations with vector semantics[END_REF][START_REF] Sakishita | Autism spectrum disorder's severity prediction model using utterance features for automatic diagnosis support[END_REF]. We also investigate depression detection in the following chapter.

Detection of Schizophrenia in NLP

The automatic detection of Schizophrenia is an active field of research, with studies focusing mainly on two types of characteristics: biomedical signals such as electroencephalography (EEG) and magnetic resonance imaging (MRI) [START_REF] Greenstein | Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls[END_REF][START_REF] Sabeti | A new approach for eeg signal classification of schizophrenic and control participants[END_REF]. Although it is evident that the language produced by individuals with mental illness patients differ from that of others, research based on linguistic data is relatively scarce. It is only in recent years that we have observed a trend in the use of NLP techniques for the automatic detection of various disorders, such as depression [START_REF] Pestian | A machine learning approach to identifying the thought markers of suicidal subjects: a prospective multicenter trial[END_REF] or in combination with other disorders such as PTSD [START_REF] Pedersen | Screening twitter users for depression and ptsd with lexical decision lists[END_REF] and pre-symptoms of Alzheimer's disease [START_REF] Jarrold | Language analytics for assessing brain health: Cognitive impairment, depression and presymptomatic alzheimer's disease[END_REF]. Early line of work has mainly focused on lexical information [START_REF] Hong | Lexical differences in autobiographical narratives from schizophrenic patients and healthy controls[END_REF][START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF]Birnbaum et al., 2017a;[START_REF] Xu | Automated lexical analysis of interviews with individuals with schizophrenia[END_REF], with different types of data including that generated with the help of practitioners such as interviews and questionnaires, as well as data freely generated 2017) utilize the same data set of [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF].

by patients on social media. In interviews, practitioners have some control over the content, for example, they can lead the discussion towards recent treatment. On the other hand, social media data is completely free text created by self-stated diagnosed patients and is often selected with specific hashtags such as "#stress" or "#depression" [START_REF] Glaz | Machine learning and natural language processing in mental health: systematic review[END_REF].

Regarding the NLP techniques used in Schizophrenia research, we find a limited number of relevant studies, which are presented in Table 4.1, with key information such as data type, the size of corpora, language ("lang"), feature employed, and classification results.

Before discussing these studies, we need to acknowledge that comparing the corpora used in related works is challenging due to several reasons. Firstly, they differ in size. For instance, the datasets in [START_REF] Strous | Automated characterization and identification of schizophrenia in writing[END_REF] and [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF] contain a varying number of essays composed by patients and controls, each with different length requirements (in Strous, 300 -500 words; in Kayi "two-paragraphs"). The Twitter dataset in [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF] includes a certain number of users and their average tweets per user, where each tweet is limited to 140 characters at the time of collection (2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015). As for the oral narratives in Allende-Cid et al. ( 2019), there is no information about the length of the documents. Secondly, all datasets are not publicly available due to confidentiality issues, including the one we use [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF]. When attempting to create our Twitter dataset, we follow the acquisition method in [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF] and extract public tweets from around 600 users, each with an average of 1,890 tweets. We perform an initial human annotation phase but have to discontinue the project due to GDPR regulations in 20204 , which prohibit using newly acquired data from social networks. To overcome the limitations caused by the size and type of data, we decide to explore other cognitive impairments detection using larger and readily available datasets, such as depression and DAIC-WOZ dataset [START_REF] Devault | Simsensei kiosk: A virtual human interviewer for healthcare decision support[END_REF]. We discuss this further in the next chapter.

In the first study dedicated to Schizophrenia detection problem, [START_REF] Strous | Automated characterization and identification of schizophrenia in writing[END_REF] used written documents from individuals with Schizophrenia to build classification systems based on lexical information and achieved an accuracy of 83.3%. They observed specific traits in individuals with Schizophrenia such as a more restricted use of prepositions and an over-representation of the first person. Then, several studies were conducted using Twitter messages written by individuals self-identifying as having Schizophrenia. [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF] collected data for 174 patients (at most 3200 tweets/user, in average 2800/user) and tested different sets of lexical traits, such as semantic categories from a lexicon or Brown clusters: they presented classification systems (SVM) with a best accuracy of 82.3%. This study was extended in Birnbaum et al. (2017a) using 1.9 million tweets collected for 146 patients. They also achieved high scores, with 90.0% accuracy, using lexical traits, particularly categories from the Linguistic Inquiry and Word Count (LIWC) lexicon [START_REF] Pennebaker | Linguistic inquiry and word count (LIWC)[END_REF]. They observed, as previously mentioned, an increased use of first person pronouns and terms belonging to the health lexical field.

Unlike ours, these studies rely on LIWC categories -psycho-metrically validated lexicon mapping words to psychological concepts, Latent Dirichlet Allocation (LDA) [START_REF] Blei | Latent dirichlet allocation[END_REF] -inferring topics in each document, and Brown clustering [START_REF] Brown | Class-based n-gram models of natural language[END_REF] -grouping contextually similar words into the same cluster. Despite the good performance, most of these resources are only available in English.

More recent approaches considered syntactic, semantic, and pragmatic (level of committed belief and sentiment) information: [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF] compared syntactic (POS and syntactic parses), semantic (semantic role labelling), lexical (LDA, clusters), and sentiment annotations on tweets and also narrative texts written by patients (373 LabWriting essays). They are the first to investigate whether patients exhibit more negative sentiment than controls. For this purpose, they employed Stanford Sentiment Analysis Tool [START_REF] Socher | Recursive deep models for semantic compositionality over a sentiment treebank[END_REF] and Columbia sentiment classifier trained for social media [START_REF] Rosenthal | Columbia nlp: Sentiment detection of subjective phrases in social media[END_REF] on essay writing and tweets, respectively. The first tool yields a 5-way classification (very negative, negative, neutral, positive, and very positive) as well as intensity scores. The second tool gives a 3-way (negative, neutral, and positive) sentiment without intensity information. The combination of syntactic, semantic and lexical information give best scores (70.3% in F 1 for essays), and POS tags alone could achieve 69.8% in F 1 . On tweets, using sentiment information seems to help, allowing to obtain 81.6% in F 1 when combined with lexical and semantic features. However, adding syntactic features leads to a small drop (78.6% F 1 ). Allende-Cid et al. ( 2019) used narrative texts written by patients to explore representations not directly involving the tokens, i.e., POS tags (160 categories)including gender and number -, and meta-POS (12 categories), the latter being more general categories (e.g., Noun, Verb and Determiner). They compared morpho-syntactic features to lexical ones, using bag-of-words (BOW), with four different classifiers: KNN, Random Forest, SVM and Adaptive boosting. They reported 87.5% in F 1 for BOW features, and observed a drop in performance for non lexicalized models, with, nonetheless, performance higher than chance: 75.1% for meta-POS and 82.8% for POS.

Aforementioned studies are based on narrative texts (essays and tweets). They show good performance with morpho-syntactic features, especially with Part-Of-Speech tags. We here demonstrate that some findings can generalize to spontaneous conversations.

In the dialogue setting, [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF][START_REF] Howes | Using conversation topics for predicting therapy outcomes in schizophrenia[END_REF] investigated linguistic features in the transcripts of conversations between patients of Schizophrenia and clinicians. Their studies focused on patient satisfaction and adherence to treatment prediction. Their dataset consists of 131 outpatient consultations, with an average length of 2, 706 words per document. They used highlevel features of the dialogue structure, -such as backchannels or overlap -, lexical features using pure words, and topics using LDA. For data representation, they worked on the concatenation of speech turns of the patient, the same way as we do in the task of Schizophrenia detection [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF]Li et al., 2021a). The results of including lexical features showed good performance, but their generalizability may be limited. On the other hand, using high-level features alone did not yield significant performance. As a result, the researchers concluded that although high-level dialogue factors were helpful in predicting symptoms, they were not good indicators for adherence or satisfaction measures.

Our position with respect to related work involves conducting two consecutive studies to detect Schizophrenia within dialogue settings. In the first study [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF], we follow similar studies in monologues by initially examining lexical features. We then expand on this by addressing data sparsity, analyzing the impact of context through varying dialogue window sizes, and dealing with lexical bias by comparing features at different levels, including 

Task Simplification

Our dataset consists of 41 dialogues between a psychologist and a patient (either with Schizophrenia or as a control). These dialogues are lengthy, with an average of 6, 013 words per conversation and 268 speech turns per patient/control, each averaging 2, 811 words (details in Section 4.3.1). Ideally, we would modeling the interactions in dialogues and considering the speech turns from both parties. However, taking into account the features from psychologists' speech turns is a tricky task, since they may bring bias and influence the results. To examine such impact, we conduct experiments using psychologist's speech turns when they talk to patients or controls.

The results are shown in Table 4.2. Clearly, high accuracy can be achieved using either lexical features (bag-of-words, n-grams) or syntactic features (part-of-speech tags, treelets). The simple merging of subjects' and psychologists' speech turns is evidently not an ideal way for data representation. As a result, we exclude the psychologist's speech turns in all dialogues to reduce their influence on classification and only focus on patients' speech turns in this study. In the following chapter, we take one step further and consider the interactions between two parties by using a neural network architecture, but for another classification task.

Varying Dialogue Size

To examine the effect of context length on our model, we create shorter sub-dialogues by dividing the original dialogues into smaller parts and using these as individual instances for classification. In the Full setting, we concatenate all of a patient/control's speech turns into a single large document, which may be difficult for the system to process due to the small number of classification instances (i.e., 41). The Indiv. setting classifies each speech turn individually, resulting in more instances (10,319) but losing the context of neighboring speech turns. Some of these speech turns are also quite short, with an average of 11 words. The W-n setting (where n ∈ 128, 256, 512, 1024) is a middle ground, using a window of at least n words (always extend- 

Comparing Representations

We consider three different types of feature representation: (1) lexical, including bag-of-words (BOW) and n-grams; (2) syntactic (i.e., non-lexical) features such as part-of-speech (POS) tags and syntactic relation chains n-treelet;

(3) semantic and pragmatic features where we consider three markers commonly seen in dialogues: Open Class Repair (OCR), Backchannel (BC), and discourse connectives.

(1) Lexicons: Existing work investigating language particularities for Schizophrenia demonstrated the importance of lexical features [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF][START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF]. For French, as for many languages, we do not have access to a resource such as LIWC. We thus propose to simply include Bag-Of-Words (BOW) and n-grams (n ∈ {2, 3}) to our models as a proxy for topic identification. BOW representation is the simplest and serves as a reference system, while n-grams can contain words that span multiple turns of a single speaker, and thus encode part of the dialogue context.

( 2017) only used the dependencies as syntactic features. We extend to treelet features.

A treelet refers to subtrees obtained from a syntactic parse. This feature has been utilized in multiple NLP tasks, such as machine translation [START_REF] Quirk | Dependency treelet translation: Syntactically informed phrasal smt[END_REF] and language modeling [START_REF] Pauls | Large-scale syntactic language modeling with treelets[END_REF]. In the first study, the authors suggested combining conventional statistical models with phrasal treelets that have linguistic generality. In (Pauls and 2012), the authors utilized treelets to create a generative syntactic language model. The model outperformed traditional n-gram models in grammaticality tasks and achieved better fluency.

In our case, precisely, we use UDPipe [START_REF] Straka | Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe[END_REF] to obtain morpho-syntactic tagging and dependency parsing results. Since our data is dialogue and not monologue, pretrained models perform poorly. Therefore, we re-train a UDPipe model5 using a French spoken language corpus Spoken-French 2.5 6 . Preprocessing includes removing punctuation and minimal segmentation (e.g. adding a space for apostrophes). To encode the syntactic features, we use the method proposed in [START_REF] Johannsen | Cross-lingual syntactic variation over age and gender[END_REF], which consists of extracting all sub-trees (treelet) of at most 3 tokens. A treelet of 1 token is simply the associated POS tag, such as VERB and NOUN. A 2-treelet corresponds to 2 tokens with a syntactic relation between a head and a dependent, e.g., "VERB→nsubj→NOUN" where the head is VERB and the dependent is NOUN. Finally, a 3-treelet corresponds to 3 tokens with 2 syntactic relations: it could be one head dominates two dependents or a chain of dependencies, e.g., "NOUN←nsubj←VERB→dobj→NOUN" or "PRON←poss←NOUN←nsubj←VERB", as illustrated in Figure 4.1.

(3) Discourse & Dialogue Markers: Finally, we also test higher-level features that involve discourse and dialogue information. [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF] showed the importance of features specific to spontaneous dialogues that do involve lexicon but in a more generic way: Open Class Repair (OCR) initiators such as pardon?, huh? ; Backchannel (BC) responses such as yeah, hum mm.

To reflect text organization, we also include discourse features by extracting the forms (without disambiguation) corresponding to connectives (but, because, since) as identified in LexConn [START_REF] Roze | Lexconn: a french lexicon of discourse connectives[END_REF], as well as the disambiguated connectives. Connectives differ in terms of their specificity and can be ambiguous at two levels [START_REF] Laali | Automatic disambiguation of french discourse connectives[END_REF]: (1) they can be used in discourse-usage or non-discourse-usage. The word and, for instance, can signal a very unspecific addition -which is nonetheless distinct from the mere juxtaposition of clauses without connective [START_REF] Dipper | Disambiguating potential connectives[END_REF]. ( 2) They may be used to signal more than one discourse relation. For instance, connectives however and but can signal Contrast or Concession relations.

In our initial extraction, we find a few unspecific connectives with relatively large proportion: et [and] (12%), donc [so] (7%). It thus motivates us to disambiguate these connectives. We use an off-the-shelf discourse parser7 from Laali and Kosseim (2017) which achieves > 93% accuracy of disambiguation on French Discourse Treebank (FDTB1) [START_REF] Steinlin | Fdtb1: Repérage des connecteurs de discours en corpus[END_REF]. We distinguish raw connectives with disambiguated connectives with respectively "Conn" and "ConnD" in the following sections.

In order to improve reproducibility, we give the full list of tokens used for OCR (Table 4.4) and Backchannel (Table 4.5), as well as their corresponding translation in English aside. The French version is obtained by translating the list given by the authors [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF] who predicted adherence to treatment for Schizophrenia from dialogue transcripts, and by adding a few additional terms specific to French with the help of a psychologist in the team. 

French

Feature Selection

Our learning problem is confronted with high-dimensional features (treelet > 16k vocabulary, n-gram > 118k vocabulary) and rare training instances (41 documents), which generally leads to overfitting and lack of generalization of the models. We include feature selection during training with a method implemented in Scikit-Learn8 [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. By calculating the weights (or coefficients) assigned by a model to each feature and keeping only those whose weight is above a threshold, this method allows us to select important features. We test without selection (threshold "None"), then with a threshold corresponding to the mean and median of the obtained weights, as well as 10 values regularly distributed between 1e -5 (the default value in the used implementation) and the weight of the 50 th most important feature. This maximum value chosen a priori ensures that at least 50 features are retained in the model. Feature selection allows us to drastically reduce the size of the vocabulary, especially for lexical (bow and n-gram) and syntactic features (treelet and its n-gram combination). In Table 4.6, we present the original and selected feature sizes in the W-1024 setting. The selection is carried out using the SVM classifier. We can observe that the original number of 2-grams and 3-grams was more than 118k, but it reduces to around 100 after the selection. Similarly, the selected features for POS+2-3-treelet are also reduced to less than one percent of its original size.

Experimental Setting

Dataset

SLAM Project:

Our corpus is developed as part of the SLAM project. The interviews are conducted in a hospital setting with patients diagnosed by psychiatric doctors and psychologists from the host institution. The interview is accompanied by neuropsychological tests to measure the patients' abilities in various areas (working memory capacity, verbal fluency, attention, motor speed, executive functions, etc.). In addition, the patients' verbal interactions with a psychologist are recorded during a semi-directed interview. The patients' participation is voluntary and the elements collected during the experiment are not used by the medical team for the patient's follow-up. There is therefore real freedom in the interview. The themes addressed remain simple: patient's daily life, medical history, history before hospitalization, etc.. These interviews are recorded with a double eye-tracker system, but we did not utilize the eye movements as features in our experiments. The interviews are conducted by a psychologist who is not personally involved in the dialogue. Therefore, this is not a symmetrical everyday interaction situation, the patient's speech is closer to a monologue. This explains our choice to extract the speaker's linguistic production and isolate it as a coherent whole. Amblard et al. (2014) explains why the distribution of SLAM data is difficult due to the content of the interviews giving many geographical and biographical elements of the patient and their surroundings so that anonymization does not make sufficiently opaque.

Corpus Description: The corpus consists of 41 documents, 18 people with Schizophrenia and 23 controls for the control group. The transcripts are standardized and follow a transcription guide [START_REF] Rebuschi | Using SDRT to analyze pathological conversations. Logicality, rationality and pragmatic deviances[END_REF]. Only one psychologist interviews these 41 subjects. Each of these groups contains 15 male subjects, the rest (3 and 8) being female. This distribution therefore presents a bias. It is accepted that there are significant differences according to gender (clinical and paraclinical aspects) [START_REF] Douki Dedieu | Schizophrénie et genre[END_REF]. At the moment, the majority of studies focus mainly on male subjects and we think that these differences will have to be taken into account in the diagnostic approach. (IQ) score, years of studies, and three cognitive tests' results (WAIS-III, TMT, CVLT) 9 . We show in Table 4.7 key statistics in regards to speech production of different participants: patients, controls, psychologist when she talks to patients or controls. Not surprisingly, people with Schizophrenia have, on average, the same number of speech turns per document as the psychologist (200). However, they speak more (2676 words per document) and their sentences are longer (13.4 words per sentence) compared to the psychologist (1815 words per document, 9.1 words per sentence). The controls express themselves significantly more (342 speech turns and 3305 words per document) with shorter sentences (10.5 words per sentence). People with Schizophrenia also have a higher rate of use of grammatical words (also known as function words which not belonging to the categories: noun, verb, adverb or adjective) than the psychologist or the controls: SCZ 56% vs. controls 51% vs. psychologist 50%, as observed in [START_REF] Hoffman | An analysis of grammatical deviance occurring in spontaneous schizophrenic speech[END_REF]. The grammatical deviance could also explain the good results when using POS tags as features in previous studies [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF][START_REF] Allende-Cid | A machine learning approach for the automatic classification of schizophrenic discourse[END_REF].

For illustration, we show two translated excerpts with commonly seen themes in example ( 36) and (37), where the acronyms "SCZ", "PSY", and "CON" refer to Schizophrenia patient, psychologist, and control, respectively. The high-lighted words are typical theme terms that appear in different groups, which we will discuss more in Section 4. 

Implementation Details

We compare several classification algorithms: Support Vector Machines (SVM), Logistic Regression (LR), Random Forest (RF), Perceptron (Perc), and Naive Bayes (NB), without and with feature selection based on importance weight (Section 4.2.4), all implemented in Scikit-Learn library [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]. We have tested the following hyper-parameters:

• Naive Bayes: smoothing α ∈ V = {0.001, 0.005, 0.01, 0.1, 0.5, 1, 5, 10, 100};

• Logistic Regression: L 2 and regularization C ∈ V ;

• SVM with linear kernel: L 2 and regularization C ∈ V ∪ {1000};

• Perceptron: L 2 and α ∈ V ;

• Random Forest: max_depth ∈ {2, N one};

For the thresholds employed for feature selection, recall that we use 10 values equally distributed from 1e -5 to the weight of the 50 th most important feature (thus allowing to keep at least 50 features), as well as the mean and median values of the weights.

Since our dataset is minimal (41 documents), we use nested cross-validation to assess the performance of our system: we tune hyper-parameters on K -1 folds and then evaluate on the left-out fold; we repeat the whole process M times (K = M = 5). We report average accuracy over the M out folds. Best hyper-parameters values and algorithms are given in Appendix A.2.

Results

In Table 4.8, we present all the baseline results in the first row. In all settings, the majority class is the control group. The full setting includes the initial groups with 23 dialogues for the control group and 18 for the patient group. As the control group produces more utterances on average, the Indiv. setting highlights a more pronounced imbalance, with a baseline of 65%. We showcase lexical, syntactic, and dialogue and discourse features in different blocks. The last block consists of selected combinations of features, particularly those that performed well individually, such as n-POS and BC.

Single feature-wise, lexical features perform the best, with BOW achieving outstanding scores of 93.7% (92.2% in F 1 ) and 72.4% (71.6% in F 1 ) for the Full and Indiv. settings respectively. The best algorithm is Naive Bayes. Using SVM, we obtain accuracy of 90.98% and 70.2%. These results are superior to those presented in Allende-Cid et al. (2019) (87.50% in F 1 ), which also use a BOW representation and SVM, but with a larger corpus, and also higher than those presented in Birnbaum et al. (2017b), which achieved 90% accuracy with Random Forest classifier on a larger Twitter dataset, using n-grams (n = 1, 2, 3, corresponding to BOW+n-gram in our case) and semantic categories from LIWC lexicon. This suggests potential lexical bias in our dataset. We will provide more discussion on this point in Section 4.5.1.

Analysis

As for discourse markers, BC and connectives are good indicators, with 74.5% and 76.7% in their best settings. BC is more influenced by the context length compared to connectives, likely due to the limited vocabulary in short contexts. In the extreme case of the Indiv. setting, where single speech turns are considered as instances, which excludes inter-sentence connectives, the accuracy is very low, even lower than the baseline. The distinction between regular connectives and disambiguated connectives (ConnD) is large, with the latter obtained through an off-theshelf discourse parser proposed in [START_REF] Laali | Automatic disambiguation of french discourse connectives[END_REF]. We will delve deeper into the disambiguation aspect in the following Section 4.5.3. Syntactic features, such as POS tags and treelets, are effective markers, particularly for longer chains (n = 2, 3). These are lexical-free features that allow us to discern the language usage between two groups, as we shall see in Section 4.5.2. A consistent trend is observed, where the best performance is achieved with longer window sizes between 512 and 1024, using SVM, which is known to perform better with longer context and sparser data. We provide further details on the performance of classifiers in Section 4.5.6.

We evaluate various combinations of features within and across different feature groups, and the most effective ones are presented in the last block in Table 4.8. When combining POS and treelet, the performance increase is minimal. However, when adding BC, we observe a notable improvement: 3-POS+BC being the highest performing system with an accuracy of 77.86, followed closely by 2-POS+BC at 76.6. Similar to the syntactic features, SVM is the best algorithm. The second-best combination is POS and disambiguated connectives, with 3-treelet+ConnD yielding 76.6 and 75.7 in the Full and W-1024 settings respectively. It is worth noting that replacing 3-treelet with 2-treelet also yields impressive results: 75.2 and 74.2 (details in Appendix A.1 ). Longer syntactic chains tend to capture more precise language specificities and therefore provide stronger clues for classification. We invite readers to refer to Appendix A.1 for the performances with all the features and algorithms in each context setting.

Analysis

Lexical Features & Bias

Building on our work [START_REF] Amblard | Investigation par méthodes d'apprentissage des spécificités langagières propres aux personnes avec schizophrénie (investigating learning methods applied to language specificity of persons with schizophrenia). In Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP[END_REF], we compare different representations for Full and Indiv. settings -the most similar to long narrative texts or short Twitter messages. As in previous work, we find that lexical information is very effective (first sub-part in Table 4.8) with at best 93.66% in accuracy. However, analysis from precise studies suggested a potential issue: [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF] reported that health-related lexicon is more represented in Twitter dataset, and [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF] showed that the most predictive unigrams are about conditions, treatment, and medication. Similarly, we conduct an examination of the most commonly used words for people with Schizophrenia and controls (as in examples ( 37) and ( 38)). We observe the following themes:

• For people with Schizophrenia: typically words related to pain such as "disease", "hospitalization", and "hallucinations". This corresponds to the Catastrophe label among the top semantic features observed by [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF] who present linguistic traits that are predictive of people with Schizophrenia in writing. From this empirical analysis, we can see the conversational context in which patients were indirectly led to mention the onset of their illness.

• For control subjects: words related to education such as "master", "thesis", and "degree" and to psychology such as "psychiatrist" and "psychologist" stand out significantly. that the control subjects are mostly first or second year students enrolled in a humanities program.

We run Spearman correlation test to rank lexical features and find similar results with the p-value< 0.05 and the coefficient |ρ| > 0. 4.9. This finding is due to the nature of our data: patients talk about their disease with a clinician, and controls talk more about their everyday life. These features perform well because they reflect a lexical bias in data collection. However, the models can not learn a lot about language specificities about this disease and they will not be usable in the wild.

Furthermore, we find that the subjects with Schizophrenia use more references to the first person, as seen with deictic words (j' [I], mon [my]+masculine object, ma [my]+feminin object, mes [my]+plural ) as well as forms of auxiliaries (suis [am] and ai [have] ) while controls use more references to the second person (tu [you], es [are], and as [have] ). We also evaluate the impact of these features in the models: by ignoring je [I] and tu [you] (and the elided forms j' [I] and t' [you] ), we observe a slight drop in accuracy with NB (-0.49%) but a significant drop with SVM (-6.59%). These observations align with the conclusions of previous studies: [START_REF] Strous | Automated characterization and identification of schizophrenia in writing[END_REF] argue that a greater use of first person deictic words and fewer references to third person subjects, accompanied by lexical repetitions, are characteristics of subjects self-centered. Other studies have also claimed that the use of the singular first person is associated with negative affective states such as depression [START_REF] Rude | Language use of depressed and depressionvulnerable college students[END_REF][START_REF] Chung | The psychological functions of function words[END_REF]. Of course, this type of result should be appreciated in relation to the contextual and conversational conditions under which the data is collected.

POS Tags & Syntax

Sequences of POS tags (2-POS and 3-POS) and of treelet (2-treelet and 3-treelet) are fully nonlexicalized features. They capture some internal structure of the interaction. We obtain our best scores with the longest sequences (3-POS, 72.55% accuracy, 74.34% F 1 ). These scores are higher than the ones reported by [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF] on tweets (69.20% F 1 ) or essays (69.76% F 1 ) with simple POS tags and a lot more documents, and are very close to Allende-Cid et al. ( 2019) with meta-POS (75.1% in F 1 ). This confirms the predictive power of POS for the task.

We find that patients with Schizophrenia use more verbs than controls: 2-POS such as VERB-ADP and 3-POS such as PRON-AUX-VERB, where ADP stands for adposition and it covers preposition and postposition. As in [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF], we also observe a higher proportion of adverbs. Statistics of 2-treelet tend to indicate that individuals with Schizophrenia use more verbal groups and less nominal groups. Thus, the 2-treelet "VERB→aux→AUX" and "VERB→nsubj→PRON" are the most discriminatory features of individuals with Schizophrenia.

We show examples for these patterns:

(38) Pattern "VERB→aux→AUX" in SCZ group

-(j')ai fait [(i) have done] -(c')est (pas) gagné [(it) is not won] ) (39) Pattern "VERB→nsubj→PRON" in SCZ group -ça va [it's fine] -(je) sais pas [(i) don't know]
Further, we observe that the usage of adverbs of time (parfois [sometimes], plus maintenant [not anymore], quasiment jamais [almost never] ), of place (ici déjà [here already] ) and of frequency and manner (beaucoup plus [much more], beaucoup mieux [much better] ) is higher than that of controls -this is possibly linked to the exchange about their (current) heath condition.

On the other hand, controls employ a higher portion of linking adverbs (enfin [finally], donc [so], quand même [anyway] ). They tend to use more complicated syntactic structures, such as those with SCONJ (subordinating conjunction) and CCONJ (coordinating conjunction), confirmed by our analysis of discourse connectives. Syntactic features confirm these observations (Table 4.10), the most predictive being verbal structures, followed by adverbial modifiers such as advmod and advcl. Advmod is a (non-clausal) adverb or adverbial phrase; advcl is an adverbial clause modifier. They serve to modify a verb or other predicate. This goes along with [START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF], in which the top parse tag is advmod, and confirms clinician's descriptions [START_REF] Morice | Language analysis in schizophrenia: Diagnostic implications[END_REF][START_REF] Fraser | The diagnosis of schizophrenia by language analysis[END_REF]) on the use of less complex syntactic structures for patients with Schizophrenia.

Dialogue & Discourse

We now move to dialogue and discourse feature analysis. Figure 4.2 presents results on selected subsets of non-or less-lexicalized features for the six splits (Indiv, W-{128, 256, 512, 1024}, Full) of our data. Horizontal lines correspond to the majority vote baseline in each setting.

Following [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF], we test OCR and Backchannel (BC). Concerning dialogue features, OCR gives poor results mostly behind the baseline, while BC is above with 74.48% (Full). Moreover, combining with BC to another feature set almost consistently allows improvements (not the case with OCR). These features are good indicators, contrary to what was reported in [START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF]. Note that we directly use the tokens as features rather than the proportion of BC per word, which allows more refined analysis. Looking at the models weights and Spearman correlation values, we find that the most informative features for controls are phatic expressions. At the same time, patients with Schizophrenia are correlated with more ambiguous expressions which are also used in non-phatic contexts (i.e., less BC responses): this supports that the patients are less prone to maintain the conversation in Howes's paper. Connectives also give promising results, at best 76.7% (in W-1024 setting). However, the simple look-up from LexConn list [START_REF] Roze | Lexconn: a french lexicon of discourse connectives[END_REF]) is a very coarse way of connective extraction. Disambiguation with the discourse parser in [START_REF] Laali | Automatic disambiguation of french discourse connectives[END_REF] results in much fewer connectives: connective types drop from 142 to 103 and total count drops from 14.5k to 6k. For unspecific connectives such as et [and], the parser excludes over half of the cases. After the disambiguation process, we run experiments for the combination of connectives with other features, with results in Figure 4.3. It is clear that connectives are beneficial when combined with syntactic features, especially with 3-treelet (76.6%).

In terms of the context length, W-512 and W-1024 are the two best settings, with W-512 giving the best scores in the combination with OCR, POS, 2-POS, and W-1024 best with 3-POS, 2-treelet and 3-treelet. We show the correlation of connectives with Schizophrenia (positive ρ values) and control classes (negative ρ values) in Figure 4.4. Trend shows that controls use longer connectives (jusqu'à ce que [until that], au point de [to the point that] ) compared to patients (donc [so], puis [then] ). Connectives linked to the present moment (maintenant (que) [now (that)], depuis que [ever since] ) are also highly correlated to Schizophrenia group, which might refer to changes after treatment.

Context Window Size

Our experiments were also designed to test the impact of the context when dealing with dialogues. Figure 4.2 and 4.3 demonstrate that, in general, the larger the window, the better the scores. Individual speech turns are too small and contain no context. However, using the whole conversation most often leads to a drop in performance compared to large window sizes (W-512 and W-1024) due to the data sparsity, as we can observe for connectives, n-POS and n-treelet. OCR and backchannels do not follow this trend, meaning that they are probably less sparse. The best window sizes are W-512 and W-1024, respectively. They perform better than other window sizes for almost all syntactic and discourse features. These experiments demonstrate that using the block of conversation is relevant -the models find enough information to make accurate classification -, while allowing to increase the number of classification instances artificially.

Analysis

Influence of Feature Selection

Given the limited number of test instances and the large vocabulary, especially for lexical and syntactic features, we investigate the impact of different threshold levels on the model's performance. As seen in Figure 4.5, we evaluate the performance of BOW, n-grams (n = 2, 3), n-treelet (n = 1, 2, 3), and the combination thereof. However, we observe that combining these features does not lead to any improvement or may even decrease performance. The lexical features appear to be redundant, as combining BOW and treelet has no impact on performance when utilizing a threshold selection (red line). Without selection, the combination exceeds n-grams alone but not BOW alone. Furthermore, the n-grams representation is not suitable in this context, as it performs worse than BOW, possibly due to overlapping speech turns.

As demonstrated in Figure 4.5, the feature selection step is essential in optimizing performance, particularly for n-grams (orange line) and its combination with BOW and treelet (BOW+n-grams+treelet, BOW+n-grams, n-grams+treelet as seen in pink, purple and brown lines respectively). The utilization of treelet also improves through feature selection, with optimal scores achieved at lower threshold levels.

Best Algorithm

Among the 5 classifiers, NB generally performs well when dealing with word counts (in Full and Indiv.), while SVM and LR are generally better in other cases.

In Table 4.11, we show the best algorithm for non-lexical single (apart from BOW and ngram) and combined features in all context settings. More precisely, SVM performs better when the context window is relatively large, and the data sparsity is more pronounced (Full, W-1024). At the same time, logistic regression (LR) is better at dealing with small to medium-sized contexts (Indiv., W-128, W-256 settings). In general, random forest (RF) and Perceptron are performing poorly compared to SVM and LR. In all window settings, they show a much lower accuracy with syntactic features -while they are the most important features in the best systems (2-POS+BC in Full and 3-POS+BC in W-512). However, RF shows better performances with discourse markers such as backchannel feature alone, with detailed information in Appendix A.2.

Conclusion

In this chapter, we explore language specificities associated with mental impairment in French. To do so, we use conversations in SLAM project which involves patients with Schizophrenia in order to learn about language features associated with the disease. We test various representations, including lexical, syntactic, discourse, and dialogue level information. To deal with data scarcity issue, we compare different context length settings to represent dialogues: from non-context (Indiv.), a certain length of context (W-n), and whole dialogue (Full); and further employ feature selection techniques to reduce vocabulary size. Our best system uses only lexical information and achieves an accuracy of 93.66% with the NB classifier. Our experiments replicate performances as high as previous studies in English. However, the analysis of our data and model highlights possible lexical biases in our corpus, especially because the control group's vocabulary is centered on academic studies, and patients are used to describing their medical surroundings. This could make our models less resilient. We suspect that other corpora employed in dialogue settings for this task might be similarly biased. Therefore, we suggest that exploring alternative types of information is crucial for creating a robust model that provides insights into language specifics instead of being limited by the data collection process.

Our results show that non-lexical features such as syntactic tags (POS and treelet) and discourse level markers (backchannel, connectives) are good indicators. The combination of BC with syntactic features yields the best results. Further analysis of these features shows interesting findings: patients in the Schizophrenia group tend to use more ambiguous expressions (less BC responses) than the control group. They also use more verbs and more superficial syntactic structures. On the other hand, the controls express more apparent acknowledgment responses during the conversation, and they employ a higher portion of linking adverbs that loosely indicate more coherent speeches.

In this study, we do not to employ a neural architecture due to two reasons: first of all, our dataset is limited, and a neural model may be overly complex relative to the amount of training data available, leading to poor performance on unseen data and may only learn biased lexicons instead of the real language specificity. Therefore, a lexical-free model is preferred to enhance generalizability. Secondly, we aim to investigate the relationship between linguistic features and mental impairment by analyzing the feature importance at various linguistic levels. This allows us to provide clear explanations of the underlying correlations. In contrast, neural models are more challenging to interpret.

One of the limitations of this study is the lack of interaction between the patients and psychologists. Unsurprisingly, psychologists seem to actively adapt their way of speaking when facing different interlocutors. Thus, directly adding the linguistic features of psychologists may add more bias to the system. The interaction of speeches should be designed in a more sophisticated way. We will provide interaction modeling in the next chapter.

For NLP practitioners, we hope that this study will remind us of the importance of looking for bias in data and exploring higher-level information (i.e., less language dependent), such as discourse information, to produce robust systems and draw more general conclusions. For research on Schizophrenia using NLP methods, we manage to replicate results on another language and modality, thus confirming that these are features specific to the disease. We plan to continue the study by exploring other datasets and more sophisticated features, with a new reflection on the bias for studies on other conditions.

Chapter 5

Multi-Task Learning for Depression

Detection in Dialogues In the previous chapter, we have discussed using linguistic features at various levels for Schizophrenia language detection in dialogue settings. One of the limitations we recognize is the lack of speech interaction engineering. In this chapter, we aim to overcome this limitation by proposing a hierarchical neural architecture within a multi-task learning framework. Our focus is on identifying depressive subjects during guided conversations. As we encounter difficulties in data size and in confidentiality issues in the previous study, we switch to a larger and publicly available dataset DAIC-WOZ for depression detection. This allows us to test more sophisticated models and compare them with related works.

Depression is a serious mental disorder that affects around 5% of adults worldwide1 . It comes with multiple causes and symptoms, leading to major disability, but is often hard to diagnose, with about half the cases not detected by primary care physicians [START_REF] Cepoiu | Recognition of depression by non-psychiatric physicians-a systematic literature review and metaanalysis[END_REF]. Automated detection of depression, sometimes associated to other mental health disorders, has been the topic of several studies recently, with a particular focus on social media data and online forums [START_REF] Coppersmith | Clpsych 2015 shared task: Depression and ptsd on twitter[END_REF][START_REF] Benton | Multitask learning for mental health conditions with limited social media data[END_REF][START_REF] Guntuku | Detecting depression and mental illness on social media: an integrative review[END_REF][START_REF] Yates | Depression and self-harm risk assessment in online forums[END_REF][START_REF] Song | Feature attention network: Interpretable depression detection from social media[END_REF][START_REF] Akhtar | All-in-one: Emotion, sentiment and intensity prediction using a multi-task ensemble framework[END_REF][START_REF] Ríssola | A survey of computational methods for online mental state assessment on social media[END_REF]. The ultimate goal of such system is to complement expert assessments, but such empirical studies are also valuable to better understand how communication is affected by health disorders. In this chapter, we propose to investigate depression detection within dialogues, a scenario less studied but more similar to the interviews with clinicians, which allows to examine the interactions in conversation.

Like Schizophrenia and other cognitive impairment detection tasks, depression detection also faces the challenge of data scarcity. As we see, using social media data is a way to tackle this issue, including considering data generated by self-diagnosed users -a method that leads to potentially noisy data and comes with ethical [START_REF] Chancellor | A taxonomy of ethical tensions in inferring mental health states from social media[END_REF] and privacy (GDPR regulations) issues. Since our focus is on analyzing dialogue structures, we choose to study a dataset of 189 clinical interviews called the DAIC-WOZ [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF]. This dataset is specifically collected by experts to aid in the diagnosis of distress conditions. It includes identification of whether participants are depressive or not, as well as a severity score for those who are. This dataset is in English, and it has been extensively studied with various modalities, such as audio [START_REF] Hanai | Detecting depression with audio/text sequence modeling of interviews[END_REF][START_REF] Williamson | Detecting depression using vocal, facial and semantic communication cues[END_REF], visual [START_REF] Haque | Measuring depression symptom severity from spoken language and 3d facial expressions[END_REF] and textual [START_REF] Haque | Measuring depression symptom severity from spoken language and 3d facial expressions[END_REF][START_REF] Dinkel | Text-based depression detection on sparse data[END_REF][START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF].

In our work, we draw inspiration from previous studies [START_REF] Qureshi | Multitask representation learning for multimodal estimation of depression level[END_REF][START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF] and propose to adopt the Multi-Task Learning (MTL) framework in order to enable our model to leverage information from multiple sources. We believe that MTL can be highly beneficial for our model, especially given the limited size of our dataset. We incorporate three auxiliary tasks, including Emotion Classification, which is naturally tied to mental health states, Dialogue Act Identification, which serves as an indicator of local coherence in a dialogue, and Topic Classification, which provides an indication of the global information in a dialogue. In the previous chapter, we have explored several discourse features such as backchannel responses (BC), open class repair (OCR), and discourse connectives. These features are considered shallow because they remain on the surface level and reflect less structural information. In this chapter, we use dialogue acts and topics as shallow information to refer to the discourse structure in dialogues. By considering these shallow structures, we hope to gain insights into the overall organization of the dialogue and how it relates to the mental state of the participants. It is important to note that, considering the limited performance of existing discourse parsers, we choose not to consider parsed structures into MTL. Nonetheless, this presents an intriguing aspect for future exploration.

Our neural network architecture is a traditional one, employing the hard-parameter sharing technique [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF] and is less complex than the shared-private architecture proposed in [START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF]. Despite its simplicity, our model demonstrates remarkable efficacy (Section 5.5). Recognizing the importance of dialogue organization, we propose a hierarchical architecture that is tailored specifically for dialogue processing. This architecture includes tasks performed at both the speech turn level and the dialogue level. By using this approach, we aim to capture the structure and flow of a conversation more accurately. We believe that this will improve the model's ability to detect patterns and relationships between different aspects of the conversation.

This chapter is adapted from one publication at the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGdial 2022) [START_REF] Li | Multi-task learning for depression detection in dialogs[END_REF]. The structure of this chapter is outlined as follows: Firstly, in Section 5.1, we provide an overview of previous studies in the field, including the use of the MTL framework in health-related prediction tasks and its effectiveness in dealing with data scarcity issues. We examine several works that have employed MTL in precise depression detection using the DAIC-WOZ dataset [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF] and identify potential areas for improvement. Next, we introduce a few classic multi-task learning structures and our proposal in Section 5.2, the latter includes a baseline model and an MTL model2 . In Section 5.3, we introduce two types of dialogue corpora, which we utilize to achieve our objective of integrating mental illness detection in dialogues with auxiliary tasks. The first type of corpus consists of conversations with patients with cognitive impairment, among which we select DAIC-WOZ for our main task of depression detection. The second corpus pertains to the subtask of emotion recognition in dialogues. Experimental setup is presented in Section 5.4. Following this, we present the results and analysis of our experiments in Section 5.5. Finally, we conclude our study in Section 5.6.

Related work

Multi-Task Learning on Health-Related Prediction Task

Within multi-task learning, a model has to learn shared representations to generalize the target task better. It improves performance over single-task learning (STL) by leveraging commonalities or correlations between tasks. Recent years have witnessed a series of successful applications in various NLP tasks, such as Part-Of-Speech (POS) tagging, syntactic chunking3 , Named Entity Recognition (NER), Semantic Role Labeling (SRL), etc., as in [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF]; [START_REF] Søgaard | Deep multi-task learning with low level tasks supervised at lower layers[END_REF]; [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]; [START_REF] Ruder | Latent multi-task architecture learning[END_REF], which demonstrate the effectiveness of MTL in learning information from different but related sources. It also tackles the data scarcity issue and reduces the risk of overfitting [START_REF] Mishra | Learning cognitive features from gaze data for sentiment and sarcasm classification using convolutional neural network[END_REF][START_REF] Benton | Multitask learning for mental health conditions with limited social media data[END_REF][START_REF] Bingel | Identifying beneficial task relations for multi-task learning in deep neural networks[END_REF]. [START_REF] Joshi | Does multi-task learning always help?: An evaluation on health informatics[END_REF] demonstrated the benefit of MTL for specific pairs of close health prediction tasks on tweets. In this research, the authors explored the advantages of employing MTL in three specific health informatics pairs, namely (1) symptoms that overlap for the same classification, such as classifying influenza and several other symptoms like cold, fever, and diarrhea, (2) medical concepts that overlap, such as vaccination behavior and drug usage, and (3) related classification problems, like detecting vaccination intention and vaccination relevance. The authors claim that since the symptoms overlap, these tasks are related, making them suitable for the MTL framework. Their model consists of an embedding layer, a shared representation layer, such as bi-LSTM, convolutional, or bi-LSTM+convolutional, a dropout layer, and 2 dense layers for task outputs, and it is fully shared. The corpus they used comprises 5 Twitter datasets that track medical information, including flu, drug usage, vaccines, and others, consisting of approximately 40k tweets. In comparison to single-task learning, the results showed that the shared bi-LSTM layer and bi-LSTM+convolutional shared layer aided the three tasks. However, this improvement was not observed when the convolutional layer was used as a shared representation. The enhancement was around 2 -4% for all pairs wherever applicable. The authors observed that the benefits of MLT depend on the type of shared layers and how related the tasks were.

In another study, [START_REF] Benton | Multitask learning for mental health conditions with limited social media data[END_REF] utilized MTL on social media data to improve the prediction of various mental health signals, including neuroatypicality (atypical mental health), suicide attempts, anxiety, depression, eating disorders, panic attacks, schizophrenia, bipolar disorder, and post-traumatic stress disorder (PTSD). The authors employed a fully-shared layer for all tasks and an additional per-task hidden layer. They trained the first hidden layer jointly for 5, 000 iterations and then trained the second hidden layer for another 1, 000 iterations. Gender prediction was also included as an auxiliary task. Their corpus consisted of multiple Twitter datasets, with 9, 611 users and in average 3, 521 tweets each, totaling over 33.8 million tweets. AUC was used as the main metric. The results showed improved predictions for all mental health conditions except schizophrenia -the only case where STL model outperformed MTL. Notably, anxiety, PTSD, and bipolar disorder showed pronounced gains in detection. While adding gender as an auxiliary task led to more predictive models, the difference was not statistically significant for most tasks. Interestingly, in small datasets, modeling the common mental health conditions with the most data (in their case, depression and anxiety) helped in detecting rare conditions such as bipolar disorder and PTSD. Like the findings in [START_REF] Joshi | Does multi-task learning always help?: An evaluation on health informatics[END_REF], the authors also verified the significance of selecting a suitable set of related tasks. However, unlike in Joshi's work, they did not evaluate the effect of different shared layer types. Their shared layer is a multilayer perceptron.

Multi-Task Learning on Depression Detection

With a focus on depression detection, the shared task AVEC 2016 [START_REF] Valstar | Avec 2016: Depression, mood, and emotion recognition workshop and challenge[END_REF] and AVEC 2017 [START_REF] Ringeval | Avec 2017: Real-life depression, and affect recognition workshop and challenge[END_REF] have brought out a series of multi-modal studies using vocal and visual features on the DAIC-WOZ dataset [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF]. Some of which also explored text-level features: [START_REF] Williamson | Detecting depression using vocal, facial and semantic communication cues[END_REF] used regression model with semantic content features such as question answer pairs and reported a SOTA score on the validation set (F score at 0.76). Al [START_REF] Hanai | Detecting depression with audio/text sequence modeling of interviews[END_REF] and [START_REF] Haque | Measuring depression symptom severity from spoken language and 3d facial expressions[END_REF] learned sentence embeddings with an LSTM network. However, their results on textual features are lower than SOTA by a large margin. In their study, [START_REF] Dinkel | Text-based depression detection on sparse data[END_REF] evaluated and compared different techniques for text embedding. These included word-level methods such as Word2Vec [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF] and FastText [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF], as well as sentence-level methods such as BERT (Devlin et al., 2019a) and ELMo (Peters et al., 2018a). To represent a text, they used the average of word-level embeddings for Word2Vec and FastText, the penultimate layer embedding for BERT, as well as the average of all three layer embeddings for ELMo. Their model consisted of a 3-layer bidirectional gated recurrent unit (GRU) followed by a linear transformation layer. They also experimented with different pooling strategies and determined that the most effective approach was to use mean pooling with ELMo embeddings.

We compile a table of the state-of-the-art studies that use textual modality information, as shown in Table 5.1. Each study is categorized according to its "text embedding", "model structure" (model architecture and whether they are trained in a multi-task framework), and "highlight" properties, such as the use of attention mechanisms. Most studies focus on binary classification, predicting whether the subject is depressed or not. While [START_REF] Qureshi | Multitask representation learning for multimodal estimation of depression level[END_REF] perform a multi-class classification task on the severity of depression levels (middle section of the table). Since the gold labels for test set are not published until recently, most of the work evaluates their models on the development set (top and middle sections of the table). Only [START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF] and [START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF] present results on the test set (bottom section of the table). These are the two primary works that we compare our systems with. Note that the test set in [START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF] contains only 9 depressed documents, while the official set contains 14. It is not clear yet how their partition differs from the official one. It is worth noting that in [START_REF] Williamson | Detecting depression using vocal, facial and semantic communication cues[END_REF], the semantic models achieved significantly better performance compared to other models. Upon closer examination, we discover that their semantic content features not only utilize lexical features such as question answer pairs, but also non-verbal cues such as [laughter], [sigh], and [sniffle], which are not included in other studies. Additionally, their semantic context features use rule-based queries to calculate indicator points. For example: if the patient responds with the keyword "suicid", then the context feature +1 point. These queries are tailored to the specific corpus and rely solely on extracting keywords, making it unlikely for this model to be effectively generalized to other contexts.

As depicted in Table 5.1, different works utilize various modeling strategies. While some work focuses on data representation comparison, such as [START_REF] Dinkel | Text-based depression detection on sparse data[END_REF], where authors test various embeddings, others emphasize architecture modeling, as in [START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF]; [START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF]. When it comes to text classification, a crucial aspect to consider is the word-to-document transformation, which involves representing a text in a vector space for classification purposes. The table demonstrates that two primary transformations have been proposed. The first approach involves using embeddings and an average strategy to aggregate word-level embeddings to sentence-or document-level, as in Al [START_REF] Hanai | Detecting depression with audio/text sequence modeling of interviews[END_REF]; [START_REF] Haque | Measuring depression symptom severity from spoken language and 3d facial expressions[END_REF]; [START_REF] Dinkel | Text-based depression detection on sparse data[END_REF]. Some works, however, directly use powerful sentence-level embeddings such as BERT and ELMo to exploit contextual information encoded in these models. The second approach employs the convolutional network such as GRU and LSTM, as in [START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF]; [START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF]. In these models, word-and sentence-level information is integrated to finally aggregate onto the document level. Our proposed method, presented in this chapter, aligns with the second strategy, where we focus on modeling the dialogue structure and place less emphasis on effective text embedding strategies.

In the middle part of Table 5.1, we present work by [START_REF] Qureshi | Multitask representation learning for multimodal estimation of depression level[END_REF][START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF] who employ similar strategy as ours, i.e., multi-task learning with emotion prediction as auxiliary task. A resume of their work in presented in Table 5.2. We explain the different MTL schemes (fully-shared, shared-private, adversarial shared-private) in Section 5.2.1. Precisely, the authors add emotion intensity and depression severity (DLR, a regression problem) prediction to the main depression classification (DLC) task. However, they find that the emotion-unaware model achieves the best results for the DLC task, with an accuracy of 66.7% on the development set. It should be noted that they use a monologue corpus CMU-MOSEI for the emotion task, which may introduce domain bias to harm the performance. For the depression regression (DLR) and emotion intensity regression tasks, the best results are obtained with the emotion-aware model. They are also the first to conduct a thorough class-wise analysis of depression severity and show that a multi-task model can be beneficial for some classes (such as moderate) while failing for others (such as mild ). In conclusion, due to mixed results, the authors state that no definitive conclusions can be drawn regarding whether emotion-aware MTL helps with depression classification/regression. On the contrary, we hypothesize that emotional information would benefit depression detection.

At the bottom part of Table 5.1, we resume two works that we can directly compare: Mallol-Ragolta et al. ( 2019) use a hierarchical contextual attention network with static word embeddings within a single-task setting and then combined representations at the word and sentence levels. They report at best 63% in F 1 . Recently, [START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF] present even better results, 70% in F 1 , by augmenting the attention network with a conditioning mechanism based on external lexicons, including LIWC [START_REF] Pennebaker | Linguistic inquiry and word count (LIWC)[END_REF], RC Emotion Lexicon (Emolex) [START_REF] Mohammad | Crowdsourcing a word-emotion association lexicon[END_REF], Twitter sentiment lexicon [START_REF] Kiritchenko | Sentiment analysis of short informal texts[END_REF], and Opinion lexicon (Wilson et al., 2005a). They also incorporate the summary associated with each interview. We instead rely on MTL in our work, where incorporating external sources is more direct.

Finally, another work that is loosely related to ours is [START_REF] Cerisara | Multi-task dialog act and sentiment recognition on mastodon[END_REF]. In this study, the authors examine MTL using sentiment 4 Embedding column: Doc2Vec ¶ : self-trained embedding using Python Gensim library. W2V ‡ : pre-trained Word2Vec [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF]. D2V § : pre-trained Paragraph Vector [START_REF] Le | Distributed representations of sentences and documents[END_REF]. USE † : pre-trained Universal Sentence Encoder [START_REF] Cer | Universal sentence encoder[END_REF] a social networking platform with microblogging features similar to Twitter, where both annotations are available. They discover a positive correlation between these two tasks. Although this work does not address depression detection, it provides evidence for the relevance of using dialogue act and sentiment prediction, which are tasks that we believe are pertinent to our primary depression task in dialogue settings. Upon a thorough review of related studies, it is evident that none of them have explored the potential connection between depression and dialogue structure. Therefore, we believe that our work is the first to address the detection of depression in dialogue transcriptions using the MTL approach and incorporating tasks related to the structure of the conversation.

Model Architecture

Multi-Task Learning Schemes

The objective of MTL is to learn the common and task-invariant features by training shared layers. There are several MTL architecture designs available, with two common sharing schemes being the fully-shared and shared-private schemes [START_REF] Caruana | Multitask learning: A knowledge-based source of inductive bias[END_REF][START_REF] Caruana | Multitask learning[END_REF]. [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF] refers to these schemes as hard parameter sharing and soft parameter sharing, respectively. In the fully-shared scheme (short in FS or FS-MTL), the hidden layers are shared across all tasks, while only task-specific output layers are maintained, as shown in Figure 5.1a. x m and x n are input representations of task m and n. The learned shared representation for the task m is formulated as follows: where s t-1 is the previous hidden state and θ represents all the parameters in the network LSTM. Conversely, in the shared-private scheme (short in SP or SP-MTL), each task has its own set of parameters (gray LSTM blocks in Figure 5.1b). The tasks share a network that encourages the parameters to be similar (yellow LSTM block). Formally, for any task m, it has a shared representation s m (equation 5.1) as well as a task-specific representation h m (equation 5.2). The final features are concatenated from both representations.

s m t = LSTM(x m t , s m t-1 , θ s ) (5.1)
s m t = LSTM(x m t , s m t-1 , θ s ) h m t = LSTM(x m t , h m t-1 , θ h ) (5.
2)

The FS model may ignore the fact that some features are task-dependent. As for SP scheme, there is no guarantee that sharable features are trained in the shared space and task-specific features in the private spaces. To address the limitations of previous models, [START_REF] Liu | Adversarial multi-task learning for text classification[END_REF] suggested a new sharing scheme that incorporates adversarial training known as adversarial shared-private (ASP), as shown in Figure 5.1c. Final feature for a task m is still the combination of its shared and private representations, while the training process is enhanced with two new losses. One loss is an additional task adversarial loss L Adv which prevents task-specific features from intruding into the shared space. This is a min-max optimization, and we leave the precise formulation to the readers. To make the features in shared and private spaces more differentiable, an orthogonality constraint is added L dif f . Finally, the loss function of an adversarial shared-private model is the sum of all three losses, with hyper-parameters λ and γ.

L = L T ask + λL Adv + γL Dif f (5.3)
A variant of the ASP model is Cross-Stitch Network, proposed by [START_REF] Misra | Cross-stitch networks for multi-task learning[END_REF]. They started with a shared-private network and introduced cross-stitch units between the private networks. These units enable the model to determine the way one network utilizes the knowledge of another by learning a linear combination. [START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF] utilized the ASP network. However, they failed to exhibit any improvement in performance compared to non-adversarial models, as shown in Table 5.2, which could be attributed to the insufficient training examples for a complex model.

Over time, hierarchical MTL networks have been developed. For example, a Fully-Adaptive Feature Sharing Network is proposed by [START_REF] Lu | Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification[END_REF], in which a network grows like a tree, with different sub-network parameters dedicated to different tasks, and similar tasks are grouped under the same branch. However, their greedy algorithm for tree growing sometimes results in one task per branch, leading to a model that fails to learn shared parameters. Another hierarchical After the introduction of different MTL schemes, we see that fully-shared and shared-private models are the basic models of all subsequent variations. The fully-shared scheme has the innate disadvantage of ignoring task-specific information, but its shared architecture also reduces the risk of overfitting, creating a model that is easier to generalize [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF][START_REF] Baxter | A bayesian/information theoretic model of learning to learn via multiple task sampling[END_REF]. Other models, with more complex architectures and more training parameters, may not be suitable for small corpora like ours. Therefore, we start with the basic fully-shared scheme in this work.

Our Models

One condition generally assumed for the success within MTL is that the primary and auxiliary tasks should be related [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]. The emotion-related task is thus a natural choice since it is linked to mental states. We hypothesize that depressive disorder can also affect how people interact with others during conversations. We thus take a first step toward linking dialogue structure and depression by examining shallow signals: dialogue acts and topics. In addition, since the information comes at different levels, we propose hierarchical modeling, from speech turns to documents.

Baseline Model: Our basic model is a two-level recurrent network, similar to the one in [START_REF] Cerisara | Multi-task dialog act and sentiment recognition on mastodon[END_REF], as shown on the left in Figure 5.2. The input words are mapped to vectors using word embeddings from scratch. The first level (turn-level) takes the embeddings into a bi-LSTM network to obtain one vector for each turn. The second level (dialogue-level) takes a sequence of turns into a RNN network, and the output is finally passed into a linear layer for depression prediction.

MTL Model: As outlined in Section 5.2.1, we advocate for the simple structure, namely the fully-shared structure in our experiments. Our MTL architecture comprises shared hidden layers and task-specific output layers (Figure 5.3) and aligns with the hard parameter sharing approach [START_REF] Caruana | Multitask learning: A knowledge-based source of inductive bias[END_REF][START_REF] Caruana | Multitask learning[END_REF][START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]. Since some auxiliary tasks are annotated at the speech-turn level (i.e., emotion, dialogue act) while others are at the document level (i.e., depression, topic), our architecture is hierarchical and organizes task-specific output layers (MLP) at two levels.

The training process operates as follows: when learning emotion prediction and depression prediction, as these two tasks are not at the same level, we train different levels of networks. When processing emotion-annotated utterances, we tune the turn-level LSTM network. When processing depression-annotated utterances, both the turn-level LSTM and the document-level GRU networks are trained. Overall, sentence level information (emotion, dialogue act) can be learned in the turn-level LSTM network and transferred upwards to help depression and topic prediction. Conversely, higher-level information can be backpropagated to update the network at the lower level. The loss is simply the sum of the losses for each task (Equation 5.4). Regarding the MTL setting, we set equal weight for each task as the standard choice.

L = L Depr + L Emo + L DA + L T opic
(5.4)

Datasets

In the previous chapter, our study is limited by the size and bias of the corpus. In this study, we are taking a more cautious approach to corpus selection. We aim to use a relatively large dialogue dataset in the field of cognitive impairment, allowing us to evaluate the effectiveness of our proposed hierarchical structure for dialogue modeling. As French corpora are limited in number, we turn to English corpora and expand our scope to include various mental illnesses. In Section 5. [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF]. "Part": participant.

Additionally, we conduct research on auxiliary tasks that could benefit dialogue modeling, including emotion recognition in conversation (ERC), machine reading comprehension (MRC), and dialogue act classification. We discover that emotion recognition is a suitable task due to its task relevance and the growing availability of publicly available corpora [START_REF] Busso | Iemocap: Interactive emotional dyadic motion capture database[END_REF][START_REF] Mckeown | The semaine database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent[END_REF][START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF]. In Section 5.3.2, we present the chosen corpus, the DailyDialog corpus [START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF], and extend to other candidate ERC corpora for interested readers in Section 5.3.3.

Mental Illness Dialogue Corpora

DAIC-WOZ:

It is a subset of the DAIC corpus [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF] which contains 189 sessions (one session is one dialogue, in average 250 speech turns) of two-party interviews. All the conversations are publicly available 5 . The experiment involves a human participant engaging in a conversation with a computer-generated interviewer named Ellie (as depicted in Figure 5.4), whose non-verbal behavior is controlled by one wizard and verbal responses by another. The interview follows a semi-structured format, with the initial questions being designed to establish rapport and gradually moving towards specific questions about symptoms and events related to depression. Ellie's responses are predetermined and pre-recorded. The use of Ellie as the interviewer ensures a relatively neutral lexical bias in the conversation, making it feasible to incorporate her utterances into dialogue modeling. This feature brings the major difference from the approach employed in the previous chapter. On the right side of Figure 5.4, we show an interview excerpt presented in [START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF].

Table 5.3 gives the partition of train (107), development ( 35), and test (47) sets. We show the PHQ-9 scores and binary partition. Originally, patients are associated with a score related to the Patient Health Questionnaire (PHQ-9): a patient is considered depressive if PHQ-9 ≥ 10 ( [START_REF] Kroenke | The phq-9: a new depression diagnostic and severity measure[END_REF]. For binary classification, labels 0 and 1 represent none-minimal depression and depression presented, respectively. For the multi-class classification, we denote [0-4] (label 0): none-minimal, [5][START_REF]ztime: can give wheat[END_REF][7][8][START_REF]I guess you two had no problems joining the game[END_REF] (label 1): mild, [10-14] (label 2): moderate, [START_REF]We all want wheat man[END_REF][16][START_REF] Thomas | u can place a settlement[END_REF][18][19] (label 3): moderately severe, and [20 -27] (label 4): severe. Note that in [START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF] Carolinas Conversation Collection (CCC): Additionally, we discover the Carolinas Conversation Collection [START_REF] Pope | Finding a balance: The carolinas conversation collection[END_REF], which contains conversations with patients suffering from Alzheimer's Disease (AD) as well as elderly individuals with different medical conditions (controls). The corpus consists of 125 conversations with AD patients and an additional 125 dialogues with the control group. Several studies have already been conducted on this corpus [START_REF] Luz | A method for analysis of patient speech in dialogue for dementia detection. In Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive impairment[END_REF][START_REF] Nasreen | A corpus study on questions, responses and misunderstanding signals in conversations with alzheimer's patients[END_REF]. For example, Nasreen et al. ( 2019) used hand-annotated Dialogue Acts (DA) information to distinguish patients with AD. They focused on the types of questions asked by both groups, how they were answered, and whether any significant patterns appeared to differentiate the groups by investigating features combined with dialogue acts (such as clarification question and signal non-understanding), confusion rates (question ratio and confusion ratio), and other conversational information (such as the average number of words per minute and the number of speech turn switches per minute). Their best model was an SVM with n-gram dialogue acts as features. This study is noteworthy because it provides evidence for the potential multi-task learning of AD detection and dialogue act prediction. Unfortunately, we are unable to obtain the CCC corpus due to the Institutional Review Board (IRB) approval process.

Multi-Layer Annotation Corpus: DailyDialog

The task of Emotion Recognition in Conversations (ERC) lies at the intersection of dialogue modeling and emotion prediction. It has become increasingly popular in recent years, mainly thanks to the increasing number of publicly available corpora [START_REF] Busso | Iemocap: Interactive emotional dyadic motion capture database[END_REF][START_REF] Mckeown | The semaine database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent[END_REF][START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF][START_REF] Chen | Emotionlines: An emotion corpus of multi-party conversations[END_REF][START_REF] Poria | Meld: A multimodal multi-party dataset for emotion recognition in conversations[END_REF][START_REF] Zhang | Personalizing dialogue agents: I have a dog, do you have pets too?[END_REF][START_REF] Chatterjee | Understanding emotions in text using deep learning and big data[END_REF]. Several criteria are taken into consideration to choose an ERC corpus to be jointly trained with DAIC-WOZ, including corpus size, conversational topic, and corpus modality. DailyDialog [START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF] is favored since it is a relatively large dataset and contains multilayer annotations, including emotion, dialogue act, and topic, which enables us to investigate information from other auxiliary tasks in dialogues. We first present our choice of corpus for emotion prediction task, and then extend to other candidate corpora in the next section. DailyDialog [START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF]) is a human-written corpus that contains 13, 118 two-party dialogues (with an average of 7.9 speech turns per dialogue). The corpus is publicly available7 . Three expert-annotated information are provided: 7 emotions ( [START_REF] Ekman | Basic emotions[END_REF] BigSix Theory: happiness, surprise, sadness, anger, disgust, fear, and neutral ), and 4 coarse-grained dialogue acts (DA: questions, inform, directives, and commissives) at speech-turn level, and 10 topics at document level. We follow the original separation of the train [START_REF]Ah great![END_REF]118), validation (1, 000), and test (1, 000) sets. Detailed statistics on emotions, dialogue acts, and topics are given in Table 5. 4, 5.5, and 5.6, respectively. To enhance the modeling of dialogues, it would be beneficial for future research to examine more fine-grained annotations than the 4-way dialogue act annotations in DailyDialog. For instance, considering the SWBD-DAMSL tagset in Switchboard Corpus [START_REF] Jurafsky | Switchboard swbd-damsl shallow-discourse-function annotation coders manual[END_REF] would provide a more fine-grained analysis.

Datasets

Emotion

Other Emotion-Enriched Conversational Corpora

Apart from DailyDialog, we discovered at least 6 candidate Emotion Recognition in Conversations (ERC) corpora, whose key information is shown in Table 5.7.

IEMOCAP [START_REF] Busso | Iemocap: Interactive emotional dyadic motion capture database[END_REF] [START_REF] Chen | Emotionlines: An emotion corpus of multi-party conversations[END_REF] spoken+script Friends TV series multi-party 1, 000 14, 503 MELD [START_REF] Poria | Meld: A multimodal multi-party dataset for emotion recognition in conversations[END_REF] spoken+script Friends TV series multi-party 1, 433 13, 708 Persona-Chat [START_REF] Zhang | Personalizing dialogue agents: I have a dog, do you have pets too?[END_REF] This is an audiovisual database used to create Sensitive Artificial Listener (SAL) agents that can engage in emotionally colored conversations with a person. The database was recorded in a Wizard-of-Oz setting where a human user talks to an artificially intelligent agent controlled by a human operator. The conversations revolve around topics that are emotionally significant to the participants and encourage them to express their emotions strongly. The database contains 959 conversations that are approximately 5 minutes long, recorded with 150 participants. The data was annotated with four real-valued affective attributes: valence ([-1, 1]), arousal ([-1, 1]), expectancy ([-1, 1]), and power ([0, ∞]). The dataset is available at https://ibug.doc.ic.ac.uk/resources/semaine-database2/.

EmoContext [START_REF] Chatterjee | Understanding emotions in text using deep learning and big data[END_REF]:

This is a collection of tweets (Twitter-Qs) and their corresponding responses (Twitter-As), spanning four years from 2012 to 2015. It focuses on three emotion categories: happy, sad, and angry. Unfortunately, the dataset is not currently accessible online.

EmotionLines [START_REF] Chen | Emotionlines: An emotion corpus of multi-party conversations[END_REF]: This dataset is derived from two sources: Friends TV scripts and private conversations on Facebook Messenger, known as EmotionPush Chat Logs [START_REF] Wang | Sensing emotions in text messages: An application and deployment study of emotionpush[END_REF]. Each source contains 1000 dialogues. Every utterance in the dataset is labeled with one of Ekman's six basic emotions plus the neutral emotion. The annotations were obtained using Amazon Mechanical Turkers, and a total of 29, 245 utterances have been annotated. The dataset is available at http://doraemon.iis.sinica.edu.tw/emotionlines/ download.html.

MELD [START_REF] Poria | Meld: A multimodal multi-party dataset for emotion recognition in conversations[END_REF]:

MELD is a multi-party dataset that incorporates multiple modalities such as audio, visual, and textual. The conversations in MELD are also extracted from the Friends series, similar to EmotionLines, but this dataset has undergone thorough revision and has removed outliers present in EmotionLines. Additionally, a dyadic version of the dataset is available where dialogues are divided into several two-party sub-dialogues. Compared to IEMOCAP and SEMAINE, MELD contains a greater number of labeled utterances. The dataset is available at https://affective-meld.github.io/.

Persona-Chat [START_REF] Zhang | Personalizing dialogue agents: I have a dog, do you have pets too?[END_REF]:

This is a spoken dialogue dataset created through crowd-sourcing, where each participant assumes an assigned persona (there are 1155 possible personas, each with at least 5 profile sentences). The goal of the conversation is simply to chat and get to know each other naturally. The dataset comprises a total of 162, 064 utterances across 10, 907 dialogues. This dataset has been used to train next sentence prediction models based on the dialogue history. The dataset and trained dialogue models can be found on the ParlAI platform [START_REF] Miller | Parlai: A dialog research software platform[END_REF] at https://github.com/facebookresearch/ParlAI. In summary, IEMOCAP and SEMAINE are two datasets that are commonly used in multimodal emotion recognition, but they have special topics and designed emotional scenarios related to theatre. On the other hand, EmoContext is a Twitter-based dataset with limited context length and is not easily accessible. When it comes to annotated emotions, MELD, and DailyDialog follow Ekman's BigSix Theory {happiness, surprise, sadness, anger, disgust, fear }, including neutral, while EmoContext only provides three categories {happiness, anger, sadness}. IEMO-CAP covers three emotions with two additional classes: frustration and excitement. However, the distribution of emotion classes is unbalanced across different datasets, as depicted in Table 5.5 (taken from Poria et al. ( 2019)).

Our Combined Dataset

We choose DAIC-WOZ and DailyDialog as our primary and auxiliary datasets, respectively. Table 5.8 provides statistics for both datasets, including the number of documents, speech turn lengths, and token counts. DailyDialog has an average of 7.9 utterances per document, resulting in a total of 102k utterances, while DAIC-WOZ has an average of 250 utterances per document and a total of 47k utterances. There is an imbalance between the document length of two datasets: DAIC documents are almost 30 times longer than those in DailyDialog. DailyDialog has slightly longer sentences with an average of 13 tokens per sentence, while DAIC-WOZ has an average of 8 tokens per sentence.

In addition, we consider a resize strategy that cuts long documents in DAIC-WOZ into shorter sub-documents (8 speech turns per document to match the length in DailyDialog), thus artificially increases the number of instances while maintaining the document length. We only resize the training set while keeping the development and test sets unchanged. This strategy is tested for jointly training depression detection and emotion classification tasks.

Experimental setup

Baselines:

We compare our MTL results with: (1) Majority class where the model predicts all subjects positive (i.e. depressive); ( 2) Baseline single-task model described in Section 5.2.2);

(3) State-of-the-art results on the test set reported by [START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF] and [START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF]. Note that for main results, we do not compare to [START_REF] Williamson | Detecting depression using vocal, facial and semantic communication cues[END_REF] Evaluation Metrics: For depression classification, we follow [START_REF] Dinkel | Text-based depression detection on sparse data[END_REF] and report accuracy, macro-F 1 , precision, and recall scores. For emotion analysis, we report macro-F 1 score, following [START_REF] Cerisara | Multi-task dialog act and sentiment recognition on mastodon[END_REF].

Implementation Details: We implement our model with AllenNLP library [START_REF] Gardner | AllenNLP: A deep semantic natural language processing platform[END_REF]. We use the original separation of train, validation, and test sets for both corpora. The model is trained for a maximum of 100 epochs with early stopping. For STL as well as for MTL scenarios, we optimize on macro-F 1 metric for depression classification. We use cross-entropy loss. The batch size is 4 for Dailydialog and 1 for DAIC (within the limit of GPU Video Random Access Memory). We use the tokenizer from SpaCy Library [START_REF] Honnibal | spacy: Industrial-strength natural language processing in python[END_REF] and construct the word embeddings by default with a dimension of 128. The turn-level has one hidden layer and 128 output neurons. We tune document-level RNN layers in {1, 2, 3} and hidden size in {128, 256, 512}. Model parameters are optimized using Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with the learning rate at 1e -3. The dropout rate is set to 0.1 for both turn-level and document-level encoders. In summary:

• Learning rate: {1e -3, 1e -4, 2e -3}

• Dropout rate: {0.1, 0.2}

• Word embedding dimension: 128

• Turn-level layer: 1

• Turn-level hidden size: 128

• Document-level layers: {1, 2, 3}

• Document-level hidden size: {128, 256, 512}

Results and Analysis

Main Results

We show the results using MTL hierarchical structure for depression detection in Table 5.9, which are compared to majority vote baseline and SOTA models (at the top). Our baseline model is a single-task naive hierarchical model which obtains similar results (F 1 44) as the baseline model (NHN) in Mallol-Ragolta et al. (2019) (F 1 45).

Using the multi-task architecture, we get improvements when adding each task separately. We see more than a +11.5% increase in F 1 when adding emotion ('+Emotion') or topic ('+Topic') classification task and, at best, +16.9% with dialogue acts ('+DialogAct'). This demonstrates STL: single-task using DAIC-WOZ only; MTL: multi-task using DAIC-WOZ and adding classification for Emotion (+Emotion), Topic (+Topic), dialogue Act (+DialogAct) from Dailydialog. *Significantly better than SOTA performance with p-value < 0.05.

the relevance of each task to the primary problem of depression detection, especially the interest of dialogue acts. When adding topics, we observe a small drop in accuracy compared to STL while the F 1 is better, meaning that the prediction for minority class (non-depressive) improves. Interestingly, in terms of accuracy, the tasks at different levels (depression '+Emotion' and depression '+DialogAct') seem to help more. We deduce that they help build a better local representation (speech turns) before the global representation. The '+DialogAct+Topic' model achieves the highest accuracy of 76.6. However, there is a significant gap between the recall and precision scores, indicating that the model tends to predict more negative classes (non-depressive subjects) while struggling with positive ones. This could lead to a failure to identify depression in real-life situations. When jointly learning all four tasks -combining depression detection with three auxiliary tasks ('+Emo+Diag+Top') -, all metrics improve. We obtain our best system with an improvement of +26.7% in F 1 compared to STL baseline, outperforming the state-of-the-art with a +7.6% increase compared to the best system in Mallol-Ragolta et al. ( 2019) and about +0.5% compared to [START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF]. Depressed people tend to express specific emotions; it is thus natural to think that emotion is beneficial for the main task. These results indicate that both emotion and dialogue structure help as they provide complementary information, paving the way for new research directions with more fine-grained modeling of dialogue structure for tasks in conversational scenarios.

Performance on Auxiliary Tasks

To better understand our model, we look at the performance of emotion, dialogue act, and topic classification tasks. Directly comparing the results of our MTL approach ('+Emo+Diag+Top') 3 46.4 38.9 80.3 68.3 72.8 66.9 76.6 Table 5.10: Classification results on emotion prediction on DailyDialog, with single-task (ST) and multi-task (MT) settings. Emo: emotion prediction; Depr: depression prediction; Depr(resized): resized train set in DAIC-WOZ to match the length of speech turn in DailyDialog.

Results and Analysis

Model

with a STL architecture for each task, however, seems unfair. The optimized objective and structural complexity are different: the former is optimized on the depression detection task on two levels, while the latter is tuned on the target auxiliary task with either speech turn (emotion and dialogue act) or full dialogue (topic). Unsurprisingly, the results show that the MTL system underperforms the basic STL structure for dialogue acts and topics, with at best 67.8 in F1 (MTL) vs. 68.8 (STL) for dialogue acts, and 52.0 (MTL) vs. 52.4 (STL) for topic classification.

On the other hand, our MTL system achieves an F 1 score of 40.0 for emotion, compared to 38.3 for the STL baseline, demonstrating the benefits of joint learning of both tasks (Table 5.10).

Resized training strategy shows further improvements for both emotion prediction (41 vs 40) and depression detection (68 vs 56). The performance breakdown for each emotion is depicted in Figure 5.6. It should be noted that the distribution of emotion classes in DailyDialog is highly imbalanced, with one dominant class, neutral, occupying more than 80% of the dataset, while five rare classes together account for less than 5%. The F score for the neutral class remains consistently high in both ST and MT settings, with values above 88%. The happiness class, the second largest with approximately 12% of the training set, shows modest improvement from the depression task (+0.7). Among the four negative emotion classes, three show clear improvement in the MT setting: anger, disgust, and sadness, with F score gains of 5%, 6%, and 1%, respectively. The improvement is even greater (7%, 16%, 6%) when training with the resized DAIC set. The fear class is the smallest in the corpus (with a proportion of 0.2%) and the most challenging one to predict. The result demonstrates a 2% increase with the resized DAIC set. Surprisingly, surprise appears to be the only class that does not benefit from the additional task, with a decrease of 1.5% in performance. Resizing the DAIC set does not show any benefits for this class either. However, overall, the MTL model proves to be beneficial for the emotion prediction task, with 1 -3 points improvement on F 1 scores compared to the ST baseline, whether using the original or resized train sets.

We believe that the augmentation of emotion-related utterances in a shared network task is the primary reason for the improved performance. To test our hypothesis, we manually analyze the dialogue acts of the utterances from Ellie, and categorize them into high-level classes: Backchannel, Comment, Opening, Other, and Question. We use a different set of dialogue acts than those in DailyDialog to better align with Ellie's speech intentions. The annotation is carried out by a single annotator. We discover that approximately 13% of the utterances are emotionrelated, including queries such as "things that make you mad", "things you feel guilty about", and "last time you felt really happy". Additionally, mentions of topics related to happiness or regret appear in almost all the interviews. Furthermore, as the original DAIC-WOZ conversations are long, several emotion-related utterances are included in one document. By reshaping the training set, we not only increase the size of learning instances but also reduce the complexity of 5.11: High-level dialogue act (DA) distribution of Ellie's speech in DAIC-WOZ. # and % represent the number and percentage of Ellie's utterances, respectively.

learning multiple emotions in a single document, thus leading to better results. The distribution of dialogue act annotations is presented in Table 5.11. The annotation is available for free use for future research.

Conclusion

In this chapter, we continue the discussion on the topic of discourse structure in dialogues within the context of mental illness. Along the way, we face various challenges, including data scarcity, interaction modeling, and dialogue structure modeling. To overcome the data scarcity issue, we conduct a thorough investigation of publicly available corpora for our primary cognitive impairment detection task and auxiliary tasks. The selection process leads us to opt for the commonly used English corpus, DAIC-WOZ, for depression detection, and we also identify a potential corpus containing conversations with Alzheimer's Disease patients. To address the drawback of lacking interaction in the previous chapter, we develop a hierarchical neural network architecture designed to model speech turns from two parties. Lastly, we believe that modeling dialogue structure requires the consideration of different levels of information, from speech turns to the entire dialogue. As such, we propose leveraging information from dialogue act and topic modeling from another dialogue dataset, DailyDialog. We demonstrate a correlation between depression and emotion, and show the importance of dialogue structures through the use of shallow markers like dialogue acts and topics. To improve our approach, we may consider incorporating other features, such as speaker identity [START_REF] Qin | Co-gat: A co-interactive graph attention network for joint dialog act recognition and sentiment classification[END_REF] and common-sense knowledge [START_REF] Ghosal | Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation[END_REF]. Our next goal is to investigate more advanced dialogue structure modeling, potentially using discourse parsing. However, discourse parsing by itself is a challenging task, with limited domain applicability and data scarcity issues. We aim to address these challenges in the upcoming chapters (Chapter 7 and Chapter 8) by presenting novel strategies to overcome insufficient training data and creating a general discourse parsing model for future use. We also plan to extend our work beyond binary depression classification to include severity classification using a cascading structure: first, detect depression and then classify the severity. To ensure the stability of our model, we intend to refine our work and report on cross-validation splits of the data, which is especially important when dealing with sparse data that may not be representative. A further step will be to investigate the generalization of our model to other mental health disorders, such as Schizophrenia and Alzheimer's Disease.

Part III

Discourse Structure Prediction

After discussing two studies on discourse structure discovery in part II, we now move towards the second research question of this thesis, namely: RQ2 How can we generate discourse structures with machine learning techniques using minimal supervision to achieve the greatest applicability in real-life scenarios?

Our focus in this part is on discourse parsing in dialogues, specifically using the SDRT framework to infer both EDU attachment and relation prediction. We are aware of the issue of data sparsity in discourse parsing, which we have addressed in Chapter 3 by discussing various distant and transfer learning strategies. However, these strategies are primarily designed for monologues, and it is unclear how well they generalize to other domains and how dependent they are on the availability of annotated data. In contrast, language modeling can be regarded as an additional task that captures general linguistic knowledge without requiring annotation. Pre-trained language models (PLMs) such as BERT Devlin et al. (2019a) 2019); [START_REF] Hewitt | A structural probe for finding syntax in word representations[END_REF]. Nevertheless, the discourse aspect of PLMs has not been thoroughly explored.

For a better understanding of LMs, we first establish the basics and related BERTology work in Chapter 6. We then present experimental results on the use of PLMs for discourse parsing in dialogues. Our approach involves a structure-then-relation pipeline for tackling this problem, as detailed in Chapter 7 and Chapter 8, respectively. It is not unusual in real-life scenarios to have a few dozen short documents annotated by experts. Thus, in this part, we utilize 50 annotated documents for supervision. In extreme cases, we also present experiments that require no supervision and instead rely solely on the text itself and the attention mechanism in PLMs.

From Word Embeddings to Pre-trained Language Models

Word embeddings are fixed-length vectors that are dense and distributed representations for words, based on the distributional hypothesis [START_REF] Almeida | Word embeddings: A survey[END_REF]. The concept of word embeddings can be traced back to the 1950s, with the introduction of distributional semantics [START_REF] Harris | Distributional structure[END_REF][START_REF] Firth | A synopsis of linguistic theory, 1930-1955[END_REF], which is based on the idea that the meaning of a word can be inferred from the context in which it appears.

In NLP, word embeddings have emerged as a useful tool for transforming words into numerical vector spaces. This approach is particularly advantageous as computers are better equipped to directly handle numbers, and the resulting vectors can be subjected to useful mathematical operations such as addition, concatenation, and distance measures. These vectors are also wellsuited for various tasks such as measuring the semantic similarity between words, phrases, and documents [START_REF] Turney | From frequency to meaning: Vector space models of semantics[END_REF]. [START_REF] Salton | A vector space model for automatic indexing[END_REF]'s Vector Space Model (VSM) is considered to be one of the most influential models in information retrieval (IR) history. In VSM, each document is represented by a vector where each dimension corresponds to a specific feature or term. The values in the vector indicate the presence or importance of the corresponding feature in the document. Each document is shown as a point in a vector space. The proximity of points in this space reflects the semantic similarity, with close points being semantically similar and distant points being semantically different. The success of VSM in IR soon extends to other tasks in NLP. For example, in [START_REF] Rapp | Word sense discovery based on sense descriptor dissimilarity[END_REF], vector-based representations of word meaning achieve a 92.5% accuracy on multiple-choice synonym questions from the Test of English as a Foreign Language (TOEFL); Turney (2006) use a vector-based representation of semantic relations and score 56% on multiple-choice analogy questions from the SAT college entrance test, which is comparable to the human score of 57%.

In the early 2000s, researchers begin to develop computational methods for creating word embeddings automatically. The first widely used method is Latent Semantic Analysis (LSA) [START_REF] Dumais | Latent semantic analysis[END_REF], which applies singular value decomposition to a co-occurrence matrix of words to obtain a reduced-dimensionality representation.

In 2013, [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF] introduce Word2Vec, which is a single-layer neural network based on the inner product between two word vectors. The core idea is that a word can be represented by a set of words that appear nearby. Word2Vec has two models, namely the continuous bag-of-words (CBoW) and Skip-gram models. CBoW learns the context words and predict one target word, while Skip-gram uses the target word to predict its surrounding words. Word2vec is said to use prediction-based approach since it is based on teaching the word vectors to predict the contexts in which the words reside [START_REF] Baroni | Don't count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors[END_REF][START_REF] Almeida | Word embeddings: A survey[END_REF]. The embeddings generated from Word2Vec are static, meaning that they are fixed vectors. Another method to create word embeddings is count-based, which creates word vectors upon word occurrences statistics, a well-known model is Global Vectors (GloVe) [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]. GloVe uses a global context window to calculate word-word co-occurrences, in comparison to Word2Vec which uses window-based methods to scan the context across the entire corpus. The resulting embeddings of GloVe show interesting linear substructures of the word in vector space, such as "Paris to France" is close to "Rome to Italy". In the following years, NLP community has witnessed emergence of more word embeddings models. FastText [START_REF] Bojanowski | Enriching word vectors with subword information[END_REF], for instance, innovatively incorporate character-level n-grams rather than word-level tokens and to address the out-of-vocabulary problem appeared in the previous models.

Static embeddings face challenges in representing polysemy, as they provide only one representation for a word regardless of its linguistic context. To illustrate this, let us consider the sentence "I left my pen on the left side of the table". The word "left" appears twice in the sentence with different meanings, but static embeddings cannot capture this distinction. In recent years, significant advancements have been made with the introduction of contextual embeddings, such as Embeddings from Language Models (ELMo) developed by Peters et al. (2018a). ELMo is considered a milestone in the area of word embeddings, following the success of Word2Vec. ELMo vectors are derived from a bidirectional LSTM trained with a coupled language model objective, using a large text corpus. These representations are deep, as they are based on all internal layers of the bidirectional LSTM. Another notable development is Bidirectional Encoder Representations from Transformers (BERT) introduced by [START_REF] Vaswani | Attention is all you need[END_REF]. BERT utilizes the Transformer architecture, which we will explain shortly, as an alternative to the recurrent neural network used in ELMo. By applying bidirectional training of the Transformer model to language modeling, BERT can effectively learn the contextual information of a word by considering its surrounding context. These contextual embedding models have revolutionized the field of NLP by capturing the nuances of word meanings within different contexts. The development of contextual embeddings has also stimulated research in neural network-based language modeling.

In addition, there are some interesting research in comparing and incorporating static and contextual embeddings. [START_REF] Bommasani | Interpreting pretrained contextualized representations via reductions to static embeddings[END_REF] propose to interpret contextual embeddings with static embeddings since the latter have more mature interpretability methods, i.e., convert BERT embeddings back to static vectors in Word2Vec and GloVe. We refer this study to readers who are interested.

Basics of Pre-Trained Language Models

Language modeling is a concept that has been present since early stages. In the work of [START_REF] Bengio | A neural probabilistic language model[END_REF], a probabilistic language model is defined as a model that calculates the probability of the next token based on all the previous tokens in a sequence. Over time, with the advancements in neural networks (NN), NN-based language models have gained significant popularity due to their remarkable performance in various NLP tasks. In this section, we mainly discuss NN-based language models.

A pre-trained language model, in simple term, is a type of machine learning model trained on a large corpus of text data in an unsupervised manner. During pre-training, the model learns general prediction tasks, such as masked language modeling -predict missing words in a text sequence, and next sentence prediction -generate coherent text based on a given prompt. The goal of pre-training is to teach the model linguistic knowledge and to generate meaningful representations. There are various terms used to refer to pre-trained language models, such as Large Language Models (LLMs), Neural Language Models (NLMs), Language Models (LMs), Foundation Models (FMs), and Pre-trained Language Models (PLMs). In this thesis, we use the term PLMs. These models have great generalization ability and can be fine-tuned for specific tasks and new domains. Some examples of popular pre-trained language models include BERT (Devlin et al., 2019a), RoBERTa (Liu et al., 2019a), and GPT-3 [START_REF] Brown | Language models are few-shot learners[END_REF].

Since their presence, PLMs are at the base of many state-of-the-art approaches in NLP field. The common procedure is first "pre-training" a model and then "fine-tuning" it to adapt to different tasks and domains. We set the foundation by exploring some fundamental concepts in PLMs.

Architecture & Schema:

We start by introducing a revolutionary architecture, known as Transformer. This architecture is introduced with the self-attention mechanism by [START_REF] Vaswani | Attention is all you need[END_REF], and soon becomes the core component in upcoming PLMs. Self-attention is a mechanism that enables the model to weigh the importance of different parts of the input sequence. It is called "self" because the model attends to the input sequence itself, rather than attending to a separate sequence or context. We can visualize this mechanism in a matrix A of size n × n, with n being the number of tokens of an input sequence. Each token can interact with each other and decide who they should pay more attention to and put a value in corresponding case in matrix A ij1 . In this way, self-attention helps the model to focus on the most relevant words or tokens in the input sequence.

Transformer is a stacked self-attention layers. A standard Transformer structure contains an encoder and a decoder layer. The encoder layer takes in a sequence of input tokens and generates a sequence of hidden states, where each hidden state represents the input token at that position along with its context in the sequence. While the decoder layer takes in the encoded sequence from the encoder layer and generates a sequence of output tokens autoregressively, meaning that it generates one token at a time by attending to the previously generated tokens. It also uses multi-head self-attention to attend to the encoded sequence, along with encoderdecoder attention to capture the alignment between the input and output sequences.

Transformer-based PLMs can be classified into different schemes: encoder-only such as BERT (Devlin et al., 2019a) and RoBERTa (Liu et al., 2019a); decoder-only such as the GPT family [START_REF] Radford | Improving language understanding by generative pre-training[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF]; and finally, encoder-decoder structure (sequence-to-sequence) such as BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF]. We visualize these schemes in Encoder-only PLMs such as BERT can be used for various Natural Language Understanding (NLU) tasks. Without auto-regressive decoder layers, the missing tokens are predicted individually, which make this schema of language models not easily used for generation [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF]. On the other hand, decoder-only PLMs such as GPT are often used for Natural Language Generation (NLG) tasks that require coherent and fluent text production. The recent incredibly powerful ChatGPT model is based on the GPT-3.5 architecture. Lastly, BART is an encoder-decoder model that excels in text generation and summarization tasks, and its encoder layers make it suitable for comprehension tasks as well. Notably, the attention matrices in the encoder layers of BART have demonstrated higher proficiency in capturing discourse informa-tion compared to those in encoder-only PLMs. We present related research on this topic in Section 6.4.

Although Transformer architecture dominates PLMs, it is worth noting that not all PLMs use this architecture. Some of them is composed of recurrent neural networks (RNNs) which also allow them to learn contextual representations. ELMo (Peters et al., 2018a), which we have discussed earlier, is based on bidirectional LSTMs.

Training Objectives:

Two commonly used training objectives for language model pretraining are Masked Language Modeling (MLM) and Causal Language Modeling (CLM). MLM, introduced in Vaswani et al. ( 2017), involves predicting a masked token within a sequence, allowing the model to attend to tokens bidirectionally. This objective is utilized in models such as BERT, RoBERTa, and BART. In contrast, CLM predicts next word in a sequence and can only consider the words appearing on the left side, making it unidirectional. Examples of pre-trained models with this objective include the GPTs. Another pre-training objective is Translation Language Modeling (TLM), which gives rise to Cross-lingual Language Models (XLMs) [START_REF] Conneau | Cross-lingual language model pretraining[END_REF]. TLM extends MLM to parallel sentences in two different languages and masks words in both sentences. By considering both languages, a model trained using TLM can predict a word in one language by attending to its context and the translation, facilitating better alignment of different representations.

Figure 6.2 shows different training objectives. In (a) MLM, random tokens are replaced by masks ("_") and the model learns to predict the missing tokens during pre-training. The masked token can weigh the representation of every other input word to learn its representation (α is the attention weight). TLM is very similar to that of MLM, except that they extend MLM to pairs of parallel sentences. For example, to predict a masked English word "curtains", the model can attend to both the English sentence and its French translation, as shown in (b). In (c) CLM, tokens are generated one step at a time: given "<s>" the model predicts "the"; given "<s> the", it predicts "curtains", etc., until the final token "blue". A CLM uses a special end-of-sentence token to indicate the end of the sequence, such as <eos> or </s>. In addition, pre-training objectives can be combined. BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF], for instance, is a combination of MLM and denoising autoencoding. The input to encoder is corrupted text with missing tokens and shuffled text spans (that is why it is called denoising), and the model needs to generate the original text out from the decoder.

Mono-lingual & Multi-lingual PLMs:

Although most PLMs are trained with English texts, much efforts have been put into multilingual models. We see examples such as multilingual BERT (mBERT) (Devlin et al., 2019a): pre-trained on 104 highest-resource languages in Wikipedia, and XLM-RoBERTa (XLM-R) [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF]: masked language model trained on 100 languages over two terabytes of filtered CommonCrawl data.

Other studies focus on creating monolingual BERT in different languages, among which we find BERT in French: FlauBERT [START_REF] Le | Flaubert: Unsupervised language model pre-training for french[END_REF] and CamemBERT [START_REF] Martin | Camembert: a tasty french language model[END_REF], in German: GottBERT [START_REF] Scheible | Gottbert: a pure german language model[END_REF] and German BERT2 , in Dutch: BERTje [START_REF] De Vries | Bertje: A dutch bert model[END_REF], in Spanish: BETO [START_REF] Cañete | Spanish pre-trained bert model and evaluation data[END_REF], in Russian: Ru-BERT [START_REF] Kuratov | Adaptation of deep bidirectional multilingual transformers for russian language[END_REF], in Finnish: Fin-BERT [START_REF] Virtanen | Multilingual is not enough: Bert for finnish[END_REF], as well as in Portugese [START_REF] Polignano | AlBERTo: Italian BERT Language Understanding Model for NLP Challenging Tasks Based on Tweets[END_REF] and in Japanese [START_REF] Kikuta | Bert pretrained model trained on japanese wikipedia articles[END_REF].

The effectiveness of multilingual models in comparison to monolingual models on tasks such as neural machine translation (NMT) has recently garnered considerable attention. For instance, a recent study by [START_REF] Xu | Bert, mbert, or bibert? a study on contextualized embeddings for neural machine translation[END_REF] revealed a decline in performance and relatively minor improvements when employing multilingual models for English ⇌ German machine translation. This is possibly caused by the curse of multilinguality [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF] where low-resource language performance can be improved by adding higher-resource languages during pre-training; on the contrary, high-resource performance suffers and degrades. A possible compromise approach is to create bilingual PLMs with special focus on two involving languages.

BERTology: A Probe into BERT

With the increasing dominance of PLMs in the field of NLP, there has been a significant focus on studying the inner workings of large-language models such as BERT. This research area, commonly referred to as "BERTology", has garnered considerable attention. The primary objective of BERTology is to gain insights into the types of information captured by these models and explore ways to effectively utilize them. Probing tasks, also referred to as diagnostic classifiers, usually involves designing a separate task that focuses on extracting specific linguistic information from the model's internal representations. [START_REF] Clark | What does bert look at? an analysis of bert's attention[END_REF] examine the behavior of attention heads in general and probe each attention head for linguistic phenomena. They observe that attention heads tend to focus on delimiters such as the "[SEP]" token or punctuation, and that heads within the same layer exhibit similar behavior. They conduct single-head experiments and discover that certain heads specialize in particular aspects of syntax, such as identifying noun modifiers and possessive pronouns in dependency parsing, and exhibit similar behavior in coreference resolution tasks. [START_REF] Tenney | Bert rediscovers the classical nlp pipeline[END_REF] investigate how BERT captures linguistic information and examines whether it follows the traditional NLP pipeline order of POS tagging, semantic parsing and SRL, and coreference resolution -in increasing difficulty. The authors propose two metrics to assess this: the scalar mixing weights measure which layers in combination are most relevant to the task, while cumulative scoring calculates the additional gain when adding another layer in the probing test, indicating at which layer the target can be accurately predicted. Notably, their findings suggest that BERT exhibits a consistent trend across both metrics for linguistic patterns, consistent with those observed in [START_REF] Peters | Dissecting contextual word embeddings: Architecture and representation[END_REF]. Additionally, the study demonstrates that syntactic information tends to be concentrated in a few layers, indicating that it is more localized, while semantic information is generally distributed throughout the entire network. [START_REF] Rogers | A primer in bertology: What we know about how bert works[END_REF] conduct a comprehensive investigation of 150 studies of the BERT model. Their findings show precise knowledge that BERT learns or fails, mostly in syntactic and semantic domains. For instance, they find that BERT representations for syntactic tasks are hierarchical rather than linear and that it does not understand negation. As for semantic information, they observe that BERT has some knowledge of semantic roles while struggling with number representations; and that they can not reason based on the world knowledge. They also present various proposals on how to optimize the training process and model architecture, and suggest a few future research paths on BERTology.

Although the initial focus of BERTology was on probing tasks specifically for BERT, it has expanded to include other PLMs such as ELMo, GPT, and XLM. For example, [START_REF] Hewitt | A structural probe for finding syntax in word representations[END_REF] propose a structural probe for extracting syntax trees from BERT and ELMo. [START_REF] Zhu | Examining the rhetorical capacities of neural language models[END_REF] compare rhetorical capabilities (linguistic features linked to RST such as EDU length, discourse tree properties) of BERT-based models, GPT, and XLNet [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF]. [START_REF] Koto | Discourse probing of pretrained language models[END_REF] also investigate discourse capacities by comparing BERT-like models with GPT-2, BART, and T5 [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF].

Admittedly, probing tasks can provide analysis in different linguistic aspects, such as syntactic structures [START_REF] Hewitt | A structural probe for finding syntax in word representations[END_REF][START_REF] Kim | Are pre-trained language models aware of phrases? simple but strong baselines for grammar induction[END_REF][START_REF] Mareček | From balustrades to pierre vinken: Looking for syntax in transformer self-attentions[END_REF], agreement [START_REF] Goldberg | Assessing bert's syntactic abilities[END_REF][START_REF] Jawahar | What does BERT learn about the structure of language[END_REF], ontologies [START_REF] Michael | Asking without telling: Exploring latent ontologies in contextual representations[END_REF], and semantic roles [START_REF] Ettinger | What bert is not: Lessons from a new suite of psycholinguistic diagnostics for language models[END_REF][START_REF] Tenney | Bert rediscovers the classical nlp pipeline[END_REF]. They also have shortcomings. As noted by [START_REF] Tenney | Bert rediscovers the classical nlp pipeline[END_REF], the absence of a linguistic pattern in a probing classifier does not guarantee its absence, and the presence of a pattern does not indicate how it is used. [START_REF] Rogers | A primer in bertology: What we know about how bert works[END_REF] also warn that different probing methods can lead to contradictory results, so relying on a single test is insufficient. To address these issues, [START_REF] Elazar | Amnesic probing: Behavioral explanation with amnesic counterfactuals[END_REF] propose an alternative method called amnestic probing, which involves removing a property in a given task and measuring its influence, offering new directions for future probing research. As suggested in [START_REF] Rogers | A primer in bertology: What we know about how bert works[END_REF], the key message is that we have more questions than answers about the workings of BERT. While our current understanding is limited, the immense potential of PLMs should not be overlooked and further detailed studies are needed to unravel their intricacies. Moreover, it is important to be careful of the language used to describe these models. Pre-Reinforcement Learning from Human Feedback (RLHF) models such as BERT and BART are only exposed to forms during training. Hence, these models are not supposed to "understand the meaning" as our human do [START_REF] Bender | Climbing towards nlu: On meaning, form, and understanding in the age of data[END_REF]. Recent AI advancement introduces RLHF techniques into LLMs such as InstructGPT [START_REF] Ouyang | Training language models to follow instructions with human feedback[END_REF] and ChatGPT (OpenAI, 2023), aligning the model's training objectives to that of complex human values and preferences. We can expect a better understanding of the world knowledge from these systems.

Discourse Information Exploration with PLMs

The growing importance of incorporating discourse information in various downstream tasks, such as summarization, argument mining, and machine translation (discussed in Section 3.3), has led researchers to explore the extent to which PLMs capture discourse information. In this section, we present studies that utilize probing tasks to assess the presence of discourse within PLMs, including tasks such as EDU segmentation, discourse connective detection, and relation identification. Furthermore, we delve into a recent study that demonstrates the direct extraction of discourse structure from PLMs, which serves as a source of inspiration for our work in Chapter 7. A summary of the relevant studies is provided in Table 6.1. Table 6.1: Summary of discourse probing (upper part) and self-supervised discourse parsing (lower part) tasks in BERTology. "NSP": next sentence prediction. In "Language" column: en=English, zh=Chinese, de=German, es=Spanish. In "PLMs" column: +ft: fine-tuned PLMs.

Discourse Probing Tasks

Since the emergence of BERTology research, much attention has been put on exploring syntactic (such as grammaticality, dependency structure) and semantic (such as semantic role labeling, coreference resolution) information. Only until recently, efforts have been put in semantic and pragmatic levels.

In one of the earliest studies exploring the rhetorical capabilities of PLMs, Zhu et al. (2020b) examine the inter-sentential rhetorical knowledge. They evaluate several PLMs, including BERTbased models (BERT, BERT-m, RoBERTa), GPT, and XLM, using 24 features grouped into three categories: tree properties (depth and Yngve depth), EDU length, and the frequency of discourse relations (such as attribution and background ). The probing task is formulated as an optimization problem in which an oracle RST-parser (Feng and Hirst, 2014a) is used to provide parsed trees and a probing matrix is used to extract the aforementioned features. This study reveals that BERT-based language models outperform GPT and XLM models in terms of stability across tasks and layers, as well as distribution of features across layers. The researchers suggest that BERT-based models perform better due to their ability to incorporate rhetorical information from both directions. However, this study only demonstrates shallow discourse capabilities in PLMs, and it remains unclear whether PLMs can encode structural information such as tree structure. [START_REF] Pandia | Pragmatic competence of pre-trained language models through the lens of discourse connectives[END_REF] aim to infer inter-sentential pragmatic knowledge through the prediction of discourse connectives. They formulate their experiments as cloze tests, i.e., no fine-tuning or any supervised training of PLMs, only to see how well these models have already encoded pragmatic knowledge. They select ≈ 17k instances from PDTB-2 (Prasad et al., 2008a) with explicit one-word connectives in order to satisfy the masked single-word prediction setting. Since connectives depend very much on the left and right side contexts, authors explore three masked language models (MLM): BERT, RoBERTa, and ALBERT [START_REF] Lan | Albert: A lite bert for self-supervised learning of language representations[END_REF]. For the cloze tasks, they set three scenarios ranging from the most naturally occurring setting to more controlled one. In the first scenario, the authors replace the connective between two sentences with a mask token (<mask>) and ask the model to predict the probabilities of all candidate connectives (66 in total), while keeping the two sentences intact. All models achieved an accuracy above 50%, with RoBERTa outperforming others at 66%. Accuracy increases with the model size across different models. However, the scores breakdown revealed a different story: the Conjunction connectives such as "and" are excessively predicted, while other categories such as Causal: result and Concession are significantly under-predicted. It is difficult to ascertain whether PLMs truly comprehend the implications of these connectives or merely give trivial predictions of major connectives. In the second and third settings, Linguistic pairs are constructed with nearly identical syntax and word content but a subtle difference in context. These tests can be difficult even for humans, as they test the pragmatic abilities of models in reducing the impact of shallow syntactic and lexical cues -which models are more likely to have learned to prioritize. Not surprisingly, the results demonstrate significant failure for all models in the second and third scenarios, with accuracy hovering around 0 or 25%. These scores suggest that this form of pragmatic competence is still lacking in PLMs. [START_REF] Koto | Discourse probing of pretrained language models[END_REF] investigate the ability of PLMs to process discourse information through seven probing tasks, including next sentence prediction (NSP), sentence ordering, connective prediction, EDU segmentation, nuclearity prediction, relation prediction, and a cloze story test which requires selecting the best ending for a four-sentence story. They experiment with seven PLMs (BERT, RoBERTa, ALBERT, ELECTRA [START_REF] Clark | Electra: Pre-training text encoders as discriminators rather than generators[END_REF], GPT-2, BART, and T5) and evaluate on four languages: English, Chinese, Spanish, and German. This study provides a comprehensive examination of the pragmatic capabilities of PLMs. The results suggest that BERT and BART are better than other models at capturing discourse information, especially in their encoder networks. GPT-2, a pure language model, struggles in this regard. Among the tasks examined, sentence ordering and RST relation prediction pose greater challenges for all models. These results serve as a foundation for future research, as highlighted in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]; [START_REF] Li | Discourse structure extraction from pre-trained and fine-tuned language models in dialogues[END_REF], where researchers are encouraged to utilize BERT and BART as primary PLMs for discourse structure extraction.

The aforementioned studies use probing tasks to explore PLMs discourse capabilities. However, this approach is undermined by the uncertainty of the amount of knowledge that is learnt by the probe itself: do the Language Models genuinely encode linguistic information, or is it the probe that learns the task itself? In order to reduce the impact of the probe, [START_REF] Wu | Perturbed masking: Parameter-free probing for analyzing and interpreting bert[END_REF] propose a perturbed masking method to analyze PLMs. They measure the impact a word x j has on predicting another word x i and build an impact matrix which is then used to induce syntactic and discourse structures. For the discourse task, they generate an EDU-level impact matrix F and use Eisner and CLE algorithms to extract dependency structures. Their experiments on the SciDTB dataset [START_REF] Yang | Scidtb: Discourse dependency treebank for scientific abstracts[END_REF] demonstrate that the Eisner algorithm and Euclidean distance perform the best (achieving a UAS of 34.2), although this is nearly 7 points below the left-chain baseline. As a point of reference, a supervised graph-based parser [START_REF] Li | Text-level discourse dependency parsing[END_REF] achieves a UAS of 57.6 on the same dataset. This study stands out from other works in two ways. Firstly, it employs parameter-free probing methods. The impact matrix does not add any new parameters, which allows for a more straightforward examination of the encoded linguistic information. Secondly, the authors evaluate the efficacy of new probes on document-level structure rather than relying on shallow discourse signals like EDU length or connectives. They aim to reconstruct the internal structures from the impact matrix. reserved to monologues, while the bottom part is for dialogues. As a teaser, we also include the results of our semi-supervised methods for naked structure extraction and full discourse parsing for dialogues in the last two lines of the table, which we will discuss in detail in Chapter 7 and Chapter 8. As expected, self-supervised models achieve lower results than supervised models in both monologue and dialogue settings, highlighting the difficulty of self-supervised learning. Notably, inter-domain supervised models also under-perform supervised models by a considerable margin (4 -7% for monologues, > 20% for dialogues), especially in the dialogue setting, which indicates the limited generalization capacity of supervised models. Interestingly, in the dialogue setting, our semi-supervised model outperforms the inter-domain supervised model by a significant margin (for link attachment: 57.6 vs 50.6 and 48.3; for link+rel: 38.6 vs 31.6 and 26.6), suggesting that our proposed strategies could perform better than inter-domain integration in scenarios where no / few annotated data is available.

To conclude, in this chapter, we provide an overview of pre-trained language models and preview our upcoming work related to these models. We begin by tracing the evolution from word embeddings to language models and discussing the study of BERTology while focusing on discourse information exploration. These studies show that discourse information is encoded in PLMs, but the challenge lies in how to extract it and enhance its presence. While some studies explore the possibility of extracting discourse structure from PLMs [START_REF] Wu | Perturbed masking: Parameter-free probing for analyzing and interpreting bert[END_REF][START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF], none of them test on dialogues. In the next chapter, we continue our discussion on PLMs and discourse, specifically on the discourse structure extraction in dialogues.

Our main focus in this chapter is the automatic extraction of the naked structures in dialogues, using SDRT-annotated corpus STAC [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF]. In STAC corpus, discourse structures are represented as dependency graphs with arcs linking EDUs and semantico-pragmatic relations (e.g. Acknowledgment, Contrast or Question-Answer Pair ), as shown in the following example:

As we know, data scarcity has always been an issue for discourse parsing, especially in dialogues. In Chapter 6, we investigate a few BERTology studies related to discourse. Notably, large language models such as BERT (Devlin et al., 2019a) and BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF]) may encode discourse structure information to a certain extent, as evidenced by [START_REF] Koto | Discourse probing of pretrained language models[END_REF]; [START_REF] Pandia | Pragmatic competence of pre-trained language models through the lens of discourse connectives[END_REF]. Our hypothesis is that the attention matrices in these models can capture the dependency relations between EDUs, and that fine-tuning tasks related to discourse can further enhance this information. This is supported by recent research conducted on monologues [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]. However, there are still several open questions that need to be addressed, such as which PLMs to use, what discourse-related fine-tuning tasks to employ, how to extract dependency structure from attention matrices, and how to identify the most "discourse-rich" attention heads. We intend to provide answers to all of these questions in this chapter.

This chapter is adapted from one publication at the 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023) [START_REF] Li | Discourse structure extraction from pre-trained and fine-tuned language models in dialogues[END_REF]. It is organized as follows: in Section 7.1, we provide an overview of related studies in discourse parsing, with a focus on semi-supervised and unsupervised methods. By considering these studies, we can infer why they are not readily applicable for our objectives. Our method of structure extraction is then presented in Section 7.2. For the critical task of attention head selection, we propose both semi-supervised and unsupervised strategies. Results obtained on the STAC corpus and detailed analysis are presented in Section 7.4 and Section 7.5. In addition, we conduct experiments on the GUM corpus [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF] specifically on its conversation segment, and the results are reported in Section 7.6. While most prior research on discourse parsing begins with manually segmented EDUs, this approach is not practical. We take a step further and use predicted EDUs instead, and discuss the deployed results in Section 7.7. Finally, we present efforts in extending tree structure to graph structure in Section 7.8, and we conclude the chapter in Section 7.9.

Overview of Discourse Parsing Methods

As presented in Chapter 3, early approaches to discourse parsing on STAC use supervised methods with varied decoding strategies (Section 3.2.1), such as Maximum Spanning Tree algorithm [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF][START_REF] Li | Text-level discourse dependency parsing[END_REF][START_REF] Afantenos | Modelling strategic conversation: model, annotation design and corpus[END_REF] or Integer Linear Programming [START_REF] Perret | Integer linear programming for discourse parsing[END_REF]. [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] first proposed a neural architecture based on hierarchical Gated Recurrent Unit (GRU) which processes segment attachment and relation allocation 7.1. Overview of Discourse Parsing Methods sequentially. They reported 73.2% F 1 on STAC for naked structures. Recently, Wang et al. (2021a) adopted Graph Neural Networks (GNNs) and reported marginal improvements for link prediction (73.8% F 1 ). Chi and Rudnicky (2022) also adopted GNN structure but with a joint framework for structure and relation prediction, their model achieved a F score at 74.4%.

Lately, a new trend towards semi-supervised and unsupervised discourse parsing has emerged, primarily because of the problem of data scarcity. However, this trend has been mostly restricted to monologues (Section 3.2.2,3.2.3). In RST framework: Huber andCarenini (2019, 2020b) leveraged sentiment information and showed promising results in cross-domain settings with the silver-standard labeled corpus. [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF] extracted discourse trees from neural summarizers and confirmed the existence of discourse information in self-attention matrices. Although these studies are intriguing, their effectiveness is yet to be proven in dialogue settings. For example, in [START_REF] Huber | Predicting discourse structure using distant supervision from sentiment[END_REF], sentiment information was utilized. They smoothed document-level sentiment to sentence-level sentiment and attention scores through the Multiple-Instance Learning [START_REF] Angelidis | Multiple instance learning networks for fine-grained sentiment analysis[END_REF] strategy, and subsequently employed local attention scores to construct discourse trees. While sentiment-annotated monologues are prevalent, such as in food and movie reviews, it is challenging to assign global sentiment labels for dialogues, since different speakers may have different emotions, making it almost impossible to establish a "unified tone" for a dialogue. In the case of summarization tasks, as only vital information is extracted, it is unclear how the remaining parts of the documents interact with each other. In a dependency-tree-style discourse structure, our aim is not to build a hierarchical tree but to create flat connections among all the EDUs. The information leveraged solely from summarization is also unsuitable for our purposes.

Another line of work proposed to enlarge training data with a combination of several parsing models, as done in [START_REF] Jiang | Training data enrichment for infrequent discourse relations[END_REF]; [START_REF] Kobayashi | Improving neural rst parsing model with silver agreement subtrees[END_REF]; [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. In a fully unsupervised setting, [START_REF] Kobayashi | Split or merge: Which is better for unsupervised RST parsing?[END_REF] used similarity and dissimilarity scores for discourse tree creation, a method that can not be directly used for discourse graphs though. As for dialogues, transfer learning approaches are rare. Badene et al. (2019a,b) investigated a weak supervision paradigm where expert-composed heuristics, combined with a generative model, are applied to unseen data. Their method, however, requires domain-dependent annotation and a relatively large validation set for rule verification. Still, it suffers from low recall due to uneven coverage of various linguistic phenomena. Another study by [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF] focused on cross-domain transfer using STAC (chats in a game) and Molweni (chats in Ubuntu forum) for training and testing interchangeably. They applied simple adaptation strategies (mainly lexical information) on a SOTA discourse parser [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] and show improvement compared to bare transfer (train on Molweni and test on STAC F 1 increase from 42.5% to 50.5%). Yet, their model failed to surpass simple baselines.

Very recently, [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] proposed unsupervised methods for domain adaptation in discourse parsing (Section 3.2.4). They investigated bootstrapping methods to adapt pre-trained BERT-based parsers to out-of-domain data with some success. Although effective, their method mandates pre-training discourse parsers on a comparatively large handannotated domain (in their instance, they used nearly 900 STAC documents for training), which is not applicable to our goals. Additionally, their method necessitates well-tuned confidence measures and exact sample selection criteria.

In Chapter 6, we present the latest BERTology research on discourse study. Our approach is largely inspired by [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]'s work, where authors introduced a novel way to encode long documents and explored the effect of different fine-tuning tasks on PLMs, confirming that pre-trained and fine-tuned PLMs both can capture discourse information. However, this study differs from our research in two aspects. Firstly, it primarily focuses on discourse parsing in monologues, rather than dialogues. Secondly, it does not address the question of how to identify the attention heads that are rich in discourse information. Our objective, on the other hand, is not just to demonstrate the existence of discourse information, but also to present effective methods for its extraction.

After reviewing the previous work, we identify a gap in the field of discourse structure extraction in dialogues, particularly with regards to semi-supervised and unsupervised methods. Our proposed solution aims to address this gap.

Method: From Attention Matrix To Discourse Tree

Problem Formulation and Simplifications

Figure 7.1 shows the overview of the pipeline: given a dialogue with n Elementary Discourse Units (EDUs), which are the minimal spans of text (mostly clauses, at most a sentence) to be linked by discourse relations: D = {e 1 , e 2 , e 3 , ..., e n }, the goal is to extract a Directed Acyclic Graph (DAG) connecting the n EDUs that best represents its SDRT discourse structure from attention matrices in PLMs. We conduct an extensive investigation of every attention head in the PLM to obtain a vast number of potential structures, as represented by d 1 , d 2 , and d 3 in the figure. Subsequently, we employ semi-supervised and unsupervised methods to identify the most effective attention head for extracting the discourse structure. In this study, we make a few simplifications, partially adopted from previous work.

(1) We do not deal with SDRT Complex Discourse Units (CDUs) attachments following [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF]; [START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF]. In [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF], the algorithm of CDU transformation is as follows: the head of a CDU is the highest in its subgraph and leftmost DU in the discourse if there is more than one. The algorithm of finding the head is recursive until an EDU is reached. Initially, we address the extraction of flat dependency structure, with the subsequent task of deducing hierarchical structure left for further exploration.

(2) Similar to [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF], our solution only generate projective discourse trees.

Projective trees contain no crossing edges. In STAC, we observe ≈ 6% of non-projective edges. Our approximation of projective trees is thus reasonable for the initial step. Approximately 5% of the nodes have multiple incoming edges, while the remaining nodes follow the single-parent principle observed in tree structures. We outline methods to enhance our tree algorithm by introducing additional edges to generate graph structures in Section 7.8. Although the enhancement may not result in significant improvements (at most ≈ 1 point), it is a valuable effort to generate real SDRT-graph structures.

(3) We break down the discourse parsing task into two steps. This chapter specifically deals with the structure extraction step, while the assignment of relation types will be addressed in Chapter 8. We explore both vanilla and fine-tuned PLMs, as they are both shown to contain discourse information for monologues [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]. We choose BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] as our pre-trained language model for two reasons. Firstly, BART exhibits exceptional abilities in comprehending complex structures due to its pre-training objectives. BART is a large language model based on the standard sequence-tosequence Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]. Similar to BERT (Devlin et al., 2019a), it employs bidirectional encoders, and like GPT [START_REF] Radford | Improving language understanding by generative pre-training[END_REF], it has autoregressive decoders. What sets BART apart is its training method that involves corrupting documents with various noised transformations, including token masking (similar to BERT), sentence permutation, document rotation, and text infilling (akin to SpanBERT [START_REF] Joshi | Does multi-task learning always help?: An evaluation on health informatics[END_REF]). Comparison of different pre-training objectives shows that the noising techniques in BART surpass those used in other PLMs such as BERT, GPT, and XLNet. BART has exhibited excellent performance on various downstream tasks, particularly in dialogue task ConvAI2 [START_REF] Dinan | The second conversational intelligence challenge (convai2)[END_REF], outperforming previous work on conversational response generation by a significant margin. Given its superior performance on dialogue tasks, we believe that it is well-suited to our purposes. BART model contains three kinds of attention matrices: encoder, decoder and cross attention. We use the encoder attention in this work to derive discourse trees, since it has been shown to capture most discourse information [START_REF] Koto | Discourse probing of pretrained language models[END_REF][START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF] and outperformed the other alternatives in preliminary experiments on a validation set. We present the method to generate trees from attention heads in the following Section 7.2.3.

Secondly, we conduct preliminary experiments to compare the performance of BART against other alternatives, including DialoGPT [START_REF] Zhang | DIALOGPT : Large-scale generative pre-training for conversational response generation[END_REF] and DialogLM [START_REF] Zhong | Dialoglm: Pre-trained model for long dialogue understanding and summarization[END_REF], which are pre-trained with conversational data. Our results show that BART outperformed these models. In Section 7.4.3, we present additional results on the performance of further language models and provide our reasoning for why they do not perform as well as BART.

Although we mainly test on BART model, please note that our approach is generally model agnostic and can be applied to any transformer-based architecture.

Fine-Tuning Tasks

We fine-tune BART on three discourse-related tasks. The first task document summarization is inspired from the promising results in monologues [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]. It is also one of the synergistic tasks for discourse parsing, as mentioned in Section 7.1. The second task is question answering (QA). In Chapter 3, we present a multi-task learning framework [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF], where the authors jointly learn QA-based machine reading comprehension and discourse parsing. In order to perform the QA task correctly, models need to handle different discourse relationships in plain text. This intuitively strengthens the process of structure understanding in dialogue data. The final task is our proposal sentence ordering, which considers the specificities of dialogues and doesn't require any extra human annotation.

Summarization: We use BART fine-tuned on the popular CNN-DailyMail (CNN-DM) news corpus [START_REF] Nallapati | Abstractive text summarization using sequence-to-sequence RNNs and beyond[END_REF], which gives the biggest increase of discourse performance compared to pre-trained model in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]. Since BART has no pre-training dialogue data, we wish to improve the model's performance on dialogues and fine-tune it on an abstractive dialogue summarization dataset SAMSum [START_REF] Gliwa | SAMSum corpus: A human-annotated dialogue dataset for abstractive summarization[END_REF].

Question-Answering (QA): Using question answering as a machine reading comprehension task is an effective way to assess a model's ability to comprehend the relationships between speech turns in dialogues [START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF]. One popular type of question answering is span-based QA [START_REF] Rajpurkar | Squad: 100,000+ questions for machine comprehension of text[END_REF][START_REF] Rajpurkar | Know what you don't know: Unanswerable questions for SQuAD[END_REF], which requires the model to extract a continuous text span from the original dialogue. To enhance BART's capability in capturing relational structures, we finetune it on the most recent version of the Stanford Question Answering Dataset (SQuAD 2.0) [START_REF] Rajpurkar | Know what you don't know: Unanswerable questions for SQuAD[END_REF].

Sentence Ordering: We fine-tune BART on the sentence ordering task, reordering a set of shuffled sentences to their original order. This task is challenging, especially for long documents. According to a state-of-the-art model for sentence ordering [START_REF] Chowdhury | Is everything in order? a simple way to order sentences[END_REF], the authors found that as the length of a document increases from 5 to 20 sentences, the model's performance drops from above 80 to less than 40 (measured in accuracy), and this trend holds for various types of documents, including scientific papers and narratives. In the case of STAC, the average number of speech turns is 13, making it a relatively difficult scenario for this task. Additionally, we observe in this study that the model's performance is affected by the "effect of shuffling" -a metric defined by the minimum number of swaps needed to reconstruct the ordered sequence. When a shuffled document is significantly different from the original one, the model perceives the task as more difficult and performs poorly. Conversely, a lower degree of shuffling results in a more coherent and meaningful input, leading to an easier task. Therefore, we devise various shuffling methods to control the effect of shuffling and ensure a more gradual and effective learning process. Specifically, as shown in Figure 7.2, we explore:

(a) partial-shuf : randomly picking 3 utterances (2 for short dialogues with less than 4 utterances) in a dialogue and shuffling them. This permutation is supposed to be the easiest one since we keep the most of the context unchanged.

(b) minimal-pair-shuf : shuffling minimal pairs, comprising of a pair of speech turns from 2 different speakers with at least 2 utterances. A speech turn represents the beginning of a new speaker. We shuffle these pairs with respect to the original order inside the pair. This shuffling is more difficult than partial-shuf with a larger shuffling effect. "Local" contexts are supposed to be coherent, and the model needs to find the inconsistency in larger contexts.

(c) block-shuf : shuffling a block containing multiple speech turns. We divide one dialogue into [2,5] blocks based on the number of utterances and shuffle between blocks. Block size is designed to be as twice or 3 times bigger than "min-pair", we thus set criteria aiming to have This shuffling method also emphasizes on maintaining consistent local contexts, similar to minimal-pair-shuf. However, we increase the range of local context and aim to make the sentence reordering task easier.

(d) speaker-turn-shuf : grouping all speech productions of one speaker together. The sorting task consists of ordering speech turns from different speakers' production. This shuffling strategy aims to capture the interaction between dialogue participants by keeping the consistency of speeches from the same speaker. It requires the model to learn how to maintain coherence in the interaction among speakers.

We evenly combine all permutations mentioned above to create our mixed-shuf data set and conduct the SO task as the third auxiliary task to fine-tune BART. We can see that every shuffling strategy poses a unique emphasis of coherence and presents its own level of difficulty.

We are of the opinion that incorporating diverse permutations can enhance the model's ability to understand the structure in dialogues. The initial subpar test results obtained using random shuffling lend further support to our proposal of mixed stuffing.

How To Derive Trees From Attention Heads?

Given an attention matrix A t ∈ R k×k where k is the number of tokens in the input dialogue, we derive the matrix A edu ∈ R n×n , with n the number of EDUs, by computing A edu (i, j) as the average of the submatrix of A t corresponding to all the tokens of EDUs e i and e j , respectively. As a result, A edu captures how much EDU e i depends on EDU e j and can be used to generate a tree connecting all EDUs by maximizing their dependency strength. Concretely, we find a Maximum Spanning Tree in the fully-connected dependency graph A edu using the Eisner algorithm [START_REF] Eisner | Three new probabilistic models for dependency parsing: An exploration[END_REF]. Conveniently, since an utterance cannot be anaphorically and rhetorically dependent on following utterances in a dialogue, as they are previously unknown [START_REF] Afantenos | Modelling strategic conversation: model, annotation design and corpus[END_REF], we can further simplify the inference by applying the following hard constraint to remove all backward links from the attention matrix A edu : a ij = 0, if i > j.

We present an example in Figure 7.3 to illustrate our approach. The document consists of three EDUs, with the first containing two tokens, the second containing three, and the third containing two. We input these tokens into BART to obtain a token-level attention matrix A t with dimensions of 7 × 7. To obtain A edu of size 3 × 3, we average the attention scores within each EDU to form sub-matrices, denoted by bold-line borders. By imposing the forward-link constraint, we obtain a half-matrix highlighted in blue. Finally, we apply the Eisner algorithm to this half-matrix.

How To Find the Best Heads?

Pioneering work led by [START_REF] Raganato | An analysis of encoder representations in transformerbased machine translation[END_REF] showed that specific attention heads mark different syntactic and semantic dependency relations. Authors confirmed that higher layers tend to encode more semantic information. Recently, [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF] and [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF] showed that discourse information is not evenly distributed between heads and layers. Precisely, the authors in [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF] utilized the average attention scores across all heads in a layer, and found that there were differences in performance across layers within the same model. They tested a 2-layer 1-head model and a 6-layer 8-head model. When comparing these two models, they observed that the performance gap between layers decreased with more layers, possibly due to the information being distributed across different layers. It is, however, unclear which layer contains more discourse information, as the performance is not consistent among different testing corpora. In contrast, instead of aggregating attention scores across layers, [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF] inspected each attention head in all layers. They discovered the "locality" property across different fine-tuned LMs and that higher layers predominantly capture constituency tree structures, whereas dependency structures are more uniformly distributed across layers. In our study, we observe that dependency discourse structures are consistently located in deeper layers (Section 7.5.1), which is consistent with the findings in [START_REF] Raganato | An analysis of encoder representations in transformerbased machine translation[END_REF].

The previous studies mentioned are insightful, but they do not provide any approach to identify the head or heads containing the most discourse information. To address this issue, we propose two effective methods for selecting the most discourse-rich heads with minimal supervision, including a fully unsupervised and a semi-supervised method. Our goal is to conduct a comprehensive investigation of the encoder representation by analyzing both head-wise and layer-wise attention heads.

In our unsupervised approach, we follow the approach in Huber and Carenini (2022) by examining each attention head individually and distinguish between the local and global best head (refer to Section 7.2.4.1). As for our semi-supervised approach, we use a few annotated examples to select the heads with relatively more discourse information. We conduct head-wise examination and further layer-wise aggregation, similar to Xiao et al. ( 2021) (Section 7.2.4.2).

Unsupervised Best Head Selection

Dependency Attention Support Measure (DAS): Loosely inspired by the confidence measure in [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF], where the authors define the confidence of a teacher model based on predictive probabilities of the decisions made, we propose a DAS metric measuring the degree of support for the maximum spanning (dependency) tree (MST) from the attention matrix. Formally, given an attention matrix A g (i.e., A edu for the dialogue g) with n EDUs, the MST T g is built by selecting n -1 attention links l ij from A g based on the tree Please note that DAS can be easily adapted for a general graph by removing the restriction to n -1 arcs. DAS measures the strength of all those connections by computing the average score of all the selected links:

DAS(T g ) = 1 n -1 n i=1 n j=1 Sel(A g , i, j) (7.1)
with Sel(A g , i, j) = A g ij , if l ij ∈ T g , 0 otherwise. For illustration, we present the calculation of DAS score of two imaginary heads layer9-head7 and layer1-head1 in Figure 7.4. With attention scores in the highlighted region, the Eisner algorithm gives two different tree structures, from which we can calculate two DAS scores.

Selection Strategy: With DAS, we can now compute the degree of support from each attention head h on every single example g for the generated tree DAS(T g h ). We therefore propose two strategies to select attention heads based on the DAS measure, leveraging either global or local support. The global support strategy selects the head with the highest averaged DAS score over all the data examples:

H global = arg max h M g=1 DAS(T g h ) (7.2)
where M is the number of examples. In this way, we select the head with a generally good performance on the target dataset.

The second strategy is more adaptive to each document, focusing only on the local support. It does not select one specific head for the whole dataset, but instead selects the head/tree with the highest support for every single example g, i.e., 

H

Experimental Setup

Datasets

We use the multi-party dialogue STAC corpus 1 [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], annotated following the SDRT framework, to evaluate our approach on the discourse dependency structure prediction task. Including 300 strategic conversations of players trading goods during the board game The Settlers of Catan, this corpus contains some high-frequency game-related words such as sheep, clay and wood.

To evaluate a variety of fine-tuned PLMs (see Section 7.2.2), we use publicly available Hug-gingFace models for the summarization and question-answering tasks. For the newly proposed sentence ordering (SO) task, we train the BART model on two dialogue datasets: (1) the STAC corpus itself (raw text), in line with the final structural evaluation, however, limiting the input data to plain texts. ( 2) DailyDialog [START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF], a human-written corpus covering various topics for English learners (10 categories), from ordinary life to finance. We select this corpus due to its large size, diversity of topics and high quality. We summarize the key dataset statistics for STAC and DailyDialog in Table 7.1. STAC has a separation of 82%, 9%, 9% for train, validation, and test sets resp.; DailyDialog 85%, 8%, 8%. Focusing on the STAC corpus in our main evaluation, we report additional results on the conversational subset of GUM [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF] in Section 7.6. We purposely exclude the Molweni corpus [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF] in this work, due to major quality issues found in preliminary dataset exploration in Section 2.3.5.

Baselines and Supervised Dialogue Discourse Parsers

We compare against the simple yet strong unsupervised yet powerful LAST baseline [START_REF] Schegloff | Sequence organization in interaction: A primer in conversation analysis I[END_REF], attaching every EDU to the previous one. Furthermore, to assess the gap between our 1 Precision on STAC corpus: the STAC project includes two corpora, the linguistic only corpus which only contains textual conversation information, and the situated corpus which includes conversational texts as well as descriptions of server messages and UI logs [START_REF] Badene | Weak supervision for learning discourse structure in multi-party dialogues[END_REF]. In our experiments, we utilize the linguistic only corpus. Since STAC has been updated several times, not all the studies have employed the same version. [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] released the version for their experiments: https://github.com/shizhouxing/ DialogueDiscourseParsing. This version has been used in subsequent studies, including [START_REF] Wang | Multi-level cohesion information modeling for better written and dialogue discourse parsing[END_REF]; [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF]; [START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF]; [START_REF] Yu | Speaker-aware discourse parsing on multi-party dialogues[END_REF]; [START_REF] Chi | Structured dialogue discourse parsing[END_REF]. For all of our experiments utilizing the STAC corpus in this thesis, we use the shi2019 version. approach and supervised dialogue discourse parsers, we compare with the Deep Sequential model by [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] and the Structure Self-Aware (SSA) model by Wang et al. (2021a).

Evaluation Metrics

We report the micro-F 1 for discourse parsing and the Unlabeled Attachment Score (UAS) for the generated naked dependency structures.

Implementation Details

We base our work on the transformer HuggingFace library [START_REF] Wolf | Transformers: State-of-the-art natural language processing[END_REF] and follow the textto-marker framework proposed in [START_REF] Chowdhury | Is everything in order? a simple way to order sentences[END_REF] for the SO fine-tuning procedure. We use the original separation of train, validation, and test sets; set the learning rate to 5e -6; use a batch size of 2 for DailyDialog and 4 for STAC, and train for 7 epochs. All other hyper-parameters are set following [START_REF] Chowdhury | Is everything in order? a simple way to order sentences[END_REF]. We do not do any hyperparameter tuning. We omit 5 documents in DailyDialog during training since the document lengths exceed the token limit. We replace speaker names with markers (e.g. Sam → "spk1"), following the preprocessing pipeline for dialogue utterances in PLMs. Table 7.2 shows the models and the sources we obtained from Huggingface library.

Results

Unsupervised Head Selection

Results using our novel unsupervised DAS method on STAC are shown in Table 7.3 for both the global (H g ) and local (H l ) head selection strategies. These are compared to: (1) the unsupervised LAST baseline (at the top), which only predicts local attachments between adjacent EDUs. LAST is considered a strong baseline in discourse parsing [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF], but has the obvious disadvantage of completely missing long-distance dependencies which may be critical in downstream tasks. (2) The supervised Deep Sequential parser by [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] and Structure Self-Aware model by Wang et al. (2021a) best attention head remarkably improves the F 1 score from 56.8% (LAST) to 59.3% (+SO-STAC) with head-wise attention matrix. F 1 improvements across increasingly large validation-set sizes are consistent, accompanied by smaller standard deviations, as would be expected.

Our results reveal that the performance of the head-wise semi-supervised method is consistently better than that of the layer-wise method. While the best layer-wise performance is 56.4, slightly underperforming the LAST baseline, the best head-wise performance improves to 59.3. Since different attention heads capture varying amounts of discourse information, averaging them may cancel out the informative cues. This observation suggests that layer-wise aggregation is not an optimal method for extracting discourse information. In contrast, the head-wise results are very encouraging. With only 30 annotated examples, we already achieve performances close to the oracle results, and further improvements can be made with more examples.

Experiments with Other PLMs

To consider pre-trained models with different architectures, we present the results of experiments using RoBERTa (Liu et al., 2019a), a bidirectional encoder model, and DialoGPT [START_REF] Zhang | DIALOGPT : Large-scale generative pre-training for conversational response generation[END_REF], an autoregressive decoder model. To account for the influence of training data, we also incorporate DialogLED -DialogLM [START_REF] Zhong | Dialoglm: Pre-trained model for long dialogue understanding and summarization[END_REF] with Longformer [START_REF] Beltagy | Longformer: The long-document transformer[END_REF] architecture.

Table 7.5 demonstrates that the decoder-only model has the lowest oracle head performance (56.2), whereas models with encoder networks perform similarly: BART with a score of 57.6, RoBERTa with 57.4, and DialogLED with 57.2. These results are consistent with the findings in [START_REF] Koto | Discourse probing of pretrained language models[END_REF], where the authors concluded that RoBERTa and BART are the most effective models in capturing discourse information in their encoder layers.

Despite DialogLED being pre-trained on a large amount of dialogue data, its performance being similar to BART is surprising. Fine-tuning with dialogue data leads to a significant improvement in BART's performance from 57.6 to 59.5, whereas DialogLED's performance only slightly improves from 57.2 to 58.4. This suggests that the effect of our sentence ordering task on DialogLED is less pronounced, likely due to the model's pre-training on dialogue-related permu- tation tasks. Additionally, we observe that the high-performing attention heads are located in the deeper layers of DialogLED, similar as in BART, whereas in RoBERTa, they are more uniformly distributed across the layers, and some even appear in the shallow layers. This observation is consistent with the findings in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF].

Analysis

Effectiveness of DAS

We now take a closer look at the performance degradation of our unsupervised approach based on DAS in comparison to the upper bound defined by the performance of the oracle-picked head. Figure 7.5 shows the DAS score matrices (left) for three models with the oracle heads and DASselected heads highlighted in green and yellow, respectively. It becomes clear that the oracle heads do not align with the DAS-selected heads. Making a comparison between models, we find that discourse information is consistently located in deeper layers, with the oracle heads (light green) consistently situated in the same head for all three models, which in line with observations for monologues in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]. However, while not aligning with the oracle, the top-performing DAS heads (in yellow) are among the top 10% best heads in all three models, as shown in the box plot on the right. Hence, we confirm that the DAS method is a reasonable approximation to find discourse intense self-attention heads among the 12×16 attention matrices.

Document and Arc Lengths

The inherent drawback of the simple, yet effective LAST baseline is its inability to predict indirect arcs. To test if our approach can reasonably predict distant arcs of different lengths in the dependency trees, we analyze our results in regard to the arc lengths. Additionally, since longer documents tend to contain more distant arcs, we also examine the performance across different document lengths compared to LAST.

Arc Distance: To examine the discourse parsing performance for data sub-sets with specific arc lengths, we present the UAS score plotted against different arc lengths on the left side in Figure 7.6. Our analysis thereby shows that direct arcs achieve high UAS score (> 80%), independent of the model used. We further observe that the performance drops considerably for arcs of distance two and onwards, with almost all models failing to predict arcs longer than 6. BART+SO-STAC model correctly captures an arc of distance 13. Please note that the presence for long-distance arcs (≥ 6) is limited, accounting for less than 5% of all arcs.

We further analyze the precision and recall scores when separating dependency links into direct (adjacent forward arcs) and indirect (all other non-adjacent arcs), following [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF]. Precision and recall scores of direct and indirect arcs in the test set are shown in Figure 7.7. For direct arcs, all models perform reasonably good. The precision is higher (≈ +6%) and recall is lower than the baseline (100%), indicating that our models predict less direct arcs but more precisely. For indirect arcs, the best model is BART+SO-STAC (20% recall, 44% prec.), closely followed by original BART model (recall at 20%, precision at 41%). Document Length: Longer documents tend to be more difficult to process because of the growing number of possible discourse parse trees. Hence, we analyze the UAS performance of documents in regards to their length, here defined as the number of EDUs. Results are presented on the right side in Figure 7.6, comparing the UAS scores for the three selected models and LAST for different document lengths. We split the document length range into 5 even buckets between the shortest (2 EDUs) and longest (37 EDUs) document, resulting in 60, 25, 16, 4 and 4 examples per bucket. We also calculate the LAST baseline for each group, presented in the blue trident.

For documents with less than 23 EDUs, all fine-tuned models perform better than LAST, with BART fine-tuned on STAC reaching the best result. We note that PLMs exhibit an increased ( capability to predict distant arcs in longer documents. However, in the range of [23,30], the PLMs are inclined to predict a greater number of false positive distant arcs, leading to underperformance compared to the LAST baseline. As a result, we see that longer documents (≥ 23) are indeed more difficult to predict than short documents, with even the performance of our best model (BART+STAC) strongly decreasing.

Projective Trees Examination

Given the fact that our method only extracts projective tree structures, we now conduct an additional analysis, exclusively examining the subset of STAC containing projective trees, on which our method could in theory achieve perfect accuracy. Table 7.6 gives key statistics for this subset ("proj. tree"). For the 48 extracted tree examples, the document length decreases from an average of 11 to 7 EDUs, however, still contains ≈ 40% indirect arcs, keeping the parsing difficulty comparable.

Parsing Results:

Discourse parsing results are presented in Table 7.7. We show the performances of oracle heads (Gold H), unsupervised global and local heads ("Unsup H g ", "Unsup H l "), and semi-supervised layer-wise and head-wise heads ("Semi-sup n L", "Semi-sup n H").

As shown, all three unsupervised models outperform LAST (62%). The best model is still false negative attachments. Speech turns are provided for reference.

In the two examples our model achieves over 88% accuracy in predicting projective arcs, including those spanning across 4 EDUs, on all three STAC examples. This is noteworthy as it indicates that our method can predict non-linear and non-trivial attachments. These results offer promising evidence that our approach is capable of accurately extracting discourse structures. 

Additional Results on GUM-conv Subset

Our main evaluation and analysis are applied on STAC corpus. Additionally, we extend our experiment and test on another discourse-augmented corpus: GUM2 [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF]. Note that GUM is initially annotated under RST-framework. To have a direct comparison, we convert constituent trees from GUM into dependency trees using the algorithm proposed in Li et al. (2014a).

GUM-conv Subset:

GUM corpus is a growing corpus with rich syntactic and semantic annotation. In its version 8.0, it contains 12 different communicative settings (interviews, textbooks, etc.) and a total number of 193 documents. We experiment only with "Conversation" subset (originated from Santa Barbara Corpus [START_REF] Bois | Santa barbara corpus of spoken american english, parts 1-4[END_REF]) which contains 9 recordings of naturally occurring conversations: SBC027 Atoms Hanging Out, SBC001 Actual Blacksmithing, SBC048 Mickey Mouse Watch, SBC025 The Egg which Luther Hatched, SBC031 Tastes Very Special, SBC042 Stay out of It, SBC002 Lambada, SBC011 This Retirement Bit, SBC024 Risk. We use these documents for inter-domain evaluation. Note that GUM conversation subset is very different from that in STAC or DailyDialog: texts are generally much longer (209 utterances per document versus 11 in STAC, 13 in DailyDiaog); contains informal responses (laughs, disfluences); 3 documents are quasi-monologues with one speaker dominants the talk.

Unsupervised Results: We show in Table 7.9 unsupervised results using DAS measurement with global and local heads, as well as with oracle head. We show unsupervised baseline LAST for comparison. Note that in the RST framework, we do not have Turn constraint as in the SDRT, so that the transformation can result in links in both directions. LAST baseline only count forward links.

The initial BART model performs slightly worse than the LAST baseline. However, after fine-tuning on CNN-DM and SAMSum, the performance improves. This is consistent with the findings in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF], which show that models fine-tuned on the CNN-DM dataset consistently outperform the BART baseline. On the other hand, for the questionanswering fine-tuning task, the results are worse than those of the original BART on GUM. In the Sentence Ordering (SO) task, fine-tuning on DailyDialog yields better results than on STAC. This may be due to the fact that STAC is much shorter than GUM and has a very different vocabulary, creating a significant representation gap.

In comparison to the average performance on STAC, the results on GUM-conv are approximately 20% lower, and we believe that there are at least two reasons for this. Firstly, the documents in GUM-conv are much longer, with an average EDU length of 209 compared to 11 in STAC. Previous analysis has shown that when a document contains more than 23 EDUs, the F 1 score drops below 50% (see Figure 7.6). By directly comparing our scores to those reported in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF], we found that their best score on the whole GUM test set was 41.8%, which is approximately 10% higher than ours. However, the overall average document length in their study is much smaller at only 107 utterances per document.

Secondly, the nature of the documents in GUM-conv is different from those in STAC. The former contains oral recordings of real-life conversations, with shorter, more informal utterances that are often filled with specific language markers such as laughs, hesitations, and backchannel responses. These markers may require additional fine-tuning on oral documents to improve model performance. Moreover, at least 3 documents in GUM-conv are monologue-like, which makes models fine-tuned on dialogue settings less suitable.

We present experiments on oral dialogues that are extremely long (more than 200 utterances) in this part. While the results are not very satisfying, BART+CNN-DM achieved a new stateof-the-art score of 33% for unsupervised discourse parsing on GUM-conv. This is noteworthy because when compared to LAST, the recall and precision for indirect arcs increased from 0 to 7% and 22%, respectively.

Deployed Discourse Tree Extraction

Following previous work of discourse parsing, all our experiments have started with gold-standard EDU annotations. However, as mentioned in [START_REF] Zeldes | The disrpt 2019 shared task on elementary discourse unit segmentation and connective detection[END_REF], this would not be possible in a realistic setting. To assess the performance of a deployed system, we conduct additional experiments in which we first perform EDU segmentation and then feed the predicted EDUs to our methods.

EDU Segmentation Model:

We employ the DisCoDisCo model [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF] the top-performing system in DISRPT 2021 for EDU segmentation shared task -pre-trained on a random sample of 50 dialogues from train set. We repeat this process three times to accommodate instability. Our average F-score is 94.8, as shown in Table 7.10. In Gessler et al. (2021) In the pre-training phase, we utilize all 12 hand-crafted features, including for instance POS tags, dependency relations (UD deprel), and sentence lengths, and opt for treebanked data (available from DISRPT Github) for enhanced performance: 94.9 for treebanked vs. 91.9 for plain text data in DisCoDisCo paper. To evaluate link attachment performance with the predicted EDUs, we borrow the analysis pipeline in [START_REF] Joty | Codra: A novel discriminative framework for rhetorical analysis[END_REF] and adapt it for SDRT-style parsing. We illustrate the measurements in Table 7.11. Precisely, in a false positive case where the system separates one EDU into two (x and y) or more elements, we regard the first element x as the head, so that all the incoming and outgoing edges from EDU (x -y) should now go to and come out from x to be count as correct attachment. Also, other elements should be linearly attached to each other: y linked to x, z linked to y, etc. In a false negative scenario where the system fails in separating a speech turn to two EDUs (x and y), if a discourse parser predicts an incoming link pointing to the union (x -y) while the gold attachment indeed has an incoming link pointing to the head x, then we consider it a correct attachment. The same logic applies to outgoing links.

Deployed Structure Extraction Results:

Results of structure extraction are shown in Table 7.12, with comparison of using predicted and gold EDUs. The best head (i.e., H ora ) perfor-

Incoming Outgoing

Human i → (x -y) (x -y) → j System i → x, x → y x → j, x → y 

Extension to Graph Structure

Our method only extracts tree structures. Although Maximum Spanning Tree algorithm such as Eisner covers approximately 94% of edges, we aim to produce SDRT graph-like structure. It is important to note that MST algorithms generate exactly n -1 edges for a document with n EDUs. This is a strong constraint that directly forbids a commonly presented discourse structure in STAC -"losange" shaped structure resulting from multiple speakers giving an answer to or acknowledging the same utterance [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF]. To overcome the tree algorithm's constraints, we explore various extension methods using the attention scores of unselected edges.

In an effort to construct graphs directly, we opt not to impose any restrictions on the number of attaching edges, with the sole criterion being that every node should have at least one incoming edge, thereby ensuring a connected graph. While in the STAC case, the number of edges in a document is almost always close to n -1, no such information is available for data in other domains. We sort the attention scores in descending order and proceed to make the attachment one by one until a connected graph is formed. However, this method turns out to be far less effective than the Eisner tree algorithm. The algorithm is excessively greedy, resulting in linking too many edges and yielding a near-perfect recall rate but an abysmally low precision rate. Moreover, the attention scores are not sorted in a manner that facilitates graph building, and as 7.8. Extension to Graph Structure a result, too many false positives are included. Consequently, we dismiss this approach as being impractical.

The second approach we tested is based on the tree structure. We add high-scoring unattached edges back to the established structure. This method involves sorting the attention scores of all unattached edges in descending order and creating additional links for the top k edges, where k is a hyperparameter in the range of [1, n]. This is because for a document with n EDUs, we need to have at least n -1 edges for the graph to be connected and at maximum we can have n × (n -1) edges. In contrast to the first approach, the second method has the advantage of having the base structure, which makes it easier to tune the value of k. In this method, we choose to use small values of k, similar to the graph density constraint in [START_REF] Perret | Integer linear programming for discourse parsing[END_REF]. However, our experiments show that for all values of k tested, increase the value of k leads to higher edge recall but rapidly decreasing precision, resulting in lower F-scores when compared to Eisner algorithm. Therefore, we decide not to adopt this approach as well.

We propose a third method that also relies on the established tree structure, but instead of relying solely on attention scores, we incorporate other dialogue information to train a binary classifier with feature engineering. The goal is to predict whether an additional edge should be included in the post-processing step. After examining a small annotated validation set of 50 documents, we find that longer documents typically contain more negotiation phases and therefore tend to have more losange shapes. Additionally, we notice that the relation types question answer pair and acknowledgement are frequently missing. Based on these observations, we propose four empirically motivated features to train the classifier:

(1) Attention value (A): Attention score of an unselected edge. The pipeline for tree structure post-processing is shown in Figure 7.19. After training a logistic regression classifier with a small number of annotated examples from the validation set, we apply this classifier on the unselected edges in the test set. The results are displayed in Table 7.13. Our results reveal that the combination of attention value, EDUs distance, and relation type ("+A+D+R") produce a noticeable increase of 1.1 points in F 1 (60.4% versus 59.3%), while incorporating all four features ("+A+D+R+L") shows a rise of 0.9 (60.2%) in F 1 . Nevertheless, adding more edges to the set elevate the recall rate but brings about a decline in the precision rate, which only yield a marginal improvement. In general, the extension of tree structures to graphs poses great challenges. Firstly, determining the appropriate number of additional edges to be added remains uncertain. Secondly, we notice that the attention scores for unselected edges are very close, making it difficult to identify the correct ones. This observation suggests that relying solely on attention scores may not be enough at this stage. Additional signals or cues are likely required for a more precise selection process.

Conclusion

This chapter delves into the extraction of naked discourse structures, which is a challenging task due to the high degree of data scarcity that characterizes discourse parsing. In addition, existing distant learning techniques that are effective for monologues are not readily transferable to dialogues. Consequently, we investigate methods for building naked discourse structures using attention matrices in pre-trained language models (Section 7.2).

Previous studies on BERTology have mainly focused on discovering discourse information through different probing tasks, as discussed in the previous chapter. However, our goal is to extract discourse structures from PLMs at scale. To achieve this, we design a simple yet effective sentence ordering task that does not require human annotation and can be applied to any domain. By comparing it with other discourse-related fine-tuning tasks, we demonstrate that sentence ordering is the most effective. Selecting the best attention head is a key issue in using PLMs for document-level discourse information extraction. We are the first to address this issue in dialogues by proposing both unsupervised and semi-supervised approaches. The unsupervised approach is based on a novel metric called "Dependency Attention Support" (DAS), which measures the degree of support for the dependency trees generated by each head. We choose high-DAS heads. Meanwhile, the semi-supervised approach selects heads based on their performance on a small annotated validation dataset.

Experiments on the STAC dataset reveal that our unsupervised and semi-supervised methods outperform a strong baseline LAST (F 1 56.8%): unsupervised method gives at best 57.2% and semi-supervised at best 59.3%, delivering substantial gains on the complete STAC dataset (Section 7.4).

Interestingly, discourse is consistently captured in deeper PLMs layers, and more accurate for shorter links. Analysis on projective trees shows that our method is especially effective to extract treelike discourse structures, with promising results competitive to some supervised methods (Section 7.5). In order to create a more realistic scenario, we propose a two-step approach where we first perform EDU segmentation and subsequently employ the predicted EDUs for constructing the discourse structure, as discussed in Section 7.7. However, due to the potential for error propagation in this process, the performance of the deployed system is observed to be approximately 7 points lower than that of the gold standard.

Although we achieve promising results on tree structures, we still intend to explore the possibility of extracting graph-like structures from attention matrices (Section 7.8). Our current approach builds upon the established tree structure and extends it with additional arcs of high attention scores, but the results are not satisfactory. Thus, we plan to investigate alternative graph construction algorithms in the future. Furthermore, we aim to expand our shuffling strategies for sentence ordering and explore other auxiliary tasks. Moving forward, our goal is to incorporate the prediction of rhetorical relation types into the naked structure, which we will address in the upcoming chapter. After discussing our work on discourse structure extraction in Chapter 7, we now turn our attention to discourse relation prediction. This task can be accomplished either in sequence after the structure construction phase or concurrently with link attachment. However, in our case, we opt for a two-step parsing approach: first, we build EDU attachment, and then we assign relation types to each pair of EDUs. We again employ semi-supervised strategies, but using different supervisions.

We are mostly inspired by the strategy of bootstrapping (or pseudo-labeling) proposed in [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. Bootstrapping can also be referred to as semi-supervised and/or weakly-supervised learning. For one thing, the target data may contain unseen labels from the train set, and for another, the learning signals could be noisy. In bootstrapping, an initial model is trained with limited gold-standard data and used to give pseudo labels on a large non-annotated dataset. The model is then retrained on the gold standard and auto-labeled data together to give inference on the remaining part of non-annotated data. This is an iterative process so that the model can be trained with several rounds of auto-labeled data. The rationale behind the process is that at each stage, the current learning model can give a priori highly-confident predictions on (at least partially) unseen data so that the next learning model could benefit from the data augmentation to increase its performance. By convention, we call the model that gives pseudo prediction the teacher model, and the one that learns the task student model.

Depending on the number of teacher and student models and how they "teach" and "learn" from each other, bootstrapping systems can be further divided into various training paradigms:

(1) self-training [START_REF] Yarowsky | Unsupervised word sense disambiguation rivaling supervised methods[END_REF]: one single model is used which is both the teacher and the student; (2) co-training [START_REF] Blum | Combining labeled and unlabeled data with co-training[END_REF]: involves two models that teach each other. The two models have different inductive biases and can learn knowledge from one another. They start to give predictions independently on the same dataset. During inference, however, two models are retrained with different newly added data filtered with certain selection criteria. The aim is to retrain each model with the knowledge that it has not yet learned; (3) tri-training [START_REF] Zhou | Tri-training: Exploiting unlabeled data using three classifiers[END_REF]: consists of three models which are initially trained on the same set. Different from co-training where the student learns from one teacher, tri-training uses two teachers at the same time. The pseudo-labeled data need to meet an agreement (i.e., selection criteria) among different teachers in order to provide to the student. This paradigm is supposed to provide more reliable pseudo-labels by accommodating different predictions. Other paradigms include asymmetric tri-training [START_REF] Saito | Asymmetric tri-training for unsupervised domain adaptation[END_REF], mean teacher [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF], etc. We leave the training process to interested readers.

Among different training paradigms, self-training is the most commonly used strategy in classic semi-supervised learning scenarios [START_REF] Rosenberg | Semi-supervised self-training of object detection models[END_REF]. The training process is the simplest with only one model that plays the role of both teacher and student. In this section, we explore bootstrapping strategy by first investigating the self-training paradigm. We choose to use fine-tuned pre-trained language models (PLMs) as a continuation of the discourse structure extraction study in the previous chapter. Another reason is that the state-of-art discourse relation prediction model is also based on pre-trained BERT [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF]. In the third chapter, we have shown that transfer learning (Section 3.2.2) and weakly-supervised (Section 3.2.3) methods have been applied to structure extraction in discourse parsing, a few showing promising results. But such strategies have not been fully explored in relation prediction. We are, to the best of our knowledge, the first to propose combining self-training with PLMs in discourse relation prediction.

This chapter is organized as follows: in Section 8.1 we present similar classification tasks using a self-training strategy, what are the choice of teacher models, the sample selection criteria, and the design of the learning loop. We also walk through a few studies using supervised methods for relation prediction. Due to the data scarcity issue and heavily unbalanced label distribution (details in Section 8.3), relation prediction remains a difficult and under-explored task. We present our methodology in Section 8.2 where we make a few simplifications on the task and propose a novel sample selection criteria on pseudo-labeled data, with the implementation detail in Section 8.3. We present preliminary results in Section 8.4 and provide analysis in Section 8.5.

Related Work

Discourse relation prediction is no longer a novel task. In the past decades, various relation classification studies have been proposed under different theoretical frameworks: Rhetorical Structure Theory [START_REF] Marcu | Experiments in constructing a corpus of discourse trees[END_REF], Segmented Discourse Representation Theory [START_REF] Asher | Logics of conversation[END_REF], and the Penn Discourse Treebank's framework (Prasad et al., 2008a). Different frameworks bring out various annotation forms and relation inventories, creating even finer strands of relation classification tasks. The well-known ones include explicit connective classification [START_REF] Nie | Dissent: Learning sentence representations from explicit discourse relations[END_REF] and implicit relation identification [START_REF] Rutherford | A systematic study of neural discourse models for implicit discourse relation[END_REF][START_REF] Kim | Implicit discourse relation classification: We need to talk about evaluation[END_REF][START_REF] Xiang | A survey of implicit discourse relation recognition[END_REF], mostly using the PDTB dataset.

For relation prediction in the SDRT framework -precisely with the STAC corpus [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF], there have not been many studies. We discover two systems DisCoDisCo [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF] and DiscRel [START_REF] Varachkina | A unified approach to discourse relation classification in nine languages[END_REF] that have presented results on STAC. Both systems were proposed under the DISRPT shared task1 . The first one, DisCoDisCo, utilized a Transformer-based pre-trained language model as backbones and is further enforced with manually extracted categorical features (such as speaker information, the distance between EDUs). Using fully supervised training, DisCoDisCo archived 59% accuracy with the base version and 65% with feature engineering. The second system DiscRel used sentence embeddings from SBERT [START_REF] Reimers | Making monolingual sentence embeddings multilingual using knowledge distillation[END_REF] to compute Euclidean distance between discourse units, and then applied a Random Forest classifier to predict relation labels. This approach showed better results for Chinese and Spanish discourse datasets but was 11 points behind DisCoDisCo on STAC.

As one of the crucial tasks for discourse parsing, relation prediction only gives its best performance at low 60s, leaving room for further improvement. One possible reason is the data scarcity issue, as discussed in the previous chapter. The most commonly used SDRT-style corpus STAC contains only 45 gaming documents and ≈ 10k EDUs2 , compared to 385 documents and 21.8k discourse units in RST-DT (Carlson et al., 2002a). Further, the number of relation classes is important -RST-DT has 18 coarse-grained relations and STAC 16; the class distribution is also significantly unbalanced. All these factors make relation classification a hard task. Recent studies show that infrequent classes suffer from underfitting in supervised learning [START_REF] Jiang | Training data enrichment for infrequent discourse relations[END_REF][START_REF] Kobayashi | Improving neural rst parsing model with silver agreement subtrees[END_REF], probably the main reason for unsatisfying classification results.

To increase training examples for relation prediction, various semi-supervised and weaklysupervised methods have been proposed. [START_REF] Braud | Combining natural and artificial examples to improve implicit discourse relation identification[END_REF] proposed to combine the natural (human-annotated) and artificial (extraction using heuristic rules) examples in order to improve the implicit relation identification. They tested on a small French corpus ANNODIS (Afantenos et al., 2012a) which contains merely 3000 annotated pairs and showed 4.4 points of improvement on a 4-way classification. Shi et al. (2019) leveraged multi-lingual resources from parallel corpora to augment the numbers of implicit relation pairs. Using back-translation, they acquired more reliable implicit discourse relation instances. Results show promising, but we can not follow their strategy due to the lack of such parallel corpora.

Apart from artificial data creation methods, models can also teach themselves with limited supervision. Self-training, as proposed in [START_REF] Rosenberg | Semi-supervised self-training of object detection models[END_REF]; [START_REF] Lee | Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks[END_REF], is an effective technique for refining models when the gold annotation is limited. It involves incorporating unlabeled data into the training process by assigning them pseudo-labels, which helps to enhance the model's ability to generalize. An extension of self-training is co-training [START_REF] Blum | Combining labeled and unlabeled data with co-training[END_REF], which contains different models and agreement tuning with prediction decisions. Studies on co-trained models have proved to be effective in information retrieval [START_REF] Blum | Combining labeled and unlabeled data with co-training[END_REF] and sentence simplification task [START_REF] Li | Fast and accurate prediction of sentence specificity[END_REF]. In relation prediction, [START_REF] Jiang | Training data enrichment for infrequent discourse relations[END_REF] aimed to improve the infrequent relation prediction. They co-trained two discourse models CODRA [START_REF] Joty | Codra: A novel discriminative framework for rhetorical analysis[END_REF] and Shifit-Reduce parser [START_REF] Ji | Representation learning for text-level discourse parsing[END_REF] and applied a filtering step to select only "high quality" pseudo labels. Results on RST-DT showed considerable improvements for low-frequency relations but require careful tuning for filtering thresholds. Very recently, [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] applied several bootstrapping methods including self-training, co-training, and tri-training for unsupervised discourse domain adaptation. They implemented SOTA discourse parsers and conducted comprehensive comparisons among different bootstrapping strategies. They discovered that the current bottleneck for self-training is the low coverage of accurately predicted pseudo labels, and that self-training enhanced by active learning [START_REF] Settles | Active learning literature survey[END_REF] could be a future solution to this problem.

More recently, studies on PLMs such as BERT (Devlin et al., 2019a), BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF], and GPT [START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF] show strong performance on various NLP tasks, such as document and relation classification (Shi and Demberg, 2019;[START_REF] Meng | Text classification using label names only: A language model self-training approach[END_REF][START_REF] Arslan | A comparison of pre-trained language models for multi-class text classification in the financial domain[END_REF]. These models were pre-trained with hundreds and millions of texts and are capable of producing contextualized word-level or document-level embeddings. These vectors can be used as both the general knowledge source for text understanding and feature representation for classification tasks [START_REF] Meng | Text classification using label names only: A language model self-training approach[END_REF]. In the context of semi-and weaklysupervised learning, PLMs have been used as reliable classifiers to produce pseudo labels. For instance, in text classification, [START_REF] Meng | Text classification using label names only: A language model self-training approach[END_REF] first used PLM to collect high-quality genrespecific words (e.g., economy, sport, business) in the unlabeled corpus, and then retrained itself on this distinctive information. Self-trained LM showed stronger generalization ability than other weakly-supervised models. [START_REF] Yu | Fine-tuning pre-trained language model with weak supervision: A contrastive-regularized self-training approach[END_REF] proposed a contrastive learning framework for finetuning PLMs with weak supervision (semantic rules). They tackled the noise contamination issue in self-training and presented significant improvements in sequence-, token-, and sentence-level classification tasks.

Inspired by the self-training paradigm and the outstanding generalization capacity of pretrained language models, we base our research on the crossroad of self-training and PLMs. To the best of our knowledge, we are the first to propose this combination in discourse relation prediction.

Methods

Problem Formulation and Simplifications

In the context of SDRT-style discourse representation, a document is represented as a Directed Acyclic Graph (DAG), where every vertex is an elementary discourse unit (EDU) -the minimal spans of text -except for the root node, has a single head (one incoming link). Every vertex can have multiple dependents (outgoing links). Every edge in the DAG is typed with a relation. In our experiments, we make two simplifications:

(1) We assume that all the attachments are already given so that we only focus on the relation prediction task. We regard this problem as a multi-class classification problem. In our case, the number of classes is 16. Note that the distribution of classes is unbalanced (details in Section 8.3).

( It is also worth mentioning that discourse structure construction and relation prediction are not necessarily two-stage tasks. In Chapter 3 we have presented methods that jointly learn from both tasks and predict a full discourse structure gradually, such as the work by [START_REF] Chi | Structured dialogue discourse parsing[END_REF]. Our two-stage approach, on the other hand, gives a clearer picture of the performance of each task. We believe that it is beneficial for full discourse parsing.

Self-Training Loop

We illustrate the training loop within Figure 8.1: self-training starts with a single model M trained on a small dataset of gold-standard annotation (X, Y g ) (shown as green database in the Figure ). In our case, the BERT-base model is fine-tuned with 700 relation pairs. The fine-tuned BERT (M) is used to provide pseudo relation labels on large unannotated data in the same domain (X t , Y t p ). Under pre-defined selection criteria, a subset from (X t , Y t p ) is sampled (orange database) and merged with the original 700 pairs to retrain BERT (M t ). At each training round (red dashed arrows), we use the previous model to provide prediction on remaining unannotated data and fine-tune a new BERT model with gold and pseudo-labeled data. BERT is both the teacher and the student for itself.

Classification Module

Our relation classification module has a simple architecture (module "classifier" in Figure 8.1): a base version BERT model is used, and we fine-tune it with gold-standard relation set or the combination of gold and pseudo-labeled so that it outputs 16 relation scores. A softmax layer is employed to give normalized probabilities.

We select BERT, not only because it is the base of the state-of-the-art relation classifier DisCoDisCo [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF], but also because of the Next Sentence Prediction (NSP) pretraining task. Previous studies show that the NSP task is helpful for inference tasks; recent work on discourse [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF]Shi and Demberg, 2019) further confirms its advantage for relation classification. For this reason, our encoding of relation pairs is to fit the NSP pattern in BERT: a [CLS] token starts the pair, followed by the first EDU, a [SEP] marker, and finally the second EDU. We keep speaker information at the beginning of each EDU, but replace the speaker names with markers ("spkn"). As an example, we show a question-answer relation pair from STAC:

[CLS] spk3: anyone need wheat? [SEP] spk2: no thanks This is a similar representation as in Shi and Demberg (2019) where authors encode pair of arguments in PDTB (Prasad et al., 2008a) for implicit relation prediction. [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF] did not encode speaker markers in their BERT-base DisCoDisCo model, we will show in Section 8.4 that our encoding yields better results. In STAC, there is no strict separation of same-participant relations and different-participant relations. But in practice, each relation has its preferred use case: for instance, acknowledgment and question answer pair are common relations among different participants; while explanation happens with the same speaker. By showing speaker information, we expect that the model learns such nuances in its native feature space.

Sample Selection Strategy

When selecting a subset from pseudo-labeled examples (X t , Y t p ), two questions arise: what are the relatively well-predicted examples, and how to assemble them? The first question corresponds to confidence measurement of a prediction model, and the second, selection strategy given the confidence.

Confidence Measurement: When using a pre-trained language model as a relation classifier, the raw output is a list of logit values. By using softmax normalization, we obtain a probability distribution of the given n classes. The predicted class thus goes to the one with the highest probability. Conventionally, we can loosely translate the probability of the winning class as the confidence of such prediction. Recall that in the previous chapter, we utilized PLM's attention matrices as an indication of dependency support among EDUs. While in self-training, we directly interpret the output of PLM as a confidence measure.

A model can be confident about a correct prediction, in which case the model is confident and reliable. On the contrary, the model can also be confident about a wrong prediction, in which case the model is confident but not reliable. The study on the correlation between a model's 8.2. Methods predicted probabilities and the probabilities of correctness is known as the calibration property [START_REF] Jiang | How can we know when language models know? on the calibration of language models for question answering[END_REF]. Much work has been dedicated to the probabilistic calibration of deep neural networks, as in [START_REF] Jiang | Calibrating predictive model estimates to support personalized medicine[END_REF]; [START_REF] Jagannatha | Calibrating structured output predictors for natural language processing[END_REF]; [START_REF] Desai | Calibration of pre-trained transformers[END_REF]; [START_REF] Jiang | How can we know when language models know? on the calibration of language models for question answering[END_REF]. [START_REF] Desai | Calibration of pre-trained transformers[END_REF] found that pre-trained models are generally more accurate and calibrated. They evaluated the posterior calibration of BERT and RoBERTa on the tasks Natural Language Inference, paraphrase detection, and commonsense reasoning. In both in-domain and out-of-domain settings, pre-trained models appear to be more reliable than the baselines.

Interestingly, in the case of multiple teachers bootstrapping (such as co-training and tritraining), the comparison of confidence scores among different models can tell the story of which model is better at handling which predictions [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. In our experiment, we utilize only one model BERT and we regard the normalized output as confidence measure.

Selection Criteria:

With the confidence measurement, a key challenge is how to choose high-confident pseudo-labeled inferences to enhance the initial model. The answer may be more complex than just taking the top confident examples. A simple reason is that highly confident examples tend to be the easiest to predict. If only sample these examples, we manually bring in bias and break the balance of class distribution. The new models will be better and better at certain (easy) classes while worse at other less present (and more difficult) examples. On the other hand, the confidence score is the only source we know about the unknown dataset. There is clearly a trade-off between narrow-but-reliable and large-but-noisy data selection.

Inspired by the work of [START_REF] Steedman | Example selection for bootstrapping statistical parsers[END_REF] and [START_REF] Du | Self-training improves pre-training for natural language understanding[END_REF], we define two selection criteria for sample selection. The first one mainly focuses on the reliability of the chosen data, i.e., data with high confidence; the second one is a combination of reliability and variety, choosing highly confident examples while taking care of class distribution in the new sample: In our experiments, we started k at 800 and tested k with an interval of 1000. This selection process is quite similar to that of [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] where authors proposed to use a percentage threshold of top-ranking examples (called "rank-above-k", with k ∈ [0.0, 1.0]). Our method, on the other hand, hard-code k values. With N = 10k, our proposal in fact corresponds to the 0.1 interval in Nishida's calculation.

(b) Top-class-k: This is a variety-oriented criterion. From the pseudo-labeled dataset, we rank confidence scores and choose a subset that satisfies the same class distribution as in the gold-standard set. For each class, we select the examples with a higher confidence score. This is a compromise between high-confidence and class variety. Note that there is no guarantee that pseudo labels are correct, especially for the ones with lower confidence scores. Nevertheless, we regard this as an approximation to the initial set distribution. The sample class distribution may still be (slightly) different from the initial train set, given that the model could fail (completely) to predict some difficult classes. This issue could be eased when providing more unannotated data.

There are different ways of sample selection. For instance, another common way to select k is to test k at a specific confidence ranges so that one can be certain of taking reliable samples regardless of the size of the selection, as in [START_REF] Braud | Combining natural and artificial examples to improve implicit discourse relation identification[END_REF]. In their case for implicit relation prediction, they tested k ∈ [0.3, 0.85] with an increment of 0.1 until 0. 

Baselines and Evaluation

One unsupervised baseline is the majority class vote. As shown in Table 8.1, the class distribution in STAC is heavily unbalanced, with three majority classes question answer pair, comment, and acknowledgment occupying around half of all relations, where question answer pair alone represents 27% in the test set.

Our baseline model use pre-trained BERT as a classifier ("BERT-clf"). The base architecture is simply BERT with a linear projection and a softmax layer on top of the pooling layer. We do not tune any parameters in BERT in this model. We compare against DisCoDisCo system [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF]: where a BERT-based model is enhanced with hand-crafted features. This system includes a feature vector situated between the [CLS] token and the token in the first EDU. The features are numerical such as the distance between two EDUs and categorical such as same-speaker. In comparison, our system has a different input representation form and we did not apply any feature engineering in the self-training process. To have a direct comparison with DisCoDisCo, we employ accuracy as an evaluation metric for relation prediction. In the analysis section, we show accuracy, recall, and F scores for each relation class.

Implementation Details

In our experiments, we use the uncased base BERT model [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] provided by Huggingface library [START_REF] Wolf | Transformers: State-of-the-art natural language processing[END_REF]. The base BERT model is first trained on the labeled source dataset with the following parameters: the batch size of 2, learning rate at 2e-5, AdamW optimizers with a weight decay rate at 0.01. We fine-tune BERT for a total of 10 epochs and picked the one with the best performance on the validation set. For self-training, we keep the same parameters but give more training epochs: the maximum is set at 20 with early stopping at 5, based on the performance on validation set.

To accommodate instability, we run 5 times fine-tuning with random sample data: for the initial BERT fine-tuning, we choose five groups of labeled examples to retrain BERT; we then keep these examples unchanged and add pseudo labels at the self-training stage. All the training groups are seeded for reproducibility 4 . For evaluation, we report average accuracy scores with the standard deviation.

Results

We assume that self-training is an effective semi-supervised strategy for discourse relation prediction. In this section, we present experimental results to verify our hypothesis. To begin with, we show a few systems of comparison by showing how different data representations influence the final result. We then choose one optimal setting for self-training. In the self-training part, we compare results with two sample selection criteria and show further improvement with iterative loops.

Preliminary Results with Supervised Learning

Systems of Comparison

We have two BERT-base models: BERT classifier ("BERT-clf") and fine-tuned BERT ("BERTft"). At the first stage, we train our models using the same data separation as in DisCoDisCo The basic version in DisCoDisCo gives 59.7 accuracy with ≈ 9k training relations. When adding extra features, the performance increases by 5 points. For our models, we observe a similar gap between the with-and without-speaker input settings both for BERT classifier and fine-tuned BERT, which suggests that the improvement bring by feature engineering in DisCoDisCo largely comes from the speaker information. While our BERT-ft model does not explicitly encode such information, a simple concatenation of speaker markers and the speech turns seems to do the job. Clearly, BERT classifier is not as good as fine-tuned BERT, with an accuracy of ≈ 4 points lower. The performance gap is even more pronounced with fewer training data: with 400 and 700 training pairs, BERT-ft achieves an accuracy of 51 and 57, respectively, while BERT-clf only gives 38 and 40, respectively. Based on such observation, we decide to use BERT-ft and "w speaker" encoding as our principle model (setting 2b) for self-training.

Impact of Training Size

Before diving into self-training results, we show the evolution of prediction accuracy within supervised learning setting. Starting from 700 gold relation pairs (≈ 50 documents), we augment training size by adding 1000 relation pairs gradually. We run 5 groups of randomly chosen train data with BERT-ft, and show the average accuracy and standard deviation in Table 8.3. To our expectation, model performance consistently increases with more gold-standard training data: from 56% to 68%, accompanied by a smaller standard deviation. In a realistic scenario, we assume having ≈ 50 annotated documents, and from this point, we test self-learning with pseudo-labeled data.

Note that the training and validation examples employed here are different from those in Table 8.2, which explains the difference in accuracy scores. In the previous section 8. 4 The results are shown in Table 8.4: the accuracy score of 56.6 in the first row is our starting point -supervised learning results with 700 gold-standard relations (50 documents). The second part presents self-training results. Both selection criteria bring obvious improvement in performance compared to supervised learning: at best 58.2 and 58.1 for top-k and top-class-k respectively. Compared to top-k selection, top-class-k consistently gives gains regardless of the pseudo-labels' size. From +400 point and onwards, self-training over-performs supervised learning. The improvement is stable in a large k range [800, 7800]. As for top-k selection, when k is small (k < 2800), the number and variety of selected pseudo-labeled data are small, resulting in lower accuracy. When k is relaxed, the coverage of different classes of data increases, and the performance hit the highest point at 58.2. After this point, the accuracy slightly decreases, probably due to the noise of pseudo-labeled data.

In general, we observe that both selection strategies improve model performance using pseudolabeled data, which is a positive signal. However, the tuning process of k value requires extra effort. Top-k selection, for instance, only shows its advantage when k is relatively large, while smaller k harms the model fine-tuning. In comparison, top-class-k selection shows more stable performance, probably because it follows the class distribution and proportionally increases training examples. The training process shows that top-class-k selection is less prone to overfitting.

Evolution with Iterative Training

We have shown the effectiveness of self-training in Table 8.4. We now explore the influence of iterative self-training. With a great amount of unlabeled data, the self-training process can be repeated many times: at each loop, k pseudo-labeled examples are selected and combined with previous train examples; we then fine-tune a new BERT model with this larger train set and make a prediction on the test set. We pre-define a stopping criterion at 3 loops following [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] Table 8.5 shows the results. For clarification, at each loop's prediction, some classes do not receive enough prediction, resulting in a smaller k than the theoretical number. We show the 8.5. Analysis actual k values in the table for reference. The best performance is in bold for each setting (+ 800, + 1800, + 2800). We observe that all three settings receive extra gains compared to the first loop, validating the benefits of a larger amount of training data even though they might be noisy. From the actual number of k, we also notice that more distribution-aligned examples have been predicted in the second and third loops than the first one (for instance, in +1800 setting, loop 3 merges with 1768 relations compared to 1686 in the loop 1), indicating the model tend to predict more infrequent classes. This is encouraging, which suggests that with more loops, the coverage (i.e. recall ) of infrequent classes is increasing.

For settings +800 and +2, 800, the best performance comes with the last loop. The setting +1, 800 hits the peak at the second loop. There is no strong evidence showing that the deeper the loop, the better the performance. We assume that there exists a trade-off between the coverage and the precision of the predictions. With more iterations, the model sees more training data and improves its generalization ability. But what comes alone is the risk of noise contamination. The best score comes when coverage and precision reach an optimal point. We investigate more on this point in the analysis part.

At this stage, we confirm the effectiveness of self-training and further prove the benefits of iterative training. Nevertheless, our best score 58.4 is still much lower than the top score in the same training scale in supervised learning (2, 500 examples, 63.4 accuracy). In the next section, we decompose the results into class-wise and try to find the bottleneck for further improvement. We used two selection criteria that prioritize high confidence scores to select pseudo-labeled examples. We examine whether the hypothesis that high confidence in data correlates with accurate predictions holds true. The examples with high-confidence [0.9, 1.0] are well predicted, however, when adding these examples for self-training, model performance is not improved. In order to understand the inner reason, we zoom in on this high-confidence part (light-green circled area) and show the label distribution in Figure 8.3. Classes are ranked according to their proportion in the train set, light orange shows the predicted numbers and dark orange shows the correct prediction. It turns out that question answer relation gets the most credit for the model's high accuracy: more than 60% pseudo-predicted labels are qap with 99% precision. 18% and 10% of the predictions go to the second and third frequent relations comment and acknowledgment, with 80% and 70% of precision. Sadly, all other labels receive very few predictions and most of which are merely false positives. The model is clearly biased.

Analysis

The confidence score tells two sides of a story. It helps us select well-predicted examples but in a biased way. This finding suggests that the bottleneck of the self-training system is the low coverage of pseudo-predictions. To create a less biased training set, we can loosen the confidence threshold and let in more noisy and diverse data. As shown in Table 8.4, the best score (58.2%) in self-training is not achieved with the highest confidence point, but 0.6 (i.e. when k = 5800), which confirms the best k point as in [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] Relations in "middle5" group (Figure 8.5) is composed of question elaboration, result, contrast, explanation, and clarification question. These relations have a frequency less than 10% and higher than 2% in the labeled train set. Bars are more scarce in the plot, with missing bars indicating the complete failure of predicting such a relation. Result for instance, has only been correctly predicted once at a low confidence range k ∈ [0.2, 0.3]. The density of the bars moves more centered compared to that in the "first5" frequent relations, suggesting that the model is less confident to give predictions on these relations. The final group "last6" contains six infrequent relations (Figure 8.6). They are the least present and the most difficult to be sampled. From the figure, we see that parallel, correction, narration, and background are completely missing, while alternative and conditional are predicted only with very low confidence ([0.2, 0.3]).

To answer the question at the beginning of this section, selected examples are not necessarily "reliable" under the "top-class-k" selection criterion. Less frequent relations can be chosen even if they have low confidence scores. By adding these examples into self-training, we hope to give positive reinforcement in re-training process. The models should not only be fed with good-andbiased or noisy-and-diverse examples. How to find a good balance between reliability and variety is another bottleneck in self-training. 

Is Iterative Training a Good Reinforcement?

Results in table 8.5 show increasing accuracy with iterative training and among the different sizes of pseudo-selected labels. Moderate may be the numbers, all the improvements are effective (with t-test p < 0.35 ).

The idea of multi-loop self-training is to improve the model's performance by adding more training examples for the infrequent classes, thus gradually easing the issue of underfitting. We reveal the results by showing the evolution of confusion matrices in Figure 8.7 during three loops. All the models are tested on 1128 STAC test set. We separate the matrix into three zones for a clearer presentation: the blue circled zone is the "first5" high-frequent relations; the pink circled zone are "middle5" group; the green circled zone has the "last6" low-frequent relations. Each model is trained with 1800 more pseudo-labeled examples than the previous one.

A clear observation is that the "last6" (light green circled) zone has some recall improvement with iterative self-training, typically for correction and alternation. In the "middle5" (pick circled) zone, question elaboration, explanation, and clarification question relations also have higher recall and better precision. In the "first5" (blue circled) zone, iterative training does not bring many changes, probably because the model is familiar with these relations and performs well.

Another good signal is that the color beneath the high-frequent classes is becoming lighter with more loops, indicating that the model is not over-fitted with high-frequent labels as we continue self-training. On the other hand, the model keeps miss-predicting narration with continuation, and background by contrast (or result in loop 2).

We have demonstrated that using "top-class-k" selection method, self-training helps to improve infrequent class recall. However interesting, the improvement is not apparent. Will more pseudo-labeled data further boost the augmentation?

Results in Table 8.4 show that when k equals to 5800, self-training result is the best (58% vs 56.6 with source-only model). To investigate the performance for infrequent classes, we visualize the confusion matrices of all models trained with 5, 800 pseudo labels at the first self-training loop (blocks on the right side in Figure 8.8). In comparison, we show the confusion matrix without self-training on the left side. Focusing on the green blocks, we confirm that the improvement for "last6" infrequent classes are more pronounced than that in Figure 8.7, when k = 1800.

Due to the limited size of unlabeled relations (≈ 9300 in total), increasing the k value can no longer guarantee the proportional increase of infrequent classes, but only adding more high-frequent pseudo-labeled relations such as question answer pair and acknowledgment, thus harming the retraining process. A simple and straightforward method is to add more in-domain documents in the unlabeled data pool, a tentative point to test as further work.

Human-in-the-Loop at Rescue?

Until now, we have analyzed the impact of sample selection criteria, the impact of iterative training, and the size of the unlabeled data. We show that when adding more distributionsimilar pseudo labels, the improvement is more pronounced. Another important question is: how accurate are these pseudo-labeled data? If we dispose of some human resources, can human annotation help create more reliable predictions?

In the mind-opening work from [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF], authors show significant improvement (> 6%) in performance when adding actively-labeled data: they sampled 100 documents with the worst confidence scores and provide human annotation. Inspired by their work, we test two hypotheses tailored to our scenario:

(1) Human feedback should not only be given to the least confidence predictions, rather they should be given to a subset that follows a certain label distribution.

(2) Small amount of human feedback is effective in showing significant improvement. By "small", we suggest a few hundred of relations (roughly corresponding to 10 -50 documents in STAC dataset). For the first hypothesis, we investigate 4 ways to inject human annotation. Supposing we have 1800 gold relations, we investigate when giving the most confidence ("top"), the least confident ("bottom"), the equal combination of the most and least confident ("top-bottom"), or the perfect distribution-satisfied ("random") gold examples, which scenario bring the greatest improvement. Results are given in the third section of Table 8.6. For comparison, the first two rows give source-only and self-trained models' performance: 56.6 and 57.3.

When giving corrections to the confident examples, we see very little improvement compared to pure self-training (57.9 vs 57.3), which suggests that "top-ranked" pseudo-labels are already of high precision. When it comes to the least confident examples, we see a big increase (+5 points compared to self-training), aligning with [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. A similar enhancement is also observed in the compromise point with half-confident and half-unconfident examples. When it comes to the easiest selection way -random, the highest performance is achieved (63.4), suggesting that in a pool full of unlabeled data of the same domain, the best strategy for human feedback is by randomly providing annotations. Anecdotal as it seems, this discovery tells that feedback for good prediction and bad prediction is both useful for model improvement.

For the second hypothesis, we include human feedback on the pseudo-labeled examples. Precisely, when the source model makes inferences, we first select a subset using "top-classk" selection strategy, we then manually check and correct the predictions if necessary, to finally incorporate these examples with the original gold-annotated data for retraining. We test different ranges of human annotations, from 200 to 7800 relations pairs. Note that the true benefits come with a small amount of annotation.

Figure 8.9 shows the comparison of self-training (blue line) and self-training with human enforcement (or human-feedback, "HF", orange line) with different sizes of data. We also present supervised learning results for reference (light green line). At small data ranges (i.e. k ∈ [200, 400, 800]), human feedback does not seem to give much influence on self-training. This is mainly because the pseudo-labeled data at this stage are highly accurate. The corrections made are not sufficient enough to tune the models' prediction on small and difficult examples. Starting from 1800, we see an evident increase compared to self-training. The gap between self-training and human-feedback self-training grows wider with more data correction. When k = 5800, selftraining attends its highest point and only goes down afterward while HF continues to improve the performance. We have analyzed previously that at this point, the model is contaminated by too much noise and uneven label distribution. But with human annotation, we can minimize the noise to the greatest extent, so that the model continues to learn accurate information.

Notice that the gap between supervised learning and self-training with HF is decreasing. However, self-training does not surpass full supervision even with heavy human intervention. This is probably because of the pre-defined sample selection process in self-training. By using the confidence measure, we are prioritizing the examples that are more similar to those in the initial train set (that is why they gain high confidence). Models trained with these exampleseven though correctly annotated -, perform less well with unseen data.

To this point, our second hypothesis on "small amount of human feedback is enough" does not hold. Self-training can bring limited improvement, and human effects only start to show strong support with a considerable amount of annotation (> 130 documents with the size of STAC dialogues). On the other hand, [START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF] states that with only 100 actively-labeled documents, they gain at least 6 points compared to pure self-training. We reason that this is mainly due to the different test scenarios: their goal is domain adaptation and the model will benefit more when providing gold annotation in the target domain.

Towards Full Discourse Parsing

System Composition & Results:

Taking one step further, we introduce our full discourse parsing system that performs complete parsing, from EDU segmentation to structure attachment, and finally, relation prediction. The system comprises three modules, as shown in Figure 8.10. Remarkably, we train the system using only 50 documents, with an average of 13 EDUs per document, making it the first semi-supervised discourse parsing system for dialogues.

Let's go through the three modules and present step-by-step performance: The first module, DisCoDisCo [START_REF] Gessler | Discodisco at the disrpt2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF], achieves a F score of 94.8% for EDU segmentation. Next, the predicted EDUs are put into a fine-tuned BART model for structure extraction. This model is finetuned using Sentence Ordering, as described in Section 7. 

Conclusion

In this chapter, we investigate discourse relation prediction task. Following the set-up in 2021 and 2023 DISRPT shared tasks, we treat this problem as multi-class classification problem. We use gold-standard EDU attachments so that every pair has a gold relation. In the SDRT-style parsing approach, the number of relation labels is 16. However, the distribution of these classes is highly uneven, with the top three most common relations, namely, question answer pair, comment, and acknowledgment, accounting for more than half of all the relations. Our relation classifier is a BERT-based model fine-tuned with 700 gold-standard relation pairs. We choose BERT because the Next Sentence Prediction pre-training task has shown beneficial for discourse relation classification. The pipeline is to produce pseudo labels on unannotated data using fine-tuned BERT, and employ sub-sampling to select reliable examples for the next rounds of retraining. We propose to take the high-confident examples in each relation as a way to converse the class diversity. We also investigate iterative training and find that infrequent relation classes benefit particularly from iterations. The overall model performance is better when giving more pseudo-labeled data at each loop. Inspired by active learning in [START_REF] Settles | Active learning literature survey[END_REF], we investigate the combination of self-training with human feedback. Typically, we propose two hypotheses to verify the effectiveness of human-in-the-loop training process. We find that human efforts put on relatively low-confidence examples can help to boost the performance, but only after a certain amount of annotations.

Moving forward, we present a full discourse parsing pipeline in dialogues (Section 8.6), which is the first of its kind. We combine the structure prediction module presented in Chapter 7 and the self-training relation prediction module in Section 8.4. This combination yields a F score of 32.8, which indicates great room for improvement in future research.

For future work, we aim to tackle the relation prediction problem in a larger context by considering the global discourse structure. The current approach is effective for adjacent speech turns, but for long-distance attachment, we need more contextual information. The second step is to investigate joint strategies for both link attachment and relation prediction. As discussed in Chapter 7, tree extraction algorithms such as Eisner are constrained in generating multiincoming edges (recall the "losange" shape). These multi-outgoing and multi-incoming edges often correspond to specific relation types such as "question-answer pair" and "acknowledgment". One potential approach to address this issue is to enhance the structures by incorporating related information. For example, if a relation with high confidence is provided between two EDUs but no attachment is previously made, we could perform post-hoc refinement to add back the attachment. This thesis addresses a crucial and relatively unexplored area in NLP, namely discourse analysis in dialogues, motivated by the pressing need for reliable and versatile discourse parsers and the scarcity of available resources. Our primary objective is to propose effective machine learning techniques, such as improved data representation and feature engineering, and relevant distant and weak supervision signals, to overcome the scarcity of data in discourse analysis. In pursuit of this aim, we formulate two research questions:

RQ1 How can we use discourse information as deployed linguistic features in text classification tasks such as mental disorder illness detection?

RQ2 How can we generate discourse structures with machine learning techniques using less supervision for the greatest applicability in real-life scenarios? which we have subsequently answered in part II and III of this thesis. Let us revisit the diagram presented in Chapter 1, where we address each research question with two projects. In the following, we provide a brief overview of these projects in Section 9.1; we discuss their limitations and suggest possible future improvements in Section 9.2. Dealing with actual data and large pre-trained language models can raise ethical concerns, which we address in Section 9.3.

Presented Results

Discourse Structure Discovery

In Part II, we provide a response to the first research question (RQ1) that concerns the incorporation of structural information in text classification tasks. The task of identifying cognitive impairment presents a realistic challenge where the issues of lexical biases and data scarcity are prevalent. These challenges do not have any established solutions, and we believe that our efforts towards answering RQ1 highlight the significance of exploring higher-level, less languagedependent features to create robust systems and derive more universal conclusions from conversational data.

Schizophrenia Language Identification: The aim of this project is to investigate linguistic markers related to schizophrenia through feature exploration using a classification system. The study focuses on spontaneous dialogues in French [START_REF] Rebuschi | Using SDRT to analyze pathological conversations. Logicality, rationality and pragmatic deviances[END_REF] and proposes two methods to address the issue of data sparsity. The first method involves exploring different levels of feature engineering, including lexical (bag-of-words), syntactic (POS tagging), and discourse (Backchannel response, Open Class Repairs, connectives) features. The second method involves modeling dialogues by restricting analysis to patients' speech turns and testing various context windows to improve data representation. The study compares several classification algorithms and finds that Naive Bayes performs well with lexical counts, while SVM and LR are better suited for scarce data and high-dimensional features. The analysis reveals that patients tend to voluntarily discuss their illness and treatment, resulting in disease-related topics, which heavily biases the lexicon. Delexicalized models, which emphasize morpho-syntactic information and high-level discourse features, are more generalizable. The study also uncovers interesting findings related to the characteristics of schizophrenia patients, such as their use of more verbal and adverbial phrases and less phatic expressions, which is consistent with previous studies.

Depression Detection:

The first project is limited in its ability to model interactions. To address this issue, we undertake a second project that investigates the hierarchical structure of discourse in dialogues and its potential for depression detection. To mitigate the issue of sparse data, we draw inspiration from the Multi-Task Learning (MTL) framework and learn features jointly from multiple related tasks. We consider three auxiliary tasks: emotion classification, dialogue act, and topic classification, to explore how shallow information about dialogue structure can enhance performance. We adopt a classic hard-parameter sharing architecture, which is simpler than the shared-private architecture used in [START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF] but has proven effective. To incorporate dialogue organization, we propose a dialogue-specific hierarchical architecture, where two tasks (emotion and dialogue act classification) are performed at the speech turn level,

Presented Results

while two others (depression detection and topic classification) are performed at the document level. We observe significant improvements when adding each task separately. Jointly learning all four tasks results in an improvement in all metrics (F score +27 points). Our ablation studies show that emotion and depression detection mutually benefit each other. The positive results for shallow markers, such as dialogue acts and topics, also indicate their relevance to the dialogue structure.

Discourse Structure Prediction

In part III, we aim to answer the second research question (RQ2) on generating full discourse structures in practical settings. Our work highlights the potential of the PLMs for both structure extraction and relation prediction tasks. PLMs exhibit excellent generalization abilities, and we demonstrate that with tailored fine-tuning tasks such as Sentence Ordering, we can improve the encoding of structural information in dialogues. Although the full parsing results presented in Chapter 8 are only 32.8, which is far from ideal, they represent a precious first step towards developing general full discourse parsers. Our proposed pipeline is, to the best of our knowledge, the first attempt to address this challenging task in the context of dialogue settings.

Structure Extraction from PLMs: The third project focuses on the extraction of discourse structure, particularly within the Segmented Discourse Representation Theory (SDRT) [START_REF] Asher | Logics of conversation[END_REF], which is commonly used in dialogue settings. The project pioneers the use of semi-supervised and unsupervised methods to address data scarcity issues in dialogues and extract discourse information from pre-trained language models (PLMs). We examine the robustness and locality of discourse structures in PLMs by analyzing the captured information across self-attention heads and diverse fine-tuning tasks. Choosing the best attention head is a critical issue when using PLMs to extract document-level discourse information. Experimental results on the STAC corpus [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] show that unsupervised and semi-supervised methods outperform a strong baseline (F 1 56.8%), delivering substantial gains on the complete dataset (F 1 59.3%) and further improvements on the tree-structured subset (F 1 68.1%). Qualitative analysis of inferred structures reveals that our model successfully predicts more than 82% of projective arcs, some of which span across four EDUs. This is encouraging, suggesting that our approach is capable of extracting reasonable discourse structures with minimal supervision.

Relation Prediction with Self-Training:

The final project involves the second phase of discourse parsing, which is relation prediction. This work builds on the structure extraction project and focuses on leveraging pre-trained language models (PLMs) through self-training. We examine various techniques for selecting pseudo-labeled data, and find that selecting samples based solely on confidence scores is not sufficient. While self-training can enhance model performance, the improvement is modest (around 1 point). The key challenge of self-training lies in generating precise and diverse pseudo labels. To overcome this limitation, we investigate the potential of a "human-in-the-loop" strategy by providing gold annotation for uncertain examples with low-confidence scores. Our findings suggest that human efforts can be beneficial, but require a considerable amount of annotation. However, in practical settings, it can be difficult to obtain such extensive supervision.

Limitations & Perspectives

In Part II, we use conversations involving patients with mental disorders in order to learn language features associated with the disease. Our experiments replicate performances as high as previous studies in English [START_REF] Mitchell | Quantifying the language of schizophrenia in social media[END_REF][START_REF] Kayi | Predictive linguistic features of schizophrenia[END_REF][START_REF] Allende-Cid | A machine learning approach for the automatic classification of schizophrenic discourse[END_REF] for Schizophrenia identification, and surpass the previous SOTA models in depression detection [START_REF] Mallol-Ragolta | A hierarchical attention network-based approach for depression detection from transcribed clinical interviews[END_REF][START_REF] Xezonaki | Affective conditioning on hierarchical attention networks applied to depression detection from transcribed clinical interviews[END_REF].

Although the results are promising, there is still room for improvement. One of the challenges in studying language in Schizophrenia is the lack of interaction. In our preliminary studies, instead of using the speech of patients and controls for classification, we use psychologists' speech turn. However, psychologists tend to adapt their way of speaking when interacting with different participants, making it a potential source of bias. To avoid introducing further biases, we do not include psychologists' speech in model training, and our classification models only capture local contexts, which is not the best approach for modeling dialogue data. To address this limitation, neural networks could be used instead of classic probabilistic models. Special markers could be used to indicate the beginning and end of speech turns of different participants, thus considering a complete multi-speaker interaction.

To mitigate the bias while keeping the interaction, one possibility is to use adversarial learning within a neural model. In adversarial learning, an adversarial model is trained to maximize a loss function that is opposite to the original model's loss function. By introducing this adversarial component, the original model is forced to learn more generalizable features that are less susceptible to bias (Zhang et al., 2018a). We can draw inspiration from the work that tackles gender bias, as in [START_REF] Bordia | Identifying and reducing gender bias in word-level language models[END_REF]; [START_REF] Liu | Mitigating gender bias for neural dialogue generation with adversarial learning[END_REF]. One potential solution could involve developing a component model that can distinguish whether the psychologist is communicating with a patient or not. By doing so, we can preserve the interaction while reducing the influence of any bias introduced by the psychologist's speech.

However exciting, there are some practical difficulties in implementing this idea. Firstly, the size of the corpus is a concern since our target dataset is extremely small, consisting of only 41 documents with an average length of approximately 260 speech turns [START_REF] Rebuschi | Using SDRT to analyze pathological conversations. Logicality, rationality and pragmatic deviances[END_REF]. Due to the lack of data, it is unlikely that the model can efficiently learn and converge, which could result in either overfitting or underfitting. Additionally, the opaque decision-making process of deep neural models [START_REF] Iyer | Transparency and explanation in deep reinforcement learning neural networks[END_REF] presents another challenge, which could require more effort to interpret the results. While recent techniques have proposed various methods for interpretability [START_REF] Linardatos | Explainable ai: A review of machine learning interpretability methods[END_REF], there is yet no consistent and credible approach.

Our second project focuses on depression detection and aims to address the interaction issue by using a hierarchical bi-LSTM model. The model first encodes each sentence and then captures interactions among sentences. This approach is made possible by the neutral data collection process in the DAIC-WOZ dataset [START_REF] Devault | Simsensei kiosk: A virtual human interviewer for healthcare decision support[END_REF], where participants speak to an animated virtual interviewer using standardized questions. This dataset contains a larger number of documents (189) compared to our previous project on language in Schizophrenia, allowing for better training of the model. By using a hierarchical structure, we are able to demonstrate the correlation between depression and emotion and show the relevance of features such as dialogue acts and topics. However, our approach to modeling dialogue structure is over-simplified, relying solely on dialogue act prediction. In the auxiliary dataset DailyDialog [START_REF] Li | Dailydialog: A manually labelled multi-turn dialogue dataset[END_REF], dialogue acts are annotated into four broad categories, namely inform, questions, directives, and commissives. Although we expect the model to learn the bi-turn dialogue flow, such as questions-inform and directives-commissives, to partially reflect the structure of a document, these flows are in-sufficient to reflect the true discourse structure due to the coarse granularity of the dialogue act annotations.

One possibility to incorporate structure information is to explore more detailed methods of modeling dialogue structures, potentially relying on discourse parsing. However, this approach poses a direct challenge due to the lack of general and robust discourse parsers. Parsers that are pre-trained on STAC corpus, such as Deep sequential [START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] and Structural-joint [START_REF] Chi | Structured dialogue discourse parsing[END_REF], have limitations in vocabulary and require careful domain adaptation strategies to be applied to other domains [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF]. Another challenge is designing a sub-task that can learn discourse structure. Discourse parsing is a complex task that involves EDU attachment and relation prediction. Incorporating such complex procedures into multi-task learning directly may be difficult. Surrogate tasks such as EDU attachment prediction could be considered, where the model predicts whether a pair of EDUs should be linked together.

We are interested in investigating the task of classifying depression severity as an extension to binary classification. A potential approach to achieve this is through a cascading structure, where the model first detects depression and subsequently performs severity classification. Cascading methods have not been extensively utilized in the mental disorder field, and we can take cues from the application of these methods in sentiment analysis on Twitter, as seen in [START_REF] Calvo | Cascading classifiers for twitter sentiment analysis with emotion lexicons[END_REF]. To ensure the robustness of our proposed method, we plan to refine our work and evaluate it using cross-validation splits of the data. This is particularly important as our dataset is scarce and may suffer from issues of representativeness. A further step will be to investigate the generalization of our model to other mental health disorders, hopefully with better structure modeling.

In Part III, while we show promising initial results on the ability to capture valid discourse structures from semi-supervised and self-training methods, the performance of our proposed methods is still limited, especially compared to fully supervised systems on the intra-domain parsing models: for link attachment 59% versus 74%; for full parsing 33 versus 59 [START_REF] Chi | Structured dialogue discourse parsing[END_REF], calling for further improvements.

There are several unanswered questions that require further investigation in our future work. The first one pertains to enhancing the extracted discourse structure so that it aligns better with the SDRT-style graphs. In Chapter 7, we mainly focus on generating projective tree structures, which is consistent with previous studies [START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF][START_REF] Afantenos | Discourse parsing for multi-party chat dialogues[END_REF]. This approach covers the majority of the links (≈ 94%) and can serve as a foundation for accurately inferring the remaining non-projective links in future work. In Section 7.8, we experiment with extending tree-like structures to graph-like structures by utilizing the "growing tree" strategy to add edges to the established tree structure. The improvement, however, is modest, increasing the F score by only one point. An alternative approach would be to re-implement the Integer Linear Programming methods presented in [START_REF] Perret | Integer linear programming for discourse parsing[END_REF] but with pre-trained language models as backbones.

The second open question concerns the two-step approach employed for discourse parsing, which is addressed separately in Chapter 7 and Chapter 8. Our current approach involves link attachment and subsequent relation prediction, but it is susceptible to error propagation. On the other hand, joint models for discourse parsing are not uncommon in the literature. For instance, in RST-style parsing, the CODRA framework [START_REF] Joty | Codra: A novel discriminative framework for rhetorical analysis[END_REF] integrates the structure and label of a discourse tree constituent jointly in probabilistic discriminative parsing models (Conditional Random Fields). [START_REF] Feng | Text-level discourse parsing with rich linguistic features[END_REF] confirm that considering sequential dependencies improve the performance of the discourse parser. In Chapter 7, we discuss the limitations of tree extraction algorithms like Eisner, which are unable to produce multi-incoming edges and, therefore, cannot capture structures like the losange shape. While it is challenging to predict such structures based on their structural properties alone, multi-outgoing and multi-incoming edges are often associated with specific relations like Question-answer pair and Acknowledgment. In this case, a simple proposition of the joint model is to augment the discourse structures with additional information. For instance, if a high-confidence relation is identified between two EDUs that have not been attached, we could perform post-hoc refinement and add the missing attachment back into the structure.

Thirdly, after showing all the synergistic downstream applications in Section 3.3, there is significant potential to apply our discourse parsers to new domains and apply them to other tasks. In automatic generation tasks, structural document-level representations of semantic relations have shown benefits in aiding abstractive dialogue summarization, as in [START_REF] Chen | Structure-aware abstractive conversation summarization via discourse and action graphs[END_REF]. Given that discourse annotated corpora in English are limited to a few domains, mainly gaming [START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] and online technical forum chats [START_REF] Li | Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure[END_REF], our semisupervised approaches are currently the most effective resources to produce discourse structures for raw documents.

Finally, since we work with large language models and investigate every single attention head in structure extraction experiments, computational efficiency is a concern. We conduct experiments on a machine with 4 GPUs. For structure extraction, the calculation for one discourse tree on one head costs approximately 0.75 seconds (in STAC the averaged dialogue length is 11 EDUs), which quickly sums up to 4.5 hours with only 100 data points for all the candidate trees in one language model (192 in BART). When dealing with much longer documents, for example, AMI [START_REF] Carletta | The ami meeting corpus: A pre-announcement[END_REF] and conversational section in GUM (in average > 200 utterances/dialogue) [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF], our estimation shows that one dialogue takes up to ≈ 2 minutes, which means 6.5 hours for 192 candidate trees. Even though we use parallel computation, the exhaustive "head" computation results in a tremendous increase in time and running storage. If we would like to conduct similar experiments with long documents, the exhaustive research process should be optimized. One possibility is to investigate only those "discourse-rich" heads, mainly in the deeper layers, for future work.

Ethical Considerations

Given the sensitive nature of some of our experiments, involving cognitive impairment detection tasks and the utilization of large pre-trained language models, we find it essential to discuss the ethical implications of our work.

In the experiments regarding cognitive impairments detection (Chapter 4, 5), we claim that the goal of automatic systems is NOT to replace human healthcare providers. All these systems may be used only in support of human decisions. The principle of leaving the decision to the machine would imply major risks for decision-making in the health field, a mistake that in high-stakes healthcare settings could prove detrimental or even dangerous. Another issue is the representativeness of the data. Currently, it is very complex to access patients in order to have more examples. The institutional complexity leads researchers to systematically use the same data set, creating a bias between the representation of the pathology, in particular for mental ones whose expression can take very varied forms. This also implies defining a variation in relation to a normative use of language that comes with a strong risk in this type of approach.

As for the discourse parsing tasks (Chapter 7, 8), since we are investigating the nature of the discourse structures captured in large PLMs, our work can be seen as making these models 9.3. Ethical Considerations more transparent. This will hopefully contribute to avoiding unintended negative effects when the growing number of NLP applications relying on PLMs are deployed in practical settings.

On the resource level, we carefully select the dialogue corpora to control for potential biases, hate speech, and inappropriate language by using human-annotated corpora and professionally curated resources. We only work with interview transcription, with no audio or visual information. Further, we consider the privacy of dialogue partners in the selected datasets by replacing names with generic user tokens.

In terms of the environmental cost, the experiments described in [START_REF] Li | Discourse structure extraction from pre-trained and fine-tuned language models in dialogues[END_REF] make use of Nvidia RTX 2080 Ti GPUs for tree extraction and Nvidia A100 GPUs for BART fine-tuning. We use up to 4 GPUs for the parallel computation. The experiments on structure extraction take up to 1.2 hours for one language model, and we test a dozen models. In the relation prediction experiments with self-training, we use 2 GPUs for the parallel computation on Nvidia A100 for a cumulative 80 hours. We note that while our work is based on exhaustive research on all the attention heads and parameter tuning in PLMs to obtain valuable insights, future work will able to focus more on discourse-rich heads, which can help to avoid the quadratic growth of computation time for longer documents. 
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  gwfs: [so how do people know about the league?] 1 170 lj: [i did the trials] 2 174 tk: [i know about it from my gf] 3 175 gwfs: [yeah me too,] 4 176 tk: [did not do the trials] 5 178 gwfs: [i did them] 6a [because a friend did] 6b

1. 1 .

 1 Figure 1.1: On the left: SDRT-style discourse structure of example (1). Circles are EDUs. Speakers are distinguished using various colors. Arrows indicate link attachment (from head to dependent) between EDUs. Attachments are typed with rhetorical relations. "qap": QA pair.

Figure 1 . 2 :

 12 Figure 1.2: On the left: RST tree representation of a text example extracted from Wall Street Journal (wsj_1146 ). From bottom to top, adjacent EDUs are combined into intermediate DUs. "S": satellite; "N": nucleus.

Figure 1 . 3 :

 13 Figure 1.3: Thesis projects overview.

( 1 )

 1 [But he added:] 1 ["Some people use the purchasers' index as a leading indicator,] 2 [some use it as a coincident indicator.] 3 [But the thing it's supposed to measure] 4 [-manufacturing strength -] 5 [is missed altogether last month."] 6

  2 and EDU 3 since the two EDUs provide different opinions on "what is the purchasers' index". Between the two larger DUs (EDU 2 -EDU 3 and EDU 4 -EDU 5 ), a contrast relation can also be established. The result of relation attachment is an RST-style labeled tree, as shown in Figure 2.1.

Figure 2 . 1 :

 21 Figure 2.1: Discourse relation of a two-sentence example in RST, from Joty et al. (2015).
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 22 Figure 2.2: The generic RST schema.
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 23 Figure 2.3: Five schema types in RST.
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 24 Figure 2.4: A RST diagram of a (partial) advocacy test, from Mann (1984).

( 12 )

 12 a. A man walked in. b. He ordered a beer.

  )f to (17)a-d is odd as well. DRT does not predict these. It obviously over-generates anaphoric phenomena. (17) a. π 1 : John had a great evening last night. b. π 2 : He had a fantastic meal. c. π 3 : He ate salmon. d. π 4 : He devoured lots of cheese. e. π 5 : He won a dancing competition. f. * It was a beautiful pink.

Figure 2 . 5 :

 25 Figure 2.5: Rhetorical representation of example (17).

Figure 2 . 6 :

 26 Figure 2.6: Similar documents in the same cluster. Circled EDUs are different. In red: inconsistent discourse arcs; in blue: inconsistent rhetorical relation.
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 27 Figure 2.7: General pattern of disfluency, in Ginzburg et al. (2014).

(

  31) a. { I mean } [[ I, + I, ] + [ there are a lot, + there are so many ]] different songs. b. [ We were + I was ] lucky too that I only have one brother.

  ve access to it now ARG2 Filler words example from[START_REF] Rehbein | Annotating discourse relations in spoken language: A comparison of the pdtb and ccr frameworks[END_REF].

  Figure 2.8.
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 28 Figure 2.8: Diamond -shaped discourse structure from STAC corpus.

Figure 2 . 9 :

 29 Figure 2.9: Conversation entanglement example, adapted from an online chat in Kummerfeld et al. (2019). Sub-conversations have different colors.

( 33 )A 3 :B 4 :A 5 :B 6 :

 333456 A 1 : Bon. je sais donc euh je vous rappelle le but. c'est vraiment d'aider au diagnostic et à la prise en charge psychothérapeutique. [Well, I know euh, so I'll remind you of the goal. It's really to help in the diagnosis and in the psychotherapeutic management.] B 2 : Ouais. [yeah.] Donc euh / donc voilà. c'est euh / c'est très gentil de / de vous y préter déjà. [So euh / so yeah. It's euh / it's very kind of you to / to take care of it already.] Mmh mmh. [Hum mmh.] Et euh... vous voudriez parler de quoi. [And euh... what would you like to talk about.] Je sais pas. [I don't know.] Backchannel responses example in Li et al. (2021a)

Figure 2 .

 2 Figure 2.10: SDRT-structure of dialogue example (34).
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 31 Figure 3.1: RST tree structure (left) for an example extracted from Wall Street Journal (wsj_1146 ) (right).
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 32 Figure 3.2: SDRT graph structure (left) for a dialogue example (right) from STAC corpus.
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 33 Figure 3.3: Contextual joint encoding process in[START_REF] Chi | Structured dialogue discourse parsing[END_REF]. Orange rows mean the 1 st utterance can connect to later utterances to choose which one is the child; green columns mean the 4 th utterance can have one previous utterance as its parent. V r and V c are concatenated together and pass through a linear transformation to obtain the purple vector θ.
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 34 Figure 3.4: Example of the constituent tree for a strongly negative review in Yelp'13 corpus (Tang et al., 2015), from Huber and Carenini (2019). This review contains 8 EDUs: [Panera bread wannabes.] 1 [Food was okay and coffee] 2 [was eh.] 3 [Not large portions for the price.] 4 [The free chocolate chip cookie was a nice touch] 5 [and the orange scone was good.] 6 [Broccoli cheddar soup was pretty good.] 7 [I would not come back.] 8

  .5. In different bootstrapping methods, teacher and student may refer to the same or different models. The authors compared four methods: (1) Self-Training (ST): teacher and student are the same model; (2) Co-Training (CT): two models play different roles and switch; (3) Tri-Training (TT): two teachers and one student are involved, where the latter learns from both and uses an agreed ratio to decide whether to include the teacher's prediction; (4) Asymmetric Tri-Training (AT): a domain-specific model is only used for inference, and the other two are only for pseudo-label generation.
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 35 Figure 3.5: Overview of a bootstrapping system for unsupervised domain adaptation in discourse parsing, from Nishida and Matsumoto (2022).
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 36 Figure 3.6: Illustration of different levels of granularity during right-branching for an RST-tree, from Kobayashi et al. (2019): (a) doc-2-EDU (D2E ); (b) doc-2-sent-2-EDU (D2S2E ); (3) doc-2parag-2-sent-2-EDU (D2P2S2E ). This document contains 2 paragraphs, 4 sentences, and 10 EDUs.
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 37 Figure 3.7: Tree structure from RST parser and the process of tree aggregation with RNN in Ji and Smith (2017). RST constituent tree is converted into a dependency tree. A, B, C, D, E, and F are EDUs. The original text is: [Although the food was amazing] A [and I was in love with the spicy pork burrito,] B [the service was really awful.] C [We watched our waiter serve himself many drinks.] D [He kept running into the bathroom] E [instead of grabbing our bill.] F
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 41 Figure 4.1: Examples of two forms of 3-treelet, adapted from Johannsen et al. (2015). The left treelet has one head and two dependents. The right treelet has a chain of dependencies.

  now you are going to a workshop hum, what is it? SCZ: Yes, so I went to a therapeutic workshop... what do they call it... PSY: Therapeutic education... right (37) Psychologist -Control PSY: What do you want to do after? CON: Uh I would like to do the master of psychopathy of the cognition and the interactions. PSY: Mmh mmh.

3 .

 3 The terms linked to the condition are in top ranks for Schizophrenia (maladie [disease], traitement [treatment], médecin [doctor] ), while terms related to studies (licence [bachelor], thèse [PhD] ) and social life (vacances [holidays], monde [world / people] ) are correlated with controls, as shown in Table

  adj→advcl→verb←nsubj←pron 0.47 verb→expl→noun→case→adp -0.36 Table4.10: Typical syntactic features in Schizophrenia and control groups (p-value < 0.05 for 2-tokens and 3-tokens).
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 42 Figure 4.2: Accuracy of BC and the combination with other features in different context windows. OCR = Open Class Repair, BC = Backchannel response, Conn = connectives. Indiv., Full, and W-n are context window size.

( 40 )

 40 Informative BC employed in SCZ group je comprends [I understand] -bien sûr [of course] -exactement [exactly] (41) Informative BC employed in control group ah, ok, hum-hum

Figure 4 . 3 :

 43 Figure 4.3: Accuracy of the combinations of connectives with syntactic features. ConnD = connectives disambiguated. Indiv., Full, and W-n are context window size.
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 44 Figure 4.4: Correlation of disambiguated connectives in two groups. Positive ρ values stands for Schizophrenia class and negative for control class. The color of each point indicate its p-value: green has p < 0.01, yellow has 0.01 < p < 0.05, red has p > 0.05. For readability, we only present the most representative connectives for both parties (|ρ| > 0.2). Other connectives within the gap are omitted in this plot. Connectives and the translation (from left to right): ou [or], du-coup [therefore], mais [but], tantqu' [so-that], sans [without], finalement [finally], en-attendant [while-waiting], en-gros [roughly], au-moins [at least], qu'en [in], ensuite [then], dès-qu' [as soon as], ou-alors [or], notamment [in particular], jusqu'au [until], malheureusement [unfortunately], une-fois que [once that], simplement [simply], bien-que [although], autrement [otherwise], comme-quoi [as what], bref [in short], comme-pour [as for], depuis [since], et-puis [and then], maintenant-que [now that], en-fait [in fact], quand [when], maintenant [now].
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 45 Figure 4.5: Accuracy scores in terms of different feature selection thresholds on lexical features bow, n-gram, syntactic feature treelet, and their combinations.
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 51 Figure 5.1: Three Multi-Task Learning architectures, from Liu et al. (2017). m and n are different tasks.
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 52 Figure 5.2: Baseline two-level recurrent network. Turn-level utilizes bi-LSTM network and document-level utilizes a RNN network. Adapted from Cerisara et al. (2018).
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 53 Figure 5.3: Multi-task fully shared hierarchical structure. Flow in light blue stands for depression prediction task (DAIC dataset); flow in orange represents auxiliary tasks: emotion, dialogue act, and topic prediction (Dailydialog dataset). The information flow inside RNN and LSTM networks are simplified for better readability.
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 354 Figure 5.4: Left: the setting of Wizard-of-Oz interview where a participant talks to Ellie, the virtual interview who is actually controlled by two humans. Right: An excerpt from a WoZ interview[START_REF] Gratch | The distress analysis interview corpus of human and computer interviews[END_REF]. "Part": participant.
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 55 Figure 5.5: Statistics of emotion class distribution in five ERC datasets, from Poria et al. (2019).

  ; Haque et al. (2018); Al Hanai et al. (2018); Dinkel et al. (2019); Qureshi et al. (2020) who only report on the development set.
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 56 Figure 5.6: Class-wise emotion performance in single-task (ST) and multi-task (MT) settings. "phq": PHQ-8 score, used to indicate depression.

  , BART Lewis et al. (2020), and the GPT family Radford et al. (2019); Brown et al. (2020) have become increasingly popular and have been applied to various NLP tasks. The popularity of these large models has spawned a subfield of research called "BERTology", which seeks to understand what implicit representations are learned by these models. Previous studies reveal that LMs capture certain aspects of language dependency, such as subject-verb agreement Goldberg (2019); Jawahar et al. (2019) and syntactic dependency Tenney et al. (

Figure 6 . 1 :

 61 Figure 6.1: A schematic comparison between BERT, GPT, and BART. Adapted from Lewis et al. (2020). (a) BERT utilizes only bidirectional encoder networks; (b) GPT is composed of autoregressive (uni-directional) decoder networks; (c) BART contains both bidirectional encoder and autoregressive decoder.

Figure 6 . 2 :

 62 Figure 6.2: The comparison of MLM, TLM, and CLM pre-training objectives, adapted from Conneau and Lample (2019). α are attention weights. In (b) TLM, French tokens are italicized.

Figure 7 . 1 :

 71 Figure 7.1: Pipeline for discourse structure extraction.

≈ 6

 6 EDUs per block: |utt.| < 12 : b = 2, |utt.| ∈ [12, 22] : b = 3, |utt.| ∈ [22, 33] : b = 4, |utt.| ≥ 33 : n = 5.

Figure 7 . 2 :

 72 Figure 7.2: Sentence Ordering shuffling strategies (from left to right: partial, minimal-pair, block, speaker-turn) on a sequence of utterances 1 to 6, with A, B, C as the speakers.

Figure 7 . 3 :

 73 Figure 7.3: An illustration of dependency tree extraction from attention matrix. e n are EDUs; k n are sub-word tokens in corresponding EDUs; A k is a token-level attention matrix; A e is an EDUlevel attention matrix; e i e j is the attention score between EDUs e i and e j . Only the upper-right part of the attention matrix (in blue) is utilized for MST calculation.

Figure 7 . 4 :

 74 Figure 7.4: An illustration of DAS calculation. Head 9-7 and head 1-1 are two example heads.

Figure 7 . 5 :

 75 Figure 7.5: Heatmaps: DAS score matrices (layers: top to bottom=12 to 1, heads: left to right=1 to 16) for BART, BART+SO-DD, BART+SO-STAC. Darker purple=higher DAS score. Boxplot: Head-aggregated UAS scores for model BART (orange), BART+SO-DD (green), and BART+SO-STAC (red). Light green=head with highest UAS. Yellow=head with the highest DAS score.

Figure 7 . 6 :

 76 Figure 7.6: Left: UAS and arcs' distance. x axis: arc distance. Right: averaged UAS for different lengths of documents. x axis: #EDUs in a document. y axis: UAS.

Figure 7 . 7 :

 77 Figure 7.7: Comparison of recall (left) and precision (right) of indirect (top) and direct (bottom) links in LAST baseline and SO fine-tuned models on STAC.

Figure 7 . 8 :

 78 Figure 7.8: Recall and precision metrics in whole test set (darker color) vs. projective tree subset (brighter color), with BART model.

Figure 7 . 9 :

 79 Figure 7.9: Recall and precision metrics in whole test set (darker color) vs. projective tree subset (brighter color), with BART+SO-DD model.

Figure 7 .

 7 Figure 7.10: Recall and precision metrics in whole test set (darker color) vs. projective tree subset (brighter color), with model BART+SO-STAC.

Figure 7 . 11 :

 711 Figure 7.11: Well predicted example: pilot02-4. UAS: 90%. In red: FP arcs; in blue: FN arcs. [e 1 ] Cat: anyone would give me clay? [e 2 ] Thomas: none here [e 3 ] william: no [e 4 ] Cat: I have one wood to exchange [e 5 ] Cat: any takers? [e 6 ] william: no [e 7 ] Cat: for sheep, wheat or clary [e 8 ] Thomas: can I buy a sheep for two ore? [e 9 ] william: have none [e 10 ] Thomas: kk [e 11 ] Cat: no sheep
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Figure 7 .

 7 Figure 7.16: Random example: s2-league4-game2. UAS: 53.9%. [e 1 ] ztime: 7!!!! [e 2 ] somdechn: Yeah right... [e 3 ] ztime: what... is this a fix? [e 4 ] Shawnus: hahaha [e 5 ] ztime: ok anyone want wheat? [e 6 ] Shawnus: nope [e 7 ] Shawnus: just someone to roll 9's.. [e 8 ] somdechn: Yes [e 9 ] somdechn: I can give you wood. [e 10 ] ztime: was that yes to a trade somdech? [e 11 ] ztime: OK.. cool.. for 1 wheat? [e 12 ] somdechn: and an ore.. :) [e 13 ] ztime: err.. don't have ore.. [e 14 ] ztime: thanks..

Figure 7 . 17 :

 717 Figure 7.17: Random example: s1-league3-game3. UAS: 50%. [e 1 ] nareik15: anyone have wood to trade. I have sheep [e 2 ] yiin: no [e 3 ] Gaeilgeoir: Sorry, [e 4 ] Gaeilgeoir: I need wood too [e 5 ] Gaeilgeoir: I have wheat [e 6 ] Gaeilgeoir: if you want [e 7 ] inca: do you have wheat kieran? [e 8 ] inca: if so [e 9 ] inca: i can trade wood [e 10 ] nareik15: sorry, [e 11 ] nareik15: plenty of sheep though :)

  , authors used 900 training instances and experimented over 5 runs. They obtained an F score of 94.9. Precision: DISRPT shared task employs the original STAC version (45 long documents), as in https://www.irit.fr/STAC/corpus.html. In our experiments, we use the shi2019 version, where 45 long documents have been divided into 1160 sub-documents, as in https://github.com/shizhouxing/DialogueDiscourseParsing. The splits of training and testing in DISRPT and shi2019 version are different. We are cautious in choosing the random training examples.

Figure 7 .

 7 Figure 7.18: A document with 5 speech turns and 6 EDUs. For simplification, we use labels s and EDU instead of texts.

( 2 )

 2 Distance (D): Distance between two EDUs (normalized by the total count of EDUs).

( 3 )

 3 Relation type (R): Probabilities of predicted relation types using the DisCoDisCo model (Gessler et al., 2021), pre-trained with 50 dialogues in the validation set. (4) Document length (L): Total number of EDUs.

Figure 7 . 19 :

 719 Figure 7.19: Extension to graph structure by adding extra edges.

  Formally, given a document D represented as n non-overlapping sequential EDUs and the established attachments: {(h, d) | 0 ≤ h ≤ n, 0 ≤ d ≤ n}, where h represents the head and d the 8.2. Methods dependent, our goal is to predict a relation r to every linked pair (h, d): Y = {r | (h, d), 0 ≤ h ≤ n, 0 ≤ d ≤ n, r ∈ R}, where R is the inventory of relations in SDRT.

Figure 8 . 1 :

 81 Figure 8.1: An overview of our relation prediction pipeline with self-training. Green solid arrows show initial training and pseudo-labeling. Red dashed arrows indicate iterative training with the combination of gold and selected examples.

  (a) Top-k: This is a reliability-oriented criterion. We rank the confidence score of predicted examples in descending order and take the top k pseudo-labeled examples into the next round of training, with k ∈ [0, N ], N is the total number of unannotated data.

8. 5 . 1

 51 Is Confident Model Reliable and/or Biased?

Figure 8 . 2 :

 82 Figure 8.2: Source-only model (i.e. BERT-ft with 700 gold-standard examples) prediction accuracy and confidence on unannotated train set. Each line style represents a different seed of initial BERT fine-tuning. We use 5 seeds.

  Figure 8.3: Pseudo-labeled class distribution under high confidence prediction (confidence score >= 0.9). Question answer pair label is overly predicted than the other classes.

  .
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 52 Is There a Trade-off between Reliability and Variety?Our second sample selection criterion gives more consideration to class variety (or coverage) by selecting high-ranking pseudo labels from each class. The question is: are there reliable examples for each class? To answer this question, we decompose the accuracy line inFigure 8.2 

Figure 8 . 4 :

 84 Figure 8.4: Five major classes accuracy and confidence score distribution. The gray line is the combination of all 16 relation classes.

Figure 8 . 5 :

 85 Figure 8.5: Five middle classes accuracy and confidence score distribution. The gray line is the combination of all 16 relation classes.

Figure 8 . 6 :

 86 Figure 8.6: Six small classes accuracy and confidence score distribution. The gray line is the combination of all 16 relation classes.

Figure 8 . 7 :

 87 Figure 8.7: Evolution of three-loop self-training, model reinforced with 1800 pseudo-labeled examples at each loop; confusion matrices of 1128 test examples. Blue, pink, and green circled zone are resp 5 high-frequent, 5 middle, and 6 low-frequent relations. Initial train set seed 78. Rows are true labels and columns are predicted labels. Results are normalized.

Figure 8 . 8 :

 88 Figure 8.8: Comparison of confusion matrices between source-only (left) and first loop selftrained models (right, 5 runs of +5800 pseudo-labeled examples). We highlight the right-bottom part for low-frequent classes. Rows are true labels and columns are predicted labels. Results are normalized.

Figure 8 . 9 :

 89 Figure 8.9: Comparison of supervised training (green line), self-training with 700 supervised and k pseudo-labeled examples (blue line), self-training with k human-feedback (HF) examples (orange line). Evaluated on 1, 128 examples on STAC test set.

  2.2. Using only 50 annotated examples,

Figure 8 .

 8 Figure 8.12: Step-by-step parsing results decomposed in relation types. Red: correctly predicted relation in full parsing; Orange: wrongly predicted relation in full parsing; green: false negative errors in structure attachment; gray: false negative errors in EDU segmentation.
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 91 Figure 9.1: Thesis projects overview.
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  1 [narrowly won the race.] 2 b. [The red car,] 1 [which my friend had bought last week,] 2 [narrowly won the race.] 3 Example 4.14 and 4.15 in Discourse Processing

Table 2 .

 2 1: Definition fields in RST, example with Evidence relation. N = nucleus; S = satellite.

Table 2 .

 2 2: Organization of relation definition in RST, from

	Relations

  , where the * -ed symbol is used to indicate that this is a metatalk relation and not the normal ones. Refer to Chapter 7.6.5 in[START_REF] Asher | Logics of conversation[END_REF] for details.

	• Cognitive-level relations have semantics that is specified in terms of the intentions and
	beliefs of the dialogue agents, including Acknowledgement, Indirect Question Answer Pair
	(IQAP), Plan Correction, Not Enough Information (NEI), Plan Elaboration, Partial Ques-
	tion Answer Pair (PQAP), Question Elaboration (Q-Elab), and Request Elaboration (R-
	Elab).
	• Divergent relations include Correction, Counter-evidence, and Dis (in dispute).
	• Metatalk relations connect the content of one discourse to the performance of uttering
	another rather than to its content, including Consequence

* , Explanation * , Result *

  cluster doc id #doc pair #same link #err link #same rel #err rel

	1	{1, 2, 3}	3	18	2	16	2
	2	{7, 8, 9}	3	18	0	18	7
	3	{10, 11, 12, 13, 14}	10	80	4	76	25
	...						
	105	500	676	4, 787	284	4, 503	606
	-	-	-	-	5.9%	-	13.5%

Table 2

 2 Upon closer inspection of the annotation in similar examples, we discovered inconsistencies in both EDU attachments and relation types. Specifically, we examined every document pair (i.e., two similar documents in the same cluster) in all 105 clusters in the test set. As an example, Figure2.6 visualizes the inconsistency for documents 10 and 11: we expect the same links and relations among all EDUs except for EDU 2 , but we observed one link inconsistency (in red: e 8 -e 9 in document 10, e 7 -e 9 in document 11) and two relation inconsistencies (in blue: Elaboration for e 3 -e 6 in document 10, Continuation for e 3 -e 6 in document 11

	.5: Investigation of link and relation inconsistency inconsistency in Molweni. A "doc
	pair" means a pair of two similar documents (e.g., {1, 2}, {1, 3}); "same link": number of links
	between the same EDUs, which should be attached exactly the same way; "same rel": relations
	between the same EDUs, which also should be the same. "err link" and "err rel" are inconsistent
	links and relation types between the same EDUs.
	Annotation Inconsistency:
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	Graph-based	Transition-based	Joint
	MST, A		

1: Performance of SOTA supervised parsers on STAC and Molweni, micro F 1 scores. "Link" = unlabeled attachment score (UAS); "Link&Rel" = labeled attachment score (LAS). Upper part parsers use traditional models. MST: maximum spanning tree; ILP: integer linear programming. Lower part parsers use neural architectures for encoding and/or decoding. QA-DP: questionanswering and discourse parsing; DiscProReco: discourse parsing and pronoun recovering; SSP: same-speaker-prediction; SCIJE: speaker-context interaction joint encoding. § results come from

[START_REF] Chi | Structured dialogue discourse parsing[END_REF]

. * results are extracted from

[START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF]

. ∥ results are taken from "+language backbone" RoBERTa-base setting in

[START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF]

. † results are from BERT base , refer to

[START_REF] He | Multi-tasking dialogue comprehension with discourse parsing[END_REF] 

for results with BERT large and BERT wwm . *

[START_REF] Muller | Constrained decoding for text-level discourse parsing[END_REF] 

Deep Seq

[START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF] 

DAMT

[START_REF] Fan | A distance-aware multi-task framework for conversational discourse parsing[END_REF]

) MST

Table 3 .

 3 3: Encoder, decoder, and feature engineering in SOTA dependency parsers. Model column, SSP+SCIJE: same-speaker-prediction and speaker-context interaction joint encoding; SSAM: structure self attention model; DAMT: distant-aware multi-task model.

Feature column, "lexi": lexical; "synt": syntactic features such as dependency and dialogue act tagging; "posit": positional features such as distance between EDUs and the position of the first utterance of the speaker. '-': None; '/': not available. Highlight column shows if the parser highlights any extra information or jointly learns with other tasks. Corpus column are the testing corpus in each study. ∥ ANNODIS contains newspaper and Wikipedia articles annotated under SDRT framework in French

  obtains the best LAS

	Model	Setting	Framework Output	Synergistic task	Corpus
	Distant supervision					
	Huber and Carenini (2019)	monologue RST	struc	sentiment analysis	RST-DT, Instr-DT
	Huber and Carenini (2020b) monologue RST	struc, nucl	sentiment analysis	RST-DT, Instr-DT
	Xiao et al. (2021)	monologue RST	struc	summarization	RST-DT, Instr-DT, GUM
	Jiang et al. (2021a)	monologue RST	struc, nucl, rel topic segmentation	RST-DT, MCDTB ∥
	Domain integration					
	Liu and Chen (2021)	dialogue	SDRT	struc, rel	-	STAC, Molweni
	Multi-task learning					
	Nejat et al. (2017)	monologue RST	struc, nucl, rel sentiment analysis	RST-DT
	Yang et al. (2021)	dialogue	SDRT	struc, rel	dropped pronoun recovery	STAC, SPDPR †
	He et al. (2021)	dialogue	SDRT	struc, rel	machine reading comprehension Molweni
	Fan et al. (2022) *	dialogue	SDRT	struc, rel	-	STAC, Molweni

Table 3 .

 3 4: Transfer learning strategies in discourse parsing. Output column: for RST: {structure, nuclearity, relation}; for SDRT: {structure, relation}. ∥ MCDTB: Macro Chinese Discourse Treebank[START_REF] Jiang | Mcdtb: a macro-level chinese discourse treebank[END_REF]. † SPDPR: Structure Parsing-enhanced Dropped Pronoun Recovery dataset is a corpus containing 684 multi-party SMS chat files in Chinese[START_REF] Yang | A joint model for dropped pronoun recovery and conversational discourse parsing in chinese conversational speech[END_REF].

* : work already presented in Section 3.2.1 but also fit in transfer learning category. -: not applicable. score (59.6%). The adoption of language backbones significantly elevates scores compared to the original Deep Sequential model

  by incorporating a few changes: (1) they used Pre-trained Language Models as the backbone to encode EDUs and, in turn, improved the local EDU representation; (2) leveraged Masked Language Modeling (MLM) with joint STAC and Molweni data during model pre-training to enhance domain coverage; and (

Table 3 .

 3 5: Weakly supervision strategies in discourse parsing. Output column: for RST: {structure, nuclearity, relation}; for SDRT: {structure, relation}. BioCause § : biomedical corpus annotated with causal discourse relation[START_REF] Mihăilă | Biocause: Annotating and analysing causality in the biomedical domain[END_REF]. CORD-19 * : COVID-19 open research dataset[START_REF] Wang | Cord-19: The covid-19 open research dataset[END_REF]. COVID19-DTB ∥ : COVID-19 corpus proposed in the study

	Model	Setting	Framework Output	Strategy	Corpus
	Badene et al. (2019a)	dialogue	SDRT	structure	heuristic rules STAC
	Mihăilă and Ananiadou (2014) monologue -	connective	self-training	BioCause §
	Nishida and Matsumoto (2022) monologue RST	struct, nucl, rel bootstrapping CORD-19 * , COVID19-DTB ∥
		dialogue	SDRT	struct, rel	bootstrapping UDC †, Molweni
	Chapter 8	dialogue	SDRT	relation	self-training	STAC

Table 3 .

 3 

6: Unsupervised parsers. for RST: {structure, nuclearity, relation}; for SDRT: {structure, relation}. Criteria/info column: criteria applied to or information relied on for unsupervised parsing. PCC 2.0 ∥ : Potsdam Commentary Corpus

[START_REF] Stede | Potsdam commentary corpus 2.0: Annotation for discourse research[END_REF]

.

Table 3 .

 3 7: Summary of discourse information applied on downstream tasks. Parser: discourse parser used to provide discourse structure: Ji2014 DPLP[START_REF] Ji | Representation learning for text-level discourse parsing[END_REF], HILDA:[START_REF] Hernault | Hilda: A discourse parser using support vector machine classification[END_REF], Surdeanu2015[START_REF] Surdeanu | Two practical rhetorical structure theory parsers[END_REF], Wang2017[START_REF] Wang | A two-stage parsing method for text-level discourse analysis[END_REF], Joty2015 CODRA[START_REF] Joty | Codra: A novel discriminative framework for rhetorical analysis[END_REF], Feng2012[START_REF] Feng | Text-level discourse parsing with rich linguistic features[END_REF]. Joty2013[START_REF] Joty | Combining intra-and multi-sentential rhetorical parsing for document-level discourse analysis[END_REF], Shi2019 Deep Sequential[START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]. Considered RST/SDRT features: in RST: {structure, nuclearity, relation}; in SDRT: {structure, relation}.

* * : one unlabelled model without relation and one full model with relation in Ji and Smith (2017). Injection: the way discourse information is injected in the system. Architecture: system employed to perform downstream task. † : Liu and Lapata (2018) model. ∥ : Liu and Lapata (2018) model adapted with Ferracane et al. (2019). * : Tai et al. (2015) model.
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 4 1: Related work in identification of Schizophrenia.

	Work Corpus	#Instances	Lang	Feature	Result
	Strous et al. (2009) Essay writing	72	Hebrew lexical	Acc 83.3%
	Mitchell et al. (2015) Tweets	348 × 2800 * English lexical	Acc 82.3%
	Kayi et al. (2017) Essay writing	373	English synt, semantic F 1 70.3%
	Tweets	348 × 2800 * English synt, pragm	F 1 81.7%
	Allende-Cid et al. (2019) Oral narratives 189	English morpho-synt	F 1 82.8%
	Amblard et al. (2020) Clinic interview 41	French lexical	Acc 93.7%

* : 348 users with average 2800 tweets per user.

Kayi et al. (

Table 4 .

 4 2: Classification results of the speech of psychologist (talking to patients vs. talking to controls) using different classification algorithms. SVM: supported vector machine. LR: logistic regression. NC: naive bayes. RF: random forest. Perc: perceptron. Best: best algorithm. sequences of POS tags, finer tree representations, and dialogue-level information, in a subsequent research(Li et al., 2021a). Due to the scarcity and dissimilarity of the data in comparison to monologues, we explore a model for detecting Schizophrenia symptoms using higher-level less lexicalized features (Section 4.2), inspired by the work of[START_REF] Howes | Predicting adherence to treatment for schizophrenia from dialogue transcripts[END_REF].

	Features	SVM	LR	NB	RF	Perc	Best
	bow	99.02	98.05	96.83	98.54	96.10	SVM
	ngram	95.85	95.85	97.32	96.59	92.44	NB
	POS	80.73	79.76	55.37	85.12	58.78	RF
	POS+2-3-treelet	89.02	86.83	65.61	90.98	69.51	RF
	Connectives	92.44 90.73	65.85	88.29	78.78	SVM
	Connectives D	90.73 90.98	69.51	90.24	79.76	SVM

4.2 Method: Better Data Representation & Feature Engineering

Table 4 .

 4 3: Document, speech turn, and token length per document in different dialogue settings in our corpus. All the numbers exclude the production of clinicians. "Indiv" regards every speech turn as an instance. "W-n" setting takes at most n tokens in an instance. "Full" takes one complete document as an instance.ing to the end of the current speech turn) to identify distinctive features in smaller blocks of conversation. Values of n are selected in such a way that the length of the context gradually increases, almost doubling that of the previous setting. This configuration results in 893, 443, 209, and 132 instances, with an average of 11, 20, 42, and 83 speech turns, respectively. Key statistics of each setting is presented inTable 4.3. 

		4.2. Method: Better Data Representation & Feature Engineering
		#Doc #Speech turn/doc	#Token/doc	
	Setting	total min max	avg min	max	avg
	Indiv.	10, 319	1	1	1	1	274	11
	W-128	893	1	34	11 128	317	145
	W-256	443	1	72	20 256	424	271
	W-512	209	2 129	42 512	609	530
	W-1024	132	8 202	83 703 1, 088	873
	Full	41	76 555	268 703 6, 778 2, 811

  ) Syntactic Markers: To build more general models, we test the two following non-lexical features: part-of-speech (POS) tags and treelets.[START_REF] Allende-Cid | A machine learning approach for the automatic classification of schizophrenic discourse[END_REF] demonstrated that POS tags are effective features. We also test for larger patterns with sequences, POS n-gram with n ∈ {1, 2, 3}.Kayi et al. (

  Klein, Max . . . eat . . . apple Noun . . . Verb . . . Noun

	nsubj	dobj	poss	nsubj
			The . . . dog . . . ran Pron . . . Noun . . . Verb

Table 4 . 4
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		English	French	English
	pardon vous disiez pardon you said ah vous parlez pardon ah sorry you were saying
	pardon	pardon	excusez-moi	excuse-me
	excuse moi	excuse-me	bon je suis désolée	i am sorry
	désolé(e)	sorry	(ah) ouais ?	(oh) yes?
	ah bon ?	oh really?	c'est vrai ?	is it true?
	c'est euh ?	it's euh?	hum ?	huh?
	de quoi	of what	c'est quoi ?	what is it?
	c'est-à-dire	which means	euh ?	euh?
	dites moi plus	tell me more	mais encore	but still

: Open Class Repair initiators list (original French, with English translation).

Table 4 .
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	French	English	French	English
	oui	yes	ouais	yeah
	ouais voilà	yeah that's it	oui c'est ça	yes that's it
	oui bah oui	yea euh yes	oui... forcément	yes... for sure
	bah ouais	euh yeah	hum (hum)	hum (hum)
	muh mmh	muh mmh	mmh/mmhh	mmh/mmhh
	d'accord	okay	ok	ok
	voilà	that's it	c'est ça	that's it
	c'est vrai	that's true	c'est sûr	(yes) (for) sure
	ça c'est clair	that's clear/clearly/definitely eh bien sûr	euh of course
	carrément	completely	bien sûr	of course
	super	super	ok... bon	ok... then
	d'accord ça marche okay it works	certes	certainly
	mais hein	but hein	je comprends	i understand
	vraiment	really	bien	well
	bon	good	très bien	very good
	quand même	still	tout à fait	exactly
	certainement	certainly/sure	exactement	exactly
	tant mieux	all the better	oh	oh
	ah	ah	ben	well...
	alors ben	well...	ah d'accord	ah okay
	ah ça euh	ah (this) euh	eh bah c'est bien euh well that's good

5: Backchannel response list (original French, with English translation).

Table 4 . 7
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	Feature	#Original Threshold #Selected %Selected
	bow		6, 504	median	3, 254	50.0
	2-3-gram	118, 473	8	98	0.1
	1-2-3-POS	2, 031	5	198	9.7
	2-treelet	879	7	92	10.5
	3-treelet	14, 103	7	155	1.1
	POS+2-3-treelet	14, 996	7	124	0.8
	Table 4.6: Original and selected numbers of features using SVM classifier, in W-1024 setting.
	In #doc #Speech turn/doc #Word/doc #Word/speech turn %Gram words
	Patient	18	200	2676		13.4	56%
	Psy-scz	18	200	1815		9.1	50%
	Control	23	342	3305		10.8	51%
	Psy-control	23	307	4779		15.6	54%

The groups are balanced with age, intelligence quotient : SLAM corpus statistics of different participants. "Psy-scz": psychologist's statistics when talking to patients; "Psy-control": psychologist's statistics when talking to controls. "Gram words": grammatical words ̸ ∈ {noun, verb, adv, adj}.
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	It happens

9: ρ-and p-value of Spearman test for BOW lexical features in SLAM.

Table 4 .

 4 11: Best algorithm for the single (except for BOW) and combined features in different window settings.

	Setting	Best single feature	Best comb. features	
		Feature Accuracy Classifier	Feature Accuracy Classifier
	Full	BC	74.48	SVM	2-POS+BC	77.54	SVM
	Indiv.	3-POS	56.53	LR	1-2-3-POS	58.36	LR
	W-128	3-POS	65.39	SVM	3-POS+BC	69.92	LR
	W-256	3-POS	70.66	LR	3-POS+BC	73.75	LR
	W-512	3-POS	72.55	SVM	3-POS+BC	77.86	LR
	W-1024 3-POS	71.71	SVM 3-treelet+ConnD	75.74	SVM

Table 5 .

 5 and dialogue act prediction on a Mastodon corpus,

	Model	Embedding Structure	Highlight		Performance	
					F 1 Prec. Rec. Acc.
	Dev set, binary classification							
	Williamson et al. (2016)	GloVe	SVM	+semantic content	0.76	-	-	-
		GloVe	SVM	+semantic context	0.81	-	-	-
	Al Hanai et al. (2018)	Doc2Vec ¶ logistic regression	-	0.59 0.71 0.50	-
		Doc2Vec ¶ LSTM	response sequences	0.67 0.57 0.80	-
	Haque et al. (2018)	W2V ‡	single vector+linear -	-	-0.65	-
		D2V §	single vector+linear -	-	-0.68	-
	Dinkel et al. (2019)	BERT	MT GRU	+severity regression	0.55 0.66 0.56 0.66
		FastText	MT GRU	+severity regression	0.60 0.59 0.62 0.68
		W2V ‡	MT GRU	+severity regression	0.61 0.61 0.64 0.70
		ELMO	MT GRU	+severity regression	0.64 0.73 0.66 0.72
	Mallol-Ragolta et al. (2019) GloVe	NHN * *	-	0.40	-0.50	-
		GloVe	HLGAN *	+local-global attention 0.60	-0.60	-
		GloVe	HCAN ||	+attention	0.51	-0.54	-
	Xezonaki et al. (2020)	GloVe	HAN † †	+attention	0.46	-0.48	-
		GloVe	HAN † † +L	+attention, lexicon	0.62	-0.63	-
	Dev set, multi-class classification						
	Qureshi et al. (2019)	USE †	LSTM	-	0.45	-	-0.60
	Qureshi et al. (2020)	USE †	MT LSTM	+emo prediction	0.51	-	-0.61
	Test set, binary classification							
	Mallol-Ragolta et al. (2019) GloVe	NHN * *		0.45	-0.50	-
		GloVe	HLGAN *	+local-global attention 0.35	-0.33	-
		GloVe	HCAN ||	+attention	0.63	-0.66	-
	Xezonaki et al. (2020)	GloVe	HAN † †	+attention	0.62	-0.63	-
		GloVe	HAN † † +L	+attention, lexicon	0.70	-0.70	-

1: Comparison of different models' performance on DAIC-WOZ development and test sets. Best scores in development and test sets are in bold.

Table 5 .

 5 . Structure column: HLGAN * : Hierarchical Local-Global Attention Network. NHN * * : Naive Hierarchical Network. HCAN || : Hierarchical Contextual Attention Network. MT: multi-task learning framework. HAN † † : Hierarchical Attention-based Network. "+L": add lexical features from six resources, refer to Xezonaki et al. (2020) paper for details. 2: Results from work Qureshi et al. (2019, 2020) on multi-task learning on depression classification (DLC), depression regression (DLR), and emotion intensity regression (EIR). DLC and DLR use DAIC-WOZ dataset, EIR use CMU-MOSEI dataset[START_REF] Zadeh | Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph[END_REF]. ST: single task, MT: multi-task. MT (all): multi-task learning with all three tasks (DLC+DLR+EIR).

	Highlight column: "+semantic content": question answer pairs and non-verbal cues such as
	laughter and sigh markers. "+semantic context": coarse contextual indicators such as previous
	diagnoses and ongoing therapy, use rule-based queries to accumulate points, not directly utilize
	speech. "+attention": + attention mechanism. "+severity regression": auxiliary task with depres-
	sion severity prediction. "+emo": + auxiliary task with emotion prediction. "-": not reported.

RMSE: root mean square error; MAE: mean average error; MSE: global metric that averages the squared errors. In bold: the best score for each column. '-': not applicable. * : results extracted from

[START_REF] Qureshi | Improving depression level estimation by concurrently learning emotion intensity[END_REF]

, scores reported in

[START_REF] Qureshi | Multitask representation learning for multimodal estimation of depression level[END_REF] 

for ST and fully-shared MT are 0.45 and 0.53, respectively.

Table 5 .

 5 3: DAIC-WOZ dataset binary and multi-class partitions. authors conducted multi-class classification on train and development sets without precising the partition. They used in total 138 documents for experiments. It is unknown which 5 documents were missing. For our experiments, we follow the original splits and utilize all 189 documents.

	, the

Table 5 .

 5 4: Emotion distribution in train, development and test sets in DailyDialog.

		Train		Dev		Test	
		#	%	#	%	#	%
	0-no emotion 72, 143 82.8 7, 108 88.1 6, 321 81.7
	1-anger	827	0.9	77	1.0	118	1.5
	2-disgust	303	0.3	3 0.04	47	0.6
	3-fear	146	0.2	11	0.1	17	0.2
	4-happiness 11, 182 12.8	684	8.5 1019 13.2
	5-sadness	969	1.1	79	1.0	102	1.3
	6-surprise	1, 600	1.8	107	1.3	116	1.5
	Utt. Total	87, 170 100.0 8, 069 100.0 7, 740 100.0
	Dialog Act	Train		Dev		Test	
		#	%	#	%	#	%
	1-inform	39, 873 45.7 3, 125 38.7 3, 534 45.7
	2-question	24, 974 28.6 2, 244 27.8 2, 210 28.6
	3-directive	12, 242 16.3 1, 775 22.0 1, 278 16.5
	4-commissive 8, 081 9.23	925 11.5	718	9.3
	Utt. Total	87, 170 100.0 8, 069 100.0 7, 740 100.0

Table 5 . 5
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: Dialog act distribution in train, development and test sets in DailyDialog.

:

  Interactive Emotional Dyadic Motion Capture Database, short in IEMOCAP, is one of the most important datasets for studying emotions in conversation. It consists of videos among pairs of 10 speakers spanning 10 hours of various dialogue scenarios

	Topic	Train		Dev		Test	
		#	%	#	%	#	%
	1-ordinary life	2, 975 26.8	418 41.8	252 25.2
	2-school life	453	4.1	0	0	34	3.4
	3-culture & education	50	0	0	0.0	5	0.5
	4-attitude & emotion	616	5.5	1	0.0	50	0.5
	5-relationship	3, 879 34.9	129 12.9	384 38.4
	6-tourism	860	7.7	124 12.4	79	7.9
	7-health	205	1.8	41	4.1	21	2.1
	8-work	1, 574 14.2	215 21.5	135	1.4
	9-politics	105	0.9	13	1.3	13	1.3
	10-finance	399	3.6	59	5.9	27	2.7
	Total	11, 118 100.0 1, 000 100.0 1, 000 100.0

(both scripted and spontaneous)

. During the conversation, markers were placed on the face, head, and hands to record information about facial expressions and hand movements. The emotion classes are slightly different from those of DailyDialog: {anger, happiness, sadness,

Table 5 .

 5 6: Topic distribution in train, development and test sets in DailyDialog.

	Corpus	Modality	Topic	Participant #Doc	#Utt
	IEMOCAP (Busso et al., 2008)	multimodal	theater+daily talks dyadic	151	7, 433
	SEMAINE (McKeown et al., 2011)	multimodal	emotional scenarios dyadic	95	5, 798
	EmotionLines				

Table 5 .

 5 7: Key information of 7 ERC corpora. All corpora are in English. The dataset is available at https://sail.usc.edu/iemocap/ iemocap_release.htm.

	5.3. Datasets

Table 5 .
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	Train 11, 118 87, 215	7.8	107 107 25, 519	239	1, 931 11, 225 112, 734
	Dev. 1, 000	7, 806	7.8	109	35 9, 326	267	2, 061 1, 035 17, 132
	Test	1, 000	7, 958	7.9	107	47 12, 569	267	2, 175 1, 047 20, 527
	Total 13, 118 102, 979	7.9	107 189 47, 417	251	2, 016 13, 307 150, 393

8: Number of documents and utterances in DAIC-WOZ and DailyDialog corpora.

F 1

 1 Precision Recall Accuracy

	Baseline majority vote	41.3	35.1 50.0	70.2
	State-of-the-art models				
	NHN (Mallol-Ragolta et al., 2019)	45	-	50	-
	HCAN (Mallol-Ragolta et al., 2019)	63	-	66	-
	HAN+L (Xezonaki et al., 2020)	70	-	70	-
	Ours				
	STL Depression	43.9	44.5 47.5	63.8
	MTL +Emotion	55.5	56.2 61.6	70.2
	MTL +Topic	55.6	55.9 56.8	59.6
	MTL +DialogAct	60.8	60.6 61.4	66.0
	MTL +Emotion+Topic	64.4	64.4 64.4	70.2
	MTL +DialogAct+Topic	63.7	78.1 62.8	76.6
	MTL +Emotion+DialogAct+Topic 70.6 *	70.1 71.5 *	74.5

Table 5 . 9
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: Depression detection results on DAIC-WOZ. NHN: naive hierarchical network; HCAN: hierarchical contextual attention network; HAN+L: hierarchical attention network with external lexicons.

  Prec. Rec. Acc. F 1 Prec. Rec. Acc.

		DailyDialog emo	DAIC-WOZ depr
	F 1 ST Emo 38.3 45.2 35.9 80.8	-	-	-	-
	MT Emo + Depr	40.0 42.5 37.3 80.7 55.5 56.2 61.6 70.2
	MT Emo + Depr(resized) 41.			

Table 7 .

 7 Here we consider both head-wise and layer-wise selection using a few annotated examples. In conformity with real-world situations where labeled data is scarce, we sample three small subsets with {10, 30, 50} data points (i.e., dialogues) from the validation set. For layer-wise attention 1: Key statistics of datasets. Utt = sentences in DailyDialog or EDUs in STAC and GUM; Tok = tokens; Spk = speakers. matrices, we average 16 attention heads for every layer which gives 12 candidate layers. For head-wise attention matrices, we take each attention matrix individually which results in 12 layers ×16 heads (= 192) candidate matrices for each dialogue. Then, the head with the highest micro-F 1 score (the best layer ("L") and the best head ("H")) on the validation set is selected to derive trees in the test set.

	g local = arg max h	DAS(T g h )	(7.3)

Table 7 .

 7 2: Huggingface models and URLs.

Table 7 .

 7 (center of the table), trained on STAC, 4: STAC micro-F 1 scores from BART and fine-tuned models with unsupervised and semi-supervised approaches. {10, 30, 50} are number of annotated datapoints. H = head-wise, L = layer-wise. The best semi-supervised score is in bold. Subscription is the standard deviation.

	7.4. Results

Table 7 .

 7 5: Micro-F 1 on STAC with other PLMs. H ora : oracle head. H g : global best head. H l : local best heads. Best score (except H ora ) in each row is underlined.

	Model	Unsup	Semi-sup
		H ora H g H l Semi10 Semi30 Semi50
	BART	57.6 56.6 56.4 57.0 1.2 57.3 0.5 57.4 0.4
	+ SO-DD	58.2 56.8 57.1 57.2 1.2 57.3 1.3 57.7 0.5
	+ SO-STAC 59.5 56.7 57.2 57.1 2.6 59.2 0.9 59.3 0.7
	RoBERTa	57.4 56.8 56.8 55.6 1.3 56.8 0.2 56.9 0.3
	DialoGPT	56.2 42.7 36.2 52.9 4.3 55.1 1.7 56.2 0.0
	DialogLED	57.2 56.8 56.7 54.6 2.6 54.7 2.1 56.6 1.9
	+ SO-DD	57.7 56.4 56.6 55.0 2.8 56.1 2.4 57.3 0.9
	+ SO-STAC 58.4 56.8 57.1 57.7 0.1 58.2 0.5 57.7 0.1
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	1) Non-Tree	48	706	79 575	170
	(2) Tree	61	444	0 348	35
	-Proj. tree	48	314	0 266	0
	6: STAC test set ground-truth tree and non-tree statistics. "Single-in" and "multi-in"
	means EDU with single or multiple incoming arcs. "Proj" and "N-proj" means projective and
	non-projective arcs.				

Table 7 .

 7 8: Statistics for ground truth projective trees and extracted trees from oracle attention heads in BART and fine-tuned BART models.

	7.5. Analysis

Table 7 .

 7 9: Micro-F 1 scores on GUM-conv subset with unsupervised PLMs. H g : global best head. H l : local best head. H ora : oracle head. Arrows indicate higher or lower scores compared to LAST. Best score in bold.

	Model		
	Unsupervised Baseline		
	LAST		32.1
	Unsupervised PLMs	H g	H l H ora
	BART	30.4 30.8 ↓ 31.8
	+ CNN	32.1 32.2 ↑ 33.0
	+ SAMSum	30.5 30.5 ↑ 32.2
	+ SQuAd2	30.3 30.4 ↓ 31.3
	+ SO-DD	30.0 30.0 ↑ 32.6
	+ SO-STAC	31.0 31.0 ↑ 31.3

Table 7 .

 7 11: Evaluation in the case of false positive EDUs. The head of an EDU is bold. mance decreases by ≈ 7 points, from 59.5 to 52.6, as well as unsupervised and semi-supervised results. Despite the drop, our unsupervised and semi-supervised models still outperform the LAST baseline. A recent full parser for RST-style discourse parsing is proposed by[START_REF] Nguyen | Rst parsing from scratch[END_REF]. They report a higher F score of 96.3 for EDU segmentation on RST-DT, compared to ours 94.8 on STAC. However, they also observe a drop of approximately 6 points in structure prediction when using predicted EDU with pretrained models, from 74.3 to 68.4.

		Unsupervised	Semi-supervised
		LAST H ora H g	H l semi-10 semi-30 semi-50
	Gold EDUs	56.8 59.5 56.7	57.2 57.4 0.4 57.7 0.5 59.3 0.7
	Pred EDUs Avg 48.9 52.6 50.8	51.1 50.6 2.0 52.1 0.7 52.2 0.4
	Details with predicted EDUs	
	Run1	48.8 52.9 50.2	50.9 51.0 2.0 52.4 0.6 52.5 0.4
	Run2	49.6 50.5 50.3	50.3 48.3 2.0 49.8 0.6 49.9 0.5
	Run3	48.4 54.5 51.9	52.1 52.4 2.3 54.0 0.8 54.2 0.3

Table 7 .

 7 12: Top part: gold EDUs and predicted EDUs parsing results with BART+SO-STAC model. Scores for predicted EDUs are averaged over three runs. Bottom part: relation prediction result of each run.

Table 7 .

 7 13: Tree growing strategy results in micro-F 1 , true positive (TP) and false positive arcs (FP). A=attention value, D=normalized distance between two EDUs, R=relation type, L=dialog length in terms of EDU count.

		Eisner			+ x Features	
			+A +A+D +A+D+R +A+D+R+L
	F 1	59.5 59.5	59.6	60.4	60.2
	#TP	-	0	2	24	38
	#FP	-	0	0	23	64
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  ) We treat every EDU pair individually, without considering its neighboring context in the document, the same setting as in DISRPT 2021 and 2023 shared tasks 3 . Admittedly, it is more natural to interpret the rhetorical relation of a pair inside a document, especially for long-distance pairs (non-adjacent EDUs). However, individual relation pairs invoke local coherence, we consider it as the first step towards global relation coherence building. In the long term, we plan to consider a larger context.
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 8 5 for the lower 1: Rhetorical relations and frequencies in labeled train (seed-27), labeled validation, and test sets in STAC.bound and of 0.05 until 0.95 for the upper bound. In our case, we wish to have direct control of the pseudo-labeled sample size. For this reason, we test the Top-k and Top-class-k methods.We utilize the multi-party dialogue corpus STAC, as a continuation of discourse structure extraction. This corpus contains 1, 161 short dialogues, with in average 11 speech turns per document. The initial separation of train, validation, and test is set at 82%, 9%, and 9%, respectively. In the self-training scenario, we take a small subset from the train set (700 relation pairs, ≈ 50 documents) as the source labeled dataset and all the remaining examples as unlabeled target dataset (9, 400 relation pairs, ≈ 890 documents). We use a small subset (664 relation pairs, 50 documents) from the development dataset for validation. We keep the 1128 relation pairs (109 documents) in the test set for testing. Our starting point for the initial BERT fine-tuning thus contains 100 annotated documents (half for train and half for validation).Table8.1 shows complete statistics of class distribution for each set. For clarification, we only show the labeled part of the train. The information on the unlabeled part is kept unknown during the experiment. To accommodate instability, we randomly choose 700 labeled examples five times. In this table, we present one train group. As mentioned in problem formulation (Section 8.2), we work on speech-pair level relation prediction and not document level, thus the number shown in the table refers to relation pairs.

		Labeled train Validation	Testing
	Relation	#	% #	%	#	%
	Question_answer_pair 175	25.0 152 22.89	305 27.04
	Comment	108	15.43 110 16.57	165 14.63
	Acknowledgment	86	12.29 87 13.1	148 13.12
	Continuation	65	9.29 69 10.39	113 10.02
	Elaboration	64	9.14 52 7.83	101 8.95
	Question_elaboration	36	5.14 30 4.52	72 6.38
	Result	26	3.71 29 4.37	29 2.57
	Contrast	32	4.57 29 4.37	44	3.9
	Explanation	34	4.86 31 4.67	31 2.75
	Clarification_question 23	3.29 20 3.01	33 2.93
	Parallel	10	1.43 14 2.11	15 1.33
	Correction	12	1.71 11 1.66	21 1.86
	Alternation	5	0.71	8	1.2	19 1.68
	Narration	8	1.14	7 1.05	13 1.15
	Conditional	12	1.71 10 1.51	18	1.6
	Background	4	0.57	5 0.75	1 0.09
	Total	700	100.0 664 100.0 1, 128 100.0
	8.3 Experimental Setup					
	8.3.1 Relation Distribution in STAC				

Table 8 .

 8 2: Systems of comparison. Supervised models use the same train, validation, and test sets as in DisCoDisCo.model. Since DisCoDisCo does not encode speaker information in the speech turns, we further compare two data representations: (a) DisCoDisCo encoding ("w/o spk"); (b) our encoding ("w spk"). We also show the majority class percentage as the baseline score. The results are shown in Table8.2.

	Unsupervised baseline		Accuracy
	Majority class		27.04
	DisCoDisCo model		Accuracy
	w/o feats		59.67
	w/ feats		65.03
	Supervised model	Input	Accuracy
	(1) BERT-clf	(a) w/o spk	55.80
		(b) w spk	61.20
	(2) BERT-ft	(a) w/o spk	59.36
		(b) w spk	64.88

(a) [CLS] anyone need wheat? [SEP] no thanks [SEP] (b) [CLS] spk3: anyone need wheat? [SEP] spk2: no thanks

Table 8 .

 8 3: BERT-ft model supervised performance with different sizes of training data. Accuracy is averaged with 5 groups of randomly selected train data; subscription is the standard deviation.order to have a fair comparison with the DisCoDisCo model, we follow the subset separation in the DISRPT shared task. However, in our own experiments (structure prediction and relation classification), we apply the data separation in[START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF]. This is also the most commonly used setting for full discourse parsing to the best of our knowledge. For clarification, all the results (except those in Table8.2) in this chapter are based on the same data separation as in[START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF].

	.1.1, in

8.4.2 Results with Self-Training

8.4.2.1 Influence of Selection Criteria

We compare two sample selection strategies: top-k and top-class-k. Both selections rank the pseudo labels based on their confidence scores and select resp. without and with consideration of the label distribution in the gold-standard set. We test k values gradually, adding 200 to 7, 800 pseudo-labeled data with intervals of 200, 400, and 1, 000 (from k = 800 and onwards). Our total unannotated data size is 9, 300. The 1000 interval loosely correspond to the 0.1 in "rank-above-k" criteria in

[START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]

, where k ∈ [0.1, 1.0].

Table 8 .

 8 

4: BERT-ft self-training with Top-k and Top-class-k sample selection criteria. The best score per row is underlined. The best score per column is bold. Subscription is the standard deviation.

Table 8 .

 8 ). 5: BERT-ft 3-loop iterative self-training results with Top-class-k sample selection. The actual selected k is shown in each loop. The best score per row is bold. Subscription is the standard deviation. We use Top-class-k selection in iterative self-training since it shows superior results than the Top-k selection in the first round. Since this selection strategy emphasizes similar label distribution, small classes accumulate more training examples as we increase training loops, such as correction, conditional, and alternation. It is expected that iterative training can help increase the recall of these relations. We test three groups of k values: k ∈ [800, 1800, 2800].

	BERT-ft supervised
	700

Table 8 .

 8 6: Part 1 and part 2: supervised model and self-training model performance. Part 3: comparison of different ways ("top", "bottom", "top-bottom", "random") to provide human feedback. All the scenarios are tested on 1, 128 STAC test set.

	8.5. Analysis

Table 8 .

 8 

			Correct	Wrong	Missing	Missing Total
		Relationship	prediction prediction attachment segmentation (100%)
		Question answer pair 143 (46.9)	22 (7.2) 127 (41.6)	13 (4.3)	305
		Comment	42 (25.5) 45 (27.3)	63 (38.2)	15 (9.1)	165
	First5	Acknowledgement	60 (40.5)	13 (8.8)	71 (48.0)	4 (2.7)	148
		Continuation	20 (17.7) 30 (26.5)	55 (48.7)	8 (7.1)	113
		Elaboration	46 (45.5) 25 (24.8)	24 (23.8)	6 (5.9)	101
		Question elaboration 20 (27.8)	9 (12.5)	41 (57.0)	2 (2.8)	72
		Result	5 (17.2)	9 (31.0)	14 (48.3)	1 (3.5)	29
	Mid5	Contrast	10 (22.7) 12 (27.3)	17 (38.6)	5 (11.4)	44
		Explanation	4 (12.9) 11 (35.5)	16 (51.6)	0 (0)	31
		Clarification question	6 (18.2) 10 (30.3)	13 (39.4)	4 (12.1)	33
		Parallel	1 (6.7)	4 (26.7)	8 (53.3)	2 (13.3)	15
		Correction	2 (9.5) 10 (47.6)	7 (33.3)	2 (9.5)	21
	Last6	Alternation Narration	8 (42.1) 0 (0)	0 (0) 3 (23.1)	7 (36.8) 10 (76.9)	4 (21.1) 0 (0)	19 13
		Conditional	3 (16.7)	2 (11.1)	2 (11.1)	11 (61.1)	18
		Background	0 (0)	0 (0)	1 (100)	0 (0)	1

8: Full parsing system relation decomposition in each module. We show absolute numbers and percentages (%). "First5" are 5 frequent relation classes; "Mid5" are 5 middle classes; "Last6" are 6 infrequent classes.

Table A .

 A 1: Full setting results with individual and combination features using 5 classifieurs. LR = Logistic Regression; NB = Naive Bayes; RF = Random Forest; Perc = Perceptron. "Connectives D" or "ConnD": desambiguated connectives.

		Features	SVM	LR SVM	NB LR	RF NB	Perc RF	Best Perc	Best
	bow	bow	90.98	87.07 70.20	93.66 84.88 70.29 72.43 64.65 79.76	NB 52.53	NB
	ngram ngram	85.61 83.66 69.59 68.99 65.61	71.95 66.99	75.12 66.45	SVM 51.52	SVM
	OCR	OCR	60.5	60.62 45.83 50.04 49.93	59.02 50.0	53.14 49.97	LR 50.17 Perc
	BC	BC	74.48 54.44 53.73	68.19 50.32	70.41 54.49	61.91 54.80 50.69 SVM	RF
	Connectives Connective	68.78	66.83 55.2	62.68 55.28 52.38 72.44 62.44 54.99	RF 50.73	LR
	Connectives D Connective D	64.63	63.22 53.75	53.17 53.79 50.78 67.11 60.98 53.27	RF 50.61	LR
	POS	POS	50.49	49.51 55.32	53.66 50.00 55.8 50.0	50.24 53.4	NB 50.69	LR
	2-POS 2-POS	67.36 58.64 56.24	49.88 56.33 50.22 59.71	56.01 54.51	SVM 51.21	LR
	3-POS 3-POS	71.65 68.04 56.53	55.46 56.53 52.55 63.47	60.93 54.82	SVM 50.8	LR
	1-2-3-POS 1-2-3-POS	69.01 55.19 58.24	50.28 58.36 53.34 62.74	54.05 55.33	SVM 51.27	LR
	2-treelet 2-treelet	67.34	66.04 56.58	50.63 56.73 51.03 69.19 56.05 54.35	RF 51.33	LR
	3-treelet 3-treelet	66.78 65.51 55.25	53.94 55.34 53.12 60.52	62.27 54.68	SVM 50.97	LR
	POS + 2-3-treelet POS + 2-3-treelet	66.59 60.98 57.77 57.35 58.05	65.85 53.96	52.20 51.46	SVM wait	SVM
	POS + OCR POS + OCR	59.9	58.18 55.4	46.96 55.39	49.71 50.0	54.37 53.61	SVM 50.74	SVM
	2-POS + OCR 2-POS + OCR	65.19 59.59 56.29	51.36 56.33 50.31 56.99	53.48 54.38	SVM 51.32	LR
	3-POS + OCR 3-POS + OCR	67.62 59.78 56.58 56.57 56.11	62.19 53.14	60.74 54.74	SVM 50.46	SVM
	POS + BC POS + BC	65.11	61.12 55.92	53.95 56.0	69.46 63.96 51.26 53.81	RF 51.16	LR
	2-POS + BC 2-POS + BC	77.54 64.77 57.21	56.32 57.38 51.99 64.49	63.76 55.58	SVM 51.37	LR
	3-POS + BC 3-POS + BC	74.93 67.17 57.3	58.79 57.46 54.35 63.82	68.8 54.33	SVM 54.93	LR
	2-treelet + BC 2-treelet + BC	79.03	68.93 57.34	54.29 57.55 53.24 70.86 67.15 54.98	RF 51.59	LR
	3-treelet + BC 3-treelet + BC	74.28 69.13 56.23 55.74 57.78	61.14 53.92	67.09 54.89	SVM 51.52	SVM
	OCR + BC OCR + BC	69.67	64.44 54.29	46.94 54.52	72.44 59.47 50.29 54.78 50.45 RF	RF
	Conn + BC Conn + BC	71.53	62.22 55.99	68.85 53.19	75.85 68.41 56.51 54.9	RF 51.06	NB
	OCR + ConnD OCR + ConnD	70.23	71.28 50.54 53.82 53.81	60.6 51.19	65.86 53.32	LR 50.5	SVM
	POS + ConnD POS + ConnD	70.04 69.19 55.38	55.24 55.46 51.31 55.72	65.87 53.98	SVM 50.95	LR
	2-POS + ConnD 2-POS + ConnD	71.73 70.86 56.49	56.91 56.75 51.77 58.77	68.09 54.48	SVM 51.34	LR
	3-POS + ConnD 3-POS + ConnD	74.52 70.36 57.05	57.68 57.11 53.35 62.05	69.31 54.95	SVM 50.98	LR
	2-treelet + ConnD 2-treelet + ConnD 75.17 72.66 56.62	58.18 56.75 52.76 67.61	70.86 54.58	SVM 51.62	LR
	3-treelet + ConnD 3-treelet + ConnD 76.61 72.69 55.94	56.58 56.04 53.45 57.93	69.15 54.72	SVM 50.87	LR

Table A .

 A 2: Indiv. setting results with individual and combination features using 5 classifieurs. LR = Logistic Regression; NB = Naive Bayes; RF = Random Forest; Perc = Perceptron. "Connectives D" or "ConnD": desambiguated connectives.

	Features	SVM	LR	NB	RF	Perc	Best
	OCR	52.41	52.43 52.25	52.36	51.2	LR
	BC	61.77	62.0	55.73	62.01 53.9	RF
	Connective	64.05 63.97	54.45	62.81	56.34	SVM
	Connective D	58.45	58.61 53.97	57.62	53.5	LR
	POS	57.84	58.03	50.0	60.63 51.7	RF
	2-POS	63.7	64.85 53.26	59.29	56.55	LR
	3-POS	65.39 65.35	61.73	59.96	58.11	SVM
	1-2-3-POS	65.62	66.19 59.05	60.88	55.88	LR
	2-treelet	64.71	65.02 54.99	60.7	56.35	LR
	3-treelet	63.21	63.95 57.52	60.21	55.52	LR
	POS + 2-3-treelet	65.17	65.52 58.86	61.7	56.0	LR
	POS + OCR	58.79	58.67	52.11	60.75 52.34	RF
	2-POS + OCR	63.84	65.09 54.04	59.69	57.65	LR
	3-POS + OCR	65.7	65.68	62.0	60.14	58.0	SVM
	POS + BC	63.76 63.67	56.52	63.6	54.29	SVM
	2-POS + BC	68.64	68.88 59.56	62.32	59.02	LR
	3-POS + BC	69.46	69.92 65.24	61.64	59.23	LR
	2-treelet + BC	68.59	68.73 59.75	63.26	58.41	LR
	3-treelet + BC	67.81	68.16 60.98	62.02	57.37	LR
	OCR + BC	62.27	62.72 56.6	62.07	54.16	LR
	Conn + BC	67.1	66.8	60.13	64.43	56.92	SVM
	OCR + ConnD	59.29	59.68 54.7	58.4	53.15	LR
	POS + ConnD	58.98	59.14	54.49	62.13 52.99	RF
	2-POS + ConnD	64.43 64.3	58.11	59.89	57.11	SVM
	3-POS + ConnD	65.05 64.93	61.66	60.28	57.57	SVM
	2-treelet + ConnD	64.2	64.47 57.79	61.39	56.91	LR
	3-treelet + ConnD	63.66	63.7	57.94	61.05	56.08	LR

Table A .

 A 3: W-128 setting results with individual and combination features using 5 classifieurs. LR = Logistic Regression; NB = Naive Bayes; RF = Random Forest; Perc = Perceptron. "Connectives D" or "ConnD": desambiguated connectives.

	Features	SVM	LR	NB	RF	Perc	Best
	OCR	54.58	54.84	55.19 55.14	50.93	NB
	BC	66.19	66.54	55.09	66.89 55.99	RF
	Connectives	69.68 68.89	53.66	66.54	57.89	SVM
	Connectives D	65.13 63.73	57.11	59.06	56.95	SVM
	POS	58.0	58.26	50.0	60.48 51.75	RF
	2-POS	66.07	68.53 51.76	61.75	58.73	LR
	3-POS	70.48	70.66 62.66	62.46	62.65	LR
	1-2-3-POS	71.72	72.03 58.24	62.74	57.21	LR
	2-treelet	70.11 70.01	53.57	64.46	60.02	SVM
	3-treelet	66.39 66.28	59.27	61.26	58.44	SVM
	POS + 2-3-treelet	68.47	69.11 60.45	63.23	57.61	LR
	POS + OCR	58.77	59.3	54.57	61.63 53.12	RF
	2-POS + OCR	65.83	68.42 55.09	62.26	57.85	LR
	3-POS + OCR	70.57	70.84 63.84	62.85	62.27	LR
	POS + BC	67.3	67.49	55.7	67.89 56.05	RF
	2-POS + BC	72.43	72.76 60.05	66.29	60.34	LR
	3-POS + BC	73.29	73.75 66.88	64.54	62.41	LR
	2-treelet + BC	73.05 72.83	60.86	66.34	60.32	SVM
	3-treelet + BC	70.96 70.82	62.69	65.13	61.1	SVM
	OCR + BC	67.68	68.1	59.43	67.7	56.81	LR
	Conn + BC	71.63 70.9	59.97	68.57	59.59	SVM
	OCR + ConnD	66.91 65.49	58.74	60.86	57.67	SVM
	POS + ConnD	65.78 64.82	57.62	62.05	57.12	SVM
	2-POS + ConnD	69.12 68.68	61.25	61.86	60.87	SVM
	3-POS + ConnD	72.54 71.98	65.9	63.16	63.29	SVM
	2-treelet + ConnD	68.87 68.05	60.24	64.37	61.03	SVM
	3-treelet + ConnD	69.28 68.25	62.07	61.41	61.07	SVM

Table A .

 A 4: W-256 setting results with individual and combination features using 5 classifieurs. LR = Logistic Regression; NB = Naive Bayes; RF = Random Forest; Perc = Perceptron. "Connectives D" or "ConnD": desambiguated connectives.

	Features	SVM	LR	NB	RF	Perc	Best
	OCR	64.58	64.58	62.87	67.26 55.6	RF
	BC	63.0	63.82 59.89	61.87	58.28	LR
	Connectives	75.8	76.73 51.11	76.42	61.0	LR
	Connectives D	70.12	70.67 58.18	63.38	67.48	LR
	POS	56.95	54.55	50.0	57.18 51.45	RF
	2-POS	70.55	71.11 50.0	60.87	56.94	LR
	3-POS	71.71 71.1	63.76	60.55	65.8	SVM
	1-2-3-POS	72.52 67.85	51.27	58.67	53.36	SVM
	2-treelet	74.63 73.58	50.94	65.08	59.08	SVM
	3-treelet	70.31 70.04	66.8	66.14	64.33	SVM
	POS + 2-3-treelet	71.43 68.71	61.68	65.69	58.39	SVM
	POS + BC	63.65	65.19 60.17	61.78	59.51	LR
	2-POS + BC	72.32	73.76 61.67	61.24	60.94	LR
	3-POS + BC	75.13	75.2	70.35	61.2	69.34	LR
	2-treelet + BC	72.25	72.5	61.54	64.33	64.01	LR
	3-treelet + BC	71.85	73.2	71.24	63.33	65.93	LR
	OCR + BC	67.27	69.61 69.42	64.74	59.66	LR
	Conn + BC	73.55	75.06	63.78	75.09 66.32	RF
	OCR + ConnD	72.36	73.58 62.31	66.25	66.57	LR
	POS + ConnD	71.9	70.75	58.88	64.25	66.04	SVM
	2-POS + ConnD	72.06	72.72 62.37	62.91	68.81	LR
	3-POS + ConnD	73.48	74.23 70.13	62.49	71.79	LR
	2-treelet + ConnD	73.9	74.21 60.68	66.97	70.58	LR
	3-treelet + ConnD	75.74 75.57	65.12	65.64	70.67	SVM

Table A .

 A 6: W-1024 setting results with individual and combination features using 5 classifieurs. LR = Logistic Regression; NB = Naive Bayes; RF = Random Forest; Perc = Perceptron. "Connectives D" or "ConnD": desambiguated connectives.Table A.8: Best scores (averaged accuracy), best algorithms (Algo), corresponding hyperparameters, and thresholds for individual documents (Indiv) setting. Table A.9: Best scores (averaged accuracy), best algorithms (Algo), corresponding hyperparameters, and thresholds for window size 512 tokens (W-512) setting.

	Indiv. setting				
	Feature	Accuracy Algo Hyper-parameter Threshold
	bow	72.43	NB	α = 0.1	1e -
	ngram	69.59 SVM	C = 5	
	OCR	50.17 PERC	α = 0.001	mean
	BC	54.79	RF max_depth = 2	1e -
	Connectives	55.28	LR	C = 100	
	POS	55.80	LR	C = 1	1e -
	2-POS	56.33	LR	C = 1	1e -
	3-POS	56.53 SVM	C = 0.5	1e -
	2-treelet	56.73	LR	C = 5	1e -
	3-treelet	55.34	LR	-	1e -
	1-2-3-POS	58.36	LR	C = 100	1e -
	POS+2-3-treelet	57.77 SVM	C = 0.5	1e -
	3-POS + BC	57.46	LR	C = 5	1e -
	W-512 setting				
	Feature	Accuracy Algo	Hyper-parameter Threshold
	OCR	59.28 NB	α = 0.001	
	BC	67.86 RF max_depth = N one	
	Connectives	73.57 RF	max_depth = 2	median
	POS	60.09 SVM	C = 100	1e -
	2-POS	71.74 LR	C = 100	mean
	3-POS	72.55 SVM	C = 100	
	2-treelet	74.19 LR	C = 100	
	3-treelet	69.03 LR	C = 100	
	1-2-3-POS	72.67 SVM	C = 100	
	POS+2-3-treelet	72.39 LR	C = 100	
	3-POS + BC	77.86 SVM	C = 100	1e -

Note that theoretically, in SDRT, discourse units are represented in embedded boxes for hierarchical structures and are placed horizontally or vertically for different relation types (cf details in Section 2.2.2). In STAC corpus, boxes are removed and speech turns are shown in chronological order in a diagram for better visualization, as presented in https://www.irit.fr/STAC/stac_game_graphs/readme.html.

In this thesis, we use the term "documents" to refer to written texts, including both monologues and dialogues.

For more languages, check the latest DISRPT github: https://github.com/disrpt/sharedtask2023.

https://universaldependencies.org

Journée commune AFIA-THL / ATALA -la santé et le langage.

https://semdial2021.ling.uni-potsdam.de/programme/.

http://connective-lex.info

DiscSense is publicly available at https://github.com/synapse-developpement/DiscSense.

https://www.cs.brandeis.edu/~clp/conll16st/intro.html

https://sites.google.com/georgetown.edu/disrpt2021, https://sites.google.com/view/disrpt2023/

We do not explain DRT accessibility explicitly here. We consider it the most basic structure, with no subordination or conditional. Thus the referents in the universe of DRS are all accessible to the conditions. For a precise definition and application rules, refer to Section 2.2 in[START_REF] Asher | Logics of conversation[END_REF].

https://catalog.ldc.upenn.edu/LDC2002T07

https://nlp.lab.uic.edu/resources/

https://sites.icmc.usp.br/taspardo/projects.htm

Refer DISRPT 2023 shared task GitHub for more information: https://github.com/disrpt/ sharedtask2023/tree/main/data.

http://redac.univ-tlse2.fr/corpus/annodis/

https://www.irit.fr/STAC/corpus.html

https://github.com/HIT-SCIR/Molweni

https://catalog.ldc.upenn.edu/LDC2005T08

https://github.com/PKU-TANGENT/SciDTB

https://github.com/norikinishida/biomedical-discourse-treebanks

https://github.com/disrpt/sharedtask2023/tree/main.

For more details on annotation, refer to https://www.irit.fr/STAC/stac_game_graphs/readme.html.

Refer to Ruder's blog on transfer learning: https://www.ruder.io/transfer-learning/

On the leaderboard for syntactic dependency parsing, top parsers on the Penn Treebank achieve > 95% UAS and LAS scores. Please refer to https://paperswithcode.com/sota/dependency-parsing-on-penn-treebank.

Technically speaking, this work can also be classified as supervised learning. However, the training and test sets were not in the same domain, and the authors leveraged information from another dataset during training. Hence, this work is classified as transfer learning.

For a comprehensive description of all rules, refer to https://tizirinagh.github.io/acl2019/.

Technically, this study is not entirely unsupervised. A few annotated documents are needed to go guide early stopping during training.

MEGA-DT is introduced in Huber and Carenini (2020b), as presented in Section 3.2.2.1.

The paper did not specify whether the parser was trained with the RST-DT corpus(Carlson et al., 2002a) or Instructional-DT corpus[START_REF] Subba | An effective discourse parser that uses rich linguistic information[END_REF], and it did not provide any precision.

Refer to Equations 20 -26 for details in[START_REF] Fu | Long short-term memory network over rhetorical structure theory for sentence-level sentiment analysis[END_REF].

Refer to Equations 17 -18 and 19 -35 for details in[START_REF] Kraus | Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees[END_REF].

https://openai.com/blog/chatgpt.

Derailment: spontaneous speech that tends to slip off track. Tangentiality: reply to a question in an oblique or irrelevant manner.

Negative thought disorder : poverty of speech (known as alogia) and poverty of content.

Our code is available on: https://github.com/chuyuanli/non-lexical-markers-scz-conv.

https://commission.europa.eu/law/law-topic/data-protection/eu-data-protection-rules_en

https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_26_models.

Renamed as Rhapsodie treebank: https://tinyurl.com/UniversalDependencies-French-S

https://github.com/mjlaali/french-dc-disambiguation

https://scikit-learn.org/: feature_selection.SelectFromModel.

WAIS-III: Wechsler Adult Intelligence Scale (WAIS) is an IQ test designed to measure intelligence and cognitive ability in adults and older adolescents. Trail Making Test (TMT) is a widely used test to assess executive abilities in patients. California Verbal Learning Test (CVLT) measures episodic verbal learning and memory.

https://www.who.int/news-room/fact-sheets/detail/depression

Our code is available at https://github.com/chuyuanli/MTL4Depr.

Chunking is also known as shallow syntactic parsing, one word receives one syntactic tag such as a begin-chunk (e.g. B-NP) or inside-chunk tag (e.g. I-NP).

Sentiment and emotion are closely related but with different functions and/or granularity, as discussed in

https://dcapswoz.ict.usc.edu

Participant#409 had PHQ-9 score at 10 but is given a binary score of 0. With respect to the original label we kept this instance in the class 0.

http://yanran.li/Dailydialog.

We leave the detail calculation process with key, query, and value matrices for interested readers. A nice explanation can be found in this blog: https://jalammar.github.io/illustrated-transformer/.

https://deepset.ai/german-bert

https://gucorpling.org/gum/.

https://sites.google.com/georgetown.edu/disrpt2021.

The official number of documents in[START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF] is 45. In later versions, these long documents have been divided into 1000 smaller sub-documents with an average turn length at 13, as in[START_REF] Shi | A deep sequential model for discourse parsing on multi-party dialogues[END_REF];Li et al. (2023), etc. 

DISRPT 2021: https://sites.google.com/georgetown.edu/disrpt2021/home. DISRPT 2023: https:// sites.google.com/view/disrpt2023/home

Code is available on https://github.com/chuyuanli/DisRel-w-selftraining.

p value is not as small in the convention value since we can only compare groups of 5 values. With more seeded groups, we expect to get more significant results.
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In this chapter, our focus is on Pre-Trained Language Models (short in PLMs). These models have demonstrated remarkable performance on a wide range of NLP tasks, including sentiment analysis [START_REF] Gu | Domain-specific language model pretraining for biomedical natural language processing[END_REF], machine reading comprehension (Yang et al., 2019a), relation extraction [START_REF] Alt | Fine-tuning pre-trained transformer language models to distantly supervised relation extraction[END_REF], and semantic role labeling [START_REF] Shi | Simple bert models for relation extraction and semantic role labeling[END_REF], among others. Although it is evident that PLMs excel in these tasks, the underlying reasons for their success remain less understood. Unlike classical machine learning models such as logistic regression or decision trees, PLM's architecture is much more complex. The significant size of the parameters and gradient calculation make a hard task to unveil the reasoning process inside the model. Researchers are fascinated by the mechanism behind these models. It is evident that the utilization of large-scale PLMs can be advantageous for machine comprehension and information extraction [START_REF] Liu | Domain-specific language pre-training for dialogue comprehension on clinical inquiry-answering conversations[END_REF]. However, the extent to which they encode discourse-level information is a relatively unexplored area. The purpose of this chapter is to investigate the capability of PLMs to capture and encode discourse information.

To achieve this goal, we start by giving a brief history of word embeddings -the predecessors of contextualized representations in PLMs in Section 6.1. We then introduce the basic concepts of PLMs, including their architectures, training languages (mono-lingual or multi-lingual), and learning objectives in Section 6.2. Then, we delve into the field of "BERTology" -a field of study that investigates the inner workings of Transformer-based models -and discuss the knowledge representation in these models in Section 6.3. In Section 6.4, we focus on studies that explore discourse information encoded in PLMs, typically via probing tasks, and how to extract these information. In continuation with the research on discourse probing tasks, [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF] introduce a new approach to encode entire long documents into PLMs and extract their RST-style discourse structures. When using Transformer-based models, a major limitation is the input length (for instance, BERT-base is limited to 512 sub-tokens, while BART can handle up to 1024 sub-tokens). Despite the development of larger language models like Transformer-XL [START_REF] Dai | Transformerxl: Attentive language models beyond a fixed-length context[END_REF], or sparse pattern models such as Longformer [START_REF] Beltagy | Longformer: The long-document transformer[END_REF] and Big Bird [START_REF] Zaheer | Big bird: Transformers for longer sequences[END_REF], many systems still encounter difficulties with document-length inputs. To offer a solution that is model-agnostic and applicable to any transformer-based architecture, the authors suggest an approach called the "sliding window" method. This method involves dividing the long document of m sub-word tokens into multiple sequences with a maximum length of t max , and then sliding down one token at a time until the end of the document is reached. By doing this, (m -t max + 1) of partial sequences are generated and are put into LMs to obtain partial attention matrices M P . Document-level matrix M D is obtained from the addition of all M P matrices. Finally, by dividing M D to its frequency-tracking matrix M F , a frequency normalized self-attention M A is achieved. This process is illustrated in Figure 6.3.

Figure 6.3: An illustration of the sliding window approach proposed in [START_REF] Huber | Towards understanding large-scale discourse structures in pre-trained and fine-tuned language models[END_REF]. e n are EDUs; t n are sub-word tokens; red lines are input text spans with maximum length limit (t max ); M P is partial square self-attention matrix (size t max × t max ); M D is document-level matrix obtained from M P matrices' addition; M F is frequency matrix that tracks the number of overlaps in M D ; M A is frequency normalized attention matrix.

The authors utilize original BERT-base and BART-large models for the discourse inference, and extend to seven fine-tuned versions that include tasks such as sentiment analysis, natural language inference, summarization, and question-answering. Since this is not a probing task, no additional layers are added. The authors input the EDUs into the language model, extract all attention matrices, and convert them into potential discourse trees using the CKY and Eisner algorithms. They then analyze each self-attention matrix individually and compare their alignment with discourse information.

The authors conduct experiments on GUM [START_REF] Zeldes | The gum corpus: Creating multilayer resources in the classroom[END_REF] and RST-DT (Carlson et al., 2002a) datasets, and compare the results with chain baselines (left-branching and right-branching) as well as a distant-supervised models in [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF]. The performance of the self-supervised approach, using BERT-base and BART-large, is much lower compared to the supervised model presented in [START_REF] Wang | A two-stage parsing method for text-level discourse analysis[END_REF] (with a gap of 20 points). Nevertheless, discourse structures inferred by the PLMs outperform the chain baselines by a large margin (greater than 10), and exhibit significant improvement when compared to those inferred from neural summarizers [START_REF] Xiao | Predicting discourse trees from transformer-based neural summarizers[END_REF].

The analysis reveals that the higher layers of the models capture mostly constituent structures, whereas dependency structures are more evenly distributed throughout the layers. The behavior of original and fine-tuned LMs is similar, indicating that both pre-trained and finetuned LMs can effectively capture discourse information. Interestingly, the study finds that over 16% of the correctly predicted dependency structures are not captured by supervised models, indicating that PLMs capture some complementary information. Overall, the captured discourse information is found to be both local and general, and consistent with the information obtained from supervised models.

In Chapter 3, we have discussed supervised discourse parsing models. Now, with the introduction of self-supervised discourse parsing, it is interesting to compare the performances of different learning strategies. To provide a clear comparison of model performances and the applicability of different learning strategies, we present a brief comparison of supervised, inter-domain supervised, and self-supervised learning in discourse parsing in Table 6 reaching 71.4% and 73.8% in F 1 , respectively. We re-train the Deep Sequential model using the released code. The obtained scores are slightly lower as in the paper, a similar observation is reported in Wang et al. (2021a).

In the last sub-table of Table 7.3, we show unsupervised scores from pre-trained and finetuned LMs on three auxiliary tasks: summarization, question-answering, and sentence ordering (SO) with the mixed shuffling strategy. We present the global head (H g ) and local heads (H l ) performances selected by the DAS score (see Section 7.2.4.1). The best possible scores using an oracle head selector (H ora ) are presented for reference.

Comparing the values in the bottom sub-table, we find that the pre-trained BART model under-performs LAST, with global and local heads achieving similar performance. Noticeably, models fine-tuned on the summarization task ("+CNN", "+SAMSum") and question-answering ("+SQuAD2") only add marginal improvements compared to BART. In the last two lines of the sub-table, we explore our novel sentence ordering fine-tuned BART models. We find that the BART+SO approach, trained on DailyDialog (DD) and STAC itself, surpasses LAST when using local heads. As commonly the case, the intra-domain training performs best, which is further strengthened in this case due to the special vocabulary in STAC. Importantly, our PLMbased unsupervised parser can capture some long-distance dependencies compared to LAST (Section 7.5.2). Additional analysis regarding the chosen heads is in Section 7.5.1.

Semi-Supervised Head Selection

While the unsupervised strategy only delivered minimal improvements over the strong LAST baseline, Table 7.4 shows that if a few annotated examples are provided, it is possible to achieve substantial gains. In particular, we report results on the vanilla BART model, as well as BART model fine-tuned on DailyDialog ("+SO-DD") and STAC itself ("+SO-STAC"). We execute 10 runs for each semi-supervised setting ([10, 30, 50]) with head-wise ("H") and layer-wise ("L") attention matrices, and report average scores and the standard deviation.

With oracle attention heads (Gold H in the table), all three models achieve superior performance compared to LAST. Further, using a small scale validation set (50 examples) to select the BART fine-tuned on STAC, followed by the inter-domain fine-tuned +SO-DD and BART models.

Using the semi-supervised approach and head-wise attention, we see further improvement with the F 1 score reaching 68% (+6% than LAST). Conversely, we found that aggregating attentions layer-wise was not better than LAST, which is consistent with our results on the entire test set (Table 7.4).

Direct & Indirect Arcs Performance: Similarly, as in Section 7.5.2, we take a look at the performance of indirect and direct arcs prediction in the tree subset. Degradation for direct and indirect edges' precision and recall scores are presented in Figure 7.8 (BART model), Figure 7.9 (BART+SO-DD), and Figure 7.10 (BART+SO-STAC). Further, we compare the performance on the whole test set and projective tree subset. Darker colored bars are the results for the whole test set and lighter colored bars tree subset. We find that the recall of indirect edges improves the most in all three models.

Predicted vs. Gold Tree Properties: Following [START_REF] Ferracane | Evaluating discourse in structured text representations[END_REF], we analyze key properties of the 48 gold trees compared to our extracted structures using the semi-supervised method. To test the stability of the derived trees, we use three different seeds to generate the shuffled datasets to fine-tune BART. Table 7.8 presents the averaged scores and the standard deviation of the trees. In essence, while the extracted trees are generally "thinner" and "taller" than gold trees and contain slightly less branches, they are well aligned with gold discourse structures and don't contain "vacuous" trees, where all nodes are linked to one of the first two EDUs.

Qualitative Analysis

We provide qualitative analysis of inferred structures. Among all the predicted tree structures, we randomly selected 2 well predicted trees (F score > 60%) with BART-SO-STAC model, as shown in Figure 7.11 and Figure 7.12. Every prediction is compared with the gold-standard tree ("Ground turth"). In these figures, red arrows are false positive attachments and blue ones are we determine the best performing attention head and extract tree structures, resulting in a performance of 52.2%. Lastly, we employ a fine-tuned BERT model to predict rhetorical relations based on the extracted structures. This model is iteratively re-trained using a combination of gold (50 documents) and pseudo-labeled data, as outlined in Section 8.2. The final parsing result, considering all three steps, is 32.8%, as displayed in the last line of Top: state-of-the-art supervised parsers. Bottom: our semi-supervised parser setp-by-step parsing results. Scores are micro-F 1 . "-" means using the gold data.

At the top of Table 8.7, we present state-of-the-art models that utilize gold EDUs as a starting point for link and relation prediction. To the best of our knowledge, there are no supervised models that report results based on predicted EDUs. When comparing our results with these supervised models, we observe a performance gap of approximately 15 points for link attachment (using gold EDUs) and approximately 18 points for link+relation prediction. This difference in performance can largely be explained by the huge difference of training size. It's worth noting that supervised models, such as the one proposed by [START_REF] Chi | Structured dialogue discourse parsing[END_REF], perform joint link and relation tasks, enabling the model to leverage relation information to aid in link prediction. In contrast, our approach does not provide relation information during the link prediction step. While these supervised models perform better within specific domains, studies have shown a significant drop in their inter-domain capabilities [START_REF] Liu | Improving multi-party dialogue discourse parsing via domain integration[END_REF][START_REF] Nishida | Out-of-domain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF]. In contrast, our parsing pipeline is built upon models trained with distant and weak supervisions, making it more adaptable to other domains compared to supervised models. Regarding RST-style parsing, we find a full parsing system proposed by [START_REF] Nguyen | Rst parsing from scratch[END_REF], which is trained and tested on the RST-DT corpus, thus not directly comparable to our results. Nevertheless, we observe a similar gap of 20 points from link attachment to relation prediction, confirming the inherent challenge in discourse relation prediction.

Step-by-Step Error Analysis: The Structure-then-relation framework is susceptible to error propagation. Our system achieve a performance of 59.3 for structure attachment, which is a relatively low starting point for the following relation prediction task. We are intrigued by the rhetorical relations in these "missing structures" and how can we use this information this information to improve future joint frameworks.

To achieve this goal, we divide the gold-standard relation pairs into four categories, depicted in Figure 8.11. The gray and green blocks represent the "missing relations" (i.e., false negatives) that arise from the initial two stages of the process: EDU segmentation and structure attachment. Are unattached pairs difficult to predict due to the rarity of the relationship? Which relationship is the most challenging to predict even with the correct attachment? To answer these questions, we examine the relation composition in each task block in Figure 8.11 and show the result in Figure 8.12. In Figure 8.12, each relation bar is composed of the number of correct predictions (red), wrong predictions (orange), missed predictions due to unattachment (green), and missed predictions due to segmentation (gray). The exact scores are reported in