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ABSTRACT 

Today, Laser-Induced Breakdown Spectroscopy (LIBS) imaging is in full change. Indeed, 

always more stable instrumentations are developed, which significantly increases the signal quality 

and naturally the analytical potential of the technique for the characterization of complex and 

heterogeneous samples at the micro-scale level. Obviously, other intrinsic features such as a limit of 

detection in the order of ppm, a high field of view and high acquisition rate make it one of the most 

complete chemical imaging techniques to date. It is thus possible in these conditions to acquire several 

million spectra from one single sample in just hours. For sure, different chemometric approaches allow 

us today to propose a valorization of the acquired spectral data at both qualitative and quantitative 

levels. From a fundamental point of view, the main characteristics of the plasma, such as its 

temperature and electron density, have a significant impact on the intensities of the emission lines and 

even on the presence of some of them over a wide range of wavelengths. Of course, theoretical models 

could allow us, in some way and under very strict conditions, to correct the emission line intensities 

but this would remain a complex and very time-consuming task. In fact, we could only consider this 

strategy for a few spectra but not for hundreds of thousands or even millions of spectra of a LIBS 

hyperspectral imaging dataset that is available today. The first problem we have been working on in 

this thesis is to develop a robust predictive model to quantify an element from a LIBS spectrum 

independently of the plasma temperature and electron density. The second problem we addressed 

during this thesis is related to the intrinsic structure of a hyperspectral imaging dataset. Indeed, we 

always want to extract information on both major and minor compounds and even traces potentially 

contained in the hyperspectral data cube we have just acquired. However, minor compounds and traces 

are often present on a small number of pixels representing a very small variance in the spectral dataset. 

Unfortunately, the majority of chemometric algorithms exploiting the concept of expressed variance 

do not (or hardly) allow the detection of these compounds, especially when the signal-to-noise ratio is 

limited. It is therefore the second purpose of this thesis to introduce an algorithm which can give all 

compounds a chance to be detected regardless of their concentration. 

 

 

  



xv 

 

RÉSUMÉ 

Aujourd'hui, l'imagerie LIBS est en pleine évolution. En effet, des instruments toujours plus 

stables sont développés, ce qui augmente significativement la qualité du signal et naturellement le 

potentiel analytique de la technique pour la caractérisation d'échantillons complexes et hétérogènes à 

l'échelle du micron. Bien évidemment, d'autres caractéristiques intrinsèques telles qu'une limite de 

détection de l'ordre du ppm, un champ d’analyse élevé et une vitesse d'acquisition importante en font 

l'une des techniques d'imagerie chimique les plus complètes à ce jour. Il est ainsi possible dans ces 

conditions d'acquérir plusieurs millions de spectres d'un seul échantillon en quelques heures. Certes, 

différentes approches chimiométriques nous permettent aujourd'hui de proposer une valorisation des 

données spectrales acquises tant au niveau qualitatif que quantitatif. D'un point de vue fondamental, 

les principales caractéristiques du plasma, telles que sa température et sa densité électronique, ont un 

impact significatif sur les intensités des raies d'émission et même sur la présence de certaines d'entre 

elles sur une large gamme de longueurs d'onde. Bien sûr, des modèles théoriques pourraient nous 

permettre, d'une certaine manière et sous des conditions très strictes, de corriger les intensités des raies 

d'émission mais cela resterait une tâche complexe et très longue. En fait, nous ne pourrions envisager 

cette stratégie que pour quelques spectres, mais pas pour des centaines de milliers, voire des millions 

de spectres d'un ensemble de données d'imagerie hyperspectrale LIBS disponibles aujourd'hui. C'est 

le premier problème sur lequel nous avons travaillé dans cette thèse dans le but de développer un 

modèle prédictif robuste pour quantifier un élément à partir d'un spectre LIBS indépendamment de la 

température du plasma et de la densité électronique. Le deuxième problème que nous avons abordé au 

cours de cette thèse est lié à la structure intrinsèque d'un jeu de données d'imagerie hyperspectrale. En 

effet, nous souhaitons toujours extraire des informations sur les composés majeurs et mineurs et même 

sur les traces potentiellement contenues dans le cube de données hyperspectrales que nous venons 

d'acquérir. Cependant, les composés mineurs et les traces sont souvent présents sur un petit nombre de 

pixels représentant une très faible variance dans le jeu de données spectrales. Malheureusement, la 

majorité des algorithmes chimiométriques exploitant le concept de variance exprimée ne permettent 

pas (ou peu) la détection de ces composés, surtout lorsque le rapport signal/bruit est limité. C'est donc 

le second objectif de cette thèse que d'introduire un algorithme permettant de donner une chance à tous 

les composés d'être détectés quelle que soit leur concentration. 

  



1 

 

INTRODUCTION 

As a spectroscopic technique, LIBS has numerous applications in many areas and this 

technique has showed its ability to the world. Compared with some other commonly used spectroscopy, 

LIBS has many advantages, such as the fast data acquisition, no sample preparation, capable of 

analysing sample in gas, liquid and solid form and the amazing ability to analysis almost all the 

elements. LIBS showed great power in qualitative analysis, however, the quantitative analysis is 

perhaps its Achilles’s heel if we are very strict about the origin of the signal. The reason for making 

LIBS quantitative analysis a bit complex is the varying nature of the plasma, with different temperature 

and electron density coming from matrix effects. Although temperature and electron number density 

information are important, the vast majority of studies either do not consider them or simplify the 

effects they might have on the analysis due to the difficulty of acquiring them. Of course, there are 

different solutions for this issue, from using standard reference to complex physical calibrations, the 

coupling of other analytical instruments or the use of chemometric strategies. In reality, it is first not 

always possible to have references, the calibration is way too complex and not very practical for large 

datasets, and coupling with other instrument is not always as easy. Compared with previous solutions, 

chemometrics has significant advantages, for instance, no extra measurement needed, friendly to big 

data, and once the analysis model has been established, it is reusable. Among the many chemometric 

methods, artificial neural network (ANN) is an approach that has been quite quickly exploited in the 

field of LIBS and is suitable for large spectral datasets. Needless to mention the rise and popularity of 

ANN in many fields in recent years, the astonishing ability of dealing with non-linear complex 

problems makes it a celebrity in many scientific domains. The first objective of this thesis will be to 

develop a data processing strategy for LIBS spectra based on neural networks in order to propose a 

quantitative analysis that is robust to the potential variations of temperature and electron density of the 

plasma observed in complex and heterogeneous samples. 

With the development of analytical instrument, the datasets we acquired become bigger and 

bigger, especially in LIBS hyperspectral imaging. For example, the datasets acquired in the 2000s 

contained a thousand spectra, whereas today they can contain more than 10 million spectra acquired 

in a few hours on a single sample. The instrumental developments have of course allowed this growth 

without compromising the quality of the spectra. During all these years, we could also observe a real 

increase in the skills of the LIBS community which opened to the concepts of chemometrics. From 

this very positive observation concerning LIBS imaging, we could then ask ourselves where is the 

problem?  It comes in fact from the natural will of a researcher to want to discover everything of his 
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complex sample, i.e. to detect both major, minor and even trace elements. Unfortunately, the majority 

of chemometrics algorithms based on the notion of variance do not allow to detect all of them and it is 

therefore the interest of this work to propose an alternative chemometrics strategy for a real exhaustive 

exploration of large LIBS imaging datasets.  

This thesis manuscript will therefore be organized in three chapters. The first chapter will cover 

the principles of LIBS spectroscopy and chemometrics with a state of the art. The second chapter will 

report on the first experimental part of this thesis with the development of a neural network strategy 

for robust quantification in the face of temperature and electron density variations in the plasma. The 

third chapter, the second experimental part of this thesis, will develop a chemometric strategy for the 

detection of all chemical contributions of a complex sample independently of their explained variance 

within the considered imaging spectral dataset. 
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Chapter I 

_________________________ 

Laser induced breakdown 

spectroscopy and Artificial 

neural network: an overview 

and theoretical basis 
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I. LASER INDUCED BREAKDOWN SPECTROSCOPY AND 

ARTIFICIAL NEURAL NETWORK: AN OVERVIEW AND 

THEORETICAL BASIS 

I.1. Laser-induced breakdown spectroscopy (libs) 

I.1.1 Introduction of LIBS 

Laser-Induced Breakdown Spectroscopy, known as LIBS, is an emission spectroscopy  capable 

of analysis of multi-elements in basically any kinds of samples both qualitative and quantitative[1]. 

LIBS is a rather powerful spectroscopy for it is rapid, very little or no sample preparation needed, 

small quantity of sample required, analyzed in-situ and remotely. LIBS uses a high energy laser pulse 

on the sample to excite and ionize it to generate plasma, which will later produce spectra of the sample 

for analysis. Nd: YAG (Neodymium doped Yttrium Aluminum Garnet) lasers is one of the most 

commonly used lasers for LIBS. In general, the process of LIBS starts with the ablation of a small 

amount of sample from laser to generate plasma, the light from the plasma will then be directed and 

collected through an optical system, then the spectrum will be generated and detected by spectrometer 

for further analysis. The LIBS spectrum for the existence of different elements is distinguished by the 

characteristic wavelength of each element with the help of NIST (National Institute of Standards and 

Technology), and the quantity of each element can be told by measuring the intensities of spectrum. 

Further quantification of each element can be done with either calibration curves or through a 

calibration free LIBS (CF-LIBS). For the many advantages of LIBS, it has been applied in many areas, 

such as remote sensing[2][3][4], forensic[5][6][7][8], environmental 

analysis[9][10][11][12][13][14][15], ceramic raw materials in cultural heritage[16][17], wood 

products[18][19][20][21][22][23], industry[24][25][26], dominant and trace elements in 

alloys[27][28][29][30], aerosols[31][32][33][34][35] and many more.  

 

I.1.2 History 

After the invention of pulsed ruby laser in 1960, and the development of Q-switched laser in 

1963, laser was capable of breakdown and generate laser plasma that can be used analytically, LIBS 

was born. In the 60s and 70s, LIBS have developed the abilities to detect samples in gas and liquid 

form, and theory and modeling were also developed to assist the better understanding of the laser-

induced plasma. During the 70s and the early 80s, some applications for LIBS were appeared with the 
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work from Los Alamos National Laboratory[36][37]. But it was not until in the 1980s with the huge 

improvement in laser, the introduction of Nd: YAG laser, and detector technology that made LIBS 

popular in different areas[38]. 

In the 90s, with the huge development of computer, laser and spectrometers, there were further 

development in instruments of LIBS. With the invention of calibration-free LIBS(CF-LIBS)[39] and 

the use of LIBS on NASA’s Mars rover Curiosity around 2000, LIBS again caught people’s attention 

and became one of the major techniques for qualitative and quantitative analysis[40]. 

 

I.1.3 Characterization of the laser parameters and the ablation process 

(Principle of LIBS)  

I.1.3.1. Laser light 

The description of laser light is frequently determined by terms like intensity, irradiance, 

fluence, radiant exposure, power of energy, density, volumetric energy density, and photo flux. All 

these terms can be decided with equations in Table I-1 needed.  

 

Table I-1 Examples of basic expressions characterizing the laser beam, its intensity distribution, its propagation, 

and its focusing behavior[41] 

Expression Description 
Equation 

number 

𝑃 =#𝐼!"#$%(𝑟, 𝜆, 𝜑) 𝑑𝜑𝑑𝜆𝑑𝑟 Light power (Ref[42], p.52) T1.1 

𝐸 =#𝐼!"#$%(𝑟, 𝜆, 𝜑, 𝑡) 𝑑𝜑𝑑𝜆𝑑𝑟𝑑𝑡 Pulse energy (integrated over all 

distributions) 
T1.2 

𝐸 = . 𝑃(𝑡)𝑑𝑡
!"#$%

 Power-energy relation of a pulse T1.3 

𝑡& = ∫ 𝑡𝑃(𝑡)𝑑𝑡
!"#$%∫ 𝑃(𝑡)𝑑𝑡
!"#$%

 

Time of the pulse center (i.e. when 𝐼(𝑡) = 𝐼'()). This formula is valid for 

any pulse shape 

T1.4 

𝐼(𝑡) = 𝐼&exp	(− 𝑡*𝜏&*) Gaussian temporal profile (Ref[36], p. 

26) 
T1.5 

𝜏! = 2𝜏&√𝑙𝑛2 
FWHM (full width at half-maximum) 

(Ref[36]) 
T1.6 

𝐼 ̅ = +!

,!
=∫ -(/)1/

,!
= 1.06𝐼&23

43
 Average pulse irradiance(Ref[36]) T1.7 
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𝑟 = (2𝜆𝜋 )(𝑓𝑑) 
Laser radius, diameter, length, and 

divergence(assuming a cylindrical 

shape(Ref[43]) 

T1.8 

𝑙 = (√𝜋 − 1) 𝜃𝑑 𝑓* 

Length and divergence assuming a 

cylindrical shape; 𝑓 =𝑙𝑒𝑛𝑔𝑠	𝑓𝑜𝑐𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ(Ref[43]) 

T1.9 

𝑤&𝜃 = (𝜆 𝜋⁄ ) Diffraction-limit condition(Ref[42], 

p. 60) 
T1.10 

𝑀* = (𝑤&𝜃)5%('(𝑤&𝜃)1677	#6' = 𝜋𝑑&𝐷#4𝑓𝜆  
Beam propagation factor( 𝐷/ =𝑙𝑒𝑛𝑠	𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) (Ref[42], p, 60) 

T1.11 

𝐼 = 𝐸!𝜋𝐷#*4𝜏!𝑓*𝜆* P 1(𝑀*)*Q 
Irradiance at the target (equation 

derived from the various definitions 

given) 

T1.12 

𝑠𝑝𝑜𝑡	𝑠𝑖𝑧𝑒 = 0.61𝜆𝑁𝐴  
Diffraction-limited spot size 

(Refs[44][45]) 
T1.13 

 

I.1.3.2. Ablation 

Ablation process is an important process for LIBS, and ablation efficiency is a parameter 

related to it. By definition, ablation process is the result of a complex interaction, involving laser 

parameters, sample properties, and plasma chemistry[41]. Table I-2 from review[41] listed the 

equations related to ablation efficiency. A simpler explanation is given with the example of surgery 

for medical application, as removing clots in the blood to restore the normal flow and at the same time 

maintain the integrity of blood vascular. As stated by its name, this parameter is an efficiency, like 

“quantum efficiency”, has no units. It is defined by the ratio of number of atoms removed from the 

sample to the number of laser photons impinging on the surface[41]. However, in order to quantity 

this important parameter, another parameter, “ablation sensitivity” was introduced[46]. This parameter 

can be defined by the graphs in plotting the signal measured versus laser pulse energy, and has the unit 

of Volt/J, count/J and others if needed. Altogether ablation efficiency and ablation sensitivity are 

usually used to characterize the ablation process. Another thing that worth mentioning is that a similar 

definition used in LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometer) is 

called detection efficiency, which means the ratio of ions reaching the detector and the number of 

atoms released during laser ablation and takes into account aerosol losses during transportation as well 

as incomplete vaporization in the ICP (Inductively Coupled Plasma)[47]. 
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Table I-2 Definitions related to the ablation process and parameters involved[41] 

Expression Description 
Equation 
number 𝜂(5# = 𝜌𝛿Φ&

 Ablation efficiency (Ref[48], p. 611) T2.1 

𝜂(5# = 𝜌𝜇(Φ&

ln ]Φ&Φ/9

^ 
Ablation efficiency (blow-off model) 

(Ref[48], p.611) 
T2.2 

𝜂(5# = Φ& −Φ/9ℎ(5#Φ&

 
Ablation efficiency (steady-state model) 

(Ref[48], p.611) 
T2.3 

𝜂(5# = 𝑉𝑜𝑙𝑢𝑚𝑒	𝑎𝑏𝑙𝑎𝑡𝑒𝑑𝑃𝑢𝑙𝑠𝑒	𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑆#ℎ$𝑄#  Ablation efficiency (Ref[49]) T2.4 

𝜂(5# = 𝐶𝑟𝑎𝑡𝑒𝑟	𝑑𝑒𝑝𝑡ℎ𝑃𝑢𝑙𝑠𝑒	𝑓𝑙𝑢𝑒𝑛𝑐𝑒 = ℎ$𝐹# = ℎ$𝑆#𝑄#  Ablation efficiency (Ref[50]) T2.5 

(𝜂(5#):: = 𝑚(5#𝛿𝑉(5#Φ&

= 𝑚(5#𝛿𝑆#𝑆#𝛿𝑄# = 𝑚(5#𝑄#  Comparison T2.1 and T2.5 T2.6 

(𝜂(5#);; = 𝑆#ℎ$𝑄# = 𝑚(5#𝜌𝑄#  Comparison T2.1 and T2.5 T2.7 

𝜂(5# = 𝐴𝑡𝑜𝑚𝑠	𝑟𝑒𝑚𝑜𝑣𝑒𝑑	𝑝𝑒𝑟	𝑝𝑢𝑙𝑠𝑒𝑃ℎ𝑜𝑡𝑜𝑛𝑠	𝑝𝑒𝑟	𝑝𝑢𝑙𝑠𝑒  Atom removal efficiency T2.8 

𝜂(5# = 𝜌$𝑆#ℎ$𝑁<ℎ𝑣𝑀$𝑄# = 𝜌$ℎ$𝐹# ]𝑁<ℎ𝑣𝑀$

^ Atom removal efficiency T2.9 𝑑𝑚𝑑𝑡 = 𝑚𝑎𝑠𝑠	𝑟𝑒𝑚𝑜𝑣𝑒𝑑	𝑝𝑒𝑟	𝑝𝑢𝑙𝑠𝑒(𝑢𝑛𝑖𝑡	𝑎𝑟𝑒𝑎)(𝑢𝑛𝑖𝑡	𝑡𝑖𝑚𝑒)  Peak ablation rate(definition) T2.10 

�̇�!%(= = 𝑚$𝑆#𝜏> Peak ablation rate (Ref[51]) T2.11 

𝑚(?% = 𝑚$𝑆#𝜏> (𝑓#𝜏>) Average ablation rate ( 𝑓# =𝑙𝑎𝑠𝑒𝑟	𝑟𝑒𝑝𝑒𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒) 
T2.12 𝑑ℎ$𝑑𝑡 = (ℎ̇$)!%(= = �̇�!%(=𝜌$  Peak penetration rate (Ref[51]) T2.13 

(ℎ̇$)(?% = �̇�(?%𝜌$  Average penetration rate T2.14 

�̇� = 𝜌&𝑑@𝜏>  
Mass removal rate (Refs[52][53][54]. 

[55][56][57]) 
T2.15 

�̇� = 110 ] Φ(10AB^A C⁄ 𝜆4B C⁄  
Mass removal rate 

(Refs[52][53][54][55]) 
T2.16 

�̇� = 2.66 (𝜓)E F⁄ (𝐼)A *⁄(𝐴)A B⁄ (𝜆)A *⁄ (𝜏>)A B⁄
 Mass removal rate (Ref. [57]) T2.17 

𝜓 ≡ 𝐴2[𝑍*(𝑍 + 1)]A *⁄
 

Parameter entering Eq. T2.17; A=atomic 

mass; Z=ionic charge(for singly charged 

ions Z=1) 

T2.18 

 

Ablation rate is another useful parameter in ablation process, it is characterized by the total 

mass ablated per unit time per unit area (gcm-2 s-1). Since the laser sample interaction in LIBS is a 

rather complex process, the ablation mass and the useful ablation mass can be different, and the 

chemical properties of ablation in plasma can be different from sample in solid form. To conclude, a 

unified approach is still needed though the problems mention above.  
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I.1.4 Local thermodynamic equilibrium, theoretical equilibrium, plasma 

parameters and their evaluation 

In this section, two of the most important parameters in LIBS will be introduced, electron 

number density (Ne) and plasma temperature(T), and also the concept of local thermodynamic 

equilibrium (LTE) will be discussed. 

 

I.1.4.1. Local thermodynamic equilibrium (LTE) 

Local thermodynamic equilibrium is defined as the plasma state reaching a local equilibrium. 

The best option would always be for the plasma to reach a complete local equilibrium. However, with 

all the other many processes to reach the perfect balance they all need to reach a single temperature, 

which is rather difficult criteria to meet. When the plasma is in a theoretical complete local equilibrium, 

the process of excitation of atoms by collision with electron is equal to the reverse deactivation process, 

and collisional ionization equal to three-body collisional recombination, and radiation emitted is equal 

to the radiation absorbed[41]. When the laws that used to describe the full thermodynamic equilibrium 

can apply, and at the same time the collisions dominate, a complete local thermodynamic equilibrium 

is reached. Since radiative transitions between low-lying levels (resonance transitions) are defined by 

high values of the Einstein coefficient of spontaneous emission, and the former are depopulated faster 

than the high levels, a radiative equilibrium is easier to reach.  If these levels are not considered, a 

partial local thermodynamic equilibrium is reached[58].  

Table I-3 shows equation related to LTE, among many equations, the first condition to be 

reached is the number of electron density should be less than a value to meet electron energy 

distribution function (EEDF), a Maxwell-Boltzmann distribution. Equation I-1tells us that for T = 6000 

K, Ne should be less than 1021 cm-3, and for T = 20 000 K, Ne should be less than one 6.7 ´ 1021, and 

in most LIBS lab this can be acquired.  

𝛬 = ℎ$2𝜋𝑚𝑘𝑇! I-1 

𝑛!(𝑐𝑚"#) ≪ Λ"$ = (2𝜋𝑘𝑚𝑇!ℎ% )$ %⁄  
I-2 

 

An ideal plasma source is of course preferred, however, compared with ICP, laser-induced 

plasma is not really an ideal plasma source for spectroscopy, to solve this problem, equation I-2is 

needed. When an energy is suddenly applied to a system that already reach equilibrium, an extra period 
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of time will be needed for the new equilibrium to reach, and this period of time is called relaxation 

time 𝜏'!()*, and defined by equation I-3, 

𝜏G%#()(/6HI = 𝑁o𝑣
= (𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑛𝑢𝑚𝑛𝑏𝑒𝑟	𝑜𝑓	𝑔𝑎𝑠	𝑘𝑖𝑛𝑒𝑡𝑖𝑐	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒	𝑛𝑒𝑒𝑑𝑒𝑑	𝑡𝑜	𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒	𝑒𝑛𝑒𝑟𝑔𝑦)(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑎𝑠	𝑘𝑖𝑛𝑒𝑡𝑖𝑐	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑠𝑒𝑐𝑜𝑛𝑑	𝑝𝑒𝑟	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)  

I-3 

Kinetic model were also brought into the LIBS for cases[59] to study the distribution of 

electron energy. These consideration are all list in Table I-3, and among them all, the first equation is 

McWhirter criterion[58], perhaps one if the most important equation to determine the LTE in LIBS. 

This criterion is derived from the form[60] which is originally used to minimum Ne necessary to ensure 

partial and complete thermodynamic equilibrium, and also requires the collisional rate larger than the 

radiative one at least 10 times[58]. There are many different applications that derived from McWhirter 

criterion and discussions, a conclusion could reach is that the only use of it is not enough to determine 

LTE. 

 

Table I-3 Most useful and commonly reported equations and definitions in the LIBS plasma diagnostics[41] 

Expression Description 

Equation 

number 𝑛% ≥ 1.6 × 10A*(𝑇)A *⁄ (Δ𝐸)C McWhirter crierions, 𝑛%(cm-3); T 

(K); Δ𝐸 (eV) (Refs.[58][61]) 

T3.1 

 𝑇(𝑡 + 𝜏G%#) − 𝑇(𝑡)𝑇(𝑡) ≪ 1 
Additional temporal condition for 

T; 𝜏G%# =relaxation time 

T3.2 

 𝑛%(𝑡 + 𝜏G%#) − 𝑛%(𝑡)𝑛%(𝑡) ≪ 1 
Additional temporal condition for 𝑛% 

T3.3 

 𝑇%(𝑥) − 𝑇%(𝑥 + 𝜆)𝑇%(𝑥) ≪ 1 
Additional spatial condition for T;  𝜆 = diffusion length during 𝜏G%# T3.4 

 𝑛%(𝑥) − 𝑛%(𝑥 + 𝜆)𝑛%(𝑥) ≪ 1 
Additional spatial condition for 𝑛% 

T3.5 

𝜎#" = x2𝜋*√3 z{ 𝑓#"�̅�𝑒B12𝑚%𝑣6*Δ𝐸"#| 

Cross-section of inelastic 

collisions (cm2); Δ𝐸  (erg); e 

(statC); 𝑣6 = electron velocity (cm 
s-1) (Ref. [61]) 

T3.6 

𝑋#"(𝑇%) = 𝑛%(𝜎#"𝑣)= 4𝜋 𝑓#"𝑒B𝑛%(�̅�)Δ𝐸"# ] 2𝜋3𝑚𝑘𝑇%^
A *⁄ 𝑒𝑥𝑝 ]−Δ𝐸"#𝑘𝑇% ^ 

Collisional excitation rate (s-1); m 

= electron mass (g); k (erg K-1) 

(Ref. [61]) 

T3.7 

𝜏G%# ≈ 1𝑛%(𝜎#"𝑣%) = 6.3 × 10B𝑛%𝑓#"〈�̅�〉 	Δ𝐸"#(𝑘𝑇%)A *⁄ 𝑒𝑥𝑝 ]Δ𝐸"#𝑘𝑇% ^ 
Relaxation time; the numerical 

value results from Δ𝐸 and kT in 𝑛% (Ref. [61]) 

T3.8 

𝜆 = (𝐷𝜏G%#)A *⁄ ≈ 1.4 × 10A* (𝑘𝑇)C B⁄𝑛%  
Diffusion length (cm); D = 

diffusion coefficient (cm2s-1); Δ𝐸 

and kT in eV; 𝑛%  (cm-3) (Ref. 

[61]) 

T3.9 

𝜀#6I% = ]𝐴"#𝑛"ℎ𝑣4𝜋 ^ 
Spectrally integrated line 

emissivity (Wcm-3sr-1) (Refs. 

[62][63]) 

T3.10 
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𝐵?(𝑣) = ]𝐴"#𝑛"ℎ𝑣4𝜋 ^ 𝑆?(𝑣) ∙ ] 1𝐾?^ 
Line spectral radiance (Wcm-2sr-

1Hz-1) (Ref. [64]) 
T3.11 

𝐾? ≡ 𝑘∗(𝑣)𝑙{1 − exp	[−𝑘∗(𝑣)𝑙]} ≡ 𝜏(𝑣)1 − exp	[−𝜏(𝑣)] Self-absorption factor: ( 𝐾? ), 

optical depth: 𝜏(𝑣) (Ref. [64]) 
T3.12 

𝐵/9%G'(# = (𝐵)?"K#(I=(𝑇!) ∙ . {1 − exp	[−𝑘∗(𝑣)𝑙]}
#6I%

 
Thermal line radiance (Wcm-2sr-1) 
k* = net absorption coefficient 

(Refs. [65][66][64]) 

T3.13 

𝐼L,"# = 𝐹%)! 8𝜋ℎ𝑐𝜆C ]𝑛"𝑔#𝑛#𝑔"^.{1 − exp[−𝑘∗(𝑣)𝑙]} Integrated line irradiance (Wm-2) 

(Ref. [67], Chap. 3, p. 137—note 

a misprint here in the g’s ratio) 

T3.14 

𝛼N = 𝑛6,N𝑛N = 𝑛6,N𝑛6,N + 𝑛(,N 𝑛6,N𝑛(,N = 𝛼N(1 − 𝛼N) Definition of degree of ionization, 𝑛6,N= 𝑛(,N = ions (atoms) number 

density of species j (Ref. [68], p. 

157) 

T3.15 

(𝐼"#2 )N(𝐼"#)N = x𝑔"2𝐴"#2 ℎ𝑣"#2𝑔"𝐴"#ℎ𝑣"#z [ 𝛼N(1 − 𝛼N)] x𝑍(,N𝑍6,Nz𝑒𝑥𝑝 x𝐸" − 𝐸"
2𝑘𝑇 z 

Ion-to-neutral ratio,(+) refers to 

ion parameters, 𝐸"2  = from ion 

ground level (Ref. [68], p. 158) 

T3.16 

𝑙𝑜𝑔 𝛼N(1 − 𝛼N) = 𝑙𝑜𝑔 𝑆I,N𝑛%= −𝑙𝑜𝑔𝑛% + 32 𝑙𝑜𝑔𝑇 − 5040𝐸6,N𝑇+ 𝑙𝑜𝑔 x𝑍(,N𝑍6,Nz + 15.684 

Relation between ion-to-neutral 

ratio and ionization degree (both 

T and 𝑛% can be evaluated) (Ref. 

[68], p. 164) 

T3.17 

𝑛% 𝑛6𝑛( = 2(2𝜋𝑚%𝑘𝑇6HI)C *⁄ℎC 𝑍6𝑍( 𝑒𝑥𝑝 ]−𝐸6HI − Δ𝐸6HI𝑘𝑇6HI ^ 
Saha–Boltzmann equilibrium, Ti 

= ionization temperature; Δ𝐸6HI = 

depression of 𝐸6HI  due to Debye 

shielding (Refs. [65][68][66]) 

T3.18 

𝐼"# = 𝐹%)!𝐴"# 𝑔"2𝑍6 [ ℎC(2𝜋𝑚𝑘)C *⁄
]𝑛%𝑛6𝑇6HI4C *⁄ 𝑒𝑥𝑝 ]𝐸6HI − Δ𝐸6HI𝑘𝑇6HI− 𝐸"𝑘𝑇%)O^ 

Line ‘‘intensity’’, (energy/unit 

time - unit volume) (Refs. 
[69][70]) 

T3.19 

𝜀L,OHI/ = x 16𝜋𝑒P3𝑐*√6𝜋𝑚C𝑘z 𝑛%𝑛6𝜆*�𝑇% �𝜉 P1 − 𝑒𝑥𝑝 ]− ℎ𝑣𝑘𝑇%^Q
+ 𝐺𝑒𝑥𝑝 ]− ℎ𝑣𝑘𝑇%^� 

Continuum spectral ‘‘intensity’’ 

(energy/unit time - unit volume - 

wavelength) (Refs. [69][70]) 

T3.20 

𝐼"#𝜀O (𝜆) = x ℎB3C *⁄ 𝑐C256𝜋C𝑒P𝑘z𝐴"#𝑔"𝑍6 1𝑇% 

𝑒𝑥𝑝 �−𝐸6 − Δ𝐸6𝑘𝑇% � 𝑒𝑥𝑝 � −𝐸"𝑘𝑇%)O�P𝜉 ]1 − 𝑒𝑥𝑝 ℎ𝑐𝜆𝑘𝑇%^ + 𝐺𝑒𝑥𝑝 ]− ℎ𝑐𝜆𝑘𝑇%^Q ]
𝜆Δ𝜆'%($^ 

Line-to-continuum ratio (note 

that temperatures are kept 

different) (Refs. [69][70][71]) 

T3.21 

𝑛% = xΔ𝜆;/(G= ∙ 10E2.5𝛼A *⁄

zC *⁄ = 8.02 ∙ 10A* xΔ𝜆A *⁄𝛼A *⁄

zC *⁄

 
Stark width– 𝑛%  relation (linear 
Stark effect) (Refs. [72][73]) 

T3.22 

𝑛% = 2(2𝜋𝑚%𝑘𝑇)C *⁄ℎC 𝐼"𝐴"#2 𝑔"2𝐼"2𝐴"#𝑔" 𝑒𝑥𝑝 x−𝐸6HI + 𝐸"
2 − 𝐸"𝑘𝑇 z 

Ion-to-neutral ratio–𝑛%   relation 

(see Eqs. T3.16, T3.18) (see also 

Ref. [67], Chap. 3, p. 133) 

T3.23 

Δ𝜆Q61/9 = 𝑤 � 𝑛%10AP� [1 + 1.75 ∙ 104B𝑛%A B⁄ 𝛼(1− 0.068𝑛%A P⁄ 𝑇4A *⁄ )] 
Stark width– 𝑛%  relationship 

(quadratic Stark effect) (Refs. 

[74][75][76]) 

T3.24 

Δ𝜆$967/ = 𝑤 � 𝑛%10AP� []𝑑𝑤^ + 2.0 ∙ 104B𝑛%A B⁄ 𝛼(1− 0.068𝑛%A P⁄ 𝑇4A *⁄ )] 
Stark shift– 𝑛%  relationship 

(quadratic Stark effect) [Refs. 

[74](p. 135), [75][76]] 

T3.25 

𝛿𝑣R𝑣& = 𝛿𝜆R𝜆& = 7.16 ∙ 104S�𝑇𝑀 

Doppler spectral profile, M 
(g/mol) = atomic mass; T (K) 

(Refs. [65][66]) 

T3.26 
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Δ𝜆G%$ ≈ 316 ]𝑔#𝑔"^
A *⁄ x 𝜆&C𝑒*𝑓#"𝜋*𝜀&𝑚%𝑐*z𝑛 

Resonance interaction 

broadening, 𝜀&  = vacuum 

permittivity (C2N-1m-2); c = speed 

of light (ms-1); n (m-3) (Ref. [77]) 

T3.27 

Δ𝜆?(I1%GT((#$,Q61/9 = 2.7𝐶P* U⁄ 𝑣C U⁄ 𝑛 𝜆*𝑐  
van der Waals broadening 
(width),C6 = interaction constant 

(m6s-1) (Ref. [77]) 

T3.28 

Δ𝜆?(I1%GT((#$,$967/ = 0.98𝐶P* U⁄ 𝑣C U⁄ 𝑛 𝜆*𝑐  
van der Waals broadening (shift), 

v = relative velocity (ms-1) (Ref. 

[77]) 

T3.29 

𝑇 = 𝐸"# − 𝐸"𝑘 𝑙𝑛 ] 𝐼"###𝑔"𝐴"#𝐼"#𝑔"#𝐴"###^ Δ𝑇𝑇 = 𝑘𝑇ΔE]Δ𝑅A𝑅A + Δ𝑅<𝑅< ^ 
Temperature evaluation from the 

line ratio and associated error 

(Refs. [65][66][62]) 

T3.30 

𝑙𝑛 x𝐼"#2𝐴"#𝑔"𝐼"#𝐴"#2 𝑔"2z = 𝑙𝑛 �[2(2𝜋𝑚%𝑘)C *⁄ℎC ] x𝑇C *⁄𝑛% z�− (𝐸6HI − Δ𝐸6HI + 𝐸"2 − 𝐸")𝑘𝑇  

Saha–Boltzmann plot expression 

for evaluating plasma Texc (Refs. 

[62][78] see also Ref. [67], Chap. 

3, p. 132) 

T3.31 

 

I.1.4.2. Equilibrium expressions and diagnostic methods for the evaluation of T 

and Ne 

An Ideal method could be described as follows[41], 

1. It does not rely upon the assumption of LTE; 

2. It does not require knowledge of the fundamental constants; 

3. It does not necessitate the calibration of the detection system; 

4. It should be relatively easy to implement in ordinary LIBS laboratory. 

Which is difficult to find nevertheless. Table I-3 below shows many different methods for LTE 

diagnosis. All these method can be categorized as direct or indirect ones, and also active or passive 

ones by these two papers[79][72], respectively. Direct methods do not require assumptions of type and 

degree of equilibrium within the plasma to know the T and Ne. While the indirect methods require 

certain assumptions for the plasma system. Active methods can use external source to detect the plasma, 

while the passive would only use the plasma itself to measure parameters. Indirect methods require 

certain conditions to be met thus they suffer from the inherent contradiction. However, on the other 

side, these contradictions would allow the system to find certain consistency or a trend.  All the 

different equations in Table I-2 and Table I-3  are for different conditions in real LIBS cases, things 

need to be mentioned here are, different temperatures appear in these equations, and extra attention 

should be paid to the unit of the parameters.  
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I.1.5 Experiment setup of LIBS 

LIBS showed great potential in many different areas, and has many different sub-categories for 

different purposes. Like Resonant laser ablation (RLA) and resonantly enhanced LIBS (RE-LIBS) 

decrease the destruction of the sample compared to the conventional LIBS, and increased the 

LOD[80][81][82]. However, with the double-pulse laser and hyphenated LIBS, more information 

(both elemental information and molecular) about the sample can be acquired, or more information 

about the power. Micro-LIBS is also proposed to deal with the problem of the heterogeneous sample. 

The stand-off LIBS for space exploration[83][84] and organic explosives[85][86] has also been 

developed. In the archaeological area, remote control LIBS is very handy[87][88]. Based on the 

information above, considerations about the set-up of LIBS will be discussed below in different 

sections and trying to cover as many aspects as possible with details. 

 

I.1.5.1. Laser and focusing optics 

In the area of description of laser light, many different terms were used to describe the 

properties of which, as it is more physics related, many details will not be discussed here in detail, 

Table I-1 listed equations for many parameters to characterize the laser itself. In the parts where it’s 

more “chemical” related, the selection of ablation wavelength and pulse duration are popped out. As 

stated in article[36], the choice of wavelength should be based on the material, UV is better for 

ceramics, stones, and metal. In water analysis, due to the huge absorption of UV, IR would be a better 

choice. As for the pulse duration is concerned, a cleaner crater can be achieved with a ultrashort pulse, 

along with intense neutral atom emission[36]. The types of laser are dealt with for certain cases in 

these articles[89][90][91] for detailed study of interest. There isn’t a single guideline for choice of 

laser light, but a general guideline could be given as: a single-mode profile should be used for single-

shot analysis, and a multimode profile performs better for single-spot sampling. Based on one 

article[92], a single-mode Gaussian beam profile has the best performance in lateral resolution, depth 

profile, chemical mapping, and multimode profile should be used for trace analysis. Also, something 

not to be forgotten is the rise of fiber laser also showing good potential in LIBS, and providing higher 

power and higher repetition rate. 

 

I.1.5.2. Optical transfer of plasma radiation, spectrometer and detection 

Optical train is the term used for describing the radiation from plasma to detector, it has 

important role in signal collection efficiency of the entire system. In general, two types of optical train 
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exist, one is the simplest when a commercial instrument is involved, which leaves one to trust the 

instrument for its optical quality and spectral characteristics. Another one is, of course, custom made, 

which gives one great opportunity to tune parameters to achieve better results. Detailed discussions 

about the merits of optical train are in books written by Gallou and Sirven[93], as this is not the purpose 

of this section.  

 

I.1.6 Modeling LIBS spectra 

It is important to model LIBS spectra, as the meaning of model here can be interpreted as the 

capability to give the description of the whole process from ablation to emission. Of course, it means 

having a detailed description of plasma-sample interaction, its plasma formation, its expansion, 

processes happened in plasma, collection of radiation, the signal generation, and the process from 

signal to concentration[94]. One could imagine a perfect model would be able to provide the estimation 

of the spectrum, all its characteristics, the detailed information of the sample composition and maybe 

many more deeper understandings of the whole system. Unfortunately, this ideal model is far to be 

real but almost perfect. Just take one tiny aspect of the whole system to clarify this, for instance, the 

interaction between laser and sample, according to the review[94]. The possible variations of 

conditions that such model has to consider are: 

1. The sample can be in solid, liquid or gas state; 

2. The sample can either absorb the laser or be transparent to it; 

3. A solid sample can be a metal, a semiconductor or a dielectric with wide band gap; 

4. The laser in use is just one pulse or a series of pulses; 

5. Different laser wavelength can be used; 

6. The duration of the laser pulse can be in nanosecond, picosecond or femtosecond time 

scale; 

7. Is the laser characterized by its power or its beam shape; 

8. Is the measurement under vacuum, atmosphere of certain gas, or a regular room 

atmosphere? 

9. If the measurement uses two consecutive laser pulses, then the time delay between them 

can be adjusted for certain purposes; 

The previous list shows that LIBS has a series of very complex situations to consider in 

experiment setup, and this is exactly because of the physical and chemical plasma processes are 

considered. It’s true that a complete system maybe probably can be determined in details but the 

balance of a perfect model and a model that is good enough for understanding should be reached. Thus, 
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the model should try to use as few parameters as possible to simplify such process. Besides, those 

parameters should also be able to be observed in experiment. According to Bogaerts[95], all present 

plasma models are comprised, judiciously reduced problems, which nevertheless try capturing all the 

physical phenomena one wishes to understand. Putting this consideration in mind, the LIBS models 

being published are numerous. However, this is not a topic for this work, detailed studies having 

already published in reviews[95][96][97]. Fig. I-1 shows the scheme of the problems list above. 

 

Fig. I-1 The scheme of problems for LIBS model 

 

I.1.7 Quantitative LIBS 

I.1.7.1. General considerations 

The quantitative analysis of LIBS is a strong aspect of this method. However, it is not an easy 

task because of the very complex interactions between not only the laser and the sample, but also 

plasma and particles. The former interactions rely on the characteristics of laser and the properties of 

sample, the latter depends on time and space. All these combined together generate matrix effect, one 

thing that makes quantitative analysis difficult for LIBS. Despite probably is only well-known 

disadvantage of LIBS, LIBS has many advantages in the areas of qualitative chemical analysis. This 

method should not be seen as a technique with flaws. A statement made by Mermet[98] is perhaps 

very true about this fact, “regardless of the field of application , the acceptability of LIBS is still related 

to the problem of quantitation, involving accuracy, i.e., repeatability and trueness. ” . Though LIBS 

lacks of the ability of reproducibility, the great potential of this method cannot be ignored. A technique 
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like LA-ICP-MS, a method that can be considered as a superstar method in analytical area, also has 

weaknesses when applied to trace analysis. Not to mention that LIBS can use internal standard 

calibration or external standard calibration for quantitative analysis. So, the technique cannot be seen 

as so weak considering the analytical techniques but also the fact improvements we can see in the field. 

As stated previously, LIBS has many applications in many fields, being the best advantage of LIBS. 

Also, the lack of sample preparation is yet another strong aspect of this method. The many publications 

of quantitative analysis with LIBS also showed that for certain specific cases, LIBS showed the ability 

of performing adequate analysis. To conclude, quantitation is possible with LIBS, but it is not perfect 

and this should be the area where focus goes. 

 

I.1.7.2. Calibration and curves of growth 

One of the important aspects that has been constantly mentioned in many books about 

spectrochemical analysis and plasma spectroscopy is the relation between thermal radiance 𝐵+,!'-)( 
of emission line as function of number density of atomic species in the plasma. Many equations related 

to this part are summarized in Table I-4, some of the very important part will be listed as follows. 

 

Table I-4 Some equations related to the use of the spectral fluctuations approach in LIBS[94] 

Expression Description 

Equation 

number 𝜎$"'= �[𝜎(𝐵)!,L$%%&!'()]* + [𝜎(𝑆)I%/,L"]*+ 2𝜃 �𝜎(𝐵)!,L$%%&!'()� [𝜎(𝑆)I%/,L"]�A *⁄

 

This expression refers to a single isolated 

spectral line (signal S) superimposed on a flat 

background (signal B). The standard deviation 

resulting from the sum of the two signals 

contains the correlation coefficient 𝜃  

T4.1 

 

𝜎1677= �[𝜎(𝐵)!,L$%%&!'()]* + [𝜎$"']*− 2𝜃 �𝜎(𝐵)!,L$%%&!'()� [𝜎$"']�A *⁄

 

This expression relates the standard deviation 
of the difference of the two signals to the 

standard deviation of the sum and the 

correlation coefficient. 

T4.2 

 

𝜃 = (𝜎$"')%)!* + (𝜎V)%)!* − (𝜎1677)%)!*2(𝜎$"')%)!(𝜎V)%)!  
The correlation coefficient cannot be 

calculated directly from the standard deviation 

of the sum of the two signals, but can be 

evaluated from the standard deviations of the 

sum of the difference and of the background. 

T4.3 

 

(𝑅𝑆𝐷)$"' = 𝜎$"'(𝑆 + 𝐵)
= (𝜎V* + 𝜎;* + 2𝜃𝜎V𝜎;)A *⁄(𝑆 + 𝐵)  

This expression shows how the relative 

standard deviation of the sum of the analyte 

and background signals is related to the 

individual standard deviations and the 

correlation coefficient. 

T4.4 

 

(𝑅𝑆𝐷)$"' = �𝜎K*𝑃* + 𝜎K*+*𝑃6$* − 2𝜃 ] 1𝑃𝑃6$^ 𝜎K𝜎K*+�
A *⁄

 
This expression is relevant when an internal 
standard is used to normalize the signal 

fluctuations. P and Pis refer to the signal peaks 

measured for the analytical line and that of the 

internal standard chosen. 

T4.5 
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The relation related to the shape of the analytical calibration curves, usually known as the 

curves of growth. It is written as equations I-4 to I-7, this is the classical form of the emission and the 

analyte atomic number density in plasma. 

𝐵+,!'-)( = (𝐵).W/()0122𝑇33 4{1 − 𝑒𝑥𝑝[−𝑘.∗(𝜆)𝑙]}
(50!

 
I-4 

 

𝐵+,!'-)( = (𝐵).W65!02𝑇33 4{1 − 𝑒𝑥𝑝[−𝑘.(𝜆)𝑙]}
(50!

 
I-5 

𝑘.(𝜆)𝑙 = 𝜏.(𝜆) I-6 

4{1 − 𝑒𝑥𝑝[−𝑘.(𝜆)𝑙]}
(50!

≡ 𝐴+ I-7 

 

In the equations above, the spectral radiance of the blackbody radiation given by either Planck 

or Wien laws at the given temperature is (𝐵).W2𝑇33(Wcm-2sr-1nm-1). 𝑇3 and 	𝑘.∗(𝜆) are the wavelength 

dependent absorption coefficient with stimulated emission, while 𝑘.(𝜆) is the wavelength dependent 

absorption coefficient without stimulated emission. 𝑘(𝜆) = 𝜎(𝜆)𝑛 , and 𝜎(𝜆)  is the wavelength 

dependent absorption cross section (cm2) of the transition and 𝑛 (cm-3) is the atom number density. 

𝜏.(𝜆) stands for the optical thickness, 𝑙 is the length of plasma in the direction of observation. The last 

equation above is called the total absorption factor, 𝐴+. 
When the self-absorption is ignored, such as in the situation where the optical thickness is more 

than the whole wavelength range of the line profile is ≪1, then there will be the equation I-8 

𝐵+,!'-)( = (𝐵).W2𝑇33 4 𝑘.
(50!

(𝜆)𝑙 I-8 

 

When the optical thickness is thin, 𝐵+,!'-)(  will be a linearly growth to the wavelength 

integrated absorption coefficient, and directly related to the atom number density. This is the linear 

part of the curves of growth. When the number density becomes bigger, the Doppler core of the line 

saturates, but the (Lorentzian) wings of the line are still optically thin[94]. The different values of 

parameter will result in the shape of the curves showing a plateau for some range of number density. 

In the end, the pressure broadening will effect on the wings, and 𝐵+,!'-)( grows with concentration 

with a slower rate, and this is the square root part of the curves[94]. 
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When the condition is extreme, for instance, the optically condition is thicker than the unity, 

the blackbody value will be calculated in equation I-9, where the analytical dependence of the emission 

on analyte number density is lost. 

𝐵+,!'0)( = (𝐵).W(𝑇3) I-9 

 

The self-absorption parameter is an important parameter in deciding the shape of the curves of 

growth, and it is defined as follows (equation I-10), 

𝐾. ≡ 𝑘.(𝜆)𝑙{1 − 𝑒𝑥𝑝[−𝑘.(𝜆)𝑙]} ≡ 𝜏.(𝜆)1 − 𝑒𝑥𝑝[−𝜏.(𝜆)] I-10 

 

Error! Reference source not found. is one example of the curves of growth, this figure is s

imulated by Jorg Hermann (Aix-Marseille Université, provided by professor Vincent Motto-Ros, 

Université Claude Bernard Lyon 1). 

The effect of self-absorption can be found in literatures[62][99][100][101]. The detailed calibration 

curves part can be found in paper[102].  

 

Fig. I-2 Curves of Growth 

 

I.1.7.3. Analytical sensitivity and detection limits 

The definition of detection limit is a subject of many theoretical and standardization processes. 

Being an emission spectroscopy, LIBS could benefit from the already existed many literatures. The 
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most useful way for define the detection limits in LIBS would be signal-to -noise ratio(S/N) and signal-

to-background ratio(S/B). The reasons for choosing these two parameters as the indicator are these are 

the most measured and reported during the optimization of LIBS measurements. In the LIBS spectrum, 

the response observed at the given wavelength is the sum of all the emissions of the sample(analyte). 

In a simple version, the average response of analyte after the subtraction of background would be taken 

as the signal. With the consideration of noise being present in both signal of target and background, 

the follow equations (I-11 to I-13) can be written: 

𝑋7FFF = 𝑋789FFFFFF − 𝑋9FFFF I-11 

 

𝑁7 = 𝑋: − 𝑋:FFF I-12 

 

𝑁9 = 𝑋9 − 𝑋9FFFF I-13 

 

𝑋:	and 𝑋9  are the responses for each spectrum, while 𝑋:FFF and 𝑋9FFFF are the average responses 

related to signal and background. 𝑁7 and 𝑁9 represent their noises. S/N ratio is used to evaluate the 

quality of measurement. It is defined as the equation I-14 follows, 

𝑆𝐵 = 𝑋F$𝑁I% =
𝑋F

J(𝑋 − 𝑋F)%𝑛
 I-14 

 

This equation shows that the ratio of the signal amplitude to the noise amplitude is the S/N 

ratio, and the noise amplitude is defined as the root mean square value. 

As for LOD, the classical definition[103] defines it as the concentration that results in a signal-

to-background noise ratio of 𝑘(and in most cases, 𝑘 = 3 is used). LOD can be written in the following 

equations I-15 to I-17, 

𝑋; = 𝑋9FFFF + 𝑘𝑠9 I-15 

 

𝑋; − 𝑋9FFFF = 𝑘𝑠9 
I-16 

𝑐; = 𝐿𝑂𝐷 = 𝑘𝑠9𝑏  
I-17 
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𝑋; is the smallest dissemble signal, 𝑠9 stands for the standard deviation of the background, 𝑏 

is the magnitude of the slope associated with the linear part of the calibration curve[94]. The signal-

to-background and signal-to-background noise can also fit for detection limit as equation I-18 to I-20, 

𝑐; = 𝑘(𝑠9𝑋9FFFF)(𝑋9
FFFF𝑏 ) I-18 

𝑐; = 𝑘𝑐<(𝑅𝑆𝐷)9 S 1𝑋:FFF 𝑋9FFFF⁄ U I-19 

𝑐; = 𝑘(𝑠9𝑋9FFFF)(𝐵𝐸𝐶) I-20 

 

(𝑅𝑆𝐷)9  is the relative standard deviation of the background,  𝑘 = 3 , 𝐵𝐸𝐶  stands for the 

background equivalent concentration. For LIBS, equation I-19 is recommended for LOD.  

 

I.1.8 Matrix effects and normalization approaches  

I.1.8.1. Definition of matrix effects 

As a spectroscopy with so many advantages, the only possible withdraw of LIBS could be the 

quantitative analysis, and that usually caused by matrix effects. Matrix effect is a common 

phenomenon observed in several analytical spectroscopies, which is usually the significant change in 

the observed signal at a given spectroscopic transition of the same element in two different samples 

with the same concentration. This difference can be categorized into the laser sample interactions 

difference that comes from differences in laser ablation mechanism and efficiency, or the changes in 

the plasma parameters (mainly the difference from temperature and electron number density), or a 

combination of both. In one sentence, this response can be affected by chemical, physical, spectral and 

instrumental reasons. 

Different strategies to try to correct this matrix effects can be found in literature[94]. A short 

summary will be given here. Firstly, for any emission spectroscopy, the intermediate physical 

processes are the keys that lead to the understanding of the analytical signals, so is for LIBS. A 

relationship between the intensity of the spectral line and the number of atoms could be established if 

the constant excitation conditions can exist. However, the nature of the sample has huge influence on 

excitation conditions that leads to the famous matrix effects. There are two types of matrix effects: one 

is related to the entry of the sample into the plasma and the other one is what happened in the 

plasma[104]. These two types of effects are in the area of laser ablation and plasma modeling and 

diagnostics, respectively. Secondly, we can use a spectrochemical buffer, which means a substance 
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that is added to sample in the effort of trying to reduce the influence of the composition and 

characteristics for the spectral line intensity. This method can be seen as an extension of the internal 

standard, and the adding part has a conflict with the general concept that LIBS requires little of no 

sample preparations. Thirdly, one can manage the measurement of spectral intensities with two 

methods: total energy and stead-state can be linked to LIBS from dc arc emission. Total energy requires 

a complete volatilization of the sample, and integration of spectral line over the entire evaporation time. 

“Stead-state” means that a constant feeding of the sample into the plasma. One paper[105] talked about 

the matrix effects with special reference to uncertainty and offered three groups of ways to reduce the 

effects: these strategies are matrix matching, internal calibration(or internal standard) and correction 

of the effect by either measuring the effects directly or some property of the matrix to have a correction 

function or a joint analyte calibration. 

 

I.1.8.1.1. Consideration of the concentration units 

When the matrix effects are only related to the entry material into the plasma, but not from 

what started inside the plasma, it can be assumed that the identical plasma conditions are reached, in 

this one the temperature of the plasma and the electron number density are the same and there is no 

chemical reaction in the plasma. At the same time, the same condition should also happen for the same 

detection parameters, which includes the same bandwidth, gain and integration time and many more. 

When the above-mentioned conditions are met, the concentration of a certain element in the matrix 

can be expressed in weight fraction or in mole fraction both in percent. Weight fraction carries the 

direct information of the sample, while the mole fraction requires the knowledge of the constitute of 

the sample to supply the information. For an emission spectral line, the intensity is now linked to the 

number of atoms in the sample. Fig. I-3 shows examples of two metal alloys samples with different 

concentrations, and equation I-21 can be used to express this plot. 𝑤= and 𝜒= are the concentration of 

element X in the matrix in weight and mole fraction in percentage, respectively. 𝑅>= stands for the 

ratio of atomic masses of 𝑀>	and 𝑀=.  

𝜒= = 𝑤=𝑅>=1 + 𝑤=(𝑅>= − 1) I-21 

 

For a single matrix that made up of element A and B with different concentrations, the plot 

should be look like the one at the up part of Fig. I-3. The dotted vertical line shows the results for 

different 𝜒> with the same 𝑤>. The small inset figure shows the calibration curves of the same two 

elements with the choice of either the same 𝜒> or 𝑤>. The left bottom plot shows the same weight 
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fraction of Cu in Ag and Au will result in different signal intensities and calibration sensitivities. This 

same weight fraction is different with respect to the mole fractions, while the mole fraction plot simply 

just shows a single calibration sensitivity. The right bottom plot shows that with the same mole fraction 

of Cu, we have the same line intensity but only for two specific values of weight fractions. This figure 

shows that when we talk about the difference of examples as simple as two metal alloys, one should 

always keep in mind that the differences may not simply come from matrix effects, but also from the 

unit of the concentration with plays an important role.  

 

Fig. I-3 Illustration of the different outcomes resulting from choosing the concentration units in weight fraction or 

mole fraction[94]. 
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I.1.8.2. Normalization approaches 

Based on the discussions above, the normalization parameters for LIBS would be the mass 

ablated, the plasma temperature and electron number density. The general normalization of spectra 

usually takes the intensity of the spectral line of the analyte in the sample to that of another suitable 

element present in the sample, or the spectral continuum. There are criteria for selection of spectral 

lines in LIBS made by Barnett[106]. There are nine criteria in total, five being related to the element 

choice and four from the choice of internal standard line. They require that the analyte and the ones 

that used as the internal standard should fit the following conditions. First, they should have similar 

volatilization rate, second, they should have comparable ionization energies, and last, they should have 

similar atomic weights. The choice of the spectral lines should be driven by certain rules: They should 

have first the same excitation energies. They should not have self-absorption and they should have 

similar intensity. The detailed discussions can be found in the paper[106]. Finally, another paper[107] 

studied acoustic waves, plasma emission, the electrical current and Mie scattering as the reference 

signal for LIBS in the normalization approaches. And there are detailed discussions about the 

considerations of each different reference. Paper[108] which is dedicated  to the normalization 

procedure for certain type of samples, such as the stainless steel samples, can also be found. Besides 

the plasma temperature and electron number density, one paper[109] also mentioned that the volume 

of the plasma region can be detected along with some other parameter proportional to the total number 

of atoms present in the former volume should also be considered. Otherwise, when the only line 

intensity was used for the comparison, matrix effects can be hidden because of the compensation of 

plasma parameters.  

 

I.1.8.3. An approach to evaluate matrix effects  

Based on the nature of the matrix effects, the reason behind this “problem” can be found maybe 

through complex theoretical models and repeated accurate experiments. However, this is not the 

optimal way. In a review[94], the authors introduced a possible way to evaluate matrix effect. For 

certain selected elements which has the same concentration or in a very narrow range of concentrations, 

the observed signals of those elements in different matrices can be described as a function of the energy 

of the excited state from the transitions studied. Two matrices will be used to construct calibration 

curves for each element separately. From the results they have by then, the existence of matrix effects 

can be found with the plot of the log of the intensity ratio for the two matrices versus the excitation 
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energy. From this plot, the parameters (ablation mass, temperature) that caused matrix changing can 

also be found.  

 

I.1.9 Absolute analysis and Calibration Free Laser-Induced Breakdown 

Spectroscopy (CF-LIBS) 

The definition of absolute analysis is very strict, that is only when the theory can describing a 

single measurement and is reliable to calculate the concentration directly in absolute unit of a physical 

parameter[110][111],it also means providing quantitative results without any other standard reference 

materials. Some other chemical analysis methods only use the standard reference infrequently to reach 

a stage where this method is steady both for time and repetition. It is then called standardless 

analysis[110], there are chemical analysis methods where absolute analysis were discussed, for 

instance AAS[112][113], AFS(atomic fluorescence spectroscopy)[114], X-ray analysis[115][116], 

and laser ionization orthogonal time-of-flight mass spectrometry(TOFMS)[117]. These experiments 

are close enough to an absolute analysis, however, the difficult of reproduction the same results cannot 

be neglected. “Progress in this field can result from a better knowledge and more precise description 

of the theoretical fundamental phenomena responsible for generation of the analytical signal, and from 

the development of instrumentation with perfectly reproducible and/or theoretically described 

characteristics.’’ quote from IUPAC Technical Report[118]. The pure pursuit of absolute analysis may 

seem not that practical. 

Since the absolute analysis is in some way “beyond reach”, attention should be focus on the 

standardless approaches. In the area of LIBS, Calibration-Free (CF) LIBS can be referred as one of 

such approaches. It means a procedure which is capable of giving results without calibration standards. 

Based on the original definition, this approach does not model the plasma, it is not part of LIBS 

modeling. CF uses the relation between emission intensity and concentration of samples in the plasma. 

When CF being considered as a model procedure, it would be categorized as a post-breakdown 

modeling approach. Another thing that worth mentioning is that for CF, matrix is not an interference 

but being analyzed together with the sample. This method can be considered as quantitative, semi-

quantitative or qualitative depending on the analyte being a major, minor or trace components in the 

relatively error in percentage[119]. To conclude, the importance of just infrequent use of reference 

standards means that the reproducibility of LIBS has been improved, and the matrix effects being in 

an acceptable level. The role of CF-LIBS is vital for some cases and that is a guarantee this method 

will continue in application and improvements. With the development of the modeling, CF-LIBS is 
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excepted to be a much more mature method in the coming years. Further detailed discussions about 

CF-LIBS can be found in these reviews[120][97]. 

 

I.1.10 Signal enhancement  

When the advantages of LIBS being mentioned, sensitivity usually is not among them. It is not 

a surprise that a lot of efforts has been made into improving the sensitivity of LIBS as long with the 

detection power. The detection powers the reciprocal of the limit of detection[121], by doing so the 

confusion results could be avoided (a decrease for the LOD value is actually an increase for the 

performance of the method). An approach is that keep the noise at the same and trying to increasing 

the analyte signal, since the larger signal-to-noise ratio will have lower detection limits. Many ways 

can improve the signal level in LIBS, double-pulse and multi-pulse approaches are perhaps two of the 

most popular ones. Double-pulse LIBS is a solution for the problem that during the ablation and 

excitation of the plume cannot be controlled separately with single-pulse[122]. From the observation, 

a large proportion of atoms in the neutral state is present even 40 ls after the plasma formation, a second 

laser fired at this time could reheat the plasma, thus causing further atom excitation and emission, as 

proposed by Uebbings[123]. There are increasing number of publications on the double-pulse LIBS in 

solid samples in recent years, apart from for the liquid samples where this method is originated. Many 

experimental parameters are involved in this approach, detailed information can be found in a paper 

by De Giacomo[124]. Like the double-pulse LIBS, multi-pulse LIBS was based on similar 

consideration: optimize the ablation and excitation independently. A single flash lamp pumped Q-

switched Nd: YAG laser was used in order to obtain a sequence of laser emission bursts at a given 

(low) repetition rate, each burst consisting of several (up to 6) Q-switched short laser pulses emitted 

during a single flash lamp pulse[125][126]. Applications can be found with steel samples[125][127], 

alloys[128][129], metallic elements in air[130] and tin sample[129]. Apart from these two approaches, 

there are other methods for improving the signal, such as magnetic field enhancement, resonant laser 

ablation, and resonantly enhanced laser ablation. 

 

I.1.11 Comparison of LIBS and other spectroscopic methods 

I.1.11.1. Atomic absorption spectroscopy (AAS) 

Atomic absorption spectroscopy (AAS) is a spectroscopy used for detection of chemical 

compositions by absorption of lights of atoms. This technique is based on the fact that when an atom 

is excited, the electrons will only absorb definite amount of energy (light) to reach higher energy states. 
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Then in the de-excitation process the electron emits photons with specific wavelength related to the 

elements, which can thus be delivered and qualified. AAS uses dilute solutions as samples, and the 

quantification is done though calibration curves. The limit of detection (LOD) of AAS is from 0.003 

ppm to 20 ppm, the precision is within 1-2 %, and sensitivity can be enhanced with graphite furnace 

AAS[131].  AAS can achieve quite high precision but require complex sample preparation, it is not 

portable, and requires larger quantity of sample. 

 

I.1.11.2. Inductively coupled atomic emission spectroscopy (ICP-AES) 

Inductively coupled atomic emission spectroscopy (ICP-AES), or inductively coupled plasma 

optical emission spectrometry (ICP-OES), is a type of emission spectroscopy for detection of chemical 

elements. This technique uses inductively coupled plasma to generate excited atoms and ions, which 

emit electromagnetic radiation which can be used for distinguishing specific element. The 

concentration can be measured by the use of specific radiation. The samples are analyzed in solution, 

and multiple elemental detection is available. ICP-AES has negligible self-absorption and auto-

reversal effects, the LOD being 10 ppb and accuracy of 1-5%. It is really better than AAS, and can 

detect some elements that are difficult for AAS. However, this technique like AAS, also requires 

complex sample preparation and cannot be used in remote analysis or spectroscopic imaging. It needs 

several minutes to hours for analysis. In addition, the vital drawback of this method is the lack of 

enough authenticated methods for impurities detection and calculation[132]. 

 

I.1.11.3. X-ray fluorescence (XRF) 

X-ray florescence is a non-destructive technique that can be used to detect the elemental 

composition of material. This technique analyzes the secondary (fluorescent) emission of the sample 

that were triggered by the primary X-ray. When an atom in sample is excited by the primary X-ray, 

the electrons on the inner shell of the atom are ejected, the electrons on the outer shell would fill in the 

vacancy on the inner shell. This filling process will release the energy in the form of fluorescence, and 

the energy is equal to the specific difference in energy between two quantum states of the electron. 

Each element has unique florescence peaks and the intensities can be used to estimate the concentration, 

and that is the fundamental basis of the XRF analysis. XRF has been applied in many fields like oil 

and gas industry[133], metal fabricating[134], art and archaeology[135], and so on. This method 

requires no sample preparation and provides fast detection, but just for heavy elements. The LOD is 
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in the level of ppm and the accuracy is between 3-23%. The quantitative analysis involves using of 

calibration curves, and XRF is non-portable and quite expensive.  

 

I.1.11.4. Energy-dispersive X-ray spectroscopy (EDX) 

Energy-dispersive X-ray spectroscopy, short for EDX, EDX, EDXS or XEDS, is an analytical 

technique for elemental analysis or chemical characterization. This method is similar to XRF, when 

the atom in the sample is focused under an electron beam, the inner electron will be excited and ejected, 

the electron in the outer shell will fill the hole left. The filling process will release the energy in the 

form of X-ray, the number and energy of the X-ray will be measured by an energy-dispersive 

spectrometer. Since the X-rays are characteristic to different element and also to the energy difference 

between two shells of an atom, this method can be used as a way to analyses the composition of the 

sample. The difference between XRF and EDX is the source used for excitation, XRF uses X-rays 

while EDX an electron beam. The LOD of EDX is between 1000 to 3000 ppm[136], the precision is 

around ±0.1%. EDX does not require complex sample preparation and the experiment itself is not 

difficult to be carried. Coupled with SEM (Scanning Electron Microscopy), EDX can provide resolved 

image of sample for spatial information and matrix effects.  

EDX requires a high voltage for the electron beam, and when coupled with SEM, EDX-SEM 

cannot undertake in-situ analysis. And the secondary fluorescence and secondary electron may appear, 

causing additional spectral lines in the spectrum. Overlap of spectral lines may happen due to the 

additional rays by secondary emissions. 

 

I.1.11.5. Conclusion of the comparison 

Compared with other techniques, LIBS has several advantages: 

1. LIBS requires small amount of sample and basically no sample preparations. 

2. Multi-element detection is possible, sample can be in gas, liquid and solid form. 

3. LIBS is a fast method for analysis, it can be done within a minute. Today, we have a 

high acquisition, for instance, acquisition of 1000 spectra per second. 

4. LIBS in theory can detect all the elements, which is not possible for a technique like 

AAS. 

5. Can be coupled with other techniques, such as MS (Mass Spectroscopy), Raman and 

etc. for multimethod experiment.  

6. LIBS can be used remotely and is portable. 
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7. Possible for have spectroscopic imaging experiment at the micro-scale spatial 

resolution. 

However, there are also some disadvantages: 

1. Compared with AAS, the LOD of which could fall in the range of ppb, LIBS only has 

LOD of ppm. 

2. Self-absorption of LIBS affects the precision of quantitative analysis. 

3. The common existence of matrix effects in LIBS reduces the accuracy of quantitative 

analysis. 

As stated above, LIBS is a simple, fast, free of sample preparations, portable method for 

analysis of chemical composition of specimen, it has some merits and also a few drawbacks. Combined 

together, as an important analytical method, LIBS has a wide application in material analysis in many 

areas.  

 

I.1.11.6. Algorithms for chemometric explanation of LIBS spectra 

As mentioned before, accuracy of quantitative analysis is not the advantage of LIBS, however, 

with the help of chemometrics, the situation could change. Chemometrics is using mathematics, 

statistic and computer science to better understand the chemical information, the use of which in the 

area of LIBS can be categorized into 2 major branches, qualitative (also classification and clustering) 

and quantitative (calibration) analysis. The application of chemometrics can help to improve the 

stability and reliability of LIBS online analysis[137]. 

 

I.1.12 Qualitative analysis 

The chemometrics methods used here are mainly two types: supervised and unsupervised 

approaches. 

 

I.1.12.1. Supervised classification methods 

By definition, supervised classification requires training a model with known dataset, and then 

use the model to predict the unknown sample. Common supervised methods include Partial Least 

Squares Discriminate Analysis(PLS-DA)[138][139][140], Soft Independent Modeling of Class 

Analog (SIMCA)[141][142][143], K-nearest neighbor (KNN)[144][145], Supporter Vector Machine 

(SVM)[146][147], Artificial Neural Networks (ANN)[148], Random Forest (RF)[149]and etc., and 

they will be discussed in the next parts. 
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I.1.12.1.1. Partial least squares discriminant analysis (PLS-DA) 

PLS-DA is a widely applied method in chemometrics based on partial least squares regression 

(PLS). It uses a matrix X with independent variables and a matrix Y for the categorical variables to 

construct the model for training. Then the unknown sample is being introduced, the model will give 

the class of the unknown sample by the predicted PLS values.   

In the food quality control area, PLS-DA[139] was used to build a classification model for 

distinguish the real honey from honey added with sugar cane syrup, along with other chemometrics 

methods like variables selection and some data preprocessing methods, the author showed their model 

performed 100% accuracy in adulterant detection for honey. Combined with PLS, LIBS showed the 

possibility of a fast, simple, sample preparation free authenticity certification of honey samples.  

Another example[138] is the application of PLS-DA in LIBS for detection of the usage of 

pesticide in spinach and rice. Though similar elements exist in both pesticide contaminated sample and 

pesticide free sample, the relation between the LIBS intensity and concentrations of each element can 

be established. With the confirmation of inductively coupled plasma optical emission spectroscopy 

(ICP-OES), LIBS combined with PLS-DA can be a rapid way to detect pesticide achieving a 

misclassification rate lower than 2% for spinach samples. 

In the field of recycling plastic bottles, LIBS was used combined with SW-PLS-DA (partial 

least squares discrimination analysis based on spectral windows) to build classification able to classify 

20 different types plastic bottles commonly used in supermarket chain in China[140]. In their work, a 

basic PLS-DA model was also built for classification with the highest accuracy of 67.50%. In order to 

improve the results, methods for selecting input variables were applied, including CWT (continuous 

wavelet transform) and SW (spectral windows) based on CWT, different parameters of CWT were 

tuned and the best results showed an accuracy of 93.93%. There were other chemometric methods has 

been applied for comparisons, including a basic PLS-DA, supporter vector machine (SVM) and 

random forest (RF). SW-PLS-DA showed the best result and also showed the potential of online 

analysis for plastic recycling. 

 

I.1.12.1.2. Soft independent modeling of class analog (SIMCA) 

Soft independent modeling of class analogy (SIMCA) is a pattern recognition method based 

on PCA. A PCA is calculated on each class of the training set separately. Then statically criteria are 

used to define the volume containing all the samples of a class. Next, these criteria are used in order 

to classify unknown samples. 
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The classification result is better when the differences are larger between the classes than the 

differences within a class itself. As a consequence, when the differences are not significant enough 

among different classes, the model built is not optimized good enough to have good results. In an 

example[142] of using LIBS/SIMCA to classify grains from Wahiba Sand Sea, Oman, the 

methodology of combining LIBS with SIMCA showed good results of classification carbonated sand 

grains from different areas in the sand sea, and showed the potential sources of the sand grains to better 

understand the formation of the dune. This example showed the promise of applying this method in 

complex mixing patterns in sample. In the area of recycling polymer, LIBS was applied to 6 types of 

polymers, acrylonitrile-butadiene-styrene(ABS), polystyrene (PS), polyethylene(PE), 

polycarbonate(PC), polypropylene(PP), and polyamide(PA)[143]. Emission lines were selected for 

some elements and used for classification. SIMCA and (k-nearest neighbors) KNN were utilized to 

build classification models, and satisfactory results were achieved with 98% accuracy for KNN and 

92% for SIMCA. It showed promising analytical capabilities of LIBS with chemometrics methods in 

identification and classification of plastics.  

 

I.1.12.1.3. Artificial neural network (ANN) 

Artificial neural network (ANN) is a modulization tool containing groups of nodes that was 

inspired by the biological neurons in animal brains. It is a typical non-linear method, the basic unit 

called neuron imitates the function of its own original type, a biological neuron, transmitting the signal 

to the next ones. Briefly, an artificial neuron receives signals and processes them, the output of the 

neurons is computed by specific non-linear algorithms. The detailed discussion will be in the later part. 

Since ANN can learn from known pairs of inputs and outputs to predict unknow input after training. 

It has lots of applications in many different areas, such as image recognition[150], voice 

conversion[151], machine translation[152], medical diagnosis[153], finance fraud[154], and etc. 

In LIBS, ANN was applied to the classification of wood samples[21]. In this case, loadings of 

PCA were used to compress data, after the normalization. Two different methods were applied in ANN, 

multilayer perceptron network and Broyden–Fletcher–Goldfarb–Shanno iterative algorithm, and 

achieved 100% for the correct classification rate (CCR). This work has also been compared with PLS-

DA, KNN and SIMCA, with the CCRs of 82.5%, 95.83% and 51.67%, respectively. The results 

demonstrated that the combination of ANN and LIBS could be used for analyzing and cataloged 

different wood samples. 

In an example[148] of apply ANN in LIBS, both LDA and ANN were applied in fast 

identification of archeological materials in situ. 18 samples in 7 types (include shell, bricks, soil pellets, 
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ceramic, teeth, bones and mortars.) were used to train the ANN, input of the network in this case are 

the PCA scores of the data, in the consideration of reduce the size of the data. ANN showed a better 

result than LDA, only one out of eight samples are not correct for ANN, and for LDA 2 samples were 

not correct. 

In the area of chemistry, one[155] of the early attempts of applying ANN into LIBS data utilize 

eight spectral regions of interest of polymers as the input into a feedforward network for classification. 

The network was modularized into two sub-networks, one to distinguish PVC (polyvinyl chloride) 

with one neuron as output layer and three neurons for the hidden layer, the other one has three neurons 

as output and eight neurons for the hidden layer for PE (polyethylene), PP (polypropylene) and PET 

(polyethylene terephthalate). The results should be considered as very good when the accuracy is all 

above 93%. Another application[156] of ANN in LIBS applied the similar network into the spectra of 

eight polymers, 13 spectral lines were used as the inputs after normalization. In this article, a three-

layer network was built, the number of neurons of each layer has been modified to give the best results. 

The application of this ANN has successfully overcome the influence of the matrix effects from the 

samples, and achieved a satisfactory accurate classification.  

In archaeological area, LIBS was combined with ANN to classify archaeological ceramics 

samples[157]. Two strategies were used, one using the whole spectra of LIBS, and another one using 

spectral sub-domains. In both the methods, ANN showed more than 95% of correct classification rate.  

LIBS’s ability to identify material is useful in the area of extraterrestrial exploration, such as 

the study of Mars. And in one similar example[158] of classification of different metal alloys, LIBS 

was coupled with ANN to identify different types of aluminum alloys. ANN gained 96% correct 

classification rate with 19 references set if only the classified mineral were considered, and 78% 

success rate when unidentified samples were included. And real-time rough material identification 

were also carried out among materials like metal alloys, marble, granite, soil, clay, rock, sediments 

and silicon oxide[158]. The results within the set of aluminum alloys showed that this method has high 

sensitivity. This article[158] demonstrated the possibility of LIBS with ANN for analysis of material 

on the surface of Mars. 

 

I.1.12.1.4. Support vector machine (SVM) 

Support vector machine is an original binary supervised learning model, it has a learning 

algorithm based on kernel function, and it is suitable for small dataset. In SVM, a data is regarded as 

a p-dimensional vector (as the same number of the list), and the algorithm will try to find a hyperplane 

with a dimension of (p-1) to separate them. And it is called a linear classifier, according to the theory, 
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the hyperplane is more than one, and the one with largest separation between the two classes is the 

most reasonable choice. If the hyperplane being chosen is the one that the distances from one data 

point to the nearest one on each side of the plane is maximized, then it is called a maximum-margin 

hyperplane. As mentioned above, SVM is original binary method, however, by reducing the single 

multiclass problem into multiple binary problems, multiclass SVM also exists within finite groups.  

In pharmaceutical area, LSSVM(least squares support vector machine), PLS-DA and SIMCA 

were applied for discrimination in LIBS measurements[146], and the results showed that LSSVM (96% 

in average accuracy) improved the sensitivity in classification compared with PLS-DA (95.67%) and 

SIMCA (94.03%), and for the robustness test, LSSVM also showed a good result with 92.47% in 

accuracy compared with SIMCA of 83.53% and PLS-DA of 83.95%. This example showed that 

combined with SVM, LIBS can provide a sensitive and robust results in classification of 

pharmaceutical samples.  

In an example[147] of soil analysis using LIBS, PCA was first applied to select 7 emission 

lines and then SIMCA and LSSVM were both used to classify 6 types of soils. The correct 

discrimination rates were 90% for SIMCA and 100% for LSSVM. The LSSVM model was further 

applied to discriminate 8 types of soils for verification. This research indicated that coupled with 

LSSVM, LIBS could conduct classification for soil samples. 

 

I.1.12.1.5. K-nearest neighbor (KNN) 

K-nearest neighbor is a multiclass method for samples that are difficult to classify in linear 

method. KNN calculates the nearest distance of a given sample to K number of known samples, and 

the given unknown sample will be categorized according to the distances of different known classes. 

In an example[145] of leather quality evaluation, KNN, SIMCA and PLS-DA were applied into 

analysis of LIBS data from both sheep and cattle leather samples. The results showed that models 

achieved satisfactory classification rate for SIMCA: 75.2%, PLS-DA: 80.5% for calibration data, and 

for validation data, the classification for KNN: 80.9% and for SIMCA: 71.6%. These results confirmed 

that LIBS combined with chemometrics can be used in quality classification in leather.   

In the medical area, KNN was also used to distinguish fresh soft tissues based on LIBS 

spectra[159]. Chemometrics methods were applied to discriminate fat, skin and muscle tissues, and 

also among highly similar tissues like ham, loin and tenderloin muscle. The methods included PCA, 

KNN and SVM. For fat, skin and muscle tissues, KNN and SVM were applied and achieved accuracy 

more than 99.83% with sensitivity over 99.5% and specificity over 99.8%. For the discrimination of 3 

highly similar tissues, SVM gave the best results with an accuracy of 76.84%, a sensitivity over 0.742 
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and a specificity over 0.869, which is an acceptable performance considering the molecular complexity 

of such sample. The results showed that assisted with chemometrics LIBS could be a powerful tool for 

discrimination of soft tissues, even for highly similar samples. 

 

I.1.12.2. Unsupervised methods 

I.1.12.2.1. Principal component analysis (PCA) 

Unsupervised pattern recognition is based on the distances between samples, similar samples 

would have shorter distances in multidimensional space and for unknown samples the distances would 

be longer. One of such common method is PCA. In an example[160] of classification of four types of 

plastics with LIBS, PCA was applied with success. The results were further confirmed with statistical 

parameters, Mahalanobis distance and spectral residuals. Another example[161] of discrimination by 

PCA was done with oyster samples. PCA was applied with factor analysis together with the elemental 

composition from LIBS, and managed to classify samples from different sites with a result of 91.3% 

unselected cases correctly discriminated.   

 

I.1.13 Quantitative analysis 

The quantitative analysis in LIBS is managed in two ways, calibration methods and calibration 

free methods[39]. Within the calibration methods, it can be further categorized into univariate and 

multivariate approaches. The conventional quantitative analysis in spectroscopy usually establishes 

the relationship between concentration of either an element or a component and the intensity of the 

spectra line. This univariate method is accurate and widely used in particular spectroscopies, however 

with LIBS, it often failed to obtain the better results. The complexity of LIBS data makes the traditional 

regression method no longer available in some cases, so it is interesting to take advantage of the 

abundant information that LIBS data can provide with the use of multivariate methods.   

 

I.1.13.1. Calibration curve method 

I.1.13.1.1. Univariate calibration 

The univariate calibration is one of the most widespread and simplest quantitative analysis 

methods. It establishes the relationship between the intensity of an emission line of an element in the 

sample and its concentration. In the area of LIBS, the group of Andrade[162] used this method to 

determine the concentration of 12 elements in solid fertilizers. Correlation between the predicted 

values and the reference ones was right. Other examples can also be found in literature, for instance, 
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11 elements in fingernails were determined by LIBS with the help of calibration curves[163].  LIBS 

was used in inline analysis of liquid slag in steel works, and the major components were in the good 

agreement of the reference samples from the laboratory[164]. Univariate method has the advantage of 

being simple and has good agreement in many cases, however, it may not be able to meet the 

requirements for heterogeneous samples due to the fluctuation of the laser energy. A common method 

here is to use an internal standard added for the samples. In a quantitative study[165] of rare-earth 

elements(La and Nd) in phosphors by LIBS, a standardization method was applied. Another case[166] 

used argon environment to reduce the influence of the air at atmospheric pressure for quantitative 

analysis of oxides in minerals. The results showed a real improvement of the signal quality and better 

linearity of the calibration curves. The addition of the internal standard also improves the accuracy of 

the univariate calibration. Still this method is not universal and cannot meet the standard of the high-

accuracy analysis. 

 

I.1.13.1.2. Multivariate calibration 

Commonly used multivariate calibration methods in the quantitative analysis in LIBS are PLS 

regression[167][168][169][170][171], multiple linear regression (MLR)[172] 81[174], 

ANN[148][175], SVM regression[176][177] and RF[178]. 

 

Partial least squares (PLS) 

PLS is perhaps one of the most commonly used multivariate statistical analysis methods in 

many areas of analytical chemistry. The number of latent variables is an important parameter in this 

method PLS is particularly suitable for tasks where the number of independent variables is bigger than 

the number of samples. In PLS, considering the samples as a matrix X, the orthogonal decomposition 

of the X and the response matrix Y will be used to build a regression model based on feature variables. 

Because of the mathematical theory of PLS, it is an accurate and fast method.  In an analysis[167] of 

wheat ash samples via LIBS, PLS was built and showed good results.  The ash contents were between 

0.48% and 1.39% with a R2 of 0.992. In another use[168] of PLS in LIBS is a case with detection of 

adulterated milk powder. The calibration curves from PLS showed that the R2 and LOD for sweet whey 

powder, one of the adulterations in this case, was 0.981 and 1.55%, respectively. The R2 and LOD 

value for acid whey powder, another material used for adulteration, is 0.985 and 0.55%, respectively. 

There are also some other PLS based methods, such as GA-PLS in the quantitative analysis of soil 

samples in LIBS[169], a hybrid model that combined PLS with spectrum standardization in coal 

analysis[170], a combination of WT(wavelet transform) and PLS in the analysis of Carbon in coal[171].  
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Multiple linear regression (MLR) 

MLR is a regression model for quantitative analysis, using simultaneously several selected 

wavelengths in the spectral. MLR and simple linear regression were both applied to soil samples for 

determination of C[173]. The results showed that MLR has better result than simple linear regression. 

In another example[174] of Pb determine in navel oranges, MLR was built and the feasibility of the 

MLR model was verified with variance analysis and regression statistics. The results showed that 

MLR had better results. In this article, authors said that MLR method used here can take full 

information from the LIBS data for quantitative analysis and reduce the influence of the matrix effect.   

 

Artificial neural network(ANN) 

In the previous part, we showed that ANN is capable of solving classification problems in LIBS. 

In this part, examples showed that ANN is also be able to solve the prediction problems in LIBS due 

to its self-learning ability. In another example, ANN was used to improve the accuracy and precision 

of Cr and Ni concentration prediction in steels[175]. ANN showed better results than the conventional 

internal calibration method, RMSE of CV for Cr and Ni decreased to 0.010 and 0.023 wt% from 0.018 

and 0.067 wt%, respectively. Besides, the relative standard deviation for these two elements also 

decreased from 11.3% to 6.4% for Cr and from 19.5% to 12.9% for Ni. An on-site analysis[179] of 

soil samples illustrated that combined with ANN, LIBS can be used for quantitative analysis. The 

ANN showed results of less than 20% of errors for target elements (such as Al, Ca, Cu and Fe), and 

which means a good efficiency for on-site soil analysis with LIBS.  

 

Support vector machine regression 

SVM is one of the machine learning methods based on statistical learning theory. Besides it’s 

would not for classification, SVM can also be used for regression purposes. SVM regression model is 

based on structural risk minimization, and is capable of manage the balance between complexity and 

the learning ability according to the sample information. SVM regression is suitable for small size 

datasets. Combined with advanced kernel functions and prior knowledge, it has many applications in 

many areas. In an experiment[180] of quantitative analysis of Ni in water, 3 different regression 

methods(MLR, ANN and SVM) were applied, and for this case, SVM performed best. There are also 

other methods such as LSSVM and relevance vector machine (RVM) applied in LIBS. In another 

analysis[176] of major components in slag samples, LSSVM was used to build the model with full 

spectra as the input. This model decreased the effect of nonlinear factors from self-absorption in plasma 
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and can provide an ideal result. RVM regression method is a sparse probabilistic model for limited 

samples, it has good fitting and generalization ability, and also can provide the probability distribution 

of the prediction result, and this method is capable of dealing with noisy samples. In the area of LIBS, 

a RVM model[177] was built for Cr in steels samples with the analytical lines who was selected based 

on the spectrum intensity, wavelength, the widths of half-height. The results showed that in this 

example, SVM has better performance than SVM, ANN, PLSR.  

 

Random forest (RF) 

RF is a regression method based on a decision tree. It contains more than on decision trees 

generated by bagging integrated learning technology. The final results will be the averaged vote from 

multiple decision trees. This method can solve the problem of overfitting and has a good balance of 

noise and outliers. In an analysis[181] of 5 elements in steel samples, PLS, SVM and random forest 

were adopted simultaneously, and RF had the best results than the other two. The existence of S and P 

in steel samples may have some matrix effect that are difficult to manage quantitative analysis. In a 

case[178] of LIBS, quantitative analysis of S and P in steel samples, RF showed good prediction 

compared with PLSR, which showed that this method had a promising potential in the area of steel 

quality control.  

 

I.1.13.2. Calibration free method 

Contrary to the methods based on calibration curves, methods without calibration are called 

calibration-free method, short as CF. CF-LIBS[39] appeared for quantifying elements within unknown 

samples. This method using plasma emission lines with mathematical models to determine the content 

of elements of interest from the single spectrum to be considered. It does not require calibration curves 

or reference samples. Therefore, CF-LIBS can solve the matrix effects that is caused by the different 

matrices between the unknown sample and the reference sample. Even if the CF method has some 

improvement mentioned above, it still cannot compensate the variation caused by plasma temperature 

nor the influence from self-absorption. The importance of plasma temperature has been addressed 

enough from [], and many different methods has been invented for different cases. A modified version 

of CF method[182] was invented to analyze copper-based alloy samples in archeology, the plasma 

temperature was determined by a mathematical method related to known samples, and results were 

compared with the classical LIBS method. There are also CF-LIBS that combines with different 

methods, such as CF/ANN[183], CF-LIBS combined with a binary search algorithm[184], CF-LIBS 

combined with GA to determine the plasma temperature[185] and etc..  
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I.1.14 Conclusion and prospects  

The short summary of chemometric methods in LIBS showed the great potential in the data 

pretreatment and qualitative and quantitative analysis. It proved to be an effective tool for LIBS and 

improve the accuracy of quantitative analysis in many different areas. LIBS technology has promising 

application in complex material analysis, combined with chemometrics. The future of this technology 

without any doubts would further extent its area with better performance. The improvement of 

instrument brings bigger and bigger datasets, which is exactly the stage for chemometrics. Some 

theoretical issues of LIBS, like matrix effects and self-absorption has been solved for certain cases, 

yet still a general solution is on the way, but chemometrics showed a very promising way towards it. 

This is what we will show in this thesis. 
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I.2. A special focus on Artificial Neural Network (ANN) 

I.2.1 Introduction  

Artificial neural network (ANN) was born with the concept of building a network which 

imitates the behavior of neurons in animal brains to solve problems. Artificial neural networks can 

learn from dataset to classify, to predict, in a way almost like how a human brain works, learning from 

experience of means. A typical simple network has an input layer, a hidden layer and an output layer, 

as shown in Fig. I-4. 

Fig. I-4 The structure of ANN 

 

I.2.2 History 

One[186] of the earliest attempts of building ANN was in 1943. Then several years later, 

D.O.Hebb created a hypothesis, later known as Hebbian learning, based on the plasticity of neurons. 

Hebbian learning is considered as a classical unsupervised learning. The following years, a lot of 

different networks have been created and improved. But not until 1975, Werbos’s 

backpropagation[187] algorithm came out, leading to artificial neural network to achieve a crucial 

development. Due to the limit of computer back then, the development of ANN was slow. In the 

meantime, support vector machine and other linear classifiers were much more popular until around 

2000, the emerge of deep learning brought ANN back into the game again with even more complex 

ANN structure. 

 

I.2.3 Basic theory 

ANN is built with sets of artificial neurons, also called nodes, to simulate the function of 

biological neurons in animal brains. The illustration of an artificial neuron is in Fig. I-5 x1 to xn are 

the input signals; w1 to wn are weights of the neurons; b stands for bias; y is output; the transfer 
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function usually is non-linear. These neurons, like their prototype, can transmit signal to others after 

processing. Normally, these signals are real numbers, connected with weights which form the structure 

of the network and aggregated into layers. Each neuron has its own set of weights, transfer function 

and output, sometime also a bias. Based on the chosen learning rule, the weights will be adjusted 

during the learning process, the sum of which will be the activation of the neuron. Then the activation 

will go through the transfer function to generate one single output. This output will be an input of next 

neuron, until the output of the neural network. The non-linearity behavior will be introduced into the 

system through transfer function. The sigmoid function is the most used transfer function. The network 

will stop training when the output meets the chosen criterion, for example, a certain level of accuracy 

or error. At this point, the network is well-trained and can be feed new dataset for test.  

 

 

Fig. I-5 The scheme of neuron 

 

I.2.3.1. Constitution and basic structure 

A typical artificial neural network has three parts to be optimized, architecture, activation rule 

and learning rule. Architecture sets the topology of variables within; the variables are weights who 

connect the neurons or the activities of neurons. The majority of networks have a way for neurons to 

change themselves based on the effects from other neurons, this is usually considered as a short-time 

dynamic rule. Learning rule is a long-time dynamic rule about how the weights being adjusted.  

 

I.2.3.2. Training  

The learning of an ANN is an important part, during the process, the network compares the 

differences between output of the network and the known target, then adjust the parameters (weights 

of neurons, biases, parameters related to the chosen algorithm, etc.) according to the chosen learning 

rule to make the output more and more close to target. These adjustments are also known as tuning of 
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parameters. After tuning, the output should be as “real” as the target. Then the already trained network 

will be tested for accuracy, on with new data not used during the training.  

One of such examples is image recognition. Loads of manually labeled pictures of “cat” or “not 

cat” were used as input, then the network will analyze them and generate characteristics from which. 

Later, the well-learned network will be used to classify new pictures whether they are cats or not. This 

type of ANN is considered as supervised learning.  

 

I.2.3.3. Types of ANN 

One[186] of the earliest attempts talked about the theories about building the network with and 

without circles in the structure.  Nowadays, there has been a lot of different networks built many ways. 

Among them all, they can be categorized into two basic types based on architecture, feedback 

(recurrent) (Fig. I-6) and feedforward (Fig. I-4).  

 

 

Fig. I-6 Feedback network 

 

I.2.3.4. Theoretical features, criticism 

The non-linearity behavior is the biggest feature of ANN, and perhaps also the biggest flaw.  

Since the exact theory about how a network gain the result through learning is not yet available, 

artificial neural network sometimes is described as a black box.  You know the input, you know the 

output, but you don’t know how the output came out from the input. In the training of ANN, the 

previous knowledge about the dataset is not necessary, answers have been found themselves as if by 

magic, almost. However, ANN requires a lot of training, and the size of the dataset could be huge, 

which would result in enormous computing resources. 
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Back-propagation (BP) neural network(Fig. I-7)[188] is perhaps the most known and used. 

Besides, Self-organizing feature mapping (SOM) network [189], the Hopfield neural network[190] , 

the radial basis function (RBF) neural network[191] and the recurrent neural network[192] are the 

other commonly used networks. 

 

 

Fig. I-7 The scheme of backpropagation 

 

I.2.3.5. Theory of back-propagation (BP) 

The popularity of ANN rises with its application in voice recognition and visual recognition, 

where the traditional logical linear methods failed. These applications in ANN introduced a new area 

later known as deep learning. Its immense capability of dealing with complex models, ANN was 

applied in many areas in recent years and achieved some promising results. As for chemistry, there are 

more and more applications these days, but due to the difficulty of having right size of dataset, the lack 

of straight mechanism, ANN still cannot be considered as a main approach.  

 

I.2.4 ANN in LIBS 

The abundant applications of ANN in LIBS has been discussed previously in the previous 

sections (1.11.1.3 and 1.12.1.2), for both qualitative and quantitative analysis. Many ANNs in LIBS 

aimed in quantity, or classification, sorting. The other large part of the application of chemometrics in 

LIBS is calibration, as stated in one review, the calibration in LIBS is an empirical process, the 

existence of universally good solutions are precluded[94]. As mentioned above, lack of enough data 

is one of the problems for ANN, luckily, we still have simulated data. Then came the idea that why 

not using the simulated datasets to train ANN, then apply the real data as the test set for the neural 

network. When the simulation of training dataset is close enough to real data, the problem of lack of 
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data no longer exists. In the following chapters, this idea has been used. Simulated datasets were 

generated for training ANN in the next chapter, the details of generation and of the ANNs were 

discussed in details, also the evaluation of results. In chapter 2, the real data was applied as test set to 

the neural networks that have been trained with simulated data, the results and the problem will also 

be discussed.  
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Chapter II 

___________________________ 

Robust quantitative analysis of 

complex samples using LIBS 

imaging and ANN independent 

of plasma temperature and 

electron density  
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II. ROBUST QUANTITATIVE ANALYSIS OF COMPLEX SAMPLES 

USING LIBS IMAGING ANF ANN INDEPENDENT OF PLASMA 

TEMPERATURE AND ELECTRON DENSITY 

II.1. Development of an ANN with simulated datasets 

II.1.1 Introduction  

In the previous chapter, we were able to observe the full potential of LIBS spectroscopy for the 

characterization of complex materials. We have also seen the different chemometric approaches that 

allow us today to propose a valorization of the acquired spectral data at both qualitative and 

quantitative levels. From a fundamental point of view, we explained the importance of the main 

characteristics of the plasma, such as its temperature and electron density, as they have a significant 

impact on the intensities of the emission lines and even on the presence of some of them over a wide 

range of wavelengths. Of course, theoretical models could allow us, in some way and under very strict 

conditions, to correct the emission line intensities but this would remain a complex and very time-

consuming task. In fact, we could only consider this strategy for a few spectra but not for hundreds of 

thousands or even millions of spectra of a LIBS hyperspectral imaging dataset available today. This is 

the problem we have been working on in this chapter. In LIBS imaging, we first acquire spectra 

systematically over a region of the sample. In a second step, we integrate the emission signal at a 

wavelength characteristic of the compound of interest in order to generate a spatial distribution map 

of the latter. This is a basic principle used for many spectroscopic imaging techniques well beyond 

LIBS spectroscopy. This integration methodology makes sense in LIBS because we often have the 

possibility to find an isolated emission line, i.e. without interference. Nevertheless, spectroscopic 

imaging is primarily implemented when one wants to investigate a heterogeneous sample with many 

variations in matrices and chemical structures, and it is naturally in these conditions that variations in 

plasma temperature and electron density can vary. These potential variations in plasma parameters 

between the different spectra of the imaging dataset thus influence the intensity of the selected 

emission line and ultimately lead to under- or over-estimations of the element concentration and thus 

a biased chemical image. Researchers using this LIBS imaging technique are for the most part well 

aware of the problem but are ultimately at a loss.  

The aim of this chapter is therefore to develop a predictive model of the quantity of an element 

in a spectrum independently of the plasma temperature and electron density. In the classical 
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development of such a quantitative model, the calibration or training step requires the availability of 

experimental data and more precisely a large number of "spectrum/quantity of the element obtained 

by a reference analytical method" pairs. It is obvious that this is not feasible in LIBS imaging because 

firstly it is impossible to estimate the concentration of an element by an analytical method on each 

pixel but secondly, we cannot have the plasma parameters for each of them. The originality of the work 

in this chapter is therefore to generate synthetic LIBS spectra with varying concentrations of the 

elements of interest but also including variations in plasma temperatures and electron density. Due to 

the complexity of the phenomena to be modelled and the potential non-linearities between the inputs 

and outputs of the model, we have focused on artificial neural networks. The following sections will 

introduce the spectroscopic data generation, the construction of the ANN models and their 

optimization. For your information, this chapter accounts for 90% of my research time during the thesis 

with more than 200 neural networks built. 

 

II.1.2 Generation of a big LIBS synthetic dataset 

The originality of our strategy lies in the generation of synthetic spectral data allowing us to 

control the temperature and electron density variations of the plasma. It is true that this is a risky bet 

because it is very rare in chemometrics, but the near impossibility of really evaluating these two 

parameters on real spectra forced us to proceed in this way. We thus started from the Kurucz database 

[193] which is well known to the LIBS community. It proposes effectively for each element of the 

periodic table all the emission lines and the associated Einstein coefficients. Based on the equations of 

Boltzmann and Saha, we were able to simulate the LIBS spectrum of an element for a given 

temperature and electron density. In order to get closer to the reality of the LIBS spectral data, we also 

applied to each of the emission lines a Lorentzian profile with a bandwidth of 0.15 nm [194]. It should 

be noted that the Stark effect and self-absorption have been neglected in this work, which is above all 

a first feasibility study and a proof of concept. Table II-1 shows all the elements used in this study as 

well as the different temperatures and electron densities. At first it might be surprising to see that only 

22 elements have been selected in the periodic table but also why these elements in particular. Our 

goal was first of all to limit our calculation time and the consideration of all the elements of the periodic 

classification would have undoubtedly made the construction and optimization phases of our predictive 

models more difficult. However, we have to put this into perspective as it is not trivial to propose a 

quantification on 22 elements.  
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Table II-1 Elements, temperature and electron density used in the spectral data generation 

Elements Temperature (K) 
Electron density 

number (𝑐𝑚4C) 

Ag, Al, As, Au, Ca, 

Cr, Cu, Fe, Ga, La, 

Mg, Mn, Mo, Na, Ni, 

Pb, Si, Sr, Ti, U, Zn, 

Zr. 

6000,7000, 8000, 

9000, 10 000,  

11 000,12000. 

5 × 10AP, 

1 × 10AS, 5 × 10AS 

 

We must not forget either that all the elements of the periodic table will not be detected in a complex 

sample because of certain elemental concentrations that are too low but also because of their detection 

limits in LIBS. For these 22 items in particular, they were chosen because they are potentially 

contained in a real sample that we will explore later in this chapter, once our models are trained for 

these quantitative predictions. As we can also see in Fig. II-1, we have considered in our study 8 levels 

of temperature and 3 levels of electron density in accordance with experimental conditions likely to be 

encountered in classical LIBS experiments. For a given plasma temperature and a given electron 

density, a simulated LIBS spectrum of an element will be referred as a pure spectrum in this work. Fig. 

II-1 shows the simulated pure spectra of element Ca at varying temperatures and plasma densities. 

 

Fig. II-1 Influence of the temperature and electron density on the pure elemental spectrum Ca 
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We see here, by this simple case, that the intensities of the lines are particularly impacted by the 

variations of these two parameters describing the plasma. This gives us a real understanding of the 

problem, as the intensity of the lines is usually used to obtain a quantification of an element. So if we 

do not take into account the plasma parameters we could, for example the decrease in intensity of a 

line between two spectra linked to different plasmas were observed, but in the incapacity to detect this 

situation we could interpret it as a decrease in the concentration of this element whereas it could be 

unchanged. It is obvious that such a situation would lead to the generation of LIBS chemical maps 

with estimated under- or over-concentrations if we use the usual strategies to generate them. Since real 

spectra are of course not made up of a single element, we simulated mixture spectra using a linear 

combination of the pure spectra of the elements with randomly selected concentration ratios for each 

of them. An in-house Matlab code then allowed us to generate several hundred thousand mixture 

spectra by varying, if necessary, the plasma temperature, the electron density or even both with the 

constraint of having the sum of the elementary concentrations equal to 1. We have also taken care to 

ensure that each element can be considered as a major, minor or even trace element in all generated 

combinations. Moreover, we also had the possibility to add a more or less important noise on these 

mixture spectra but also why not to use only some elements from the 22 mentioned above. This strategy 

gave us the freedom to choose different levels of complexity to better understand our problem. To 

summarize the procedure of generation of a spectrum, a plasma temperature and an electron density 

were randomly drawn from the values previously mentioned. With these two parameters being fixed, 

we considered the pure spectra of the elements associated with these conditions. Then a random set of  

concentrations of the considered elements were generated, which linked to the previous pure spectra 

by linear combination. At this point, we obtained a synthetic mixture spectrum to which we could 

finally add an experimental noise or any other perturbation. This strategy allowed us to generate 

training and test sets naturally composed of “spectra” / “concentrations” pairs.  

 

II.1.3 General consideration about the development of our artificial neural 

networks 

From the numerous examples in the literature from different scientific domains, it is obvious 

that neural networks have a strong potential for modeling potentially non-linear phenomena, even 

without any prior knowledge of the relationship that could link the inputs to the outputs of such a 

model. Thus, in our case these inputs would correspond to LIBS spectral data and the outputs to the 

concentrations of the elements of interest. Unfortunately, this methodology is by no means push-button 

and the predictive potential of a neural network can only be realized after a long optimization phase, 
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which is even longer as the link between inputs and outputs is complex, which is our case in this work. 

The first thing to optimize in a network is its structure. It is often by default composed of an input layer 

of neurons (which accepts LIBS data), a layer of hidden neurons and a layer of output neurons which 

will predict our concentrations. We can then ask ourselves questions about each of the layers. To begin 

with, we will have to see if we can use as many input neurons as wavelengths in the spectrum or if we 

will have to transform our spectral data to limit the input data and thus the number of neurons. We will 

also have to think about the possibility of using raw data or rather applying pre-processing methods to 

ease the predictions. We will also have to study the influence of the number of neurons in the hidden 

layer and also the number of layers themselves. Indeed, too few neurons on the hidden layer would not 

fulfill the prediction objective, while too many would most likely lead to over-fitting problems[195]. 

The balance between the prediction performance of a network and the complexity of its structure is at 

the stage where the network is just large enough to provide sufficient accuracy and reasonable time in 

the learning phase. In this work, hidden neurons varied from one to 200. Regarding the number of 

hidden neuron layers, it is obvious that a single layer should be preferred to limit the total number of 

parameters to be optimized on the whole network. Nevertheless, we consider sometimes networks with 

several hidden layers in the framework of complex modelling. It will thus be necessary to remain 

pragmatic and look at this possibility in our case. As far as the output neuron layer is concerned, we 

will also have to ask ourselves the right questions. Ideally, it is true that training a single network to 

simultaneously predict all 22 concentrations and why not the temperature and the electron density 

would be the ideal situation. We would then have a network with 24 output neurons. This option would 

undoubtedly be the fastest to develop and then apply to real data. However, it is not clear that such a 

model is possible and we may have to build several separate networks capable of predicting a limited 

number of elements, or even just one if the overall network is not predictive enough. In addition to the 

influence of the neural network structure that we have just seen, we will also have to consider the 

optimization of parameters intrinsic to the neural network concept. Thus, the weights of a neural 

network are its memory and thus contain its ability to predict output values based on the input values 

provided to the input layer of the network. During the training phase, a so-called learning function is 

used to optimize these weights to best match the input and output data we have provided in our training 

set. Unfortunately, there are a large number of learning functions that have been developed with highly 

variable capabilities depending on the problem to be addressed. It is therefore inevitably something 

that has to be optimized, just like the transfer functions that often transform non-linearly the signals 

that pass through each neuron of the network. For information purposes, Table II-2 shows all the 

functions that have been evaluated in this work.  
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Table II-2 All the learning function used in this work 

Function name in Matlab Description Note 

trainbfg 
BFGS quasi-Newton 

backpropagation. 

Backpropagation training 

functions that use gradient 

derivatives. 
Supported on GPU. 

traincgb 

Conjugate gradient 

backpropagation with Powell-

Beale restarts. 

traincgf 

Conjugate gradient 

backpropagation with Fletcher-

Reeves updates. 

traincgp 

Conjugate gradient 

backpropagation with Polak-

Ribiere updates. 

traingd Gradient descent backpropagation. 

traingda 
Gradient descent with adaptive lr 

backpropagation. 

traingdm Gradient descent with momentum. 

traingdx 
Gradient descent with momentum 

& adaptive lr backpropagation. 

trainoss One step secant backpropagation. 

trainrp RPROP backpropagation. 

Default (GPU) 

trainscg 
Scaled conjugate gradient 

backpropagation. 

trainb 
Batch training with weight & bias 

learning rules. 

Supervised weight/bias training 

functions 

trainc 
Cyclical order weight/bias 

training. 

trainr 
Random order weight/bias 

training. 

trains 
Sequential order weight/bias 

training. 

trainbu 
Unsupervised batch training with 

weight & bias learning rules. Unsupervised weight/bias training 

functions 
trainru 

Unsupervised random order 

weight/bias training. 

trainlm 
Levenberg-Marquardt 

backpropagation. 
Default (CPU) 

trainbr 
Bayesian Regulation 

backpropagation 
 

 

It would be naive to think that a simultaneous optimization of all the above-mentioned 

parameters could be done because it would then correspond to a kind of combinatorial explosion as 

regards the total number of networks to be optimized. It would not be justified to find the best neural 

network either, our objective for this thesis being to demonstrate the feasibility of such an approach 

and therefore a good model could perfectly suffice. The reverting to the impossibility of setting up a 
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systematic study of the parameters will certainly give the reader an impression of linear optimization 

based on trials and errors but it is difficult to envisage anything else in this particular context. In this 

work, we will develop more than 15 types of neural network architecture in order to try to predict the 

concentration of elements. The Table II-3 given as an illustration shows the extent of the work done. 

It is not necessary to go into it now as we will develop all these networks in detail in the following 

sections while trying to justify our choices concerning them.  
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Table II-3 Details about all the ANNs built during the thesis considering the 22 elements to be predicted 

No. 

Input layer Hidden layer Output layer 

Learning methods Data size Validation checks 
Pre-processing Number 

Number of 
neurons 

Transfer 
functions 

Number of 
neurons 

Transfer 
functions 

1 spectra/sum(spectra) 2048 10 tansig 22 

linear  

trainlm 1000 6 

2 spectra/sum(spectra) 2048 10 tansig 22 trainbr 1000 6 

3 spectra/sum(spectra) 2048 10 tansig 22 trainlm 2000, 5000 6 

4 spectra/sum(spectra) 2048 10 tansig 24 trainscg 5000 6 

5 spectra/sum(spectra) 2048 10 logsig 2,3 

12: trainscg, traincgb, traincgf, 
traincgp, traingd, traingda, 

traingdm, traingdx, trainoss, 
trainrp, trainlm, trainbr 

1000, 5000, 10000, 
20000,200000 

6 

6 spectra/sum(spectra) 2048 10 tansig 2,3 

10: trainscg, traincgb, traincgf, 
traincgp, traingd, traingda, 

traingdm, traingdx, trainoss, 
trainrp 

5000 6 

7 spectra/sum(spectra) 2048 20 tansig 2,3 traincgf, traincgb, trainscg 5000, 200000 6 

8 spectra/sum(spectra) 2048 10,20,25,30 logsig 2,3 
Trainscg (different T and Ne), 

traincgb (different Ne) 
5000, 200000 6 

9 spectra/sum(spectra) 2048 10+10 logsig+logsig 2,3 trainscg 20000 6 

10 spectra/max(spectra) 2048 10,20,30 logsig 3  trainscg 20000 6 

11 spectra/max(spectra) 2048 10+10 logsig+logsig 3  trainscg 20000 6 

12 spectra/max(spectra) 2048 
10,15,20,30, 

40,50 
logsig 3,5,10 trainscg 20000 6 

13 PCA 24,50,80,100 
25,30,35,40, 
50,60,80,100 

logsig 
3,5,8,10,15,2

0,22 
trainscg 20000 6 

14 PCA 100 50 logsig 22 trainscg 20000 20 

15 PCA 100 50 logsig 24 trainscg 20000, 50000 20 
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No. Maximum epochs CPU/GPU 
T (K) Ne 

Elements used in the dataset Noise Baseline 
Train Validation Train Validation 

1 1000 CPU 
varied for 

dataset1 
- 

varied for 

dataset 
- 22 0.001 none 

2 1000 CPU 
varied for 

dataset 
- 

varied for 
dataset 

- 22 0.001 none 

3 1000 CPU 
varied for 

dataset 
- 

varied for 
dataset 

- 22 0.001 none 

4 1000 GPU 
varied for 

dataset 
- 

varied for 
dataset 

- 22 0.001 none 

5 1000 GPU/CPU 10000 - 1.00E+17 - 2,3(fixed) 0.001 none 

6 5000, 20000 GPU 10000 - 1.00E+17 - 2,3(fixed) 0.001 none 

7 1000 GPU 10000 - 1.00E+17 - 2,3(fixed) 0.001 none 

8 1000 GPU varied for datasets2 2,3(fixed) 0.001 none 

9 1000 GPU varied for datasets 2,3(fixed) 0.001 none 

10 1000, 5000 GPU varied for datasets 3 0.001 none 

11 1000, 5000 GPU varied for datasets 3 0.001 none 

12 5000, 10000 GPU varied for datasets 3,5,10 0.001 none 

13 10000 CPU PARA varied for datasets 3,5,8,10,15,20,22 0.001 none 

14 10000 CPU PARA varied for spectra3 22 
0.001,0.005,0.01, 
0.02,0.05,0.08,0.1, 

0.2 

none 

15 10000 CPU PARA varied for spectra 22 
0.001,0.005,0.01, 

0.02,0.05,0.08,0.1, 
0.2 

linear, quadratic 
curves, mix of both 

 

 

 

1
 Varied for dataset means that within the datasets, T or Ne are the same for each spectrum. 

2 For trainscg, both T and Ne are varied for spectra, for traincgb, Ne is varied for spectra, T is 10000K. 
3
 Varied for spectra means that T and Ne are different within one dataset. 
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The development of our ANN approach will thus follow the steps shown in figure Fig. II-2.  

 

 

Fig. II-2 The scheme of the training 

In a first step, we will generate our training and test sets by varying the temperature and electron 

density. Each of the two sets will then consist of several thousand spectra/concentration pairs. We will 

then choose the different perturbations to be applied to the spectra as well as the architecture of the 

network and the parameters intrinsic to the learning. This data will then be used for the learning phase 

of the network. Finally, the predictive potential of the constructed network will be evaluated using the 

spectra contained in the test set that did not participate in the training. Four different figures of merit 

will then be used to estimate the performance of the models and thus compare them:  

 

The Root Mean Square Error (RMSE) 

It is defined by equation II-1 and can be used on the training set and on the test set (i.e. RMSEC and 

RMSEP respectively).  

𝑅𝑀𝑆𝐸 = [∑ (𝑦?̂ − 𝑦5)0
5@#

%

𝑛  
II-1 

with 𝑛 being the number of sample in the considered set, 𝑦?̂ the predicted value of the neural network 

for the sample , and 𝑦5 the reference value (in our case the real concentration of element) 

 

The Mean Square Error (MSE) 
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It is given in in the equation II-2. It is by definition the square of the RMSE value.  

𝑀𝑆𝐸 = 1𝑛_(𝑦5 − �̀�5)%
0

5@#

 II-2 

 

The coefficient of determination (R2) 

It is one of the most commonly used parameters in many areas. Its definition is given in equation II-3 

with 𝑛 the number of sample in the dataset, 𝑦5 the reference value of sample i, 𝑦F the mean value of the 

all 𝑦5 , and 𝑦?̂ the predicted value by the network for the sample i. R2 is also the proportion of the 

variance in the dependent variable which is predictable from the independent variable(s). 

𝑅% = 1 − ∑ (𝑦5 − 𝑦F)%0
5@#∑ (𝑦5 − 𝑦?̂)%0
5@#

 
II-3 

 

The calculation time  

The calculation time will also be a parameter to be taken into account. Indeed, some networks will 

take a long time to train and even if they give the best errors on paper, you will have to ask yourself 

the question of the real added value compared to others which will be slightly less efficient but which 

will be undeniably faster to train. We will also have to look at the different learning methods that can 

support GPU computing versus others that can only run on CPU. It will be all the more important to 

do this study because the most efficient learning algorithms will not necessarily be those that take 

advantage of parallel computing on GPUs. Before going into the details of this neural network 

optimization, which will be detailed in the following sections, we thought it would be interesting to 

show in table 3.4 a synthesis of the 15 types of neural networks that have been developed in this thesis. 

The objective here is to better reflect the importance of the work that may have been a bit thankless in 

the face of some disappointing results, but which are after all an integral part of scientific research 

 

II.1.4 The first ANN  

In the very beginning of this project, a simple neural network (ANN No.1) was built based on 

the example from Matlab neural network tutorial. It has 2048 neurons (corresponding to the 2048 in 

the spectral domain) as input, one hidden layer with 10 neurons. The transfer function was a sigmoid 

and the output layer had a linear transfer function. 22 output neurons were also considered (all the 

concentrations of 22 elements used for the dataset). Raw data was also considered in this first attempt. 

The training method was the well-known Levenburg-Marquardt backpropagation (trainlm in Matlab). 
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It is one of the fastest methods in the Matlab toolbox but takes more memory and only runs on CPU. 

The training phase was then force to stop once the network matches one of the following conditions: 

1. reaching maximum epoch (1000 by default), 

2. reaching the minimum gradient (1.00 ´ 10 -7),  

3. the performance (mean square error, MSE) reaches zero, 

4. reaching the maximum validation checks (6 is the default number, which means the 

differences in MSE from the last two epochs no longer decreases 6 times in a row, the training 

no longer improves the MSE), 

5. reaching the maximum mu (a parameter of Levenburg-Marquardt backpropagation).  

The dataset used for training contained 1 000 simulated spectra. It was randomly divided into 

a training set (75%), a validation set (15%) and a test set (15%) by the toolbox. Fig. II-3 shows an 

example of the window displayed by our ANN Matlab toolbox at the end of the network learning 

process. It first recalls the structure of the network we trained, the algorithms used but also proposes a 

set of information related to the end of the learning phase. Thus, the training of this network stopped 

after 75 iterations (i.e. epochs) for a total calculation time of 12 hours which is enormous. It should be 

noted that the learning algorithm chosen here only runs on a CPU, which explains this slowness. We 

should also not forget that our network is made of 2048 input neurons and 10 hidden layer neurons 

which makes more than 20000 weights to be optimized during the training. We will observe  MSE 

value of 33.2 at the end of the learning process. Moreover, the green rectangle indicates that the 

learning process has been stopped because it has reached the maximum validation checks which is 6. 

This type of representation will be used regularly for the other networks built for comparison.  
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Fig. II-3 Neural network No.1 

Fig. II-4 also gives very interesting information about the learning phase and the predictive 

potential of the constructed network. We will also use this type of representation throughout this 

chapter. More precisely Fig. II-4(a) gives information on the evolution of the MSE values over the 

iterations on the three datasets (training in blue, validation in green and test in red). The black vertical 

dash line and the green circle indicate the best performance for the validation set, i.e. a MSE value of 

37.8937 obtained at the 69th epoch. Fig. II-4(c) allows to follow the evolution of the parameters of the 

learning function (gradient and mu in this case) during the training of the network as well as the 

validation check count. Fig. II-4(b) and (d) give more details on the values predicted by the network. 

Fig. II-4(d) is a classical representation of the reference values according (target) to the values 

predicted by the network (output). The dotted line is the first bisector which represents the ideal line 

where the predictions would be exactly equal to the reference values. We will therefore try to have the 

points of this figure as close as possible to this line during this work. The colored lines represent the 

regression lines calculated from the black points of each graph. In other words, they should be as close 

as possible to the first bisector if the prediction model was perfect. Note that this same figure shows 
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different dials to reflect the prediction results on the three sets of spectra (training in blue, validation 

in green and test in red). Finally, Fig. II-4 (b) shows the distribution of the prediction error (predicted 

values – reference ones) for the three datasets. From these first results, we see that such a network is 

unable to predict concentrations with an excessively high error and a more than moderate correlation 

and all this for a training time of 12h.  

In this case, MSE is 37.8937, R is 0.7273 for the whole dataset (on average), the training 

stopped at the 75th iteration after 12 hours. These results should be considered poor, since the 

concentration of one element is between 0 and 1, the MSE is more than 100 times bigger. The possible 

solutions are: bigger datasets, less output, more neurons, more hidden layers, different learning method 

and so on.  

 

Fig. II-4 Results of ANN No.1 
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II.1.5 In search of a solution of our learning problem: a different learning 

method? 

Based on these first disappointing results, we first thought that this could be due to the learning 

function used during the training of the network. So, we decided to use this time the Bayesian 

Regularization function but keeping the same previous network structure and datasets (ANN No.2). 

The results are presented in Fig. II-5 and Fig. II-6. As we can see the training was much longer since 

the training stopped after 1000 iterations for a total computing time of 96 hours! The worst thing was 

certainly to see that on top of that the level of error had not evolved and therefore still unacceptable. 

Only the error distribution seemed to improve as we can see on the histogram.  

  

 

Fig. II-5 ANN No.2 
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Fig. II-6 Results of ANN No.2 

This second network was therefore no more acceptable than the previous one and it was 

necessary to do something completely different. We assumed that neural networks were very sensitive 

to the range of values used as input. This is indeed all the more important as the transfer functions tend 

to accentuate this sensitivity. Thus, we decided to work on the normalization of the input data of the 

network presented in the following network. 

 

II.1.6 Pre-processing for the input, a normalization? 

The two networks mentioned above both used raw data, and the results were bad. Hence the 

pre-processing of data was considered. In the following trials, normalization was applied. Each 

spectrum was divided by the sum of all the values along the 2048 spectral variables. Details about this 

new network No.3 are given in Fig. II-7. The analysis of the result in Fig. II-8 shows that the data 
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normalization allows to go in the right direction with a MSE significantly smaller (0.00204) although 

R is merely 0.71.  

 

Fig. II-7 ANN No.3 

 

 

Fig. II-8 Results of ANN No.3 
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These results were encouraging and showed the importance of normalizing the input data of the neural 

network. At this point in the work, we also wondered if it would be possible to predict the plasma 

temperature and electron density in addition to the 22 concentrations through the same network. The 

results of this network are presented in Fig. II-9. Note that we have kept the parameters of the previous 

network, only the number of neurons of the output layer is increased to 24 to take into account the 

prediction of these two new parameters. The results were no more satisfactory than the previous 

network.  

 

Fig. II-9 Another results of ANN No.3 

 

So far, a few different networks have been built and trained on CPU considering some sets of 

parameters, but the results were far from good. It was therefore necessary to test more combinations 

of parameters, but as we saw earlier, the calculation times were far too prohibitive. We therefore 

decided to prefer learning functions compatible with GPU computing in order to take advantage of 

parallelization. ANN (No.4) was then built to train on GPU and the default Matlab learning method 

was chosen (scaled conjugate gradient backpropagation, called trainscg in Matlab). This network  was 

built as the previous one. With this GPU implementation, training time was significant shortened into 

several seconds. However, this ANN had similar results. Since we now had the ability to train networks 

very quickly we had the opportunity to test many combinations of parameters but this could not 

improve the performance of the network for predicting concentrations. We then assumed that a single 

network might not be able to predict all the concentrations of the elements of interest. The time was 
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therefore to build networks with fewer output neurons, i.e. predicting only a few elements. This 

inevitably led to the need to train different networks to predict the 22 elements, but we needed to know 

whether the difficulty of the network to predict was due to its output structure. 

 

II.1.7 Considering less output neurons? 

The objective of this part was to simplify the neural networks in order to understand whether 

the modelling problem concerned this point. As far as the datasets used are concerned we have not 

changed anything as each spectrum is always a linked combination of the 22 elements. However, this 

time the network only predicts 2 or 3 elements that have been chosen by chance, namely Ag and Al or 

Ag, Al and As respectively. A series of networks (No.5) were built with data size varied from 1 000 

to 200 000 spectra. It was also important to consider the number of spectra in the training set as it must 

be large enough in relation to the total number of weights in the network to be optimized. Unfortunately, 

there is no real criterion for choosing this parameter, hence the need to study the influence of the 

number of spectra. We then studied 12 different learning methods and the sigmoid and linear transfer 

function for the hidden and output layers respectively. A 0.1% noise were also added to the spectral 

data.  The prediction performances of all these networks are listed in the Table II-4 and Table II-5 

 

Table II-4 Results of ANN No.5 with 2 elements 

Learning 

methods 
Datasize Iterations MSE R Noise 

Layer1 

FCN 

Layer2 

FCN 

No. 

elements 

trainscg 

1000 28 3.37E-04 0.9845 

0.001 logsig purelin 2 
5000 42 6.60E-04 0.98899 

10000 189 2.07E-05 0.9983 

20000 735 3.27E-06 0.99966 

traincgb 

1000 31 2.04E-04 0.97557 

0.001 logsig purelin 2 

5000 66 1.34E-04 0.99435 

10000 186 1.92E-05 0.99821 

20000 362 1.52E-05 0.99952 

200000 982 5.20E-06 0.99997 

traincgf 

1000 30 1.69E-04 0.98521 

0.001 logsig purelin 2 

5000 33 9.98E-04 0.98639 

10000 199 2.00E-05 0.99728 

20000 203 6.69E-05 0.99887 

200000 1000 1.18E-05 0.99993 

traincgf 

1000 17 4.82E-04 0.97804 

0.001 logsig purelin 2 

5000 47 4.19E-04 0.99228 

10000 203 4.79E-05 0.99826 

20000 607 2.08E-05 0.9994 

200000 1000 1.91E-05 0.99988 

traincgp 

1000 22 9.92E-04 0.98196 

0.001 logsig purelin 2 
5000 50 3.83E-04 0.99175 

10000 177 2.69E-05 0.99783 

20000 204 6.71E-05 0.99885 



62 

 

200000 878 6.87E-06 0.99995 

traingd 

1000 1000 2.07E-02 0.86266 

0.001 logsig purelin 2 

5000 1000 3.45E-02 0.83138 

10000 1000 2.90E-02 0.86151 

20000 1000 3.36E-02 0.83963 

200000 1000 2.82E-02 0.83602 

traingda 

1000 284 4.68E-04 0.96756 

0.001 logsig purelin 2 

5000 146 5.43E-03 0.96321 

10000 149 7.28E-03 0.95239 

20000 145 7.14E-03 0.95529 

200000 139 8.96E-03 0.94544 

traingdm 

1000 1000 1.91E-02 0.88809 

0.001 logsig purelin 2 

5000 1000 2.46E-02 0.84907 

10000 1000 2.01E-02 0.8751 

20000 1000 2.31E-02 0.85995 

200000 1000 3.43E-02 0.81994 

traingdx 

1000 182 1.70E-04 0.97871 

0.001 logsig purelin 2 

5000 194 1.05E-03 0.98848 

10000 180 1.79E-03 0.98677 

20000 184 2.30E-03 0.98461 

200000 185 2.31E-03 0.986 

trainoss 

1000 50 4.29E-04 0.97008 

0.001 logsig purelin 2 

5000 44 1.77E-03 0.98418 

10000 102 6.24E-04 0.99337 

20000 277 1.19E-04 0.99879 

200000 1000 5.02E-05 0.99968 

trainrp 

1000 41 2.19E-03 0.91551 

0.001 logsig purelin 2 

5000 18 4.64E-03 0.91588 

10000 46 1.10E-03 0.96642 

20000 104 5.80E-04 0.97373 

200000 1000 3.44E-05 0.99978 

trainlm 
1000 8 1.31E-17 0.98299 

0.001 logsig purelin 2 
5000 8 2.10E-15 0.99131 

trainbr 
5000 30 5.90E-16 0.99967 

0.001 logsig purelin 2 
20000 55 3.25E-06 0.99998 

 

Table II-5 Results of ANN No.5 with 3 elements 

Learning 
methods 

Datasize Iterations MSE R Noise 
Layer1 
FCN 

Layer2 
FCN 

No. 
elements 

trainscg 

1000 31 5.27E-04 0.98077 

0.001 logsig purelin 3 

5000 78 6.23E-04 0.99144 

10000 89 5.84E-04 0.99231 

20000 1000 4.30E-06 0.99985 

100000 1000 4.46E-06 0.99997 

200000 1000 6.97E-06 0.99995 

traincgb 

1000 48 1.72E-04 0.98735 

0.001 logsig purelin 3 

5000 63 6.39E-04 0.98943 

10000 765 4.14E-06 0.99777 

20000 1000 4.36E-06 0.9999 

200000 1000 4.35E-06 0.99997 

traincgf 

1000 42 2.57E-04 0.98461 

0.001 logsig purelin 3 

5000 57 9.46E-04 0.98684 

10000 91 5.45E-04 0.99369 

20000 1000 1.46E-05 0.99965 

200000 1000 2.89E-05 0.9998 
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traincgf 

1000 57 1.26E-04 0.9837 

0.001 logsig purelin 3 

5000 70 6.60E-04 0.99046 

10000 65 7.83E-04 0.99153 

20000 1000 3.52E-05 0.99954 

200000 1000 3.85E-05 0.99973 

traincgp 

1000 75 8.06E-05 0.98522 

0.001 logsig purelin 3 

5000 80 5.21E-04 0.99163 

10000 96 6.67E-04 0.99204 

20000 446 3.99E-05 0.9992 

200000 1000 9.04E-06 0.99994 

traingd 

1000 1000 2.85E-02 0.78923 

0.001 logsig purelin 3 

5000 1000 3.13E-02 0.79981 

10000 1000 2.95E-02 0.81447 

20000 1000 2.99E-02 0.78611 

200000 1000 3.16E-02 0.76625 

traingda 

1000 147 3.29E-03 0.96113 

0.001 logsig purelin 3 

5000 148 7.65E-03 0.94544 

10000 150 7.44E-03 0.94711 

20000 147 7.47E-03 0.94727 

200000 154 7.19E-03 0.95048 

traingdm 

1000 1000 2.50E-02 0.81436 

0.001 logsig purelin 3 

5000 1000 2.53E-02 0.83677 

10000 1000 3.21E-02 0.77941 

20000 1000 2.35E-02 0.84205 

200000 1000 2.92E-02 0.81904 

traingdx 

1000 156 1.43E-03 0.9665 

0.001 logsig purelin 3 

5000 193 1.71E-03 0.98363 

10000 191 2.58E-03 0.98055 

20000 188 3.13E-03 0.97749 

200000 199 3.18E-03 0.97808 

trainoss 

1000 54 4.52E-04 0.97965 

0.001 logsig purelin 3 

5000 79 1.12E-03 0.98753 

10000 99 1.30E-03 0.98933 

20000 476 2.26E-04 0.99735 

200000 1000 2.22E-05 0.99984 

trainrp 

1000 64 4.63E-03 0.9416 

0.001 logsig purelin 3 

5000 37 4.21E-03 0.95323 

10000 151 2.54E-03 0.95362 

20000 114 1.74E-03 0.97699 

200000 1000 1.41E-04 0.99901 

trainlm 

1000 7 1.18E-21 0.9782 

0.001 logsig purelin 3 5000 22 2.82E-06 0.99991 

20000 19 1.28E-05 0.99981 

trainbr 
5000 17 4.31E-04 0.99681 

0.001 logsig purelin 3 
20000 65 8.37E-07 0.99998 

 

From a general point of view, we can already see that the networks have a very different 

prediction behavior with now much more acceptable MSE and R values. If we first look at the learning 

functions, we can see that some are worse than others, for example gradient descent backpropagation 

(traingd) and gradient descent with momentum (traindm). Additionally, the Levenberg-Marquardt 

backpropagation (trainlm) and Bayesian Regularization (trainbr) can only run with CPU. Therefore, 
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they need much more time to train and make them difficult to use on big datasets.  The scaled conjugate 

gradient backpropagation has then been considered as the learning function to keep in this part.  

Regarding the size of the training dataset, we could test values from 1000 to 200000 LIBS 

spectra In all these networks, the maximum epoch chosen was 1000 and it was not enough for a dataset 

of 200 000, since most of these ANNs (No.5) stopped by reaching this limit i.e. without reaching the 

end of the training step. Of course, we could have increased this limit, but such a training already lasted 

more than 10 minutes. This time obviously seemed much shorter than before, but it was still too long 

for the many tests we had to do afterwards. In view of these results, it appeared to us that training the 

networks on a training set of 20,000 spectra allowed the networks to be trained for a time ranging from 

a few seconds to a few minutes while ensuring acceptable MSE and R values.  

 

II.1.8 Considering different transfer function and/or different number of 

hidden neurons?  

The transfer function of a neuron has a very important place in a network because it transforms 

the weighted sum of its inputs into a new output value which is then passed on to the next neuron in 

another layer. Sigmoid (logsig in Matlab) and tan-sigmoid (tansig in Matlab) are the most common 

transfer functions used in the hidden layers of a network. Their difference is illustrated in Fig. II-10.  

 

Fig. II-10 The Sigmoid and tan-sigmoid transfer functions 

Although this may seem trivial, these two functions are quite different because the first will present 

outputs bounded between 0 and 1 while the second will also propose negative values on a domain from 

-1 to +1. The transfer function of the output layer is a linear one called purelin in Matlab. Table II-6 

and Table II-7 give the results of ANN(No.6) trained with tan-sigmoid as transfer function in the 
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hidden layer. We still consider networks built to predict 2 or 3 elements but this time limiting the total 

number of spectra in the dataset to 20,000. 

 

Table II-6 Results of ANN No.6 with 2 elements 

Learning 

methods 
Datasize Iterations MSE R Noise 

Layer1 

FCN 

Layer2 

FCN 

No. 

elements 

trainscg 
5000 73 2.59E-05 0.98984 

0.001 tansig purelin 2 
20000 1000 2.87E-06 0.99992 

traincgb 
5000 172 2.08E-07 0.97693 

0.001 tansig purelin 2 
20000 356 7.11E-06 0.9999 

traincgf 
5000 59 2.07E-04 0.99309 

0.001 tansig purelin 2 
20000 423 4.13E-06 0.99942 

traincgp 
5000 63 1.44E-04 0.98851 

0.001 tansig purelin 2 
20000 270 1.35E-05 0.99941 

traingd 
5000 1000 2.70E-02 0.81495 

0.001 tansig purelin 2 
20000 1000 3.21E-02 0.81868 

traingda 
5000 358 8.35E-04 0.97229 

0.001 tansig purelin 2 
20000 209 3.64E-03 0.97332 

traingdm 
5000 1000 2.51E-02 0.83636 

0.001 tansig purelin 2 
20000 14 1.80E-01 0.67192 

traingdx 
5000 182 3.21E-04 0.98592 

0.001 tansig purelin 2 
20000 184 1.29E-03 0.98981 

trainoss 
5000 63 3.82E-04 0.98249 

0.001 tansig purelin 2 
20000 171 2.26E-04 0.99712 

trainrp 
5000 74 3.96E-03 0.93708 

0.001 tansig purelin 2 
20000 115 2.12E-03 0.96161 

 

Table II-7 Results of ANN No.6 with 3 elements 

Learning 
methods 

Datasize Iterations MSE R Noise 
Layer1 
FCN 

Layer2 
FCN 

No. elements 

trainscg 
5000 82 3.04E-04 0.98663 

0.001 tansig purelin 3 
20000 1000 4.83E-06 0.99994 

traincgb 
5000 126 1.17E-04 0.98768 

0.001 tansig purelin 3 
20000 470 2.34E-05 0.99963 

traincgf 
5000 92 2.48E-04 0.99096 

0.001 tansig purelin 3 
20000 505 1.54E-04 0.99872 

traincgp 
5000 42 1.20E-03 0.98052 

0.001 tansig purelin 3 
20000 139 1.66E-04 0.99717 

traingd 
5000 1000 1.92E-02 0.87499 

0.001 tansig purelin 3 
20000 1000 1.92E-02 0.86751 

traingda 
5000 137 6.07E-03 0.94274 

0.001 tansig purelin 3 
20000 138 6.26E-03 0.95335 

traingdm 
5000 1000 2.71E-02 0.82758 

0.001 tansig purelin 3 
20000 1000 3.71E-02 0.77697 

traingdx 
5000 177 1.22E-03 0.97709 

0.001 tansig purelin 3 
20000 192 1.45E-03 0.98844 

trainoss 
5000 68 1.78E-03 0.97685 

0.001 tansig purelin 3 
20000 453 5.68E-05 0.99928 

trainrp 5000 90 1.24E-02 0.89319 0.001 tansig purelin 3 
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20000 153 1.54E-02 0.85621 

 

These results show that we are still able to propose satisfactory predictive models. The best 

learning functions are still the same as previously and the change of transfer function does not allow 

to obtain a significant improvement in the prediction. Since it is not always clear what lies behind an 

MSE value or an R, Fig. II-11 shows graphically the results obtained for one of these networks. 

 

 

Fig. II-11 One example of ANN No.6 

In spite of our discourse, which may seem a little negative at times, the graphs on the right-

hand side of the figure show that we have a good quality of prediction with a set of points very close 

to the first bisector and residues close together in the histogram. So, there is no doubt that we are 

moving in the right direction. It then appeared interesting to see if we could increase the level of 

prediction by increasing the number of hidden neurons to 20 while keeping the previous conditions of 

ANNs N°6. So Table II-8 provides the prediction results of this new structure (ANN N°7).  

 

Table II-8 Results of ANN No.7 

Method Datasize Iterations MSE R Noise 
Layer1 

FCN 

Layer2 

FCN 
No. elements 
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trainscg 
5000 79 1.17E-04 0.9948 

0.001 tansig purelin 2 
20000 385 3.47E-05 0.9934 

traincgb 
5000 101 1.79E-05 0.99645 

0.001 tansig purelin 2 
20000 173 5.82E-05 0.99885 

traincgf 
5000 141 2.11E-05 0.99514 

0.001 tansig purelin 2 
20000 319 2.65E-05 0.99926 

trainscg 
5000 91 4.92E-04 0.99328 

0.001 tansig purelin 3 
20000 372 1.17E-04 0.99818 

traincgb 
5000 64 6.79E-04 0.99177 

0.001 tansig purelin 3 
20000 395 4.75E-05 0.99897 

traincgf 
5000 127 1.27E-04 0.99447 

0.001 tansig purelin 3 
20000 485 5.13E-05 0.99885 

 

As we can quickly see, we cannot observe a real improvement and we can therefore say that 

we have reached a certain limit in the predictive capacity of the neural network. Nevertheless, we 

should not lose sight of the fact that ANNs N°6 and N°7 were built on the basis of LIBS spectral data 

for fixed plasma temperatures and electron densities. Although this strategy might have seemed 

simplistic at first, it ultimately paid off because we discovered that it was not so simple to build a 

network capable of simultaneously predicting multiple concentrations even under these conditions. 

The observations we made will certainly help us to understand conditions that are even closer to the 

reality of the experimental data. 

 

II.1.9 Could we manage different temperature and electron density of the 

plasma? 

As said before, the purpose of the series of networks we constructed (ANN N°8) was first to 

see if it was possible to predict the concentrations of the elements as the temperature and electron 

density varied.  Table II-9 shows the prediction results of ANNs considering a fixed temperature but 

different electron densities. In general, we could see that the results were quite acceptable and that 

temperature variations could be taken into account for a given electron density. Nevertheless, we note 

a difficulty of prediction when the electron densities are different between the training and test sets, 

which is quite natural (penultimate line of the table).  

 

Table II-9 ANN No.8 with fixed T 

Learning 

methods 
Datasize Iterations MSE R 

Ne for 

calibration 

Validation 

R 

Ne for 

validation  

Validation 

datasize 
Noise 

Layer1 

FCN 

Layer2 

FCN 

No. 

elements 

trainscg 
5000 65 1.36E-04 0.9943 5.00E+17    

0.001 logsig purelin 2 
20000 791 1.65E-05 0.9996 5.00E+17    

trainscg 
5000 72 2.84E-04 0.99367 5.00E+16    

0.001 logsig purelin 3 
20000 1000 5.56E-06 0.9999 5.00E+17 0.93195  5000 
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20000 1000 5.44E-06 0.99996 5.00E+16 0.99996 5.00E+16 5000 

traincgb 
5000 105 1.75E-06 0.99602 5.00E+17 0.97862 1.00E+17 5000 

0.001 logsig purelin 2 
20000 135 9.56E-05 0.99865 5.00E+17 0.9969 5.00E+17 5000 

traincgb 
5000 92 1.80E-04 0.9924 5.00E+16 0.97684 1.00E+17 5000 

0.001 logsig purelin 3 
20000 856 5.61E-05 0.99983 1.00E+17 0.99953 1.00E+17 5000 

 

Table II-10 shows the prediction results when we fix the electron density but consider different 

plasma temperatures between the training and test sets. These results are not really different and are 

therefore quite acceptable. We can even add that the network has a certain robustness to temperature 

variations since these networks predict the concentrations quite well while they have never seen spectra 

with another temperature than the one chosen for the training batch.  

 

Table II-10 ANN No.8 with fixed Ne 

Learning 
methods 

Datasize Iterations MSE R 
T for 

calibration  
Validation 

R 
T for 

Validation  
Validation 
datasize 

Noise 
Layer1 
FCN 

Layer2 
FCN 

No. 
elements 

trainscg 
5000 51 2.37E-04 0.99322 11000 0.97166 12000 5000 

0.001 logsig purelin 2 
20000 423 5.21E-06 0.99941 6000 0.97273 10000 5000 

trainscg 

5000 46 7.39E-04 0.98946 9000 0.98074 9000 5000 

0.001 logsig purelin 3 20000 1000 4.32E-06 0.99981 11000 0.58782 6000 5000 

200000 743 6.71E-06 0.99983 9000 0.63743 6000 5000 

 

In order to improve the predictive power of our models, we wanted to see if increasing the 

number of neurons on the hidden layer could improve things. Table II-11 shows the result of the 

predictions considering different temperatures and electron density with an increasing number of 

neurons ranging from 20 to 30. This variation seems limited, but it should not be forgotten that this 

number undeniably multiplies the number of weights to be optimized in the network during its training.  

 

Table II-11 Three different hidden neurons values with different T and Ne 

 20 neurons 25 neurons 30 neurons 

R Train (T: 11 000, Ne: 5e17) 0.99968 0.99949 0.99907 

R Validation (T: 9 000, Ne: 1e17) 0.9692 0.97049 0.9648 

R Train (T: 9 000, Ne: 5e16) 0.99797 0.99792 0.99863 

R Validation (T: 8 000, Ne: 5e16) 0.93946 0.93865 0.9399 

 

We quickly see that this increase does not bring much in terms of predictive power and we can 

therefore stay with this minimum number of 20 neurons on the hidden layer. At this level of 

optimization, we again asked ourselves whether or not to add a second layer of hidden neurons. This 

only made the task of training the network more complex, with the loss of predictive potential as we 
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can see on Fig. II-12 and Fig. II-13 and the observation of non-linear effects on the reference values 

vs. predicted values graphs.  

 

 

Fig. II-12 One example of ANN with extra hidden layer 

 

Fig. II-13 Another example of ANN with extra hidden layer 
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II.1.10 A time of reflexion 

 

At this point in the thesis, we had already tested a number of networks and two main questions 

were added. The first was the normalization used for the input data and the second was the 

representativeness of the 2 or 3 elements we had chosen by default to be predicted. As far as the first 

point is concerned, we have seen how important normalization is in order to obtain satisfactory 

predictions. On the other hand, the normalization by the sum did not allow to cover the whole range 

of output values of the transfer function which is not optimal in the learning process.  With this in 

mind, we decided to normalize the spectra by dividing them by their maximum value, so that the 

transformed spectral data would be between 0 and 1. Regarding the second point raised, we had 

decided in the first part of the thesis to work by default on Ag, Al, and As. We could then ask ourselves 

whether our difficulties might stem from this particular choice of elements to be predicted or whether 

modelling in general remained difficult. It was therefore decided to develop neural networks with 

different combinations of 3 elements from the list of 22 considering different temperatures and electron 

densities but also considering the new normalization procedure. Scaled conjugate gradient 

backpropagation (trainscg) was the only learning method applied and 10, 20 or 30 hidden neurons 

were considered in a single layer. The results of these ANNs No.9 are presented in the Table II-12.  

Table II-12 Results of ANN No.9 

Iterations 
Training set 

plasma 
parameters 

Validation set 
plasma 

parameters 

MSE 
training 

MSE 
validation 

R 
training 

R 
validation 

Nbr. 
 hydden 
neurons 

Elements considered in 
the output layer 

Epochs 

161 11000, 5e17 9000, 1e17 1.90E-03 8.75E-01 0.98693 0.01840 10 As Pb Ga 1000 

1000 8000, 5e17 10000, 5e17 1.41E-04 2.80E-02 0.99905 0.88610 10 Ti As Si 1000 

2000 9000, 5e16 6000, 1e17 4.76E-05 1.89E-01 0.99968 0.17017 10 Mn Ti Ag 2000 

3597 10000, 1e17 7000, 5e17 1.50E-05 1.27E-01 0.99990 0.79216 10 Ti Si Al 5000 

639 6000, 1e17 7000, 5e16 2.20E-04 1.00E-01 0.99852 0.17039 20 Ca As Ti 5000 

243 11000, 5e17 6000, 5e16 3.50E-03 2.44E-01 0.97621 0.10943 20 Na As Sr 5000 

353 11000, 1e17 6000, 5e16 2.90E-03 1.70E-01 0.97996 0.23552 20 Al Na As 5000 

1376 11000, 1e17 9000, 1e17 3.08E-05 5.40E-02 0.99979 0.71034 20 Mo Al U 5000 

154 11000, 5e17 9000, 5e16 4.95E-02 1.32E-01 0.57972 0.14083 20 Mg Na La 5000 

1005 11000, 1e17 9000, 1e17 7.91E-05 5.21E-02 0.99946 0.73123 20 Mo La Cu 5000 

942 11000, 5e16 9000, 5e16 1.59E-04 8.60E-03 0.99892 0.94074 20 Si Al Cu 5000 

1306 11000, 1e17 9000, 5e17 3.23E-05 4.74E-02 0.99978 0.61175 20 Fe La Si 5000 

884 11000, 5e16 9000, 1e17 6.10E-05 4.56E-02 0.99959 0.66066 20 Ga La Fe 5000 

713 11000, 5e16 9000, 5e17 4.89E-04 1.01E-01 0.99667 0.60337 20 Ni Ag Ti 5000 

2842 11000, 5e16 9000, 5e16 1.72E-05 8.18E-02 0.99988 0.78043 20 As Mo Ag 5000 

649 11000, 5e16 9000, 1e17 8.30E-05 7.12E-02 0.99944 0.52649 20 La Au Fe 5000 

182 11000, 5e17 9000, 1e17 6.40E-03 1.74E-01 0.95604 0.53477 20 Mg Au Ag 5000 

3854 11000, 5e16 9000, 5e17 5.01E-06 1.87E-01 0.99997 0.21059 20 Cr Cu Ca 5000 

387 11000, 5e17 9000, 1e17 1.60E-03 5.21E-02 0.98935 0.83669 20 Na Ga Pb 5000 

227 11000, 1e17 9000, 5e16 2.20E-03 2.87E-02 0.98502 0.79473 20 Cu Pb Ga 5000 

260 11000, 1e17 9000, 5e17 1.25E-02 2.04E-01 0.91328 0.05646 20 As Mg Sr 5000 

575 11000, 1e17 9000, 5e17 2.02E-02 5.86E-01 0.85282 -0.02432 20 La Mo Mg 5000 

130 11000, 1e17 9000, 5e17 4.64E-02 5.16E-01 0.61053 0.32034 30 Na Fe Mg 5000 
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447 11000, 5e17 9000, 5e17 2.69E-04 1.40E-02 0.99820 0.91703 30 Au Al Sr 5000 

413 11000, 1e17 9000, 1e17 1.86E-02 1.05E-01 0.86662 0.42461 30 Mg Ag Mo 5000 

2121 11000, 5e16 9000, 1e17 1.89E-05 2.87E-02 0.99987 0.79994 30 As Fe Al 5000 

993 11000, 5e17 9000, 1e17 2.77E-02 1.16E-01 0.79173 0.53309 30 Mg Na Fe 5000 

 

This table shows that apart from 5 cases (in bold), the R values for training set are all over 0.9, 

while only three cases (in bold) have R over 0.9 for validation. We thus observe that some networks 

perform poorly for particular combinations of elements to be predicted for the same network.  

Moreover, increasing the number of hidden neurons and the number of iterations did not bring better 

performance. In these new conditions it was also interesting to know if we could not improve things 

by considering two layers of 10 neurons each in a new series of ANN No.10 (results in Table II-12). 

 

Table II-13 Results of ANN No.10 

Iterations Training set 
Validation 

set 
MSE 

training  
MSE 

validation 
R training 

R 
validation  

Hidden  
neurons 

Elements 
considered 

in the output layer 
Epochs 

1000 7000, 1e17 9000, 5e17 
6.88E-

06 
1.10E-03 0.99995 0.99575 10+10 Fe U La 1000 

385 9000, 5e16 10000, 1e17 
1.70E-

03 
1.90E-03 0.98870 0.98724 10+10 La Mg Ca 1000 

406 9000, 1e17 7000, 5e17 
4.80E-

03 
7.96E-02 0.96679 0.80059 10+10 Sr Mg Si 1000 

1000 9000, 5e17 11000, 5e16 
5.52E-

05 
8.43E-02 0.99963 0.59888 10+10 La As Na 1000 

1000 
11000, 
5e17 

7000, 5e16 
8.18E-

06 
6.99E-05 0.99994 0.99956 10+10 Ni Pb Al 1000 

384 8000, 5e17 9000, 5e16 
1.76E-

04 
5.27E-02 0.99881 0.70382 10+10 Ca Ag Pb 1000 

1000 9000, 5e16 10000, 5e16 
2.08E-

05 
1.14E-02 0.99986 0.93495 10+10 Na Sr Au 1000 

263 7000, 5e17 11000, 5e16 
2.62E-

04 
1.06E-01 0.99823 0.37254 10+10 Mn U Ca 1000 

1000 6000, 1e17 9000, 5e17 
7.91E-

06 
1.45E-02 0.99995 0.90759 10+10 Ga Au Al 1000 

378 7000, 5e17 7000, 5e16 
1.74E-

04 
2.09E-02 0.99882 0.85614 10+10 Cr Mn La 1000 

1000 
10000, 
1e17 

7000, 5e16 
5.09E-

06 
2.34E-02 0.99997 0.82909 10+10 U As Sr 1000 

1000 
12000, 
5e16 

9000, 5e16 
7.49E-

06 
3.29E-02 0.99995 0.79150 10+10 U La As 1000 

1000 7000, 5e16 12000, 1e17 
2.75E-

04 
4.12E-02 0.99815 0.77235 10+10 Mg Sr Ga 1000 

1000 7000, 5e16 6000, 5e17 
5.56E-

06 
2.53E-02 0.99996 0.87310 10+10 Au U Fe 1000 

1000 
11000, 
5e16 

12000, 1e17 
1.61E-

06 
1.02E-04 0.99999 0.99947 10+10 Al La Si 1000 

534 6000, 1e17 6000, 1e17 
2.54E-

05 
2.50E-05 0.99983 0.99983 10+10 Ga Ca Ti 1000 

597 
11000, 
5e16 

12000, 1e17 
1.50E-

03 
2.62E-02 0.98964 0.91238 10+10 Mn Na La 1000 

898 7000, 5e17 6000, 5e17 
4.22E-

06 
1.00E-02 0.99997 0.93400 10+10 Cr Na Sr 1000 
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666 8000, 1e17 12000, 1e17 
2.34E-

06 
3.15E-02 0.99998 0.80501 10+10 Au La Sr 1000 

359 
12000, 
5e17 

11000, 5e17 
1.68E-

02 
1.72E-02 0.87937 0.88362 10+10 U Cr Na 5000 

1663 8000, 5e16 6000, 5e16 
1.28E-

04 
1.61E-01 0.99914 0.49702 10+10 La Fe Mg 5000 

3601 
12000, 
5e16 

6000, 5e16 
1.43E-

06 
2.53E-01 0.99999 0.12979 10+10 U Al Ca 5000 

1148 8000, 5e17 8000, 5e17 
1.06E-

04 
1.06E-04 0.99929 0.99927 10+10 Mn Mg Si 5000 

350 9000, 5e16 6000, 5e16 
3.97E-

04 
5.26E-02 0.99730 0.69429 10+10 Sr Cu Ni 5000 

673 9000, 5e16 10000, 5e17 
8.55E-

06 
1.07E-02 0.99994 0.92941 10+10 La Au Pb 5000 

910 
11000, 
1e17 

9000, 5e16 
1.01E-

04 
1.32E-02 0.99932 0.96285 10+10 Ti Au Pb 5000 

 

These results are quite different from the previous ones with acceptable performance for almost 

all element combinations with a few exceptions. As an illustration, the Fig. II-14 provides a visual 

comparison of the predictive capabilities of three given neural networks (i.e. considered three different 

combination of elements) when one (b) or two (a) hidden layers are considered in the network.  

 

 

Fig. II-14 Comparison of prediction for ANN No.9 (b) and ANN No.10 (a) 

On the one hand, these results were encouraging, but on the other hand the use of two-layer hidden 

neural networks was not conducive to the robustness of the predictive model or even to the ease of 

observing the effect of our choices in such networks. It is clear that there was certainly too much weight 
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to optimize in our networks and that we had to find another solution. It was therefore necessary to 

work on a solution that would limit the number of neurons on the input layer, as the use of spectral 

data was no longer possible. We did not want to develop a wavelength selection method in the spectral 

domain and therefore we preferred PCA as a compression method.      

 

II.1.11 Introducing a new spectral representation using PCA 

Principal component analysis is the Swiss Army knife of chemometrics. It is applied to a 

spectral dataset in order to account for all the variances it contains but representing it with a very small 

number of variables compared to the original. This technique can thus be seen as a filtering method 

that separates the chemical information in the dataset from the noise. Thus, the transformation of our 

spectral data and their use for the construction of neural networks will take place as follows:  

1. Usual procedure to generate our synthetic spectral dataset (considering different number of 

elements, different temperatures and electron densities), 

2. Splitting of the initial dataset into training (80%) and test (20%) sets, 

3. Apply PCA to the training set considering mean-centered data, 

4. Selection of a given number of principal component (nopt) to be retained (to be optimized), 

5. nopt scores will then be saved for each synthetic sample in the training set. These are the values that 

will be used as input to the neural network.  

6. The spectra of the test set will then be projected onto the nopt principal components nopt giving in 

turn the nopt scores for each.  

We see that such a procedure allows us to drastically reduce the number of input neurons (and thus the 

total number of weights to be optimized on the network) since we will go from 2048 (i.e. 2048 spectral 

variables) into nopt. These scores will therefore be used as input to the neural network. On the other 

hand, we need to optimize the number of principal components. Indeed, a too low number would 

induce a loss of spectral information from this preprocessing (i.e. compression) step that we would not 

be able to make up for by learning the network. Too many components would not be welcome either, 

as only noise could be carried by some of them. As the synthetic spectra consist of 22 elements, it was 

unlikely that we would be able to build a successful neural network based on less than this number of 

principal components. We have thus started to build networks that predict only three elements using 

scaled conjugate gradient backpropagation (trainscg), a sigmoid transfer function and a variable 

number of neurons in the hidden layer from a few to a few dozen. This first experiments showed that 

the number of components had to be higher than 24 to obtain good prediction results but also that the 

number of neurons in the hidden layer had to be higher than the number of components (results not 
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shown here). We then extended this research on the basis of these observations while at the same time 

attempting to increase the number of concentrations to be predicted to 22 by a single network. These 

results are presented in Table II-14.    

 

Table II-14 Results of using PCA for inputs 

Iterations 
Input 

neurons 
Hidden 
neurons 

Number of 

elements to be 
predicted 

MSE Datasize R R for test 
R for 

validation 
Noise 

4559 24 25 3 6.20E-07 20000 1 1 1  

6960 24 25 8 4.38E-04 20000 0.99532 0.995 0.99504  

6319 24 25 8 1.99E-04 20000 0.99768 0.99778 0.99779  

4754 24 25 10 1.00E-03 20000 0.98727 0.9881 0.98873  

6408 24 30 10 5.22E-04 20000 0.99347 0.99338 0.99355  

10000 24 30 10 3.00E-04 20000 0.99626 0.99818 0.99622  

5570 24 35 10 5.31E-04 20000 0.9934 0.99318 0.9933  

5888 24 35 10 5.43E-04 20000 0.99311 0.99274 0.9927  

5908 24 40 10 4.32E-04 20000 0.99458 0.99434 0.9944  

6137 24 40 10 6.08E-04 20000 0.99237 0.9919 0.9919  

6089 24 50 10 5.93E-04 20000 0.99259 0.99286 0.9921  

9293 24 50 10 2.43E-04 20000 0.99696 0.997 0.9964  

9227 50 50 10 4.75E-05 20000 0.99941 0.9994 0.998  

6394 50 25 10 8.26E-05 20000 0.99896 0.999 0.8329  

4664 50 25 10 1.10E-04 20000 0.99862 0.9986 
0.9611(no 

noise) 
0.964 

6221 50 50 10 2.14E-04 20000 0.99732 0.99713 
0.9972(no 

noise) 
0.9971 

1792 80 50 10 6.56E-04 20000 0.99178 0.9909 0.9924  

5519 80 50 10 1.05E-04 20000 0.99868 0.9986 0.9988  

9651 80 50 15 6.18E-05 20000 0.99893 0.9988 0.999  

8626 80 50 15 1.26E-04 20000 0.99783 0.9977 0.9977  

9318 80 50 20 2.56E-04 20000 0.9943 0.9939 0.9946  

10000 80 50 22 2.86E-04 20000 0.99305 0.9926 0.9932  

10000 80 50 22 2.40E-04 20000 0.99417 0.9939 0.9946  

3135 80 30 22 8.70E-04 20000 0.97877 0.9784 0.9795  

6243 80 30 22 6.39E-04 20000 0.98439 0.9837 0.9847  

8902 80 60 22 2.17E-04 20000 0.99475 0.9942 0.9949  

10000 80 60 22 2.42E-04 20000 0.99413 0.9934 0.9941  

8284 80 80 22 2.08E-04 20000 0.99495 0.9941 0.9947  

10000 80 100 22 1.82E-04 20000 0.99563 0.9947 0.9959  

7374 100 60 22 2.31E-04 20000 0.99437 0.9931 0.9943  

10000 100 60 22 1.84E-04 20000 0.99556 0.995 0.9956  

 

We notice that things change fundamentally with this new concept of compression used before the 

neural network. We obtain excellent MSE and R values, no matter how many elements are to be 

predicted. Note that a network consisting of 80 input neurons, i.e. using the scores of the first 80 

principal components, and 100 hidden neurons is able to successfully predict the concentrations of the 
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22 elements. Nevertheless, we wanted to try to restrict the number of hidden neurons to 50 (again to 

limit the total number of weights to be optimized in the network) while looking at the effect of a larger 

number of components. The results are presented in the Table II-15.    

 

Table II-15 Results of finding best inputs 

Inputs Neurons No. elements MSE R training R for test R for validation 

100 

50 22 

2.67E-04 0.99353 0.99323 0.99371 

120 2.04E-04 0.99506 0.99324 0.99513 

140 2.31E-04 0.99440 0.99344 0.99488 

150 2.30E-04 0.99444 0.99303 0.99504 

200 1.48E-04 0.99641 0.99581 0.99753 

250 2.69E-04 0.99348 0.99319 0.99500 

300 2.34E-04 0.99435 0.99328 0.99656 

 

It is difficult to speak about the significance of the differences observed here and that is why we will 

favor the lower number of weights in the network, i.e. 100 input neurons and 50 hidden neurons. Under 

these conditions, we have a very efficient network capable of predicting the concentrations of the 22 

elements, independently of the temperature of the plasma and its electron density. However, we should 

not forget that such a network will have to be applied to real data which will undoubtedly be tainted 

by a certain level of noise. As a reminder, the previous networks were trained and tested on data with 

a noise level of 0.1%. It was therefore logical to estimate the influence of the noise level on the 

performance of the neural network. We then generated synthetic datasets with 8 noise levels ranging 

from 0.1% to 20%. For each dataset with a given noise level, we developed a principal component 

analysis to keep only the first 100 principal components. The 100 scores per sample were then used to 

train 8 different neural networks with 50 hidden neurons to predict the 22 concentrations.       

Table II-16 gives the prediction results obtained these three levels of noise. More precisely, all the 

MSE and R values in this table is an average of three trails per noise level. It is quite natural to see the 

predictive capabilities of a model decrease with the level of noise. Nevertheless, we must insist here 

on a certain robustness of the approach since the MSE errors and correlation coefficients remain more 

than satisfactory with a rather huge noise. This network capability is particularly important for our 

imaging problem. Indeed, we always want to increase the number of spectra acquired during a 

hyperspectral imaging experiment and as the total analysis time must be reasonable we often have to 

limit the acquisition time for each spectrum. In fact, the signal-to-noise ratio of an imaging dataset is 

quite often limited, hence the importance of a predictive model capable of withstanding lower data 

quality, which is our case here.  
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Table II-16 Results of different noise 

Inputs Neurons Noise MSE R R for test 
R for 

validation 

100 50 

0.001 2.72E-04 0.99339 0.99280 0.99284 

0.005 3.01E-04 0.99269 0.99185 0.99003 

0.01 4.82E-04 0.98626 0.98661 0.98519 

0.02 5.13E-04 0.98758 0.98150 0.98473 

0.05 5.75E-04 0.98603 0.98415 0.98151 

0.08 8.45E-04 0.97916 0.97869 0.97892 

0.1 8.14E-04 0.98008 0.97570 0.97256 

0.2 1.05E-03 0.97408 0.97003 0.96788 

 

II.1.12 Could we predict the temperature from a spectrum?   

Based on the previous good prediction results, we asked ourselves whether we will be able to 

predict the plasma temperature from a spectrum based on a well-trained neural network. This approach 

is quite original since such a network, if it exists, could also allow us to generate plasma temperature 

maps from a hyperspectral dataset. For this purpose, we used our procedure for generating synthetic 

spectra by mixing 22 elements in random ratios for different temperatures. The usual data spitting has 

been used in order to obtain the training set, the validation and the test set. Then, different neural 

networks have been trained to predict this temperature using a variable number of PCA scores (from 

100 to 500) or directly from the 2048 initial spectrum values. The prediction results are given in Table 

II-17.  

Table II-17 Predicting only T with 50 hidden neurons 

Input 

neurons 

Noise 

level 
Datasize 

Hidden 

neurons 
MSE R 

100 

0.001 20000 50 

0.0026 0.95125 

150 0.0016 0.97013 

200 0.0021 0.96261 

250 0.0018 0.96703 

300 0.0034 0.93942 

500 0.0026 0.95212 

2048 0.0070 0.86241 

 

The first thing that stands out is the fact that a prediction of the temperature seems possible 

with a certain accuracy. Again, it can be seen that it is better to use the scores coming from PCA than 

whole the variables in the spectral domain. The best predictions in this case are obtained for a network 
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consisting of 150 input neurons (i.e. using 150 scores of the 150 principal components) and 50 neurons 

on the hidden layer. Many other attempts were made to reduce the number of hidden neurons and it 

was finally a network with 10 hidden neurons that allowed us to finalize this task. The results of these 

last networks are given in Table II-18. Thus, the network containing 100 input neurons and 10 hidden 

ones gives  MSE the value of 9.10-4 and a R value around 0.98 which is really efficient.      

 

Table II-18 Predicting only T with 10 hidden neurons 

Input 

neurons 

Noise 

level  
Datasize 

Hidden 

neurons 
MSE R 

50 

0.001 20000 10 

0.0043 0.91807 

100 0.0009 0.98311 

150 0.0024 0.95685 

250 0.0024 0.95743 

   

 

By way of illustration, Fig. II-15 shows the regression plot (i.e. target vs predicted value) of the best 

network. We note an excellent linearity of the relationship on the three datasets and homogeneous 

dispersion for the different temperature levels. It may be surprising to see values between 0 and 1 in 

these representations but it was necessary to normalize the temperatures before training the network 

in order to be consistent with the range of the network transfer functions. Temperatures that were 

initially between 6000K and 10000K were then represented by values between 0.1 and 1 after this 

normalization. This does not, of course, detract from the quality of the predictions presented in this 

section. 
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Fig. II-15 Regression plot of the best results of predicting only T 

 

II.1.13 Could we predict the electron density of the plasma from a 

spectrum?   

 

In view of the good results obtained on the temperature prediction, it was logical to try to do 

the same with the electron density. As before, we generated our synthetic spectral data by keeping the 

type of neural network and its learning algorithm. The use of PCA has of course been retained. A 

preliminary normalization of the densities was also necessary since we considered the values 5 × 10AP, 

1 × 10AS, 5 × 10AS, which could not be directly considered during the training of the network. Following 

this normalization, the lowest electron density was thus associated with the value 0.1 and the highest 

with 1. We then started with a layer of 100 input neurons for the network, i.e. by considering 100 

principal components. As usual, we also studied the influence of the number of neurons on the hidden 

layer. The prediction results obtained are presented in the Table II-19.  
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Table II-19 Results of predict only Ne with 100 pcs 

Inputs Neurons Output Datasize MSE R 

100 

2 

1 20000 

0.0325 0.89379 

5 0.0322 0.89603 

10 0.0323 0.89483 

20 0.0378 0.87617 

50 0.0380 0.87530 

80 0.0418 0.86250 

100 0.0376 0.87656 

 

The first remark we can make is that the quality of the prediction is well below that of the temperature 

with higher MSE values and much lower R values. It thus seems more difficult to predict the electron 

density but we cannot really be categorical as we have only used three levels of density here, which 

does not necessarily help. If we now look at the number of neurons on the hidden layer, we see that 

the errors are all very close but the lowest are nevertheless obtained with less than 10 hidden neurons. 

Assuming that there is no significant difference between the networks using 2, 5 or 10, it is logical to 

choose the lowest number of hidden neurons, i.e. 2. As an illustration, Fig. II-16 shows the prediction 

results for a network using 100 input neurons and 1 output neuron.   

 

 

Fig. II-16 Regression plot of the best results of predicting of Ne 
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II.1.14 Could we finally predict everything?   

 

In the previous sections, we have seen that the use of principal component analysis has been 

determinant for the training and prediction of neural networks. We were able to predict first the 

concentrations of the 22 elements with a single network, and then with two other networks to predict 

separately the temperature of the plasma and its density on the basis of LIBS spectral information. The 

objective of this new part was therefore to see if we would be able to predict not only the concentrations 

but also the temperature and the electron density of the plasma by a single neural network. As usual, 

the number of input neurons (and therefore the number of principal components) and the number of 

hidden neurons had to be optimized. As it was necessary to start with a first hypothesis, we decided to 

fix the number of principal components at 100 since we had seen in the previous sections that this 

allowed to potentially predict all 22 elements. Thus,  Table II-20 gives the prediction results 

considering a variable number of hidden neurons.      

 

Table II-20 Influence of the hidden neurons number on the prediction results 

Input 
neurons 

Datasize 
Output 
neurons 

Hidden 
neurons 

MSE R R for test 

100 20000 

24 

(22 elements, 

T, Ne) 

20 4.50E-03 0.95526 0.95569 

30 1.63E-03 0.98412 0.98344 

40 1.13E-03 0.98922 0.98686 

50 1.03E-03 0.98991 0.98856 

80 2.00E-03 0.98054 0.98029 

100 1.04E-03 0.98984 0.98814 

120 1.11E-03 0.98929 0.98678 

150 1.92E-03 0.98109 0.98008 

 

As we can see we obtain quite satisfactory results whatever the number of hidden neurons. Even if it 

is difficult to say if all these differences are significant, we have decided to use 50 hidden neurons 

which has the lowest MSE value of 1.03E-03. We could then go back to optimize the number of input 

neurons that we had set a priori in the previous step. The prediction results are given in Table II-21 

Table II-21. As we can see, a network using the scores of 120 principal components with 50 hidden 

neurons allows us to have the lowest error. We can therefore say that with our approach, we are able 

to predict the concentration of the 22 elements as well as the temperature of the plasma or its electronic 

density by a single predictive model, which is very interesting.    
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Table II-21 Influence of the number of principal components 

Input 

neurons 
Datasize 

Output 

neurons 

Hidden 

neurons 
MSE R R for test 

100 

20000 

24 

50 

1.04E-03 0.98984 0.98814 

120 24 7.70E-04 0.99254 0.98780 

150 24 1.10E-03 0.98912 0.98819 

200 24 9.12E-04 0.99115 0.98960 
     

 

II.1.15 Last but not least, a pitfall but… 

Research on a complex subject is never a smooth river and just when we think we have reached 

our goal, a new problem often arises that we need to address. A discussion with our collaborators first 

revealed that the list of 22 elements we had been using from the beginning was not 100% compatible 

with all the elements of interest that would potentially be present in the mineral sample we were to 

analyze at the end of the modelling part. We therefore removed the elements As, Au and Sr and added 

the elements Be, Ce, Eu, Ge and Y. So now, we had a list of 24 elements. Of course, this should not 

have been a problem for the previous method we had optimized, except for the fact that it was 

necessary to redo a new PCA analysis and then train a new network with these 24 new elements. 

However, during this same discussion, it appeared that we had not seen a much more significant 

problem. Indeed, the intensities of a LIBS spectrum are naturally dependent on the laser power used. 

Thus, the use of two different LIBS instruments or even a single one used to analyze a sample over 

two different time periods could well present a different overall intensity while from a chemical point 

of view we still had the same elemental concentrations under these different conditions. This made 

normalization of the spectra inevitable in order to get rid of the potential global intensity variations in 

the LIBS spectrum. The only problem was that the good predictive networks we had obtained were 

based on a neural network using the scores from the PCA that had been done on non-nominalized data. 

It was therefore necessary to verify that this PCA/ANN approach was still valid on normalized data, 

which we did by developing a network with 100 input neurons and 50 hidden neurons to finally obtain 

an RMSE value of 0.0293 for the validation set and a correlation coefficient of 0.9773. It was obvious 

that we had lost the predictive potential presented in the previous sections from the PCA on raw data. 

Fig. II-17 shows how the addition of this normalization has completely disrupted the training of the 

ANN model.   
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Fig. II-17 Regression plot of the ANN using PCA score with spectral normalization 

We have tried to optimize as usual in this work many parameters of the network such as the 

number of principal components, the global architecture of the network, the transfer functions and the 

learning function but this did not change anything to the situation (results not presented in the 

manuscript). Reluctantly we decided to abandon the networks using PCA scores and return to the 

classical networks exploiting directly the libs spectrum. We had seen before that we could use 

normalized spectral data to predict the concentrations of some elements even if everything was not 

perfect. In order to simplify the task of training the neural network as much as possible, we decided to 

predict only one element at a time. This would undoubtedly require a lot of work as we would have to 

build 24 different networks for the 24 elements but this option deserves to be tested. As usual, we 

generated our synthetic dataset based on the pure spectra of the 24 elements considering different 

temperatures and electron densities. All spectra have been normalized by the maximum value before 

being used in a network. Of course, we spent a lot of time on the usual optimizations to choose a unique 

number of hidden neurons equal to 100 for the 24 neural networks. This optimization phase also 

showed that a much larger number of epochs were needed as well as an increased number of validation 

checks. Table II-24 gives the predictive capabilities of the 24 neural networks thus optimized.            
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Table II-22 Results of 24 ANNs using normalized spectral data 

 Element 
RMSE 

training 

R 

training 

RMSE 

validation 
R validation 

 Ag 0.0213 0.9900 0.0317 0.9770 

 Al 0.0219 0.9896 0.0274 0.9820 

 Be 0.0382 0.9625 0.0391 0.9636 

 Ca 0.0189 0.9944 0.0221 0.9879 

 Ce 0.0400 0.9593 0.0431 0.9499 

 Cr 0.0208 0.9910 0.0216 0.9875 

 Cu 0.0147 0.9958 0.0184 0.9920 

 Eu 0.0358 0.9714 0.0399 0.9563 

 Fe 0.0280 0.9819 0.0298 0.9775 

 Ga 0.0203 0.9903 0.0248 0.9838 

 Ge 0.0393 0.9626 0.0395 0.9526 

 La 0.0373 0.9636 0.0411 0.9565 

 Mg 0.0194 0.9918 0.0215 0.9892 

 Mn 0.0276 0.9812 0.0289 0.9759 

 Mo 0.0208 0.9907 0.0255 0.9823 

 Na 0.3700 0.9655 0.0400 0.9560 

 Ni 0.0191 0.9939 0.0260 0.9814 

 Pb 0.0366 0.9727 0.0320 0.9717 

 Si 0.0225 0.9880 0.0301 0.9774 

 Ti 0.0288 0.9902 0.0297 0.9769 

 U 0.0249 0.9860 0.0286 0.9776 

 Y 0.0204 0.9914 0.0244 0.9850 

 Zn 0.0301 0.9797 0.0336 0.9670 

 Zr 0.0168 0.9942 0.0214 0.9889 

 

We quickly see that we have good results on all the elements and that this option of trying to simplify 

the output layer of the network was a worthwhile option. We have thus shown the feasibility of such 

an approach for the quantification of elements independently of the plasma temperature and its electron 

density. It is true that you may rightly ask why this option was not considered earlier in this work. This 

is because we were focused on providing a single network that would be easier to use for prediction 

purposes. The time spent optimizing these numerous networks was not wasted as it also allowed us to 

observe different behaviors of the neural networks when faced with LIBS data in different forms, 

which is equally valuable.       
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II.2. Applying our ANN approach for the exploration of a 

complex mineral sample 

 

II.2.1 Context and description of the considered mineral sample 

As explained in the previous section, it is not possible to correct for variations in plasma 

temperature and electron density for all the spectra in a LIBS imaging dataset, which today often 

consists of several million spectra. The generation of chemical maps is therefore based on the 

integration of characteristic emission lines of an element of interest, neglecting these variations so that 

we cannot know them on each pixel. This is not a fundamental problem if we are studying 

homogeneous materials, but spectroscopic imaging is primarily used to investigate local 

heterogeneities in a sample at the micron scale over large areas. The aim of this section is to show how 

we can use our previous networks trained on synthetic data to predict elemental contributions in a 

naturally heterogeneous matrix i.e. a mineral for which it is known that variations in plasma parameters 

are necessarily observed. Since the beginning of the thesis, a rock sample had been selected by our 

collaborators (Vincent Motto-Ros and Cécile Fabre) and we planned to analyze it with our approach 

at the end of the modelling phase. Our first aim was to demonstrate the feasibility of the concept and 

it would have been unreasonable to consider all the elements of the periodic table, hence the short list 

of 24 elements in line with the supposed presence of these elements in the selected rock. Fig. II-18 

provides an optical image of the considered sample. It is approximately 3.4 cm long by 2.8 cm wide 

and we can easily see the great heterogeneity of the mineral phases. This rock sample was previously 

embedded in resin and polished prior to LIBS analysis.  

 

Fig. II-18 The optical image of the mineral sample 
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It took only a few hours to acquire 2.38 million LIBS spectra over a spectral range from 280 to 369 

nm (and a total of 2048 wavelengths) with a spatial resolution of 20 microns. The cube of LIBS 

hyperspectral data that we manipulated had the size 1400 × 1700 × 2048.  

 In the classical implementation of a LIBS imaging experiment, we usually select a rectangular 

area around the sample, which is then systematically analyzed along lines during the spectroscopic 

measurement. Of course, the sample studied here is not rectangular and many of the spectra acquired 

correspond to the resin and not to the rock sample. It is therefore necessary to localize the spectra in 

the dataset which only contains information about the rock. This may seem trivial but it has been shown 

many times in spectroscopic imaging that this pixel selection is necessary at the risk of completely 

biasing the chemometric exploration. We therefore used a Matlab Toolbox (imageSegementer) to 

generate a so-called mask that allowed us to automatically define which spectra we should keep or 

which spectra of the resin we should remove from the hyperspectral dataset. This mask is shown inFig. 

II-19 , the yellow area representing all the pixels associated with the rock and therefore the spectra that 

we will consider for the rest of the calculations.            

 

 

Fig. II-19 Mask generated by the Matlab toolbox, imageSegementer 

Comparing this mask with the optical image, it can be seen that the left side of the sample will not be 

considered because the spectra are in poor quality.  

  

II.2.2 Applying our ANN models to the rock sample 

The objective was now to use the latest networks developed in section II-1.15 to generate elemental 

maps. The latter having been trained on normalized data we had of course to do so for these spectral 
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data. At first glance, it seemed obvious that all that remained was to use each normalized spectrum 

(included in the mask) as an input to one of the trained networks for a given element to generate the 

corresponding chemical map. This was a risky bet in the sense that even if our collaborators, experts 

in LIBS and geology, had proposed a very relevant list of elements, no one could ensure that this list 

was exhaustive and that the networks had been trained with all the elements likely to be encountered 

in the sample. In other words, a direct use of the network is not possible at this stage because nobody 

can say whether each spectrum of the mask contains only elements of this list. So, if we have for 

example a spectrum that contains an element that is not in the list, its spectrum will be slightly different 

from the spectra contained in our synthetic spectra database with the consequence of disturbing the 

prediction of the concentration of the other elements if we force ourselves to use it. We have to find a 

solution to this problem because we have no choice but to train our network on synthetic spectra with 

a limited list of elements. 

The trick comes from a basic principle in chemometrics. If you have developed a predictive model 

from a given calibration set of spectra, the future spectra used in the prediction step should be contained 

within the subspace defined by them. This is exactly the procedure used to detect outliers (i.e. spectra 

that must be discarded because they are not consistent with the training set). We are going to go even 

further, because a PCA will be used to filter the rock spectra so that they can be consistent with all the 

synthetic spectra contained in the training set of the ANNs. In a way, we will remove from the rock 

spectra all the elemental contributions that are not in the list of 24 elements.  

The procedure is therefore as follows: 

1) Development of a principal component analysis on the synthetic dataset, 

2) Selection of an optimum number of nopt components to best describe the subspace of this 

first dataset.  

3) Projection of the rock sample spectra onto the nopt principal components to obtain nopt scores 

for each. 

4) Reconstruction of each rock spectrum through a linear combination of its nopt scores and the 

nopt principal components to obtain filtered spectra. 

5) Use of the filtered spectra as input of the previously trained ANNs. 

An important point was to find the optimum number of principal components nopt. We therefore simply 

applied this filtering procedure to the entire rock dataset for increasing values of nopt up to 50. For each 

nopt value, we then compared the corrected spectra to the original rock spectra by simply calculating 

the difference, which we then squared and summed to obtain sum of squared differences (SSD). The 
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Fig. II-20 shows the evolution of the SSD value as a function of the number of principal components 

used during the filtering.  

 

Fig. II-20 Finding the optimal number of components in the filtering process. 

In view of this analysis, 24 principal components seemed to be sufficient to filter the spectra of the 

rock sample. These corrected spectra could now be used as input to our trained neural networks to 

predict the quantity of all the element of interest. Before generating elementary distribution maps, we 

thought it was important to take a closer look at the range of values predicted by the neural networks 

for each of the elements. The minimum and maximum predicted values obtained over the entire sample 

area for each of the elements are given in Table II-23 Table II-23. The percentage of predicted values 

in the interval from 0 to 1 is also given for each element. As a reminder, our neural networks have 

been trained to predict the relative quantities of one element with respect to another. This value must 

therefore naturally be between 0 and 1. We quickly notice that all these predictions are not perfect 

because negative values are present. We should not be too harsh either as the minimums in question 

are often very close to zero. Furthermore, we must not forget that there is an imprecision in our models, 

particularly for extremely low or even zero concentrations for a given pixel. This is certainly the case 

for elements such as Ag, Be, Cu, Ga, Mg, Mn, Zn and Zr for this specific sample. Fig. II-21 to Fig. 

II-27show a comparison of elemental maps obtained through neural networks and the maps of the same 

elements obtained with the classical method of integration using a specific emission line. It is true that 

we cannot normally make an absolute comparison of these pairs of maps because we have trained our 

networks to predict the percentages of an element. Ideally, we would have obtained other concentration 

maps of each element from a reference method from which we could have obtained relative reference 

maps. 
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Table II-23 Range of values predicted by neural networks for each element 

Element 
Min. 

predicted value 

Max. 

predicted value 

Percentage of  

predicted values 

 between values 0 

and 1 

Ag -0.0128 0.0160 11.95% 

Al -0.0384 0.3034 88.67% 

Be -0.0035 0.0040 40.53% 

Ca -0.0713 0.2594 46.90% 

Ce 0.1696 0.5080 100.00% 

Cr 0.0058 0.1090 100.00% 

Cu -0.0081 0.0194 52.11% 

Eu 0.0088 0.2154 100.00% 

Fe 0.0255 0.4856 100.00% 

Ga -0.0100 0.0258 69.48% 

Ge -0.0058 0.0582 99.95% 

La -0.0281 0.4056 99.98% 

Mg -0.0358 0.0228 70.90% 

Mn -0.0085 0.0531 54.66% 

Mo 0.0050 0.2302 100.00% 

Na -0.0143 0.0707 99.94% 

Ni -0.0320 0.1636 72.68% 

Pb 0.0675 0.2129 100.00% 

Si 0.0034 0.6663 100.00% 

Ti -0.0096 0.2143 96.73% 

U -0.0065 0.0698 99.81% 

Y -0.0014 0.1432 99.72% 

Zn -0.1682 0.0575 2.04% 

Zr -0.0277 0.1248 7.21% 

 

Having said that, we will still try to compare maps on these figures with some caution. In order not to 

be misled by the images, it is first important to understand how the color scale is generated. For 

example, for a given image, the dark red color corresponds to the highest value and the dark blue color 

the lowest. As an example, if we look at the Fe map generated from ANN results (Fig. II-22), we can 

see that there are many green areas which correspond to a predicted value of about 0.25 (i.e. 25%). If 

the maximum of the color scale is about 0.48, it means that there are pixels with this value effectively 
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present in the map but they are certainly few in number hence the feeling of not seeing any on this 

map. Even if nothing can prove our claims at this date, the areas where an element is potentially present 

seem to be more homogeneous when the ANN approach is used compared to the signal integration 

method as for example for the elements Al, Fe or Mg. Similarly, we obtain very different maps for the 

elements Ca, Ce, Cr, Cu, La, Y and Zr. So it seems that we see more with our ANN approach, but all 

this needs to be verified of course.           

 

 



90 

 

 

Fig. II-21 Comparison of elemental maps generated with ANN and the classical signal integration method (Si and Al) 
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Fig. II-22 Comparison of elemental maps generated with ANN and the classical signal integration method (Fe and Mg) 
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Fig. II-23 Comparison of elemental maps generated with ANN and the classical signal integration method (Na and Ti) 
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Fig. II-24 Comparison of elemental maps generated with ANN and the classical signal integration method (Ca and Ce) 
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Fig. II-25 Comparison of elemental maps generated with ANN and the classical signal integration method (Cr and Cu) 
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Fig. II-26 Comparison of elemental maps generated with ANN and the classical signal integration method (La and Y) 
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Fig. II-27 Comparison of elemental maps generated with ANN and the classical signal integration method (Zr) 
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II.3. Conclusion and perspectives 

The objective of this research was to study the feasibility of a robust quantitative LIBS imaging 

analysis in the face of variations in plasma temperature and electron density. Indeed, the natural 

heterogeneity of a sample means that these two parameters are undeniably not constant over its entire 

surface, with repercussions on the intensities of the emission lines of its constitutive elements. In the 

context of imaging, we produce astronomical quantities of spectra today and it is impossible for many 

reasons to know these parameters for each pixel. The correction of the intensities of the acquired 

spectra on the basis of these parameters is therefore not possible. The originality of the work in this 

thesis was to propose the construction of a quantitative predictive model based on spectra with 

controlled and known variations of the plasma electron density and temperature. It is obvious that in 

these conditions we would have to use simulated spectra to build this model. It is true that this was a 

very risky gamble as it is not an ideal situation from a chemometric point of view, but we did not really 

have any alternatives. Based on the hypothesis of strong non-linearity between the spectra and the 

concentrations to be predicted, we decided to use neural networks which are known for their good 

ability to model under these difficult conditions. We also made this choice because we knew that we 

would not have any problem concerning the number of spectra available to build our model since they 

were simulated. To be honest, we did not expect to spend so much time on neural network optimization 

at the beginning of the thesis. The complexity of the data structure required a lot of optimizations 

concerning the architecture of the network, its training and the preprocessing of the spectral data as we 

have seen. The use of the final networks trained on synthetic data even had to be redesigned to be 

usable on our real data as we saw in the previous section. In view of these results, we can say that we 

have demonstrated a certain potential for this analysis concept but there are undeniably things to be 

done before it becomes a real tool for quantitative characterization in LIBS imaging. It is in this sense 

that we now present some perspectives of this work in order to converge towards this goal. To begin 

with, the simulated spectra should eventually take into account the phenomenon of self-absorption 

which is very often observed in LIBS spectra. It will also be necessary to see the influence of 

wavelength shifts and why not make the model robust to this perturbation. We will also have to work 

on the establishment of a criterion which authorizes us or not to use a neural network on a given real 

spectrum. Indeed, it is obvious that spectra with a low overall intensity (and therefore relatively high 

noise) are problematic. We also observed in this work that it was very inconvenient not to have a 

chemical map of the proportions of the elements from a reference method for a final validation of the 

concept. We still have to find one, although we know that this will be very complicated. Finally, we 

have seen that the networks used in this thesis have classical architectures that we have known in 



98 

 

chemometrics for decades. For the record, these same neural are now called shallow neural networks. 

They are so called to differentiate them from deep neural networks which have been developed recently, 

which demonstrate formidable predictive capacity under very specific conditions. These neural 

networks are deep because they have a very large number of hidden layers with particular architectures 

accompanied by learning functions adapted to these new characteristics. It would therefore be 

interesting to see if we could use such a network to simultaneously predict all the concentrations of 

the elements of interest from the LIBS spectrum.                                              
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Chapter III 

___________________________ 

Finding exotic pixels in big LIBS 

imaging datasets 
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III. FINDING EXOTIC PIXELS IN BIG LIBS IMAGING 

DATASETS 

III.1.  Introduction 

Laser-induced breakdown spectroscopy (LIBS) imaging is actually becoming an essential tool 

to characterize complex samples in many scientific domains [196–200]. As we have seen in previous 

sections, in this spectroscopic technique, a pulse laser beam focused on the sample surface generates 

a plasma from a small amount of vaporized material. Due to the electronic relaxation of excited atoms 

and ions, an emission spectrum characteristic of the elemental composition of the sample can be 

acquired using an optical spectrometer. In LIBS imaging experiments, the sample surface is explored 

in a raster scanning mode (i.e. acquisition of one spectrum for each spatial position of a predefined 

grid) covering the region of interest. An elemental image can then be generated from the acquired 

dataset using a simple signal integration of a given emission line. The richness of this imaging 

approach lies in its many advantages that cannot be observed simultaneously in any other spectroscopic 

technique. Indeed, LIBS imaging has multi-elemental capabilities, a high acquisition rate (≥100 

spectra/s), full compatibility with optical microscopy and ease of use on samples without almost any 

size restriction (up to several tens of cm²), all under atmospheric conditions. On top of that, this 

technique has a high field of view and a spatial resolution around 10 μm coupled with a limit of 

detection in the order of weight ppm. It is thus very convenient to explore a sample at the micronic 

scale by acquiring several million spectra in just hours. It is also very interesting to look at the evolution 

of LIBS imaging over time, which is well illustrated in Fig. III-1. We observe here a real explosion of 

the number of pixels on a very limited time scale, roughly by a factor of 10 every 2 years since the 

2010s. More precisely, this figure presents the work of Motto-Ros et al. on the detection of 

nanoparticles in the kidney [201]. This evolution is of course explained by regular instrumental 

developments allowing the acquisition of more and more spectra in a limited time but without 

compromising their quality. In a way we can say that everything is going well with regard to the 

acquisition of spectral data in LIBS imaging. Concerning data analysis in LIBS, we see today big 

differences between the two frameworks of bulk analysis and imaging. Indeed, researchers have 

quickly learned that multivariate data analysis could bring valuable tools for qualitative and 

quantitative explorations of samples at the bulk level, for instance by developing regression or 

classification models as we have seen in chapter one.  
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Fig. III-1 The evolution of LIBS imaging 

 

At the imaging level, there is a relatively limited number of papers dealing with the use of 

multivariate data analysis in the LIBS community. Indeed, elemental images are, in general, generated 

from single emission wavelengths, even though the whole spectral domain could be used. The 

application of chemometric approaches to imaging datasets is in fact more complex, both from a 

conceptual and practical point of view. Although a large part of the LIBS community is increasingly 

sensitive to the use of chemometric tools, understanding the concept of hyperspectral imaging, finding 

appropriate tools for data exploration, and finally interpreting their outputs represent a big task for 

many non-expert researchers. In addition, it is clear that managing millions of spectra increases the 

difficulty of this task even if they know the great potential of chemometrics. This is not just about the 

availability of computational resources, but also, the development of new data exploration tools able 

to manage such big data structures. Beyond this opinion, which may seem a bit negative, we must 

consider that there is an evolution of chemometrics within the LIBS community with a real increase 

of competences, even if the number of publications on the subject is still limited. From this first 

observation, we could say that everything is going well in the field of LIBS imaging and there are no 

real obstacles to overcome. So what is the problem? The problem lies in the fact that we want to know 

everything about the sample we are analyzing, which is quite commendable for a scientist. More 

precisely, we want to extract information on both major and minor compounds and even traces. 

However, minor compounds and traces are often present on a small number of pixels representing a 

very small variance in the spectral dataset. Unfortunately, the majority of chemometric algorithms 

exploiting the concept of expressed variance do not (or hardly) allow the detection of these compounds, 

especially when the signal-to-noise ratio is limited. It is therefore the purpose of this chapter to 
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introduce the IFF algorithm (Interesting features finder) that we have developed in this thesis, the 

objective of which is to give all compounds a chance to be detected regardless of their concentration 

[202].  
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Supplementary Material 

The Matlab code of the IFF algorithm 

function [ind,freq] = iff(sp, num_randvect) 
  
% Aim of the function: selection of the purest spectra in a dataset  
% 
% INPUTS 
%   sp : the dataset you want to explore with spectra alongs the rows 
%   num_randvect : number of randow vectors to be generated (should be higher 
%   than 10000) 
% OUTPUTS 
%   ind: indexes of selected spectra (sorted by decreasing order of selection 
frequency 
%   freq : selection frequency of each spectrum in ind 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% If you use this code in your research, please cite the reference:        %% 
%% Qicheng Wu, César Marina-Montes, Jorge O. Cáceres, Jesús Anzano,         %% 
%% Vincent Motto-Ros, Ludovic Duponchel, Interesting Features Finder (IFF): %% 
%% another way to explore spectroscopic imaging datasets giving minor      %% 
%% compounds and traces a chance to express themselves, Spectrochimica      %% 
%% Acta B (2022).                                                           %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[li,co] = size(sp); 
  
% Mean centering of the dataset 
m = mean(sp); 
sp_cent = sp - repmat(m,li,1); 
  
% Generation of 'num_randvect' random vectors 
randvect = 2*rand(num_randvect,co)-1; 
  
% Initialization of the selection frequency list 
votes = zeros(li, 1); 
  
% Projection of all the data onto a random vector in the loop 
h = waitbar(0,'Selection in progress...'); 
for k=1:num_randvect 
    %disp(k) 
     tmp = randvect(k,:)*sp_cent'; 
    [val, ind] = max(tmp); 
    votes(ind,1) = votes(ind,1) + 1; 
    [val, ind] = min(tmp); 
    votes(ind,1) = votes(ind,1) + 1; 
    waitbar(k / num_randvect) 
end; 
close(h); 
  
%Sorting spectra in a decreasing order of frequency selection 
[freq, ind] = sort(votes, 'descend'); 
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Figure 1S: the seven pure spectra used in the simulated dataset. 

 

Figure 2S: an example of a spectrum of a mixture extracted from the dataset containing 

approximately the same concentration for the 7 elements as a function of the applied noise 

level. 
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Figure 3S: representation of the pixels selected by ESP vs the rest of the dataset in a PCA space considering a 4% noise level. 
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Figure 4S: representation of the pixels selected by IFF vs the rest of the dataset in a PCA space considering a 4% noise level. 
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Figure 5S: representation of the pixels selected by ESP vs the rest of the dataset in a PCA space considering a 8% noise level. 
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Figure 6S: representation of the pixels selected by IFF vs the rest of the dataset in a PCA space considering a 8% noise level. 



118 

 

 

Figure 7S: Scree plot of eigenvalues. 

 

Figure 8S: Localization of selected pixels. 
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Figure 9S: the correlation matrix of the 45 selected spectra from IFF. 

 

 

 

 

 

 

 

 

 

 

Table 1S: The list of the 45 selected pixels obtained from the IFF algorithm and their selection frequencies.  



120 

 

Spectrum index in 

the dataset 

Selection 

frequency ( / 

10000 ) 

Spectrum index in 

the dataset 

Selection 

frequency ( / 

10000 ) 

Spectrum index in 

the dataset 

Selection 

frequency ( / 

10000 ) 

      

33905 2530 26157 288 1791 114 

14706 1627 16372 255 33453 108 

20901 1495 1508 180 11569 107 

17777 1433 4840 179 29969 107 

19399 1163 6666 173 32845 87 

29304 1123 10452 170 29305 86 

 

43407 1047 19526 160 30521 86 

35605 965 528 159 21293 84 

23688 695 32063 146 35260 83 

19634 576 26777 138 43775 80 

30066 505 7522 137 8291 75 

45377 381 35589 117 17671 68 

23749 369 8797 116 26290 67 

40696 369 41045 115 36569 64 

5771 366 476 114 39758 54 
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III.3. Conclusion and perspectives 

 With this chapter, we have demonstrated that the IFF approach allow us to select a short 

list of interesting pixels (potentially the purest ones) contained in LIBS imaging datasets 

whatever their explained variance. We thus answer the question posed since we have 

potentially access to the major and minor constituents and the traces. From an operational point 

of view, the calculations are done in a very reasonable time (a few minutes for the particle 

dataset) which is interesting but the calculation is also quite simple. The questions that arise 

now are how we might value the results of such an approach but also what the prospects might 

be. There are actually two ways of looking at this. First, if a researcher with little or no 

experience of chemometrics wishes to exploit the concept, he or she could systematically apply 

the IFF approach and then look at the spectra that have been selected. Being a specialist in 

LIBS spectroscopy, he/she will then be able to detect elements that are not expected and 

perhaps not visible on the mean spectrum of the considered dataset. It would then be possible 

to select a wavelength of the unsuspected element from which, by integrating the signal, a 

chemical map could be generated. Second, researchers with chemometrics skills could use this 

list of selected pixels in different ways but these remain proposals that need to be validated. 

This list of pixels should first help to evaluate the rank of the data matrices, i.e. the potential 

number of pure species present in the system. In the context of signal unmixing (such as MCR-

ALS), it could also allow to generate better initial estimates of pure spectral profiles. This 

selection of pixels could also be seen as a compressed version of the original dataset. As a 

consequence, this would allow to use algorithms that are difficult to apply to datasets of several 

hundred thousand or even millions of spectra as other researchers in our team have already 

done in recent work [203].  
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GENERAL CONCLUSION 

Since its birth, LIBS spectroscopy has come a long way. It is now used as a tool for 

characterizing complex materials in many industrial fields but also in all scientific fields. It is 

obvious that the Mars exploration has shed light on this technique, which was not known by 

all despite its formidable characteristics. Since the 2000s, LIBS imaging has also made a 

gigantic leap forward as we are now able to generate hyperspectral data cubes of several million 

spectra acquired in a few hours for a given sample at the micron scale spatial resolution. Over 

the past decade, LIBS imaging specialists have become aware that chemometrics tools can 

allow them to explore and exploit their data in different ways than traditional data analysis used 

on LIBS spectra. The LIBS imaging chemometrics publications now show that we can get a 

more comprehensive and less biased view of our complex samples. Nevertheless, LIBS 

imaging has specific characteristics that classical techniques such as vibrational spectroscopy 

do not have, the phenomenon of photon-matter interaction being from our point of view much 

more complex. It was clear that some classical chemometrics methods were not fully adapted 

to these characteristics and it was therefore the objective of this thesis to propose new 

chemometrics processing methodologies to overcome these obstacles. We therefore addressed 

two issues of interest to the LIBS community, namely proposing a method capable of making 

quantitative estimates of elements from the spectra independent of the temperature and electron 

density of the plasma but also proposing a new data processing strategy giving us a better 

chance of detecting minor elements and traces in complex samples. In order to answer the first 

problem, we implemented neural networks trained on simulated LIBS spectral data. This was 

a very long optimization phase with many pitfalls but we were able to answer the different 

problems posed throughout this thesis. Of course, this research does not stop here as the 

proposed neural networks are not yet optimal and their application to real LIBS imaging data 

needs to be studied further as new constraints have been raised. The second part of this thesis 

focused on the fact that current chemometric methods are poorly adapted to the detection of 

minor elements and traces in the LIBS spectra of complex samples. It is important to note that 

this is one of the strong points of LIBS spectroscopy, which has a very high dynamic range and 

therefore allows elemental contributions from % to ppm to appear in these spectra. We 

therefore understand that information on low concentration compounds is present in LIBS 

spectra but that we do not really have the tools to highlight them in a multivariate analysis 

approach. We have therefore implemented a strategy based on the mathematical concept of 
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convex hull of the spectral dataset to overcome this problem. This research was also a success 

as it allowed us to demonstrate that we could detect spectra of some minor particles in an 

Antarctic sample that had not been detected with conventional chemometrics tools. In 

conclusion, both aspects of this thesis are undoubtedly hot topics in LIBS imaging. We are 

therefore convinced that this work will very soon be the beginning of many research projects 

focused on the improvement of these two concepts or even on their use in more global 

chemometrics methodologies.  
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