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CHAPTER

Particles in turbulence

The concrete highway was edged with a mat of tangled, broken, dry grass, and the grass heads were heavy with oat beards to catch on a dog's coat, and foxtails to tangle in a horse's fetlocks, and clover burrs to fasten in sheep's wool; sleeping life waiting to be spread and dispersed, every seed armed with an appliance of dispersal, twisting darts and parachutes for the wind, little spears and balls of tiny thorns, and all waiting for animals and for the wind, for a man's trouser cuff or the hem of a woman's skirt, all passive but armed with appliances of activity, still, but each possessed of the anlage of movement.

John Steinbeck, The Grapes of Wrath (1939)1 

What is turbulence?

To answer it, the following question has first to be addressed: what does a turbulent flow look like? To give in the same time a motivation to study turbulence, we reproduce the beginning of the introduction of the book by [START_REF] Tennekes | A First Course in Turbulence[END_REF] 2 :

Most flows occurring in nature and in engineering applications are turbulent. The boundary layer in the earth's atmosphere is turbulent (except possibly in very stable conditions); jet streams in the upper troposphere are turbulent; cumulus clouds are in turbulent motion. The water currents below the surface of the oceans are turbulent; the Gulf Stream is a turbulent wall-jet kind of flow. The photosphere of the sun and the photospheres of similar stars are in turbulent motion; interstellar gas clouds (gaseous nebulae) are turbulent; the wake of the earth in the solar wind is presumably a turbulent wake. Boundary layers growing on aircraft wings are turbulent. Most combustion processes involve turbulence and often even depend on it; the flow of natural gas and oil in pipelines is turbulent. Chemical engineers use turbulence to mix and homogenize fluid mixtures and to accelerate chemical reaction rates in liquids or gases. The flow of water in rivers and canals is turbulent; the wakes of ships, cars, submarines, and aircraft are in turbulent motion. The study of turbulence clearly is an interdisciplinary activity, which has a very wide range of applications. [...] Many turbulent flows can be observed easily; watching cumulus clouds or the plume of a smokestack is not time wasted for a student of turbulence.

By observing turbulent flows as represented in figure 1.1, we can identify typical structures of turbulence: eddies of various sizes constantly sheared. A turbulent flow appears to be highly irregular and rough with strong vorticity fluctuations. Historically, beyond the visual description, the first experiments to characterise turbulence were based on velocity measurements at a given position in a flow, with well time-resolved anemometers such as hot-wires [START_REF] Comte-Bellot | Hot-wire anemometry[END_REF]. Such experiments give one-dimensional temporal signals (see figure 1.2) which look, as the turbulent flows themselves, random and multi-scale: fluctuations of various amplitudes at various scales. The challenge of turbulence scientists is to be able to describe this randomness, which is not a simple Gaussian random process, but presents specific statistical properties through space and time. [START_REF] Frisch | Turbulence: The Legacy of A.N. Kolmogorov[END_REF]).

Navier-Stokes equation: the north face

For two centuries, the dynamics of Newtonian fluids is well described by the Navier-Stokes (NS) equation ∂u ∂t

+ (u • ∇)u = - ∇p ρ + ν∇ 2 u + f V , ( 1.1) 
with u(x, t) the velocity field, p(x, t) the pressure field, ρ the fluid density, ν the fluid kinematic viscosity and f V the volume forces (for example gravity). This equation constitutes a closed system associated with the continuity equation for an incompressible flow

∇ • u = 0, (1.2) 
and also with specified initial and boundary conditions. The physics of turbulence is a priori fully contained in these two equations, but no general solution can be extracted for the turbulent case. The non-linear (linked to the advective term (u • ∇)u) and non-local (linked to the pressure term -∇p/ρ) nature of the partial differential equation (1.1) is a major problem to determine a solution, and the various approaches to solve it always require additional modelling.

Even if a general solution to these equations has not been found, this is possible to extract several useful relations such as energy budget. We do not want to introduce here these results based on a direct treatment of the NS equation, which are tractable with difficulty. We can focus on a simpler dimensionless quantity: the Reynolds number Re, defined as the ratio between the advective and diffusive terms .3) with U and L characteristic velocity and length scale of the flow. Higher the Reynolds number is, higher the flow is turbulent. This is also possible to compare flows of various fluids, velocities and sizes, with their Reynolds number.

Re = O(|(u • ∇)u|) O(|ν∇ 2 u|) = U L ν , ( 1 
Besides the direct mathematical confrontation, an alternative method is based on simulations. The NS equation can be solved numerically with direct numerical simulations (DNS), but these simulations are limited in Reynolds number and in size and geometry of the flow. These simulations are also numerically expensive, and less expensive methods have been developed such as large eddy simulations (LES) or Reynolds-averaged Navier-Stokes (RANS), but they require additional modelling. We dot not aim in this manuscript to confront with complex mathematics or numerical simulations. A last approach seeks to define a phenomenology of turbulence. As we stated, turbulence is a random process, thus a statistical description is adapted. And a relevant quantity to study turbulence is energy, as we are going to explain. Without the NS equation, the Reynolds number (1.3) can actually be introduced as the ratio between injected and dissipated energy.

Energy cascade and Kolmogorov phenomenology

To overcome the Navier-Stokes impasse, alternatives phenomenology have been proposed. Following the works of Richardson [START_REF] Richarson | Weather Prediction by Numerical Process[END_REF], the physical picture of energy cascade emerged (see the schematic in figure 1.3). Energy is injected at a large scale L E (Eulerian integral scale) and cannot be dissipated at this scale through molecular viscosity, which efficiently dissipates energy but only at small scales. Thus large eddies break into smaller and smaller eddies to reach the dissipative scale ℓ K (Kolmogorov scale), where energy can be dissipated through viscosity. In this respect, turbulent appears to be an energy instability with a continuous energy flux from large scales to small scales.

The first quantitative description of this cascade was proposed by Kolmogorov in 1941(Kolmogorov 1941b,c,a, 1942) 3 , and is known as K41. In this phenomenology, the first hypothesis of similarity states that, below the dissipative ℓ K , the statistical properties of the flow only depend on the kinematic viscosity ν and the mean energy dissipation rate ε. The second hypothesis of similarity states that, for scales between ℓ K and L E , referred as inertial scales and corresponding to the cascade, the statistical properties of the flow depend solely on ε. From these two hypotheses, it is possible to describe statistical properties of turbulence, in particular through dimensional analysis. We have in particular the Kolmogorov or dissipative length scale

ℓ K = ν 3 ε 1/4
, (1.4) with ε the mean energy dissipation rate in m 2 /s 3 . We also have the associated Kolmogorov or dissipative time scale .5) At this point, we can introduce some statistical properties we will study in this manuscript and characterise with K41 phenomenology. The structure functions are in particular commonly used. Let us consider a velocity field u(x, t). We can define the longitudinal velocity structure functions of order n as

τ K = ν ε 1/2 . ( 1 
S E n-∥ (x, ∆x) = ⟨[δu ∥ (x, ∆x)] n ⟩ = ⟨[u ∥ (x + ∆x) -u ∥ (x)] n ⟩, (1.6) 
where δu ∥ is computed over two points, one at x, the other at x + ∆x, with u ∥ defined as the single longitudinal component of velocity along ∆x. The spatial average ⟨•⟩ is taken over the velocity increments. The exponent E refers to Eulerian which is defined in the following. Based on K41 phenomenology, more specifically on the first hypothesis of similarity, these structure functions behave in the inertial regime, i.e. between ℓ K and L E , as

S E n-∥ (∆x) = C n (ε∆x) n/3 , ( 1.7) 
with ∆x = |∆x| and C n universal constants. K41 phenomenology also requires to have stationary homogeneous isotropic turbulence, that we call for simplicity homogeneous isotropic turbulence (HIT). That's why the structure functions only depend on the norm ∆x. The universal constants C n are determined from experiments and DNS, for example C 2 ≃ 2.1. We also have C 3 = -4/5, which is the only constant analytically determined from the NS equation (Kolmogorov 1941a).

The second-order structure function S E 2-∥ is directly connected to the Eulerian autocorrelation function R E uu-∥ (∆x) = ⟨u ∥ (x + ∆x)u ∥ (x)⟩ in HIT through the relation S E n-∥ (∆x) = 2(σ 2 u -R E uu-∥ (∆x)), with σ 2 u = R E uu-∥ (∆x = 0) the velocity variance. This alternative representation is of particle interest. Actually the Eulerian integral length scale, the length at which energy is injected, is defined as .8) Based on these different quantities, we can also characterise the 'length' of the energy cascade directly related to the Reynolds number with Re ∝ (L E /ℓ K ) 4/3 . To characterise turbulent flows, an alternative Reynolds number is usual: the Taylor-based Reynolds number Re λ based on the Taylor microscale λ, an intermediate scale between L E and ℓ K . We do not give here more details about this point which will be developed in chapter 3. We can simply note that Re λ ∝ Re 1/2 . K41 phenomenology is widely used to characterise turbulence. However, this phenomenology has known limits, especially related to intermittency, and a refined theory known as K62 has been proposed [START_REF] Kolmogorov | A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[END_REF]). To explain it briefly, this refined theory takes into account the fluctuations of the energy dissipation rate ε across scales. This refinement is required to explain the systematic exponents smaller than n/3 for n > 3 in equation (1.7) from experiments and DNS. In this manuscript, we will focus on structure functions for n ≤ 3, thus this phenomenology is beyond the scope of this manuscript.

L E = 1 σ 2 u ∞ 0 R E uu-∥ (r) dr. ( 1 
A strong restriction to the phenomenology developed by Richardson and Kolmogorov in general is the restricted framework of HIT, a really restrictive type of flow which does not really exist: all the flows listed in Tennekes and Lummey's extract are neither homogeneous nor isotropic. Thus, it is a strong restriction for application to real flows, but also an experimental challenge to build set-ups able to generate such turbulent flows. In particular, confined geometries limit homogeneous isotropic turbulence to restricted regions of the flow. Nevertheless, this phenomenology has been successfully applied to flows beyond this strong assumption, for example in wind tunnels (HIT 'per slice') [START_REF] Bourgoin | Investigation of the smallscale statistics of turbulence in the Modane S1MA wind tunnel[END_REF] or in Rayleigh-Bénard convection (HIT in the bulk) [START_REF] Dumont | Étude des échanges énergétiques en convection thermique turbulente[END_REF]). It appears that HIT phenomenology can be used if local homogeneity and isotropy is reached despite a global inhomogeneous and anisotropic flow. However, these concepts of local homogeneity and isotropy are still unclear, and, in some situations, HIT phenomenology seems to be valid with weaker assumptions, or, to say it with other words, a range of flows could be considered as HIT with appropriate transformations.

Eulerian vs. Lagrangian

Without writing it explicitly, the elements we presented rely on an Eulerian description of the flow: we describe the fluid dynamics with the velocity field u(x, t), giving the velocity at every position at every time. With this description, Kolmogorov phenomenology gives spatial information, i.e. spatial correlations of the flow averaged through time.

The Eulerian description, where space is the natural variable, is the best approach for many problems in fluid mechanics and is logically the approach to consider to obtain information about a flow field. However, this description is less adapted for other problems such as the transport of objects in turbulence. To study the dynamics of an object moving in a turbulent flow, the alternative Lagrangian description is more adapted: the fluid is described as an ensemble of fluid particle trajectories with u(X(t), t) the velocity at the particle position X(t). In a Lagrangian description, the natural variable is time which is more adapted to describe the time dynamics of an object moving in an Eulerian field.

Lagrangian turbulence

By switching to a Lagrangian description of turbulence, we are interested in the issue of particle dispersion in turbulence. The word particles is a generic term which encompasses all kinds of objects: by looking at flows in figure 1.1, it can be phytoplankton, dye, smoke and other pollutants, or even seeds as poetically evoked by Steinbeck in the epigraph. Such complex objects present non-trivial dynamics by their specific coupling with the turbulent environment depending on their size, shape, density with respect to the carrier fluid, volume fraction, etc. This dynamics can be characterised by specific effects studied in laboratory such as inertial effects (settling or rising, aggregation), finite size effects (turbulence filtering), coupling between the phases (suspensions) or fluid-structure interactions.

In this work, we consider the specific case of tracers, i.e. particles which passively follow the flow, a situation we call for simplicity Lagrangian turbulence. To identify particles as tracers, they have to present the dynamics of a fluid particle. For particles with the same density than the density of fluid, the kind of particles studied in this manuscript, they can be considered as tracers if they are small enough, typically smaller than the Kolmogorov scale ℓ K 4 . We will see than even a diameter of some ℓ K can be satisfying. We also consider spherical particles, to avoid any geometrical effect, with a low volume fraction to have no interactions between the particles. Thus, we are considering particle dispersion only generated and driven by turbulence, the anlage of movement that even a point-like particle would have dived in a turbulent flow.

An efficient mechanism to mix and disperse

An additional point to define turbulence we do not cited yet is that turbulence is a highly dispersive process. Turbulence is able to rapidly diffuse momentum, heat and mass [START_REF] Tennekes | A First Course in Turbulence[END_REF], leading to very efficient mixing and dispersion. At large time, turbulence is diffusive and thus its efficiency can be estimated by comparing for example the turbulent diffusivity to the molecular diffusivity for heat. For water at ambient temperature, the thermal diffusivity is κ = 1 × 10 -7 m 2 /s. If we consider a turbulent flow in water with a typical velocity fluctuation σ u = 1×10 -2 m/s and a forcing scale L f = 1×10 -2 m, we can estimate the turbulent diffusivity K T such as K T ≃ σ u L f = 1 × 10 -4 m 2 /s, a much higher value than the molecular diffusivity κ.

To be complete, the fact that at large time turbulence is diffusive can be understood from the Taylor theorem (Taylor 1922). This theorem connects the mean square displacement σ 2 (τ ) of spreading particles in stationary HIT to the Lagrangian velocity autocorrelation function R L uu (τ ) = ⟨u(t + τ )u(t)⟩, where the time average ⟨•⟩ is taken over an ensemble of particle trajectories. The velocity u is not a field as in the Eulerian description but corresponds to the velocity along each individual trajectory. The Taylor theorem can be expressed as d 2 σ 2 dτ 2 (τ ) = 2R L uu (τ ).

(1.9)

For large time scales, R L uu (τ ) tends to zero and thus σ grows linearly with time with a turbulent diffusivity K T = σ 2 u T L . We introduce here the Lagrangian integral time scale T L , the Lagrangian equivalent of the Eulerian length scale L E , which is defined as

T L = 1 σ 2 u ∞ 0
R L uu (τ ) dτ. (1.10) This theorem shows the strong connection between the spreading of particles, characterised by the mean square displacement σ 2 (τ ), and the Lagrangian statistics with the Lagrangian autocorrelation function R L uu (τ ). As for the Eulerian description, we also have the relation 2 ⟩ the Lagrangian second-order structure function. In the inertial range, we also have a similar relation to equation (1.7) [START_REF] Yeung | Lagrangian investigations of turbulence[END_REF][START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF] S L 2 (τ ) = C 0 ετ, (1.11) with C 0 an universal constant increasing with the Reynolds number. From DNS results [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Yeung | Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence[END_REF][START_REF] Biferale | Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation[END_REF][START_REF] Sawford | Kolmogorov similarity scaling for one-particle Lagrangian statistics[END_REF], C 0 tends to 7. In this Lagrangian approach, the inertial scale is between the Lagrangian integral time scale T L and a small Lagrangian time related to the dissipative scales. The Kolmogorov scale τ K is usual for this small time scale, but this is more an Eulerian time scale. We will see in chapter 3 which time scale is more adapted.

S L 2 (τ ) = 2(σ 2 u -R L uu (τ )) with S L 2 (τ ) = ⟨[u(t + τ ) -u(t)]
We have discussed, in particular through the Taylor theorem, the dispersion of single particles. However, the particles are spreading through correlated turbulent structures and thus their trajectories are correlated. To say it differently, the Lagrangian trajectories are spreading through an Eulerian flow field with specific correlations. The study of the multi-particle dispersion is a more complex question which will be presented in chapter 3 with two-particle or pair dispersion. Beyond pair dispersion, multi-particle dispersion can be characterised with Lagrangian triads or tetrads [START_REF] Pumir | Insight on turbulent flows from Lagrangian tetrads[END_REF][START_REF] Polanco | Multiparticle Lagrangian statistics in homogeneous rotating turbulence[END_REF], but these points are beyond the scope of this manuscript.

Measurement of Lagrangian statistics

The works of Taylor, Richardson and Kolmogorov, which are over 80 years old, can only be studied experimentally much more recently. The first modern Lagrangian experiments in turbulent flows are carried out in the nineties with the development of high-speed cameras. Starting with a few particles and limited Reynolds numbers [START_REF] Sato | Lagrangian measurement of fluid-particle motion in an isotropic turbulent field[END_REF], Maas et al. 1993[START_REF] Malik | Particle tracking velocimetry in three-dimensional flows. Part 2[END_REF][START_REF] Virant | 3D PTV and its application on Lagrangian motion[END_REF][START_REF] Voth | Measurement of particle accelerations in fully developed turbulence[END_REF], the methods have been improved to follow a few hundred or thousand particles in turbulent flows. Today, the state-of-the-art methods are able to track tens of thousands particles [START_REF] Schröder | 3D Lagrangian particle tracking in fluid mechanics[END_REF].

The goal of these Lagrangian experiments is to confront the results with the Kolmogorov phenomenology and Taylor theory, thus they naturally focus on HIT. Several experiments have been performed in von Kármán flow (two counter-rotating disks), which was considered as a good approximation of HIT, but in reality it was not (stagnation points, instability) [START_REF] Huck | Production and dissipation of turbulent fluctuations close to a stagnation point[END_REF], with in particular a strong anisotropy on Lagrangian statistics (Ouellette et al. 2006c, Huck et al. 2017). That's why we propose in chapter 3 Lagrangian results on a real homogeneous and isotropic turbulent flow with a new experimental data set. This work focuses on the determination of the universal constants such as C 0 in equation (1.11) and the different times scales involved in the dynamics with their connection with Eulerian quantities. These results can be compared with DNS which are able to simulate Lagrangian trajectories in HIT.

Lagrangian turbulence in inhomogeneous flows

As we explained, the Kolmogorov phenomenology (main framework to work on turbulence) is restricted to stationary HIT but seems to work in various kinds of inhomogeneous flows. In a Lagrangian perspective, the situation is more complex because a stationary flow in an Eulerian description is not necessarily stationary with a Lagrangian point of view: a particle moving in an inhomogeneous velocity field actually exhibits non-stationary dynamics. This coupling between space and time is in particular visible in the definition of the material derivative Du Dt = ∂u ∂t + (u • ∇)u, (1.12) used in the Lagrangian description.

Even without invoking the Kolmogorov theory, the Taylor theorem introduced in equation (1.9) is valid for a stationary signal, and thus is restricted to particles spreading in HIT. Such approach cannot be directly extended to instationary Lagrangian turbulence. That's why we propose in chapter 4 the Lagrangian study of a turbulent jet, a canonical flow with strong inhomogeneity and anisotropy. Based on this flow, we will see which approach can be developed to give a Lagrangian description of the flow despite its inhomogeneity.

Importance of seeding

The Lagrangian description of a fluid as an ensemble of fluids particles corresponds to a homogeneously seeded situation, the particles are the fluid itself. However, if we consider the dispersion of material particles, their seeding or their concentration can be inhomogeneous. Even if individual particles are tracers from a dynamical point of view, their collective dynamics is not necessarily representative of the carrier flow if the concentration is not homogeneous, in particular to compute Eulerian statistics. From a metrological point of view, it is considered as a bias. Regarding real flows in nature or industry, an inhomogeneous seeding is a common situation. In the jet and the plumes showed in figures 1.1(c) and (d), we observe for example a specific local seeding of dye or particles, leading to a highly inhomogeneous concentration with 1.3. Contributions of this manuscript particles in the core of the turbulent jet and not outside. In such situations, the seeding has to be taken into account to link the spreading of the tracers with the properties of the flow. This question will be deeply developed in chapter 4 in the case of a turbulent jet with a local nozzle seeding. In particular, we will see how the Eulerian quantities and fields obtained from inhomogeneously seeded tracers can diverge from the homogeneous situation, and which additional information about the physics of turbulence can be obtained.

Contributions of this manuscript

We have introduced several classical concepts and ideas for the statistical description of turbulence and highlighted some current challenging questions. We do not intend here to answer these broad questions in their entirety, a work far beyond a single PhD. In particular the diversity of turbulent flows requires a multitude of works for comparison. We focus here on two specific turbulent flows: a homogeneous isotropic turbulent flow and a turbulent free round jet. To the knowledge of the author, no important Lagrangian study exist for these two canonical flows. From this observation and based on experimental Lagrangian data, we perform different studies and modelling developed in a Lagrangian framework to address the previously mentioned questions.

Chapter 2: Experimental methods

As just explained, we have studied a homogeneous isotropic turbulent flow and a turbulent free round jet. In this chapter, we fully describe the experimental hydraulic set-up to generate them and also the optical set-up to track the seeded tracers. Particle tracking velocimetry algorithms used to reconstruct three-dimensional particle trajectories are discussed. Some postprocessing methods and also a complete description of the generated Lagrangian data sets are finally proposed.

Chapter 3: Homogeneous isotropic turbulence

Based on experimental trajectories of tracers in homogeneous isotropic turbulence, we propose two different studies. The first one is dedicated to two-time statistics along trajectories with precise measurements of time dynamics of velocity and acceleration. The goal is to propose a full experimental reference characterisation of the Lagrangian description of HIT, which is still lacking in the existing literature (reference available for the moment is based on von Kármán flows). The second study focuses on pair dispersion, i.e. two-point/two-time statistics, with a modelling of this phenomenon based on ballistic cascade phenomenology to bring connections between Eulerian and Lagrangian dynamics.

Chapter 4: Turbulent free round jet

Based on experimental trajectories of tracers in a turbulent free round jet, we also propose two different studies. With the use of a specific inhomogeneous nozzle seeding, we show how the Eulerian fields are affected by this Lagrangian conditioning and, based on this approach, find new elements to understand entrainment and turbulent diffusion. Then we focus on Lagrangian statistics in the jet, by proposing an original stationarisation to characterise the Lagrangian dynamics of a jet using the idealised framework of HIT despite the strong inhomogeneity of the jet flow.
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CHAPTER

Experimental methods

Historically, the study of turbulence starts from an Eulerian point of view through anemometry based on probes such as hot-wires [START_REF] Comte-Bellot | Hot-wire anemometry[END_REF]. The emergence of three-dimensional Lagrangian experiments becomes possible in the nineties with the development of high-speed cameras and adapted tracking algorithms [START_REF] Sato | Lagrangian measurement of fluid-particle motion in an isotropic turbulent field[END_REF], Maas et al. 1993[START_REF] Malik | Particle tracking velocimetry in three-dimensional flows. Part 2[END_REF][START_REF] Virant | 3D PTV and its application on Lagrangian motion[END_REF]. Two main limitations exist for an optimal particle tracking in turbulence:

• The tracking of fast particles requires an adapted frame rate of the cameras. The constant increase of maximum camera frame rate has enabled a constant increase of the Reynolds number of the studied flows. This frame rate is also in balance with resolution, higher frame rate is obtained with lower resolution, and vice versa. In turbulence, the Taylor-based Reynolds number scales in space as Re λ ∝ (L E /ℓ K ) 2/3 and in time as Re λ ∝ T L /τ K . It implies that, for example for a flow with Re λ = 1000, T L = 100 ms and L E = 10 cm, to obtain a fully resolved cascade in space and time, we need a submillimetric resolution and a frame rate up to 10 4 Hz. It requires even more to obtain statistics at smaller scales such as acceleration or even hyper-acceleration.

• The number of particles simultaneously tracked is also a limitation linked to the efficiency of the tracking algorithms. All tracking algorithms imply three steps: particle detection, stereoscopic reconstruction (associated with a calibration) and tracking. In this work, we present homemade algorithms with these three steps done one after the other, which enable to track up to 10 3 particles simultaneously corresponding to 0.01 particles per pixel (ppp).

State-of-the-art algorithms are based on a technique called Shake-The-Box where, to say it simply, these steps are mixed for optimisation, and are able to track 0.1 ppp [START_REF] Schröder | 3D Lagrangian particle tracking in fluid mechanics[END_REF].

Based on particle tracking methods, we first study a homogeneous isotropic turbulent flow. Generating HIT is a challenging experimental task requiring a homogeneous and isotropic forcing to generate HIT far from the walls in a restricted region of the flow. Initially, expedients have been used: HIT was studied a lot in wind tunnels (grid turbulence) with HIT 'per slice' [START_REF] Bourgoin | Investigation of the smallscale statistics of turbulence in the Modane S1MA wind tunnel[END_REF], but the strong mean flow makes it complex for Lagrangian experiments [START_REF] Ayyalasomayajula | Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence[END_REF]; the von Kármán flow was thought to be a good candidate but it appears to be strongly anisotropic and even non-stationary [START_REF] Huck | Production and dissipation of turbulent fluctuations close to a stagnation point[END_REF]. In this study, we present the Lagrangian exploration module (LEM) based on a constant isotropic forcing with 12 impellers, which generates a good experimental HIT. Alternative methods have been developed based on jet random forcing: the random-jet-stirred turbulence tank [START_REF] Variano | A random-jet-stirred turbulence tank[END_REF][START_REF] Laplace | Étude expérimentale de la sédimentation de particules inertielles en turbulence[END_REF] or random jet arrays [START_REF] Carter | Generating and controlling homogeneous air turbulence using random jet arrays[END_REF], with residual mean flows but larger measurement volumes.

We also study a turbulent round free jet well-known in an Eulerian description [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. This flow is simple to generate with a high-speed fluid injecting through a small source, called the nozzle, and spreading into quiescent same fluid.

We first present in section 2.1 the experimental set-up for the LEM, and in section 2.2 for the jet, with a description of both hydraulic and optical set-ups. Then the particle tracking methods are detailed in section 2.3. Finally, the post-processing and the Lagrangian experimental data sets are described in section 2.4. To generate a homogeneous isotropic turbulent flow, we use the LEM at the Laboratoire de Physique in the École Normale Supérieure de Lyon (LPENSL). The set-up is a convex regular icosahedral (20-faced polyhedron) tank shown in figure 2.1, with an edge length of 400 mm resulting in a volume of around 140 L. The tank is filled with deionised and degassed water and the flow is stirred by 12 bladed impellers with a diameter of 142.5 mm featuring 8 equallyspaced straight blades of 5 mm width and 7 mm height. The motors are mounted on 12 centres of the faces. This setup is similar to the one developed in Göttingen, Germany (Zimmermann et al. 2010), but the German version uses 12 propellers mounted on the corners of the tank.

Lagrangian exploration module

Hydraulic set-up

We operate the set-up by rotating all the 12 impellers in the same direction and we vary their rotation frequency from 1.8 Hz to 11.9 Hz, resulting in Taylor-based Reynolds numbers of 230 ≤ Re λ ≤ 620 (determined in subsection 3.1.3). The flow is known to have excellent isotropy and homogeneity around the centre of the volume (Zimmermann et al. 2010), and thus to be able to generate HIT. We will confirm these findings for the current LEM in subsection 3.1.2. Water is initially at ambient temperature around 20 °C then warms up due to the rotation of the impellers during the experimental recordings. Temperature has not been continuously monitored, but we can consider a temperature of 25 °C and the associated water kinematic viscosity ν = 0.9 × 10 -6 m 2 /s to compute related quantities.

The flow is homogeneously seeded with neutrally buoyant spherical polyethylene tracers (Cospheric UVPMS-BR-0.995) with a density ρ p = 0.985 -1.005 kg/m 3 and a diameter d p = 212 -250 µm. These particles are fluorescent red with a green laser illumination. The typical requirement to not observe finite size effects, especially for acceleration, is that d p ≤ 5ℓ K with d p the particle diameter and ℓ K the Kolmogorov length scale [START_REF] Voth | Measurement of particle accelerations in fully developed turbulence[END_REF], Qureshi et al. 2007[START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF][START_REF] Volk | Dynamics of inertial particles in a turbulent von Kármán flow[END_REF]. This holds for all our cases, except for the most turbulent one with d p ≃ 6ℓ K (see table 3.1). Thus, the particles faithfully follow the flow and we expect to measure relevant velocities and accelerations, even for small-scale Lagrangian dynamics.

Optical set-up

We illuminate the particles in the flow with a high power pulsed laser (Quantronix Condor Dual, Nd:YAG, power 180 W, wavelength 532 nm (green), pulse width 120 ns). The laser beam is expanded and collimated to approximately 15 cm in diameter and aligned such that it enters the set-up perpendicular to one of the windows and passes through the centre of the tank, as shown in figure 2.2. The particles are imaged by three high-speed cameras (Phantom V12, Vision Research) mounted with 100 mm macro lenses (Zeiss Milvus). From the icosahedral geometry we see that the cameras cannot be mounted perpendicular to each other, thus we choose a configuration to have the angles between the cameras closest to 90 • (important for the stereomatching). The spatial resolution of each camera is 1280 × 800 pixels, which, associated to the arrangement of the cameras and the laser beam, gives a measurement volume of around 33×57× 37 mm 3 , as seen in figure 2.3. Hence one pixel corresponds to roughly 0.04 mm. We synchronize the three cameras and the laser to operate at 3125 Hz for the slowest four rotation frequencies and 6250 Hz for the highest three such that 11 ≤ τ K f camera ≤ 97 (τ K f camera ≫ 1). For the seven rotation frequencies considered (detailed in the following), 40 films of 8000 snapshots are recorded (one case with 100 films). The experiments were carried out by Sander Huisman, Dutch post-doc in the LPENSL (now associate professor in the Physics of Fluids group, University of Twente, The Netherlands).

Turbulent free round jet

Hydraulic set-up

A vertically oriented jet of water is injected into the LEM, a convex regular icosahedral (20-faced polyhedron) tank full of water, as presented in section 2.1. The LEM is originally designed to generate HIT when the 12 impellers on 12 of its faces are activated; however, for this experiment, the LEM is only used as a tank as the optical access makes it an ideal apparatus for threedimensional particle tracking of a jet. A schematic of the hydraulic set-up is shown in figure 2.4. The vertical jet, injected with a pump connected to a reservoir, is ejected upwards from a round nozzle with a diameter D = 4 mm. At the nozzle exit, the flow rate is kept steady at Q ≃ 10 -4 m 3 /s, generating an exit velocity U J ≃ 7 m/s, and, in turn, a Reynolds number based on the diameter Re D = U J D/ν ≃ 2.8 × 10 4 with ν the water kinematic viscosity (Re λ ≃ 230 determined in subsection 4.2.2). An overflow valve releases the excess water from the top of the tank at the same rate as injection from the nozzle. Water is initially at ambient temperature around 20 °C and, contrary to the LEM flow, the local water injection does not cause any measurable temperature increase. Thus we consider a temperature of 20 °C and the associated water kinematic viscosity ν = 1.0×10 -6 m 2 /s to compute related quantities.

By moving the vertical position of the nozzle, two locations relative to the nozzle are considered in order to study near-field (NF) and far-field (FF) dynamics, with interrogation volumes spanning 0 mm ≤ z ≤ 120 mm (0 ≤ z/D ≤ 30) and 80 mm ≤ z ≤ 200 mm (20 ≤ z/D ≤ 50), respectively (the z axis is the jet axis with z = 0 the nozzle exit position). For both regions, the jet is sufficiently far from the walls of the tank to discount momentum effects from the LEM onto the jet (Hussein et al. 1994), and thus a free jet is observed. The particles, seeding the jet during injection, are neutrally buoyant spherical polystyrene tracers (Nova Chemicals) with a density ρ p = 1060 kg/m 3 and a diameter d p = 250 µm. The reservoir is seeded with a mass loading of 0.05% or 0.10% (reasonable seeding to observe a few hundred particles per image) and an external stirrer maintains homogeneity of the particles. The quiescent water inside the LEM is not seeded, therefore tracked particles are, in principle, only those injected into the measurement volume through the nozzle. In practice, it is unavoidable that a few particles eventually end up being resuspended in the surrounding fluid and reentrained within the jet. This could be caused by several phenomena: the flow rate within the jet is growing with the axial distance due to entrainment and thus part of the core of the jet cannot flow out and remains in the LEM with some tracers; rarely, some particles can be detrained and reentrained later or, in the same way, drift out due to their slight inertia or finite size effects. The main effect is probably that, because between each film we switch the jet on and off, while nearly all the injected particles are eliminated in the overflow, some particles stay in the LEM when the jet is switched off. The probed flow is therefore almost exclusively tagged by nozzle seeded particles with a minor residual contribution of entrained particles (residual homogeneous seeding). In the following, we will refer to this specific seeding as nozzle seeding. Additional measurements with a homogeneous seeding in the whole volume of the LEM (mass loading of 0.10%) without nozzle seeding are also done and will be discussed too.

The inlet valve is open some seconds before the recording, in such a way that the jet is stationary but minimal particle recirculation occurs, ensuring a limited pollution of the surrounding fluid with particles or any spurious background flow. The ratio of the particle diameter d p to the Taylor microscale λ is always smaller than 1 and ranges from 0.3 in the FF to 0.8 in the NF (see table 4.1). Thus the particles are not expected to deviate from tracer behaviour for velocity statistics within the inertial range (Mordant et al. 2004a). The ratio of d p to the Kolmogorov length scale ℓ K remains, however, larger than 1 and ranges from 9 in the FF to 25 in the NF (see table 4.1). Finite size effects are therefore expected to influence small-scale Lagrangian dynamics and in particular acceleration statistics [START_REF] Voth | Measurement of particle accelerations in fully developed turbulence[END_REF], Qureshi et al. 2007[START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF][START_REF] Volk | Dynamics of inertial particles in a turbulent von Kármán flow[END_REF], as further investigated in subsection 4. 

Optical set-up

Particle tracking velocimetry

Lagrangian particle tracking requires three main steps to compute the trajectories: particle detection, stereoscopic reconstruction and tracking. A description of the method is presented herein (the particle tracking source codes are based on the homemade toolbox available here https://github.com/turbulencelyon/4d-ptv).

Particle detection

To create particle trajectories through particle tracking velocimetry (PTV), two-dimensional images are first analysed to measure the positions of the centres of the particles. The particle detection procedure for both flows is an ad hoc process which uses classical methods of image analysis: non-uniform illumination correction, morphological operations (opening), thresholding, binarisation and centroid detection. An example of a camera image with detected particles is presented in figures 2.7 and 2.8 for the LEM flow and the jet, respectively. After the particle centres for all images and all cameras have been determined, the actual three-dimensional positions of the particles can be reconstructed, knowing that each camera image is a two-dimensional projection of the measurement volume. More typically, methods based on optical models are used to achieve real particle positions, but for this study a geometric method developed by [START_REF] Machicoane | A simplified and versatile calibration method for multi-camera optical systems in 3D particle imaging[END_REF] is used due to its increased precision and ease of implementation. This method is based on an initial calibration, where each position on a camera image corresponds to a line of possible positions in three-dimensional space (a 'ray'). In practice, we use a flat calibration target presented in figure 2.9 that we displace along an axis to obtain N calibration planes (N = 19 every 5 mm for the LEM, N = 9 every 10 mm for the jet). For each of the N planes, a polynomial transformation is build to know the back projected position on the considered plane of any detected particle on each camera image. We obtain N transformations which enable to construct a 'ray' for each detected particle on each camera, i.e. a line crossing the N positions of the particle on each calibration plane. Then those rays are matched in space for all three camera locations to create a volume of particles in real space.

Stereoscopic reconstruction

The matching algorithm employed was recently developed by [START_REF] Bourgoin | Using ray-traversal for 3D particle matching in the context of particle tracking velocimetry in fluid mechanics[END_REF] and is optimised for fast computation. The best matching is found by minimizing the quadratic The histograms for all matches are represented, which can be divided into the matches with 3 cameras and 2 cameras.

mean of the distances from the matched point to the rays, we call this minimum the matching error δ. To create the largest convex hull possible which is dictated by the orientation of the cameras, matching of particle position based on the intercept of only two rays (i.e. two of the three cameras) is accepted (the three-camera matches are still prioritised). The possibility of overlapping of particles in one dimension, two matches per ray, is also admitted. However, such a matching algorithm allows the inclusion of non-existent ghost particles, especially when we authorise two-camera matching and two matches per ray. To avoid as much as possible the inclusion of ghost particles, the choice of the maximum matching error δ max is important: it has to be small enough to avoid these non-existent particles but high enough to include an important proportion of real particles. Moreover it has to be smaller than the particle diameter, otherwise the quality of the particle detection is really poor. We present in figures 2.10(a) and (b) the histograms of matching error δ for both flows after stereoscopic reconstruction. For the LEM flow, we consider δ max = 150 µm, for the jet δ max = 50 µm. As we can observe, the LEM results presents an average error around 40 µm. There is also a high contribution of two-camera matches going to zero and an increasing number of matches going to values larger than 100 µm, a priori a signature of ghost particles. A similar distribution is observed for the jet, with an average error around 30 µm but a smaller contribution of two-camera matches and a decreasing number of matches approaching δ max .

First, the maximum tolerances of ray crossing we consider are smaller than the particle size. Second, the calibration intrinsic accuracy is around 1 µm (measurement not presented here), thus these matching errors come from other experimental noise sources: subpixel detection, detection of overlapped particles, pixel locking, thermal noise of the camera CMOS sensor, etc. Fortunately, the ghost particles do not form persistent trajectories and can be removed for the most part at the tracking step, as explained in the following. A deeper analysis (not presented here) shows in particular that large matching errors are overrepresented for short tracks, leading to the consideration of a minimum track length. We present in figure 2.10(c) and (d) the histograms of matching error δ for both flows after tracking, where we can observe the elimination or presumably ghost particles. For the LEM flow, the number of matches is divided by two and mainly composed of three-camera matches. For the jet, the initial matching seems to be better with a much smaller elimination of matches, still with a major contribution of three-camera matches.

Tracking

The stereoscopic reconstruction gives a cloud of points for every time step. The goal of the tracking is to transform this cloud into trajectories by following particles through time. To track the position of a considered particle as it moves among numerous other particles, the simplest algorithm is to consider the nearest neighbour: if one considers a particle in frame n, its position in frame n + 1 is the nearest particle in frame n + 1. But, for increased mass loading of particles, the trajectories are tangled, as observed for these flows. Moreover, as explained before, several points are ghost particles and should not be tracked. Thus advanced predictive tracking methods are generally employed (Ouellette et al. 2006a). The trajectories are assumed to be smooth and self-consistent, i.e. there are no severe variations in velocity and therefore past positions give accurate indications of future positions [START_REF] Guezennec | Algorithms for fully automated three-dimensional particle tracking velocimetry[END_REF]. If one considers a particle at frame n, its position in frame n + 1 can be extrapolated and finally the nearestneighbour approach is employed based on the extrapolated position. In the present study, the extrapolated position is determined by fitting the previous five positions from frame n -4 to n with a simple linear relation (i.e. velocity), as indicated in figure 2.11. If there are fewer than five positions, the available positions are used. A maximum distance of 1 mm between extrapolated position and real position is applied to continue the trajectories in order to avoid the tracking of absurd trajectories. If the same particle is the nearest neighbour for two different tracks, the nearest trajectory is chosen and the other trajectory is stopped.

As previously explained, a minimum trajectory length of 10 frames is also used for both data sets to remove presumably false trajectories. Some real trajectories are also removed, but their statistical value is negligible.

Post-processing

My personal contribution to these experimental data mainly starts with the postprocessing. For the LEM data, the tracks were already computed and I improved the matching step. For the jet data, I gave some help for the experiments and I worked on the whole PTV process, from particle detection to tracking.

After the tracking, we obtain data sets of raw tracks: ensembles of particle positions through time. Additional post-processing steps are required before their statistical analysis in chapter 3 for the LEM flow and chapter 4 for the jet.

LEM trajectories

The tracking of particles in the LEM results in a set of trajectories with a minimum length of 10 frames for the seven rotation frequencies of the impellers, i.e. for the seven Reynolds numbers considered. For the LEM data, an additional step of stitching between the tracks is used to obtain longer tracks (the 'holes' between the stitched tracks are left empty). A visualisation of tracks is shown in figure 2.12. Main information about these data sets are presented in table 2.1.

The trajectories reconstructed by the tracking algorithm always exhibit some level of noise due to errors eventually accumulated from particle detection, stereo-matching and tracking. It is important to properly handle noise, in particular when evaluating statistics associated with differentiated quantities, i.e. particle velocity and acceleration. Thus, the main question of the post-processing is how to deal with the noise and separate its contribution from the real signal in order to obtain denoised statistics. A simple and usual method is the convolution of trajectories with a Gaussian kernel (Mordant et al. 2004b[START_REF] Ouellette | Probing the statistical structure of turbulence with measurements of tracer particle tracks[END_REF]): the positions are smoothed by convolution with a Gaussian kernel, whereas the velocities and accelerations are computed by convolving tracks with a first-and second-order derivative Gaussian kernel, respectively. The Gaussian kernel is characterised by its width w and its length L: the smoothing is stronger with increasing w and shortens the tracks of L frames (divided between the first and the last positions). The choice of these parameters and the relevance of this approach is deeply discussed in section 3.1. For some statistics, we will use a slightly filtered data set with positions and velocities (w from 5 for the slowest case to 3 for the fastest one).

An alternative noise reduction method, called the dt-method, will be also implemented to obtain statistics on velocity and acceleration without requiring explicit calculation of individual case f impeller f camera number of films number of tracks mean length number of points (Hz) (Hz) (10 5 ) (frames) (10 trajectory derivatives. This method recently developed by Machicoane et al. (2017a,b) enables to obtain denoised statistics based on an estimation from discrete temporal increments of unfiltered positions. This method is fully presented in box dt-method.

Jet trajectories

The tracking of particles in the jet results in a set of trajectories with a minimum length of 10 frames for each of the 50 experimental runs. The coordinate basis is adapted by aligning the z axis with the jet axis and centring it in x and y directions. Positions and velocities are computed in adapted cylindrical coordinates (z, r, θ) with z the axial coordinate, r the radial one and θ the circumferential one. A visualisation of tracks is shown in figure 2.13. It can be noted that most trajectories come from the nozzle (where they are injected) and very few come from the outside and correspond to particles entrained into the jet (visible in figure 2.13(a) as radial trajectories towards the jet). The trajectories are smoothed by convolution with a Gaussian kernel and the velocities are computed by convolving tracks with a first-order derivative Gaussian kernel with a length of 6 time instances and a width of 2 (ad hoc smoothing parameters). This filtering reduces the trajectory lengths of 6 time steps (3 at the beginning and 3 at the end). The analysis of these jet data is presented in chapter 4:

• In section 4.1, we use the mass loading of 0.05% in the FF. The full data set comprises 3.5 × 10 6 trajectories longer than or equal to 4 frames, which corresponds to 1.0 × 10 8 particle positions and velocities obtained from 50 independent runs.

• In section 4.2, we use the mass loading of 0.10% in the NF and the FF. The full data set in the NF comprises 4.2 × 10 6 trajectories longer than or equal to 10 frames, which corresponds to 1.0 × 10 8 particle positions. For the FF, it comprises 6.1 × 10 6 trajectories and 1.6 × 10 8 particle positions. We consider here unfiltered data because, except in subsection 4.2.2 for Eulerian statistical analysis, all Lagrangian statistics in this section are based on raw positions and computed with the dt-method presented in box dt-method. Therefore, as for the LEM flow, two techniques are implemented to handle noise. For all mean field estimations (section 4.1) and Eulerian statistical analysis (subsection 4.2.2) requiring the estimate of local velocity, the filtered trajectories are used. For all two-time Lagrangian statistical analysis (subsections 4.2.3 and 4.2.4), the dt-method is used.

dt-method

Let us consider an experimental trajectory x(t) in stationary HIT. It can be written as

x(t) = x(t) + b(t), (2.1)
where x(t) is the real trajectory and b(t) the noise. We consider now the position increment dx such that

dx = x(t + dt) -x(t) = v(t)dt + db + O(dt 2 ), (2.2)
with v(t) the real velocity signal and db the noise increment. We can compute the autocorrelation function of position increment R dxdx (τ, dt) = ⟨dx(t + τ )dx(t)⟩, where the time average ⟨•⟩ is taken over an ensemble of particle trajectories:

R dxdx (τ, dt) = R ûû (τ )dt 2 + ⟨(db) 2 ⟩ + O(dt 3 ), (2.3)
if b is a white noise. Thus, for each τ we plot R dxdx (τ, dt) as a function of dt and fit it with c 1 + c 2 dt 2 . From the slope c 2 we obtain the noiseless Lagrangian autocorrelation function of velocity R ûû . More information is provided, including a validation study on synthetic data, in Machicoane et al. (2017a,b).

The relation (2.3) is correct if we can neglect higher-order terms, i.e. O(dt 3 ), and thus we have to limit the fit to a small dt max , in practice dt max ≪ τ K the Kolmogorov time scale. For example for the LEM data, we have for the slowest case τ K = 97 frames but for the fastest case τ K = 11 frames which is not enough. Actually the noise always exhibits some correlation at small dt and the first points have to be eliminated. To manage this problem, we choose dt max = τ K and develop at higher orders the relation (2.3). In practice, we consider a fit c 1 + c 2 dt 2 + c 3 dt 3 .

In the same way, we consider the second-order position increment d 2 x such that

d 2 x = x(t + 2dt) + x(t -2dt) -2x(t) = â(t)dt 2 + d 2 b, (2.4)
with â(t) the real acceleration and d 2 b the second-order noise increment. Then we can compute the autocorrelation function of second-order position increment

R d 2 xd 2 x (τ, dt) = ⟨d 2 x(t + τ )d 2 x(t)⟩: R d 2 xd 2 x (τ, dt) = R ââ (τ )dt 4 + ⟨(d 2 b) 2 ⟩ + O(dt 6 ). (2.5)
For the same reasons than for velocity, we consider a fit c 1 + c 2 dt 4 + c 3 dt 6 and we obtain from c 2 the noiseless Lagrangian autocorrelation function of acceleration R ââ . An illustration of the procedure is proposed in figure 2.14. To automatically remove the noisy points at small time, we use a random sample consensus (RANSAC) algorithm with adapted ad hoc parameters. The noise marginally perturbs velocity statistics but acceleration is highly affected by noise at small dt. ). The green points are the points used for the fitting and the red points are the outliers found by the RANSAC algorithm.
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CHAPTER

Homogeneous isotropic turbulence

Based on the experimental set-up presented in section 2.1 and the Lagrangian data set we describe in subsection 2.4.1, we propose a full Lagrangian study of a homogeneous and isotropic turbulent flow. In the first section 3.1, we characterise this flow with Eulerian and Lagrangian statistics on velocity and acceleration to obtain a large database of turbulent quantities for a single HIT flow at seven Reynolds numbers, with specific attention to noise removal. In the second section 3.2, we focus on pair dispersion with experimental measurements coupled with a new stochastic modelling of relative dispersion statistics, leading in particular to new information about relative velocity dynamics.

Characterisation of the flow

Based on the Eulerian and Lagrangian characterisations presented in chapter 1, this section aims to propose a detailed Lagrangian characterisation of the LEM flow presented in the previous chapter. Our ambition is to produce a reference characterisation for Lagrangian HIT for velocity and acceleration with a main focus on second-order statistics. Actually, existing references were realised in von Kármán flows presenting strong anisotropy, for example the constant C 0 from the Lagrangian second-order structure function depends on the considered velocity component (Ouellette et al. 2006c[START_REF] Huck | Lagrangian acceleration timescales in anisotropic turbulence[END_REF]. Our data set is well resolved in time to extract precise statistics, and the Taylor-based Reynolds numbers ranging from 230 to 620, as presented in the following, cover a wide enough range to analyse the Reynolds-number dependence.

In the first subsection 3.1.1, we measure one-point/one-time statistics, focusing on velocity and acceleration standard deviations σ u and σ a , respectively, with a fine analysis of experimental noise. Then in subsection 3.1.2, we check that the flow is homogeneous and isotropic. The goal of this study is to measure Lagrangian statistics, but we first need a complete Eulerian characterisation of velocity, proposed in subsection 3.1.3. We finally compute Lagrangian one-point/two-time statistics for velocity and acceleration in subsection 3.1.4, with a full characterisation of Lagrangian time scales.

Measurement of σ u and σ a

The second-order moments of velocity and acceleration σ u i and σ a i are defined as σ 2

u i = ⟨(u i - ⟨u i ⟩) 2 ⟩ and σ 2 a i = ⟨(a i -⟨a i ⟩) 2 ⟩
, where i refers to a component and ⟨•⟩ denotes time and ensemble averaging over all the particle velocities or accelerations. Because the flow is isotropic, as mainly discussed in the next subsection 3.1.2, we will express these standard deviations as unique σ u and σ a independent of the component we consider. These two quantities are fundamental to characterise a turbulent flow but no so easy to determine, mainly due to experimental noise and finite measurement volume. We focus here on the methods to measure them with precision.

With dt-method

The first method we can use is the dt-method presented in box dt-method. This method enables to measure the Lagrangian autocorrelation functions for velocity R L uu (τ ) and acceleration R L aa (τ ) and their values at τ = 0 give the variances σ 2 u and σ 2 a . These measurements will be presented in subsection 3.1.4.

With filtering

The great advantage of the dt-method is to compute statistics on velocity and acceleration without explicitly computing velocities and accelerations along trajectories with ad hoc filtering. However, it is much simpler to directly work on velocity or acceleration data sets, to compute for example the full probability density functions (PDFs) rather than just the statistical moments accessible through the dt-method. Thus we propose to filter the tracks by convolving them with a Gaussian kernel defined as

K w (τ ) = A w e - τ 2 w 2 + B w , (3.1)
where w is the width and L the length such that

         K w (±L/2) = 0, +L/2 -L/2 K w (t) dt = 1, (3.2) 
which determine A w and B w . To compute the velocities and accelerations, we convolve the tracks with the first-and second-order derivatives of this kernel, respectively. In the context of experimental Lagrangian turbulent signals, this filtering method was first proposed by Mordant et al. (2004b) and is fully described in [START_REF] Ouellette | Probing the statistical structure of turbulence with measurements of tracer particle tracks[END_REF].

The convolution of finite signals introduces edge effects which require truncating the convolved signals by L/2 points at the beginning and at the end. It is therefore preferable to minimise the support L of the convolution kernel to keep a sufficient amount of long trajectories. However, for the kernel to be representative, a minimum length is also required. In practice, we find that a length L = 5w is suitable (this point is discussed in appendix C.2).

We represent in figure 3.1 the filtered standard deviations σ u i f and σ a i f as a function of the filter width w for the three components. For velocity, we observe a small decrease before w = 2 then a long plateau up to w = 10. Thus σ u i is marginally affected by the noise and its determination is quite robust. Then σ u i f decreases fast, an evolution which can be attributed to two effects: (i) the filtering itself which reduces the fluctuations or (ii) the evolution of the data set for increasing filter widths which is composed of fewer short trajectories. The evolution is really different for acceleration, where the influence of the noise is significant up to w = 10 with a steep decrease, then a slowly decreasing part starts. We can expect to determine σ a i by a proper extrapolation to reach w = 0.

To understand the evolutions of the filtered standard deviations and to find a noiseless value of σ a i , we propose to analytically determine the filtered variances. Basically, the variance is the integral of the spectrum (for velocity or acceleration), and the filtered variance represents the integral of the spectrum truncated by the filtering. Therefore, by scanning the filter width w, we obtain a representation of the cumulative integral of the spectrum. From this idea and with adapted stochastic modelling of the spectrum [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF], we can determine the analytical expressions of the filtered variances without the presence of noise. The complete calculation is given in appendix C.1. This calculation is rigorously done for an infinite kernel (L = ∞) convolved with infinite trajectories. Thus we also show in appendix C.2 with synthetic stochastic tracks that L = 5w gives results close to an infinite kernel.

From the relations obtained in appendix C.1, we represent the variances of filtered velocity and acceleration in figure 3.2. Estimations from two different stochastic models are presented, belonging to the class of the autoregressive models. The simplest is based on a two-layer stochastic a f (average of the three components) as a function of the filter width w (case 400). This evolution is fitted with the two-layer and infinite-layer model. model [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] where acceleration is defined but not differentiable. A more sophisticated model proposed by [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF] is based on an infinite-layer model where acceleration is infinitely differentiable. This second model has been shown to very accurately model the acceleration autocorrelation function from high resolution DNS. For velocity, the difference between the models is marginal, but for acceleration the transition to the plateau is steeper for the refined infinite-layer model.

We can now compare these theoretical results to the experimental results. The time scales of the theoretical functions in figure 3.2 are adapted to the time scales of the experimental results presented in figure 3.1 (these experimental times scales are determined later in the manuscript) for direct comparison in terms of frames. For the theoretical functions of velocity, the decrease is slow: at w = 200 the reduction of the variance is around 20%, thus around 10% for the standard deviation. For the experimental results of velocity, the decrease is around 50% in the best case (it depends on the component). Thus this decreasing evolution is not only attributable to the filtering itself but also to the change in the track data set. Actually we will present in the following that the standard deviation of velocity decreases with the track length. Nevertheless, this is not a problem to determine σ u because a large plateau is observed for small filter widths.

For acceleration, the goal is to fit the part of the curve not affected by the noise to extrapolate σ 2 a at w = 0. In this case, the order of magnitude of the decrease seems to be consistent with the theoretical function. We compare in figure 3.3 the two functions. The two models fit well the experimental points in the region not affected by noise (w > 10). However, the extrapolated value for σ 2 a (average over the three components) is different between the two fits, the infinitelayer model giving a slightly lower value. Actually the two-layer model is known to overestimate σ 2 a when it fits the Lagrangian acceleration autocorrelation functions, as it will be discussed in subsection 3.1.4. Then we apply the infinite-layer model for the seven Reynolds numbers to extrapolate σ 2 a , as presented in figure 3.4. From the seven fits presented in figure 3.4, we can also extract an optimal filter width w f based on the first point where the model fits the experimental points. We can also note that the value σ a f (w = w f ) is a good first approximation of the standard deviation (underestimation between 10% and 20%). 

Statistical bias on trajectory lengths

With the optimal filter width w f determined for the seven data sets, we compute the velocities and accelerations along the tracks. We represent in figure 3.5(a) the histogram of trajectory length ℓ traj : the number of tracks strongly decreases with the length. From that, we can estimate σ > u i (ℓ traj ) and σ > a i (ℓ traj ), the standard deviation for filtered trajectories longer than ℓ traj , that we represent in figure 3.5(b). The standard deviation for velocity strongly decreases with ℓ traj up to 50%. This evolution is due to the too small measurement volume: slower trajectories stay longer in the volume and are overrepresented. The measurement volume is longer along y, thus the evolution is slower for the y component. In the same way the measurement volume is the shortest along x, thus the finite measurement volume effect is stronger. This statistical bias will have a strong impact on the determination of Lagrangian two-point statistics of velocity, as it will be discussed in section 3.1.4. The evolution for acceleration is slower and does not present anisotropy due to the size of the measurement volume. The bias on velocity has probably an impact on acceleration but to a smaller extent. Because the typical time scales of acceleration are much smaller than the ones for velocity, the measurement volume affects less the acceleration statistics. Besides, because acceleration is short-time correlated, the relevant time dynamics is limited to short track length, where the decrease is less than 10%. The same tendencies are observed for the seven data sets.

Homogeneity and isotropy

Based on velocities and accelerations computed in the previous subsection, we propose to check the homogeneity and isotropy of the flow.

Isotropy

To characterise the isotropy of the flow, we start by calculating the standard deviation of velocity σ up where u p is the projection of velocity along a given direction p. We represent in figure 3.6 the mean ⟨σ up ⟩ p for 10 4 different directions p (uniformly distributed over a sphere) with the standard deviation of the distribution as the vertical error bar. For simplicity, we note it σ u . We find that anisotropy is maximum for the lowest velocity but does not exceed 5%, then reduces quickly for increasing Re λ (the values of Re λ are computed in the next subsection 3.1.3). The values with their uncertainty are reported in table 3.1. We also check the isotropy of the velocity PDF in figure 3.7. The velocity PDF appears to be well isotropic with no particular difference between the three components. In figure 3.8, we represent the velocity PDFs for the seven Reynolds numbers. No large difference between the various Reynolds numbers is observed and all PDFs follow the same slightly super-Gaussian shape (leptokurtic with a kurtosis between 3.2 and 3.5). We also compute the acceleration PDFs in figure 3.9. The anisotropy for acceleration is totally negligible and we only represent the average over the three components. As it is usually observed, the acceleration PDFs are highly non-Gaussian (Mordant et al. 2004b).

A more sophisticated method to characterize isotropy is based on the Lumley triangle [START_REF] Lumley | The return to isotropy of homogeneous turbulence[END_REF][START_REF] Lumley | Computational modeling of turbulent flows[END_REF]). This analysis uses the Reynolds stresses by defining the three invariants of the anisotropy tensor

b ij = ⟨u ′ i u ′ j ⟩ ⟨u ′ k u ′ k ⟩ -δ ij /3, I = b ii , II = b ij b ji /2 and III = b ij b jk b ki /3, (3.3)
where u ′ i is the fluctuating velocity based on Reynolds decomposition (u i = ⟨u i ⟩ + u ′ i ), δ ij is Kronecker delta. (The Einstein summation convention is used.) The invariant I is zero by construction and the invariants II and III are computed in figure 3.10. As we can see in the inset, all the points are very close to the point C (corresponding to 3D isotropic flow) and the general trend is that it gets more isotropic for increasing Reynolds number (consistent with figure 3.6).

Homogeneity

To characterise the mean homogeneity of the flow, we compute its mean velocity in figure 3.11. The mean is normalised by the standard deviation (determined in figure 3.6) and we observe that this ratio does not exceed 20% and is mainly lower than 10%, meaning that the fluctuations dominate any inhomogeneous mean flow. We check now whether the velocity fluctuations are homogeneous. Though the longest side of the measurement volume (≃ 60 mm) is relatively small as compared to the size of the set-up (≃ 600 mm), we want to check if the flow fluctuations present a spatial dependence. We compute the velocity PDF for restricted portions of the measurement volume (spheres of increasing radius r centred in the measurement volume), as presented in figure 3.12. As it can be observed, the PDFs are nearly identical (within statistical convergence). Similar plots can be generated for the other components and Reynolds numbers, all showing similar collapse. Thus no spatial dependence is observed for the velocity fluctuations. The same behaviour is observed for acceleration. Figure 3.12. PDF of velocity u x restricted to spheres with a radius r centred in the measurement volume (case 400).

Eulerian velocity statistics

In the two previous subsections 3. 1.1 and 3.1.2, we have presented one-point/one-time statistics. We switch now to two-point/one-time statistics to characterise the multi-scale spatial correlations of turbulence, i.e. properties in the classical Eulerian framework. The determination of Eulerian statistics proposed in the following is based on structure and autocorrelation functions, from which important quantities such as the mean energy dissipation rate ε and the Eulerian integral length scale L E can be extracted. For this study, we use a slightly filtered data set (w from 5 to 3), a too low filtering for acceleration but sufficient for velocity.

Measurement of ε

The mean energy dissipation rate ε is a fundamental quantity to characterise a turbulent flow, but is not trivial to measure. In this study, we use K41 phenomenology (Kolmogorov 1941b) associated with structure functions to determine it.

Structure functions are commonly used to describe multiscale properties of turbulence through a statistical representation of a flow quantity with a given spatial or temporal separation. As introduced in chapter 1, in an Eulerian perspective, longitudinal velocity structure functions of order n are defined as

S E n-∥ (x, ∆x) = ⟨[δu ∥ (x, ∆x)] n ⟩ = ⟨[u ∥ (x + ∆x) -u ∥ (x)] n ⟩, (3.4) 
where δu ∥ is computed over two points, one at x, the other at x + ∆x, with u ∥ defined as the single longitudinal component of Eulerian velocity along ∆x. The spatial average ⟨•⟩ is taken over the pairs of particles. In HIT, we simply have S E n-∥ (x, ∆x) = S E n-∥ (∆x) with ∆x = |∆x|. In the same way, we can also define a transverse structure function S E n-⊥ (∆x) based on transverse velocity components u ⊥ . The behaviour of second-and third-order structure functions is well known in HIT and summarised in box Cheat sheet for HIT with the definitions of the associated quantities. We can extract ε from S E 2-∥ and S E 2-⊥ (see figure 3.13) and from S E 3-∥ (see figure 3.14). For simplicity, we note the spatial increment r. The inertial regime is well observed from 1 mm to 5 cm, whereas the injection and dissipative regimes are not. Actually the measurement volume is too small to observe injection (we will see in the following that L E ≃ 6 cm) and the particles are too big to observe dissipation (in the best case d p ≃ 1.5ℓ K ). The 4/3 factor is well observed between S E 2-∥ and S E 2-⊥ , which is an additional proof of good isotropy of inertial scales. The third-order structure function is noisier because higher orders are more difficult to converge. The two previous computations use velocity increments between particles, therefore it requires to compute velocity from tracks with a well-chosen filtering. An alternative method based on pair dispersion can be used to compute the second-order structure function without requiring the explicit prior computation of velocities. The question of pair dispersion will be the topic of the next section 3.2 and we give here only a brief explanation. It can be shown for short times that

⟨|∆(t) -∆ 0 | 2 ⟩ = S E 2-tot (∆ 0 )t 2 + O(t 3
), (3.5) with ∆ the distance between two particles, ∆ 0 their initial separation and over the pairs of particles. By conditioning on several initial separations ∆ 0 and fitting in t 2 , we have access to S E 2-∥ (∆ 0 ) and, in turn, to ε by only using tracer displacements. Pair dispersion computation is presented in figure 3. 15(a) and the associated determination of S E 2-tot (based on t 2 slopes) in figure 3.15(b).

S E 2-tot = S E 2-∥ + 2S E 2-⊥ = 11/3S E 2-
Once these structure functions are measured, we simply compensate them to emphasise inertial scale plateaus which correspond to ε, as shown in figure 3.16. The different estimations are close, with all estimates falling to 20% of each other. The estimations from S E 2-∥ and S E

2-⊥

are really close due to good isotropy (4/3 factor). The estimation from S E 3-∥ is noisier and smaller. The estimation based on pair dispersion is even smaller, although the variations are small. These differences between the estimations from the different methods are similar for the seven cases considered. The main difference between the methods is that pair dispersion uses raw positions, whereas the other methods use filtered velocities. Moreover, pair dispersion computation behaves as a 'spatial dt-method' (cf. box dt-method) and discriminates noise for each probed scale in a better way than Gaussian filtering which globally filters the data. We will therefore take as reference estimates for ε those values based on the second-order structure function obtained from pair dispersion analysis. We present in figure 3.17 ε as a function of the impeller rotation frequency with the different methods. [START_REF] Fiabane | Clustering of finite-size particles in turbulence[END_REF] use the same experimental set-up and the values of ε they find, which are close to our values, are also presented. The evolution goes as f 3 as expected for turbulent flows. The measured values of ε are reported in table 3.1, where we keep the estimates based on pair dispersion.

Measurement of L E

We determine the Eulerian integral length scale L E based on the computation of the normalised Eulerian longitudinal velocity autocorrelation function

R E uu-∥ (r) = ⟨u ∥ (x + r)u ∥ (x)⟩/σ 2 u . We can simply compute R E uu-∥ (r) based on S E 2-∥ (r) with R E uu-∥ (r) = 1 -S E 2-∥ (r)/2σ 2 u .
Based on pair dispersion method to estimate S E 2-∥ (r), the autocorrelation functions for the seven Reynolds numbers are displayed in figure 3.18. To obtain L E , we ideally need to integrate up to infinity. However, the experimental functions are limited to finite separations r. Thus, we use the following function to fit the data (3.6) based on Batchelor parametrisation [START_REF] Batchelor | Pressure fluctuations in isotropic turbulence[END_REF][START_REF] Grossmann | Application of extended self-similarity in turbulence[END_REF] to fit the inertial and injection regimes (dissipative regime not resolved here). Figure 3.18 shows this parametrisation accurately fits the experimental autocorrelation functions up to the largest accessible scales (r ≃ 4 cm). It can be analytically shown that, with such a parametrisation, 5/6) Γ(1/3) d ≃ 0.747d with Γ the gamma function. The corresponding values of L E for the seven cases investigated here are reported in table 3.1.

R E uu-∥ (r) = 1 - r d 2/3 1 + r d 2 1/3 ,
L E = ∞ 0 R E uu-∥ (r) dr = √ π Γ(
The integral scale L E is found not to strongly depend on the forcing frequency of the impellers and is of the order of 6 cm. This is consistent with the qualitative interpretation that the forcing may be commensurate with the impeller dimensions, which are 14 cm in diameter.

Eulerian parameters

The values of the velocity standard deviation σ u , the mean energy dissipation rate ε and the Eulerian integral length scale L E are reported in table 3.1 with most important related quantities: the Kolmogorov length scale ℓ K and time scale τ K , the Taylor microscale λ and the Taylor-based Reynolds number Re λ , the Eulerian integral time scale T E and the constant C ε . The relations to obtain these quantities are summarised in box Cheat sheet for HIT.

The values of σ u , ε and L E were already discussed. We can note the large range of Taylorbased Reynolds numbers from 230 to 620. Regarding the value of the energy constant C ε , we interestingly find it does not depend on Re λ (within the error bars) and to be of the order of 0.75, a value consistent with other measurements [START_REF] Vassilicos | Dissipation in turbulent flows[END_REF]. 

case σ u ε ℓ K τ K λ Re λ L E T E C ε (mm/s) (W/kg) (µm) (ms) (mm) (cm) (s

Cheat sheet for HIT

Based on Pope (2000). 

• Normalised autocorrelation function R E uu-∥ L E = ∞ 0 R E uu-∥ (r) dr, T E = L E σ u and ε = C ε σ 3 u L E • Structure functions S E 2-∥ , S E 2-⊥ (see figure 3.19) and S E 3-∥ -Injection regime: r ≫ L E S E 2-∥ (r) = 2σ 2 u and S E 2-⊥ (r) = S E 2-∥ (r) -Inertial regime: ℓ K ≪ r ≪ L E S E 2-∥ (r) = C 2 (εr) 2/3 and S E 2-⊥ (r) = 4 3 S E 2-∥ (r) with ℓ K = ν 3 ε 1/4 , τ K = ν ε 1/2 and C 2 ≃ 2.1 S E 3-∥ (r) = - 4 5 εr -Dissipative regime: r ≪ ℓ K S E 2-∥ (r) = σ 2 u r λ 2 and S E 2-⊥ (r) = 2S E 2-∥ (r) with λ = 15ν σ 2 u ε 1/2 and Re λ = σ u λ ν r S E 2 2σ 2 u injection 2/3 ℓ K L E

Lagrangian velocity and acceleration statistics

Through one-point/one-time and two-point/one-time statistics presented in the previous subsections, we have calibrated the turbulence generated in the LEM with a classical Eulerian approach, showing that this flow is a good experimental model of HIT. We propose now to compute one-point/two-time statistics, i.e. a Lagrangian characterisation of the flow. We are first interested by velocity statistics which are marginally affected by experimental noise but strongly altered by statistical bias. Then we present acceleration statistics which are on the contrary highly affected by noise but robust to statistical bias.

Velocity statistics

Second-order structure functions

We first focus on Lagrangian second-order structure functions which, at inertial scales, is expected to behave as (in analogy to Kolmogorov phenomenology for Eulerian statistics) [START_REF] Yeung | Lagrangian investigations of turbulence[END_REF][START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF] 

for τ K ≪ τ ≪ T L S L 2 (τ ) = ⟨[u(t + τ ) -u(t)] 2 ⟩ = C 0 ετ, ( 3.7) 
where u corresponds to any velocity component (the flow is isotropic), C 0 is an universal constant and the time average ⟨•⟩ is taken over an ensemble of particle trajectories. As explained in chapter 1, the constant C 0 depends on the Reynolds number and tends to C ∞ 0 ≃ 7 from DNS results. In experiments in von Kármán flows (Ouellette et al. 2006c), this constant has been shown to be anisotropic, even in the inertial scales.

The usual method to determine C 0 is to look at the compensated structure function such that

C 0 = max τ S L 2 (τ ) ετ . (3.8)
If the inertial range is long enough (i.e. at high Reynolds number), a plateau can be observed, but usually the value of C 0 is based on a peak rather than a clear plateau [START_REF] Yeung | Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence[END_REF][START_REF] Sawford | Kolmogorov similarity scaling for one-particle Lagrangian statistics[END_REF]). An alternative definition of this constant, discussed in particular by [START_REF] Huck | Lagrangian acceleration timescales in anisotropic turbulence[END_REF], is

C * 0 = max τ 1 ε dS L 2 dτ , ( 3.9) 
which is reached at the zero-crossing time of acceleration autocorrelation function τ 0 such that R L aa (τ = τ 0 ) = 0 (because for a stationary signal R L aa (τ ) = -RL uu (τ )). Thus we have .10) This alternative definition presents several advantages:

C * 0 = 1 ε dS L 2 dτ τ 0 . ( 3 
• From measurements of τ 0 (presented in the following), we exactly know where to consider the derivative of S L 2 to estimate C * 0 .

• The peak for C 0 appears in the inertial range, whereas the peak for C * 0 is at the transition between the dissipative and inertial ranges. We will see that this earlier position makes it less affected by statistical bias. • Based on simple models of S L 2 presented in the following [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF], we can show that .11) Based on these models which simply give an analytical formula for S L 2 , it can be shown that this value is an upper bound (reached for infinite Reynolds number) and both C 0 and C * 0 are close, but C * 0 is even closer.

C * 0 ≃ 2σ 2 u εT L . ( 3 
The measurements of S L 2 are presented in figure 3.20. We recall that, for an optimal handling of experimental noise, all the Lagrangian measurements we present are computed with the dtmethod presented in box dt-method in chapter 2, thus based on raw trajectories. The results are presented for one Reynolds number (the intermediate case 400) and the same analysis is performed for the six others. We can observe the transition from a ballistic (square) to a linear regime before a plateau at large time. While one could expect to find the plateau to be reached for τ ≳ T L and obtain a value of 2σ 2 u , the plateau appears at a much shorter time and reaches a lower value. This is to be related to the statistical bias illustrated in figure 3.5 in subsection 3.1.1: the velocity variance is decreasing with the length of the tracks, and thus S L 2 at large time is computed on a data set with a much lower σ u than the actual global velocity standard deviation.

Before discussing how to attenuate this bias, we show how to extract C 0 and C * 0 from these measurements in figure 3.21: C 0 corresponds to the peak of S L 2 (τ )/(ετ ), while C * 0 corresponds to the peak of (1/ε)dS L 2 /dτ at τ 0 . As expected [START_REF] Huck | Lagrangian acceleration timescales in anisotropic turbulence[END_REF], the values of C 0 and C * 0 are comparable but with C * 0 > C 0 , and the peak corresponding to C 0 is reached at a larger time compared to C * 0 . To compensate the bias on σ u depending on the track length, we propose to correct it [START_REF] Dumont | Étude des échanges énergétiques en convection thermique turbulente[END_REF]) by considering the corrected structure function with the corrective factor also computed with the dt-method. It is important to underline that the time average ⟨•⟩ for a given τ is done on tracks longer than τ . It explains that the corrective term is not 2σ 2 u but changes with τ because the variance changes with the track length as previously discussed.

S L 2,corrected (τ ) = 2σ 2 u ⟨u(t + τ ) 2 ⟩ + ⟨u(t) 2 ⟩ ⟨[u(t + τ ) -u(t)] 2 ⟩, (3.12) 
We represent the corrected structure function in figure 3.22. We can see that it exhibits a better developed inertial scaling and approaches the terminal value of 2σ 2 u at large scales, although statistics for long time lags have less statistical convergence due to the lack of very long tracks. The correction seems however to introduce some anisotropy between the three components, probably reminiscent of the large scale anisotropy of the measurement volume. Overall inertial statistics seem to be robustly unbiased for time lags τ ≲ 8τ K . Besides the effect of the corrections is marginal for time lags τ ≲ τ K . The extraction of C 0 and C * 0 is presented in figure 3.23. The determination of C 0 which peaks around 3τ K is therefore affected by the correction and it becomes difficult to extract a single value. On the contrary, C * 0 peaks at τ 0 which will be shown to be of the order of 1.6τ K , thus it is less affected by the statistical bias and leads to a more robust estimate.

The different estimations of C 0 and C * 0 are presented in figure 3.24. As explained, C * 0 is larger than C 0 . We also observe than the value of C * 0 around 7.5 with correction does not seem to depend on Re λ in the range of the error bars. We will consider the value of C * 0 with correction in the following (see table 3.2). 

Autocorrelation functions

As for the Eulerian statistics, the autocorrelation functions are simply related to the secondorder structure functions through the relation

S L 2 (τ ) = 2(σ 2 u -R L uu (τ )) with R L uu (τ ) = ⟨u(t)u(t + τ )⟩. The normalised autocorrelation function is defined as R L uu = R L uu /σ 2 u .
To account for the bias on σ u depending on the track length, we also define a corrected normalised autocorrelation function .13) We represent in figure 3.25 the two estimations of R L uu : the not corrected one (dot-dashed lines) and the corrected one (solid lines). The not corrected computation decorrelates really fast and is highly anisotropic, signature of the dependence of the standard deviation of velocity with the track length and of the anisotropy of the measurement volume. The integral time of this function is also not realistic and too small to be consistent with equation (3.11) given the estimates of ε and C * 0 obtained so far. The corrected function R L uu,corrected exhibits a slower decrease giving a more consistent integral time. A bias on anisotropy still remains at large time with a faster decorrelation for the two components corresponding to the shortest dimensions of the measurement volume. For the structure function, this bias becomes important around 8τ K which corresponds in this case to 0.05 s, which is also the time when the three components of the autocorrelation function start to diverge. We can also note that computing the autocorrelation function from the corrected second-order structure function gives the same result. Actually the relation

R L uu,corrected (τ ) = ⟨u(t)u(t + τ )⟩ ⟨u(t + τ ) 2 ⟩ ⟨u(t) 2 ⟩ . ( 3 
S L 2 (τ ) = 2(σ 2 u -R L uu (τ )
) fails without any correction. As we did for the Eulerian autocorrelation function, we want to extract an integral scale from the Lagrangian autocorrelation function, which is the Lagrangian integral time scale T L . In the same way, we also need to fit this function to extract it, in particular because only the part at small time (τ < 0.05 s) should be considered. We also would like to extract the short time scale corresponding to the dissipative part of the cascade, a Lagrangian equivalent of the Kolmogorov scale τ K . For this purpose, as partially already introduced, different stochastic models exist: the two-layer model from [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] or the infinite-layer model recently proposed by [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF]. For velocity, they give really close results (this is not the case for acceleration) and we use for simplicity the two-layer model. The Lagrangian autocorrelation function for velocity is defined as .14) characterised by a large time scale τ 1 (related to the Lagrangian integral time scale T L ) and a short time scale τ 2 (related to the Kolmogorov time scale τ K ). In figure 3.26, we fit R L uu,corrected with (3.14) by considering only the common part at small time. The values of τ 1 we find are consistent with C * 0 and will be discussed in the following.

R L uu (τ ) = σ 2 u τ 1 -τ 2 τ 1 exp - |τ | τ 1 -τ 2 exp - |τ | τ 2 , ( 3 

Acceleration statistics

We can do the same analysis for the Lagrangian autocorrelation function of acceleration

R L aa (τ ) = ⟨a(t + τ )a(t)⟩ (normalised R L aa = R L aa /σ 2 a )
. It can also be fitted with stochastic model solutions: we use the infinite-layer model [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF] because the two-layer model gives unsatisfactory statistics for acceleration. Within this model, the Lagrangian autocorrelation function for acceleration is given by (3.15) where the time scales τ 1 and τ 2 are respectively representative of the large and dissipative Lagrangian scales as in equation (3.14). The error function erf(x) = 2/ √ π x 0 e -t 2 dt is used, with the associated complementary error function erfc(x) = 1 -erf(x) . The autocorrelation functions of acceleration for three cases (230, 400 and 620) are presented in figure 3.27 with the fits (3.15). For the case 230 (τ K = 31 ms), we do not observe any marked signature of noise at small scale and the fit is accurate from the smallest to the largest considered time lags. For the case 400 (τ K = 6.4 ms), the part before the zero-crossing time appears to be slightly affected by noise but without compromising the determination of σ 2 a . For the case 620 (τ K = 1.7 ms), the noise highly affects the behaviour at small time with large oscillations. Nevertheless, the fit (3.15) gives satisfying evolutions up to τ = 0, even with a strong signature of noise as for the case 620, and in particular the zero-crossing time τ 0 appears to be quite robust. We also represent in figure 3.28 the seven normalised Lagrangian autocorrelation functions collapsed into a single curve by normalising the time τ with the zero-crossing time τ 0 .

R L aa (τ ) = σ 2 a 2 τ 1 √ πτ 2 exp - τ 2 2 τ 2 1 -erfc τ 2 τ 1 2τ 1 √ πτ 2 exp - τ 2 4τ 2 2 - τ 2 2 τ 2 1 -exp - |τ | τ 1 1 + erf |τ | 2τ 2 - τ 2 τ 1 -exp |τ | τ 1 erfc |τ | 2τ 2 + τ 2 τ 1 ,
The fitting of R L aa gives estimates of three parameters: σ 2 a , τ 1 and τ 2 . The values of τ 1 and τ 2 will be discussed in the following. The values of σ 2 a can be compared with the ones found with the filtering method presented in section 3.1.1. The acceleration variance is traditionally characterised by the scaling constant a 0 through the Heisenberg-Yaglom relation (Monin & Yaglom 1975):

σ 2 a = a 0 ν -1/2 ε 3/2 . (3.16)
The constant a 0 obtain from the different methods is represented in figure 3.29. The filtering with the two-layer model (known to be not very accurate for acceleration modelling) gives too large values whereas the filtering with the infinite-layer model gives values slightly larger but close to the values from the dt-method. Some improvement of the filtering method could enable to converge these values (noise modelling, finite length of the kernel, statistical bias). The constant a 0 is found to be around 5 and within the error bars does not depend on the Reynolds number Re λ , a consistent value with results from DNS [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Vedula | Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence[END_REF][START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF]) and experiments [START_REF] Voth | Measurement of particle accelerations in fully developed turbulence[END_REF], Qureshi et al. 2007[START_REF] Brown | Acceleration statistics of neutrally buoyant spherical particles in intense turbulence[END_REF]).

Discussion on Lagrangian parameters

We can now discuss the different parameters we found from the different statistics. The large time scale τ 1 can be computed from C * 0 with the approximated relation (3.11) (from the two-layer model [START_REF] Wiggins | The dynamical systems approach to Lagrangian transport in oceanic flows[END_REF], from R L aa with fit (3.15) (see figure 3.28) and also from the filtering method because the fit of σ 2 a f also depends on τ 1 and τ 2 . The different estimations of τ 1 are presented in figure 3.30. The estimations from C * 0 and R L uu show a good consistency. The estimation from R L aa is smaller, probably due to the sensitivity of the fitting to the slowly increasing part after τ 0 (see figure 3.28) and also the apparition of a slight statistical bias even for acceleration. The filtering method, designed to obtain the variance, highly underestimates τ 1 and an improvement of the method is required to understand it. As τ 1 is mostly characteristic of the velocity correlation time T L , we keep the values from R L uu which are presented in table 3.2. The short time scale τ 2 can be computed from the same methods (except from C * 0 ). The different estimations of τ 2 are presented in figure 3.31. The estimation from R L uu is satisfying at small Reynolds number but fails for large ones because the initial curvature of R L uu becomes too small. The estimation from R L aa is the most adapted for short-time dynamics and gives a consistent evolution with the filtering method especially at large Reynolds number. As τ 2 is mostly associated to the small-scale dynamics (acceleration), we keep the values from R L aa which are presented in table 3.2. From these two characteristic time scales τ 1 and τ 2 , which so far are essentially fitting parameters of consistent parametrisations of different measured quantities (filtered variance acceleration, velocity and acceleration autocorrelation functions), different physically relevant time scales can be extracted:

T L = τ 1 + τ 2 ≃ τ 1 with τ 2 ≪ τ 1 ), from R L uu with fit (3.14) (see figure 3.
• The zero-crossing time scale τ 0 defined as R L aa (τ = τ 0 ) = 0 and previously used to obtain C * 0 can be numerically extracted from the fitting function (3.15). The obtained values are presented in table 3.2 and we have τ 0 ≃ 1.6τ K . Slightly larger values are usually reported with τ 0 ≃ 2τ K from DNS [START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF] or experiments (Mordant et al. 2004c[START_REF] Volk | Acceleration of heavy and light particles in turbulence: Comparison between experiments and direct numerical simulations[END_REF][START_REF] Huck | Lagrangian acceleration timescales in anisotropic turbulence[END_REF]. • The acceleration integral time scale τ a is defined as

τ a = τ 0 0 R aa (τ ) dτ, (3.17) 
which can also be extracted from the fitting function (3.15). The obtained values are presented in table 3.2 and lead to τ a ≃ 0.75τ K . Because we find a slightly lower value for τ 0 /τ K , the ratio τ a /τ K is also slightly lower (τ a ≃ 0.9τ K from [START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF]).

The great interest of this time scale is that, through the kinematic relation .18) connecting the Lagrangian small time scale to the Eulerian equivalent. This relation (3.18) is well verified in figure 3.32.

R L aa (τ ) = -RL uu (τ ), we have the exact relation τ a τ K = C * 0 2a 0 , ( 3 
We remark in chapter 1 than a Lagrangian dissipative time scale analogous to the Eulerian Kolmogorov time scale τ K should be defined. We find here than τ 0 and τ a are proportional and close to τ K , thus these two time scales can be considered as dissipative Lagrangian time scales.

• The Lagrangian integral time scale T L is simply defined as

T L = ∞ 0 R L uu (τ ) dτ. (3.19)
For the two-layer model (3.14), we have

T L = τ 1 + τ 2 (the infinite-layer model gives T L = τ 1 exp(-(τ 2 /τ 1 )
2 )/ erfc(τ 2 /τ 1 ), the two estimations are close). The obtained values are presented in table 3.2. While for the dissipative dynamics we verified that τ a can be kimematically related to τ K through the universal Lagrangian constants C * 0 and a 0 , the connection between Eulerian and Lagrangian time scales is a challenging question of turbulence still unclear. A connection can be made through considering the relation (3.11

) C * 0 = 2σ 2 u /(εT L ) for T L and the classical relation introduced in box Cheat sheet for HIT ε = C ε σ 2 u /T E for T E .
We obtain then the following relation .20) This relation (3.20) is very well verified as shown in figure 3.33 with 

T E T L = C * 0 C ε 2 . ( 3 
T E /T L ≃ 2.8. case C * 0 σ a a 0 τ 1 τ 2 τ 0 τ a T L (m/s 2 ) (ms) (ms) 

Conclusion

This study proposes a detailed Eulerian and Lagrangian characterisation of an experimental homogeneous and isotropic turbulent flow, mainly on second-order statistics. All the Eulerian and Lagrangian parameters are measured with specific attention to minimise any experimental noise and statistical bias.

The measurements of the variances of velocity and acceleration, even though they are routine measurements, are deeply discussed. The recent dt-method (Machicoane et al. 2017a,b) is used to handle noise and an innovative filtering analysis method is proposed. This new method, very fast and simple to compute, is promising with some additional improvements to be able to obtain the same information than from the autocorrelation functions. The statistical bias of trajectory length is also highlighted to be correctly taken into account.

The flow presents good homogeneity and isotropy, showed with classical tools: PDFs, Lumley triangle, negligible mean velocity. Slightly leptokurtic velocity PDFs and highly non-Gaussian acceleration PDFs are reported.

Through second-order structure functions and autocorrelation functions, Eulerian statistics are computed to determine the mean energy dissipation rate ε, the Eulerian integral length scale L E and all classical associated turbulent quantities. Isotropy at inertial scales is showed through the relation between the longitudinal and transverse structure functions and pair dispersion statistics are used to obtain the energy dissipation rate. All the Eulerian parameters are summarised in table 3.1.

The end of this study is dedicated to Lagrangian statistics on velocity and acceleration. Velocity statistics, which present large time dynamics, are highly affected by statistical bias and adapted corrections are proposed. The difference between the constants C 0 and C * 0 is discussed and C * 0 is preferred both for its clear definition and more robust estimate. The constant C * 0 is found to be independent on Re λ with a value around 7.5 consistent with the highest Reynolds number limit predicted from DNS in HIT. The Lagrangian autocorrelation functions of velocity and acceleration are also computed, corrected and fitted with the parametrisation from infinitely differentiable stochastic models [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF]. From the velocity autocorrelation, the large time scale τ 1 mainly associated to the Lagrangian integral time scale T L is determined. From the acceleration autocorrelation, we obtain the acceleration variance and the acceleration constant a 0 found to be independent of Re λ with a value around 5 also consistent with DNS in HIT in high Reynolds number limit. We also have access to short time dynamics with the time scales τ 2 , τ 0 and τ a which satisfy successfully the exact relation (3.18). These time scales τ 0 and τ a can be considered as Lagrangian dissipative time scales and an associated Lagrangian Reynolds number Re L λ = T L /τ 0 or T L /τ a can be build. The connection between the Eulerian and Lagrangian time scales T E and T L with T E /T L ≃ 2.8 is also consistent with relation (3.20).

We estimate this study could be a new reference for experiments in HIT, with a full secondorder characterisation of a single flow at seven Reynolds numbers. The attention dedicated to the precise determination of physical quantities could be used as strong protocols to measure them, while the measurement of turbulent quantities is often really diverse between various studies. For the future, the computation of higher order statistics on this flow could be done. We also restricted to two-point/one-time and one-point/two-time statistics: two-point/two-time statistics, i.e. pair dispersion, is studied in the next section.

Pair dispersion

The problem of pair dispersion, i.e. describing the statistical dynamics of two particles separating in turbulent flows, is an important question in turbulence. Such a phenomenon has to be understood if we want to characterise how a patch of particles will grow and disperse in turbulence. Aware of this importance, Richardson proposed in 1926 a seminal paper dedicated to this question in the context of meteorology [START_REF] Richardson | Atmospheric diffusion shown on a distance-neighbour graph[END_REF]). Richardson proposes the following physical picture, showed in figure 3.34, with this explanation:

An historical perspective

A small dense cluster of marked molecules, represented by the dot in fig. 1 Richardson explains that, at some point, a kind of superdiffusive step happens with a large spreading of the patch. This superdiffusive behaviour would come from a turbulent diffusivity K T dependent of the separation between the particles. This dependence would be linked to the energy cascade (see figure 1.3): the pair of particles is 'climbing up' the cascade with increasing separation. By denoting ∆ the mean separation between the considered particles in turbulence, he shows from experiments and observations1 that K T ∝ ∆ 4/3 (t). Considering a diffusive process, we have ∆ 2 (t) ∝ K T t and thus the superdiffusive behaviour ∆ 2 (t) ∝ t 3 , the famous Richardson's t 3 regime.

He also introduces a non-Fickian diffusion model for the distance neighbour function q

∂q ∂t = ∂ ∂∆ K T (∆, t) ∂q ∂∆ , ( 3.21) 
where q(∆, t) is the PDF of the separation. Note that we write K T (∆, t), rather than K T (∆) as assumed by Richardson, because K T can also explicitly depend on t with K T ∝ t 2 as suggested by [START_REF] Batchelor | Diffusion in a field of homogeneous turbulence: II. The relative motion of particles[END_REF]. These two different scalings for K T give different results for q. Batchelor also describes the behaviour at small time, which is purely kinematic [START_REF] Batchelor | The application of the similarity theory of turbulence to atmospheric diffusion[END_REF]. Actually, at short times, we can write that

∆(t) = ∆ 0 + ∆v 0 t + O(t 2 ), (3.22) 
with ∆ 0 = ∆(t = 0) the initial separation and ∆v 0 = (d∆/dt)(t = 0) the initial relative velocity. We note here the rigorous introduction of the vectorial notation and the initial separation. By taking the square and the ensemble average, we obtain at short times

⟨|∆(t) -∆ 0 | 2 ⟩ = S 2 (∆ 0 )t 2 + O(t 3 ), (3.23)
with S 2 (∆ 0 ) the total second-order structure function (same equation as (3.5) with a simplified notation). The pair dispersion therefore starts at short times with this ballistic behaviour and then eventually switches to a cubic Richardson regime after the memory of the initial separation is lost. If we go further in the Taylor expansion in equation (3.22), an additional term ⟨∆v 0 • ∆a 0 ⟩t 3 appears in equation (3.23), with ∆a 0 = (d∆v/dt)(t = 0). We stress that this term cannot be responsible for the cubic Richardson regime because, in HIT, we have the exact relation ⟨∆v • ∆a⟩ = -2ε < 0, what would reduce the separation rate rather than amplify it.

Batchelor estimates that the transition from the square to the cubic Richardson regime happens at a time t B ∝ ε -1/3 ∆ 2/3 0 . In this study, we define this Batchelor time in the inertial range as

t B = S 2 (∆ 0 ) 2ε = 11 6 C 2 ε -1/3 ∆ 2/3 0 . (3.24)

Pair dispersion with K41 phenomenology

Richardson developed his theory without the K41 phenomenology. Actually the cubic Richardson regime is a natural dimensional consequence of K41 in the inertial range and does not require the introduction of scale dependent turbulent diffusivity. In this context, pair dispersion can be simply described with

⟨|∆(t) -∆ 0 | 2 ⟩ =        11 3 C 2 (ε∆ 0 ) 2/3 t 2 for t ≪ t B , gεt 3 for t B ≪ t ≪ T L . (3.25)
As we stated, the ballistic regime at small time is purely kinematic and is expressed for an initial separation in the inertial range (ℓ K ≪ ∆ 0 ≪ L E ). After the Batchelor time t B = S 2 (∆ 0 )/2ε, the cubic regime appears, which is the only possible scaling consistent with K41 if the dynamics does not depend anymore on the initial separation. The dependence with ε was introduced by Obukhov with the associated Richardson-Obukhov constant g ≃ 0.55 (the value is discussed in the following). After the Lagrangian time scale T L , according to Taylor theorem explained in chapter 1, the mean square separation grows linearly with time and usual turbulent diffusion takes place with a constant turbulent diffusivity.

Numerical simulations and experiments on pair dispersion

As Richardson did, the first experiments to characterise pair dispersion were carried out in atmosphere for meteorological purposes. The review by [START_REF] Salazar | Two-particle dispersion in isotropic turbulent flows[END_REF] discusses some of these early experiments. We focus here on laboratory experiments which require recent optical tracking methods. The first experimental study of pair dispersion was done by [START_REF] Jullien | Richardson pair dispersion in twodimensional turbulence[END_REF], but on 2D turbulence with simulated trajectories based on particle image velocimetry measurements. [START_REF] Ott | An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow[END_REF] performed particle tracking velocimetry in a three-dimensional turbulent flow generated by two oscillating grids, with a controversial observation of a t 3 regime with the introduction of a time shift. A complete experimental study was 2022)). The red to blue curves correspond to initial separations

∆ 0 = 0 -5ℓ K , 5 -10ℓ K , 10 -15ℓ K , 15 -20ℓ K , 20 -25ℓ K , 25 -30ℓ K , 45 -50ℓ K , 95 -100ℓ K , 195 - 200ℓ K , 295 -300ℓ K .
The other previous results have been shifted up by one decade for clarity.

proposed by [START_REF] Bourgoin | The role of pair dispersion in turbulent flow[END_REF] and Ouellette et al. (2006b) in a von Kármán flow with a good observation of the ballistic regime, but the trajectories were too short to observe a cubic regime. They also report measurements of the distance neighbour function q: they show that the formula for q based on the definition of turbulent diffusivity by Richardson (∆ 4/3 scaling) works for small initial separations close to the Kolmogorov scale ℓ K , whereas the definition by Batchelor (t 2 scaling) works for large initial separations. The same observation is done by [START_REF] Ni | Experimental investigation of pair dispersion with small initial separation in convective turbulent flows[END_REF] in turbulent thermal convection, where they succeed in observing a cubic regime with g ≃ 0.1. Also in turbulent thermal convection, [START_REF] Liot | Pair dispersion in inhomogeneous turbulent thermal convection[END_REF] were able to measure a cubic regime with g between 2 and 4. For both cases, the observation of the cubic regime was possible for initial separations around 3 -4ℓ K . At this point, precise experimental measurements of the cubic regime were really difficult to perform, without clear conclusion up to the recent work by [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF]. In a vertical water tunnel with state-of-the-art tracking algorithms, they are to able measure an unquestionable cubic regime (see figure 3.35) for a small initial separation (∆ 0 = 0 -5ℓ K ) with g = 0.542 ± 0.003.

Pair dispersion was already well characterised through DNS, where the tracking of pairs during a long enough time is easier. A large range of DNS studies have been performed [START_REF] Boffetta | Relative dispersion in fully developed turbulence: the Richardson's law and intermittency corrections[END_REF][START_REF] Goto | Particle pair diffusion and persistent streamline topology in two-dimensional turbulence[END_REF][START_REF] Biferale | Lagrangian statistics of particle pairs in homogeneous isotropic turbulence[END_REF][START_REF] Sawford | Reynolds number dependence of relative dispersion statistics in isotropic turbulence[END_REF][START_REF] Faber | Turbulent pair separation due to multiscale stagnation point structure and its time asymmetry in two-dimensional turbulence[END_REF][START_REF] Scatamacchia | Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence[END_REF][START_REF] Buaria | Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers[END_REF], 2016[START_REF] Polanco | Relative dispersion of particle pairs in turbulent channel flow[END_REF] with various statistics computed. We focus here on this common result: the actual observation of a cubic regime with g ≃ 0.55 but limited to initial separations around 3 -4ℓ K . For larger initial separations, the exponent of the power-law decreases.

To understand this cubic regime limited to a narrow range of initial separations, two explanations are proposed, recently put forward by the controversy around the paper by [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF].

• In their publication, [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] support the idea that, for a finite Reynolds number, the cubic regime can only be observed for an initial separation ∆ 0 ≃ 3ℓ K , then the slope decreases for larger initial separations. They propose an associated phenomenology based on experimental and DNS results (up to Re λ = 700) to defend this explanation. For them, a cubic regime for all initial separations in the inertial range is strictly reached only at infinite Reynolds number. For a finite Reynolds number, the cubic regime is only observed for ∆ 0 ≃ 3ℓ K , then the exponent decreases with an influence of the Reynolds number in log(Re λ ), a very slow evolution with Re λ .

• In a comment, [START_REF] Buaria | Comment on "Universality and intermittency of pair dispersion in turbulence[END_REF] claims this affirmation is wrong, supported by his DNS results from [START_REF] Buaria | Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers[END_REF][START_REF] Buaria | A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence[END_REF] (up to Re λ = 1000). He criticises the methodology used by [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] and explains that the cubic regime should be observed for a larger range of initial separations for increasing finite Reynolds numbers, and not for a specific value.

• In a reply, [START_REF] Tan | Tan and Ni Reply[END_REF] defend again their explanation, claiming the critics of [START_REF] Buaria | Comment on "Universality and intermittency of pair dispersion in turbulence[END_REF] are not founded, in particular the differences between the considered Reynolds numbers are not high enough to be conclusive.

Without taking a side, this controversy describes two opposites conceptions. Buaria ( 2023) is defending a 'classical' conception of finite Reynolds number effects: at large but finite Reynolds numbers, we observe a universal behaviour. In contrast, [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] proposes a much slower evolution: even with large finite Reynolds numbers, we cannot observe a cubic regime for a larger range of initial separations. Such a new explanation has strong implications, in particular that K41 phenomenology fails to describe it, showing that some non-Kolmogorovian scalings should exist.

Modelling of pair dispersion

As well as highlighting this problem, [START_REF] Richardson | Atmospheric diffusion shown on a distance-neighbour graph[END_REF] proposes a modelling by introducing the idea of non-Fickian diffusion with a turbulent diffusivity depending on the scale. However, as previously explained, different scalings are possible to build a cubic regime which lead to different distance neighbour functions. Moreover, it appears to be difficult to link this peculiar behaviour (scale-dependent turbulent diffusivity) to strong physical elements of turbulence description. In this sense, it appears to be an interesting empirical modelling, but difficult to extend.

Various alternative models have been proposed to describe pair dispersion, from stochastic modelling [START_REF] Sawford | Turbulent relative dispersion[END_REF], Yeung & Borgas 2004, Borgas & Yeung 2004[START_REF] Sawford | Gaussian Lagrangian stochastic models for multi-particle dispersion[END_REF] to other phenomenological models [START_REF] Goto | Particle pair diffusion and persistent streamline topology in two-dimensional turbulence[END_REF][START_REF] Faber | Turbulent pair separation due to multiscale stagnation point structure and its time asymmetry in two-dimensional turbulence[END_REF][START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF]. We do not propose here a review about these models. We would say that they are able to build a cubic regime consistent with Richardson's seminal idea. However, they do not succeed to find the expected value for the Richardson-Obukhov constant g and to reproduce and explain the peculiar behaviour illustrated by the controversy between [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] and [START_REF] Buaria | Comment on "Universality and intermittency of pair dispersion in turbulence[END_REF].

A last important point to remark is that, because this cubic regime seems to appear for a really precise value of the initial separation, its universal nature proposed by Richardson is questionable. This is in particular the idea defended in the recent paper by [START_REF] Elsinga | Non-local dispersion and the reassessment of Richardson's t 3 -scaling law[END_REF]. For the authors, the cubic regime is a pure transient regime between the ballistic and diffusive regimes. In this context, they show that the cubic regime can appear or not depending on the conditions. Such explanations support the point of view of [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF].

We propose in this manuscript a contribution based on an additional recent model by (Bourgoin 2015) called the ballistic cascade phenomenology. In subsection 3.2.1, we present this model with a new continuous formulation, more suitable for experimental comparisons and physical interpretations. Then, in subsection 3.2.2, we show experimental results based on our HIT data set to challenge this model. Finally, we conclude in subsection 3.2.3 by discussing our results which point to the interpretation of [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] and [START_REF] Elsinga | Non-local dispersion and the reassessment of Richardson's t 3 -scaling law[END_REF].

Ballistic cascade phenomenology

As presented in the introduction, various models try to model turbulent pair dispersion, especially to generate a consistent cubic superdiffusive regime between the ballistic and diffusive regimes. These models have usually trouble to find the expected value for the Richardson-Obukhov constant and, more important, often rely on elements without robust physical explanations. To overcome these difficulties, Bourgoin proposed some years ago [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF] a new model called ballistic cascade phenomenology. This simple model is based on the ballistic regime at small time and introduces minimal other elements with strong physical basis to successfully build the different regimes of pair dispersion consistent with observations from DNS and experiments. This model is based on discrete successive ballistic separation events and shows analytical similarities with the multi-scale stagnation point model of pair dispersion proposed by [START_REF] Goto | Particle pair diffusion and persistent streamline topology in two-dimensional turbulence[END_REF] and [START_REF] Faber | Turbulent pair separation due to multiscale stagnation point structure and its time asymmetry in two-dimensional turbulence[END_REF]. Although interesting and somehow successful, these models present some limitations, especially regarding their mathematical formulation as a discrete rather than a continuous process. This current formulation makes it difficult to fully confront it with some experimental results, as for instance the correlation time of relative velocity, which is one of the key ingredient of the ballistic regime in this model. Thus, we also propose here a more satisfying mathematical formulation based on continuous stochastic equations instead of discrete processes. We first present the model as proposed by [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF], then describe our new stochastic formulation.

Iterative formulation

The iterative formulation proposed by [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF] is based on the ballistic evolution at small time, which is purely kinematic, and leads for t ≪ t B to

⟨|∆(t) -∆ 0 | 2 ⟩ = S 2 (∆ 0 )t 2 , (3.26)
with ∆(t) the separation between two particles at time t, ∆ 0 = ∆(t = 0) and S 2 the total Eulerian second-order structure function as presented in section 3.1. The ensemble average ⟨•⟩ is taken over the pairs of particles. The main idea of the iterative model is that, for any initial separation, this relation (3.26) should holds during a short amount of time t 0 ∝ t B (∆ 0 ). We start with two particles with an initial separation D 0 (we note

D 0 = |∆ 0 |) which separate ballistically during a time t 0 ∝ t B (D 0 ) to reach a new separation D 1 such that D 2 1 = D 2 0 + S 2 (D 0 )t 2 0 (D 0
). Then we consider that D 1 is a new initial separation and the particles will again separate ballistically such that

D 2 2 = D 2 1 + S 2 (D 1 )t 2 1 (D 1 ) with t 1 ∝ t B (D 1
). Thus, we obtain an iterative process described by

D 2 k+1 = D 2 k + S 2 (D k )t 2 k (D k ), (3.27) with t k ∝ t B (D k ).
The physical relevance of this process is deeply discussed in [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF] and will be also discussed in the following to motivate a more satisfying stochastic formulation. At this point, we can notice that, to write (3.27), we consider that

⟨|∆(t) -∆ 0 | 2 ⟩ = ⟨|∆(t)| 2 ⟩ -⟨|∆ 0 | 2 ⟩
, which is obviously not true in general2 . The ensemble average ⟨•⟩ is also defined ambiguously: we actually do not really consider the statistical fluctuations of the separations in the process. This iterative process, described as a succession of ballistic steps, is called the ballistic cascade phenomenology and is illustrated in figure 3.36. It is based on a ballistic process at small time and driven by two elements which need to be defined: the structure function S 2 and the duration of each ballistic step t k .

• From K41 phenomenology in the inertial scales, as described in section 3.1, the total secondorder structure function for the process is

S 2 (D k ) = Cε 2/3 D 2/3 k , (3.28) with C = 11 3 C 2 for ℓ K ≪ D k ≪ L E .
This 'ingredient' of the model is really robust because the K41 phenomenology is well established in this context for S 2 .

• The duration of each ballistic step t k has to be smaller than the Batchelor time, i.e. the time to reach the cubic regime. Thus we consider that t k is a small fraction of t

B (D k ) = S 2 (D k )/2ε such that t k (D k ) = αt B (D k ) = αC 2 ε -1/3 D 2/3 k , ( 3.29) 
with α ≪ 1 to stay in the ballistic regime. The introduction of this α constant in this context of ballistic approximation is the new key 'ingredient' of the model. The physical meaning of α, that we will call in the following the ballistic constant, its connection to Kolmogorov constant C and Richardson-Obukhov constant g and its eventual experimental determination are the points we will investigate to challenge this phenomenology.

Based on the iterative process (3.27) with the relations (3.28) and (3.29), a simple geometric sequence can be determined

D 2 k = A k D 2 0 , ( 3.30) 
with From that, we also have access to t k with relation (3.29) and we can rewrite (3.30) with

A = 1 + α 2 C 3 4 . ( 3 
T k = k-1 j=0 t j D 2 k = gε   T k + D 2 0 gε 1/3   3 , (3.32) 
with

g = 2 A 1/3 -1 αC 3 =        2 1 + α 2 C 3 4 1/3 -1 αC        3 . (3.33)
Interestingly, this relation (3.33) connects the Richardson-Obukhov constant g to the Kolmogorov constant C and the ballistic constant α. Thus, to validate the model, [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF] first computes g as a function of α with equation (3.33) in figure 3.37. Knowing that g = 0.55 ± 0.05 and C = 7.7, two solutions are possible for α: we do not consider the solution larger than 1 (α ≪ 1 to comply the ballistic approximation) and keep the solution α = 0.118 ± 0.07 ≃ 0.12.

With the obtained value α ≃ 0.12, figure 3.38 shows the normalised pair dispersion based on equation (3.32). We can observe the transition from a ballistic to a cubic regime at t B with a remarkable agreement with experimental and DNS results.

This model presents interesting features:

• It is based on the unquestionable initial ballistic ingredient, because this is a simple consequence of a Taylor expansion, that the pair dispersion is ballistic at small time.

• We are able to build a t 2 then a t 3 regime with slopes and transition between regimes consistent with results from experiments and DNS. • In the analytical development presented here, we only consider an infinite inertial regime in the sense that K41 scaling is assumed whatever the separation. But the ballistic phenomenology can be applied considering a complete structure function, especially the injection regime to build the final diffusive regime.

• The simplicity of the model is noticeable: the dynamics is only driven by S 2 (D k ) and only carries two parameters C and α.

• The usual description of pair dispersion is done with two universal constants C and g. But the physical meaning of g is not obvious. On the contrary, this model is able to describe pair dispersion with C and the ballistic constant α which has a simple physical meaning, as presented in the following.

However, several limits are easily identified:

• As we previously noted, we assume here that

⟨|∆(t) -∆ 0 | 2 ⟩ = ⟨|∆(t)| 2 ⟩ -⟨|∆ 0 | 2 ⟩.
This point is deeply discussed in [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF], and, although it can be defended for HIT, its validity is controversial. Building a model without this assumption will be more robust.

• This model is developed to describe pair dispersion in 3D turbulence but the presented model is purely one-dimensional by considering only the norm of the separation. This model does also not consider any fluctuation of the separations, although pair dispersion is a statistical process with pairs exploring the wide range of statistical distributions as the process evolves, even if they are sampled with a unique initial separation. Building a model accounting for statistical fluctuations of separations is not consistent with the use of the norm which cannot be negative. A model per component should be considered.

• A discrete iterative process is described here, although the cascade process is obviously continuous. This discontinuity means that the pairs are perfectly correlated during each time step, and suddenly decorrelate to switch to the next step. Even if the velocity is not explicitly introduced, we can understand the duration of each ballistic time step t k as the correlation time of the relative velocity. The present discrete scheme is equivalent to assume a step function for the relative velocity autocorrelation function instead of a smooth function like an exponential decay. Considering the limit t k → 0 is not relevant to build a continuous model as it would kill the finite correlation time of the relative velocity, which is key in the process.

A better model should introduce a smooth correlation function of relative velocity with a continuous dependence of the correlation time T (∆) with the particle separation. Besides, in this picture α is a universal constant which characterises the correlation time T (∆) of relative velocity, and thus the inertia of separation, such that T (∆) = αt B (∆). We can also note that the fact that two values for α are possible, even if we reject the value larger than 1, is surprising.

From these observations, we present in the next point a new stochastic formulation of this model based on the same initial ingredients.

Continuous stochastic formulation Classical Ornstein-Uhlenbeck process for single particle dispersion

Our new model is based on Ornstein-Uhlenbeck (OU) process, which is used to describe a diffusive process as Brownian motion or turbulent dispersion. Before discussing explicitly the pair dispersion problem, let us briefly recall some basic properties of this process. An OU process obeys the following dynamics:

     dx(t) = v(t)dt, dv(t) = -v(t) dt T + 2σ 2 v T W (dt), (3.34) 
where x and v are the position and the velocity, respectively, of a particle (we only consider one component) and σ v and T are prescribed quantities defined just after. W (t) is a Wiener process and W (dt) its infinitesimal increment over dt, i.e. independent instances of a Gaussian random variable, zero average and of variance dt (a Gaussian white noise). To put it in perspective with the iterative model for pair dispersion, we can say that the first equation in (3.34) is locally ballistic in time and the second equation ensures a continuous correlation of the velocity with a finite correlation time.

It can be shown analytically that such a process gives the following dynamics for the mean square displacement (3.35) and for v

⟨x 2 ⟩(t) =      σ 2 v t 2 for t ≪ T, 2σ 2 v T t for t ≫ T,
         ⟨v 2 ⟩ = σ 2 v , R vv (τ ) = ⟨v(t + τ )v(t)⟩ σ 2 v = exp(-τ /T ), (3.36) 
where ⟨•⟩ denotes the average over an ensemble of trajectories (also time average for the velocity). We can see that σ v represents the standard deviation of velocity and T the integral time of velocity. Such a process can be easily simulated numerically through an iterative algorithm on position and velocity increments dx and dv, with W (dt) = √ dt×random number drawn from the standard normal distribution. As an example, we compute this process for 10 4 trajectories and illustrate the relations (3.35) and (3.36) 

σ v = 10 m/s. (b) Normalised mean square displacement ⟨x 2 ⟩(t)/(σ 2 v T 2
) as a function of the normalised time t/T : we observe the transition between the ballistic regime and the diffusive regime as presented in relations (3.35). (c) Normalised velocity autocorrelation function R uu as a function of the normalised time t/T : the solid line is an exponential decay as presented in relations (3.36).

Inhomogeneous Ornstein-Uhlenbeck process for pair dispersion

Through the Langevin equation, we generate a dynamic process for single particle trajectories driven by a variance σ 2 v and a correlation time scale T . The idea of extending the discrete ballistic cascade phenomenology for pairs to a continuous process relies on building such an OU process for particle pair separation ∆, rather than single particle displacement x. By doing so, the corresponding velocity to consider is the relative velocity ∆v = d∆ dt where variance is

⟨|∆v(∆)| 2 ⟩ = S 2 (∆)
, the total second-order structure function as introduced in the iterative formulation. We can then introduce the correlation time scale T (∆) = S 2 (∆) 2ε . A noticeable difference with the simple OU process just discussed is that now the associated variance and correlation time depend on the spatial variable ∆. In a classical OU process, the particles are spreading with constant properties, whereas in this case a pair of particles is spreading with evolving properties, because the pair dispersion is intrinsically a non-stationary process as pairs 'climb up' the turbulent cascade, they experience a different dynamics at each scale ∆. With this respect, it can be considered as an OU process with spatial inhomogeneity (i.e. Lagrangian instationarity). The OU process has been widely used to model single particle dispersion in inhomogeneous flows, and it requires to add an additional term in the velocity equation, called the drift term [START_REF] Thomson | Criteria for the selection of stochastic models of particle trajectories in turbulent flows[END_REF][START_REF] Minier | Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows[END_REF]. For single particle dispersion, B (∆ 0 ) as a function of the normalised time t/t B (∆ 0 ) based on 10 4 trajectories from simulations of process (3.37). We observe the expected transition between the ballistic regime and the cubic regime.

this term enables to respect the well-mixed condition: starting from a homogeneous seeding of particles in the flow, the seeding stays homogeneous. For pair dispersion, the role of the drift term is not clear and thus it will be discussed.

Furthermore, this process cannot be written for the norm ∆, otherwise the norm could be negative. Thus we adapt it for each component and write

         d∆ i (t) = ∆v i (t)dt, d∆v i (t) = -∆v i (t) dt T i (∆) + 2S 2,i (∆) T i (∆) W i (dt) + ∂S 2,i ∂∆ i dt, (3.37) 
where i = x, y or z represents each component,

∆ = i ∆ 2 i , ∆v i = d∆ i dt , S 2,i (∆) = S 2 (∆)/3 = C 3 ε 2/3 ∆ 2/3 and T i (∆) = α S 2,i (∆)
2ε . The three Gaussian increments W i (dt) are not correlated between components, but the dynamics of the three components are in some extent linked because S 2,i and T i depend on the norm ∆.

Based on equations (3.37), we numerically simulated 10 4 'trajectories' of pairs with an iterative algorithm. With α = 0.135, we compute in figure 3.40 pair dispersion statistics. As for the iterative regime, we observe a cubic regime for t > t B . As it is done by [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF], we also compute g as a function of α in figure 3.41. The curves from the iterative model and the stochastic model without drift term present similar shapes (a cubic regime is observed even without the drift term), whereas the stochastic model with drift term presents a monotonic function. This more satisfying monotonic evolution enables to extract a single value for α. Knowing that g = 0.55 ± 0.05 and C = 7.7, we obtain α = 0.135 ± 0.07, the value we use for statistics in figure 3.40. This value is also close to the value of 0.12 found with the iterative model.

At this point, there is a minimal added value with respect to the iterative formulation. The great advantage of this stochastic model is that the relative velocity exists within the model and thus relative velocity statistics can be computed. First, to check consistency, we compute S 2 based on tracks of pairs simulated from the model and compare it with the input S 2 (∆) = Cε 2/3 ∆ 2/3 in figure 3.42. We initially thought that the drift term was important for Figure 3.41. Determination of g as a function of α based on 10 4 trajectories from simulations of process (3.37) for 10 3 values of α (logarithmically spaced between 10 -2 and 10 1 ). The cases with or without drift are compared, and the result from [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF] is also represented. Figure 3.42. Total second-order structure function S 2 from tracks of the stochastic model compared with the imposed S 2 . The initial separation is ∆ 0 = 10ℓ K . For ∆ > ∆ 0 , no difference is observed between the curves. self-consistency of the model and its absence would lead to deviations to input statistics. But the input S 2 is correctly retrieved both with or without the drift term.

The second point to check is the normalised autocorrelation of relative velocity R ∆v∆v , noted R ∆v for simplicity. The dynamics of relative velocity is a non-stationary process, thus we compute it only relatively to the initial separation. This instationarity has also to be taken into account for the normalisation of the autocorrelation. From these two aspects, we define the normalised autocorrelation function of the relative velocity as .38) with ∆ 0 = ∆(t = 0). The ensemble average ⟨•⟩ is taken over the pairs of particles. Such definition is also used by [START_REF] Shnapp | Generalization of turbulent pair dispersion to large initial separations[END_REF]. We represent in figure 3.43 this function with or without drift term. In both cases, all the curves collapse into a single curve what is consistent with the idea that their correlation time is given by T (∆). Up to T the function is reasonably approximated as an exponential decay, then it slows down probably because of the non stationarity. The function without drift term is closer to the exponential decay. At this point, we could deepen the understanding of several elements:

R ∆v i (τ, ∆ 0 ) = ⟨∆v i (0)∆v i (τ )⟩ ⟨∆v i (0) 2 ⟩ ⟨∆v i (τ ) 2 ⟩ , ( 3 
• The role of the drift is still an open question: its absence affects the value of α and the shape of R ∆v without being able to conclude.

• The question of the non stationarity and the analytical determination of R ∆v could be envisaged in a purely mathematical treatment of the question.

• We consider here each component ∆v i = ∆v • e i with e i an arbitrary constant unity vector (related to our basis (x, y, z) here). In [START_REF] Shnapp | Generalization of turbulent pair dispersion to large initial separations[END_REF], they consider ∆v = ∆v • ∆/∆, i.e. the longitudinal relative velocity. Some preliminary tests have been done with this different definition, without conclusive results.

However, a confrontation with experiments with the computation of R ∆v would be more efficient to understand its behaviour.

Experimental pair dispersion

We previously presented in figure 3.15(a) pair dispersion statistics to obtain ε through the total second-order structure function. We present the same statistics in figure 3.44 with appropriate normalisation to show one single curve for all initial separations. We observe noise at small time (as a departure of t 2 behaviour) and poor statistical convergence at large time. We do not observe any t 3 regime because we are limited to pairs of tracks shorter than the Batchelor time t B .

Despite this limitation, we are able to compute the normalised autocorrelation function of relative velocity R ∆v presented in figure 3.45. We observe an ensemble of decreasing functions with an integral time increasing with the initial separation. To extract the value of the introduced ballistic constant α, we first have to check if the integral time of R ∆v actually scales as the Batchelor time t B , i.e. as ε -1/3 ∆ 2/3 0 . We recall that this scaling is deduced from K41 phenomenology in the inertial range and the initial separations we are considering are all in the inertial range (ranging from 10 to 1000ℓ K depending on the Reynolds number). To extract this integral time scale, we could integrate the curves, but they do not converge correctly to zero due to a lack of statistical convergence at large time. Thus we prefer to scale the time to check the scalings in ε and ∆ 0 . In figure 3.46, we show R ∆v as a function of the scaled time t/ε -1/3 for all experiments carried out at different Reynolds numbers and for four initial separations (each figure corresponds to a given initial separation). All the curves collapse into a single curve for each initial separation. For the smallest separation, a slight dependence on the Reynolds (case 400). number seems to be observed, probably because the noise at small time introduces some offset in the normalisation. Therefore, the integral time scale of these curves actually scales as ε -1/3 . In the same way, we show in figure 3.47(a) R ∆v for a fixed value of ε as a function of the scaled time t/∆ 2/3 0 . We observe that the curves do not collapse for this scaling but a better collapse is obtained in figure 3.47(b) where time is scaled by ∆ 1/2 0 . The same scaling is observed for the other Reynolds numbers.

Surprisingly, it appears that the characteristic time scale T of relative velocity does not scale as the Batchelor time, thus as predicted by K41 phenomenology. In this context, we cannot extract a ballistic constant α and T is not proportional to ε -1/3 ∆ 2/3 0 but rather (3.39) with L ∆ another characteristic length scale to determine. The fact that the scaling in ε -1/3 is not modified suggests that L ∆ is independent of Re λ . This would suggest that L ∆ might be associated to the large integral length scale L E rather than the dissipative scale ℓ K . The exponent γ is 0 for K41 scaling but appears to be around 1/6 from our experimental results. This unexpected non-Kolmogorovian scaling seems also to be observed with DNS results in 2D

T ∝ ε -1/3 ∆ 2/3-γ 0 L γ ∆ ,
turbulence by a Japanese team [START_REF] Kishi | Non-Kolmogorov scaling for two-particle relative velocity in two-dimensional inverse energy-cascade turbulence[END_REF][START_REF] Kishi | Two-time Lagrangian velocity correlation function for particle pairs in two-dimensional inverse energy-cascade turbulence[END_REF]. These results presented here for 3D turbulence should also be confirmed with DNS data.

Our stochastic model could also be adapted with this new scaling, by defining the ballistic constant with T = αε -1/3 ∆ 2/3-γ 0 L γ ∆ . This new scaling is not so surprising: with the current model, we observe a cubic regime for any initial separation, although the experimental and DNS results show a limited range of initial separations. With this new scaling, we could expect the apparition of the cubic regime for a really specific initial separation, then a decreasing power law for larger separations.

A qualitative explanation can be given to justify this point: if we look at the iterative model, we can see that the cubic regime comes from S 2 T 2 ∝ ∆ 2 0 . To keep the cubic regime with this new scaling, we should have S 2 ∝ ∆ 2/3+2γ 0 = ∆ 0 for γ = 1/6. In the dissipative regime, S 2 goes as ∆ 2 0 and, in the inertial range, it goes as ∆ 2/3 0 , thus in the transition between the two regimes there is an intermediate behaviour going as ∆ 0 and this transition should be around some ℓ K , corresponding to the specific initial separation to observe a cubic regime. To be consistent with the ideas developed by [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF], we could also imagine that the exponent γ is a function of Re λ , but it is strictly hypothetical for the moment.

Conclusion

A study of pair dispersion is proposed here based on the ballistic cascade phenomenology and experimental results in HIT. We focus on relative velocity autocorrelation function whose the time scale seems to present a peculiar non-Kolmogorovian scaling.

We first rewrite the ballistic cascade phenomenology proposed by [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF] with a continuous stochastic formulation based on OU process. In particular, this successful reformulation shows clearly the role of the ballistic constant α in the relative velocity autocorrelation. An important mathematical work can be continued to improve the understanding of the model, in particular the role of the drift term, the shape of the relative velocity autocorrelation and also a potential analytical resolution. Its connection with existing stochastic models for pair dispersion should be also investigated.

This model is compared with experimental results by computing the relative velocity autocorrelation function to extract the value of the ballistic constant. However, it appears that the characteristic time scale does not scale as K41 in the inertial range. This non-Kolmogorovian scaling could be linked to the observation of a cubic regime only for a specific value of the initial separation, supporting ideas proposed by [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] and [START_REF] Elsinga | Non-local dispersion and the reassessment of Richardson's t 3 -scaling law[END_REF].

The stochastic model we propose could be adapted to account for this new scaling to study the consequences on pair dispersion.

4

CHAPTER

Turbulent free round jet

Based on the experimental set-up presented in section 2.2 and the Lagrangian data sets we describe in subsection 2.4.2, we propose now a Lagrangian study of a highly inhomogeneous flow: the turbulent free round jet. In the first section 4.1, we characterise the influence of an inhomogeneous seeding (nozzle seeding) on the Lagrangian flow, leading to new information about entrainment and turbulent diffusion in a jet. In the second section 4.2, we use a new stationarisation method to overcome the inhomogeneity of the flow and compute Lagrangian statistics to obtain the evolution of Lagrangian quantities along the jet axis. Free shear flows, such as jets, wakes or mixing layers, are common flows in nature, industry and the laboratory, with turbulence arising from mean velocity differences, i.e. from shearing (Pope 2000). The incompressible free round jet, which is the flow studied in this chapter, is a simple configuration generated by a high-speed fluid issuing from a small source (nozzle) into a large reservoir with quiescent fluid. The jet eventually grows into a flow which is statistically stationary, although inhomogeneous in space, with a turbulent core surrounded by a slow (almost at rest) non-turbulent flow. Parcels of fluid from the quiescent region are constantly crossing the turbulent/non-turbulent interface (TNTI) feeding the jet [START_REF] Zhou | Energy cascade at the turbulent/nonturbulent interface[END_REF][START_REF] Cafiero | Nonequilibrium scaling of the turbulent-nonturbulent interface speed in planar jets[END_REF]), a process called entrainment [START_REF] Corrsin | Free-stream boundaries of turbulent flows[END_REF][START_REF] Philip | Large-scale eddies and their role in entrainment in turbulent jets and wakes[END_REF]. The overall dynamics within the core of the jet therefore results from both contributions: fluid parcels which have been injected through the nozzle together with fluid parcels which have been The major relevance for many natural and industrial systems (volcanic eruptions, sprays, rocket exhaust, chemical injectors, etc.) together with remarkable properties of free round jets have motivated numerous theoretical and experimental studies of this flow over almost a century [START_REF] Corrsin | Investigation of flow in an axially symmetrical heated jet of air[END_REF][START_REF] Hinze | Transfer of heat and matter in the turbulent mixing zone of an axially symmetrical jet[END_REF][START_REF] Corrsin | Further experiments on the flow and heat transfer in a heated turbulent air jet[END_REF][START_REF] Wygnanski | Some measurements in the self-preserving jet[END_REF], Panchapakesan & Lumley 1993a, Hussein et al. 1994, Pope 2000[START_REF] Schlichting | Boundary-Layer Theory[END_REF]. One of the most remarkable properties revealed by these studies is that, sufficiently far downstream from the nozzle (typically a few tens of nozzle diameters D), free round jets become self-similar with increasing downstream distance z from the nozzle: the spatial dependence of velocity statistics (including the mean and fluctuating axial and radial velocity profiles) can be simply rescaled and expressed in terms of a single spatial variable η = r/z, where r is the radial coordinate (note that due to axisymmetry, the statistics of free round jets are trivially independent of the circumferential coordinate θ). Interestingly, self-similarity does not only hold for the kinematic properties of the jet, but also for its mixing properties. For instance, if a passive scalar (temperature, dye, aerosol, etc.) is injected through the nozzle, the streamwise evolution of the concentration field also exhibits self-similarity with spatial profiles only dependent on the self-similar variable η = r/z (Dowling & Dimotakis 1990).

Inhomogeneous seeding

Self-similarity has profound consequences, both on physical properties and on the development of reduced models for the jet. From the physical point of view, one of the most celebrated consequences of self-similarity in a free round jet (associated with the specific decay laws of that geometry) is for example that the turbulent Reynolds number Re in the self-similar region is independent of the distance to the nozzle (Pope 2000). On the modelling side, self-similarity combined with other relevant approximations (such as the turbulent boundary-layer equations) allows derivation of analytical solutions for the jet velocity and concentration profiles, in terms of effective turbulent transport coefficients such as the turbulent viscosity ν T and the turbulent diffusivity K T (related by the turbulent Prandtl number σ T = ν T /K T ). These coefficients are crucial to model the turbulent mixing of passive scalars injected through the nozzle (Batchelor 1957[START_REF] Chua | Turbulent Prandtl number in a circular jet[END_REF][START_REF] Tong | Passive scalar dispersion and mixing in a turbulent jet[END_REF], Pope 2000[START_REF] Chang | Turbulent Prandtl number in neutrally buoyant turbulent round jet[END_REF]. However, in spite of the relatively deep knowledge achieved today on free round jets, important questions still remain, even regarding such simple large-scale momentum and mass transport properties. In particular, the precise role of entrainment in the self-similar velocity and concentration profiles, in the momentum and mass transport coefficients and in their eventual spatial inhomogeneity is not yet elucidated.

From the seminal study of entrainment by [START_REF] Morton | Turbulent gravitational convection from maintained and instantaneous sources[END_REF], numerous studies have been carried out to characterise it, from simulations [START_REF] Mathew | Some characteristics of entrainment at a cylindrical turbulence boundary[END_REF][START_REF] Watanabe | Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers[END_REF] to particle image velocimetry [START_REF] Westerweel | Mechanics of the turbulent-nonturbulent interface of a jet[END_REF], 2009[START_REF] Mistry | Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet[END_REF], 2019) and particle tracking velocimetry [START_REF] Wolf | Investigations on the local entrainment velocity in a turbulent jet[END_REF]. Nevertheless, they have mainly focused on the dynamics of the TNTI and the mechanisms in its vicinity by which ambient parcels of fluid get trapped into the core of the jet, generally distinguishing the role of large-scale structures (engulfment) and small-scale eddy motions (nibbling) [START_REF] Philip | Large-scale eddies and their role in entrainment in turbulent jets and wakes[END_REF]). 1 We do not address here such, rather local, entrainment mechanisms, but rather question, from a Lagrangian perspective (entrainment is innately Lagrangian), the impact of entrainment on the global Eulerian properties of the turbulent core of the jet. In other words, when describing the large-scale characteristics of the jet, such as the self-similar mean axial and radial velocity profiles and the turbulent viscosity and diffusivity, can we distinguish (and eventually separate) the contribution from fluid parcels which have been injected through the nozzle (which we shall call in the sequel nozzle seeded particles) and that from fluid parcels which have been entrained into the jet (which we shall call in the sequel entrained particles)? The question is far from rhetorical as in many practical situations nozzle seeded and entrained particles are physically distinct, although coupled. It is the case for instance of sprays, eruptions, chimneys, etc. where actual particles or parcels of fluid carrying a passive scalar (concentration field, temperature, etc.) of interest are injected solely through the nozzle although their subsequent spread is affected by their coupling with the parcels of fluid entrained from the ambient medium. How deep into the core of the jet do entrained particles influence the dynamics of nozzle seeded particles? How substantial is their influence on the effective transport coefficients? In particular, can we quantitatively measure and/or predict the influence of entrained particles on the dispersion of nozzle seeded particles? Is this influence homogeneous in space or does it impact differently the borders and the centre of the jet? Such are the questions we aim to address in the present section.

In reference Eulerian measurements (such as hot-wire anemometry) carried out to characterise turbulence in jets, both contributions are naturally entangled as the sensor does not distinguish the origin (nozzle or ambient) of the fluid parcels it is probing. The distinction between nozzle seeded and entrained particles is intrinsically Lagrangian as it concerns specifically tagged particles according to the initial position of their trajectories. In this respect, this distinction can also be investigated with Eulerian measurement techniques based on particles, such as particle image velocimetry or laser Doppler velocimetry, if they are used with the Lagrangian conditioning presented at the end of this introduction, which is an inhomogeneous seeding situation. This inhomogeneous seeding differs from the usual homogeneous seeding required to access truly Eulerian fields. Effects of such an inhomogeneous seeding are known and generally classified, in studies aiming at exploring global jet properties (Hussein et al. 1994, Martins et al. 2021), as sources of experimental bias. However, to our knowledge, no quantitative physical understanding has been proposed to describe this bias. This metrological aspect is an additional motivation to study the distinction between nozzle seeded and entrained particles.

Beyond the fundamental or metrological aspect of disentangling the role of nozzle seeded and entrained particles on the overall jet dynamics, this distinction is also of relevance for applications such as particle-laden jets and the mixing of a passive scalar injected within the jet. In such situations, particles (or substances) come from the nozzle and get dispersed as they mix with entrained particles. Note that in particle-laden jets, the dynamics of the particles may be further complicated by their finite inertia (related to their finite size and/or density mismatch relative to the carrier flow). We do not address in the present chapter the role of inertia, and will only consider the case of Lagrangian (without inertia) tracers whose dynamics reflects that of fluid parcels. However, we will show in the conclusion that some general ideas of our study are still relevant for jets laden with inertial particles.

To achieve such a Lagrangian distinction, the present study focuses on the dynamics of tracer particles solely injected through the nozzle of the jet (nozzle seeding), which we compare with the known behaviour of the global Eulerian properties of the jet, which naturally includes both (nozzle seeded and entrained) contributions. Our study combines experimental measurements together with new theoretical formulations derived specifically for the sole contribution of the flow tagged by nozzle seeded particles, and accounting for mass conservation and self-similarity. By doing so, several remarkable findings are obtained:

• We experimentally show that the mean axial velocity profile associated with nozzle seeded particles marginally differs from the global Eulerian profile. Whereas the measured mean radial velocity profile of the flow tagged by nozzle seeded particles is found to be compressible (i.e. non-divergence free): the continuity equation, ensuring the zero divergence of the global Eulerian velocity field, is only fulfilled if both nozzle seeded and entrained particles are considered together and not separately.

• This observation leads to the consideration of the tracer mean concentration field for the continuity equation. A simple relation between the mean axial and radial velocity profiles of the nozzle seeded flow is found and, by comparison with its well-known counterpart for the global Eulerian description of the jet, allows clear identification of the contribution due to entrainment, up to the core of the jet.

• By describing the dispersion of nozzle seeded particles as a classical advection-diffusion process, we relate the turbulent diffusivity K T (η) (which is assumed space dependent and selfsimilar) to the effective compressibility of the nozzle seeded flow previously mentioned, hence to the entrainment process. Based on this relation, we propose a novel approach to measure the spatial profile of K T (η), which is found to depend on the mean axial velocity and tracer concentration profiles. This approach can be extended to the estimate of the turbulent viscosity ν T (η), which follows a similar relation and thus is also related to entrainment. Finally, combining these two quantities, we derive a simple expression of the turbulent Prandtl number σ T (η) which is experimentally measured. For this section 4.1, we use the data set with a mass loading of 0.05% (smaller 'pollution' by entrained particles) and only the far-field (FF) case (well-reached self-similarity), as presented in section 2.2 and subsection 2.4.2.

Mean velocity field

We define the axial velocity U (z, r, θ, t) with z the axial coordinate, r the radial one, θ the circumferential one and t the time. We also define the radial velocity V (z, r, θ, t) and the circumferential velocity W (z, r, θ, t). The z axis is the jet axis and z = 0 is the nozzle exit position (see figure 4.1(b)). The Eulerian statistics (i.e. time averaged statistics) of these quantities (mean fields, Reynolds stresses, etc.) are well known through classical Eulerian metrology, such as hot-wire or laser Doppler anemometry [START_REF] Wygnanski | Some measurements in the self-preserving jet[END_REF], Panchapakesan & Lumley 1993a, Hussein et al. 1994, Pope 2000[START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF]. Time average is denoted ⟨•⟩ and time averaged quantities are referred as mean quantities (the studied jet is in a stationary state).

In the present subsection, we focus on the mean axial velocity field ⟨U ⟩(z, r) (independent of θ because of axisymmetry) and the mean radial velocity field ⟨V ⟩(z, r) which is smaller than ⟨U ⟩ by one order of magnitude. The mean circumferential velocity ⟨W ⟩ is zero (experimentally it was found to be four orders of magnitude smaller than ⟨U ⟩) because we are considering a non-swirling jet. We will also investigate in the next subsection the mean concentration field ⟨φ⟩(z, r) of nozzle seeded particles as they spread.

We shall distinguish in the sequel the Eulerian fields of the global jet, ⟨U ⟩ and ⟨V ⟩ (which would be measured with a homogeneous seeding), and the fields of the flow solely tagged by nozzle seeded particles, which we denote ⟨U φ ⟩ and ⟨V φ ⟩ (other related quantities would also be differentiated from those of the global jet with the subscript φ).

In practice, these fields are retrieved from the aforementioned Lagrangian experiments, based on nozzle seeded particle trajectories. Thus ⟨•⟩ refers experimentally to time and ensemble average: we consider all particles for all films and all time steps and bin the measurement volume to compute the mean axial or radial velocity of all particles inside each bin (several 10 3 or 10 4 particles for each bin). The resulting fields can be compared with the mean fields from Eulerian measurements. Since the flow is only tagged with nozzle seeded particles, we eventually expect to observe differences between the retrieved velocity field and the Eulerian velocity field of the global jet: ⟨U ⟩ ̸ = ⟨U φ ⟩ and ⟨V ⟩ ̸ = ⟨V φ ⟩. In the two following points, dedicated respectively to the mean axial and radial velocity, we first recall the classical known properties of the mean Eulerian velocity field (compiled in Pope (2000) and [START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF]), then we compare them with those Lagrangian-based measurements.

Mean axial velocity

We first recall known properties of the mean axial velocity in the self-similar region far from the nozzle (approximately for z ≳ 20D with D the nozzle diameter). We consider the mean centreline velocity U 0 (z) = ⟨U ⟩(z, r = 0), and its half-width r 1/2 (z) such that ⟨U ⟩(z, r = r 1/2 (z)) = U 0 (z)/2. Self-similarity enables characterisation of the mean axial velocity by these three relations with U J the jet axial velocity at the nozzle, z 0 a virtual origin and B a dimensionless constant (typical values are z 0 ≃ 4D and B ≃ 5.8 according to Pope (2000) and [START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF]);

U 0 (z) = BU J D z -z 0 , (4.1) (a) (b) (c) (d)
r 1/2 (z) = S(z -z 0 ), (4.2) 
with S a dimensionless constant (typical value is S ≃ 0.094 according to Pope (2000) and [START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF];

f (η) = ⟨U ⟩(z, r) U 0 (z) , ( 4.3) 
which is the radial profile in its self-similar form with the dimensionless self-similar coordinate η = r/(z -z 0 ). The self-similar mean axial velocity profile f must satisfy some constraints: by definition f (0) = 1, while f ′ (0) = 0 because f is even and smooth (the prime notation represents the derivative with respect to the self-similar variable η). It is also expected to decrease towards 0 as η increases (i.e. downstream and/or outwards the jet). However, no exact analytical expression is known for f . Because the jet and other free shear flows are slender flows, i.e. they do not extend far in the lateral direction and mainly extends in the axial direction, the averaged turbulent boundary-layer equations are the usual theoretical framework for the jet [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. Using these equations as an approximation for the jet dynamics and assuming a constant (uniform) turbulent viscosity (Pope 2000[START_REF] Schlichting | Boundary-Layer Theory[END_REF]) (which will be further discussed in subsection 4. 1.3 and appendix D.2), an approximate analytical expression can be calculated for f leading to a squared Lorentzian function

f (η) ≃ (1 + Aη 2 ) -2 , ( 4.4) 
with A = ( √ 2 -1)/S 2 . Experimentally, the squared Lorentzian profile is found to reasonably hold near the jet centreline (η ≲ 0.15), but to deviate from the measured profile at larger η. This indicates that an accurate description of the self-similar mean profile must account for the non-uniformity of the turbulent viscosity, which requires to be experimentally determined. It is empirically found that an improved global fit of f is obtained using a Gaussian function [START_REF] So | On similarity solutions for turbulent and heated round jets[END_REF] f (η) ≃ e -Aη 2 , (4.5)

with A = log(2)/S 2 . The estimate of the mean field ⟨U φ ⟩ (based on experimental trajectories with a nozzle seeding) is performed in cylindrical coordinates (z, r, θ) and then averaged over θ (due to axisymmetry) leading to statistics in the two-dimensional space (r, z). In practice, we bin space in r and z every 0.5 mm and compute the mean axial velocity of the particles inside each bin. For the self-similar profiles, we bin in η by steps of 0.01. Figure 4.2 shows the radial profiles of the mean axial velocity ⟨U φ ⟩(z, r) at different downstream positions z, the axial evolution of the mean centreline velocity U 0φ (z) and of the half-width r 1/2φ (z) and the self-similar profile f φ (η) measured in our experiment when probing solely nozzle seeded particles.

When comparing the nozzle seeded particle measurements with the classical Eulerian relations given by (4.1), (4.2) and ( 4.3), we observe an excellent agreement. In particular, selfsimilarity is very well satisfied, with a Gaussian self-similar profile f φ and fitting parameters B φ = 5.3 and S φ = 0.105 (A φ = 63), which are consistent with those classically determined for the global Eulerian jet dynamics (Pope 2000[START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF]. The value of S φ is found to be slightly larger than the values reported in Eulerian measurements which usually span between 0.09 and 0.10 [START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF], suggesting that the nozzle seeded particle profile is slightly wider than the actual Eulerian profile.

Before studying the mean radial velocity, we propose a Lagrangian interpretation of f ≃ f φ , based on the specific dynamics of entrained particles. This explanation is hypothetical and would require longer particle trajectories to be verified. Entrained particles, which correspond to fluid particles initially quiescent, cross the TNTI to reach the turbulent core. Then their trajectories become indistinguishable from those of nozzle seeded particles (their initial position is needed to distinguish them). Thus they have the same axial contribution, leading to f ≃ f φ . However, f φ is slightly wider than f , which could be explained by a small influence of the initial position. Contrary to the nozzle seeded particles which start with a high axial velocity decreasing with their spreading, the entrained particles start with a null axial velocity which becomes gradually higher coming closer to the axis. Therefore, entrained particles strongly accelerate along z whereas nozzle seeded particles decelerate, a difference of dynamics that could lead to a broadening of f φ which does not take into account the contribution of entrained particles.

Despite this small difference, we will consider in the sequel that f ≃ f φ and that the axial dynamics of nozzle seeded particles accurately represents the global axial Eulerian dynamics, even if entrained particles are not probed. This will be further qualitatively discussed in the next point and quantitatively justified in subsection 4.1.3. We will see that, on the contrary, entrained particles play a crucial role in the mean radial velocity profile.

Mean radial velocity -an incompressibility paradox

We now perform the same study for the mean radial velocity. As previously done with the mean axial velocity ⟨U ⟩, we can define a self-similar profile for the mean radial velocity ⟨V ⟩

g(η) = ⟨V ⟩(z, r) U 0 (z) . (4.6)
Interestingly, in an incompressible jet, ⟨U ⟩ and ⟨V ⟩ are linked through the continuity equation

∇ • ⟨U ⟩ = 0, (4.7) 
where ⟨U ⟩ = ⟨U ⟩e z + ⟨V ⟩e r . Combining equation (4.1) and definitions (4.3) and (4.6), the continuity equation (4.7) can be rewritten as (Pope 2000)

η(ηf (η)) ′ = (ηg(η)) ′ , ( 4.8) 
which can be integrated to obtain the following general relation between the self-similar mean radial and axial profiles for the global Eulerian dynamics of an incompressible free round jet: Knowing that f (0) = 1 and f ′ (0) = 0, we deduce that g(0) = 0, g ′ (0) = 1/2 and g ′′ (0) = 0.

g(η) = ηf (η) - 1 η η 0 xf (x) dx. ( 4 
Using the empirical Gaussian approximation (4.5) for f , equation (4.9) gives the following approximated expression for g:

g(η) ≃ ηe -Aη 2 - 1 -e -Aη 2 2Aη . ( 4.10) 
Figure 4.3 presents the experimental mean radial velocity profile g φ (η) for the nozzle seeding case (obtained as for the axial velocity, binning z in steps of 0.5 mm and η in steps of 0.02), which is compared with the self-similar profile g(η) (4.10) expected for ⟨V ⟩ from the previous incompressibility considerations for the global Eulerian profile. It can be observed that, although the measured profiles of g φ do hold self-similarity, they strongly deviate from the expected self-similar incompressible profile for the global jet g. More specifically, three points can be highlighted: (i) the amplitude of the measured maximums of g φ is twice that of the expected incompressible profile g, (ii) the measured profiles cross zero at a much higher value of η and (iii) the slope at the origin (η = 0) of the measured self-similar profile is 1 instead of 1/2.

Overall, contrary to the mean axial velocity profile which is essentially indistinguishable between the nozzle seeding case and the global Eulerian field (f φ ≃ f ), the mean radial velocity profile is strongly affected by the nozzle seeding up to the core of the jet (g φ ̸ = g). Since the mean radial and axial velocity profiles are classically linked by simple incompressibility considerations (as just discussed), and considering that the jet under investigation does operate in incompressible conditions, this discrepancy may appear at first sight as a paradox.

In order to rule out any possible experimental error as the origin of the major difference observed between the measured profile with a nozzle seeding g φ and the expected global incompressible profile g, we performed experiments with an actual homogeneous seeding in the whole volume of the tank. The measured radial profile g(η), shown in figure 4.4, accurately matches the expected incompressible profile (4.10). Some discrepancy can be observed for η ≳ 0.2, which can be attributed to the fact that f is less well fitted by a Gaussian function as it decreases towards zero. Moreover, with this homogeneous seeding, we find S = 0.094 which is a usual value for S [START_REF] Lipari | Review of experimental data on incompressible turbulent round jets[END_REF]. This therefore confirms that, when homogeneous seeding is used, global mean radial and axial velocity profiles f and g are correctly retrieved by the particle tracking measurements and found to be consistently related by the incompressibility constraint leading to (4.9), while for nozzle seeding, f φ ≃ f but g φ truly deviates from g and appears to not comply with the incompressibility constrain. As a matter of fact, such an impact on the seeding properties on the retrieved velocity profiles is well known by experimentalists using a particle-based metrology (as stated in the introduction such as particle image velocimetry or laser Doppler velocimetry). [START_REF] Martins | Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations[END_REF] for instance report similar observations for particle image velocimetry in an annular jet: mean axial velocity profiles are almost indistinguishable between the two seedings while mean radial velocity profiles strongly deviate. Such deviation is usually addressed simply in terms of an experimental bias to be mitigated, but no quantitative physical explanation has been proposed. The next subsection presents a simple theoretical explanation (based on mass conservation and self-similarity properties of the jet) of this apparent paradox. The proposed theory quantitatively describes the experimental observations through an effective compressibility of the velocity field associated with nozzle seeded particles. The physical origin of this effective compressibility relies on the role played by entrained particles, not accounted for when only nozzle seeded particles are tracked.

Before presenting these theoretical developments, we briefly discuss the qualitative reasons of why nozzle seeding (compared with homogeneous seeding) may strongly impact the mean radial velocity profile g and not the mean axial velocity profile f . The source of momentum in the jet is the nozzle injection, which provides primarily axial momentum. Entrained particles, which are captured in the jet by the inward transverse pressure gradient, are on the contrary the main source of radial momentum. As they penetrate into the jet, entrained fluid parcels eventually acquire an axial momentum, transferred from the nozzle seeded fluid parcels, which in turn lose axial momentum, which results in the streamwise decay of the jet. In the final steady state both the nozzle and entrained fluid parcels eventually equilibrate to the same axial velocity, with almost indistinguishable profiles. On the contrary, the radial velocity is expected to behave radically differently for nozzle and entrained particles. Indeed, particles entrained from outside to inside the jet acquire a negative radial velocity to reach the core of the jet and therefore contribute negatively to the global mean radial velocity profile g. As they do so, mass and momentum conservation require fluid parcels from the core of the jet to move outwards, with a positive radial contribution to g. Therefore, when a homogeneous seeding is considered, the combination of these two contributions (outward spreading and inward entrainment) eventually leads to the global radial profile g (see figure 4.4), where spreading dominates in the centre (g(η) > 0 for η < 0.13) and entrainment dominates on the sides (g(η) < 0 for η > 0.13). When only nozzle seeded particles are tagged, the inward contribution of entrained particles is not accounted in g φ . As a consequence, an overall hindering of the negative radial contribution associated with those particles is expected, leading to a higher and mostly positive profile for g φ , which therefore considerably deviates from the global radial profile g as experimentally measured (see figure 4.3).

We present in the next subsection a simple theoretical and quantitative justification for the deviation between g and g φ , based on mass conservation and self-similarity, explaining the apparent compressibility of g φ and explicitly giving the associated contribution of entrainment to the global incompressible mean radial velocity profile g.

Effective compressibility of nozzle seeded profiles and entrainment

We qualitatively explained the differences between g and g φ by the absence of the contribution due to entrained particles in g φ . We also pointed that, considering that f ≃ f φ and that g as expressed in equation (4.10) comes directly from incompressibility considerations, the discrepancy between g φ and g implies that the measured mean velocity field ⟨U φ ⟩ associated with nozzle seeded particles behaves as compressible, i.e. ∇ • ⟨U φ ⟩ ̸ = 0. This is at first sight in contradiction to the experimental conditions as the free jet under investigation is actually incompressible. The apparent compressibility of the flow tagged solely by nozzle seeded particles is actually a simple consequence of the inhomogeneous seeding (as presented in figure 4.4, with a homogeneous seeding in the whole experimental volume, the retrieved velocity profiles do comply with incompressibility). In this subsection, we rationalise this effective compressibility, giving an explicit relation between g and g φ which emphasises the contribution of entrained particles.

Nozzle seeding model

To account for effective compressibility and compute g φ , we propose to generalise the classical approach relating mean radial and axial velocity profiles through incompressibility, in order to account for the inhomogeneity of the concentration field (itself due to the inhomogeneous seeding).

We denote by φ(z, r, θ, t) the instantaneous concentration field of nozzle seeded tracers. As we did for the mean axial and radial velocities, we consider the mean concentration field ⟨φ⟩(z, r). The continuity equation for the mean concentration field ⟨φ⟩ and the mean velocity field ⟨U φ ⟩ imposes that ∇ • (⟨φ⟩⟨U φ ⟩) = 0. (4.11)

Note that, because by definition U φ is exactly the advection velocity of the nozzle seeded tracers (not including any eventually unknown random velocity perturbation, U φ is not an Eulerian field), the continuity equation as written above for the mean (concentration and velocity) fields is exact, as there is no additional diffusion term associated with the transport of the tracers by the unperturbed advection velocity U φ . Note also that, for a homogeneous seeding (i.e. ⟨φ⟩ independent of all spatial coordinates), equation (4.11) naturally reduces to the classical incompressible relation ∇ •⟨U φ ⟩ = 0, which, however, does not hold when ⟨φ⟩ is inhomogeneous, as for the case of nozzle seeded tracers investigated here.

To solve equation (4.11), we first characterise the mean concentration field ⟨φ⟩(z, r). Figure 4.5 shows the main properties of ⟨φ⟩: the mean centreline concentration φ 0 (z) evolves as 1/(z -z 0 ) and we can define a self-similar profile

Φ(η) = ⟨φ⟩(z, r) φ 0 (z) , ( 4.12) 
with φ 0 (z) ∝ 1/(z -z 0 ). The fact that ⟨φ⟩ evolves as ⟨U ⟩ can be justified by the behaviour of a conserved passive scalar in a jet. Actually, it is known that, because the boundary-layer equations for the mean axial velocity ⟨U ⟩ and a scalar field ⟨φ⟩ are similar, a conserved passive scalar scales with z in the same way as the mean axial velocity does, and the self-similar profile is similar, usually wider (cf. Pope (2000)). For the present concentration field, the profiles of Φ Here, φ 0 is the sum of the concentrations from all films at all time steps, which explains the high values of φ 0 , but only the relative evolution along z is relevant. (b) Self-similar profiles Φ(η) (4.12) (crosses: experimental points, dashed line: f φ (η) previously measured). The profiles of Φ(η) are wider than those of f φ (η).

are wider than those of f , this difference of width and also the shape of Φ will be discussed in the next subsection.

From equation (4.11) and definition (4.12), we infer that self-similar profiles of mean concentration, radial and axial velocity of nozzle seeded particles must satisfy the following relation:

Φ(η)[(ηg φ (η)) ′ -η(ηf φ (η)) ′ ] + η[g φ (η)Φ ′ (η) -f φ (η)(ηΦ(η)) ′ ] = 0, (4.13) 
which simplifies to

g φ (η) = ηf φ (η). (4.14) 
The details of this calculation are given in appendix D.1. It can be noticed that this result does not depend on the exact shape of Φ: only the dependence of φ 0 (z) in 1/(z -z 0 ) and the self-similarity of Φ(η) are required. Interestingly, the solution for the effectively compressible fields in the case of the nozzle seeding turns out to be somehow simpler than the global incompressible case, as it does not carry the additional term

ζ(η) = - 1 η η 0 xf (x) dx. (4.15)
Going back to equation (4.9) and considering f = f φ , we can see that the global mean radial velocity profile (accounting for both nozzle seeded and entrained particles) can be written as the sum of the profile of the nozzle seeded particles alone and this ζ term

g = g φ + ζ. (4.16)
The ζ contribution can therefore be interpreted as the effect of entrained particles on the global mean radial velocity profile of the jet. Its negative sign naturally reflects the inward flux of particles due to entrainment. Therefore, we will refer to ζ as the entrainment term.

The role of this entrainment term ζ could be elucidated by distinguishing particles spread from the nozzle from the others for a homogeneous seeding. This distinction could enable to switch from g to g φ and to give a deeper understanding of ζ. For experimental Lagrangian data, such a distinction requires to track particles during a long enough time to know their origin. A particle starting from the nozzle takes more than one hundred frames to reach the bottom of the measurement volume and a particle starting at one edge of the measurement volume takes thousands of frames to reach the jet axis. However, our experimental data set is composed of too short tracks and without knowing the initial position of each trajectory, Figure 4.6. Self-similar profiles g φ (η) (4.6) for a nozzle seeding (crosses: experimental points, solid line: fit (4.17) with A φ = 63 previously found for f φ (η)). This is the same figure as figure 4.3 but with the new fit (4.17).

this deeper Lagrangian analysis is not feasible. Lagrangian simulations in a turbulent jet (from stochastic models or from LES as presented in appendix D.5) could enable to overcome these experimental limitations. Another experimental perspective would be to consider the 'inverse' experiment: no seeding in the core of the jet, but a constant seeding far from the axis to observe only entrained particles. Nevertheless, such an experimental study would be much more difficult to carry out.

Experimental validation

A first interesting property of equation (4.14) is that, as f φ (0) = 1 by definition, then g ′ φ (0) = 1. This is agreement with the experimental slope of 1 observed in figure 4.3 for g φ (η) at η = 0. Considering a Gaussian function for f φ , which was found in a previous subsection to reasonably matches the experimental measurements, we have the expression

g φ (η) ≃ ηe -Aη 2 .
(4.17)

Figure 4.6 compares this expression with the experimental profiles for g φ , showing a much better agreement than the usual expression tested in figure 4.3 for the global profile g, with not only the expected slope at the origin, but also a reasonable overall shape, at least up to η ≲ 0.2. The main noticeable difference concerns the negative part of the experimental g φ for the largest values of η, while the prediction given by equation (4.17) remains positive. This negative part reflects the presence of an inward radial velocity in the outer regions of the jet. This is very likely to be attributed to the presence of a few remaining particles in the ambient fluid (not injected at the nozzle) being entrained into the core of the jet, as discussed in section 2.2. As a consequence, if some entrained particles are indeed tagged, it is expected that the radial profile measured is not exactly g φ but also carries some contribution due to the negative entrainment term ζ. These few entrained particles with negative radial velocity may also explain the slight overestimation of the maximum of the radial velocity profile prediction compared with the experimental data. Despite this bias, experimental data globally support the validity of relation (4.17) and hence of (4.14). The validity of these relations is also tested on a separate data set from an independent experiment, using similar methods at the Laboratoire des Écoulements Géophysiques et Industriels (LEGI) in the Université Grenoble Alpes with a self-similar free round air jet seeded with neutrally buoyant millimetric soap bubbles inflated with helium (D = 2.25 cm, U J ≃ 25 m/s, Re D ≃ 3.7 × 10 4 , d p = 2.5 mm). The advantage of this set-up is that the jet blows in a very large room, and that helium filled soap bubbles have a finite life time, so that experiments can be run with the warranty that no spurious particles remain in the ambient fluid surrounding the jet. Mean axial and radial velocity profiles for this experiment are represented in figure 4.7. The statistical convergence of this new data set is not as accurate as for the water experiment and the accessible measurement volume does not allow us to explore values of η above 0.3. However, it can still be seen that no negative values of g φ are measured and that the maximum of the experimental profile matches very well the prediction in that case where entrained particles have been totally avoided. The slight difference in the profiles between the air and water experiments (for instance the maximum of g φ in air is a bit larger than in water) are related to a slightly different value of the fitting parameter A φ of the Gaussian fit for the mean axial velocity profile f φ , which could be linked to different geometries of the set-up or to the total absence of entrained particles in the air jet.

Link with turbulent diffusion

Classical mean field approaches to describe the spreading of substances or particles in turbulent flows usually rely on advection-diffusion modelling for the mean concentration profile. In such approaches, the mean transport of the spreading particles is considered to result from two contributions: the advection by the mean velocity ⟨U ⟩ of the surrounding turbulence and a diffusive velocity ⟨U d ⟩ modelling the mean field effect of unresolved small-scale fluctuations. In such a framework, the mean velocity field of the transported substance ⟨U φ ⟩ can therefore be written as ⟨U φ ⟩ = ⟨U ⟩ + ⟨U d ⟩. This is schematically represented in figure 4.8. In the previous subsection, we showed that the difference between the global mean velocity field ⟨U ⟩ and the actual mean velocity field ⟨U φ ⟩ of nozzle seeded particles is related to the entrainment mechanism through the entrainment term ζ via mass conservation: ζ ensures the incompressibility of the global field (including both the entrained and nozzle seeded particles), while the nozzle seeded particle velocity ⟨U φ ⟩ is effectively compressible. The equivalence of these two approaches (advection/diffusion and global flow/entrainment) to describe the spreading of nozzle seeded particles suggests that the diffusive contribution in the former is therefore itself related to the entrainment contribution in the latter.

The aim here is to link these two fields, ⟨U ⟩ and ⟨U φ ⟩, through the mean concentration field of particles ⟨φ⟩, as previously presented in figure 4.5, with an advection-diffusion model, in order to explicitly connect turbulent diffusion and entrainment. 

Advection-diffusion equation with turbulent diffusivity K T

We consider that the tracers are, on the one hand, advected by the mean flow, and on the other hand, spread by turbulence. Modelling this turbulent process as diffusive, we write

∇ • (⟨φ⟩⟨U ⟩ -K T ∇⟨φ⟩) = 0, (4.18) 
with K T the turbulent diffusivity. Equation (4.18) is the same as equation (4.11) with the relation between ⟨U ⟩ and ⟨U φ ⟩

⟨U φ ⟩ = ⟨U ⟩ -K T ∇⟨φ⟩ ⟨φ⟩ , ( 4.19) 
where

⟨U d ⟩ = -K T ∇⟨φ⟩ ⟨φ⟩ represents the aforementioned diffusive contribution.
With previous definitions for the self-similar mean axial and radial velocity fields and mean concentration profile, and considering the decay law for the centreline velocity from (4.1) (U 0 (z) = BU J D/(z -z 0 )), equation (4.19) leads to two expressions for the self-similar mean axial and radial velocity profiles of the spreading particles

f φ (η) = f (η) + K T (η) BU J D 1 + η Φ ′ (η) Φ(η) , (4.20) g φ (η) = g(η) - K T (η) BU J D Φ ′ (η) Φ(η) , ( 4.21) 
where the first term in the right-hand side of both expressions accounts for advection and the second for diffusion. At this stage, these two equations (4.20) and (4.21) are nothing but mathematical expressions reflecting the a priori advection/diffusion decomposition of the particle velocity in (4.19). To be physically relevant, they have to be consistent with the experimental observations and the results of the mass conservation presented in previous subsections for f , g, f φ and g φ . First, our experiments show that f ≃ f φ . To be consistent with (4.20), this requires the second term of this relation to be negligible compared with f . Experimental measurements of the turbulent diffusivity K T and of the self-similar mean concentration field Φ (presented in the following) confirm the validity of this approximation (this term has the same order of magnitude as g, thus it is more than one order of magnitude smaller than f ).

Second, to be consistent with (4.16), equation (4.21) implies that

K T (η) = -BU J D Φ(η) Φ ′ (η) 1 η η 0 xf (x) dx. (4.22)
Thus, the turbulent diffusivity K T (η) is a self-similar quantity dependent on space and expression (4.22) gives a practical relation to estimate it from the knowledge of simple mean field quantities (namely mean concentration and mean axial velocity profiles) which are easily measurable. This contrasts both with classical simplistic approaches assuming a constant turbulent diffusivity and with the usual fundamental definition of turbulent diffusivity, based on the crosscorrelation between velocity and concentration fluctuations (Pope 2000).

The parameter K T (η) as given by relation (4.22) is a dimensional quantity (with unit m 2 /s). Similarly to all other self-similar quantities characterising the jet, and as it is done for turbulent viscosity, a dimensionless turbulent diffusivity K T can be defined

K T (η) = K T (η)/(U 0 (z)r 1/2 (z)) = - 1 S Φ(η) Φ ′ (η) 1 η η 0 xf (x) dx, (4.23) 
which can ultimately be rewritten as

K T (η) = ζ(η) Sχ(η) , ( 4.24) 
where ζ(η) = -(1/η) η 0 xf (x) dx has already been defined in (4.15) and shown to be associated with entrainment, χ(η) = Φ ′ (η)/Φ(η) characterises the persistent inhomogeneity of the seeding and can be interpreted as a compressibility factor associated with the flow of nozzle seeded particles and S = tan(δ) ≃ δ J with δ J the semi-opening angle of the jet cone based on r 1/2 .

Overall, relation (4.24) synthesises the connection between the a priori advection/diffusion mathematical decomposition of particle velocity and the physical considerations of mass conservation developed in previous subsections by connecting the turbulent diffusivity K T to (i) entrainment (via ζ), (ii) apparent compressibility of the dispersing phase (via χ) and (iii) global spreading of the jet (via S). Note that a conceptually similar connection between effective diffusivity and effective compressibility has been proposed in the context of mixing in linear flows [START_REF] Raynal | Advection and diffusion in a chemically induced compressible flow[END_REF].

Turbulent diffusivity K T and turbulent viscosity ν T

The turbulent diffusivity K T and the turbulent viscosity ν T are both effective transport coefficients defined in the framework of a mean field description (transport of mass for the first and of momentum for the second). They model the average contribution of small-scale turbulence via cross-correlation terms of fluctuating quantities (⟨uϕ⟩ for K T and ⟨uv⟩ for ν T , with fluctuating quantities u = U -⟨U ⟩, v = V -⟨V ⟩ and ϕ = φ-⟨φ⟩ (Pope 2000)). This formal analogy between K T and ν T , together with the importance of ν T for practical numerical modelling strategies (such as RANS approaches) and the simplicity of the relations established allowing the estimation of K T from simple measurements of mean field quantities, motivate us to further extend previous considerations (connecting turbulent diffusivity to entrainment and mass conservation) in order to revisit formal links between turbulent diffusivity and turbulent viscosity.

The relation between K T and ν T is commonly written in terms of the turbulent Prandtl number, σ T = ν T /K T , which compares the efficiency of momentum and mass transport. Several works have investigated the turbulent Prandtl number by studying for instance the turbulent transport of conserved passive scalars such as temperature [START_REF] Corrsin | Further experiments on the flow and heat transfer in a heated turbulent air jet[END_REF][START_REF] Chevray | Intermittency and preferential transport of heat in a round jet[END_REF][START_REF] Chua | Turbulent Prandtl number in a circular jet[END_REF][START_REF] Ezzamel | Dynamical variability of axisymmetric buoyant plumes[END_REF] or concentration of chemical species [START_REF] Papanicolaou | Investigations of round vertical turbulent buoyant jets[END_REF], Dowling & Dimotakis 1990, Panchapakesan & Lumley 1993b[START_REF] Lemoine | Simultaneous concentration and velocity measurements using combined laser-induced fluorescence and laser Doppler velocimetry: Application to turbulent transport[END_REF][START_REF] Chang | Turbulent Prandtl number in neutrally buoyant turbulent round jet[END_REF], leading to values of σ T of the order of unity (experimental values around 0.7 are usually reported). However, there is no consensus about how σ T exactly depends on space and none of these studies explicitly address the question of a possible formal connection with simple mean field quantities.

Uniform σ T

In the case where σ T is assumed to be uniform (independent of space), it can be shown from the turbulent boundary-layer equations (cf. [START_REF] Schlichting | Boundary-Layer Theory[END_REF]) that

Φ(η) = f (η) σ T or equivalently σ T = log Φ(η) log f (η) . ( 4.25) 
This relation combined with the expression of K T (4.23) leads to the following expression for the turbulent viscosity:

ν T (η) = - 1 S f (η) f ′ (η) 1 η η 0 xf (x) dx. ( 4 

.26)

As for K T , ν T can be inferred by simply measuring the profile f of mean axial velocity and is analytically connected to the entrainment term ζ.

If we consider for instance a squared Lorentzian approximation (4.4) for f , expression (4.26) simplifies to a constant value

ν Lorentz T = S 8( √ 2 -1) . (4.27)
This is expected, as the squared Lorentzian profile for f is known to be the exact solution of the turbulent boundary-layer equations for a constant turbulent viscosity (Pope 2000) (which is experimentally reasonable for η ≲ 0.15). In addition, the relation found in equation (4.27) between ν T and S coincides with the classical result when solving the boundary-layer equations for a constant turbulent viscosity. Nevertheless, expression (4.26) is more general and remains valid beyond the constant turbulent viscosity approximation (it still requires the turbulent Prandtl number to be constant, however). In particular, if the Gaussian approximation (4.5) is considered for f (which is empirically known to better match the experimental self-similar profiles), the following space-dependent profile is retrieved for the turbulent viscosity:

ν Gauss T (η) = S 4 log(2) 1 -e -Aη 2 Aη 2 . (4.28)
This result is not new, and has been previously derived by [START_REF] So | On similarity solutions for turbulent and heated round jets[END_REF], who propose a generalisation of the solution of the turbulent boundary-layer equations for a non-uniform turbulent viscosity. By considering different experimental functions used to fit f , they argue that the Gaussian function is the best one to fit experimental profiles of f and they analytically determine the expression for ν T for a Gaussian function, which is exactly the same as equation (4.28). At this point, we have therefore shown that formula (4.25) (valid in the case of a uniform turbulent Prandtl number σ T ) allows us to extend the connection established between turbulent diffusivity and entrainment to turbulent viscosity with relation (4.26). Besides, this quite general relation is found in agreement with previous derivations, based on boundary-layer equations, for squared Lorentzian and Gaussian mean axial velocity profiles. The next point generalises formula (4.25) to the case of non-uniform σ T .

Generalisation to non-uniform σ T

In appendix D.2, we show that the general equations (4.23) and (4.26) for K T (η) and ν T (η), respectively, relating the self-similar profiles of turbulent diffusivity and turbulent viscosity to the self-similar profiles of mean concentration Φ, mean axial velocity f and entrainment term ζ, are actually the general solutions of the boundary-layer equations.

Furthermore, we also conclude that these two relations remain valid even if the turbulent Prandtl number σ T (η) is not constant, and we show that

σ T (η) = Φ ′ (η) Φ(η) f (η) f ′ (η) , ( 4.29) 
is a generalisation of formula (4.25).

Altogether, beyond the conceptual interest of relating effective transport coefficients in the jet to the entrainment process, relations (4.23), (4.26) and (4.29) are of great practical interest as they allow determination of the spatial profiles of turbulent diffusivity, turbulent viscosity and turbulent Prandtl number from the simple measurements of the mean axial velocity profile and the mean concentration profile without requiring the measurement of second-order correlations.

In the next point, we apply these relations to experimental measurements.

Experimental determination of K T , ν T and σ T

According to equations (4.23), (4.26) and (4.29), K T , ν T and σ T can be experimentally determined from the sole knowledge of the profiles of f and Φ (besides, only f is required to determine ν T ). As these relations include the derivatives of f and Φ, instead of using the raw experimental profiles, it is useful to consider functional fits of these, which can be more easily manipulated.

• As already discussed, and as can be observed in figure 4.2(d), f is reasonably fitted by a Gaussian function. However, for a better accuracy, we use the fitting function f (η) = e -aη 2 (1 + c 2 η 2 + c 4 η 4 ) introduced by Hussein et al. (1994) to fit their experimental measurement of f (η) (they also use similar functions to fit the Reynolds stresses). This Gaussian function corrected by a polynomial, although less practical, is closer to the experimental points and leads to a more accurate estimate, in particular, of the derivative f ′ (η) which appears in the formula (4.26) for the turbulent viscosity. The polynomial correction has a minor impact on the estimate of the integral entrainment term ζ. • As can be observed in figure 4.9, the mean concentration profile Φ(η) is broader than a Gaussian function for small values of η (typically η < 0.1) and steeper than a Gaussian function for large values of η. We empirically find that a better function to fit Φ(η) is

Φ(η) = erf((η + a)/b) -erf((η -a)/b) 2 erf(a/b) , ( 4.30) 
(green line in figure 4.9, to be compared with the Gaussian fit in light blue) where erf(x) = 2/ √ π x 0 e -t 2 dt is the error function and a and b the parameters of the fit (here a = 0.126 and b = 0.102). It remains elusive why Φ differs from a Gaussian function. A possible explanation is the finite size of the nozzle: the profile would be the sum of Gaussian functions centred at different positions from one edge of the nozzle to the other, but no successful modelling to determine (4.30) with the values of a and b has been found.

Determination of K T

Based on these fits for f and Φ, we compute the experimental profiles of K T (η) from (4.23), which are shown in figure 4.10. Profiles are obtained for measurements at different downstream distances from the nozzle between z = 100 mm and z = 180 mm. The solid line is the median value for all z positions along the axis, and the coloured zone between the two dashed lines comprises 70% of the measured values. The profile of K T based on a Gaussian fit of Φ is also represented for comparison, showing that small differences between the two fitting functions for Φ lead to large differences in the estimate of K T . A good determination of the profile of K T (η) therefore requires an accurate measurement of Φ(η). Figure 4.10 indicates that the sensitivity to the fit is particularly crucial near the centreline. This can be rationalised from (4.23), from which it can be shown that K T (0) = -1/(2SΦ ′′ (0)): the centreline value of K T (η) is related to the curvature at the origin of Φ(η). This explains the underestimate of K T (0) from the Gaussian fit, which is narrower than the error function fit (4.30). It also explains the higher variability of the estimate of K T from the error function fit near the centreline when data from all axial distances z are considered. Indeed, figure 4.9 shows that although very good, self-similarity is not perfect within the accessible range of distance from nozzle (z/D ≤ 45). In particular, a mild variation of the curvature at the origin of Φ(η) measured at different downstream distances z can be seen. This sensitivity to small deviations from self-similarity becomes, however, marginal away from the centreline. Overall, and in spite imperfect self-similarity effects near the centreline (which can be expected to be improved in future studies exploring distances beyond z/D = 45), figure 4.10 shows that a reasonable profile of K T can indeed be retrieved from (4.23) only requiring the determination of mean concentration and axial velocity profiles. Few of such measurements of radial inhomogeneity of turbulent diffusivity are available in the literature, mainly due to the complexity of requiring simultaneous measurements of velocity and scalar fluctuations, as classical estimates are based on velocity-scalar cross-correlations. The profile of K T in figure 4.10 is in good agreement with such previous measurements in free round jets [START_REF] Chua | Turbulent Prandtl number in a circular jet[END_REF][START_REF] Lemoine | Simultaneous concentration and velocity measurements using combined laser-induced fluorescence and laser Doppler velocimetry: Application to turbulent transport[END_REF][START_REF] Chang | Turbulent Prandtl number in neutrally buoyant turbulent round jet[END_REF].

Determination of ν T

Similarly to K T , the turbulent viscosity ν T can be estimated from (4.26) knowing the mean axial velocity profile f . Figure 4.11(a) shows the retrieved profile of the turbulent viscosity. As for the turbulent diffusivity, estimates of ν T are obtained at various downstream locations z. The solid line represents the median value for all z locations, and the coloured zone within the dashed lines comprises 70% of all measurements. The observed trend, with a relatively constant value near the centreline and an outward decay as η increases, is in good qualitative agreement with previous measurements based on the cross-correlation of mean axial and radial velocity fluctuations as presented in Pope (2000). The centreline value retrieved for ν T here, of the order of 0.3, is also in good agreement with the values reported in these previous studies.

Interestingly, going back to the original definition of the turbulent diffusivity based on the cross-correlation of mean axial and radial velocity fluctuations

ν T (η) = - (⟨uv⟩/U 2 0 )(η) Sf ′ (η) , ( 4.31) 
the previous estimate of ν T (η) can in turn be used to estimate the self-similar profile (⟨uv⟩/U 2 0 )(η). This is shown in figure 4.11(b), together with the direct measurements of this quantity from the experimental measurements. It can be seen that, although self-similarity is not perfectly reached yet within the range of accessible downstream distances, the profile of ⟨uv⟩/U 2 0 for the farthest axial distance (corresponding to z/D = 45) approaches the profile predicted by (4.26). Concerning the fact that self-similarity of ⟨uv⟩/U 2 0 is imperfect, it is actually known that when normalised by U the profile of ⟨uv⟩/U 2 0 fitted by Hussein et al. (1994) for their measurements at a downstream distance of the order of z/D ≃ 70, which is found to be in good agreement with the trend towards self-similarity of our measurements and with our prediction for the self-similar Reynolds stress (note that their measurements stop at η ≃ 0.2, hence their proposed fit is not relevant beyond this radial position). Following the seminal works of [START_REF] Townsend | The Structure of Turbulent Shear Flow, chap. Free turbulent shear flows[END_REF] and [START_REF] George | turbulent flows and its relation to initial conditions and coherent structures[END_REF], [START_REF] Dairay | Non-equilibrium scaling laws in axisymmetric turbulent wakes[END_REF], [START_REF] Breda | Influence of coherent structures on the evolution of an axisymmetric turbulent jet[END_REF] and [START_REF] Cafiero | Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets[END_REF] have shown that, for jets and wakes, self-similarity for the Reynolds stresses may be retrieved better and at earlier downstream distances when normalised by the local maximum of ⟨uv⟩, instead of U 2 0 . For the presently studied jet, such a normalisation by max(⟨uv⟩) gives indeed a better self-similar collapse within the limited range of distances z/D (see figure 4.11(c)). Using this more accurate alternative normalisation in the context of the formalism developed in the present work is left for future studies. We note that for practical application of the theory developed in this section to experimentally determine the turbulent viscosity from relation (4.26), the classical normalisation (based on U 2 0 ) remains, however, of real pragmatic interest as it only involves measuring low-order statistics (mean centreline velocity U 0 and mean axial velocity profile f ) not requiring us to resolve fluctuating velocities u and v. 

Determination of σ T

To finish, we propose here an estimate of the radial profile of the turbulent Prandtl number σ T . In a situation where σ T = ν T /K T would be uniform (independent of η), according to relation (4.25) if f is assumed Gaussian (neglecting the aforementioned polynomial correction), then Φ should also be Gaussian, and the ratio of the half-widths A Φ and A for Φ and f , respectively, directly gives an estimate of σ T [START_REF] Corrsin | Further experiments on the flow and heat transfer in a heated turbulent air jet[END_REF], Panchapakesan & Lumley 1993b[START_REF] Ezzamel | Dynamical variability of axisymmetric buoyant plumes[END_REF]. Using such a Gaussian approximation (light blue fit in figure 4.9), we obtain σ T = A Φ /A = 0.62, which is in good agreement with the usual experimental values around 0.7 (Pope 2000).

However, the deviation of the concentration profile Φ, while f is quasi-Gaussian, suggests that σ T may not be considered as uniform. In this case, the profile of σ T can be estimated with the generalised relation (4.29), from the simple knowledge of Φ and f . The corresponding profile of σ T is presented in figure 4.12. It is actually found to be dependent on η, increasing between 0.4 near the centreline to an asymptotic value close to 0.8 as larger radial distances, with an average value of the order of 0.6.

The trend of σ T with η in previous works is not fully conclusive: [START_REF] Chevray | Intermittency and preferential transport of heat in a round jet[END_REF] and [START_REF] Chua | Turbulent Prandtl number in a circular jet[END_REF] observe a slight increase of σ T with η, while [START_REF] Chang | Turbulent Prandtl number in neutrally buoyant turbulent round jet[END_REF] report a nearly flat then decreasing profile. Direct numerical simulations by [START_REF] Lubbers | Simulation of the mixing of a passive scalar in a round turbulent jet[END_REF] show a mild increase of σ T with η while those by [START_REF] Van Reeuwijk | Turbulent transport and entrainment in jets and plumes: A DNS study[END_REF] show a slight increase then decrease. The lack of consensus regarding the radial dependency of σ T may be related to the sensitivity of the σ T determination to experimental and numerical details. The broader-than-Gaussian concentration profile Φ can for instance be interpreted as a possible effect of the finite size of the particle injection point (at the jet nozzle in the present study), while studies investigating the turbulent diffusion of a passive scalar such as temperature [START_REF] Chevray | Intermittency and preferential transport of heat in a round jet[END_REF][START_REF] Chua | Turbulent Prandtl number in a circular jet[END_REF][START_REF] Tong | Passive scalar dispersion and mixing in a turbulent jet[END_REF] may consider injection points closer to a point source, that seem to lead to Gaussian scalar profiles, and are hence consistent with a relatively uniform profile of σ T .

In this respect, while all studies are consistent regarding the order of magnitude of σ T and in particular regarding the fact that σ T < 1 (i.e. scalar spreads at a faster rate than momentum), the details of any eventual non-uniformity of σ T and whether this is an intrinsic property of the jet or a consequence of experimental/numerical protocols remain to be further clarified. From this perspective, the relations established in the present study, allowing the estimation of turbulent diffusivity, viscosity and Prandtl number from simple measurement of mean concentration and velocity profiles, are particularly interesting for future systematic investigations.

Conclusion

Measurements of mean velocity fields were carried out in a free round jet based on Lagrangian tracer trajectories. By using a specific nozzle seeding (where only fluid particles emanating from the nozzle are tagged and not those entrained into the jet from the surrounding fluid at rest), the self-similar mean velocity profiles were found to differ from those of the global jet (accounting for both, nozzle seeded and entrained fluid particles), in particular for the radial velocity. More precisely, (i) the nozzle seeded profiles still preserve the self-similar property of the jet, (ii) the self-similar mean axial velocity profile is not significantly altered by the nozzle seeding compared with the global profile, (iii) the self-similar mean radial velocity profile strongly deviates from the usual profile of the global jet.

By revisiting the classical considerations (connecting global mean axial and radial velocity profiles through the incompressibility of the self-similar jet) in the more general terms of mass conservation, we were able to quantitatively explain the modified self-similar profile. The difference between the global profile and the nozzle seeded profile allows us to specifically identify the contribution associated with the flux of entrained particles to the global mean radial velocity, via a simple entrainment term ζ (4.15) solely dependent on the self-similar mean axial velocity profile. This entrained contribution can in turn be interpreted as an effective compressibility for the flow tagged by the nozzle seeded particles. Interestingly, the influence of entrained particles on the mean radial velocity profile is found to be significant up to the core of the jet.

We have then connected this global contribution of entrainment to the classical turbulent advection-diffusion description of the jet. Under the hypothesis of self-similarity, this allowed us to analytically relate turbulent diffusion (of mass and momentum) to the previously identified entrainment term ζ. This results in simple analytical relations (4.23), (4.26) and (4.29) for the turbulent diffusivity K T , the turbulent viscosity ν T and the turbulent Prandtl number σ T allowing experimental determination of the non-uniform spatial profiles of these quantities from the simple measurement of the mean scalar (concentration) profile and the mean axial velocity profile. Interestingly, these relations can be used even if the mean concentration and velocity profiles are measured independently as, contrary to classical determinations of turbulent diffusivity based on cross-correlations of velocity and scalar fluctuations, the present relations only require the knowledge of each mean field separately, without simultaneous measurements. Therefore, beyond the fundamental interest of explicitly connecting the entrainment process to turbulent diffusion properties of self-similar jets, these relations can be of real practical interest to experimentally determine the associated diffusion coefficients, including their eventual spatial non-uniformity. In particular, they could help a simple systematic investigation of the nonuniformity of the turbulent Prandtl number for which, while most studies (including the present work) converge to the fact that it is lower than unity (meaning that passive scalar spreads faster than momentum), its eventual spatial dependency remains to be clarified.

We would like to stress that the approach of the present study, based on a specific inhomogeneous seeding of the flow, intimately connects Lagrangian and Eulerian descriptions of the jet. It shows indeed how tagging particles with a prescribed initial position from which all the Lagrangian trajectories originate affects the corresponding Eulerian fields, which in particular may exhibit an apparent compressibility, even if the global background flow is incompressible. The combination of such a Lagrangian tagging with first principles such as mass conservation, and in the present case with prescribed properties such as self-similarity, allowed us to gain new insight into the role of entrainment in the mean spreading of the jet, eventually connecting turbulent diffusion properties to the aforementioned effective compressibility. From an experimental perspective, our study develops and completes works on experimental bias due to inhomogeneous seeding, such as the work by [START_REF] Martins | Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations[END_REF] for particle image velocimetry, by presenting a quantitative explanation of this bias for a turbulent round jet.

It can also be noted that our study can be extended to the case of inertial particles. In spite of their inertial nature, such particles, if inhomogeneously seeded (as in particle-laden jet flows), will inevitably lead to similar apparent compressibility effects of the velocity field of the particles. Indeed the continuity equation ∇ • (⟨φ⟩⟨U φ ⟩) = 0 also applies to inertial particles (although with different ⟨φ⟩ and ⟨U φ ⟩ than those of tracers). Such an inhomogeneous seeding compressibility effect will interplay with inertially driven effective compressibility effects, such as the well-known preferential concentration phenomenon [START_REF] Monchaux | Analyzing preferential concentration and clustering of inertial particles in turbulence[END_REF]. In this respect, although only the case of tracers has been considered here, the present study is still relevant to the case of inertial particles as it reveals a generic process at play in all sorts of particle-laden flows. However, the diffusive model becomes questionable for inertial particles and should be adapted.

In future studies, the present inhomogeneous seeding approach could be extended to address higher-order turbulent statistics in self-similar jets. For instance, investigating the Eulerian structure functions of the nozzle seeded flow compared with those of the global jet could help in disentangling the roles of internal and external intermittency in self-similar jets [START_REF] Gauding | Self-similarity of turbulent jet flows with internal and external intermittency[END_REF]. From a more Lagrangian perspective, having access to longer trajectories (especially through numerical simulations) would enable to study separately the temporal dynamics of the nozzle seeded particles (from the nozzle to the core of the jet) and of the entrained particles (from outside to inside the jet). This would give access to a Lagrangian understanding of entrainment through the whole space, and not only close to the TNTI. Finally, the approach could also be easily extended to other free shear and/or self-similar flows, such as plane jets, wakes, mixing layers, homogeneous shear flows, grid turbulence, etc.

Additional work

We include in appendix D.3 a paper written by Thomas Barois, researcher in the Laboratoire Ondes et Matière d'Aquitaine (LOMA) in the Université de Bordeaux, and published in Physical Review Fluids. This work shows how to compensate the seeding bias by introducing a time shift between positions and velocities.

Lagrangian properties

This section 4.2 is adapted from Viggiano et al. (2021): Lagrangian diffusion properties of a free shear turbulent jet, B. Viggiano, T. Basset, S. Solovitz, T. Barois, M. Gibert, N. Mordant, L. Chevillard, R. Volk, M. Bourgoin and R. B. Cal, Journal of Fluid Mechanics, 918 A25 (2021). This paper is available at https://doi.org/10.1017/jfm.2021.325. A slightly extended version is proposed here. This paper was also selected for discussion in Focus on Fluids [START_REF] Ouellette | Extending the reach of Lagrangian analysis in turbulence[END_REF]: Extending the reach of Lagrangian analysis in turbulence, N. T. Ouellette, Journal of Fluid Mechanics, 924 F1 (2021). This review is available at https://doi.org/10.1017/jfm.2021.
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Dispersion of particles from a point source in turbulent free jet flows plays an important role in many industrial and natural systems, including for instance sprays, flames, volcanic plumes and emission of pollutants at industrial chimneys. Depending on the particle characteristics (size, density with respect to the carrier fluid, volume fraction, etc.), the dynamics will follow that of the fluid (particles will then be considered as tracers) or it may be affected by inertial effects, finite size effects and couplings between the phases in highly seeded particle-laden flows [START_REF] Berk | Transport of inertial particles in high-Reynolds-number turbulent boundary layers[END_REF].

In the simplest situations, where particles can be considered as tracers (which is the framework of the present study), the turbulent diffusion process can be related to simple Lagrangian statistical properties of the carrier flow. While this connection has been extensively investigated for the case of HIT, in the spirit of Taylor's turbulent diffusion theory (Taylor 1922), the case of inhomogeneous flows remains largely unexplored, in spite of an extension of Taylor's theory proposed by Batchelor (1957). A summary of Taylor's diffusion and Batchelor's extension to self-similar flows are presented herein as incentive for the characterisation of several basic Lagrangian statistics in free shear flows and, in turn, motivation of the present study.

Taylor's theory of turbulent diffusion

The importance of the Lagrangian approach in modelling turbulent dispersion was first evidenced by the early work of Taylor (1922). Taylor's theory connects the mean square displacement σ 2 (τ ) of particles spreading from a point source in stationary HIT to the Lagrangian velocity autocorrelation function R L uu (τ ) = ⟨u(t + τ )u(t)⟩, where the time average ⟨•⟩ is taken over an ensemble of particle trajectories. Here, u(t) represents the velocity of individual particles along their trajectory (note that for simplicity only one velocity component is considered) and τ is the time lag. This result is often called the Taylor theorem and expressed as

d 2 σ 2 dτ 2 (τ ) = 2R L uu (τ ). (4.32)
Taylor's theory is of utmost practical importance, as it reduces the prediction of the spreading of tracer particles (and therefore of any passive substance spread by turbulence with negligible molecular diffusivity) to the knowledge of the Lagrangian velocity autocorrelation function R L uu (τ ) at all times. Note that the autocorrelation function R L uu can be equivalently replaced by the Lagrangian second-order structure function

S L 2 (τ ) = ⟨[u(t+τ )-u(t)] 2 ⟩ = 2(R L uu (0)-R L uu (τ )
), which is a common statistical tool used to characterise the multiscale dynamics of turbulence. The autocorrelation function at τ = 0, R L uu (0), is the velocity variance σ 2 u . Interestingly, the asymptotic regimes of the short and long time scales of turbulent diffusion do not depend on the details of the dynamics of turbulence. In the limit of very short times, the spreading follows trends of the trivial (purely kinematic) ballistic regime, where σ 2 (τ ) ≃ σ 2 u τ 2 . This can be retrieved from a simple one-term Taylor expansion of the particle displacement itself, or equivalently by applying equation (4.32) and considering the limit at vanishing times for the Lagrangian velocity autocorrelation function, R L uu (τ ) ≃ σ 2 u for small times. In the limit of very long time scales, equation (4.32) from Taylor's theory predicts that due to the finite Lagrangian correlation time of turbulence (T L = σ -2 u ∞ 0 R L uu (τ ) dτ ) the long-term turbulent diffusion process behaves as simple diffusion (where the mean square displacement grows linearly with time, σ 2 (τ ) ≃ 2K T τ , for long times) with a turbulent diffusivity K T = σ 2 u T L . Details of the diffusion process at intermediate time scales require a deeper knowledge of the specific time dependence of R L uu (τ ) at all times, particularly in the inertial range of scales of turbulence. Such dependency can be inferred empirically from a Lagrangian statistical description à la Kolmogorov [START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF], which predicts that for HIT within the inertial range of time scales, τ K ≪ τ ≪ T L , S L 2 (τ ) = C 0 ετ , with ε the turbulent energy dissipation rate and τ K = (ν/ε) 1/2 the turbulent dissipation scale. The universal constant C 0 plays a similar role in the Lagrangian framework to the Kolmogorov constant in the Eulerian framework. As a consequence, a detailed description of the turbulent diffusion process, including the inertial-scale behaviour, relies on the knowledge of S L 2 (τ ) (or equivalently of R L uu (τ )) at all time scales and specifically on the knowledge of C 0 at inertial scales. Thereafter, stochastic models can be built giving reasonable Lagrangian dynamics descriptions at all time scales [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF].

The empirical determination of the constant C 0 is therefore critical in describing the turbulent diffusion process and to accurately model the particle dispersion occurring in industrial applications and natural circumstances. Such a determination requires accessing accurate inertial-range Lagrangian statistics and has received attention in the past two decades in several experimental and numerical studies [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Mordant | Measurement of Lagrangian velocity in fully developed turbulence[END_REF][START_REF] Yeung | Lagrangian investigations of turbulence[END_REF], Ouellette et al. 2006c[START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF] (see the previous chapter too) as well as some field measurements in the ocean [START_REF] Lien | Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence[END_REF]. This leads to a range of C 0 estimates ranging from 2 to 7 (cf. [START_REF] Lien | The Kolmogorov constant for the Lagrangian velocity spectrum and structure function[END_REF] and [START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF] for a complete comparison of theoretical, simulated and experimental results). The variability of reported values in literature has been in part attributed to the relatively strong dependence of this constant on Reynolds number [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF], Ouellette et al. 2006c) and to the existence of large-scale anisotropy and inhomogeneity (Ouellette et al. 2006c).

Batchelor's extension of theory of turbulent diffusion

In spite of this variability of the tabulated values for C 0 , the connection between turbulent diffusion and Lagrangian statistics in HIT is now well circumscribed. The situation is more complex when it comes to inhomogeneous and anisotropic flows. One strong hypothesis of Taylor's turbulent diffusion theory relies on the statistical Lagrangian stationarity of the particle dynamics, which requires not only a global temporal stationarity of the flow, but also a statistical Eulerian homogeneity: a particle travelling across an inhomogeneous field will indeed experience non-stationary temporal dynamics along its trajectory. Besides, in inhomogeneous flows any Lagrangian statistics will depend on the initial position of the particle (used to label trajectories). For the sake of keeping formulas compact, explicit reference to initial position will be omitted when exploring inhomogeneous Lagrangian statistics, but the reader should remember this dependence.

One such inhomogeneous flow field is a turbulent free round jet. Although limited Lagrangian experimental campaigns have been carried out [START_REF] Gervais | Acoustic Lagrangian velocity measurement in a turbulent air jet[END_REF][START_REF] Holzner | A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation[END_REF][START_REF] Wolf | Investigations on the local entrainment velocity in a turbulent jet[END_REF][START_REF] Kim | Characterisation of the Eulerian and Lagrangian accelerations in the intermediate field of turbulent circular jets[END_REF], this type of flow has received much attention in Eulerian studies as one of its most striking properties is that turbulence is self-preserving [START_REF] Corrsin | Investigation of flow in an axially symmetrical heated jet of air[END_REF][START_REF] Hinze | Transfer of heat and matter in the turbulent mixing zone of an axially symmetrical jet[END_REF], Hussein et al. 1994[START_REF] Weisgraber | Turbulent structure during transition to selfsimilarity in a round jet[END_REF]. More specifically, as the jet develops downstream of the nozzle, the turbulence properties (length, time and velocity scales) evolve in such a way that they only depend on the ratio r/z, where r is the radial coordinate and z the axial one. Note that such self-similarity generally applies only at sufficiently large downstream positions, typically z ≳ 20D, with D the nozzle diameter (Pope 2000). Despite the self-similar properties of the jet, the flow is inhomogeneous and thus Lagrangian dynamics is non-stationary and dependent on the initial position of considered trajectories.

In 1957, Batchelor proposed an extension of Taylor's stationary diffusion theory to the case of turbulent jets in a Lagrangian framework, exploiting the Eulerian self-similarity property of these flows (Batchelor 1957). The approach by Batchelor uses the Eulerian self-similarity to define a compensated time τ and a compensated Lagrangian velocity u( τ ) which exhibits statistically stationary Lagrangian dynamics. It can be noted that the Lagrangian stationarisation idea introduced by Batchelor is not limited to the case of the jet, but can also be applied to other selfpreserving flows such as wakes, mixing layers and possibly other types of shear flows (Batchelor 1957[START_REF] Cermak | Lagrangian similarity hypothesis applied to diffusion in turbulent shear flow[END_REF].

The idea of this stationarisation is to compensate the effect of Eulerian inhomogeneity on the Lagrangian variables to retrieve a Lagrangian dynamics which becomes independent of the initial position and statistically stationary and, in turn, to generalise results originally established for stationary situations (such as Taylor's theory of turbulent diffusion). Based on the Eulerian self-similarity properties, Batchelor considers the case of the dispersion of particles released at the origin of a turbulent jet, whose Lagrangian dynamics is stationarised by considering the just mentioned compensated variables. Explicitly, through consideration of the velocity at the position x(τ ) reached by the particle at a given time τ since it has been released (at τ = 0 and x = 0) as well as the time scales of the flow properties at this position x(τ ):

u(τ ) = u(τ ) -u(x(τ )) σ u (x(τ )) and τ = τ T E (x(τ ))
, (4.33) where u(x(τ )) represents the local (Eulerian) mean velocity at the position x of the particle at time τ and T E (x(τ )) the local Eulerian time scale (only one velocity component is considered).

Similarly, σ u (x(τ )) is the local (Eulerian) standard deviation of the velocity at the position x of the particle at time τ . The temporal transformation simply rescales the time in order to account for the evolution of the Eulerian background properties as the particle moves downstream in the jet. The transformation of the velocity intends to stationarise the effective dynamics by: (i) subtracting the local average velocity, so that the average of u is zero, and (ii) choosing the denominator σ u (x(τ )) a general compensation for the decay of the turbulent fluctuations of the background Eulerian field as the particles move downstream. Note that the transformations, as they were presented by Batchelor (1957), directly considered the Eulerian power-law dependencies (in space) of u, σ u and T E in the self-similar region of the jet near its centreline. The transformations as written in equations (4.33) are therefore more general, although Batchelor's transformations are eventually equivalent if such power-law dependencies are assumed. The more general expression considered here allows one to explore the relevance of the stationarisation procedure not only in the centreline of the jet (as done by Batchelor) but to also probe away from the centreline. As a result of the stationarisation procedure, compensated Lagrangian statistics are expected to no longer depend on the initial position and to exhibit similar properties (time scales, correlations, etc.) at any position in the jet and hence at any time along particle trajectories. Batchelor then demonstrates that Taylor's theory can be extended to the stationarised dynamics by connecting the mean square displacement of the particles to R L ũũ ( τ ), the Lagrangian autocorrelation function of u( τ ).

Three important aspects arise regarding Batchelor's diffusion theory: (i) it extends the Eulerian self-similarity to the Lagrangian framework, in this respect being often referred to as the Lagrangian self-similarity hypothesis [START_REF] Cermak | Lagrangian similarity hypothesis applied to diffusion in turbulent shear flow[END_REF], (ii) it connects the turbulent diffusion process of particles in jets to the Lagrangian autocorrelation function (or equivalently to the second-order structure function) of the stationarised velocity statistics and (iii) it proposes a systematic method of analysing the non-stationary data of the jet.

Outline of the study

To our knowledge, only indirect evidence of the validity concerning Batchelor's self-similarity hypothesis in turbulent free jets exists in the literature, largely based on measurements of the mean square displacements of particles [START_REF] Kennedy | Particle dispersion in a turbulent round jet[END_REF]. Direct Lagrangian measurements which show the stationarity of the compensated velocity correlations are still lacking, as well as the full characterisation of the inertial-scale Lagrangian dynamics in jets. Lagrangian autocorrelation functions in free jets have been reported in experiments by [START_REF] Gervais | Acoustic Lagrangian velocity measurement in a turbulent air jet[END_REF] (which use acoustic Lagrangian velocimetry [START_REF] Mordant | Measurement of Lagrangian velocity in fully developed turbulence[END_REF])), although the question of the Lagrangian self-similarity has not been directly addressed. Further, a detailed characterisation of the inertial-range dynamics, the estimation of the related fundamental constants such as C 0 and the relevance of simple Lagrangian stochastic models derived for homogeneous isotropic conditions [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] are also currently lacking from the literature for this flow configuration.

The aim of the present study is to address these unanswered questions through examination of particle trajectories within a free round jet. Experimental methods provide sufficient temporal details to analyse particle trajectories as well as adequate spatial resolution and interrogation volume size to facilitate the application of basic Eulerian analysis. In subsection 4.2.1 the stationarisation procedure that will be applied is presented, inspired by Batchelor's Lagrangian self-similarity hypothesis. Subsection 4.2.2 is dedicated to basic Eulerian statistics, which are not the main topic of this study but nevertheless allow the characterisation of key turbulence properties (energy dissipation rate, Eulerian scales, Reynolds number, etc.) and their self-similar behaviour. Subsection 4.2.3 includes results for the Lagrangian dynamics. In the context of the previously discussed turbulent diffusion, emphasis is placed on second-order Lagrangian statistics (velocity autocorrelation and structure functions), for which the Lagrangian self-similarity compensation is tested and an estimate of the constant C 0 is given. The connections between Eulerian and Lagrangian scales are also considered in the framework of classical stochastic modelling. Subsection 4.2.4 extends the discussion of Lagrangian statistics to secondderivative dynamics where measurements of variance and time scales are presented. Finally, main conclusions are summarised in subsection 4.2.5.

For this section 4.2, we use the data set with a mass loading of 0.10% (more particles for a better statistical convergence) and the near-field (NF) and far-field (FF) cases (to observe the transition to self-similarity), as presented in section 2.2 and subsection 2.4.2.

Stationarisation method

To address the Lagrangian instationarity (related to the Eulerian inhomogeneity) of the flow, methods are used according to the proposed self-similarity of a turbulent jet by Batchelor (1957), i.e. based on the transformation of the Lagrangian velocity and time scales of a particle at a given time τ after it has been released from a point source. Equation (4.33) provides a relationship to achieve proper stationarisation. For this study, the fluctuating stationarised velocity is obtained by subtracting the local Eulerian velocity (and assuming cylindrical symmetry of the jet, hence neglecting the θ dependence on spatially averaged quantities), u i (z, r), and scaling by the local standard deviation, σ u i (z, r). Explicitly,

u i (τ ) = u i (τ ) -u i (x(τ )) σ u i (x(τ )) = u i (τ ) -u i (z, r) σ u i (z, r) . (4.34)
The local standard deviation is an optimal choice for compensation as it generalises the methods presented in Batchelor (1957), where a specific decay rate (Batchelor assumed a power law) is required for stationarisation. This velocity u takes the mean drift and decay into account although the term becomes dimensionless as a result. For this reason, for all statistical calculations of dimensional quantities (such as the energy dissipation rate) inferred from this analysis, velocity is redimensionalised through multiplication with the average local standard deviation within the considered measurement location. For transparency, the Eulerian mean and standard deviation velocity fields used for the stationarisation are presented in figure 4.13 (figure 4.13(a) showing the mean velocity u as a vector field and figure 4.13(b) the standard deviation σ u i of the axial and radial velocity components). The half-width of the jet, r 1/2 (z), where u z (z, r = r 1/2 (z)) = 1 2 u z (z, r = 0), is included in the Eulerian mean velocity field as the dashed line to provide clarity to the sampling methods based on this quantity, as discussed in the next subsections 4.2.2 and 4.2.3. Note that Lagrangian velocity components are used for the Eulerian statistical characterisation therefore the stationarisation technique described is required for all analyses presented in the study (except for acceleration). For clarity, herein the tilde is omitted and the compensated Lagrangian velocity is denoted as u(τ ) for the remainder of the section.

Eulerian velocity statistics

This subsection aims to extract flow parameters such as length scales and energy dissipation rate from various Eulerian statistics: second-order structure functions and autocorrelation functions. The jet flow is inhomogeneous, therefore these quantities depend on z and r. Focus is placed on centreline statistics for the Eulerian characterisation of the jet, limited to radial distances up to r 1/2 , and consideration of only the evolution along the z axis is used to characterise the main properties of turbulence.

Eulerian second-order structure functions

Structure functions have been introduced in section 3.1 with equation (3.4) and their behaviour is summarised in box Cheat sheet for HIT with the definitions of the associated quantities.

In HIT, K41 phenomenology (Kolmogorov 1941b) predicts for the second-order structure function in the inertial range, scaling between the Kolmogorov scale ℓ K and the integral length scale L E , that .35) with ε the average energy dissipation rate per unit mass, C 2 ≃ 2.1 (Pope 2000) and ∆x = |∆x|.

S E 2-∥ (∆x) = ⟨[δu ∥ (x, ∆x)] 2 ⟩ = C 2 (ε∆x) 2/3 σ 2 u ∥ , ( 4 
The spatial average ⟨•⟩ is taken over the pairs of particles. The σ 2 u ∥ denominator (the variance of longitudinal velocity component) has been added here in the right-hand term to account for the fact that the stationarised velocity according to transformation (4.34) is considered. Alternatively, the transverse structure function S E 2-⊥ (∆x) can be considered where increments are taken for the velocity components perpendicular to the separation vector. In HIT, within the inertial range, S E 2-⊥ (∆x) follows the same K41 scaling but with a constant C 2⊥ = 4 3 C 2 . Previous studies have found that these relations, a priori established for HIT, apply reasonably well to the inertial scales of turbulent jets, in spite of the large-scale inhomogeneity and anisotropy [START_REF] Romano | Longitudinal and transverse structure functions in a turbulent round jet: effect of initial conditions and Reynolds number[END_REF]. In the sequel relation (4.35) is used together with the relation

C 2⊥ = 4
3 C 2 to analyse longitudinal and transverse structure functions in the jet. Within the jet (cylindrical coordinates), the longitudinal second-order structure function is usually estimated, near the centreline, based on the axial component of the velocity:

S E 2-z,∥ (z, δz) = ⟨[u z (z + δz, r) -u z (z, r)] 2 ⟩, (4.36) 
with u z the fluctuating axial velocity (recall that the stationarisation described in subsection 4.2.1 is applied) and δz the axial distance between the two considered points (the explicit z dependency is kept here to emphasise the streamwise inhomogeneity of the jet centreline statistics). This is, for instance, the quantity typically measured when using hot-wire anemometry (sensitive to the axial velocity component) combined with the Taylor frozen field hypothesis.

To explore the streamwise evolution of Eulerian properties of the jet, a set of data (particle velocities) is considered for a given z position, which falls within a short cylinder (disk), D z , of limited height (0.5 mm in the z direction) and a radius of r 1/2 (z) for statistical analysis. The disk radius is chosen to include sufficient particles for statistical convergence but, in being limited to the half-width, the volume does not encompass particles from the TNTI. This gives a canonical description of turbulent properties representative of the centreline of the jet. Consideration of statistics in a thin disk allows the more detailed exploration of z dependence of statistical quantities; however, this sampling technique forbids exploration of δz values over a range relevant to estimate S E 2-z,∥ (z, δz) at inertial scales. To overcome this issue, two strategies are considered. (i) Still based on the axial z component of the velocity, S E 2-z,⊥ (z, δr), the transverse structure function of u z (with the separation vector δr taken within the plane of the disk D z ) is estimated in lieu of S E 2-z,∥ (z, δz). (ii) For radial velocities, the longitudinal structure function is considered through use of the velocity components perpendicular to the z axis (i.e. within the sampling disk D z ), projected onto the increment vector δr within the disk D z . This is denoted as S E 2-rθ,∥ (z, δr) (where the subscript rθ recalls that only velocity components perpendicular to z are considered). For any redimensionalisation of an Eulerian quantity, the velocity standard deviation within the considered disk D z , simply noted σ u i , is employed.

We present here the extraction of the main Eulerian turbulent properties (and of their streamwise evolution) based on S E 2-z,⊥ (z, δr). The same analysis was also repeated based on S E 2-rθ,∥ (z, δr), the details of which are not provided for brevity. The main turbulent parameters extracted from these two estimates are discussed and compared with table 4.1 at the end of this subsection.

The transverse structure function based on u z at a given z position is estimated as

S E 2-z,⊥ (z, δr) = ⟨[u z (r + δr) -u z (r)] 2 ⟩ Dz , ( 4.37) 
where the average is taken over pairs of particles within the disk D z separated by a vector δr with δr = |δr|. Note that, given the reduced height of the disk (not exceeding two particle diameters), δr is within an acceptable approximation perpendicular to the z axis, ensuring that equation (4.37) indeed corresponds to a transverse structure function (except maybe for the smallest separations, comparable to the disk height).

The structure function S E 2-z,⊥ (z, δr) is computed for different z positions (in the NF and FF of the jet) and shown in figure 4.14(a). As explained in subsection 4.2.1, while the stationarised (hence dimensionless) velocity is used for all estimates, S E 2-z,⊥ is made dimensional by multiplying it by the square of σ uz , the standard deviation of u z within D z (see table 4.1). This redimensionalisation is required in order to extract the dimensional value of ε, and the associated derived parameters (in particular the dissipation scales and Taylor microscale). To this end, figure 4.14(b) includes the compensated structure function (S E 2-z,⊥ (z, δr)σ 2 uz / 4 3 C 2 ) 3/2 /δr (measurements by [START_REF] Romano | Longitudinal and transverse structure functions in a turbulent round jet: effect of initial conditions and Reynolds number[END_REF] suggest that at in spite of the large-scale anisotropy, the isotropic relation C 2⊥ = 4 3 C 2 applies reasonably well for the inertial-scale dynamics of the jet). Well-defined plateaus, corresponding to inertial-range dynamics, are observed from which the dissipation rate ε z can be extracted according to equation (4.35). The subscript z in ε z simply refers to the fact that this estimate is based on the axial component of the velocity. It will be compared later with ε rθ , the estimate from S E 2-rθ,∥ . It can be seen that, as the location downstream increases, the plateau of the second-order structure function (and hence ε z ) decreases, due to the streamwise decay of turbulence along the jet.

It is noted that small scales (typically for δr < 10 -3 m) are not statistically well converged. This is due to the lack of statistics for pairs of particles with very small separation due to the moderate seeding of particles used for the Lagrangian tracking. Furthermore, the noise at small scales, δr ≃ 1.5 × 10 -3 m, could also be due to the use of the total distance for the separation vector.

Eulerian autocorrelation functions

The second-order Eulerian statistics shown in the previous point from the structure functions can be equivalently investigated in terms of the autocorrelation function. The autocorrelation function of axial velocity can indeed be obtained via the non-dimensional second-order structure function, R E uu-z,⊥ (z, δr) = 1 -S E 2-z,⊥ (z, δr)/2, to depict the evolution of the velocity interactions through space. Note that we consider non-normalised autocorrelation functions, Eulerian autocorrelations functions of the axial velocity on the axis, but, because of the stationarisation method we use, there are 'naturally' normalised. The results from the NF and FF are presented in figure 4.15. The curves are ordered depending on their downstream location z. The location nearest the jet exit, z/D = 15, exhibits a rapid decorrelation. As the flow advances downstream, the turbulent length scales grow, resulting in a dynamics which remains correlated over longer distances, as seen by the z/D = 45 profile. This trend can be investigated quantitatively using the Eulerian correlation length (or Eulerian integral scale)

R E uu-z,⊥ (z, δr) = 1 -S E 2-z,⊥ (z, δr)/2.
L E z,⊥ (z) = ∞ 0 R E uu-z,⊥ (z, δr) dδr.
Recall that transverse and longitudinal correlation lengths are kinematically related in HIT by L E z,∥ = 2L E z,⊥ (Pope 2000). Since most studies in the literature refer to the longitudinal length, the present study will then consider L Ez (z) = 2 ∞ 0 R E uu-z,⊥ (z, δr) dδr, avoiding the ⊥ or ∥ subscripts. However, it is noted that measurements by [START_REF] Burattini | Similarity in the far field of a turbulent round jet[END_REF] suggest that the ratio may actually be slightly lower than 2, and closer to 1.8 in free jets due to large-scale anisotropy.

Evolution of Eulerian parameters

The evolution of ε z , estimated from the plateaus of the compensated second-order structure functions in figure 4 visible in figure 4.17(b)), as expected for canonical self-similar jets. The observed consistency in the values and shape of the profiles between the NF and FF experimental locations validates the presented ε z values from the independent measurements carried over the overlapping region.

From the dissipation rate ε z , other relevant parameters of the flow can be extracted, namely the Kolmogorov time scale τ Kz = (ν/ε z ) 1/2 and length scale ℓ Kz = (ν 3 /ε z ) 1/4 , as well as the Taylor microscale λ z = (15νσ 2 uz /ε z ) 1/2 and the Taylor-based Reynolds number Re λ = σ uz λ z /ν, both of which assume HIT (all these relations are also presented in box Cheat sheet for HIT). Furthermore, large length and time scales are obtained from the autocorrelation functions in figure 4.15. For a more accurate estimate of the correlation length L Ez (z) = 2 ∞ 0 R E uu-z,⊥ (z, δr) dδr, the integral of the autocorrelation functions is based on a fit using a Batchelor-type parametrisation (3.6). Recall that the factor 2 is the HIT correction that relates the transverse correlation (given by the integral of R E uu-z,⊥ ) to the longitudinal one. The calculated L Ez is therefore interpreted as the longitudinal integral scale associated with the z component of velocity. The integral time scale is then computed as T Ez = L Ez /σ uz . All relevant quantities of the jet for the considered downstream locations are collected in table 4.1. The streamwise evolution for the velocity standard deviation, dissipation rate and integral scale are also shown in figure 4.17, where the well-known self-similar power-law profiles can be seen.

This brief characterisation of basic Eulerian properties is concluded by reporting the similarly employed analysis performed for S E 2-rθ,∥ (z, δr) (where rather than u z , components of velocity perpendicular to the z direction are considered). This leads to estimates of the dissipation rate ε rθ (and derived quantities) and of the integral length scale and time scale, L E rθ and T E rθ . Results are included in table 4.1. The energy dissipation rate for the radial velocity is lower than that for the axial component near the exit of the jet, but declines more slowly as the jet develops, resulting in similar values for ε rθ and ε z at z/D ≳ 25. As a result, in this region dissipation scales are found almost identical with both estimates. This supports the idea that small and inertial scales are nearly isotropic. The large scales show, however, a certain degree of anisotropy, in particular regarding the integral length scale and to a lesser degree the integral time scale which are found larger for the z component than for the rθ components.
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Lagrangian velocity statistics

In this subsection the Lagrangian statistics of the jet dynamics are investigated with a particular focus on second-order statistics (namely velocity second-order structure function and autocorrelation function), which are key ingredients for modelling turbulent diffusion, as discussed in the introduction. In particular, the relevance of Batchelor's Lagrangian self-similar stationarisation idea is further assessed.

Lagrangian second-order structure functions

The application of the known K41 phenomenology for HIT, generally applied to Eulerian inertial scaling, can be extended to the Lagrangian framework [START_REF] Toschi | Lagrangian properties of particles in turbulence[END_REF], where dynamics is investigated as a function of temporal increments along particle trajectories. Namely, for the second-order Lagrangian structure function, this reads (for the stationarised velocity defined by relation (4.34))

S L 2-i (τ ) = ⟨[u i (t + τ ) -u i (t)] 2 ⟩ = C 0 i ε i τ σ 2 u i , ( 4.38) 
within the the inertial range (τ K ≪ τ ≪ T L ), where v i is a velocity component (i = x, y or z and by symmetry, statistics along x and y are identical and equivalent to statistics of the radial r component of velocity) and T L is the Lagrangian integral time scale, which is expected to be related to the Eulerian integral time T E (this point is discussed in greater depth later). Note that while for the Eulerian structure functions, spatial velocity increments were computed between pairs of particles and then averaged, now, for Lagrangian analysis, temporal velocity increments are computed on each individual trajectory before being averaged (⟨•⟩ notation). In this study, the nature of this scaling is revisited as well as the value of the constant C 0 when the stationarised velocity presented in subsection 4.2.1 is considered. In order to address the role of jet anisotropy (in particular regarding the values of C 0z and C 0r ), the statistics for the axial and radial components of velocity are considered separately. Recall also that in lieu of Gaussian filtering previously applied for the Eulerian analysis (presented in section 2.4), the dt-method presented in box dt-method is implemented, which has been shown to better handle noise issues for Lagrangian velocity statistics estimates (Machicoane et al. 2017a). This method is adapted to take into account the stationarisation. Figure 4.18(a) presents the corresponding curves for S L 2-z (τ ) at different downstream locations. For each location z, the ensemble selected for the Lagrangian statistics consists of each trajectory, in its entirety (for long time lag convergences), which passes through a small sphere S z centred at downstream position z along the jet centreline, with a radius of r 1/2 (z)/3. A minimum trajectory length of 30 frames is enforced. This volume allows sufficient particles for convergence of statistics yet does not overlap in the axial direction as the half-width increases. Similar to methods presented in the Eulerian framework, the velocity standard deviation within the considered sphere S z is used for redimensionalisation of Lagrangian quantities when necessary (for calculation of C 0 ) and also simply denoted as σ u i . All curves exhibit a transition from a dissipative behaviour at small time lags (where S L 2-z ∝ τ 2 ) to the inertial range (where S L 2-z ∝ τ ). The main figure shows the structure function in stationarised variables, while the inset provides the same data but non-stationarised. Several interesting points emerge. 

Effect of stationarisation at inertial scales

The non-stationarised statistics (inset of figure 4.18(a)) are widely spread while the stationarised statistics (main figure) collapse reasonably well, in particular in the FF (z/D ≳ 35). Similarity between the curves is improved for the inertial-range dynamics (which presents similar trends even at distances z/D ≳ 25), but is less adequate for the small-scale dissipative dynamics, for which the collapse becomes reasonable only at far-downstream locations (z/D > 35). This suggests that the stationarisation procedure is efficient for retrieving self-similar inertial-range Lagrangian statistics in the FF (in Batchelor's sense, meaning that Lagrangian statistics become independent of the downstream position as particles travel along the jet), while discrepancies remain in the small scales until the very FF.

Small-scale dynamics discrepancies

In the Lagrangian framework, the small-scale dynamics of structure functions is associated with particle acceleration statistics. Figure 4.18(a) therefore suggests that stationarised acceleration statistics eventually fall in line, but only in the very FF. As discussed in subsection 4.2.4, acceleration statistics are strongly affected by the finite size of the particles, which in our study remains much larger than the dissipation scale of the flow (d p /ℓ K = 25 at z/D = 15 and 9 at z/D = 45). Although further investigation focusing specifically on the small-scale dynamics would be required (which is not in the scope of the present study, mostly motivated by applications to diffusion which is primarily driven by inertial-and large-scale behaviour), it is probable that the observed discrepancy at small scales reflects these finite size effects. This is supported by the fact that as considered positions are farther downstream (where d p /ℓ K gets smaller and hence finite particle size effects disappear), the stationarised acceleration dynamics seems to better converge to a single curve. Acceleration statistics and finite size effects are further discussed in subsection 4.2.4.

Large-scale dynamics

By construction, the second-order structure function of the stationarised velocity should reach, in large scales, an asymptotic constant value of 2 as the Lagrangian dynamics becomes fully decorrelated. This asymptotic regime is not reached in our data, where S L 2 reaches at best values of order 1, without exhibiting an asymptotic decorrelated plateau. This is due to the lack of statistics for long trajectories. One of the well-known difficulties of Lagrangian diagnosis is indeed the capacity to obtain sufficiently long trajectories allowing exploration of the large-scale dynamics. In the present study, most trajectories are efficiently tracked over a few tens of frames at most (very few are over hundreds of frames). At the operating repetition rate of 6000 frames per second, this corresponds to trajectories at most 10 ms long, which represents (according to table 4.1) a few Eulerian integral time scales in the NF, and only a fraction of this integral scale in the FF, where only a part of the inertial-range dynamics is accessible. In the following, it is demonstrated that large-scale behaviour (and the effect of stationarisation on it) can still be addressed by estimating the Lagrangian correlation time scales.

Estimate of C 0 constant Figure 4.18(b) shows the compensated structure functions S L 2-z (τ )σ 2 uz /(τ ε z ) built with ε z values found in the Eulerian analysis (for consistency regarding possible anisotropy effects, the estimate of energy dissipation rate based on Eulerian statistics of corresponding components is used). Based on relation (4.38), within the inertial range the value of C 0z can be extracted from the plateau of the curves. The value of the plateau is observed to saturate, as considered positions reach farther towards the FF, at a value of C 0z ≃ 3.2. The streamwise evolution of C 0z is further discussed in the ensuing sections.

All observations also apply to estimates of S L 2-r , based on the radial component of velocity. Quantitative comparison of the streamwise evolution of C 0z and C 0r is detailed in the following.

Lagrangian autocorrelation functions

The autocorrelation functions of the Lagrangian axial velocity as a function of the compensated time τ /T Ez are presented in figure 4. 19(a) where R L uu-z (τ ) = ⟨u z (t+τ )u z (t)⟩. It can be seen that, as for the structure functions previously discussed, the stationarisation results in a remarkable collapse of the autocorrelation functions, in particular at z/D ≳ 25. Note that the small-scale discrepancy observed for S L 2-z is also expected to be present for the autocorrelation function, which carries essentially the same information; it is, however, less emphasised due to the linear (rather than logarithmic) scale used to represent the autocorrelation function. The observed agreement between the autocorrelation functions confirms again the Lagrangian self-similarity hypothesis at inertial scales, resulting in autocorrelation functions of the stationarised variables which do not depend on the downstream position of the particles as they evolve along the jet (beyond z/D = 25).

Although the shortness of the trajectories does not allow direct exploration of the large-scale, fully decorrelated, regime (where R uu-i vanishes), the observed collapse at intermediate scales allows speculation that the self-similarity hypothesis may also extend to the large scales. This would lead, in particular, to a univocal relation between the Lagrangian correlation time (defined as

T L i = ∞ 0 R L uu-i (τ ) dτ
) and the Eulerian time scale at all positions along the jet (except in the very NF, where the Lagrangian autocorrelation function clearly deviates). This point is further tested in the following where we estimate T L based on appropriate fits (exponential or double exponential [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF])) of the Lagrangian autocorrelation, supporting the validity of self-similarity in the large scales and the univocal link between T L and T E . We conclude by providing, in figure 4. 19(b), a test of the Lagrangian self-similarity hypothesis when off-axis dynamics is considered. The original stationarisation proposed by Batchelor (1957) used centreline power laws for a self-similar jet to compensate the Lagrangian velocity and time. As discussed in subsection 4.2.1, these formulas have been generalised (compatible with Batchelor's approach in the centreline), using actual local measurements of Eulerian properties rather than prescribed centreline power laws. The stationarisation transformations can therefore be applied at any arbitrary position along particle trajectories. Figure 4.19(b) explores the application of the proposed stationarisation considering trajectories passing through a sphere centred off-axis, at a radial location of r = r 1/2 (z), instead of r = 0. As for the centreline analysis, the autocorrelation functions of the stationarised variables collapse for all locations z/D ≳ 20. This substantiates the generalised stationarisation technique, and its application to locations beyond the centreline. Although the present study focuses on diffusion of particles near the jet centreline, this result motivates future dedicated studies to explore more deeply the generalised Lagrangian stationarisation for off-axis statistics as well as for other inhomogeneous flows (such as von Kármán flows, which are widely used for Lagrangian studies of turbulence).

Evolution of Lagrangian parameters

This point provides estimates of C 0 and T L , their streamwise evolution along the jet centreline, their connection to Eulerian properties of the jet and the reliability of Lagrangian stochastic models derived for HIT [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] to address the stationarised Lagrangian dynamics of the jet. Investigations are made into these quantities for both axial and radial components of the velocity.

Table 4.2 presents these Lagrangian parameters of the jet for various z locations in the NF and FF. The scaling constant C 0z is observed in the compensated Lagrangian structure functions in figure 4.18(b). The Lagrangian integral time scale T Lz is estimated based on an exponential fit of the velocity autocorrelation functions in figure 4. 19(a), due to the lack of experimental data for large time lags. Lagrangian autocorrelation functions are indeed known (at least in HIT) to be well fitted by double-exponential functions, and even simple exponential functions at sufficiently large Reynolds number, if the focus is on the estimate of inertial-and large-scale behaviour [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF]) (deeply discussed in the previous chapter). In the present case, the fit by a simple exponential (e -τ /T Lz ) leads to very similar estimates of T Lz compared with a more sophisticated double-exponential fit. Corresponding radial quantities are extracted in the same way by considering S L 2-r (τ ) and R L uu-r (τ ). Constant C 0z is found to converge to a constant value C 0z ≃ 3.0 at z/D ≳ 35. This is more easily observed in figure 4.20 which provides the evolution of the Lagrangian parameters as a function of the downstream position z. The asymptotic FF value of C 0z can be compared with values reported in the literature for C 0 . A relationship presented by [START_REF] Lien | The Kolmogorov constant for the Lagrangian velocity spectrum and structure function[END_REF] accounting for finite-Reynolds-number effects on C 0 suggests an altered

C 0 (Re λ ) = C ∞ 0 [1 - (0.1Re λ ) -1/2 ],
where, according to [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF], C ∞ 0 ≃ 7.0. This gives an estimated C 0 of 5.6 for the Reynolds number corresponding to the present study as a benchmark value. As previously mentioned, discrepancies of this parameter exist between numerous studies. For example, a value of C 0 of 4.8 was extracted for direct numerical simulation data with Re λ = 240 by [START_REF] Sawford | Lagrangian statistics in uniform shear flow: Direct numerical simulation and Lagrangian stochastic models[END_REF], while experimental data taken between two counter-rotating disks at Re λ = 740 produced a value of C 0 of 2.9 [START_REF] Mordant | Measurement of Lagrangian velocity in fully developed turbulence[END_REF]. Ouellette et al. (2006c) found in a similar flow at Re λ ≃ 200 an anisotropic behaviour, with C 0 ≃ 3.5 for the velocity component aligned with the axis of rotation of the disks and C 0 ≃ 5.5 for the transverse components. It is therefore difficult to be fully conclusive regarding the expected value of C 0 in our case, as it appears to be non-universal and not only dependent on the Reynolds number, but for a given Reynolds number to also depend on specific geometrical properties of the considered flow. It is observed, however, that the measured value of C 0z in the jet is in the same range of magnitude as other studies in different flows at similar Reynolds number. With regard to anisotropy, table 4.2 and figure 4.20 suggest that C 0z and C 0r behave almost identically along the jet, C 0z converging to a value of 3.0 and C 0r to a value of 2.8. This indicates, on the one hand, that Lagrangian dynamics exhibits a level of isotropy and, on the other hand, that at a specific location downstream, C 0 becomes independent of axial location and hence supports the idea that inertial Lagrangian statistics reach self-similarity.

Regarding the Lagrangian correlation time scale, both T Lz and T Lr increase with increasing axial distance, with T Lz being, however, significantly larger (about double) than T Lr (see table 4.2). Large-scale Lagrangian dynamics therefore exhibits a persistent anisotropy, somehow more pronounced than the anisotropy previously reported for the Eulerian integral time scales (see for instance T Ez and T E rθ in table 4.1). To further compare Lagrangian and Eulerian largescale properties, the ratios of the Eulerian to Lagrangian integral time scales for both the axial and the radial components of velocity are provided in table 4.2 and figure 4.20. For all locations, the Eulerian to Lagrangian time-scale ratio for the radial component is notably larger (about double) than that for the axial component. The axial component trends are consistent with similar results reported by [START_REF] Gervais | Acoustic Lagrangian velocity measurement in a turbulent air jet[END_REF], wherein T Ez /T Lz was found to be less than 1 in the NF, and to evolve towards a value greater than 1 (between 1.3 and 1.8) as the jet develops. Interestingly, in the well-developed region, the Lagrangian dynamics decorrelates significantly faster compared with the Eulerian dynamics, as originally intuited by [START_REF] Kraichnan | Relation between Lagrangian and Eulerian correlation times of a turbulent velocity field[END_REF]. This relation between Eulerian and Lagrangian time scales has been examined numerically by [START_REF] Yeung | Lagrangian investigations of turbulence[END_REF] where a ratio of T E /T L = 1.28 was found for HIT. This value is slightly lower than the value found in the present experiments, but is still consistent with the Lagrangian dynamics decorrelating faster than the Eulerian dynamics.
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Since the study of [START_REF] Kraichnan | Relation between Lagrangian and Eulerian correlation times of a turbulent velocity field[END_REF] who suggested that T E /T L > 1, a similar prediction has been made by [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] based on simple Lagrangian stochastic modelling. In this approach, Eulerian and Lagrangian time scales can be simply related to each other via the scaling constant C 0 (same equation as (3.20) but without the subtleties related to C * 0 and C ε ):

T E T L = C 0 2 . ( 4.39) 
As observed in figure 4.20, this relation is tested against the experimental results for the axial and radial velocity components. Note that the limits of the right-hand axis for T E /T L are half the limit of the left-hand axis for C 0 ; therefore if T E /T L = C 0 /2 holds, the curves for T E /T L and for C 0 shall superimpose. For the axial component, the agreement is almost perfect at all locations, including in the NF. This is not observed for the radial component; while the two curves exhibit proportionality, the ratio of time scales is nearly equal to the scaling constant C 0 at all presented locations.

Lagrangian acceleration statistics

This subsection explores the statistics of the Lagrangian acceleration, to further elucidate smallscale dynamics and its evolution along the jet. Particularly, the role of finite particle size effects (which evolve along the jet, and therefore may be to blame for preventing self-similarity from being recovered until the very FF, as previously discussed) and the associated dimensionless constant a 0 (introduced in the previous chapter as σ 2 a = a 0 ν -1/2 ε 3/2 ) are addressed. At the same time, investigation into the correlation time scales of acceleration can be carried out to further probe the relevance of the proposed stationarisation. All analysis is performed on trajectories that pass through a sphere of radius r 1/2 (z)/3, as was done for the Lagrangian velocity analysis. Only the axial component is considered for the acceleration discussion (the radial component gives almost identical conclusions). Unlike velocity, acceleration can be considered as a locally stationary quantity [START_REF] Huck | Particle dynamics in turbulence: from the role of inhomogeneity and anisotropy to collective effects[END_REF]) which should not be affected by large scale inhomogeneity, thus no stationarisation is used for acceleration.

Acceleration variance

We want to determine a 0 such as ⟨a 2 z ⟩ = a 0 ν -1/2 ε 3/2 . The acceleration variance ⟨a 2 z ⟩ is taken directly from the trajectories for different z positions with the dt-method as presented in box dtmethod. Parameter a 0 is then deduced at the different positions as

⟨a 2 z ⟩ν 1/2 ε -3/2 z
, where ε z is the estimate of the energy dissipation rate at the considered position (see table 4.1).

Acceleration variance, and therefore the dimensionless constant a 0 , is known to be highly sensitive to finite particle size effects and to converge to the value expected for actual tracers only when the normalised particle diameter d p /ℓ K ≲ 5 [START_REF] Voth | Measurement of particle accelerations in fully developed turbulence[END_REF], Qureshi et al. 2007[START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF][START_REF] Volk | Dynamics of inertial particles in a turbulent von Kármán flow[END_REF], where ℓ K is the Kolmogorov length scale (see table 4.1). In the present study the ratio d p /ℓ K varies typically between 9 and 25 depending on the distance to the nozzle. Therefore, the constant a 0 , as a function of the normalised particle size d p /ℓ K (bottom axis) and of the downstream normalised location z/D (top axis), is provided in figure 4.21. Included is a power-law fit of -1.75 and a red dashed line of the expected value (from numerical simulations of HIT), a theory 0 ≃ 4.2, calculated from [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF]. The power-law fit of -1.75 provides the expected a tracer 0 value of a true tracer through extrapolating the trend as d p /ℓ K → 5, from which a value of a tracer 0 ≃ 3.0 is found, in reasonable agreement with values reported in previous experimental studies of von Kármán flows [START_REF] Voth | Measurement of particle accelerations in fully developed turbulence[END_REF] and numerical simulations in HIT [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Vedula | Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence[END_REF] for similar Reynolds number. Furthermore, the power-law fit intersects with the theoretical value of a theory 0 at d p /ℓ K ≲ 5, which is generally considered as the diameter for which finite size effects become noticeable. These observations suggest that acceleration statistics in the jet should eventually behave for tracers as in HIT, without a major influence of large-scale inhomogeneity of the jet. With the present considered particles (with d p ≃ 250 µm) the tracer behaviour is expected to be reached at a downstream distance z/D ≃ 65, which is out of reach of the present data set. To go into this question in more depth, it would be interesting to perform further experiments specifically dedicated to acceleration measurements, by considering either smaller particles or further downstream distances.

Regarding the power law, previous studies have reported in HIT a power-law dependency of a 0 on particle size with a 0 ∝ (d p /ℓ K ) -2/3 [START_REF] Qureshi | Turbulent transport of material particles: An experimental study of finite size effects[END_REF][START_REF] Brown | Acceleration statistics of neutrally buoyant spherical particles in intense turbulence[END_REF], while a study by [START_REF] Volk | Dynamics of inertial particles in a turbulent von Kármán flow[END_REF] of von Kármán dynamics reported a slightly steeper decay with an exponent -0.81. In the present study, an even steeper decrease of constant a 0 is observed with particle size, with an exponent -1.75, about double the values reported previously. This stronger dependence of a 0 on particle size remains to be elucidated. It could be due to a coupling between the finite size effects and the streamwise dependence of turbulent properties in the jet, although further investigation would be necessary to further explore this point.

In the original publication (Viggiano et al. 2021), we only discuss these finite size effects. The constant a 0 also depends on the Reynolds number which is constant in a turbulent round jet. A last effect could be the limited time resolution: we have d P > ℓ K but also τ Kz ≃ 5 frames in the best case for z/D = 45. We discussed in the previous chapter the importance of time resolution to correctly handle noise at small time. Moreover, with this small time resolution, what we call acceleration could be a velocity time increment. This low resolution could explain in particular the steep evolution of a 0 . Nevertheless, due to the finite size effects, the typical response time of the particle should be greater than the Kolmogorov time scale, and thus the time resolution could be high enough to correctly probe the acceleration of the particles, which is filtered compared to the acceleration of the fluid. Without conclusive answer to these points, these results should be considered with caution.

Acceleration autocorrelation functions

Beyond the value of a 0 , acceleration statistics are also of great interest as they reflect the Lagrangian dissipative dynamics of the particles. In particular, they give access to the dissipative time scale of the Lagrangian dynamics, traditionally defined based on τ 0 , the zero-crossing time of the acceleration autocorrelation function R aa-z (τ ) = ⟨a z (t + τ )a z (t)⟩ with R aa-z (τ = τ 0 ) = 0. As for ⟨a 2 z ⟩, R aa-z is computed with the dt-method presented in box dt-method. The autocorrelation function of the axial acceleration is presented in figure 4.22 for downstream locations along the centreline, where the time has been normalised by τ K . It has been noted in previous studies that for tracers τ 0 ≃ 2.2τ K [START_REF] Yeung | Lagrangian statistics from direct numerical simulations of isotropic turbulence[END_REF][START_REF] Volk | Acceleration of heavy and light particles in turbulence: Comparison between experiments and direct numerical simulations[END_REF], [START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF]. For the current study, the zero-crossing time is not unequivocally close to τ K and therefore the ratio τ 0 /τ K depends on the location of the measurement. The expected value of 2 is only approached in the farthest downstream locations within the jet. The solid line in figure 4.23 shows the streamwise evolution of the zero-crossing time τ 0 . As for a 0 the observed streamwise dependency of τ 0 /τ K is likely due to finite size effects, which have been reported in HIT [START_REF] Volk | Acceleration of heavy and light particles in turbulence: Comparison between experiments and direct numerical simulations[END_REF][START_REF] Calzavarini | Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces[END_REF]). It should be noted though, that τ 0 /τ K seems to eventually approach the expected value of nearly 2 for the farthest positions (and hence for the smallest d p /ℓ K ratios), presented in the inset of figure 4.23. Following the considerations previously discussed for the trends of a 0 , it could then be expected that the actual tracer behaviour (free of finite size effects) would be fully recovered for τ 0 near z/D ≃ 65, with a ratio τ 0 /τ K of the same order as that usually reported for HIT.

As for the acceleration variance, we initially focused on finite size effects. The limited time resolution could also be responsible for larger values of τ 0 , probably by introducing some aliasing. This effect is also reduced for increasing streamwise distance z because, in the same way that d p /ℓ K is decreasing, the number of frames per τ K is increasing with z. However, as we explained for a 0 , we do not know how the finite size effects and the limited time resolution interplay.

The stationarisation of velocity à la Batchelor can also be further tested by recalling that for any random stationary signal ξ, the autocorrelation function of the derivative of ξ, R ξ ξ , is simply related to the second derivative of the autocorrelation function of ξ with R ξ ξ = -Rξξ . In the present case, this relation gives that the zero-crossing of the acceleration autocorrelation function corresponds to an inflection point of the velocity autocorrelation function. If Lagrangian stationarity holds, τ 0 can therefore be simply extracted from the peak of the derivative of the second-order structure function dS L 2 /dτ (the value of this peak gives access to C * 0 as discussed in the previous chapter). The corresponding values are presented in figure 4.23 (dot-dashed line) which exhibit a fair agreement with the direct estimate of τ 0 from R aa . This observation supports the validity of the proposed stationarisation procedure at each explored location independently. However, finite size effects (and probably limited time resolution) influence the streamwise dependence of τ 0 , therefore impeding the validation of the small-scale Lagrangian self-similarity based on streamwise evolution of τ 0 (or a 0 ).

Conclusion

This Lagrangian large-scale database facilitates the study of how fundamental Lagrangian parameters behave when exposed to a highly anisotropic and inhomogeneous flow field. The Lagrangian self-similarity theory of turbulent diffusion of Batchelor (1957) has been applied to account for the Lagrangian instationarity of the flow field due to the spatial Eulerian inhomogeneity. The stationarisation technique leading to Lagrangian self-similarity is validated in the FF of the jet for Lagrangian inertial-scale dynamics by the collapse of the Lagrangian velocity structure functions and autocorrelation functions (after a given location downstream) for the stationarised variables. The Lagrangian self-similarity is also validated for the large scales, as the Lagrangian and Eulerian time scales are found to be univocally tight in the FF of the jet. For the small-scale Lagrangian dynamics, self-similarity is only observed in the farthest downstream locations explored. This is attributed to the impact of finite particle size effects which evolve along the jet axis and therefore influence the small-scale Lagrangian dynamics differently depending on the downstream position, as confirmed by the acceleration statistics. Further studies, with experiments specifically dedicated to small-scale (acceleration) measurements of small tracers, would be required to draw final conclusions concerning the small-scale Lagrangian self-similarity, in particular in terms of finite size effects and time resolution. In turn, this confirmation of the validity of the Lagrangian self-similarity at inertial and large scales is an important element supporting Batchelor's extension of Taylor's stationary theory of turbulent diffusion to the case of self-similar jets and wakes where particles have a non-stationary Lagrangian dynamics.

Regarding the inertial scales of the Lagrangian dynamics, results indicate that the Lagrangian scaling constant C 0 is a function of downstream location in the NF and eventually converges (around z/D = 30) to a value of the order of 3, with a small (≃ 10%) difference between axial and radial components, indicating a weak role of anisotropy in inertial-scale Lagrangian dynamics in the jet. It is noted that this value may be dependent on Reynolds number (its order of magnitude is consistent though with HIT simulations and experiments carried in other flows at similar Reynolds number), and further studies in a jet configuration at different Reynolds number will be required to explore this dependency.

The evolution of the Eulerian to Lagrangian integral time-scale ratio shows convergence towards T E /T L ≃ 1.8 around z/D = 25 for the axial velocity time scales and T E /T L ≃ 2.6 at the same location downstream for the radial-based time-scale ratio. This points towards three interesting observations. (i) In the well-developed region of the jet, the Lagrangian dynamics decorrelates faster (about twice faster) than the Eulerian dynamics (as predicted for HIT by [START_REF] Kraichnan | Relation between Lagrangian and Eulerian correlation times of a turbulent velocity field[END_REF]). (ii) The ratio between Lagrangian and Eulerian integral scales is about 40% larger for the radial component compared with the axial, which is related to the large-scale anisotropy of the jet. (iii) In spite of this difference, sufficient agreement is found between the measured ratio for these time scales and the prediction from simple stochastic models for HIT, T E /T L ≃ C 0 /2 (the agreement is favourable between the axial-based parameters while the value predicted by the model underestimates the actual time-scale ratio for the radial direction).

Considering the small-scale dynamics, the normalised acceleration variance shows a strong dependence on the downstream location from the nozzle, presumably associated with finite particle size effects, which are known to influence acceleration when d p /ℓ K > 5 typically. This presumably explains why self-similarity is not fully recovered at small scales in the present study, as tracer-like behaviour for acceleration would only be recovered for z/D ≃ 65. Besides, the power-law slope of a 0 as a function of d p /ℓ K found in the current study is larger than in previous studies of HIT and von Kármán flows, suggesting that the jet dynamics interplays with finite size effects and is potentially altered by a limited time resolution. The zero-crossing of the acceleration autocorrelation function also demonstrates a strong dependence on the downstream location from the nozzle, converging towards typical values (τ 0 /τ K ≃ 2) only at the farthest position explored (z/D ≳ 40). Although the actual value of τ 0 is likely also to be altered due to finite size effects, the agreement with velocity-based estimate of τ 0 supports the validity of the proposed stationarisation method.

The ability of the implemented stationarisation technique provides adequate methods for calculating the scaling constants, a non-trivial task within an inhomogeneous flow field. Overall, after a proper stationarisation, the Lagrangian properties for the jet are interestingly found to match reasonably well the behaviours previously reported for HIT. From the perspective of building simple and practical diffusion models, the success of the method validates Batchelor's extension of Taylor's theory, providing estimates of turbulent diffusion properties based on the Lagrangian second-order structure function (or autocorrelation function) of velocity. With simple stochastic modelling [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF][START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF], the sole knowledge of the constants a 0 and C 0 may be sufficient to build reasonable proxies (with exponential or double-exponential functions) of these correlations to be used for estimating turbulent diffusion properties.

Additional works

We cite in appendix D.4 an additional paper following the presented study. Written by Bianca Viggiano and submitted to PNAS, this work shows the inverse idea: how we can transform an intermittent HIT signal into a turbulent jet with a good reproduction of its specific statistics, by using the inverse proposed stationarisation. For embargo reasons, this paper is not included.

We include in appendix D.5 a research report written by Livia Freire, assistant professor in the Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil. This collaboration has been initiated to generate the LES of a turbulent jet. This study aims to provide the stationarised statistics discussed in section 4.2, but also to study the inhomogeneous seeding presented in section 4.1.

Conclusion

The goal of this manuscript was to give new elements for the understanding of particle dispersion in turbulence. To this end, this study uses a Lagrangian approach with dedicated experimental and modelling tools. Two Lagrangian experimental data sets in HIT and in a turbulent free round jet are provided.

Lacking in the literature, a Lagrangian characterisation of HIT is performed. Universal constants such as C * 0 for the Lagrangian second-order structure function and a 0 for the acceleration variance are determined. The Lagrangian time dynamics of turbulence is characterised with connection to Eulerian quantities.

Based on the same data set in HIT, an experimental study of pair dispersion is proposed with a focusing on relative velocity autocorrelation. A non-Kolmogorovian scaling is shown for the correlation time of this quantity. In parallel, as a continuation of the work of [START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF], the ballistic cascade phenomenology is successfully reformulated with stochastic equations to obtain a continuous process. Interesting perspectives exist to adapt this model to the new experimental scaling and explain the specific initial condition required to observe the cubic Richardson regime.

A large-scale Lagrangian experimental data set of a turbulent free round jet is also provided, with the use of a specific inhomogeneous nozzle seeding. Usually considered as an experimental bias and avoided, we show how this nozzle seeding can be used to obtain new information about jet dynamics. Based on the discrepancy between the mean radial velocity for the nozzle seeding and for an homogeneous seeding, we extract new quantitative relations for the entrainment flux and the turbulent transport coefficients: turbulent diffusivity, viscosity and Prandtl number.

Similar to the one lead in HIT, a Lagrangian characterisation of the turbulent jet is also performed. To overcome the inhomogeneity of the flow, a stationarisation method is proposed to compensate it. We show that the turbulent jet flow can be transformed, in some sense, into an HIT flow and usual Lagrangian quantities can be found for velocity.

Numerous interesting perspectives exist for this manuscript.

Characterisation of HIT

The characterisation of the LEM flow is limited to second-order statistics. A study of the fine-scale structure of turbulence can be pursued with higher order statistics with a focusing on intermittency.

Pair dispersion

The non-Kolmogorovian scaling reported for the correlation time of relative velocity should be confirmed with DNS data. As we explained, the ballistic cascade phenomenology could be adapted with this new scaling to check if it can explain the specific initial separation to observe the cubic Richardson regime. We believe this approach could shed further light on the controversy between [START_REF] Tan | Universality and intermittency of pair dispersion in turbulence[END_REF] and [START_REF] Buaria | Comment on "Universality and intermittency of pair dispersion in turbulence[END_REF] regarding the two interpretations of finite Reynolds number effect for pair dispersion. The existing data from DNS and experiments should be sufficient to increase the understanding of the pair dispersion behaviour in relation with associated statistics for relative velocity.

Inhomogeneous seeding

We analysed the influence of an inhomogeneous seeding only on mean fields. The influence on mixing dynamics should be analysed, to understand how nozzle seeded particles and entrained particles mix to generate the biased mean flow field we measure. This in particular the idea developed in the paper presented in appendix D.3. We also believe that working on longer trajectories, in particular generated from stochastic models as mentioned in the manuscript or from LES as presented in appendix D.5, would be particularly useful to understand this time dynamics.

Lagrangian properties of inhomogeneous flows

The stationarisation presented for the jet could be extended to other free shear flows and even to arbitrary flows, to understand in which extend this procedure can transform an inhomogeneous turbulent flow into HIT. Following the inverse idea, the publication mentioned in appendix D. [START_REF] Adamczyk | 2-dimensional particle tracking velocimetry (PTV): Technique and image processing algorithms[END_REF] shows how an intermittent HIT signal can be transformed into a turbulent jet with a good reproduction of its specific statistics. 

C Homogeneous isotropic turbulence C.1 Variances of filtered velocity and acceleration

Let us consider a stationary signal x(t), i.e. its statistical properties are invariant through time translation. For simplicity, we consider ⟨x(t)⟩ = 0 where ⟨•⟩ denotes time averaging (this is always possible by considering x(t) -⟨x(t)⟩). Its spectrum is

E x (ω) = |F(x)(ω)| 2 , (C.1)
where F is the Fourier transform defined as

           F(f )(ω) = +∞ -∞ f (t)e -iωt dt, F -1 ( f )(t) = 1 2π +∞ -∞ f (ω)e iωt dω. (C.2)
We want to relate the variance σ 2 x = ⟨x 2 (t)⟩ to the spectrum E x (ω). This is possible through the Wiener-Khinchin theorem which links the spectrum of a stationary signal to its autocorrelation function through

E x (ω) = F(R xx )(ω), (C.3) with R xx (τ ) = ⟨x(t)x(t + τ )⟩.
With this theorem and σ 2 x = R xx (τ = 0), we simply have

σ 2 x = 1 π +∞ 0 E x (ω) dω. (C.4)
We filter the signal x(t) by a convolution with a kernel K w (t) (w the width of the kernel). Thus we have the filtered signal x f (t) and the filtered spectrum

E x f (ω)      x f (t) = (x * K w )(t), E x f (ω) = E x (ω)E Kw (ω), (C.5) with E Kw = |F(K w )(ω)| 2 (
the convolution in time is a product in Fourier space). Thus the variance of the filtered signal σ 2

x f = ⟨x 2 f (t)⟩ is σ 2 x f (w) = 1 π +∞ 0 E x (ω)E Kw (ω) dω, (C.6) with σ 2 x f (w = 0) = σ 2 x .

Kernel

We consider a Gaussian kernel

K w (τ ) = 1 √ πw e - τ 2 w 2 . (C.7)
This kernel is well normalised to be zero at ±∞ and its integral from -∞ to +∞ is 1. Its spectrum is

E Kw (ω) = e - w 2 ω 2 2 . (C.8)

Velocity

We want to apply this calculation to a stationary signal of velocity u(t) to determine σ 2 u f (w). We need to know E u (ω) which can be computed from the autocorrelation function R uu (τ ) trough the Wiener-Khinchin theorem (C.3). Stochastic models are able to model R uu (τ ): the two-layer model proposed by [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] where acceleration is defined but not derivable, the recent infinite-layer model proposed by [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF] which is infinitely differentiable. These models are characterised by the variance of velocity σ 2 u and two time scales: a large one τ 1 and a small one τ 2 (τ 1 > τ 2 ).

The related formulas we compute are presented in table C.1. The error function erf(x) = 2/ √ π x 0 e -t 2 dt is used, with the associated complementary error function erfc(x) = 1-erf(x) and the scaled complementary error function erfcx(x) = e x 2 erfc(x) (its numerical implementation is important to avoid underflow or overflow errors).

Acceleration

In the same way, we apply this calculation to a stationary signal of acceleration a(t) to determine σ 2 a f (w). For a stationary signal, the autocorrelation functions of velocity and acceleration are simply related through R aa (τ ) = -Ruu (τ ).

(C.9)

The direct consequence in Fourier space is

E a (ω) = ω 2 E u (ω). (C.10)
The related formulas we compute are presented in table C.2.

two layers [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] infinite layers [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF]) two layers [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF] infinite layers [START_REF] Viggiano | Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes[END_REF]) 

R uu (τ ) σ 2 u τ -τ τ 1 exp - |τ | τ -τ 2 exp - |τ | τ σ 2 u 2 erfc τ 2 τ 1 exp - |τ | τ 1 + erf |τ | 2τ - τ 2 τ + exp |τ | τ erfc |τ | 2τ + τ 2 τ E u (ω) 2σ 2 u (τ 1 + τ 2 ) (1 + τ 2 1 ω 2 )(1 + τ 2 2 ω 2 ) σ 2 u erfcx τ 2 τ 1 2τ 1 exp(-τ 2 2 ω 2 ) 1 + τ 2 1 ω 2 σ 2 u f (w) σ 2 u τ 1 -τ 2 τ 1 erfcx w √ 2τ 1 -τ 2 erfcx w √ 2τ 2 σ 2 u erfc τ 2 τ 1 exp w 2 2τ 2 1 erfc   2τ 2 2 + w 2 √ 2τ 1  
R aa (τ ) σ 2 a τ 1 -τ 2 τ 1 exp - |τ | τ 2 -τ 2 exp - |τ | τ 1 σ 2 a 2 τ 1 √ πτ 2 exp - τ 2 2 τ 2 1 - erfc τ 2 τ 1 2τ 1 √ πτ 2 exp - τ 2 4τ 2 2 - τ 2 2 τ 2 1 - exp - |τ | τ 1 1 + erf |τ | 2τ 2 - τ 2 τ 1 - exp |τ | τ 1 erfc |τ | 2τ 2 + τ 2 τ 1 σ 2 a σ 2 u τ 1 τ 2 σ 2 u τ 1 τ 2     1 √ π erfcx τ 2 τ 1 - τ 2 τ 1     E a (ω) 2σ 2 a τ 1 τ 2 (τ 1 + τ 2 )ω 2 (1 + τ 2 1 ω 2 )(1 + τ 2 2 ω 2 ) σ 2 a τ 1 √ πτ 2 - erfcx τ 2 τ 1 2τ 3 1 ω 2 exp(-τ 2 2 ω 2 ) 1 + τ 2 1 ω 2 σ 2 a f (w) σ 2 a τ 1 -τ 2 τ 1 erfcx w √ 2τ 2 -τ 2 erfcx w √ 2τ 1 σ 2 a τ 1 √ πτ 2 exp - τ 2 2 τ 2 1 - erfc τ 2 τ 1 2 π(2τ 2 2 + w 2 ) τ 1 exp - τ 2 2 τ 2 1 - exp w 2 2τ 2 1 erfc   2τ 2 2 + w 2 √ 2τ 1     Table C.

D Turbulent free round jet D.1 Resolution of the nozzle seeding model

We need to solve the continuity equation

∇ • (⟨φ⟩⟨U φ ⟩) = ⟨φ⟩ ∇ • ⟨U φ ⟩ + ⟨U φ ⟩ • ∇⟨φ⟩ = 0. (D.1)
With the definitions of U 0 (z), φ 0 (z), f φ (η), g φ (η) and Φ(η) given in section 4.1, we can show that

⟨φ⟩ ∇ • ⟨U φ ⟩ = U 0 (z)φ 0 (z) r Φ(η)[(ηg φ (η)) ′ -η(ηf φ (η)) ′ ], (D.2)
which leads to the usual incompressible solution, and

⟨U φ ⟩ • ∇ ⟨φ⟩ = U 0 (z)φ 0 (z) r η[g φ (η)Φ ′ (η) -f φ (η)(ηΦ(η)) ′ ]. (D.3)
Thus, we get equation (4.13) given in section 4.1

Φ(η)[(ηg φ (η)) ′ -η(ηf φ (η)) ′ ] + η[g φ (η)Φ ′ (η) -f φ (η)(ηΦ(η)) ′ ] = 0. (D.4)
Equation (D.4) can be rewritten as

Φ(η)g φ (η) + η(Φ(η)g φ (η)) ′ -η 2 (Φ(η)f φ (η)) ′ -2ηΦ(η)f φ (η) = 0, (D.5) then (ηΦ(η)g φ (η)) ′ -(η 2 Φ(η)f φ (η)) ′ = 0. (D.6)
We integrate equation (D.6) and simplify by ηΦ(η) (by considering η = 0, the constant of integration is zero) g φ (η) = ηf φ (η). (D.7)

D.2 Turbulent quantities from boundary-layer equations

In a turbulent free round jet, the mean axial and radial velocity fields, respectively ⟨U ⟩ and ⟨V ⟩, are determined with the turbulent boundary-layer equations:

• the continuity equation

∂⟨U ⟩ ∂z + 1 r ∂(r⟨V ⟩) ∂r = 0, (D.8)
• and the Navier-Stokes equation

⟨U ⟩ ∂⟨U ⟩ ∂z + ⟨V ⟩ ∂⟨U ⟩ ∂r = 1 r ∂ ∂r rν T ∂⟨U ⟩ ∂r .
(D.9)

We use the Reynolds decomposition: U = ⟨U ⟩ + u and V = ⟨V ⟩ + v, and also the gradient closure model ⟨uv⟩ = -ν T (∂U/∂r) (cf. Pope (2000) or [START_REF] Schlichting | Boundary-Layer Theory[END_REF] for the determination of these equations). Equation (D.9) is the most simplified writing of the Navier-Stokes equation, and neglects in particular terms in ⟨u 2 ⟩, ⟨v 2 ⟩ and ⟨w 2 ⟩. Hussein et al. (1994) experimentally discuss these approximations, and show that it leads to a slight underestimation of ⟨uv⟩ and ν T . Three quantities are unknown: ⟨U ⟩, ⟨V ⟩ and ν T , with only two equations. Thus, we cannot solve the system but we can write one quantity as a function of one other, especially, we can determine ν T as a function of ⟨U ⟩, or, with the relations introduced in section 4.1, ν T as a function of f . We show in section 4.1 than the continuity equation (D.8) leads to a relation between f and g:

g(η) = ηf (η) - 1 η η 0 xf (x) dx. (D.10)
Equation (D.9) can be rewritten with f and g:

-η[f (η)(ηf (η)) ′ -g(η)f ′ (η)] = S(η ν T (η)f ′ (η)) ′ . (D.11)
We remove g with equation (D.10), and the left-hand side term is

-ηf 2 (η) + f ′ (η) η 0 xf (x) dx , (D.12)
which can be rewritten as

-f (η) η 0 xf (x) dx ′ . (D.13)
Thus integration of equation (D.11) gives

ν T (η) = - 1 S f (η) f ′ (η) 1 η η 0 xf (x) dx. (D.14)
In the same way, the momentum equation for a conserved passive scalar is

⟨U ⟩ ∂⟨φ⟩ ∂z + ⟨V ⟩ ∂⟨φ⟩ ∂r = 1 r ∂ ∂r rK T ∂⟨φ⟩ ∂r .
(D.15)

A similar solution leads to

K T (η) = - 1 S Φ(η) Φ ′ (η) 1 η η 0 xf (x) dx. (D.16)
Thus, ν T and K T are determined with independent calculations, and the general formula of σ T is

σ T (η) = ν T (η) K T (η) = Φ ′ (η) Φ(η) f (η) f ′ (η) .
(D.17) 

D.3 Time delay method to compensate inhomogeneous seeding bias

D.5 LES of a turbulent jet

Lagrangian diffusion in a turbulent jet using Large-Eddy Simulation, L. S. When a fluid in turbulent motion is tagged by a nonuniform concentration of ideal tracers, the mean velocity of the tracers may not match with the mean velocity of the fluid flow. This implies that conventional particle tracking velocimetry will not produce the mean flow of a turbulent flow unless the particle seeding is homogeneous. In this work, we consider the problem of mean flow estimation from a set of particle tracks obtained in a situation of nonhomogeneous seeding. To compensate the bias caused by the nonhomogeneous particle seeding, we propose a modified particle tracking velocimetry method. This method is called a time-delayed velocity and considers the velocity trajectory of a given particle shifted in time with respect to its position. We first introduce our method for an ideal advection-diffusion model and then we implement it for a turbulent channel and a turbulent jet. For both situations, we find that the velocity bias caused by the nonhomogeneous tracer concentration is reduced with a time delay introduced between position and velocity of the tracer trajectories. For the turbulent channel, the error on the mean flow estimation monotonically decreases for increasing time delays. For the turbulent jet, the error on the mean flow estimation also reduces with positive time delays but the time delay should not be too large. We interpret this limitation as a consequence of the spatial dependence of the mean flow. For the turbulent channel, this limitation does not appear because the velocity for the mean flow streamlines is constant. For both flows, the optimal time delay for the velocity bias compensation is consistent with the Lagrangian timescales of the flow. This method gives promising elements to take into account inhomogeneous seedings in velocity fields measurements for all kinds of turbulent flows and interesting perspectives to understand how Lagrangian trajectories from various sources build an Eulerian mean field. DOI: 10.1103/PhysRevFluids.8.074603

I. INTRODUCTION

Among the strategies to measure the velocity of a flowing fluid, particle image velocimetry (PIV) [1][START_REF] Pickering | Laser speckle photography and particle image velocimetry: Photographic film noise[END_REF][START_REF] Adrian | Particle Image Velocimetry[END_REF] and particle tracking velocimetry (PTV) [START_REF] Adamczyk | 2-dimensional particle tracking velocimetry (PTV): Technique and image processing algorithms[END_REF][START_REF] Maas | Particle tracking velocimetry in three-dimensional flows[END_REF][START_REF] Ouellette | A quantitative study of three-dimensional Lagrangian particle tracking algorithms[END_REF][START_REF] Bakunin | Turbulence and Diffusion: Scaling versus Equations[END_REF][START_REF] Schanz | Shake-the-box: Lagrangian particle tracking at high particle image densities[END_REF] are two techniques that rely on the dispersion of a large number of particles in the fluid. To behave as nonintrusive tracers that correctly map the flow, the particles should be sufficiently small [START_REF] Mei | Velocity fidelity of flow tracer particles[END_REF][START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF] and neutrally buoyant [START_REF] Kerho | Neutrally buoyant bubbles used as flow tracers in air[END_REF]. In addition to the physical properties of the tracing particles, the homogeneity of the particle concentration [START_REF] Melling | Tracer particles and seeding for particle image velocimetry[END_REF][START_REF] Ferrari | A feature tracking velocimetry technique applied to inclined negatively buoyant jets[END_REF][START_REF] Martins | Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations[END_REF] is also important to produce reliable flow measurements. With a nonhomogeneous seeding, the particle concentration may be too low in some regions of the fluid, which renders the measurement spatially incomplete.
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The homogeneity of the tracing particles has a direct impact on the estimation of the mean velocity of a flow. With the example of turbulent jets with particles injected from the nozzle, there is a significant mismatch between the measured radial velocities from the particle tracking analysis and the expected radial velocities [START_REF] Martins | Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations[END_REF]. In recent a work [START_REF] Basset | Entrainment, diffusion and effective compressibility in a self-similar turbulent jet[END_REF], it was shown that this radial velocity mismatch is consistent with the particle dispersion by the turbulent jet which can be formulated as a compressible expansion flow for the tracers resulting in an enhanced radial flow.

For laminar flows without velocity fluctuations, homogeneous and nonhomogeneous seedings provide the same mean flow velocity. This is because without velocity fluctuations, the particles consistently follow the time-independent streamlines of the flow. The absence of velocity fluctuations is however not ideal for flow visualization since there is no particle dispersion perpendicularly to the stationary streamlines. This problem notably occurs with microfluidics [START_REF] Ottino | Introduction: Mixing in microfluidics[END_REF][START_REF] Whitesides | The origins and the future of microfluidics[END_REF] in which the dispersion of tracers, i.e., mixing, is notoriously inefficient.

To address how turbulence and inhomogeneous seeding can induce mean flow bias by particle tracking, a first example is that of molecular diffusion which is a well-known situation in which particle inhomogeneity can affect mean flow perception. For a fluid at rest with diffusing particles, there is a mismatch between the zero mean velocity of the fluid and the particles velocity everywhere nonzero concentration gradients exist. The velocity of Brownian particles is however difficult to measure and the diffusion current is rather inferred from the concentration time evolution of the diffusing particles. In a turbulent flow, fluctuations induce an effective diffusion process [START_REF] Batchelor | Diffusion in free turbulent shear flows[END_REF] that is much more efficient than molecular diffusion. For comparison, the molecular diffusion coefficient in a fluid is K mol ∝ v th in which v th is the thermal velocity and the molecular mean free path. The typical order of magnitude for K mol for fluids such as water is 10 -9 m 2 s -1 for ambient pressure and room temperature. In turbulent flows, an effective diffusion coefficient K turb ∝ σ v L arises from the velocity fluctuation magnitude σ v and the typical size L of the largest eddies of the considered flow. For laboratory-scale experiments such as turbulent channels [START_REF] Elder | The dispersion of marked fluid in turbulent shear flow[END_REF][START_REF] Goldman | Turbulent schmidt numbers[END_REF], the diffusion coefficients can be of the order of 10 -4 m 2 s -1 . In atmospheric turbulence [START_REF] Csanady | Turbulent Diffusion in the Environment[END_REF][START_REF] Woo | Eddy diffusion coefficient for the atmosphere of venus from radio scintillation measurements[END_REF][START_REF] Lübken | In situ measurements of turbulent energy dissipation rates and eddy diffusion coefficients during map/wine[END_REF][START_REF] Wilson | Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: A review[END_REF], the turbulent diffusion coefficient can easily reach 1 m 2 s -1 . In this work, we consider more specifically the configurations of turbulent channels and turbulent jets and we will illustrate how turbulent fluctuations combined with non homogeneous particle seeding can lead to significant mean velocity biases in particle tracking velocimetry.

In principle, it is always possible to reduce the impact of turbulent fluctuations on mean flow measurements by approaching a homogeneous concentration of tracers. However, it is not always possible or convenient to perform a homogeneous seeding. This is the case for experiments in open environment like oceanic or atmospheric studies [START_REF] Businger | Balloons as a Lagrangian measurement platform for atmospheric research[END_REF][START_REF] Wiggins | The dynamical systems approach to Lagrangian transport in oceanic flows[END_REF][START_REF] Lacasce | Statistics from Lagrangian observations[END_REF] in which uniform seeding can be difficult to control, even for a finite volume of interest. For laboratory experiments in fluid tanks, for example, partial seeding is sometimes preferred to avoid too many particles in the field of view. This is notably the case for the realization of unconfined turbulent jets for which the tank has to be much larger than the jet size. In some situations, the particles can have a finite life-time, like soap bubbles [START_REF] Poulain | Spectral vorticity and Lagrangian velocity measurements in turbulent jets[END_REF][START_REF] Qureshi | Turbulent Transport of Material Particles: An Experimental Study of Finite-Size Effects[END_REF] or droplets [START_REF] Ayyalasomayajula | Lagrangian Measurements of Inertial Particle Accelerations in Grid Generated Wind Tunnel Turbulence[END_REF][START_REF] Wei | Enhanced spread of expiratory droplets by turbulence in a cough jet[END_REF], and seeding concentration is very difficult to control. With bubbly flows [START_REF] Hassan | Full-field bubbly flow velocity measurements using a multiframe particle tracking technique[END_REF][START_REF] Ravelet | On the dynamics and breakup of a bubble rising in a turbulent flow[END_REF][START_REF] Perrard | Bubble deformation by a turbulent flow[END_REF], the bubbles can be used as nonideal tracers but their concentration is difficult to maintain constant because the bubble formation, recombination, shape and disappearance is self-imposed by the flow itself. Finally, nonhomogeneous particle concentration can occur because of clustering induced by the flow. This particularly happens with particles in sedimentation [START_REF] Huisman | Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid[END_REF] as well as inertial particles in turbulent flows [START_REF] Saw | Inertial Clustering of Particles in High-Reynolds-Number Turbulence[END_REF][START_REF] Salazar | Experimental and numerical investigation of inertial particle clustering in isotropic turbulence[END_REF][START_REF] Monchaux | Analyzing preferential concentration and clustering of inertial particles in turbulence[END_REF][START_REF] Yavuz | Extreme Small-Scale Clustering of Droplets in Turbulence Driven by Hydrodynamic Interactions[END_REF].

The goal of this work is first to illustrate how tracer inhomogeneity affects the determination of mean velocity fields and second to present a simple analysis technique to obtain unbiased velocity fields in the case of tracking experiments with nonhomogeneous seeding.

II. DISCRETE ADVECTION-DIFFUSION MODEL

A. Lagrangian and Eulerian perspectives

This work deals with the velocity estimation of flows (Eulerian perspective) based on the observation of a set of tracers moving in a fluid (Lagrangian perspective). In the Eulerian framework, the 074603-2 D. Turbulent free round jet COMPENSATION OF SEEDING BIAS FOR PARTICLE … instantaneous velocity v i (x, y, z, t ) is a three-component function with i = x, y or z that represents all the velocity information of a flow at any position (x, y, z) and time t. The mean velocity identified by uppercase V i (x, y, z) is the time-average of the fluid velocity v i (x, y, z, t ) at a given location in space (Eulerian perspective). Because we will address the problem of partial seeding, we should stress on the fact that the computation of the mean velocity V i (x, y, z) rigorously requires that all the fluid particles that pass at the vicinity of the location (x, y, z) are taken into account in the time-averaging operation.

With tracing particles, only a small portion of the flow is tagged in terms of volume fraction. We note φ(x, y, z) the time-averaged tracer concentration of injected particles. For each location (x, y, z) in the flow domain, we define the tracer mean velocity V i (x, y, z) (Lagrangian perspective) which is the time-averaged velocity of all the tracers passing at (x, y, z) during the acquisition time. For a homogeneous tracer concentration with φ(x, y, z) = φ 0 independent of space, the tracer mean velocity is also the mean flow velocity V i (x, y, z) = V i (x, y, z) and there is no need to make a distinction between fluid mean velocity and tracer mean velocity. For a nonhomogeneous tracer concentration, V i (x, y, z) and V i (x, y, z) are a priori different. The origin of the difference between V i (x, y, z) and V i (x, y, z) is illustrated and discussed in more detail in the following section. We should specify that V i (x, y, z) and V i (x, y, z) could also differ because of nonideal tracers. With finite-size tracers or nonperfect density matching, the velocity of the tracers may not correspond to the velocity of the surrounding fluid. However, we will consider in this work that the bias caused by possibly nonideal tracers is negligible and the bias caused by nonhomogeneous seeding dominates.

The main point of this work is to discuss a method to retrieve the mean velocity of the flow V i (x, y, z) from the analysis of tracer trajectories when V i (x, y, z) = V i (x, y, z) because of nonhomogeneous particle concentration. To do so, we will introduce in the next section a so-called time-delayed velocity V i (x, y, z| τ ) in which τ is an adjustable parameter corresponding to the time delay.

B. Toy model

Before considering realistic turbulent flows with injected tracers, a simple toy model of advection-diffusion is presented. The point of this toy model is first to illustrate how nonhomogeneous seeding impacts the estimation of mean flows and second to present the method we propose to compensate the seeding bias. In this two-dimensional model, the mean flow is V x (x, z) = 0 and V z (x, z) = v 0 .

We consider the dynamics of pointlike particles in a two-dimensional space with a uniform mean advection in the axial direction and submitted to transverse diffusion. The particles are initially at the origin of the frame x = 0 and z = 0 and move by steps. The motion in the axial direction z accounts for a pure advection and the particles move by constant unit step +1 for each time step. For the transverse direction x, no advection is imposed and the average velocity of the background flow is zero. However, the individual particles do diffuse according to the simple process where at each time step, each particle has an equal probability to jump either left (-1/2) or right (+1/2). With a homogeneous seeding, this process with equal probability of motion to the left and to the right does not impose any mean transverse flow. Figure 1(a) represents all the possible trajectories for eight particles after three time steps. While the actual advecting velocity is a uniform upward flow, we illustrate the bias introduced by the nonhomogeneous seeding by considering the flow tagged by the particles seeded at the origin in the square box represented with a dashed line in Fig. 1(a). For the three particles in the binning box, two particles come from the left and one particle comes from the right. After multiple iterations of the random process for a set of particles, one should expect a net positive horizontal velocity for the particles reaching the considered box.

To test the large trajectory number limit, we numerically generate the trajectories for a large number of particles. Figure 1(b) shows the Eulerian velocity field obtained from a set of trajectories generated randomly according to the discrete process described above and represented in Fig. 1(a). A total number of 2 × 10 5 trajectories were simulated to explore a significant portion of horizontal 074603-3 THOMAS BAROIS et al. space. The black solid line represents a random sample trajectory exploring the x < 0 region. The average velocity retrieved from the seeded tracers strictly matches the average velocity of the fluid for the injection line x = 0. Elsewhere, the horizontal velocity is however positively (for x > 0) or negatively (for x < 0) biased. For the large |x|, there are very few trajectories and thus a lack of statistical convergence. This velocity bias is a direct consequence of the local seeding. For uniform seeding, i.e., a constant concentration of particles on the line z = 0, the horizontal velocity vanishes within statistical convergence.

The origin of the velocity bias can be better visualized by considering a subset of trajectories that pass by the bin {x = 10, z = 40} represented by a small box with a dashed line in Fig. 1(b). For a total of 2 × 10 5 simulated trajectories, there is typically a number of 500 trajectories that reach the bin considered [Fig. 1(b) only represents 30 of those trajectories for clarity]. In the figure, a green solid line is used to represent the mean path for all the trajectories passing by the binning box {x = 10, z = 40}. If a reference time is taken when the particles reach the box, then there is an asymmetry between past and future. Before the particles enter the bin, there is a positive velocity bias. This is because the most probable path for the particles coming from x = 0, z = 0 to reach the binning box is with an excess of positive jumps in x. After the particles have passed the bin {x = 10, z = 40}, there is no bias on the trajectories subset and the particle motion is mostly vertical as shown by the mean trajectory for z > 40.

The concentration φ and the horizontal component of the velocity V x for the particles in this toy model can be analytically solved using the properties of Pascal's triangle. The process described in Fig. 1(a) leads to a continuity equation for the particles concentration φ(i, n) = [φ(i, n -1) + φ(i -1, n -1)]/2 in which n is the index for z and i is the index for the x direction with 0 i n. This relation is equivalent to the definition of the binomial coefficient C i n with φ(i, n) = C i n /2 n . The first steps of the iteration is presented in Fig. 2. The iteration for n = 4, i = 3 is represented by a set of boxes with φ(i = 3, n = 4) = 4/16 as the sum from the contribution 1/2 × (3/8 + 1/8) of the previous iteration.

For the transverse velocity, it is important to make a distinction between the incoming velocity V x (i, n)| in and the outgoing velocity V x (i, n)| out relatively to a given position. V x (i, n)| in is the velocity at step n using the position n and n -1. V x (i, n)| out is the velocity at step n using the position n and n + 1. For a large number of realizations, the transverse outgoing velocity statistically converges to V x (i, n)| out = V x (i, n) = 0 because the particles equally moves left and right relatively to a given position. For the incoming velocity V x (i, n)| in , the net transverse velocity is the weighted concentration contribution from the previous steps,

V x (i, n)| in = v0 2 × φ(i -1, n -1) -v0 2 × φ(i, n -1) φ(i -1, n -1) + φ(i, n -1) = v 0 2 φ(i -1, n -1) -φ(i, n -1) φ(i -1, n -1) + φ(i, n -1) , (1) 
in which φ(i -1, n -1) counts the number of particles per unit time coming from the left with velocity +v 0 /2 and φ(i, n -1) from the right with velocity -v 0 /2 (the values for φ with n = 4 and i = 3 are 3/8 and 1/8 in the example of Fig. 2). Equation ( 1) can be written as ) 074603-5

V x (i, n)| in = v 0 2 C i-1 n-1 -C i n-1 C i n = v 0 i -n 2 n . ( 2 
COMPENSATION OF SEEDING BIAS FOR PARTICLE … FIG. 3. Representation of the time-delay method on a time signal at a sample rate δt -1 . The minus (-) is the two-point velocity operator at location i: (x i+1x i-1 )/2δt. In this example, the velocity is time delayed with τ = + 5 δt which means that the velocity v 5 is associated to the position x 0 . We use the short notation x i = x(t 0 + i δt ) and v i = v(t 0 + i δt ) in which t 0 is the reference time for x 0 . delay method consist in removing a the n first velocity points and removing the n last position points (n = 5 in the example of Fig. 3). n defines the time delay via the acquisition sampling rate.

III. TIME-DELAYED VELOCITY WITH TURBULENT FLOWS

The point of this paper is to show how time-delayed velocity ( 6) can be used to suppress the bias caused by nonhomogeneous seeding in a particle tracking experiment. In the toy model previously discussed, any strictly positive delay τ > 0 gives the correct mean flow V x (x, z) = 0. In the following, we will investigate how the time-delay method applies for a turbulent channel (numerical simulation) and a turbulent jet (experimental results). We will notably investigate the impact of the value τ on the determination of the mean flow characteristics.

A. Channel flow

The time-delay analysis is first tested for a simulated particle tracking experiment in a channel flow. To do so, we use the Turbulent Channel Flow data set from the Johns Hopkins Turbulence Databases [START_REF] Perlman | Data exploration of turbulence simulations using a database cluster[END_REF][START_REF] Li | A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence[END_REF][START_REF] Graham | A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES[END_REF].

The channel has a rectangular cross section with rigid walls at y = -1 and y = 1 and periodic boundary conditions for x and z. The flow is forced in the z direction by an imposed pressure gradient such that the mean velocity equals one. The kinematic viscosity is 5 × 10 -5 and the simulation time step is 0.0013. The flow is in the turbulent regime with a Taylor-microscale Reynolds number Re λ ≈ 344. Figure 4(a) shows a snapshot of the axial velocity in the range 0 < z < 10 with x = 0. The time-averaged velocity V z (x, y, z) is represented on top of the contour. For the mean transverse velocities, there is no mean flow V x (x, y, z) = 0 and V y (x, y, z) = 0 because of the confining walls. The mean velocity V z (x, y, z) is almost independent of the position y in the center of the channel -0.6 < y < 0.6. We use the Lagrangian tracking GetPosition function [START_REF] Yu | Studying Lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbulence database[END_REF] that computes the motion of fluid particles from the direct numerical simulation of the channel flow. The obtained trajectories correspond to the motion of ideal tracers virtually injected in the simulated flow. The initial position of 14 000 tracers is set in the middle of the channel. The initial positions for the virtual tracks are set near the line y = 0, z = 0 for different values of x and the simulation runs for a duration of 13 time units. We assume that the flow is statistically invariant in x and the initial position 074603-7 THOMAS BAROIS et al. 6). Figure 4(b) shows the mean transverse velocity V y (y, z| τ = 0) obtained from the analysis of the trajectories computed in the channel flow. The colorbar represents the magnitude of the mean velocity in the transverse direction. The magnitude of the horizontal velocity is of the order of 0.1 × V z (y = 0) on the side of the cone identified by the dashed line y/z = 0.1. The horizontal velocity is twice the velocity bias predicted by the discrete modeling Eq. ( 8) or equivalently the horizontal velocity matches with the incoming velocity in Eq. ( 7). This denotes a difference with the toy model presented in section II that we attribute to the existence of a finite correlation timescale for the particle trajectories. For the toy model, there is no correlation time in the trajectory and the velocity without time delay is an average of the position before (with seeding bias) and the position after (without seeding bias) a given point. This average leads to the factor 1/2 in the velocity without time delay [Eq. ( 8)]. For the channel flow, the trajectories are smooth at small timescales and the velocity can not be discontinuous. By continuity, the velocity without time delay matches with the incoming velocity immediately before a given position.

Figures 4(c) and 4(d) shows the transverse velocity maps for implementation of time delays τ = 1.3 and τ = 2.6, respectively. The transverse velocity decreases with the increase of the time delay. To quantitatively analyze the effect of τ on the transverse velocities estimation, the RMS differences of the transverse velocities V x (y, z| τ ) and V y (y, z| τ ) based on the Eulerian flow are represented as a function of the time delay in Fig. 5(a). A value of zero means that the mean flow for the tracers matches with the fluid mean flow [V x (x, y, z) = 0 and V y (x, y, z) = 0 for the channel]. The velocity difference as a function of the time delay approximately follows an exponential decay with a time constant τ c = 2.9. This means that the time delay between position and velocity in the trajectory analysis has to be typically larger than 2.9 to remove the bias from the point source seeding. FIG. 5. Magnitude E V i of the transverse velocities V i (x, y, z| τ ) with i = x and y as a function of the time delay τ in the turbulent channel simulation. E V i = V i (y, z| τ ) y,z / V i (y, z|0) y,z with . y,z the RMS average over space. E V i is a strictly positive quantity that represents the normalized error between the transverse velocities computed from the tracers trajectories V i (y, z| τ ) and the fluid mean velocity V x (y, z) = 0 and V y (y, z) = 0. An exponential fit with a time constant τ c = 2.9 is represented. The vertical dashed lines indicates the values τ = 1.3 and 2.6 used in Figs. 4(c) and 4(d).
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The timescale τ c can be interpreted as a memory time of the fluctuating component of the frame of the fluid particles motion. To test this interpretation, we compute the cross correlation signal χ vv ( t ) = v(z = ct, t + t )v(z = ct, t )dt from the transverse velocity component in the frame of the moving fluid. In the center of the channel |y| < 0.6 where the particles are injected, the longitudinal velocity is c = 1.089, which is slightly larger than the mean velocity. We find a timescale τ χ = 2.0. This timescale is of the same order of magnitude than τ c . This is consistent with the idea that the time delay between position and velocity has to be larger than the memory time of the flow in the frame of the trajectories to remove the bias of the nonhomogeneous seeding.

B. Turbulent jet with nozzle injection

The second implementation of the time delay method is for experimental data with a turbulent jet. A monophasic turbulent round jet is obtained by the injection of water through a nozzle of diameter 4 mm and at a flow rate of the order of 10 -4 m 3 s -1 into a water tank. The tagging particles are nearly neutrally buoyant polystyrene spheres of typical diameter 0.25 mm and density 1060 kgm -3 . The particles are mostly injected from the nozzle so that only the fluid particles coming from the nozzle are tagged. In practice, some polystyrene particles from previous experiments are present in the water tank. The concentration of such pre-existing particles is well below the concentration of the injected particles. An ensemble of trajectories is recorded using a stereoscopic visualization technique at frame rate of 6 kHz with three high-speed cameras. More details about the experimental configuration and the particle tracking method can be found in previous works using the same configuration [START_REF] Basset | Entrainment, diffusion and effective compressibility in a self-similar turbulent jet[END_REF][START_REF] Viggiano | Lagrangian diffusion properties of a free shear turbulent jet[END_REF].

Figure 6(a) shows a subset of particles trajectories recorded in the turbulent jet. The full set of trajectories is used to construct a Eulerian representation of the mean flow. Figure 6(b) shows the mean axial velocity V z (r, z|0) of the jet computed from the trajectory of the particles without time delay (standard particle tracking velocimetry). V z (r, z|0) is represented for different z positions identified by dashed lines in Fig. 6(a). The inserted plot is the normalized axial velocity V z = V z (r, z|0)/V z (0, z|0) represented as a function of r/z. Here, we approximate the normalized axial velocity V z = V z (r, z)/V z (0, z) by a Gaussian [START_REF] Pope | Turbulent Flows[END_REF] function ) 074603-9 Axial velocity V z obtained from the tracks analysis without time delay (standard PTV) as a function of the radial distance r for the 11 positions in z between 95 mm and 145 mm. The velocity at r = 0 decreases with increasing z. The inserted plot is the velocity normalized by the velocity at r = 0 as a function of the variable r/z. The 11 curves collapse on a master curve corresponding to the Gaussian solution [START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF] represented by a thick gray line. Panels (c), (d), and (e) are the normalized radial profiles V r = V r (r, z| τ )/V z (0, z| τ ) for different values of the time delay τ = -1.3, 0, and 8.3 ms, respectively. The dashed line is the solution V r = V r (r, z)/V z (0, z) for the radial velocity without seeding bias [Eq. [START_REF] Kerho | Neutrally buoyant bubbles used as flow tracers in air[END_REF]]. The solid line is the solution V N ,r = V N ,r (r, z)/V N ,z (0, z) for the tracer mean flow for a nozzle seeding [Eq. ( 12)]. The dash-dotted line is a model V N +U ,r (r, z) combining nozzle seeding and the contribution of tracers initially in the water tank [Eq. ( 14)].

V z (r, z) V z (0, z) = exp -A r 2 z 2 , ( 10 
in which A = 67 is a free dimensionless parameter that relates to the opening angle of the jet. The axial flow tagged by the tracers V z is in good agreement with the Gaussian model [START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF]. Equation ( 10) is a usual approximation for the mean axial velocity V z = V z (r, z)/V z (0, z) for a turbulent jet. As already discussed in a previous work [START_REF] Basset | Entrainment, diffusion and effective compressibility in a self-similar turbulent jet[END_REF], there is no apparent bias from nonhomogeneous seeding for the axial velocity component in a turbulent jet and then V z = V z .

Figure 6 also represents the normalized radial velocity obtained with three different time-delays with (c) τ = -1.2 ms, (d) τ = 0 ms, and (e) τ = 8.3 ms. The velocities are normalized by the centerline velocities V z (0, z| τ ) and represented as a function of the self-similar coordinate r/z.

Figure 6(e) is the main result of this paper: with a positive time delay τ > 0, we recover the mean radial flow of the jet V r (r, z| τ )/V z (0, z| τ ) = V r (r, z)/V z (0, z) even if the seeding is In Fig. 6(c), the experimental data deviates from the solid line V N ,r , typically for r/z > 0.25. We interpret that this deviation comes from the few unwanted particles that might have remained in the tank from a previous experiment. We should insist on the fact that for r/z typically larger than 0.25, the concentration of particles coming from the nozzle is very low. As mentioned before, the particle concentration is proportional to the axial velocity. It can be verified in Fig. 6 that the axial velocity, and thus the particle concentration that comes from the nozzle, is indeed very small [∝ exp(-Ar 2 /z 2 )] when r/z is sufficiently large. Consequently, a very small quantity of pre-existing particles can significantly bias the velocity profile with nozzle conditioning, at least far from the axis. A third model V N +U ,r for the radial velocity is proposed in Fig. 6 that sums the weighted contribution of the tracers coming from the nozzle (N ) and the unwanted tracers (U ) initially in the water tank

V N +U ,r (r, z) = φ(r, z)V N ,r (r, z) + φ i V r (r, z) φ(r, z) + φ i , ( 14 
)
in which φ(r, z) = φ 0 exp(-Ar 2 /z 2 ) accounts for the tracer concentration in the Gaussian approximation with φ 0 the concentration magnitude. φ i is the initial concentration of tracers. The model in Figs. 6(c), 6(d) and 6(e) is for φ i /φ 0 = 8 × 10 -3 . We assume that the concentration of unwanted tracers initially in the tank is homogeneous, which means that the contribution from φ i is the unbiased jet velocity V r (r, z).

One could ask about the different delays used to match the two solutions ( 11) and ( 12) (-1.3 ms and 8.3 ms). To match the trajectory path solution, the trajectory analysis only needs to remove the position immediately after a given time t. In our track analysis, we use a Gaussian kernel for filtering with a characteristic length of 1 ms for both the position and the velocity. Therefore, a delay of -1.3 ms means that only the past of the trajectory is involved in the velocity estimation at a given time point. To match the normalized velocity V r of the fluid represented by the dashed line in Fig. 6, a time-delay of the order of 8 ms is needed. This time should be interpreted as a characteristic correlation time for the fluid velocity.

To investigate in more details the role of the fluid correlation time, τ is systematically varied in the case of the delayed velocity ( τ > 0). In Fig. 7(a), the RMS difference between the normalized radial velocity V r (r, z| τ )/V z (0, z| τ ) and the Gaussian model for the radial velocity V r (r, z)/V z (0, z) is computed. In Fig. 7(b), the difference is represented for the normalized axial velocity V z (r, z| τ )/V z (0, z| τ ). The obtained quantities E Vr and E Vz quantify the error between the tracer mean velocity and the real fluid velocity and these errors are represented for different positions in the jet and for values of τ between 0 ms and 25 ms. For the radial velocity, the agreement with the Gaussian model V r (r, z)/V z (0, z) is optimal for τ of the order of 5 to 10 ms. For each bin cell at a position z, the minimum for V r (r, z| τ )/V z (0, z| τ ) -V r (r, z)/V z (0, z) r is indicated by a cross. The optimal value for τ to minimize E Vr tends to increase with increasing z which means that larger time delays need to be used for compensated velocity measurements performed far from the nozzle. To validate this statement, we can mention the dependence of the Lagrangian timescale with z for turbulent jets. The Lagrangian timescale is given by T Lz = ∞ 0 R uzuz (t )dt/R uzuz (0) in which R uzuz (t ) = V z (t 0 + t )V z (t 0 ) with V z is the Lagrangian velocity of the fluid along the z direction and . denotes an average over the particle trajectories. For an exponential decay of the Lagrangian velocity correlations R uzuz (t ) ∝ exp(-t/t e ), T Lz is simply the time constant t e . The Lagrangian timescale relates to the turbulent diffusivity [START_REF] Taylor | Diffusion by continuous movements[END_REF] with K turb ∼ σ u 2 T L , in which σ u is the magnitude of the velocity fluctuations. For turbulent jets, the Lagrangian time T Lz increases with the distance z to the nozzle. The two square data points T Lz added in Fig. 7(a) are two Lagrangian times measured for the same experimental configuration in a previous work [START_REF] Viggiano | Lagrangian diffusion properties of a free shear turbulent jet[END_REF] using a statistical analysis of the tracer trajectories. The fact that the time delay needed to retrieve the mean flow is of the same order than the Lagrangian time is consistent with the results for the turbulent channel presented in Fig. 5. The black dashed line is a guideline z ∝ √ τ . This relation is obtained by assuming that the magnitude of the jet D sets a scaling relation between the space and the timescales. The [START_REF] Viggiano | Lagrangian diffusion properties of a free shear turbulent jet[END_REF]. (b) Error E Vz between the normalized axial velocity V z and the prediction in the Gaussian approximation V z [START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF]. We define E V i = V i -V i r with V i = V i (r, z| τ )/V z (0, z| τ ), V i = V i (r, z)/V z (0, z). . i is the RMS average over the space coordinate i = r or z. magnitude of the jet is found in expression for the axial velocity of the jet V z (0, z) = D/z and it has the dimension of a diffusion coefficient.

For the axial velocity in Fig. 7(b), the agreement with the Gaussian model is not improved with a strictly positive time delay. Standard PTV ( τ = 0) is therefore valid to estimate the axial velocity of the jet V z (r, z).

Both V r (r, z| τ )/V z (0, z| τ ) and V z (r, z| τ )/V z (0, z| τ ) deviate from the Gaussian jet profiles for τ typically larger than 20 ms. For the turbulent channel, the mean flow is independent of the mean flow direction z and there is not such deviation for large τ as shown in Fig. 5(a). Because the mean flow of the jet is a function of space and notably of z, too large time-delays mean that the velocity is taken too far from the position of a given binning cell, in a region where the mean velocity is different. We can estimate this effect by computing the mean trajectory Z (t ) of a set of particles moving on the axis of the jet,

V z (0, Z ) = dZ dt = D Z , ( 15 
)
in which D has the dimension of a diffusion coefficient and relates to the magnitude of the jet. After integration over a time delay τ , we have the mean trajectory of the tracers,

Z = Z 0 2 + 2D τ , ( 16 
)
and the mean velocity of the tracers is

V z (0, Z 0 , τ ) = D Z 0 1 1 + 2D τ Z0 2 . ( 17 
)
This relation means that, even in the absence of seeding bias, using a time delay too large leads to a systematic error caused by the fact the mean velocity field is a function of space. For the distance 074603-13 Z 0 = 0.1 m and a mean velocity at Z 0 equals to 2ms -1 , we have D = 0.2 m 2 s -1 and we find a characteristic timescale Z 0 2 /2D = 25 ms. In Fig. 7(b), the error E Vz between the normalized axial velocity and the model is visible with the time delay approaching 20 ms, which is consistent with the order of magnitude of the timescale Z 0 2 /2D = 25 ms. We should however mention that Fig. 7 uses velocities normalized by the centerline velocity D/z. A more accurate analysis should also take into account the radial dependence of the mean flow to fully determine the mismatch caused by the mean flow spatial dependence. However, we assume that, given the geometric properties of turbulent jets, the timescale Z 0 2 /2D is also relevant regarding the radial dependence of the velocity profiles.

IV. CONCLUSION

In this work, we present a strategy to suppress the bias caused by nonhomogeneous seeding in particle tracking that affects the determination of mean flow velocities.

We first discussed a simplified picture of turbulent diffusion in the form of an advection-diffusion process with a discrete walk of particles. This model was solved analytically for particles injected from a point source and a purely diffuse transverse mean flow was found. The value of the transverse flow in a given observation point has a simple geometrical interpretation related to the relative location of the source point. In this discrete model, the velocity is computed by a position increment. Because of nonsmooth trajectories, we identified that the choice for the definition of the velocity has a crucial impact of the velocity at a given position depending if the position immediately before or immediately after is involved. In the context of this work, the case of interest is the so-called outcoming velocity with the velocity at a given position computed with the position immediately after, which eliminates the bias caused by the source-point seeding.

We then addressed the case of realistic flows with the simulation results of a turbulent channel and the particle dispersion in an experiment with a turbulent round jet. We introduced a time-delayed velocity that allows us to associate, for a given particle trajectory, the position at time t with the velocity at time t + τ . This time-delayed velocity is the generalization of the outcoming velocity presented in the discrete model that provides unbiased mean flows. Contrary to the discrete model, we found that the time delay τ has to be large enough to suppress any velocity bias due to inhomogeneous seeding. For the channel flow, we found that the time delay has to be of the order of a characteristic time that corresponds to a decorrelation time of the velocity in the moving frame of the channel mean flow. For the turbulent jet, the expected radial mean flow is also found with positive time delays but the time delay that has to be introduced increases with the distance to the nozzle. Contrary to the channel flow, there is a limited range for the time delay in the turbulent jet configuration because turbulent jets have a spatial dependence for their mean flow.

The time-delayed velocity method presented here allows the retrieval of the expected mean flow with a nonhomogeneous tracers concentration. The method was tested for two flows of simple geometry and it effectively works with the time delay of the order of a Lagrangian fluid correlation time. The channel flow is a case study for which the compensation method is valid for time delays even larger than the Lagrangian correlation time because there is almost no spatial dependence of the mean flow, notably in the middle part of the channel. Our compensation method also works for turbulent jets, which are open shear flows that notoriously produce strong velocity gradients. In spite of this spatial dependence of the mean flow, a range of time delay is accessible to compensate the bias from inhomogeneous seeding. This suggest that this compensation method with time delays is robust for any type of flows with a well defined mean flow component V i (x, y, z). We should mention that for unsteady flows, i.e., flows with large scales slowly varying in time, new timescales may be introduce which may limit the applicability of our compensation method. Potential sources of hazardous pollutants are numerous. In natural systems we can mention volcano eruptions, sand and dust storms, toxic gas emission from volcanic lakes, sediments deposition in estuaries, etc. In the human category, origins of aerosol and pollutants range from everyday pollution (industry, transports, etc.) and human emitted particles (sneezing, coughing) to real catastrophes on human facilities (chemical plants, nuclear plants, etc.) triggered by natural events or accidents. Beyond a simple local seriousness, such events often end in global crisis as the locally emitted pollutants are spread and dispersed at large scales by the turbulent flow into which they are carried. A proper handling of such crisis requires the capacity to accurately model the dispersion processes. The recent Covid19 pandemics, which have been shown in particular to propagate via airborne particles, is a fresh example illustrating the crucial importance of the turbulent transport of particles.

The present proposal addresses the mechanisms by which pollutants and aerosols are spread from local emitting sources, sometimes up to planetary scale, due to turbulence in atmospheric, marine or fluvial environments. More precisely, by combining experiments, simulations and mathematical approaches, we aim at improving our understanding of the physical mechanisms and interplay of turbulent relative dispersion and preferential concentration. These are important mechanisms leading to strong, either temporary or persistent, inhomogeneities and fluctuations of particles distribution which make real hazard predictions extremely complex.

Our consortium gathers Brazilian and French experts with complementary skills regarding the methods (experiments/numerics/mathematics) and the frameworks (model systems, atmospheric and oceanic flows) which warrant results and relevant applications from the proposed studies.

Research developed in the second year

In the field of particle turbulent transport, the main tools from each research team corresponds to a laboratory experiment of a turbulent round jet flow seeded with passive and inertial particles in the Lyon's group (Viggiano et al., 2021), and a Large-Eddy Simulation code of turbulent flow with Lagrangian particles in the São Paulo's group [START_REF] Freire | Large-eddy simulation of turbulent incompressible round jet flow[END_REF]. Combining these two tools, it is possible to describe the mechanisms of turbulent transport of particles with remarkable details. In particular, the combination of tools has two main purposes: (i) to use the experimental data to improve and validate the simulation, including both the Eulerian velocity field and the Lagrangian particle simulation; and (ii) to extract from the LES additional information not available in the lab experiment. For that reason, the research plan for the first year of this project was to set up, for the first time, a LES of turbulent round jet flow similar to the laboratory experiment, including the validation of the Lagrangian tracking of passive tracers, as described in the 1 st Scientific Report.

In the second year, the analysis of the LES Eulerian flow field was extended and compared directly to the laboratory data. Furthermore, the Lagrangian transport of passive tracers was used to investigate the performance of the compensation method. Next sections describe these steps in details.

Simulation of a jet flow with LES

Large-Eddy Simulation is a numerical tool in which the three-dimensional turbulent flow field is resolved in a grid larger than the smallest scales of the flow (to reduce computational cost), therefore requiring the use of a subgrid-scale model in order to represent the effects of the unresolved scales. The code used here solves the incompressible filtered Navier-Stokes equation in rotational form to ensure conservation of mass and kinetic energy. It uses a Cartesian fixed grid, and in the two horizontal directions it uses a pseudo-spectral method combined with periodic boundary conditions. In the vertical direction, a second-order accurate centereddifferences scheme is used, requiring a staggered grid in which the axial velocity is defined at the top/bottom walls of the grid whereas the radial velocities and pressure are defined at the center of the grid. For time advancement, the fully explicit second-order accurate Adams-Bashforth scheme is used. This code is similar to the open-source code LESGO: A parallel pseudo-spectral large-eddy simulation code from the Johns Hopkins University [START_REF] Bou-Zeid | A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows[END_REF], https://lesgo.me.jhu.edu/), and it was originally developed to simulate periodic channel flows. In here, it is adapted to simulate a turbulent round jet flow periodic in the radial directions, as described by [START_REF] Freire | Large-eddy simulation of turbulent incompressible round jet flow[END_REF].

Table 1 shows the simulation parameters. In the jet simulation, 𝑥, 𝑦 corresponds to the radial (horizontal) directions, and 𝑧 to the axial (vertical) direction. Figure 1(a) shows the nozzle configuration, with a discretized approximation to a circle with diameter 𝐷. Figure 1(b) shows where the variables are defined in the radial/azimuthal direction, as linear interpolation at the four "legs" of the Cartesian axes. The average over the four "legs" is used as the radial axis, where the radial (𝑢) and azimuthal (𝑣) velocity components are redefined. In the axial (vertical) direction, variables are staggered with radial/azimuthal velocities and pressure defined at the center of the grid, and the axial velocity component defined at the top/bottom grid faces. Therefore, at 𝑧 = 0 the vertical velocity has a bottom boundary condition with a top-hat velocity (7 m s -1 within the nozzle, zero outside), and at 𝑧 = Δ𝑧/2 the horizontal velocity components have a boundary condition corresponding to the theoretical equation for the mean radial velocity ℎ(𝜂) (defined below). Lateral boundary conditions are periodic, and top boundary condition is free-convection. Figure 2 Table 1: Large-Eddy Simulation parameters. Blue crosses correspond to the location where the variables are defined during the post-process as radial (𝑟, 𝑢), azimuthal (𝜃, 𝑣) and axial (𝑧, 𝑤) direction/velocity component. Linear interpolation is used, and results are averaged over the four axes "legs" (in addition to time and ensemble).

The turbulent jet is a self-similar flow in which the axial and radial velocities can be expressed, respectively, by (Pope, 2000) 𝑓 (𝜂) = 𝑤(𝜂)/𝑤 0 (𝜂) = exp(-𝐴𝜂 2 ),

ℎ(𝜂) = 𝑢(𝜂)/𝑤 0 (𝜂) = 𝜂 exp(-𝐴𝜂 2 ) -

1 -exp(-𝐴𝜂 2 ) 2𝐴𝜂 . (2) 
In these equations, 𝜂 = 𝑟/(𝑧 -𝑧 0 ) is the scaled radial distance, 𝑟 and 𝑧 are the radial and axial positions, respectively, 𝑤(𝑧, 𝑟) and 𝑢(𝑧, 𝑟) are the mean axial and radial velocities, respectively, 𝑤 0 (𝑧) is the mean axial velocity at the centerline and 𝐴 = log(2)/𝑆 2 . In this context, "mean" corresponds to time average over steady-state periods, in addition to the average over the four radial "legs" described above. The parameters 𝑧 0 and 𝑆 characterize the spread of the jet along the axial direction. By defining the jet's half-width 𝑟 1/2 (𝑧) such that 𝑤(𝑟 1/2 (𝑧), 𝑧) = 𝑤 0 (𝑧)/2, it is observed that the jet's half-width should increase linearly with axial position as 𝑟 1/2 (𝑧) = 𝑆(𝑧 -𝑧 0 ), 𝑆 ∼ 0.1. Furthermore, the mean axial velocity at the centerline can be described as 𝑤 𝑗 /𝑤 0 (𝑧) = (𝑧/𝐷 -𝑧 0 /𝐷)/𝐵, in which 𝑤 𝑗 and 𝐷 are the jet nozzle velocity and diameter, respectively, with 𝐵 ∼ 6. As presented in Figs. 3 and4, the LES results are in accordance with the theory. A more detailed comparison is performed using statistics of second order, compared to laboratory and LES results from the literature. Figure 5 presents the axial, radial and azimuthal variances, as well as the covariance between axial and radial velocities. The overall behavior is similar, and small differences are likely related to the different Reynolds and/or Mach numbers. Another important analysis is provided by the budget of Turbulent Kinetic Energy (TKE), defined as (Darisse et al., -𝜀 (dissipation).

(

) 3 
in which 𝑢 = 𝑢 + 𝑢 ′ , and 𝑘 = 1 2 (𝑢 ′2 + 𝑣 ′2 + 𝑤 ′2 ) is the TKE. In the post-process of the LES, firstorder finite difference is used for all derivatives. Figure 6 presents the LES results compared to the literature. The small residual is likely related to a small increase in TKE with time (Fig. 7). Another possible cause of discrepancy is the use of the LES resolved (filtered) variables 𝑢, 𝑣, 𝑤 As discussed in the 1 st Scientific Report of this study, one of the goals of using LES is to obtain the entire Eulerian flow field for the turbulence statistics of interest. Figures 8 and9 show the axial-radial field of TKE 𝑘, Eulerian time-scale 𝑇 𝐸 , Taylor Reynolds number 𝑅𝑒 𝜆 , TKE dissipation rate 𝜀, Kolmogorov length scale 𝜂 and the ratio Δ/𝜂, where Δ is the LES grid spacing (indicating where in the flow the LES is resolving more turbulence). As predicted by the theory and observed in the laboratory data, at the centerline there is a power decay with axial distance for 𝑘 ((𝑧/𝐷) -4 ), 𝜀 ((𝑧/𝐷) -2 ) and axial velocity standard-deviation 𝜎 𝑢 𝑧 ((𝑧/𝐷) -1 ), whereas 𝑅𝑒 𝜆 remains approximately constant and 𝑇 𝐸 increases as (𝑧/𝐷) 2 (Fig. 10). Compared to the specific experimental data that this LES is trying to reproduce (Viggiano et al., 2021), all variables are lower than expected, despite the imposition of similar flow conditions (nozzle size and velocity). This discrepancy should be taken into account when analyzing the results, as it may impact some of the conclusions. A new simulation with increased nozzle velocity (in order to achieve the desired 𝑅𝑒 𝜆 ) is currently being performed. At this stage, both the laboratory and the LES data are validated against each other and available for additional analyses. Furthermore, the compensation method has been shown to provide the means for extending Lagrangian dispersion theory to inhomogeneous, self-similar flows, which can be further explored within the context of the jet or other self-similar flows, such as the boundary-layer. At this point, the research group believes that the project would significantly benefit from a in person meeting, in which new ideas can be brainstormed and new directions for the project can be explored.

It is important to point out that most of the project's duration (from January/2021 to December/2022) has been marked by the COVID pandemic, which prevented the group from meeting in person. Furthermore, the project did not count with students working exclusively on the subject, instead it has been developed by the group of Brazilian and French researchers, which met virtually on a monthly basis. In particular, the researcher Livia Freire, who is performing the LES simulations, applied for a permanent professor position at the research institution (ICMC/USP) during the first semester of 2022, and effectively started as a professor in June/2022. This particular fact prevented the group from meeting in person in 2022, given that the meeting should take place in Lyon in order to take advantage of the physical laboratory facilities. For these reasons, the group would like to request an extension of 6 months, in order to meet in person during the first semester of 2023 and discuss the next steps of this study. Some potential topics of investigation in these final stages of the project are discussed next.

Lagrangian statistics of particle acceleration

Up to this point, only Lagrangian velocity statistics have been used for a direct comparison between LES and laboratory data. However, statistics related to particle acceleration have a significant impact on turbulence dispersion, and they are limited in the laboratory experiments due to low frame rate and the effect of finite particle size. LES data, on the other hand, provides detailed information regarding particle acceleration, although limiting subgrid-scale effects may have an impact on the quality of the results. Therefore, another goal of the present study is to investigate in which extent the LES can give reliable acceleration results, and how they can be complimentary to the laboratory data in the context of turbulent dispersion.

Mean fields and influence of nozzle seeding

When the particles are injected through the nozzle only, the flow field tagged by these tracers does not contain any contribution from particles entrained into the jet from the quiescent surrounding fluid. The flow field described by these particles have significant deviations from the original Eulerian field, which can be relevant in the description of turbulent diffusion and entrainment effects (Basset et al., 2022). In this stage, we will compute relevant turbulent quan-Étude lagrangienne de la dispersion de particules en turbulence Résumé : Décrire un écoulement comme un ensemble de trajectoires de particules fluides est une approche nécessaire pour comprendre sa dynamique lagrangienne mais aussi pour caractériser la dispersion de particules qu'il génère, omniprésente en milieu naturel (polluants dans l'océan ou l'atmosphère) ou industriel (réacteur chimique). Le développement récent de méthodes optiques de suivi de particules permet d'étudier expérimentalement cette question pour différents types de particules et/ou d'écoulements. Dans le cadre de cette thèse, nous nous limitons à des traceurs (particules fluides) et à deux types d'écoulement turbulent.

Une première partie s'intéresse à une large base de données expérimentales de trajectoires en turbulence homogène isotrope. Une étude lagrangienne complète est réalisée pour obtenir une caractérisation fine de la turbulence en vitesse et accélération pour une large gamme de nombres de Reynolds. Une modélisation de la dispersion de paires est également proposée, avec des éléments nouveaux pour sa compréhension dans le cadre de la phénoménologie de la cascade balistique.

Une seconde partie est consacrée à l'étude expérimentale lagrangienne d'un jet turbulent. L'influence d'un ensemencement inhomogène par la buse est décrite quantitativement. Cette approche, qui fait apparaître le phénomène original de compressibilité effective, permet une nouvelle compréhension de l'entraînement et de la diffusion turbulente. Une analyse lagrangienne de cet écoulement inhomogène est également réalisée. Une nouvelle méthode de stationnarisation est appliquée avec succès pour compenser l'inhomogénéité de l'écoulement et offrir une caractérisation grande échelle en vitesse et accélération.

Mots-clés : turbulence, statistiques lagrangiennes, turbulence homogène isotrope, jet turbulent

Lagrangian investigation of particle dispersion in turbulence

Abstract: Describing a flow as a set of fluid particle trajectories is a necessary approach to understand its Lagrangian dynamics but also to characterise the dispersion of particles it generates, omnipresent in natural environments (pollutants in the ocean or the atmosphere) or industrial environments (chemical reactors). The recent development of optical particle tracking methods allows to study experimentally this question for different types of particles and/or flows. In this thesis, we limit ourselves to tracers (fluid particles) and to two types of turbulent flow.

A first part focuses on a large database of experimental trajectories in homogeneous isotropic turbulence. A complete Lagrangian study is carried out to obtain a fine characterisation of turbulence in velocity and acceleration for a wide range of Reynolds numbers. A modelling of pair dispersion is also proposed, with new elements for its understanding in the framework of the ballistic cascade phenomenology.

A second part is devoted to the Lagrangian experimental study of a turbulent jet. The influence of an inhomogeneous nozzle seeding is described quantitatively. This approach, which reveals the original phenomenon of effective compressibility, allows a new understanding of entrainment and turbulent diffusion. A Lagrangian analysis of this inhomogeneous flow is also performed. A new stationarisation method is successfully applied to compensate the flow inhomogeneity and provide a large-scale characterisation in velocity and acceleration. Keywords: turbulence, Lagrangian statistics, homogeneous isotropic turbulence, turbulent jet

Figure 1 . 1 .

 11 Figure 1.1. Some illustrations of turbulent flows. (a) Post-processed satellite image of phytoplankton blooming in the Gulf of Aden (MODIS on NASA's Aqua satellite on February 12, 2018). (b) Sketch of a plunging water jet into a pool by Leonardo da Vinci (adapted from Studies of water 1510-12, RCIN 912660 verso). More information about the work of Leonardo da Vinci in fluid mechanics can be found in Marusic & Broomhall (2021). (c) Laser-induced fluorescence of a turbulent water jet spreading into water (adapted from van Dyke (1982), based on Dimotakis et al. (1983)). (d) Chimneys of the Feyzin refinery close to Lyon (adapted from Wikipédia, Raffinerie de Feyzin).
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 12 Figure 1.2. Velocity fluctuation signals from hot-wire measurements (sampled at 5 kHz) in the Modane wind tunnel of ONERA (adapted from Frisch (1995)).

Figure 1 . 3 .

 13 Figure 1.3. Schematic of the energy cascade: the large eddies at large scale L E break into smaller eddies to reach the Kolmogorov scale ℓ K to dissipate energy into heat through molecular viscosity.
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 21 Figure 2.1. Three-dimensional CAD rendering of the LEM.

Figure 2 . 2 .

 22 Figure 2.2. (a) Schematic of the LEM with 12 motors (dark gray) attached. The laser is represented by a green arrow and the three high-speed cameras are in gray-blue (two on the bottom and one on the opposite window). (b) Net of the polyhedron, showing the impellers (gray discs), the windows (blue), the laser (green discs) and the cameras (blue squares with black discs inside). See appendix B.1 to build it.
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 23 Figure 2.3. Measurement volume of the LEM captured by the three-camera set-up.
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 24 Figure 2.4. Schematic of the hydraulic set-up of the jet. The three high-speed cameras are oriented orthogonal to the brown faces.
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 25 Figure 2.5. Schematic of the optical set-up of the jet: (a) top view and (b) side view.
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 26 Figure 2.6. Measurement volume of the jet captured by the three-camera set-up for the NF (same measurement volume for the FF).
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 29 Figure 2.9. Flat calibration target (12 × 12 cm size, 2 mm diameter points, 5 mm step).

Figure 2 . 7 .

 27 Figure 2.7. Detection of 457 particles in the LEM flow. The fluorescent particles appear as white points with a black background (laser illumination).
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 28210 Figure 2.8. Detection of 705 particles on camera 2 in the NF jet configuration with a mass loading of 0.10% (nozzle in the top left-hand corner). Inset: zoom on the boxed zone. The opaque particles appear as black points with a white background in back-light configuration (LED illumination).
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 211 Figure 2.11. Predictive tracking schematic. The solid line signifies the real trajectory. The dotted line (linear fit of the positions from frame n -4 to n) indicates the position extrapolation (n + 1) interp compared to the real next position n + 1.
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 212 Figure 2.12. Sample of tracks longer than or equal to 50 frames in the LEM (2471 tracks, one colour per trajectory, one film considered).

Figure 2 . 13 .

 213 Figure 2.13. Samples of tracks longer than or equal to 50 frames for the (a) NF (4812 tracks) and (b) FF (12090 tracks) jet configurations with a mass loading of 0.10% (one colour per trajectory, one film considered). The majority of the particles come from the nozzle, a few of them come from the tank.
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 2 Figure 2.14. dt-method (case 400) for (a) velocity (τ from 1 to 91 frames every 10 frames, fit c 1 + c 2 dt 2 + c 3 dt 3 ) and (b) acceleration (τ from 1 to 10 frames every 1 frame, fit c 1 + c 2 dt 4 + c 3 dt 6 ). The green points are the points used for the fitting and the red points are the outliers found by the RANSAC algorithm.
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 31 Figure 3.1. Standard deviations of filtered (a) velocity σ u i f and (b) acceleration σ a i f as a function of the Gaussian filter width w for the three components (case 400). The length of the filter is L = 5w.
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 32 Figure 3.2. Evolution of the normalised variance of filtered velocity σ u f or acceleration σ a f for a two-layer or a infinite-layer model (τ 1 = 540 and τ 2 = 10).
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 33 Figure 3.3. Evolution of the variance σ 2a f (average of the three components) as a function of the filter width w (case 400). This evolution is fitted with the two-layer and infinite-layer model.
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 3435 Figure 3.4. Evolution of the variance σ 2 a f (average of the three components) as a function of the filter width w for the seven Reynolds numbers (crosses and solid lines: experimental points, dashed lines: infinite-layer fit). (a) (b)
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 36 Figure 3.6. Velocity standard deviation σ u (based on calculating the velocity standard deviation in 10 4 uniformly chosen directions) as a function of the Taylor-based Reynolds number Re λ . The vertical error bar indicates the anisotropy of the fluctuations (standard deviation of the resulting distribution).
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 37 Figure 3.7. Standardised PDF of the three velocity components u i (case 400) (dashed line: Gaussian function with zero mean and unit variance).
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 38 Figure 3.8. Standardised PDF of velocity u (averaged over the three components) for the seven Reynolds numbers (dashed line: Gaussian function with zero mean and unit variance).
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 39 Figure 3.9. Standardised PDF of acceleration a (averaged over the three components) for the seven Reynolds numbers (dashed line: stretched exponential fit (Mordant et al. 2004b) P (a) = C exp(-a 2 /[(1 + |βa/σ| γ )σ 2 ]) with C = 0.799, β = 0.784, σ = 0.379 and γ = 1.409).
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 310 Figure 3.10. Lumley triangle: all possibles flows are within the triangle. Points A, B, and C refer to 1D, isotropic 2D and isotropic 3D turbulence, respectively. Sides D, E and F refer to 2D, axisymmetric disk-like and axisymmetric rod-like turbulence, respectively. Inset: zoom around the origin.
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 311 Figure 3.11. Three components of the mean velocity ⟨u i ⟩ normalised by the velocity standard deviation σ u as a function of the Taylor-based Reynolds number Re λ .
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 3 Figure 3.13. Eulerian second-order structure functions for the seven Reynolds numbers: longitudinal S E2-∥ (solid lines) and transverse S E 2-⊥ in (dashed lines). The 4/3 isotropy factor between the two is well observed.
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 314 Figure 3.14. Eulerian longitudinal third-order structure functions S E 3-∥ for the seven Reynolds numbers.
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 3 Figure 3.15. (a) Pair dispersion statistics (case 400). 20 initial separations ∆ 0 logarithmically spaced between 2 and 50 mm are considered (the indicated value is the centre value of the bin). (b) Total second-order structure function S E 2-tot extracted from the t 2 slopes of pair dispersion statistics.

  Figure 3.16. Estimation of the mean energy dissipation rate ε with the compensated structure functions (case 400).
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 317 Figure 3.17. Mean energy dissipation rate ε as a function of impeller rotation frequency f .

Figure 3 .

 3 Figure 3.18. Eulerian longitudinal velocity autocorrelation functions R E uu-∥ for the seven Reynolds numbers (dashed lines: fit (3.6)).
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 319 Figure 3.19. Schematic of S E 2 behaviour.
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 3 Figure 3.20. Lagrangian second-order structure functions S L 2 for the three velocity components as a function of the normalised time τ /τ K (case 400).
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 321 Figure 3.21. Determination of C 0 and C * 0 from S L 2 : greenish lines S L 2 (τ )/(ετ ), brownish lines (dS L 2 /dτ )/ε (case 400).
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 322 Figure 3.22. Corrected Lagrangian second-order structure functions S L 2,corrected for the three velocity components as a function of the normalised time τ /τ K (case 400).
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 3 Figure 3.23. Determination of C 0 and C * 0 from S L 2,corrected : greenish lines S L 2 (τ )/(ετ ), brownish lines (dS L 2 /dτ )/ε (case 400).
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 324 Figure 3.24. Evolution of the constants C 0 and C * 0 from different estimations as a function of the Taylor-based Reynolds number Re λ .
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 3 Figure 3.25. Normalised Lagrangian autocorrelation functions R L uu for the three velocity components as a function of time (case 400). Two estimations are represented: the direct computation of R L uu (dot-dashed lines) and the corrected function R L uu,corrected (solid lines).
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 3 Figure 3.26. Corrected normalised Lagrangian autocorrelation functions R L uu,corrected for the three velocity components as a function of time (dashed lines: fit (3.14)) (case 400).
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 327 Figure 3.27. Lagrangian autocorrelation functions of acceleration R L aa (average over the three components) as a function of time: (a) case 230, (b) case 400 and (c) case 620 (dashed lines: fit (3.15)).
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 3 Figure 3.28. Normalised Lagrangian autocorrelation functions of acceleration R L aa (average over the three components) for the seven Reynolds numbers as a function of the normalised time τ /τ 0 (dashed lines: averaged fit(3.15)).
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 329 Figure 3.29. Evolution of the acceleration constant a 0 from different estimations as a function of the Taylor-based Reynolds number Re λ .
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 3 Figure 3.30. Evolution of the large time scale τ 1 from different estimations as a function of the Taylor-based Reynolds number Re λ .
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 331 Figure 3.31. Evolution of the short time scale τ 2 from different estimations as a function of the Taylor-based Reynolds number Re λ .
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 332 Figure 3.32. Comparison of τ a /τ K and C * 0 /2a 0 as a function of the Taylor-based Reynolds number Re λ .
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 333 Figure 3.33. Comparison of T E /T L and C * 0 C ε /2 as a function of the Taylor-based Reynolds number Re λ .

Figure 3 . 34 .

 334 Figure 3.34. Illustration of the spreading of a cluster of particles in turbulence by Richardson (adapted from Richardson (1926)).

  which, by molecular diffusion alone, would spread through the successive spherical clusters shown in figs. 2 and 3, actually seldom passes through the large spherical stage 3, because it is first sheared into two detached clusters as suggested in fig. 4. These are carried far from one another, and are likely to be again torn into smaller pieces as in fig. 5. Meanwhile each of the torn parts is gradually spreading by molecular diffusion. These diagrams are, of course, merely illustrative fictions.
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 3 Figure 3.35. Normalised pair dispersion statistics from experimental measurements by Tan & Ni (2022) (adapted from Tan & Ni (2022)). The red to blue curves correspond to initial separations∆ 0 = 0 -5ℓ K , 5 -10ℓ K , 10 -15ℓ K , 15 -20ℓ K , 20 -25ℓ K , 25 -30ℓ K , 45 -50ℓ K , 95 -100ℓ K , 195 -200ℓ K , 295 -300ℓ K .The other previous results have been shifted up by one decade for clarity.
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 3 Figure 3.36. Illustration of the iterative process for the ballistic cascade phenomenology (adapted from Bourgoin (2015)).

  Figure 3.37. Prediction of g as a function of α from relation (3.33) (adapted from Bourgoin (2015)). The expected value g = 0.55±0.05 and the associated smallest solution α = 0.118±0.07 are indicated with lines.

Figure 3 .

 3 Figure 3.38. Pair dispersion statistics normalised by S 2 (D 0 )t 2B (D 0 ) as a function of the normalised time t/t B (D 0 ) (adapted from[START_REF] Bourgoin | Turbulent pair dispersion as a ballistic cascade phenomenology[END_REF]). Experimental results are based on[START_REF] Bourgoin | The role of pair dispersion in turbulent flow[END_REF] and DNS results are from[START_REF] Bitane | Time scales of turbulent relative dispersion[END_REF].
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 3 Figure 3.39. (a) Sample of 50 trajectories among 10 4 from an OU simulation with T = 100 s and σ v = 10 m/s. (b) Normalised mean square displacement ⟨x 2⟩(t)/(σ 2 v T 2) as a function of the normalised time t/T : we observe the transition between the ballistic regime and the diffusive regime as presented in relations(3.35). (c) Normalised velocity autocorrelation function R uu as a function of the normalised time t/T : the solid line is an exponential decay as presented in relations(3.36).
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 3 Figure 3.40. Pair dispersion statistics normalised by S 2 (∆ 0 )t 2B (∆ 0 ) as a function of the normalised time t/t B (∆ 0 ) based on 10 4 trajectories from simulations of process(3.37). We observe the expected transition between the ballistic regime and the cubic regime.

Figure 3 . 43 .

 343 Figure 3.43. Normalised autocorrelation functions of relative velocity R ∆v (average over the three components) as a function of the normalised time t/T from tracks of the stochastic model (a) with drift term and (b) without drift term. We consider 50 initial separations linearly spaced between 0ℓ K and 1000ℓ K (from blue to brown). The dashed line is the exponential function e -t/T .

Figure 3 .

 3 Figure 3.44. Normalised pair dispersion statistics for 20 logarithmically spaced initial separations from 2 to 50 mm (case 400).

Figure 3 .

 3 Figure 3.45. Normalised autocorrelation functions of relative velocity R ∆v for 20 linearly spaced initial separations from 0 to 40 mm (case 400).

Figure 3 . 46 .Figure 3 . 47 .

 346347 Figure 3.46. Normalised autocorrelation functions of relative velocity R ∆v as a function of scaled time t/ε -1/3 for seven Reynolds numbers and four different initial separations: (a) 5 ± 1 mm, (b) 15 ± 1 mm, (c) 25 ± 1 mm and (d) 35 ± 1 mm. (a) (b)

Figure 4 .

 4 Figure 4.1. (a) Laser-induced fluorescence of a turbulent free round water jet spreading into water (adapted from van Dyke (1982), based on Dimotakis et al. (1983)). Fluorescent dye is injected through the nozzle, thus white fluid comes from the nozzle and black fluid from the ambient. We can observe that initially quiescent fluid is entrained up to the turbulent core of the jet. (b) Schematic of the jet with cylindrical coordinates (z, r, θ) and associated velocity components U , V and W (two-dimensional projection of a three-dimensional jet). The turbulent core of the jet is fed with entrained fluid crossing the TNTI.

  Figure 4.1(b) presents a schematic of the jet and entrainment process with the notations used in the following.

Subsections 4 . 1 .

 41 1 and 4.1.2 provide experimental and theoretical results for the mean axial and radial velocities of the flow associated with nozzle seeded particles. In subsection 4.1.3, results about turbulent transport coefficients based on advection-diffusion model are reported. Finally, main conclusions are summarised in subsection 4.1.4. 

Figure 4 . 2 .

 42 Figure 4.2. Characterisation of the mean axial velocity field ⟨U φ ⟩ based on trajectories with a nozzle seeding. (a) Radial profiles of the mean axial velocity ⟨U φ ⟩ (crosses: experimental points, solid lines: Gaussian fit). (b) Mean centreline velocity U 0φ (z) (crosses: experimental points, solid line: fit (4.1)). (c) Half-width r 1/2φ (z) (crosses: experimental points, solid line: fit (4.2)). (d) Self-similar profiles f φ (η) (4.3) (crosses: experimental points, solid line: fit (4.5)).

. 9 )Figure 4 . 3 .

 943 Figure 4.3. Self-similar profiles g φ (η) (4.6) for a nozzle seeding (crosses: experimental points, solid line: fit (4.10) with A φ = 63 previously found for f φ (η)).

Figure 4 . 4 .

 44 Figure 4.4. Self-similar profiles g(η) (4.6) for a homogeneous seeding in the whole volume of the tank without nozzle seeding (crosses: experimental points, solid line: fit (4.10) with A = 79).

Figure 4 . 5 .

 45 Figure 4.5. Characterisation of the mean concentration field ⟨φ⟩ for a nozzle seeding. (a) Centreline concentration φ 0 (z) (crosses: experimental points, solid line: fit in 1/(z -z 0 )).Here, φ 0 is the sum of the concentrations from all films at all time steps, which explains the high values of φ 0 , but only the relative evolution along z is relevant. (b) Self-similar profiles Φ(η) (4.12) (crosses: experimental points, dashed line: f φ (η) previously measured). The profiles of Φ(η) are wider than those of f φ (η).

Figure 4 . 7 .

 47 Figure 4.7. Characterisation of the mean velocity field for an air jet seeded through the nozzle with neutrally buoyant soap bubbles. Self-similar profiles for mean (a) axial and (b) radial velocities (crosses: experimental points, solid lines: fits (4.5) and (4.17) with A φ = 42).

Figure 4 . 8 .

 48 Figure 4.8. Schematic of the nozzle seeding case with ⟨U φ ⟩ = ⟨U ⟩ + ⟨U d ⟩. The colour scale represents the tracer concentration ⟨φ⟩. A first set of streamlines (dashed lines) is used to represent the mean trajectories of the fluid parcels with the associated velocity field ⟨U ⟩. A second set of streamlines (solid lines) represents the mean trajectories of the tracers coming from the nozzle with the associated velocity field ⟨U φ ⟩. Except on the jet axis, the streamlines of the tracers differ from the jet streamlines due to the inhomogeneous nozzle seeding. Thus ⟨U ⟩ and ⟨U φ ⟩ have the same axial component but different radial components. This difference can be related to a transverse diffusive flow ⟨U d ⟩, as represented in the inset.

Figure 4 . 9 .

 49 Figure 4.9. Self-similar profiles Φ(η) (4.12) (crosses: experimental points, solid lines: fit (4.30) and Gaussian fit with A Φ = 39). This is the same figure as figure 4.5(b) but with the new fit (4.30).

Figure 4 .

 4 Figure 4.10. Self-similar profile K T (η) based on relation (4.23) with two fits of Φ (solid lines: median values, coloured zones limited by dashed lines: 70% of the measured values).

  2 0 (as classically done) the Reynolds stress reaches self-similarity further downstream (typically for z/D ≥ 70 (Ball et al. 2012)) compared with mean velocity fields (Weisgraber & Liepmann 1998, Lipari & Stansby 2011, Khashehchi et al. 2013).

Figure 4 Figure 4 .

 44 Figure 4.11. (a) Self-similar profile ν T (η) based on relation (4.26) (solid line: median value, coloured zone limited by dashed lines: 70% of the measured values). Self-similar profiles (b) (⟨uv⟩/U 2 0 )(η) and (c) (⟨uv⟩/max(⟨uv⟩))(η) (crosses and solid lines: experimental points, dashed line: fit based on the relation (4.26) for ν T , dotted line: fit from Hussein et al. (1994)).

Figure 4 .

 4 Figure 4.12. Self-similar profile σ T (η) (solid line: median value, coloured zone limited by dashed lines: 70% of the measured values).

Figure 4 .

 4 Figure 4.13. (a) Vector field of the u field for NF locations, including the half-width of the jet r 1/2 (dashed line). (b) Contour representations of the local standard deviations σ uz (left) and σ ur (right) for the axial and radial velocity components for NF locations.

Figure 4 . 14 .

 414 Figure 4.14. Eulerian second-order structure functions of the axial velocity on the axis, (a) uncompensated S E 2-z,⊥ (z, δr)σ 2 uz and (b) compensated (S E 2-z,⊥ (z, δr)σ 2 uz / 4 3 C 2 ) 3/2 /δr. The energy dissipation rate ε z corresponds to the plateaus of the compensated structure functions (solid lines).

Figure 4

 4 Figure 4.15.Eulerian autocorrelations functions of the axial velocity on the axis,R E uu-z,⊥ (z, δr) = 1 -S E 2-z,⊥ (z, δr)/2.

Figure 4 . 16 .

 416 Figure 4.16. Evolution along the axis of the energy dissipation rate ε z based on axial velocity.

Figure 4 .

 4 Figure 4.17. (a) The standard deviation σ uz averaged within the disk D z , (b) the energy dissipation rate ε z and (c) the integral length scale L Ez for the axial component of velocity. Power-law relations are given as dashed lines.

Figure 4 . 18 .

 418 Figure 4.18. Lagrangian second-order structure functions of the axial velocity on the axis, (a) non-dimensional S L 2-z (τ ) as a function of the non-dimensional time τ /T Ez (inset: dimensional S L 2-z (τ )σ 2 uz as a function of time τ ) and (b) compensated S L 2-z (τ )σ 2 uz /(τ ε z ). The universal scaling constant C 0z corresponds to the plateaus of the compensated structure functions (solid lines).

Figure 4 . 19 .

 419 Figure 4.19. Lagrangian autocorrelation functions of the axial velocity R L uu-z as a function of the compensated time τ /T Ez (insets: Lagrangian autocorrelation as a function of the dimensional time τ ). Locations are (a) along the centreline (r = 0) and (b) at the jet half-width (r = r 1/2 (z)).

Figure 4 . 20 .

 420 Figure 4.20. Evolution along the axis of the scaling constant C 0 (left-hand axis) and the ratio of the integral time scales T E /T L (right-hand axis). The axial (solid lines) and radial (dot-dashed lines) components are both presented.

Figure 4 .

 4 Figure 4.21. Evolution along the axis of the scaling constant of the axial acceleration a 0 as a function of the finite particle size d p /ℓ K and the normalised position z/D.

Figure 4 .

 4 Figure 4.22. Normalised autocorrelation functions of the axial acceleration R aa-z (τ )/R aa-z (0) on the axis as a function of the compensated time τ /τ Kz .

Figure 4 . 23 .

 423 Figure 4.23. The zero-crossing time of the acceleration autocorrelation function τ 0 normalised by the Kolmogorov time scale along the axis. Two estimations are presented based on the acceleration autocorrelation function R aa and the derived second-order structure function dS L 2 /dτ .

Figure B. 1 .

 1 Figure B.1. Net of the LEM to cut and build.

2 .

 2 Relations for acceleration filtering. The autocorrelation function R aa (τ ), the variance σ 2 a , the associated spectrum E a (ω) and the variance of filtered acceleration σ 2 a f (w) are presented for the two-layer and infinite-layer models.

Figure C. 1 .

 1 Figure C.1. Evolution of the normalised variance of filtered acceleration (σ a f (w)/σ a ) 2 based on synthetic tracks with a two-layer model (5×10 3 tracks of length 10 4 (time step of 1), τ 1 = 2×10 3 and τ 2 = 2 × 10 2 ) as a function of the filter width w. The ratios L/w from 1 to 8 are considered and compared to the analytical function for L infinite (dashed line).

FIG. 1 .

 1 FIG. 1. (a) Representation of a step-by-step process with 8 particles moving vertically with a horizontal fluctuating motion left and right for each time step. (b) Eulerian contour obtained after multiple iterations of the step-by-step process with random jumps and an averaging of the trajectories in a binning grid (2 × 10 5 trajectories in total). The color scale indicates the mean horizontal velocity V x of the simulated trajectories.A subset of trajectories passing by both bins {0, 0} and {x = 10, z = 40} are represented by solid lines. A thick green line represents the average trajectory from this subset. Another trajectory exploring x < 0 is also represented. The inserted contour is the model for the horizontal velocity presented in Eq. (8).
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 4 FIG.2. Concentration profile φ(x, y) (expressed as a fraction) of the toy model in the limit of statistical convergence. i and n are positive integers (i n), with x(i, n) = in/2 and z(i, n) = n. The particles start from i = 0, n = 0 and for each iteration, the particles move up with an equal probability 1/2 to jump left or right. The colorbar indicates the value for the horizontal incoming velocity V x | in [Eq. (2)]. The two arrows illustrate the origin of the biased velocity V x | in at n = 4, i = 3 with a ratio 3:1 for the incoming particles from cells i = 2, n = 3 (φ = 3/8, contributing to a positive horizontal velocity represented with a red arrow) and i = 3, n = 3 (φ = 1/8, contributing to a negative horizontal velocity represented with a blue arrow).

FIG. 4 .

 4 FIG. 4. (a) Instantaneous velocity v z (y, z, t ) for the channel flow simulation (x = 0). The rigid walls are at y = ±1. 15 fluid particle tracks injected at y = 0, z = 0 are represented by solid lines. (b) Transverse velocity component V y (y, z| τ = 0) based on tracer tracks with a point source seeding in a turbulent channel flow. Panels (c) and (d) are the transverse velocity maps for two positive values of τ . τ is a time lag introduced between velocity and position in the trajectory analysis. X (0) of each track is removed to have an effective source-point injection at x = 0, y = 0, and z = 0. We find Eulerian averages (spatial mean statistics) of the Lagrangian based flow field by binning the trajectories in x, y, and z and averaging over the time of the simulation. For the Eulerian contour in Figs. 4(b), 4(c) and 4(d), we use a bin size of δx = 0.02, δy = 0.02, and δz = 0.1. The parameter τ is the time delay introduced in the computation of the time-delayed velocity in Eq. (6). Figure4(b) shows the mean transverse velocity V y (y, z| τ = 0) obtained from the analysis of the trajectories computed in the channel flow. The colorbar represents the magnitude of the mean velocity in the transverse direction. The magnitude of the horizontal velocity is of the order of 0.1 × V z (y = 0) on the side of the cone identified by the dashed line y/z = 0.1. The horizontal velocity is twice the velocity bias predicted by the discrete modeling Eq. (8) or equivalently the horizontal velocity matches with the incoming velocity in Eq. (7). This denotes a difference with the toy model presented in section II that we attribute to the existence of a finite correlation timescale for the particle trajectories. For the toy model, there is no correlation time in the trajectory and the velocity without time delay is an average of the position before (with seeding bias) and the position after (without seeding bias) a given point. This average leads to the factor 1/2 in the velocity without time delay [Eq. (8)]. For the channel flow, the trajectories are smooth at small timescales and the velocity can not be discontinuous. By continuity, the velocity without time delay matches with the incoming velocity immediately before a given position.Figures4(c) and 4(d) shows the transverse velocity maps for implementation of time delays τ = 1.3 and τ = 2.6, respectively. The transverse velocity decreases with the increase of the time delay. To quantitatively analyze the effect of τ on the transverse velocities estimation, the RMS differences of the transverse velocities V x (y, z| τ ) and V y (y, z| τ ) based on the Eulerian flow are represented as a function of the time delay in Fig.5(a). A value of zero means that the mean flow for the tracers matches with the fluid mean flow [V x (x, y, z) = 0 and V y (x, y, z) = 0 for the channel]. The velocity difference as a function of the time delay approximately follows an exponential decay with a time constant τ c = 2.9. This means that the time delay between position and velocity in the trajectory analysis has to be typically larger than 2.9 to remove the bias from the point source seeding.

FIG. 6 .

 6 FIG. 6. (a) Particle tracks in a turbulent jet with nozzle injection. The dashed lines mark different distances z to the nozzle chosen to represent the flow profiles. (b)Axial velocity V z obtained from the tracks analysis without time delay (standard PTV) as a function of the radial distance r for the 11 positions in z between 95 mm and 145 mm. The velocity at r = 0 decreases with increasing z. The inserted plot is the velocity normalized by the velocity at r = 0 as a function of the variable r/z. The 11 curves collapse on a master curve corresponding to the Gaussian solution[START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF] represented by a thick gray line. Panels (c), (d), and (e) are the normalized radial profiles V r = V r (r, z| τ )/V z (0, z| τ ) for different values of the time delay τ = -1.3, 0, and 8.3 ms, respectively. The dashed line is the solution V r = V r (r, z)/V z (0, z) for the radial velocity without seeding bias [Eq.[START_REF] Kerho | Neutrally buoyant bubbles used as flow tracers in air[END_REF]]. The solid line is the solution V N ,r = V N ,r (r, z)/V N ,z (0, z) for the tracer mean flow for a nozzle seeding [Eq. (12)]. The dash-dotted line is a model V N +U ,r (r, z) combining nozzle seeding and the contribution of tracers initially in the water tank [Eq. (14)].

FIG. 7 .

 7 FIG. 7. (a) Error E Vr between the normalized radial velocity V r from the tracers and the jet radial flow in the Gaussian approximation V r[START_REF] Kerho | Neutrally buoyant bubbles used as flow tracers in air[END_REF] as function of the distance to the nozzle z and the time delay τ . The crosses indicate local minima of E Vr for each value of z. The data points T Lz are for Lagrangian timescales computed by statistical analysis of the particles trajectories[START_REF] Viggiano | Lagrangian diffusion properties of a free shear turbulent jet[END_REF]. (b) Error E Vz between the normalized axial velocity V z and the prediction in the Gaussian approximation V z[START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF]. We defineE V i = V i -V i r with V i = V i (r, z| τ )/V z (0, z| τ ), V i = V i (r, z)/V z (0, z).. i is the RMS average over the space coordinate i = r or z.
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  presents a snapshot of the flow vorticity and axial velocity.jet diameter, 𝐷 [m] 4 × 10 -3 jet velocity, 𝑤 𝑗 [m s -1 ] 7 fluid viscosity, 𝜈 [m 2 s -1 ] 1 × 10 -6Reynolds number, 𝑅𝑒 𝐷 = 𝑤 𝑗 𝐷/𝜈 2.8 × 10 4 domain, (𝐿 𝑥 × 𝐿 𝑦 × 𝐿 𝑧 )𝐷 -1 48 × 48 × 128 number of grid points (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) 288 × 288 × 720 grid spacing, (Δ𝑥 × Δ𝑦 × Δ𝑧)𝐷 -1 0.17 × 0.17 × 0.18 timestep, Δ𝑡 [s] 1.5 × 10 -5

Figure 1 :

 1 Figure 1: Top view of the nozzle with diameter 𝐷. Black dots correspond to the original 𝑥, 𝑦 location of the variables 𝑢, 𝑣, 𝑤, 𝑝 in the Cartesian code. Red circle corresponds to the jet center.Blue crosses correspond to the location where the variables are defined during the post-process as radial (𝑟, 𝑢), azimuthal (𝜃, 𝑣) and axial (𝑧, 𝑤) direction/velocity component. Linear interpolation is used, and results are averaged over the four axes "legs" (in addition to time and ensemble).

Figure 2 :

 2 Figure 2: Snapshot of vorticity (left) and axial velocity (right). Above 96𝐷 there is a sponge layer that dissipates spurious fluctuations. Statistics are calculated between 24 and 72𝐷.

Figure 3 :Figure 4 :

 34 Figure 3: (a) Mean axial velocity at different axial positions, (b) mean axial velocity at the centerline and (c) jet half-width. Red lines in (b) and (c) are the linear fit in the region within the vertical lines, with the fit parameters given in the plot.

Figure 6 :

 6 Figure 6: Radial distribution of the TKE budget terms. Grey lines (red circles) are the instantaneous (mean) values. Blue lines are results from the literature.

Figure 7 :

 7 Figure 7: Mean kinetic energy of the simulation. Grey regions correspond to periods of particle tracking. Blue line indicates the beginning of the TKE budget estimation.

Figure 8 : 10 Figure 9 :Figure 10 :

 810910 Figure 8: Axial/radial distribution of TKE 𝑘, local Eulerian integral time-scale 𝑇 𝐸 = 2𝑘/3𝜀 (de Laage de Meux et al., 2015) and 𝑅𝑒 𝜆 .

Figure 12 :

 12 Figure12: Lagrangian second-order structure function within circles of radius 𝑟 1/2 (𝑧)/2 (average over 5000 trajectories from each of 8 sampling blocks, total of 40000 trajectories, all starting at 24𝐷 and 0.45 s long), calculated from the original particle velocity (𝑢(𝜏), left) and after stationarizarion ( ũ(𝜏), right). Each line corresponds to a different streamwise position (in number of nozzle diameters), corresponding to the center of the sphere.

Figure 13 :

 13 Figure 13: Compensated Lagrangian second-order structure function without (left) and with (right) subgrid-scale velocity from the Langevin equation. After compensation of the curves (dividing by 𝜏/𝑇 𝐸 ), the short time should scale as ∼ 𝜏.

  

  The spatial resolution of each camera is 1280 × 800 pixels, creating a measurement volume of around 80 × 100 × 130 mm 3 , as seen in figure 2.6. Hence one pixel corresponds to roughly 0.1 mm. The three cameras are synchronised at a frequency of 6000 Hz for 8000 snapshots, resulting in a total record of nearly 1.3 s per run. For each nozzle position (NF and FF), a total of 50 runs are performed to ensure statistical convergence.

	The experiments were carried out by Bianca Viggiano, American PhD student
	in the Department of Mechanical & Materials Engineering, Portland State Uni-
	versity, USA (now assistant professor in the Département de génie mécanique,
	Polytechnique Montréal, Canada).

Three high-speed cameras (Phantom V12, Vision Research) mounted with 100 mm macro lenses (Zeiss Milvus) are used to track the particles. The optical configuration is shown in figure

2

.5. The angles are related to the geometry of an icosahedron. The interrogation volume is illuminated in a back-light configuration with three 30 cm square LED panels oriented one opposite to each camera.

Table 2 .

 2 

1. Characteristics of the seven data sets for the LEM flow.

Table 3 .

 3 1. Eulerian parameters of the LEM flow for the seven Reynolds numbers.

	)

Table 3 . 2

 32 

	(ms)
	(ms)
	(ms)

. Lagrangian parameters of the LEM flow for the seven Reynolds numbers.

  This section 4.1 is adapted fromBasset et al. (2022): Entrainment, diffusion and effective compressibility in a self-similar turbulent jet, T. Basset, B. Viggiano, T. Barois, M. Gibert, N. Mordant, R. B. Cal, R. Volk and M. Bourgoin, Journal of Fluid Mechanics, 947 A29 (2022). This paper is available at https://doi.org/10.1017/jfm.2022.638. A slightly extended version is proposed here.

Table 4 .

 4 

	mm) (ms)

1. 

Eulerian parameters of the jet on the axis for various z/D positions.

Table 4 .

 4 

		1.4	4.5	0.6	1.9	1.4	2.1
	25	2.7	5.3	1.6	3.2	2.3	2.3
	35	3.2 11.1	1.5	3.0	5.3	2.5
	45	3.0 15.9	1.8	2.8	8.9	2.6

2. Lagrangian parameters of the jet on the axis for various z/D positions.

Table C .

 C 1. Relations for velocity filtering. The autocorrelation function R

	uu (τ ), the spectrum E u (ω) and the variance of filtered velocity
	σ 2 u f (w) are presented for the two-layer and infinite-layer models.

4 A turbulent jet built from homogeneous isotropic turbulence

  

	Compensation of seeding bias for particle tracking velocimetry in turbulent flows, T. Barois, B.
	Viggiano, T. Basset, R. B. Cal, R. Volk, M. Gibert and M. Bourgoin, Physical Review Fluids,
	8 074603 (2023), available at https://doi.org/10.1103/PhysRevFluids.8.074603. Paper
	included on pages 146-161.
	Molding complex turbulence from a simple flow, B. Viggiano, T. Basset, R. Volk, L. Chevillard,
	C. Meneveau, M. Bourgoin and R. B. Cal, submitted to PNAS. Paper not included.
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  Freire, T. Basset, R. Volk, G. Buscaglia and M. Bourgoin, scientific report for FAPESP / Université de Lyon Joint Call. Paper included on pages 162-180.
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A French translation is available in appendix A.1.

As they also suggest, we recommend the teaching film Turbulence produced by the National Committee for Fluid Dynamics Films in 1969 and commented by R. W. Stewart. Numerous concepts presented in this film are used in this manuscript, especially the energy cascade.

These seminal works of Kolmogorov on turbulence are gathered in its Selected Works by[START_REF] Tikhomirov | Selected Works of A. N. Kolmogorov[END_REF].

For particles in the general case, we introduce the Stokes number St = τp/τK with τp the characteristic response time of the particle and τK the Kolmogorov time scale. Particles can be considered as tracers if St ≪ 1.

These experimental results go from molecular diffusion to atmospheric balloons and cyclones. The conclusion of Richardson can rather be considered as a successful intuition than a strong empirical result.

In the experimental results ofOuellette et al. (2006b) in a von Kármán flow, these two quantities are actually not equal, but the flow is anisotropic. In HIT, the equality should be correct because we have⟨|∆(t) -∆ 0 | 2 ⟩ = ⟨|∆(t)| 2 ⟩ -⟨|∆ 0 | 2 ⟩ -2⟨∆ 0 • ∆v 0 ⟩t.The additional term corresponds to the longitudinal first-order structure function, which is zero in HIT[START_REF] Sreenivasan | Asymmetry of velocity increments in turbulence[END_REF]. We do not deal this question in depth because we do not need this equality anymore in the new formulation.

We can also notice the works of[START_REF] Dopazo | On conditioned averages for intermittent turbulent flows[END_REF] and[START_REF] Dopazo | Intermittency in free turbulent shear flows[END_REF] which 'separate' the flow into turbulent and non-turbulent regions, leading to an analogous approach that our Lagrangian-based study presented in the following, but from an Eulerian point of view.
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Appendices A Particles in turbulence

A.1 Excerpt from The Graphes of Wrath, Chapter 3 § 1

Original French translation by Maurice-Edgar Coindreau and Marcel Duhamel (1947):

Un fouillis d'herbes sèches et brisées bordait la route cimentée, et les pointes des herbes étaient lourdes de barbes d'avoine à accrocher aux poils des chiens, de lupins à emmêler dans les fanons des chevaux et de graines de trèfle à ancrer à la laine des moutons ; vie dormante qui n'attendait qu'à être dispersée, disséminée, chaque graine armée d'un appareil de dispersion, fléchettes tournantes et parachutes pour le vent, petites lances et balles de menues épines, le tout attendant l'animal ou le vent, le revers d'un pantalon d'homme ou l'ourlet d'une jupe de femme, le tout passif mais équipé pour l'activité, inerte, mais possesseur d'éléments de mouvement.

New French translation by Charles Recoursé (2022):

Le béton de la nationale était bordé par un matelas d'herbes enchevêtrées, cassées, séchées, des herbes qui avaient au sommet de 

leur tige des barbes d'avoine pour s'accrocher au poil des chiens, des épillets pour s'emmêler aux boulets des chevaux, et des teignes pour se coller à la laine des moutons ; c'était toute une vie endormie qui attendait d'être propagée et dispersée, chaque graine équipée d'outils de dispersion, dards entortillés et parachutes pour le vent, petits épieux et minuscules boules d'épines, et chacune attendait les animaux et le vent, l'ourlet d'un

pantalon ou le bas d'une jupe, chacune passive mais équipée des outils de l'activité, immobile mais dotée de la puissance du mouvement.

B Experimental methods

B.1 Build you own LEM

See figure B.1 to build your own LEM.

C.2 Acceleration filtering on stochastic trajectories

We can apply the results obtained in the previous appendix C.1 to stochastic synthetic data. The velocity is marginally affected by noise and thus we focus on acceleration. For simplicity, we consider the two-layer model [START_REF] Sawford | Reynolds number effects in Lagrangian stochastic models of turbulent dispersion[END_REF]. Trajectories can be generated with the following equations

where W (t) is a Wiener process and W (dt) its infinitesimal increment over dt, i.e. independent instances of a Gaussian random variable, zero average and of variance dt (a Gaussian white noise). We prescribe σ 2 u = 10, τ 1 = 2 × 10 3 and τ 2 = 2 × 10 2 with dt = 1. With a simple iterative algorithm based on equation (C.11), we generate 5 × 10 3 tracks of length 10 4 dt.

We filter these trajectories with a Gaussian kernel for various ratios of the filter length over the filter width L/w and for w logarithmically spaced between 0 and 10 3 . The length or the tracks decreases due to filtering but the number of tracks in the data set is not reduced, in contrast to the experimental data where the short tracks are numerous. We show in figure C.1 the computed evolution of the normalised variance (σ a f (w)/σ a ) 2 for these synthetic tracks. The dashed line represents the expected function for an infinite filter length computed in the previous appendix C.1. For increasing ratios L/w, the evolution gets closer to the infinite case. For the ratio L/w = 5 we chose for the experimental data, the curve is really close, which justifies our choice.

THOMAS BAROIS et al.

For a symmetric representation of Pascal's triangle in (xz), we use the variable x(i, n) = in/2 and z(i, n) = n. The incoming transverse velocity becomes

From Eq. ( 3), we can infer the expression for the mean trajectory X | x,z , Z| x,z for the subset of all particles injected at {0, 0} at t = 0 and passing in the bin {x, z} at time t = z/v 0 . An example of a mean trajectory X | x,z , Z| x,z is represented by a green solid line in Fig. 1(b) for the bin {x = 10, z = 40}. For t < z/v 0 , the particles move in average at a constant velocity from 0 to x as

At t = z/v 0 , the particles are in the bin {x, z}. For t z/v 0 , the average position for the particle passing by {x, z} is

We can mention that the mean trajectory for {x = 10, z = 40} represented by the thick green line in Fig. 1 is consistent with the expression for X | x,z (t ) in Eqs. ( 4) and ( 5).

We show here that the local seeding at {0,0} leads to a biased mean trajectory for t < z/v 0 [Eq. ( 4)] and not for t > z/v 0 [Eq. ( 5)]. To compensate this bias, we introduce the time-delayed velocity for the horizontal component of the velocity,

in which t = z/v 0 is the time for which the particle is at z, τ the time delay and δt the time increment from steps n to n + 1. Equation ( 6) with τ = 0 is the usual two-point velocity estimation corresponding to

From the mean trajectory in Eqs. ( 4) and ( 5), the time-delayed velocity in Eq. ( 6) gives

Equation ( 7) is for a negative time delay which means that the velocity is computed with the track positions before the bin {x, z}. This velocity is the incoming velocity in Eq. ( 3). V x (x, z| τ < 0) is biased because the particles are injected at {0, 0} and to reach the bin {x, z}, there is a sampling bias in favor of the particles with a mean horizontal velocity v 0 x/z. Equation ( 9) contains the key idea of this work which is to retrieve the fluid mean velocity of a given flow from a set of trajectories with biased velocities because of tracer concentration gradients. With positive delay τ > 0, there is no velocity bias and the tracer mean velocity V x (x, z| τ > 0) is the mean flow velocity, which is V x (x, z) = 0 in this simple toy model.

Without time delay, there is a factor 1/2 in the horizontal velocity because the velocity estimation involves the position immediately before and immediately after the bin. Equation ( 8) is simply the average of Eqs. ( 7) and ( 9). The solution ( 8) is used for the model in Fig. 1(b) and it shows a good agreement with the velocity computed from the simulated trajectories without time-delay ( τ = 0).

The method we propose consists in using Eq. ( 6) to compute Eulerian mapping from a set of particles trajectories. It is referred as a time-delay method because the flow reconstruction uses the information of the position at time t and the velocity at a delayed time t + τ . Figure 3 represents the implementation of this method for a positive time delay with a trajectory component x(t ). In practice for a sample signal with the position and velocity over time, the implementation of the time 074603-6 COMPENSATION OF SEEDING BIAS FOR PARTICLE … nonhomogeneous. For a turbulent jet, this solution is obtained from the axial solution [START_REF] Xu | Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows[END_REF] and the volume continuity equation for an incompressible flow:

This radial solution is represented by dashed lines in Figs. 6(c), 6(d) and 6(e), and it corresponds to the mean radial velocity obtained with homogeneous seeding, meaning the unbiased mean velocity of a turbulent jet.

The radial velocity profile in Fig. 6(d) is without time delay (conventional PTV, τ = 0). It is clear that the mean radial velocity obtained by the particles trajectories is not the expected solution [START_REF] Kerho | Neutrally buoyant bubbles used as flow tracers in air[END_REF] for the fluid mean velocity or V r (r, z|0)/V z (0, z|0) = V r (r, z)/V z (0, z). This is due to the fact that the trajectories recorded at position (r, z) are a subset of the possible fluid trajectories with the condition that the trajectory must come from the nozzle (0,0).

In Figs. 6(c), 6(d) and 6(e), a black solid line is used to represent another solution for the tracer mean radial velocity:

This solution was obtained in a previous work [START_REF] Basset | Entrainment, diffusion and effective compressibility in a self-similar turbulent jet[END_REF] and aims at describing the mean radial velocity of the tracers if the tracers are injected by the nozzle (the subscript N is for nozzle). If the tracers are injected by the nozzle, then the tracer concentration verifies the same self-similar properties than the axial velocity itself [START_REF] Dowling | Similarity of the concentration field of gas-phase turbulent jets[END_REF], which allows us to compute the solution [START_REF] Melling | Tracer particles and seeding for particle image velocimetry[END_REF]. We can mention that the solution ( 12) for the radial velocity has a interesting geometrical property:

The relation [START_REF] Ferrari | A feature tracking velocimetry technique applied to inclined negatively buoyant jets[END_REF] means that the particles trajectories are, in average, a set of straight lines with their origin at the nozzle: for any point (r, z), the velocity vector V N ,r u r + V N ,z u z is aligned with the position vector r u r + z u z . As a consequence, the radial flow V N ,r for the tracers coming from the nozzle is always positive for any r/z.

In the turbulent jet with nozzle injected tracers, we can mention a simple experimental evidence that shows that the mean path of the tracers is not the mean velocity of the fluid. As shown in Fig. 6, the solution [START_REF] Kerho | Neutrally buoyant bubbles used as flow tracers in air[END_REF] for the fluid radial velocity V r (r, z)/V z (0, z) is negative for large r/z (r/z > 0.14). A negative V r (r, z) for large r/z means that the outer fluid is entrained by the core of the jet and the mean flow is radially convergent for r/z > 0.14. If the tracers were following the mean radial flow V r , then there would be no possibility for the tracers in region r/z < 0.14 to reach the region r/z > 0.14. This is not what is experimentally observed. To allow the tracers to be spread by the jet and reach r/z > 0.14, the tracers flow V N ,r (r, z) is consistently positive for any r/z and V r (r, z) > V r (r, z) is a signature of a positive radial dispersion of the tracers from the nozzle because of the turbulent diffusion.

In Fig. 6(d), the mean radial velocity V r (r, z|0) is consistently larger than V r (r, z). However, the radial flow V r (r, z|0) does not strictly match with the expected solution [START_REF] Melling | Tracer particles and seeding for particle image velocimetry[END_REF] predicted for tracers injected by the nozzle. We propose that the difference between the model V N ,r (r, z) and the data V r (r, z|0) for small r/z comes from the finite size of the filtering kernels used to obtain the velocity from the trajectories. To obtain the velocity at a given time step t 0 , we use a two-point derivative estimation combined with a Gaussian filtering. The Gaussian kernel has a window size of 12 time points which means that a few points before and after t 0 are involved in the computation of the velocity. At a frame rate of 6 kHz, six time points for the half window corresponds to 1 ms. Consistently, the agreement between the solution ( 12) is further improved, at least for small to moderate r/z values, if the velocity V r (r, z| τ ) has a negative delay of τ = -1.3 ms as shown in Fig. 6(c). This can be interpreted as an optimal realization of the nozzle seeding condition. 

Figure 5: Second-order flow statistics (variances of axial, radial and azimuthal velocities, and the covariance between axial and radial velocities). BogBai2009 corresponds to a LES of compressible turbulent round jet with Mach number equal to 0.9 and Reynolds number 𝑅𝑒 𝐷 = 1.1 × 10 4 [START_REF] Bogey | Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation[END_REF]. PanLum1993 (Panchapakesan & Lumley, 1993) and HusCap1994 (Hussein et al., 1994) correspond to experimental data with 𝑅𝑒 𝐷 = 1.1 × 10 4 and 10 5 , respectively.

as representatives of the full turbulence variables 𝑢, 𝑣, 𝑤. Furthermore, in LES the variable representing pressure includes a residual term from the subgrid-scale model that cannot be estimated, i.e., 𝑝 * = 𝑝/𝜌 + 𝜏 𝑘 𝑘 /3 is used as 𝑝/𝜌, where 𝜏 𝑘 𝑘 = 𝑢 𝑘 𝑢 𝑘 -𝑢 𝑘 𝑢 𝑘 . Finally, the TKE dissipation rate is indirectly estimated from the subgrid-scale model as

where 𝜈 𝑡 is the subgrid scale eddy viscosity. Despite these factors, the overall results are satisfactory and they validate the simulation.

Lagrangian particle simulation in LES

The LES code used here includes the simulation of Lagrangian particles, as described in [START_REF] Chen | Effects of topography on in-canopy transport of gases emitted within dense forests[END_REF][START_REF] Chen | Effects of gentle topography on forestatmosphere gas exchanges and implications for eddy-covariance measurements[END_REF]. The Lagrangian particles behave as passive tracers, not impacting the flow field, and the effects of particle inertia and gravitational settling can be switched on/off. Particle positions are numerically integrated using the stable scheme described by [START_REF] Bailey | Numerical considerations for lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy[END_REF], and the LES resolved velocity plus a subgrid-scale velocity obtained from a Langevin equation are used (the subgrid part can also be turned on/off, and its use was also tested here). As described in details in the 1 st Scientific Report, we used 10 7 particles randomly distributed across the entire domain and compared the flow field statistics obtained from the Lagrangian and Eulerian fields, validating the code.

After the validation, 5000 particles were injected instantaneously at the position 𝑧 = 24𝐷, following a Gaussian radial distribution (Fig. 11(left)) at 8 different times of the simulation, tracked for a period of 30000 flow time-steps (0.45 s), as indicated in Fig. 7. Seven spheres of radius corresponding to 𝑟 1/2 (𝑧)/3 and 𝑟 1/2 (𝑧)/2 were defined at the positions indicated by Fig. 11(right). Within each sphere, both Eulerian and Lagrangian statistics can be obtained, defined as representatives of the position corresponding to the center of the sphere. 12 Dispersion of particles from a point source in turbulent flows can be well described by the theory of turbulent diffusion from Taylor (1922), which provides the behavior of the mean square displacement of tracer particles (𝜎 2 ) at asymptotic regimes of short and long time scales (𝜎 2 (𝜏) ∼ 𝜏 2 and 𝜎 2 (𝜏) ∼ 𝜏, respectively, where 𝜏 is time since particle release). However, this theory is limited by the stationarity constraint of the Lagrangian particle velocity, which is in turn related to the homogeneity of the turbulent flow. In a recent study, a stationarization method for the Lagrangian particle velocity was proposed, which allows the extension of Lagrangian theory to inhomogeneous, self-similar flows (Viggiano et al., 2021). The method was validated by the collapse of the Lagrangian second-order structure function (𝑆 𝐿 2 (𝜏) = ⟨( ũ(𝑡 + 𝜏) -ũ(𝑡)) 2 ⟩) measured using laboratory data of particle dispersion in a turbulent jet flow. In the present study, we reproduce this result using LES data, which not only provides a second independent test of the methodology, but it also extends the results to a wider range of scales and additional axial positions.

The method for the stationarization of Lagrangian velocity from inhomogeneous, self-similar flows, known as the compensation method, comprises the rescale of the Lagrangian velocity 𝑢(𝜏) by the Eulerian (flow) velocity at the position x(𝜏) reached by a particle released at 𝜏 = 0 and x = 0, in addition to the Eulerian time-scale of the flow at the same position, i.e.,

where 𝑢 𝑒 (x(𝜏)), 𝜎 𝑢 (x(𝜏)) and 𝑇 𝐸 (x(𝜏)) are the local (Eulerian) average flow velocity, standard deviation and time-scale at the position x of the particle at time 𝜏 since release. In practice, for the estimation of the stationarized Lagrangian second-order structure function, the values of 𝑢 𝑒 and 𝜎 𝑢 were interpolated from the LES axial-radial Eulerian field at the particle position throughout the particle trajectory, and the average value of 𝑇 𝐸 within each sphere were used for the rescale of time.

Figure 12 shows the Lagrangian second-order structure functions within each sphere of radius 𝑟 1/2 (𝑧)/2 before and after stationarization (data from the laboratory experiment are also shown). The collapse of the curves after stationarization, in addition to the short (∼ 𝜏 2 ) and long (∼ 𝜏) time scale behavior of the curves is remarkable. This result indicates the success of both the theory and the LES, for a wide range of scales and axial positions. A similar result is obtained for spheres with radius 𝑟 1/2 (𝑧)/3 (not shown). This original result will likely be presented at the 22nd Computational Fluids Conference in 25-28 April/2023 in Cannes, France (see submitted abstract in Appendix 1).

Finally, we note that the results described above did not use the subgrid-scale velocity from the Langevin equation in the particle transport simulation, i.e., these results only include the particle transported by the LES resolved field. As illustrated in Fig. 13, the inclusion of the subgrid-scale velocity added noise to the particle tracking that degraded the 𝜏 2 scaling of the short Lagrangian time-scales.
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ABSTRACT

In a recent study [1], a stationarization method for the velocity along fluid particle trajectories was proposed, allowing the expansion of stationary Lagrangian theory to inhomogeneous, self-similar flows.

The success of the methodology was demonstrated through the collapse of the Lagrangian streamwise second-order structure function (S L 2 (τ) = (V (t + τ) -V (t)) 2 ), for a turbulent jet flow of Re λ ∼ 230 using laboratory data. In this study, the Large-Eddy Simulation (LES) of a similar flow was performed, including the simulation of passive tracers. Results of flow statistics such as mean velocity, variances and covariances, as well as the turbulence kinetic energy budget and Eulerian time-scale, compared well with the experimental data. The Lagrangian velocity of passive particles was stationarized using the local Eulerian mean velocity and time-scale, as proposed by the new method. The collapse of the Lagrangian streamwise second-order structure function after stationarization was obtained for additional streamwise positions and a broader range of scales compared to the original study (Fig. 1). The LES dataset complements the laboratory data by providing additional flow field information, which will be used in a deeper investigation of the Lagrangian properties of particle dispersion in turbulent flows.